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ABSTRACT
This dissertation proposes autonomous robstiiategiesfor urban search and resc(ldSAR)
which are mapbasedsemiautonomous robot navigaticand fully -autonomous robotisearch,
tracking localization and mappin(STLAM) using a team of robots. Since the prerequisite for
these solutions is accuratebot localization in the environment, thdgssertation first presents a
novel gridbased scatpo-map matching technique for accurate simultaneous localization and
mapping (SIAM). At every acquisition of a new scan and estimation of the robot pose, the
proposed technique corrects the estimation error by matching the new scan to the globally defined
grid map. To improve the accuracy of the correction, each grid cell of thesmeprésented by
multiple normal distributions (NDs). The new scan to be matched to the map is also represented
by NDs, which achieves the seammap matching by the Ndb-ND matching.n the mapbased
semiautonomousgobot navigatiorstrategy a robot paced in an environment creates the map of
the environment and senidg¢o the human operatait a distant location. The human operab@an
makes decisions basesh the map andcontrols the robotvia teleoperation In case of
communication loss, the robsemiautonomously returns to the horpesition by inversely
tracking its trajectory with additional optimal path plannitig.the fully-autonomous robotic
solutionto USAR, multiple robots communicatene anothewhile operating together as a team.
The bae station collects information from each robot and assigns tasks to the robots. Unlike the
semiautonomous strategy there is no control from the human opefatdurther enhance the

efficiency of their cooperation each member of the team specifiwalligs onits own task.



A series of numerical and experimental studies were conducted to demonstrate the
applicability of the proposed solutions to USAR scenarios. The effectiveness of the-stam
matching with the mukND representation was confied by analyzing the error accumulation
and by comparing with the singdD representation. The applicability of the s¢armmap
matching to the real SLAM problem was also verified in three different real environments. The
results of the mapbased sermautcmomous robot navigation showed the effectiveness of the
approach as an immediately usable solution to USAR. The effectiveness of the proposed fully
autonomous solution was first confirmed by two real robots in a real environment. The
cooperative performaecof the strategy was further investigated using the developed platform
and hardwarén-thelloop simulator. The results showed significant potential as the future

solution to USAR.
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Chapler

Introduction

The development of autonomous robotics has dramatically extended the applicable scope of robots in the
past thirty plus years. In early years, robots were not given a high level of autonomy, but instead they
were usually controlled by human operatdks. technology improve, robots have come to lable to
performmuch more complicated jopboth while stationary and while moving. One exangflthe latter
is rescue irurbandisaster areasn such environments, robots require a high level of autonomy ér twd
operate properly, since they usually have to complete multiple tasks at the same time, such as
understanding and exploring environments, detecting and avoiding danger, and identifying and retrieving
victims. These challenging problems have receivactimattention leading to research focused on
applicable solutions to rescue in urban disasters.

This dissertation presents autonomous robotic strategies for urban search and rescue (USAR)
scenarios. For the purpose of this dissertation, the term autonoobatiss is defined as the capability to
work without human control. Although a variety of subproblems exist in USAR, this dissertation focuses
on possible solutions to searching for and tracking objects of interests and their prerequisite technique of
robot localization in the environment. In this Chapter, the background leading up to the recent interest in

robotic applications in USAR is briefly explained, followed by the objective of this dissertation. The
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approach to achieve the objective is then priesk and the original contributions are summarized.

Finally, the contents of the remaining chapters of this dissertation are outlined.

1.1 Urban Search and Rescue

Every year therare a lot ofdisasters all over the world which cowlduse widespread dasction and
seriously damage human heallthey can beeithernaturalor manmadedisastersand to some degree
some of them are sometimes predictable. However, it is still nearly impossitdefeatly avoid these
disasters, which results in urban search and rescue (USAR) scehargeneral, when rescuers are
committed toa USAR situation there are lots of limitations which can reduce the efficiency of restue.
some casesa wide area needs to Isearched an@d part of thedisaster areanay not beaccessible.
Additionally, communication issuemd other technical problems can arise after the disasters, which can
also make the problem of search and rescue more difficult. Most importaetikescues have tchandle
collapsed buildings, toxic chemicalsr any sort ofexplosive materialswhich means they are seriously
exposed to danger.

In order to more effectively deal with these problemsbotic technologiefhiave beenrecently
introduced to USAR scenarioglthough current rescue robots are nothing more than assistants and
cannotcompletelysubstitute human rescuers, there is no doubtrttumtic applicationso USAR will be
usedmoreactivelyin the near futureOne ofmajorbenefit of using robotsn such scenarios to prevent
unnecessargacrifice of lives of rescuers. Other advantagetuding reduced personnel requirements
and reduced fatigue can dramatically improve the efficiency in search and rescue. Since nabotseca
much faster than human beingjse area that the robots can explore is much larger. Mordbeerpbots
carry a lot of different sensors which allow accurate search for possitilmszia microphone can hear
sounds of human presence in the rumshermal camera can detect body haatja vision camera can
search for colors distinctive from the gray doistthe ruins.

Despite the potential of robotic technologies in USAR, actual applications are limited. This is mainly

because technology is still not mature. Howetlere have been continuoeforts onrobotic search and
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rescue and some of them were fairly successhut.recent series of disasters hasreasecawareness of
the possibilities of robots fassistanceandit is expected thatoboticsolutions play more important roles

in future USAR.

1.2 Objective

The objective of this dissertation is developautonanous roboticstrategiesvhich can be applicable to
search and rescue in urban disaster aapaisto demonstrate the functionality of these solutions with

experimentatiooth in virtual and real environments.

1.3 Approach

When developing andapplying a new robotic solution to a real problem, there is alwaysliemma
betweenthe need for proven teclmhogiesand the need foradvancedut immaturgechnologiesBoth are
important in that proven technologiggiarantee robusbehavios of robotswhereas the advanced
technologies may solve problems which cannot be solved by proven technologies. In consideration of
both needstwo autonomous strategies are propof@dUSAR in this dissertation The first strategy
mapbased semautonomous robot ngation via teleoperation, isan immediately usable solution
focusing more on the robustness of sléution.On the other handhé secondtrategy fully -autonomous

search and trackingg a future solution thamphasizeits significant potential iVSAR.

In order to achievéhis objective it is obvious thatobots to be used for the two strategies are mobile,
and that an accurate solution to robot localization in the environment therefore is necEssary.
simultaneous localization and mapping (SAtechnique, the statef-the-art proven technique, can be
the most suitable solution to robot localization, and the development of the two strategies starts from the
improvement of SLAM technique. The improvemenaahievedby using an accurate range sensor and
matching each new scan image to a globally defined map. The map is represented as normal distributions
(NDs) on a grid space and accurately updated with timee to this global correction, each new scan

image can baccurately mapped onto the grid space and again contributes to update the grid map after it



is converted to a set &fDs. Since the gricpaces globally fixed andNDs are registered to grid cells of
the map anincrementalmap can be edy built regardéss of the size of the environment the robot
explores.
The semiautonomous robot navigation strategy heavily relies on the proven SLAM techimque.
this approach,hie level of autonomy of then-site robot is limited and the human operator at a distant
location controls the robot given the map from the roBisice the human operator makescisions the
strategy provides a robust but possibly limited solution to USAR. For the enhancement of the limitation,
otherfunctionalities such as computgidedwaypoint searchwhich computes the next waypoint based
on the trajectory of the rohoand semiautonomous return, which enable the robot to safely return to
home position ircase of communication loss, applied to the strategydditionally, a graphicaluser
interface (GUI) is designed where the human operator can control the robot by a simple mouse clicking.
The fully-autonomous searclracking localization and mappinéSTLAM) introduces a team of
robots which cooperatively search for and trabjects of interest (OO)Jsvhile each robot autonomously
performs SLAM ancdexplores the environmertEach robot is wirelessly connected to other robots as well
as the base station, and they all share informatiearcBfor the OOlsin an unknown environnm is
achieved by the area coverage method, and the efficiency of the search method is improved by frontier
based exploration. When the OOl is detected, the robot keeps tracking the position of the OOI, so that
everyone can realize trexistenceof the OOl In case that the OOl is mobile, the robot computes the

position of the OOI by prediction and correction using the EKF.

1.4 Original Contribution
The principal contribu@ns of this dissertation aemumerated as follows
1 The development of aniquegrid-basedscanto-map matchingechnique fothe SLAM problem
thatcorrectsthe estimation error by matching scan images fediaser range finder (LRF) the

globally maintainedyrid map.



1 The development of aulti-ND representation of the global map and the achievement of the
scanto-map matching throughout tm®velND to ND matching.

1 The development omapbasedsemiautonomousobot navigation using teleperationwhich
allows threedimensional environment monitog and autonomous return of the-site robotto
thehome position as needed.

1 Thedevelopmenbf fully-autoromous and cooperative STLANKing multiple robots, where the
robots cooperatively explore the environment, search for and@@ck

1 The development o& simulator, the soalled Platform and Hardwarein-the-loop Simulator

(PHILS), that allows theevaluation of cooperativeerformancef a team of robots.

1.6 Publications

To date, components of the dissertation have been presentedatidwing publications:

[1] KunjinRyu, Tomonari Fur ukawa a n-dased &aafio-Map MBtchings a n ay a k
for Accurate Simultaneous Localization and Mapgifidpeory and Preliminary Numerical Studgy

2013 IEEE International Conference omobotics and Automation (ICRKgrisruhe, Germany

submitted

[2] KunjinRyu, Tomonar.i Fur ukawa a n-tased &aaio-Map MBXchings a nay a k
for Accurate Simultaneous Localization and Mappirfgutonomous Robatsubmitted

[3] Kunjin Ryu, Tomonari FurukawaJaime Valls Miro and Gamini DissanayakéMap-based
SemiAutonomous Strategy for Urban Search and Reédmégrnational Journal of Intelligent
Unmanned Systeneccepted

[4] Kunjin Ryu, Tomonari FurukawajiVirtual Field Testing for Péormance Evaluation of
Cooperative Multiple Robogs The International Conference on Intelligent Robotics and
Applications Montreal, Canada)ct. 2012

[5] Kunjin Ryu, Tomonar.i F u rbaskda velaoperati@dA NavigRtien Metftodhe
InternationalConference on Intelligent Unmanned Systedisba, Japan, 2011

[7] Kunjin Ryu, Xianqgiao Tong, T 0 mo n-aandi Haréwanend thedoopm |, AThe
Simulator for MulttRo b o t Cooperation, 0 A Wordsvlt-Robobn Fr or
Systems, Duram,NC, USA, 2011



[8] Tomonari Furukawalin Chi Mak, Kunjin Ryu, Xiangiao Tong and Gamini Dissanayake,
fiBayesian Search, Tracking, Local i ztagd 9 ko nMiasnsdi dvim,
INFORMS 2011 Annual Meetinjovember 1316, 2011, Charlottd)SA, 2011

[9] Tomonari Furukawa, Lin Chi MalKunjin Ryu, Xi anqgi ao T o-sagdHardwaiee Pl at
in- the-loop Simulatorfor Multi-Ro b ot  C o oRyoeaedings obtine,2@1Performance Metrics
for Intelligent System@erMIS'10) WorkshgBaltimore, USA, 2010

1.7 Outline of the Dissertation

This dissertation is organized as follows:

1 Chapter 2 reviews previous efforts @LAM as a basic technique for developing robotics
solutions to USAR.SLAM approaches are classifigd terms of map representations and
estimation methodsAdvantages and disadvantages for each appraacibriefly explained and
further discussiondased on the important issues provided in this introductbgpter are
presented

1 Chapter 3describes amverview ofthe scan matching as one of the most relipdn technique
for the SLAM problem.Two specific scan matching techniqueshich are the most associated
with the scarto-map matchingare formulated, andlead reckoning results by these techniques
are presented.

1 Chapter 4 presentthe uniquegrid-based scato-map matching technique which achieves
accurate SLAM. The muHND representation of the grid map is first described. The-&earap
matching viathe ND-to-ND matching and the update of thédgmap arethen presentedA
number of experimental results in simulated and real environments are presented to investigate
the performance of the scémrmap matching and to demonstrate the applicabibtythe
technique in real SLAM scenarios.

1 Chapter5 presents theemiautonomousobotic solution forUSAR based on the map accurately
created by the scan-map matching technique. The concept of the sartonomous strategy

throughout teleoperationtogether with the comput@ided waypoint searchs proposed The



design &the GUI which is used faele-operated navigatioand semtiautonomous return in case
of communication loss are also described.

Chapter 6presentsthe fully-auonomous and cooperative seardfgcking localization and
maping solution for USAR scenariosThe conceptand theoreticalformulations of search and
tracking using multiple robots as a team are explaifibd.solution is validated by integrating it
into two real robots and testing it in a real environment. Further evaluaiorm®operation
between the robots are investigated within the developed platfamch hardwarén-the-loop
simulator.

Chapter 7 summarizesdloriginal contributions of the research presemetis dissertatiorand

discusses areas for potential futurerky



Chapter 2

Simultaneous Localization
and Mapping

A robot commences its action by firstderstandingts own location and surroundiggvhenit is placed
in a totally unknown environment. Simultaneous localization enagping (SLAM) is a problem of
building amap of the environment while at the same time localizing the robot in the map. A solution to
this problemis given by iteratively observing the surrounding environment and associating a new
observation containingome objects to the previous observation containing the same objects. Since the
solution does not relpn the global positioning system (GPS) for robot localization, SLAM techniques
allow the robot to workn GPSdenied environments. The SLAM problem beeagyen more important
when the robot needs tmutonomously explore the environment, and it is obvious that the ability of the
robot is extremely limiteavithout an accurate solutiori,[2,3, 4.

In the SLAM problem, anapis defined as a visuakpresentation of an environmeand used aa
referencdn order for the robot tdetermindts positionwithin the environmentThe map can be defined
in different waysandthe data associatiomethodis heavily related to the type of the m3jis chaper
reviews the past contributions concerned with the SLAM probfeterms ofthe type of the map and

underlying estimation methodsSection 2.1 describes the motivation of the need for SLAM as an



alternativefor the traditional robot localization techniquegcfon2.2 categorizes maps into four types

and the SLAM techniquesre furtheisummarizedccording tadhe estimationmethods in Section 2.

2.1 Robot Localization

Consider a scenario either of a natudisaster or a mamade disaster where the site is highly
unstructured and dangerous. There are limitations on what human rescuers can the tisespf one or
multiple robots onsiteould accelerate the efficiency ofe s c u e . Now t heistheurostt i on i
fundamental and importartask for mobile robots to operate effectively arnatelligently in this
scenari@ oFor mobile robots understanding surroundings and their own locations is a prerequisite
condition to explore environments where the robots are. The solution to this protdeawis as robot
localization, which truly enables mobile robots to explore thérenments and complete duties without
getting lost.This robot localization usually comes with the need for a map of the environment since
otherwise robot localization might not be a complete solution for the exploration. In other ifvoobst
localizaton and mapping areot take into account, the ability dhe mobile robot becomesxtremely
limited.

It is possible that the robot can explore an environment without the ability of creating a map of the
environment if thea priori map exists. In such@ase, the robot only needs to detect known landmarks to
localize itself in the environment. Howeven, inost casesa prior mags are not available,robotsthus
have to construct maps by themselwesorder to workproperly within the given environments. &h
global positioning system (GPS) & option for robot localization, however, the accuracy is not good
enough for certain scenarios and it cannot be useful for indoor, underground, undenvaterments
(Figure 1) Another option forobot localizatian is dead reckonindt computes the pose of the robot
from the previously determined robot pose and the robot motion. The motion of the robot can be directly
estimated by sensors such as an odometer, inertial sensors, or it can be predicted by cdmeputing t

relative position between two consecutive observations of the environment. Since robot localization by
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(a) Indoor (b) Underground (c) Underwater

Figurel. Examples of GPSeniedenvironmentgsource: googlémages, under fair use, 2012)

dead reckoning is a sequential process of estimating the robot motion between a timerperswehieh
maycome from the sensgrtheimperfect derivation of motion model tfe robof and bad estimatiorcs

the robot motion from observations, candmumulated with timeOnce these errors are accumulated,
there is no way of correcting the errors without a post processing which generally requires a heavy
computational load ahavoids real time robot exploration.

Simultaneous localization and mapping (SLAM) iprablem of creating a map of the environment
and simultaneously localizing the robot in the map. The solution to the SLAM protmenyf the most
widely investigatedsubfieldin robotics,is regarded as a better approach to deal with roloatization
than other approaches using the GPS and dead reckoning. This is because the robot solving the SLAM
problem keeps track of its current pose and builds the map at theig@mevhich enables the robot to
correct its pose from the map and vice velsds thereforeobvious thataccurate mapping can be
achieved only wherobotlocalization is correct, and that the qualitytioé estimation of the robot pose is
alsointeractvely linked to the map accuracy.

Since SLAM is an iterative process utilizing one or more sensors, thesea@limportant issues
underlying it.Once the robot obtains sensor readings at any position in the map, a way of cortteéating
current obseration to any past observations has to be defied called data association and plays an
important role because the roljmisecan be well estimated only when data association is correct. For
successful data association, a large number of techniques lbeen proposed, and the type of data

1C



extracted from the observation to be used for data association can vary by the data association techniques.
One common type of data is a set of features, or landmarks. Some features, especially when the
observationg obtained by a camera, can also be distinguished by their colors. Another common type of
data is an unprocessed scan image obtained from range sensors such as an ultrasonic sensor and a laser
range finder (LRF). This type of data is generally composed sét of points that describe relative
positions from the sensor to detected objects. Any specific data association technique might not perform
well in some conditions, while the other techniques can be good solutions to data association. In this
sense, th SLAM capability can be improved by using multiple data association techniques together.

Computational efficiency and noises are also important issues that need to be considered for solving
the SLAM problem. A mobile robot is equipped with multiple sesagor SLAM and the net amount of
data and computations are thus huge. If the environment is very large, an efficient way of handling such
big data is a key to retiime processing which is necessary to the mobile robot. Moreover, computational
efficiencyis important since it can improve tahecuracyof SLAM by having more computations given a
computational ability. Meanwhile, the accuracy of SLAM can significantly drop when there exist large
noises. Possible sources of the noisesharewae such as sewss and the environmental conditions
including the reflection of light. Although it is not easy to identify and estimate the noise in many cases,
the noise needs to be removed, or at least reduced, in order to achieve certain level of accuracy in solving
the SLAM problem.

Other challenges include dynamic environments and objects, and closing the loop when the robot
comes back to the previously explored area. Since there are so many related, SLAM approaches do not

always focus on every problem at the saime t but they address their owrioritiesin some aspects.

2.2 Maps

This section reviews fundamentals of most common ways of representing the envir@moeotjpancy
grid map,a topological mapa featurebasedmap anda scanbased mapThis includesefinitions and

properties of the maps and description on localization using the maps is also presented.
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Figure2. An example of ocupancy grid map

2.2.1 Occupancy Grid Map
An occupancy grid maffFigure 2)is one of the most common ways of creating a metric map in robotic
mapping[5, 6, 7, 8] It is a probabilistic representation of the environment by grid cells with binary
random variables. Due to Bayes theorem underlying the algorithm, occupancy mappiftjoiantly
reconstruct an environment from noisy and uncertain sensor readings in real time. In occupancy grid map,
the mapping spade evenly divided into eithemwo-dimensional othreedimensional grid cells each of
which has the probability indidag if it is occupied, open, or not explored. On this space, occupancy
mapping needs to predict the posterior probability of the mien the history of the sensor
measurements and that of the robot pose, where the robot pose is assumed to bétktieninitial
state, since there is no prior information on the environment, every grid cell over the entire space remains
as being unexplored. As the mapping space gets large and the number of grid cells increases, the
dimensionality of this problem becomedremely high. To avoid this computational issue, the problem
is separated into small problems that deal only with a single cell without loss of generality.

One of the major benefits of the occupancy grid representation is that it can be very effastidely
for robot navigation9, 10, 11] including path planningl?] andcollision avoidance3] due to its simple

and clear classification in defining the environment. The occupancy grichasapeen built by different
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sensors such as sonar sensbrd 4], LRFs [L5], and stereo vision B, and creatednithreedimensioanl
space [Z, 18]. In addition, the occupancy grid representation can make the map have multiple different
resolutionsevenon the samenvironment In other words, the rekdion of the map is tunable and the
resolution of the grid map can be dependent on the complexite @nvironment [19

On the other hand, one of drawbacks is that computational efficiency significantly drops when there
is a need for an accurate mampi More importantly,lte map does not haweeproper representation of
uncertaintis of the sensor and the vehictherefore,the map sometimeleads todivergence inrobot
localization.The occupancy grid map can be easily built, but at time same tengpthate is not as easy
as the creation of the map. Although occupancy grid mapping has been ebathgmgenvironments

[20], it is notgenerallysuitable forsuch environments.

2.2.2 Topological Map
Contrary to the occupancy grid map, a topological rslapwn in Figure 3loes not depend on metric
measurements. The map is mainly composed of nodes and edges which maintain the relationships
between nodes. Nodes are abstracted models which are extraoteehirioonmental entities. While the
nodes refer to specific locations in the environment, the edges provide information on connections, or
paths, between nodes. Since the topological map is a conceptual image with lack of scale, distances and
directions dscribing the map are different from those in real environmarthe topological map, it is
assumedhat each nodbas to be somehow recognizable and unique from other nodes so that the robot is
able to distinguish it from other nodes. This is the mogtoitant and difficult process, since the robot
gets lost if it fails either to recognize a place or to match the place to the correct node in the map. Once
the robot gets the location, the identification of the place in the map can be done by asstsating t
observation taken at the location witbde descriptions. In order ftine location to be recognizable and
distinguishable in the map, visidrased techniqud®1, 22]as well as LRFbased method®3] are used.

As ana prior map, a topological map care used for localizing the robot. However, there exist

limitations on doing this, because of the difficulty of place recognition mentioned above and the fact that
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the map does not contain metric parameters which precisely describe the environment. In thisesense,
localization based on the topological map is not regarded as SLAM. On the other hand, it is useful for
robot navigatiorwhere a series of nodes functions as waypdhasthe roboneeds to sgientially visit

[24].

2.2.3Feature-based Map

A featurebasedmap or simply a feature maplescribes the environment by a collection of features
which can be different typest geometric models such as points, lines, curvatures, and any arbitrary
shapes(Figure 4) Under theassumption that the robot camerfectly recogniz features from the
environmentand their positions are known, the feature map can be efficiently usetiefaobot
localization problem. Given information on all features in the map, the robot can calculate its current pose
by obtaining a set of observations. Throughout the process of feature extrimi@LAM techniques
based on the feature mfzb, 26]recognizes detectable features in its field of view and associates these
features with features in the mahe observed features are added to the map using the pose of the robot
which is at the same time estimated from the feature Biaplar to the occpancy grid map, the feature

map is also a subdivision of metritaps where features are in tind-dimensionabr threedimensional

Cartesian coordinatgystem However, compared to the occupamgeid map, the feature map manages
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data representing the environment more efficiently because it only stores fe@hiseadvantage over
the occupancy grid representation can be more emphasized when the environment are very large, but can
be represented by limited number of features.

A classical technique for associating features was to use the gated nearest niiighlbdgdrithms
[27, 28, 29] These approaches compute the distance of a feature of the new observation to every existing
feature and select the existing feature of the minimum distance as the corresponding feature. The
approachetroduced a breakthrough the featurdbased SLAM, but since each new feature in the NN
algorithmscorresponds to a single existing feature, incorrect data association might be caused by spurious
features. Other data association techniques incluggnature stringmatching [30, 3l], and batch
correspondence method32[ 4, 33], which handle spurious features more robustly by adding search
algorithms.Since the feature map only considers the extracted data, existing filters such as the EKF and
the RacBlackwellized particlefilter have been applied to maintain the feature map, which will be
detailed in the following section. For instanEastSLAM [B4] maintained multiple candidates of existing
features for each new feature using the -Bwwkwellized particlefilter and demonstrate its

effectiveness in several real environmdat, 34.
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Although the feature map has beeidely used for the SLAM problem, there exist some drawbacks
due to the inherent problem of the featbesed representation. The feature map does not contain any
geometric information on the area that is not representdddtyres so it cannot be suitable for robot
navigation, path planning, and obstacle avoidance. Irereatonments, if they are not well defined by a
set of features, the feature map cannotided for solving the SLAM problenthis issue is related not
only to environmental conditions but also to feature extraction techniquesniflancethe ability of
modeling accurate features,number of algorithms such &ANdom SAmple Consensus (RARAC)

[37], iterative end pointit (IEPF)technique 38 and split and merge3p, 40]have been introduceliven

though the environment can be easily described by featimedeature map has a problem in data
association. This is more important issue, smaessful SLAM is heavily influenced by the successful
association of the new observation to the nfdqe false associatiormdwayscause wrong pose estimation

of the robot and accordingly the accuracy of the feature map is also degraded. The increase of
uncertainties of both robot and the map becomes exponentially ladgeéeaassociation keeps failing.

The featurebased data association has been widely used for the SLAM problem and demonstrated
its effectiveness in several real environments. Howetgecapability highly relies on the success of the
feature extraction from the observation. Moreover, even if features are well modeled and extracted,
associating the exact same features is not an easy probesshance oihappr@riate data association

increasesvhen dff erent features in the engimment look similar.

2.24 Scanbased Map

Due to the superiority of the laser sensors in accuogey other vision sensors, the sdmsed map has
come to be popular in SLAMBimilar to the occupancy grid mamd the featurbased map, the scan
based map is also a metric map, but it is usually composed of a collection of raw scareechgeih
its own pose of the robats shown in Figure.3t can be a specific type of the featdr@sed map, where

the scanrages are considered as the features. Unlike the édmsed map, the scénased map aks
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not require additional feature extraction processes which can improve both computational efficiency and
data associatioaccuracySince raw scan images are directly used as observations, there is no loss of data,
which enables thescanbased mapo fully describethe environment regardless of teaistenceof
featuresHowever, when the environment is large and a lot of scan imagekus required to be stored.

This results in the increase of memory consumptionsasatrifice in computational efficiency.

In comparison to the feature map, the sbased map is relatively free from data association
problemsince there needs no explicit feature model to define. Intsased SLAM, data associatios
commonlyachievedby a technique called scan matching scarto-scan matchingn order to match the
new scan to the past scans using the-sz&gan matchig techniques for achievingLAM, a number of
approaches have been proposed with the development of additional str&adiestforts include the
work of Lu and Milios #1] which performed the matching of the new scan to pfeiousscan and
further matched all the scans by storing the past sddns.globally consistent matching approach has
been successfuliynplemented together with different scaratching techniquegi®, 43, 44] Thrun et al.

[45] used the expectatiomaximizatian (EM) algorithm thafinds the best matching past scan to the new
scan from all the past scafite matching of the new scan to all the past scans is then achieved by the

scanto-scan matching of thenew scan to this best past scan. Although they haveomsrated
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capabilities in accurate matching, tagproaches could still see accuracy issues without a loop closure as
they do not either implement a poweridanto-scan matching or utilize all the past scans. Due to the
need for matching to all the pastans for the best accuraBosse etl. [46] introduced a subspade-

map matching technique where the new scan is matched the past scans of a subspace of concern
with any scarto-scanmatching technique and the subspaces are subsegqassulyiatd to each other for
global mapping. This techniquechieves the matching of the new scan to all the past Ssanshe

accuracy could still drop since the new scan paintdn the subspace are not matched to the past scans.

2.3 Estimation Method

This section briefly reviews SLAMechniquesaccording to the estimation methods. The most popular
approaches includesing the EKF, the particle filter, and maximum likelihood which is separated

according to whether a probabilistic method is implementethb

2.31 EKF SLAM
In EKF approachd6, 47, 48 49, 5(Q, the system noise is defined as the Gaussian distribution and non
linear models are linearized so that the Kalman filter can be TikedEKF can be applied to any sensor
readings as long as features exist in the observation and they are recoghiradidenental formulation
is presented in Appendix.IEspecially when the robot model is close to the linearity, the uncertainty
model by tle EKF can produce a solid map6]. The robot pose estimatidghusbecomes reliable after
observing features repeatedly since the positions of landmarks become more certain with multiple
observations and they are correlated to the robot pose estinidi®uancertainty of each feature is also
correlated to other features, which enables the robot to localize itself precisely within the environment.

A major problemunderlying the EKF SLAM is that the linearization of inherent nonlinearities of
both the vehi@ motion and the observation models causes an inconsistent performance. In such a
scenario that the true uncertainty of the robot exceeds a limit, a large error in the map results in

inconsistency in mapping. There is higher possibility that this happelasgescale environments and
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inconsistency of mapping algorithm in the environments is unavoidatjlelThe unscented Kalman filter
deals better with nonlinearities in the motion model of the rdi#t A mapping algorithmRobocentric
Map Joining that limits the level of uncertainty in the incremental map has been introduced to improves
consistency of the EKF SLAM5[]. Based on split covariance intersection (SCI), Julier and Uhlmann
[54] developed consistent, constant time algorithm maintainingxaremely large map in the global
frame.

Despite extraordinary efforts in the EKF SLAM, the performance of the EKF is still heavily affected
by how to define and extract features from the observations. In ordecdessfully identify features for
the EKF SLAM, the features are frequently enforced to be sparse [55, 56], which allows the positive
feature identification.The sparse features are usually defined when the features are extracted from
cameras rather than the LRF, whican be effective in botBuccessful identification of features and
computationalefficiency. However these sparsely distributed features cannot accurately describe the
environment furthermore, they can be more sensitive to misassociation between features since the
number of featres is relatively limited.

The EKF estimation for the SLAM problem tlseoreticallyproven techniques and has shown its
applicability to the SLAM problem. However, the underlying properties of the EKF such as the
linearization error and the Gaussianuaggtions for the errors are not always valid in real SLAM

scenarios.

2.3.2 Particle Filter SLAM

As an alternative solution to the EKF SLAM, efficient approaches based on particle filtering have been
introduced 57, 58, 59, 6Q]. In these approaches, each particléen@ RBPF represents a possible robot
trajectory and a magd.o learn accurate grid magdiazar and Parrgl] andHahnelet al.[62] utilized the

RBPF withadditionalapproachedn the firstwork, Eliazarand Parr descriloka new map representation
called distributed particle (DP) mapping, which enables maintaining and updating hundreds of candidate

maps and robot pose efficiently. Unlike other methods that require feature extraction and data association
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process, this approach does not rely on the presence of landmarks, hbiied$®s only. In the second
work, an improved motion modelaspresented, which reduces the number of required particles. Base on
the work of Hahnelet al.,Howard presented an apach to learn grid maps with multiple robo@s]

The focus of this work lies in how to merge the information obtained by the individual robots and not in
how to compute better proposal distributions.

The common problem of usirtige RBPHs its computatnal complexity to achieve high accuracy in
SLAM. In the context othe feature based SLAM, Montemerdt al.[34] presented a RBPF that uses a
Gaussian approximation of the improved proposal. This Gaussian mutedhfor each particle usinige
Kalman fiter that estimates the pose of the robot. Each particle pos$éssesiimensional EKFs, one
for each of theéN landmarks. In this case, the computational complexity is 0 whereM is the number
of particles in the particle filter. Updating this filteequires/ 0 1 T0OC times, with or without
knowledge of the data associations. However, this approach can be used only when the map is represented
by a setof features andvhen the erroris assumed to be Gaussiafo improve the computational
efficiency, Grisettiet al. [61] proposed an approach to reduce the number of particle by considering not
only the robot movement but also the most recent observation.

Other contributions include using the RBPF in combination with ¢henerabased vision
SLAM .Elinas et al. [65] presented a stereo vision SLAM using RBPF that landmark estimation are
derived from stereo vision and motion estimates are based on sparse optichluletval. p6] also
presented a visiehased SLAM with implementation of RBPF, whichalsle to track artificial landmarks
such as mulicolored cylinders.

The RBPFs have been introduced as another effective way of estimation methods in the SLAM
problem. Unlike the EKF SLAM, the particle filter based SLAM techniques do not suffer from the
linearization error or the Gaussian assumptions. However, in ordgaito & certain level of accuracy in

the estimation process, they have to maintain a large number of particles.

20



2.3.3Maximum Likelihood SLAM

Maximum LikelihoodSLAM approachesomputemost likely scan or magiven thehistory of sensor
readingsby optimizingthe objective functiorwhich can vary by the approafsv, 68 7. In order to do

this, the robot poses are regarded as nodes and relations between nodes, or the network, are required to be
constructedLu and Milios [67] applied the least meaquare error together with the creation of the
network between robot poses. In this approach, when the robot returns to a previously exploreallregion,
the networls are globally built at the same tim&utmannet al. [68] proposed an effective way for
constructingsuch a network and for detecting loojmsures, while runningn incremental maximum
likelihood algorithm. When a looglosure is detected, a global optimization on the networklafion is
performed HAhnelet al.[69], proposedan approachvhich is able to track several map hypothassiag

an association tre&ince these approaches correct the robot pose at once, the estimation of the robot pose
is not accurate until the nodes are connected to one another.

Olsen et al. TQ], on the otherhand, proposed a grajlased approach that updates the network
locally by applying stochastic gradient descent to minimize the error. By doing so, the estimation of the
robot can be accurately maintained without the global corredtinsettiet al.[71] extended the work of
Olsen by introducinga tree structure, whichaccelerates the speed of convergencaess[72] also
proposed the incremental smoothing and mapping which allowsimeaELAM in large environments.

This approach utilized a QR decomposition to correct the poses of the nodes in the network can be
efficiently corrected by back substitution. Another @le SLAM approach is using the -salled
Treemap algorithm which ignoréise weak corretdons between distant locatiof¥&3] .

Maximum likelihood SLAMtechniquescan provide an accurate solution to the SLAM problem.

However, sinceheyiteratively perform their estimations, low computational efficiency is generally their

weaklness.
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2.4 Summary

This chapter has reviewed the early efforts on the SLAM probidgerms of the type of the mamnd the
underlying estimation methods. The map can be roughly classified into the occupancy grid map, the
topological map, the featumasel map, and the scdrased map. Ae occupancy grid maepresents the
environmentby grid cellseach of which has the probability indicating if it is occupied, open, or not
explored Since the occupancy grid map contains the global information on the environment, it is useful
for robot navigationThe topological majs not a metric map and composed of nodes and edges. The
map focuses on thepecialrelations between nodes. The feathased map maintains uniquely defined
features in th&€artesiarcoordinate system. A popular method to maintain the features is to use the EKF,
and the performance of the featlnt@sed SLAM heavily relies on the feature extractiapability. The
scanbased map is a collection of unprocessed scan images with the corresponding locations from which
the scan have take8ince tle scarbasedmap does not require any feature extraction, data association is
relativelystraight forward.

Past efforts on the SLAMrpblem can be also classified by the estimation method. The EKF SLAM
estimates the robot pose and update the map in the EKF framework. This has proven its capability in
certain situations, however, the inherent EKF linearization error can degrades ltihd inesparticle filter
SLAM is another popular approach that uses RBPF to estimate the robot pose and to create the map. It
might provide an accurate solution to the SLAM problem, thataccuracy significantly drops if the
number of particles is not engl. The maximum likelihood SLAM iteratively estimates the robot pose
by computing the most likely scan or map. Although a number of approaches have providereal
SLAM performance, there is still a chance that the accuracy can be an issue when axrtierapieed

of convergence.
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ChapBer

Scan Matching

3.1 Introduction
Figure 6 illustratively shows the robotith a range sensawsbservesits surrounding environment at
different time steps while it is movinglaving the two different scans, thage registered and matched to
each other on the same coordinate sydigra technique called the scan matching to find the rigid body
transformation between the positions from which the two scans are Eakethe mobile robato localize
itself the scarmatching techniga is useful, since sensor readings for the scan matching do not require
feature extracting processewhich preventsinappropriate data association caused by the feature
extraction when matching one scan to anotimeaddition,thesensors used for the scan matching is more
accurate and much more robust than those who directly capture the dynamics of thin nazantly
years, the scan matching plays a very important role in solving the SLAM problem due to its good
performance awell as its robustness. As a result, a large number of scan matching techniques have been
proposed and utilized for achieving the robotic localization and mapping with the development of
additionalstrategies

One of the most populacan matching technigafor the SLAM problems based orthe iterative
closest point (ICPYechnique[74], which allows the pointo-point matching between two scans by
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minimizing the total distance between them. Despite the popularity of the technique, th®-point
correspondencmay vield inappropriate data association since two corresponding points are not actually
on the same positiom the environmentThis pointwise correspondencalso makes the technique
sensitive tothe false detectionin order to avoid the inherent drhacks of the ICP technique and to
enhance its performance, a lot of variants have been proptisaty [/5 added a robust outlier rejection
method tathe ICP techniquewhen selecting the correspondenthe kd tree data structure for storing a
finite se of points from a idimensional spaceyasadditionallyimplemented to accelerate thearch for
the pointwise correspondencég’6, 77]. Conventional ICP techniquassesthe Euclidean distance to
compute the distances between scan points, and the least square sums as maximum likelihood estimator.
However, theydo not providea good estimation when the robaogtates To overcome this problem,
Iterative Dual Corresponden¢lOC) [78] establishe two ses of correspondences, one dealing with the
translation usinghe Euclidean distance and the other with the rotation by means of an angular distance.
Metric-Based Iterative Closest Point BMCP) [79] defines a new distance meai® that simultaneously
accounedfor trandation and rotation errors

Instead of using the pohtb-point correspondence, poitd-line based §0, 8] and pointto-plane

[82] techniques were introduced where a point corresponds to a line and a plpeetively. These
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approaches reduced the effects of exact correspondence, buedo@gd the feature extractioBiber

and Stral3er42] proposed another scan matching technique by representing a subdivided grid space and
collectively describing a scan tlin each grid cell by &D. This gridbased technique, the -salled

Normal Distribution Transform (NDT), spatially associates every point of the new scan in a grid cell to
theND in the cell. The NDT requires neither the pdioHpoint correspondence nfgature extraction as
points with no feature are collectively handled. However, the scan matching performance of the NDT
relies on the size of the grid cell and outliers from the false detection. Moreover, the NDT scan matching
might fail when the initiaguess that matches two scans is not gbwshired by the NDT scan matching,
Takuboet al.[83] implemented the ICP technique as the initial guess for the NDT scan matching and
further proposed a technique to eliminate outli#@ekeuchi and Tsubouchi48proposedhe extension

of thetwo-dimensional NDT scan matching tiee threedimensional scan matching. In thepproacha

scan is divided into voxels and thi of each cell is approximated by scan points in the ethrder to

match threedimensional scans usinthpe twodimensional NDT methodRipperda and Brenn€85

applied an algorithm to cut a slioghich is parallel to the ground out dahreedimensional data.
Additionally, for consistent convergence, coatiséine stratgy that chages the cell sizewas
implemented.

Other past efforts include scan matching techniques that incorporate appropriate sensor uncertainty
models.Pfisteret al.[86] presented a method that weights the contribution of each scan point according
to its uncertinty, and Montesanet al.[87] introduced probabilistic computation of the correspondences
between the scans.

In the nextsectiors, the £an matchings technically reviewed. Section 3.2 defines the previous and
new scan and describes the process of the scan mat&autpn 3.3 and 3.4 present the fundamental

formulations of the ICP and the NDT scan matching techniques since these are the madedssibioi

25



Find
Given Z_,, Compute the Transform Z;, correspondence, yes
; e 2 Compute py
obtain Z;, initial pj using py Yy, between two Pk
scans

[ wictiems | "
l Update py |

Figure7. Scanto-scanmatching process

the scarto-map matching technique which will be detailed in the next chapter. In Sectioan 3.5
experimentalresult of thedead reckoning based dhe scan matchingechniques igpresented as an

application of the scan matching.

3.2 Scan Matching Techniques
Figure 7 shows the schematic diagram of the general-tmanan matching technique. When scans are

taken by a range sensor on a moving robot, they are sequentially obtained with respect to different robot

coordinate systems. Let @ ® d¢'0 phE R be the previous scan in the previous robot

coordinate system, and ® 640 pHE R be the new scan in the new robot coordinate

system, wher&is the time stepd is the number of points in the scalY. and 'Y denote the previous
robot coordinate system and the new robot coordinate system.

Given the two scans, a seamscan matching technique iteratively finds relative transformation
parameters, I O M M6 , composed of a translatiomy v, and a rotatiorfée , between the

two coordinate systems by locally matching the two scans. The first step is to transform the new scan in
the new robot coordinate system to that in the previous coordinate system using the currently guessed
transformatio parameters. Note that the initial transformation parameters can be estimated from readings

of other sensors such as an odometer, or can be set as zeros assuming that the two scans are close enough.

Mathematically, the transformation
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of a point of thenew scan in the new robot coordinate system to that in the previous robot coordinate

system is performed as

Aldo OB} U 0

0 N% 0 1 ops Aiw g o 3.1

where'l 6 ho ,and 6 Uh U
Theneach point of the new scan @ is associated with @  and finds the correspondence set,

(N ws! " phE M, to which the new scan is to be compared. Note that the number of

correspondig elements may be less mha if any new scan point does not find a corresponding element.
The new transformation parameters are finally computed by minimizing the error metric between the new
scan and the correspondence, or equivalently maixighthe score function indicating how good the
scanto-scan matching is. The way of finding @ and of computing the transformation parameters
varies by scaio-scan matching techniques, which will be detailed in the following subsections. The
iterative identification of the transformation parameters stops when the absolute value of the increment of

computation is lower than the specified threshold value:

3.3ICP

When the new scan is transformed to the coordinate system of the previous scan, the-itGRcstan

matching technique calculates the distance to all previous scan points from each new scan point and finds

the corresponding point, i.e. ® 0 , that has the minimum distamc(Figure 8). The

correspondingpoint has the shortest distance to the new scan point:
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Q o6h o i ETQ o©6h 6 970 pfEMmM 3.3
whereQ I denotes a distance between two points. Given the correspondence the derivatidn ois
equivalent to solving the minimization problem of the error metric:

Q ’I o Nn% o0 7l o [ EI 3.4

1

The ICP technique solves the minimization problem using the singular value decompositiorf&§8)\VD)

The means of the new scan and its corresponding point set are first computed as:

5 2 sn e 2 4 3.5
o o
Defining H 0 0 and "H 0 0 , the error metricQ 1 , in Equation
3.4can be rewritten as
Q "H A % H 6 N% 0 3.6
Decoupling the rotation and the translatidghe substitution of 0 1 % 0 "l Tinto

Equation3.6yields
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Q ' "H Q| % H

3.7
"H N % H "H N % 'H

B "H B H O0Q % 'E

where'E B 'H "H. In the above equation, the error metric is minimized Wbé&h %. "E is

maximized. DecomposinE by the SVD intdE  { A fj , the transformation matrix; %. , and’l

arefinally given by

n% Hf h -l O 1% 6 3.8

wheref] andfj are real or complex unitary matrices, aAdis a rectangular diagonal matrix with
nonnegative real numbentries[88]. Fromr %. theorientational transformation paramet®s,, can be
derived as

% AOAY qY 39

where'Y is the entry of} in theith row and thgth column.

3.4 Normal Distribution Transform
Unlike the ICP technique the NDT semscan matching technique compares each new scan point to a

ND since the NDT technique maps 0 onto a grid space having cells each represented with a ND.

The NDT technique firstefines a grid space with g@sct to the previous robot coordinate system and

derives a ND for each grid cell after identifying & on the space as shownFigure9. For the'@h

cell, the mean and covariance matrix are computed by
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3.10

where 6 is the'@h point of the previous scan in tig cell, andx is the number of scan points
in the cell.

After transforming every new scan point using the currently guessed transformation parameters, each

point is located in some grid cell. If 0 sees a ND created by the previous scan in the cell, the

correspondence or the properties of the ND, i.e® 0 h 1 , are those of the ND of the

previous scan:

o N 0 h t N t 3.11
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Upon completion of the identification of the correspondence, the derivation of is equivalent to

solving the maximizatioproblem of the score functio@

T AoB o Ag 312

Since the score function is the sum of piecewise smooth functions, a standard quadratic optimization

method can be usedpplying Newton's method, °I is iteratively computed byhe increment
>
> E H 3.13

whereé and™H are the sums of the Hessidn, , and the gradienfH , of the objective function

Qi 1

F] "H "H 3.14

Note thatt has to be positive definite for the minimization problem to be solvable. If€nois

adjusted by addinbg which makes it positive definité&or the’@h new scan point 6 in the@h cell,

the gradient vectoH is given by

H 6 4 —— Ao 3.15
T 0 h o C

and them,nentry of¢  is computed by:
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3.5 Dead Reckoning using Scan Mtching Techniques

Figure 10 shows the dead reckoning based on the ICP and the NDT scan matching tednntbige.

experiment the robot took 362 scans all together in a real indoor envirofiitnemtew scan was matched

only to the previous scan at every acqiositof the new scan, and the ICPdathe NDT techniques

derivad the transformation parametensreal time.As shown in the figure the dead reckoning by the NDT

performed better than that by the ICP technique inghisronment This is because thecan pointson

thesame object in the environment after the ICP scan matching do not lie on the same position in the map,
which indicates that the estimation of the transformation parameters are not accurate. Since the scan

points are transformed afteretlscan matching process, the estimation of the robot pose is also considered
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to be wrong. On the other hand, the quality of the map created by the NDT dead reckoning is reasonable
good in the qualitative manner, aitdcan be said thathe pose of the rolbds thusrelatively well
estimated.

Figure 1L shows trajectories of the robot when the robot pose is estimated by the ICP and the NDT
scan matching technique, where the initial position for each technigequisalentto vt . The
trajectories of theobot by the two techniques are almost on the same locations for a while aitétidhe
time step. However, they become different around the locationT@f;® , since the scan matching
techniques start derivindifferent transformation parameter€onsidering that the quality of the map
created by the ICP dead reckoning is not good, it is expected that the error between the true and the
estimated locations of the robot is greater when the robot pose is estimated by the ICP scan matching than
the NDTscan matching.

Figure 2 shows the position and the orientation differences at each time step between robot poses
by the ICP and the NDT dead reckoning. As can be seen in the previous figure showing the trajectories of
the robot, the position and the orientation differencegi®ffitst 46 time steps are very small. Since then,
theposition and the orientation differences become large, which leads to difference trajectories by the ICP
and the NDT dead reckoning.

Although the NDT scan matching technique has shown a better ireghls experiment, it is not
necessarily true that the NDT always works better than the ICP or other scan matching techniques. The
scan matching performance can vary by a lot of conditions such as the environmental conditions and the
default parameters ifdhe scan matching technique. In other words, the ICP scan matching technique can
derive the transformation parameters more accurately than the NDT technique in some other occasions. A
scan matching technique always brings the scan matching error and this reason that the scan
matching technique cannot be a solution to the SLAM problem by itself and that it should be used as a

technique for solving the SLAM problem.
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(b) Sequential NDT scan matching

Figure10. Dead reckoning after 362 scans

34




y (m)

"6 5 -4 -3 2 A 0 1

RN

X (m)-

Figurell Trajectories of the robdiy the ICP andthe NDT dead reckoning

07 18 -
o f‘w\"x /F

06t o 1R
= ® 14} -
Eos =2
9 L 2% v /
c 5 it
G 04f g A
2 2 /
B sl T8
g 03 '5 /
= w06
202} = /
[a g 04 f

0.1 3 /

00 50 100 150 200 250 300 350 400 00 50 100 150 200 250 300 350 400
Number of scans Number of scans

Figurel2. Position differenceléft) and gientation differencéright) between the robot poses estimai
by the ICP and the NDT dead reckoning

3.6 Summary

This chapterhas briefly reviewed existing scan matching techniques and presented mathematical

formulations of two specific techniques, the ICP and the NDOW ICP technique finds corresponding
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points for every new scan point and estimates the transformation pasatgteninimizing the error
metric between the new scan points and their correspondence. This technique is thewiatjgalnd
easy to implement. Howevehe error metric to be minimized requires gwntto-point correspondence
and the performance dhe ICP is thus sensitive to the peiotpoint correspondenceénlike the ICP
techniquethe NDT scan matching technique does metd the pointto-point correspondencdt
represents the previous scan, to which the new scan is to be matched, by @rcafédD on a grid
space. The NDT technique then associates multiple new scan points thDorie compute the
transformation parametershe scan matchingerformancecan be increased by avoiding the pednt
point correspondence. However, the capability of the NDT technique can be affected by the grid size and
the initial guess for the transformation parameters.

The experimental resugthows that the dead reckoningsimg theNDT has worked better than that
using the ICP scan matching in the specific environment. Howargrscan matching technique cannot
show its superiority over other scan matching techniques in all situations. Moreover, every scan matching
techniqe generates the scan matching error, which means additional efforts that associate the new scan to

the past scans are required to solve the SLAM problem.
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Chapter 4

Scanto-Map Matching

This chapter proposes a ghidsed scato-map matching technique f&LAM. At every acquisition of a

new scan, the proposed technique matches the new scan to the previous scan similarly to the conventional
techniques, but further corrects the error byahiaiy the new scan to the globally defined maporder

to achieve best scan-map matching at each acquisition, the map is represented as a grid map with
multiple NDsin each cell. Additionally, the new scan is also represented by NDs, developind &lDeve
to-ND matching technique. The N@B-ND matching technique has significant potential in the
enhancement of the global matching as well as the computational efficRaution 4.1 briefly describes

the overall process of the semmmap matching techque. Section 4.2 presents the grid map
representatiomnd selection of properties of the grid map to match a new scan to th&meagberivation

of the transformation parameters and the update of the grid magetmited in Section 4.3 and 4.4,
respectivy. Section 4.5 investigates the performance of the-szamap matching throughout a number

of experimental results whereas Section 4.6 summarizes this chapter.
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4.1 Overview

Figure 13 showsthe overall process of the proposed drased scato-map matching technique which is
based on the NDT's grolased matching. Instead of the previous scan, the proposed technique matches

the new scan to the globally defined map which is an accumuldtinevw scans after the scémmap

matching. When the new scan® is obtained, the proposed technique first performs the ICRtsean

scan matching to derive the transformation parameterd, , and transforms each new scan point in

the 'Y coordinate system to that in th¥ coordinate system:

) 1 N %o 5 4.1

where "' h% . Having the new scan matched to the previous scan, each new scan

point O is further transformed to that in the global coordinate syst&,using the robot pose

estimated at the previous time step in fl@ coordinate system:

where 0 ®w h o and — are the robot posen the global coordinate sisn
estimated at time sté@ p. The iterative estimation of the robot pose in the global coordinate system is

performed by considering the robot movement,06 and —, which is equivalet to”l and%. |,

respectively:

4.3
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Figurel3. Proposed grithased scatp-map matching technique

This global coordinate system is, however, incorrectly located due to the misalignment of the
previous robot coordinate system by the ICP dosstan matching as well as the error of estimation of
the robot pose. Once tmew scan is transformed to th® coordinate system, the proposed technique
iteratively matches the new scan to the map inf@e coordinate system, which is the global coordinate
system corrected by the proposed technique from the original guess of the global coordinate system, and

derives the new scan in thé&O coordinate system:

8 1 A% o "l 4.4

where [ "I h% is the error correction parameters, or the sdarmap matching

transformation parameters, and transforms the new scan to the corrected global coordinate system. The

derivation of the error correction parameters is detailed in the next subsections. Simultaneoipf the

pose in the"O coordinate system is also corrected by’l
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4.5

— — %o

Because the misalignment of the previous robot coordinate system and the error of the robot pose are
corrected by matching theew scan to the map, the proposed technique does not accumulate itte scan
scan matching error as well as the pose estimation error.

Having the overall process of the s¢armap matching identified, the representation of the grid map
having multiple NDsn each cell is first defined iBection4.2. In addition to the map NDs, the scan NDs

are then derived from the new scan and paired with map NDs fortsoap matchingSection 4.3

presents the derivation of | via the NDto-ND matching, wiereas the update of the grid map using

the derived I is detailed inSection 4.4. In order to simplify the notation the corrected global

coordinate system;O , will be dropped from now on, and all notatioimsthis chaptemwithout the

coordinate system are considered as being in the corrected global coordinate system.

4.2 Grid Map Representation and Selection of Matching Map Normal Distribution

Figure 14 illustratively shows the grid map with multiple map NDs in each cell together tivéh
matching of new scan to the map NDs. As shown in the figure, the new scan of an object can be
significantly different depending on where the scan is taken. The grid map with multiple NDs allows the

matching of the new scan to a map ND irrespectivdnefrbbot pose. Mathematically, such a grid map

updated up to time sté@ p for deriving | is represented as
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whereb is theproperty of théeh grid cell, and is the number of grid cell$. 4 Isgivenby

(4

[‘)d° Dq, 6QHQmQ d o plE ke
whered q is the property of théth map ND in théh cell with the mearf) 4 o covariance matrix,

t 4, and the total number of scan poirtsy .&  denotes the total number of map NDs in e
cell.
With the new scan transformed to tfi® coordinate system, the scan ND in #fecell to match to

a map ND in the same cell is derived simply as

4.6

where 0 is the'@h scan point in th&h cell andd is the total number of points in tf@h cell. The

selection of a matching map ND for the scan ND in the proposed technique starts with quantifying the

similarity of the scan ND to each map ND in the same cell. The similarity can be computed by the KL
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divergence,O , which is a mathematicgllsolid method for measuring the distance between two

probability distributions:

YO oh+ ROy R, O 0 oO0ht g6 6,4 Ry
P oot 1 ol o 4 ol ol
C d d d q 4.7
~ _AAOH+
1 _
AA®,
wherean pfE &, _is the dimension of the NDs,and 6 h + and6 6, R , arethe

scan ND and thé&h map ND, respectivelyOut of the mapgNDs the most similar one to the scan ND is

that with the highest similarity value:

[ ETYG oh + R 8y Ry gn pER 4.8

Thedth map ND is regarded as the matching map ND for the scan ND if the similarity is greater than the

specified threshold value

Having the matching map ND identified for each scan ND, the demvaif | is posdble by

matching all the scan Nfo the corresponding matching map NDs.
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4.3 Derivation of Error Correction Parameters
Since a scan ND in each cell is compared to a matching map ND, the correspondence is derived not for

everypoint but for every ell, i.e® 6 R . Itis equivalent to the property of the matching map ND:

if Y 0 oh + M 4.10

Note that a scan ND that does not have a matching map ND is not thus considered in the derivation of

1 . Given the correspondence of the scan NDs, the derivation df begins with the initial values

set to0 as it is valid to assuenthat the ICP scato-scan matching and the previous robot pose estimation

is reasonably correct. The proposed technique first transforms the mean and covariance matrix of each
scan ND to those in th€O coordinate system using the currently guessed
0 nNn% o0 7l

4.11
bR % o %

With all the scan NDs and the matching map NDs described in"@he coordinate system, the
transformation parameters | can be then computed by maximizing the objective function given by

the sum of similarities between the scan NDs and the matching map NDs:

Q YOoh HoOoh 4.12
The objective function of the proposed technique equally sums the similarities. In other words,

similarities with a small number of scan points can be treated as equally as those with a large number of

scan points. This could allow the proposed techniquendtch the new scan to the map more globally
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than the conventional pout-X techniques. The NBo-ND matching could also dramaticali;mprove
the computation time.

Although the analytical expressions of the gradient and the Hessian may be obtairked for
objective function, the smadlize optimization problem, with only three parameters for the- two
dimensional scan, could be easily solved with the Newton method numerically computing the gradient

and the Hessian.

4.4 The Update of the Grid Map

The gridmap is initially that with the first scan NDs, and this is regarded as the first grid map updated up
to the previous time step. Given the mean and the covariance matrix of the scan ND of each cell in the
O coordinate system shown Equatior4.6, the ppposed technique then updates map NDs in the same
cell differently depending on whether there is a matching map ND. If there is a matching map ND, only
this matching map ND is updated with the scan ND. The mean and covariance matrix of the matching

map NDin the@h cell are updated according to the weighted mean formulation:

5
d
4.13
; q, a4 4 q a t
After the update, the number of scan pointgtiermap ND is also updated:
a4 Oy a 4.14

On the other hand, if the scan ND has found no matching map ND, the scan ND is simply added as a new

map ND without any update to the current map NDs. Let the index of the new mapd&D ke p.

The mean and the covariance matrix of the map ND iffitheell are given by
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4.15

The number of scan points of the map ND is, similarly, the number of scan points of the scan ND:

a 4.16

After the scan ND is added,eémumber of the map NDs becondesN ¢  p. The update of the grid

map completes by applying the eglise update to all the grid cells.

4.5 Experimental Results

This section is aimed at investigating the performance of the proposetbsoap matching technique

and demonstrating the applicability of the proposed technique in real indoor environments. All
experiments were conducted using a ground mobile robotavftirwardfacing LRF, Hokuyo UTM

30Ix, mounted on the rob@Figure 15). No other sensors such as an odometer and an IMU were used to
estimate the pose of the robot and to build a map. In the first experiment, the performance of the proposed
technique isinvestigated based on the position and orientation error seen from landmarks at every
matdiing of the new scan to the meaecond experiment focuses on showing the effectiveness of multi

ND representation within a grid cell instead of having a single Niallly, the proposed technique is

tested within a number of real indoor environments each of which is relatively large and unstructured.

Tablel shows the parameters used in the experiments.
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Laser range finder

Figurel5. Ground mobile robot wittaser range finder

Tablel. Default parameters for the seemmap matching technique

Parameters Value
LRF scanning angle wtop ¢'n
Scanning interval @’
LRF scanning frequency p1t U
Grid cell size pa  pa
Threshold| for the scarto-scan matching 0.001
technique '
Threshold similarity 0.3
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Figurel6. Experiment 1

4.5.1 Effect of the Scanto-Map Matching

Figure 16 shows the first experiment where there iIs-shaped object at the end of a corridor. The robot

was initially located at the starting point which was known in the global coordinate system. In order to
exclude environmental parameters that might have influence on the experiment, the environment was
selected to be simple. In the experiment the robot observed the entire object at all time and was manually
driven along two different paths, one of which was a straight line and the other was a curvature. The robot
took 190 scans and 348 scans for lineatiom and nonlinear motion, respectiveft every acquisition

of the new scan, the robot performed the dcamap matching and every scan points were mapped into

the global coordinate syster@onsidering the left and right edge, and the center poirteobbject as

detectable features, the position errg@t the left edge at timstep Qis given by

- O ® O » 4.17
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where wh® and whw are the position of the left edge mapped into the corrected global
coordinate system at time st€andthe initial position otthe left edge, respectivel@imultaneously, the
slope of the line connecting the center point and the left edge of the isbfdsd calculated to see the
orientation error.

Figure17(a) and (d)show every consecutive scan after the dcamap matching for the linear and
nonlinear motion, respectively. To address the effect of the proposed technique the figure also shows
evely scan point transformed to the global coordinate system after sequentid-scan matchings by
the ICP and NDT technique, but without the global correctness. As shown in the figure, for the proposed
technique scanned points of the object from th#aintime stepto the end are well matched to one
another showing that they are on the same positions as soligvliidsare supposed to be the object and
thewalls. This indicates that local scan-scan matchings are well corrected by the map wikiglobally
updated (see Equatiohl13i 4.16 by new scans after the seeamap matching. The effect of the global
correctness can be qualitatively verified by seeing the results of twerstahingonly techniqueskor
the scarto-scan matching techniquegithout the map matching, scan points do not lie on the same
position, which indicates that new scans are not matched well to past scans and they are gradually away
from the initial position as time goes bin both cases of the linear and nonlin@aotion the ICP
techniquegenerates relatively larger position error than the others, whereas the rotation error seems to be
small since scanned points mapped at different time steps slide parallelly to one another. Sihg@lar to
ICP technique the error ppduced bythe NDT techniqueis mostly about the translation error, however,
for the nonlinear motion walls next to theshape object seem to have several lines which are somewhat
rotated.

Figure 18 and 19 quantitatively show the position errand the slope of the line connecting the
center point and the left edge for the linear and nonlinear motion. As expected from the previous figure

showing the accumulation of scans, the proposed technique shows the smallest position errors in both
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(b) ICP without globatorrection(linear (c) NDT without globakorrection(linear

(a) Proposed (linear motion) motion) motion)

(b) ICP without globatorrection(nonlinear  (c) NDT without globakorrection(nonlinear

(d) Proposedr{oriinear motion) motion) motion)

Figurel7. Accumulated scan points of the object transformed by the proposed, ICP, and NDT
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Figure18. Position error of the left and right edge

motions. There is nearly no difference between the linear and nonlinear motion cases and the error is

consistent in its value regardless of time step. The slope does not change a lot with respect to time,

indicating that the orientation error is small and not aedated with time. Note that these errors are

caused not only by the matching procésst also by the LRF with the scanning intervatr@f which

observs the features at different positions for each sétwever, when new scans are matched only to
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