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ABSTRACT 
 

This dissertation proposes autonomous robotic strategies for urban search and rescue (USAR) 

which are map-based semi-autonomous robot navigation and fully-autonomous robotic search, 

tracking, localization and mapping (STLAM) using a team of robots. Since the prerequisite for 

these solutions is accurate robot localization in the environment, this dissertation first presents a 

novel grid-based scan-to-map matching technique for accurate simultaneous localization and 

mapping (SLAM). At every acquisition of a new scan and estimation of the robot pose, the 

proposed technique corrects the estimation error by matching the new scan to the globally defined 

grid map. To improve the accuracy of the correction, each grid cell of the map is represented by 

multiple normal distributions (NDs). The new scan to be matched to the map is also represented 

by NDs, which achieves the scan-to-map matching by the ND-to-ND matching. In the map-based 

semi-autonomous robot navigation strategy, a robot placed in an environment creates the map of 

the environment and sends it to the human operator at a distant location. The human operator then 

makes decisions based on the map and controls the robot via tele-operation. In case of 

communication loss, the robot semi-autonomously returns to the home position by inversely 

tracking its trajectory with additional optimal path planning. In the fully-autonomous robotic 

solution to USAR, multiple robots communicate one another while operating together as a team. 

The base station collects information from each robot and assigns tasks to the robots. Unlike the 

semi-autonomous strategy there is no control from the human operator. To further enhance the 

efficiency of their cooperation each member of the team specifically works on its own task.  
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A series of numerical and experimental studies were conducted to demonstrate the 

applicability of the proposed solutions to USAR scenarios. The effectiveness of the scan-to-map 

matching with the multi-ND representation was confirmed by analyzing the error accumulation 

and by comparing with the single-ND representation. The applicability of the scan-to-map 

matching to the real SLAM problem was also verified in three different real environments. The 

results of the map-based semi-autonomous robot navigation showed the effectiveness of the 

approach as an immediately usable solution to USAR. The effectiveness of the proposed fully-

autonomous solution was first confirmed by two real robots in a real environment. The 

cooperative performance of the strategy was further investigated using the developed platform- 

and hardware-in-the-loop simulator. The results showed significant potential as the future 

solution to USAR.      
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Chapter 1 

Introduction  

The development of autonomous robotics has dramatically extended the applicable scope of robots in the 

past thirty plus years. In early years, robots were not given a high level of autonomy, but instead they 

were usually controlled by human operators. As technology improved, robots have come to be able to 

perform much more complicated jobs, both while stationary and while moving. One example of the latter 

is rescue in urban disaster areas. In such environments, robots require a high level of autonomy in order to 

operate properly, since they usually have to complete multiple tasks at the same time, such as 

understanding and exploring environments, detecting and avoiding danger, and identifying and retrieving 

victims. These challenging problems have received much attention leading to research focused on 

applicable solutions to rescue in urban disasters. 

This dissertation presents autonomous robotic strategies for urban search and rescue (USAR) 

scenarios. For the purpose of this dissertation, the term autonomous robotics is defined as the capability to 

work without human control. Although a variety of subproblems exist in USAR, this dissertation focuses 

on possible solutions to searching for and tracking objects of interests and their prerequisite technique of 

robot localization in the environment. In this Chapter, the background leading up to the recent interest in 

robotic applications in USAR is briefly explained, followed by the objective of this dissertation. The 
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approach to achieve the objective is then presented, and the original contributions are summarized. 

Finally, the contents of the remaining chapters of this dissertation are outlined.  

1.1 Urban Search and Rescue 

Every year there are a lot of disasters all over the world which could cause widespread destruction and 

seriously damage human health. They can be either natural or man-made disasters, and to some degree 

some of them are sometimes predictable. However, it is still nearly impossible to perfectly avoid these 

disasters, which results in urban search and rescue (USAR) scenarios. In general, when rescuers are 

committed to a USAR situation, there are lots of limitations which can reduce the efficiency of rescue. In 

some cases, a wide area needs to be searched and a part of the disaster area may not be accessible. 

Additionally, communication issues and other technical problems can arise after the disasters, which can 

also make the problem of search and rescue more difficult. Most importantly, the rescuers have to handle 

collapsed buildings, toxic chemicals, or any sort of explosive materials, which means they are seriously 

exposed to danger.  

In order to more effectively deal with these problems, robotic technologies have been recently 

introduced to USAR scenarios. Although current rescue robots are nothing more than assistants and 

cannot completely substitute human rescuers, there is no doubt that robotic applications to USAR will be 

used more actively in the near future. One of major benefits of using robots in such scenarios is to prevent 

unnecessary sacrifice of lives of rescuers. Other advantages including reduced personnel requirements 

and reduced fatigue can dramatically improve the efficiency in search and rescue. Since robots can move 

much faster than human beings, the area that the robots can explore is much larger. Moreover, the robots 

carry a lot of different sensors which allow accurate search for possible victims: a microphone can hear 

sounds of human presence in the ruins; a thermal camera can detect body heat; and a vision camera can 

search for colors distinctive from the gray dust on the ruins.  

Despite the potential of robotic technologies in USAR, actual applications are limited. This is mainly 

because technology is still not mature. However, there have been continuous efforts on robotic search and 
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rescue and some of them were fairly successful. The recent series of disasters has increased awareness of 

the possibilities of robots for assistance, and it is expected that robotic solutions play more important roles 

in future USAR. 

1.2 Objective 

The objective of this dissertation is to develop autonomous robotic strategies which can be applicable to 

search and rescue in urban disaster areas and to demonstrate the functionality of these solutions with 

experimentation both in virtual and real environments.   

1.3 Approach 

When developing and applying a new robotic solution to a real problem, there is always a dilemma 

between the need for proven technologies and the need for advanced but immature technologies. Both are 

important in that proven technologies guarantee robust behaviors of robots whereas the advanced 

technologies may solve problems which cannot be solved by proven technologies. In consideration of 

both needs, two autonomous strategies are proposed for USAR in this dissertation. The first strategy, 

map-based semi-autonomous robot navigation via tele-operation, is an immediately usable solution 

focusing more on the robustness of the solution. On the other hand, the second strategy, fully -autonomous 

search and tracking, is a future solution that emphasizes its significant potential in USAR.  

In order to achieve this objective, it is obvious that robots to be used for the two strategies are mobile, 

and that an accurate solution to robot localization in the environment therefore is necessary. The 

simultaneous localization and mapping (SLAM) technique, the state-of-the-art proven technique, can be 

the most suitable solution to robot localization, and the development of the two strategies starts from the 

improvement of SLAM technique. The improvement is achieved by using an accurate range sensor and 

matching each new scan image to a globally defined map. The map is represented as normal distributions 

(NDs) on a grid space and accurately updated with time. Due to this global correction, each new scan 

image can be accurately mapped onto the grid space and again contributes to update the grid map after it 
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is converted to a set of NDs. Since the grid space is globally fixed and NDs are registered to grid cells of 

the map, an incremental map can be easily built regardless of the size of the environment the robot 

explores.  

The semi-autonomous robot navigation strategy heavily relies on the proven SLAM technique. In 

this approach, the level of autonomy of the on-site robot is limited and the human operator at a distant 

location controls the robot given the map from the robot. Since the human operator makes decisions, the 

strategy provides a robust but possibly limited solution to USAR. For the enhancement of the limitation, 

other functionalities such as computer-aided waypoint search, which computes the next waypoint based 

on the trajectory of the robot, and semi-autonomous return, which enable the robot to safely return to 

home position in case of communication loss, are applied to the strategy. Additionally, a graphical user 

interface (GUI) is designed where the human operator can control the robot by a simple mouse clicking.  

The fully-autonomous search, tracking, localization and mapping (STLAM) introduces a team of 

robots which cooperatively search for and track objects of interest (OOIs) while each robot autonomously 

performs SLAM and explores the environment. Each robot is wirelessly connected to other robots as well 

as the base station, and they all share information. Search for the OOIs in an unknown environment is 

achieved by the area coverage method, and the efficiency of the search method is improved by frontier-

based exploration. When the OOI is detected, the robot keeps tracking the position of the OOI, so that 

everyone can realize the existence of the OOI. In case that the OOI is mobile, the robot computes the 

position of the OOI by prediction and correction using the EKF.  

1.4 Original Contribution  

The principal contributions of this dissertation are enumerated as follows: 

¶ The development of a unique grid-based scan-to-map matching technique for the SLAM problem 

that corrects the estimation error by matching scan images from a laser range finder (LRF) to the 

globally maintained grid map. 
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¶ The development of a multi-ND representation of the global map and the achievement of the 

scan-to-map matching throughout the novel ND to ND matching.  

¶ The development of map-based semi-autonomous robot navigation using tele-operation which 

allows three-dimensional environment monitoring and autonomous return of the on-site robot to 

the home position as needed. 

¶ The development of fully-autonomous and cooperative STLAM using multiple robots, where the 

robots cooperatively explore the environment, search for and track OOIs. 

¶ The development of a simulator, the so-called Platform- and Hardware-in-the-loop Simulator 

(PHILS), that allows the evaluation of cooperative performance of a team of robots. 

1.6 Publications 

To date, components of the dissertation have been presented in the following publications: 

[1] Kunjin Ryu, Tomonari Furukawa and Gamini Dissanayake, ñGrid-based Scan-to-Map Matching 

for Accurate Simultaneous Localization and Mapping ïTheory and Preliminary Numerical Studyï,ò 

2013 IEEE International Conference on Robotics and Automation (ICRA),Karlsruhe, Germany, 

submitted 

[2] Kunjin Ryu, Tomonari Furukawa and Gamini Dissanayake, ñGrid-based Scan-to-Map Matching 

for Accurate Simultaneous Localization and Mapping,ò Autonomous Robots, submitted 

[3] Kunjin Ryu , Tomonari Furukawa, Jaime Valls Miro and Gamini Dissanayake, ñMap-based 

Semi-Autonomous Strategy for Urban Search and Rescue,ò  International Journal of Intelligent 

Unmanned Systems, accepted 

[4] Kunjin Ryu , Tomonari Furukawa, ñVirtual Field Testing for Performance Evaluation of 

Cooperative Multiple Robots,ò The International Conference on Intelligent Robotics and 

Applications, Montreal, Canada, Oct. 2012 

[5] Kunjin Ryu, Tomonari Furukawa, ñA LRF-based Teleoperated Navigation Method,ò The 

International Conference on Intelligent Unmanned Systems, Chiba, Japan, 2011 

[7] Kunjin Ryu, Xianqiao Tong, Tomonari Furukawa, ñThe Platform- and Hardware-in- the-loop 

Simulator for Multi-Robot Cooperation,ò A Workshop on Frontiers of Real-World Multi-Robot 

Systems, Durham, NC, USA, 2011 
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[8] Tomonari Furukawa, Lin Chi Mak, Kunjin Ryu , Xianqiao Tong and Gamini Dissanayake, 

ñBayesian Search, Tracking, Localization and Mapping: A Unified Strategy for Multi-task Mission,ò 

INFORMS 2011 Annual Meeting, November 13-16, 2011, Charlotte, USA, 2011 

[9] Tomonari Furukawa, Lin Chi Mak, Kunjin Ryu, Xianqiao Tong, ñThe Platform- and Hardware-

in- the-loop Simulator for Multi -Robot Cooperation,ò Proceedings of the 2010 Performance Metrics 

for Intelligent Systems (PerMIS'10) Workshop, Baltimore, USA, 2010 

1.7 Outline of the Dissertation 

This dissertation is organized as follows: 

¶ Chapter 2 reviews previous efforts on SLAM as a basic technique for developing robotics 

solutions to USAR. SLAM approaches are classified in terms of map representations and 

estimation methods. Advantages and disadvantages for each approach are briefly explained and 

further discussions based on the important issues provided in this introductory chapter are 

presented 

¶ Chapter 3 describes an overview of the scan matching as one of the most relied-upon technique 

for the SLAM problem. Two specific scan matching techniques, which are the most associated 

with the scan-to-map matching, are formulated, and dead reckoning results by these techniques 

are presented.  

¶ Chapter 4 presents the unique grid-based scan-to-map matching technique which achieves 

accurate SLAM. The multi-ND representation of the grid map is first described. The scan-to-map 

matching via the ND-to-ND matching and the update of the grid map are then presented. A 

number of experimental results in simulated and real environments are presented to investigate 

the performance of the scan-to-map matching and to demonstrate the applicability of the 

technique in real SLAM scenarios.  

¶ Chapter 5 presents the semi-autonomous robotic solution for USAR based on the map accurately 

created by the scan-to-map matching technique. The concept of the semi-autonomous strategy 

throughout tele-operation together with the computer-aided waypoint search is proposed. The 
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design of the GUI which is used for tele-operated navigation and semi-autonomous return in case 

of communication loss are also described. 

¶ Chapter 6 presents the fully-autonomous and cooperative search, tracking, localization and 

maping solution for USAR scenarios. The concept and theoretical formulations of search and 

tracking using multiple robots as a team are explained. The solution is validated by integrating it 

into two real robots and testing it in a real environment. Further evaluations on cooperation 

between the robots are investigated within the developed platform- and hardware-in-the-loop 

simulator. 

¶ Chapter 7 summarizes the original contributions of the research presented in this dissertation and 

discusses areas for potential future work.  
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Chapter 2 

Simultaneous Localization 

and Mapping 

A robot commences its action by first understanding its own location and surroundings when it is placed 

in a totally unknown environment. Simultaneous localization and mapping (SLAM) is a problem of 

building a map of the environment while at the same time localizing the robot in the map. A solution to 

this problem is given by iteratively observing the surrounding environment and associating a new 

observation containing some objects to the previous observation containing the same objects. Since the 

solution does not rely on the global positioning system (GPS) for robot localization, SLAM techniques 

allow the robot to work in GPS-denied environments. The SLAM problem became even more important 

when the robot needs to autonomously explore the environment, and it is obvious that the ability of the 

robot is extremely limited without an accurate solution. [1, 2, 3, 4].  

In the SLAM problem, a map is defined as a visual representation of an environment and used as a 

reference in order for the robot to determine its position within the environment. The map can be defined 

in different ways and the data association method is heavily related to the type of the map. This chapter 

reviews the past contributions concerned with the SLAM problem in terms of the type of the map and 

underlying estimation methods. Section 2.1 describes the motivation of the need for SLAM as an  
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alternative for the traditional robot localization techniques. Section 2.2 categorizes maps into four types 

and the SLAM techniques are further summarized according to the estimation methods in Section 2.3. 

2.1 Robot Localization 

Consider a scenario either of a natural disaster or a man-made disaster where the site is highly 

unstructured and dangerous. There are limitations on what human rescuers can do, thus, the use of one or 

multiple robots onsite could accelerate the efficiency of rescue. Now the question is, ñWhat is the most 

fundamental and important task for mobile robots to operate effectively and intelligently in this 

scenario?ò For mobile robots understanding surroundings and their own locations is a prerequisite 

condition to explore environments where the robots are. The solution to this problem is known as robot 

localization, which truly enables mobile robots to explore the environments and complete duties without 

getting lost. This robot localization usually comes with the need for a map of the environment since 

otherwise robot localization might not be a complete solution for the exploration. In other words, if robot 

localization and mapping are not taken into account, the ability of the mobile robot becomes extremely 

limited.  

It is possible that the robot can explore an environment without the ability of creating a map of the 

environment if the a priori map exists. In such a case, the robot only needs to detect known landmarks to 

localize itself in the environment. However, in most cases, a prior maps are not available, robots thus 

have to construct maps by themselves in order to work properly within the given environments. The 

global positioning system (GPS) is an option for robot localization, however, the accuracy is not good 

enough for certain scenarios and it cannot be useful for indoor, underground, underwater environments 

(Figure 1).  Another option for robot localization is dead reckoning. It computes the pose of the robot 

from the previously determined robot pose and the robot motion. The motion of the robot can be directly 

estimated by sensors such as an odometer, inertial sensors, or it can be predicted by computing the 

relative position between two consecutive observations of the environment. Since robot localization by  



 

 

 

10 

   

(a) Indoor (b) Underground (c) Underwater 

 

Figure 1. Examples of GPS-denied environments 

dead reckoning is a sequential process of estimating the robot motion between a time period, errors which 

may come from the sensors, the imperfect derivation of motion model of the robot, and bad estimations of 

the robot motion from observations, can be accumulated with time. Once these errors are accumulated, 

there is no way of correcting the errors without a post processing which generally requires a heavy 

computational load and avoids real time robot exploration.  

Simultaneous localization and mapping (SLAM) is a problem of creating a map of the environment 

and simultaneously localizing the robot in the map. The solution to the SLAM problem, one of the most 

widely investigated subfield in robotics, is regarded as a better approach to deal with robot localization 

than other approaches using the GPS and dead reckoning. This is because the robot solving the SLAM 

problem keeps track of its current pose and builds the map at the same time, which enables the robot to 

correct its pose from the map and vice versa. It is therefore obvious that accurate mapping can be 

achieved only when robot localization is correct, and that the quality of the estimation of the robot pose is 

also interactively linked to the map accuracy.  

Since SLAM is an iterative process utilizing one or more sensors, there are several important issues 

underlying it. Once the robot obtains sensor readings at any position in the map, a way of correlating the 

current observation to any past observations has to be defined. It is called data association and plays an 

important role because the robot pose can be well estimated only when data association is correct. For 

successful data association, a large number of techniques have been proposed, and the type of data 

Figure 1. Examples of GPS-denied environments (source: google images, under fair use, 2012) 
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extracted from the observation to be used for data association can vary by the data association techniques. 

One common type of data is a set of features, or landmarks. Some features, especially when the 

observation is obtained by a camera, can also be distinguished by their colors. Another common type of 

data is an unprocessed scan image obtained from range sensors such as an ultrasonic sensor and a laser 

range finder (LRF). This type of data is generally composed of a set of points that describe relative 

positions from the sensor to detected objects. Any specific data association technique might not perform 

well in some conditions, while the other techniques can be good solutions to data association. In this 

sense, the SLAM capability can be improved by using multiple data association techniques together.  

Computational efficiency and noises are also important issues that need to be considered for solving 

the SLAM problem. A mobile robot is equipped with multiple sensors for SLAM and the net amount of 

data and computations are thus huge. If the environment is very large, an efficient way of handling such 

big data is a key to real-time processing which is necessary to the mobile robot. Moreover, computational 

efficiency is important since it can improve the accuracy of SLAM by having more computations given a 

computational ability. Meanwhile, the accuracy of SLAM can significantly drop when there exist large 

noises. Possible sources of the noises are hardware such as sensors and the environmental conditions 

including the reflection of light. Although it is not easy to identify and estimate the noise in many cases, 

the noise needs to be removed, or at least reduced, in order to achieve certain level of accuracy in solving 

the SLAM problem.  

Other challenges include dynamic environments and objects, and closing the loop when the robot 

comes back to the previously explored area. Since there are so many related, SLAM approaches do not 

always focus on every problem at the same time, but they address their own priorities in some aspects.  

2.2 Maps 

This section reviews fundamentals of most common ways of representing the environment, an occupancy 

grid map, a topological map, a feature-based map, and a scan-based map. This includes definitions and 

properties of the maps and description on localization using the maps is also presented. 
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2.2.1 Occupancy Grid Map 

An occupancy grid map (Figure 2) is one of the most common ways of creating a metric map in robotic 

mapping [5, 6, 7, 8]. It is a probabilistic representation of the environment by grid cells with binary 

random variables. Due to Bayes theorem underlying the algorithm, occupancy mapping can efficiently 

reconstruct an environment from noisy and uncertain sensor readings in real time. In occupancy grid map, 

the mapping space is evenly divided into either two-dimensional or three-dimensional grid cells each of 

which has the probability indicating if it is occupied, open, or not explored. On this space, occupancy 

mapping needs to predict the posterior probability of the map given the history of the sensor 

measurements and that of the robot pose, where the robot pose is assumed to be known. At the initial 

state, since there is no prior information on the environment, every grid cell over the entire space remains 

as being unexplored. As the mapping space gets large and the number of grid cells increases, the 

dimensionality of this problem becomes extremely high. To avoid this computational issue, the problem 

is separated into small problems that deal only with a single cell without loss of generality.  

One of the major benefits of the occupancy grid representation is that it can be very effectively used 

for robot navigation [9, 10, 11] including path planning [12] and collision avoidance [13] due to its simple 

and clear classification in defining the environment. The occupancy grid map has been built by different 

Figure 2. An example of occupancy grid map 
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sensors such as sonar sensors [5, 14], LRFs [15], and stereo vision [16], and created in three-dimensioanl 

space [17, 18]. In addition, the occupancy grid representation can make the map have multiple different 

resolutions even on the same environment. In other words, the resolution of the map is tunable and the 

resolution of the grid map can be dependent on the complexity of the environment [19].  

On the other hand, one of drawbacks is that computational efficiency significantly drops when there 

is a need for an accurate mapping. More importantly, the map does not have a proper representation of 

uncertainties of the sensor and the vehicle, therefore, the map sometimes leads to divergence in robot 

localization. The occupancy grid map can be easily built, but at time same time the update is not as easy 

as the creation of the map. Although occupancy grid mapping has been used in changing environments 

[20], it is not generally suitable for such environments. 

2.2.2 Topological Map 

Contrary to the occupancy grid map, a topological map shown in Figure 3 does not depend on metric 

measurements. The map is mainly composed of nodes and edges which maintain the relationships 

between nodes. Nodes are abstracted models which are extracted from environmental entities. While the 

nodes refer to specific locations in the environment, the edges provide information on connections, or 

paths, between nodes. Since the topological map is a conceptual image with lack of scale, distances and 

directions describing the map are different from those in real environment. In the topological map, it is 

assumed that each node has to be somehow recognizable and unique from other nodes so that the robot is 

able to distinguish it from other nodes. This is the most important and difficult process, since the robot 

gets lost if it fails either to recognize a place or to match the place to the correct node in the map. Once 

the robot gets the location, the identification of the place in the map can be done by associating the 

observation taken at the location with node descriptions. In order for the location to be recognizable and 

distinguishable in the map, vision-based techniques [21, 22] as well as LRF-based methods [23] are used.  

As an a prior map, a topological map can be used for localizing the robot. However, there exist 

limitations on doing this, because of the difficulty of place recognition mentioned above and the fact that  
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Figure 3. An example of a topological map (source: google images, under fair use, 2012)  

 

the map does not contain metric parameters which precisely describe the environment. In this sense, the 

localization based on the topological map is not regarded as SLAM. On the other hand, it is useful for 

robot navigation where a series of nodes functions as waypoints that the robot needs to sequentially visit 

[24].  

2.2.3 Feature-based Map 

A feature-based map, or simply a feature map, describes the environment by a collection of features 

which can be different types of geometric models such as points, lines, curvatures, and any arbitrary 

shapes (Figure 4). Under the assumption that the robot can perfectly recognize features from the 

environment and their positions are known, the feature map can be efficiently used for the robot 

localization problem. Given information on all features in the map, the robot can calculate its current pose 

by obtaining a set of observations. Throughout the process of feature extraction, the SLAM techniques 

based on the feature map [25, 26] recognizes detectable features in its field of view and associates these 

features with features in the map. The observed features are added to the map using the pose of the robot 

which is at the same time estimated from the feature map. Similar to the occupancy grid map, the feature 

map is also a subdivision of metric maps where features are in the two-dimensional or three-dimensional 

Cartesian coordinate system. However, compared to the occupancy grid map, the feature map manages  
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Figure 4. An example of feature-based map 

 

data representing the environment more efficiently because it only stores features. This advantage over 

the occupancy grid representation can be more emphasized when the environment are very large, but can 

be represented by limited number of features.  

A classical technique for associating features was to use the gated nearest neighbor (NN) algorithms 

[27, 28, 29]. These approaches compute the distance of a feature of the new observation to every existing 

feature and select the existing feature of the minimum distance as the corresponding feature. The 

approaches introduced a breakthrough to the feature-based SLAM, but since each new feature in the NN 

algorithms corresponds to a single existing feature, incorrect data association might be caused by spurious 

features. Other data association techniques include signature string matching [30, 31], and batch 

correspondence methods [32, 4, 33], which handle spurious features more robustly by adding search 

algorithms. Since the feature map only considers the extracted data, existing filters such as the EKF and 

the Rao-Blackwellized particle filter have been applied to maintain the feature map, which will be 

detailed in the following section. For instance, FastSLAM [34] maintained multiple candidates of existing 

features for each new feature using the Rao-Blackwellized particle filter and demonstrated its 

effectiveness in several real environments [35, 36].  
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Although the feature map has been widely used for the SLAM problem, there exist some drawbacks 

due to the inherent problem of the feature-based representation. The feature map does not contain any 

geometric information on the area that is not represented by features, so it cannot be suitable for robot 

navigation, path planning, and obstacle avoidance. In real environments, if they are not well defined by a 

set of features, the feature map cannot be used for solving the SLAM problem. This issue is related not 

only to environmental conditions but also to feature extraction techniques. To enhance the ability of 

modeling accurate features, a number of algorithms such as RANdom SAmple Consensus (RANSAC) 

[37], iterative end point fi t (IEPF) technique [38] and split and merge [39, 40] have been introduced. Even 

though the environment can be easily described by features, the feature map has a problem in data 

association. This is more important issue, since successful SLAM is heavily influenced by the successful 

association of the new observation to the map. The false associations always cause wrong pose estimation 

of the robot and accordingly the accuracy of the feature map is also degraded. The increase of 

uncertainties of both robot and the map becomes exponentially large as data association keeps failing.  

The feature-based data association has been widely used for the SLAM problem and demonstrated 

its effectiveness in several real environments. However, its capability highly relies on the success of the 

feature extraction from the observation. Moreover, even if features are well modeled and extracted, 

associating the exact same features is not an easy process. The chance of inappropriate data association 

increases when diff erent features in the environment look similar. 

2.2.4 Scan-based Map 

Due to the superiority of the laser sensors in accuracy over other vision sensors, the scan-based map has 

come to be popular in SLAM. Similar to the occupancy grid map and the feature-based map, the scan-

based map is also a metric map, but it is usually composed of a collection of raw scan images each with 

its own pose of the robot as shown in Figure 5. It can be a specific type of the feature-based map, where 

the scan images are considered as the features. Unlike the feature-based map, the scan-based map does  
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Figure . Scan-based map is a collection of raw scan images and corresponding robot poses 

not require additional feature extraction processes which can improve both computational efficiency and 

data association accuracy. Since raw scan images are directly used as observations, there is no loss of data, 

which enables the scan-based map to fully describe the environment regardless of the existence of 

features. However, when the environment is large and a lot of scan images are thus required to be stored. 

This results in the increase of memory consumption and a sacrifice in computational efficiency.  

In comparison to the feature map, the scan-based map is relatively free from data association 

problem since there needs no explicit feature model to define. In scan-based SLAM, data association is 

commonly achieved by a technique called scan matching, or scan-to-scan matching. In order to match the 

new scan to the past scans using the scan-to-scan matching techniques for achieving SLAM, a number of 

approaches have been proposed with the development of additional strategies. Early efforts include the 

work of Lu and Milios [41] which performed the matching of the new scan to the previous scan and 

further matched all the scans by storing the past scans. This globally consistent matching approach has 

been successfully implemented together with different scan matching techniques [42, 43, 44]. Thrun et al. 

[45] used the expectation maximization (EM) algorithm that finds the best matching past scan to the new 

scan from all the past scans. The matching of the new scan to all the past scans is then achieved by the 

scan-to-scan matching of the new scan to this best past scan. Although they have demonstrated 

Figure 5. Scan based map composed of raw scan images and robot poses 



 

 

 

18 

capabilities in accurate matching, the approaches could still see accuracy issues without a loop closure as 

they do not either implement a powerful scan-to-scan matching or utilize all the past scans. Due to the 

need for matching to all the past scans for the best accuracy. Bosse et al. [46] introduced a subspace-to-

map matching technique where the new scan is matched to all the past scans of a subspace of concern 

with any scan-to-scan matching technique and the subspaces are subsequently associated to each other for 

global mapping. This technique achieves the matching of the new scan to all the past scans, but the 

accuracy could still drop since the new scan points not in the subspace are not matched to the past scans. 

2.3 Estimation Method 

This section briefly reviews SLAM techniques according to the estimation methods. The most popular 

approaches include using the EKF, the particle filter, and maximum likelihood which is separated 

according to whether a probabilistic method is implemented or not. 

2.3.1 EKF SLAM  

In EKF approach [26, 47, 48, 49, 50], the system noise is defined as the Gaussian distribution and non-

linear models are linearized so that the Kalman filter can be used. The EKF can be applied to any sensor 

readings as long as features exist in the observation and they are recognizable. Fundamental formulation 

is presented in Appendix 1. Especially when the robot model is close to the linearity, the uncertainty 

model by the EKF can produce a solid map [26]. The robot pose estimation thus becomes reliable after 

observing features repeatedly since the positions of landmarks become more certain with multiple 

observations and they are correlated to the robot pose estimation. The uncertainty of each feature is also 

correlated to other features, which enables the robot to localize itself precisely within the environment. 

A major problem underlying the EKF SLAM is that the linearization of inherent nonlinearities of 

both the vehicle motion and the observation models causes an inconsistent performance. In such a 

scenario that the true uncertainty of the robot exceeds a limit, a large error in the map results in 

inconsistency in mapping. There is higher possibility that this happens in large-scale environments and 
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inconsistency of mapping algorithm in the environments is unavoidable [51]. The unscented Kalman filter 

deals better with nonlinearities in the motion model of the robot [52]. A mapping algorithm, Robocentric 

Map Joining, that limits the level of uncertainty in the incremental map has been introduced to improves 

consistency of the EKF SLAM [53]. Based on split covariance intersection (SCI), Julier and Uhlmann 

[54] developed consistent, constant time algorithm maintaining an extremely large map in the global 

frame. 

Despite extraordinary efforts in the EKF SLAM, the performance of the EKF is still heavily affected 

by how to define and extract features from the observations.  In order to successfully identify features for 

the EKF SLAM, the features are frequently enforced to be sparse [55, 56], which allows the positive 

feature identification. The sparse features are usually defined when the features are extracted from 

cameras rather than the LRF, which can be effective in both successful identification of features and 

computational efficiency. However these sparsely distributed features cannot accurately describe the 

environment, furthermore, they can be more sensitive to misassociation between features since the 

number of features is relatively limited.  

The EKF estimation for the SLAM problem is theoretically proven techniques and has shown its 

applicability to the SLAM problem. However, the underlying properties of the EKF such as the 

linearization error and the Gaussian assumptions for the errors are not always valid in real SLAM 

scenarios.  

2.3.2 Particle Filter  SLAM  

As an alternative solution to the EKF SLAM, efficient approaches based on particle filtering have been 

introduced [57, 58, 59, 60]. In these approaches, each particle in the RBPF represents a possible robot 

trajectory and a map. To learn accurate grid maps Eliazar and Parr [61] and Hähnel et al. [62] utilized the 

RBPF with additional approaches. In the first work, Eliazar and Parr described a new map representation 

called distributed particle (DP) mapping, which enables maintaining and updating hundreds of candidate 

maps and robot pose efficiently. Unlike other methods that require feature extraction and data association 
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process, this approach does not rely on the presence of landmarks, but uses the LRF only. In the second 

work, an improved motion model was presented, which reduces the number of required particles. Base on 

the work of Hähnel et al., Howard presented an approach to learn grid maps with multiple robots [63]. 

The focus of this work lies in how to merge the information obtained by the individual robots and not in 

how to compute better proposal distributions.  

The common problem of using the RBPF is its computational complexity to achieve high accuracy in 

SLAM. In the context of the feature based SLAM, Montemerlo et al. [34] presented a RBPF that uses a 

Gaussian approximation of the improved proposal. This Gaussian is computed for each particle using the 

Kalman filter that estimates the pose of the robot. Each particle possesses N low-dimensional EKFs, one 

for each of the N landmarks. In this case, the computational complexity is /ὔὓ where M is the number 

of particles in the particle filter. Updating this filter requires /ὓÌÏÇὔ  times, with or without 

knowledge of the data associations. However, this approach can be used only when the map is represented 

by a set of features and when the error is assumed to be Gaussian. To improve the computational 

efficiency, Grisetti et al. [64] proposed an approach to reduce the number of particle by considering not 

only the robot movement but also the most recent observation.  

Other contributions include using the RBPF in combination with the camera-based vision 

SLAM .Elinas et al. [65] presented a stereo vision SLAM using RBPF that landmark estimation are 

derived from stereo vision and motion estimates are based on sparse optical flow. Hu et al. [66] also 

presented a vision-based SLAM with implementation of RBPF, which is able to track artificial landmarks 

such as multi-colored cylinders. 

The RBPFs have been introduced as another effective way of estimation methods in the SLAM 

problem. Unlike the EKF SLAM, the particle filter based SLAM techniques do not suffer from the 

linearization error or the Gaussian assumptions. However, in order to attain a certain level of accuracy in 

the estimation process, they have to maintain a large number of particles.  
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2.3.3 Maximum Likelihood  SLAM  

Maximum Likelihood SLAM approaches compute most likely scan or map given the history of sensor 

readings by optimizing the objective function which can vary by the approach [67, 68, 70].  In order to do 

this, the robot poses are regarded as nodes and relations between nodes, or the network, are required to be 

constructed. Lu and Milios [67] applied the least mean square error together with the creation of the 

network between robot poses. In this approach, when the robot returns to a previously explored region, all 

the networks are globally built at the same time. Gutmann et al. [68] proposed an effective way for 

constructing such a network and for detecting loop closures, while running an incremental maximum 

likelihood algorithm. When a loop closure is detected, a global optimization on the network of relation is 

performed. HÁhnel et al. [69], proposed an approach which is able to track several map hypotheses using 

an association tree. Since these approaches correct the robot pose at once, the estimation of the robot pose 

is not accurate until the nodes are connected to one another.  

Olsen et al. [70], on the other hand, proposed a graph-based approach that updates the network 

locally by applying stochastic gradient descent to minimize the error. By doing so, the estimation of the 

robot can be accurately maintained without the global correction. Grisetti et al. [71] extended the work of 

Olsen by introducing a tree structure, which accelerates the speed of convergence. Kaess [72] also 

proposed the incremental smoothing and mapping which allows real-time SLAM in large environments. 

This approach utilized a QR decomposition to correct the poses of the nodes in the network can be 

efficiently corrected by back substitution. Another real-time SLAM approach is using the so-called 

Treemap algorithm which ignores the weak correlations between distant locations [73] . 

Maximum likelihood SLAM techniques can provide an accurate solution to the SLAM problem. 

However, since they iteratively perform their estimations, low computational efficiency is generally their 

weakness.    
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2.4 Summary 

This chapter has reviewed the early efforts on the SLAM problem in terms of the type of the map and the 

underlying estimation methods. The map can be roughly classified into the occupancy grid map, the 

topological map, the feature-based map, and the scan-based map. The occupancy grid map represents the 

environment by grid cells each of which has the probability indicating if it is occupied, open, or not 

explored. Since the occupancy grid map contains the global information on the environment, it is useful 

for robot navigation. The topological map is not a metric map and composed of nodes and edges. The 

map focuses on the special relations between nodes. The feature-based map maintains uniquely defined 

features in the Cartesian coordinate system. A popular method to maintain the features is to use the EKF, 

and the performance of the feature-based SLAM heavily relies on the feature extraction capability. The 

scan-based map is a collection of unprocessed scan images with the corresponding locations from which 

the scan have taken. Since the scan-based map does not require any feature extraction, data association is 

relatively straight forward. 

Past efforts on the SLAM problem can be also classified by the estimation method. The EKF SLAM 

estimates the robot pose and update the map in the EKF framework. This has proven its capability in 

certain situations, however, the inherent EKF linearization error can degrades the result. The particle filter 

SLAM is another popular approach that uses RBPF to estimate the robot pose and to create the map. It 

might provide an accurate solution to the SLAM problem, but the accuracy significantly drops if the 

number of particles is not enough. The maximum likelihood SLAM iteratively estimates the robot pose 

by computing the most likely scan or map. Although a number of approaches have proved real-time 

SLAM performance, there is still a chance that the accuracy can be an issue when accelerating the speed 

of convergence.  
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Chapter 3 

Scan Matching 

3.1 Introduction  

Figure 6 illustratively shows the robot with a range sensor observes its surrounding environment at 

different time steps while it is moving. Having the two different scans, they are registered and matched to 

each other on the same coordinate system by a technique called the scan matching to find the rigid body 

transformation between the positions from which the two scans are taken. For the mobile robot to localize 

itself the scan matching technique is useful, since sensor readings for the scan matching do not require 

feature extracting processes, which prevents inappropriate data association caused by the feature 

extraction when matching one scan to another. In addition, the sensors used for the scan matching is more 

accurate and much more robust than those who directly capture the dynamics of the robot. In recently 

years, the scan matching plays a very important role in solving the SLAM problem due to its good 

performance as well as its robustness. As a result, a large number of scan matching techniques have been 

proposed and utilized for achieving the robotic localization and mapping with the development of 

additional strategies. 

One of the most popular scan matching techniques for the SLAM problem is based on the iterative 

closest point (ICP) technique [74], which allows the point-to-point matching between two scans by  
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(a) (b) 

Figure : (a) A robot takes two scans (blue and red) at different poses while it is moving. (b) The two scans  

minimizing the total distance between them. Despite the popularity of the technique, the point-to-point 

correspondence may yield inappropriate data association since two corresponding points are not actually 

on the same position in the environment. This point-wise correspondence also makes the technique 

sensitive to the false detection. In order to avoid the inherent drawbacks of the ICP technique and to 

enhance its performance, a lot of variants have been proposed. Zhang [75] added a robust outlier rejection 

method to the ICP technique when selecting the correspondence. The k-d tree, data structure for storing a 

finite set of points from a k-dimensional space, was additionally implemented to accelerate the search for 

the point-wise correspondence [76, 77]. Conventional ICP techniques uses the Euclidean distance to 

compute the distances between scan points, and the least square sums as maximum likelihood estimator. 

However, they do not provide a good estimation when the robot rotates. To overcome this problem, 

Iterative Dual Correspondence (IDC) [78] establishes two sets of correspondences, one dealing with the 

translation using the Euclidean distance and the other with the rotation by means of an angular distance. 

Metric-Based Iterative Closest Point (MBICP) [79] defines a new distance measure that simultaneously 

accounted for translation and rotation errors.  

Instead of using the point-to-point correspondence, point-to-line based [80, 81] and point-to-plane 

[82] techniques were introduced where a point corresponds to a line and a plane, respectively. These 

Figure 6. Previous scan (blue) and new scan (red) 
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approaches reduced the effects of exact correspondence, but they required the feature extraction. Biber 

and Straßer [42] proposed another scan matching technique by representing a subdivided grid space and 

collectively describing a scan within each grid cell by a ND. This grid-based technique, the so-called 

Normal Distribution Transform (NDT), spatially associates every point of the new scan in a grid cell to 

the ND in the cell. The NDT requires neither the point-to-point correspondence nor feature extraction as 

points with no feature are collectively handled. However, the scan matching performance of the NDT 

relies on the size of the grid cell and outliers from the false detection. Moreover, the NDT scan matching 

might fail when the initial guess that matches two scans is not good. Inspired by the NDT scan matching, 

Takubo et al. [83] implemented the ICP technique as the initial guess for the NDT scan matching and 

further proposed a technique to eliminate outliers. Takeuchi and Tsubouchi [84] proposed the extension 

of the two-dimensional NDT scan matching to the three-dimensional scan matching. In their approach, a 

scan is divided into voxels and the ND of each cell is approximated by scan points in the cell. In order to 

match three-dimensional scans using the two-dimensional NDT method, Ripperda and Brenner [85] 

applied an algorithm to cut a slice which is parallel to the ground out of three-dimensional data. 

Additionally, for consistent convergence, coarse-to-fine strategy that changes the cell size was 

implemented.  

Other past efforts include scan matching techniques that incorporate appropriate sensor uncertainty 

models. Pfister et al. [86] presented a method that weights the contribution of each scan point according 

to its uncertainty, and Montesano et al. [87] introduced probabilistic computation of the correspondences 

between the scans.  

In the next sections, the scan matching is technically reviewed. Section 3.2 defines the previous and 

new scan and describes the process of the scan matching. Section 3.3 and 3.4 present the fundamental 

formulations of the ICP and the NDT scan matching techniques since these are the most associated with  
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Figure 7.  Scan-to-scan matching process 

the scan-to-map matching technique which will be detailed in the next chapter. In Section 3.5 an 

experimental result of the dead reckoning based on the scan matching techniques is presented as an 

application of the scan matching.  

3.2 Scan Matching Techniques 

Figure 7 shows the schematic diagram of the general scan-to-scan matching technique. When scans are 

taken by a range sensor on a moving robot, they are sequentially obtained with respect to different robot 

coordinate systems. Let ὤ ὂ ȿᶅὭɴ ρȟỄȟά  be the previous scan in the previous robot 

coordinate system, and ὤ ὂȿᶅὭɴ ρȟỄȟά  be the new scan in the new robot coordinate 

system, where Ὧ is the time step, ά is the number of points in the scan. Ὑ  and Ὑ denote the previous 

robot coordinate system and the new robot coordinate system.  

Given the two scans, a scan-to-scan matching technique iteratively finds relative transformation 

parameters, Ἰ   ὸȟὸȟ‰ , composed of a translation, ὸȟὸ , and a rotation, ‰ , between the 

two coordinate systems by locally matching the two scans. The first step is to transform the new scan in 

the new robot coordinate system to that in the previous coordinate system using the currently guessed 

transformation parameters. Note that the initial transformation parameters can be estimated from readings 

of other sensors such as an odometer, or can be set as zeros assuming that the two scans are close enough. 

Mathematically, the transformation  
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of a point of the new scan in the new robot coordinate system to that in the previous robot coordinate 

system is performed as  

ὂ Ἰ   ἠ‰ ὂ Ἴ  
ÃÏÓ‰ ÓÉÎ‰
ÓÉÎ‰ ÃÏÓ‰

Ú

Ú

ὸ

ὸ
 3.1 

where Ἴ ὸȟὸ , and ὂ Úȟ Ú .  

Then each point of the new scan ὤ  is associated with ὤ  and finds the correspondence set, 

ὣ ὣȿ ᶅὭɴ ρȟỄȟά , to which the new scan is to be compared. Note that the number of 

corresponding elements may be less than ά if any new scan point does not find a corresponding element. 

The new transformation parameters are finally computed by minimizing the error metric between the new 

scan and the correspondence, or equivalently maximizing the score function indicating how good the 

scan-to-scan matching is. The way of finding ὣ  and of computing the transformation parameters 

varies by scan-to-scan matching techniques, which will be detailed in the following subsections. The 

iterative identification of the transformation parameters stops when the absolute value of the increment of 

computation is lower than the specified threshold value: 

ɝ Ἰ   3.2 ‏ 

3.3 ICP 

When the new scan is transformed to the coordinate system of the previous scan, the ICP scan-to-scan 

matching technique calculates the distance to all previous scan points from each new scan point and finds 

the corresponding point, i.e. ὣ ὁ , that has the minimum distance (Figure 8). The 

corresponding point has the shortest distance to the new scan point: 



 

 

 

28 

 

Figure Point-wise correspondence is determined based on the nearest neighbor criterion (left). The  

 

Ὠ ὂȟ ὁ ÍÉÎὨ ὂȟ ὂ ȿᶅὮɴ ρȟỄȟά  3.3 

where ὨϽȟϽ denotes a distance between two points. Given the correspondence the derivation of Ἰ    is 

equivalent to solving the minimization problem of the error metric: 

Ὡ Ἰ    ὁ ἠ‰ ὂ Ἴ  O  ÍÉÎ
Ἰ
   
 

 3.4 

The ICP technique solves the minimization problem using the singular value decomposition (SVD) [88]. 

The means of the new scan and its corresponding point set are first computed as: 

ὂ
ρ

ά
ὂȟ ὁ

ρ

ά
ὁ 3.5 

Defining Ἡ ὂ ὂ and Ἢ ὁ ὁ, the error metric, Ὡ Ἰ   , in Equation 

3.4 can be rewritten as 

Ὡ Ἰ   Ἢ ἠ‰ Ἡ ὁ ἠ‰ ὂ Ἴ   3.6 

Decoupling the rotation and the translation, the substitution of ὁ ἠ‰ ὂ Ἴ π into 

Equation 3.6 yields 

Figure 8. Point-wise correspondence and the matching of two scans 
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Ὡ Ἰ   Ἢ ἠ‰ Ἡ  

Ἢ ἠ‰ Ἡ Ἢ ἠ‰ Ἡ  

                                  В Ἢ В Ἡ ÔÒἠ‰ Ἒ  

3.7 

where Ἒ В Ἡ Ἢ . In the above equation, the error metric is minimized when ÔÒἠ‰ Ἒ  is 

maximized. Decomposing Ἒ  by the SVD into Ἒ ἣἎἤ, the transformation matrix, ἠ‰ , and Ἴ 

are finally given by 

ἠ‰  ἤἣȟ     Ἴ ὁ ἠ‰ ὂ 3.8 

where ἣ  and ἤ  are real or complex unitary matrices, and Ἆ  is a rectangular diagonal matrix with 

nonnegative real number entries [88]. From ἠ‰  the orientational transformation parameter, ‰ , can be 

derived as 

‰ ÁÔÁÎςὙ ȟὙ   
3.9 

where Ὑ  is the entry of ἠ in the ith row and the jth column. 

3.4 Normal Distribution Transform  

Unlike the ICP technique the NDT scan-to-scan matching technique compares each new scan point to a 

ND since the NDT technique maps ὂ onto a grid space having cells each represented with a ND.  

The NDT technique first defines a grid space with respect to the previous robot coordinate system and 

derives a ND for each grid cell after identifying ὤ  on the space as shown in Figure 9. For the Ὦth 

cell, the mean and covariance matrix are computed by 
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Figure 9. Two-dimentional grid space and normal distributions created by scan points 

 

ὂ
ρ

ά
ὂ  

ɫ
ρ

ά
ὂ ὂ ὂ ὂ  

3.10 

where ὂ  is the Ὥth point of the previous scan in the Ὦth cell, and ά  is the number of scan points 

in the cell.  

After transforming every new scan point using the currently guessed transformation parameters, each 

point is located in some grid cell. If ὂ  sees a ND created by the previous scan in the cell, the 

correspondence or the properties of the ND, i.e. ὣ ὂ ȟ ɫ , are those of the ND of the 

previous scan: 

ὂ ᴺ ὂ ȟ    ɫ ᴺ ɫ  3.11 
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Upon completion of the identification of the correspondence, the derivation of Ἰ    is equivalent to 

solving the maximization problem of the score function, Ó Ἰ   : 

ί Ἰ   ÅØÐ
ὂ ὂ ɫ ὂ ὂ

ς
ᴼ ÍÁØ

Ἰ
   

 3.12 

Since the score function is the sum of piecewise smooth functions, a standard quadratic optimization 

method can be used. Applying Newton's method, Ἰ    is iteratively computed by the increment 

ɝ Ἰ   : 

ɝ Ἰ   ἒ Ἧ  3.13 

where ἒ  and Ἧ  are the sums of the Hessian, ἒ , and the gradient, Ἧ , of the objective function 

Ὢ ί Ἰ   : 

ἒ ἒ ȟ    Ἧ Ἧ  3.14 

 

Note that ἒ  has to be positive definite for the minimization problem to be solvable. If not, ἒ  is 

adjusted by adding ʇἓ which makes it positive definite. For the Ὥth new scan point ὂ  in the Ὦth cell, 

the gradient vector Ἧ  is given by 

Ἧ ὂ ɫ
‬ὂ

‬ὸȟὸȟ‰
ÅØÐ

ὂ ɫ ὂ

ς
 3.15 

and the m,n entry of ἒ  is computed by: 
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Ὄ άȟὲ ÅØÐ
ὂ ɫ ὂ

ς
ὂ ɫ

‬ὂ

‬ὴ ά
ὂ ɫ

‬ὂ

‬ὴ ὲ

ὂ ɫ
‬ὂ

‬ὴ ά‬ὴ ὲ

‬ὂ

‬ὴ ὲ
ɫ

‬ὂ

‬ὴ ά
 

3.16 

where ὂ ὂ ὂ  and the first and second partial derivative of ὂ  can be derived as below: 

‬ὂ

‬ὸȟὸȟ‰

‬ὂ

‬ὴ ρ
ȟ
‬ὂ

‬ὴ ς
ȟ
‬ὂ

‬ὴ σ

   ρ     π       ᾀ ÓÉÎ‰ ᾀ ÃÏÓ‰  

π     ρ           ᾀ ÃÏÓ‰ ᾀ ÓÉÎ‰
 3.17 

‬ὂ

‬ὴ ά‬ὴ ὲ

ừ
Ử
Ừ

Ử
ứ ᾀ ÃÏÓ‰ ᾀ ÓÉÎ‰

ᾀ ÓÉÎ‰ ᾀ ÃÏÓ‰
                         ÆÏÒ ά ὲ σ 

                 
π
π
                                                     ÏÔÈÅÒ×ÉÓÅ

 3.18 

when Ў Ἰ    is computed, Ἰ    is then updated by: 

Ἰ   ᴺ Ἰ   Ў Ἰ    3.19 

 

3.5 Dead Reckoning using Scan Matching Techniques 

Figure 10 shows the dead reckoning based on the ICP and the NDT scan matching technique. In this 

experiment the robot took 362 scans all together in a real indoor environment. The new scan was matched 

only to the previous scan at every acquisition of the new scan, and the ICP and the NDT techniques 

derived the transformation parameters in real time. As shown in the figure the dead reckoning by the NDT 

performed better than that by the ICP technique in this environment. This is because the scan points on 

the same object in the environment after the ICP scan matching do not lie on the same position in the map, 

which indicates that the estimation of the transformation parameters are not accurate. Since the scan 

points are transformed after the scan matching process, the estimation of the robot pose is also considered 
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to be wrong. On the other hand, the quality of the map created by the NDT dead reckoning is reasonable 

good in the qualitative manner, and it can be said that the pose of the robot is thus relatively well 

estimated.  

Figure 11 shows trajectories of the robot when the robot pose is estimated by the ICP and the NDT 

scan matching technique, where the initial position for each technique is equivalent to πȟπ . The 

trajectories of the robot by the two techniques are almost on the same locations for a while after the initial 

time step. However, they become different around the location of πȢχȟςȢυ , since the scan matching 

techniques start deriving different transformation parameters. Considering that the quality of the map 

created by the ICP dead reckoning is not good, it is expected that the error between the true and the 

estimated locations of the robot is greater when the robot pose is estimated by the ICP scan matching than 

the NDT scan matching.  

Figure 12 shows the position and the orientation differences at each time step between robot poses 

by the ICP and the NDT dead reckoning. As can be seen in the previous figure showing the trajectories of 

the robot, the position and the orientation differences for the first 46 time steps are very small. Since then, 

the position and the orientation differences become large, which leads to difference trajectories by the ICP 

and the NDT dead reckoning.  

Although the NDT scan matching technique has shown a better result in this experiment, it is not 

necessarily true that the NDT always works better than the ICP or other scan matching techniques. The 

scan matching performance can vary by a lot of conditions such as the environmental conditions and the 

default parameters for the scan matching technique. In other words, the ICP scan matching technique can 

derive the transformation parameters more accurately than the NDT technique in some other occasions. A 

scan matching technique always brings the scan matching error and this is the reason that the scan 

matching technique cannot be a solution to the SLAM problem by itself and that it should be used as a 

technique for solving the SLAM problem. 
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(a) Sequential ICP scan matching 

 

(b) Sequential NDT scan matching  

Figure Dead reckoning after 362 scans 

 

Figure 10. Dead reckoning after 362 scans 
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Figure 11. Trajectories of the robot by the ICP and the NDT dead reckoning 

 

  

  

 

 

3.6 Summary 

This chapter has briefly reviewed existing scan matching techniques and presented mathematical 

formulations of two specific techniques, the ICP and the NDT. The ICP technique finds corresponding 

Figure 12. Position difference (left) and orientation difference (right) between the robot poses estimated 

by the ICP and the NDT dead reckoning 
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points for every new scan point and estimates the transformation parameters by minimizing the error 

metric between the new scan points and their correspondence. This technique is theoretically simple and 

easy to implement. However, the error metric to be minimized requires the point-to-point correspondence 

and the performance of the ICP is thus sensitive to the point-to-point correspondence. Unlike the ICP 

technique the NDT scan matching technique does not need the point-to-point correspondence. It 

represents the previous scan, to which the new scan is to be matched, by a collection of ND on a grid 

space. The NDT technique then associates multiple new scan points to one ND to compute the 

transformation parameters. The scan matching performance can be increased by avoiding the point-to-

point correspondence. However, the capability of the NDT technique can be affected by the grid size and 

the initial guess for the transformation parameters.  

The experimental result shows that the dead reckoning using the NDT has worked better than that 

using the ICP scan matching in the specific environment. However, any scan matching technique cannot 

show its superiority over other scan matching techniques in all situations. Moreover, every scan matching 

technique generates the scan matching error, which means additional efforts that associate the new scan to 

the past scans are required to solve the SLAM problem.  
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Chapter 4  

Scan-to-Map Matching 

This chapter proposes a grid-based scan-to-map matching technique for SLAM. At every acquisition of a 

new scan, the proposed technique matches the new scan to the previous scan similarly to the conventional 

techniques, but further corrects the error by matching the new scan to the globally defined map. In order 

to achieve best scan-to-map matching at each acquisition, the map is represented as a grid map with 

multiple NDs in each cell. Additionally, the new scan is also represented by NDs, developing a novel ND-

to-ND matching technique. The ND-to-ND matching technique has significant potential in the 

enhancement of the global matching as well as the computational efficiency. Section 4.1 briefly describes 

the overall process of the scan-to-map matching technique. Section 4.2 presents the grid map 

representation and selection of properties of the grid map to match a new scan to the map. The derivation 

of the transformation parameters and the update of the grid map are detailed in Section 4.3 and 4.4, 

respectively. Section 4.5 investigates the performance of the scan-to-map matching throughout a number 

of experimental results whereas Section 4.6 summarizes this chapter.  
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4.1 Overview 

Figure 13 shows the overall process of the proposed grid-based scan-to-map matching technique which is 

based on the NDT's grid-based matching. Instead of the previous scan, the proposed technique matches 

the new scan to the globally defined map which is an accumulation of new scans after the scan-to-map 

matching. When the new scan ὤ is obtained, the proposed technique first performs the ICP scan-to-

scan matching to derive the transformation parameters, Ἰ   , and transforms each new scan point in 

the Ὑ coordinate system to that in the Ὑ  coordinate system: 

ὂ Ἰ   ἠ‰ ὂ Ἴ  4.1 

 

where Ἰ   Ἴ ȟ   ‰ . Having the new scan matched to the previous scan, each new scan 

point ὂ is further transformed to that in the global coordinate system, Ὃ , using the robot pose 

estimated at the previous time step in the Ὃ coordinate system: 

ὂ ἠ — ὂ ὀ  4.2 

where ὀ ὼ ȟ   ώ  and —  are the robot pose in the global coordinate system 

estimated at time step Ὧ ρ. The iterative estimation of the robot pose in the global coordinate system is 

performed by considering the robot movement, ὀ and —, which is equivalent to Ἴ  and ‰ , 

respectively: 

ὀ ἠ — ὀ ὀ ἠ — Ἴ ὀ  

— — — ‰ —  

4.3 
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Figure 13. Proposed grid-based scan-to-map matching technique 

 

This global coordinate system is, however, incorrectly located due to the misalignment of the 

previous robot coordinate system by the ICP scan-to-scan matching as well as the error of estimation of 

the robot pose. Once the new scan is transformed to the Ὃ coordinate system, the proposed technique 

iteratively matches the new scan to the map in the Ὃ  coordinate system, which is the global coordinate 

system corrected by the proposed technique from the original guess of the global coordinate system, and 

derives the new scan in the Ὃ  coordinate system: 

ὂ Ἰ   ἠ‰ ὂ Ἴ 4.4 

where Ἰ   Ἴ ȟ   ‰  is the error correction parameters, or the scan-to-map matching 

transformation parameters, and transforms the new scan to the corrected global coordinate system. The 

derivation of the error correction parameters is detailed in the next subsections. Simultaneously, the robot 

pose in the Ὃ coordinate system is also corrected by Ἰ   : 
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ὀ ἠ‰ ὀ Ἴ 

— — ‰  

4.5 

Because the misalignment of the previous robot coordinate system and the error of the robot pose are 

corrected by matching the new scan to the map, the proposed technique does not accumulate the scan-to-

scan matching error as well as the pose estimation error. 

Having the overall process of the scan-to-map matching identified, the representation of the grid map 

having multiple NDs in each cell is first defined in Section 4.2. In addition to the map NDs, the scan NDs 

are then derived from the new scan and paired with map NDs for scan-to-map matching. Section 4.3 

presents the derivation of Ἰ    via the ND-to-ND matching, whereas the update of the grid map using 

the derived Ἰ    is detailed in Section 4.4. In order to simplify the notation the corrected global 

coordinate system, Ὃ , will be dropped from now on, and all notations in this chapter without the 

coordinate system are considered as being in the corrected global coordinate system. 

4.2 Grid Map Representation and Selection of Matching Map Normal Distribution 

Figure 14 illustratively shows the grid map with multiple map NDs in each cell together with the 

matching of new scan to the map NDs. As shown in the figure, the new scan of an object can be 

significantly different depending on where the scan is taken. The grid map with multiple NDs allows the 

matching of the new scan to a map ND irrespective of the robot pose. Mathematically, such a grid map 

updated up to time step Ὧ ρ for deriving Ἰ    is represented as 

ὓȡ ὓȡ ȿ ᶅὮɴ ρȟỄȟὲ   
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Figure 14. The grid map represented by multiple NDs (right) and new scans to be matched to the grid map 

(left) 

where ὓȡ  is the property of the Ὦth grid cell, and ὲ  is the number of grid cells. ὓȡ  is given by 

ὓȡ ὓȡ ὂȡ ȟɫȡ ȟά ȡ ȿᶅὰɴ ρȟỄȟὲ   

where ὓȡ  is the property of the ὰth map ND in the Ὦth cell with the mean, ὂȡ , covariance matrix, 

ɫȡ , and the total number of scan points, ά ȡ . ὲ  denotes the total number of map NDs in the Ὦth 

cell. 

With the new scan transformed to the Ὃ coordinate system, the scan ND in the Ὦth cell to match to 

a map ND in the same cell is derived simply as 

ὂ
ρ

ά
ὂ  

ɫ
ρ

ά
ὂ ὂ ὂ ὂ  

4.6 

where ὂ  is the Ὥth scan point in the Ὦth cell and ά  is the total number of points in the Ὦth cell. The 

selection of a matching map ND for the scan ND in the proposed technique starts with quantifying the 

similarity of the scan ND to each map ND in the same cell. The similarity can be computed by the KL 
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divergence, Ὀ , which is a mathematically solid method for measuring the distance between two 

probability distributions: 

    Ὓὔ ὂȟ ɫ ȟὔ ὂȡ ȟɫȡ Ὀ ὔ ὂȟ ɫ ȿȿ ὔ ὂȡ ȟɫȡ  

    
ρ

ς
ÔÒɫȡ ɫ ὂȡ ὂ ɫȡ ὂȡ ὂ

ÌÎ
ÄÅÔɫ

ÄÅÔɫȡ

‗  

4.7 

where ὰɴ ρȟỄȟὲ , ‗ is the dimension of the NDs, and ὂȟ ɫ  and ὔ ὂȡ ȟɫȡ  are the 

scan ND and the ὰth map ND, respectively. Out of the map NDs the most similar one to the scan ND is 

that with the highest similarity value: 

Ὓὔ ὂȟ ɫ ȟὔ ὂȡ
ᶻ
ȟɫȡ

ᶻ

ÍÉÎὛὔ ὂȟ ɫ ȟὔ ὂȡ ȟɫȡ ȿὰɴ ρȟỄȟὲ  
4.8 

The ὰᶻth map ND is regarded as the matching map ND for the scan ND if the similarity is greater than the 

specified threshold value: 

Ὓὔ ὂȟ ɫ ȟὔ ὂȡ
ᶻ
ȟɫȡ

ᶻ
‎ 4.9 

Having the matching map ND identified for each scan ND, the derivation of Ἰ    is possible by 

matching all the scan NDs to the corresponding matching map NDs. 
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4.3 Derivation of Error Correction Parameters 

Since a scan ND in each cell is compared to a matching map ND, the correspondence is derived not for 

every point but for every cell, i.e.ὣ ὂȟɫ . It is equivalent to the property of the matching map ND: 

ὂᴺὂȡ
ᶻ

 

ɫ ᴺɫȡ
ᶻ

 
if Ὓὔ ὂȟ ɫ ȟὔ ὂȡ

ᶻ
ȟɫȡ

ᶻ
‎ 4.10 

Note that a scan ND that does not have a matching map ND is not thus considered in the derivation of  

Ἰ   . Given the correspondence of the scan NDs, the derivation of Ἰ    begins with the initial values 

set to 0 as it is valid to assume that the ICP scan-to-scan matching and the previous robot pose estimation 

is reasonably correct. The proposed technique first transforms the mean and covariance matrix of each 

scan ND to those in the Ὃ  coordinate system using the currently guessed Ἰ   : 

ὂ  ἠ‰ ὂ Ἴ  

ɫ ἠ‰  ɫ ἠ‰  

4.11 

With all the scan NDs and the matching map NDs described in the Ὃ  coordinate system, the 

transformation parameters Ἰ    can be then computed by maximizing the objective function given by 

the sum of similarities between the scan NDs and the matching map NDs: 

Ὢ Ἰ   Ὓὔὂȟɫ ȟὔὂȟɫ  4.12 

The objective function of the proposed technique equally sums the similarities. In other words, 

similarities with a small number of scan points can be treated as equally as those with a large number of 

scan points. This could allow the proposed technique to match the new scan to the map more globally 
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than the conventional point-to-X techniques. The ND-to-ND matching could also dramatically improve 

the computation time. 

Although the analytical expressions of the gradient and the Hessian may be obtained for the 

objective function, the small-size optimization problem, with only three parameters for the two-

dimensional scan, could be easily solved with the Newton method numerically computing the gradient 

and the Hessian. 

4.4 The Update of the Grid Map 

The grid map is initially that with the first scan NDs, and this is regarded as the first grid map updated up 

to the previous time step. Given the mean and the covariance matrix of the scan ND of each cell in the 

Ὃ coordinate system shown in Equation 4.6, the proposed technique then updates map NDs in the same 

cell differently depending on whether there is a matching map ND. If there is a matching map ND, only 

this matching map ND is updated with the scan ND. The mean and covariance matrix of the matching 

map ND in the Ὦth cell are updated according to the weighted mean formulation: 

ὂȡ
ᶻ ά ȡ ὂȡ

ᶻ
ά ὂ

ά ȡ ά
 

ɫȡ
ᶻ ά ȡ ɫȡ

ᶻ
ά ɫ

ά ȡ ά
 

4.13 

After the update, the number of scan points for the map ND is also updated: 

ά ȡ

ᶻ
ά ȡ

ᶻ
ά  4.14 

On the other hand, if the scan ND has found no matching map ND, the scan ND is simply added as a new 

map ND without any update to the current map NDs. Let the index of the new map ND be ὰ ὲ ρ. 

The mean and the covariance matrix of the map ND in the Ὦth cell are given by 
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ὂȡ ὂ 

ɫȡ ɫ 

4.15 

The number of scan points of the map ND is, similarly, the number of scan points of the scan ND: 

ά ȡ ά  4.16 

After the scan ND is added, the number of the map NDs becomes ὲ ᴺὲ ρ. The update of the grid 

map completes by applying the cell-wise update to all the grid cells.   

4.5 Experimental Results 

This section is aimed at investigating the performance of the proposed scan-to-map matching technique 

and demonstrating the applicability of the proposed technique in real indoor environments. All 

experiments were conducted using a ground mobile robot with a forward-facing LRF, Hokuyo UTM-

30lx, mounted on the robot (Figure 15). No other sensors such as an odometer and an IMU were used to 

estimate the pose of the robot and to build a map. In the first experiment, the performance of the proposed 

technique is investigated based on the position and orientation error seen from landmarks at every 

matching of the new scan to the map. Second experiment focuses on showing the effectiveness of multi-

ND representation within a grid cell instead of having a single ND. Finally, the proposed technique is 

tested within a number of real indoor environments each of which is relatively large and unstructured. 

Table 1 shows the parameters used in the experiments. 
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Figure 15. Ground mobile robot with laser range finder 

 

 

Table 1. Default parameters for the scan-to-map matching technique 

Parameters Value 

LRF scanning angle πЈ to ρψπЈ 

Scanning interval πȢυЈ 

LRF scanning frequency ρπ (Ú 

Grid cell size ρ ά ρ ά 

Threshold ‏ for the scan-to-scan matching 

technique 
0.001 

Threshold similarity 0.3 

 

 



 

 

 

47 

  

 

 

4.5.1 Effect of the Scan-to-Map Matching 

Figure 16 shows the first experiment where there is a L-shaped object at the end of a corridor. The robot 

was initially located at the starting point which was known in the global coordinate system. In order to 

exclude environmental parameters that might have influence on the experiment, the environment was 

selected to be simple. In the experiment the robot observed the entire object at all time and was manually 

driven along two different paths, one of which was a straight line and the other was a curvature. The robot 

took 190 scans and 348 scans for linear motion and nonlinear motion, respectively. At every acquisition 

of the new scan, the robot performed the scan-to-map matching and every scan points were mapped into 

the global coordinate system. Considering the left and right edge, and the center point of the object as 

detectable features, the position error, ‐, at the left edge at time step Ὧ is given by 

‐ ὼ ὼ ώ ώ  4.17 

Figure 16. Experiment 1  
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where ὼȟώ  and ὼȟώ  are the position of the left edge mapped into the corrected global 

coordinate system at time step Ὧ and the initial position of the left edge, respectively. Simultaneously, the 

slope of the line connecting the center point and the left edge of the object is also calculated to see the 

orientation error.  

Figure 17(a) and (d) show every consecutive scan after the scan-to-map matching for the linear and 

nonlinear motion, respectively. To address the effect of the proposed technique the figure also shows 

every scan point transformed to the global coordinate system after sequential scan-to-scan matchings by 

the ICP and NDT technique, but without the global correctness.  As shown in the figure, for the proposed 

technique scanned points of the object from the initial time step to the end are well matched to one 

another showing that they are on the same positions as solid lines which are supposed to be the object and 

the walls. This indicates that local scan-to-scan matchings are well corrected by the map which is globally 

updated (see Equation 4.13 ï 4.16) by new scans after the scan-to-map matching. The effect of the global 

correctness can be qualitatively verified by seeing the results of two scan-matching-only techniques. For 

the scan-to-scan matching techniques without the map matching, scan points do not lie on the same 

position, which indicates that new scans are not matched well to past scans and they are gradually away 

from the initial position as time goes by. In both cases of the linear and nonlinear motion the ICP 

technique generates relatively larger position error than the others, whereas the rotation error seems to be 

small since scanned points mapped at different time steps slide parallelly to one another. Similar to the 

ICP technique, the error produced by the NDT technique is mostly about the translation error, however, 

for the nonlinear motion walls next to the L-shape object seem to have several lines which are somewhat 

rotated. 

Figure 18 and 19 quantitatively show the position error and the slope of the line connecting the 

center point and the left edge for the linear and nonlinear motion. As expected from the previous figure 

showing the accumulation of scans, the proposed technique shows the smallest position errors in both 
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(a) Proposed (linear motion) 
(b) ICP without global correction (linear 

motion) 

(c) NDT without global correction (linear 

motion) 

   

(d) Proposed (nonlinear motion) 
(b) ICP without global correction (nonlinear 

motion) 

(c) NDT without global correction (nonlinear 

motion) 

 
Figure 17. Accumulated scan points of the object transformed by the proposed, ICP, and NDT 
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(a) Left edge (linear motion) (b) Right edge (linear motion) 

  

(c) Left edge (nonlinear motion) (d) Right edge (nonlinear motion) 

 

motions. There is nearly no difference between the linear and nonlinear motion cases and the error is 

consistent in its value regardless of time step. The slope does not change a lot with respect to time, 

indicating that the orientation error is small and not accumulated with time. Note that these errors are 

caused not only by the matching process, but also by the LRF with the scanning interval of πȢυЈ which 

observes the features at different positions for each scan. However, when new scans are matched only to  

Figure 18. Position error of the left and right edge 






















































































































