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Modeling and Control of Flapping Wing Robots

Ian P. Murphy

(ABSTRACT)

The study of fixed wing aeronautical engineering has matured to the point where years of research
result in small performance improvements. In the past decade, micro air vehicles, or MAVs, have
gained attention of the aerospace and robotics communities. Many researchers have begun investi-
gating aircraft schemes such as ones which use rotary or flapping wings for propulsion. While the
engineering of rotary wing aircraft has seen significant advancement, the complex physics behind
flapping wing aircraft remains to be fully understood. Some studies suggest flapping wing aircraft
can be more efficient when the aircraft operates in low Reynolds regimes or requires hovering. Be-
cause of this inherent complexity, the derivation of flapping wing control methodologies remains
an area with many open research problems. This thesis investigates flapping wing vehicles whose
design is inspired by avian flight. The flapping wing system is examined in the cases where the
core body is fixed or free in the ground frame. When the core body is fixed, the Denavit Harten-
berg representation is used for the kinematic variables. An alternative approach is introduced for
a free base body case. The equations of motion are developed using Lagranges equations and a
process is developed to derive the aerodynamic contributions using a virtual work principle. The
aerodynamics are modeled using a quasi-steady state formulation where the lift and drag coeffi-
cients are treated as unknowns. A collection of nonlinear controllers are studied, specifically an
ideal dynamic inversion controller and two switching dynamic inversion controllers. A dynamic
inversion controller is modified with an adaptive term that learns the aerodynamic effects on the
equation of motion. The dissipative controller with adaptation is developed to improve perfor-
mance. A Lyapunov analysis of the two adaptive controllers guarantees boundedness for all error
terms. Asymptotic stability is guaranteed for the derivative error in the dynamic inversion con-
troller and for both the position and derivative error in the dissipative controller. The controllers
are simulated using two dynamic models based on flapping wing prototypes designed at Virginia
Tech. The numerical experiments validate the Lyapunov analysis and illustrate that unknown pa-
rameters can be learned if persistently excited.

This work received support through contract JFC-11-139 as part of the Institute for Critical Tech-
nology and Applied Science (ICTAS).
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Chapter 1

Introduction and Motivation

A wide range of problems are encountered in the analysis, design and fabrication of robots that
emulate bird flight. In analysing these types of systems, the unsteady, nonlinear aerodynamics
present significant difficulties. The low Reynolds numbers experienced by small scale aircraft also
affect the design of wings that improve propulsion. In addition to the importance in understanding
the complex unsteady aerodynamics, these systems require advanced flight control development to
achieve stable flapping flight.
Construction of such vehicles also remains formidable. Vehicles based on bird flight must be
structurally sound. Designs must account not only for the aerodynamic forces, but also for the
dynamic loads induced in the flapping wings. The mechanical construction must rely on strong
but lightweight structures and materials to give the vehicle a lift/weight ratio over one. Successful
prototypes therefore require specialized fabrication and manufacturing techniques to create parts
from materials such as carbon fiber. Electrical components, such as micro-controllers, batteries,
signal processors, or sensors must be sufficiently light and compact to be a payload for a small
scale flying vehicle. Further development of light, efficient motors and electromechanical power
sources is even more crucial for success of flapping wing robots. Since the mass of the motors is
often a significant proportion of weight, any increased motor mass will require stronger structures
and improved lift. For this reason, light and compact power sources remain a limiting factor in the
efficiency of an electromechanical system.
This thesis studies the kinematic and dynamic problems that arise in the study of articulated, flap-
ping wing aircraft and the application of various control techniques to these problems. The articu-
lated wing is modeled as a robotic arm, and the kinematics are analyzed using common techniques
used in the study of serial chain robots. This study also develops a method for treating the kinemat-
ics and dynamics of a moving base body, or free flying system. The dynamic models are combined
with a quasi-steady state aerodynamic model to generate the full system equations of motion. The
equations of motion are considered in the development of two nonlinear controllers which utilize
adaptation to account for uncertainties in the aerodynamic loads. The controllers are based on
dynamic inversion and dissipative control techniques found in standard robotics texts, but have
been modified to remain effective under the unique system equations. Lyapunov analysis is used
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to study the stability of these nonlinear systems and is integral for the generation of update laws.
The update laws allow for adaptation in the system model and as a result, increase stability and
performance.
Numerical studies are carried out for the closed loop system to verify the control designs. Denavit
Hartenberg kinematic models are derived for various flapping wing vehicle designs developed by
senior design teams at Virginia Polytechnic Institute and State University (Virginia Tech). The sys-
tem parameters, such as masses and link lengths, are chosen to represent the physical parameters
of these prototypes. The desired wing trajectories are composed of joint angle functions, which
are designed for motions which the prototypes can achieve kinematically. These motions include
two flapping modes observed in birds [2, 3], flapping and lead/lag. The amplitude and frequency
vary in bird flight depending on the level of thrust and lift required. For purposes of verifying the
control design, the amplitudes and frequencies were held constant. Values for the simulations were
chosen considering several sources of data for level flying birds in the correct scale [2–4].

1.1 Literature Review

With the growing demand for unmanned air vehicles (UAVs), research that studies micro air ve-
hicles (MAVs) has also experienced increased attention from researchers. One current trend in
these research endeavours is a focus on bio-inspired design. Researchers look for inspiration by
studying creatures such as birds [2, 3, 5–7], insects [8–11], bats [12], and even some less common
animals such as those found in Chrysopelea, the genus of flying snakes [13–15]. Bungent and Se-
elecke [12] rely on principles of bioinspired design to define three major categories of MAVs. The
first type includes traditional fixed wing aircraft. These are generally scaled down versions of com-
mon aircraft with propeller driven propulsion systems. The issue that drives research for this class
is that characteristic length greatly decreases as these vehicles are scaled down, and this inevitably
implies they operate in a low Reynolds number regime. As Bungent and Seelecke describe, this
lower Reynolds number increases viscous effects and has motivated research in other MAV flight
methods. Rotary wing MAVs constitute their second category of MAVs. These vehicles make up
a significant share of the field with quadrotor vehicles being a prominent example. Lastly, flapping
wing vehicles make up the third category. There has been a large increase in their number in the
past decade. Flapping wings can execute motions that some claim [6, 10, 16] are more well suited
for low Reynolds number flight. Bungent and Seelecke detail their success using shape memory
alloy (SMA) wires in an experiment to actuate wings to match the range of motion seen in bats.
Their prototype has two degrees of freedom and uses resistance as feedback in the control of the
SMA actuators.
Flying insects are often studied as subjects of inspiration for flapping wing flight. Singh and
Chopra [11] point out some benefits to flapping wing aircraft such as advanced maneuverability
and low noise production. They investigate some aspects of hovering flight including thrust versus
beat frequency, and unsteady aerodynamics. They discuss the fact that quasi-steady aerodynamics
do not agree with phenomenon seen in insect flight, and propose that flying insects take advantage
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of unsteady aerodynamics in order to achieve the performance necessary for hovering flight. They
develop a flapping mechanism for experimental studies. It consists of two degrees of freedom in
each wing. For their scale, for vehicles that have a 148mm wing length, they find an optimal beat
frequency between 10-11 Hz. There is decreased thrust when frequency was increased beyond this
point. They study several wing shapes, and wings are constructed using an aluminum frame with
Mylar film. They note that RC Microlite material is lighter but provides less lift than Mylar. In
closing they compare the elastic and rigid wing analysis with the results obtained from the flapping
apparatus.
Deng et al. have published several articles that study system modeling and control design of insect-
based flapping wing vehicles. The authors classify their project as research in “micromechanical
flying insects (MFIs)”. Deng et al. [9] synthesize results in their work from multiple areas of study
including insect biology, including sensory feedback, wing aerodynamics, body dynamics, actu-
ator dynamics, sensors, and flight control. The authors note one advantage flapping wing insects
have over rotary aircraft is that they are less susceptible to environmental disturbances. The au-
thors use standard quasi-steady aerodynamics to model lift and drag, and blade element theory is
used for rotating wings. Blade element theory was developed by the rotary wing industry and is
performed by dividing the wing length into infinitesimal divisions and integrating along the length
of the wing. The authors compare this aerodynamic analysis with the experimental results found
with their prototype ‘robofly’. They discuss reference frames, kinematics and dynamics of the
base body, and compare the use of Euler angles and quaternions. The authors relate the use of the
‘ocelli’ in flying insects to horizon detectors in aircraft. These use light intensity measurements
from the sun at multiple locations to provide support in attitude stabilization. They propose two
more methods for feedback, a magnetic compass for heading information and structures analogous
to the ‘halteres’ on these insects to measure body rotations.
In the second article of the series by Deng et al. [8], a high frequency periodic control problem is
formulated for the underactuated system. The controller is designed for implementation with lim-
ited on-board computational resources. In their control design, the authors use an LQR method for
weighing performance and control effort. The authors observe that the use of high-frequency pe-
riodic control with geometric control theory would be prohibitively computationally expensive for
on-board implementation. The authors instead apply averaging theory to the problem which more
closely matches standard controller design employed in helicopter flight control. Their approach
does not guarantee asymptotic stability, but holds that the error is bounded and deemed negligible
in size from a practical sense.
Taylor and Thomas in [17] look at various aspects of flapping flight stability. They first review
two main approaches to achieve stability, inherent stability and active control. Inherent stability is
achieved when disturbances are passively damped out. In the case of helicopter stability, increase
in velocity creates a moment when the retreating blade has decreased lift and the advancing blade
has increased lift. Taylor and Thomas describe this as mildly unstable longitudinal dynamics. Sim-
ilarly, flapping wings exhibit a longitudinal instability when increased velocity flow over the wings
causes bending about the chord. On the other hand, birds whose wings have sufficient stiffness
may not be greatly affected by this behavior. The article then analyzes the flapping wing problem
using blade element theory and quasi-steady aerodynamics. Using this analysis, a flapping flight
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vehicle model is derived that has first order stability in hover. During forward flight, stability is
dependent on three terms: the coordinates of the aerodynamic center, forward inclination of the
flight force vector, and sign of the pitching moment coefficient about the aerodynamic center.
Leonard [18] studies the dynamics and stability of hover capable MAVs modeled after flying in-
sects. Trim solutions are examined in hover, climb, and forward flight cases. A set of quasi-
coordinates are used in conjunction with Lagrange’s equations to derive the state space equations
of motion for a three frame wing model. Leonard then discusses an aerodynamic model that is
based on quasi-steady potential flow. Reversed flow theory serves as a foundation for this model
which allows for control by adjusting the point of flow reversal across the wing. The reversed
flow occurs when the leading edge becomes the trailing edge and vice versa. With precise control
of the wing rotation, a switch in flow direction before the end of one half stroke will result in an
upward force while a late switch in flow direction results causes a downward force. Two airload
models are validated and agree very closely with each other in predicting thrust and lift in the body
frame. Lastly, Leonard explores open loop dynamic stability using a Stroke-Averaged system and
performs the analysis using a periodic trim solution technique based on Floquent analysis. The
simulations show that the system is naturally unstable and that wing hinge location and potentially
trim do not seem to affect the stability. The author assumes all the bodies are rigid, and assumes a
constant inflow and viscosity model.
Ansari et al. in [10] study insect flight from an aerodynamics point of view. As motivation for their
work, they claim that insect based bioinspired flight leads to improved efficiency and manoeuvra-
bility in comparison to its fixed and rotary wing counterparts. Ansari et al. [10] expand upon the
basic aerodynamic models such as in Deng et al. [8] that are based on quasi-steady formulations.
The authors claim their aerodynamic models are some of the ‘most satisfactory to date’(2006)
while they review a variety of approaches such as steady-state, quasi-steady, semi-empirical, and
fully unsteady methods. The large lift force not accounted for in the typical quasi-steady state
model is due to the influence of the leading edge vortices (LEV).
Another study on flapping flight aerodynamics appears in [7]. The authors von Ellenrieder et al.
develop a general study of flapping wing aerodynamics as applied to both insects and birds as well
as some discussion of fish and marine animals. This study contains a 2D analysis of steady cruising
and propulsion in these ‘natural flyers’. It also states that observed wing pitching in several flying
insects is assisted by wing inertia and aerodynamic effects. In hovering flight, these contributions
may be used for a completely passive control of the pitch. The authors consider whether flying is a
limit cycle process, where there is a coupling between internal power and passive energy dissipa-
tion. They suggest that a limit cycle may occur in flapping flight but conclude that further testing
is necessary before it is confirmed.
Gopalakrishnan et al. [19] study the formation and effects of the leading edge vortex on low
Reynolds number flight (for Re= 10,000). They use an single rigid insect type wing for their
simulations. They use a delayed-stall, unsteady aerodynamic formulation with varying angle of
attack and show that a moderate angle of attack will result in high propulsive efficiency.
Mazaheri and Ebrahimi in [20] perform an aerodynamic study based on an experiment featuring
flexible membrane flapping. They follow up on prior research [21] showing that an increase in
thrust and lift results when the torsional stiffness in a flapping wing is decreased. The authors
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design and test a flapping wing prototype constructed with a flexible membrane wing. They inves-
tigate the relationship of thrust and lift as a function of flapping frequency, angle of incidence, and
flow velocity. The mechanism is designed to oscillate between +30◦ and −19◦. For higher flapping
rates, from 3Hz to 10Hz in their case, the thrust always increases. For lower flapping rates, lift
force is nearly independent of the frequency. For lower angles of incidence, a large increase in lift
is observed for frequencies over 5 Hz. At high velocities, flapping rate has a small effect on lift.
Angle of incidence is proportional to lift. They also noted that angle of incidence and thrust are
inversely proportional.
Aditya and Malolan in [5] investigate the effect of the Strouhal number on the propulsion of a
flapping wing. In this article, the Strouhal number is calculated as:

S t =
f A

U∞
=

2 · f ·bsemi−e f f · sin
(
φ
2

)
U∞

where A is amplitude, the semi-span of the wing is bsemi−e f f , the flapping angle is φ, the flow
velocity or forward speed is U∞, and flapping frequency is f . The authors recommend a range of
values for the Strouhal number in wing design. They observe that a range of 0.2 to 0.4 is typical for
birds. Fast flying birds exhibit Strouhal numbers near S t = 0.2 and slower flying birds have values
around S t = 0.4. They test a 15cm span flapping mechanism and find their highest peak propulsive
forces result from a Strouhal number between 0.1−0.2.
Taylor et al. [22] agrees that Strouhal number is also crucial for efficiency in flapping flight. The
same range of Strouhal number S t = 0.2 to 0.4 is observed for both flying animals and marine
animals such as fish, dolphins and sharks. The investigators perform a statistical analysis and find
intermittent flying birds to have a mean Strouhal number S t = 0.34 and for direct flyers to have a
Strouhal number S t = 0.20. In summary Taylor et al. in [22] create a rule of thumb that the velocity
will be three times the product of the flapping frequency and amplitude.
Han [3] investigates unsteady aerodynamics in stable flight of a seagull. He notes that combin-
ing three “flapping, folding, and lead/lag” modes generates an optimal lift scenario. He uses a
boundary element method to perform the unsteady aerodynamic analysis. The kinematic model
used in this study selects the three DOF system introduced by Liu et al. [2]. This choice includes
a flapping angle ψ1, a folding angle ψ2 and lead/lag angle φ2. Using only one of these flapping
modes decreases drag for flapping, folding, and lead/lag. Using a flapping mode alone increases
lift coefficient the rest of the wing fixed. Of the combined tests, flapping and folding generates
the greatest thrust generation of all the tests, and flapping with lead/lag produced the second best
lift coefficient. The overall highest lift coefficient is achieved via the combination of the three,
although thrust coefficient is slightly decreased from the flapping and folding combination (0.2 to
0.1704).
Other than the data contained in engineering articles, there are few biological studies on birds
which include quantitative research. Tobalske at the University of Montana Flight Laboratory per-
forms many quantitative empirical studies on skeletal mechanics, aerodynamics and mechanical
power of birds. Many of the experiments provide useful tests on live birds, which document pre-
cise kinematic and aerodynamic data of bird flight. In a study of tip-reversal by Crandell and
Tobalske [23], an experiment is performed using four synchronized high-speed cameras to obtain
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in vivo angle of attack and coefficient of lift for an rock dove during upstroke and downstroke.
The downstroke produced an estimate of 115% of the bodyweight, at an effective wing length of
0.314m.
Liu [2] also performs quantitative in vivo tests on birds and geometric study of wings from bird
specimens. Liu uses footage of level-flying, or steady flying seagulls, cranes and geese. He devel-
ops a wing model with three degrees of freedom that is able to represent the motion of the three
birds. The seagull wing used in this investigation can be approximated from illustrations and is
near to 0.6m. The investigation also documents wing geometry of several birds including the Seag-
ull, Merganser, Teal and Owl. Specifically, the author studies airfoil parameters such as thickness,
camber, and chord length.
Some in vivo flight testing appears as early as 1982 in the Ph.D thesis by Scoley [4]. Although
the video photography and processing is primitive compared to today’s standard, some morpho-
logical data is still relevant and can be used as a reference for relative scaling. Articles such as
these contain extensive collections of data for different species. Two species of the genus Larus
are examined, the Black Headed Gull (Larus Ridibundus), and Common Gull (Larus Canus). The
Common Gull has average mass of 0.388kg, average wingspan of 1.13m and an average stroke
frequency of 3.76 Hz. The smaller Black Headed Gull has an average mass of 0.251kg, average
wingspan of 0.94m and average stroke frequency of 3.84 Hz. The flighted bird with the largest
wingspan in this study is the Wandering Albatross, Diomedea Exulans. It has a mass of 8.5kg,
wingspan of 3.42m, and flapping frequency of 2.61 Hz.
In summary, although there have been numerous studies that model flapping flight, only a few
effort that study the control of flapping wing have appeared in the literature. This thesis constructs
dynamic models of articulated flapping wing robots and synthesizes controllers that guarantee
tracking of flapping motions. Chapter 2 begins with a derivation of the equations of motion for
some classes of flapping wing robotic systems. Chapter 3 discusses the adaptive controller derived
in this thesis. The thesis concludes in Chapter 4, where a summary of accomplishments is given
and future work is outlined.
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1.2 Nomenclature List

αi Angle of attack for ith wing section
βi Side slip for ith wing section
γ Learning gain
ρ Density of surrounding fluid
σ Error tracking term for dissipative controller
τ Control input vector
Φ Vector of basis functions
ω Angular velocity
Ω Vector of unknown parameters
Ω̂ Vector of unknown parameter estimates
Aw,i 2D wing area of body i
b̂1, b̂2, b̂3 Body fixed frame unit vectors
B Control influence matrix
cD Drag coefficient
cL Lift coefficient
C Nonlinear Coriolis matrix
Di Drag force on ith wing section
G Control Gain Matrix
H j

i DH transformation matrix from frame i to frame j
I Inertia tensor
Jv Velocity Jacobian matrix
Jω Angular velocity Jacobian matrix
Li Lift force on ith wing section
M Generalized inertial matrix
n Vector of nonlinear Coriolis and centripetal acceleration terms
na Vector of unknown aerodynamic loads
q Vector of generalized coordinates
Qi Generalized force vector
δr Virtual displacement vector
ŝ1, ŝ2, ŝ3 Stability axis unit vectors
u,v,w Velocity components for ith wing sec.
v The velocity of aerodynamic center w.r.t. fluid
V Lyapunov candidate
δW Virtual work
X System states



Chapter 2

Dynamic Models of Flapping Wing Robots

2.1 Review of Robot Kinematics

Kinematics of a robotic systems is complex since a typical system is composed of numerous rigid
bodies. Descriptions of such systems often introduce several coordinate frames, or frames of refer-
ence, to define kinematic variables. In this thesis, a frame is defined by a right hand, orthonormal
set of unit vectors. Figure (2.1) illustrates a typical collection of frames. We will write

{
x0 y0 z0

}
as the basis for the 0 frame, and

{
x1 y1 z1

}
as the basis for the 1 frame and so forth. An arbitrary

vector a can be expressed in terms of its components or coordinates relative to any other bases de-
fined in the problem. In this thesis we choose to represent the coordinates of the vector a relative
to frame i as ai.

ai =


ai

1
ai

2
ai

3

 a = ai
1xi + ai

2yi + ai
3zi

We define ri
p to be the coordinates relative to the frame i of the position vector that connects the

origin of frame i to point p. Likewise, the vector connecting two frames will be denoted as ri, j for
the vector from the origin of frame i to the origin of frame j. Any frame position relative to the
ground frame will appear as ri B r0,i.

2.1.1 Rotation Matrices

In the study of robot kinematics, orientation between two different, right handed, orthogonal frames
is represented by rotation matrices. The 3× 3 rotation matrix that relates the frames 0 and 1 is

8
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𝒓𝑝
1   

𝒓0,1  

𝒛1  

𝒚1  𝒙1  

𝒙0  𝒚0  

𝒛0  

𝑝  

𝒓𝑝
2   

𝒓1,2  

𝒛2  

𝒚2  𝒙2  

𝒛𝑛  

𝒚𝑛  𝒙𝑛  

𝒓𝑝
0   

𝒓𝑝
𝑛  

𝒓2,𝑛  

Figure 2.1: A number of reference frames, typical of a kinematic chain, with point p and connect-
ing vectors

written as R1
0 and is defined as:

R1
0 =

x0 ·x1 y0 ·x1 z0 ·x1
x0 ·y1 y0 ·y1 z0 ·y1
x0 · z1 y0 · z1 z0 · z1


where x0,y0,z0 and x1,y1,z1 denote the right handed orthogonal bases of the 0 and 1 frame, re-
spectively. The defining property of a rotation matrix is that its inverse is equal to its transpose,
and therefore we can write (

R1
0

)−1
=

(
R1

0

)T

From this definition, it is clear that (
R1

0

)T
= R0

1

The rotation matrix R1
0 maps the components of a vector relative to the 0 frame into components

relative to the 1 frame.
r1 = R1

0r0

2.1.2 Homogeneous Transforms

While relative rotation is represented in terms of rotation matrices, rigid body motion is specified
in terms of homogeneous transformations. A homogeneous transformation describes both rotation
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and displacement between reference frames. This topic is covered in many standard sources on
robot kinematics [24–26]. The relative translation r1

0,1 contains the coordinates relative to the 1
frame the vector that defines the position of the 1 frame relative to the 0 frame. The homogeneous
transform that describes the rigid body motion between the 0 and 1 frames is written as H1

0, defined
below.

H1
0 =

[
R1

0 r1
1,0

0 1

]
The homogeneous transform can then be used to relate the homogeneous coordinates of any point

𝒓𝑝
1   

𝒓1,0  

𝒛1  

𝒚1  𝒙1  

𝒙0  𝒚0  

𝒛0  

𝑝  𝒓𝑝
0   

Figure 2.2: Homogeneous transformation from the 0 to 1 frame

in reference frame 0 to reference frame 1. The homogeneous coordinates in frame 0 are denoted
as r0 and the homogeneous coordinates for frame 1 are r

1.[
r1

p
1

]
= H1

0

[
r0

p
1

]
r

1
p = H1

0r
0
p

Both the homogeneous transform and rotation matrix can be combined to describe the kinematics
of a chain. For example, the homogeneous transform between the third and the ground reference
frame, in terms of the homogeneous coordinates, is obtained as

r
3 = H3

2H2
1H1

0r
0 = H3

0r
0
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2.1.3 Denavit-Hartenberg Convention

One of the most popular techniques used to represent robot kinematics is the Denavit-Hartenberg
(DH) Convention. Typically, six parameters, three translations and three rotations, are necessary
to define the relative location and pose of two reference frames. By imposing some constraints
on how the adjacent frames are defined, the DH convention introduces a set of four parameters
to define relative pose and orientation, two angles and two scalar translation values. The main
assumption in the DH Convention is that, for adjacent frames i and i− 1 in a serial chain, the xi
axis is perpendicular to and intersects the zi−1 axis. The DH parameters then orient the i−1 frame
relative to the i frame in terms of the following four parameters:

1. The displacement di translates the i frame in the direction of zi−1.

2. The offset ai translates the i frame along the xi−1 axis.

3. The rotation θi rotates the i frame about zi−1.

4. The twist αi lastly rotates the i frame about its xi axis.

The parameters introduced above are discussed further in [25], and are illustrated in Figure (2.3).
Using this standard notation, a rotation matrix and homogeneous transform that define the rigid
body motion can be derived for any two successive frames in a kinematic chain. The rotation
matrix contained in the DH transformation can be expressed in terms of the two rotation matrices
that are defined via an intermediate frame B [25]:

Ri
i−1 = Ri

BRBi−1

Ri
i−1 =

 cosθi sinθi 0
−sinθi cosθi 0

0 0 1

 ·
1 0 0
0 cosαi sinαi
0 −sinαi cosαi


Ri

i−1 =

 cosθi sinθi 0
−cosαi sinθi cosαi cosθi sinαi
sinαi sinθi −sinαi cosθi cosαi


The homogeneous transform can be constructed from the DH parameters using the rotation matri-
ces above and the two translational parameters ai and di. The translation ri

i−1 can be constructed
by inspection from Figure (2.3) and is a function of θi, di, and ai.

Hi
i−1 =

[
Ri

i−1 ri
i−1,i

0 1

]
ri

i−1,i =

ai cosθi
ai sinθi

di


Hi

i−1 =


cosθi sinθi 0 ai cosθi

−cosαi sinθi cosαi cosθi sinαi ai sinθi
sinαi sinθi −sinαi cosθi cosαi di

0 0 0 1
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𝜃𝑖   

𝒛𝑖   

𝒚𝑖   

𝒙𝑖   

𝒙𝑖−1  

𝒚𝑖−1  

𝒛𝑖−1  

𝛼𝑖   

𝑑𝑖   

𝑎𝑖   

Figure 2.3: Reference frames in the DH convention with DH parameters labeled

2.1.4 Angular Velocity and Translational Velocity

Many robotic systems are constructed from chains of rigid bodies. Standard methods have been
developed to derive the velocities or angular velocities in a kinematic chain. We consider a case
where the point p is fixed in the ith frame and is denoted by ri

p. The mapping between the frame i
frame and frame i−1 is determined by the homogeneous transformation matrix Hi−1

i . The position
vector ri−1

p can be decomposed as
ri−1

p = Ri−1
i ri

p + ri−1
i−1,i

This formula is differentiated with respect to time to find the velocity.

vi
p =

d
dt

ri
p

The frame number is omitted in both the velocity and position for the zero frame:

vp B v0
p rp B r0

p

For a DH kinematic chain, the velocity of a point p in the ground frame is found using the velocity
of frame i in the ground frame, and a rotation rate about its zi axis, θ̇i. The frames and point p are
illustrated Figure (2.4)

vp = θ̇izi× ri
p + vi (2.1)



13

If the frame velocity, vi, is calculated with Equation (2.1), recursion can be used to find velocities

𝒓𝑝
𝑖   

𝜃𝑖   

𝒓𝑖   

𝒛𝑖   

𝒚𝑖   𝒙𝑖   

𝒙0  𝒚0  

𝒛0  

𝑝  

Figure 2.4: Ground (zero) frame, and i frame with point p with connecting vectors labeled

for an entire series of frames. This idea is fundamental in joint-space kinematics for robotic link-
ages that form kinematic chains.
The velocity Jacobian Jvi is defined to yield the components of velocity relative to the ith frame.
We suppress the frame number when the Jacobian yields components relative to the basis for the
frame 0 so that Jv B Jv0 . The components of the velocity of point p relative to the ground frame is
then

vp = Jvq̇ (2.2)

where the vector q̇ = q̇1 · · · q̇N
T is an N vector of derivatives of the joint variables. The angular

velocity Jacobian Jω is similarly defined as

ωp = Jωq̇ (2.3)

By using Theorem 2.15 in Kurdila, et al. [25], finding the angular velocity Jacobian is a trivial
process. When joint variables are selected to be either relative rotations or displacements, angular
velocity vectors can be summed by adding the angular velocities of adjacent frames. Specifically,
the angular velocity Jacobian can be generated using

Jω =
[
ρ1z0

0 ρ2R0
1z1

1 · · · ρNR0
N−1zN−1

N−1

]
In this equation, ρi is 1 for a revolute joint and 0 for a prismatic joint [24–26]. Similarly, assuming
that each joint is revolute, the velocity Jacobian is found to be

Jv =
[
z0

0× (r0
1− r0

0) R0
1z1

1× (r0
2− r0

1) · · · R0
N−1zN−1

N−1× (r0
N − r0

N)
]
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The position vectors r1 · · · rN represent the position vectors from the zero frame to the ith frame.
For prismatic joints, we have instead

Jv =
[
z0

0 z0
1 · · · z0

n

]

2.2 Lagrange’s Equations

Once a kinematic description of the robotic system has been constructed, it remains to derive the
equations governing the motion of the robot. Numerous approaches to this problem have been de-
veloped in the literature. These methods can be based on techniques of analytical mechanics, such
as Lagrange’s equations, on Newton-Euler formulations, or other principles such as Kane’s equa-
tions. All techniques have relative advantages and disadvantages. As an extension of Hamilton’s
Principle, Lagrange’s equations of motion serve as a convenient and popular way of generating the
equation of motion for mechanical systems. In general, these equations can be written

d
dt

(
∂T
∂q̇

)
−
∂T
∂q

+
∂V
∂q

= Q

In the above expression, the potential energy of the system is V , T is the kinetic energy, q is the
vector of generalized coordinates, and Q is the vector of generalized forces. The generalized forces
arise from the formulation of the virtual work done by external nonconservative forces acting on
the system. If external force Fp acts at the physical point p, the virtual work is defined as the
sum [25]

δWnc =
∑

p
Fp ·δrp

Virtual work of the nonconservative external forces is then calculated in terms of the generalized
forces.

δWnc =
∑
i=1

Qi ·δqi = QTδq = δqTQ

It is often assumed that kinetic energy is a quadratic function of the generalized coordinates. The
kinetic energy then has the form

T =
1
2

q̇TM(q)q̇ (2.4)

Such systems are known as T2 or natural systems [27]. It is also commonly assumed that potential
energy is a function of only the generalized coordinates, that is,

V = V(q)

If both of these conditions hold true, the equations of motion for the system can be written in a
general form

M(q(t))q̈(t) = n(q(t), q̇(t), t) + B(q(t))τ(t) (2.5)
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The vector n is a collection of nonlinear terms due to centripetal or Coriolis effects and is a function
of the generalized coordinates and their derivatives. The vector τ is the vector of control inputs.
In this thesis all of the joints are assumed to be driven by a rotational actuator. Because all of the
joints contain a rotary actuator, the control influence matrix is the B identity matrix [25]. When the
actuation scheme changes, B is determined via calculation of virtual work. This will be discussed
in more detail in Section (2.3).

2.2.1 Fixed Base Body

Two classes of robotic systems are studied in this thesis, those that have a base body fixed in the
inertial frame, and those that do not. We first discuss the case where the base body is fixed in
the inertial frame since the presentation is simpler. This discussion motivates the approach for the
case where the base body is in motion. Robotic systems that have a base body fixed in the inertial
frame are appropriate for robots fixed in laboratory or wind tunnel experiments. We assume that
the robot is fully actuated. The kinematics for this case can be cast via standard approaches for
robotics. The set of equations of motion for the flapping wing robot will have the form of Equation
(2.5). However, it is important to note that in the study of flapping wing robots not all the terms that
appear in the robot equations of motion are measurable or known. The aerodynamic contributions
to the virtual work are not usually available. The equations of motion include a second nonlinear
term na that represent the aerodynamic effects on the system.

M(q(t))q̈(t) = n(q(t), q̇(t), t) + na(q(t), q̇(t), t) + B(q(t))τ(t) (2.6)

The functional form of the aerodynamic contributions is studied in Section (2.3). As in many
robotics formulations, the mass matrix is generated in our model through the use of Jacobian ma-
trices. This method provides explicit expansions of the translational and rotational kinetic energy.
First we recall the standard Lagrangian formulation for kinetic energy of a single body i using the
velocity at the center of mass vi, angular velocity ωi, and inertia tensor about the center of mass Ii.
The frame used for calculating the inertia tensor is depicted in Figure (2.5).

Ti =
1
2

mivT
i vi +

1
2
ωT

i Iiωi (2.7)

From Section (2.1.4), we recall the Jacobian definitions in Equation (2.2) and Equation (2.3).

vp = Jvq̇ ωp = Jωq̇

The velocity is calculated at the center of mass for each link, denoted as point g(i) for the center of
mass for link i. The velocity Jacobian used in calculation of vi is introduced as Jv

g(i). The angular
velocity Jacobian introduced for calculating ωi, the angular velocity of link i, is designated as Jωi .
The velocity equations are substituted into Equation (2.7), then the generalized coordinate vectors
are factored.

Ti =
1
2

mi
(
Jv

g(i)q̇
)T (

Jv
g(i)q̇

)
+

1
2

(
Jωi q̇

)T
Ii
(
Jωi q̇

)
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𝑥𝑖 

𝑦𝑖  

𝑧𝑖  

𝑥1
′  

𝑦1
′  

𝑧1
′  

𝑐𝑚 

Figure 2.5: Body with frame at the center of mass about which the inertia tensor is calculated

Ti =
1
2

q̇T
(
mi

(
Jv

g(i)

)T
Jv

g(i) +
(
Jωi

)T
IiJωi

)
q̇

This formula is then simplified by introducing two matrices, the translational generalized inertia
component Mv

i , and rotational generalized inertia component Mω
i . The contribution due to trans-

lational motion to the mass matrix is calculated via the identity

Mv
i = mi

(
Jv

g(i)

)T
Jv

g(i),

while the contribution due to rotational motion is

Mω
i =

(
Jωi

)T
IiJωi

In this equation Ii is the inertia matrix relative to the same basis used in the definition of the
Jacobian matrix Jωi . After Mv

i and Mω
i are generated, the mass matrix for body i is compiled by

summing these two matrices [25].
Mi = Mv

i + Mω
i

The total kinetic energy for a single body i can then be assembled in the form similar to Equation
(2.4)

Ti =
1
2

q̇TMi(q)q̇

The total energy for a fixed base robotic system is found by summing the kinetic and potential
energies for all bodies.

2.2.2 Moving Base Body

To construct a kinematic and dynamic model for an ornithopter in flight, the fixed base constraint is
not applicable. In this thesis we assume that there is one free base body having no directly actuated
degrees of freedom, with one or more attached serial chains. We assume there are no closed loops
in the system. The kinematic chains will be modeled using the DH convention. This model is
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illustrated in Figure (2.6). This figure shows a base body with two kinematic chains and illustrates
the numbering convention used. The base body is labeled with a body fixed reference frame (0,0),
and ground frame is labeled as G. Links in the chains are labeled as (c,k), where c is the chain
number and k is the element in chain c. A point on body k in chain 1 is labeled as p(1,k). A standard
notation is developed for the discussion of the kinematics and dynamics of a moving base body
system and summarized in Table (2.1).

(0,0) 

G 

(1,1) 

(1,2) 
(1,k) 

p(1,k) 

(2,1) 

(2,2) 

(2,3) 

chain c 
chain 1 

chain 2 

Figure 2.6: Illustration of free base body (0,0) with three serial chains, c, c = 1 and c = 2
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Table 2.1: Notation for the discussion of moving base body models
Name Symbol Description
Chain c Chain number
Frame, body (c,k) Chain c, link k
Point p(c,k) Point p on body c,k
Generalized coordinate q(c,k) Joint coordinate at chain c, link k
Vector of joint coordinates qc All coordinates in chain c

Velocity of body fixed point v(c,k)
p(c,k)

Velocity of point p in body (c,k) rela-
tive to frame (c,k)

Angular velocity of frame ω(c1,k1),(c2,k2)
Angular velocity of link (c1,k1) relative
to (c2,k2)

Velocity Jacobian Jv
0(c,k)

Jacobian at body origin (c,k) relative to
base frame (c,0)

Jv
p(c,k)

Jacobian at point p on body (c,k) rela-
tive to base frame (c,0)

Jv
0(c,0)

Jacobian at base of chain c, relative to
the base body

Angular velocity Jacobian Jω(c,k)
Jacobian at body (c,k) relative to base
frame (c,0)

Jω(0,0)
Jacobian at base body relative to the
ground frame G.

Mass of link m(c,k) Mass of link (c,k)
Rotational inertia matrix I(c,k) -
Total mass matrix Msys -
Link mass contribution M(c,k) Contribution for link (c,k)
Translation link contribution Mv

(c,k) -
Rotational link contribution Mω

(c,k) -
Number of chains nc -
Number of links (coordinates) in
chain i

nci nc1 for chain 1 or nc3 for chain 3

Number of coordinates in chain
and body

nTki Sum of nci + nc0

Total number of coordinates in
system

nT -

The first step in the analysis of the moving base body dynamics calculates the velocity for a point
p fixed in the kth link of the chain c. This is found by adding the velocity of the base of chain c and
the relative velocity of p.

vp(c,k) = vc,0 + v(c,0)
p(c,k)

The relative velocity of the end of the chain can be found using the velocity Jacobian found in
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conventional robotic kinematics [24–26]. The relative chain Jacobian in full terms is written as
JvG

(c,0),p(c,k) to specify that the velocity is calculated relative to the chain base (c,0), and in the
ground frame basis G. The simplified form, to which it is referred to in the following text is Jv

p(c,k).
We must introduce another Jacobian JvG

G,0(c,0) to find the velocity of the base of the chain relative to
the ground frame and in terms of the body coordinates q̇0. The ground frame G of the chain base
Jacobian is suppressed in the subscript and superscript and the Jacobian appears as Jv

0,(c,0).

vp(c,k) = Jv
0(c,0)q̇0 + Jv

p(c,k)q̇c =
[
Jv

0,(c,0) Jv
p(c,k)

] [q̇0
q̇c

]
The angular velocity can be calculated in a similar fashion using two angular velocity Jacobian
matrices. The first Jacobian in full form is JωG

G,(0,0), indicating the frame (0,0) or free body frame
rotates relative to the ground frame G, and in the ground frame basis. The first angular velocity
Jacobian is abbreviated as Jω(0,0). The second angular velocity Jacobian rotates the body (c,k) fixed
in the chain base frame (c,0), and without simplification it is denoted as JωG

(c,0),p(c,k). The simplified
form used in the text is Jωp(c,k).

ω(c,k) = Jω(0,0)q̇0 + Jω(c,k)q̇c =
[
Jω0(c,0) Jωp(c,k)

] [q̇0
q̇c

]
The kinetic energy of a body k in a chain c is found by calculating the contributions due to trans-
lation and rotation. The translational component is found using the mass and the velocities at the
center of mass of an link.

T v
(c,k) =

1
2

m(c,k)vT
g(c,k)vg(c,k)

=
1
2

m(c,k)
[
q̇T

0 q̇T
c

] 
(
Jv

0(c,0)

)T(
Jv

g(c,k)

)T

 [Jv
0(c,0) Jv

g(c,k)

] [q̇0
q̇c

]

=
1
2

m(c,k)
[
q̇T

0 q̇T
c

] 
(
Jv

0(c,0)

)T
Jv

0(c,0)

(
Jv

0(c,0)

)T
Jv

g(c,k)(
Jv

g(c,k)

)T
Jv

0(c,0)

(
Jv

g(c,k)

)T
Jv

g(c,k)


[
q̇0
q̇c

]
The mass matrix contribution from this equation can be extracted from the terms listed below. Mv

0,0 Mv
0,(c,k)(

Mv
0,(c,k)

)T
Mv

(c,k),(c,k)

 = m(c,k)


(
Jv

(c,0)

)T
Jv

(c,0)

(
Jv

(c,0)

)T
Jv

g(c,k)(
Jv

g(c,k)

)T
Jv

(c,0)

(
Jv

g(c,k)

)T
Jv

g(c,k)


The rotational kinetic energy is found using the inertia matrix I(c,k) and angular velocity Jacobians.
The contribution of rotational motion to the generalized mass matrix is calculated in terms of the
inertia about the center of mass of each link (c,k).

Tω
(c,k) =

1
2
ωT

(c,k)I(c,k)ω(c,k)

=
1
2

[
q̇T

0 q̇T
c

] [
Jω(0,0) Jω(c,k)

]T
I(c,k)

[
Jω(0,0) Jω(c,k)

] [q̇0
q̇c

]
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In the above expression, the Jacobian matrices and the inertia matrix must be expressed in terms
of the same basis. In this case, the ground frame is implied. The mass matrix contributions from
the rotational kinetic energy are computed below. Mω

0,0 Mω
0,(c,k)(

Mω
0,(c,k)

)T
Mω

(c,k),(c,k)

 =
[
Jω(0,0) Jω(c,k)

]T
I(c,k)

[
Jω(0,0) Jω(c,k)

]
To complete the mass matrix for each chain, the rotational and translational components are
summed for each link in the chain.[

M0,0 M0,c(
M0,c

)T Mc,c

]
=

nci∑
k=1

 Mv
0,0 Mv

0,(c,k)(
Mv

0,(c,k)

)T
Mv

(c,k),(c,k)

+

 Mω
0,0 Mω

0,(c,k)(
Mω

0,(c,k)

)T
Mω

(c,k),(c,k)


The final step in generating the mass matrix for a system in which the base body is in motion is the
calculation of the contribution from the base body. The procedure for calculating this contribution
is trivial once the chain kinetic energy formulations are completed.

T v
(0,0) =

1
2

m(0,0)vT
g(0,0)vg(0,0)

=
1
2

m(0,0)q̇T
0

(
Jv

g(0,0)

)T
Jv

g(0,0)q̇0

Tω
(0,0) =

1
2
ωT

(0,0)I(0,0)ω(0,0)

=
1
2

q̇T
0

(
Jωg(0,0)

)T
I(0,0)Jωg(0,0)q̇0

The total mass matrix of the system Msys can then be compiled from the constituent mass matrices.

It will have dimensions nT ×nT where nT =
nc∑

i=0
nci , the sum of the number of links in each chain, for

every chain. The base body mass matrix and M0,0 values from each element are summed together.
Within each chain the terms M0,c and Mc,0 will compose the first horizontal row and first vertical
column, respectively. The diagonal, not including the first element, will be composed of Mc,c from
each chain. The matrix Msys will appear in the form:

Msys =


M0,0 M0,1 M0,2 · · · M0,c
M1,0 M1,1 0 · · · 0
M2,0 0 M2,2 · · · 0

...
...

... . . . ...
Mc,0 0 0 · · · Mc,c


The total kinetic energy for the system then appears as:

Tsys =
1
2

[
q̇T

0 q̇T
1 · · · q̇T

nc

]
Msys


q̇0
q̇1
...

q̇nc
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2.3 Aerodynamic Model

In this section, we discuss the calculation of the contribution of the aerodynamic loads to the
equations of motion from a wing composed of a single kinematic chain. We simulate the free
base body case by introducing a velocity of the surrounding fluid. The unknown aerodynamic
contributions to the governing equations arise from the virtual work performed by the aerodynamic
forces. We let rai be the position vector of the aerodynamic center of the ith wing section in the
inertial frame. The total virtual work is the sum of the external aerodynamic force(s) Fai for N
bodies in a chain dotted with the virtual displacement δrai of the point of application of Fai .

δW =

N∑
i=1

Fai ·δrai =

N∑
i=1

Qi,a ·δqi

By convention there are two rotations, the sideslip βi and the angle of attack αi, that are used to
define the lift and drag forces on a wing. For a typical calculation on wing section i, we suppose
first that the body fixed frame Bi is defined in terms of the unit vectors b̂1,i, b̂2,i, and b̂3,i at the
aerodynamic center of the body. The rotation matrix that maps body fixed Bi frame to the wind
frame S i is constructed by concatenating two single axis rotation matrices. First, an intermediate
frame Ci is defined in terms of the unit vectors ĉ1,i, ĉ2,i, and ĉ3,i that are obtained by rotating the
basis vectors of the Bi frame through the angle of attack αi about the ĉ2,i = b̂2,i axis. Figure (2.7)
depicts a wing body with body fixed axis b̂1, b̂2, and b̂3 with the velocity vai aligned with the wind
axis. The wind frame S i is subsequently defined in terms of the unit vectors ŝ1,i, ŝ2,i, and ŝ3,i that
result when the basis vectors for the intermediate Ci frame are rotated through the sideslip βi about
the ŝ3,i = ĉ3,i axis. The product of these single axis rotations define the rotation matrix RS i

Bi
(αi,βi)

which can be used to transform the coordinates of any vector in the Bi frame to the S i frame.ŝ1,i
ŝ2,i
ŝ3,i

 =

 cosβi sinβi 0
−sinβi cosβi 0

0 0 1

 ·
 cosαi 0 sinαi

0 1 0
−sinαi 0 cosαi


b̂1,i
b̂2,i
b̂3,i


By definition, the lift and drag forces on any wing section constitute the aerodynamic force vector
acting on the ith wing section via the expression

Fa,i = −Di(ŝ1,i)−Li(ŝ3,i)

Lift and drag are approximated using a standard two-dimensional, quasi-steady aerodynamic model
in this thesis. Furthermore, the lift and drag forces are assumed to act at the aerodynamic center
and therefore the moment is ignored. We suppose ρ is the density of fluid surrounding the wing,
vai is the velocity of the aerodynamic center with respect to the ground frame, vw is the velocity
of the fluid with respect to the ground frame, and Aw,i is the two dimensional wing area enclosed
between the leading edge and the trailing edge of the ith wing section. The functions cDi(αi) and
cLi(αi) are the drag and lift coefficients, respectively, for wing section i as a function of the angle
of attack. These are assumed unknown in this paper. See Figure 2.8 for example plots of typical
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Figure 2.7: Illustration of the body fixed frame on a wing section with α, the angle of attack, and
β, the sideslip

functions cLi(αi) as the angle of attack αi varies. Pictured is the lift coefficient for an S1223 airfoil
at low Reynolds number Re = (2x102) measured in wind-tunnel experiments [1]. The lift and drag
on the ith section are computed as

Li =
1
2
ρ‖vw−vai‖

2cL(αi)Aw,i

Di =
1
2
ρ‖vw−vai‖

2cD(αi)Aw,i

The strategy for calculating the virtual work due to aerodynamic forces proceeds by finding the ve-
locities of each aerodynamic center. These velocities are a function of the generalized coordinates.

vai = vai(q1, . . .qN)

We write the total equivalent velocity of the aerodynamic center of wing section i in the form
vTi = vw − vai = uai b̂i,1 + vai b̂i,2 + wai b̂i,3. The angle of attack αi and sideslip βi is defined by this
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Figure 2.8: Typical graph of the coefficients of drag and lift versus angle of attack, αi [1]

velocity and can therefore be found using the following formulae:

αi = tan−1
(
wai(q1, . . .qN , q̇1, . . . q̇N)
uai(q1, . . .qN , q̇1, . . . q̇N)

)
βi = sin−1

(
vai(q1, . . .qN , q̇1, . . . q̇N)
‖vTi(q1, . . .qN , q̇1, . . . q̇N)‖

)
The 3×N velocity Jacobian matrix can be formed to find the vector of aerodynamic center veloci-
ties.

vai = Jv
ai

q̇
This standard calculation for kinematic chains is discussed in numerous references, see [24,25,28].
The rotation matrix RBi

0 maps the velocity Jacobian from the zero frame to the body fixed frame.
As a consequence, the velocity is written

vBi
ai =

uai

vai

wai

 = RBi
0 JvBi

ai q̇ = Jv
ai,Bi

q̇

The virtual displacements of the aerodynamic centers can also be found using the velocity Jacobian
in either the zero frame or body fixed frame.

δrai = Jv
ai
δq

δrBi
ai = JvBi

ai δq = RBi
0 Jv

ai
δq

With the expressions above, we have enough information to calculate the virtual work due to
aerodynamic forces. The drag and lift for each wing section can be transformed to the body fixed
frame using the proper rotation matrix.

δWi = Fa,i ·δra
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δWi = {−Di,0,−Li}RS i
Bi

JvBi
ai δq

It follows that the generalized forces due to aerodynamic loads on each wing section i can be
written as

Qa =

N∑
i=1

−
(
JvBi

ai

)T (
RS i

Bi

)T


Di
0
Li


We introduce the matrix Ψ,

Ψ = −

[(
J

vB1
a1

)T (
RS 1

B1

)T
. . .

(
J

vBN
aN

)T (
RS N

BN

)T
] 

1 0
0 0
0 1

 · · ·
1 0
0 0
0 1




with the right hand component of size 3×2N. The generalized forces due to the aerodynamics can
be written as

Qa =Ψ



D1
L1
...

DN
LN


=ΨF

Control synthesis will be based on the state space form of the governing equations[
Ẋ1
Ẋ2

]
=

[
q̇
q̈

]
=

[
X2

M−1n

]
+

[
0

M−1Ψ

]
F +

[
0

M−1B

]
τ

where X1 = q and X2 = q̇. The final step in preparing the governing equations for control synthesis
introduces representations of the unknown drag and lift coefficients cDi(αi) and cLi(αi) for each
wing section i {

Di
Li

}
=

1
2
ρ‖vw−vai‖

2Aw,i

{∑
i ΩDi,kφ̃Di,k(αi)∑
k ΩLi,kφ̃Li,k(αi)

}
(2.8)

=

[
ΩT

Di
0

0 ΩT
Li

]{1
2ρ‖vw−vai‖

2Aw,iΦ̃Di
1
2ρ‖vw−vai‖

2Aw,iΦ̃Li

}
=ΩT

i Φi

We assemble all the aerodynamic forces and construct

D1
L1
...

Dn
Ln


=



ΦT
D1

0 · · · 0 0
0 ΦT

L1
0

... . . .
0 ΦT

DN
0

0 0 0 ΦT
LN




ΩD1

ΩL1
...
ΩDN

ΩLN


=ΦTΩ
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2.4 Examples of Dynamic and Kinematic Models

Three ornithopter prototype models are evaluated in this thesis. These prototypes are products
of the flapping flight project undertaken by Dr. Andrew Kurdila and Dr. Javid Bayandor in the
Department of Mechanical Engineering at Virginia Tech. This section will focus on kinematic
descriptions of these prototypes.
The first prototype was named Daedalus and was the product of senior Mechanical Engineering
students [29]. The Daedalus wing was designed as a serial chain robotic mechanism with four
rotational degrees of freedom and three parallel degrees of freedom.
The Daedalus model is the simplest of the three designs. Its structure is directly amenable to
the standard Denavit-Hartenberg convention for kinematic chains. Figure (2.9) depicts this model
with a set of DH frames attached at its corresponding joints. The joints are labeled o, p,q,r, s in
Figure (2.9). Figure (2.10) is an image of the Daedalus CAD model with wing covering. The
Daedalus model is a four degree of freedom chain and the DH parameters are listed in Table (2.2).
As we recall from Section (2.1.3), the parameters are the displacement di, offset ai, rotation θi,
and twist αi for each link i = 1, · · · ,4. The mass matrix M was generated for the Daedalus model

Figure 2.9: Daedalus CAD model with Denavit-Hartenberg axes attached

Figure 2.10: Daedalus CAD model with skin covering

using numerical values for the masses, relative mass locations, and DH parameters other than the
generalized coordinates. MATLAB (MathWorks, Natick, Massachusetts) was used for symbolic
computation and simplification. Reasonable estimates of these variables were provided in order
to further simplify the mass matrix. The length parameters are listed in meters, masses are in
kilograms, and angles are in radians. Tables (2.3), (2.4), and (2.6) lists these values. Moments
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Table 2.2: Daedalus DH parameters
Link di ai θi αi

1 ro,p 0 θ1(t) π
2

2 0 rp,q θ2(t) 0
3 0 rq,r θ3(t) 0
4 0 rr,s θ4(t) 0

Table 2.3: Daedalus sample DH parameters
Link di(m) ai(m) θi(rad) αi(rad)
1 0.1 0 θ1(t) π

2
2 0 0.1 θ2(t) 0
3 0 0.1 θ3(t) 0
4 0 0.1 θ4(t) 0

of inertia are denoted as Ii,xx, Ii,xy, Ii,xz, Ii,yx, Ii,yy, · · · Ii,zz where i is the link number for i = 1, · · · ,4.
They are established with respect to a coordinate system parallel to the i frame but having an origin
at the ith center of mass. The diagonal terms Ii,xx, Ii,yy, and Ii,zz are calculated using a simplified
thin, rigid rod assumption. The two axes perpendicular to the length of the appropriate link are
estimated using 1

12ml2, with the mass and length of the link, while the axis parallel to the link as
well as the other non-diagonal moment of inertia terms are deemed negligible. The mass matrix is
listed as elements m11 · · ·m44. See Appendix (A) for the full listing of the Daedalus mass matrix
and nonlinear right hand side.
The Daedalus joint structure was revised to improve performance and increase correlation with
biological kinematics. Rearrangement of the joints allows for the wing to create an optimal angle
of attack, while reducing detrimental drag and negative lift forces on the upstroke. Additional
degrees of freedom allow for the different flapping modes analyzed in Han [3], which he titles
flapping, folding and Lead/Lag. The combination of all three produces the highest lift coefficient
and the combination of flapping and folding lead to the highest thrust production.
The second model that we study is based on the Larus prototype. The prototype for this project was
developed between Fall 2011 and Spring 2012. There were nine senior Mechanical Engineering
students involved [30]. This model contains four degrees of freedom, but three act at the shoulder
area of the wing, with only one degree of freedom embedded in the wing itself. See Figure (2.11)

Table 2.4: Daedalus sample mass parameters
Link mi(kg)
1 0.05
2 0.05
3 0.05
4 0.025
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Table 2.5: Daedalus moment of inertia parameters, kg ·m2×10−5

Link Ii,xx Ii,xy Ii,xz Ii,yy Ii,yz Ii,zy Ii,zz

1 4.1667 0 0 0 0 0 4.1667
2 0 0 0 4.1667 0 0 4.1667
3 0 0 0 4.1667 0 0 4.1667
4 0 0 0 2.0833 0 0 2.0833

Table 2.6: Daedalus sample relative center of mass positions
Link x coordinate(m) y coordinate(m) z coordinate(m)
1 0 0.0333 0
2 0.05 0 0
3 0.05 0 0
4 0.05 0 0

for an illustration of the DH frames. One unique feature is the linkage system between frame 3 and
frame 4, r and s in the figure. A symmetric four-bar linkage is incorporated in this section of the
wing which couples the rotation about θ4 and an additional rotation θ5. The constraint is modeled
in the dynamics by adding the contribution of the fifth body, T5 to the existing terms T1,4.

T = T1,4 + T5 = T1,4 +
1
2

m5vT
5 v5 +

1
2
ωT

5 I5ω5

The revised joint structure is modeled using a set of frames generated by the DH Convention in
Figure (2.11). The origin of the frames are labeled o, p,q,r, s, and the generalized coordinates are
denoted θ1(t) · · ·θ4(t). We again employ the DH parameters for links 1 · · ·4 and amend our kinetic
energy calculation to include the contribution from the last mass. As with the Daedalus model, a
symbolic mass matrix was computed in terms of the generalized coordinates and inertia properties.
See Appendix (A) for full listing of the Larus mass matrix. Tables (2.8 - 2.11) list the parameters
for the Larus model.
The third robotic bird prototype currently in development is named Icarus. The design team is
composed of senior mechanical engineering students [31]. The Icarus kinematic model is based
on a free base body structure with two articulated wings. The DH frames of the left wing and a

Table 2.7: DH Parameters for the Larus model
Link di ai θi αi

1 do,p ao,p θ1(t) π
2

2 0 ap,q θ2(t) π
2

3 dq,r 0 θ3(t) 0
4 0 ar,s θ4(t) 0
5 0 0 θ5(θ3, t) 0
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Table 2.8: Larus sample DH parameters
Link di(m) ai(m) θi(rad) αi(rad)
1 0.02 0.01 θ1(t) π

2
2 0 0.01 θ2(t) 0
3 0.02 0 θ3(t) 0
4 0 0.2 θ4(t) 0
5 0 0 θ5(θ3, t) 0

Table 2.9: Larus sample mass parameters
Link mi(kg)
1 0.05
2 0.05
3 0.05
4 0.025
5 0.01

Table 2.10: Larus moment of inertia parameters, kg ·m2×10−5

Link Ii,xx Ii,xy Ii,xz Ii,yy Ii,yz Ii,zy Ii,zz

1 4.1667 0 0 0 0 0 4.1667
2 0 0 0 4.1667 0 0 4.1667
3 0 0 0 4.1667 0 0 4.1667
4 0 0 0 4.1667 0 0 4.1667
5 0 0 0 2.0833 0 0 2.0833

Table 2.11: Larus sample relative center of mass positions
Link x coordinate(m) y coordinate(m) z coordinate(m)
1 −0.005 −0.005 0
2 −0.0025 0 0.005
3 0 −0.05 0.1
4 −0.05 0.1 0
5 0.05 0 0
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Figure 2.11: DH frames of the Larus prototype

Table 2.12: Icarus right wing DH parameters
Link di(m) ai(m) θi(rad) αi(rad)
(R,1) 0 ao,p θ1(t) 0
(R,2) 0 ap,q θ2(θ1, t) π

2
(R,3) 0 0 θ3(t) π

2
(R,4) dq,r 0 θ4(t) 0

base body frame are presented in Figure (2.12), while the right wing frames and base body frame
are pictured in Figure (2.13). In this figure, the base body frame is notated as (0,0), while the
left wing chain base is denoted (L,0). The left wing is labeled as chain L, while the right wing
is labeled chain R. The notation used in this model follows the convention from Section (2.2.2).
There are five degrees of freedom, θ1, θ3, θ4, θ5, and θ6. The first degree of freedom θ1 drives both
wings. The second body on both wings is rotated in frame 1 by θ2. The rotation θ2 is a function
of θ1 due to a mechanical constraint. The last two degrees of freedom on both wings are driven
independently by variables θ3 through θ6. The DH parameters for the two wings are tabulated in
Tables (2.13) and (2.12). In the left wing, the rotations for all of the links are inverted so that the
first and second angles are symmetric about the x− z base body plane. The last two rotations on
the left wing are also negated so that if θ3 = θ5 and θ4 = θ6, the rotations will also be symmetric
about the base body.
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Figure 2.12: Left wing DH frames of the Icarus prototype pictured with θ(L,0) through θ(L,4) equal
to zero

Table 2.13: Icarus left wing DH parameters
Link di(m) ai(m) θi(rad) αi(rad)
(L,1) 0 ao,p −θ1(t) 0
(L,2) 0 ap,q −θ2(θ1, t) 3π

2
(L,3) 0 0 −θ5(t) π

2
(L,4) dq,r 0 −θ6(t) 0

  

𝒛(𝑅,0)  

𝒚(𝑅,0)  

𝒙(𝑅,0)  𝑜𝑅   

𝒛(𝑅,1)  

𝒚(𝑅,1)  

𝒙(𝑅,1)  𝑝𝑅   

𝒛(𝑅,2)  

𝒚(𝑅,2)  

𝒙(𝑅,2)  𝑞𝑅   

𝒚(𝑅,3)  

𝒛(𝑅,3)  

𝒙(𝑅,3)  

𝑟𝑅   

𝒚(𝑅,4)  

𝒛(𝑅,4)  

𝒙(𝑅,4)  

𝒛(0,0)  

𝒙(0,0)  

𝒚(0,0)  

𝜃(𝑅,1)  𝜃(𝑅,2)  𝜃(𝑅,3)  
𝜃(𝑅,4)  

Figure 2.13: Right wing DH frames of the Icarus prototype pictured with θ(R,1) through θ(R,4) equal
to zero



Chapter 3

Control of Flapping Wing Robots

This section investigates some methods of closed loop control for flapping wing robots that have
a fixed root or core body. From the generalized equations of motion, there are two terms that
present difficulties in developing a controller. The first is the non-linearities that arise from the
coupled equations of motion. These are represented as n in Equation (2.6). This problem has been
addressed in the robotics literature [24–26, 32] via a number of techniques including approximate
dynamic inversion or computed torque control. When parameters such as dimensions, masses, and
other inertial properties are known exactly, this method is applicable. For many robotic systems,
such as the control of pick and place tasks for manipulator arms or control of limbs in a humanoid
robot, this method is sufficient to guarantee stability. Even if the parameters are unknown, but the
uncertainty is relatively small, robustness analysis can be used to achieve some measure of stabil-
ity. In flapping wing vehicles, a new challenge arises. The second term that presents difficulty in
control design for flapping wing vehicles is na in Equation (2.6). This term is a function of the
states q and their derivatives q̇. Since this function is based on complex, unsteady, nonlinear aero-
dynamic phenomenon, a model with high accuracy is not usually available. This thesis explores
the use of some adaptive control techniques which are able to generate an adaptive approximation
of the unknown aerodynamics terms and control the resulting motion.

3.1 Approximate Dynamic Inversion

Nonlinear systems, as they are generated by nonlinear ordinary differential equations (ODE’s), can
pose challenging control synthesis problems. A substantial effort in literature has been made that
seeks to transform a system of nonlinear ODE’s into a system of linear ODE’s in certain cases. This
method is known as feedback linearization, computed torque control, or dynamic inversion [24,28].
From Section 2.2 the equation of motion for natural systems that arise when we model a robotic
linkage are in the form

M(q(t))q̈(t) = n(q(t), q̇(t), t) + B(q(t))τ(t)

31
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The computed torque control strategy makes a careful selection of the control law to yield a linear
system of ODE’s [25].

τ = Mv−n

The new outer loop control input v is then chosen based on well developed linear control tech-
niques. One popular feedback law used in dynamic inversion is the PD, or proportional derivative,
control law [24]. The feedforward control q̈d is generally included but can be set to 0 for setpoint
control. The desired states qd and the derivative of the desired states q̇d can be set to a constant for
setpoint control or an input function for tracking control.

v = q̈d −G0(q−qd)−G1(q̇− q̇d)

This controller is effective in theory, but is not fully realizable in practice. For feedback lineariza-
tion to be effective upon implementation, the system parameters M and n must be known exactly.
This is not possible in many real life applications, where the mass, inertia, dimensions, input force
and other parameters are known approximately, and some degree of uncertainty always exists. Ap-
proximate dynamic inversion or robust dynamic inversion is one method that has been developed
to handle uncertainty in the system dynamics. In this framework it is assumed that the actual
mass matrix M is approximated by the predicted mass matrix Mp. The predicted mass matrix
Mp depends on the estimates of the unknown parameters. The approximation error or discrepancy
between the predicted and actual value is designated with the tilde symbol and is calculated as

M̃ = Mp−M

Likewise, we introduce a predicted nonlinear term denoted np, and compute the approximation
error ñ = np − n. External disturbance inputs are considered in τd. The approximate inversion
controller takes the form

τ = Mpv−np

Several standard controllers have been based on this structure. The system equation after approxi-
mate dynamic inversion now becomes

q̈ = v + d

The discrepancy d is found to be

d = M−1M̃v−M−1ñ + M−1τd

Once the approximate dynamic inversion control is used, the choice of the outer loop controller
remains. We discuss two common choices for the outer loop controller, a switching controller and
a smoothed switching controller.

3.1.1 Hard Switching Controller

By introducing a discontinuous control input, namely a ‘hard switching’ controller, the output
can remain asymptotically stable despite the mismatch in dynamic properties. This method for
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handling uncertainties has appeared as early as 1991 in [32]. This control law defines several new
matrices and constants. The matrix A is a 2N ×2N gain matrix.

A =

[
0 I
−G0 −G1

]
This controller is derived from a Lyapunov equation. We choose a symmetric positive definite
matrix Q. For simplicity it can be selected as Q = I. Then, the symmetric positive definite matrix
P, with dimensions N ×N, is defined to be the solution of the Lyapunov equation

ATP + PA = −Q

The 2N ×N matrix D is defined as

D =

[
0
I

]
Lastly, X is the vector of state error and state error derivative, and a positive constant k is selected
to be greater than ||d||. The switching control input u is added to the outer loop control v

u =

 −k DTPX
||DTPX||

i f DTPX 6= 0

0 i f DTPX = 0

The control input τ with the new hard switching input u becomes

τ = Mp(v + u)−np

The system equations then become
q̈ = v + d + u

To investigate the stability, a Lyapunov function is chosen asV = 1
2XTPX. The Lyapunov deriva-

tive is

V̇ =
1
2

(XTPẊ + ẊTPX)

=XT(PA + ATP)X + XTPD(u + d)

The term PA + ATP is the left side of the Lyapunov equation and equates to −Q. If looking at
the second controller mode, DTPX = 0, the Lyapunov derivative simplifies to the negative definite
formulation:

V̇ = −XTQX
If instead, the other controller mode is used, the Lyapunov derivative is equal to

V̇ = −XTQX + XTPDd− k||DTPX||

If we assume that ||d||≤ k, the second and third terms in V̇ can be written as

||DTPX||(||d||−k) < 0

The Lyapunov function then becomes negative definite in the form:

V ≤ −XTQX
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3.1.2 Soft Switching Controller

One issue that commonly results in implementation of the hard switching controller is chattering
type effects. To lessen the effects of chattering, a soft switching control can be implemented [25].
The control input is smoothed using a parameter ε. Instead of completely switching off, the input
will be reduced when ||DTPX||< ε.

u =

 −k DTPX
||DTPX||

i f ||DTPX||≥ ε
− k
εDTPX i f ||DTPX||< ε

The Lyapunov functionV = 1
2XTPX is used again to investigate the revised input. For the first case

of the soft switching controller, the Lyapunov derivative will be less than zero if ||d||≤ k. When
||DTPX||< ε the Lyapunov derivative is

V̇ = −
1
2

XTQX−
k
ε
||DTPX||2+XTPDd

≤ −
1
2

XTQX + ||DTPX||
(
||d||−

k
ε
||DTPX||

)
≤ −

1
2

XTQX + 2εk

Using LaSalle’s Invariance Principle, the error is bounded and stable and depends on the term 2εk.
The subsetM is defined as the largest positive invariant subset where

MB

{
X :

1
2

XTQX ≤ 2εk
}

3.2 Adaptive Control

3.2.1 Approximate Dynamic Inversion with Adaptation

The controllers derived via approximate dynamic inversion in the last section are recommended
provided that the uncertainty is not too great. A detailed discussion of the size of the uncertainty
and its relation to closed loop stability can be found in [28], for example. For flapping wing robots,
the unknown aerodynamic terms can have the same order of magnitude as the inertial terms. It is
doubtful that robustness methods can yield agile and accurate tracking response for such systems.
In this section, we present two adaptive control methods that are appropriate for the flapping wing
robotic systems. The equations of motion derived from Lagranges Equation with the aerodynamic
term takes the form

M(q(t))q̈(t) = n(q(t), q̇(t), t) + na(q(t), q̇(t), t) + B(q(t))τ(t)
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The dynamic inversion inner loop control is defined in terms of the outer loop control v.

τ = Mv−n

After manipulation, the closed loop equations of motion becomes

q̈ = M−1na + v (3.1)

The outer loop is chosen with a simple PD control but the unknown nonlinear term still remains.
The state error is defined as q̃ = q−qd. As we recall from Section 2.3, na =ΨΩTΦ is comprised of
the matrix Ψ, the vector of unknown parameters Ω, and the basis vectorΦ. The outer loop control
is selected to be

v = q̈d −G0q̃−G1 ˙̃q−M−1ΨΩ̂TΦ (3.2)

where Ω̂ is a vector of estimates of the unknown parametersΩ. By inserting the outer loop control
law from Equation (3.2) into the closed loop equation of motion in Equation (3.1), the new closed
loop equation of motion now becomes:

q̈ = M−1na + q̈d −G0q̃−G1 ˙̃q−M−1ΨΩ̂TΦ

By decomposing na into its terms ΨΩTΦ, and introducing an unknown parameter error term Ω̃ =

Ω− Ω̂ this equation can be simplified as:

q̈ = q̈d −G0q̃−G1 ˙̃q + M−1ΨΩ̃TΦ (3.3)

The Lyapunov function candidate is chosen as:

V =
1
2

˙̃qT ˙̃q +
1
2
γΩ̃TΩ̃+

1
2

q̃TG0q̃

where γ is the learning gain. The derivative of the Lyapunov Function along the trajectories of the
system can be written as

V̇ = ˙̃qT ¨̃q + ˙̃qTG0q̃ +γ ˙̃ΩTΩ̃

By collecting like terms, the derivative of the Lyapunov Candidate is rewritten.

V̇ = ˙̃qT( ¨̃q + G0q̃) +γ ˙̃ΩTΩ̃

Equation (3.3) can be rearranged to solve for ¨̃q + G0q̃, then substituted into the Lyapunov function
derivative.

¨̃q + G0q̃ = −G1 ˙̃q + M−1ΨΩ̃TΦ

V̇ = − ˙̃qTG1 ˙̃q + ˙̃qTM−1ΨΩ̃TΦ+γ ˙̃ΩTΩ̃

For the system to be stable, the Lyapunov Function must be positive definite and the derivative of
the Lyapunov Function must be negative definite [32]. The Lyapunov Function is positive definite.
The terms in V̇ are not all negative definite. For this reason, we would like to factor out Ω̃ and
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cancel the other terms. We consider a case where the aerodynamic forces act only on a single body,
i.e. Ω and Φ are column and row vectors. With this assumption, Ω̃TΦ ≡ΦTΩ̃ and we can write

V̇ = − ˙̃qTG1 ˙̃q + ( ˙̃qTM−1ΨΦT +γ ˙̃ΩT)Ω̃

The derivative of the unknown parameter error ˙̃Ω = − ˙̂Ω since Ω is constant. By solving for ˙̂Ω the
update law is defined.

˙̃qTM−1ΨΦT +γ ˙̃ΩT = 0
˙̂Ω = γ−1ΦΨTM−1 ˙̃q

A positive definite Lyapunov functionV and negative semi-definite Lyapunov derivative V̇ guar-
antees boundedness for q̃, ˙̃q, and Ω̃. Since ˙̃q is negative definite in V̇ and positive definite inV, it
is guaranteed to converge.

3.2.2 Dissipative Controller with Adaptation

To improve performance and guarantee asymptotic stability in both the position and derivative
error, a dissipative controller is investigated. The equation of motion is rewritten with the nonlinear
term n broken down into the Coriolis matrix C and the gradient of the potential energy ∂V

∂q

M(q(t))q̈(t) + C(q(t), ˙q(t)) +
∂V
∂q(t)

−na(q(t), q̇(t), t) = B(q(t))τ(t) (3.4)

A new measure of the tracking error σ is introduced with diagonal, positive gain matrix Λ:

σ = ˙̃q +Λq̃

The control input is selected as

τ = M(q)(q̈ + σ̇) + C(q, q̇)(q̇ +σ) +
∂V
∂q

+ GDσ−ΨΦTΩ̂

It is assumed that the actuators are revolute and B is the identity matrix. The control input is
substituted into Equation 3.4 to obtain:

M(q)(−σ̇) + C(q, q̇)(−σ)−GDσ−ΨΦT(Ω− Ω̂) = 0

M(q)σ̇+ C(q, q̇)σ+ GDσ+ΨΦTΩ̃ = 0 (3.5)

A Lyapunov function candidate is chosen to examine stability. The Lyapunov function, and its
derivative along the system trajectories, are expressed in the form

V =
1
2
σTM(q)σ+ q̃TΛGDq̃ +

1
2
Ω̃TGΩΩ̃

V̇ =σTM(q)σ̇+ 2q̃TΛGD ˙̃q + ˙̃ΩTGΩΩ̃+
1
2
σTṀσ (3.6)
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Equation (3.5) is solved for M(q)σ̇ and substituted into the Lyapunov derivative in Equation (3.6).

V̇ =σT(−C(q, q̇)−GDσ−ΨΦ
TΩ̃) + 2q̃TΛGD ˙̃q + ˙̃ΩTGΩΩ̃+

1
2
σTṀσ

=
1
2
σT(Ṁ(q)−2C(q, q̇))σ−σTGDσ−σ

TΨΦTΩ̃+ 2q̃TΛGD ˙̃q + ˙̃ΩTGΩΩ̃

The first term is equal to zero since the matrix Ṁ(q)−2C(q, q̇) is skew symmetric. The derivative
of the Lyapunov function can now be written in the form

V̇ =− ˙̃qTGD ˙̃q−2q̃TΛGD ˙̃q− q̃TΛGDΛq̃ + ( ˙̃ΩTGΩ−σ
TΨΦT)Ω̃+ 2q̃TΛGD ˙̃q

=− ˙̃qTGD ˙̃q− q̃TΛGDΛq̃ + ( ˙̃ΩTGΩ−σ
TΨΦT)Ω̃

When we choose the learning update law

˙̃ΩTGΩ−σ
TΨΦT = 0

˙̃Ω =G−1
Ω ΦΨ

Tσ

˙̂Ω =−G−1
Ω ΦΨ

Tσ

The gain matrix GΩ is square and symmetric so it is equal to its transpose GT
Ω

= GΩ. The terms im-
ply the Lyapunov derivative is negative semi-definite, which means that σ, Ω̃, and q̃ are bounded.
We also infer that both ˙̃q and q̃ approach zero asymptotically because their terms in V̇ are negative
definite.

3.3 Numerical Simulation

3.3.1 Software Architecture

The closed loop simulations on the Adaptive Dynamic Inversion Controller and Adaptive Dissipa-
tive Controller were run using MATLAB and Simulink. The software architecture is partitioned
into two main sections, Coriolis4DOF Daedalus and Fundx. Coriolis4DOF Daedalus is a top level
MATLAB script responsible for creating the linear in parameter matrices used as the precursor for
the next section. This includes the mass matrix, nonlinear Coriolis matrix, and potential energy
gradient. Computing these matrices every iteration in the main simulation would increase run time
significantly.
Figure (3.1) shows the entire user defined file hierarchy for the Coriolis4DOF Daedalus file. The
output of this code is the three elements connected to the external data symbol. The first level of
functions are DHKineticEnergy, DHPotentialEnergy, and LagrangesCoriolis. DHKineticEnergy
inputs the DH parameters, symbolic velocities names, link types, center of mass vectors, masses,
and inertia values. The symbolic, scalar kinetic energy value and symbolic mass matrix are the
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outputs. The output is similar as those listed in Appendix (A.1) but with masses m1 through m4
and all the inertia terms are numerically evaluated. The inputs for DHPotentialEnergy are the
DH parameters, local mass locations, and masses, and the output is the Potential Energy term V .
Lastly, the inputs for LagrangesCoriolis are the kinetic and potential energies and the outputs are
the Coriolis matrix and potential energy gradient.
DHKineticEnergy calls three children, DHJacobianVelocity, DHInertiaMatrix, and DHJacobianOmega.
The translational velocity Jacobian Jv and angular velocity Jacobian Jω are generated with the DH-
JacobianVelocity and DHJacobianOmega functions, respectively. DHInertiaMatrix generates the
Inertia Matrix I used in the calculation of the rotational mass matrix component: Mω

i =
(
Jωi

)T
IiJωi .

These three children and DHPotentialEnergy call DHTransforms, which generates the homoge-
neous transform H for each link.

Fundx

Coriolis4DOF_Daedalus

DHKineticEnergy DHPotentialEnergy LagrangesCoriolis

Mass Matrix

Coriolis Matrix

Potential Energy Gradient

DHJacobianVelocity DHInertiaMatrix DHJacobianOmega

DHTransforms

Figure 3.1: Coriolis4DOF code hierarchy

The main execution of the simulation is titled Fundx. The data extracted from Coriolis4DOF Daedalus
is copied as text into Fundx before runtime. Fundx is run as an Interpreted MATLAB Function in
Simulink where it is given initial conditions and integrated. The Simulink solver ODE 113 was
selected for all cases. See Figure (3.2) for the Fundx Simulink block diagram. The inputs and out-
puts to Fundx are tabulated in Table (3.1). The inputs are denoted as the column vector x and the
output is the column vector derivative dx. The example in the table uses the closed loop equation
of motion and update law from the Dissipative controller simulation. In this example, the height
of x would be 81 units, where there is one for time, four for q, four for q̇, and 72 for the entire
parameter estimation vector Ω̂.
The user defined hierarchy for Fundx is illustrated in Figure (3.3). Fundx has seven immediate chil-
dren in this hierarchy. The first child is the function DHCalcAlphaBetaWind. This function inputs
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Table 3.1: Fundx input and output for dissipative controller simulation
Input, x Output, dx Description
t 1 Time counter
q q̇ Velocity obtained from input
q̇ q̈ = q̈d −Λ ˙̃q + M−1

(
Cσ+ GDσ+ΨΦTΩ̃

)
Closed Loop Equation of Motion

Ω̂ ˙̂Ω = GΩΦΨ
Tσ Update Law

the generalized coordinates q, constant DH parameters, wind vector vw, link types, aerodynamic
centers, and aerodynamic rotation matrices RB

0 . DHCalcAlphaBetaWind calculates the angle of
attack αi, sideslip βi, and velocity at aerodynamic center vai . The next child is SBRotation, which
generates the Rotation Matrix RS i

Bi
using angle of attack and sideslip. PsiRestructure is a child of

Fundx which generates the 3×2N matrix to structure Ψ with the correct dimensions with input N.
The child function Hat generates a linear regression basis function at the specific angle of attack,
location of the hat function, and mesh spacing. This is used in the construction ofΦ. The last three
direct subfunctions of Fundx are qdesired, dqdesired, and ddqdesired. These three functions call a
second level subfunction qdqddq desired which returns the desired functions, desired derivatives,
and desired double derivatives. Fundx lastly calculates the variables in dx listed in Table (3.1).

Figure 3.2: Fundx Simulink diagram, with signal dimension displayed
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Fundx

DHCalcAlphaBetaWind SBRotation PsiRestructure qdesired dqdesired ddqdesiredHat

DHJacobianVelocity DHTransforms

DHTransforms

qdqddq_desired

Mass Matrix

Coriolis Matrix

Potential Energy Gradient
Coriolis4DOF_Daedalus

Figure 3.3: Fundx code hierarchy

3.3.2 Dynamic Inversion Controller

Several simulations were performed in Simulink to verify the various control designs. To begin, a
simple model was run using the dynamic inversion controller with adaptation. The joint structure is
modeled after the Daedalus wing design. The mass matrix was used as described in Section 2.4 and
Appendix A.1. The DH parameters are re-listed below. For this simulation, only the second body
was assumed to generate lift. All other aerodynamic forces on the robotic system were neglected.
The aerodynamic centers for all the bodies are listed along with the aerodynamic rotation matrix
RB2

2 .

RB2
2 :

0 −1 0
0 0 −1
1 0 0



The basis functions used in the adaptive controller are a set of piecewise linear functions. This first
simulation used nine functions to approximate cL(αi). The range, step size, and true parameters are

Table 3.2: Daedalus DH parameters used in dynamic inversion simulation
Link di(m) ai(m) θi(rad) αi(rad)
1 0.1 0 θ1

π
2

2 0 0.1 θ2 0
3 0 0.1 θ3 0
4 0 0.1 θ4 0
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Table 3.3: Daedalus relative aerodynamic centers, ri
ai

Link
x coordi-
nate (m)

y coordi-
nate (m)

z coordi-
nate (m)

1 0 0 0
2 -0.05 0 -0.05
3 0 -0.05 0
4 -0.05 0 0

listed below. The true parameters used in this simulation are based on experimental results from
an S 1223 airfoil [1, 33].

Angle of Attack Range (degrees):
[
−22.5 22.5

]
Angle of Attack Step Size (degrees):

[
5.625

]
Ω =

[
−0.5 −0.3 −0.2 0.05 1.1 1.6 1.95 2.22 1.9

]

Using these true parameters and the basis functions, the true cL graph is generated and depicted in
Figure 3.4. The separate basis functions that compose the cL curve are plotted in Figure (3.5). The
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Figure 3.4: True cL curve used in the numerical studies

wing area for body 2 is selected to be 1m2 constant wind vector vw = −5ŷ0 m/s. The gravitational
constant is chosen as g = 9.81 m/s and the air density is chosen as ρ = 1.2 kg/m3. The controller
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Figure 3.5: True cL curve decomposed into the nine separate basis functions

gains are set as

G0 :


50 0 0 0
0 50 0 0
0 0 50 0
0 0 0 50


G1 :


50 0 0 0
0 50 0 0
0 0 50 0
0 0 0 50


γ :

[
1000

]

Periodic functions are used to drive θ2 and θ3 which represent the flapping motion observed in
birds. The desired joint angle histories are chosen as follows:

θ2,d =Asin(ωt)

θ3,d =−Asin
(
ωt +

π

2

)
−A

where A is the amplitude andω is the flapping frequency. A frequency ofω= 3 Hz and amplitude of
A = 15◦ is reasonable for mimicking birds on the larger end of the range in the Larus genus [3, 4].
An illustrative example of the desired flapping motion is pictured in Figure (3.6). In the two
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images, the spheres are the spatial locations of the joints through the flapping trajectory. Although
the illustration of the upstroke and downstroke appear similar in static images, the angle of the
third joint θ3 is minimal for a high percentage of the downstroke while it is significant for a large
percentage of the upstroke. This motion is referred to lead and lag motion in the literature [3].

Figure 3.6: Path of the linkages through its desired joint trajectories during the downstroke (left),
and upstroke (right)

The initial conditions were chosen with 10% error in the unknown lift parameters. The states and
state derivatives were chosen as zero.

Ω̂L(0) =
[
−0.4500 −0.2700 −0.1800 0.0450 0.9900 1.4400 1.7550 1.9980 1.7100

]
q(0) =

[
0 0 0 0

]
q̇(0) =

[
0 0 0 0

]
The results of the numerical experiments are depicted in Figures (3.7) through (3.27). As predicted
in the Lyapunov analysis, the adaptive control only guarantees boundedness in the position error
q̃, while the derivative error ˙̃q is guaranteed to converge towards zero. Figure (3.7) illustrates that
the joint positions are indeed bounded during the simulation. As expected, the tracking error rate
converges to zero in Figure (3.8), but there is still considerable steady state error oscillating about
zero.
One of the most important conclusions from this set of numerical experiments is that the identi-
fication of aerodynamic loads is feasible, as shown in Figure (3.9). The estimated lift converges
closely to the true value. Lift and estimated lift on body 2 is plotted in Figure (3.9). The error
in parameter prediction (Ω̃) is depicted in Figure (3.10). It is important to note that some of the
parameters converge towards their true values but others are not updated. This phenomenon is well
known and documented in the adaptive control literature. For convergence it is required that the
parameter is persistently excited. If the θ2 joint trajectory passes through the entire range listed
modeled in the cL approximation, all of the parameters would be updated. Since only three basis
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Figure 3.7: Errors in joint positions with lift acting on body 2

function ranges are visited, and for differing amounts of time, the error decreases most rapidly in
the range from −5.625

◦

to +5.625
◦

. Less change is made to parameters ranging −11.25
◦

to 0
◦

and
0
◦

to 11.25
◦

. The angle of attack of body 2 is plotted in Figure (3.11). This simulation provides a
good indication of which parameters update and converge during the simulation.
The next numerical experiment considers both drag and lift on bodies 2 through 4. The true values
of lift remain unchained from the previous experiment for all of the wing bodies. A separate set
of nine parameters were chosen to model the true cD(αi) function. The DH parameters, mass vari-
ables, aerodynamic center locations, angle of attack step size and range, wind vector, air density
and gravitational constant were not changed. The aerodynamic rotation matrices were updated to
include all of the bodies.

RB1
1 :

0 −1 0
0 0 −1
1 0 0

 RB2
2 :

0 −1 0
0 0 −1
1 0 0


RB3

3 :

0 −1 0
0 0 −1
1 0 0

 RB4
4 :

0 −1 0
0 0 −1
1 0 0


The wing areas were updated to account for the wing areas among the last three bodies. The first
body was omitted by choosing the area to be zero. The result is a simulation in which lift and drag
are generated only the wing sections, where the first body has minimal aerodynamic effects on the
system by comparison. Shifting the area towards the root, such as on link 2, will increase lift while
adding less significantly to the control effort than on body 3 or 4. The wing areas were reselected
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Figure 3.8: Errors in joint velocities

to generate similar magnitudes of lift from the previous experiment.

Wing areas(m2) :
[
0 0.25 0.1 0.05

]
The true unknown parameters are the coefficients that multiply the nine functions used to represent
the drag and lift on each body. The true drag parameter, as in the case of the true lift coefficients,
were selected to model experimental data for an S1223 airfoil. Some values for large negative
angles of attack were interpolated from the data to choose values for the true unknown parameters
and graph which exceeded −6◦. The drag function cD generated by the true parameters appears in
Figure (3.12).

Ω =


ΩD1

ΩL1
...
ΩD4

ΩL4


=



0.5 0.3 0.13 0.08 0.04 0.05 0.1 0.2 0.4
−0.5 −0.3 −0.2 0.05 1.1 1.6 1.95 2.22 1.9
0.5 0.3 0.13 0.08 0.04 0.05 0.1 0.2 0.4
−0.5 −0.3 −0.2 0.05 1.1 1.6 1.95 2.22 1.9
0.5 0.3 0.13 0.08 0.04 0.05 0.1 0.2 0.4
−0.5 −0.3 −0.2 0.05 1.1 1.6 1.95 2.22 1.9
0.5 0.3 0.13 0.08 0.04 0.05 0.1 0.2 0.4
−0.5 −0.3 −0.2 0.05 1.1 1.6 1.95 2.22 1.9


The initial conditions were repeated from the first experiment with 10% error in each body for both
lift and drag.

Ω̂L(0) =
[
−0.4500 −0.2700 −0.1800 0.0450 0.9900 1.4400 1.7550 1.9980 1.7100

]
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Figure 3.9: Lift on body 2 and estimated lift on body 2

Ω̂D(0) =
[
0.4500 0.2700 0.1170 0.0720 0.0360 0.0450 0.0900 0.1800 0.3600

]
The learning gain was tuned lower than the single body simulation, which effectively raises the
learning rate. The other control gains remained unchanged.

G0 :


. . .

50
. . .


G1 :


. . .

50
. . .


γ :

[
100

]

After modifying the unknown aerodynamic model to include multiple wing bodies, the results of
the numerical experiment are depicted in Figures (3.13) through (3.16). The joint position errors
illustrated in Figure (3.13) are qualitatively similar to that in the single body case. The magnitude
of errors in joint velocities, shown in Figure (3.14) were also in the same range as in the single
body simulation. The new drag forces on the system increased the magnitude of the response of θ1
and θ̇1 since these forces caused a torque about the θ1 axis due to the direction of the wind.
The parameter errors vary between each wing segment as seen in Figure (3.15). Body 1 has no
learning during the simulation since its area is set to zero. As expected, the parameters associated
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Figure 3.10: Parameter error on body 2 lift

with body 4 exhibit the most learning throughout the trial since its angle of attack varies the most
compared to the other links. See Figure (3.16) for the graphs of angle of attack in this simulation.
Body 2 undergoes a smaller fluctuation in angle of attack, resulting in smaller aerodynamic forces,
and consequently its associated parameters do not update as frequently. Since convergence of
the parameter error is not guaranteed by the controller, it is expected that not all parameters will
converge towards zero. Some of the parameters affiliated with the highest and lowest angle of
attack are not modified by the update law. Specifically, 14 parameters are affected by the update
law in the fourth body, 10 parameters in the third body, and six parameters in the second body.
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Figure 3.11: Angle of attack of body 2
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Figure 3.12: True cD curve using nine unknown functions
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Figure 3.13: Errors in joint positions with drag and lift acting on bodies 2−4
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Figure 3.14: Errors in joint velocities with drag and lift acting on bodies 2−4
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Figure 3.15: Parameter errors on bodies 1−4
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Figure 3.16: Angle of attack for wing sections 1−4
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3.3.3 Dissipative Controller

The dissipative controller discussed in Section (3.2.2) was compared in this section with the adap-
tive dynamic inversion controller. The numerical experiment is based on the mass and DH param-
eters for the Daedalus model as listed in the previous section. The aerodynamic rotation matrices,
wing areas, and true unknown parameters were not changed from the second dynamic inversion
controller. New gains were selected for the controller, including the gains GΩ, Λ, and GD. The
gains were chosen on basis for low settling error with less weight on settling time.

GΩ :


. . .

50
. . .


Λ :


. . .

1
. . .


GD :


. . .

1
. . .


The controller shows improved performance in comparison to the dynamic inversion controller.
Both the joint position errors, in Figure (3.17), and joint velocity errors, in Figure (3.18), converge
quickly. The 5% settling time of all the transients depicted in Figures (3.17) and (3.18) is less than
2.985 seconds. The control input torques associated with these gains is pictured in Figure (3.19).
There is a high initial transient in two of the input torques, but soon after there is a steady periodic
response. The peak input torques for joints 2 and 3 were higher than the other two input torques,
but were not excessive. The maximum control input for τ3 is 1.5 N·m and τ2 has a maximum
magnitude of 3.852 N·m. For comparison, the Dynamixel RX-24F servomotor used in the Larus
prototype has a stall torque of 2.6 N·m. Gearing can be used to increase the torque at the sacrifice
of angular velocity.
The update law in the dissipative controller appears to work more smoothly than the previous
controller. The unknown parameter errors plotted in Figure (3.20) decrease exponentially toward
zero for most of the parameters. Some examples of excited parameters are the third and fourth lift
parameter of body 2, in Figures (3.21) and (3.22), respectively. Again, non-convergence of some
of the parameters can be understood in terms of persistency of excitation of the angle of attack.
The number of parameters updated effectively in the simulation remains unchanged from that of
the previous controller, with six parameters in Body 2, 10 parameters in Body 3, and 14 parameters
in Body 4. Figure (3.23) shows the similarity of the angle of attack responses to the angle of attack
response in the dynamic inversion controller.
The lift function is pictured in Figure (3.24). With the chosen wing sizes and wind velocity the lift
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Figure 3.17: Errors in joint positions with drag and lift acting on bodies 2−4

oscillates between 1.874 and 9.548N in steady state.
The dissipative controller was tested using the Larus model to further verify the controller. None
of the experimental parameters, such as wing areas, controller gains, or initial conditions were
modified from the Daedalus simulation. The dynamic terms, including the mass matrix, Coriolis
matrix, and potential energy gradient were generated as outlined in Section (2.4) and as listed in
Appendix Sections (A.4) through (A.6). The position and velocity error histories are graphed in
Figures (3.25) and (3.26). The states and their derivatives converged to zero using the Larus model.
The addition of the constrained body did not appear to affect the stability or performance of the
controller. The control effort as plotted in Figure (3.27) was smaller in magnitude during the steady
tracking regime compared to the Daedalus model simulation. The transient peak input torque was
larger by comparison.
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Figure 3.18: Errors in joint velocities with drag and lift acting on bodies 2−4
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Figure 3.19: Dissipative controller effort on bodies 2−4
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Figure 3.20: Parameter error on bodies 1−4 in the dissipative controller simulation
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Figure 3.21: Error of the third lift parameter of body 2
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Figure 3.22: Error in the fourth lift parameter of body 2
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Figure 3.23: Angle of attack response for all bodies in the dissipative controller simulation
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Figure 3.24: Total lift acting on the Daedalus wing model in the dissipative controller simulation
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Figure 3.25: Errors in Larus joint positions with drag and lift acting on bodies 2−4
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Figure 3.26: Errors in Larus joint velocities with drag and lift acting on bodies 2−4
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Figure 3.27: Dissipative controller effort on bodies 2−4 using the Larus dynamic model



Chapter 4

Conclusion

This thesis has studied two classes of flapping wing robot models. One is a kinematic and dynamic
model of systems with a fixed base body. The kinematic and dynamic models for the fixed base
case are constructed using techniques applicable to kinematic chains. The kinematic description
employed for these type of robotic systems are available in standard robotics texts [24–26]. Using
the Denavit-Hartenberg convention and analytical mechanics, the mass matrix, Coriolis matrix,
and potential energy gradient are generated for the Daedalus and Larus models. These terms are
used to build the open loop equations of motion. This thesis introduces a method for calculating
the contributions of the aerodynamic lift and drag forces to the robotic equations of motion. The
generalized equations of motion are then written in the form

M(q(t))q̈(t) = n(q(t), q̇(t), t) + na(q(t), q̇(t), t) + B(q(t))τ(t) (4.1)

where M is the mass matrix, n is the nonlinear term that arise in the robot dynamics, na is the
nonlinear term that appear when the aerodynamics are considered, and B is the control influence
matrix. These equations differ from standard textbook models of robotic systems. Two types of
adaptive nonlinear controllers are developed for creating the closed loop equations of motion for
the fixed body case. The first is a dynamic inversion controller with adaptation. The second is a
dissipative controller with adaptation. A Lyapunov analysis demonstrates that the dynamic inver-
sion controller will ensure that the joint tracking error rates converge towards zero, but the joint
position errors are only guaranteed to be bounded. Numerical experiments based on Mathworks
Simulink have been carried out to verify the Lyapunov analysis of stability and convergence. The
simulation also demonstrates that the adaptive control is able to learn parameters that determine
the aerodynamic loads when they are persistently excited.
The dissipative controller was studied to improve performance in comparison to the first controller.
Both the joint position and velocity errors are guaranteed to diminish to zero from the Lyapunov
analysis. The simulation for this model again verified the Lyapunov analysis. Within the first five
seconds of the numerical experiment for this controller, the maximum velocity and position steady
state error was below 0.7% of the initial position error and 0.1% of the initial velocity error, re-
spectively. With the gains set to yield a maximum control effort of 3.85 N·m, the position settled
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in 2.98 seconds to within 5% of the initial error. The development of a new robotic bird prototype
will aid in verification of the numerical simulation.

4.1 Future Work

Several novel directions of study are suggested by the research carried out in this thesis. The nu-
merical experiments in the thesis do not include tests of robustness to external disturbances, such
as a time varying wind vector. Robustness of the control methodology to such external effects may
be an important factor in the performance of the adaptive controller and should be studied in de-
tail. The numerical experiments also did not model any uncertainty in parameters such as masses,
lengths, center of mass locations, etc. Only uncertainty in the aerodynamic loads has been studied.
The combined effect of uncertainty in model parameters (such as link length, mass, mass center
location) and in aerodynamic load should be investigated. Another important and fundamental lim-
itation of the strategy outlined in this paper is the selection of a quasi steady aerodynamic model in
the controller. It is well-known that the flow surrounding flapping wings is unsteady, and nonlinear.
More realistic flow models should be studied.
The third flapping wing prototype Icarus is proposed to finish completion before May 2013. To
combine the efforts of the control design and aircraft design, a new kinematic model needs to be
developed based on the new structure featured in Icarus. More importantly, the moving base body
dynamic model and control design need to be extended so that they are applicable to a flying vehi-
cle such as Icarus. The nonlinear aerodynamic term needs to be re-evaluated to model the effects
of the aerodynamics on the whole flapping flight system, including the base body. This thesis does
not include the steps for generating the various Jacobian matrices used to relate the base body to
different chain bases or the ground frame.
The control design for the moving base body dynamic model will be a complex problem, one
that has not been directly addressed in literature. The adaptive control and learning theory should
be developed further to better model the aerodynamics and increase robustness. In the imme-
diate future, the development of an L1 controller with an “adaptive basis” will be investigated
and simulated using the existing dynamic model. Furthermore, the aerodynamic model could be
advanced simultaneously with the adaptive controller to result in a highly robust controller. As
lightweight and compact on board hardware processing evolves over the next decade or more,
complex unsteady aerodynamics models could perhaps be implemented in a real time algorithm
using a microcontroller or microprocessing unit.
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Appendix A

Dynamic Model Examples

A.1 Daedalus Mass Matrix

m(1,1) = [I1,yy + I3,xy sin(2θ2 + 2θ3) + I4,yy cos(θ2 + θ3 + θ4)2 + I4,xx sin(θ2 + θ3 + θ4)2 + (m3(cos(θ2 +

θ3) + 2cos(θ2))2)/400 + I3,yy cos(θ2 + θ3)2 + m2(cos(2θ2)/800 + 1/800) + I3,xx sin(θ2 + θ3)2 +

I2,yy cos(θ2)2 +(m4(cos(θ2 +θ3 +θ4)+2cos(θ2 +θ3)+2cos(θ2))2)/400+ I2,xy sin(2θ2)+ I2,xx sin(θ2)2 +

I4,xy sin(2θ2 + 2θ3 + 2θ4)]

m(1,2) = [I3,yz cos(θ2 + θ3) + I3,xz sin(θ2 + θ3) + I2,yz cos(θ2) + I2,xz sin(θ2) + I4,yz cos(θ2 + θ3 + θ4) +

I4,xz sin(θ2 + θ3 + θ4)]

m(1,3) = [I3,yz cos(θ2 + θ3) + I3,xz sin(θ2 + θ3) + I4,yz cos(θ2 + θ3 + θ4) + I4,xz sin(θ2 + θ3 + θ4)]

m(1,4) = [I4,yz cos(θ2 + θ3 + θ4) + I4,xz sin(θ2 + θ3 + θ4)]

m(2,1) = [I3,yz cos(θ2 + θ3) + I3,xz sin(θ2 + θ3) + I2,yz cos(θ2) + I2,xz sin(θ2) + I4,yz cos(θ2 + θ3 + θ4) +

I4,xz sin(θ2 + θ3 + θ4)]

m(2,2) = [I1,zz + I3,zz + I4,zz + m2/400 + m3/80 + (9m4)/400 + (m4 cos(θ3 + θ4))/100 +

(m3 cos(θ3))/100 + (m4 cos(θ3))/50 + (m4 cos(θ4))/100]

m(2,3) = [I3,zz + I4,zz + m3/400 + m4/80 + (m4 cos(θ3 + θ4))/200 + (m3 cos(θ3))/200 +

(m4 cos(θ3))/100 + (m4 cos(θ4))/100]

m(2,4) = [I4,zz + m4/400 + (m4 cos(θ3 + θ4))/200 + (m4 cos(θ4))/200]

m(3,1) = [I3,yz cos(θ2 + θ3) + I3,xz sin(θ2 + θ3) + I4,yz cos(θ2 + θ3 + θ4) + I4,xz sin(θ2 + θ3 + θ4)]
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m(3,2) = [I3,zz + I4,zz + m3/400 + m4/80 + (m4 cos(θ3 + θ4))/200 + (m3 cos(θ3))/200 +

(m4 cos(θ3))/100 + (m4 cos(θ4))/100]

m(3,3) = [I3,zz + I4,zz + m3/400 + m4/80 + (m4 cos(θ4))/100]

m(3,4) = [I4,zz + m4/400 + (m4 cos(θ4))/200]

m(4,1) = [I4,yz cos(θ2 + θ3 + θ4) + I4,xz sin(θ2 + θ3 + θ4)]

m(4,2) = [I4,zz + m4/400 + (m4 cos(θ3 + θ4))/200 + (m4 cos(θ4))/200]

m(4,3) = [I4,zz + m4/400 + (m4 cos(θ4))/200]

m(4,4) = [I4,zz + m4/400]

A.2 Daedalus Nonlinear Coriolis Matrix

C(1,1) = [θ̇2(I3,xy cos(2θ2 + 2θ3)− (m2 sin(2θ2))/800 + (I3,xx sin(2θ2 + 2θ3))/2− (I3,yy sin(2θ2 +

2θ3))/2 + I2,xy cos(2θ2) + I4,xy cos(2θ2 + 2θ3 + 2θ4) + (I2,xx sin(2θ2))/2− (I2,yy sin(2θ2))/2 +

(I4,xx sin(2θ2 + 2θ3 + 2θ4))/2− (I4,yy sin(2θ2 + 2θ3 + 2θ4))/2− (m3(cos(θ2 + θ3) + 2cos(θ2))(sin(θ2 +

θ3) + 2sin(θ2)))/400− (m4(cos(θ2 + θ3 + θ4) + 2cos(θ2 + θ3) + 2cos(θ2))(sin(θ2 + θ3 + θ4) + 2sin(θ2 +

θ3) + 2sin(θ2)))/400) + θ̇3(I3,xy cos(2θ2 + 2θ3) + (I3,xx sin(2θ2 + 2θ3))/2 − (I3,yy sin(2θ2 + 2θ3))/2 +

I4,xy cos(2θ2 +2θ3 +2θ4)+ (I4,xx sin(2θ2 +2θ3 +2θ4))/2− (I4,yy sin(2θ2 +2θ3 +2θ4))/2− (m4(sin(θ2 +

θ3 + θ4) +

2sin(θ2 + θ3))(cos(θ2 + θ3 + θ4) + 2cos(θ2 + θ3) + 2cos(θ2)))/400 − (m3 sin(θ2 + θ3)(cos(θ2 + θ3) +

2cos(θ2)))/400) +

θ̇4(I4,xy cos(2θ2 +2θ3 +2θ4)+ (I4,xx sin(2θ2 +2θ3 +2θ4))/2− (I4,yy sin(2θ2 +2θ3 +2θ4))/2− (m4 sin(θ2
+ θ3 + θ4)(cos(θ2 + θ3 + θ4) + 2cos(θ2 + θ3) + 2cos(θ2)))/400)]

C(1,2) = [θ̇1(I3,xy cos(2θ2 + 2θ3)− (m2 sin(2θ2))/800 + (I3,xx sin(2θ2 + 2θ3))/2− (I3,yy sin(2θ2
+ 2θ3))/2 + I2,xy cos(2θ2) + I4,xy cos(2θ2 + 2θ3 + 2θ4) + (I2,xx sin(2θ2))/2−
(I2,yy sin(2θ2))/2 + (I4,xx sin(2θ2 + 2θ3 + 2θ4))/2− (I4,yy sin(2θ2 + 2θ3 + 2θ4))/2− (m3(cos(θ2 + θ3) +

2cos(θ2))(sin(θ2 + θ3) + 2sin(θ2)))/400− (m4(cos(θ2 + θ3 + θ4) + 2cos(θ2 + θ3) + 2cos(θ2))(sin(θ2 +

θ3 +θ4)+2sin(θ2 +θ3)+2sin(θ2)))/400)+ θ̇3(I3,xz cos(θ2 +θ3)− I3,yz sin(θ2 +θ3)+ I4,xz cos(θ2 +θ3 +

θ4)− I4,yz sin(θ2 + θ3 + θ4)) + θ̇2(I3,xz cos(θ2 + θ3)− I3,yz sin(θ2 + θ3) + I2,xz cos(θ2)− I2,yz sin(θ2) +

I4,xz cos(θ2 + θ3 + θ4)− I4,yz sin(θ2 + θ3 + θ4)) + θ̇4(I4,xz cos(θ2 + θ3 + θ4)− I4,yz sin(θ2 + θ3 + θ4))]

C(1,3) = [θ̇1(I3,xy cos(2θ2 + 2θ3) + (I3,xx sin(2θ2 + 2θ3))/2− (I3,yy sin(2θ2 + 2θ3))/2 + I4,xy cos(2θ2 +

2θ3 + 2θ4) + (I4,xx sin(2θ2 + 2θ3 + 2θ4))/2 − (I4,yy sin(2θ2 + 2θ3 + 2θ4))/2 − (m4(sin(θ2 + θ3 + θ4) +

2sin(θ2 + θ3))(cos(θ2 + θ3 + θ4) + 2cos(θ2 + θ3) + 2cos(θ2)))/400 − (m3 sin(θ2 + θ3)(cos(θ2 + θ3) +
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2cos(θ2)))/400) + θ̇2(I3,xz cos(θ2 + θ3)− I3,yz sin(θ2 + θ3) + I4,xz cos(θ2 + θ3 + θ4)− I4,yz sin(θ2 + θ3 +

θ4)) + θ̇3(I3,xz cos(θ2 + θ3)− I3,yz sin(θ2 + θ3) + I4,xz cos(θ2 + θ3 + θ4)− I4,yz sin(θ2 + θ3 + θ4)) +

θ̇4(I4,xz cos(θ2 + θ3 + θ4)− I4,yz sin(θ2 + θ3 + θ4))]

C(1,4) = [θ̇1(I4,xy cos(2θ2 +2θ3 +2θ4)+ (I4,xx sin(2θ2 +2θ3 +2θ4))/2− (I4,yy sin(2θ2 +2θ3 +2θ4))/2−
(m4 sin(θ2 + θ3 + θ4)(cos(θ2 + θ3 + θ4) + 2cos(θ2 + θ3) + 2cos(θ2)))/400) + θ̇2(I4,xz cos(θ2 + θ3 + θ4)−
I4,yz sin(θ2 + θ3 + θ4)) + θ̇3(I4,xz cos(θ2 + θ3 + θ4)− I4,yz sin(θ2 + θ3 + θ4)) + θ̇4(I4,xz cos(θ2 + θ3 + θ4)−
I4,yz sin(θ2 + θ3 + θ4))]

C(2,1) = [(I2,yyθ̇1 sin(2θ2))/2− I4,xyθ̇1 cos(2θ2 + 2θ3 + 2θ4)− (I2,xxθ̇1 sin(2θ2))/2− I2,xyθ̇1 cos(2θ2)−
(I4,xxθ̇1 sin(2θ2 + 2θ3 + 2θ4))/2 + (I4,yyθ̇1 sin(2θ2 + 2θ3 + 2θ4))/2− I3,xyθ̇1 cos(2θ2 + 2θ3) +

(θ̇1m2 sin(2θ2))/800− (I3,xxθ̇1 sin(2θ2 + 2θ3))/2 + (I3,yyθ̇1 sin(2θ2 + 2θ3))/2 + (θ̇1m3(cos(θ2 + θ3) +

s2cos(θ2))(sin(θ2 +θ3)+2sin(θ2)))/400+(θ̇1m4(cos(θ2 +θ3 +θ4)+2cos(θ2 +θ3)+2cos(θ2))(sin(θ2 +

θ3 + θ4) + 2sin(θ2 + θ3) + 2sin(θ2)))/400]

C(2,2) = [−θ̇3((m4 sin(θ3 +θ4))/200+(m3 sin(θ3))/200+(m4 sin(θ3))/100)− θ̇4((m4 sin(θ3 +θ4))/200
+ (m4 sin(θ4))/200)]

C(2,3) = [−θ̇2((m4 sin(θ3 +θ4))/200+(m3 sin(θ3))/200+(m4 sin(θ3))/100)− θ̇3((m4 sin(θ3 +θ4))/200
+ (m3 sin(θ3))/200 + (m4 sin(θ3))/100)− θ̇4((m4 sin(θ3 + θ4))/200 + (m4 sin(θ4))/200)]

C(2,4) = [−(m4(sin(θ3 + θ4) + sin(θ4))(θ̇2 + θ̇3 + θ̇4))/200]

C(3,1) = [(I4,yyθ̇1 sin(2θ2 + 2θ3 + 2θ4))/2− (I4,xxθ̇1 sin(2θ2 + 2θ3 + 2θ4))/2− I4,xyθ̇1 cos(2θ2 + 2θ3 +

2θ4)− I3,xyθ̇1 cos(2θ2 + 2θ3)− (I3,xxθ̇1 sin(2θ2 + 2θ3))/2 + (I3,yyθ̇1 sin(2θ2 + 2θ3))/2 + (θ̇1m3 sin(θ2 +

θ3)(cos(θ2 +θ3)+2cos(θ2)))/400+(θ̇1m4(sin(θ2 +θ3 +θ4)+2sin(θ2 +θ3))(cos(θ2 +θ3 +θ4)+2cos(θ2
+ θ3) + 2cos(θ2)))/400]

C(3,2) = [θ̇2((m4 sin(θ3 + θ4))/200 + (m3 sin(θ3))/200 + (m4 sin(θ3))/100)− (θ̇4m4 sin(θ4))/200]

C(3,3) = [−(θ̇4m4 sin(θ4))/200]

C(3,4) = [−(m4 sin(θ4)(θ̇2 + θ̇3 + θ̇4))/200]

C(4,1) = [(I4,yyθ̇1 sin(2θ2 + 2θ3 + 2θ4))/2− (I4,xxθ̇1 sin(2θ2 + 2θ3 + 2θ4))/2− I4,xyθ̇1 cos(2θ2 + 2θ3 +

2θ4) + (θ̇1m4 sin(θ2 + θ3 + θ4)(cos(θ2 + θ3 + θ4) + 2cos(θ2 + θ3) + 2cos(θ2)))/400]

C(4,2) = [θ̇2((m4 sin(θ3 + θ4))/200 + (m4 sin(θ4))/200) + (θ̇3m4 sin(θ4))/200]

C(4,3) = [(m4 sin(θ4)(θ̇2 + θ̇3))/200]

C(4,4) = [0]
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A.3 Daedalus Potential Energy Gradient

∂V
∂q (1) = [0]

∂V
∂q (2) = [g ·m4(cos(θ2)2/5− sin(θ2)2/5 + (cos(θ4)(cos(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3))−
sin(θ4)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2))))/10− (sin(θ4)(cos(θ4)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2)) +

sin(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3))))/10 + (cos(θ3)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3)))/10−
(cos(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3)))/20− (sin(θ3)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2)))/10 +

(sin(θ4)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2)))/20) − g ·m3((cos(θ2)cos(θ3))/20 − (sin(θ2) sin(θ3))/20 −
cos(θ2)2/5 + sin(θ2)2/5 − (cos(θ3)(cos(θ2)cos(θ3) − sin(θ2) sin(θ3)))/10 + (sin(θ3)(cos(θ2) sin(θ3) +

cos(θ3) sin(θ2)))/10)−g ·m2(cos(θ2)/20− cos(θ2)2/5 + sin(θ2)2/5)]

∂V
∂q (3) = [g ·m4((cos(θ4)(cos(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3))− sin(θ4)(cos(θ2) sin(θ3) +

cos(θ3) sin(θ2))))/10− (sin(θ4)(cos(θ4)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2)) + sin(θ4)(cos(θ2)cos(θ3)−
sin(θ2) sin(θ3))))/10 + (cos(θ3)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3)))/5− (cos(θ4)(cos(θ2)cos(θ3)−
sin(θ2) sin(θ3)))/20− (sin(θ3)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2)))/5 + (sin(θ4)(cos(θ2) sin(θ3) +

cos(θ3) sin(θ2)))/20)− g ·m3((cos(θ2)cos(θ3))/20− (sin(θ2) sin(θ3))/20− (cos(θ3)(cos(θ2)cos(θ3)−
sin(θ2) sin(θ3)))/5 + (sin(θ3)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2)))/5)]

∂V
∂q (4) = [g ·m4((cos(θ4)(cos(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3))− sin(θ4)(cos(θ2) sin(θ3) +

cos(θ3) sin(θ2))))/5− (sin(θ4)(cos(θ4)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2)) + sin(θ4)(cos(θ2)cos(θ3)−
sin(θ2) sin(θ3))))/5− (cos(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3)))/20 + (sin(θ4)(cos(θ2) sin(θ3) +

cos(θ3) sin(θ2)))/20)]

A.4 Larus Mass Matrix

m(1,1) = [I2,xx + I3,xx/2+ I4,xx/2+ I1,yy + I3,yy/2+ I4,yy/2+ I5,zz +(361m1)/40000+(401m2)/40000+

(41m3)/800 + (21m4)/800 + (11m5)/400 + (1521m2cos(θ2)2)/160000 + (m3cos(θ2)2)/100 +

(m4cos(θ2)2)/100 + (m5cos(θ2)2)/100− (3m4cos(2θ2 + 2θ3 + 2θ4))/800 + (m5cos(2θ2 + 2θ3 +

2θ4))/200− (I3,xxcos(2θ2 + 2θ3))/2 + (I3,yycos(2θ2 + 2θ3))/2− (m4sin(2θ2 + 2θ3 + 2θ4))/200 +

I3,xysin(2θ2 + 2θ3)− (m3cos(2θ2 + 2θ3))/800 + (m4cos(2θ2 + θ3 + θ4))/200 + (m5cos(2θ2 + θ3 +

θ4))/100 − (m4sin(2θ2 + θ3 + θ4))/100 + (m5cos(θ1 + θ2 + θ3 + θ4))/200 + (m5cos(θ1 + θ2))/200 +

(m4cos(θ3 +θ4))/200+ (m5cos(θ3 +θ4))/100+ (m5cos(θ1−θ2−θ3−θ4))/200+ (m3sin(θ2 +θ3))/100
−(m4sin(θ3 +θ4))/100+(39m2cos(θ2))/2000+(m3cos(θ2))/50+(m4cos(θ2))/50+(m5cos(θ1))/100
+ (m5cos(θ2))/50 + (m3sin(θ3))/200 + (m5sin(θ1))/100 + (m5cos(θ1− θ2))/200− I2,xxcos(θ2)2 +

I2,yycos(θ2)2− (I4,xxcos(2θ2 +2θ3 +2θ4))/2+ (I4,yycos(2θ2 +2θ3 +2θ4))/2+ (m3sin(2θ2 +θ3))/200+

(m4cos(θ2 + θ3 + θ4))/100 + (m5cos(θ2 + θ3 + θ4))/50 + I4,xysin(2θ2 + 2θ3 + 2θ4)− (m4sin(θ2 + θ3 +

θ4))/50 + 2I2,xycos(θ2)sin(θ2)]

m(1,2) = [I3,yzcos(θ2 +θ3)+(m5cos(θ1 +θ2 +θ3 +θ4))/400+ I3,xzsin(θ2 +θ3)+(m3cos(θ2 +θ3))/100+
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(m5cos(θ1 + θ2))/400 − (m5cos(θ1 − θ2 − θ3 − θ4))/400 + I2,yzcos(θ2) − I5,yzcos(θ1) + I2,xzsin(θ2) +

I5,xzsin(θ1) + (39m2sin(θ2))/80000− (m3sin(θ2))/50− (m4sin(θ2))/100− (m5sin(θ2))/100 +

I4,yzcos(θ2 + θ3 + θ4)− (m5cos(θ1 − θ2))/400 + I4,xzsin(θ2 + θ3 + θ4)− (m4cos(θ2 + θ3 + θ4))/100−
(m4sin(θ2 + θ3 + θ4))/200− (m5sin(θ2 + θ3 + θ4))/100]

m(1,3) = [I3,yzcos(θ2 +θ3)+(m5cos(θ1 +θ2 +θ3 +θ4))/400+ I3,xzsin(θ2 +θ3)+(m3cos(θ2 +θ3))/100−
(m5cos(θ1− θ2− θ3− θ4))/400− I5,yzcos(θ1) + I5,xzsin(θ1) + I4,yzcos(θ2 + θ3 + θ4) + I4,xzsin(θ2 + θ3 +

θ4)− (m4cos(θ2 + θ3 + θ4))/100− (m4sin(θ2 + θ3 + θ4))/200− (m5sin(θ2 + θ3 + θ4))/100]

m(1,4) = [(m5cos(θ1 + θ2 + θ3 + θ4))/400− (m5cos(θ1 − θ2 − θ3 − θ4))/400 + I4,yzcos(θ2 + θ3 + θ4) +

I4,xzsin(θ2 + θ3 + θ4)− (m4cos(θ2 + θ3 + θ4))/100− (m4sin(θ2 + θ3 + θ4))/200− (m5sin(θ2 + θ3 +

θ4))/100]

m(2,1) = [I3,yzcos(θ2 +θ3)+(m5cos(θ1 +θ2 +θ3 +θ4))/400+ I3,xzsin(θ2 +θ3)+(m3cos(θ2 +θ3))/100+

(m5cos(θ1 + θ2))/400 − (m5cos(θ1 − θ2 − θ3 − θ4))/400 + I2,yzcos(θ2) − I5,yzcos(θ1) + I2,xzsin(θ2) +

I5,xzsin(θ1) + (39m2sin(θ2))/80000− (m3sin(θ2))/50− (m4sin(θ2))/100− (m5sin(θ2))/100 +

I4,yzcos(θ2 + θ3 + θ4)− (m5cos(θ1 − θ2))/400 + I4,xzsin(θ2 + θ3 + θ4)− (m4cos(θ2 + θ3 + θ4))/100−
(m4sin(θ2 + θ3 + θ4))/200− (m5sin(θ2 + θ3 + θ4))/100]

m(2,2) = [I1,zz + I3,zz + I4,zz + (1521m2)/160000 + m3/80 + (9m4)/400 + m5(sin(θ2 + θ3 + θ4)/10 +

sin(θ2)/10)2 + (m4cos(θ3 + θ4))/100 + m5(cos(θ2 + θ3 + θ4)/10 + cos(θ1)/20 + cos(θ2)/10)2−

(m4sin(θ3 + θ4))/50 + cos(θ1)(I5,yycos(θ1)− I5,xysin(θ1)) + (m3sin(θ3))/100− sin(θ1)(I5,xycos(θ1)−
I5,xxsin(θ1))]

m(2,3) = [I5,xx/2 + I5,yy/2 + I3,zz + I4,zz + m3/400 + m4/80 + (9m5)/800 + (m5cos(2θ1))/800 +

(m5cos(θ1 +θ2 +θ3 +θ4))/200+(m5cos(θ1 +θ2))/400+(m4cos(θ3 +θ4))/200+(m5cos(θ3 +θ4))/100
+ (m5cos(θ1−θ2−θ3−θ4))/200− (m4sin(θ3 +θ4))/100+ (m3sin(θ3))/200+ (m5cos(θ1−θ2))/400−
(I5,xxcos(2θ1))/2 + (I5,yycos(2θ1))/2− I5,xysin(2θ1)]

m(2,4) = [I4,zz +m4/80+m5/100+(m5cos(θ1 +θ2 +θ3 +θ4))/400+(m4cos(θ3 +θ4))/200+(m5cos(θ3
+ θ4))/100 + (m5cos(θ1− θ2− θ3− θ4))/400− (m4sin(θ3 + θ4))/100]

m(3,1) = [I3,yzcos(θ2 +θ3)+(m5cos(θ1 +θ2 +θ3 +θ4))/400+ I3,xzsin(θ2 +θ3)+(m3cos(θ2 +θ3))/100−
(m5cos(θ1− θ2− θ3− θ4))/400− I5,yzcos(θ1) + I5,xzsin(θ1) + I4,yzcos(θ2 + θ3 + θ4) + I4,xzsin(θ2 + θ3 +

θ4)− (m4cos(θ2 + θ3 + θ4))/100− (m4sin(θ2 + θ3 + θ4))/200− (m5sin(θ2 + θ3 + θ4))/100]

m(3,2) = [I5,xx/2 + I5,yy/2 + I3,zz + I4,zz + m3/400 + m4/80 + (9m5)/800 + (m5cos(2θ1))/800 +

(m5cos(θ1 +θ2 +θ3 +θ4))/200+(m5cos(θ1 +θ2))/400+(m4cos(θ3 +θ4))/200+(m5cos(θ3 +θ4))/100
+ (m5cos(θ1−θ2−θ3−θ4))/200− (m4sin(θ3 +θ4))/100+ (m3sin(θ3))/200+ (m5cos(θ1−θ2))/400−
(I5,xxcos(2θ1))/2 + (I5,yycos(2θ1))/2− I5,xysin(2θ1)]

m(3,3) = [I5,xx/2 + I5,yy/2 + I3,zz + I4,zz + m3/400 + m4/80 + (9m5)/800 +
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(m5cos(2θ1))/800 + (m5cos(θ1 + θ2 + θ3 + θ4))/200 + (m5cos(θ1− θ2− θ3− θ4))/200−
(I5,xxcos(2θ1))/2 + (I5,yycos(2θ1))/2− I5,xysin(2θ1)]

m(3,4) = [I4,zz + m4/80 + m5/100 + (m5cos(θ1 + θ2 + θ3 + θ4))/400 + (m5cos(θ1− θ2− θ3− θ4))/400]

m(4,1) = [(m5cos(θ1 + θ2 + θ3 + θ4))/400− (m5cos(θ1 − θ2 − θ3 − θ4))/400 + I4,yzcos(θ2 + θ3 + θ4) +

I4,xzsin(θ2 + θ3 + θ4)− (m4cos(θ2 + θ3 + θ4))/100− (m4sin(θ2 + θ3 + θ4))/200− (m5sin(θ2 + θ3 +

θ4))/100]

m(4,2) = [I4,zz +m4/80+m5/100+(m5cos(θ1 +θ2 +θ3 +θ4))/400+(m4cos(θ3 +θ4))/200+(m5cos(θ3
+ θ4))/100 + (m5cos(θ1− θ2− θ3− θ4))/400− (m4sin(θ3 + θ4))/100]

m(4,3) = [I4,zz + m4/80 + m5/100 + (m5cos(θ1 + θ2 + θ3 + θ4))/400 + (m5cos(θ1− θ2− θ3− θ4))/400]

m(4,4) = [I4,zz + m4/80 + m5/100]

A.5 Larus Nonlinear Coriolis Matrix

C(1,1) = [−θ̇3((m4 cos(2θ2 +2θ3 +2θ4))/200− I3,xy cos(2θ2 +2θ3)− (3m4 sin(2θ2 +2θ3 +2θ4))/800+

(m5 sin(2θ2 + 2θ3 + 2θ4))/200− (I3,xx sin(2θ2 + 2θ3))/2 + (I3,yy sin(2θ2 + 2θ3))/2− (m3 sin(2θ2 +

2θ3))/800+ (m4 cos(2θ2 +θ3 +θ4))/200+ (m4 sin(2θ2 +θ3 +θ4))/400+ (m5 sin(2θ2 +θ3 +θ4))/200+

(m5 sin(θ1 +θ2 +θ3 +θ4))/400−(m3 cos(θ2 +θ3))/200+(m4 cos(θ3 +θ4))/200+(m4 sin(θ3 +θ4))/400
+(m5 sin(θ3 +θ4))/200−(m5 sin(θ1−θ2−θ3−θ4))/400−(m3 cos(θ3))/400−(m3 cos(2θ2 +θ3))/400−
I4,xy cos(2θ2 +2θ3 +2θ4)+ (m4 cos(θ2 +θ3 +θ4))/100− (I4,xx sin(2θ2 +2θ3 +2θ4))/2+ (I4,yy sin(2θ2 +

2θ3 + 2θ4))/2 + (m4 sin(θ2 + θ3 + θ4))/200 + (m5 sin(θ2 + θ3 + θ4))/100)− θ̇2((m4 cos(2θ2 + 2θ3 +

2θ4))/200− I3,xy cos(2θ2 +2θ3)+(1521m2 sin(2θ2))/320000+(m3 sin(2θ2))/200+(m4 sin(2θ2))/200
+(m5 sin(2θ2))/200−(3m4 sin(2θ2 +2θ3 +2θ4))/800+(m5 sin(2θ2 +2θ3 +2θ4))/200−(I3,xx sin(2θ2 +

2θ3))/2+(I3,yy sin(2θ2 +2θ3))/2−(m3 sin(2θ2 +2θ3))/800+(m4 cos(2θ2 +θ3 +θ4))/100+(m4 sin(2θ2
+θ3 +θ4))/200+(m5 sin(2θ2 +θ3 +θ4))/100+(m5 sin(θ1 +θ2 +θ3 +θ4))/400−(m3 cos(θ2 +θ3))/200+

(m5 sin(θ1 + θ2))/400 − (m5 sin(θ1 − θ2 − θ3 − θ4))/400 + (39m2 sin(θ2))/4000 + (m3 sin(θ2))/100 +

(m4 sin(θ2))/100 + (m5 sin(θ2))/100− (m3 cos(2θ2 + θ3))/200− I2,xy cos(2θ2)− I4,xy cos(2θ2 + 2θ3 +

2θ4)− (m5 sin(θ1− θ2))/400 + (m4 cos(θ2 + θ3 + θ4))/100− (I2,xx sin(2θ2))/2 + (I2,yy sin(2θ2))/2−
(I4,xx sin(2θ2 +2θ3 +2θ4))/2+ (I4,yy sin(2θ2 +2θ3 +2θ4))/2+ (m4 sin(θ2 +θ3 +θ4))/200+ (m5 sin(θ2 +

θ3 + θ4))/100)− θ̇4((m4 cos(2θ2 + 2θ3 + 2θ4))/200− (3m4 sin(2θ2 + 2θ3 + 2θ4))/800 + (m5 sin(2θ2 +

2θ3 + 2θ4))/200 + (m4 cos(2θ2 + θ3 + θ4))/200 + (m4 sin(2θ2 + θ3 + θ4))/400 + (m5 sin(2θ2 + θ3 +

θ4))/200+ (m5 sin(θ1 +θ2 +θ3 +θ4))/400+ (m4 cos(θ3 +θ4))/200+ (m4 sin(θ3 +θ4))/400+ (m5 sin(θ3
+θ4))/200− (m5 sin(θ1−θ2−θ3−θ4))/400− I4,xy cos(2θ2 +2θ3 +2θ4)+ (m4 cos(θ2 +θ3 +θ4))/100−
(I4,xx sin(2θ2 +2θ3 +2θ4))/2+ (I4,yy sin(2θ2 +2θ3 +2θ4))/2+ (m4 sin(θ2 +θ3 +θ4))/200+ (m5 sin(θ2 +

θ3 + θ4))/100) − θ̇1((m5 sin(θ1 + θ2 + θ3 + θ4))/400 + (m5 sin(θ1 + θ2))/400 + (m5 sin(θ1 − θ2 − θ3 −

θ4))/400− (m5 cos(θ1))/200 + (m5 sin(θ1))/200 + (m5 sin(θ1− θ2))/400)]
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C(1,2) = [θ̇3((m5 sin(2θ1))/800 + I3,xz cos(θ2 + θ3)− I3,yz sin(θ2 + θ3)− (m3 sin(θ2 + θ3))/100 +

(m5 sin(θ1 + θ2))/800 + I4,xz cos(θ2 + θ3 + θ4) − I4,yz sin(θ2 + θ3 + θ4) + I5,xy cos(2θ1) + (m5 sin(θ1 −

θ2))/800− (m4 cos(θ2 + θ3 + θ4))/200− (m5 cos(θ2 + θ3 + θ4))/100− (I5,xx sin(2θ1))/2 +

(I5,yy sin(2θ1))/2 + (m4 sin(θ2 + θ3 + θ4))/100) − θ̇1((m4 cos(2θ2 + 2θ3 + 2θ4))/200 − I3,xy cos(2θ2 +

2θ3) + (1521m2 sin(2θ2))/320000 + (m3 sin(2θ2))/200 + (m4 sin(2θ2))/200 + (m5 sin(2θ2))/200−
(3m4 sin(2θ2 + 2θ3 + 2θ4))/800 + (m5 sin(2θ2 + 2θ3 + 2θ4))/200− (I3,xx sin(2θ2 + 2θ3))/2 +

(I3,yy sin(2θ2 + 2θ3))/2− (m3 sin(2θ2 + 2θ3))/800 + (m4 cos(2θ2 + θ3 + θ4))/100 + (m4 sin(2θ2 + θ3 +

θ4))/200 + (m5 sin(2θ2 + θ3 + θ4))/100 + (m5 sin(θ1 + θ2 + θ3 + θ4))/400 − (m3 cos(θ2 + θ3))/200 +

(m5 sin(θ1 + θ2))/400 − (m5 sin(θ1 − θ2 − θ3 − θ4))/400 + (39m2 sin(θ2))/4000 + (m3 sin(θ2))/100 +

(m4 sin(θ2))/100 + (m5 sin(θ2))/100− (m3 cos(2θ2 + θ3))/200− I2,xy cos(2θ2)− I4,xy cos(2θ2 + 2θ3 +

2θ4)− (m5 sin(θ1− θ2))/400 + (m4 cos(θ2 + θ3 + θ4))/100− (I2,xx sin(2θ2))/2 + (I2,yy sin(2θ2))/2−
(I4,xx sin(2θ2 +2θ3 +2θ4))/2+ (I4,yy sin(2θ2 +2θ3 +2θ4))/2+ (m4 sin(θ2 +θ3 +θ4))/200+ (m5 sin(θ2 +

θ3 +θ4))/100)− θ̇4((m5 sin(θ1 +θ2 +θ3 +θ4))/800+ (m5 sin(θ1−θ2−θ3−θ4))/800− I4,xz cos(θ2 +θ3 +

θ4)+ I4,yz sin(θ2 +θ3 +θ4)+ (m4 cos(θ2 +θ3 +θ4))/200+ (m5 cos(θ2 +θ3 +θ4))/100− (m4 sin(θ2 +θ3 +

θ4))/100)− θ̇2(I3,yz sin(θ2 + θ3)− I3,xz cos(θ2 + θ3) + (m5 sin(θ1 + θ2 + θ3 + θ4))/400− I2,xz cos(θ2) +

(m3 sin(θ2 + θ3))/100 + (m5 sin(θ1 + θ2))/400 + (m5 sin(θ1− θ2− θ3− θ4))/400 + I2,yz sin(θ2)−
(39m2 cos(θ2))/80000 + (m3 cos(θ2))/50 + (m4 cos(θ2))/100 + (m5 cos(θ2))/100−
cos(θ1)((I5,xy cos(θ1))/2− (I5,xx sin(θ1))/2)− cos(θ1)((I5,xy cos(θ1))/2 + (I5,yy sin(θ1))/2) +

sin(θ1)((I5,xx cos(θ1))/2+ (I5,xy sin(θ1))/2)− sin(θ1)((I5,yy cos(θ1))/2− (I5,xy sin(θ1))/2)− I4,xz cos(θ2
+ θ3 + θ4) + I4,yz sin(θ2 + θ3 + θ4) + (m5 sin(θ1 − θ2))/400 + (m4 cos(θ2 + θ3 + θ4))/200 + (m5 cos(θ2 +

θ3 + θ4))/100− (m4 sin(θ2 + θ3 + θ4))/100− (m5 sin(θ1)(cos(θ2 + θ3 + θ4)/10 + cos(θ1)/20 +

cos(θ2)/10))/20)]

C(1,3) = [θ̇2((m5 sin(2θ1))/800 + I3,xz cos(θ2 + θ3)− I3,yz sin(θ2 + θ3)− (m3 sin(θ2 + θ3))/100 +

(m5 sin(θ1 + θ2))/800 + I4,xz cos(θ2 + θ3 + θ4) − I4,yz sin(θ2 + θ3 + θ4) + I5,xy cos(2θ1) + (m5 sin(θ1 −

θ2))/800− (m4 cos(θ2 + θ3 + θ4))/200− (m5 cos(θ2 + θ3 + θ4))/100− (I5,xx sin(2θ1))/2 +

(I5,yy sin(2θ1))/2 + (m4 sin(θ2 + θ3 + θ4))/100) − θ̇1((m4 cos(2θ2 + 2θ3 + 2θ4))/200 − I3,xy cos(2θ2 +

2θ3)− (3m4 sin(2θ2 + 2θ3 + 2θ4))/800 + (m5 sin(2θ2 + 2θ3 + 2θ4))/200− (I3,xx sin(2θ2 + 2θ3))/2 +

(I3,yy sin(2θ2 + 2θ3))/2− (m3 sin(2θ2 + 2θ3))/800 + (m4 cos(2θ2 + θ3 + θ4))/200 + (m4 sin(2θ2 + θ3 +

θ4))/400 + (m5 sin(2θ2 + θ3 + θ4))/200 + (m5 sin(θ1 + θ2 + θ3 + θ4))/400 − (m3 cos(θ2 + θ3))/200 +

(m4 cos(θ3 +θ4))/200+ (m4 sin(θ3 +θ4))/400+ (m5 sin(θ3 +θ4))/200− (m5 sin(θ1−θ2−θ3−θ4))/400
−(m3 cos(θ3))/400−(m3 cos(2θ2 +θ3))/400− I4,xy cos(2θ2 +2θ3 +2θ4)+(m4 cos(θ2 +θ3 +θ4))/100−
(I4,xx sin(2θ2 +2θ3 +2θ4))/2+ (I4,yy sin(2θ2 +2θ3 +2θ4))/2+ (m4 sin(θ2 +θ3 +θ4))/200+ (m5 sin(θ2 +

θ3 + θ4))/100)− θ̇4((m5 sin(θ1 + θ2 + θ3 + θ4))/800 + (m5 sin(θ1 − θ2 − θ3 − θ4))/800− I4,xz cos(θ2 +

θ3 +θ4)+ I4,yz sin(θ2 +θ3 +θ4)+ (m4 cos(θ2 +θ3 +θ4))/200+ (m5 cos(θ2 +θ3 +θ4))/100− (m4 sin(θ2 +

θ3 + θ4))/100) + θ̇3((m5 sin(2θ1))/800 + I3,xz cos(θ2 + θ3)− I3,yz sin(θ2 + θ3)− (m3 sin(θ2 + θ3))/100 +

I4,xz cos(θ2 +θ3 +θ4)− I4,yz sin(θ2 +θ3 +θ4)+ I5,xy cos(2θ1)−(m4 cos(θ2 +θ3 +θ4))/200−(m5 cos(θ2 +

θ3 + θ4))/100− (I5,xx sin(2θ1))/2 + (I5,yy sin(2θ1))/2 + (m4 sin(θ2 + θ3 + θ4))/100)]

C(1,4) = [−θ̇4((m5 sin(θ1 + θ2 + θ3 + θ4))/400 + (m5 sin(θ1 − θ2 − θ3 − θ4))/400− I4,xz cos(θ2 + θ3 +

θ4)+ I4,yz sin(θ2 +θ3 +θ4)+ (m4 cos(θ2 +θ3 +θ4))/200+ (m5 cos(θ2 +θ3 +θ4))/100− (m4 sin(θ2 +θ3 +
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θ4))/100)− θ̇2((m5 sin(θ1 + θ2 + θ3 + θ4))/800 + (m5 sin(θ1 − θ2 − θ3 − θ4))/800− I4,xz cos(θ2 + θ3 +

θ4)+ I4,yz sin(θ2 +θ3 +θ4)+ (m4 cos(θ2 +θ3 +θ4))/200+ (m5 cos(θ2 +θ3 +θ4))/100− (m4 sin(θ2 +θ3 +

θ4))/100)− θ̇3((m5 sin(θ1 + θ2 + θ3 + θ4))/800 + (m5 sin(θ1 − θ2 − θ3 − θ4))/800− I4,xz cos(θ2 + θ3 +

θ4)+ I4,yz sin(θ2 +θ3 +θ4)+ (m4 cos(θ2 +θ3 +θ4))/200+ (m5 cos(θ2 +θ3 +θ4))/100− (m4 sin(θ2 +θ3 +

θ4))/100)− θ̇1((m4 cos(2θ2 + 2θ3 + 2θ4))/200− (3m4 sin(2θ2 + 2θ3 + 2θ4))/800 + (m5 sin(2θ2 + 2θ3 +

2θ4))/200+ (m4 cos(2θ2 +θ3 +θ4))/200+ (m4 sin(2θ2 +θ3 +θ4))/400+ (m5 sin(2θ2 +θ3 +θ4))/200+

(m5 sin(θ1 +θ2 +θ3 +θ4))/400+ (m4 cos(θ3 +θ4))/200+ (m4 sin(θ3 +θ4))/400+ (m5 sin(θ3 +θ4))/200
−(m5 sin(θ1−θ2−θ3−θ4))/400− I4,xy cos(2θ2 +2θ3 +2θ4)+(m4 cos(θ2 +θ3 +θ4))/100−(I4,xx sin(2θ2
+ 2θ3 + 2θ4))/2 + (I4,yy sin(2θ2 + 2θ3 + 2θ4))/2 + (m4 sin(θ2 + θ3 + θ4))/200 + (m5 sin(θ2 + θ3 +

θ4))/100)]

C(2,1) = [θ̇1((m4 cos(2θ2 + 2θ3 + 2θ4))/200− I3,xy cos(2θ2 + 2θ3) + (1521m2 sin(2θ2))/320000 +

(m3 sin(2θ2))/200 + (m4 sin(2θ2))/200 + (m5 sin(2θ2))/200− (3m4 sin(2θ2 + 2θ3 + 2θ4))/800 +

(m5 sin(2θ2 + 2θ3 + 2θ4))/200− (I3,xx sin(2θ2 + 2θ3))/2 + (I3,yy sin(2θ2 + 2θ3))/2− (m3 sin(2θ2 +

2θ3))/800+ (m4 cos(2θ2 +θ3 +θ4))/100+ (m4 sin(2θ2 +θ3 +θ4))/200+ (m5 sin(2θ2 +θ3 +θ4))/100−
(m3 cos(θ2 + θ3))/200 + I5,xz cos(θ1) + I5,yz sin(θ1) + (39m2 sin(θ2))/4000 + (m3 sin(θ2))/100 +

(m4 sin(θ2))/100 + (m5 sin(θ2))/100− (m3 cos(2θ2 + θ3))/200− I2,xy cos(2θ2)− I4,xy cos(2θ2 + 2θ3 +

2θ4)+(m4 cos(θ2 +θ3 +θ4))/100−(I2,xx sin(2θ2))/2+(I2,yy sin(2θ2))/2−(I4,xx sin(2θ2 +2θ3 +2θ4))/2
+(I4,yy sin(2θ2 +2θ3 +2θ4))/2+(m4 sin(θ2 +θ3 +θ4))/200+(m5 sin(θ2 +θ3 +θ4))/100)− θ̇4((m5 sin(θ1
+ θ2 + θ3 + θ4))/800 + (m5 sin(θ1− θ2− θ3− θ4))/800)− θ̇3((m5 sin(2θ1))/800 + (m5 sin(θ1 + θ2 + θ3 +

θ4))/400 + (m5 sin(θ1 + θ2))/800 + (m5 sin(θ1− θ2− θ3− θ4))/400 + I5,xy cos(2θ1) + (m5 sin(θ1−

θ2))/800− (I5,xx sin(2θ1))/2 + (I5,yy sin(2θ1))/2)− θ̇2(cos(θ1)((I5,xy cos(θ1))/2− (I5,xx sin(θ1))/2) +

cos(θ1)((I5,xy cos(θ1))/2 + (I5,yy sin(θ1))/2)− sin(θ1)((I5,xx cos(θ1))/2 + (I5,xy sin(θ1))/2) +

sin(θ1)((I5,yy cos(θ1))/2− (I5,xy sin(θ1))/2) + (m5 sin(θ1)(cos(θ2 + θ3 + θ4)/10 + cos(θ1)/20 +

cos(θ2)/10))/20)]

C(2,2) = [θ̇2(m5(cos(θ2 + θ3 + θ4)/10 + cos(θ2)/10)(sin(θ2 + θ3 + θ4)/10 + sin(θ2)/10)−m5(sin(θ2 +

θ3 +θ4)/10+sin(θ2)/10)(cos(θ2 +θ3 +θ4)/10+cos(θ1)/20+cos(θ2)/10))− θ̇3((m4 cos(θ3 +θ4))/100
+ (m4 sin(θ3 + θ4))/200− (m3 cos(θ3))/200− (m5 cos(θ2 + θ3 + θ4)(sin(θ2 + θ3 + θ4)/10 +

sin(θ2)/10))/10 + (m5 sin(θ2 + θ3 + θ4)(cos(θ2 + θ3 + θ4)/10 + cos(θ1)/20 + cos(θ2)/10))/10)−
θ̇4((m4 cos(θ3 + θ4))/100 + (m4 sin(θ3 + θ4))/200− (m5 cos(θ2 + θ3 + θ4)(sin(θ2 + θ3 + θ4)/10 +

sin(θ2)/10))/10 + (m5 sin(θ2 + θ3 + θ4)(cos(θ2 + θ3 + θ4)/10 + cos(θ1)/20 + cos(θ2)/10))/10)−
θ̇1(cos(θ1)((I5,xy cos(θ1))/2− (I5,xx sin(θ1))/2) + cos(θ1)((I5,xy cos(θ1))/2 + (I5,yy sin(θ1))/2)−
sin(θ1)((I5,xx cos(θ1))/2 + (I5,xy sin(θ1))/2) + sin(θ1)((I5,yy cos(θ1))/2− (I5,xy sin(θ1))/2) +

(m5 sin(θ1)(cos(θ2 + θ3 + θ4)/10 + cos(θ1)/20 + cos(θ2)/10))/20)]

C(2,3) = [−θ̇2((m4 cos(θ3 + θ4))/100 + (m4 sin(θ3 + θ4))/200− (m3 cos(θ3))/200− (m5 cos(θ2 + θ3 +

θ4)(sin(θ2 + θ3 + θ4)/10 + sin(θ2)/10))/10 + (m5 sin(θ2 + θ3 + θ4)(cos(θ2 + θ3 + θ4)/10 + cos(θ1)/20 +

cos(θ2)/10))/10)− θ̇3((m5 sin(θ1 +θ2 +θ3 +θ4))/400+(m4 cos(θ3 +θ4))/100+(m4 sin(θ3 +θ4))/200+

(m5 sin(θ3 + θ4))/100− (m5 sin(θ1 − θ2 − θ3 − θ4))/400− (m3 cos(θ3))/200)− θ̇1((m5 sin(2θ1))/800 +

(m5 sin(θ1 +θ2 +θ3 +θ4))/400+ (m5 sin(θ1 +θ2))/800+ (m5 sin(θ1−θ2−θ3−θ4))/400+ I5,xy cos(2θ1)
+ (m5 sin(θ1− θ2))/800− (I5,xx sin(2θ1))/2 + (I5,yy sin(2θ1))/2)− θ̇4((m5 sin(θ1 + θ2 + θ3 + θ4))/400 +
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(m4 cos(θ3 + θ4))/100 + (m4 sin(θ3 + θ4))/200 + (m5 sin(θ3 + θ4))/100− (m5 sin(θ1− θ2− θ3−

θ4))/400)]

C(2,4) = [−θ̇1((m5 sin(θ1 + θ2 + θ3 + θ4))/800 + (m5 sin(θ1 − θ2 − θ3 − θ4))/800) − θ̇2((m4 cos(θ3 +

θ4))/100 + (m4 sin(θ3 + θ4))/200− (m5 cos(θ2 + θ3 + θ4)(sin(θ2 + θ3 + θ4)/10 + sin(θ2)/10))/10 +

(m5 sin(θ2 + θ3 + θ4)(cos(θ2 + θ3 + θ4)/10 + cos(θ1)/20 + cos(θ2)/10))/10)− θ̇3((m5 sin(θ1 + θ2 + θ3 +

θ4))/400 + (m4 cos(θ3 + θ4))/100 + (m4 sin(θ3 + θ4))/200 + (m5 sin(θ3 + θ4))/100− (m5 sin(θ1 − θ2 −

θ3 − θ4))/400)− θ̇4((m5 sin(θ1 + θ2 + θ3 + θ4))/400 + (m4 cos(θ3 + θ4))/100 + (m4 sin(θ3 + θ4))/200 +

(m5 sin(θ3 + θ4))/100− (m5 sin(θ1− θ2− θ3− θ4))/400)]

C(3,1) = [θ̇1((m4 cos(2θ2 + 2θ3 + 2θ4))/200− I3,xy cos(2θ2 + 2θ3)− (3m4 sin(2θ2 + 2θ3 + 2θ4))/800 +

(m5 sin(2θ2 + 2θ3 + 2θ4))/200− (I3,xx sin(2θ2 + 2θ3))/2 + (I3,yy sin(2θ2 + 2θ3))/2− (m3 sin(2θ2 +

2θ3))/800+ (m4 cos(2θ2 +θ3 +θ4))/200+ (m4 sin(2θ2 +θ3 +θ4))/400+ (m5 sin(2θ2 +θ3 +θ4))/200−
(m3 cos(θ2 + θ3))/200 + (m4 cos(θ3 + θ4))/200 + I5,xz cos(θ1) + (m4 sin(θ3 + θ4))/400 + (m5 sin(θ3 +

θ4))/200 + I5,yz sin(θ1)− (m3 cos(θ3))/400− (m3 cos(2θ2 + θ3))/400− I4,xy cos(2θ2 + 2θ3 + 2θ4) +

(m4 cos(θ2 +θ3 +θ4))/100−(I4,xx sin(2θ2 +2θ3 +2θ4))/2+(I4,yy sin(2θ2 +2θ3 +2θ4))/2+(m4 sin(θ2 +

θ3 +θ4))/200+ (m5 sin(θ2 +θ3 +θ4))/100)− θ̇4((m5 sin(θ1 +θ2 +θ3 +θ4))/800+ (m5 sin(θ1−θ2−θ3−

θ4))/800)− θ̇2((m5 sin(2θ1))/800+(m5 sin(θ1 +θ2 +θ3 +θ4))/400+(m5 sin(θ1 +θ2))/800+(m5 sin(θ1
− θ2− θ3− θ4))/400 + I5,xy cos(2θ1) + (m5 sin(θ1− θ2))/800− (I5,xx sin(2θ1))/2 + (I5,yy sin(2θ1))/2)−
θ̇3((m5 sin(2θ1))/800+ (m5 sin(θ1 +θ2 +θ3 +θ4))/400+ (m5 sin(θ1−θ2−θ3−θ4))/400+ I5,xy cos(2θ1)
− (I5,xx sin(2θ1))/2 + (I5,yy sin(2θ1))/2)]

C(3,2) = [θ̇2((m4 cos(θ3 + θ4))/100− (m5 sin(θ1 + θ2 + θ3 + θ4))/200− (m5 sin(θ1 + θ2))/400 +

(m4 sin(θ3 + θ4))/200 + (m5 sin(θ1 − θ2 − θ3 − θ4))/200− (m3 cos(θ3))/200 + (m5 sin(θ1 − θ2))/400−
(m5 cos(θ2 +θ3 +θ4)(sin(θ2 +θ3 +θ4)/10+sin(θ2)/10))/10+(m5 sin(θ2 +θ3 +θ4)(cos(θ2 +θ3 +θ4)/10
+cos(θ1)/20+cos(θ2)/10))/10)− θ̇4((m5 sin(θ1 +θ2 +θ3 +θ4))/400− (m5 sin(θ1−θ2−θ3−θ4))/400)
− θ̇1((m5 sin(2θ1))/800+(m5 sin(θ1 +θ2 +θ3 +θ4))/400+(m5 sin(θ1 +θ2))/800+(m5 sin(θ1−θ2−θ3−

θ4))/400 + I5,xy cos(2θ1) + (m5 sin(θ1− θ2))/800− (I5,xx sin(2θ1))/2 + (I5,yy sin(2θ1))/2)−
θ̇3((m5 sin(θ1 + θ2 + θ3 + θ4))/400− (m5 sin(θ1− θ2− θ3− θ4))/400)]

C(3,3) = [−θ̇2((m5 sin(θ1 +θ2 +θ3 +θ4))/400− (m5 sin(θ1−θ2−θ3−θ4))/400)− θ̇3((m5 sin(θ1 +θ2 +

θ3 + θ4))/400 − (m5 sin(θ1 − θ2 − θ3 − θ4))/400) − θ̇4((m5 sin(θ1 + θ2 + θ3 + θ4))/400 − (m5 sin(θ1 −

θ2 − θ3 − θ4))/400)− θ̇1((m5 sin(2θ1))/800 + (m5 sin(θ1 + θ2 + θ3 + θ4))/400 + (m5 sin(θ1 − θ2 − θ3 −

θ4))/400 + I5,xy cos(2θ1)− (I5,xx sin(2θ1))/2 + (I5,yy sin(2θ1))/2)]

C(3,4) = [−θ̇2((m5 sin(θ1 +θ2 +θ3 +θ4))/400− (m5 sin(θ1−θ2−θ3−θ4))/400)− θ̇3((m5 sin(θ1 +θ2 +

θ3 +θ4))/400− (m5 sin(θ1−θ2−θ3−θ4))/400)− θ̇4((m5 sin(θ1 +θ2 +θ3 +θ4))/400− (m5 sin(θ1−θ2−

θ3− θ4))/400)− θ̇1((m5 sin(θ1 + θ2 + θ3 + θ4))/800 + (m5 sin(θ1− θ2− θ3− θ4))/800)]

C(4,1) = [θ̇1((m4 cos(2θ2 + 2θ3 + 2θ4))/200− (3m4 sin(2θ2 + 2θ3 + 2θ4))/800 + (m5 sin(2θ2 + 2θ3 +

2θ4))/200+ (m4 cos(2θ2 +θ3 +θ4))/200+ (m4 sin(2θ2 +θ3 +θ4))/400+ (m5 sin(2θ2 +θ3 +θ4))/200+

(m4 cos(θ3 + θ4))/200 + (m4 sin(θ3 + θ4))/400 + (m5 sin(θ3 + θ4))/200− I4,xy cos(2θ2 + 2θ3 + 2θ4) +
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(m4 cos(θ2 +θ3 +θ4))/100−(I4,xx sin(2θ2 +2θ3 +2θ4))/2+(I4,yy sin(2θ2 +2θ3 +2θ4))/2+(m4 sin(θ2 +

θ3 +θ4))/200+ (m5 sin(θ2 +θ3 +θ4))/100)− θ̇3((m5 sin(θ1 +θ2 +θ3 +θ4))/800+ (m5 sin(θ1−θ2−θ3−

θ4))/800)− θ̇2((m5 sin(θ1 + θ2 + θ3 + θ4))/800 + (m5 sin(θ1− θ2− θ3− θ4))/800)]

C(4,2) = [θ̇2((m4 cos(θ3 + θ4))/100− (m5 sin(θ1 + θ2 + θ3 + θ4))/400 + (m4 sin(θ3 + θ4))/200 +

(m5 sin(θ1− θ2− θ3− θ4))/400− (m5 cos(θ2 + θ3 + θ4)(sin(θ2 + θ3 + θ4)/10 + sin(θ2)/10))/10 +

(m5 sin(θ2 + θ3 + θ4)(cos(θ2 + θ3 + θ4)/10 + cos(θ1)/20 + cos(θ2)/10))/10)− θ̇1((m5 sin(θ1 + θ2 + θ3 +

θ4))/800 + (m5 sin(θ1− θ2− θ3− θ4))/800)]

C(4,3) = [−θ̇1((m5 sin(θ1 + θ2 + θ3 + θ4))/800 + (m5 sin(θ1− θ2− θ3− θ4))/800)]

C(4,4) = [0]

A.6 Larus Potential Energy Gradient

∂V
∂q (1) = [(g ·m1 cos(θ1))/10 + (g ·m2 cos(θ1))/10 + (g ·m3 cos(θ1))/10 + (g ·m4 cos(θ1))/10]

∂V
∂q (2) = [(981m5(cos(θ2)/10 + (3cos(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3)))/20−
(3sin(θ4)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2)))/20))/100−g ·m2(cos(θ2)/400− cos(θ2)2/5
+ sin(θ2)2/5) + g ·m3((cos(θ2) sin(θ3))/20 + (cos(θ3) sin(θ2))/20 + cos(θ2)2/5− sin(θ2)2/5)−
g ·m4(sin(θ2)2/5− cos(θ2)2/5− (cos(θ4)(cos(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3))−
sin(θ4)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2))))/10 + (sin(θ4)(cos(θ4)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2)) +

sin(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3))))/10 + (cos(θ4)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2)))/10 +

(cos(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3)))/20− (sin(θ4)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2)))/20 +

(sin(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3)))/10)]

∂V
∂q (3) = [(981m5((3cos(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3)))/20− (3sin(θ4)(cos(θ2) sin(θ3) +

cos(θ3) sin(θ2)))/20))/100−g ·m4((sin(θ4)(cos(θ4)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2)) +

sin(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3))))/10− (cos(θ4)(cos(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3))−
sin(θ4)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2))))/10 + (cos(θ4)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2)))/10 +

(cos(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3)))/20− (sin(θ4)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2)))/20 +

(sin(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3)))/10) + g ·m3((cos(θ2) sin(θ3))/20 + (cos(θ3) sin(θ2))/20)]

∂V
∂q (4) = [(981m5((3cos(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3)))/20− (3sin(θ4)(cos(θ2) sin(θ3) +

cos(θ3) sin(θ2)))/20))/100−g ·m4((sin(θ4)(cos(θ4)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2)) +

sin(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3))))/5− (cos(θ4)(cos(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3))−
sin(θ4)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2))))/5 + (cos(θ4)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2)))/10 +

(cos(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3)))/20− (sin(θ4)(cos(θ2) sin(θ3) + cos(θ3) sin(θ2)))/20 +

(sin(θ4)(cos(θ2)cos(θ3)− sin(θ2) sin(θ3)))/10)]


