
All Use-After-Free Vulnerabilities Are Not Created Equal:
An Empirical Study on Their Characteristics and Detectability

Zeyu Chen
University of Delaware
Newark, Delaware, USA
zeyuchen@udel.edu

Daiping Liu
University of Delaware
Newark, Delaware, USA

dpliu@udel.edu

Jidong Xiao
Rensselaer Polytechnic Institute

Troy, New York, USA
xiaoj8@rpi.edu

Haining Wang
Virginia Tech

Arlington, Virginia, USA
hnw@vt.edu

ABSTRACT
Over the past decade, use-after-free (UaF) has become one of the
most exploited types of vulnerabilities. To address this increasing
threat, we need to advance the defense in multiple directions, such
as UaF vulnerability detection, UaF exploit defense, and UaF bug fix.
Unfortunately, the intricacy rooted in the temporal nature of UaF
vulnerabilities makes it quite challenging to develop effective and
efficient defenses in these directions. This calls for an in-depth un-
derstanding of real-world UaF characteristics. This paper presents
the first comprehensive empirical study of UaF vulnerabilities, with
150 cases randomly sampled from multiple representative software
suites, such as Linux kernel, Python, and Mozilla Firefox. We aim
to identify the commonalities, root causes, and patterns from real-
world UaF bugs, so that the empirical results can provide operational
guidance to avoid, detect, deter, and fix UaF vulnerabilities. Our
main finding is that the root causes of UaF bugs are diverse, and
they are not evenly or equally distributed among different software.
This implies that a generic UaF detector/fuzzer is probably not
an optimal solution. We further categorize the root causes into 11
patterns, several of which can be translated into simple static de-
tection rules to cover a large portion of the 150 UaF vulnerabilities
with high accuracy. Motivated by our findings, we implement 11
checkers in a static bug detector called Palfrey. Running Palfrey
on the code of popular open source software, we detect 9 new UaF
vulnerabilities. Compared with state-of-the-art static bug detectors,
Palfrey outperforms in coverage and accuracy for UaF detection,
as well as time and memory overhead.

CCS CONCEPTS
• Security and privacy→ System security; Bug-finding, debug-
ging.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RAID ’23, October 16–18, 2023, Hong Kong, China
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0765-0/23/10. . . $15.00
https://doi.org/10.1145/3607199.3607229

KEYWORDS
Use-after-free; Static detector; Benchmark
ACM Reference Format:
Zeyu Chen, Daiping Liu, Jidong Xiao, and Haining Wang. 2023. All Use-
After-Free Vulnerabilities Are Not Created Equal: An Empirical Study on
Their Characteristics and Detectability. In The 26th International Symposium
on Research in Attacks, Intrusions and Defenses (RAID ’23), October 16–18,
2023, Hong Kong, China. ACM, New York, NY, USA, 16 pages. https://doi.or
g/10.1145/3607199.3607229

1 INTRODUCTION
In C/C++ programs, a use-after-free (UaF) bug1 is triggered when
a pointer pointing to freed memory is dereferenced. This pointer is
referred to as a dangling pointer. Normally, dereferencing a dangling
pointer results in data corruption and/or program crashes (denial of
services). However, when the dangling pointer and program state
can be manipulated by attackers, UaF bugs may lead to much worse
unexpected consequences. For example, if attackers can fill the freed
memory with deliberately crafted contents, UaF bugs potentially
allow attackers to run arbitrary code. UaF vulnerabilities also serve
as a popular attack vector to leak the in-memory addresses of
certain libraries like libc and thus defeat the address space layout
randomization (ASLR) in modern systems. Actually, if a UaF bug is
present in software, there is a high likelihood that an exploit could
be developed to compromise the victim software system [99].

1.1 Motivation
Unfortunately, UaF vulnerabilities are almost inevitable and difficult
to detect and fix. Although significant progresses from multiple di-
rections have been made over the past years to address this security
challenge, there are still many open, unsolved issues.

Static UaF vulnerability detection. Previous research [49, 54,
57, 62, 69, 88, 102, 103, 107–109] has used static analysis to de-
tect UaF bugs from source code. In static analysis, detectors track
memory allocation and pointer propagation. When a dereferenced
pointer points to freed memory, a bug is detected. While some
promising results have been achieved, it is still far from a complete
solution to address UaF bugs. For example, some approaches only
consider UaF bugs in specific software suites like Linux device dri-
vers [49]. Also, static detectors often have many false positives [59].
1Throughout the paper, we consider that each UaF bug is a potential vulnerability.
Thus, we use UaF bug and UaF vulnerability interchangeably.

623

https://doi.org/10.1145/3607199.3607229
https://doi.org/10.1145/3607199.3607229
https://doi.org/10.1145/3607199.3607229

RAID ’23, October 16–18, 2023, Hong Kong, China Zeyu Chen, Daiping Liu, Jidong Xiao, and Haining Wang

More importantly, several essential questions remain unanswered:
what portion of real world UaF bugs can be detected? How many
patterns into which real-world UaF bugs fall? And, is there any UaF
bug pattern that has not yet been discovered by existing detectors?

Dynamic software fuzzing. Software fuzzing is a popular dy-
namic technique to find bugs using automatically generated input
data. The program used to generate these inputs is called a fuzzer.
Empirical studies show that fuzzing can effectively uncover many
common bugs like buffer overflows [81].

Early fuzzers often generate inputs randomly. Therefore, it usu-
ally takes a long time, from hours to months, to provide sufficient
coverage and find latent bugs. In recent years, the coverage-guided
fuzzing has attracted much attention to improve the fuzzing efficacy
[51, 52, 55, 65–67, 91, 96]. Coverage-guided fuzzers can effectively
reveal many overlooked corner cases, and they have become quite
appealing for use in production testing environments. Actually, by
virtue of open-source fuzzing tools and frameworks like American
fuzzy lop (AFL) [113] and oss-fuzz [17, 92], fuzzing has seen great
success in discovering many bugs from a variety of software. When
coupled with memory corruption detection tools like Valgrind [85]
and ASan [93], fuzzing can also uncover many UaF bugs in large
software suites like the Chrome browser.

However, it is still unclear, both quantitatively and qualitatively,
how effective the state-of-the-art fuzzers can expose UaF bugs. The
major challenge of software fuzzing is the exponential increase in
space exploration. The exposure of UaF bugs can be even more
challenging, since it requires to trigger a premature memory free
and explore all pointer propagation paths. Even worse, many UaF
bugs are non-deterministic due to the uncertainty in memory allo-
cators and the concurrency in multi-thread applications. Ultimately,
the design of a practical and efficient UaF fuzzer requires a better
understanding of the manifestation of real world UaF bugs, with
which fuzzers can prioritize the program states and execution paths.

UaF exploit defense.As it is almost impossible to find and fix all
UaF bugs during software development, another defense direction
is to eliminate dangling pointers, the culprit of UaF vulnerabilities.
Along this direction, many modern programming languages have
adopted various mechanisms like tracing garbage collection (GC) in
Java [18], reference-count GC in Python [19], automatic reference
counting (ARC) in Swift [20], smart pointers in C++ [21], and own-
ership in Rust [22]. There are also solutions to arm legacy C/C++
code with reference counting to address UaF bugs [50, 94]. Mean-
while, based on the insight that UaF vulnerabilities can be avoided
when there is no memory reuse, some other methods attempt to
avoid page sharing in virtual memory [60, 78, 87]. In essence, these
methods follow the rule that a memory block cannot be freed as
long as a pointer (may) still points to it.

Several recent works instead follow a different rule to harden
C/C++ applications. The rule assumes that all explicit memory
frees are what programmers expect, and all dereferences to dangling
pointers can be considered as potential exploits. Guided by this rule,
one defensemechanism is lock-and-key, inwhich a unique identifier
is generated for each memory allocation (i.e., a lock) and is then
associated to pointers (as the key) for accessing the memory [58, 84].
Another approach proactively nullifies the dangling pointers at
the time of memory free [72, 76, 101, 110]. These methods can
effectively defeat attackers’ exploit attempts.

Although mechanisms like GC and dangling pointer nullification
show great potential, there are still several open questions. (1) How
effective are these mechanisms and what are the caveats to watch
out in implementation? (2) How effective is the widely adopted ref-
erence count to thwart UaF in C/C++? In addition to programming
language features like smart pointers and ownership, there are also
ad-hoc implementations of reference count in multiple software
suites like Linux kernel and Python. These solutions mostly depend
on programmers to correctly understand and use the provided prim-
itives. (3) Is there a better trade-off between performance overhead
and protection coverage to facilitate these runtime defenses (e.g.,
dangling pointer nullification) to be widely adopted in a production
environment?

1.2 Contributions
Empirical findings. To address those open problems, this work
provides the first comprehensive study on the characteristics of real
world UaF bugs. Specifically, we examine bug patterns, manifesta-
tions, fix strategies, and several other features. Our study is based
on 150 randomly selected real world UaF bugs, collected from 41
large and mature open-source projects like Linux kernel, Python,
and Mozilla Firefox. For each bug, we carefully examine its bug re-
port, corresponding source code, related patches, and programmers’
discussion, all of which together provide us a relatively thorough
understanding of the bug patterns, manifestation conditions, fix
strategies, and diagnosis procedures. Our study reveals a number of
interesting observations that can provide useful guidelines for UaF
bug detection and protection. We summarize our main findings and
their implications as follows:

• Heap UaF dominates (148 out of 150), although there are two
real UaF bugs on data memory segment (§3.2).

• The majority of UaF bugs are deterministic (115 out of 150),
which are generally easier to detect and fix than nondeter-
ministic ones (§3.3).

• Most UaF bugs do not cause crashes when exploited using
the proof-of-concept (PoC) code. However, when the ap-
plications are hardened with AddressSanitizer (ASan) [93],
all UaF bugs will cause crashes. Therefore, fuzzing systems
need to couple with ASan to achieve more effective detection
performance (§3.5).

• The root causes of the majority bugs can be categorized into
11 patterns. In particular, ∼33% follow certain patterns that
exhibit strong spatial and temporal relevance. Such bugs are
mostly low-hanging fruits and UaF detectors can cover them
without much difficulty (§4).

• 26% UaF bugs are caused by errors in reference counting,
a popular technique to defend against memory corruption.
While it is well known that incorrect reference counts of
objects lead to UaF, our study reveals another major cause,
the misuse of borrowed references (§4.2).

Besides the empirical findings, the major contribution of this
work lies in three aspects. (1) UaF benchmark (§4.3). We con-
structed a new UaF benchmark UAFBenchPlus. Compared to UAF-
Bench [23], UAFBenchPlus contains more bugs (120 𝑣 .𝑠 . 14) from
more applications (41 𝑣 .𝑠 . 11) with more diverse patterns. (2) Static

624

All Use-After-Free Vulnerabilities Are Not Created Equal:
An Empirical Study on Their Characteristics and Detectability RAID ’23, October 16–18, 2023, Hong Kong, China

Source Deterministic Non-deterministic
Concurrent Others

Firefox 25 5 0
CPython 27 2 1
Linux 16 10 4
GitHub 47 11 2
Overall 115 28 7

Table 1: Number of UaF bugs collected from three representa-
tive software suites and 38 GitHub open source repositories.

detector (§5). Tomeasure the applicability of the detection rules ex-
tracted from our empirical study, we built Palfrey, a simple static
UaF detector. We detected nine new UaF bugs in seven production
quality open source projects. We also conducted a thorough analy-
sis in term of bug detection ability, performance and false positives
with other tools. (3) Open dataset. Finally, to foster the future
work, we will make our dataset and tools publicly available.

The rest of the paper is organized as follows. Section §2 describes
the general problems of UaF and the methodology about the bug
collection in the empirical study. Section §3 outlines the general
findings from the empirical study. Section §4 details UaF bug pat-
terns, their implications, as well as a UaF benchmark built from the
empirical study. Section §5 presents a static tool Palfrey and its
related experiment results. Section §6 surveys related work, and
finally Section §7 concludes this work.

2 METHODOLOGY
2.1 UaF Bug Collection
UaF bugs occur across a wide range of programs that have vari-
ous features and development cycles. The programs can be com-
mercial/free and closed source/open source. We use the following
methodology and principles to compile the datasets for this study:

• Open source. In order to thoroughly analyze and under-
stand UaF bugs, we need to access the source code. We leave
the extension to closed source programs with only binaries
available as our future work.

• Public bug trackers.We extracted the UaF bugs from the
publicly accessible bug tracking systems of the open source
projects. The bugs tracked in these systems are usually well-
documented with high quality details. They are often con-
firmed or disputed by developers. We can also view the dis-
cussions on the bug trackers, including the causes and their
potential effects, and track how the bugs get resolved like the
code patches. Note that although some projects’ bug trackers
are open, the bugs’ details are mostly hidden to the public,
e.g., Chromium browser. We consider such cases as closed
bug trackers.

• Mature and actively maintained. The bugs are selected
frommature projects that have stable releases and developers
for active maintenance.

Based on these guidelines, we selected a final set of 150 real-
world UaF bugs that were randomly sampled from the following
sources, as summarized in Table 1.

Three representative software suites. We searched the bug
tracking systems from three software suites: Linux Kernel [75],

Mozilla Firefox [83], and CPython [90]. They represent three most
widely used applications with large code base, more than 10 years
development history, and million lines of code. These applications
show variations in programming languages (C vs C++) and memory
management mechanisms (manual memory collection vs reference-
count based memory collection).

The search function of each bug tracking system was extensively
used to find the reported UaF vulnerabilities. In particular, they
provided many filters and keyword options to reduce the results
to the desired bug reports. The keywords we used include "uaf",
"use-after-free", "dangling pointer", "double free", and
their variants. To make the bug search comprehensive, we also used
the keywords "data race", "concurrency", "weak reference",
and "reference count", etc. Then, we checked if such bugs are
UaF. From there, we extracted the desired bugs in two steps. First,
we cross-checked with the Common Vulnerabilities and Exposures
(CVE) database [100]. If a bug has a CVE entry, it is more likely to be
a security vulnerability, and thus we prefer such bugs in our study.
Then, we randomly sampled a set of results and investigated to ver-
ify that the reported bugs were truly confirmed UaF vulnerabilities.
In some cases, our search terms were included in the bug reports,
but they ended up being incorrect designations by developers. Such
cases were ignored during our data collection.

There are three major challenges in the bug report collection. (1)
Many bug reports are incomplete. In particular, it is unclear how to
trigger the bugs and no PoC is provided. (2) UaF bugs are not easy
to understand. Their patterns and manifestations usually involve
complicated interactions among multiple software components. (3)
Some bugs in different reports originate from the same root cause,
e.g., issue 24099 [2] and issue 24101 [3] in Python.

We filtered out a significant number of UaF bugs during the
selection process to ensure the quality and relevance of the dataset.
Specifically, we excluded bugs that have incomplete reports, miss
crucial details, or could not be fully understood or reproduced. In
addition, we discarded bugs that were incorrectly classified as UaF
or did not meet our defined criteria. As we encountered instances
where multiple bugs originated from the same root cause, we made
the decision to retain one representative bug to avoid duplications
in our analysis. After this meticulous filtering process, we arrived at
a final set of 150 real-world UaF bugs for our study, which provided
a comprehensive and reliable base for our analysis. The excluded
bugs, due to their limited or incomplete information, were not
considered in our analysis to maintain the accuracy and reliability
of our findings.

38 GitHub open source repositories. In order to complement
our dataset with bugs from a more diverse set of projects, we lever-
aged GitHub [24], one of the largest code hosting services for open
source software. The same keywords as above were used to search
for UaF bugs on GitHub. Meanwhile, in order to find the bugs con-
forming to the principles described above, we adopted multiple
searching criteria. Specifically, the bugs are limited to the code
repositories with active commits within recent six months and
more than 1,000 stars. Finally, we manually verified that the reposi-
tories contain production level code, instead of teaching or sample
code. In total, we chose 60 bugs from 38 repositories. The full list
of the repositories is presented in Table 2.

625

RAID ’23, October 16–18, 2023, Hong Kong, China Zeyu Chen, Daiping Liu, Jidong Xiao, and Haining Wang

kbd nng php vlc
oboe dcmtk. Envoy KeyDB
mongo mySQL swift uacme
yosys coturn Jungle spead2
SQlite u-boot f-stack gnucash
osquery electron i2p.i2p php-src
systemd arangodb goaccess Open SSH
mosquitto OMCompiler oniguruma profanity.
plan9port verilator librdkafka timescaledb
foundationdb qpid-dispatch

Table 2: Github repositories for empirical study

Discussion. We would like to point out that the number of UaF
bugs collected from each application does not reflect how secure or
insecure an application is or how common UaF is in an application.
Our dataset simply represents the UaF bugs that meet our selection
criteria and get randomly selected.

2.2 Threats to Validity
As for all empirical studies, the conclusions drawn from our results
are subject to some threats to the validity. In the following, we
discuss the potential sources of bias and how we address them with
our best-efforts.

One limitation of our study is the representativeness of the se-
lected bugs, which may not be representative. There are millions
of software packages in the wild, and it is impractical for our study
to cover all of them. In particular, our dataset is exclusively col-
lected from open source programs. As a result, our findings might
not be generalized to a larger population of commercial software.
However, modern open source programs have comparative quality
as commercial ones, and many open source programs are widely
used in production environments. We carefully select UaF bugs
from diverse types of open-source programs. And, the bugs are
randomly sampled from GitHub and bug trackers of popular soft-
ware, which serve as a great population of UaF bugs. Therefore,
we believe that the findings derived from our dataset can provide
valuable guidelines for future defense.

We also give higher priority to the latest bugs. Therefore, the
findings might not represent the bug characteristics years ago. How-
ever, we argue that the latest bugs can provide more valuable and
timely insights. Another limitation to the generalizability of our
study is the size of our sample set. According to modern statistics,
a random sample set with size greater than 30 is larger enough to
represent the entire population [95]. Actually, our sample size is
comparable to previous similar empirical studies [70, 73, 77, 111].

Finally, our study could suffer from potential observer errors. To
minimize the possibility of observer errors, a group of researchers
share the same detailed protocol to inspect and classify the bugs,
and all bugs are cross-checked by two researchers. In addition,
we are familiar with the three targeted programs and some of the
randomly sampled applications.

Source UaF Non-UaF
Firefox 641 391
Python 1,207 671
Linux 1,312 679
GitHub 1,222 765

Table 3: Average lifespan of UaF and non-UaF bugs, measured
in days between when a bug was introduced until a patch
was committed.

Memory Segment # of bugs
Stack 0
Data 2
Heap 148

Table 4: Memory segment of UaF bugs.

3 GENERAL FINDINGS
This section sheds light on some general findings from our study to
provide a better understanding on the lifespan and manifestation
of UaF bugs.

3.1 Lifespan of UaF Bugs
Table 3 shows the average UaF lifespan, which is defined as the
duration from the time when the bug was introduced to when its
patch was committed. As a comparison, we also randomly selected
40 non-UaF bugs (with 10 from each source) and analyzed their
average lifespan.

Finding 1. The lifespan of UaF bugs on average is 74.9% longer than
non-UaF ones.

Overall, our results show that UaF bugs have much longer lifes-
pan, implying that UaF bugs are more sophisticated and more diffi-
cult to find and fix.

3.2 Where Do Dangling Pointers Point To?
While UaF bugs often occur on heap memory (i.e., heap UaF) and
are the focus of most UaF studies, a dangling pointer theoretically
can point to prematurely freed memory located on any segments
besides heap. Table 4 shows the memory segments of UaF bugs in
our dataset.

Finding 2. While heap UaF dominates (accounting for 98.7%), dan-
gling pointers pointing to other memory segments do exist in the
wild.

First, we did not find a real stack UaF case. A stack UaF occurs
when a pointer points to the address of a stack variable after its
declaring function has returned. A hypothetical example of stack
UaF is presented in Figure 1.

While no stack UaF was found, we did observe two data UaF. As
Figure 2 shows, the static variable module_initialized is used
to guard against multiple initializations. However, when the static
module is freed and the corresponding resources get released, the
static variable is not cleared. Consequently, if later the static module
is initialized again, the runtime system will incorrectly consider

626

All Use-After-Free Vulnerabilities Are Not Created Equal:
An Empirical Study on Their Characteristics and Detectability RAID ’23, October 16–18, 2023, Hong Kong, China

int *func_return_stack_addr() {
char str[32];
int value = 1024;
return &value;

}
// stack_ptr is a dangling pointer to a freed stack frame
int *stack_ptr = func_return_stack_addr();
*stack_ptr = 2048;

Figure 1: A hypothetical example of stack UaF

the module as initialized, and thus it will use the previously freed
resources, resulting in UaF.

Another interesting case is due to the static destruction order
fiasco, as shown in Figure 3. In C++, the destruction order of static
objects is undefined across different compilation units, and there-
fore, the destruction order of some static objects, e.g., alias_table
and parameter_set in Figure 3, becomes non-deterministic at run-
time. This could lead to UaF. This patch changes them to be static
functions that return static member variables, avoiding the problem.

Finally, as expected, about 98.7% (148 out of 150) real-world
UaF bugs occur on heap memory. This is because heap memory
is usually dynamic and thus prone to be misused due to coding
mistakes. In addition, the lifespan and content of objects on heap
are easier to be manipulated by attackers. Consequently, heap UaF
generally poses more serious threats.

One more issue to mention is that C/C++ supports arithmetic on
pointers, and thus a pointer can point to any byte within a memory
block at runtime. During our study, we found 1 heap memory case
where the dangling pointer points to the internal (instead of the
head) of a memory block. For instance in Figure 4, *_haystack
and *_needle point to the memory assigned by malloc() since
strup() calls malloc() to allocate memory. The memory will thus
be finally released. ret points to somewhere within _haystack
(or null if there is no match) when calling strstr(_haystack,
_needle). Since _haystack is released, the function then returns
a freed memory, which results in UaF.

In summary, while non-heap UaF does exist in the wild, its pat-
tern is relatively simple. By contrast, heap UaF is much more preva-
lent and complex. In addition, our last example indicates that it is
imperative for some dynamic detection to keep track of not only
where a pointer points to, but also the object size. Therefore, heap
UaF deserves a deeper study and its characterization will be our
focus.

3.3 Nondeterminism of UaF
Finding 3. While the majority of UaF bugs are deterministic, a
non-trivial portion (35 out of 150) are non-deterministic.

ManyUaF bugs (35 out of 150) are triggered non-deterministically.
First, a large portion (28 out of 35) of non-deterministic UaF bugs
are actually concurrency bugs. To highlight the distinctions be-
tween UaF and general concurrency bugs, we compare our data
with the previous study by Lu et al. [77]. Specifically, in our study all
collected UaF concurrency bugs are non-deadlock, while 66% of gen-
eral concurrency bugs are non-deadlock. In terms of bug patterns,
96% of UaF concurrency bugs are triggered by atomicity-violation

static int module_initialized;
static void module_free(void *m) {

...
+ module_initialized = 0;

}
static int module_init(void) {

if (module_initialized != 0) {
return 0;

}
else {

module_initialized = 1;
}

}

Figure 2: Global UaF due to loss of memory flag update[25]

- static std::unordered_map<...> alias_table;
- static std::unordered_set<...> parameter_set;
+ static std::unordered_map<...> alias_table();
+ static std::unordered_set<...> parameter_set();

Figure 3: Static destruction order fiasco [26]

char *strcasestr(const char *haystack, const char *needle) {
char *ret = NULL;
char *_haystack = strdup(haystack);
char *_needle = strdup(needle);
// _haystack and _needle are assigned by malloc, and

would be freed
ret = strstr(_haystack, _needle);

+ if (ret)
+ ret = (char *)haystack + (ret - _haystack);

free(_haystack);
free(_needle);
return ret; // points to freed memory

}

Figure 4: Dereference of an strup() object[27]

void js_DestroyContext(...){
js_UnpinPinnedAtom(&atoms) // free

}
void js_DestroyContext(...){
js_MarkAtom(&atoms,...); // read

}
//error: two functions run concurrently but

js_UnpinPinnedAtom should happen after js_MarkAtom

Figure 5: UaF as a concurrency bug [1]

and order-violation, which is consistent with the observation in
[77] (97%). Among the atomicity-violation and order-violation bugs,
four are caused by data race [45]. Besides, in our study, the manifes-
tations of all UaF concurrency bugs involve concurrent accesses to
a single variable (compared to 66% in [77]). Therefore, it is a good
strategy for UaF concurrency bug detectors to focus on atomicity-
violation, order-violation, and non-deadlock concurrent accesses
to single variables.

627

RAID ’23, October 16–18, 2023, Hong Kong, China Zeyu Chen, Daiping Liu, Jidong Xiao, and Haining Wang

Second, the manifestation of UaF could depend on the system
state. For instance, when calling certain functions, insufficient mem-
ory allocation [28] will result in errors and then cause UaF (see
§4.1.3). Another special case is static destruction order fiasco as
explained above in Figure 3.

3.4 Line of Free to Line of Dereference
When analyzing and detecting UaF bugs, one important metric
is the code range between the creation and dereference of a dan-
gling pointer. This metric is especially valuable and useful for non-
concurrent (122 out of 150) UaF analysis. Thus, we measured the
lines of code between where the dangling pointer is created and
where it is dereferenced for all sequential UaF bugs. We refer this
metric as Line-of-free-to-Line-of-dereference (LOFTLOD).
LOFTLOD does not represent the number of lines of code to execute
at runtime. In particular, we do not count the lines of code in the
body of a called function, which is counted as one line. And, in case
of a conditional statement, each branch is counted in sequence until
reaching the last branch or the statement of the dangling pointer
dereference.

When computing the LOFTLOD metric, the valuable control-flow
information is discarded. In order to provide a clearer picture of the
UaF code ranges, we augment LOFTLOD with the basic block (BB)
information. Specifically, we check if the dangling pointer creation
and dereference instructions are in the same BB, adjacent BB, or
non-adjacent BB. The BB-augmented LOFTLODmetric simplifies the
code analysis while still providing valuable information.

BB relationship can be easily acquired in Clang if our checker suc-
cessfully detects a UaF bug.When a specific bug pattern is identified,
the BugReporter() function is invoked to provide a trace of the
UaF bug. To determine whether the code resides within the same BB,
we utilize the CheckerContext::getBlockID() function, which
retrieves the block ID for a given position. If the block IDs of the
memory-free and memory-dereference positions are the same, it in-
dicates that they belong to the same basic block. Conversely, if they
differ, we employ the isAdjacent() function to determine if they
are in adjacent basic blocks. In cases where UaF bugs go undetected,
we conduct an analysis of the root cause for each bug by identifying
where the memory is freed and exploring potential positions for
memory dereference. Based on our understanding of the bug and
the analysis of the code structure, we compute the closest distance
and obtain the corresponding basic block information.

Our analysis results are shown in Table 5. Interestingly, there
are 35 cases whose LOFTLOD is smaller than 10, and 49 cases whose
dangling pointer creation and dereference happen in the same or
adjacent basic block. For instance, Figure 6 presents a real-world
case in CPython, where tstate is freed and then accessed almost
immediately. This implies that a fair amount of sequential UaF
bugs are relatively easy to detect. Specifically, it could be a high-
rewarding strategy for a detector to give a higher weight to the
code snippets after the instructions where dangling pointers are
created.

Number of bugs
LOFTLOD <10 <50 <200 >200
Same BB 27 6 0 0
Adjacent BB 8 3 0 5
Nonadjacent BB 0 21 8 44
Overall 35 30 8 49

Table 5: Distribution of basic block (BB) augmented LOFT-
LOD of the bugs in the collected C/C++ applications.

tstate_delete_common(tstate); // free
if (autoInterpreterState &&

PyThread_get_key_value(autoTLSkey) == tstate)
// invalid read
PyThread_delete_key_value(autoTLSkey);

Figure 6: Immediate use-after-free

3.5 UaF Reproducibility
We also reproduced some of the collected bugs and observed their
behaviors by using AddressSanitizer (ASan) [93]. We aim to under-
stand (1) how likely a UaF bug leads to software crashes and (2) how
effective ASan is to detect UaF. To this end, we randomly selected
30 bugs from the data set. Table 12 lists all of the tested 30 bugs.
Some bugs were reported along with the proof-of-concept (PoC)
code that was directly used in our test. For the rest, we hand-wrote
the PoC code to trigger the bugs. For each bug, we ran the PoC
code (1) without ASan to see if the bug crashes the software and
(2) with ASan to see if ASan could detect the UaF bug.

Application crash serves as the main externally observable be-
havior that modern fuzzers rely on for bug detection. Our evaluation
shows that only 3 out of the 30 tested bugs caused crashes. This
implies that most UaF bugs are actually "silent" and fuzzers require
auxiliary tools for effective UaF detection.

Finding 4. Without ASan, only 3 out of 30 UaF bugs caused crashes.

When a dangling pointer points to a freed and then re-allocated
memory block, ASan could have false negatives. To address this
issue, ASan implements a quarantine mechanism. After a memory
block is freed, it is marked as unaddressable and put into quarantine.
The reuse of the freed memory in quarantine will be delayed and
will not be allocated by malloc in a short time. The quarantine is
implemented using a first-in-first-out (FIFO) queue, which holds
a fixed amount of memory at any time. When the queue is full,
some old memory will be moved out from quarantine and thus will
become available for reuse. As a result, the size of the quarantine
queue is critical for effective UaF detection, with a small one leading
to many false negatives and a large one incurring high performance
overhead. Clearly, it is meaningful to evaluate how reliable the
quarantine mechanism is in practice, especially with the default
quarantine size.

Finding 5. Given the default quarantine size of 256MB, ASan suc-
cessfully detected all of the tested 30 UaF bugs.

Overall, our tests show that the default quarantine size of 256MB
is sufficient in real world. Even when the quarantine size is reduced
to 64MB, ASan can still reliably detect 27 out of 30 UaF bugs.

628

All Use-After-Free Vulnerabilities Are Not Created Equal:
An Empirical Study on Their Characteristics and Detectability RAID ’23, October 16–18, 2023, Hong Kong, China

Category Freq.

Immediate UaF move-free-before-use (P1) 12
save-before-free (P2) 13

Raise a flag not or falsely updated (P3) 12
not checked (P4) 7

Memory resize improper memory resize (P5) 9
API API misuse (P6) 14

Double free free inside a loop (P7) 20

Ref count

use of borrowed ref (P8) 26
over-decremented ref (P9) 6
non-decremented ref (P10) 3
misused ref-count API (P11) 3

Others other causes (P12) 35

Table 6: The occurrence frequency of each UaF pattern. Note
that the total number is more than 150 since there might be
overlaps between the two patterns. For example, both flag
error andmisuse of reference count could lead to double free,
and API misuse could result in reference count error.

4 UAF CHARACTERIZATION
To better facilitate the manifestation and detection of UaF bugs, we
conduct a deeper study for UaF characterization. In particular, we
aim to answer the following questions:

• How are UaF bugs introduced? This can provide clues on
the best practices to avoid UaF.

• Do UaF bugs have patterns that can provide insights on the
design of bug detection tools?

We discover that concurrent UaF has no remarkable differences
in root causes from general concurrency bugs studied in previous
work [77]. Therefore, wemainly focus on sequential UaF bugs in this
section. Meanwhile, as reference counting is a promising technique
to address UaF and has been widely adopted, it is desirable to
understand its efficacy to prevent UaF in practice. Table 6 shows
the occurrence frequency of each pattern. The details are discussed
in the rest of this section.

4.1 All UaF Bugs Are Not Created Equal
4.1.1 Immediate-use-after-free. The dangling pointers in 25 UaF
bugs get dereferenced only after a few lines of code where the
memory is freed. We divide the bugs into two patterns based on
their fixes.

Move-free-behind-use (P1): For 12 bugs, the patch is simply to
move the memory free after the pointer dereference statements. A
typical example can be found in Figure 6. Such simple cases should
have been caused by programmers’ carelessness. And, because they
often do not crash programs and even in some cases the expected
data can be read through the dangling pointers, such bugs can be
easily overlooked.

Save-before-free (P2): We also observed 13 cases where a mem-
ory block is freed, while some internal pointer fields are still needed
in the subsequent execution. Figure 7 shows a typical example.
After xc is freed, the subsequent dereference of xc->xc_parent
would lead to UaF. Actually, this pattern is more common dur-
ing list manipulations, e.g., the node deletion in a linked list [29].

+ fstWriterContext* const parent = xc->xc_parent;
free(xc);

- xc->xc_parent->in_pthread = 0;
- pthread_mutex_unlock(&(xc->xc_parent->mutex));
+ parent->in_pthread = 0;
+ pthread_mutex_unlock(&(parent->mutex));

Figure 7: A UaF bug of the save-before-free pattern[30]

The fix to such bugs is usually straightforward. A new variable is
used to hold the data needed in the subsequent executions, e.g.,
parent=xc->xc_parent in Figure 7.

Implications.Motivated by the fact that the UaF bugs of this
"immediate-use-after-free" pattern often do not have complicated
code logic and their fixes are usually straightforward, a static
checker could be built to accurately detect such bugs with few
false positives.

4.1.2 Raise a red flag. A flag variable is often used in software to
track the runtime status. If falsely updated or inappropriately used,
it could lead to memory corruptions including UaF. We found that
19 out of 150 UaF bugs are due to the inappropriate use of flags,
and they fall into two specific flag related operations.

The flag is not or falsely updated (P3). Figure 8 presents an
example of this flag related operation. pci_alloc_consistent()
returns a NULL pointer if there is insufficient memory and its re-
turn value is checked. If the return value is NULL, the control flow
will jump to label create_cq_error, free the memory and return
the variable ret. Also, beiscsi_cmd_cq_create() returns 0 to
ret if the execution succeeds. Unfortunately, the flag variable
ret is not correctly updated in the loop, and this could lead to
UaF. For example, when all statements in the first few rounds of
the loop succeed and thus ret has value 0. After a few rounds,
pci_alloc_consistent() fails and thus the control flow jumps to
create_cq_error. Note that the value of ret is still 0 now and the
caller of beiscsi_create_cqs() would consider the function suc-
ceeds to execute. However, the memory has actually been freed by
pci_free_consistent(). A UaF bug is triggered when the freed
memory is accessed in the caller of beiscsi_create_cqs(). Simi-
lar cases contribute to 12 out of 19 flag UaFs.

The flag is not checked (P4). A flag variable often tracks the
status of an object at runtime. When the object is accessed, the
program should carefully check the flag value. Otherwise, it could
lead to UaF if the object is not initialized or has been freed. For
instance, the code in Figure 9 does not check if the audio stream
has been initialized. If not, further operations on mAudioStream
would trigger UaF.

Implications. Previous work has proposed various methods to
detect the bugs caused by the missing checks of certain variables
(e.g., flags and permissions) in source code [82, 106, 114]. Our empir-
ical study finds that the root causes of flag related UaF are diverse
and existing methods cannot cover all of them. This motivates fur-
ther improvement of these work to provide better detection for UaF
bugs. Meanwhile, fuzzing, one of the most popular bug detection
approaches, might need to adopt special measures so that the flag
related UaF bugs are more likely to get triggered.

629

RAID ’23, October 16–18, 2023, Hong Kong, China Zeyu Chen, Daiping Liu, Jidong Xiao, and Haining Wang

static int beiscsi_create_cqs(...) {
int ret = -ENOMEM;
for (i = 0; i < phba->num_cpus; i++) {

cq_vaddress = pci_alloc_consistent(...);
if (!cq_vaddress) {

+ ret = -ENOMEM; // patch to fix
goto create_cq_error;

}
}

create_cq_error:
for (i = 0; i < phba->num_cpus; i++) {

if (mem->va)
pci_free_consistent(...); // free

}
return ret;

}

Figure 8: UaF due to a falsely updated
flag in beiscsi_create_cqs() defined in
drivers/scsi/be2iscsi/be_main.c [7]

void AudioCallbackDriver::StateCallback(cubeb_state aState)
{

- if (aState == CUBEB_STATE_ERROR) {
+ if (aState == CUBEB_STATE_ERROR && mAudioStream){

}
}

Figure 9: Missing check of a flag variable leads to UaF [10]

4.1.3 Memory resize considered harmful. Memory resizing is
another common root cause of UaF (P5). Specifically, 9 out of
150 UaF bugs are due to memory resizing, such as reallocation,
manipulating resizable objects, and inappropriate memory change.
There are a set of functions that can alter the size of memory blocks
at runtime, e.g., realloc() and resize(). However, developers
need to bear in mind multiple caveats when using these functions.

Figure 10 shows a typical example. realloc(p, newsize) re-
turns a value to the pointer pnew. A non-NULL pnew indicates that
a new chunk of memory has been successfully allocated. However,
when pnew is NULL, it does not necessarily mean that the function
has errors like insufficient memory assignment. Actually, it can also
indicate that the memory is successfully freed when new_size=0 2.
The freed memory may be accessed later, resulting in UaF, when
the special semantics of realloc(new_size=0) is ignored.

Even when the new_size has a reasonable non-zero integer
value, realloc() can exhibit three behaviors from the perspective
of function callers: (1) simply expand the original memory block
"in place" 3; (2) the new memory is failed to allocate and the old
memory is returned; or (3) allocate a new memory block, copy data,
and free the original one. Actually, realloc() essentially implies

2More accurately, according to C18 standard (§7.22.3.5) [39], "If size is zero and memory
for the new object is not allocated, it is implementation-defined whether the old object
is deallocated."
3C18 standard (§7.22.3.5) [39] only defines the behavior of deallocating the old object
and returning a pointer to a new object, and has no notion of "in place" expansion.
However, it is possible that the memory block is freed and then allocated at the same
location. Therefore, to external observers, the behavior looks like "in place" expansion.

void *pnew = realloc(p, new_size);
if (pnew) {

sFreetypeMemoryUsed +=
FreetypeMallocSizeOfOnAlloc(pnew);

- } else {
+ } else if (size != 0) {

sFreetypeMemoryUsed += FreetypeMallocSizeOfOnAlloc(p);
}

Figure 10: UaF due to realloc() with a special size parameter
0 in /gfx/thebes/gfxAndroidPlatform.cpp [8]

static PyObject *
array_fromstring(arrayobject *self, PyObject *args){

char *str;
Py_ssize_t n;
int itemsize = self->ob_descr->itemsize;
if (!PyArg_ParseTuple(args, "s#:fromstring", &str, &n))

//str is parsed from args. When an array is passed
to itself (i.e., args=self), we get str ==
self->ob_item.

return NULL;
+ if (str == self->ob_item) {
+ PyErr_SetString(PyExc_ValueError, ...);
+ return NULL;
+ }

char *item = self->ob_item;
// When str == self->ob_item, item == str.
PyMem_RESIZE(item, char, (Py_SIZE(self) + n) *

itemsize);
// realloc() is invoked in PyMem_RESIZE(), frees the

original memory pointed by item and allocates a
new memory block which may or may not be the same
as the original one. Therefore, if item == str,
str may point to freed memory after PyMem_RESIZE().

memcpy(item + (Py_SIZE(self) - n) * itemsize, str,
itemsize*n);

//If str is dangling, a UaF occurs here.
}

Figure 11: UaF when a function calls realloc [4]

a memory free [39] and can potentially cause dangling pointers.
Figure 11 shows such an example. In Python, array.fromstring()
appends items from the string, interpreting the string as an array of
machine values [40]. This method expects the input string to be a
different object from the array. However, the original buggy imple-
mentation failed to handle the case when the array itself is passed
to fromstring(). In such a case, two pointers, self->ob_item
and the pointer to the argument, point to the same memory block.
Later in the method, PyMem_RESIZE() - which calls realloc() -
is invoked to resize the memory pointed by self->ob_item. As
described above, this operation can trigger the deallocation of the
original memory, and thus the pointer to the argument becomes
dangling. To fix this UaF bug, Python disallows the array to append
to itself.

Moreover, many functions in practice implicitly assume that the
input parameters are not resizable objects. For instance, the function
PySlice_GetIndicesEx() in Python (Objects/sliceobject.c)

630

All Use-After-Free Vulnerabilities Are Not Created Equal:
An Empirical Study on Their Characteristics and Detectability RAID ’23, October 16–18, 2023, Hong Kong, China

- auto& subscriber = subscriber_it->second;
+ auto subscriber = subscriber_it->second;
ef.event_subs_.erase(subscriber_it);
subscriber->tearDown();
subscriber->state(EventState::EVENT_NONE);

Figure 12: auto and auto&[42]

expects to operate on a non-resizable sequence. Otherwise, the
sequence can be resized, e.g., calling PyNumber_AsSsize_t(), after
passing its length to PySlice_GetIndicesEx(). This can lead to
returning indices out of the length of the sequence, and thus access-
ing that part of the sequence will trigger UaF [11]. To avoid such
UaF, the parameters to such functions should be carefully checked.

Finally, memory resize has to be carefully handled in concur-
rent systems. Specifically, a memory block could get resized at any
time during the execution of racy code, e.g., the resizable buffer in
SNDRV_RAWMIDI_IOCTL_PARAMS ioctl [13]. Same as other concur-
rency bugs, synchronization such as locking is required to protect
accesses to resizable memory.

Implications. Obviously, memory resize operations deserve
special attention to detect and avoid UaF bugs. Specifically, a static
checker can be built to detect the potential misuses of memory
resize operations. In addition, static bug detection systems need
to take the fact that parameters could be potentially resizable into
consideration.

4.1.4 Misuse of APIs and features. Another commonUaF root cause
is the misuse of specific APIs and features (P6). Developers
often misunderstand the semantics of these APIs and features. The
realloc() and resize() described above fall into this category.
Our study also findsmultiple other APIs and features whosemisuses
have resulted in UaF in practice.

First, the misuse of list.erase(it) and list.remove(*it)
has caused multiple UaF bugs. In C++, list.erase(it) [31] only
deletes one object from the list, while list.remove(*it) [32] can
delete multiple objects with the same value as *it from the list.
The misuse of list.remove() - where list.erase() should be
used - could lead to UaF because more objects might get deleted
unexpectedly [33]. A similar UaF bug occurred in [41], where the
developers misuse two user-defined functions and free the whole
chain of rte_mbuf, instead of one segment. list.erase(it) and
list.remove(*it) are frequently misused because developers of-
ten get confused about their semantics. In particular, some applica-
tions have overridden the two methods using custom implementa-
tions with different semantics. For instance, list.remove(*it) in
Python only removes the first matching element from the list.

Another case is the reference operator & in C++, which denotes
an alias for an object. Developers sometimes get confused about
a reference and a pointer. However, a reference behaves quite dif-
ferently from a pointer, and the misuse of a reference could lead
to UaF bugs. Figure 12 shows an example of the UaF bug caused
by the misuse of references. auto& subscriber is a reference
to subscriber_it->second. Once subscriber_it is freed, auto&
subscriber points to a freed object and thus causes UaF. Finally,
the misuses of some APIs in various reference counting implemen-
tations could also cause UaF. We will describe these cases in §4.2.

Implications. As an immediate improvement for UaF detection,
we can model the semantics for all of the APIs described above and
build a static checker to detect the UaF bugs that are caused by the
misuses of these APIs. Furthermore, we can explore to extend to
more sensitive APIs. However, there are two main challenges to
address. First, it requires a method that can systematically identify
all potentially sensitive APIs. Second, the semantics of these APIs
need to be modeled automatically. Actually, there has already been
some work on sanitizing API usages [112]. Further research is
needed to evaluate if and how such methods can be extended to
detect UaF bugs caused by the API misuses.

4.1.5 Double free. Double free (P7) is a special type of UaF. It
occurs when a memory block is freed more than once. Our study
finds 20 double free UaF. For instance, the bug in [15] forgets to
set the pointer sock->sk to NULL after the memory gets freed. As
a result, the same memory could get repeatedly freed, resulting
in double free. Moreover, we find that, multiple double free UaF
happens because free() is put inside a loop.

Implications. Loop is one major location for the occurrence of
double free. Static analysis should focus on the memory tracking
inside the body of the loop to detect double free. Basically, to avoid
double free, a memory block should not have been freed when
calling free(). For example, memory allocators can provide a new
API safe_free(), which checks the memory status before calling
free(). This helps to mitigate all nine double free bugs in our
study. Therefore, it deserves further research on how to achieve
efficient checks in safe_free() without noticeably degrading the
performance of memory allocators.

4.1.6 Miscellaneous cases. Finally, there are 35 bugs in our dataset
that are mainly caused by the faulty code logic. Such logic errors
are usually application-specific, and thus no meaningful patterns
could be derived. For example, in plan9port [34], thread0 is a
special thread that is used for the context switches back to the
scheduler, and it cannot be freed until the end of the scheduler
function. If thread0 gets freed unexpectedly, the UaF bug would
be triggered during context switches. Another similar case occurs
in Linux Kernel, where the unexpected free of a special memory
block block#0 could cause UaF [14]. Due to space limit, we will
not enumerate all cases here.

4.2 Reference Counting, A Panacea for UaF?
In order to achieve memory safety, it is a common idea to use
reference counters to manage the lifetime of objects. The core idea is
to maintain a counter per object, which gets incremented whenever
a new reference to the object is taken and decremented when a
reference is released. An object can only be released when the
counter reaches zero. Many software suites such as Linux kernel and
Python have adopted reference counting. In the best case, reference
counters can eliminate UaF bugs because no dangling pointer could
be generated. Unfortunately, we find that a bunch of UaF bugs - 38
out of 150 - are caused by the implementation mistakes or misuse of
reference counters. In particular, around 66% of UaF bugs in Python
are caused by the errors related to reference counters. We refer to
these bugs as refcount UaF and we present their common patterns
in this section.

631

RAID ’23, October 16–18, 2023, Hong Kong, China Zeyu Chen, Daiping Liu, Jidong Xiao, and Haining Wang

It is risky to use something borrowed (P8). Reference coun-
ters in most implementations such as Python [35] and Linux ker-
nel [80] require explicit manipulations, e.g., using the API pair
Py_INCREF() / Py_DECREF() in Python. A safe practice is to al-
ways increment the reference counter of an object whenever get-
ting a reference to the object and and decrement after the reference
is released. But it is actually not necessary for every reference,
especially when we are sure that the reference counter must be
larger than zero during the whole lifetime of the reference. For
instance, the reference counting implementation in Python guar-
antees to increment the reference counter for every object passed
as a function argument at the entry point of the called function. In
Python, the references that do not increment the reference counter
of the referred object (referent) are called borrowed references [36].
In our study, we extend this definition to all reference counting
implementations in C/C++ 4.

It is error-prone to use borrowed references in practice. Our
study reveals that the majority of refcount UaF bugs - 29 out of 39 -
are due to the misuse of borrowed references. For example, in Figure
14, PyList_GET_ITEM(slotnames, i) returns a borrowed refer-
ence name to the object at index i in list slotnames. However, name
cannot prevent the referent from being freed. If the referent gets
freed before or during the execution of PyObject_GetAttr(obj,
name), name becomes a dangling reference and the dereferencing
operations will trigger UaF. Actually, it is a common pitfall to grab
a borrowed reference to an object in lists, arrays or tuples
and hold on to it of a while without incrementing the reference
counter. In addition, developers sometimes are aware that a bor-
rowed reference is unsafe to operate and the reference counter
should be incremented to avoid UaF, but they fail to do it properly.
Figure 13 shows a typical example. kvm_ioctl_create_device()
creates and initializes a device dev that holds a borrowed reference
kvm to a virtual machine (VM) object. Then, anon_inode_getfd()
transfers the ownership of the reference dev to the file descriptor
table of the caller of kvm_ioctl_create_device(). After the own-
ership transfer, developers call kvm_get_kvm() to increment the
reference counter. Unfortunately, the borrowed reference is still
misused here and the reference counter should be incremented be-
fore anon_inode_getfd(). Specifically, an attacker can close the
file descriptor, which triggers the code logic that automatically
drops the borrowed reference kvm. This can cause the reference
counter of the VM object referred by kvm to drop to zero and the
VM object will be freed prematurely.

Reference counters get-over decremented (P9). Another
common error that developers make is that the API to decrement
reference counters could be unexpectedly and redundantly invoked,
causing reference counters to reach zero prematurely. In case there
are still in-use references to the freed objects, UaF occurs. For
instance, the function sctp_assoc_update() in Figure 15 calls
sctp_auth_asoc_init_active_key() to generate a new key and
delete the old one. For key deletion, the function sctp_auth_key_put()
is called to decrement the reference counter of the old key by one.
When the reference counter reaches zero, the memory associated
with the key gets freed. In this buggy case, developers mistakenly

4Note that the borrowed reference in Rust has different semantics [37].

static int kvm_ioctl_create_device(...){
dev->kvm = kvm;
ops->init(dev);

+ kvm_get_kvm(kvm);
ret = anon_inode_getfd(...);
if (ret < 0) {

+ kvm_put_kvm(kvm);
}

- kvm_get_kvm(kvm);
}

Figure 13: A refcount UaF occurs because a borrowed refer-
ence is not properly converted to a non-borrowed one [16]

Py_LOCAL(PyObject *) _PyObject_GetState(...) {
// name is a borrowed reference, and the referent

might get unexpectedly freed.
name = PyList_GET_ITEM(slotnames, i);

+ Py_INCREF(name);
value = PyObject_GetAttr(obj, name);
// error: misused borrowed reference

+ Py_DECREF(name);
}

Figure 14: UaF due to a misused borrowed reference [5]

void sctp_assoc_update(...){
- sctp_auth_key_put(asoc->asoc_shared_key);

sctp_auth_asoc_init_active_key(...);
}
int sctp_auth_asoc_init_active_key(...){

sctp_auth_key_put(asoc->asoc_shared_key);
}

Figure 15: UaF due to reference counter over-decrement [6]

call sctp_auth_key_put() twice, one in sctp_assoc_update()
and the other in sctp_auth_asoc_init_active_key().

Reference counters are not decremented (P10).While over
decrementing can cause UaF, missed decrements can sometimes
cause UaF too. Reference counters are usually represented using
integers, e.g., atomic_t in Linux kernel. When developers forget
to decrement a reference counter, the reference counter could over-
flow and become zero. Therefore, the referent would be freed
prematurely. For example, the buggy code in Figure 16 gets a
reference keyring and increments the reference counter by call-
ing find_keyring_by_name(). Suppose that the reference counter
should be decremented at the exit of join_session_keyring();
but under certain condition (keyring == new->session_keyring),
the code jumps to label error2 and fails to decrement the reference
counter. Attackers can then repetitively trigger this buggy code
and cause the reference counter to overflow.

Reference counting APIs are misused (P11). Some imple-
mentations of reference counting provide rich APIs, which can give
developers more flexibility to trade off some runtime checks for
better performance. Unfortunately, some APIs could be misused
and thus lead to UaF. Figure 17 shows an example in Linux kernel.

632

All Use-After-Free Vulnerabilities Are Not Created Equal:
An Empirical Study on Their Characteristics and Detectability RAID ’23, October 16–18, 2023, Hong Kong, China

long join_session_keyring(const char *name){
// Look for an existing keyring of this name.
// If the keyring exists and the reference is returned,

its reference counter is incremented by one.
keyring = find_keyring_by_name(name, false);
if (PTR_ERR(keyring) == -ENOKEY) {
} else if (IS_ERR(keyring)) {
} else if (keyring == new->session_keyring) {

+ key_put(keyring);
ret = 0;
goto error2;

}
key_put(keyring);

}

Figure 16: UaF due to the missing decrement for a reference
counter [9]

spin_lock_bh(&net->nsid_lock);
peer = idr_find(&net->netns_ids, id);
if (peer)

- get_net(peer);
+ peer = maybe_get_net(peer);

spin_unlock_bh(&net->nsid_lock);

Figure 17: UaF due to a misused reference counting API [12]

The API maybe_get_net(struct net *net) checks if the current
reference counter for the struct net is zero. If so, it means that the
struct has been freed and NULL is returned. Otherwise, a reference
to net is returned and the reference counter is incremented. By
contrast, the API get_net(struct net *net) simply increments
the reference counter and returns a reference to net. Obviously,
a misused get_net() - where maybe_get_net() should be used -
will cause UaF as shown in [12]

Summary. Our study shows that refcount UaF bugs are quite
prevalent. However, there is only limited research on detecting
reference counting bugs and all of these methods have certain
shortcomings. The refcount tracing and balancing techniques in
Firefox enable developers to track down the leak of referents at
runtime [38]. The detection capability of such techniques highly
depends on the quality of inputs. Unfortunately, it is often quite
challenging to generate inputs with high quality. Meanwhile, re-
searchers have also proposed multiple static analysis methods to
detect reference counting bugs in source code [61, 74, 79, 98]. These
methods are mostly limited in their scopes. Specifically, they fail to
handle the unprotected borrowed references and misuses of APIs.
More effort is needed to improve the coverage of refcount UaF bugs.

4.3 UaF Benchmark
Nguyen et al. [23] built a fuzzing benchmark UAFbench compris-
ing 14 real bugs from 11 applications. However, UAFbench has
several limitations. First, UAFbench only considers C applications
and no C++ UaF bug is included. Second, all of the included UaF
bugs are sequential. Our empirical study shows that concurrent
UaF bugs comprise a non-trivial portion and should not be over-
looked. Third, there are limited patterns of the bugs and the buggy

UAFBenchPlus UAFBench
of Applications 41 11
Application Size† 90K∗ ∼ 2479M∗∗ 9K ∼ 502M

Application Language C, C++ C
of Bugs 120 14

Patch Size ‡ 1 ∼ 215 1 ∼ 13
of Patterns All P2 ∼ P5, P7

Table 7: Comparison of UAFBenchPlus and UAFBench [86].
†Application size is measured in lines of code. ‡Patch size is
measured in lines of code added and deleted. ∗K for Thousand.
∗∗M for Million.

code is relatively simple in terms of the patch size. Motivated by
the above limitations and our empirical findings, we construct a
new benchmark UAFBenchPlus that contains 120 out of the 150
collected UaF bugs. UAFBenchPlus only includes bugs that support
recent releases of Clang [46] which are commonly used to build
bug detectors. The detailed comparison between UAFBench and
UAFBenchPlus is shown in Table 7. It shows UAFBenchPlus’s spec-
ification in terms of the number of applications, lines of code, and
bug patterns. It is by far the most comprehensive benchmark for
UaF.

Note that UAFBenchPlus only contains 120 out of the 150 col-
lected bugs. We have to exclude 30 bugs because the bugs may
involve different versions of code in a long time span and some
bugs exist in the old versions of applications that cannot be suc-
cessfully configured in current environments. In addition, some
software only supports GCC but not Clang.

5 PALFREY: A PATTERN-BASED UAF
DETECTOR

Our results in §4 demonstrate that a large portion of UaF bugs
follow specific patterns, some of which can be translated into simple
static checkers. For instance, as described in §4.1.3, when calling
the function realloc(), developers should carefully handle the
case where the parameter size equals 0, to avoid potential UaF.
To measure the applicability of our findings, we built a pattern-
based static UaF detector, Palfrey. Next, we discuss how Palfrey
is implemented and how effective it is for discovering UaF bugs.

5.1 Design and Implementation of Palfrey
Overall, we extracted seven rules from our empirical study and
developed 11 checkers in Palfrey. These rules are quite straight-
forward. For example, to handle unprotected borrowed references,
the checker conducts analysis on a list of manually crafted func-
tions that return borrowed references, and then report a bug if a
borrowed reference returned by these functions is not protected by
primitives such as Py_INCREF.

Our tool includes a framework for Abstract Syntax Tree (AST)
and Control Flow Graph (CFG) analysis, a module for pointer alias
analysis, and a module for pattern analysis. Our checkers are mainly
based on the AST, call graphs, and CFG of programs. First, the AST
is generated from the source code of a program, and then the call
graphs and CFGs are constructed based on the AST. Next, after

633

RAID ’23, October 16–18, 2023, Hong Kong, China Zeyu Chen, Daiping Liu, Jidong Xiao, and Haining Wang

the CFG, AST, and call graphs are constructed, a pattern matching
engine is used to identify if UaF bugs exist. The inter-procedure
analysis is performed to determine if a memory free operation hap-
pens, while the AST analysis is used to decide if specific functions
are called. Subsequently, the data flow analysis is performed locally
for the alias analysis, and the pattern matching engine is eventually
used to report UaF.

The procedure to apply those rules are composed of the analysis
on function call and return, the parameter analysis, and memory
tracing. For example, to detect the use of unprotected weak refer-
ence in Figure 14, the AST analysis is first conducted to locate the
functions of interest (in this case, PyList_GET_ITEM(slotnames,
i)), and then the function return value name is further traced to
see if it is protected before it is dereferenced.

Palfrey is built upon the LLVM (12.0.0) compiler infrastructure
[47], which provides great support for both C and C++ code. Our
checkers conduct path-insensitive analysis and they are mostly
straightforward to implement. In particular, we leverage the data
flow analysis provided by LLVM to detect the code snippets that
match the bug patterns.

5.2 Evaluation of Palfrey
In order to demonstrate the effectiveness and efficacy of Palfrey,
we first conducted evaluations on the 150 collected bugs. In particu-
lar, we compared Palfrey against four well-known static detectors,
the open-source Infer version v1.1.0 [43], commercial PC-lint Plus
[44], Clang [46], and GCC static analyzer [48]. All detectors sup-
port C/C++ and claim to be able to find UaF bugs. Then, we applied
Palfrey to the latest releases of a set of applications to evaluate its
capability of finding new bugs. We ran the experiments on an x86-
64 desktop with six-core Intel i7-9750 2.6G Hz processors and 16GB
memory on Ubuntu 18.04.5. Our evaluation results are detailed
below.

Effectiveness on 150 collected bugs. We successfully ran the
five tools on only 75 bugs due to the system environment problems.
For example, Infer relies on Clang to compile the target code, and
it might fail if the target code cannot be compiled with Clang.
Unfortunately, our dataset contains some bugs that cannot work
with Clang. For instance, the Linux kernel cannot support Clang
until 2016. Therefore, we only presented the results for the 75
successful cases.

Table 8 lists the results. All five tools successfully detected some
of the bugs, especially thosewith simple patterns. However, Palfrey
significantly outperforms Infer, PC-lint, Clang, and GCC static
analyzer. A further investigation reveals that the superiority of
Palfrey stems from the new bug patterns that the other four tools
do not have. None of the other tools can reliably handle the UaF
bugs caused by the misused borrowed references. While Infer can
detect static initialization order fiasco, it fails to cover the static
destruction order fiasco. Moreover, Palfrey is able to find some
more complicated UaF bugs through the parameter analysis on
certain functions.

We also evaluated the efficiency of Palfrey in terms of memory
overhead and how long it takes to check a codebase. Due to space
limit, we only present the results on five selected applications in
Table 9 and the results on other applications are roughly similar.
Overall, Palfrey consumes 23.6% ∼ 97.2% less memory than Infer,

C C++ Overall
Infer 14/53 2/22 16/75

PC-lint 10/53 3/22 13/75
GCC 7/53 2/22 9/75
Clang 16/53 5/22 21/75

Palfrey 34/53 6/22 40/75
Palfrey ∩ Infer 9/53 2/22 11/75

Palfrey ∩ PC-lint 7/53 2/22 9/75
Palfrey ∩ GCC 7/53 1/22 8/75
Palfrey ∩ Clang 12/53 2/22 14/75

Table 8: Detection results of Palfrey, Infer, and PC-lint on
our collected UaF bugs. Infer and PC-lint failed to run on
the other 75 bugs, due to various system environment and
configuration problems.

PC-lint, Clang, and GCC static checker. Palfrey also takes much
less time to check a codebase, with 28.6% ∼ 98.3% less time than
Infer, PC-lint, Clang, and GCC static checker. Palfrey is much
more efficient to detect UaF in terms of memory consumption and
time overhead because pattern analysis is much more efficient to
locate possible bugs than general syntactic analysis.

New bugs. To evaluate Palfrey’s capability to find new bugs,
we applied it to the latest releases of Python (v3.8.12), Linux Kernel
(5.14), Firefox (90.0), and GitHub C/C++ projects with more than
1K stars as of 2021-10-01. Palfrey successfully reveals nine bugs
in seven applications, three of which we reported and received
confirmations from developers (details in Table 11 Appendix B). We
were able to test six applications using Infer, seven using PC-lint,
nine using Clang and GCC static analyzer. Infer can find four out
of the nine bugs, PC-lint can find three, GCC static analyzer can
find three, and Clang can find six.

False positives and false negatives. There are eleven false
positives by Palfrey in all of the tested applications. We found that
the false positives are mainly caused by inaccurate pointer alias
analysis. Compared to many other static bug detectors, Palfrey
generates much fewer false positives. This is because our checkers
target specific patterns and enforce strict constraints, which can
reduce false positives.

Table 10 shows detection accuracy of Palfrey in various bug pat-
terns. A single checker is specifically designed to detect unprotected
borrowed references in CPython written in C, while two checkers
are created for each of the other five bug patterns to analyze C
and C++ programs. False negatives occur due to three reasons: (1)
pointer alias analysis is inaccurate and the checker cannot support
pointer arithmetic analysis, for example, the code in Figure 4; (2)
the borrowed reference checker only applies to CPython, but some
cases in Linux require deeper analysis to locate possible borrowed
references; (3) our double free checker is able to detect repeated
free in a loop but unable to detect all general cases.

Overall, our evaluation demonstrates that Palfrey is effective
and efficient. In particular, leveraging the bug patterns identified
in our study, Palfrey significantly outperforms existing static UaF

634

All Use-After-Free Vulnerabilities Are Not Created Equal:
An Empirical Study on Their Characteristics and Detectability RAID ’23, October 16–18, 2023, Hong Kong, China

Palfrey Infer PC-lint GCC Clang
Time† Mem‡ Time Mem Time Mem Time Mem Time Mem

swig 12 0.17 130 1.85 150 1.96 44 0.67 22 0.33
Python 68 0.44 570 4.03 482 3.95 211 2.02 101 0.79
Linux 1,682 1.2 4,867 3.12 5,016 3.91 2583 3.4 2699 2.4
u-boot 440 0.16 2,170 4.65 2,448 6.03 730 1.53 573 0.32

z-3 40 0.26 2,059 3.76 1,830 3.12 140 1.14 54 0.34

Table 9: Comparison of the time and memory overhead of three tools. † Time is measured in seconds. ‡Mem is the memory
overhead measured in gigabytes (GB).

Detected bug patterns Accuracy
Immediate-use-after-free 20/25
Unprotected borrowed references 20/26
Unsafe memory resize 7/7
Double free 4/20
Parameter analysis for sensitive functions 6/9
Functions return illegal stack memory 0/0

Table 10: Detection accuracy of Palfrey in various bug pat-
terns

detectors with much less overhead. Although Palfrey is still pre-
liminary, we envision the promising results canmotivate and inspire
more future work.

6 RELATEDWORK
There is a large body of previous empirical studies on software bug
characteristics. To the best of our knowledge, this work is the first
large-scale analysis to understand the characteristics of UaF bugs.
The manual analysis allowed us to categorize the root causes of
real-world UaF bugs into 11 patterns, based on which we implement
a static UaF bug detector. Next, we will discuss related work from
two perspectives.

Empirical study on bug characteristics. Several previous
studies have focused on specific types of bugs other than UaF. Lu
et al. [77] studied 105 concurrency bugs from four mature open
source applications. They found that 97% of the studied concurrency
bugs belong to two simple bug patterns. Jin et al. [70] conducted a
comprehensive study of 109 real-world performance bugs from five
software suites. Their findings led to the creation of 25 efficiency
check rules that uncovered 332 previously unknown performance
problems. Our work instead focused on the patterns and potential
detection opportunities of UaF bugs. There are also a bunch of
studies [63, 89, 97, 111] on generic bugs and failures in various
applications. By contrast, our study found that UaF bugs have more
diverse unique patterns. Different from the aforementioned work
that focused on the buggy and vulnerable code itself, Holzinger et
al. [68] studied the security vulnerabilities in Java platforms from
the perspective of the exploits collected in the wild. The collection
and analysis of UaF exploits in the wild will be our future work.
Lastly, another line of empirical study that is marginally related
to ours is the fault tolerance and recovery of software in face of
triggered errors and bugs [56, 104]. In summary, while there have

been a bunch of existing empirical studies on software bugs, none
of them have focused on UaF.

Static bug detection. Static bug detectors have been popular
among software developers. GUEB [64] is a static tool for detect-
ing UaF vulnerabilities in binary code. It tracks heap operations
and address transfers to identify program locations that allocate or
free heap memory. By analyzing the resulting graph, GUEB iden-
tifies UAF vulnerabilities, offering better coverage than dynamic
tools. However, GUEB’s points-to analysis is imprecise, affecting
its soundness and precision. Additionally, the path analysis and
value set analysis in GUEB are resource-intensive and not easily
scalable to large programs. DCUAF [49] applied the local-global
analysis to detect concurrency UaF bugs in Linux device drivers.
The tool has successfully confirmed 95 real cases that are previously
unknown. Palfrey is instead built upon a set of patterns learnt
from real bugs. In particular, Palfrey demonstrates that many UaF
bugs can be detected without using sophisticated techniques. Also,
our study provides guidelines for future work to build better static
UaF detectors. CID [98] uses two dimension checking to detect INC-
DEC inconsistency and DEC-DEC inconsistency, but it is unable to
detect borrowed reference bugs since the cause of such bugs is due
to the missing ownership not reference count inconsistency. There
are many other detectors for various specific types of bugs and
applications, e.g., API misuse [112], missing checks [106], buffer
overflows [71], semantic bugs [82], violations of inferred program-
mer beliefs [63], configuration errors [105], and bugs in JavaScript
bindings [53]. However, none of them target UaF bugs.

7 CONCLUSION
This paper provides a comprehensive study of real-world UaF bugs,
examining their patterns, manifestations, fixes, and other character-
istics. Our study is based on 150 UaF bugs, with 115 deterministic
and 35 non-deterministic ones, collected from a diverse set of ap-
plications such as Linux Kernel, CPython, etc. Our study reveals a
number of interesting findings that can provide valuable guidelines
for UaF detection and protection. For instance, a main finding is
that the root causes of UaF bugs can generally be categorised into
11 patterns. To demonstrate the applicability of these findings, we
build a simple static UaF detector, Palfrey. Our evaluation shows
that Palfrey outperforms existing tools in terms of both effective-
ness and efficiency. In particular, Palfrey successfully detects nine
new UaF bugs. Finally, to foster future research, we will make our
dataset and tools publicly available.

635

RAID ’23, October 16–18, 2023, Hong Kong, China Zeyu Chen, Daiping Liu, Jidong Xiao, and Haining Wang

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valuable
feedback. This workwas supported in part by the U.S. Office of Navy
Research (ONR) grant N00014-23-1-2158. Any opinions, findings,
and conclusions in this paper are those of the authors and do not
necessarily reflect the views of the funding agency.

REFERENCES
[1] 2001. https://bugzilla.mozilla.org/show_bug.cgi?id=133773. (2001).
[2] 2015. https://bugs.python.org/issue24099. (2015). Accessed: 2020-11-01.
[3] 2015. https://bugs.python.org/issue24101. (2015). Accessed: 2020-11-01.
[4] 2015. https://bugs.python.org/issue24613. (2015).
[5] 2015. https://bugs.python.org/issue24097. (2015).
[6] 2015. https://bugzilla.redhat.com/show_bug.cgi?id=1196581. (2015).
[7] 2016. https://bugzilla.kernel.org/show_bug.cgi?id=188941. (2016).
[8] 2016. https://bugs.python.org/issue27867. (2016).
[9] 2016. https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2016-0728. (2016).

Accessed: 2020-07-12.
[10] 2017. https://hg.mozilla.org/releases/mozilla-beta/rev/fb00d84ec825. (2017).
[11] 2017. https://github.com/python/cpython/commit/4d3f084c035ad3dfd9f

8479886c41b1b1823ace2. (2017). Accessed: 2020-07-12.
[12] 2017. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15129. (2017).
[13] 2018. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/

?id=39675f7a7c7e7702f7d5341f1e0d01db746543a0. (2018). Accessed: 2020-07-12.
[14] 2018. (2018).
[15] 2019. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/

?id=9060cb719e61b685ec0102574e10337fa5f445ea. (2019).
[16] 2019. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6974. (2019).
[17] 2020. Available online: https://google.github.io/oss-fuzz/. (2020). Accessed:

2020-7-19.
[18] 2020. https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/

index.html. (2020). Accessed: 2020-07-12.
[19] 2020. https://devguide.python.org/garbage_collector/. (2020). Accessed: 2020-

07-12.
[20] 2020. https://docs.swift.org/swift-book/LanguageGuide/AutomaticReferenceC

ounting.html. (2020). Accessed: 2020-07-12.
[21] 2020. https://en.cppreference.com/book/intro/smart_pointers. (2020). Accessed:

2020-07-12.
[22] 2020. https://doc.rust-lang.org/1.30.0/book/2018-edition/ch04-00-understandin

g-ownership.html. (2020). Accessed: 2020-07-12.
[23] 2020. https://github.com/strongcourage/uafbench. (2020). Accessed: 2022-01-12.
[24] 2020. https://github.com/. (2020). Accessed: 2020-11-01.
[25] 2020. https://bugs.python.org/issue40294. (2020). Accessed: 2020-11-01.
[26] 2020. https://github.com/microsoft/LightGBM/pull/2743. (2020). Accessed:

2020-11-01.
[27] 2020. https://github.com/ndilieto/uacme/commit/de76f1926f405a6d884dc0f5b

b5001ee34a1e5ad. (2020).
[28] 2020. https://github.com/coturn/coturn/issues/601. (2020).
[29] 2020. https://github.com/scala-native/scala-native/pull/2072. (2020).
[30] 2020. https://github.com/verilator/verilator/commit/f98782c061e1f1718677090e

4adc1c7576377b68. (2020).
[31] 2020. https://www.cplusplus.com/reference/list/list/erase/. (2020). Accessed:

2020-07-12.
[32] 2020. https://www.cplusplus.com/reference/list/list/remove/. (2020). Accessed:

2020-07-12.
[33] 2020. https://github.com/DCMTK/dcmtk/commit/7c3ca88c6197af3d03b8376aeb

46e6cc7d7c3724. (2020).
[34] 2020. https://github.com/9fans/plan9port/commit/2991442aef1cf020ffd

e43673433ee97ef322a53. (2020).
[35] 2020. https://docs.python.org/3/c-api/intro.html. (2020). Accessed: 2020-07-12.
[36] 2020. https://pythonextensionpatterns.readthedocs.io/en/latest/refcount.html.

(2020). Accessed: 2020-07-12.
[37] 2020. https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html.

(2020). Accessed: 2020-07-12.
[38] 2020. Refcount Tracing and Balancing. https://firefox-source-docs.mozilla.org

/performance/memory/refcount_tracing_and_balancing.html. (2020).
[39] 2021. https://www.iso.org/standard/74528.html. (2021). Accessed: 2021-09-09.
[40] 2021. https://docs.python.org/2/library/array.html#array.array.fromstring.

(2021). Accessed: 2021-09-09.
[41] 2021. https://github.com/F-Stack/f-stack/pull/565. (2021).
[42] 2021. https://github.com/osquery/osquery/pull/6880/files. (2021).
[43] 2021. https://fbinfer.com/. (2021). Accessed: 2021-01-12.
[44] 2021. https://www.gimpel.com/. (2021). Accessed: 2021-01-12.

[45] 2022. https://docs.oracle.com/cd/E19205-01/820-0619/geojs/index.html. (2022).
Accessed: 2022-01-17.

[46] 2023. https://clang.llvm.org/. (2023).
[47] 2023. https://llvm.org/. (2023).
[48] 2023. https://gcc.gnu.org/. (2023).
[49] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min Hu. 2019. Effective static

analysis of concurrency use-after-free bugs in Linux device drivers. In 2019
USENIX Annual Technical Conference (USENIX ATC ’19). 255–268.

[50] H. Boehm, A. Demers, and M. Weiser. 2002. A garbage collector for c and c++.
https://www.hboehm.info/gc/.

[51] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSACConference
on Computer and Communications Security (CCS ’17). 2329–2344.

[52] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2017. Coverage-
based greybox fuzzing asmarkov chain. IEEE Transactions on Software Engineering
45, 5 (2017), 489–506.

[53] F. Brown, S. Narayan, R. S. Wahby, D. Engler, R. Jhala, and D. Stefan. 2017. Finding
and Preventing Bugs in JavaScript Bindings. In 2017 IEEE Symposium on Security
and Privacy (S&P ’17). 559–578.

[54] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. 2012. Un-
dangle: early detection of dangling pointers in use-after-free and double-free
vulnerabilities. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis. 133–143.

[55] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-adaptive
mutational fuzzing. In 2015 IEEE Symposium on Security and Privacy (S&P ’15).
725–741.

[56] Subhachandra Chandra and Peter M. Chen. 2000. Whither Generic Recovery
from Application Faults? A Fault Study Using Open-Source Software (DSN ’00).

[57] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. 2012. Frama-c. In International Conference on Software
Engineering and Formal Methods. Springer, 233–247.

[58] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. 2017. Oscar: A Practi-
cal Page-Permissions-Based Scheme for Thwarting Dangling Pointers. In 26th
USENIX Security Symposium (USENIX Security ’17). 815–832.

[59] Pantazis Deligiannis, Alastair F Donaldson, and Zvonimir Rakamaric. 2015. Fast
and precise symbolic analysis of concurrency bugs in device drivers (t). In 2015
30th IEEE/ACM International Conference on Automated Software Engineering (ASE
’15). 166–177.

[60] Dinakar Dhurjati and Vikram Adve. 2006. Efficiently detecting all dangling
pointer uses in production servers. In International Conference on Dependable
Systems and Networks (DSN ’06). 269–280.

[61] Michael Emmi, Ranjit Jhala, Eddie Kohler, and Rupak Majumdar. 2009. Verifying
Reference Counting Implementations. In Tools and Algorithms for the Construction
and Analysis of Systems, Stefan Kowalewski and Anna Philippou (Eds.).

[62] Dawson Engler and Ken Ashcraft. 2003. RacerX: effective, static detection of race
conditions and deadlocks. ACM SIGOPS Operating Systems Review 37, 5 (2003),
237–252.

[63] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs as Deviant Behavior: A General Approach to Inferring Errors in
Systems Code. In Proceedings of the Eighteenth ACM Symposium on Operating
Systems Principles (SOSP ’01). 73–88.

[64] Josselin Feist, Laurent Mounier, and Marie-Laure Potet. 2014. Statically detect-
ing use after free on binary code. Journal of Computer Virology and Hacking
Techniques 10, 3 (2014), 211–217.

[65] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2008. Automated White-
box Fuzz Testing. In 2008 Network and Distributed System Security Symposium
(NDSS ’08).

[66] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos. 2013.
Dowsing for Overflows: A Guided Fuzzer to Find Buffer Boundary Violations. In
22nd USENIX Security Symposium (USENIX Security ’13). 49–64.

[67] Wookhyun Han, Byunggill Joe, Byoungyoung Lee, Chengyu Song, and Insik Shin.
2018. Enhancing Memory Error Detection for Large-Scale Applications and Fuzz
Testing. In 2018 Network and Distributed System Security Symposium (NDSS ’18).

[68] Philipp Holzinger, Stefan Triller, Alexandre Bartel, and Eric Bodden. 2016. An
In-Depth Study of More Than Ten Years of Java Exploitation. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security (CCS
’16). 779–790.

[69] Shin Hong and Moonzoo Kim. 2013. Effective pattern-driven concurrency bug
detection for operating systems. Journal of Systems and Software 86, 2 (2013),
377–388.

[70] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012. Un-
derstanding and Detecting Real-world Performance Bugs. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’12). 77–88.

[71] D. Larochelle and David Evans. 2001. Statically Detecting Likely Buffer Overflow
Vulnerabilities. In 10th USENIX Security Symposium (USENIX Security ’01). 177–
190.

636

https://bugzilla.mozilla.org/show_bug.cgi?id=133773
https://bugs.python.org/issue24099
https://bugs.python.org/issue24101
https://bugs.python.org/issue24613
https://bugs.python.org/issue24097
https://bugzilla.redhat.com/show_bug.cgi?id=1196581
https://bugzilla.kernel.org/show_bug.cgi?id=188941
https://bugs.python.org/issue27867
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2016-0728
https://hg.mozilla.org/releases/mozilla-beta/rev/fb00d84ec825
https://github.com/python/cpython/commit/4d3f084c035ad3dfd9f8479886c41b1b1823ace2
https://github.com/python/cpython/commit/4d3f084c035ad3dfd9f8479886c41b1b1823ace2
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15129
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=39675f7a7c7e7702f7d5341f1e0d01db746543a0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=39675f7a7c7e7702f7d5341f1e0d01db746543a0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9060cb719e61b685ec0102574e10337fa5f445ea
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9060cb719e61b685ec0102574e10337fa5f445ea
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6974
https://google.github.io/oss-fuzz/
https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
https://devguide.python.org/garbage_collector/
https://docs.swift.org/swift-book/LanguageGuide/AutomaticReferenceCounting.html
https://docs.swift.org/swift-book/LanguageGuide/AutomaticReferenceCounting.html
https://en.cppreference.com/book/intro/smart_pointers
https://doc.rust-lang.org/1.30.0/book/2018-edition/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/1.30.0/book/2018-edition/ch04-00-understanding-ownership.html
https://github.com/strongcourage/uafbench
https://github.com/
https://bugs.python.org/issue40294
https://github.com/microsoft/LightGBM/pull/2743
https://github.com/ndilieto/uacme/commit/de76f1926f405a6d884dc0f5bb5001ee34a1e5ad
https://github.com/ndilieto/uacme/commit/de76f1926f405a6d884dc0f5bb5001ee34a1e5ad
https://github.com/coturn/coturn/issues/601
https://github.com/scala-native/scala-native/pull/2072
https://github.com/verilator/verilator/commit/f98782c061e1f1718677090e4adc1c7576377b68
https://github.com/verilator/verilator/commit/f98782c061e1f1718677090e4adc1c7576377b68
https://www.cplusplus.com/reference/list/list/erase/
https://www.cplusplus.com/reference/list/list/remove/
https://github.com/DCMTK/dcmtk/commit/7c3ca88c6197af3d03b8376aeb46e6cc7d7c3724
https://github.com/DCMTK/dcmtk/commit/7c3ca88c6197af3d03b8376aeb46e6cc7d7c3724
https://github.com/9fans/plan9port/commit/2991442aef1cf020ffde43673433ee97ef322a53
https://github.com/9fans/plan9port/commit/2991442aef1cf020ffde43673433ee97ef322a53
https://docs.python.org/3/c-api/intro.html
https://pythonextensionpatterns.readthedocs.io/en/latest/refcount.html
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://firefox-source-docs.mozilla.org/performance/memory/refcount_tracing_and_balancing.html
https://firefox-source-docs.mozilla.org/performance/memory/refcount_tracing_and_balancing.html
https://www.iso.org/standard/74528.html
https://docs.python.org/2/library/array.html#array.array.fromstring
https://github.com/F-Stack/f-stack/pull/565
https://github.com/osquery/osquery/pull/6880/files
https://fbinfer.com/
https://www.gimpel.com/
https://docs.oracle.com/cd/E19205-01/820-0619/geojs/index.html
https://clang.llvm.org/
https://llvm.org/
https://gcc.gnu.org/
https://www.hboehm.info/gc/
https://www.hboehm.info/gc/

All Use-After-Free Vulnerabilities Are Not Created Equal:
An Empirical Study on Their Characteristics and Detectability RAID ’23, October 16–18, 2023, Hong Kong, China

[72] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long
Lu, and Wenke Lee. 2015. Preventing Use-after-free with Dangling Pointers
Nullification. In 2015 Network and Distributed System Security Symposium (NDSS
’15).

[73] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S. Gu-
nawi. 2016. TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in
Datacenter Distributed Systems. In Proceedings of the 21th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’16). 517–530.

[74] Siliang Li and Gang Tan. 2014. Finding reference-counting errors in Python/C
programs with affine analysis. In European Conference on Object-Oriented Pro-
gramming. Springer, 80–104.

[75] Linux Kernel Organization, Inc. 2020. https://bugzilla.kernel.org/. (2020).
[76] Daiping Liu, Mingwei Zhang, and Haining Wang. 2018. A Robust and Efficient

Defense Against Use-after-Free Exploits via Concurrent Pointer Sweeping. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’18). 1635–1648.

[77] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
Mistakes: A Comprehensive Study on Real World Concurrency Bug Characteris-
tics. In Proceedings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’08). 329–339.

[78] Vitaliy B. Lvin, Gene Novark, Emery D. Berger, and Benjamin G. Zorn. 2008.
Archipelago: Trading Address Space for Reliability and Security. In Proceedings
of the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’08). 115–124.

[79] Junjie Mao, Yu Chen, Qixue Xiao, and Yuanchun Shi. 2016. RID: finding reference
count bugs with inconsistent path pair checking. In Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’16). 531–544.

[80] Paul E. McKenney. 2007. Overview of Linux-Kernel Reference Counting.
[81] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of

the Reliability of UNIX Utilities. Commun. ACM 33, 12 (Dec. 1990), 32–44.
[82] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Tae-

soo Kim. 2015. Cross-Checking Semantic Correctness: The Case of Finding
File System Bugs. In Proceedings of the 25th Symposium on Operating Systems
Principles (SOSP ’15). 361–377.

[83] Mozilla Foundation. 2020. https://bugzilla.mozilla.org. (2020).
[84] Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. 2012. Watchdog:

Hardware for safe and secure manual memory management and full memory
safety. In 2012 39th Annual International Symposium on Computer Architecture
(ISCA ’12). 189–200.

[85] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. ACM Sigplan Notices 42, 6 (2007), 89–
100.

[86] Manh-Dung Nguyen, Sébastien Bardin, Richard Bonichon, Roland Groz, and
Matthieu Lemerre. 2020. Binary-level Directed Fuzzing for Use-After-Free Vul-
nerabilities. In 23rd International Symposium on Research in Attacks, Intrusions
and Defenses (RAID ’20). 47–62.

[87] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. 2007. Exterminator:
Automatically Correcting Memory Errors with High Probability. In Proceedings
of the 28th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’07). 1–11.

[88] Mads Chr Olesen, René Rydhof Hansen, Julia L Lawall, and Nicolas Palix. 2014.
Coccinelle: tool support for automated CERT C secure coding standard certifica-
tion. Science of Computer Programming 91 (2014), 141–160.

[89] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia Lawall, and
Gilles Muller. 2011. Faults in Linux: Ten Years Later. In Proceedings of the Twenty-
First International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’11). 305–318.

[90] Python Software Foundation. 2020. https://bugs.python.org/. (2020).
[91] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and

Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing.. In 2017
Network and Distributed System Security Symposium (NDSS ’17), Vol. 17. 1–14.

[92] Kostya Serebryany. 2017. OSS-Fuzz - Google’s continuous fuzzing service for
open source software. https://github.com/google/oss-fuzz.

[93] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A fast address sanity checker. In 2012 USENIX
Annual Technical Conference (USENIX ATC ’12). 309–318.

[94] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil Cho, and Y. Paek. 2019.
CRCount: Pointer Invalidation with Reference Counting to Mitigate Use-after-
free in Legacy C/C++. In Network and Distributed System Security Symposium
(NDSS ’19).

[95] C. Spatz. 1981. Basic Statistics: Tales of Distributions.
[96] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.. In
2016 Network and Distributed System Security Symposium (NDSS ’16), Vol. 16.
1–16.

[97] Gang Tan and Jason Croft. 2008. An Empirical Security Study of the Native Code
in the JDK. In Proceedings of the 17th Conference on Security Symposium (USENIX
Security ’08). 365–378.

[98] Xin Tan, Yuan Zhang, Xiyu Yang, Kangjie Lu, and Min Yang. 2021. Detecting
Kernel Refcount Bugs with Two-Dimensional Consistency Checking. In 30th
USENIX Security Symposium (USENIX Security ’21). 2471–2488.

[99] The MITRE Corporation. 2019. CWE-416: Use After Free. https://cwe.mitre.org/
data/definitions/416.html. (June 2019). Accessed: 2019-7-1.

[100] The MITRE Corporation. 2019. Search CVE List. https://cve.mitre.org/cve/sear
ch_cve_list.html. (Jan. 2019). Accessed: 2019-7-24.

[101] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. 2017. DangSan: Scal-
able Use-after-Free Detection. In Proceedings of the Twelfth European Conference
on Computer Systems (EuroSys ’17). 405–419.

[102] Vesal Vojdani, Kalmer Apinis, Vootele Rõtov, Helmut Seidl, Varmo Vene, and
Ralf Vogler. 2016. Static race detection for device drivers: the Goblint approach. In
2016 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE ’16). 391–402.

[103] JanWen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: static race detection
on millions of lines of code. In Proceedings of the the 6th joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering (ESEC/FSE ’07). 205–214.

[104] Weining Gu, Z. Kalbarczyk, Ravishankar, K. Iyer, and Zhenyu Yang. 2003. Char-
acterization of linux kernel behavior under errors. In 2003 International Conference
on Dependable Systems and Networks, 2003. Proceedings. (DSN ’03).

[105] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and
Shankar Pasupathy. 2016. Early Detection of Configuration Errors to Reduce
Failure Damage. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’16). 619–634.

[106] Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon, and Konrad Rieck.
2013. Chucky: Exposing Missing Checks in Source Code for Vulnerability Dis-
covery. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Com-
munications Security (CCS ’13). 499–510.

[107] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2017. Machine-learning-
guided typestate analysis for static use-after-free detection. In Proceedings of the
33rd Annual Computer Security Applications Conference (ACSAC ’17). 42–54.

[108] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2018. Spatio-temporal
context reduction: A pointer-analysis-based static approach for detecting use-
after-free vulnerabilities. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE ’18). 327–337.

[109] Jiayi Ye, Chao Zhang, and Xinhui Han. 2014. Poster: Uafchecker: Scalable static
detection of use-after-free vulnerabilities. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’14). 1529–1531.

[110] Yves Younan. 2015. FreeSentry: protecting against use-after-free vulnerabili-
ties due to dangling pointers.. In 2015 Network and Distributed System Security
Symposium (NDSS ’15).

[111] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle
Zhang, Pranay U. Jain, and Michael Stumm. 2014. Simple Testing Can Prevent
Most Critical Failures: An Analysis of Production Failures in Distributed Data-
Intensive Systems. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’14). 249–265.

[112] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur Naik.
2016. APISAN: Sanitizing API Usages through Semantic Cross-Checking. In 25th
USENIX Security Symposium (USENIX Security ’16). 363–378.

[113] Michal Zalewski. 2017. american fuzzy lop. http://lcamtuf.coredump.cx/afl/.
(Nov. 2017). Accessed: 2019-7-31.

[114] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M. Azab, and
Ruowen Wang. 2019. PeX: A Permission Check Analysis Framework for Linux
Kernel. In 28th USENIX Security Symposium (USENIX Security ’19). 1205–1220.

A DETAILS OF 30 REPRODUCED BUGS
Table 12 shows the details of the 30 reproduced UaF bugs.

B NEW BUGS DETECTED BY PALFREY
Table 11 lists the nine new bugs detected by Palfrey.

637

https://bugzilla.kernel.org/
https://bugzilla.mozilla.org
https://bugs.python.org/
https://github.com/ google/oss-fuzz
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cve.mitre.org/cve/search_cve_list.html
https://cve.mitre.org/cve/search_cve_list.html
http://lcamtuf.coredump.cx/afl/

RAID ’23, October 16–18, 2023, Hong Kong, China Zeyu Chen, Daiping Liu, Jidong Xiao, and Haining Wang

Application Buggy function Pattern Unique? † Confirmation
u-boot membuff_uninit

[li/membuff.c:389]
P7 Yes Reported

u-boot setjmp
[lib/efi_loaderefi_boottime.c:2930]

P2 No Reported

Z3 ziplistPush
[src/quicklist.c:511]

P2 No Reported

dcmtk base_clear
[ofstd/include/dcmtk/ofstd/ofmem.h:261]

P2 No Reported

dcmtk insertSequenceItem
[dcmdata/libsrc/dcitem.cc:4203]

P2 No Reported

dcmtk destroy
[ofstd/include/dcmtk/ofstd/ofmem.h:261]

P1 Yes Reported

osquery deregisterEventSubscriber
[osquery/events/eventfactory.cpp:190]

P2 No Confirmed

dandere2x get_diamond_search_points
[block_plugins/block_matching/DiamondSearch.cpp:97]

P2 Yes Confirmed

yosys module->remove
[src/database.c2022]

P2 No Confirmed

Table 11: Summary of new UaF bugs detected by Palfrey. †This column indicates if the bug is uniquely detected by Palfrey.

Bug ID Application Crash Pattern
issue24613 CPython Yes P5
issue18328 CPython No P1
issue25388 CPython No P4
issue24100 CPython No P8
issue24552 CPython Yes P1
issue29028 CPython No P5
issue29438 CPython No P2
issue24096 CPython No P8
issue28275 CPython No P4
Bug 1338772 Firefox No P1
Bug 750820 Firefox No P3
Bug 1388243 Firefox No P4
Bug 803853 Firefox No P7
Bug 634961 Firefox No P4
Bug 1033006 Firefox No P2
Bug 1417405 Firefox No P8
Bug 999274 Firefox No P7
Bug 557174 Firefox No P7
Bug 1338772 Firefox No P1
CVE-2019-8912 Linux No P3
Bug 199403 Linux No P4
Bug 200001 Linux Yes P4
Bug 199839 Linux No P4
#7614 frr No P2
#6469 Apache No P1
#601 coturn No P4
CVE-2018-10685 lrzip No P5
CVE-2018-11416 jpegoptim No P2
CVE-2018-20623 GNU Binutils No P5
#2072 scala-native No P2

Table 12: List of the reproduced 30 bugs.

638

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Methodology
	2.1 UaF Bug Collection
	2.2 Threats to Validity

	3 General Findings
	3.1 Lifespan of UaF Bugs
	3.2 Where Do Dangling Pointers Point To?
	3.3 Nondeterminism of UaF
	3.4 Line of Free to Line of Dereference
	3.5 UaF Reproducibility

	4 UaF Characterization
	4.1 All UaF Bugs Are Not Created Equal
	4.2 Reference Counting, A Panacea for UaF?
	4.3 UaF Benchmark

	5 Palfrey: A Pattern-based UaF Detector
	5.1 Design and Implementation of Palfrey
	5.2 Evaluation of Palfrey

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Details of 30 reproduced bugs
	B New Bugs Detected by Palfrey

