AFFYID	SYMBOL	LOCUSLINK	OMIM	GENENAME	GENEONTOLOGY	SUMMARY	expr1(least	expr2 (mos	diff	logratio
	<u>IGF1R</u>	<u>3480</u>	147370	insulin-like growth factor 1 receptor	ATP binding; anti-apoptosis; epidermal growth factor receptor activity; insulin receptor signaling pathway; insulin-like growth factor receptor activity; integral to membrane; positive regulation of cell proliferation; protein amino acid phosphorylation; protein binding; receptor activity; regulation of cell cycle; signal transduction; transferase activity	[SUMMARY:] This receptor binds insulin-like growth factor with a high affinity. It has tyrosine kinase activity. The insulin-like growth factor I receptor plays a critical role in transformation events. Cleavage of the precursor generates alpha and beta subunits. It is highly overexpressed in most malignant tissues where it functions as an anti-apoptotic agent by enhancing cell survival.	10339.54	13798.5		-0.41634
U75370_at							19880.42	23341.57	3461.15	-0.231553
				small nuclear ribonucleoprotein D2	RNA splicing; pre-mRNA splicing factor activity; small nuclear ribonucleoprotein complex; small nucleolar ribonucleoprotein complex; spliceosome assembly;	[SUMMARY:] The protein encoded by this gene belongs to the small nuclear ribonucleoprotein core protein family. It is required for pre-mRNA splicing and small nuclear ribonucleoprotein biogenesis. Alternative splicing occurs at this locus and two transcript variants encoding the same				
U15008_at	SNRPD2	6633	601061	polypeptide 16.5kDa	spliceosome complex	protein have been identified.	11805.96	15278.93	3472.972	-0.372028
M31525_at	<u>HLA-DOA</u>	<u>3111</u>	142930	major histocompatibility complex, class II, DC alpha	MHC class II receptor activity; antigen presentation, exogenous antigen; antigen processing, exogenous antigen via MHC class II; immune response; integral to membrane; plasma membrane		32979.52	36465.84	3486.313	-0.144975
	CDC2L5			cell division cycle 2-like 5 (cholinesterase- related cell division controller)	ATP binding; cytokinesis; development; positive regulation of cell proliferation; protein amino acid phosphorylation; protein serine/threonine kinase activity; regulation of mitosis; transferase activity	[SUMMARY:] The protein encoded by this gene is a member of the cyclin-dependent serine/threonine protein kinase family. Members of this family are well known for their essential roles as master switches in cell cycle control. Some of the cell cycle control kinases are able to phosphorylate proteins that are important for cell differentiation and apoptosis, thus provide connections between cell proliferation, differentiation, and apoptosis. Proteins of this family may also be involved in non-cell cyclerelated functions, such as neurocytoskeleton dynamics. The exact function of this protein has not yet been determined. It has unusually large N- and C-termini and is ubiquitously expressed in many tissues. Two alternatively spliced variants are described.	7363.6	3863.7		0.930428

D13969_at	RNF110	7703	600346	ring finger protein 110		[SUMMARY:] The protein encoded by this gene contains a RING finger motif and is similar to the polycomb group (PcG) gene products. PcG gene products form complexes via protein-protein interaction and maintain the transcription repression of genes involved in embryogenesis, cell cycles, and tumorigenesis. This protein was shown to act as a negative regulator of transcription and has tumor suppressor activity. The expression of this gene was detected in various tumor cells, but is limited in neural organs in normal tissues. Knockout studies in mice suggested that this protein may negatively regulate the expression of different cytokines, chemokines, and chemokine receptors, and thus plays an important role in lymphocyte differentiation and migration, as well as in immune responses.	13723.06	17229.13	3506.073	-0.328248
M19989_cds 1_at	<u>PDGFA</u>	<u>5154</u>	173430	platelet-derived growth factor alpha polypeptide	cell proliferation; cell surface receptor linked signal transduction; cell-cell signaling; extracellular space; growth factor activity; membrane; platelet-derived growth factor receptor binding; regulation of cell cycle	[SUMMARY:] The protein encoded by this gene is a member of the platelet-derived growth factor family. The four members of this family are mitogenic factors for cells of mesenchymal origin and are characterized by a motif of eight cysteines. This gene product can exist either as a homodimer or as a heterodimer with the platelet-derived growth factor beta polypeptide, where the dimers are connected by disulfide bonds. Studies using knockout mice have shown cellular defects in oligodendrocytes, alveolar smooth muscle cells, and Leydig cells in the testis; knockout mice die either as embryos or shortly after birth. Two splice variants have been identified for this gene.	30628.26	34146.43	3518.174	-0.156872
M55024_s_a t	ICAM1	3383	147840	intercellular adhesion molecule 1 (CD54), human rhinovirus receptor	cell-cell adhesion; integral to plasma membrane; protein binding; transmembrane receptor activity	[SUMMARY:] ICAM1 (CD54) is typically expressed on endothelial cells and cells of the immune system. ICAM1 binds to integrins of type CD11a / CD18, or CD11b / CD18. ICAM1 is also exploited by Rhinovirus as a receptor.	139301	135756.3	3544.781	0.037187
X76732_at	NUCB2	<u>4925</u>	608020	nucleobindin 2	DNA binding; calcium ion binding; cytosol; extracellular space; plasma membrane		16895.94	20451.7	3555.762	-0.275544
U17894_at	FUT2	<u>2524</u>	182100	fucosyltransferase 2 (secretor status included)	Golgi apparatus; L-fucose catabolism; carbohydrate metabolism; galactoside 2-alpha-L-fucosyltransferase activity; integral to Golgi membrane; protein amino acid glycosylation; transferase activity, transferring glycosyl groups		8494.479	4921.066	3573.413	0.787555

D13168_at	EDNRB	<u>1910</u>	131244	endothelin receptor type B	G-protein signaling, coupled to IP3 second messenger (phospholipase C activating); endothelin receptor activity; integral to plasma membrane; negative regulation of adenylate cyclase activity; neurogenesis; perception of sound; rhodopsin-like receptor activity	[SUMMARY:] Endothelin receptor type B is a G protein-coupled receptor which activates a phosphatidylinoitol-calcium second messenger system. Its ligand, endothelin, consists of a family of three potent vasoactive peptides: ET1, ET2, and ET3. Studies suggest that the multigenic disorder, Hirschsprung disease type 2, is due to mutation in endothelin receptor type B gene. A splice variant, named SVR, has been described; the sequence of the ETB-SVR receptor is identical to ETRB except for the intracellular C-terminal domain. While both splice variants bind ET1, they exhibit different responses upon binding which suggests that they may be functionally distinct.	23044.54	26651.03	3606.492	-0.209766
HG3432- HT3620_s_a t_	FGFR2	2263	176943		transferase activity DNA binding; nucleus; regulation of	[SUMMARY:] The protein encoded by this gene is a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and throughout evolution. FGFR family members differ from one another in their ligand affinities and tissue distribution. A full-length representative protein consists of an extracellular region, composed of three immunoglobulin-like domains, a single hydrophobic membrane-spanning segment and a cytoplasmic tyrosine kinase domain. The extracellular portion of the protein interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. This particular family member is a high-affinity receptor for acidic, basic and/or keratinocyte growth factor, depending on the isoform. Mutations in this gene are associated with many craniosynostotic syndromes and bone malformations. The genomic organization of this gene encompasses 20 exons. Alternative splicing in multiple exons, including those encoding the Ig-like domains,	10513.26	6889.767	3623.493	0.609683
U37146_at	NCOR2	9612	600848	nuclear receptor co-repressor 2	transcription, DNA-dependent; transcription corepressor activity		9068.38	12700.5	3632.12	-0.485969

HG371-						[SUMMARY:] CD227 (MUC1) is a large cell surface mucin glycoprotein expressed by most glandular and ductal epithelial cells and some hematopoietic cell lineages. The MUC1 gene contains seven exons and produces several different alternatively spliced variants. The major expressed form of CD227 uses all seven exons and is a type 1 transmembrane protein with a large extracellular tandem repeat domain. The tandem repeat domain is highly Oglycosylated and alterations in glycosylation				
HT26388_s_ at	MUC1	4590	158240	mucin 1, transmembrane	actin binding; cytoskeleton; integral to plasma membrane	have been shown in epithelial cancer cells [PROW]	-5059 010	-9605.167	3646.248	-0.68876
					cell growth and/or maintenance; collagen; collagen type V; extracellular matrix	[SUMMARY:] This gene encodes an alpha chain for one of the low abundance fibrillar collagens. Fibrillar collagen molecules are trimers that can be composed of one or more types of alpha chains. Type V collagen is found in tissues containing type I collagen and appears to regulate the assembly of heterotypic fibers composed of both type I and type V collagen. This gene product is closely related to type XI collagen and it is possible that the collagen chains of types V and XI constitute a single collagen type with tissue-specific chain combinations. Mutations in this gene are associated with Ehlers-Danlos syndrome, types I and II. Two transcripts that differ in the length of the 3'UTR due to the use of alternative polyadenylation signals have been identified				
M11718_at				collagen, type V, alpha 2	structural constituent	[SUMMARY:] Annexin VIII belong to the family of Ca (2+) dependent phospholipid binding proteins (annexins), and has a high 56% identity to annexin V (vascular anticoagulant-alpha). It was initially isolated as 2.2 kb vascular anticoagulant-beta transcript from human placenta, a Ca (2+) dependent phospholipid binding protein that inhibits coagulation and phospholipase A2 activity. However, the fact that annexin VIII is neither an extracellular protein nor associated with the cell surface suggests that it may not play a role in blood coagulation in vivo and its physiological role remains unknown. It is expressed at low levels in human placenta and shows restricted expression in lung endothelia, skin, liver, and kidney. The gene is also found to be selectively overexpressed in acute myelocytic leukemia.		16970.27		-0.547944

SUMMARY: Members of the RAB family of RAS-related GTP-binding proteins are important regulators of vesticular transport and are located in specific intracellular protein and shown to be important in an endosomes and shown to have a transdemotal role in activity, emanged; and solven in have a transdemotal role activity, small GTPses mediated signal transduction SUMMARY: This gene encodes a hornolog to the E. coli alkB gene product. The E. c	U12465	5_at	RPL35	11224		ribosomal protein L35		[SUMMARY:] Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L29P family of ribosomal proteins. It is located in the cytoplasm. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome.		45380.64	3664.16	-0.12146
SUMMARY; This gene encodes a homology to the E. coli alkB gene product. The E. coli alkB protein is part of the adaptive response mechanism of DNA alkylation damage repair, however, its precise biochemical function is not clear. X91992 at ALKBH							activity; endocytosis; intracellular protein transport; late endosome; protein transporter activity; small GTPase mediated signal	[SUMMARY:] Members of the RAB family of RAS-related GTP-binding proteins are important regulators of vesicular transport and are located in specific intracellular compartments. RAB7 has been localized to late endosomes and shown to be important in the late endocytic pathway. In addition, it has been shown to have a fundamental role in the cellular vacuolation induced by the cytotoxin VacA of Helicobacter				
X91992_at ALKBH 8846_605345_alkB, alkylation repair homolog (E. coli) DNA dealkylation SUMMARY:] The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor has been found to be essential in mediating a broad variety of immune and inflammatory responses including T cell-dependent immunoglobulin class switching, memory B cell development, and germinal center formation. AT-hook transcription factor AKNA is reported to coordinately regulate the expression of this receptor and its ligand, which may be important for homotypic cell interactions. Adaptor protein TNFR2 interacts with this receptor and its ligand, which may be important for homotypic cell interaction. Adaptor protein TNFR2 interacts with this receptor and its ligand is found to be necessary for amyloid-beta-induced microglial activation. The interaction of this receptor and its ligand is found to be necessary for amyloid-beta-induced microglial activation, and thus is thought to be an early event in Alzheimer disease membrane; platelet activation; protein	X93499	<u>at</u>	RAB7	<u>7879</u>	602298	RAB7, member RAS oncogene family	transduction	[SUMMARY:] This gene encodes a homolog to the E. coli alkB gene product. The E. coli alkB protein is part of the adaptive response mechanism of DNA alkylation damage repair;	11067.66	14747.33	3679.673	-0.414104
	X91992	2.at	<u>ALKBH</u>	8846	605345	alkB, alkylation repair homolog (E. coli)	B-cell proliferation; antimicrobial humoral response (sensu Vertebrata); apoptosis; development; immune response; inflammatory response; integral to plasma	not clear. [SUMMARY:] The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor has been found to be essential in mediating a broad variety of immune and inflammatory responses including T cell-dependent immunoglobulin class switching, memory B cell development, and germinal center formation. AT-hook transcription factor AKNA is reported to coordinately regulate the expression of this receptor and its ligand, which may be important for homotypic cell interactions. Adaptor protein TNFR2 interacts with this receptor and serves as a mediator of the signal transduction. The interaction of this receptor and its ligand is found to be necessary for amyloid-beta-induced microglial activation, and thus is thought to be an early event in Alzheimer disease	26409.18	30092.07	3682.891	-0.188344

						[SUMMARY:] Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and				
M00004						encodes a member of the histone H1 family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination				
M60094_rna 1 at	HIST1H1T	3010	142712	histone 1, H1t		element. This gene is found in the large histone gene cluster on chromosome 6.	30287.84	33980.64	3692.797	-0.165974
_				translocase of inner mitochondrial membrane						
X58234_at	TIMM44	<u>10469</u>	605058	44 homolog (yeast)	transcription, DNA-dependent	(0) 11 11 11 11 11 11 11 11 11 11 11 11 11	6913	10610.53	3697.534	-0.618113
					G-protein coupled receptor protein signaling pathway; chemotaxis; extracellular; immune response; response to pest/pathogen/parasite; xenobiotic	[SUMMARY:] Defensins form a family of microbicidal and cytotoxic peptides made by neutrophils. Members of the defensin family are highly similar in protein sequence. This gene encodes defensin, beta 4, an antibiotic peptide which is locally regulated by				
Z71389_at	DEFB4	<u>1673</u>	602215	defensin, beta 4	metabolism	inflammation.	2378.86	6093.267	3714.407	-1.356946
M81758_at	SCN4A	<u>6329</u>	603967	sodium channel, voltage-gated, type IV, alpha	cation channel activity; cation transport; membrane fraction; muscle contraction; sodium ion transport; voltage-gated sodium channel activity; voltage-gated sodium channel complex		25560.62	29280.67	3720.045	-0.196025
				protein phosphatase 3 (formerly 2B),	handral and a state of the state of					
S46622 at	PPP3CC	5533	114107	catalytic subunit, gamma isoform (calcineurin A gamma)	phosphoprotein phosphatase activity		-4366.78	-8098.467	3731.687	-0.891079
U68488_at				5-hydroxytryptamine (serotonin) receptor 7 (adenylate cyclase-coupled)	G-protein signaling, coupled to cyclic nucleotide second messenger; circadian rhythm; circulation; integral to plasma membrane; melanocortin receptor activity; rhodopsin-like receptor activity; serotonin receptor activity; synaptic transmission	[SUMMARY:] The neurotransmitter, serotonin, is thought to play a role in various cognitive and behavioral functions. The serotonin receptor encoded by this gene belongs to the superfamily of G protein-coupled receptors and the gene is a candidate locus for involvement in autistic disorder and other neuropsychiatric disorders. Three splice variants have been identified which encode proteins that differ in the length of their carboxy terminal ends.	12540.26		3748.839	

				<u> </u>	ī	i				
						[SUMMARY:] The A-kinase anchor proteins				
						(AKAPs) are a group of structurally diverse				
						proteins, which have the common function of				
						binding to the regulatory subunit of protein				
						kinase A (PKA) and confining the				
						holoenzyme to discrete locations within the				
						cell. This gene encodes a member of the				
						AKAP family. Alternative splicing of this gene				
						results in at least 3 transcript variants				
						encoding different isoforms containing a dbl				
						oncogene homology (DH) domain and a				
						pleckstrin homology (PH) domain. The DH				
						domain is associated with guanine				
						nucleotide exchange activation for the				
						Rho/Rac family of small GTP binding				
						proteins, resulting in the conversion of the				
						inactive GTPase to the active form capable				
						of transducing signals. The PH domain has				
					Rho guanyl-nucleotide exchange factor	multiple functions. Therefore, these isoforms				
					activity; cell growth and/or maintenance;	function as scaffolding proteins to coordinate				
					intracellular signaling cascade; kinase	a Rho signaling pathway and, in addition,				
HG2167-					activity; membrane fraction; oncogenesis;	function as protein kinase A-anchoring				
HT2237_at	AKAP13	<u>11214</u>	604686	A kinase (PRKA) anchor protein 13	signal transducer activity	proteins.	-3013.34	-6778.8	3765.46	-1.169667
						[SUMMARY:] The galectins are a family of				
						beta-galactoside-binding proteins implicated				
						in modulating cell-cell and cell-matrix				
						interactions. LGALS1 may act as an				
				lectin, galactoside-binding, soluble, 1		autocrine negative growth factor that				
J04456_at	LGALS1	<u>3956</u>	1505/0	(galectin 1)		regulates cell proliferation.	19/00.56	23471.13	3//0.5/6	-0.252651
						[SUMMARY:] This gene encodes the alpha				
						chain of type X collagen, a short chain				
						collagen expressed by hypertrophic				
						chondrocytes during endochondral				
						ossification. Unlike type VIII collagen, the				
						other short chain collagen, type X collagen is				
			l			a homotrimer. Mutations in this gene are				
			l			associated with Schmid type metaphyseal				
X60382 rna				collagen, type X, alpha 1(Schmid	collagen; extracellular matrix structural	chondrodysplasia (SMCD) and Japanese				
	COL10A1	1300	120110	metaphyseal chondrodysplasia)	constituent; skeletal development	type spondylometaphyseal dysplasia (SMD).	14655.06	18437.13	3782 073	-0.331215
AFFX-	COLIUAL	1300	120110	motupnysoai ononurouyspiasia)	ocholitacht, akcietai development	1500 opondylometaphyseal dyspiasia (SIND).		-141.8667		
			ı		1	II.	0000.14	. 41.0007	5011.007	002007

						[SUMMARY:] The protein encoded by this gene is a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. This protein is also a member of the ADP ribosylation factor family of guanine nucleotide-binding family of proteins. Its carboxy terminus contains an ADP-ribosylation factor domain and a guanine nucleotide binding site, while the amino terminus contains a GTPase activating protein domain which acts on the guanine nucleotide binding site. The protein localizes to lysosomes and the Golgi apparatus. It plays a role in the formation of intracellular				
L04510_at	ARFD1	<u>373</u>	601747	ADP-ribosylation factor domain protein 1, 64kDa	GTP binding; enzyme activator activity; intracellular; small GTPase mediated signal transduction; small monomeric GTPase activity; zinc ion binding	transport vesicles, their movement from one compartment to another, and phopholipase D activation. Three alternatively spliced transcript variants for this gene have been described.	4149.16	7981.4	3832.24	-0.943823
Z29572 at	TNFRSF17	608	109545	tumor necrosis factor receptor superfamily, member 17	antimicrobial humoral response (sensu Vertebrata); cell proliferation; development; immune response; integral to membrane; plasma membrane; receptor activity; signal transduction	[SUMMARY:] The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor is preferentially expressed in mature B lymphocytes, and may be important for B cell development and autoimmune response. This receptor has been shown to specifically bind to the tumor necrosis factor (ligand) superfamily, member 13b (TNFSF13B/TALL-1/BAFF), and to lead to NF-kappaB and MAPK8/JNK activation. This receptor also binds to various TRAF family members, and thus may transduce signals for cell survival and proliferation.	14902.66			
M37190 at		54453		Ras and Rab interactor 2	GTPase activator activity; Rab guanyl-nucleotide exchange factor activity;	ISIGNAMARY: ITHE RABS protein is a small GTPase involved in membrane trafficking in the early endocytic pathway. The protein encoded by this gene binds the GTP-bound form of the RABS protein preferentially over the GDP-bound form, and functions as a guanine nucleotide exchange factor for RABS. The encoded protein is found primarily as a tetramer in the cytoplasm and does not bind other members of the RAB family.	9996.561	13896.5		-0.475218
M31776_s_a				natriuretic peptide precursor B	diuretic hormone activity; extracellular space; fluid secretion	y.				-0.425215
L.	INI F D	40/9	000290	nameno pepude precursor o	nuiu acciettori	1	11382	10200.43	JJU1.4JJ	-0.423213

M97935_s_a	STAT1	<u>6772</u>		signal transducer and activator of transcription 1, 91kDa	NIK-I-kappaB/NF-kappaB cascade; STAT protein dimerization; STAT protein nuclear translocation; caspase activation; cytoplasm; hematopoietin/interferon-class (D200-domain) cytokine receptor signal transducer activity; intracellular signaling cascade; nucleus; regulation of cell cycle; regulation of transcription, DNA-dependent; response to pest/pathogen/parasite; signal transducer activity; transcription factor activity; transcription from Pol II promoter; tyrosine phosphorylation of STAT protein	[SUMMARY:] The protein encoded by this gene is a member of the STAT protein family. In response to cytokines and growth factors, STAT family members are phosphorylated by the receptor associated kinases, and then form homo- or heterodimers that translocate to the cell nucleus where they act as transcription activators. This protein can be activated by various ligands including interferon-alpha, interferon-gamma, EGF, PDGF and IL6. This protein mediates the expression of a variety of genes, which is thought to be important for cell viability in response to different cell stimuli and pathogens. Two alternatively spliced transcript variants encoding distinct isoforms have been described.	25884.32	21979.07	3905.25	0.235948
					cytoplasm; hydrolase activity; integral to plasma membrane; protein amino acid dephosphorylation; protein-tyrosine- phosphatase activity; soluble fraction;	[SUMMARY:] The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. Two alternatively spliced transcript variants of this gene have been reported, one of which encodes a receptor-type PTP that possesses a short extracellular domain, a single transmembrane region, and two tandem intracytoplasmic catalytic domains; Another one encodes a PTP that contains a distinct hydrophilic N-terminus, and thus represents a nonreceptor-type isoform of this PTP. Studies of the similar gene in mice suggested the regulatory roles of this PTP in RAS related signal transduction pathways,				
HG620-				protein tyrosine phosphatase, receptor type,	transmembrane receptor protein tyrosine	cytokines induced SATA signaling, as well as				
HT620_at	<u>PTPRE</u>	<u>5791</u>	600926	E	phosphatase activity	the activation of voltage-gated K+ channels.	32061.02	35983.37	3922.346	-0.16651
1					hydrolase activity; lipid catabolism;					
J05125 at	PNLIP	5406	246600	pancreatic lipase	triacylglycerol lipase activity; triacylglycerol metabolism		6301.38	10294.97	3003 586	-0.708199
AFFX- HUMTFRR/ M11507_5_a				transferrin receptor (p90, CD71)	endocytosis; endosome; extracellular; integral to plasma membrane; iron ion homeostasis; iron ion transport; peptidase activity; proteolysis and peptidolysis; receptor activity; transferrin receptor activity			22691.83		

U14969 at	RPL28	6159	3 6036383	ribosomal protein L28		[SUMMARY:] Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L28E family of ribosomal proteins. It is located in the cytoplasm. Variable expression of this gene in colorectal cancers compared to adjacent normal tissues has been observed, although no correlation between the level of expression and the severity of the disease has been found. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through	25375.92	21240 02	4027.086	0.240202
U14969_at	RPL28	6158	603638	ribosomai protein L28		the genome.	25375.92	21348.83	4027.086	0.249303
<u>L40380_</u> at	<u>TRIP11</u>	<u>9321</u>	604505	thyroid hormone receptor interactor 11	Golgi apparatus; protein binding; transcription coactivator activity; transcription from Pol II promoter	[SUMMARY:] TRIP11 was first identified through its ability to interact functionally with thyroid hormone receptor-beta (THRB; MIM 190160). It has also been found in association with the Golgi apparatus and microtubules.	10686.9	14715.8	4028.899	-0.461522
<u>L21954_at</u>	<u>BZRP</u>	<u>706</u>	<u> 109610</u>	benzodiazapine receptor (peripheral)	benzodiazepine receptor activity; integral to membrane; mitochondrial outer membrane; mitochondrion; protein-mitochondrial targeting; receptor activity; signal transduction	[SUMMARY:] Present mainly in the mitochondrial compartment of peripheral tissues, PBR interacts with some benzodiazepines and has different affinities than its endogenous counterpart. PBR appears to be a key factor in the flow of cholesterol into mitochondria to permit the initiation of steroid hormone synthesis. It is speculated that patients with congenital lipoid adrenal hyperplasia, who cannot make any steroids, might have a genetic lesion in BZRP. A short form, PBR-S is also expressed in the same tissues, but at a level about ten times that of PBR.	14308.12	18338.53	4030.414	-0.358044
				, , , , , , , , , , , , , , , , , , ,	DNA recombination; double-strand break					
U35835_s_a t	<u>PRKDC</u>	<u>5591</u>	600899	protein kinase, DNA-activated, catalytic polypeptide	repair; inositol/phosphatidylinositol kinase activity; nucleus; protein modification; protein serine/threonine kinase activity; transferase activity DNA replication; RAS protein signal transduction; cell motility; extracellular;		10678.72	14728.4	4049.681	-0.463862
X57025_at	<u>IGF1</u>	<u>3479</u>	147440	insulin-like growth factor 1 (somatomedin C)	transduction; ceil motility; extracellular; glycolate metabolism; growth factor activity; hormone activity; insulin-like growth factor receptor binding; muscle development; physiological process; positive regulation of cell proliferation; signal transduction; skeletal development		24813.12	28863.33	4050.215	-0.218135

		İ								
						[SUMMARY:] The TEK receptor tyrosine				
						kinase is expressed almost exclusively in				
						endothelial cells in mice, rats, and humans.				
						This receptor possesses a unique				
						extracellular domain containing 2				
						immunoglobulin-like loops separated by 3				
						epidermal growth factor-like repeats that are				
						connected to 3 fibronectin type III-like				
						repeats. The ligand for the receptor is				
						angiopoietin-1. Defects in TEK are				
						associated with inherited venous				
						malformations; the TEK signaling pathway				
						appears to be critical for endothelial cell-				
				TEK tyrosine kinase, endothelial (venous		smooth muscle cell communication in venous				
				malformations, multiple cutaneous and		morphogenesis. TEK is closely related to the				
L06139_at	<u>TEK</u>	<u>7010</u>	600221	mucosal)		TIE receptor tyrosine kinase.	20815.78	24883.6	4067.818	-0.257517
						[SUMMARY:] Desmosomes are cell-cell				
		1				junctions between epithelial, myocardial and				
	1	1				certain other cell types. Desmoglein 1 is a				
		1				calcium-binding transmembrane glycoprotein				
	1	1				component of desmosomes in vertebrate				
						epithelial cells. Currently, three desmoglein				
						subfamily members have been identified and				
						all are members of the cadherin cell				
						adhesion molecule superfamily. These				
						desmoglein gene family members are				
						located in a cluster on chromosome 18. The				
					calcium ion binding; cell adhesion;	protein encoded by this gene has been				
					cytoskeleton; homophilic cell adhesion;	identified as the autoantigen of the				
					integral to membrane; intercellular junction;	autoimmune skin blistering disease				
X56654_at	DSG1	<u>1828</u>	1256/0	desmoglein 1	protein binding	pemphigus foliaceus.	47336.82	51422.11	4085.285	-0.119426
						101111111111111111111111111111111111111				
						[SUMMARY:] Mitochondrial uncoupling				
						proteins (UCP) are members of the larger				
	1	1				family of mitochondrial anion carrier proteins				
	1	1				(MACP). UCPs separate oxidative				
	1	1				phosphorylation from ATP synthesis with				
	1	1				energy dissipated as heat, also referred to				
	I	I				as the mitochondrial proton leak. UCPs				
	I	I				facilitate the transfer of anions from the inner				
	1	1				to the outer mitochondrial membrane and the				
	I	I				return transfer of protons from the outer to				
	1	I				the inner mitochondrial membrane. They also				
1		1	1			reduce the mitochondrial membrane potential				
						in mammalian cells. Tissue specificity occurs				
						in mammalian cells. Tissue specificity occurs				
						in mammalian cells. Tissue specificity occurs for the different UCPs and the exact methods of how UCPs transfer H+/OH- are not known.				
						in mammalian cells. Tissue specificity occurs for the different UCPs and the exact methods of how UCPs transfer H+/OH- are not known. UCPs contain the three homologous protein				
					binding: integral to membrane; membrane	in mammalian cells. Tissue specificity occurs for the different UCPs and the exact methods of how UCPs transfer H+/OH- are not known. UCPs contain the three homologous protein domains of MACPs. This gene is expressed				
					binding; integral to membrane; membrane fraction; mitochondrial inner membrane:	in mammalian cells. Tissue specificity occurs for the different UCPs and the exact methods of how UCPs transfer H+/OH- are not known. UCPs contain the three homologous protein domains of MACPs. This gene is expressed in many tissues, with the greatest expression				
					fraction; mitochondrial inner membrane;	in mammalian cells. Tissue specificity occurs for the different UCPs and the exact methods of how UCPs transfer H+/OH- are not known. UCPs contain the three homologous protein domains of MACPs. This gene is expressed in many tissues, with the greatest expression in skeletal muscle. It is thought to play a role				
				uncounling protein 2 (mitochondrial protein	fraction; mitochondrial inner membrane; mitochondrial transport; mitochondrion;	in mammalian cells. Tissue specificity occurs for the different UCPs and the exact methods of how UCPs transfer H+/OH- are not known. UCPs contain the three homologous protein domains of MACPs. This gene is expressed in many tissues, with the greatest expression in skeletal muscle. It is thought to play a role in nonshivering thermogenesis, obesity and				
U94592_at	IICP2	7351	601693	uncoupling protein 2 (mitochondrial, proton	fraction; mitochondrial inner membrane;	in mammalian cells. Tissue specificity occurs for the different UCPs and the exact methods of how UCPs transfer H+/OH- are not known. UCPs contain the three homologous protein domains of MACPs. This gene is expressed in many tissues, with the greatest expression in skeletal muscle. It is thought to play a role	10569 62	14661 63	4092.013	-0 472122

X04297_at	<u>ATP1A1</u>	<u>476</u>	182310	ATPase, Na+/K+ transporting, alpha 1 polypeptide	ATP binding; ATP hydrolysis coupled proton transport; hydrogen ion homeostasis; hydrolase activity; hydrolase activity, acting on acid anhydrides, catalyzing transmembrane movement of substances; magnesium ion binding; membrane fraction; metabolism; monovalent inorganic cation transporter activity; potassium ion transport; sodium ion transport; sodium/potassium-exchanging ATPase activity; sodium/potassium-exchanging ATPase complex; sperm motility		10798.5	6676.633	4121.866	0.693638
U49928_at	MAP3K7IP1	10454	602615	mitogen-activated protein kinase kinase kinase 7 interacting protein 1	activation of MAPKKK; catalytic activity; enzyme activator activity; protein binding; transforming growth factor beta receptor, cytoplasmic mediator activity	[SUMMARY:] The protein encoded by this gene is responsible for the activation of TAK1 kinase activity. The C-terminal 68 amino acids of TAB1 are sufficient for binding and activation of TAK1 in mammalian cells, while the N-terminal 418 amino acids act as a dominant-negative inhibitor of transforming growth factor-beta-induced gene expression. Its role as a mitogenactivated protein kinase kinase kinase may play a significant role in the mediation of TGF-beta receptors and TAK1.	20949.48		4151.688	-0.26084 3 347243
AFFX-							4659.38	457.8334	4201.546	3.347243
J05096_rna 1_at	<u>ATP1A2</u>	<u>477</u>	182340	ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide	ATP binding; ATP hydrolysis coupled proton transport; hydrogen ion homeostasis; hydrolase activity; hydrolase activity, acting on acid anhydrides, catalyzing transmembrane movement of substances; magnesium ion binding; metabolism; monovalent inorganic cation transporter activity; potassium ion transport; sodium ion transport; sodium/potassium-exchanging ATPase activity; sodium/potassium-exchanging ATPase complex; sperm motility		44844.64	40638.13	4206.512	0.142102
D10656_at	<u>CRK</u>	<u>1398</u>	164762	v-crk sarcoma virus CT10 oncogene homolog (avian)	SH3/SH2 adaptor protein activity; actin cytoskeleton organization and biogenesis; cell growth and/or maintenance; cell motility; cytoplasm; intracellular signaling cascade; nucleus; regulation of transcription from Pol II promoter	[SUMMARY:] This gene encodes a member of an adapter protein family that binds to several tyrosine-phosphorylated proteins. The product of this gene has several SH2 and SH3 domains (src-homology domains) and is involved in several signaling pathways, recruiting cytoplasmic proteins in the vicinity of tyrosine kinase through SH2-phosphotyrosine interaction. The N-terminal SH2 domain of this protein functions as a positive regulator of transformation whereas the C-terminal SH3 domain functions as a negative regulator of transformation. Two alternative transcripts encoding different isoforms with distinct biological activity have been described.	7990.94	12241	4250.06	-0.615284

U29615_at	CHIT1	1118	600031		carbohydrate metabolism; chitin binding; chitin catabolism; chitinase activity; extracellular space; hydrolase activity, acting on glycosyl bonds; response to bacteria; response to pest/pathogen/parasite	[SUMMARY:] Chitotriosidase is secreted by activated human macrophages and is markedly elevated in plasma of Gaucher disease patients. The expression of chitotriosidase occurs only at a late stage of differentiation of monocytes to activated macrophages in culture. Human macrophages can synthesize a functional chitotriosidase, a highly conserved enzyme with a strongly regulated expression. This enzyme may play a role in the degradation of chitin-containing pathogens.		13751.37	4274.567	-0.537103
						entire containing participants				
X16546_at	RNASE2	<u>6036</u>		ribonuclease, RNase A family, 2 (liver,	RNA catabolism; chemotaxis; endonuclease activity; extracellular; hydrolase activity; nucleic acid binding; pancreatic ribonuclease activity; ribonuclease activity		35982.92	40307.1	4324.18	-0.163722
HG2873-						[SUMMARY:] Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L30E family of ribosomal proteins. It is located in the cytoplasm. This gene is co-transcribed with the U72 small nucleolar RNA gene, which is located in its fourth intron. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene				
	RPL30		180467	ribosomal protein L30		dispersed through the genome.		19995.03		
U72512_at	REA	11331		repressor of estrogen receptor activity			10983.54	15407.07	4423.526	-0.488249

							[SUMMARY:] This gene is a member of the				
							protocadherin alpha gene cluster, one of				
							three related gene clusters tandemly linked				
							on chromosome five that demonstrate an				
							unusual genomic organization similar to that				
							of B-cell and T-cell receptor gene clusters.				
							The alpha gene cluster is composed of 15				
							cadherin superfamily genes related to the				
							mouse CNR genes and consists of 13 highly				
							similar and 2 more distantly related coding				
							sequences. The tandem array of 15 N-				
							terminal exons, or variable exons, are				
							followed by downstream C-terminal exons, or				
							constant exons, which are shared by all				
							genes in the cluster. The large, uninterrupted				
							N-terminal exons each encode six cadherin				
							ectodomains while the C-terminal exons				
							encode the cytoplasmic domain. These				
							neural cadherin-like cell adhesion proteins				
							are integral plasma membrane proteins that				
							most likely play a critical role in the				
							establishment and function of specific cell-				
							cell connections in the brain. Alternative				
							splicing has been observed and additional				
1.						homophilic cell adhesion; integral to	variants have been suggested but their full-				
3	557887_at	PCDHA4	<u>56144</u>	606310	protocadherin alpha 4	membrane; protein binding	length nature has yet to be determined.	13271.92	8839.134	4432.786	0.5864
						GTP binding; RAS small monomeric GTPase					
						activity; cell growth and/or maintenance; cell					
						motility; cell surface receptor linked signal					
						transduction; chemotaxis; cytoplasm;					
						organogenesis; plasma membrane;					
						regulation of cell cycle; small GTPase					
\	/00574_s_a				v-Ha-ras Harvey rat sarcoma viral oncogene	mediated signal transduction; small					
t		<u>HRAS</u>	<u>3265</u>	190020	homolog	monomeric GTPase activity		3827.86	8286.434	4458.574	-1.114213
							IOLINANA DVI This was a second of the second				
							[SUMMARY:] This gene encodes the enzyme				
							acylpeptide hydrolase, which catalyzes the hydrolysis of the terminal acetylated amino				
							acid preferentially from small acetylated				
							peptides. The acetyl amino acid formed by				
							this hydrolase is further processed to acetate				
							and a free amino acid by an aminoacylase.				
							This gene is located within the same region				
							of chromosome 3 (3p21) as the				
1							aminoacylase gene, and deletions at this				
1							locus are also associated with a decrease in				
1							aminoacylase activity. The acylpeptide				
1							hydrolase is a homotetrameric protein of 300				
1							kDa with each subunit consisting of 732				
- 1							amino acid residues. It can play an important				
							, , , , , , , , , , ,				
							role in destroying oxidatively damaged				
							role in destroying oxidatively damaged proteins in living cells. Deletions of this gene				
							proteins in living cells. Deletions of this gene				

U80073 at	NXF1	10482	602647	nuclear RNA export factor 1	RNA binding; mRNA processing; mRNA-nucleus export; nucleus; protein transporter activity; protein-nucleus import; transport	[SUMMARY:] This gene is one member of a family of nuclear RNA export factor genes. Common domain features of this family are a noncanonical RNP-type RNA-binding domain (RBD), 4 leucine-rich repeats (LRRs), a nuclear transport factor 2 (NTF2)-like domain that allows heterodimerization with NTF2-related export protein-1 (NXT1), and a ubiquitin-associated domain that mediates interactions with nucleoporins. The LRRs and NTF2-like domains are required for export activity. Alternative splicing seems to be a common mechanism in this gene family. The encoded protein of this gene shuttles between the nucleus and the cytoplasm and binds in vivo to poly(A)+ RNA. It is the vertebrate homologue of the yeast protein Mex67p. The encoded protein overcomes the mRNA export block caused by the presence of saturating amounts of CTE (constitutive transport element) RNA of type D retroviruses.		10437.73	4475.793	-0.807955
M98776_rna 1 at	KRT1	3848		keratin 1 (epidermolytic hyperkeratosis)		[SUMMARY:] The protein encoded by this gene is a member of the keratin gene family. The type II cytokeratins consist of basic or neutral proteins which are arranged in pairs of heterotypic keratin chains coexpressed during differentiation of simple and stratified epithelial tissues. This type II cytokeratin is specifically expressed in the spinous and granular layers of the epidermis with family member KRT10 and mutations in these genes have been associated with bullous congenital ichthyosiform erythroderma. The type II cytokeratins are clustered in a region of chromosome 12q12-q13.	9706.2	5207.6	4498.6	
 L09190_rna				, , , , , , , , , , , , , , , , , , , ,	biological_process unknown; calcium ion					
1_at X90976_s_a t	THH RUNX1		190370 151385	trichohyalin runt-related transcription factor 1 (acute myeloid leukemia 1; aml1 oncogene)	binding; cytoskeleton ATP binding; cell growth and/or maintenance; development; nucleus; regulation of transcription, DNA-dependent; transcription factor activity		13491.32	17993.23 9197.667		
M37075_at	MYL4	<u>4635</u>	160770	myosin, light polypeptide 4, alkali; atrial, embryonic	calcium ion binding; muscle development; muscle myosin; myosin; structural constituent of muscle	[SUMMARY:] Myosin is a hexameric ATPase cellular motor protein. It is composed of two myosin heavy chains, two nonphosphorylatable myosin alkali light chains, and two phosphorylatable myosin regulatory light chains. This gene encodes a myosin alkali light chain that is found in embryonic muscle and adult atria.	38600.04	43276.34	4676.297	-0.164976

						[SUMMARY:] Aminoacyl-tRNA synthetases are a class of enzymes that charge tRNAs with their cognate amino acids. In humans, the glutamyl-tRNA synthetase (GluRS) and prolyl-tRNA synthetase (ProRS) activities are contained within a single polypeptide chain, even though these enzymes belong to different classes and are thought to have evolved along independent evolutionary pathways. Glutamyl-prolyl-tRNA synthetase is made up of 1,440 amino acids encoded by 29 exons. The exons encoding the glutamyl-specific and prolyl-specific parts of the enzyme are clustered at opposite ends of the gene, separated by a long intervening DNA section with a number of exons which encode functions that may be involved in the organization of the mammalian multienzyme				
X54326_at	<u>EPRS</u>	2058	138295	glutamyl-prolyl-tRNA synthetase		synthetase complex.	23997.96	28688.3	4690.34	-0.257551
M17754_at	POLR3D	<u>661</u>	187280	polymerase (RNA) III (DNA directed) polypeptide D, 44kDa		[SUMMARY:] This gene complements a temperature-sensitive mutant isolated from the BHK-21 Syrian hamster cell line. It leads to a block in progression through the G1 phase of the cell cycle at nonpermissive temperatures.	26876.34	22161.4	4714.939	0.278288
104542 01	ANYAZ	210	19626	Opposition A.7.	calcium ion binding; calcium-dependent phospholipid binding; negative regulation of coagulation; voltage-gated calcium channel	[SUMMARY:] Annexin VII is a member of the annexin family of calcium-dependent phospholipid binding proteins. The Annexin VII gene contains 14 exons and spans approximately 34 kb of DNA. An alternatively spliced cassette exon results in two mRNA transcripts of 2.0 and 2.4 kb which are predicted to generate two protein isoforms differing in their N-terminal domain. The alternative splicing event is tissue specific and the mRNA containing the cassette exon is prevalent in brain, heart and skeletal muscle. The transcripts also differ in their 3'-non coding regions by the use of two alternative poly(A) signals. The selection of poly(A) signals is independent of the mRNA splicing pattern. "Annexin VII encodes a protein with a molecular weight of approximately 51 kDa with a unique, highly hydrophobic N-terminal domain of 167 amino acids and a conserved C-terminal region of 299 amino acids. The latter domain is composed of alternating hydrophobic and hydrophilic segments. Structural analysis of the protein suggests that Annexin VII is a	15044 26	19701.00	A7A7 579	0.30560
J04543_at	ANXA7	<u>310</u>	186360	annexin A7	activity intracellular signaling cascade;	membrane binding protein with diverse prope	15044.36	19791.93	4747.572	-0.39569
X80907_at	PIK3R2	<u>5296</u>	603157	phosphoinositide-3-kinase, regulatory 7 subunit, polypeptide 2 (p85 beta)	phosphatidylinositol 3-kinase activity; phosphoinositide 3-kinase complex		21148.96	16350.1	4798.862	0.371287

Final Abstracting cultivarywith translation initiation factor 44 company process protein beginnings; section for the factor 44 company process protein beginnings; section for the factor and process protein for the factor and process fo	I	ĺ		1		1	1			[1
SSS793 at SIF4B 1976 people enables of installation initiation factor 48 translation initiation factor activity SSJMMARYT The protein encoded by this installation factor activity. SSJMMARYT The protein encoded by this installation factor activity. SSJMMARYT The protein encoded by this installation factor activity. As a type that kerstalli, it is an activity protein which the footcomercus with type II kerstants or something that the stallation is supplied to encode a complete activity. The protein encoded by the great is a discount of the protein encoded by the great is a discount encoded by the great is a discount of encoded by the great is a discount encoded by t											
200761_at EXTLA2 2006 sender, her, acidic 2 signed and profession infestion factor 48 ministron factor 49											
SUMMARY The protein encoded by this gene is amended of the knaring specified protein specifie	X55733 at	FIF4B	197	75 603928	Reukaryotic translation initiation factor 4B			44812 N2	10620 Q	1817 883	-0 1/732/
pone is a member of the levating see and additional to the levating see and the levating see	755755_at	CII 4D	107	3 000020	editaryotic translation initiation factor 4D	translation initiation factor activity	[SUMMARY:] The protein encoded by this	44012.02	43023.3	4017.000	-0.147324
which heterodimentaes with type II keratina to form hard and fist. The type II hard restinate to form hard and fist. The type II hard restinate to design and fist. The type II hard restinate and fist. The type II hard restinate and fist. The type II hard restination and fist. The type II hard restinate and fist. The type II hard restinate and fist. The type II hard restination and fist. The type II have the type II hard restination and fist. The type II have the type II have the ty											
method of the state of the stat							As a type I hair keratin, it is an acidic protein				
### april ###											
2786 280 2760 2											
S0761_at S0714A2 3885 507763 seratin, hair, acidic, 2 filiament transcription. 27863.98 32688 4824.02 0.23036 cell growth and/or maintenance, endoplasmic reticulum; glucuroneys*, Naceylylucosaminyl proteogycan 4dipla. 2134 501738 exostoses (multiple)-like 1 groups cell growth and/or maintenance, endoplasmic reticulum; glucuroneys*, Naceylylucosaminyl proteogycan 4dipla. 2134 501738 exostoses (multiple)-like 1 groups cell growth and cell growt						opidormal differentiation: intermediate					
cell growth and/or maintenance, endoplasmic retroclutum; gloucrosoft - adepthy - acetylptycostaminy proteogylcan 4-alpha-1- acetylptycostaminy proteogylca	X90761 at	KRTHA2	388	602760	keratin, hair, acidic, 2			27863.98	32688	4824.02	-0.23036
proteogyteus 4-sipha-N- acotyptiuosaminy/marierariae activity; integral to membrane; skeletial development; transferarea activity, transferring glycosyl groups SUMMARY] This gene encodes the alpha chain of type XV colliagan, a member of the FACTI Collagan family (fibril associated collagens with interrupted helices). Type XV collagen has a wide issue distribution but the strongest expression is localized to sagenere with interrupted helices). Type XV collagen has a wide issue distribution but the strongest expression is localized to sagenere with interrupted helices). Type XV collagen has a wide issue distribution but the strongest expression is localized to sagenere with interrupted helices). Type XV collagen has a wide issue distribution but the strongest expression is localized to sagenere with interrupted helices). Type XV collagen has a wide issue distribution but the strongest expression is localized to sagenere with interrupted helices). Type XV collagen has a wide issue distribution but the strongest expression is localized to sagenere with interrupted helices). Type XV collagen has a wide issue distribution but the strongest expression is localized to sagenere with interrupted helices). Type XV collagen has a wide issue distribution but the strongest expression is localized to sagenere with interrupted helices. Type XV collagen has a wide issue distribution but the strongest expression is localized to sagenere membrane a collagen. 44415.46. 48255.67. 4840.207. 0.148228 4285.56. 0.793586 42869.56. 0.793586					,,,						0.2000
Bername Bern						reticulum; glucuronosyl-N-acetylglucosaminyl					
Le7191 at EXTL1 2134 601738 excetoses (multiple)-like 1 SIMMARY.] This gene encodes the alpha chain of type XV collagen, a member of the FACT collagen family (lithri associated collagens) and interrupted believes. Type XV collagen, a member of the FACT collagen family (lithri associated collagens) and interrupted believes. Type XV collagens has a wide tissue distribution but be a season that the state of the FACT collagen family (lithri associated collagens) and the state of the FACT collagen family (lithri associated with muscle and microvessel deterioration. The state of the FACT collagen family (lithri associated with muscle and microvessel deterioration.) SIMMARY.] The protein encoded by this gene is a lysosomal cystein encoded by this gene is a lysosomal cystein proteinses that gene in general to the state of the proteins of the state of the											
Us67191_at SXTL1 2134 601736 exceptoses (multiple)-like 1 groups Us67191_at SXTL1 2134 601736 exceptoses (multiple)-like 1 groups											
U67191 at SXTL1 2134 601736 exostosees (multiple)-like 1 groups (SUMMARY3) This gene encodes the alpha chain of type XV collagen, a member of the FACIT collagen family (fibril-associated collagens with interrupted helices). Type XV collagen has a wide lissue distribution but the stronges expression is localized to underlying connective fissues storma. Mouse studies have shown that collagen XV deficiency is associated with muscle and microvessel deterioration. 6638.44 11507 4868.56 -0.793596 U46752_at OSII. 54211 oxidative stress induced like Size of the first order of the stronges of the first order o											
SUMMARY:] This gene encodes the alpha chain of type XV collagen, a member of the FACIT collagen family (filter) associated collagens with interrupted helices). Type XV collagen has a wide issue distribution but the strongest expression is localized to basement membranes to underlying cornective fissues storma. Mouse studies have shown that collagen XV difficurely associated with muscle and microressed deterioration. 125286 s. at COL15A1 1306 120325 collagen, type XV, alpha 1 biological_process unknown; cytosol; molecular_function unknown; zinc ion binding SUMMARY:] The protein encoded by this gene is a lysosomal cysteline proteinase that plays a major role in intracellular protein catabolism. Its substrates include collagen and elastin, as well as alpha-1 protease inhibitor, a major controlling element of neutrophil elastase activity. The encoded protein share been implicated in several gathologic processes, including myofibril necrosis in myogratinia and in myocardial ischemia, and in the renal tubular response to proteinum;. This protein, which is a member of the peptidase C1 family, is any official process. Including myofibril necrosis in myogratinia and in myocardial ischemia, and in the renal tubular response to proteinum;. This protein, which is a member of the peptidase C1 family, is any official processes, including myofibril necrosis in myogratinia and in myocardial ischemia, and in the renal tubular response to proteinum;. This protein, which is a member of the peptidase C1 family, is any official processes in myogratine and in myocardial ischemia, and in the renal tubular response to proteinum;. This protein, which is a member of the peptidase C1 family, is any official processes in myogratine and in myocardial ischemia, and in the renal tubular response to proteinum;. This protein, which is a member of the peptidase C1 family, is any official processes in myogratine and in myocardial ischemia, and in the renal tubular response to proteinum;. This protein, which is a member of the peptidase C1 f	U67191 at	FXTI 1	213	84 601738	Rexostoses (multiple)-like 1			44415.46	49255 67	4840 207	-0 149228
chain of type XV collagen, a member of the FACIT collagen family fibril-associated collagens with interrupted helices). Type XV collagen has a wide issue distribution but the strongest expression is localized to basement membranes to underlying connective lissue stores. Mouse studies have shown that collagen XV deficiency is associated with muscle and microvessel deterioration. L25286 s at COL15A1 1306 120325 collagen, type XV, alpha 1 biological process unknown; cytosol; molecular function unknown; zinc ion binding L46752 at OSIL 54211 oxidative stress induced like binding SUMMARY.] The protein encoded by this gene is a lysosomal cysteine proteinsae that plays a major role in intracellular protein eatabolism. Its substrates include collagen and elastin, as well as alpha-1 protein encoded by this gene is a lysosomal cysteine proteinsae that plays a major role in intracellular protein eatabolism. Its substrates include collagen and elastin, as well as alpha-1 proteins eatabolism. The renorded protein has been implicated in several pathologic processes, including mynofibril necrosis in myopathies and in myocardial ischema, and in the renal tubular response to protein mass been implicated in several pathologic processes, including mynofibril necrosis in myopathies and in myocardial ischema, and in the renal tubular response to protein mass protein, which is a member of the peptidage C1 family, is a dimer composed of disulfide-linked heavy and light chains, both produced from a single protein precursor. At least two transcript variants encoding the same protein have been found for this gene. X12451_at CTSL 1514 11886 cathepsin L DNA binding; morphogenotes, including mynophogenotes, requisit on the same protein have been found for this gene. DNA binding; morphogenotes in receives the same protein have been found for this gene. 10309.92 15228.17 4918.247 0.562709 1.562709 1.562709 1.562709 1.562709 1.562709 1.562709 1.562709 1.562709 1.562709 1.562709 1.562709 1.562709 1.562709 1.562709 1.562709 1.562709 1.5627	3301_ut		_10	551750	The state of the s	3· p0		+++13. 1 0	+0200.07	10-10.207	3.173220
EACIT collagen taminy (fibril-associated collagens with interrupted helices). Type XV collagen with interrupted helices). Type XV collagen was a wide rissue distribution but the strongest expression is localized to basement membrane zones so it may function to adhreb seasement membranes to underlying connective tissue storma. Mouse studies have shown that collagen XV deficiency is associated with muscle and microvessel deterioration. E25286 s at COL15A1 1308 120325 collagen, type XV, alpha 1 biological_process unknown; cytosol; molecular_function unknown; zinc ion binding E45211 oxidative stress induced like biological_process unknown; zinc ion binding E45212 oxidative stress induced like biological_process unknown; zinc ion binding E45213 oxidative stress induced like biological_process unknown; zinc ion binding E45214 oxidative stress induced like biological_process unknown; zinc ion binding E45214 oxidative stress induced like biological_process unknown; zinc ion binding E45215 at CTSL 54211 oxidative stress induced like biological_process unknown; zinc ion binding E45216 oxidative stress induced like biological_process unknown; zinc ion binding E45217 oxidative stress induced like biological_process unknown; zinc ion binding E45218 oxidative stress induced like biological_process unknown; zinc ion binding E45219 oxidative stress induced like biological_process unknown; zinc ion binding E45219 oxidative stress induced like biological_process unknown; zinc ion binding E45219 oxidative stress induced like biological_process unknown; zinc ion unknown; zinc							[SUMMARY:] This gene encodes the alpha				
collagen with interrupted helices). Type XV collagen has a wide itssue distribution but the strongest expression is localized to basement membrane so the sunderlying connective itssue strona. Mouse studies have shown that collagen XV deficiency is associated with muscle and microvessel deterioration. L25286 s at COL15A1 1306 120325 collagen, type XV, alpha 1 biological process unknown: cytosol; molecular_function unknown; zinc ion binding L35286 s at COL15A1 1306 120325 collagen, type XV, alpha 1 biological process unknown: cytosol; molecular_function unknown; zinc ion binding SUMMARY: The protein encoded by this gene is a lysosomal cytetine proteinase that plays a major role in intracellular protein acatabolism. Its substrates include collagen and elastin, as well as alpha-1 protease inhibitor, a major controlling element of neutrophil elastase activity. The encoded protein has been implicated in several pathologic processes, including myotibril necrosis in myopathies and in myocardial ischemia, and in the renal tubular response to proteinuria. This protein, which is a member of the peptidase C1 family, is a dimer composed of disulfide-linked heavy and light chairs, both produced from a single protein procursor. At least two transcript variants encoding the same protein have been found for this gene. X12451_at CTSL 1514 116880 cathepsin L Winding; morphosis ruculeus; regulation of transcription, DNA-dependent; specific RNA polymerapis; uncleus; regulation of transcription; DNA-dependent; specific RNA polymerapis; uncleus; regulation of t											
collagen has a wide itssue distribution but the strongest expression is localized to basement membrane zones so it may function to adher basement membranes to underlying connactive itssue stroma. Mouse studies have shown that collagen XV deficiency is associated with muscle and microvessel deterioration. L25286 s. at COL15A1 1306 120325 collagen, type XV, alpha 1 biological_process unknown; cytosol; molecular_function unknown; zinc ion binding [SUMMARY] The protein encoded by this gene is a lysosomal cysteine proteinase that plays a major role in intracellular protein actabolism. Its substrates include collagen and elastin, as well as alpha-1 proteins encloded protein has been implicated in several pathologic processes, including myothoril necrosis in myopathies and in myocardial ischemia, and in the renal tubular response to proteinuria. This protein, which is a member of the peptidase Cf family, is a dimer composed of disulfide-linked heavy and light chains, both produced form a single protein procurs. At least two transcript variants encoding the same protein have been found for this gene. X12451 at CTSL 1514 116880 cathepsin L Winding; morphogeris; uncleus; regulation of transcription. DNA-dependent; specific RNA polymersiption.											
the strongest expression is localized to basement membrane zones of it may function to adhere basement membranes to underlying connective itsuse storma. Mouse studies have shown that collagen XV deficiency is associated with muscle and microvessel deterioration. U46752_at QSIL											
basement membrane zones so it may function to adhere basement membranes to underlying connective tissue stroma. Mouse studies have shown that collagen XV deficiency is associated with muscle and microvessel deterioration. L25286 s at COL15A1 1306 120325 collagen, type XV, alpha 1 L25286 s at COL15A1 1306 120325 collagen, type XV, alpha 1 Diological, process unknown; cytosol; molecular function unknown; zinc ion binding SUMMARY: The protein encoded by this gene is a lysosomal cysteine proteinase that plays a major role in intracellular protein catabolism. Its substrates include collagen and elastin, as well as alpha 1 protease inhibitor, a major controlling element of neutrophile elastase activity. The encoded protein has been implicated in several pathologic processes, including myolfbril necrosis in myopathies and in myocardial ischemia, and in the renal tubular response to proteinuria. This protein, which is a member of the peptidase of 1 family, is a dimer composed of disulfide-linked heavy and light chains, both produced from a single protein procursor. At least two transcript variants encoding the same protein have been found for this gene. X12451 at CTSL 1514 116880 cathepsin L Dio No Dinding; morphogenesis; nucleus; regulation of transcription, powers in transcription specific RNA polymorphogenesis; nucleus; regulation of transcription, polymorphogenesis; nucleus; regulation of transcription specific RNA polymorphogenesis; nucleus; regulation of transcriptio											
L25286 s at CQL15A1 1306 120325 collagen, type XV, alpha 1 L25286 s at CQL15A1 1306 120325 collagen, type XV, alpha 1 Diological_process unknown; cytosol; molecular_function unknown; zinc ion binding L25286 s at CQL15A1 Diological_process unknown; cytosol; molecular_function unknown; zinc ion binding L25286 s at CQL15A1 Diological_process unknown; cytosol; molecular_function unknown; zinc ion binding L25286 s at CQL15A1 Diological_process unknown; cytosol; molecular_function unknown; zinc ion binding L25286 s at CQL15A1 Diological_process unknown; cytosol; molecular_function unknown; zinc ion binding L25286 s at CQL15A1 Diological_process unknown; cytosol; molecular_function unknown; zinc ion binding L25286 s at CQL15A1 Diological_process unknown; cytosol; molecular_function unknown; zinc ion molec											
tudies have shown that collagen XV deficiency is associated with muscle and microvessel deterioration. U46752 at OSIL S4211 Oxidative stress induced like Diological_process unknown; cytosol; molecular_function unknown; zinc ion binding Diological_process unknown; cytosol; diological_process unknown; cytosol; diological_process unknown; cytosol; diolog											
L25286 s. at COL15A1 1306 120325 collagen, type XV, alpha 1 biological_process unknown; cytosol; molecular_function unknown; zinc ion binding							underlying connective tissue stroma. Mouse				
L25286 s. at COL15A1 1306 120325 collagen, type XV, alpha 1 biological_process unknown; cytosol; molecular_function unknown; zinc ion binding U46752 at OSIL 54211											
biological_process unknown; cytosol; molecular_function unknown; zinc ion binding [SUMMARY:] The protein encoded by this gene is a lysosomal cysteine proteinase that plays a major role in intracellular protein catabolism. Its substrates include collagen and elastin, as well as alpha-1 protease inhibitor, a major controlling element of neutrophil elastase activity. The encoded protein has been implicated in several pathologic processes, including myoffbril necrosis in myopathies and in myocardial ischemia, and in the renal tubular response to proteinuria. This protein, which is a member of the peptidase C1 family, is a dimer composed of disulfide-linked heavy and light chains, both produced from a single protein precursor. At least two transcript variants encoding the same protein have been found for this gene. X12451_at CTSL 1514_116880 cathepsin L	1.05000+	0014544	400	40000	Sallanas tosa XVI alaba 4			0000 44	44507	4000 50	0.700500
U46752 at OSIL 54211 oxidative stress induced like binding [SUMMARY:] The protein encoded by this gene is a lysosomal cysteine proteinase that plays a major role in intracellular protein catabolism. Its substrates include collagen and elastin, as well as alpha-1 protease inhibitor, a major controlling element of neutrophile elastase activity. The encoded protein has been implicated in several pathologic processes, including myofibril necrosis in myopathies and in myocardial ischemia, and in the renal tubular response to proteinuria. This protein, which is a member of the peptidase CI family, is a dimer composed of disulfide-linked heavy and light chains, both produced from a single protein procursor. At least two transcript variants encoding the same protein have been found for this gene. X12451_at CTSL 1514_116880 cathepsin L	L25286_S_at	COLISAL	<u>130</u>	120325	collagen, type XV, alpha I	higherical process rinknown; cytosol;	microvessei deterioration.	6638.44	11507	4868.56	-0.793596
U46752_at OSIL 54211											
gene is a lysosomal cysteine proteinase that plays a major role in intracellular protein catabolism. Its substrates include collagen and elastin, as well as alpha-1 protease inhibitor, a major controlling element of neutrophil elastase activity. The encoded protein has been implicated in several pathologic processes, including myofibril necrosis in myopathies and in myocardial ischemia, and in the renal tubular response to proteinuria. This protein, which is a member of the peptidase C1 family, is a dimer composed of disulfide-linked heavy and light chains, both produced from a single protein procursor. At least two transcript variants encoding the same protein have been found for this gene. X12451_atCTSL	U46752_at	OSIL	<u>5421</u>	1	oxidative stress induced like			19979.68	24862.83	4883.156	-0.315457
gene is a lysosomal cysteine proteinase that plays a major role in intracellular protein catabolism. Its substrates include collagen and elastin, as well as alpha-1 protease inhibitor, a major controlling element of neutrophil elastase activity. The encoded protein has been implicated in several pathologic processes, including myofibril necrosis in myopathies and in myocardial ischemia, and in the renal tubular response to proteinuria. This protein, which is a member of the peptidase C1 family, is a dimer composed of disulfide-linked heavy and light chains, both produced from a single protein procursor. At least two transcript variants encoding the same protein have been found for this gene. X12451_atCTSL											
plays a major role in intracellular protein catabolism. Its substrates include collagen and elastin, as well as alpha-1 protease inhibitor, a major controlling element of neutrophil elastase activity. The encoded protein has been implicated in several pathologic processes, including myofibril necrosis in myopathies and in myocardial ischemia, and in the renal tubular response to proteinuria. This protein, which is a member of the peptidase C1 family, is a dimer composed of disulfide-linked heavy and light chains, both produced from a single protein precursor. At least two transcript variants encoding the same protein have been found for this gene. X12451_at CTSL 1514_116880_cathepsin L 2528.17 4918.247 -0.562709 DNA binding; morphogenesis; nucleus; regulation of transcription, DNA-dependent; specific RNA polymerase II transcription											
catabolism. Its substrates include collagen and elastin, as well as alpha-1 protease inhibitor, a major controlling element of neutrophil elastase activity. The encoded protein has been implicated in several pathologic processes, including myofibril necrosis in myopathies and in myocardial ischemia, and in the renal tubular response to proteinuria. This protein, which is a member of the peptidase C1 family, is a dimer composed of disulfide-linked heavy and light chains, both produced from a single protein precursor. At least two transcript variants encoding the same protein have been found for this gene. X12451 at CTSL 1514 116880 cathepsin L lysosome; proteolysis and peptidolysis pregulation of transcription, DNA-dependent; specific RNA polymerase II transcription											
and elastin, as well as alpha-1 protease inhibitor, a major controlling element of neutrophil elastase activity. The encoded protein has been implicated in several pathologic processes, including myofibril necrosis in myopathies and in myocardial ischemia, and in the renal tubular response to proteinuria. This protein, which is a member of the peptidase C1 family, is a dimer composed of disulfide-linked heavy and light chains, both produced from a single protein precursor. At least two transcript variants encoding the same protein have been found for this gene. X12451_at CTSL 1514 116880 cathepsin L lightly in the same protein have been found for this gene. DNA binding; morphogenesis; nucleus; regulation of transcription promogenesis; nucleus; specific RNA polymerase II transcription											
inhibitor, a major controlling element of neutrophil elastase activity. The encoded protein has been implicated in several pathologic processes, including myofibril necrosis in myopathies and in myocardial ischemia, and in the renal tubular response to proteinuria. This protein, which is a member of the peptidase C1 family, is a dimer composed of disulfide-linked heavy and light chains, both produced from a single protein precursor. At least two transcript variants encoding the same protein have been found for this gene. X12451_at CTSL 1514 116880 cathepsin L light of transcription DNA-dependent; specific RNA polymerase II transcription.											
neutrophil elastase activity. The encoded protein has been implicated in several pathologic processes, including myofibril necrosis in myopathism and in the renal tubular response to proteinuria. This protein, which is a member of the peptidase C1 family, is a dimer composed of disulfide-linked heavy and light chains, both produced from a single protein precursor. At least two transcript variants encoding the same protein have been found for this gene. X12451_at CTSL 1514 116880 cathepsin L least two transcript variants encoding the same protein have been found for this gene. DNA binding; morphogenesis; nucleus; regulation of transcription, DNA-dependent; specific RNA polymerase II transcription											
pathologic processes, including myofibril necrosis in myopathies and in myocardial ischemia, and in the renal tubular response to proteinuria. This protein, which is a member of the peptidase C1 family, is a dimer composed of disulfide-linked heavy and light chains, both produced from a single protein precursor. At least two transcript variants encoding the same protein have been found for this gene. X12451_at CTSL 1514 116880 cathepsin L light chains, both produced from a single protein precursor. At least two transcript variants encoding the same protein have been found for this gene. 10309.92 15228.17 4918.247 -0.562709 DNA binding; morphogenesis; nucleus; regulation of transcription, DNA-dependent; specific RNA polymerase II transcription											
necrosis in myopathies and in myocardial ischemia, and in the renal tubular response to proteinuria. This protein, which is a member of the peptidase C1 family, is a dimer composed of disulfide-linked heavy and light chains, both produced from a single protein precursor. At least two transcript variants encoding the same protein have been found for this gene. X12451_at CTSL 1514 116880 cathepsin L	1						protein has been implicated in several				
ischemia, and in the renal tubular response to proteinuria. This protein, which is a member of the peptidase C1 family, is a dimer composed of disulfide-linked heavy and light chains, both produced from a single protein precursor. At least two transcript variants encoding the same protein have been found for this gene. X12451_at	1										
to proteinuria. This protein, which is a member of the peptidase C1 family, is a dimer composed of disulfide-linked heavy and light chains, both produced from a single protein precursor. At least two transcript variants encoding the same protein have been found for this gene. Value 1											
member of the peptidase C1 family, is a dimer composed of disulfide-linked heavy and light chains, both produced from a single protein precursor. At least two transcript variants encoding the same protein have been found for this gene. X12451_at	1										
dimer composed of disulfide-linked heavy and light chains, both produced from a single protein precursor. At least two transcript variants encoding the same protein have been found for this gene. X12451_at CTSL 1514 116880 cathepsin L 2528.17	1										
And light chains, both produced from a single protein precursor. At least two transcript variants encoding the same protein have been found for this gene. X12451_at	1										
x12451_at CTSL 1514 116880 cathepsin L activity; hydrolase activity; hydrolase activity; hydrolase activity; hydrolase activity; hydrolase activity; variants encoding the same protein have been found for this gene. 10309.92 15228.17 4918.247 -0.562709 DNA binding; morphogenesis; nucleus; regulation of transcription, DNA-dependent; specific RNA polymerase II transcription	1										
X12451_at CTSL 1514 116880 cathepsin L lysosome; proteolysis and peptidolysis been found for this gene. 10309.92 15228.17 4918.247 -0.562709 DNA binding; morphogenesis; nucleus; regulation of transcription, DNA-dependent; specific RNA polymerase II transcription	1										
DNA binding; morphogenesis; nucleus; regulation of transcription, DNA-dependent; specific RNA polymerase II transcription	l				1						
regulation of transcription, DNA-dependent; specific RNA polymerase II transcription	X12451_at	<u>CTSL</u>	<u>151</u>	4 116880	cathepsin L		been tound for this gene.	10309.92	15228.17	4918.247	-0.562709
specific RNA polymerase II transcription	1										
	1										
	L15309_at	ZNF141	<u>770</u>	00 194648	zinc finger protein 141 (clone pHZ-44)			-2750.04	-7697.233	4947.193	-1.484887

L19593_at	<u>IL8RB</u>	<u>3579</u>	146928	interleukin 8 receptor, beta	G-protein signaling, coupled to IP3 second messenger (phospholipase C activating); cell motility; cell proliferation; cellular defense response; chemotaxis; cytoplasm; inflammatory response; integral to plasma membrane; interleukin-8 receptor activity; rhodopsin-like receptor activity; signal transducer activity	[SUMMARY:] The protein encoded by this gene is a member of the G-protein-coupled receptor family. This protein is a receptor for interleukin 8 (IL8). It binds to IL8 with high affinity, and transduces the signal through a G-protein activated second messenger system. This receptor also binds to chemokine (C-X-C motif) ligand 1 (CXCL1/MGSA), a protein with melanoma growth stimulating activity, and has been shown to be a major component required for serum-dependent melanoma cell growth. This receptor mediates neutrophil migration to sites of inflammation. The angiogenic effects of IL8 in intestinal microvascular endothelial cells are found to be mediated by this receptor. Knockout studies in mice suggested that this receptor controls the positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. This gene, IL8RA, a gene encoding another high affinity IL8 receptor, as well as IL8RBP, a pseudogene of IL8RB, form a gene cluster in a region mapped to chromosome 2q33-q36.	47707.4	52664.7	4957.301	-0.142623
Z14982_rna 1_at	PSMB8	<u>5696</u>	177046	proteasome (prosome, macropain) subunit, beta type, 8 (large multifunctional protease 7)	endopeptidase activity; immune response; proteasome core complex (sensu Eukarya); proteolysis and peptidolysis; ubiquitin- dependent protein catabolism	[SUMMARY:] The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. This gene is located in the class II region of the MHC (major histocompatibility complex). Expression of this gene is induced by gamma interferon and this gene product replaces catalytic subunit 3 (proteasome beta 5 subunit) in the immunoproteasome. Proteolytic processing is required to generate a mature subunit. Two alternative transcripts encoding two isoforms have been identified; both isoforms are processed to yiel	162887.3	157926.2	4961.047	0.044623
M32598_at	PYGM	<u>5837</u>	232600	phosphorylase, glycogen; muscle (McArdle syndrome, glycogen storage disease type V)			32425.86	37412.33	4986.473	-0.206369

U80456 at	SIM2	6493	600892	single-minded homolog 2 (Drosophila)	development; neurogenesis; nucleus; regulation of transcription, DNA-dependent; signal transducer activity; signal transduction; transcription factor activity	[SUMMARY:] SIM1 and SIM2 genes are Drosophila single-minded (sim) gene homologs. The Drosophila sim gene encodes a transcription factor that is a master regulator of fruit fly neurogenesis. SIM2 maps within the so-called Down syndrome chromosomal region. Based on the mapping position, its potential function as transcriptional repressor and similarity to Drosophila sim, it is proposed that SIM2 may contribute to some specific Down syndrome phenotypes	7423.32	12439.13	5015.813	-0.744749
					immune response; negative regulation of cell cycle; nucleus; regulation of transcription, DNA-dependent; transcription factor activity;	[SUMMARY:] IRF1 encodes interferon regulatory factor 1, a member of the interferon regulatory transcription factor (IRF) family. IRF1 serves as an activator of interferons alpha and beta transcription, and in mouse it has been shown to be required for double-stranded RNA induction of these genes. IRF1 also functions as a transcription activator of genes induced by interferons alpha, beta, and gamma. Further, IRF1 has been shown to play roles in regulating				
L05072_s_at	IRF1	<u>3659</u>	<u>147575</u>	interferon regulatory factor 1	transcription from Pol II promoter	apoptosis and tumor-suppressoion.	78243.16	83268.96	5025.797	-0.089814
HG2887- HT3031_r_a	SOX15	6665	601207	SRY (sex determining region Y)-box 15	DNA binding; RNA polymerase II transcription factor activity; chromatin; establishment and/or maintenance of chromatin architecture; male gonad development; nucleus; regulation of transcription from Pol II promoter; regulation of transcription, DNA-dependent; transcription factor activity	[SUMMARY:] This gene encodes a member of the SOX (SRY-related HMG-box) family of transcription factors involved in the regulation of embryonic development and in the determination of the cell fate. The encoded protein may act as a transcriptional regulator after forming a protein complex with other proteins.	44022 12	-49968.27	5025 149	-0.153233
	SOCIA	5000	301231	or report of the rest of the r	energy pathways; nucleus; regulation of transcription from Pol II promoter; regulation of transcription, DNA-dependent;	[SUMMARY:] Gopalakrishnan and Scarpulla (1995) [PubMed 7629110] noted that the electron transport chain and oxidative phosphorylation system rely on the functional interplay of gene products expressed from both nuclear and mitochondrial genomes. Because of the limited coding capacity of the mitochondrial chromosome, nuclear genes must provide most of the respiratory subunits and all of the gene products necessary for mitochondrial DNA transcription and replication. Nuclear respiratory factor-1 (NRF1) is a transcription factor that acts on nuclear genes encoding respiratory subunits and components of the mitochondrial transcription and replication	77300.12	3300.27	3000.140	
U44848_at	NRF1	4899	600879	nuclear respiratory factor 1	transcription factor activity	machinery.[supplied by OMIM]	12300.08	17361.07	5060.986	-0.497188
					G-protein coupled receptor protein signaling pathway; behavior; integral to plasma membrane; positive regulation of cell proliferation; rhodopsin-like receptor activity;					
M83181_at	<u>HTR1A</u>	<u>3350</u>	<u>109760</u>	5-hydroxytryptamine (serotonin) receptor 1A	serotonin receptor activity		61271.34	56209.67	5061.668	0.124394

					•			•		
				protein tyrosine phosphatase, receptor type,	carbonate dehydratase activity; hydrolase activity; integral to plasma membrane; one-carbon compound metabolism; protein amino acid dephosphorylation; transmembrane receptor protein tyrosine kinase signaling pathway; transmembrane receptor protein tyrosine phosphatase activity; zinc ion	[SUMMARY:] The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem intracytoplasmic catalytic domains, and thus represents a receptor-type PTP. The extracellular region of this PTP contains a carbonic anhydrase-like (CAH) domain, which is also found in the extracellular region of PTPRBETA/ZETA. This gene is located in a chromosomal region that is frequently deleted in renal cell carcinoma and lung carcinoma, thus is thought to be a candidate				
U46116 at	PTPRG	5793	176886	G	binding	tumor suppressor gene.	33023.4	38088.64	5065.238	-0.205872
				GATA binding protein 1 (globin transcription	development; nucleus; regulation of transcription from Pol II promoter; regulation of transcription, DNA-dependent;	[SUMMARY:] This gene encodes a protein which belongs to the GATA family of transcription factors. The protein plays an important role in erythroid development by regulating the switch of fetal hemoglobin to adult hemoglobin. Mutations in this gene have been associated with X-linked dyserythropoietic anemia and				
X17254_at	GATA1	<u>2623</u>	305371	factor 1)	transcription factor activity	thrombocytopenia.	17509.86	22604.07	5094.209	-0.368415
M32313 at	SRD5A1	6715	5 1847 5 3	steroid-5-alpha-reductase, alpha polypeptide 1 (3-oxo-5 alpha-steroid delta 4- dehydrogenase alpha 1)	3-oxo-5-alpha-steroid 4-dehydrogenase activity; cell-cell signaling; electron transporter activity; integral to membrane; microsome; oxidoreductase activity; sex determination; sex differentiation	[SUMMARY:] Steroid 5-alpha-reductase (EC 1.3.99.5) catalyzes the conversion of testosterone into the more potent androgen, dihydrotestosterone (DHT). There are 2 isoforms of the enzyme: SRD5A1 and SRD5A2 (MIM 607306).[supplied by OMIM]	36268	31099.6	5168.4	0.221801
				, , , , , , , , , , , , , , , , , , ,	cell growth; cell proliferation; cell-cell	, , , , , , , , , , , , , , , , , , ,				
Y00083_s_a t	TGFB2	<u>7042</u>	190220	transforming growth factor, beta 2	signaling; extracellular space; growth; regulation of cell cycle; signal transduction; transforming growth factor beta receptor binding		10551.86	15728.8	5176.938	-0.575911
M31241_s_a	CR1	1376	3 120620	complement component (3b/4b) receptor 1, including Knops blood group system	complement activation, classical pathway; complement component C3b receptor activity; integral to plasma membrane; receptor activity	[SUMMARY:] This gene encodes a membrane glycoprotein found on peripheral blood cells, glomerular podocytes, and follicular dendritic cells. The protein is a receptor for complement components C3b and C4b and regulates the activity of the complement cascade. Variation in this protein is the basis of the Knops blood group system. The two most common alleles, F and S, differ by 8 exons and are thought to be the result of an unequal crossover event. A secreted form of the protein present in plasma has been described, but its full length nature has not been determined.	15233.8	10051.07	5182.733	0.599927

X73460_at	RPL3	<u>6122</u>	604163	ribosomal protein L3	RNA binding; cytosolic large ribosomal subunit (sensu Eukarya); intracellular; nucleolus; protein biosynthesis; ribosome; structural constituent of ribosome	[SUMMARY:] Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L3P family of ribosomal proteins. It is located in the cytoplasm. The protein can bind to the HIV-1 TAR mRNA, and it has been suggested that the protein contributes to tat-mediated transactivation. This gene is co-transcribed with the small nucleolar RNA genes U43, U86, U83a, and U83b, which are located in its first, third, fifth, and seventh introns, respectively. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome.	21324.28	16133.33	5190.948	0.402453
X62429_s_a	POU1F1	5449	173110	POU domain, class 1, transcription factor 1 (Pit1, growth hormone factor 1)	negative regulation of cell proliferation; nucleus; organogenesis; regulation of transcription, DNA-dependent; transcription factor activity; transcription from Pol II promoter	[SUMMARY:] PIT1 is a pituitary-specific transcription factor responsible for pituitary development and hormone expression in mammals and is a member of the POU family of transcription factors that regulate mammalian development. The POU family is so named because the first 3 members identified were PIT1 and OCT1 (MIM 164175) of mammals, and Unc-86 of C. elegans (Herr et al., 1988 [PubMed 3215510]). PIT1 contains 2 protein domains, termed POU-specific and POU-homeo, which are both necessary for high affinity DNA binding on genes encoding growth hormone (GH; MIM 139250) and prolactin (PRL; MIM 176760). PIT1 is also important for regulation of the genes encoding prolactin and thyroid-stimulating hormone beta subunit (TSHB; MIM 188540) by thyrotropin-releasing hormone (TRH; MIM 257120) and cyclic AMP.[supplied by OMIM]	34470 24	29272.57	5197 67	0.235802

gene is a member of the peroxisome proliferator-activated receptor (PPAR) family. PPARs are nuclear hormone receptors that bind peroxisome proliferators and control the size and number of peroxisomes produced by cells. PPARs mediate a variety of biological processes, and may be involved in the development of several chronic diseases, including diabetes, obesity, atherosclerosis, and cancer. This protein is a potent inhibitor of ligand-induced transcription activity of PPAR delta and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated expression of this gene is found to be elevated or colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation. Alternatively spliced transcripton. Alternatively spliced transcriptors.	proliferator-activated receptor (PPAR) family. PPARs are nuclear hormone receptors that bind peroxisome proliferators and control the size and number of peroxisomes produced by cells. PPARs mediate a variety of biological processes, and may be involved in the development of several chronic diseases, including diabetes, obesity, atherosclerosis, and cancer. This protein is a potent inhibitor of ligand-induced transcription activity of PPAR delta and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta- caterin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of transcription from Pol II promoter; regulation of transcription, DNA- dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.			
PPARs are nuclear hormone receptors that bind peroxisome proliferators and control the size and number of peroxisomes produced by cells. PPARs mediate a variety of biological processes, and may be involved in the development of several chronic diseases, including diabetes, obesity, atherosclerosis, and cancer. This protein is a potent inhibitor of ligand-induced transcription activity of PPAR delta and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor supersor protein related to APC/beta-catenin signaling pathways; lipid metabolism; nucleus; regulation of transcription, pDNA-dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	PPARs are nuclear hormone receptors that bind peroxisome profilerators and control the size and number of peroxisomes produced by cells. PPARs mediate a variety of biological processes, and may be involved in the development of several chronic diseases, including diabetes, obesity, atherosclerosis, and cancer. This protein is a potent inhibitor of ligand-induced transcription activity of PPAR delta and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of transcription from Pol II promoter; regulation of transcription from Pol I			
bind peroxisome proliferators and control the size and number of peroxisomes produced by cells. PPARs mediate a variety of biological processes, and may be involved in the development of several chronic diseases, including diabetes, obesity, atherosclerosis, and cancer. This protein is a potent inhibitor of ligand-induced transcription activity of PPAR delta and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coil (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of transcription, DNA-dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	bind peroxisome proliferators and control the size and number of peroxisomes produced by cells. PPARs mediate a variety of biological processes, and may be involved in the development of several chronic diseases, including diabetes, obesity, attherosclerosis, and cancer. This protein is a potent inhibitor of ligand-induced transcription activity of PPAR delta and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-cately cately in signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation.			
by cells. PPARs mediate a variety of biological processes, and may be involved in the development of several chronic diseases, including diabetes, obesity, atherosclerosis, and cancer. This protein is a potent inhibitor of ligand-induced transcription activity of PPAR delta and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of transcription, DNA-dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	by cells. PPARs mediate a variety of biological processes, and may be involved in the development of several chronic diseases, including diabetes, obesity, atherosclerosis, and cancer. This protein is a potent inhibitor of ligand-induced transcription activity of PPAR delta and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of transcription, DNA-dependent; steroid hormone receptor			
biological processes, and may be involved in the development of several chronic diseases, including diabetes, obesity, atherosclerosis, and cancer. This protein is a potent inhibitor of ligand-induced transcription activity of PPAR delta and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of transcription, DNA-dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	biological processes, and may be involved in the development of several chronic diseases, including diabetes, obesity, atherosclerosis, and cancer. This protein is a potent inhibitor of ligand-induced transcription activity of PPAR delta and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-energy pathways; lipid metabolism; nucleus; regulation of transcription from Pol II promoter; regulation of transcription, DNA-dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.			
the development of several chronic diseases, including diabetes, obesity, atherosclerosis, and cancer. This protein is a potent inhibitor of ligand-induced transcription activity of PPAR delta and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of transcription, DNA-dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	the development of several chronic diseases, including diabetes, obesity, atherosclerosis, and cancer. This protein is a potent inhibitor of ligand-induced transcription activity of PPAR delta and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of the corpus callosum, lipid dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.			
including diabetes, obesity, atherosclerosis, and cancer. This protein is a potent inhibitor of ligand-induced transcription activity of PPAR delta and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signalling pathway. Knockout studies in mice suggested the role of this protein in myelination of transcription, DNA-dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	including diabetes, obesity, atherosclerosis, and cancer. This protein is a potent inhibitor of ligand-induced transcription activity of PPAR delta and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of transcription, DNA-dependent; steroid hormone receptor			
and cancer. This protein is a potent inhibitor of ligand-induced transcription activity of PPAR delta and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of transcription, DNA-dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	and cancer. This protein is a potent inhibitor of ligand-induced transcription activity of PPAR delta and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of transcription, DNA-dependent; steroid hormone receptor			
PPAR delta and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies regulation of transcription from Pol II promoter; regulation of transcription, DNA-dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	PPÄR delta and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of transcription, DNA-dependent; steroid hormone receptor			
function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of transcription, DNA-dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of transcription, DNA-dependent; steroid hormone receptor function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated in colorectal canc			
repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-energy pathways; lipid metabolism; nucleus; regulation of transcription from Pol II promoter; regulation of transcription, DNA-dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in promoter; regulation of transcription, DNA-dependent; steroid hormone receptor repression and nuclear receptor signaling. The expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation.			
The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-energy pathways; lipid metabolism; nucleus; regulation of transcription from Pol II promoter; regulation of transcription, DNA-dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies regulation of transcription from Pol II promoter; regulation of transcription, DNA-dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.			
elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta- catenin signaling pathway. Knockout studies regulation of transcription from Pol II promoter; regulation of transcription, DNA- dependent; steroid hormone receptor elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta- catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation.	elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta- catenin signaling pathway. Knockout studies regulation of transcription from Pol II promoter; regulation of transcription, DNA- dependent; steroid hormone receptor elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta- catenin signaling pathway. Knockout studies in ince suggested the role of this protein in myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation.			
adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in promoter; regulation of transcription, DNA-dependent; steroid hormone receptor adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation.	adenomatosis polyposis coli (ÁPC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies regulation of transcription from Pol II in mice suggested the role of this protein in myelination of the corpus callosum, lipid dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.			
energy pathways; lipid metabolism; nucleus; regulation of transcription from Pol II mice suggested the role of this protein in promoter; regulation of transcription, DNAdependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	energy pathways; lipid metabolism; nucleus; regulation of transcription from Pol II in mice suggested the role of this protein in myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation.			
energy pathways; lipid metabolism; nucleus; regulation of transcription from Pol II promoter; regulation of transcription, DNA-dependent; steroid hormone receptor catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation.	energy pathways; lipid metabolism; nucleus; regulation of transcription from Pol II promoter; regulation of transcription, DNA-dependent; steroid hormone receptor catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation.			
regulation of transcription from Pol II promoter; regulation of transcription, DNA- dependent; steroid hormone receptor in mice suggested the role of this protein in myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation.	regulation of transcription from Pol II in mice suggested the role of this protein in promoter; regulation of transcription, DNA-dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.			
promoter; regulation of transcription, DNA- dependent; steroid hormone receptor myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation.	promoter; regulation of transcription, DNA- myelination of the corpus callosum, lipid dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.			
peroxisome proliferative activated receptor, activity; transcription; transcription factor Alternatively spliced transcript variants				
		1.07500 **	DDADD	E40*
D 3457 800409 detta activity encoung distinct isotomis have been reported 6526.159 12050.13 5223.974 -0.619903	L07592_at PFARD 5467 500409 deta activity encoding distinct isolomis have been reported 626.159 12050.13 5223.974 -0.819903	L07592_at	PPARD	546
[SUMMARY:] Three different forms of human	[SUMMARY:] Three different forms of human			
pancreatic procarboxypeptidase A have	pancreatic procarboxypeptidase A have			
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are	pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are			
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are carboxypeptidase A activity; monomeric proteins with different	pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are carboxypeptidase A activity; monomeric proteins with different			
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different carboxypeptidase activity; hydrolase activity; biochemical properties. Carboxypeptidase	pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different carboxypeptidase activity; hydrolase activity; biochemical properties. Carboxypeptidase	X67318_at	CPA1	<u>135</u>
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different carboxypeptidase activity; hydrolase activity; biochemical properties. Carboxypeptidase metallopeptidase activity; proteolysis and A1 is a monomeric pancreatic exopeptidase.	pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different carboxypeptidase activity; hydrolase activity; hydrolase activity; proteolysis and ha1 is a monomeric pancreatic exopeptidase.			
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different carboxypeptidase activity; metallopeptidase activity; proteolysis and peptidolysis 1357 114850 carboxypeptidase A1 (pancreatic) pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different biochemical properties. Carboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. 26935.84 32181.9 5246.061 -0.256722	pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different biochemical properties. Carboxypeptidase activity; hydrolase activity; hydrolase activity; proteolysis and metallopeptidase activity; proteolysis and peptidolysis X67318_at CPA1 1357 114850 carboxypeptidase A1 (pancreatic) peptidolysis It is involved in zymogen inhibition. 26935.84 32181.9 5246.061 -0.256722			
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different carboxypeptidase activity; metallopeptidase activity; proteolysis and peptidolysis 1357 114850 carboxypeptidase A1 (pancreatic) pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different biochemical properties. Carboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. 26935.84 32181.9 5246.061 -0.256722	X67318_at CPA1 1357 114850 carboxypeptidase A1 (pancreatic) Carboxypeptidase A activity; carboxypeptidase activity; proteolysis and peptidolysis CPA1 CPA1 Carboxypeptidase A1 (pancreatic)			
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different biochemical properties. Carboxypeptidase A is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. 1357 114850 114850	x67318_at CPA1 1357 114850 carboxypeptidase A1 (pancreatic) Carboxypeptidase A activity; carboxypeptidase activity; hydrolase activity; metallopeptidase activity; proteolysis and peptidolysis CPA1			
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different carboxypeptidase activity; hydrolase activity; metallopeptidase activity; proteolysis and peptidolysis 1357 114850 carboxypeptidase A1 (pancreatic) pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different biochemical properties. Carboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. 26935.84 32181.9 5246.061 -0.256722 [SUMMARY:] The protein encoded by the	x67318_at CPA1 1357 114850 carboxypeptidase A1 (pancreatic) CPA1 CPA1 CPA1 Carboxypeptidase A1 (pancreatic)			
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different biochemical properties. Carboxypeptidase A1 (pancreatic) 1357 114850 carboxypeptidase A1 (pancreatic) pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different biochemical properties. Carboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. [SUMMARY:] The protein encoded by the gene is a cysteine proteinase and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant	x67318_at CPA1 1357 114850 carboxypeptidase A1 (pancreatic) Carboxypeptidase A activity; carboxypeptidase activity; hydrolase activity; proteolysis and peptidolysis CPA1 1357 114850 carboxypeptidase A1 (pancreatic) CPA1 1357 114850 carboxypeptidase Activity; hydrolase activity; biochemical properties. Carboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. CSUMMARY: The protein encoded by the gene is a cysteine proteinase and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant			
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different biochemical properties. Carboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. 1357 114850 114850	x67318_at CPA1 1357 114850 carboxypeptidase A1 (pancreatic) CPA1 1357 114850 carboxypeptidase A1 (pancreati			
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different monomeric pancreatic exopeptidase. 1357 114850 carboxypeptidase A1 (pancreatic) 1357 114850 c	x67318_at CPA1 1357 114850 carboxypeptidase A1 (pancreatic) CPA1 CP			
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different metallopeptidase activity; metallopeptidase activity; proteolysis and peptidolysis 1357 114850 carboxypeptidase A1 (pancreatic) 1357 114850 carboxypeptidase A1 (pancreatic) pancreatic procarboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. 1357 114850 carboxypeptidase A1 (pancreatic) pancreatic procarboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. 1357 114850 carboxypeptidase A1 (pancreatic) pancreatic procarboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. 1357 114850 carboxypeptidase A1 (pancreatic) pancreatic procarboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. 1357 114850 carboxypeptidase A1 (pancreatic) pancreatic procarboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. 1358 114850 carboxypeptidase A1 (pancreatic) pancreatic procarboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. 1359 114850 carboxypeptidase A1 (pancreatic) pancreatic exopeptidase. It is involved in zymogen inhibition. 1350 114850 carboxypeptidase A1 (pancreatic) pancreatic exopeptidase. It is involved in zymogen inhibition. 1351 114850 carboxypeptidase A1 (pancreatic) pancreatic exopeptidase. It is involved in zymogen inhibition. 1351 114850 carboxypeptidase A1 (pancreatic) pancreatic exopeptidase. It is involved in zymogen inhibition. 1352 114850 carboxypeptidase A1 (pancreatic) pancreatic exopeptidase. It is involved in zymogen inhibition. 1353 114850 carboxypeptidase A1 (pancreatic) pancreatic exopeptidase. It is involved in zymogen inhibition. 1354 114850 carboxypeptidase A1 (pancreatic) pancreatic exopeptidase. It is involved in zymogen inhibition. 1355 114850 carboxypeptidase A1 (pancrea	x67318_at CPA1 1357 114850 carboxypeptidase A1 (pancreatic) CPA1 CPA1 CPA1 CPA1 Carboxypeptidase A1 (pancreatic)	1		
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different biochemical properties. Carboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. [SUMMARY:] The protein encoded by the gene is a cysteine proteinase and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade synthetic peptides typically used as cysteine-type endopeptidase activity; proteolysis and proteolytic activity was abolished by an	x67318_at CPA1 1357 114850 carboxypeptidase A1 (pancreatic) x67318_at CPA1 1357 114850 carbox	X77383 at	CTSO	1519
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different blochemical properties. Carboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. [SUMMARY:] The protein encoded by the gene is a cysteine proteinase and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade synthetic peptides typically used as cysteine-type endopeptidase activity; hydrolase activity; proteolysis and peptidolysis inhibitor of cyteine proteinase. 1357 114850 carboxypeptidase A1 (pancreatic) peptidolysis [SUMMARY:] The protein encoded by the gene is a cysteine protein and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade synthetic peptides typically used as substrates for cysteine proteinases and its proteolytic activity was abolished by an inhibitor of cyteine proteinase. 1519 600550 cathepsin O peptidolysis inhibitor of cyteine proteinase. 1620 1510 1510 1510 1510 1510 1510 1510 15	carboxypeptidase A activity; carboxypeptidase A activity; metallopeptidase activity; proteolysis and peptidolysis X67318_at CPA1 1357 114850 carboxypeptidase A1 (pancreatic) Deptidolysis 114850 carboxypeptidase A1 (pancreatic) Deptidolysis 114850 carboxypeptidase A1 (pancreatic) Deptidolysis 26935.84 32181.9 5246.061 -0.256722 [SUMMARY:] The protein encoded by the gene is a cysteine proteinase and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade synthetic peptides typically used as substrates for cysteine proteinases and its proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade synthetic peptides typically used as substrates for cysteine proteinases and its proteolytic activity was abolished by an inhibitor of cyteine proteinase. 10912.58 16223.47 5310.886 -0.57209 epidermal differentiation; morphogenesis;	X77383_at	CTSO	<u>1519</u>
carboxypeptidase A activity; carboxypeptidase activity; proteolysis and peptidase activity activity was abolished by an inhibitor of cyteine proteinase. 1357 114850 carboxypeptidase A1 (pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different blochemical properties. Carboxypeptidase at its involved in zemous and protein exposed by the gene is a cysteine protein encoded	arboxypeptidase A activity: carboxypeptidase activity: metallopeptidase activity: metallopeptidase activity: peptidolysis CPA1 1357 114850 carboxypeptidase A1 (pancreatic) Deptidolysis CPA1 1357 114850 carboxypeptidase A1 (pancreatic) Deptidolysis CPA1 1357 114850 carboxypeptidase A1 (pancreatic) Deptidolysis Deptid	X77383_at	CTSO	<u>1519</u>
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different blochemical properties. Carboxypeptidase A1 is a monomeric proteins with different blochemical properties. Carboxypeptidase A1 is a monomeric protein with different blochemical properties. Carboxypeptidase A1 is a monomeric protein with different blochemical properties. Carboxypeptidase A1 is a monomeric protein with different blochemical properties. Carboxypeptidase A1 is a monomeric protein according to the papain superfamily. This proteolytic enzyme is involved in zymogen inhibition. [SUMMARY:] The protein encoded by the gene is a cysteine proteinase and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade synthetic peptides typically used as substrates for cysteine proteinases and its proteolytic activity was abolished by an epidemal differentiation; morphogenesis; nucleus; regulation of transcription, DNA-dependent; transcription coactivator activity; transcription coactivator activity;	x67318_at CPA1 1357 114850 carboxypeptidase A1 (pancreatic) x77383_at CTSO 1519 600550 cathepsin O x77383_at CTSO 15	X77383_at	CTSO	<u>1519</u>
aminy jaments defined the factor of the fact		X67318_at		
peroxisome proliferative activated receptor, activity; transcription; transcription factor Alternatively spliced transcript variants				
peroxisome proliferative activated receptor, activity; transcription; transcription factor Alternatively spliced transcript variants				
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.			
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.			
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.			
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.			
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.			
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.			
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.			
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.		1	
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.		1	
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.		1	
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1		
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1		
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1	1	1
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1	1	1
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1	1	1
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1		
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1		1
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1		1
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1		1
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1	1	1
promoter; regulation of transcription, DNA- myelination of the corpus callosum, lipid dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	promoter; regulation of transcription, DNA- dependent; steroid hormone receptor myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation.			1
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1	1	1
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1	1	1
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.			1
				1
			1	
			1	
			1	
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.		1	
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1		
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1		1
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1		1
promoter; regulation of transcription, DNA- myelination of the corpus callosum, lipid dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	promoter; regulation of transcription, DNA- dependent; steroid hormone receptor myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation.	1		1
promoter; regulation of transcription, DNA- myelination of the corpus callosum, lipid dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	promoter; regulation of transcription, DNA- dependent; steroid hormone receptor myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation.	1		1
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1		1
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1		1
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1	1	1
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.			1
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.			1
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.			1
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1	1	1
dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	dependent; steroid hormone receptor metabolism, and epidermal cell proliferation.	1	1	1
				1
		1	1	1
		1	1	1
		1	1	1
peroxisome proliferative activated receptor. activity; transcription; transcription factor Alternatively spliced transcript variants		1	1	1
ון ווייסוויסיוויס איז		1		
		1		1
		L07592_at	<u>PPARD</u>	<u>546</u>
D 5467 600409 delta activity encoding distinct isoforms have been reported 6826.159 12050.13 5223.974 -0.819903	L07592_at PPARD 5467 600409 delta activity encoding distinct isoforms have been reported 6826.159 12050.13 5223.974 -0.819903	L07592_at	<u>PPARD</u>	<u>546</u>
		L07592 at	PPARD	546
<u>D</u> 546/ 500409 detta activity encoding distinct isoforms have been reported 6826.159 12050.13 5223.974 -0.819903	L0/592_at PPARD 5467 500409 delta activity encoding distinct isoforms have been reported 6826.159 12050.13 5223.974 -0.819903	L07592_at	<u>PPARD</u>	<u>546</u>
ISHMMADY: Three different forms of human	ISLIMMARY: Throa different forms of human			
ISLIMMARY: Three different forms of human	[SLIMMARY:] Three different forms of human		1	
[SUMMARY:] Three different forms of human	[SUMMARY:] Three different forms of human			
ISLIMMADVI Three different forms of human	ICLIMMADVI Throadifferent forms of human	1		
ISHMMADV: Three different forms of human	ISLIMMADV: Three different forms of human		1	
		1		
			1	
				5.0
<u>D 3407 000403</u> 0eria activity encount distinct isotomis have been reported 6826, 159 12050, 13 5223.974 -0.819903	1205032_at 1	LU/392_at	FPARU	<u>546</u>
<u>D 3407 guovedaleria</u> activity encount distinct isotomis nave been reported 6826,159 12050,13 5223.974 -0.819903	1205032_at 1	LU/392_at	FPARU	<u>546</u>
<u>D 3407 guv4v3r</u> deria activity encoding distinct isoforms have been reported 6826.159 12050.13 5223.974 -0.819903	LU/392_at	LU/592_at	PPAKU	<u>546</u>
<u>D 5467 900409</u> detta activity encoding distinct isoforms have been reported 6826.159 12050.13 5223.974 -0.819903	LU/592_at PPARD 5467 600409 detta activity encoding distinct isoforms have been reported 6826.159 12050.13 5223.974 -0.819903	L0/592_at	<u>PPARD</u>	<u>546</u>
<u>D</u> 5467 600409 delta activity encoding distinct isoforms have been reported 6826.159 12050.13 5223.974 -0.819903	L07592_at PPARD 5467 600409 delta activity encoding distinct isoforms have been reported 6826.159 12050.13 5223.974 -0.819903	L07592_at	<u>PPARD</u>	<u>546</u>
2 STUT VOLTEZ POLICE ACTIVITY STUDING SUBJECT SOLUTION IN TAVE DEED 1-EPOLICE 0020.139 12030.13 3223.974 0.019903		_0/332_dl	LIAND	340
ISLIMMARY: Three different forms of human	ISLIMMARY: Three different forms of human	1		
		1	1	1
		1	1	1
				1
pancreatic procarboxypeptidase A have	pancreatic procarboxypeptidase A have		1	
pancreatic procarboxypeptidase A have	pancreatic procarboxypeptidase A have		1	
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are	pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are		1	
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are carboxypeptidase A activity; monomeric proteins with different	pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are carboxypeptidase A activity; monomeric proteins with different		1	
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different carboxypeptidase activity; hydrolase activity; biochemical properties. Carboxypeptidase	pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are carboxypeptidase A activity; monomeric proteins with different carboxypeptidase activity; hydrolase activity; biochemical properties. Carboxypeptidase	V67010 at	CBA1	105
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different carboxypeptidase activity; hydrolase activity; biochemical properties. Carboxypeptidase metallopeptidase activity; proteolysis and A1 is a monomeric pancreatic exopeptidase.	pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different carboxypeptidase activity; hydrolase activity; hydrolase activity; proteolysis and A1 is a monomeric pancreatic exopeptidase.			
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different carboxypeptidase activity; hydrolase activity; hydrolase activity; holds activity; proteolysis and peptidolysis 1357 114850 carboxypeptidase A1 (pancreatic) pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different biochemical properties. Carboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. 26935.84 32181.9 5246.061 -0.256722 [SUMMARY:] The protein encoded by the gene is a cysteine proteinase and a member	pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different biochemical properties. Carboxypeptidase activity; hydrolase activity; proteolysis and peptidolysis CPA1			
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different biochemical properties. Carboxypeptidase A monomeric proteins with different biochemical properties. Carboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. 1357 114850 carboxypeptidase A1 (pancreatic) peptidolysis carboxypeptidase activity; proteolysis and peptidolysis peptidolysis (Is involved in zymogen inhibition. 26935.84 32181.9 5246.061 -0.256722 (Is involved in cellular protein and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein	x67318_at CPA1 1357 114850 carboxypeptidase A1 (pancreatic) CPA1 CP	1		
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different biochemical properties. Carboxypeptidase A1 (pancreatic) 1357 114850 carboxypeptidase A1 (pancreatic) peptidolysis pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different biochemical properties. Carboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. [SUMMARY:] The protein encoded by the gene is a cysteine proteinase and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade	pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different biochemical properties. Carboxypeptidase A1 is a monomeric pancreatic exopeptidase. A1 is a monomeric pancreatic exopeptidase. A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. [SUMMARY:] The protein encoded by the gene is a cysteine proteinase and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade		1	
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different biochemical properties. Carboxypeptidase A1 (pancreatic) 1357 114850 carboxypeptidase A1 (pancreatic) peptidolysis The protein encoded by the gene is a cysteine proteinase and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade synthetic peptides typically used as	x67318_at CPA1 1357 114850 carboxypeptidase A1 (pancreatic) CPA1 CP			
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different monomeric proteins with different monomeric pancreatic exopeptidase. A1 is a monomeric pancreatic exopeptidase. A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. 26935.84 32181.9 5246.061 -0.256722 [SUMMARY:] The protein encoded by the gene is a cysteine proteinase and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade synthetic peptides typically used as cysteine-type endopeptidase activity; substrates for cysteine proteinases and its	x67318_at CPA1 1357 114850 carboxypeptidase A1 (pancreatic) CPA1 CP			
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different biochemical properties. Carboxypeptidase activity; biochemical properties. Carboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. [SUMMARY:] The protein encoded by the gene is a cysteine proteinase and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade synthetic peptides typically used as cysteine-type endopeptidase activity; hydrolase activity; proteolysis and peptidolysis poteolysis and peptidolysis inhibitor of cyteine proteinase. 1357 114850 carboxypeptidase A1 (pancreatic) procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric pancreatic with different been isolated. The A1 and A2 forms are monomeric pancreatic with different been isolated. The A1 and A2 forms are monomeric pancreatic wopeptidase. A1 is a monomeric pancreatic exopeptidase. A1 is a monomeric pancreatic exopeptidase. A1 is a monomeric pancreatic exopeptidase. B1 is involved in zymogen inhibition. 26935.84 32181.9 5246.061 -0.256722 [SUMMARY:] The protein encoded by the gene is a cysteine proteinase and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade synthetic peptides typically used as substrates for cysteine proteinase and its proteolytic activity was abolished by an inhibitor of cyteine proteinase. 1519 600550 cathepsin O 1519 600550 cathepsin O 1510 60055	carboxypeptidase A activity; carboxypeptidase A activity; proteolysis and peptidolysis X67318_at CPA1 1357 114850 carboxypeptidase A1 (pancreatic) X67318	X77383_at	CTSO	<u>151</u>
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different biochemical properties. Carboxypeptidase A1 is a monomeric pancreatic exopeptidase. A1 is a monomeric pancreatic exopeptidase. A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. [SUMMARY:] The protein encoded by the gene is a cysteine proteinase and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade synthetic peptides typically used as cysteine-type endopeptidase activity; hydrolase activity; hydrolase activity; proteolysis and peptidolysis inhibitor of cyteine proteinase. 1357 114850 carboxypeptidase A1 (pancreatic) peptidase A1 is a monomeric pancreatic exopeptidase.	carboxypeptidase A activity; carboxypeptidase A activity; metallopeptidase activity; proteolysis and peptidolysis X67318_at CPA1 1357 114850 carboxypeptidase A1 (pancreatic) EVA1 1357 114850 carboxypeptidase A1 (pancreatic) Deptidolysis CPA1 1357 114850 carboxypeptidase A1 (pancreatic) Deptidolysis CPA1 1357 114850 carboxypeptidase A1 (pancreatic) Deptidolysis SUMMARY: The protein encoded by the gene is a cysteine proteinase and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade synthetic peptides typically used as substrates for cysteine proteinases and its proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade synthetic peptides typically used as substrates for cysteine proteinases and its proteolytic activity was abolished by an inhibitor of cyteine proteinase. ETSO 1519 600550 cathepsin O peptidolysis inhibitor of cyteine proteinase. 10912.58 16223.47 5310.886 -0.57209 epidermal differentiation; morphogenesis;	X77383_at	CTSO	<u>1519</u>
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different blochemical properties. Carboxypeptidase A1 (pancreatic) 1357 114850 carboxypeptidase A1 (pancreatic) peptidolysis [SUMMARY:] The protein encoded by the gene is a cysteine proteinase and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade synthetic peptides typically used as cysteine proteinases and is proteolytic activity as substrates for cysteine proteinases and is proteolytic activity was abolished by an inhibitor of cyteine proteinase. 1519 600550 cathepsin O pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different blochemical properties. Carboxypeptidase. A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition. 26935.84 32181.9 5246.061 -0.256722 [SUMMARY:] The protein encoded by the gene is a cysteine proteinase and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade synthetic peptides typically used as substrates for cysteine proteinases and its proteolytic activity was abolished by an inhibitor of cyteine proteinase. 1519 600550 cathepsin O peptidolysis ericleolytic activity was abolished by an inhibitor of cyteine proteinase. 10912.58 16223.47 5310.886 -0.57209	Activity; carboxypeptidase A activity; carboxypeptidase A activity; carboxypeptidase activity; proteolysis and peptidolysis X67318_at CPA1 1357 114850 carboxypeptidase A1 (pancreatic) X77383_at CTSO 1519 600550 cathepsin O peptidolysis X77383_at CTSO 1519 600550 cathepsin O peptidolysis pand peptidolysis X77383_at CTSO 1519 600550 cathepsin O peptidolysis pand peptidolysis pand peptidolysis potentiation; morphogenesis; nucleus; regulation of transcription, DNA- X77383_at CTSO 1519 600550 cathepsin O pand pand pand pand pand pand pand pand	X77383_at	CTSO	<u>151</u> 9
carboxypeptidase A activity; carboxypeptidase activity; metallopeptidase activity; proteolysis and peptidolysis 1357 114850 carboxypeptidase A1 (pancreatic) 1357 114850 carboxypeptidase A1 (pancreatic) 1358 2 114850 carboxypeptidase A1 (pancreatic) 1359 2 114850 carboxypeptidase A1 (pancreatic) 1350 2 114850 carboxypeptidase A1 (pancreatic) 1350 3 114850 carboxypeptidase A1 (pancreatic) 1350 3 114850 carboxypeptidase A1 (pancreatic) 1351 3 114850 carboxypeptidase A1 (pancreatic) 1351 3 114850 carboxypeptidase A1 (pancreatic) 1351 3 114850 carboxypeptidase A1 (pancreatic) 1352 3 114850 carboxypeptidase A1 (pancreatic) 1353 3 114850 carboxypeptidase A1 (pancreatic) 1353 3 114850 carboxypeptidase A1 (pancreatic) 1354 5 114850 carboxypeptidase A1 (pancreatic) 1355 2 114850 carboxypeptidase A1 (pancreatic) 1355 2 114850 carboxypeptidase A1 (pancreatic) 1355 2 114850 carboxypeptidase A1 (pancreatic) 1356 2 114850 carboxypeptidase A1 (pancreatic) 1357 1 114850 carboxypeptidase A1 (pancreatic) 1357 1 114850 carboxypeptidase A1 (pancreatic) 1358 3 114850 carboxypeptidase A1 (pancreatic) 1358 3 114850 carboxypeptidase A1 (pancreatic) 1358 3 114850 carboxypeptidase A1 (pancreatic) 1359 1 14850 carboxypeptidase A1 (pancreatic) 1359 1 14850 carboxypeptidase A1 (pancreatic) 1350 1 14850 carboxypeptidase A1 (x67318_at CPA1 1357, 114850 carboxypeptidase A1 (pancreatic) x77383_at CTSO 1519_600550 cathepsin O x77383_a	X77383_at	CTSO	<u>1519</u>
pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different blochemical properties. Carboxypeptidase A1 (pancreatic) 1357 114850 carboxypeptidase A1 (pancreatic) peptidolysis [SUMMARY:] The protein encoded by the gene is a cysteine proteinase and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade synthetic peptides typically used as cubstrates for cysteine proteinases and its proteolytic activity was abolished by an inhibitor of cyteine proteinase. 1519 600550 cathepsin O pancreatic procarboxypeptidase A have been isolated. The A1 and A2 forms are monomeric proteins with different blochemical properties. Carboxypeptidase. A1 is a monomeric pancreatic exopeptidase. It is involved in zymole in protein encoded by the gene is a cysteine proteinase and a member of the papain superfamily. This proteolytic enzyme is involved in cellular protein degradation and turnover. The recombinant form of this enzyme was shown to degrade synthetic peptides typically used as substrates for cysteine proteinases and its proteolytic activity was abolished by an inhibitor of cyteine proteinase. 1519 600550 cathepsin O peptidolysis epidermal differentilation; morphogenesis; nucleus; regulation of transcription, DNA-	x67318 at CPA1 1357 114850 carboxypeptidase A1 (pancreatic) X77383 at CTSO 1519 600550 cathepsin O X77383_at	CTSO	<u>1519</u>	

D10667_s_a	<u>MYH11</u>	<u>4629</u>	160745	myosin, heavy polypeptide 11, smooth muscle	ATP binding; actin binding; calmodulin binding; cell growth and/or maintenance; motor activity; muscle development; muscle myosin; myosin; striated muscle contraction; striated muscle thick filament ATP binding; MAP kinase activity;	[SUMMARY:] The protein encoded by this gene is a smooth muscle myosin belonging to the myosin heavy chain family. The gene product is a subunit of a hexameric protein that consists of two heavy chain subunits and two pairs of non-identical light chain subunits. It functions as a major contractile protein, converting chemical energy into mechanical energy through the hydrolysis of ATP. The gene encoding a human ortholog of rat NUDE1 is transcribed from the reverse strand of this gene, and its 3' end overlaps with that of the latter. The pericentric inversion of chromosome 16 [inv(16)(p13q22)] produces a chimeric transcript that encodes a protein consisting of the first 165 residues from the N terminus of core-binding factor beta in a fusion with the C-terminal portion of the smooth muscle myosin heavy chain. This chromosomal rearrangement is associated with acute myeloid leukemia of the M4Eo subtype. Alternative splicing generates isoforms that are differentially expressed, with ratios changing during muscle cell maturation. Additional splice variants have been describe	8320.02	13725.37	5405.347	-0.722186
X60188_at	<u>MAPK3</u>	<u>5595</u>	601795	mitogen-activated protein kinase 3	cellular_component unknown; protein amino acid phosphorylation; protein serine/threonine kinase activity; regulation of cell cycle; transferase activity		12190.32	17606.03	5415.713	-0.530334
X70070_at	NTSR1	4923	162651	neurotensin receptor 1 (high affinity)	G-protein coupled receptor protein signaling pathway; Golgi apparatus; endoplasmic reticulum; integral to plasma membrane; neurotensin receptor activity, G-protein coupled; rhodopsin-like receptor activity; synaptic transmission	[SUMMARY:] Neurotensin receptor 1 belongs to the large superfamily of G-protein coupled receptors. NTSR1 mediates the multiple functions of neurotensin, such as hypotension, hyperglycemia, hypothermia, antinociception, and regulation of intestinal motility and secretion.	34867.3	29445.67	5421.635	0.243819
M58460_at	PMSCL1	5393	606180	polymyositis/scleroderma autoantigen 1, 75kDa	3'-5'-exoribonuclease activity; RNA binding; exonuclease activity; hydrolase activity; immune response; nuclear exosome (RNase complex); nucleolus; rRNA processing		6967.359	1487.633	5479.726	2.227593
X69398_at AFFX-BioB-	<u>CD47</u>	<u>961</u>	601028	CD47 antigen (Rh-related antigen, integrinassociated signal transducer)	cell-matrix adhesion; integral to plasma membrane; integrin-mediated signaling pathway; protein binding	[SUMMARY:] This gene encodes a membrane protein, which is involved in the increase in intracellular calcium concentration that occurs upon cell adhesion to extracellular matrix. The encoded protein is also a receptor for the C-terminal cell binding domain of thrombospondin, and it may paly a role in membrane transport and signal transduction. This gene has broad tissue distribution, and is reduced in expression on Rh erythrocytes. Two alternatively spliced transcript variants encoding distinct isoforms have been found for this gene.	6608.8 12708.06	1103.067 7108.7		2.582868 0.838086

HG1067-	1		I	I		1	7550.72	13152.27	5601.546	-0.800625
M21388 at							5473.62	11111.63		
U60116 at	FHL3	2275	602790	four and a half LIM domains 3	muscle development		50932.45	56642.3	5709.855	-0.153295
U12471 cds					·		8994.061	14820.03	5825.974	-0.720504
S74720_at	<u>NR0B1</u>	<u>190</u>	300473	nuclear receptor subfamily 0, group B, member 1	nucleus; regulation of transcription, DNA-dependent; sex determination; steroid biosynthesis; steroid hormone receptor activity; transcription factor activity	[SUMMARY:] Adrenal hypoplasia protein is an orphan nuclear hormone receptor and contains a DNA-binding domain. The AHC protein acts as a dominant-negative regulator of transcription which is mediated by the retinoic acid receptor. AHC also functions as an anti-testis gene by acting antagonistically to Sry. Mutations in AHC result in both X-linked congenital adrenal hypoplasia and hypogonadotropic hypogonadism.	12965.8	18837.57	5871.767	-0.538901
Z27113_at	POLR2F	<u>5435</u>	604414	polymerase (RNA) II (DNA directed) polypeptide F	DNA binding; DNA-directed RNA polymerase II, core complex; DNA-directed RNA polymerase activity; nucleus; transcription from Pol II promoter; transferase activity	[SUMMARY:] This gene encodes the sixth largest subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes, that is also shared by the other two DNA-directed RNA polymerases. In yeast, this polymerase subunit, in combination with at least two other subunits, forms a structure that stabilizes the transcribing polymerase on the DNA template.	10616.62	16551.2	5934.581	-0.640611
M17886 at		0178	100500	ribosomal protein, large, P1	RNA binding; cytosolic large ribosomal subunit (sensu Eukarya); intracellular; protein biosynthesis; ribosome; structural constituent of ribosome; translational elongation	[SUMMARY:] Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal phosphoprotein that is a component of the 60S subunit. The protein, which is a functional equivalent of the E. coli L7/L12 ribosomal protein, belongs to the L12P family of ribosomal proteins. It plays an important role in the elongation step of protein synthesis. Unlike most ribosomal proteins, which are basic, the encoded protein is acidic. Its C-terminal end is nearly identical to the C-terminal ends of the ribosomal phosphoproteins P0 and P2. The P1 protein can interact with P0 and P2 to form a pentameric complex consisting of P1 and P2 dimers, and a P0 monomer. The protein is located in the cytoplasm. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome.	77000 54	83901.37	507 000	0.105005

D90224_	at <u>TNFSF4</u>	<u>7292</u>	603594	tumor necrosis factor (ligand) superfamily, member 4 (tax-transcriptionally activated glycoprotein 1, 34kDa)	cell-cell signaling; immune response; integral to plasma membrane; positive regulation of	[SUMMARY:] The protein encoded by this gene is a cytokine that belongs to the tumor necrosis factor (TNF) ligand family. This cytokine is a ligand for receptor TNFRSF4/OX4. It is found to be involved in T cell antigen-presenting cell (APC) interactions. In surface Ig- and CD40-stimulated B cells, this cytokine along with CD70 has been shown to provide CD28-independent costimulatory signals to T cells. This protein and its receptor are reported to directly mediate adhesion of activated T cells to vascular endothelial cells.	19792.96	25773.13	5980.174	-0.380881
M35851 ₁	s_a AR	367	313700	androgen receptor (dihydrotestosterone receptor; testicular feminization; spinal and bulbar muscular atrophy; Kennedy disease)	androgen binding; androgen receptor activity; cell proliferation; cell-cell signaling; nucleus; prostate gland development; protein dimerization activity; receptor activity;	[SUMMARY:] The androgen receptor gene is more than 90 kb long and codes for a protein that has 3 major functional domains: the N-terminal domain, DNA-binding domain, and androgen-binding domain. The protein functions as a steroid-hormone activated transcription factor. Upon binding the hormone ligand, the receptor dissociates from accessory proteins, translocates into the nucleus, dimerizes, and then stimulates transcription of androgen responsive genes. This gene contains 2 polymorphic trinucleotide repeat segments that encode polyglutamine and polyglycine tracts in the N-terminal transactivation domain of its protein. Expansion of the polyglutamine tract causes spinal bulbar muscular atrophy (Kennedy disease). Mutations in this gene are also associated with complete androgen insensitivity (CAIS).	161645.5	167782.9	6137.422	-0.053763
U96113_	at <u>WWP1</u>	<u>11059</u>	602307	WW domain-containing protein 1	T-cell differentiation; central nervous system development; ligase activity; lung development; negative regulation of transcription; protein binding; protein ubiquitination; signal transduction; ubiquitin ligase complex; ubiquitin-protein ligase	[SUMMARY:] WW domain-containing proteins are found in all eukaryotes and play an important role in the regulation of a wide variety of cellular functions such as protein degradation, transcription, and RNA splicing. This gene encodes a protein which contains 4 tandem WW domains and a HECT (homologous to the E6-associated protein carboxyl terminus) domain. The encoded protein belongs to a family of NEDD4-like proteins, which are E3 ubiquitin-ligase molecules and regulate key trafficking decisions, including targeting of proteins to proteosomes or lysosomes. Alternative splicing of this gene generates at least 6 transcript variants; however, the full length nature of these transcripts has not been defined.	175702.3	169506.9	6195.469	0.05179

AFFX- HSAC07/X0 0351_M_at	<u>ACTB</u>	<u>60</u>	102630	actin, beta	actin filament; cell motility; motor activity; structural constituent of cytoskeleton ATP binding; cell proliferation; cytoskeleton;	[SUMMARY:] Beta actin is one of six different actin isoforms which have been identified. ACTB is one of the two nonmuscle cytoskeletal actins. Actins are highly conserved proteins that are involved in cell motility, structure and integrity. Alpha actins are a major constituent of the contractile apparatus.	57205.7	63528.47	6322.77	-0.151244
X00588 at	FGFR	1956	131550	epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) poncogene homolog, avian)	electron transport; electron transporter activity; endosome; epidermal growth factor receptor activity; epidermal growth factor receptor signaling pathway; integral to plasma membrane; protein amino acid phosphorylation; receptor activity; transferase activity		60924 52	67247.87	6323 348	-0.142466
7.00000_u.			70.000	oriougus romany, arrany	ATP binding; binding; calcium ion binding; endoplasmic reticulum; heat shock protein activity; plasma membrane; protein folding;		0002 1102	0.21.10.	0020.010	0.1.12.100
X15187 at	TRA1	7184	191175	tumor rejection antigen (gp96) 1	response to stress		62818.3	56459.57	6358.734	0.153967
Z14000_at				ring finger protein 1	chromatin modification; nucleus; regulation of transcription, DNA-dependent; transcriptional repressor activity; zinc ion binding	[SUMMARY:] This gene belongs to the RING finger family, members of which encode proteins characterized by a RING domain, a zinc-binding motif related to the zinc finger domain. The gene product can bind DNA and can act as a transcriptional repressor. It is associated with the multimeric polycomb group protein complex. The gene product interacts with the polycomb group proteins BMI1, EDR1, and CBX4, and colocalizes with these proteins in large nuclear domains. It interacts with the CBX4 protein via its glycine-rich C-terminal domain. The gene maps to the HLA class II region, where it is contiguous with the RING finger genes FABGL and HKE4.	13418.22		6400.213	
J04810 s at				mutS homolog 3 (E. coli)			14251.02	7831.833		0.863643
U90902_at	TIAM1			T-cell lymphoma invasion and metastasis 1	Rho guanyl-nucleotide exchange factor activity; intracellular signaling cascade; protein binding; receptor signaling protein activity		29388.56			-0.286199
M86407_at	ACTN3	<u>89</u>	102574	actinin, alpha 3	actin binding; actin filament; calcium ion binding; structural constituent of muscle	[SUMMARY:] Alpha-actinin is an actin- binding protein with multiple roles in different cell types. ACTN3 expression is limited to skeletal muscle. It is localized to the Z-disc and analogous dense bodies, where it helps to anchor the myofibrillar actin filaments	14970.12	21485.57	6515.446	-0.521282

						[SUMMARY:] Rho GTPases play a fundamental role in numerous cellular processes that are initiated by extracellular stimuli that work through G protein coupled receptors. The encoded protein belongs to a family of cytoplasmic proteins that activate the Ras-like family of Rho proteins by exchanging bound GDP for GTP. It may form a complex with G proteins and stimulate Rho-				
					GTPase activator activity; JNK cascade; Rho	dependent signals. This protein is activated				
				Rac/Cdc42 guanine nucleotide exchange	guanyl-nucleotide exchange factor activity; Rho interactor activity; apoptosis;	by PI3-kinase. Mutations in this gene can cause X-chromosomal non-specific mental				
D25304_at	ARHGEF6	<u>9459</u>	300267	factor (GEF) 6	intracellular	retardation. [SUMMARY:] Corticotropin-releasing	25138.48	31739.03	6600.553	-0.336361
						hormone is a potent stimulator of synthesis and secretion of preopiomelanocortin-derived peptides. Although CRH concentrations in the human peripheral circulation are normally low, they increase throughout pregnancy and fall rapidly after parturition. Maternal plasma CRH probably originates from the placenta. Human plasma contains a CRH-binding protein which inactivates CRH and which may prevent				
X58022_at	CRHBP	<u>1393</u>	122559	corticotropin releasing hormone binding protein	learning and/or memory; pregnancy; protein binding; signal transduction; soluble fraction	inappropriate pituitary-adrenal stimulation in pregnancy.	20156.4	13530.9	6625.499	0.57498
X66894_s_a t	<u>FANCC</u>	<u>2176</u>	227645	Fanconi anemia, complementation group C	DNA repair; cytoplasm; nucleus; protein complex assembly	[SUMMARY:] The function of FANCC is unknown but defects in this gene have been associated with Fanconi anemia.	44157	50803.86	6646.863	-0.202296
					ATP binding; ATP-dependent helicase activity; RNA binding; RNA helicase activity;	[SUMMARY:] DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA secondary structure such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Based on their distribution patterns, some members of this family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division. This gene encodes a DEAD box protein. It may contribute to the cell				
D17532_at	DDX6	<u>1656</u>	600326	DEAD (Asp-Glu-Ala-Asp) box polypeptide 6	cell growth and/or maintenance; nucleus	proliferation and carcinogenesis.	13173.34	19900.87	6727.524	-0.59521

HG2538- HT2634_at	HNRPD	3184 60132	heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 24,37kDa)	DNA binding; RNA binding; RNA catabolism; RNA processing; chromosome, telomeric region; cytoplasm; mRNA binding; mRNA catabolism; nucleic acid binding; nucleus; regulation of transcription, DNA-dependent; ribonucleoprotein complex; telomerase-dependent telomere maintenance	[SUMMARY:] This gene belongs to the subfamily of ubiquitously expressed heterogeneous nuclear ribonucleoproteins (hnRNPs). The hnRNPs are RNA binding proteins and they complex with heterogeneous nuclear RNA (hnRNA). These proteins are associated with premRNAs in the nucleus and appear to influence pre-mRNA processing and other aspects of mRNA metabolism and transport. While all of the hnRNPs are present in the nucleus, some seem to shuttle between the nucleus and the cytoplasm. The hnRNP proteins have distinct nucleic acid binding properties. The protein encoded by this gene has two repeats of quasi-RRM domains that bind to RNAs. It localizes to both the nucleus and the cytoplasm. This protein is implicated in the regulation of mRNA stability. Multiple alternatively spliced transcript variants have been described for this gene but only three have been fully described.	6041.02	12785.5	6744.48	-1.081645
D50312_at	KCNJ8	3764 6009:	potassium inwardly-rectifying channel, 35 subfamily J, member 8	ATP-activated inward rectifier potassium channel activity; integral to membrane; ion transport; membrane fraction; potassium channel activity; potassium ion transport; voltage-gated ion channel activity; voltage-gated potassium channel complex	[SUMMARY:] Potassium channels are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. The encoded protein, which has a greater tendency to allow potassium to flow into a cell rather than out of a cell, is controlled by G-proteins.	14797.08	21563.1	6766.02	-0.543252

					NLS-bearing substrate-nucleus import; cytoplasm; intracellular protein transport; nuclear localization sequence binding; nuclear pore; nucleus; protein transporter activity; protein-nucleus import, docking;	[SUMMARY:] Nucleocytoplasmic transport, a signal- and energy-dependent process, takes place through nuclear pore complexes embedded in the nuclear envelope. The import of proteins containing a nuclear localization signal (NLS) requires the NLS import receptor, a heterodimer of importin alpha and beta subunits also known as karyopherins. Importin alpha binds the NLS-containing cargo in the cytoplasm and importin beta docks the complex at the cytoplasmic side of the nuclear pore complex. In the presence of nucleoside triphosphates and the small GTP binding protein Ran, the complex moves into the nuclear pore complex and the importin subunits dissociate. Importin alpha enters the nucleoplasm with its passenger protein and importin beta remains at the pore. Interactions between importin beta and the FG repeats of nucleoporins are essential in translocation through the pore complex. The				
L38951 at	KPNB1	3837	602738	karyopherin (importin) beta 1	protein-nucleus import, translocation; zinc ion binding	protein encoded by this gene is a member of the importin beta family.	38220.86	45026.94	6806.082	-0.236428
	UGT2B7	<u>7364</u>	600068	UDP glycosyltransferase 2 family, polypeptide B7	glucuronosyltransferase activity; integral to membrane; lipid metabolism; membrane fraction; microsome	. ,	21618.6	28489.23	6870.635	-0.398144
M32639_at	KIAA0992	23022	608092	palladin			66827.77	73751	6923.234	-0.142215
D55696_at	<u>LGMN</u>	<u>5641</u>	602620	legumain	hydrolase activity; legumain activity; lysosome; proteolysis and peptidolysis		31957.98	38883.27	6925.285	-0.282973
X16699 at	CYP4R1	1580		cytochrome P450, family 4, subfamily B, polypeptide 1	electron transport; endoplasmic reticulum; membrane; microsome; monooxygenase activity; oxygen binding; unspecific monooxygenase activity	[SUMMARY:] This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum. In rodents, the homologous protein has been shown to metabolize certain carcinogens; however, the specific function of the human protein has not been determined.	73063 56	80028.07	6964 508	-0 131354

X91196_s_a	ATM	479	607585	ataxia telangiectasia mutated (includes complementation groups A, C and D)	DNA binding; DNA repair; inositol/phosphatidylinositol kinase activity; meiotic recombination; negative regulation of cell cycle; nucleus; protein serine/threonine kinase activity; signal transduction; transferase activity	[SUMMARY:] The protein encoded by this gene belongs to the PI3/PI4-kinase family. This protein is an important cell cycle checkpoint kinase that phosphorylates; thus, it functions as a regulator of a wide variety of downstream proteins, including tumor suppressor proteins p53 and BRCA1, checkpoint kinase CHK2, checkpoint proteins RAD17 and RAD9, and DNA repair protein NBS1. This protein and the closely related kinase ATR are thought to be master controllers of cell cycle checkpoint signaling pathways that are required for cell response to DNA damage and for genome stability. Mutations in this gene are associated with ataxia telangiectasia, an autosomal recessive disorder. At least three alternatively spliced transcript variants, which encode distinct isoforms, have been identified.	6257.6	13250.87	6003 268	-1.082406
J05252 s at				proprotein convertase subtilisin/kexin type 2	Golgi apparatus; cell-cell signaling; extracellular space; hydrolase activity; proprotein convertase 2 activity; proteolysis	[SUMMARY:] The protein encoded by this gene belongs to the subtilisin-like proprotein convertase family. The members of this family are proprotein convertases that process latent precursor proteins into their biologically active products. This encoded protein is a proinsulin-processing enzyme that plays a key role in regulating insulin biosynthesis. It is also known to cleave proopiomelanocortin, proenkephalin, prodynorphin and proluteinizing-hormone-releasing hormone. The use of alternate polyadenylation sites has been found for this gene.		32416.23		

						[SUMMARY:] This gene encodes a member of the polycystin protein family. Expression of this gene has been linked to the Beta-				
						catenin/TCF pathway. The encoded glycoprotein contains a large N-terminal extracellular region, multiple transmembrane domains, and a cytoplasmic C-tail. The				
						encoded protein may undergo cleavage at a G protein coupled receptor proteolytic site in a process that requires the receptor for egg				
						jelly domain. This protein may function as an integral membrane protein involved in cell-				
						cell/matrix interactions and may modulate intracellular calcium homoeostasis and other signal-transduction pathways. The encoded				
						protein plays a role in renal tubular development. Interactions of this protein with				
						polycystin 2 produce cation-permeable currents. Mutations in this gene have been associated with autosomal dominant				
						polycystic kidney disease. An alternative				
					calcium-independent cell-matrix adhesion;	splice variant has been described but its				
					heterophilic cell adhesion; homophilic cell	biological nature has not been determined.				
				polycystic kidney disease 1 (autosomal	adhesion; integral to plasma membrane; morphogenesis; neuropeptide signaling	Six pseudogenes have been described and are closely linked in a known duplicated				
L33243 at	PKD1	5310	601313	dominant)	pathway; sugar binding	region on chromosome 16p.	27591.92	35013.57	7/21 6/5	-0.343668
2002 10_41	11121	0010	001010	- Gormany	pairmay, sagar smallig	[SUMMARY:] Ribosomes, the organelles that	L7001.0L	00010.07	7421.040	0.040000
						catalyze protein synthesis, consist of a small				
						40S subunit and a large 60S subunit.				
						Together these subunits are composed of 4				
						RNA species and approximately 80				
						structurally distinct proteins. This gene				
						encodes a ribosomal protein that is a				
						component of the 40S subunit. The protein				
						belongs to the S17E family of ribosomal				
						proteins. It is located in the cytoplasm. As is				
	1					typical for genes encoding ribosomal				
	1					proteins, there are multiple processed pseudogenes of this gene dispersed through				
M18000 at	RPS17	6218	180472	ribosomal protein S17		the genome.	139589.9	132047 6	7542 313	0.080137
accoat		<u> </u>	100172	proton o r	GTPase activator activity; membrane; signal	g	. 00000.0		. 0	2.000.07
M64788_at	RAP1GA1	<u>5909</u>	600278	RAP1, GTPase activating protein 1	transduction		74769.84	67011.5	7758.344	0.158048
		_			ATP binding; heat shock protein activity;					
L26336_at	HSPA2	<u>3306</u>		heat shock 70kDa protein 2	male meiosis; spermatid development		39190.32	46970.6		-0.261261
U14747_at	VSNL1	7447	600817	visinin-like 1			44324.82	52251.44	7926.617	-0.237356
1	1				nucleus; regulation of transcription, DNA-					
144070	ZNEOZ	70	0000=	aire finance and in Od (UDET LUTELO)	dependent; transcription factor activity; zinc		45045.05	00000	7004 077	0.500405
L11672_r_at	<u>ZNF91</u>	<u>7644</u>	603971	zinc finger protein 91 (HPF7, HTF10)	ion binding		15645.26	23606.93	/961.672	-0.593485

RNA binding; nuclear inner meml nucleus; structural molecule activ	
HG3859- HT4129 at MAGEA4 4103 300175 melanoma antigen, family A, 4 biological_process unknown; cellular_component unknown; molecular function unknown	[SUMMARY:] This gene is a member of the MAGEA gene family. The members of this family have their entire coding sequences located in the last exon, and the encoded proteins show 50 to 80% sequence identity between each other. The promoters and first exons of the MAGEA genes show considerable variability, suggesting that the existence of this gene family enables the same function to be expressed under different transcriptional controls. The MAGEA genes are expressed at a high level in a number of tumors of various histologic types, and are silent in normal tissues with the exception of testis and placenta. The MAGEA genes are clustered on chromosome Xq28. They may be implicated in some hereditary disorders, such as dyskeratosis congenita. Multiple alternatively spliced transcript variants differing in the 5' exon have been found for this gene, however, the full length nature of different variants has not been defined.
cation channel activity; cation tra integral to membrane; membrane ion transport; voltage-gated sodiu sodium channel, voltage-gated, type V, alpha activity; voltage-gated sodium channel M77235_at SCN5A 6331 600163 (long QT syndrome 3) complex glucuronosyltransferase activity; UDP glycosyltransferase 2 family, membrane; microsome; steroid m	[SUMMARY:] The protein encoded by this gene is an integral membrane protein and tetrodotoxin-resistant voltage-gated sodium channel subunit. The encoded protein is found primarily in cardiac muscle and is responsible for the initial upstroke of the action potential in an electrocardiogram. Defects in this gene are a cause of long QT syndrome type 3 (LQT3), an autosomal dominant cardiac disease. Alternative splicing results in two transcript variants encoding separate isoforms which differ by a single amino acid. Mutation nomenclature has been assigned with respect to the longer isoform. 24003.68 32215.5 8211.82 -0.42449s integral to

					cell-cell signaling; chemotaxis; cytokine activity; extracellular space; inflammatory response; protein biosynthesis; signal	[SUMMARY:] Endothelial monocyte-activating polypeptide (SCYE1) is a cytokine that is specifically induced by apoptosis. The release of SCYE1 renders the tumor-associated vasculature sensitive to tumor necrosis factor. The precursor of SCYE1 (pro SCYE1) is identical to the p43 subunit, which is associated with the multi-IRNA synthetase complex. Therefore, pro-SCYE1 may function in binding RNA as part of the tRNA synthetase complex in normal cells and in stimulating inflammatory responses after proteolytic cleavage in tumor cells. A conflict				
U10117 at	SCYE1	9255	603605	small inducible cytokine subfamily E, member 1 (endothelial monocyte-activating)	transduction; tRNA aminoacylation for protein translation; tRNA binding	report exists about the RNA-binding domain in C-terminal or N-terminal of pro-SCYE1.	37022.58	45280.23	0057.040	-0.290476
U14972_at		<u>5200</u>		ribosomal protein S10	RNA binding; cytosolic small ribosomal subunit (sensu Eukarya); protein biosynthesis; structural constituent of ribosome	[SUMMARY:] Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal protein that is a component of the 40S subunit. The protein belongs to the S10E family of ribosomal proteins. It is located in the cytoplasm. Variable expression of this gene in colorectal cancers compared to adjacent normal tissues has been observed, although no correlation between the level of expression and the severity of the disease has been found. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome.	95684.5			
.,					nucleus; regulation of transcription, DNA-					
X99350_rna 1 at	FOXJ1	2302	602291	forkhead box J1	dependent; spermatogenesis; transcription factor activity		22343.44	1/010 02	8332.508	0.673298
1_at	1 0/01	<u> 2302</u>	502291	xeroderma pigmentosum, complementation	damaged DNA binding; nucleotide-excision		22040.44	14010.93	0002.000	0.013290
D14533_at	<u>XPA</u>	<u>7507</u>	278700	group A	repair; nucleus; protein binding		61125.9	69466.7	8340.797	-0.184538
					GTP binding; cytoplasm; eukaryotic translation elongation factor 1 complex; oncogenesis; regulation of cell shape;	[SUMMARY:] This gene encodes an isoform of the alpha subunit of the elongation factor-1 complex, which is responsible for the enzymatic delivery of aminoacyl tRNAs to the ribosome. This isoform (alpha 1) is expressed in brain, placenta, lung, liver, kidney, and pancreas, and the other isoform (alpha 2) is expressed in brain, heart and skeletal muscle. This isoform is identified as an autoantigen in 66% of patients with Felty's syndrome. This gene has been found to have multiple copies on many				
X03689_s_a t	EEF1A1	1915	130590	eukaryotic translation elongation factor 1 alpha 1	regulation of translation; translational elongation	chromosomes, some of which, if not all, represent different pseudogenes.	125777.7	117425.9	8351.797	0.099125

	I		1	1	I	I				l l
						[SUMMARY:] The protein encoded by this				
						gene belongs to the BCL-2 protein family.				
						BCL-2 family members form hetero- or				
						homodimers and act as anti- or pro-apoptotic				
						regulators that are involved in a wide variety				
						of cellular activities. The proteins encoded				
						by this gene are located at the outer				
						mitochondrial membrane, and have been				
						shown to regulate outer mitochondrial				
						membrane channel (VDAC) opening. VDAC				
						regulates mitochondrial membrane potential,				
						and thus controls the production of reactive				
						oxygen species and release of cytochrome C				
						by mitochondria, both of which are the potent				
						inducers of cell apoptosis. Two alternatively				
					anti-apoptosis; apoptotic mitochondrial	spliced transcript variants, which encode				
					changes; integral to membrane;	distinct isoforms, have been reported. The				
					mitochondrion; negative regulation of	longer isoform acts as an apoptotic inhibitor				
					survival gene product activity; regulation of	and the shorter form acts as an apoptotic				
Z23115_at	BCL2L1	<u>598</u>	600039	BCL2-like 1	apoptosis	activator.	62890.7	71284.97	8394.27	-0.180751
						[SUMMARY:] Myeloperoxidase (MPO) is a				
						heme protein synthesized during myeloid				
						differentiation that constitutes the major				
						component of neutrophil azurophilic				
						granules. Produced as a single chain				
						precursor, myeloperoxidase is subsequently				
						cleaved into a light and heavy chain. The				
					anti-apoptosis; calcium ion binding;	mature myeloperoxidase is a tetramer				
					chromatin binding; defense response;	composed of 2 light chains and 2 heavy				
					lysosome; nucleus; oxidoreductase activity; peroxidase activity; response to oxidative	chains. This enzyme produces hypohalous acids central to the microbicidal activity of				
M19507 at	MPO	4353	606080	myeloperoxidase	stress	netrophils.	38160.24	46706.64	8546 308	-0.291557
W10007_at	WII C	<u> 4000</u>	000000	myeloperoxidase	0.000	not opinio.	00100.E4	40700.04	0040.000	0.201007
						[SUMMARY:] Defects in the Bruton tyrosine				
					ATP binding; cytoplasm; induction of	kinase (BTK) gene cause				
					apoptosis by extracellular signals;	Agammaglobulinemia. Agammaglobulinemia				
					intracellular signaling cascade; mesoderm	is an X-linked immunodeficiency				
					development; protein amino acid	characterized by failure to produce mature B				
U78027_rna					phosphorylation; protein-tyrosine kinase	lymphocyte cells and associated with a				
4_at	<u>BTK</u>	<u>695</u>	300300	Bruton agammaglobulinemia tyrosine kinase	activity; transferase activity	failure of Ig heavy chain rearrangement.	21026.68	29652.3	8625.625	-0.495923
D14811_at	MAD2L1BP	<u>9587</u>		MAD2L1 binding protein			57821.04	66719.7	8898.652	-0.206518
						[CLIMMADV] The most-in-const-in-line				
						[SUMMARY:] The protein encoded by this				
						gene is a member of the tripartite motif				
]					(TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type				
	1					1 and a B-box type 2, and a coiled-coil region. The protein localizes to cytoplasmic				
]					bodies. Although the function of the protein				
	1					is unknown, the RING domain suggests that				
						the protein may have DNA-binding activity.				
						The gene localizes to the major				
					DNA binding; intracellular; protein binding;	histocompatibility complex (MHC) class I				
U09825 at	TRIM26	7726	600830	tripartite motif-containing 26	zinc ion binding	region on chromosome 6.	39481 28	48579.56	9098 281	-0 299181
000020_at	TTAIMEO	1120	000000	inparate metil-containing 20	Line for billing	region on anioniosome o.	03401.20	7001 J.30	JUJU.201	-0.233101

X59434_at	<u>MPST</u>	4357	602496	mercaptopyruvate sulfurtransferase		[SUMMARY:] This gene encodes a protein which can function as a monomer or as a disulfide-linked homodimer and which catalyzes the transfer of a sulfur ion from 3-mercaptopyruvate to cyanide or other thiol compounds. It may be involved in cyanide degradation and in thiosulfate biosynthesis. The encoded cytoplasmic protein is a member of the rhodanese family but is not rhodanese itself, which is a mitochondrial protein. At least three transcript variants have been found for this gene, but the full-length nature of only one of them has been characterized.	32606.8	41706.66	9099.863	-0.355105
HG2260- HT2349_s_a t	<u>DMD</u>	1756	300377	dystrophin (muscular dystrophy, Duchenne and Becker types)	actin binding; biological_process unknown; calcium ion binding; cellular_component unknown; cytoskeletal anchoring; cytoskeletal anchoring activity; cytoskeleton; dystrophin-associated glycoprotein complex; membrane; molecular_function unknown; muscle contraction; muscle development; structural constituent of cytoskeleton; zinc ion binding	[SUMMARY:] The dystrophin gene is the largest gene found in nature, measuring 2.4 Mb. The gene was identified through a positional cloning approach, targeted at the isolation of the gene responsible for Duchenne (DMD) and Becker (BMD) Muscular Dystrophies. DMD is a recessive, fatal, X-linked disorder occurring at a frequency of about 1 in 3,500 new-born males. BMD is a milder allelic form. In general, DMD patients carry mutations which cause premature translation termination (nonsense or frame shift mutations), while in BMD patients dystrophin is reduced either in molecular weight (derived from in-frame deletions) or in expression level. The dystrophin gene is highly complex, containing at least eight independent, tissue-specific promoters and two polyA-addition sites. Furthermore, dystrophin RNA is differentially spliced, producing a range of different transcripts, encoding a large set of protein isoforms. Dystrophin (as encoded by the Dp427 transcripts) is a large, rod-like cytoskeletal protein which is found at the inner surface of muscle fibers. Dystrophin is p	19113.08	28264.57	9151.488	-0.564434
M22638_at	LYL1	4066	151440	lymphoblastic leukemia derived sequence 1			20839.52	29991.33	9151.814	-0.525224
X78342 at	CDK10	8558	603464	cyclin-dependent kinase (CDC2-like) 10	ATP binding; cyclin-dependent protein kinase activity; kinase activity; negative regulation of cell proliferation; protein amino acid phosphorylation; protein serine/threonine kinase activity; transferase activity; traversing start control point of mitotic cell cycle	[SUMMARY:] The protein encoded by this gene belongs to the CDK subfamily of the Ser/Thr protein kinase family. The CDK subfamily members are highly similar to the gene products of S. cerevisiae cdc28, and S. pombe cdc2, and are known to be essential for cell cycle progression. This kinase has been shown to play a role in cellular proliferation. Its function is limited to cell cycle G2-M phase. At least three alternatively spliced transcript variants encoding different isoforms have been reported, two of which contain multiple non-AUG translation initiation sites.	70217.9	60763.06	9454.836	0.208644

J04988_at HSPCB 3326_140572 heat shock 90kDa protein 1, beta ATP binding; cytoplasm; heat shock protein activity; protein folding [SUMMARY:] The CMRF35 antigen, which was identified by reactivity with a monoclonal antibody, is present on monocytes, neutrophils, and some T and B lymphocytes (Jackson et al., 1992 [PubMed membrane; transmembrane receptor activity atructural condensation; extracellular matrix; extracellular matrix; extracellular matrix structural constituent; ossification; structural constituent of bone [SUMMARY:] ITGAL encodes the integrin alpha L chain. Integrins are heterodimeric integral membrane proteins composed of an alpha chain and a beta chain. This I-domain containing alpha integrin combines with the beta 2 chain (ITGB2) to form the integrin						cathepsin G activity; chymotrypsin activity; hydrolase activity; immune response;	[SUMMARY:] The protein encoded by this gene, a member of the peptidase S1 protein family, is found in azurophil granules of neutrophilic polymorphonuclear leukocytes. The encoded protease has a specificity similar to that of chymotrypsin C, and may participate in the killing and digestion of engulfed pathogens, and in connective tissue remodeling at sites of inflammation.				
SUMMARY] The product of this gene belongs to the serine/threonine protein kinase starily, and to the Ca(2+)calmodulin-dependent protein kinase activity; calmodulin binding; protein kinase activity; signal transduction; transferase activity John St.	I04990 at	CTSG	1511	116820	cathensin G			34037 69	13601 67	9653 999	-0.360225
D30742_at CAMK4 814 114080 IV transduction; transferase activity germ cells. 20766.64 30642.03 9875. ATP binding; cytoplasm; heat shock protein activity; protein folding [SUMMARY:] The CMRF35 antigen, which was identified by reactivity with a monocloral antibody, is present on monocytes, neutrophils, and some T and B lymphocytes (Jackson et al., 1992 [PubMed membrane; transmembrane receptor activity and protein on monocytes, neutrophils, and some T and B lymphocytes (Jackson et al., 1992 [PubMed membrane; transmembrane receptor activity and protein on binding; cartilage condensation; extracellular matrix; extracellular matrix structural constituent; ossification; structural constituent of bone [SUMMARY:] ITGAL encodes the integrin alpha L chain. Integrins are heterodimeric integral membrane proteins composed of an alpha chain and a bata chain. This I-domain containing alpha integrin combines with the beta 2 chain (ITGB2) to form the integrin	304990 <u>a</u> l	<u> </u>	<u>1511</u>	116630		ATP binding; calcium/calmodulin-dependent protein kinase activity; calmodulin binding; protein amino acid phosphorylation; protein	[SUMMARY:] The product of this gene belongs to the serine/threonine protein kinase family, and to the Ca(2+)/calmodulin-dependent protein kinase subfamily. This enzyme is a multifunctional serine/threonine protein kinase with limited tissue distribution, that has been implicated in transcriptional	34037.00	43091.07	9000.986	-0.360225
J04988_at HSPCB 3326 140572 heat shock 90kDa protein 1, beta ATP binding; cytoplasm; heat shock protein activity; protein folding [SUMMARY:] The CMRF35 antigen, which was identified by reactivity with a monoclonal antibody, is present on monocytes, neutrophils, and some T and B lymphocytes (Jackson et al., 1992 [PubMed membrane; transmembrane receptor activity aclaium ion binding; cartilage condensation; extracellular matrix; extracellular matrix; extracellular matrix; extracellular matrix structural constituent; ossification; structural constituent of bone [SUMMARY:] ITGAL encodes the integrin alpha L chain. Integrins are heterodimeric integral membrane proteins composed of an alpha chain and a beta chain. This I-domain containing alpha integrin combines with the beta 2 chain (ITGB2) to form the integrin	D30742 at	CAMK4	814	114080		,, ,		20766.64	30642.03	9875.391	-0.561244
SUMMARY: The CMRF35 antigen, which was identified by reactivity with a monoclonal antibody, is present on monocytes, neutrophils, and some T and B lymphocytes (Jackson et al., 1992 [PubMed membrane; transmembrane receptor activity is tracellular matrix; extracellular matrix; extracellular matrix structural constituent; ossification; structural constituent of bone 19587.82 29806.47 1021s						ATP binding; cytoplasm; heat shock protein					-0.608272
Extracellular matrix; extracellular matrix structural constituent; ossification; structural constituent of bone [SUMMARY:] ITGAL encodes the integrin alpha L chain. Integrins are heterodimeric integral membrane proteins composed of an alpha chain and a beta chain. This I-domain containing alpha integrin combines with the beta 2 chain (ITGB2) to form the integrin	_				CMRF35 leukocyte immunoglobulin-like	cellular defense response; integral to plasma membrane; transmembrane receptor activity	was identified by reactivity with a monoclonal antibody, is present on monocytes, neutrophils, and some T and B lymphocytes (Jackson et al., 1992 [PubMed				0.120629
alpha L chain. Integrins are heterodimeric integral membrane proteins composed of an alpha chain and a beta chain. This I-domain containing alpha integrin combines with the beta 2 chain (ITGB2) to form the integrin	X53331_at	<u>MGP</u>	<u>4256</u>	<u>154870</u>	matrix Gla protein	extracellular matrix; extracellular matrix structural constituent; ossification; structural		19587.82	29806.47	10218.65	-0.605669
Voor96 at ITGAL 3683 153370 alpha polypeptide) Voor96 at ITGAL 3683 153370 alpha polypeptide) Voor96 at ITGAL 3683 153370 alpha polypeptide) Voor96 at ITGAL Voor96 at ITGAL Voor96 at ITGAL 3683 153370 alpha polypeptide) Voor96 at ITGAL Voor	V00700 ct	ITOM	2000	150070	lymphocyte function-associated antigen 1;	membrane; integrin complex; integrin- mediated signaling pathway; magnesium ion	alpha L chain. Integrins are heterodimeric integral membrane proteins composed of an alpha chain and a beta chain. This I-domain containing alpha integrin combines with the beta 2 chain (ITGB2) to form the integrin lymphocyte function-associated antigen-1 (LFA-1), which is expressed on all leukocytes. LFA-1 plays a central role in leukocyte intercellular adhesion through interactions with its ligands, ICAMs 1-3 (intercellular adhesion molecules 1 through 3), and also functions in lymphocyte	100404	100105	10005 05	0.440005

U90916_at AFFX.BioB- HG825- HT825_at AC002115_c	SORL1 GNA12 ETV2	6653 2768 2116	<u>602005</u>	sortilin-related receptor, L(DLR class) A repeats-containing guanine nucleotide binding protein (G protein) alpha 12 ets variant gene 2 mitogen-activated protein kinase associated	cholesterol metabolism; integral to plasma membrane; internalization receptor activity; lipid transport; lipid transporter activity; receptor mediated endocytosis; transmembrane receptor activity Ras interactor activity; biological process	[SUMMARY:] This gene encodes a protein that belongs to the families of vacuolar protein sorting 10 (VPS10) domain-containing receptor proteins, of low density lipoprotein receptor (LDLR) proteins, and of fibronectin type III repeats proteins. In addition to VPS10, LDLR and fibronectin type 3 domains, this protein also includes an epidermal growth factor precursor-like module, a single transmembrane segment and a cytoplasmic tail with features similar to endocytosis- and sorting-competent receptors. Members of the VPS10 domain-containing receptor family are large with many exons but the CDS lengths are usually less than 3700 nt; this gene is an exception to the pattern with a CDS length greater than 6600 nt. Very large introns typically separate the exons encoding the VPS10 domain; the remaining exons are separated by much smaller-sized introns. The encoded protein is mainly intracellular and localizes in the paranuclear compartment. It is synthesized as a preproprotein, and when the propeptide is still attached, no binding occurs to the VPS10 domain. This gene is strongly express	52062.48 17035.72 51281.08 48666.66	6482.434 61877.47	10553.29	1.393956
HT511 at	MAPKAP1	79109		protein 1	unknown; cellular component unknown		56260.78	44414.9	11845.88	0.341086
AFFX-BioC-	WALKAL I	<u>79109</u>		protein	diknown, cendial_component diknown		16855.82	4937.7		
	RAG1	<u>5896</u>	<u>179615</u>	recombination activating gene 1	DNA binding; DNA recombination; endonuclease activity; hemocyte development; hydrolase activity; immune response; nucleus	[SUMMARY:] The linked genes RAG1 and RAG2 act together to activate immunoglobulin V-D-J recombination. RAG1 is involved in recognition of the DNA substrate.	63512.43			
S77361_at AFFX-BioC-	<u>MMP19</u>	<u>4327</u>	<u>601807</u>	matrix metalloproteinase 19	angiogenesis; collagen catabolism; extracellular matrix; hydrolase activity; metalloendopeptidase activity; zinc ion binding	[SUMMARY:] Proteins of the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular matrix in normal physiological processes, such as embryonic development, reproduction, and tissue remodeling, as well as in disease processes, such as arthritis and metastasis. Most MMP's are secreted as inactive proproteins which are activated when cleaved by extracellular proteinases. The function of the protein encoded by this gene has not been determined. This gene was previously referred to as MMP18 but has been renamed matrix metalloproteinase 19 (MMP19). This gene encodes four transcript variants.	85159.58 33434.58	72483.87 19979.17		0.232509 0.742845

G-protein coupled receptor activity; G-protein signaling, coupled to AMP nucleotide second messenger; adenylate cyclase activation; corticotrophin-releasing factor receptor activity immore (MIM 12256)), aptent mediator of endocrine, autonomic, receptor activity immore (MIM 12256)), aptent mediator of endocrine, autonomic, receptor activity immore prospones; integral behavioral, and immune responses to stress, supplied by OMMI) X72304_at	M86933	3_at	<u>AMELY</u>	<u>266</u>	410000	amelogenin, Y-linked	bone mineralization; development; extracellular matrix; extracellular matrix structural constituent; odontogenesis;	[SUMMARY:] This gene encodes a member of the amelogenin family of extracellular matrix proteins. Amelogenins are involved in biomineralization during tooth enamel development. Mutations in a related gene on chromosome X cause X-linked amelogenesis imperfecta.	57191.92	71060.73	13868.81	-0.313241
foreign antigens and initiate immune responses such as phagocytosis and the complement system. Each immunoglobulin molecule consists of two identical heavy chains and two identical light chains. There are two classes of light chains, kappa and lambda. This region represents the germline organization of the lambda light chain locus. The locus includes V (variable), J (joining), and C (constant) segments. During B cell development, a recombination event at the DNA level joins a single V segment with a J segment; the C segment is later joined by splicing at the RNA level. Recombination of many different V segments with several J segments provides a wide range of antigen recognition. Additional diversity is attained by junctional diversity, resulting from the random additional of nucleotides by terminal deoxynucleoticyttransferase, and by somatic hypermutation, which occurs during B cell maturation in the spleen and lymph nodes. Several V segments and three C segments are known to be incapable of encoding a	X72304	I_at	<u>CRHR1</u>	<u>1394</u>	<u>122561</u>	corticotropin releasing hormone receptor 1	signaling, coupled to cAMP nucleotide second messenger; adenylate cyclase activation; corticotrophin-releasing factor receptor activity; immune response; integral	hormone receptor binds to corticotropin- releasing hormone (MIM 122560), a potent mediator of endocrine, autonomic, behavioral, and immune responses to	160964.7	146863.9	14100.78	0.132264
3 at IGL@ 3535 immunoglobulin lambda locus protein and are considered pseudogenes. Th 44030.48 29535.7 14494.78 0.576043	D87017 3 at	7_cds	©	3535		immunoqlobulin lambda locus		foreign antigens and initiate immune responses such as phagocytosis and the complement system. Each immunoglobulin molecule consists of two identical heavy chains and two identical light chains. There are two classes of light chains, kappa and lambda. This region represents the germline organization of the lambda light chain locus. The locus includes V (variable), J (joining), and C (constant) segments. During B cell development, a recombination event at the DNA level joins a single V segment with a J segment; the C segment is later joined by splicing at the RNA level. Recombination of many different V segments with several J segments provides a wide range of antigen recognition. Additional diversity is attained by junctional diversity, resulting from the random additional of nucleotides by terminal deoxynucleotidyltransferase, and by somatic hypermutation, which occurs during B cell maturation in the spleen and lymph nodes. Several V segments and three C segments	44030 48	29535.7	14494 78	0.576043

M57466_s_a t	HLA-DPB1	3115	142858	major histocompatibility complex, class II, DP beta 1	MHC class II receptor activity; antigen presentation, exogenous antigen; antigen processing, exogenous antigen via MHC class II; immune response; integral to membrane	[SUMMARY:] HLA-DPB belongs to the HLA class II beta chain paralogues. This class II molecule is a heterodimer consisting of an alpha (DPA) and a beta chain (DPB), both anchored in the membrane. It plays a central role in the immune system by presenting peptides derived from extracellular proteins. Class II molecules are expressed in antigen presenting cells (APC: B lymphocytes, dendritic cells, macrophages). The beta chain is approximately 26-28 kDa and its gene contains 6 exons. Exon one encodes the leader peptide, exons 2 and 3 encode the two extracellular domains, exon 4 encodes the transmembrane domain and exon 5 encodes the cytoplasmic tail. Within the DP molecule both the alpha chain and the beta chain contain the polymorphisms specifying the peptide binding specificities, resulting in up to 4 different molecules.	17470.2	2903.9	14566.3	2.588833
	ATR			ataxia telangiectasia and Rad3 related	DNA repair; cell cycle; cell cycle checkpoint; development; inositol/phosphatidylinositol kinase activity; transferase activity;	[SUMMARY:] The protein encoded by this gene belongs the Pl3/Pl4-kinase family, and is most closely related to ATM, a protein kinase encoded by the gene mutated in ataxia telangiectasia. This protein and ATM share similarity with Schizosaccharomyces pombe rad3, a cell cycle checkpoint gene required for cell cycle arrest and DNA damage repair in response to DNA damage. This kinase has been shown to phosphorylate checkpoint kinase CHK1, checkpoint proteins RAD17, and RAD9, as well as tumor suppressor protein BRCA1. Mutations of this gene are associated with Seckel syndrome. An alternatively spliced transcript variant of this gene has been reported, however, its full length nature is not known. Transcript variants utilizing alternative polyA sites exist.	87535.27	102424.7		-0.226627
M38591_at			114085	S100 calcium binding protein A10 (annexin II ligand, calpactin I, light polypeptide (p11))		[SUMMARY:] The protein encoded by this gene is a member of the S100 family of proteins containing 2 EF-hand calcium-binding motifs. S100 proteins are localized in the cytoplasm and/or nucleus of a wide range of cells, and involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. S100 genes include at least 13 members which are located as a cluster on chromosome 1q21. This protein may function in exocytosis and endocytosis.	206496.6 103952.7	191293.7 88735.1	15202.89	

U34360_at	<u>LAF4</u>	3899	601464	lymphoid nuclear protein related to AF4	DNA binding; development; nucleus; regulation of transcription, DNA-dependent	[SUMMARY:] Lymphoid nuclear protein related to AF4 (LAF4) is related to MLLT2 which is also referred to as AF4. LAF4 is a tissue-restricted nuclear transcriptional activator that is preferentially expressed in lymphoid tissue. Isolation of LAF4 has defined a highly conserved LAF4/MLLT2 gene family of nuclear transcription factors that may function in lymphoid development and oncogenesis.	112782.9	97324.16	15458.7	0.212678
M31667 f at	CVP1A2	1544	124060	cytochrome P450, family 1, subfamily A, polypeptide 2		[SUMMARY:] This gene, CYP1A2, encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. The protein encoded by this gene localizes to the endoplasmic reticulum and its expression is induced by some polycyclic aromatic hydrocarbons (PAHs), some of which are found in cigarette smoke. The enzyme's endogenous substrate is unknown; however, it is able to metabolize some PAHs to carcinogenic intermediates. Other xenobiotic substrates for this enzyme include caffeine, aflatoxin B1, and acetaminophen. The transcript from this gene contains four Alu sequences flanked by direct repeats in the 3' untranslated region. A related family member, CYP1A1, is located approximately 25 kb away from CYP1A2 on chromosome 15.	230515.2	214901.2	15614.03	0.101189
AFFX-BioB-	CITIAZ	1344	124000	porypeptide 2		13.	184982.9	169111	15871.92	0.101103
X02158_rna 1_at	<u>EPO</u>	<u>2056</u>	133170	erythropoietin	cell-cell signaling; circulation; development; erythropoietin receptor binding; extracellular space; hormone activity; response to stress; signal transduction ATP binding; actin binding; calmodulin	[SUMMARY:] Human erythropoietin is an acidic glycoprotein hormone with a molecular mass of 34 kD. As the prime regulator of red cell production, its major functions are to promote erythroid differentiation and to initiate hemoglobin synthesis.[supplied by OMIM]	41131.96	24246.6	16885.36	0.762477
HG3636- HT3846 at	МҮН9	4627	160775	myosin, heavy polypeptide 9, non-muscle	binding; cellular morphogenesis; motor activity; myosin; non-muscle myosin; perception of sound		41936.68	24546.9	17389.78	0.772672
Z84721_cds 1_at	<u>HBZ</u>	3050		hemoglobin, zeta		[SUMMARY:] Zeta-globin (HBZ) is an alphalike hemoglobin. The zeta-globin polypeptide is synthesized in the yolk sac of the early embryo, while alpha-globin is produced throughout fetal and adult like. The zeta-globin gene is a member of the human alpha-globin gene cluster that involves 4 functional genes and 3 nonfunctional pseudogenes. The order of genes is: 5'-zeta pseudozeta pseudoalpha2 pseudoalpha1 alpha2 alph1 theta1-3'.			17654.07	

20.40.0	47700 50	0.400400
2043.6	17762.58	-0.408422
347.2	17937.52	-0.258497
	·	1 7
	10000	
0060.4	18686.83	0.186956
526.5	19196.09	0.232985
100.37	20139.46	1.04261
50	347.2 060.4 526.5	

L06505_at	RPL12	6136	180475	ribosomal protein L12	RNA binding; cytosolic large ribosomal subunit (sensu Eukarya); intracellular; protein biosynthesis; ribosome; structural constituent of ribosome	[SUMMARY:] Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L11P family of ribosomal proteins. It is located in the cytoplasm. The protein binds directly to the 26S rRNA. This gene is co-transcribed with the U65 snoRNA, which is located in its fourth intron. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome.	193816.7	170552.6	23264.09	0.184476
AFFX- HUMGAPDH					cytoplasm; glucose metabolism; glyceraldehyde-3-phosphate dehydrogenase					
/M33197_M_	GAPD	2507	129400	glyceraldehyde-3-phosphate dehydrogenase	(phosphorylating) activity; glycolysis;	pseudogene has been mapped to Xp21-p11 and 15 GAPD-like loci have been identified.	010745	100000	00000 70	0.100007
at				solute carrier family 2 (facilitated glucose	oxidoreductase activity carbohydrate metabolism; carbohydrate transport; glucose transport; glucose transporter activity; integral to membrane; membrane fraction; sugar porter activity;	and 13 GAPD-like loci have been identifiled.		190082.3		
M20681_at	SLC2A3	<u>6515</u>	<u>138170</u>	transporter), member 3	transporter activity	IOLINAMA DIVILO	157438.5	133289.1	24149.44	0.24023
AFFX- HSAC07/X0					actin filament; cell motility; motor activity;	[SUMMARY:] Beta actin is one of six different actin isoforms which have been identified. ACTB is one of the two nonmuscle cytoskeletal actins. Actins are highly conserved proteins that are involved in cell motility, structure and integrity. Alpha actins are a major constituent of the contractile				
0351_5_at	ACTB	<u>60</u>	102630	actin, beta	structural constituent of cytoskeleton	apparatus.	244351.5		24230.56	
AFFX-BioDn-							40794.68	16342.4		
AFFX-DapX-	ATP2R4	403			ATP binding; calcium ion binding; calcium ion transport; calcium-transporting ATPase activity; calmodulin binding; cation transport; hydrolase activity, hydrolase activity, acting on acid anhydrides, catalyzing transmembrane movement of substances; integral to plasma membrane; magnesium ion binding; metabolism; transport		257094.3 167702.2	232534.5		0.144852

U96915 at	SAP18	10284	602949	sin3-associated polypeptide, 18kDa	histone deacetylase complex; regulation of transcription from Pol II promoter; transcription corepressor activity	[SUMMARY:] Histone acetylation plays a key role in the regulation of eukaryotic gene expression. Histone acetylation and deacetylation are catalyzed by multisubunit complexes. The protein encoded by this gene is a component of the histone deacetylase complex which includes SIN3, SAP30, HDAC1, HDAC2, RbAp46, RbAp48 and other polypeptides. This protein directly interacts with SIN3 and enhances SIN3-mediated transcriptional repression when tethered to the promoter.	32689.56	57367.67	24678.11	-0.811408
X89399_s_a	RASA3	22821		RAS p21 protein activator 3	GTPase activator activity; intracellular signaling cascade; plasma membrane	[SUMMARY:] The protein encoded by this gene is member of the GAP1 family of GTPase-activating proteins. The gene product stimulates the GTPase activity of normal RAS p21 but not its oncogenic counterpart. Acting as a suppressor of RAS function, the protein enhances the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, thereby allowing control of cellular proliferation and differentiation. This family member is an inositol 1,3,4,5-tetrakisphosphate-binding protein, like the closely related RAS p21 protein activator 2. The two family members have distinct pleckstrin-homology domains, with this particular member having a domain consistent with its localization to the plasma membrane.	178460.7	153255.3		
M20747_s_a				solute carrier family 2 (facilitated glucose	carbohydrate metabolism; carbohydrate transport; glucose transport; glucose transporter activity; integral to plasma membrane; membrane fraction; sugar porter					
t S73813 at	SLC2A4 ENTPD1			transporter), member 4 ectonucleoside triphosphate diphosphohydrolase 1	activity; transporter activity antimicrobial humoral response (sensu Vertebrata); apyrase activity; blood coagulation; cell adhesion; cell-cell signaling; hydrolase activity; integral to plasma membrane; magnesium ion binding		134870.9	146896.8	25297.63 25303.52	
X15943 at			114130	calcitonin/calcitonin-related polypeptide,	G-protein signaling, coupled to cAMP nucleotide second messenger; adenylate cyclase activation; cell-cell signaling; cellular_component unknown; cytosolic calcium ion concentration elevation; endoplasmic reticulum; extracellular space; hormone activity; phospholipase C activation; regulation of blood pressure; skeletal development; soluble fraction		171293.1		26704.36	

						[SUMMARY:] Heterogeneous nuclear RNAs (hnRNAs) which include mRNA precursors and mature mRNAs are associated with specific proteins to form heterogenous ribonucleoprotein (hnRNP) complexes. Heterogeneous nuclear ribonucleoprotein L is among the proteins that are stably associated with hnRNP complexes and along with other hnRNP proteins is likely to play a major role in the formation, packaging, processing, and function of mRNA. Heterogeneous nuclear ribonucleoprotein L is present in the nucleoplasm as part of the HNRP complex. HNRP proteins have also been identified outside of the nucleoplasm. Exchange of hnRNP for mRNA-binding proteins accompanies transport of mRNA from the nucleus to the cytoplasm. Since HNRP proteins have been shown to shuttle between the nucleus and the cytoplasm, it is possible that they also have cytoplasmic functions.~Structurally HNRPL contains 2 segments of approximately 80 amino acids each which are weakly related to each other				
X16135 at	HNRPL	3191	603083	heterogeneous nuclear ribonucleoprotein L	RNA binding; heterogeneous nuclear ribonucleoprotein complex; mRNA processing; nucleoplasm	and to the ribonucleoprotein consensus sequence-type RNA-binding domains of other hnRNP and snRNP proteins.	167805.6	140601.1	27204.48	0.255183
X64728_at	OPN3			opsin 3 (encephalopsin, panopsin)	G-protein coupled photoreceptor activity; G- protein coupled receptor protein signaling pathway; integral to membrane; phototransduction; regulation of circadian rhythm; visual perception	[SUMMARY:] Opsins, including OPN3, are members of the superfamily of guanine nucleotide-binding protein (G protein)-coupled receptors, which function through the activation of a G protein and an effector enzyme. Opsin proteins consist of a single polypeptide chain of 340 to 500 amino acids that form 7 alpha-helical transmembrane regions connected by cytoplasmic and extracellular loops.[supplied by OMIM]	215214.1			
HG1437- HT1437_s_a t	NTRK1	<u>491</u> 4	191315	neurotrophic tyrosine kinase, receptor, type 1	ATP binding; biological_process unknown; cell growth and/or maintenance; cellular_component unknown; integral to membrane; integral to plasma membrane; molecular_function unknown; neurogenesis; neurotrophin TRKA receptor activity; protein amino acid phosphorylation; receptor activity; transferase activity; transmembrane receptor protein tyrosine kinase activity; transmembrane receptor protein tyrosine kinase signaling pathway		155065.5	126077.9	28987.57	0.298562

						FOURMANDY A Chance I de buide O inheadh at				
						[SUMMARY:] Glyceraldehyde-3-phosphate				
						dehydrogenase catalyzes an important				
						energy-yielding step in carbohydrate				
						metabolism, the reversible oxidative				
						phosphorylation of glyceraldehyde-3-				
						phosphate in the presence of inorganic				
						phosphate and nicotinamide adenine				
AFFX-					cytoplasm; glucose metabolism;	dinucleotide (NAD). The enzyme exists as a				
HUMGAPDH						tetramer of identical chains. A GAPD				
/M33197_3_						pseudogene has been mapped to Xp21-p11				
at	<u>GAPD</u>	<u>2597</u>	138400	glyceraldehyde-3-phosphate dehydrogenase	oxidoreductase activity	and 15 GAPD-like loci have been identified.	243353.8	214355.2	28998.55	0.183052
						ICLIMMADIVI The ACDA some product				
						[SUMMARY:] The ASPA gene product,				
						aspartoacylase, catalyzes the conversion of				
						N-acetyl_L-aspartic acid (NAA) to aspartate				
1		1				and acetate. NAA is abundant in the brain				
						where hydrolysis by aspartoacylase is				
						thought to help maintain white matter. The				
						ASPA gene product is an NAA scavenger in				
				aspartoacylase (aminoacylase 2, Canavan		other tissues. Defects in ASPA cause				
S67156_at	<u>ASPA</u>	443	608034	disease)	aspartoacylase activity; hydrolase activity	Canavan disease.	97751.66	68185.73	29565.93	0.519651
					nucleus; regulation of transcription, DNA-					
					dependent; steroid hormone receptor					
				nuclear receptor subfamily 2, group C,	activity; transcription; transcription factor					
M21985_at	NR2C1	<u>7181</u>	601529	member 1	activity		183606.8	153605.8	30000.94	0.257386
						FOLINA AA DVA Deede in a set the a section				
						[SUMMARY:] Proteins of the matrix				
						metalloproteinase (MMP) family are involved				
						in the breakdown of extracellular matrix in				
						normal physiological processes, such as				
						embryonic development, reproduction, and				
						tissue remodeling, as well as in disease				
						processes, such as arthritis and metastasis.				
						Most MMP's are secreted as inactive				
1		1				proproteins which are activated when				
		1				cleaved by extracellular proteinases. The				
1		1				enzyme encoded by this gene degrades				
1		1				proteoglycans and fibronectin. The gene is				
						part of a cluster of MMP genes which				
X07820_at	MMP10	4319	<u>185260</u>	matrix metalloproteinase 10 (stromelysin 2)	stromelysin 2 activity; zinc ion binding	localize to chromosome 11q22.3.	196873	162145.1	34727.91	0.27998
U95006_at	STRA13	<u>201254</u>		stimulated by retinoic acid 13			216587.8	181254.8	35333.06	0.256933
					alpha-amylase activity; amino acid transport;					
1		1			amino acid transporter activity; carbohydrate					
1		1		solute carrier family 3 (activators of dibasic	metabolism; cell growth; integral to					
M21904 at	SLC3A2	6520	158070	and neutral amino acid transport), member 2	membrane; sodium:calcium exchange		255137 4	217035.3	38102.08	0.233345
		3020		2002 2004 2004 2004 2004 2004 2004 2004			_00.07.1		20.02.00	2.200040
		1		phosphodiesterase 4C, cAMP-specific	3',5'-cyclic-nucleotide phosphodiesterase					
		1		(phosphodiesterase E1 dunce homolog,	activity; catalytic activity; cellular_component					
Z46632_at	PDE4C	<u>5143</u>	600128	Drosophila)	unknown; signal transduction		189884.8	151458.5	38426.28	0.326202

V00594_s_a t	M19508_xpt 3 s at	MPO	4353	606989	myeloperoxidase	anti-apoptosis; calcium ion binding; chromatin binding; defense response; lysosome; nucleus; oxidoreductase activity; peroxidase activity; response to oxidative stress	[SUMMARY:] Myeloperoxidase (MPO) is a heme protein synthesized during myeloid differentiation that constitutes the major component of neutrophil azurophilic granules. Produced as a single chain precursor, myeloperoxidase is subsequently cleaved into a light and heavy chain. The mature myeloperoxidase is a tetramer composed of 2 light chains and 2 heavy chains. This enzyme produces hypohalous acids central to the microbicidal activity of netrophils.	180978.2	141433.8	39544.45	0.355689
t MZ6730_s_a t UQCRB 7381 191330 protein			4000	000000	mycloporoxidado		notropinio.	100070.2	141400.0	00044.40	0.000000
M26730_s_a t UOCRB 7381 191330 protein SUMMARY:] The alpha (HBA) and beta (HBB) loci determine the structure of the 2 types of polypeptide chains in adult hemoglobin, Hb A. The normal adult hemoglobin tetramer consists of two alpha chains and two beta chains. Mutant beta globin causes sickle cell anemia. Absence of beta chain causes beta-zero-thalassemia. Reduced amounts of detectable beta globin causes beta-plus-thalassemia. The order of the genes in the beta-globin cluster is 5'- HG1428- HT1428_s_a t HBB 3043 141900 hemoglobin, beta Mocroscopic Mosper	t		4502	156360	metallothionein 2A			243129	197424.1	45704.83	0.300423
t UOCRB 7381 191330 protein 246359.2 186997.5 59361.61 0.397744 [SUMMARY:] The alpha (HBA) and beta (HBB) loci determine the structure of the 2 types of polypeptide chains in adult hemoglobin, Hb A. The normal adult hemoglobin tetramer consists of two alpha chains and two beta chains. Mutant beta globin causes sickle cell anemia. Absence of beta chain causes beta-zero-thalassemia. Reduced amounts of detectable beta globin causes beta-zero-thalassemia. The order of the genes in the beta-globin cluster is 5'-the genes in the beta-globin	M26730 s a										
(HBB) loci determine the structure of the 2 types of polypeptide chains in adult hemoglobin, Hb A. The normal adult hemoglobin tetramer consists of two alpha chains and two beta chains. Mutant beta globin causes sickle cell anemia. Absence of beta chain causes beta-zero-thalassemia. Reduced amounts of detectable beta globin causes beta-plus-thalassemia. The order of the genes in the beta-globin cluster is 5'- the g	t	UQCRB	7381	191330	protein			246359.2	186997.5	59361.61	0.397744
t HBB 3043 141900 hemoglobin, beta oxygen transporter activity; transport beta-3'. 277172.2 217189.6 59982.56 0.351827							(HBB) loci determine the structure of the 2 types of polypeptide chains in adult hemoglobin, Hb A. The normal adult hemoglobin tetramer consists of two alpha chains and two beta chains. Mutant beta globin causes sickle cell anemia. Absence of beta chain causes beta-zero-thalassemia. Reduced amounts of detectable beta globin causes beta-plus-thalassemia. The order of the genes in the beta-globin cluster is 5'-				
	t +20_5_a	HBB	3043	141900	hemoglobin beta			277172 2	217189 6	59982 56	0.351827
	AFFX-CreX-	1100	5040	1-1300	nomoglobin, bota	oxygon transporter activity, transport	Join 0.				

biological_process unknown; cellular_component unknown; molecular_function unknown

8131 600928 chromosome 16 open reading frame 35 Z84722_at <u>C16orf35</u>