CS 5604 - Final Presentation

CINETGraphCrawl

Rushi Kaw
Hemanth Makkapati
Rajesh Subbiah

Client:
Network Dynamics & Simulation Science Laboratory (NDSSL)
CINET is supported by the NSF under Grant No. 1032677

6 December 2012
Overview

- Motivation
- Objectives
- Methodology
- Implementation
- Challenges
- Milestones
- Future Work
Motivation

● Social systems all around us
 ○ Urban transportation systems
 ○ Communication networks
 ○ Epidemics
 ○ Energy systems, etc.

● Social systems as graphs
 ○ Identify critical elements
 ○ Understand inherent phenomenon
 ○ Predict evolving trends
 ○ Intervene with countermeasures, etc.
Objectives

- Enable (semi-)automated graph construction from blogs
 - Support social media analysis research at NDSSL
 - Rumor spread & opinion formation
 - Especially over political blogs
 - Enhance CINET graph repository
 - CINET - A Cyber-Infrastructure for Network Science
Methodology

Blog 1 → Crawlers → Blog Models → Graph Constructor → User Input → Graph(s)

Blog 2

Blog 3

Blog 4

......

Meta Model
Methodology (..contd)

- Start with a seed
- Extract URLs
- Download pages
- Extract content
- Dump content into database
 - As per the metamodel
- Query database
- Construct graphs
Implementation

Data sets

- **Stack Overflow**
 - Most used forum of Stack Exchange family
 - Discusses software programming
 - 3.3M questions
 - 6.6M answers
 - 13M comments
 - 30K tags

- **CNN Political Ticker**
 - Discusses politics
 - Comments are spread across multiple HTML pages

Development setup

- **CPU**
 - Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz

- **Physical Memory**
 - 8GB

- **Disk**
 - 320 GB
 - RPM = 7200
 - Buffer size = 16MB
Graphs Constructed

- **User-user interaction graphs**
 - 1st degree interactions
 - Stackoverflow: post-comment, post-answer and answer-comment
 - CNN political ticker: post-comment
 - 2nd degree interactions
 - CNN political ticker: comment-post-comment

- **Hierarchical representation of blog posts and comments**
Graph Construction: Pseudo Code

- For each blog B_i, retrieve all users
- For each user U_{ij}, retrieve all posts written by U_{ij}
- For each post P_{ik-j}, retrieve all comments
- For each comment C_{it-k}, get its owner U_{id}
- Construct an edge between U_{ij} & U_{id}
- For each comment C_{is} written by U_{ij}, get its parent post $P_{k'}$
- Construct an edge between U_{ij} & owner of $P_{ik'}$
- Dump the U_{ij} edge list in a file (adjacency matrix)
Stackoverflow
Stack Overflow Approach

- Question
 - Comment
 - Answer
 - Comment

- Post
 - Comment
 - Comment
 - Comment
Hierarchical Representation
Stackoverflow Graphs

Complete user-user interaction graph
- Nodes = 805652
- Edges = 9.3 million
- Max. deg. = 21869
- Avg. deg. = 23.118

Runtime
- Graph construction
 - Tg = 2104 seconds (incl. dumping into file) [7 threads]

Reduced user-user interaction graph
- Nodes = 34265
- Edges = 1 million
- Max. deg. = 5601
- Avg. deg. = 59.5053

Runtime
- Graph construction
 - Tg = 1803 seconds (incl. dumping into file) [1 thread]
Stack Overflow Graph (~35K nodes)

- Nodes = 34265
- Edges = 1 million
- Min. degree = 1
- Max. degree = 5601
- Avg. degree = 59.5

Colors represent modularity classes
CNN Political Ticker
CNN Political Ticker Approach
CNN Constructed Graphs

1st degree interaction graph

- Post-comments
- 270 posts
- Nodes = 2945
- Edges = 5117
- Max. deg. = 943
- Avg. deg. = 3.47

Runtime

- Extraction time
 - $Te = 3120$ seconds (incl. data download)
- Graph construction
 - $Tg = 2$ seconds (incl. dumping into file)

2nd degree interaction graph

- Post-comment and comment-post-comment
- 270 posts
- Nodes = 2945
- Edges = 433630
- Max. deg. = 2120
- Avg. deg. = 294.48

Runtime

- Extraction time:
 - $Te = 3120$ seconds (incl. data download)
- Graph construction
 - $Tg = 6$ seconds (incl. dumping into file)
CNN - First Degree Interaction

- Nodes = 2945
- Edges = 5117
- Min. degree = 1
- Max. degree = 943
- Avg. degree = 3.5

Colors represent modularity classes
Layout used: OpenOrd
Welcome to the Computational Network Sciences (CINET) GRANITE system. [Register here.]

Input

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Graph</th>
<th>Status</th>
<th>Percent Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 4 15:05:31</td>
<td>stackoverflow.gph</td>
<td>Completed</td>
<td></td>
</tr>
<tr>
<td>Dec 4 15:06:31</td>
<td>CNN270_With_Second_Degree.gph</td>
<td>Completed</td>
<td></td>
</tr>
<tr>
<td>Dec 4 15:06:31</td>
<td>ReducedStackoverflow.gph</td>
<td>Completed</td>
<td></td>
</tr>
<tr>
<td>Dec 4 15:08:31</td>
<td>CNN270.gph</td>
<td>Completed</td>
<td></td>
</tr>
</tbody>
</table>

Results

Results ready for download. Click 'Download Results'.

Download Results

\[|v| = 805652, |E| = 9.31253e+06, \min \text{deg} = 1, \max \text{deg} = 21869, \text{avg deg} = 23.118 \]

*** by Galib 1.0 ***
Challenges

• Extracting content from blogs
 ○ No standardized structure
 ■ Custom crawlers & metamodel based extraction
 ○ Comments are incorporated in different forms
 ■ Only available if signed-in
 ■ Embedded Ajax scripts
 ■ Embedded in the same page
 ■ Focus on embedded comments

• Input flexibility
 ○ Many different ways to specify input
 ○ 1st and 2nd degree interactions to start off with

• Duplicate and anonymous names
 ○ Represented all the anonymous users as one user
Milestones

- Literature Survey - All - 09/25
- Meta Model Creation - HM - 10/03
- Custom Crawlers - HM - 10/31
- Graph Construction - RK - 11/05
- Visualization - RS - 11/20
- Integration & Testing - All - 11/23
- First Demo to Client - All - 11/26
- Fixes & Improvements - All - 12/06
- Final Demo to Client - All - 12/07
- Report Writing - All - 12/10

HM: Hemanth Makkapati
RK: Rushi Kaw
RS: Rajesh Subbiah
Future work

- More blogs
 - different topics
 - different structures
- Generic content extraction
- Richer graph representation
Acknowledgments

- Prof. Fox
 - Help with methodology
- Spencer Lee
 - Graph upload to CINET
- Team CINETGraphViz
 - Graph visualizations
- Keith Bisset
 - Suggestions on data sets
References

Thank you!