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Algorithms for Reconstructing and Reasoning about
Chemical Reaction Networks

Yong Ju Cho

(ABSTRACT)

Recent advances in systems biology have uncovered detailed mechanisms of biological pro-
cesses such as the cell cycle, circadian rhythms, and signaling pathways. These mechanisms
are modeled by chemical reaction networks (CRNs) which are typically simulated by con-
verting to ordinary di�erential equations (ODEs), so that the goal is to closely reproduce
the observed quantitative and qualitative behaviors of the modeled process.

This thesis proposes two algorithmic problems related to the construction and comprehension
of CRN models. The �rst problem focuses on reconstructing CRNs from given time series.
Given multivariate time course data obtained by perturbing a given CRN, how can we sys-
tematically deduce the interconnections between the species of the network? We demonstrate
how this problem can be modeled as, �rst, one of uncovering conditional independence re-
lationships using bu�ering experiments and, second, of determining the properties of the
individual chemical reactions. Experimental results demonstrate the e�ectiveness of our
approach on both synthetic and real CRNs.

The second problem this work focuses on is to aid in network comprehension, i.e., to under-
stand the motifs underlying complex dynamical behaviors of CRNs. Speci�cally, we focus on
bistability�an important dynamical property of a CRN�and propose algorithms to identify
the core structures responsible for conferring bistability. The approach we take is to system-
atically infer the instability causing structures (ICSs) of a CRN and use machine learning
techniques to relate properties of the CRN to the presence of such ICSs. This work has the
potential to aid in not just network comprehension but also model simpli�cation, by helping
reduce the complexity of known bistable systems.
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Chapter 1

Introduction

1.1 Motivation

Current success in systems biology research has helped unravel the complexity of important
biological processes [1]. Even a simple organism such as Escherichia coli has thousands
of genes and active proteins. Detailed mechanisms of this and other organisms are being
discovered day by day and are helping comprehend the complexity of processes in these
organisms [10].

Construction and simulation of mathematical models [42] is one of the important tools avail-
able to study complex processes such as the cell cycle, circadian rhythms, and signaling
pathways [2]. Modelers typically begin with a chemical reaction network (CRN), convert
them to ordinary di�erential equations (ODEs), and �nally simulate the ODEs to obtain
multivariate time series of molecular species. The model is typically adjusted till it closely
reproduces the quantitative and qualitative behaviors presented in real data (e.g., pheno-
types) [18].

However, the growing complexity of CRN models portends many problems. First, modeling
and simulation of large biomolecular systems is quite a challenge. For instance, the molecules
and receptors often have vast numbers of binding sites and increases in binding sites typi-
cally result in exponential increases in the number of species to consider [10]. The number
of parameters to be estimated increases as the size of the model grows. It is non-trivial to
obtain accurate parameters for many biological processes; hence, often only rough bounds
of such parameters can be estimated. As a result, increasing the size of a model is most
likely to introduce more uncertainties in the model [10]. Furthermore, solving such a large
model needs vast amount of computational resources. Multiple time scales inherent in chem-
ical reactions also add computational complexities because such di�erences in time scales
introduce sti�ness into the model and disrupt stability of numerical solutions [29]. Finally,
the growing complexity of models also hinders interpreting experimental results. The model
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itself becomes so complex that it does not capture the underlying mechanism intuitively.

In this dissertation, we study two research questions related to the construction and com-
prehension of CRN models.

1.2 Research Questions

The �rst question is how to reconstruct a CRN from time series data. This will aid in
automatic construction of models in a data-driven manner rather than `by hand' modeling. In
addition, the network reconstruction problem can also be used for network/model reduction.
Given a (complex) model, we can generate time series data from it, and mine the resulting
data to obtain a potentially simpler network that still retains the essential characteristics of
the original model. In Chapter 3, we present an algorithm to reconstruct CRNs from time
series data using bu�ering experiments. Because there are an exponential set of molecule
combinations that can be bu�ered, e�cient and e�ective algorithms are needed that can
systematically explore the space of possibilities.

The second research question pertains to network comprehension, speci�cally to identify
the core of a CRN which is responsible for bistability. Bistability is an important functional
motif frequently shown in biological processes [45]. Aside from their intrinsic mathematical
and chemical signi�cance, bistable CRNs are of particular biological interest because they can
retain a `memory' of past inputs and cellular decisions. Chemical stimuli can trigger a state
change from one stable state to another and the current state of the chemical system therefore
serves as a memory of this earlier stimulus. Understanding the molecular basis of biochemical
switches is hence a building block to comprehending the information processing capabilities
of complex signaling pathways. From a database of bistable CRNs [32], we present an
algorithmic approach to identify the core structures crucial for conferring bistability.

This dissertation explores the above questions through a combination of mathematical mod-
eling, numerical simulation, and data mining. Our work sheds light into the key functionings
of biological systems and the algorithms developed here can be used as building blocks in
larger-scope computational modeling and discovery software.

1.3 Organization of this document

Chapter 2 presents an overview of CRN modeling and mathematical formalisms. Chapter 3
introduces a network reconstruction algorithm using bu�ering experiments and addresses
the �rst research question above. In Chapter 4, the second research question is explored,
along with proposed approaches and evaluation methodologies. Finally, Chapter 5 identi�es
opportunities for further research.



Chapter 2

Background

2.1 A Biochemical Switch and Bistability

The ODE model of a CRN with n species and r reactions is :

dx

dt
= Nν(x), (2.1)

where N ∈ Rn×r is a stoichiometric matrix and ν ∈ Rnis a vector of reaction rates in the
system.

A system of ODEs is multistationary i� there is more than one real solution x which satisfy:

dx

dt
= Nν(x) = 0, (2.2)

and roots of the equation are called steady states. The stability of the �xed points are related
with signs of eigenvalues of Jacobian J = ∂N ·v(x)

∂x
. A �xed point is stable i� the real part

of each eigenvalue is negative. Eigenvalues of a Jacobian is acquired from the characteristic
equation det(J − λI) = 0. A system is bistable i� the system has two stable steady states.

Nonlinear behavior of a dynamic system can be explained as change of non-wandering sets
with respect to change of a control parameter in the system. One of the examples is toggle
switch like behavior and can be often seen in some biological processes. In [41] , the authors
introduce several chemical reaction networks analogous to electrical circuit components. One
of the introduced systems is shown in Figure 2.1[41]. The left box in the �gure illustrates a
system with mutual inhibition between R and E. E is an enzyme which stimulates degrada-
tion of R. R also stimulates the reaction EP −→ E, thus forming a mutual inhibition loop.
The dynamics of the system is modeled with ODEs as in the following:

dR

dt
= 0.05S − 0.1R− 0.5E(R) ·R

3
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Figure 2.1: An examples of CRN with mutual inhibition loop and bifurcation diagram of the
system from [41].

where E(R) = G(1, 0.2R, 0.5, 0.5); G is `Goldbeter-Koshland function' [16] here. The bifur-
cation diagram of the system can be seen in the middle box. A point (x, y) on the curves in
the diagram represents a �xed point R = x and S = y. If the point is on solid part of the
curve, the �xed point is locally stable around the point. If the point is on the dashed part,
the point is not stable. As shown in the middle box of the �gure, the stable �xed points
form two separated curves. We can say that the system is in high/low state if the system is
in a steady state belong to the upper/lower curve.

Suppose the system is relaxed with some initial condition where S = 0. After the system
reaches a steady state, S is slowly increased up to Scrit1. There is only one stable �xed point
in this region so the system stays in the low state. As S is increased from Scrit1 to Scrit2, one
more stable �xed point and one saddle is emerged in addition to the existing �xed point. In
other words, a saddle node bifurcation takes place at S = Scrit1. When S reaches to Scrit2,
a stable �xed point and a saddle annihilates each other, making the system monostable; a
saddle node bifurcation happens here too. If S is increased further, R jumps to the global
attractor in the upper curve. The jump is irreversible due to local stability of the �xed point.
The system stays in the high state while S is decreased to Scrit1. If S is decreased further so
that S < Scrit2 , the system makes transition to the low state. The right box in the �gure
shows the hysteresis loop of this system. The response R to the signal S depends on the
path it takes before and it can be considered as a biochemical memory switch.

One of real world examples showing the toggle switch-like behavior is cell division cycle of
budding yeast. The cell-division cycle is modeled as irreversible transitions between two
stable states in [8].

Figure 2.2.[8] show consensus model of cell division cycle in budding yeast. The intuitive
understating of the mechanism of cell division cycle is hindered because of the complexity of
the model. The authors simpli�ed the mechanisms of cell division cycle as mutual inhibition
between B-type cyclins and G1 stabilizers as shown Figure 2.3[8].
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Figure 2.2: Concensus model of cell division cycle of budding yeast from [8]

Figure 2.3: Simpli�ed mechanism of cell division cycle in budding yeast from [8]
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The transition from G1 phase to S/G2/M phase called start transition and illustrated in
Figure 2.3 B. The start transition is triggered by accumulation of Cln3-dependent kinase due
to cell mass growth. Similarly, the transition from M phase to G1 phase shown in Figure
2.3C. is called �nish transition. The transition is facilitated by accumulation of Cdc20 and
APC complex due to completion of chromosome alignment.

The two stable states corresponding to G1 phase and G2/S/M states are qualitatively dif-
ferent with each other and such drastic change can be considered as a form of bifurcations.
Cell mass growth and chromosome alignment can be seen as the control signal causing the
bifurcation in the above example.

Even though both examples have a mutual inhibition as its core mechanism of the switching,
their mathematical model and mechanisms of the transition are quite di�erent. There can
be myriad of CRNs having toggle switch-like property with various topologies and parameter
ranges. However, bistability is one of necessary conditions of such a biochemical switch.

There are numerical methods �nding bistability of a system given parameter range as dis-
cussed earlier. Obviously, the problem of �nding steady states is equivalent to a root �nding
problem and can be solved using various numerical root �nding methods. Homotopy contin-
uation is one of the methods used in [32]. In [32], the authors also used a simulation based
method to �nd steady states.

2.1.1 Instability causing structure of a CRN

For a linear system ẋ = Ax and its Jacobian J = ∂Ax
∂x

, bi,j = J(i, j) represents how concen-
tration of species i a�ects the rate of increase in species j. An directed graph GJ = (V ,E)

can be de�ned from J such that V is a set of all independent species and (i, j) ∈ E i�
∂ẋj
∂xi

is nonzero.

There are also some approaches to deduce properties of the system from the coe�cients of
det(J−λI) = 0. A simple cycle inGJ is equivalent to nonzero elements in J whose sequence of
row indexes is a cyclic permutation of column indexes [38]. For example, the cycle composed
of the set of edges {(1,2), (2,4), (4,3), (3,1)} is corresponding to nonzero elements (b2,1, b4,2,
b3,4, b1,3) and the sequence of row indexes (2,4,3,1) is a cyclic permutation of the column
indexes (1,2,4,3).

Such a cycle is called a circuit [38]. A circuit can be represented with product of the
associated nonzero elements in Jacobian[38]. The above circuit in the example is represented
with b2,1b4,2b3,4b1,3. Two circuits are disjoint i� there is no vertex that the two circuits
share[38]. A union of circuits is a set of pairwise disjoint circuit[38]. The size of a circuit is
determined by the number of vertices that the circuit covers. The circuit is closely related
with coe�cients of polynomials in the characteristic equation of the Jacobian. For the
characteristic equation
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λn + a1λ
n−1 + a2λ

n−2 + ...+ an−1λ+ an = 0, (2.3)

the coe�cient ai (1 ≤ i ≤ n) is:

a1 = (−1)1
∑
i,j

(bi,i)

a2 = (−1)2(
∑
i,j

bi,ibj,j −
∑
i,j

bi,jbj,i)

a3 = (−1)3(
∑
i,j,k

bi,ibj,jbkk −
∑
i,j,k

bi,ibj,kbk,j +
∑
i,j,k

bijbj,kbk,i)

...

an = (−1)nDet(J)

[44]. Each nonzero term in ai represents an union of disjoint circuits up to size i[38]. The
coe�cients of characteristic equation can be calculated using Bocher's formula such as the
following:

an = − 1

n
{an−1tr(A) + an−2tr(A

2) + ...+ tr(An)}

In [19], it is shown that the signs of real parts of all eigenvalues are negative i� all coe�cient
of the characteristic equations are positive and Hj > 0 where j ≥ 2 and Hj is leading
j-principal minor of Hurwitz determinant such as the following:

H =

∣∣∣∣∣∣∣∣∣∣
a1 a3 a5 a7 ...
1 a2 a4 a6 ...
0 a1 a3 a5 ...
0 1 a2 a4 ...
... ... ... ... ...

∣∣∣∣∣∣∣∣∣∣
This condition is called Routh-Hurwitz stability criterion. the authors introduce a systemic
way of detecting reactions which make the system violate the criterion in [44] and call
such reactions as Instability Causing Structures (ICS). This algorithm can be applied to

the example system in Figure 2.1. The example system consists of r1 :
S−→ R, r2 : R

E−→,

r3 : E
R−→ EP ,r4 : EP −→ E . Since S is the control parameter and EP +E = EP0 +E0 =

constant, the concentration of R and E become state variables of this dynamic system.
Then,

dx

dt
=

[
v1(S)− v2(R,E)
−v3(R,E) + v4(EP )

]
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Figure 2.4: Interaction graph of `toggle switch'

where x =

[
R
E

]
and vi is the reaction rate function of ri. Jacobian of this system is

J =

[
−v2,R −v2,E

−v3,R −v4,E

]
wherevi,j = ∂vi

∂j
. Figure 2.4. shows the interaction graph derived from J and clearly showing

mutual inhibition between R and E due to r2 and r3. The characteristic equation of this
system is λ2 + (v2,R + v4,E)λ + v2,Rv4,E − v2,Ev3,R so a1 = v2,R + v4,E and a2 = v2,Rv4,E −
v2,Ev3,R should be positive to satisfy Routh-Hurwitz stability criterion. In case that the
partial dertivatives of the reaction rates to concentration of species are all positive, circuit
v2Ev3R becomes the instability causing structure in this system and happen to be the mutual
inhibition mechanism. Monostability of the system where S ≤ Scrit1 or S ≥ Scrit2 can be
explained with deactivation of the mutual inhibition loop in the region; if S ≤ Scrit1, the
concentration of R becomes low and turn o� r3, thus breaking the inhibition loop. The
loop is deactivated where S ≥ Scrit2 because large R convert entire E to EP , resulting
deactivation of r3. This example shows that there might be a connection between instability
causing structures and switching mechanisms of a bistable system.

This explanation on the state transition is very similar with the explanation on the start/�nish
transition in 2.3. The start and �nish transition is explained by deactivation of a feedback
loop as in the toggle-switch example. If the relation between ICSs and core mechanisms is
identi�ed, it can contribute to automate the process of model reduction of complex bistable
systems.

2.2 Model Reduction using Time Scale Analysis

Time scale seperation of chemical reactions in a CRN is very common in biochemical
processes[15]. Sets of reactions or lumps of species are associated with di�erent time scales
at di�erent point in a biological proces and activeness of dynamics in speci�c time scale
changes in time. The set of reactions or lump of species associated with a time scale is
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called time scale mode. The number of active time scale modes can be thought as dimension
of the manifold in state space where the system resides. Some biological processes such as
cell division cycle consist of alternating excitation and relaxation period. The dimension of
manifold increases during the excitation period and the system quickly approaches to slow
manifold of lower dimension during the relaxation period. There are approaches exploiting
the separation in time scale to reduce complexity of a model[39, 25, 26]. In this section,
some of basic concepts of time scale analysis and model reduction approaches based on the
time scale seperation are discussed.

2.2.1 Reduction of Chemical Kinetic Models

Simplifying chemical kinetic models is a well known problem in chemical engineering. [29]
provides a review on various approaches on this problem. An ODE model of a chemical
reaction network can be expressed as in the following:

dx

dt
= f(x, p), (2.4)

(2.5)

where x ∈ Rn , p ∈ Rk is the vector of states, and parameters of the system. The states are
often equivalent to the independent chemical species in the system. The objective of model
reduction is to convert such a model into

dx̂

dt
= f̂(x̂, p), (2.6)

y = ĝ(x̂). (2.7)

where x̂ ∈ Rc is the vector of states in the reduced system.

The converted model is simpli�ed by removing redundant state variables and/or combining
states variables such that c < n or replacing f with f̂ approaximating f .

The goodness of the reduced model is often measured by comparing outputs of the original
model and the reduced model. Sum of squared errors is often used as the measure but various
qualitative and quantitative measures are used for the comparison.

Quasi Steady State Approximation (QSSA) is one of approaches to reduce a model using
time scale separation [29]. Suppose there are two sets of reactions exist for a system and the
rates of change of species in one of the sets are much faster than the species in the other set.
Let F be the set of indexes of slow species and S is the set of indexes of the slow species.
Since the fast species have very small relaxation time compared to the relaxation time of
slow species, the fast species are assumed to reach to steady-states immediately. Then,

ff (x, p, u) = 0, f ∈ F (2.8)
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The concentration of fast species can be calculated from the concentration of slow species
with the above equation and the original ODE model is reduced into a ODE model of slow
species and algebraic equations for the fast species.

Quasi Equilibrium (QE) approaximation is to �nd reversible reactions whose forward and
reverse reaction rates are approaximately balanced for given time scale[37]. From the found
QEs, algebraic equations are derived and used to reduce the model as in QSSA.

System of Linear Di�erential Equation and Right Eigenvector

The solution of linear di�erential equation ẋ = Ax is x(t) = eAtx(0). From the de�nition of
matrix exponential,

eA =
∞∑
n=0

An

(n+ 1)!

For a right eigenvector v of a matrix A, Av = λv and

eAv =
∞∑
i=0

1

(i+ 1)!
Aiv

=
∞∑
i=0

λi

(i+ 1)!
v

where λ is a eigenvalue of A. If A is diagonalizable and has n linearly independent eigen-
vectors, the eigenvectors can be used as basis of n dimensional Euclidean space. Then, x(0)
can be decomposed into a linear combination of the eigenvectors. The following equality is
satis�ed in this case[39]:

x(t) = eAtx(0)

= eAtV c

=
n∑
j=1

∞∑
i=0

(tλj)
i

(i+ 1)!
cjvj

=
n∑
j=1

cje
λjtvj

= [v1v2...vn][c′1, c
′
2...c

′
n]T

where vj (1 ≤ j ≤ n) is a eigenvector of A, x(0) = c[v1v2...vn], and c′j = cje
λjt. As can be

seen in the equation, projection of x(0) on vj decayed or ampli�ed with rate of λj. That is,
The component of the initial state in the direction of vj is associated with time scale 1

λj
. A



Yong Ju Cho Chapter 2. Background 11

direction in state space is in column space of a stoichiometric matrix for an ODE model of
a CRN so the time scale associated with a right eigenvector can be used to see time scales
of reactions for a given point in the state space.

Time Scale Modes

If A is diagonalizable, there is a T such that

˙̂x = T−1ẋ

= T−1Ax

= T−1ATT−1x

= T−1ATx̂

= Λx̂

where Λ = T−1AT is a diagonal matrix and x̂ = T−1x. T and T−1 can be calculated with

T =
[
v1 ...vn

]

T−1 =

 wT1
...
wTn


where v anf w is a right and left eigenvector of A and viwj = δij (1 ≤ i, j ≤ n). Λ is a
diagonal matrix whose main diagonal is λ1,λ2,...,λn. Then, ˙̂xi = λix̂i for 1 ≤ i ≤ n and

x̂(t) =


eλ1tx̂1(0)
eλ2tx̂2(0)

...
eλntx̂n(0)


Each x̂i is called a time scale mode and is exponentially ampli�ed or decayed with rate of
eλit. Sine x̂ is just a vector of linear combinations of x de�ned as x̂ = T−1x, it means that
left eigenvector wi represents a lump of state variables associated with time scale λi. Also,
the following equation holds

x(t) = etAx(0)

= etTΛT−1

x(0)

= TetΛT−1x(0)
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Distance from Slow Manifold

Linear dynamic system ẋ = Ax is discussed so far. Local linear approximation of a nonlinear
system ẋ = F (x) can be done as in the following:

d(x+ ∆x)

dt
= F (x) + JF (x)∆x+ o(|∆x|)

Since dx
dt

= F (x),

∆ẋ = JF (x)∆x

The discussion made in previous sections can be applied here by simply settting A as JF (x).
That is,

∆x(t) = TetΛT−1∆x(0)

where JF (x) = TΛT−1.

Time derivative of x̂ is

dx̂

dt
= T

dx

dt
= TF (x)

Also, the jacobian is

∂(TF (x))

∂x̂
=

∂(TF (x))

∂x
· ∂x
∂x̂

= TJF (x)T−1

So local linear approximation of ˙̂x is

d(x̂+ ∆x̂)

dt
= TF (x) + TJF (x)T−1∆x̂

dx̂

dt
+
d∆x̂

dt
= TF (x) + TJF (x)∆x

d∆x̂

dt
= TJF (x)∆x

= T
d∆x

dt

On the other hand,

d(x̂+ ∆x̂)

dt
= T

dx

dt
+ T

d∆x

dt

= TF (x) + T
d∆x

dt
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When mode i is collapsed onto the n− 1 dimensional slow manifold in n dimensional phase
space, following equation holds for the point xs on the slow manifold.

dx̂si
dt

= T(i,:)
dxs

dt
= T(i,:)F (xs)

= 0

Let ∆x̂i = x̂i − x̂si . Then,

dx̂i
dt

= T(i,:)
d(x̂si + ∆x̂i)

dt

= T(i,:)F (xs) + T
d∆x

dt

=
d∆x̂i
dt

From the above equation,

d∆x̂i
dt

= T(i,:)F (x)

Also,

d∆x̂i
dt

= λi∆x̂i

Hence,

∆x̂i =
T(i,:)F (x)

λi|T(i,:)x|
(2.9)

∆x̂i can be used as a distance of a mode from the slow manifold [39]. |T(i,:)x| in the denom-
inator is for normalization. The distance measure can be used to know how active a mode
is. The closer a mode to the slow manifold is, the less active the mode is. Time scale modes
of a system can be classi�ed into active and inactive modes using this distance measure and
the number of active modes can be used to calculated a dimension of a slow manifold.

A can be only diagonalized i� there are n independent eigenvectors of A. The concept of
decomposing a solution of a linear di�erential equation with multiple modes associated with
di�erent decay rates can be generalized for any real square matrix A using invariant subspace
decomposition corresponding Jordan blocks of A. In this case, T(i,:) in (2.9) can be chosen
to be a Schur vector [26].
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2.2.2 Detection of Quasi Steady-State and Quasi Equilibrium

QSSA and QEA are frequently used model reduction methods based on time scale anal-
ysis but �nding QSS and QE usually needs experience and intuition about the modeled
system[37]. Time scales associated with reactions and lumps of species can be found us-
ing the left and right eigenvectors as discussed before. Intrinsic Low-Dimensional Manifold
(ILDM) [26] is an approach to reduce a complex model using time scale seperation of lumps
of species. ILDM �nds data points satisfying constraints T(i,:)F (x) ≈ 0 for given number
of dimension ns. In case of using continuation method, �xed points are used as the initial
guess of the manifold. Then, ns states are picked and quadratic polynomial of n− ns states
�tting the found data points are found. Since QSS and QE are assumptions on time scale
seperation of lumps of species and reactions, it is possible to apply the time scale decompo-
sition to detect QSS and QE. In [37], an approach is introduced to �nd QSS and QE using
Intrinsic Low-Dimensional Manifold (ILDM) and modi�ed version of ILDM.

This chapter has introduced key concepts and background to understand the proposed algo-
rithmic approaches.



Chapter 3

Network Reconstruction

3.1 Introduction

Algorithms in computational biology and bioinformatics are helping rapidly yield new in-
sights into biological and biochemical processes. While much of today's excitement is focused
on analyzing data from high-throughput screens (e.g., microarrays, RNAi assays), signi�cant
research is also being conducted in constructing and simulating mathematical models of key
biological processes, such as the cell cycle [8, 31], circadian rhythms, and entire signaling
pathways [5]. These models capture not only qualitative properties of the underlying process
but also quantitative traits as revealed by mutant experiments [36]. As shown in Fig. 3.1,
such mathematical modeling typically begins with a chemical reaction network (CRN), which
is then converted to a set of simultaneous ordinary di�erential equations (ODEs), which are
then numerically simulated to yield time series pro�les of the participating molecular species.
These pro�les are then matched with real data and the model is adjusted to account for dis-
crepancies. More sophisticated methods involving bifurcation plots and phase portraits shed
further insight into the qualitative dynamics of the underlying system.

In this thesis, we study the inverse problem, i.e., analyzing time series pro�les of the molecular
species to reconstruct the CRN (see Fig. 3.1, dotted lines). This �nds uses in not just systems
biology, as studied here, but also in any domain where chemical reaction systems form the
origins of the underlying numerical model (ODE), such as petrochemical plant engineering,
environmental engineering, food processing, and manufacturing.

Reconstructing CRNs is relevant not just for system identi�cation but also for model re-
duction. For instance, it is well acknowledged that models of key biological processes are
notoriously complex and di�cult to comprehend for humans [5]. A key task therefore is to
reduce the reaction system to a smaller system, involving fewer reactions and/or molecules,
but yet retain the essential dynamical properties of the system. Given a complex mathemat-
ical model of, say, a biochemical process, we can simulate the model to generate data and

15



Yong Ju Cho Chapter 3. Network Reconstruction 16

Figure 3.1: CRN mining is the inverse problem of reverse-engineering a set of chemical
reactions that can reproduce the dynamics observed in a given time series dataset.

reconstruct a (potentially) smaller model by mining the generated dataset. Such a model→
data→ model transformation is currently a hot topic in computational systems biology [28].

Pertinent data for mining CRNs can hence be gathered from either experimental observations
or computational simulation. The former is the subject of works such as [34] and requires
`wet-lab' machinery as described in [4]. In this thesis, we focus on data from computational
simulations of mathematical models for three reasons: the ease of generating data on demand
from the given CRN in a controlled fashion, the capability to systematically perturb the CRN
and observe the modi�ed dynamics, and the desire to verify our algorithms on some `ground
truth.' Table 3.1 summarizes the input-output description of the network reconstruction
problem studied here as well as the methods available to observe, interrupt, or otherwise
modify the behavior of the system. This setting of the CRN mining problem is pertinent in
computational modeling and systems biology contexts.
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Our primary contributions in this thesis are four fold. First, we introduce CRN mining as a
new KDD problem and cast CRN mining as the task of mining an undirected graphical model
followed by annotating edges and groups of edges with chemical reaction type information.
In essence, we capture the dynamics of the network by modeling each species as a random
variable and by looking for independence relations between them.

A key issue in mining graphical models among a given set of random variables is to decide
whether to detect dependencies or (conditional) independencies. If we choose to detect de-
pendencies, we must take care to distinguish between direct and indirect dependencies. To
avoid this issue, classical algorithms (e.g., see [6]) are hence almost exclusively based on
detecting independencies, either by explicitly identifying such constraints and summarizing
them into a network, or by de�ning the score of a network based on such relationships and
searching in the space of networks. Our second contribution is to show how the novel setting
of CRN mining permits us to mine dependencies and yet avoid detecting indirect depen-
dencies, a feature not achievable in traditional (discrete) graphical model mining contexts.
Further, our algorithm for CRN mining involves a O(n2) computation (where n is the num-
ber of species) in contrast to algorithms that have exponential running time complexity in
the worst case for mining graphical models.

Our third contribution is the notion of `sensitivity tables' as pattern matching constraints
to identify reaction types, such as whether it is a reversible or irreversible reaction, enzyme
catalyzed or not, and the precise ratios between the molecules of reactants and products.
We hasten to add that we cannot unambiguously distinguish between all possible chemical
reaction types and we precisely state the distinctions that we are (un)able to make.

Finally, we demonstrate the application of CRN mining to reconstructing many important
biochemical networks in systems biology applications, including prokaryotic gene expression
regulation and the CDC-Cyclin2 interaction forming the core of the budding yeast cell cycle.

3.2 Related Research

Most pertinent related research can be found in the systems biology, mathematical modeling,
and bioinformatics literature. The 1997 paper by Arkin, Shen, and Ross in Science [4] is cred-
ited with creating interest in CRN mining; it also presented an all-pairs correlation method
for reconstructing the underlying network, with applications to the glycolysis metabolic pro-
cess. However, the method described in [4] cannot distinguish between direct and indirect
dependencies and can thus result in spurious edges. In addition, it assumes that all species
are eventually connected and hence cannot recognize disconnected components, such as the
simultaneous set of chemical reactions: {A←→ B, C ←→ D}.

There have been many papers that were motivated by the Arkin, Shen, and Ross work
described above. For instance, Wiggins and Nemenman [43] present a method to analyze time
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Table 3.1: Setting of the CRN mining problem.

Given

Number of species

Identities of species

To �nd

Reaction network

Properties of individual reactions

Perturbation capabilities

Can bu�er given species (either singly or in

subsets)

Can knock-out given species (either singly

or in subsets)

series to infer process pathway, which can be construed as representing calling invocations
of one pathway by another. However, their method is aimed at producing a general network
of relationships from genomic data and not at reconstructing chemical reaction networks.
A more theoretical approach is taken in [27] but its strong guarantees of the soundness of
network reconstruction are obtained by restricting the focus to discrete dynamical systems,
which capture the functional behavior of regulatory networks but not CRNs. More recently,
Karnaukhov et al. [21] focus on the reaction identi�cation problem by assuming a general
parameterized form for the kinetics of the reaction and �tting rate constants by least squares
�tting. This work builds on earlier work by the same authors [20]. CRN mining as studied
here subsumes reaction identi�cation as a sub-goal.

Thus, our formulation of CRN mining is novel for its attempt to model both the dependence
structure of chemical species and the properties of individual reactions.

3.3 Some Chemistry for Data Miners

Before we present our algorithm for reconstructing chemical reaction networks, we review
some basic chemistry and established practices in the mathematical modeling of chemical
reactions. This is the subject of many excellent books, such as [23] which especially focus
on modeling for bioinformatics applications. For the data mining audience, we present an
abridged version of this literature involving only topics necessary to understand the ensuing
algorithm.
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(a) A
k1−→ B (b) A

k1←→
k2

B

(c) A+B
k1−→C (d) S

E−→P

Figure 3.2: Dynamics of reactions 3.1, 3.3, 3.5, and 3.12, respectively. Parameters used in
the above plots: (a) k1 = 1, xA(0) = 100 and xB(0) = 0. (b) k1 = 3, k2 = 1, xA(0) = 100
and xB(0) = 0. (c) k1 = 0.001, xA(0) = 100, xB(0) = 200 and xC(0) = 0. (d) k1 = 1,
k−1 = 10, k2 = 1, xS(0) = 100 and xP (0) = 0.

3.3.1 Modeling a Single Reaction

The simplest example of a chemical reaction is the irreversible isomerization reaction

A
k1−→ B. (3.1)

where k1 denotes the rate at which species A is converted into B. If the concentrations of
the species A and B are represented by xA and xB, the dynamics of (3.1) can be formulated
by a set of ordinary di�erential equations (ODEs){

dxA
dt

= −k1xA,
dxB
dt

= k1xA.
(3.2)

A typical trajectory of xA and xB in this simple system is shown in Figure 3.2 (a).

The reaction (3.1) is a special case of the reversible isomerization reactions

A
k1←→
k2

B. (3.3)
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The corresponding ODEs are: {
dxA
dt

= −k1xA + k2xB,
dxB
dt

= k1xA − k2xB.
(3.4)

A typical trajectory for this system is shown in Figure 3.2 (b).

Both reactions (3.1) and (3.3) are linear. The simplest nonlinear example is the bimolecular
reaction

A+B
k1−→C. (3.5)

The corresponding ODEs are given below.
dxA
dt

= −k1xAxB,
dxB
dt

= −k1xAxB,
dxC
dt

= k1xAxB.

(3.6)

A typical trajectory of equation (3.6) is shown in Figure 3.2 (c).

The kinetics in reactions (3.1), (3.3) and (3.5) are simple mass action kinetic laws. But
equations can be more complicated. Consider the enzyme-substrate reactions

E + S
k1←→
k−1

ES
k2−→E + P. (3.7)

Here E represents enzyme species, whose total concentration E0 = xE + xES remains as a
constant in this chemical process. The corresponding ODEs are

dxS
dt

= −k1xExS + k−1xES,
dxE
dt

= −k1xExS + (k−1 + k2)xES,
dxES

dt
= k1xExS − (k−1 + k2)xES,

dxP
dt

= k2xES.

(3.8)

When k1 and k−1 are much larger than k2, we can assume the �rst two reactions in (3.7)
reach partial equilibrium. This partial equilibrium assumption can be formulated by

k1xExS = k−1xES. (3.9)

When k2 is in a similar magnitude of k−1, the equilibrium assumption (3.9) does not hold
any more. But a steady state assumption can be made. It assumes that the concentration
of ES remains a steady state after a transient period, which is formulated as

k1xExS = (k−1 + k2)xES. (3.10)

It turns out that (3.9) is a special case of (3.10). Let kM = k2+k−1

k1
. With the assumption

that E0 is much smaller than xS, we can derive

dxP
dt

=
k2E0

kM + xS
xS. (3.11)
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Let k = k2E0

kM+xS
. The equation (3.11) is called the Michaelis-Menten equation. It reduces the

enzyme-substrate reaction (3.7) into a simple reaction

S
E−→P. (3.12)

denoting that substrate S is catalyzed by enzyme E to form product P . But (3.12) is
fundamentally di�erent from the simple reaction (3.1) because it follows the nonlinear enzyme
kinetics (3.11). A typical trajectory of the reaction (3.12) is shown in Figure 3.2 (d).

3.3.2 Modeling Sets of Reactions

A chemical reaction network (CRN) is composed of many reactions. Suppose N species
are involved in M reaction channels in a CRN. Let the concentration of these species be
denoted by xi, i = 1, · · · , N and the reaction channels be denoted by Rj, j = 1, · · · ,M . The
dynamics of the system can be formulated as

dx

dt
= f(x), (3.13)

where fi(x) =
∑M

j=1 νijrj(x). Here ν is called the stoichiometric matrix. νij is the unit
change of xi caused by the reaction channel Rj and rj(x) is the reaction rate function for
the reaction channel Rj. For example, in the simple reaction (3.1), there are two species
and one reaction channel. ν = [−1, 1] and r1(x) = k1xA. In the bimolecular reaction (3.5),
ν = [−1, −1, 1] and r1(x) = k1xAxB. In the reduced enzyme-substrate reaction (3.12),
ν = [−1, 1] and r1(x) = k2E0

kM+xS
.

But often the state space in (3.13) can be reduced by applying conservation laws and partial
equilibrium or steady state assumptions. Examples of the partial equilibrium assumption
and steady state assumption are given in (3.9) and (3.10) for the enzyme-substrate reaction
(3.7). Conservation laws can be applied for all examples shown above. For example, for
reaction systems (3.1) and (3.3), the sum of xA and xB remains as a constant. That can be
formulated as

xA + xB = C0. (3.14)

With this conservation law, we only need to formulate the dynamics of one variable. The
other can be directly calculated from (3.14). Thus the dimension of the state space in both
equations (3.2) and (3.4) can be reduced by 1. In the bimolecular reaction (3.5), there are
two conservation laws {

xA + xC = C0,
xB + xC = C1.

(3.15)

With the two constraints, the dimension of the state space in equation (3.6) can be reduced
to 1.
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For a complex CRN, the ODEs and the algebraic constraints can be put together. Then we
obtain a set of di�erential-algebraic equations (DAEs)

x′ = f(x, y), (3.16)

0 = g(x, y), (3.17)

where (3.16) is the di�erential part and (3.17) is the algebraic part.

3.3.3 Sensitivity Analysis

Sensitivity analysis is widely used in optimization, parameter estimation, uncertainty and
stability analysis. (Here we demonstrate its applications to data mining and network recon-
struction.) For a CRN represented by a set of DAEs, the system often contains uncertainty
due to unknown kinetic rates, environment �uctuations, and other unknown possible reaction
pathways. They can be represented as parameters in DAEs. We can rewrite the equation
(3.16-3.17) as

x′ = f(x, y, p), (3.18)

0 = g(x, y, p), (3.19)

with initial conditions x0 = x0(p) and y0 = y0(p). Sensitivity re�ects the change rates of the
state variables x and y with respect to the change in the parameter p, which are calculated
by dx

dp
and dy

dp
.

The sensitivity functions dx
dp

(t) and dy
dp

(t) can be obtained from the numerical time series data
or estimated by �nite di�erence methods during the process of solving the original DAEs
and derived sensitivity equations. Software such as DASPK (in Fortran) [7] and CVODES
(which comprises the CVODE [9], KINSOL, and IDE software components in C) have in-
built capabilities to perform sensitivity analysis of DAEs.

However, one advantage of our algorithm is its robustness. We do not require an accurate
measurement of the sensitivity. Instead, just the signs of the sensitivity are needed. Since
the sensitivity is a function of time, the sign is taken at the time point where the function
has the maximum absolute value. Moreover, we have set the threshhold as 10−8. If the
absolute value of a sensitivity is below this threshhold, it is labeled as zero. An end user can
adjust the threshhold value based on how reliable the measurement is. In this way, we can
avoid some false alarms from noise data. The cost is that sometimes we may not be able to
detect some reaction if its sensitivity is lower than the threshhold.

3.4 Using Systematic Probing to Identify CRNs

Referring back to the experimental context in Table 3.1, we present an approach to recon-
structing chemical reaction networks by systematically perturbing the network to identify
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relationships between the given species. (Although such perturbations are well studied in
biochemistry, leading to the notion of minimal cut sets in biochemical networks [22], they
have primarily been used for engineering �ux patterns, not for CRN mining.) As Table 3.1
shows, there are two main classes of perturbations available: bu�ering and knock-out exper-
iments.

3.4.1 Bu�ering experiments

Bu�ering involves providing enough supply (intake) of some species, thus forcing it to stay
constant. In the corresponding DAEs, this is equivalent to replace the corresponding di�eren-
tial equation by a simple algebraic equation. Note that bu�ering will break the corresponding
conservation constraints.

For example, consider a simple chain reaction system

A
k1−→ B

k2−→ C. (3.20)

The corresponding equations are
dxA
dt

= −k1xA,
dxC
dt

= k2xB,
xA + xB + xC = C0.

(3.21)

If we perturb the initial value of A (let xA(0) = p), we can calculate the corresponding
change resulted in C (by dxC

dp
). We then know A and C are connected in the system. If B is

bu�ered, xB stays as a constant. Then the equations become
dxA
dt

= −k1xA,
dxC
dt

= k2xB,
xB = B0.

(3.22)

We conduct the sensitivity analysis again and we will get dxC
dp

= 0! This shows that after
B is bu�ered, A and C become disconnected. We can then conclude about the structure of
this network: A a�ects C through B.

3.4.2 Knock-out experiments

A second type of perturbation that is common in biology is the knock-out, i.e., to remove
a molecule completely by rendering it inactive or unable to participate in the reaction.
Engineered biological systems by knocking out key molecules are referred to as mutants.
In the corresponding DAE, knock-outs correspond to a special form of bu�ering, namely
replacing the respective species variables to zero.
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However, knock-outs, while useful at understanding loss-of-function, are not very revealing
for reconstructing CRNs. For instance, compare the chain reaction:

A−→B−→C

with the enzyme catalyzed reaction:

A
B−→C

By bu�ering B, we can distinguish between the two cases by detecting whether dxC
dp

= 0 (�rst

case) or whether dxC
dp

> 0 (second case). Here p is the initial value of A as before. However,

if we knock out B from the respective equations, both of them result in dxC
dp

= 0! For this
reason, in this thesis, we exclusively focus on bu�ering as a means to probe CRNs.

3.4.3 CRNs and Graphical Models

The above observations hint at the relationship between CRNs and undirected graphical
models [24]. We �rst setup the correspondence between a given CRN and a corresponding
graphical model. Two terms are de�ned here to denote two types of reactions depending
on the number of species involved in each reaction. Bi-reaction/Tri-reaction is a reaction
connecting two/three species. For ease of presentation, in the following lemmas and re-
sults, we assume only bi-reaction reactions although our algorithmic implementation and
experimental results involve both bi-reactions and tri-reactions.

De�nition 1. Given a CRN N (a set of molecular species and a set of chemical reactions
between them) we de�ne the undirected graph G(N ) corresponding to N as the graph whose
nodes corresponds to the species in N and whose edges connect nodes that participate in a
common reaction.

Note that di�erent CRNs might induce the same undirected graphical model. For instance,
the reaction sets A ←→ B ←→ C and A −→ B −→ C induce the same graph even
though the former involves reversible reactions and the latter involves irreversible reactions.
Nevertheless, the following results demonstrate that mining graphical models is an useful
�rst step to reconstructing CRNs.

Lemma 3.4.1. Given a network N and its undirected graph G(N ), node n1 is conditionally
independent of node n2 given a set of nodes nX in G(N ) i� the following applies: after
bu�ering nX in N , the sensitivity of n1 to n2 (and vice versa) is zero.

A direct application of Lemma 3.4.1 would require us to search through an exponential
set of possible conditioning contexts. Instead, as stated earlier, we will seek to identify
dependencies.
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Lemma 3.4.2. Given a network N and its undirected graph G(N ), an edge exists between
node n1 and node n2 in G(N ) i� the following applies: the sensitivity of n1 to n2 (or vice
versa) after bu�ering all other molecules in N is non-zero.

Unlike Lemma 3.4.1, Lemma 3.4.2 requires only a search through O(n2) conditioning con-
texts. Then why don't traditional Markov network learning algorithms utilize a similar
approach? This is because to verify each of the O(n2) conditional dependencies, the con-
ditioning set involve n − 2 variables and, even if each variable takes on only two values,
we will have to investigate 2n−2 settings for conditioning contexts. Besides the exponential
complexity, projecting to n − 2 variables typically will retain very few tuples, typically not
su�cient to estimate dependence. Other works such as [6] acknowledge these issues and, in
fact, incorporate the size of the conditioning context in their analysis of algorithm complex-
ity. However, in CRN mining, these limitations do not apply since there is a proportional,
rather than exponential, cost to a bu�ering experiment w.r.t. the size of the conditioning
context (i.e., the number of bu�ered molecules). Furthermore, the limitations of sample data
sizes do not obviously arise in a bu�ering experiment.

3.5 Algorithms for Chemical Reaction Network Recon-

struction

Our approach to CRN reconstruction begins by �rst reconstructing the underlying graphical
model (Algorithm 1: InferGraphicalModel) followed by cataloging the individual edges or
groups of edges into reactions (Algorithm 2: FindReactions). These are detailed next.

Algorithm 1 InferGraphicalModel
Input: V,ODEv
Output: S
for all i, j ∈ V (i < j) do

(S(i, j), S(j, i))← Bu�eredSim(i, j, V − {i, j}, ODEV )
end for

3.5.1 Reconstructing Network Topology

InferGraphicalModel takes as input V , the set of all chemical species whose dynamics are
given by the system of ODEs in ODEV . As stated earlier, it conducts a O(n2) bu�ered
simulation to identify sensitivities between all pairs of molecules (in both directions). Here,
S(i, j) denotes the sensitivity of j to the initial concentration of i. InferGraphicalModel
produces as output the sensitivity matrix S whose non-zero entries encode the graphical
model. As can be seen in Fig. 3.3 from the next section, it is clear that all tri-reactions have
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Algorithm 2 FindReactions
Input: V, S
Output: Bi, Tri
for all i, j ∈ V (i < j) do

if |S(i, j)| ≥ stol or |S(j, i)| ≥ stol then

E ← E ∪ {i, j}
end if

end for

Initialize all elements of CV to be 0
SI ← sign(S, stol)
for all ek, em ∈ E (k < m) do

if ek and em share a vertex b s.t. ek = {a, b} and em = {b, c} and Tri.�nd({a, b, c}) =
false then

reactions← LookupTriReaction({a, b, c}, SI)
if reactions is not empty then
Tri.add({a, b, c}, reactions)
set CV ({a, b}), CV ({b, c}), CV ({c, a}) to be 1

end if

end if

end for

for all e = {h, i} ∈ E do

if CV ({h, i}) = 0 then
reactions← LookupBiReaction({h, i}, SI)
if reactions is not empty then
Bi.add({h, i}, reactions)

end if

end if

end for
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corresponding size 3 consecutive subgraphs in in the inferred graphical model, thus justifying
the next algorithm.

The next algorithm, FindReactions, takes as input the set of chemical species as before and
the just computed sensitivity matrix S. It produces as output the list of detected bi-reactions
in Bi and tri-reactions in Tri. First, it thresholds the sensitivity matrix S into SI. The
array CV is used to hold a CoVer for the molecular species and their dependencies, i.e.,
to see if a dependency detected in InferGraphicalModel has been `explained' by a chemical
reaction. Initially no dependencies are explained, hence CV , indexed by the dependencies, is
initialized to zero. Algorithm FindReactions then proceeds to look for tri-reactions that �t
the sensitivity pro�les computed in SI (using Table 3.3, explained in the next section) and
if a suitable reaction is found, the array CV is updated suitably. Only after all trimolecular
combinations are exhausted does it proceed to look for bi-reactions. At this point, it is
important to mention that the algorithm LookupTriReaction (not detailed here) searches
through all permutations of the given triple of molecules in establishing a correspondence to
sensitivity pro�les.

3.5.2 Reconstructing Reaction Properties

It remains to be detailed how LookupTriReaction and LookupBiReaction work. The advan-
tage to these algorithms is that they use sensitivities between pairs of molecules which can
actually be computed alongside the reconstruction algorithm. Tables 3.2 and 3.3 contain
the relevant information for disambiguating reaction types. The same information is also
summarized graphically in Fig. 3.3. Rather than go through each entry sequentially, we
explain below how the sensitivity table patterns can be used to make important distinctions.

Sensitivity changes with time. Let sA,B(t) be the time series of sensitivity of B to the initial
concentration of A. We �rst discretize this time series into `+', `-', and 0 values. The sign
of the sensitivity pro�le, s(A,B), is then de�ned as the sign of sA,B(ti) where ti is the time
point at which |sA,B(ti)| is maximum. We index into Tables 3.2 and 3.3 using these signs and
identify reaction types. Recall that Table 3.2 is meant to be used for identifying reactions
between pairs of molecules after Table 3.3 has been used to identify reactions between triples.
Also, Table 3.3 is richer in detail than Table 3.2 since it gives the signs of sensitivities of six

basic tri-reactions: A
B−→ C, A←→ B +C, A −→ B +C, A

A−→ B +C, A
B−→ B +C, and

A+B −→ C, and under three di�erent bu�ering conditions.

We should point out that not all distinctions can be made unambiguously. For instance,
in Table 3.21, there are �ve possible reactions but only three distinct sensitivity patterns.
Hence some rows lead to multiple hypotheses. A direction of future work is to develop a

1A note about the asterisk in this table: due to the process of enzyme-substrate complex formation, the
entry s(B,A) is negative for the initial reaction and later changes its sign to a plus as shown in Table 3.2. If
we assume that the (initial) concentration of B is much smaller than the concentration of A, then this entry
can be treated as a `+'.
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constraint engine that can reason about such multiple hypotheses, across adjacent sensitivity
pro�les, to achieve greater discrimination of detection.

Reversible versus Irreversible

Distinguishing between reversible and irreversible reactions is straightforward, e.g., Table 3.2
can be readily used to distinguish between A −→ B and A ←→ B by assessing the sign of
s(B,A).

Multiple reactants

This situation requires us to distinguish between the tri-reaction A + B −→ C and the
combined set of two bi-reactions {A −→ C, B −→ C}. s(A,B) and s(B,A) are zero for the
two bi-reactions but s(A,B) and s(B,A) are negative in the tri-reaction, thus enabling the
distinction.

Multiple products

This situation is the converse of the previous case. Note that A −→ B+C and the combined
set of two bi-reactions {A −→ B, A −→ C} have the same signs of sensitivities according to
Tables 3.2 and 3.3. Thus, A −→ B + C and {A −→ B, A −→ C} cannot be distinguished
in our approach.

Stoichiometry

Stoichiometry refers to the relative ratios of molecules that participate in a reaction. Thus,
the only distinction between the reactions: A←→ B and 2A←→ B is one of stoichiometry.
Using only the signs of the sensitivity entries, these reactions cannot be disambiguated. On
the other hand, if information about the magnitude of the sensitivity is available, e.g., if

we know that
sA,A(t)

sB,A(t)
≈ c and

sA,B(t)

sB,B(t)
≈ c, then we can conclude the existence of reaction

cA←→ B in steady state.

Enzyme catalysis

An enzyme-substrate reaction can be modeled with either mass action kinetics or Michaelis-
Menten kinetics. When the enzyme-substrate reaction is modeled with mass action kinetics,

the sensitivity pro�les are identical for A
B−→ C and A+B −→ C (see row 3 of Table 3.3). On

the other hand, if the enzyme-substrate reaction is modeled with Michaelis-Menten kinetics,
then these reactions can be disambiguated (see row 4 of Table 3.3).
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Table 3.2: The Bimolecular sensitivity table used to identify chemical reactions involving 2
molecules.

Reaction s(A,B) s(B,A)

A −→ B or A
A−→ B + 0

A←→ B or 2A←→ B + +

A
B−→ B +∗ -

Auto-catalysis

Auto-catalysis is the situation where a molecule catalyzes a reaction that it itself participates
in. It is easier to detect if the catalyst is the product, rather than the reactant. For instance,

as can be seen in Table 3.2, A −→ B and A
A−→ B have the same sensitivity pro�le, whereas

A −→ B and A
B−→ B can be distinguished. Similarly, in Table 3.3, A −→ B + C and

A
A−→ B+C have the same sensitivity pro�le (see row 2) and thus cannot be distinguished.

Detecting Groups of Reactions

The last two rows of Table 3.3 are especially designed to detect common groups of reactions.
The `+' sign for s(C,A) in both these rows helps detect the existence of a loop back from
molecule C to A which is not the case, for instance, in rows 3 and 4 of Table 3.3. Within the
last two rows, further disambiguation about rate laws can be made using the sign of s(A,B).

More Complex Dynamics

By capturing more of the dynamics, these tables can be put to further use in reaction

identi�cation. For instance, consider the task of distinguishing A
B−→ C from A+ B −→ C

(using rows 3 and 6 of Table 3.3). When A is bu�ered, s(A,C) and s(B,C) grow boundlessly

in A
B−→ C. Whereas, in A + B −→ C, s(A,C) is limited by B. Hence, s(A,C) stops

increasing after reaching steady state.

3.6 Limitations and Possible Solutions

Thus far, we have made two critical assumptions that are necessary to the success of our
reconstruction algorithm:

1. Between a given pair or triple of molecules, there is at most one reaction.
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Table 3.3: The `All but 2' sensitivity table used to identify chemical reactions involving 3
molecules.

Reaction(s) A bu�ered B bu�ered C bu�ered
s(B,C) s(C,B) s(A,C) s(C,A) s(A,B) s(B,A)

A←→ B + C - - + + + +
A −→ B + C or A

A−→ B + C 0 0 + 0 + 0
A

B−→ C or A+B −→ C + 0 + 0 - -
A

B−→ C (Michaelis-Menten) + 0 + 0 0 -
A

B−→ B + C + 0 + 0 + -
A

B−→ C or A+B −→ C with C −→ A + 0 + + - -
A

B−→ C with C −→ A (Michaelis-Menten) + 0 + + 0 -

2. The rate laws governing the reactions fall into the categories of either the mass-action
formulation (equations 3.2) or Michaelis-Menten kinetics (equation 3.11).

These assumptions are not di�cult to surmount but their removal is beyond the scope of
this thesis. Consider for instance the network in Fig. 3.4 governing how cells in frog egg
extracts divide. The core of this network involves a clique of four nodes (molecules) with six
overlapping reactions between them! To recognize such a circuit, where dynamics between a
given set of molecules are best explained by multiple reactions, we must be able to decompose
observed sensitivity pro�les into additive combinations of smaller components, each of which
corresponds to a basic reaction. The second problem is applicable in situations where reaction
rates do not fall into the two basic types studied here. For instance, rate laws can be highly
non-linear and involve more than one enzyme to catalyze a given reaction. Further, very
fast rate constants can cause drastic changes in concentrations, too quick to be detectable
by analyzing data.

Both these problems can be alleviated by numerical modeling of sensitivity pro�les rather
than the discrete approach of sensitivity tables as studied here. For instance, numerical
optimization can be used to �nd �ts to parameterized reaction laws and by repeatedly
modeling the residual, we can detect multiple reactions spanning a given set of molecules.
The last two rows of our `All but 2' sensitivity table (Table 3.3) provide a limited capability
in this regard and which we have used in the studies described below.

3.7 Experimental Results

Our experimental results are focused on reconstructing key CRNs underlying important
biological processes (see Table 3.4). Here we depict the number of species and reactions for
each system but hasten to add that the complexity of a CRN cannot be judged merely on
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Figure 3.3: A graphical notation (not meant to be a probabilistic graphical model) of the
information from Tables 3.2 and 3.3. A solid arrow from nodeX to node Y exists if sensitivity
of Y to initial value of X is positive. A dashed arrow from node X to node Y exists if
sensitivity of Y to initial value of X is negative. Larger arrowheads indicate higher levels of
sensitivity. No arrow denotes a sensitivity of zero.

Figure 3.4: CRN governing cell-cycle transitions in frog egg extracts.

these factors alone. For instance, the rather innocuous looking system from Fig. 3.1, referred
to as the `Oregonator', forms the model for many reaction-di�usion systems and can exhibit
very complex dynamics including sustained oscillations. It is hence the range of qualitative
behaviors that can be exhibited by the system that constitutes its complexity.

For each CRN studied here, we formulated the corresponding ODE as described in Sec-
tion 3.3, and generated data corresponding to each ODE using the CVODE software [9]. All
rate law equations were modeled using either mass action kinetics or Michaelis Menten kinet-
ics. For each pair of molecules, the bu�ering algorithm bu�ers all but these two molecules,
and the sensitivity pro�les between these molecules are computed. A tolerance of 10−8 was
used to discretize the computed sensitivities. This information drives the reconstruction
of topology and reaction characteristics. The results are evaluated using metrics of recall
(number of correctly reconstructed reactions as a fraction of true reactions) and precision
(number of correctly reconstructed reactions as a function of all reconstructed reactions).
In assessing correctness, to allow partial matches, we evaluate reversible reactions in both
directions (i.e., if the algorithm reconstructs the reaction in only one direction, we count it
as one out of two reactions inferred correctly).
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Table 3.4: Summary of CRNs reconstructed and evaluation statistics.

ODE and sensitivity CRN mining

Model # species # reactions Recall Precision solution time (10−3s) time (10−3s)

CDC-Cyclin2 6 6 0.83 0.83 42.3 0.27
interaction loop(Fig. 3.5)

Arkin's computational 7 6 1 1 167 0.51
circuit(Fig. 3.6)

Prokaryotic gene 9 8 0.875 0.875 97.6 0.56
expression model

Frog egg extracts 8 8 0.75 0.857 58 0.38
(Fig. 3.4)

Generic yeast cell 16 21 0.857 0.88 637 2.31
cycle model(Fig. 3.7)

The CRNs considered here span a variety of model systems in biology. The CDC-Cyclin2
interaction loop (Fig. 3.5 [40]) is the core signaling pathway driving progression through the
cell cycle. It is embedded inside the larger yeast cell cycle model described in Fig. 3.7 [11].
A less complex model drives cell cycle transitions in frog egg extracts, as described earlier in
Fig. 3.4. Two other models considered here are a CRN underlying gene expression regulation
in prokaryotes, which are primitive organisms such as bacteria that do not contain membrane-
bound organelles (not shown due to space considerations) and a CRN meant to serve as a
generic logic gate (Fig. 3.6).

As Table 3.4 reveals, our algorithm achieves consistently high values of recall and precision
across these CRNs. The three reasons it fails to �nd correct reactions or infers spurious
reactions are: the inherent inability to distinguish between certain types of reactions (as
discussed earlier), rapid reaction rates that mistakenly cause the algorithm to infer lack of
connectivity between some species, and the restriction to at most one reaction between a
given pair or triple of molecules. Even with these caveats, it is clear that the algorithm can
be used as a primitive to identify key circuits underlying a collection of molecules.

Table 3.4 also tabulates the time taken to reconstruct each CRN. This includes the time taken
for the network discovery aspect, inference of reaction properties, plus the time involved in
solving the ODE as well as the associated bu�ering experiments. Therefore the time taken
to reconstruct the CRNs is a function of not just the size of the CRN but also the sti�ness
of the underlying ODE. (A sti� equation requires that the ODE integrator use an extremely
small stepsize due to components varying at di�erent time scales or because of underlying
numerical instability.) As a result, although there is an underlying O(n2) complexity to CRN
inference, larger models do not necessarily cause proportional increases in time.
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Figure 3.5: The CDC-Cyclin2 interaction loop forming the core of the budding yeast cell
cycle. Courtesy John Tyson.

Figure 3.6: A CRN designed to serve as a computational element (i.e., as a logic gate).

3.8 Discussion

We have presented a novel application of data mining methodology to chemical reaction
system identi�cation with a marriage of numerical methods and graphical models. Our work
is the �rst to address CRN mining using KDD concepts and methodology.
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Figure 3.7: Generic CRN of the budding yeast cell cycle. Regulatory modules are given by
the shaded rectangles. The di�erent symbols denote di�erent classes of proteins, e.g., the
`PacMan' denotes active forms of regulated proteins. Courtesy Attila Csikasz-Nagy.



Chapter 4

Finding Bistable Cores

4.1 Introduction

The biochemical switch is an important motif frequently found in biological processes. There
are many types of studies to �nd conditions of bistability by mathematically deducing struc-
tural properties of bistable systems. For instance, conditions for bistability for a special class
of systems called input-ouput monotone systems are introduced in [3]. The found conditions
are only applicable to a subset of bistable systems, and hence cannot be used to �nd the
core structures of an arbitrary bistable CRN. A broader goal of our research is to understand
how interactions between molecular species in a CRN co-occurr with switching behavior of
a bistable system.

Table 4.1 depicts the inputs and outputs of the core �nding problem. As can be seen in the
table, the inputs are the target CRN, time scale of interest, order of interactions to consider,
and trajectories during switching transitions. Time scale separation is very common in a

Table 4.1: Setting of the Bistable core �nding problem.

Given

A bistable CRN

Time scale of interest

Order of interactions

A trajectory

To �nd

Subnetwork of the given CRN which is re-

sponsible for the transition dynamics with

the given time scale

35
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biochemical system and `fast' dynamics are often considered to be not necessary to reproduce.
In addition, all possible combinations of interactions between species in the input CRN
can become very large even for a moderate size CRN so it is necessary to consider only
interactions up to a certain order. From these inputs, the objective is to �nd parts of the
input CRN including interactions active during switching transitions.

Switching transitions of a bistable system co-occurs with losing local stability of a stable
steady state where it has been. There has been prior research relating topology of a CRN
with stability of steady state. Instability causing structure analysis (ICSA), described earlier
in this dissertation, is one of such approaches; feedback loops making some of the eigenvalues
of the system Jacobian to be positive are identi�ed by conducting symbolic analysis on the
coe�cients of the characteristic polynomial. A positive feedback is a well known necessary
condition of bistability and such positive feedback loops correspond to instability causing
structures[44]. Finding ICSs of a bistable system reveals core structure of a bistable switch.

ICSA is majorly used to analyze a speci�c system of interest to identify candidate feedback
loops which can make a steady state unstable. ICSA alone is not su�cient to identify which
of the found ICSs can induce actual switching transitions.

The goal of this research hence is to develop an automated way to discover ICSs driving
the switching behavior of for a given bistable system. We exploit the availability of a large
number of bistable CRNs in the CSPACE database [32] so that we can employ large-scale
simulation over this database to identify switching-inducing ICSs.

4.2 Approach

4.2.1 Database of Chemical Stability Space

The CSPACE database is available at http://docss.ncbs.res.in. In [32], 12 basic reaction
types are de�ned and synthetic CRNs are generated by combining reactions of those types.
Parameter values making the generated networks bistable are searched and recorded in the
database with the network con�gurations.

A record of a bistable con�guration in DOCSS consists of model no, reaction signature, and
values of parameters. The following is an example of such a record:

M116: |AabX|DbaX|Jacb| 0.064 2.36 0.266 0.018 0.019 2.360 0.709 1.882 0.030

Here, M116 is the model number identifying the record. |AabX|DbaX|Jacb| is the signature
of reactions where each token separated by `|' symbol denotes a reaction. The �rst symbol
in the token represent the type of the reaction and next two symbols are names of chemical
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Figure 4.1: Directed acyclic graph of bistable con�gurations[32]

species involved in the reaction. The basic reaction types are de�ned reactions of three
distinct chemical species so the last symbol is either the name of the species or placeholder,
depending on the reaction type. For example, |AabX|DbaX|Jacb| denotes a CRN of three
reactions - AabX(a <==> b), DbaX(b �a�> a), and Jacb(a�c�> b). Models are stored with
additional information such as equilibria, stability, zeroness, multiplicity of the equilibria. A
model can be searched by propensity and signature string tokens it contains using DOCSS.
The models are also stored in SBML format.

Fig. 4.1 (taken from [32]) depicts a visualization of all the bistable con�gurations in DOCSS.
Each node in the graph represents a bistable con�guration and the edges between the nodes
correspond to subset relationships between the nodes; if there is an edge between two nodes,
the reactions for a node are a subset of reactions for the other node. The color of nodes in the
graph denotes the propensity of the nodes. Roughly speaking, propensity of a node indicates
the ease with which we can �nd parameter values to make the con�guration bistable. The
nodes are positioned depending on their size. Texts on the leftmost column denote size of
the nodes in each tier. Thus, 3x2 indicates that the nodes in that tier have three molecules
and two reactions. As can be seen in the �gure, the con�gurations form a forest of trees
and a large portion of the forest is covered by a tree rooted from a 3x2 node. The root of
this tree is a con�guration called M101 and has `|DabX|Jbca|' as its signature. DOCSS not
only provides bistable con�gurations but also their structural relation so can be used to �nd
structural patterns of bistable systems.
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Figure 4.2: Collection of ICS activity pro�les

The approach we use to tackle our core �nding problem is a two step process.

For a tree of bistable CRNs:
Step 1. Prepare activity pro�les of ICSs over trajectories for transitions from one stable
state to another.
Step 2. Find substructures or rules retained in the CRNs from the activity pro�le.

4.2.2 Collection of ICS activity pro�les

The �rst step thus involves collecting activity pro�les of ICSs.

This step consists of 4 sub processes. Figure 4.2 provides an overview of these subprocesses.
First, 1-parameter bifurcations are searched for, using a numerical continuation package.
The found parameter is used to induce switching from a stable state to another stable state
in the next step. The generated trajectories are examined according to some criteria to �lter
trajectories of interest. In the last step in this stage, algebraic terms corresponding to ICSs
over the selected trajectories are evaluated. The details of each process are explained in the
following. M101 with signature '|DabX|Jbca|' which is the root node of the largest subtree
in 4.1 is used as an example for the explanation.

In [32], a number of bistable CRNs are found. Table 4.2 shows one of the found bistable
CRNs called M101. M101 consists of two catalytic reactions: b

c−→ c and c
a−→ b. Each

reaction consists of three elementary steps as shown in the table. cc and ac are enzyme
substrate complexes of b

c−→ c and c
a−→ b, respectively.
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Elementary Step Catalytic Reaction

r1 b+ c
k1−→ cc b

c−→ c

r2 cc
k2−→ b+ c b

c−→ c

r3 cc
k3−→ 2c b

c−→ c

r4 c+ a
k4−→ ac c

a−→ b

r5 ac
k5−→ c+ a c

a−→ b

r6 ac
k6−→ b+ a c

a−→ b

Table 4.2: Reactions of M101

For x =
(

[b] [a] [c] [cc] [ac]
)
T , the ODE model of M101 is

ẋ = N · v(x)

=


−1 1 0 0 0 1
0 0 0 −1 1 1
−1 1 2 −1 1 0
1 −1 −1 0 0 0
0 0 0 1 −1 −1




k1[b][c]
k2[cc]
k3[cc]
k4[c][a]
k5[ac]
k6[ac]


The model can be replaced with a DAE by applying conservation analysis on the model.
Conserved moieties of M101 are

C1 = 0.5[b]− 0.5[a] + 0.5[c] + [cc]

C2 = [a] + [ac]

In case of selecting ac and cc as the dependent species,

˙ [b]
[c]
[a]

 =

 −1 1 0 0 0 1
−1 1 2 −1 1 0
0 0 0 −1 1 1




k1[b][c]
k2[cc]
k3[ac]
k4[c][a]
k5[ac]
k6[ac]


and the conservation equations forms the DAE model.
The DAE model is used to �nd bifurcation parameters of the model.

The �rst process of the collection step, as desribed earlier, is the search for a bifurcation
parameter.
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Figure 4.3: 1-parameter bifurcation diagram of M101 with bifurcation parameter k1

1-parameter limit point bifurcation are searched using numerical continuation package called
MATCONT[12]. MATCONT is a MATLAB based numerical continuation package using
Moore-Penrose continuation algorithm and supports automatic detection of singularities such
as equilibrium, limit point, hopf, limit cycle, periodic doubling, and limit point cycle [12].
This package can �nd a curve of equilibria for an input ODE model. ODE model ẋ = N ·v(x)
can be extended by including parameter α such that ẋ = N · v(x, α) where α is one of the
reaction rate coe�cients. MATCONT can �nd (x, α) in the vicinity of (x0, α0) satisfying
N · v(x, α) = 0 with varying α given (x0, α0). αis called an active parameter. A curve
of equilibria can be found by repeating this step until the number of repetitions or alpha
reaches to a preset limit. For each model, reaction rate coe�cients and one of steady states
from DOCSS are used to set a run of the curve generation. For all reaction rate coe�cients,
a curve is generated with the steady state and one of reaction rate coe�cients as the starting
point and checked whether it has any fold.

For the example model, k1 is one of the found bifurcation parameters with limit point bi-
furcation. Figure 4.3 shows a bifurcation diagram of M101 with k1 being the bifurcation
parameter. In the diagram, x axis is k1, and y axis is c in steady state. Thickness of the
curves in the diagram shows stability of the steady states; thick/thin curve corresponds
to stable/unstable steady states. Saddle node bifurcation can be seen in the diagram at
k1 = 0.18. Decreasing value of k1 from the found fold can induce a transition from high c
state and low c state.

The next processes for the collection step are generation and selection of trajectories.

The found bifurcation parameters with the saddle nodes are used to generate trajectories
of switching transitions with ODE simulations. The trajectory is generated by perturbing
the bifurcation parameters around the saddle nodes and checked the trajectories are for
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Figure 4.4: A trajectory of M101 showing a state transition from high c to low c

irreversible transitions between stable steady states.

The generated trajectories are �ltered to �nd transitions co-occurred with violation of Routh-
Hurwitz stability criterion. ICSA explained in Chapter 2 is performed for this �ltering
process. As has been discussed in Chapter 2, ICSA �nds negative terms in coe�cients of
characteristic polynomial and relates the found terms with circuits in the input CRN. ICSA is
performed with SBToolbox2[35] with MATLAB Symbolic Toolbox. SBML model of a input
CRN is fed into SBToolbox2 to calculate a symbolic expression of Jacobian. MATLAB
Symbolic Toolbox are used for major tasks of ICSA such as computing the characteristic
polynomial of the Jacobian and �nding negative terms in the symbolic expression of the
coe�cients of the characteristic polynomial.

The algebraic terms of the calculated ICSs are evaluated over the generated trajectories and
used for the selection. Trajectories not satisfying any of the following conditions are �ltered
out:
For a characteristic equation λn + a1λ

n−1 + a2λ
n−2 + ...+ an−1λ+ an = 0 of Jacobian J ,

a) there exists a root of the equation whose real part is positive.
b) there exists a coe�cient ai < 0 (n ≤ i ≤ 1) of the equation over the trajectory.
c) there exists a non-constant ICS belong to ai from condition b)
Condition a) and b) are directly from Routh-Hurwitz stability criterion and c) is to make
sure there exists a non constant ICS over the trajectory. A trajectory satisfying these three
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conditions is called `interesting' trajectory and an ICS meeting condition c) is de�ned as an
active ICS of the trajectory.

Figure 4.4 shows a trajectory, change in dimension of slow manifold and the smallest eigen-
value of M101 during the state transition. The system is in the stable steady state on the
upper branch of the curve at k1 = 0.38 and k1 is decreased to 0.11. The system undergoes
a transition from high c state to low c state. It can be easily seen that the transition is
consistent with the bifurcation diagram. The plot in the center shows the change in the
number of active time scale modes. As can be seen in the plot, the number of active modes
is sharply increased at the beginning of the transition and gradually collapsed as the system
reaches to the steady state. The change in real part of the smallest eigenvalues is displayed
in the bottom plot. There is at least one positive eigenvalue in time interval (20,50). Time
scale mode associated with a positive eigenvalue is always active and there is only one ac-
tive mode in the interval. From this observation, it can be said that the time scale mode
responsible for the gradual decrease of c in the time interval is the one associated with the
positive eigenvalue.

ICS Constraint Circuit Algebraic Expression

v1,c ∗ v3,b a2 b
−→ c

−→ b (k1 ∗ [b]) ∗ k3

v2,c ∗ v3,b a2 b
−→ c

−→ b k2 ∗ k3

v2,a ∗ v3,b ∗ v4,c a3 a
+→ b

−→ c
−→ a k2 ∗ k3 ∗ (k4 ∗ [a])

v3,b ∗ v4,c ∗ v6,a det(H2) a
+→ b

−→ c
−→ a k3 ∗ (k4 ∗ [a]) ∗ k6

Table 4.3: Instability causing structures of M101. vx,y = ∂vx
∂y

is the partial derivative of the

reaction rate of rx to [y]

Table 4.3 shows ICSs found in M101. The �rst column is for the found ICSs. Each ICS
belongs to a constraint derived from Routh-Hurwitz stability criterion. The second column
in the table shows the constraints associated with the found ICSs. As discussed ealier, an
ICS corresponds to a union of disjoint circuits and such circuits are given in the third column.

a
+/−→ b in the column represents that increase in a stimulates/inhibits production of b. For

example, b
−→ c

−→ b denotes mutual inhibition between b and c. The last column shows
algebraic expressions calculated from the ODE model of M101.

Figure 4.5 shows a trajectory of ICSs in M101 generated by evaluating the algebraic terms
for the ICSs over one of the selected trajectories. Only a2 becomes negative for the trajectory
so only ICSs from a2 > 0 need to be checked to see which ICS is associated with the positive
eigenvalue. Figure 4.5 illustrates the changes of the smallest eigenvalue, a2, and ICSs from
a2 for the transition trajectory. As can be seen in the plots in the top and center of the
�gure, the interval with a positive eigenvalue matches with the interval of negative a2 as has
been expected. The plot in the bottom of the �gure shows the change in value of v1,c ∗ v3,b
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Figure 4.5: ICSs from a2 > 0

and of v2,c ∗ v3,b. Since v2,c ∗ v3,b is constant, the change in v1,c ∗ v3,b can be thought as the

ICS driving the state transition. v1,c ∗ v3,b corresponds to circuit b
−→ c

−→ b. It is interesting
that k1 controls activation of this circuit and happens to be the bifurcation parameter which
induce the transition.

The last processes for this step is collecting pro�les of active ICSs of the selected 'interesting'
trajectories from the previous process. An ICS corresponds to a set of disjoint circuits as
has been discussed before. For a collection of CRNs with a common set of species, active
ICSs for `interesting' trajectories of the CRNs can be mapped to their matching circuits.
Let C be the set of circuits and D be a sequence of all elements in C. Then, an ICS can
be represented with a |C| dimensional binary vector whose element in position i indicates
whether or not the ICS contains the circuit in position i in sequence D.

Since any set of matching circuits for an 'interesting' trajectory is a subset of C, active ICSs
for all `interesting` trajectories can be compiled into a n by |C| matrix whose row vectors
are binary indicator vectors for instances of n `interesting` trajectories. Such a matrix for all
instances of `interesting` trajectories is �lled in this process and passed to Step 2. of whole
process.

4.2.3 Analysis of ICS activity pro�les

Step 2 of the process is to �nd any interesting patterns or rules in data from the pro�le
collection step. One of the objectives in this step is to �nd conditions for a CRN to have
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an `interesting' trajectory. Decision rules for a model with a reaction signature to have such
trajectories is searched using PART[14]. More complex algorithms such as those used in
redescription mining [33, 30, 46] can be employed here but for the purposes of this dissertation
we focus on rules such as can be captured in the form of sequential decision lists.

PART is an algorithm for learning decision lists from labeled training data. It builds a C4.5
decision tree and extracts a path with best coverage in the tree. The data points covered
by the path are removed from the training data and the same process is repeated on the
remaining data until whole data points are covered. The extracted paths in each iteration
are output decision lists for the training data. In this case, each data point is a CRN with
a speci�c reaction signature and the attributes for the classi�cation are reaction tokens in
the signature. The training data is labeled depending on whether or not there exits any
'interesting' trajectory found for all models with the reaction signature.

AabX Fabc AacX CabX ... Interesting

0 0 0 0 ... Yes
1 1 0 0 ... No
1 1 1 0 ... Yes
... ... ... ... ... ...

Table 4.4: Input data format of PART classi�er in Weka[17]

We use the implementation of PART algorithm from Weka[17]. The attributes and class tags
are converted into input data format of Weka. Table 4.4 illustrates the input data format.
Each row of the table is corresponding a CRN of a reaction signature. All columns but the
last column is a binary vector indicating whether or not the string token in the table header
is in the reaction signature. The last column shows which class the CRN belongs to.

Another objective of this step is to analyze active ICSs for systems with `interesting' tra-
jectories. Such distributions can be obtained from the ICS pro�le matrix from the pro�le
collection step. Distributions of active ICSs are manually inspected to �nd any substructure
retained in the models with interesting trajectory.

4.3 Limitations and Possible Solutions

As has been discussed in Chapter 2, symbolic expressions of the coe�cients of a characteristic
equation needs to be calculated for ICSA. Bocher's formula introduced in the same chapter
can be used for the purpose. Naive implementation of Bocher's formula involves calculation
of symbolic expression for trace of J i where i is the maximum order of interactions to be
considered for ICSA. The calculation is computationally not feasible even for small i in case
of J being a dense matrix.
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One of the possible solutions is to utilize the time scale separation to reduce J . QE and
QSS conditions can be found using classical and modi�ed version of ILDM [37]. The found
condition might be useful for the reduction of J thus decreasing computational cost of ICSA.

4.4 Experimental Results

Bistable systems including |DabX|Jbca| in their signature and propensity >.01 are searched
in DOCSS. SBML �les of the searched systems are converted into input �les for continuation
package, ODE solver, and structural analysis.

4.4.1 Conditions of a system having `interesting' trajectory

The decision lists for a bistable system to have a 'interesting' trajectory are found with PART
algorithm on the searched bistable con�gurations as has been discussed earlier. 6,230 bistable
con�gurations are tested. Limit point bifurcations were found in 2,061 con�gurations of the
con�gurations. 3,0540 `interesting' trajectories are collected for the con�gurations. The
number of distinct string tokens of reactions signatures of the input con�gurations is 29 so
the binary vector for the attributes has 29 dimensions. The number of con�gurations in
'interesting'/'not interesting' classes were originally 1,149/29,391. Since severe imbalance in
data makes the classi�er learned trivial, the data is preprocessed using the SMOTE[13] �lter
in Weka with 2,000% oversampling for 'interesting' instances to balance 'interesting'/'not in-
teresting' instances ratio. SMOTE is an oversampling method to generate synthetic samples
from k-nearest neighbors.

L1 is a decision list for con�gurations with `interesting' trajectories learned with PART:
L1: Fabc

∧
¬DacX

∧
¬CacX

∧
¬DbaX

∧
¬CabX

∧
¬Jbac

∧
¬DbcX

∧
¬Jcba

∧
¬Jcab∧

¬DcbX
∧
¬CcaX

The decision list is a conjunction of logical expressions of having or not having a string
token in their reaction signature. For example, Fabc and ¬DacX in L1 represents conditions
of having Fabc and not having DacX in their reaction signature. Table 4.5 shows such
conditions in L1 and their matching reactions.

L2, L3,L4,L5, and L6 are decision lists for con�gurations with no `interesting' trajectory:
L2: ¬AabX

∧
¬Fbac

L3: ¬Fabc
∧
¬DbcX

L4: ¬DbaX
∧
¬CabX

∧
¬Jbac

∧
¬Fbac

L5: Fbac
∧
¬AabX

∧
¬DcbX

L6: ¬Fbac

Table 4.6 shows number of bistable con�gurations covered by each decision list. As can be
seen in the table L1 and L2 covers most of con�gurations with a `interesting'/not `interesting'
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Conditions matching reaction

Fabc 2a←→ b+ c

¬DacX a
c−→ c

¬CacX a
a−→ c

¬DbaX b
a−→ a

¬CabX a
a−→ b

¬Jbac b
a−→ c

¬DbcX b
c−→ c

¬Jcba c
b−→ a

¬Jcab c
a−→ b

¬DcbX c
b−→ b

¬CcaX c
c−→ a

Table 4.5: Conditions of con�gurations with a `interesting' trajectory

List # of correctly covered # of incorrectly covered

L1 23,374 247
L2 24,262 259
L3 2,288 54
L4 2,340 351
L5 788 182
L6 260 0

Table 4.6: Number of covered CRNs by the decision lists

trajectory.

The found rules are evaluated by 10 fold cross validation. Precision/recall and the confusion
matrix of the classi�er can be seen in Table 4.7. As has been demonstrated in the table,
decision rules of whether a bistable con�guration with DabX and Jbca in its signature has
'interesting' trajectory or not are found with high precision/recall. From these results, we
can see that we are able to identify rules for a bistable con�guration to have switching
transitions that co-occur with violation of Routh-Hurwitz stability criteria.
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a)
Precision Recall

0.978 0.978
b)

Actual class
Yes No

Predicted class
Yes 29,142 249
No 918 23,211

Table 4.7: Evaluation metrics of the classi�er: a)Precision/recall, b)Confusion matrix

Figure 4.6: DAG of reaction signatures having a `interesting' trajectory

4.4.2 Analysis of ICS activity pro�le on con�gurations with `inter-

esting' trajectories

Bistable con�gurations having a `interesting' trajectory have 30 distinct reaction signatures.
For a given set of reaction signature R, subset relation can be de�ned as: {(A,B) ∈ R×R |
every reaction token of A is also a reaction tokens of B}.
The subset relation for a set of the reaction signatures of bistable con�gurations with a

`interesting' trajectory is transitively reduced and visualized in Figure 4.6. A node in the
tree represents a reaction signature and an edge A→ B denotes an element of subset relation
(A,B). The DAG forms a tree as can be seen in the �gure.

The result on subtree colored in blue is explained in detail in this section. As has been
discussed in Approach section, the pro�le matrix is collected from all `interesting' trajectories'
found for the subtree. The minimal set of disjoint circuits covering all active ICSs with
reaction signatures in the subtree has 39 elements so dimension of column space of the
pro�le matix is 39. The distribution of circuits for a node in the tree can be obtained
by summation of row vectors corresponding the node in the pro�le matrix. Figure 4.7
illustrates distributions of circuits in active ICSs for the subtree. Each subplot visualizes
the distribution of circuits for a node in the subtree. X-axis is column indexes of the pro�le
matix and y-axis is the number of `interesting` trajectories with the circuit found for the
node. For example, the upper left subplot in the �gure shows the distribution of circuits
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Figure 4.7: Distributions of circuits in active ICS for the subtree

in active ICSs for the trajectories of CRNs with |DabX|Jbca|. The distributions show that
there are circuits retained in the subtree such circuit 9 and 10.

Table 4.8 shows a list of circuits found for nodes in the subtree. The �rst and second columns
of the table are for node id and reaction signature of a node. The third column is for set
di�erence between reaction tokens for a node and its parent and the last column is �led with
ids of the circuits found in active ICSs for the node. A string token in parenthesis next to
a circuit id is string representation of the circuit. As can be seen in the table, no circuit
is shared between root node (node 30) and the rest of the nodes in the tree. There is also
no node with 3 reactions having 'interesting' trajectory in the subtree. One of observations
that can be made from tis table is that circuits 9(a->b_DabX-|a) and 4(a->b_DabX-|a),
which are contained in the root node (|DabX|Jbca|), also cover the majority of the nodes
in the subtree. Circuit 10 (b-|c-|b) also covers most of the nodes but it is ambiguous where
it comes from. This shows that there are retained substructures shared within a lineage of
CRNs. Node 6 is also interesting. Circuit 16 (a-|a_CacX-|a) is from newly added reaction
CacX. This is an example of a situation where adding a reaction results in a new active ICS.
In overall, our results demonstrate that ICS activity pro�les can be used to �nd retained
substructures within bistable con�gurations and to track how such substructures are a�ected
by addition of new reactions.
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node ID signature added reactions circuit

30 |DabX|Jbca| - 1(a-|b-|c->a)

15 |AabX|DabX|Fabc|Jbca| AabX, Fabc 2,3,4 (b-|b, c-|c, a->b_DabX-|a)

2 |AabX|AacX|DabX|Fabc|Jbca| AacX 9,10 (a-|b_DabX->a, b-|c-|b)

5 |AabX|CabX|DabX|Fabc|Jbca| CabX 9,10

6 |AabX|CacX|DabX|Fabc|Jbca| CacX 9,10,16,17( , , a-|a_CacX-|a, b->c-|b)

8 |AabX|CcaX|DabX|Fabc|Jbca| CcaX 9, 10, 18, 19, 20, 21, 22, 23

9 |AabX|DabX|DacX|Fabc|Jbca| DacX 9, 10, 18, 20, 24, 25, 26, 27, 28

10 |AabX|DabX|DbaX|Fabc|Jbca| DbaX 3, 5, 6, 7, 9, 10, 17, 29

11 |AabX|DabX|DbcX|Fabc|Jbca| DbcX 2, 3, 4, 9, 10, 30

13 |AabX|DabX|DcaX|Fabc|Jbca| DcaX 9, 10, 31, 32

14 |AabX|DabX|DcbX|Fabc|Jbca| DcbX 8, 9, 10

Table 4.8: Circuits of active ICSs for nodes in the subtree

4.5 Discussion

We have presented a streamlined way to discover and �nd patterns in core structures of
a complex bistable chemical reaction system by combining numerical methods with data
mining approaches. Our algorithm can contribute to large scale simulation based studies on
patterns of switching-inducing core structure of bistable chemical reaction systems.



Chapter 5

Conclusions

Mechanisms of key biological processes are being revealed in detail thanks to the recent
advance in system biology area. Such processes are often modeled with CRNs, reproducing
up-to-date quantitative and qualitative behaviors of the modeled process as close as possible.
Modeling of a biological process is traditionally performed by a domain expert utilizing data
collected from various sources. As we aim to capture more complex details of biological
machinery, the models are getting increasingly larger, thus posing challenges to the modeling
process itself and for users to obtain intuitive understandings of the CRNs.

This thesis addressed two major research problems to address these challenges. The �rst
problem pertains to automatic construction of a CRN model from time course data. Its
importance lies not only in automation of the modeling process but also in being an aid
to �nding a simple model reproducing the data close enough. We have shown how such
reconstruction is possible with systematic planning of perturbation experiments on the ODE
model of a CRN.

The second problem pertains to network comprehension. Even a seemingly simple CRN
model can show unexpected bifurcations in certain conditions and computer simulation has
been an important tool of bifurcation analysis. Bistability is one of the important motifs to
model key functions in biological process such as decision making. Switching mechanisms in
such key functions are often modeled with saddle node bifurcation in a bistable system and
there have been many e�orts on �nding simple substructures of a CRN responsible for the
switching mechanism.

In this thesis, a type of such switching cores called instability causing structures (ICSs) have
been studied using computer simulations. An automated process to �nd instability causing
structures from a CRN has been proposed and applied over a large database of bistable
CRNs. It is shown that there exist highly convincing inclusion/exclusion rules of reactions
determining a bistable CRN with active ICSs and saddle node bifurcations. Such CRNs are
found to form a single tree structure de�ned with subset relations in its reactions. The found

50
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ICSs are compared across the CRNs in the tree and ICSs retained in most of the found tree.

We now outline some directions for future research.

The approach for network reconstruction has limitations in identifying multiple reactions
between the same set of molecules and in the assumptions of rate laws that it makes. Adop-
tion of numerical optimization techniques on parametized models using sensitivity pro�les
can be one of the approaches to tackle these limitations. Another related problem is reduc-
ing the cost of the reconstruction process by e�cient planning of the bu�ering experiments.
The current approach assumes all bu�ering experiments have the same cost but the cost
of a bu�ering experiment can be highly variable depending on the type of bu�ered species
and the amount of the species. One of the possible solutions to be explored is to organize
bu�ering experiment hierarchically. First, bu�ering experiments are performed for all pairs
of high cost species with all other species in the bu�ering set. By analyzing the experimental
results, the species in the CRN can be divided into two groups having no direct/indirect
interactions between the groups. Markov blankets of species in each group should be either
the low cost species in the bu�ering set or species within the same group; i.e., bu�ering high
cost species in the other group is not necessary to �nd Markov blankets of species in the cur-
rent group, thus reducing the number of experiments with high cost species in their bu�ering
sets. Sensitivity of the reconstruction process to noise in the data is another problem that
can be explored.

We now turn to future directions for the bistable core �nding problem. The current approach
might not scale well due to explosion of combinations of interactions to consider for the
search. The activity of ICSs is directly related to time scale modes as has been discussed,
and time scale separation can be used to prune candidate circuits for the ICS search. The
inclusion/exclusion rules found consist of reactions between molecules of speci�c symbols and
might not be easy to apply for an arbitrary biological process model, because we will need
to explore all possible instantations of these symbols. One of directions for future research
can be adaptation of graph mining techniques to bridge this gap and to �nd more intuitive
conditions. A study on how combination of the found bistable switches a�ects the activity
pro�le of ICSs of each switch is also likely to be interesting.

Finally, we can generalize the type of phenomena being studied from bistability to oscilla-
tions, another key motif used in modeling a biological process. The adopted approach is also
applicable to motifs of oscillation with some modi�cation. A large scale simulation study on
a database of oscillators can be undertaken.

In overall, this thesis portends well for the combination of data mining and numerical comput-
ing methods for understanding the behavior of large, complex, biochemical systems. These
methods inform and complement each other and can become a valuable resource to not just
computer scientists but to a range of inter-disciplinary practitioners including chemists, sys-
tems biologists, evolutionary biologists, mathematicians, and modelers, all of whom study
cellular decision making in various guises.
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