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Unified Multi-domain Decision Making: Cognitive Radio and Autonomous
Vehicle Convergence

Alexander Rian Young

(ABSTRACT)

This dissertation presents the theory, design, implementation and successful deployment of

a cognitive engine decision algorithm by which a cognitive radio-equipped mobile robot may

adapt its motion and radio parameters through multi-objective optimization. This provides a

proof-of-concept prototype cognitive system that is aware of its envirionment, its user’s needs,

and the rules governing its operation. It is to take intelligent action based on this awareness

to optimize its performance across both the mobility and radio domains while learning from

experience and responding intelligently to ongoing environmental mission changes. The

prototype combines the key features of cognitive radios and autonomous vehicles into a

single package whose behavior integrates the essential features of both.

The use case for this research is a scenario where a small unmanned aerial vehicle (UAV) is

traversing a nominally cyclic or repeating flight path (an “orbit”) seeking to observe targets

and where possible avoid hostile agents. As the UAV traverses the path, it experiences

varying RF effects, including multipath propagation and terrain shadowing. The goal is to

provide the capability for the UAV to learn the flight path with respect both to motion

and RF characteristics and modify radio parameters and flight characteristics proactively

to optimize performance. Using sensor fusion techniques to develop situaitonal awareness,

the UAV should be able to adapt its motion or communication based on knolwedge of (but

not limited to) physical location, radio performance, and channel conditions. Using sensor

information from RF and mobility domains, the UAV uses the mission objectives and its

knowledge of the world to decide on a course of action. The UAV develops and executes a

multi-domain action; action that crosses domains, such as changing RF power and increasing



its speed.

This research is based on a simple observation, namely that cognitive radios and autonomous

vehicles perform similar tasks, albeit in different domains. Both analyze their environment,

make and execute a decision, evaluate the result (learn from experience), and repeat as

required. This observation led directly to the creation of a single intelligent agent combining

cognitive radio and autonomous vehicle intelligence with the ability to leverage flexibility in

the radio frequency (RF) and motion domains. Using a single intelligent agent to optimize

decision making across both mobility and radio domains is unified multi-domain decision

making (UMDDM).
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Chapter 1

Introduction

1.1 Summary and Overview

This dissertation deals with cognitive radios (CRs)—intelligent radio frequency (RF) com-

munication systems—and autonomous vehicles (AVs)—vehicles capable of intelligent and

independent motion. In this research, I present the first true integration of AV and CR,

combining radio learning and environmental learning into a single intelligent agent: a proof-

of-concept prototype mobile robot that can adapt its motion and radio parameters through

multi-objective optimization. Using sensor information from RF and mobility domains, the

robot uses mission objectives and its knowledge of the world to decide on a course of action.

The robot develops and executes a multi-domain action; action that crosses domains, such

as changing RF power and increasing its speed. A conceptual representation of this process

is shown in Figure 1.1.

The idea for this dissertation began with a small seed, a kernel of thought planted by a web

comic. The xkcd web comic called “New Pet,” shown in Figure 1.2 [1], shows a small robot

1
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Figure 1.1: Conceptional representation of multi-domain action implemented by proof-of-
concept prototype mobile robot.

built using a net book computer, and using Python [2] to provide the robot with a soul. While

this is clearly a joke, Python is very flexible and powerful. Python has been used repeatedly

and successfully to build and control robots. When I read the web comic, I realized that in

our research at the Virginia Tech (VT) Center for Wireless Telecommunications (CWT), we

were already using Python to build software define radio (SDR) and CR applications using

GNU Radio [3]. This idea developed further with the simple but fundamental observation

that CRs and AVs perform similar tasks, albeit in different domains:

• Analyze their environment,

• Make and execute a decision,

• Evaluate the result (learn from experience), and

• Repeat as required.

CR and AV research highlights the limitations of current systems. While visiting an un-
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Figure 1.2: xkcd comic that initiated my interest in CR and AV integration. R. Munroe,
New pet, http://xkcd.com/413/, Apr. 2008. [Online]. Available: http://xkcd.com/413/
Used under a Creative Commons Attribution-NonCommercial license.
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manned aerial vehicle (UAV) lab, I observed a simulation that replayed results obtained

during live flight UAV tests. The UAV under test flew a nominally repeating flight path over

a large field, while transmitting and receiving RF data packets. Every time the UAV passed

over a certain corner of the field, the UAV experienced poor RF performance. Yet the UAV

continued to fly the same path on every iteration, making no change in RF parameters or

motion behavior.

As mobile sensor platforms, AVs are the perfect example of agents that must operate in

both the RF and physical domains, maintaining mission and communications situational

awareness based on input from a variety of sensors and making intelligent decisions based

on this awareness. This research is based on two fundamental assumptions:

1. The need to move affects AV communication, and

2. The need to communicate affects AV motion.

The first point is known by everyone who uses a cell phone; everyone has a story to tell about

a certain part of their commute where their cell phone coverage always drops out. Com-

munications researchers know that shadowing and multipath are highly location dependent,

and can vary greatly over very short distances.

To illustrate the second, consider that AVs are effectively mobile sensor platforms. AVs are

used as data collection platforms across a wide variety of application domains, including

tactical [4], disaster response [5, 6], and environmental and wildlife management [7, 8] oper-

ations. In all these cases, the collection of information, and subsequent relay of the same to

those who need the information, is critical to AV mission success.

Faced with the above, a scenario in which an AV requires effective communications, and

where the vehicle’s inherent motion and mobility intrinsically affect that same communica-

tions, it becomes imperative to consider motion and communications together, a coupled
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problem with a coupled solution.

1.2 Problem of Interest

Currently autonomous vehicles do not use RF information in their decision making process;

that is, no AV uses RF information for unified multi-domain decision making. From the

perspective of an operational AV, possible courses of action that could improve the RF

environment do not exist and are not considered in any decision making process.

The intent of this research is to combine RF and other information for a unified decision

making progress. I expect to improve mission performance by potentially trading off RF

with other mission parameters. The result is a system with two equally important degrees

of freedom:

• RF agility, and

• Physical mobility (motion).

Although CRs and AVs are very similar, the two research fields have essentially no crossover

or shared experience: each field of research has developed independent of the other. Any

attempt to combine the two fields will necessarily run into challenges and constraints from

both. The development of a suitable experimental platform is one such challenge, one that

presents challenges in traditional AV research topics such as motion planning, route planning,

and positioning, as well as radio and CR topics like physical layer (PHY) adaptation, media

access control (MAC) protocols, data packet structure, and synchronization. However, in

both domains, these are well developed fields of research and many good solutions have been

presented already. This research will build that work, abstracting out the complexity of

the underlying issues involved in platform development to focus on the true topic of this
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research. Specifically, simplified methods of motion planning, route planning, positioning,

PHY reconfiguration, and media access have been implemented, resulting in a platform that

focuses on the areas where CR and AV cognition come together, and not the details of CR

and AV implementation.

These ideas ultimately led to the work described in detail here: an implementation of the

VT cognitive engine (CE) on a BeagleBoard-xM single board computer based on the Texas

Instruments DM3730 processor and its successful use to provide simultaneous intelligent

control of a frequency-agile and mode-agile radio and an autonomous vehicle. This provides

a proof-of-concept prototype of a cognitive system that is aware of its environment, its users

needs, and the rules governing its operation, and able to take intelligent action based on

this awareness to optimize its performance across both the mobility and radio domains while

learning from experience and responding intelligently to ongoing environmental and mission

changes. It combines the key features of CRs and AVs into a single package whose behavior

integrates the essential aspects of both.

The use case for this research is a scenario where a small UAV is traversing a nominally

cyclic or repeating flight path (an orbit) seeking to observe targets and where possible avoid

hostile agents. As the UAV traverses the path, it experiences varying RF effects, including

multipath propagation and terrain shadowing. The goal is to provide the capability for the

UAV to learn the flight path with respect both to motion and RF characteristics and modify

radio parameters and flight characteristics proactively to optimize performance. Using sensor

fusion techniques to develop situational awareness, the UAV should be able to adapt its

motion or communication based on knowledge of (but not limited to) physical location,

radio performance, and channel conditions. Using sensor information from RF and motion

(MOT) domains, the UAV uses the mission objectives and its knowledge of the world, to

decide on a course of action. The UAV develops and executes a multi-domain action; action



7

that crosses domains, such as changing the RF power and increasing its speed.

I present in detail the design of a low-cost (less than $250) package called SKIRL, based

on the BeagleBoard-XM computer and the Hope RF RFM22B RF integrated circuit that

is suitable for installation in the small experimental UAVs flown by USAFRL. In the work

documented here, SKIRL is integrated with a set of target, navigational, and environmental

sensors mounted on a LEGO wheeled vehicle that executes a hypothetical two-dimensional

mission based on the UAV use case while avoiding the costs and potential security problems

associated with a flight test. Experiments with the system demonstrate its ability to explore

and learn a multidimensional environment that combines changing RF, location, and mission

data and to optimize its mission performance intelligently. So far as I am aware, this is the

first successful demonstration of its kind.

Beginning with a review of the literature of CR cognitive radio and AV research, I discuss

the rationale for combining the two technologies and move through the practical steps of

designing, building, and testing a prototype. I show how the architecture of a typical CR

(consisting of a CE and a programmable RF unit) can be expanded to include the sensors and

actuators associated with an autonomous vehicles and provide the software and hardware

details necessary for implementation. This includes possibly the first development of a low-

cost cognitive radio platform based on a low-cost RF integrated circuit instead of a SDR.

I explore the issues associated with testing and evaluating a cognitive device and develop

an appropriate test procedure for the prototype considered here. The test results clearly

demonstrate that the vehicle is capable of exploring and learning a complex environment

and meeting the intended objectives.

Sections of this dissertation have been previously published as separate articles [9,10]. Where

I include material from these papers, I make an explicit note and include the appropriate

citation.
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1.3 Contributions

This dissertation contributes both to the conceptual side of combining CR and AV intelli-

gence into a single intelligent agent, with the ability to leverage flexibility in the RF and

MOT domains as well as to practical implementation issues. I call the underlying theory

unified multi-domain decision making (UMDDM). After reviewing its origins in the liter-

ature of CRs and AVs (Chapter 2), I the explore the development and implementation of

UMDDM as cognitive engine decision algorithms by which a CR-equipped mobile robot—in

this case the autonomous vehicle experimental platform (AVEP)—may adapt its motion and

radio parameters through multi-objective optimization (Chapter 6). I discuss the design and

implementation of a platform combining CR and AV intelligence, the AVEP test platform,

a working proof of concept prototype that deploys UMDDM on a live system. In the pro-

cess I design and deploy a wholly new inexpensive CR platform using commercial off the

shelf (COTS) hardware and free and open source software (Chapters 4 and 5). I review the

philosophical and practical issues associated with testing intelligent machines and develop

a test procedure for the prototype system (Chapter 3). Using this procedure I evaluate its

performance and report the results (Chapter 7).

1.4 This Work in the Context of My Research Assign-

ment

My research has been funded by the Air Force Research Lab (AFRL) in Rome, NY. Current

and previous rounds of funding have focused on AVs (specifically UAVs) and CR.

The proposal for the first round of this work was titled “The Application of Cognitive Ra-

dio for Coordinated UAV Missions” and this title is a good description of the work. UAVs
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support many types of missions, ranging from tactical surveillance and reconnaissance to

humanitarian. Reliable communications is critical. For this project we developed a system

that provides reliable back haul communications for a small network of UAVs. The opera-

tional scenario assumes that several UAVs are conducting a surveillance mission, gathering

photographic data and analyzing the images for the presence of a high value target. UAVs

are connected to each other using an ad-hoc 802.11g wifi network for intra-UAV commu-

nications. Communications between the UAV swarm and a headquarters node is over a

high-power back haul hosted by one of the UAVs. To conserve mission resources, individual

UAVs share responsibility for the back haul; UAVs host the back haul link in turn, sharing

responsibility in round robin fashion. UAVs that are not currently hosting the back haul

forward their captured images to the gateway node, the one hosting the back haul. The

gateway node then sends all images on to the headquarters system. Mission resources are

additionally conserved by adjusting the rate of intra-UAV communications to accommodate

high priority traffic. As each UAV is gathering its photographic data, it is analyzing the

image for the presence of a high value target. If it determines it has found such a target, it

increases its image capture rate and its intra-UAVs data transfer rate. At the same time,

it sends out a message to all the other UAVs in the swarm indicating that it has found a

target. The other UAVs accommodate the higher data rate associated with the finding of a

target by reducing their own intra-UAV data transfer rate.

The second research project was titled “Low-cost Electronics Technology for Enhanced Com-

munications and Situational Awareness for Networks of Small UAVs”. The research deals

with a scenario where a UAV is flying an nominally cyclic or repeating flight path. As the

UAV traverses the path, it experiences varying RF effects, including multipath propagation

and terrain shadowing. The goal is to provide the capability for the UAV to learn the flight

path with respect to motion and RF characteristics, and modify radio parameters and/or
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motion behavior proactively to mitigate deleterious effects. Using sensor fusion techniques

to develop situational awareness, the UAV should be able to adapt its motion or communica-

tion based on knowledge of (but not limited to) physical location, antenna orientation, radio

performance, and channel conditions. Using sensor information from RF and MOT (MOT

for physical motion) domains, the UAV uses the mission objectives and its knowledge of

the world, to decide on a course of action. The UAV develops and executes a multi-domain

action; action that crosses domains, such as changing the RF power and increasing its speed.

1.5 Desired Results from this Research

The “blue sky” vision for this research takes a few different forms: emergency response

robots exploring harsh (e.g. radioactive) environments looking for signs of life on behalf of

susceptible human emergency responders; mobile robots dropped into a post-Katrina New

Orleans that adjust their position and RF parameters to create a self-organizing network for

replacement communications infrastructure; swarms of UAVs, unmanned ground vehicles

(UGVs), and unmanned surface vehicles (USVs) that can communicate with each other and

use their full degrees of freedom—both RF and motion—to cooperatively ensure mission

success; even rovers that can intelligently explore new worlds, where RF and motion flexibility

can be traded off against each other to fulfill the mission.

A more practical goal for this research differs only in scope: design, develop, and deploy

a vehicle capable of carrying out a mission (e.g. explore a test environment, track targets,

and relay data to base), while operating within predefined bounds (e.g. minimum speed,

maximum mission duration, minimum quality of service (QoS)), and leveraging degrees of

freedom in the RF domain and the physical mobility domain (hereafter referred to as MOT).

The research described in this dissertation will serve as a basis for future tactical and emer-
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gency response AV research. I have already submitted a proposal to extend my research to a

fully mobile prototype based on a quadrocopter aerial vehicle, with the CE interfacing with

both the quadrocopter’s autopilot and the communication subsystem. The proposed UAV

will carry out an appropriate public safety mission, such as SAR search, while using motion

and RF flexibility to maintain connectivity and ensure mission success. Figure 1.3 shows the

proposed quadrocopter conducting a SAR search mission.

Figure 1.3: UAV on SAR search mission using RF and motion flexibility to maintain connec-
tivity and ensure mission success. This UAV is part of a proposal that extends the research
in this dissertation.

The next chapter presents the current state of research on CRs and AVs, including a brief

history of both CR and AV research. I also survey the limited scope of current research that

combines RF adaptability with robotic motion.



Chapter 2

Literature Review

2.1 Introduction

The literatures of cognitive radio and autonomous vehicles are both large and comprehensive.

In this chapter I will identify and describe the founding writings and key literature that

relates to my work. The central aspect of this research presented in this dissertation is the

convergence of CR and AV technologies, and as such, I look to current research in both fields,

to provide a foundation of understanding upon which to build. As flexible adaptable systems

that operate independently and intelligently, CRs and AVs share many characteristics. In

this chapter, I attempt to look at both fields from a historical perspective, and highlight

current trends that relate to ongoing efforts to bring the fields closer together.

12
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2.2 Cognitive Radio

The field of CR is a wide one, covering many diverse sub-areas. Many different groups have

tried to define CR, and these definitions vary according to the group and their interests

and requirements. The IEEE [11], Wireless Innovation Forum (formerly SDR Forum) [12],

ITU-R [13], and FCC [14] each have their own somewhat different definitions for CR. In

“Essentials of Cognitive Radio”, Linda Doyle writes, “In very simple terms, a cognitive

radio is a very smart radio,” [15]. This definition is very appealing in its simplicity. Because

of the multiplicity of (completely valid) definitions, I have chosen to adopt a broad definition

of CR for this work, focusing on system’s ability to learn from experience. Thus: A cognitive

radio is a radio that is able to adapt its behavior based on changes in its environment, and

is able to learn from previous experiences.

Radio technology has a long history going back to the late 19th century. For much of that

time radio transmitters and receivers were defined by their hardware, at best allowing their

user to select from a limited range of operating frequencies and a few modulation types.

Design focused on efficiency and power consumption.

Things began to change in the late 1980s when researchers recognized that transmitters and

receivers were really cascaded analog signal processing blocks performing well defined math-

ematical operations. These could be replaced by software driven digital signal processing

blocks, leading in principle to software radios.

Joseph Mitola is credited with inventing the term “software radio” to describe a radio imple-

mentation wherein the individual radio components such as mixers, filters, and amplifiers,

are implemented as software function blocks and the RF signal is a data stream that is acted

upon by each function block in turn [16]. A software radio performs all signal processing

functions digitally; a software defined radio retains some analog components at its front
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(antenna) end. The distinction is somewhat arbitrary. Here I use the term “software radio”

to apply to both. Software radio offers important capabilities for radio design, including

potentially unlimited reconfigurability and the ability to build and deploy new components.

Software radio is the core technology behind the US military Joint Tactical Radio System

(JTRS). Based on open standards, JTRS is intended to reuse existing system configurations

while allowing evolving technologies to build a family of software programmable and modular

communications systems aimed at communications connectivity for warfighters in the digital

battlefield environment [17]. Software radio is also a promising technology for public safety

and emergency response communications. A flexible and adaptable radio architecture can

overcome the inherent incompatibilities that are highlighted when multiple public safety

and emergency response agencies mobilize in the face of large-scale disaster [18, 19]. For a

thorough analysis of both software radio theory and representative applications, see [20,21].

Mitola also introduced the phrase and concept of CR, a logical extension of the flexibility

embodied by software radio [22].1 CR builds on the flexibility of radio components written

and deployed in software, incorporating knowledge of the radio’s capabilities and current

configuration into an adaptive decision making process that seeks to optimize the radio’s

performance. Mitola’s CR prototype is smart communication device that adapts to a user’s

needs and changes in the environment. Mitola focused on high-level intelligence in the form

of a PDA-like device that communicated conversationally with the user to determine the

user’s needs and to relay information to the user [22].

Simon Haykin was one of the first to realize the potential of CR. In his highly influential

1The golden age actress Hedy Lamarr may have developed one of the first cognitive communication
systems. In 1942, Lamarr and George Antheil received a patent for a “Secret Communication System”
that used preemptive adaptation in the form of frequency hopping to maintain secret communications for
the purpose remote control of aircraft. Player piano rolls allowed a transmitter and receiver to synchronize
their tuning adaptations [23]. This work presages the preemptive adaptation techniques of communication
systems such as Bluetooth.



15

paper [24], Haykin identified the “promise of a new frontier in wireless communications.” CR

would improve spectrum utilization through dynamic coordination of the spectrum sharing

process, focusing on interference between radio nodes, and awareness of and adaptation to

the RF environment.

Other researchers realized that CR could be applied to lower layers of the radio “stack”. CR

could be applied to the physical layer, as in [25]. CR research has since grown to cover an

extremely wide range of topics, including (but not limited to), spectrum sensing, situational

awareness, smart antenna techniques, signal classification, spectrum management, PHY and

MAC layer adaptation, network optimization, cooperative relay, rendezvous methods, proto-

col schemes, network stack adaptation, artificial intelligence, waveform design, primary user

detection, and ontology.

Managing radio and spectral resources for effective operations has long been and continues

to be a major concern both to military and civilian authorities [26]. The proliferation of

mobile devices capable of receiving and sending massive amounts of data (e.g. streaming

video from mobile handsets) has cellular communications providers concerned with balancing

limited network resources and high user demand.

Dynamic spectrum access (DSA) has been seen as the answer to the problem of spectrum

scarcity, and was the first practical application of CR; the first economically viable use

case. Dynamic spectrum access deals with management and sharing of spectrum from the

perspective of a limited resource. DSA continues to capture the attention of CR researchers,

to the extent that there have been limited advances in other applications.

Much of the current research in DSA is theoretical and does not account for real world

implementation issues. However, an early practical DSA demonstration showed a network

of six DARPA neXt Generation (XG) radio nodes capable of using spectrum over a wide



16

range of frequencies as opportunistic secondary users [27]. Shortly thereafter, Nolan et al.

presented a live system capable of identifying holes in the RF spectrum and configuring a

radio link to exploit those holes. Further, the system showed that it was repeatedly able

to reconfigure the link as the spectrum occupancy changed over time [28]. In [29], Preston

Marshall notes that there has been significant research into the mechanics underlying effective

DSA, including spectrum brokers utilizing spectrum databases, and methods of distributed

and fused spectrum sensing. However, Marshall notes that there has been little investigation

of RF signal metrics such as adjacent channel energy in DSA scenarios. Marshall himself

addressed this deficiency in [30].

The first successful cognitive radio architecture consists of an intelligent software package

called a CE directing an electronically controlled mode-agile and frequency-agile RF plat-

form. This is commonly, but not necessarily, a SDR [9].

The first prototype cognitive radios, employing the VT cognitive engine and genetic algo-

rithms, were built by Rieser et al., in 2004. The RF unit was a 5.8 GHz Proxim Tsunami

radio with the following electronically settable knobs: transmitter power, modulation type

and index, forward error correction (FEC), uplink/downlink time slot ratio (fibs), and cen-

ter frequency. The test radios established a video link on a fixed frequency and a jammer

was then turned on. The radios were not allowed to change frequency but cooperatively

adjusted all of the other knobs to minimize the effect of the jammer. If the jammer went

away and subsequently returned, the radios remembered their earlier settings and returned

immediately to them [9].

The concept of a CE as an intelligent software package that “turns the knobs” and “reads

the meters” of an electronically configurable radio transceiver is now over ten years old [31].

The first successful cognitive engines were highly complex, with a steep learning curve, and

difficult to port from one host computer to another [32]. As a result, my laboratory colleagues
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and I developed Cognitive System Enabling Radio Evolution (CSERE), a flexible and user

friendly CE. CSERE is written in Python for universal porting, and capable of run-time

evolution by hot-swapping modules (optimizers, for example) as its operating environment

and mission evolve.

Based on our experience with previous software-based, adaptive, and cognitive radio systems,

we developed a road map for development that was based on three key principles:

• Extremely modular architecture;

• High level of data introspection; and,

• Easy to use when installing, modifying or running in an experiment.

By modularity, we wanted to develop a system that was built of reusable blocks that could

be integrated to form a complete cognitive engine, but where the individual blocks could

be easily modified or in fact entirely removed and replaced with other blocks. We also

wanted the blocks to be usable by other code so that individual blocks could be integrated

into other projects without requiring the full functionality of the cognitive engine or the

other components. “Data introspection” means that we wanted to develop software that

offered easy access any of the intermediate data or final results that the cognitive engine’s

components generated during run time operation. And perhaps most importantly, we wanted

a cognitive engine that was simple to install and operate, and simple to experiment with and

modify.

Further information on CSERE, including system organization and architecture, run time

details, and application programming interface (API), are available in [33].

The most widely deployed DSA radios are those using the Defense Advanced Research

Projects Agency (DARPA) sponsored XG technology [27] discussed above. An advanced

hand-held prototype incorporating XG and an excellent platform for implementing a va-
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riety of cognitive radio applications is the DARPA Wireless Network after Next (WNaN)

radio [34,35]. Researchers at the Canadian Communications Research Centre have developed

an 802.11 based prototype cognitive radio called both the WiFi CR and CORAL which they

describe as a building block for building cognitive radios and networks capable of performing

DSA and other cognitive functions [36, 37]. Virginia Tech researchers have set up what is

probably the first permanently deployed, large-scale cognitive and software defined radio net-

work test bed emphasizing PHY and MAC reconfigurability. With 48 nodes, the Cognitive

Radio Network Testbed (CORNET) covers 100 MHz to 4 GHz, and is based primarily on

the Ettus Universal Software Radio Peripheral (USRP) [38] with a Motorola RFIC4 daugh-

terboard. Code for each node runs on its own Intel Xeon processor-based server. While used

primarily for DSA to date, it offers users a large and flexible test bed on which researchers

can try out almost any proposed cognitive radio code [39].

Academic CR development has focused primarily on two radio platforms: the USRP and

the Wireless Open-Access Research Platform (WARP) from Rice University [40]. A high-

performance laptop typically runs much or all of the associated software. A brand new entry

in the RF platform market is the Phi from Per Vices [41]. The Phi is a PCI Express card

platform that installs directly into a computer chassis. This integration eliminates any wire

interconnect, allowing extremely high transfer rates, up to 8 Gbps. The Phi covers 100 kHz

to 4 GHz with up to 200 MHz bandwidth, and like the USRP, works with GNU Radio [42].

Christodoulou, Tawk, and Jayaweera have revisited Rieser’s and Rondeau’s vision of a cog-

nitive radio engine (CRE) that “does not have to be limited to dynamic spectrum sharing

(DSS), to simply an upgraded version of SDR, or even to a number-crunching machine

that can perform pre-defined cross-layer optimizations.” The researchers emphasize self-

management, self-reconfiguration, and self-learning in their system which they call Radiobot.

They have developed an architecture wherein a CE controls a reconfigurable hardware plat-
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form (in this case a reconfigurable antenna), and fabricated a proof-of-concept RF front-end

featuring said reconfigurable antenna, but missing any CE) or CR component. In fact, they

may have missed their own point, by talking up wide-open learning and adaptation potential,

and then limiting themselves to reconfigurable antennas [43].

Recent work on mobile and portable applications employs CEs and software that run on

single-board computers like the BeagleBoard [44]. While SDRs dominated the early years of

cognitive radio building, this is changing in response to the availability of low-cost CMOS

transceiver chips like the Motorola RFIC series and the Hope RF RFM22B [45]. A cognitive

engine can reconfigure these rapidly by loading new values into registers, and the development

time and cost and the power consumption are a small fraction of that for an SDR with similar

capabilities. For more information on RF platforms for CE, see [9, 10]. The work in this

dissertation extends the research area of building practical cognitive radios in small low-cost

packages.

2.3 Autonomous Vehicles

As with CRs, the field of AV is a wide one. However, unlike CR, the phrase “autonomous

vehicle” has not been defined by multiple standards committees. The Oxford English Dic-

tionary defines “autonomous” as “Of a machine, apparatus, etc.: capable of carrying out,

without supervision, tasks typically performed by humans,” [46]. Conner [47] provides pro-

vides the following definition of an AV:

1. It is a machine that can move,

2. It reacts autonomously, and

3. It reacts in an apparently intelligent manner.
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This definition of an AV is compelling in its clear simplicity. Thus, following the simplicity

of the example set by the CR definition above, and guided by the definition provided by

Conner, I have chosen the follwoing broad definition for AVs: an autonomous vehicle is a

machine that is capable of independent motion, can act and react autonomously in order to

carry out a defined mission, and is capable of learning.

The history of AVs is closely entwined with the history of robotics. In their discussion on

the origin of robots, Asimov and Frenkel start off with Monster in Shelley’s “Frankenstein”,

an autonomous and mobile organic agent capable of exploring and interacting with its en-

vironment, and capable of learning as well [48, 49]. For Asimov and Frankel, Shelley’s book

appeared at an appropriate time, in the midst of the scientific and technological advances

industrial revolution. However the term “robot” did not appear until 1920, in Ĉapek’s play

“R.U.R.: Rossum’s Universal Robots” [50, 51]. The formalization of methods dealing with

control and communication processes as statistical information was laid forth by Wiener

in his influential book “Cybernetics”, where he drew connections between the human ner-

vous system, computers, control systems, and communication systems [52]. Wiener was

a key participant in the Macy Conferences, a series of meetings between scholars from a

variety of fields including mathematics, psychology, sociology, statistics, logic, and anthro-

pology. These conferences explored topics such as neural networks, feedback mechanisms,

information theory and decision theory. All these topics are fundamental to the design and

development aspects of the systems we call robots or autonomous vehicles.

The idea of robotic systems and autonomous vehicles has been evolving for several decades

[53], with significant advancements occurring in recent years. Conner provides a very thor-

ough discussion of robotics and autonomous vehicles from both a historical and philosophical

perspective in [47], while Vanderbilt highlights some of the more recent advancements [54].
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The DARPA Grand Challenge (DGC) is an autonomous vehicle research and development

program with the goal of developing technology that will keep war fighters off the battlefield

and out of harm’s way. The 2007 DARPA Urban Challenge (DUC) was designed to accel-

erate the development of autonomous ground vehicle technology for operations in an urban

environment. The vehicles faced a series of driving challenges, while obeying the rules of the

road [55].

To meet the objectives for the DUC, teams’ vehicles were required to complete multiple

missions over a defined course. The course itself and the missions were defined using route

network definition file (RNDF) and mission data file (MDF) formats, respectively [56]. The

course was defined as a set of accessible roads and areas in which an autonomous vehicle

was permitted to travel. The MDF provided a series of checkpoints that had to be visited in

sequence by a vehicle. While vehicles were required to travel to each of the checkpoints in

order, and stay within the bounds defined by the RNDF, the manner in which they might do

so was unspecified. While completing the challenge missions, vehicles had to contend with

and accommodate various challenges, including static obstacles, other moving vehicles and

varying course conditions.

One of the most exciting and visible examples of AV technology and research in the past

several years is the Google car [57], a project led by Sebastian Thrun, formerly part of

Stanford’s DARPA Grand Challenge and Urban Challenge teams. There has been very

little published that directly addresses the car’s technological innovations; in fact the biggest

topic of discussion surrounding the Google car is legal, dealing with motor vehicle regulations

[58, 59].
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2.4 CR/AV Convergence

The central aspect of this research is the convergence of CR and AV technologies. Railway

cognitive radio (RCR) appears to be one of the first efforts to integrate SDR and CR plat-

forms into a vehicle. RCR seeks to condense multiple radios into a single unit, for flexible

adaptability [60]. RCR offers the potential for interoperability between otherwise incompat-

ible systems, an important factor that drives CR research in public safety as well [61, 62].

Amanna et al. highlight the potential for CR to use global positioning system (GPS) to

provide intelligent spectrum policy adaptation based on location. For example, a train that

crosses international borders must adhere to the mandated spectrum policies of both na-

tions to avoid conflicts with other railroads. However, Amanna et al. don’t explore any

other possibilities to adapt radio operation performance based on location information [60].

Troxel et al. also look at applications of CR in mobile scenarios. Using a team of mobile radio

nodes, they constructed a system that used learning to optimize network performance. They

sought to have the nodes cooperate to improve the team’s performance, rather than have

each node optimize local performance. Using neural networks and multiple runs, they found

that the radio teams could show improvement from one run to the next. Interestingly, while

location information is recorded by the mobile radio nodes, it is not used in the adaptation

process. The measurement and communication software remained unaware of the paths

taken by the radio node [63].

Vehicular networking, an active new research area [64,65] also leads logically to the combina-

tion of CR with AVs. Vehicular networks (VNs) offer the potential for increased safety and

reduced resource consumption through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure

(V2I) communications. However, VNs still have to deal with limited spectrum resources, and

in fact have to share that same spectrum with non-mobile radio communication systems.



23

DSA is seen as the de-facto solution to this problem, using spectrum holes opportunistically

to provide necessary bandwidth [64, 66]. In their VN overview, Di Felice et al. discuss the

potential for vehicles to tap into national spectrum databases, such as those compiled by

Shared Spectrum [67]. Using location information as provided by GPS in conjunction with

a geolocation database can provide information about the bands and primary users (PUs),

allowing vehicles to adjust their radio operation to avoid interference with licensed users

without resorting to spectrum sensing. Di Felice et al. also identify the possibility of “future

route-determining software” that could use RF information to “identify the regions where

the user may have the best travel experience, going beyond the shortest distance alone.”

This is a key observation. The possibilities extend far beyond simple DSA and spectrum

holes, as this dissertation will show.

2.4.1 AVs with CR

None of the above research actually deal with AVs. The concept of combining CR and AV

technology seemed to originate with Hauris [68], who simply recast the work of Rieser et

al. [69, 70] in an AV scenario. And while Hauris specifically addresses optimization of RF

parameters for a “geographically varying wireless network” in the introduction, no effort is

made to consider geographic information (i.e. position) in the optimization process.

Angermann, Frassl and Lichtenstern take a step closer to CR/AV convergence with a com-

munication relay chain based on quadrocopter micro air vehicles (MAVs) [71]. A central

node calculates position for each MAV node based on simple geometry, dividing the end-to-

end link into equally spaced relays based on the number of nodes present. The central node

pushes the position information out to each node, who attempt to perform station keeping

without any onboard positioning information. The non-distributed nature of the decision
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making limits the potential of the system, as does the lack of onboard positioning on each

node.

Communication-aware motion (CAM) is where we start to see CR and AV systems come

together. CAM refers to mobile nodes that are capable of taking communication parameters

into account when planning and executing motion. Mostofi notes that “a mobile network

that is deployed in an outdoor environment can experience uncertainty in communication,

navigation and sensing.” In this situation, “optimum motion-planning decisions considering

only sensing and navigation may not be the best for communication, resulting in communi-

cation and sensing trade offs,” [72]. While Mostofi presents a method of using noise variance,

signal-to-noise ratio (SNR), and statistical channel models to plan and adapt motion, Mostofi

limits his work to one perspective. His observation quoted above opens the door to much

more: the possible benefits of adapting RF operation as well.

Hager, Burdin, and Landry explore emergent behavior in tactical networks using agent based

modeling (ABM) [73]. As the number of interactions in tactical wireless networks increases,

the risk of emergent misbehavior or emergent failure also increases. The researchers believe

that the opportunity for emergent successes should also be considered for tactical applica-

tions. And while they don’t explicitly address CAM, they do in fact make use of some CAM

behaviors in their simulation with their empty-buffer behavior. But again, they do not look

into the possibilities that come with the ability to adapt RF operation.

CAM has been seen as a solution to propagation problems. While traditional CR designers

may change frequencies, data rate, modulation, or encoding to compensate for poor channel

conditions [70], Lindhe and Johansson have identified CAM as a method to increase average

communication throughput [74]. In a multipath fading environment, robots can measure the

SNR and adapt their motion to maximize communication performance. Allowing a robot

to “spend slightly more time at positions where the channel is good” ensures that network
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performance improved over scenarios where the robots did not stop at all.

A team of researchers at the Communication Networks Insittute (CNI) of the Dortmund

University of Technology have explored CAM in their effort to build a micro unmanned aerial

vehicle (MUAV) system targeted at disaster response [75]. A series of publications detail the

team’s efforts to design the system from the ground up [76–79], but the most relevant is [80].

The CNI team develop motion control algorithms that balance the competing needs of spatial

coverage and connectivity between nodes. The result is a “clusterbreathing” algorithm based

on received signal strength indicator (RSSI). Specifically, swarms of MUAV nodes perform

station keeping based on maximum and minimum values of RSSI. The result is a swarm that

seems to breathe, as the swarm expands and contracts in order to ensure that RSSI levels

remain within limits.

The research discussed here, as well as other CAM research efforts, all seem to miss one

major point: while motion can be modified based on communication performance, so can

radio operation be adapted based on location and motion. As mentioned at the beginning

of this section, all this research approaches the same problem from only one perspective.

The other perspective, the opposite side of CAM, is position/motion-aware communication

(P/MAC). And there is very little research in this area. Amanna et al. briefly allude to

P/MAC, but limit possibilities to matters of policy, that which is required by regulations. Di

Felice et al. also seem to flirt with the idea of P/MAC, in the form of geolocation and national

spectrum databases that vehicles can access in order to more easily perform vehicle-based

DSA [64]. But again, Di Felice et al. seem to miss the potential that exists; the concept of

extending location based decision-making beyond DSA completely lost.
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2.5 Conclusion

Both cognitive radio and autonomous vehicle technology are logical extensions of trends that

began with making communications systems and vehicles more reliable and flexible and now

are focused on removing their need for human operators. Bringing them together is an idea

whose time has come. Insufficient time has elapsed for it to have much literature of its own.

In this chapter I have tried to trace the development of both fields and to report on early

efforts to bring them together.

The next chapter opens the discussion on UMDDM with an overview of the experimental

procedure I developed to showcase the possibilities of UMDDM. I discuss the intent and the

design philosophy of the experimental process I developed for this research.



Chapter 3

Experiment Design and Philosophy

3.1 Introduction

As discussed in Chapter 1, the use case for this research is a scenario where a UAV is flying

an nominally cyclic or repeating flight path. As the UAV traverses the path, it experiences

varying RF effects, including multipath propagation and terrain shadowing. The goal is to

provide the capability for the UAV to learn the flight path with respect to motion and RF

characteristics, and modify radio parameters and/or motion behavior proactively to mitigate

deleterious effects.

Experiments and the resultant data are fundamental requirements for new research. This

chapter starts the discussion and exploration of UMDDM, discussing the experiments that

support the research presented in this dissertation. The remainder of this chapter is or-

ganized as follows. Section 3.2 lays out the intent and high level goals of the research

experiments. Section 3.3 discusses the design of the experiments in order to achieve the high

level goals. Section 3.6 discusses the implementation details of the experimental process.

27
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Section 3.4 discusses how the experimental results are to be evaluated. I conclude with some

summarizing comments in Section 3.7.

3.2 Experimental Intent

This research explores the convergence of CRs and AVs, leveraging UMDDM. UMDDM is

a natural extension of multi-objective optimization, and has precedent in cognitive network

(CN) research, which seeks to optimize multiple aspects of the network stack, not just

the PHY layer. UMDDM extends these concepts beyond the communication world into

the physical motion-based world. This research is explicitly concerned with RF and MOT

parameters. Thus any experiment must clearly show the choices and trade-offs the system

makes in the RF and MOT domains.

I have developed a test scenario that specifically targets the use case and the UMDDM ideas

I developed in this research. I use a combination of software simulation and live testing. Live

testing in this case means over the air (OTA) transmission combined with actual motion.

3.3 Experimental Design

The experiment is based on the use case developed for my AFRL funded work. Resource

and space limitations preclude the use of actual UAVs. I have instead used a ground robot

and designed an indoor test track which is presented in Section 3.5.3.

The experimental procedure has been developed to specifically target RF and MOT param-

eters. The experimental procedure consists of two major components: software simulation,

and live testing.
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The core of the system is the decision making component. The decision maker uses data

from the system’s sensors to generate solutions that the system uses to implement action.

The simulation is a software analysis of the system’s core decision making component. For

the live system testing, I built a robotic component, called the AVEP. The decision making

code that is analyzed in the simulation is implemented as part of the AVEP, which is then

deployed on the testbed described below in Section 3.5.3. (The decision maker itself is

discussed in further detail in Section 6.3.)

3.4 Evaluation of Test Results

Traditionally the performance of a CR has been measured using various figures of merit in-

cluding throughput/goodput, network stability, and spectrum utilization [70, 81, 82]. These

metrics are very appealing due to there familiarity to RF engineers, and their representation

of real RF channel and network characteristics. However, many CR researchers are inter-

ested not only in RF metrics, but in the performance of the cognition process itself, the

ability to determine whether a given solution applied during the cognition process is in fact

suitable to the present scenario. Zhao et al. provide an overview of performance metrics,

“from node-level to network-level and application level.” While they also used a CR testbed

for evaluating the process of selecting, incorporating, and evaluating performance metrics

and utility functions, they limited themselves to traditional RF metrics: QoS, spectral effi-

ciency, power efficiency, and time of solution adaptation [83]. Dietrich, Wolfe,and Vanhoy

have proposed a method of evaluating CR performance using psychometric approaches, i.e.,

psychological measurement models that are used in testing of humans, [84]. Kaminski has

proposed the use of measure of effectivenesss (MoEs) two evaluate CR performance using a

two stage algorithm based on neural networks [85]. Clearly, there is not current consensus
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for a standard method of measuring and evaluating CR performance.

AV performance is primarily evaluated an AV’s ability to perform its intended task. Techy

et al. note “UAVs hold the desired altitude with high precision and converge to a phase-

synchronized state” in [7]. The rules for the DUC state that vehicles must demonstrate the

ability to “Complete a mission defined by an ordered series of checkpoints in a complex route

network,” while observing standard traffic etiquette and regulations [55]. The rules for the

2012 RoboCup state simply “The team scoring the greater number of goals during a match

is the winner,” [86]. DARPA has recently announced a new robotics challenge seeking to

foster innovative research in the area of robotics for disaster response. The broad agency

announcement (BAA) indicates that the scoring criteria and competition rules “have not

yet been defined,” but that candidate scoring criteria includes “successful event completion,

completion time, data rate, and energy consumption,” [87]. Similar the the CR situation

described above, there does not appear to be a standard method for measuring and evaluating

AV performance.

Evaluating the performance of the AVEP is not straight forward. CR researchers have

proposed methods of evaluating the cognitive aspects of CRs, but there are no standards,

nor are there even fully implemented prototypes. Methods for evaluating performance of

AVs focus primarily on whether the AV in question can successfully complete its assigned

task. In light of this, I have followed the example set by DARPA in the DARPA Robotics

Challenge (DRC). I will evaluate the AVEP on a variety of factors, including mission success

and completion time. Additionally, I will consider two common RF metrics: bit error rate

(BER) and packet delivery.



31

3.5 Experimental Components

There are three major components used in the experimental testing, the AVEP, the Node B

radio (NBR), and AVEP test bed. This section describes their capability and their missions;

technical details appear later.

3.5.1 AVEP

The research in this dissertation includes software algorithms as well as a physical compo-

nent; a robotic/RF hybrid system that implements the software algorithms in a laboratory

environment. The AVEP, shown in Figure 4.1 is the hardware and software platform that I

developed to deploy the UMDDM algorithms. The AVEP consists of two distinct physical

subsystems, the computational platform and the chassis. The chassis provides the mobility

capability, while the computational platform runs all system and control software, as well

as the algorithms developed for this research. The AVEP is discussed in greater detail in

Section 4.4.

3.5.2 Node B Radio

While the AVEP consists of an RF component and a MOT component, the NBR consists

simply of an RF component, as a stand alone radio. However, it is the radio system with

which the AVEP communicates when the AVEP is employing its RF capabilities. The NBR

is discussed in greater detail in Section 5.4.
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Figure 3.1: Autonomous vehicle experiment platform
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Figure 3.2: Photograph of AVEP test bed.

3.5.3 AVEP Test Bed

The AVEP test bed is used as the testing ground for the physical AVEP implementation.

The test bed represents a single section of the UAV flight path; one critical point where the

AVEP must make a choice. A picture of the test bed is shown in Figure 3.2.

The central aspect of the test bed (Figure 3.3 is three paths that diverge from the decision

point at Node 1 and converge again at Node 2. Both Node 1 and Node 2 have barcodes

marking their position, and a barcode reader is used by the AVEP to determine position, as

discussed in Sections 4.4.3.1 and 5.2.2.3.

The test bed has been designed so that each path has a different length, enough of a length

difference to ensure that travel along each path by the AVEP is a different experience. Table

3.1 lists the path length (in meters) of each path in the test bed.
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Figure 3.3: The central aspect of test bed graph is three paths (edges) that diverge from the
decision point at Node 1 and converge again at Node 2.

Table 3.1: Path length (in meters) of each path in the test bed.

Path Length (m)

1 1.575
2 1.219
3 2.223
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3.6 Experimental Procedure

This section discusses the experimental research, both the data generated, and the processes

used. The decision making component that uses and generates the experimental data is

written in Python, and the same code/module is used in the software simulation as well as

the live test system on the AVEP.

3.6.1 Experimental Data

Data is at the heart of the decision making process. Sensor data provides the input to the

decision maker. The decision maker uses several objective functions in its decision making

process. The individual objective functions represent both the RF and MOT domains, and

are:

• Z, Target/Anti-target Value,

• T , Time,

• B, Bit Error Rate, and

• G, Packet Delivery.

In this system, I wish to minimize the bit error rate and the time of travel along a path,

and maximize the packet delivery and target/anti-target value. I use a nondominated sort

to determine the final solution [Z, T , B, G] that the AVEP will implement. The decision

making process, and the objective functions and their supporting algorithms are discussed

in depth in Chapter 6.
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3.6.2 Software Simulation

Software simulation focuses on the decision making component, Running the decision making

module through multiple iterations with inputs simulating actual environments the AVEP

would encounter. I first evaluate each objective function individually, as in [88]. I then

observe the output of the decision maker when it evaluates all the objective functions together

and generates a single multi-domain solution.

3.6.3 Live Testing

For live testing, I integrate the decision maker into the full AVEP system, and run a series

of experiments on the AVEP test bed. These live experiments validate the operation of the

decision making module, but also demonstrate the operation of the full AVEP. During tests,

the AVEP navigates the AVEP test bed, while communicating with the NBR. Each action

the AVEP executes during operation is generated by the decision maker.

3.7 Conclusion

In this chapter, I presented the experiments that support the research presented in this

dissertation. I laid out the intent and high level goals of the research experiments, then

discussed the design of the experiments in order to achieve the high level goals. I discussed

the difficulties in evaluating the performance of CR and AV systems in isolation, a problem

that is compounded when I combine CR and AV systems. However, I developed a plan based

on recent DARPA challenges, and presented a plan for evaluating the AVEP.

The next chapter presents the hardware and software components that I built to support

the research in this dissertation. I describe the hardware and software components from a
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high level system perspective, and attempt to provide a framework of understanding for a

more detailed discussion of my research in subsequent chapters, where I describe the AVEP

operational algorithms and the UMDDM decision making and learning algorithms.



Chapter 4

Hardware and Software Choices for

System Implementation

4.1 Introduction

This chapter presents the hardware and software components that I designed and built to

support the research in this dissertation. I will describe the systems themselves, and highlight

some of the choices made as well as the reasoning behind those choices.1

The software discussion will cover architecture and organization, but any discussion of the

algorithms involved will be held until Chapter 5.

The remainder of this chapter is organized as follows. Section 4.2 discusses hardware options

and selection of hardware components for CR systems, while Section 4.3 discusses the same

for robotic systems. Section 4.4 presents the details of the hardware components for the

research platform.

1Much of the material in this chapter is taken from [10].

38



39

4.2 Hardware Systems for Cognitive Radio

4.2.1 Hardware Overview

For the purpose of this research, the hardware parts of a CR system consist of a computa-

tional platform and a radio platform. (In some circumstances these may reside on a single

circuit board.) The computational platform (usually) supports both the CE and either some

of the DSP functions required by an SDR—SDR designs differ in how their internal signal

processing functions are divided between software and hardware—or the control functions

required by an RF application-specific integrated circuit (ASIC). An ASIC may eliminate the

need for some or all digital signal processing (DSP) operations on the computational plat-

form. The radio platform provides the remaining analog and digital RF functions required

to transmit and receive communications signals.

A CR must sense its environment with sufficient sensitivity and fidelity, and reconfigure itself

appropriately to accomplish its mission. To the usual specifications like receiver sensitivity

and dynamic range, transmitter output power, and data rate, a CR adds frequency, waveform

and output power agility requirements.

4.2.2 Dispensing with SDR

Engineers’ perceptions of software defined radios and their approach to designing them differs

somewhat according to their backgrounds and experience. Communications theorists may

view a radio as a series of blocks performing ideal mathematical operations, perhaps unaware

of issues like spurious response, dynamic range, bandwidth, etc., that do not arise in ideal

cases. RF engineers may not initially appreciate that an SDR is really a computer system

that must perform real time calculations in a way that mimics the pipeline processing of
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analog radios, where a continuous sequence of signal values works its way through a chain.

The difficulty of processing the current block of signal samples in time to be ready for the

next block can be a challenge for SDRs running on a single-board computer.

Software radio offers important capabilities for CR design, including potentially unlimited

reconfigurability and the ability to build new components, but it also brings problems like

overhead, resource consumption, and time delays associated with reconfiguration. These

issues are nontrivial. For many practical applications, SDRs are inherently embedded real-

time systems, requiring hardware platforms and tools and expertise that engineers focusing

on the applications of CR may well lack. Hardware and software issues can severely limit the

performance of real SDR-based CR which, instead of having infinite configurability, when

deployed may simply select from a relatively small set of pre-programmed modulations and

modulation parameters. For many CR researchers, the net result may be a radio whose cost,

reliability, and RF capabilities are comparable to those of an off-the-shelf radio frequency

integrated circuit (RFIC) or single-board transceiver. Consequently, for some applications

requiring low cost and small form factor CRs, there is now interest in CR designs that

leverage WiFi and cellular chip sets and general purpose RFICs.

None of the above is meant to downplay the power and almost unlimited freedom that

baseband processing of RF and microwave signals offers for the implementation of CR, as

well as its widespread use of SDR for many applications. An excellent tutorial on RF

baseband signal processing and its practical implementation in USRPs can be found in [21].

This discussion addresses the need to build a small form factor cognitive radio that will run

on a modest single-board computer rather than, for example, on a desktop or laptop running

LabVIEW. As in many designs for practical applications, trade offs between flexibility and

cost, power consumption, and size apply.
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4.2.3 RFIC-Based RF Platforms for CR

“A key bottleneck in CR experimentation has always been (and we believe continues to be)

the availability of appropriate frequency-agile RF front-ends that can easily be coupled with

the parts of the CR that carry out the digital processing,” [89]. The recent availability of

low-cost RFIC modules with reasonable performance which can take over the RF platform’s

tasks alleviates this problem. Their use represents a change from familiar designs employing

the widely used USRP family of products. Typically a USRP is responsible for relatively few

steps in the communications chain, and much of the processing is done elsewhere. RFICs

remove this processing load from the computational platform.

As alternatives to SDR, I am interested in frequency agile electronically controllable full RF

solutions in low-cost small form factor packages. Currently available products are capable

of transmitting and receiving a variety of frequency shift keying (FSK)-based modulations

in multiple bands, typically between 200-900 MHz, or in the 2.4 GHz band. Data rates can

vary between 1-600 kbps. While these are low for commercial applications, they are adequate

for CR experimentation. Frequency, transmit power, data rate, and modulation type are all

user configurable, and the modules provide information about RSSI, link quality, and cyclic

redundancy check (CRC) status. Additionally, users can customize the data packet structure.

One example of these flexible and reconfigurable RFIC-based RF platforms is the RFM22B

from Hope RF Electronics [45], which is discussed in Section 4.4.1.2. Others include the

Maxim 7032 [90] and the Motorola RFIC4 and RFIC5, which offer higher performance but

which are not commercially available [91].

In contrast to SDR systems, where radio operation is determined by software blocks, an

RFIC is controlled by reading from and writing into memory registers within the device

itself. Instead of generating a software emulation of a radio communication chain that
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implements data sources, mixers, filters and modulators, the cognitive engine writes control

bits into registers to set the desired communication parameters. Radio reconfiguration is a

simple matter of changing a few register values. In contrast, for radio reconfiguration, SDR

platforms must build and load new software blocks or radio chains.

4.2.4 Computational Platforms for Low Cost CR

As discussed above, the computational platform usually supports both the CE and either the

DSP functions required by an SDR or the control functions required by an RF ASIC. Moving

away from SDR and employing a RF platform like the RFM22B reduces the computational

load. No DSP intensive calculations are required; the computational platform needs only

support the high-level cognition functionality and RFIC configuration and control. High end

laptops are no longer required.

Microcontroller-based platforms like the Arduino [92], and chipKIT [93] are the lowest-end

option for RFIC based cognitive radios. These boards generally have the same form factor or

footprint, but vary widely in types of microcontroller chips, and target applications ranging

from robotics to home automation to remote sensing. They are popular due to their low

cost (the Arduino itself is less than $30 USD), and the ease with which users can jump in

and build working projects very quickly.

Single board computers are the next level above microcontroller chips. These are often

designed as development platforms for set-top boxes (cable boxes) and mobile systems. They

feature small form factors, low power consumption, and a wealth of input/output (I/O)

options, as well as the processing power to support intensive graphics operations. Unlike

the microcontroller-based platforms discussed above, these platforms are full computers.

Their operating system provides file management, task scheduling, and drivers for I/O and
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peripherals. Current choices include Raspberry Pi [94], BeagleBone [95], PandaBoard [96],

and Gumstix Overo [97]. The Raspberry Pi is notable because of its extreme low cost ($35

USD).

4.2.5 RF Hardware Selection

The hardware I chose to use in this research includes the Hope RF RFM22B RFIC and

BeagleBoard-xM. I alluded to reasons for choosing the RFIC above; cost, reduced computa-

tional complexity, and sufficient RF flexibility for this research. Additionally, the RFM22B

has a selection of example applications that helped to guide development efforts [98, 99].

The choice of the BeagleBoard-xM was motivated largely by the wealth of pre-existing in-

stitutional knowledge; previous research by CWT and others at Virginia Tech leveraged the

BeagleBoard [44,100,101]. Furthermore, the size of the BeagleBoard-xM-based RF platform

(described in Section 4.4.1) is perfect for deployment on AFRL UAVs.

4.3 Robotics Hardware Systems Suitable for the Topic

of this Dissertation

There are a wealth of robotics platforms around, including iRobot’s Roomba-based Create

[102] as well as their industrial platforms [103], Aldebaran’s humanoid Nao [104], platforms

designed for use with Arduinos [105], and Lego’s Mindstorms NXT 2.0 robotics kit [106], and

more besides. They range from providing the bare minimum (wheels and a level platform for

the 2WD Arduino compatible Mobile platform) to fully articulated turn-key systems (Nao

robot), and their respective costs are commensurate with their capabilities.

I chose to use the Lego Mindstorms toolkit as the robotics platform, due to the comparatively
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low cost (> $ 600 USD for all the required components), and its form flexibility; I could

customize the form factor as required to accommodate the RF platform.

4.4 Research Hardware Platform: AVEP

The AVEP, shown in Figure 4.1 is the hardware and software platform that I developed to

deploy and test the UMDDM algorithms presented in this dissertation. It is a robotic line

follower with integrated RF communication system. The AVEP is composed of two distinct

physical subsystems, the SKIRL radio platform, and the NXT brick and chassis. SKIRL

is the major computational component of the system, while the NXT brick and chassis

enable AVEP MOT capability and select environmental sensing capabilities. The AVEP

components are discussed in greater detail below.

4.4.1 Physical Components: SKIRL Radio Platform

As noted above, SKIRL is the major computational component of the system, and is respon-

sible for running all the control software, as well as radio operation. SKIRL comprises three

components discussed below: BeagleBoard-xM single board computer, Hope RF RFM22B

RFIC, and trainer board.

4.4.1.1 BeagleBoard-xM

The BeagleBoard-xM is a low-power, low-cost, single-board computer, using Texas Instru-

ments components. The BeagleBoard-xM features a TI DM3730 with 1 GHz ARM Cortex

A8, onboard Ethernet and 4 port USB hub, with a small footprint (8.26 cm x 8.26 cm). De-

signed and built to target mobile and video applications, the BeagleBoard-xM supports the
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Figure 4.1: Autonomous vehicle experiment platform
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Figure 4.2: BeagleBoard-xM single board computer. c©2013 IEEE, used with permission.

addition of expansion boards that can provide additional functionality. The BeagleBoard-xM

fully supports Linux and the attendant free and open source tool chains and development

environments such as gcc, Python, Emacs, Subversion, etc. The BeagleBoard-xM also has

many I/O ports available for interfacing with other components, using serial peripheral in-

terface (SPI) or inter-integrated circuit (I2C), in addition to standard general purpose I/O

(GPIO).
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Figure 4.3: Hope RF RFM22B FSK RFIC. c©2013 IEEE, used with permission.

4.4.1.2 Hope RF RFM22B

The Hope RF RFM22B [45] shown in Figure 4.3 is a low cost highly configurable transceiver

capable of transmitting and receiving FSK, gaussian frequency shift keying (GFSK), and on-

off keying (OOK) waveforms between 240 MHz and 930 MHz with a maximum transmitter

output power of +13 dBm. Advertised receiver sensitivity ranges from -121 dBm to -101

dBm, depending on data rate and modulation used. The module is marketed as a fully

contained radio solution, providing all the necessary mixing, filtering, tuning, and A/D

components to transmit and receive packetized bit data.

While the data sheet might be read to imply continuous 240 MHz – 930 MHz, the RFM22B

is sold in three versions designed for operation in the 433, 868, and 915 MHz bands. These

differ in their output impedance matching and filter networks. For experimental transceivers

operating in closed RF environments, removing the output networks allows satisfactory op-
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Figure 4.4: CW power delivered to a 50 ohm load as a function of carrier frequency for
a stock 433 MHz RFM22B and for the same module with the output networks removed.
c©2013 IEEE, used with permission.

eration over a continuous frequency range 250 to 900 MHz. See Figure 4.4 for an illustration

of the transmitter frequency coverage with and without modification.

The RFIC contains a filter network between the microcontroller unit (MCU) and the trans-

mit/receive (T/R) switch. Figure 4.5 presents the reference design of the RFM22B as pre-

sented in the data sheet [45]. However, our experience indicates that the filter implemen-

tation on-chip actually looks like the network shown in Figure 4.6, and the network can be

bypassed (Figure 4.7) to increase the transmit power to the level shown in Figure 4.4).

The RFM22Bs receiving characteristics of interest are shown in Figure 4.8 and Figure 4.9.

The RSSI indicator—which is used to sense whether a channel is occupied or clear—has a

useful range extending from about -60 dBm to -10 dBm and the effective RF bandwidth for

measuring RF energy in a channel is about 100 kHz.
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Figure 4.5: RFM22B reference implementation. Hope Microelectronics Co., RFM22B
FSK transceiver - FSK modules - HOPE microelectronics, 2012. [Online]. Available
http://www.hoperf.com. Used with permission.

Figure 4.6: RFM22B transmit filter network.

Figure 4.7: RFM22B transmit filter network with bypass. The dotted line show the imple-
mented short circuit used to bypass the filter network.
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Figure 4.8: RSSI values as a function of CW RF power at the antenna terminal. c©2013
IEEE, used with permission.
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Figure 4.9: Receiver’s passband characteristics. c©2013 IEEE, used with permission.

The module’s operation is configured (and reconfigured) by values stored in its internal

registers. Figure 4.10 shows some of the memory registers on the RFM22B that can be

set to configure the radio operation (and subsequently read to determine what the current

configuration is).

As an example of how the radio is controlled, the two lines below set the data rate by writing

values (txdr1 and txdr0) to the upper and lower transmit data rate registers TX Data Rate

1 and TX Data Rate 0. The data rate value is a 16 bit value, and TX Data Rate 1 holds

the upper 8 bits of the value, while TX Data Rate 0 holds the lower 8 bits.

self._set_reg_tx_rate_1(txdr1)

self._set_reg_tx_rate_0(txdr0)

The primary I/O mechanism for the RF module is a first in first out (FIFO) buffer. Serial
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Figure 4.10: Sample of memory registers set and read on the RFM22B. Hope Microelectronics
Co., RFM22B FSK transceiver - FSK modules - HOPE microelectronics, 2012. [Online].
Available http://www.hoperf.com. Used with permission.

data bytes are written to the transmit (TX) FIFO buffer in succession for transmission.

When the buffer is full, the accumulated bytes are transmitted. Received data is likewise

stored serially in the receive (RX) FIFO buffer. Continued reads will transfer all the data

out of the buffer to the user. From the user perspective, it appears that the TX and RX

FIFO buffers are one and the same, as they are both accessed through writing to and reading

from the same register address, however there are in fact two FIFO buffers, one for TX and

one for RX and internal RFIC controls ensure proper access to the appropriate FIFO.

A SPI bus is the primary method of interaction with the RFM22B, and four SPI lines are

used to send and receive data to and from the module. GPIO is used for secondary signaling;

controlling a T/R switch and providing a path for reading hardware interrupts.
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Figure 4.11: BeagleBoard-xM trainer board.

4.4.1.3 Trainer Board

There are minor issues to be resolved in interfacing the radio platform and the BeagleBoard-

xM. The trainer board shown in Figure 4.11 and available from Tin Can Tools [107] solves

these problems while providing access to SPI, I2C, and GPIO interfaces, a circuit prototyping

area, and an onboard ATMEL ATmega328 processor. It provides level translators that

convert the 1.8 V signals from the BeagleBoard-xM to 3.3 V for serial communication with

the radio module, and it converts the radio module signals from 3.3 V to 1.8 V for serial

communication in the opposite direction.
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Figure 4.12: SKIRL radio package, showing BeagleBoard-xM, trainer board, and RFM22B.

4.4.2 SKIRL Integration

Fully integrated, the SKIRL radio platform components stack to make a single package, as

shown in Figure 4.12. The system schematic in Figure 4.13 shows the components and their

functions. The radio module provides FSK-based radio communications and the trainer

board provides logic level translation for serial communications. The BeagleBoard-xM con-

tains a Linux kernel and Ubuntu operating system. The BeagleBoard-xM also contains the

software that operates the radio, from the users perspective. While all the radio operations

actually take place on the radio module itself, the software on the BeagleBoard-xM initializes

the radio module and controls its operation by reading values from and writing values to the

radio module’s registers. Communication between the radio module and the BeagleBoard-

xM is achieved using four SPI communication lines, and three GPIO lines. In addition to

the signaling lines, the BeagleBoard-xM also provides power and ground to the trainer board

and—indirectly via the trainer board—to the radio module.
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Figure 4.13: SKIRL schematic showing individual components along with their functions.
c©2013 IEEE, used with permission.

4.4.3 Physical Components: NXT Brick and Chassis

The NXT brick and chassis form (Figure 4.14) the motion platform of the AVEP. Both the

brick and the chassis come from the Lego Mindstorms NXT robotics toolkit [106]. The chassis

features wheels and rotors for locomotion, as well as various sensors used by the system. The

NXT brick forms the structural core of the chassis; the rotors, sensors, and Lego interconnect

pieces all connect to the NXT brick, and the SKIRL platform rests physically on the brick.

The NXT brick contains an ARM processor and integrated LCD for display. The brick

contains 3 rotor connector ports and 4 sensor connector ports. The ARM processor on the

brick natively supports 2 languages (the graphical NXT-G language and NI’s LabVIEW for

Lego Mindstorms), and with minimal effort is capable of running programs written in many

more languages.
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Figure 4.14: NXT Brick and chassis.
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4.4.3.1 Sensors

The chassis currently carries three sensors, a light sensor, color sensor, and barcode reader.

The light and color sensors are NXT native sensors, and connect to the brick. The light

sensor responds to reflected light and measures the intensity of the reflected light. This

functionality is used in the AVEP line following algorithm. The color sensor also responds

to reflected light, but in contrast to the light sensor, the color sensor analyzes the reflected

light to determine the light color. The color sensor is used in the AVEP target/anti-target

detection algorithm. Unlike the light and color sensors, the barcode reader is not an NXT

native sensor, nor is it connected to the NXT brick. While the barcode sensor is mounted on

the chassis, it connects directly to the SKIRL radio platform. The NXT sensors were chosen

due to their capability to integrate with the NXT brick, and for their relatively low cost.

The barcode reader is used in the position/location algorithm. The barcode was chosen as the

method of position/location determination due to its simplicity and low cost. The testbed is

set up indoors, and GPS works very poorly (if at all) indoors. As well, standard GPS does

not have sufficient resolution to be useful at the scale used by the testbed. Other indoor

positioning systems that use infrared [108] are prohibitively expensive for this research. The

barcode is a hand held laser scanner similar to those use in retail point-of-sale systems. The

barcode scanner has a trigger button to activate the laser, but for this research, I configured

the laser to remain on continuously, allowing the scanner automatically to read any barcode

that the laser passes over. Modern smart phones such as the iPhone or Android based phones

can take a picture of a barcode with their integrated cameras and then use image recognition

software to read the value embedded in the barcode image. However, I found the time to

take a picture and analyze the barcode took too long to be practical; while the hand held

scanner can read and decode a barcode in less than 1 second, the smart phone method often

took up to 5 seconds to return a result.
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The sensors and the algorithm they support are discussed in further detail in Chapter 5.

4.5 System Software

4.5.1 Software Options and Choices

The recommended operating system for the BeagleBoard-xM is Angstrom [109], and it is

used in the board validation process [110]. Angstrom is configured using the Open Embedded

(OE) embedded development framework [111]. OE allows users to deploy a full operating

environment for the BeagleBoard-xM, including operating system (OS) and tool chains. OE

builds the operating environment on a separate system, cross compiled for the BeagleBoard-

xM platform. For a more detailed discussion of development for the BeagleBoard, see [112].

OE allows completely custom distribution builds for the BeagleBoard, at the expense of

having to build every aspect of that custom distribution. Alternatives to Angstrom and

OE include OS and tools from the Linaro project [113] and the Ubuntu ARM project [114].

Ubuntu has a history of stable operation and a large selection of available packages. As our

laboratory uses Ubuntu on all research and development workstations, I decided to leverage

the wealth of institutional knowledge with regards to system installation and support and

chose the Ubuntu ARM as the OS for the SKIRL computational platform.

For cognitive engine code and control software for SKIRL, Python [2] was the obvious choice

for this work. Python is easy to read and code, and Python applications are readily ported

to multiple platforms. As with other choices, our institutional knowledge of Python helped

make the choice; the CSERE cognitive engine [33] is implemented entirely in Python, and

GNU Radio [3] makes heavy use of Python as well.
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Figure 4.15: Conceptual AVEP system architecture showing components and process flow.

4.5.2 System Architecture

The concept for the AVEP system architecture is presented in Figure 4.15. The architecture

is inspired by the work of DARPA Grand Challenge (DGC) and DUC competitors.

Figure 4.16 shows the software organization of the AVEP as implemented. The controller

is computational and functional core of the system, and is responsible for starting the radio

and motion software, as well as integrating the cognition, route planning, positioning, and

other sensor information.

All system software for SKIRL runs on the BeagleBoard-xM. While the microcontroller on

the trainer board is capable of hosting and running programs written in C or assembly, the

microcontroller is currently unused. The radio module itself is effectively a closed system;

while I can interact with it at some level using its readable and writable registers, its internal

operation is hidden. The AVEP system is written entirely in Python. Python provides cross-
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Figure 4.16: High-layer software organization of AVEP system.

platform functionality and is easy to read and code, with its similarity to pseudo-code.

4.5.3 Radio Software

The radio software is written and organized as a stack (Figure 4.17), with each layer providing

functionality to the layer above and built on the layer below.

An application is built on top of the API which is in turn built on top of the driver. Figure

shows how the radio software stack corresponds to SKIRL hardware. Applications and the

API correspond to the GPP component in the hardware stack, while the driver crosses the

divide between the RF module and the GPP component. The register access functions

correspond directly to the RF module, while the drivers helper functions correspond to the

GPP component.
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Figure 4.17: AVEP radio software stack. c©2013 IEEE, used with permission.

Figure 4.18: Radio software stack compared to SKIRL hardware components. c©2013 IEEE,
used with permission.
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4.5.3.1 Radio Driver

The radio driver is the base interface for all interaction with the RF module. The radio

drive uses the Python SPI driver to enable the bit-level communication with the RF module,

and provides direct access to the RF modules configuration registers using register-specific

functions. An example is:

_set_reg_operating_mode_1(0x01)

The function sets the value of register 0x07, Operating Mode and Function Control 1, writing

the hexadecimal value 0x01 into the register. The leading underscore (‘ ’) indicates that the

function is intended to be a private function, used only by other functions provided by the

driver. These other functions are publicly accessible helper functions, such as:

set_op_mode(ready)

The publicly accessible functions are designed to be more user-friendly, using strings for input

rather than hexadecimal values. This improves code readability and eases debugging. Many

radio operations such as setting the frequency require reading and setting multiple registers,

and the helper functions consolidate these multiple operations into a single function.

4.5.3.2 Radio API

The radio API is the interface for operating the radio module. It provides:

• Radio initialization,

• RF front end T/R switch control,

• Access to the air interface for listen, receive, and transmit operations,



63

• Timeout and random back-off, and

• Interrupt monitoring.

The radio API provides an initialization function that is responsible for setting up GPIO-

based communication lines and configuring the radio module in a default mode. This allows

a user to start using the radio module quickly with little effort. The default configuration

enables radio operation at 434 MHz using GFSK at 4.8 kbps. Default payload length is 17

bytes. This default configuration is based on sample code provided by Hope RF [98].

The GPIO-based communication lines are used by the API’s T/R switch to control the

transmit and receive antennas. Each antenna is controlled by a single GPIO line, switching

the antenna on or off. The T/R switch function has three states tx, rx, and off. Internally,

the T/R switch always disables one antenna before enabling the other.

Hardware interrupts are used to indicate that certain events have occurred, including when

a packet has been received and a packet has been sent. The system enables the specific

interrupt for a particular event, and then loops to perform an action until the interrupt

occurs. In this case, the interrupt port is tied to a GPIO line. When the radio module

generates an interrupt, the GPIO line is driven low and the value GPIO line can be read by

software.

A central service provided by the API is access to the air interface, using the listen, receive

and transmit functions.

4.5.3.2.1 Listen Function The listen function provides carrier sense or listen before

talk (LBT) capability, using RSSI. The radio module is put into receive mode, and the RSSI

level is checked by reading register 0x26 Received Signal Strength Indicator. If this value

is above a user indicated threshold, the listen function returns clear to the calling function.
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It the RSSI value is not above the user indicated threshold, the listen function goes into

a random back off period before checking the RSSI level again. This behavior is repeated

a finite number of times, until the listen function either returns clear indicating a clear

channel, or the maximum number of iterations is exceeded and the listen function returns

busy indicating the channel is not clear. The logic for the listen function is shown in Figure

4.19.

4.5.3.2.2 Receive Function The receive function is used to receive a packet over the

air. The receiver uses two modes, with timeout and without, as shown in Figure 4.20. The

receive process involves waiting for a hardware interrupt to signal that a packet has been

received, then reading the received packet from the radio modules RX FIFO buffer. It is

important, therefore to have a method to interrupt the waiting action. A timer can be started

in an independent thread, and a flag is set when the timer expires. Periodically checking for

this timeout flag allows the packet receiver process to escape its wait loop, and return to its

parent process. This is useful behavior for a radio node that wishes both to transmit and

receive data regularly. However, some radio nodes’ primary function is to receive data, and

for this a receive timeout is unnecessary. In this situation, the timeout timer is not enabled,

and the process continuously waits for a hardware interrupt, indicating that a packet has

been received, returning to the parent process only when the packet has been read from the

RX FIFO buffer.

4.5.3.2.3 Transmit Function The transmit function (Figure 4.21) is used to transmit

packets over the air. Packets are loaded into the radio modules TX FIFO buffer. When the

transmitter function sets the operational mode of the radio module to transmit, the radio

automatically transmits all the data in the FIFO buffer, raising an interrupt when it is done.

After setting the operational mode to transmit, the receive process loops until the interrupt
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Figure 4.19: Flow chart showing logic and flow of API’s listen function.
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Figure 4.20: Flow chart showing logic and flow of API’s receive function.

is raised to ensure that all data has been sent, before returning to the parent process.

4.5.4 Motion Software

As with the radio software, the motion software operates on-board SKIRL, but is responsible

for communicating with and controlling an off-board component, in this case the NXT brick.

While the NXT brick is capable of running programs on its ARM processor, I have instead

chosen to control the sensors directly from SKIRL, effectively using the brick as a pipe

through which to control the sensors and rotors. I am using a Python library called nxt-

python that provides direct access to the brick and its components over universal serial

bus (USB). Unlike the radio software, there is no explicit motion driver. Where the radio

driver provides basic connectivity to the RFIC, connectivity to the brick is provided by the

nxt-python library.
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Figure 4.21: Flow chart showing logic and flow of API’s transmit function.
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4.5.4.1 Motion API

The motion API the core of the AVEP motion system, and is the interface for operating the

motion module. It provides:

• Rotor and sensor initialization,

• Rotor state information,

• Motion actions such as “go forward”, “halt motion”, and “find line”.

The AVEP system uses a single connection to the NXT brick for all communication and

control. This connection is established at the highest level, and passed to the motion API

by the controller. The motion API uses the connection to initialize the AVEP rotors and

sensors.

The simple “go forward” function is the basis of all AVEP forward motion. The left and

right rotors are engaged and allowed to run until the “halt motion” function is called, which

applies a braking function to the rotors. The “find line” function turns the AVEP in place

about its vertical axis until a line is detected. The AVEP turns first clockwise then anti-

clockwise, sweeping out increasing arcs until the light sensor detects a line beneath it. These

three functions combine to provide a more sophisticated motion algorithm. The algorithm

is used by the motion subsystem and is discussed in further detail in Chapter 5.

4.6 Conclusion

This chapter has discussed the hardware and software components that I built to support

the research in this dissertation, in the form of the AVEP. The AVEP is a prototype robotic

platform that integrates RF and MOT decision making and flexibility into a single system.

The AVEP is capable of autonomous motion using a line following algorithm. A new RF
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and computational platform called SKIRL provides integrated system control and RF com-

munication capabilities. SKIRL and the AVEP use a low cost RFIC, in contrast to the

SDR systems often used in CR research. The AVEP hosts a number of sensors that provide

environmental information to aid in positioning, motion planning, and target detection. The

AVEP is programmed entirely in easy-to-read, easy-to-debug Python.

In discussing the hardware and software components of the AVEP, I have tried to paint a

clear picture of all the components from a system level. This should provide a framework

of understanding for the next two chapters, which present and discuss the algorithms I

developed to implement UMDDM.

The next chapter presents the AVEP operational and control algorithms. In it, I present

details of the various finite state machines (FSMs) that control the AVEP and the MOT

and RF subsystems, as well as the sensor algorithms that read sensor raw data and generate

useful information for the system. I also provide details on the path data structure (PDS),

the graph-based data structure that the AVEP uses as its data storage mechanism.



Chapter 5

Algorithms and Software

Development

5.1 Introduction

This chapter presents the AVEP operational and control algorithms. These are the algo-

rithms that govern the operation of the AVEP; how it moves and communicates and how

the sensors operate. This chapter builds on the discussion of the last chapter, which pro-

vided information on hardware and system software. This chapter discusses the algorithms

that run on that hardware, integrating all the separate hardware components into a single

system capable of autonomous operation leveraging RF and MOT flexibility. This chapter

also presents details of the NBR, the node on the other end of the AVEP communication

link.

In the material which follows, Section 5.2 discusses the run-time and operational aspects of

the AVEP. Section 5.3 presents the PDS, a new and innovative method for organizing and

70
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storing multi-domain environmental information. Section 5.4 discusses the operation of the

NBR, while Section 5.5 provides a summary with concluding remarks.

5.2 Operation and Control

This section presents the algorithms that provide the operational logic for the AVEP; the

logic flow of the controller, the data collection algorithms used by the sensors, and the logic

flows of the RF and MOT subsystems.

5.2.1 Controller

The controller is the central system component, and the hierarchical top layer of the system.

The controller starts and manages the other modules, coordinating interactions between all

the various subsystems.

5.2.1.1 Controller Finite State Machine

As the controller is the core of the AVEP system, so the FSM (shown in Figure 5.1) is

the heart of the controller. The FSM consists of five states (“first time”, “before traverse”,

“traverse path”, “after traverse”, “return to beginning”) and these five states handle all

the functions of the AVEP after initialization. The FSM uses the “fsm state” variable to

determine the current state.

5.2.1.1.1 FSM State: first time The “first time” state is entered only once, when the

controller FSM is first started. This state uses default motion parameters to move the AVEP

to the first barcode location, where it stops. Finally, the state variable “fsm state” is set to
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Figure 5.1: AVEP controller finite state machine.
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“before traverse”, indicating the next FSM state.

5.2.1.1.2 FSM State: before traverse The “before traverse” state is entered every

time the AVEP reaches the first barcode location. This state uses the decision making

module to determine which path to traverse. The decision making module and the decision

making process are explored in detail in Section 6.3. This state is responsible for setting the

parameters for the radio and motion subsystems before the AVEP traverses its chosen path.

In order to ensure that the radio is properly configured and that the NBR can receive the

AVEP RF transmissions, this state sends a data packet to the NBR containing the radio

parameters that the AVEP will use during its path traversal. To ensure that communication

is always possible, the AVEP transmits the reconfiguration information to the NBR before

it reconfigures its radio. When the AVEP receives an acknowledgment from the NBR, the

AVEP reconfigures its radio and motion subsystems with the predetermined parameters

as determined by the decision making module. If the reconfiguration was faulty or the

AVEP could not reestablish communication with the NBR, the AVEP could fall back to a

default configuration or use a control channel to reestablish communication. This feature

is not currently implemented, however. Finally, the state variable “fsm state” is set to

“traverse path”, indicating the next FSM state.

5.2.1.1.3 FSM State: traverse path The “traverse path” state is entered every time

the AVEP traverses its chosen path. There are two possible behaviors the AVEP can employ

during this state, dependent on whether or not the path has been previously explored.

If the path is unexplored, the AVEP sets the state of the radio subsystem to “listen”, causing

the radio subsystem to record the RSSI of a continuous wave (CW) signal transmitted by

the NBR. A CW signal is used to simplify the process of determining the RSSI. The RFIC
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operates as a black box with respect to many of its functions, including the way it samples the

RSSI. Sampling the RSSI for an incoming modulated signal results in widely varying RSSI

results. No doubt, the RFIC sometimes samples RSSI during a break in the transmission,

and samples on the rising of falling edge of the waveform as well as sampling during the peak

transmission. However, recording the RSSI of a CW signal provides much more consistent

results. The RSSI information is used by the decision making module to determine some

RF path characteristics (see Section 6.3). The AVEP sets the state of the motion subsystem

to “go”, engaging actual forward motion of the AVEP along its chosen path. As the AVEP

moves along the path, it records the time it takes to travel the length of the path, and the

number of targets and anti-targets encountered along the path. Targets and anti-targets are

discussed further in Sections 5.2.2 and 6.3.1.1, but for ease of discussion in this chapter, a

target is an object the AVEP wishes to find and record, while an anti-target is something it

wishes to avoid.

If the path has been previously explored, the AVEP sets the state of the radio subsystem to

“stream”, causing the radio subsystem to transmit data packets to the NBR, using the radio

parameters as determined and set during the previous “before traverse” FSM state. As in

the “listen” mode described directly above, the AVEP sets the motion subsystem state to

“go”, and the AVEP traverses its chosen path, again recording the time of traversal, and

number of targets and anti-targets along the path.

In either case, When the AVEP reaches the end of the path, indicated by the second location

barcode, and recorded by the barcode sensor, the AVEP halts its motion by setting the

motion subsystem state to “stop”, and stores the time, target, and anti-target information

in the PDS. Obviously an airplane style UAV could not stop in midflight, and while a

helicopter style could pause in midair, this is not ideal operation. In practice, the duration

for which the AVEP is halted is not observable; the housekeeping operations the AVEP
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conducts in this period are concluded very quickly. Additionally, the halt of motion provides

an easy way to differentiate between different stages of operation while performing tests.

The PDS is discussed further in Section 5.3. Finally, the state variable “fsm state” is set to

“after traverse”, indicating the next FSM state.

5.2.1.1.4 FSM State: after traverse The “after traverse” state is entered every time

the AVEP reaches the second barcode location. During this state, the AVEP updates pa-

rameter information in the path data structure for the current path. Specifically, the knobs

and meters from the just completed traverse are recorded in a historical manner, as “previ-

ous knobs” and “previous meters”. Additionally, the path is now recorded as having been

explored. The AVEP again communicates with the NBR, requesting an update. This update

includes the number of packets received by the NBR. Finally, the state variable “fsm state”

is set to “go to beginning”, indicating the next FSM state.

5.2.1.1.5 FSM State: go to beginning The “go to beginning” state is used by the

AVEP every time it finishes a path traversal (including the “after traverse” state) and needs

to return to the start of the test course. The AVEP leaves the radio subsystem off, but

engages the motion subsystem. The AVEP then follows the return path until it arrives back

at the beginning, as indicated by the first location barcode.

5.2.2 Sensors

The AVEP uses three sensors for data collection: NXT light sensor, NXT color sensor, and

barcode reader.
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5.2.2.1 NXT Light Sensor

As mentioned preciously, the NXT light sensor is used in the motion control algorithm. The

light sensor is a NXT native sensor that is connected to the NXT brick, and the AVEP uses

the nxt-python library to control it. The light sensor uses reflected light to determine the

presence of the test track line beneath it. The threshold value for the light sensor for the

test track line is 500. If the light sensor reads a value above the threshold, the test track line

is not present beneath the light sensor, and if the sensor reads a value below the threshold,

the test track line is present beneath the light sensor.

5.2.2.2 NXT Color Sensor

The NXT color sensor is used in the target tracking algorithm. As with the light sensor, the

color sensor is a NXT native sensor that is connected to the NXT brick, and the AVEP uses

the nxt-python library to control it. The color sensor uses reflected light to determine the

color of an object below the sensor. The sensor returns a value which indicates the specific

color of the object (Table 5.1).

Table 5.1: Values returned by the NXT color sensor and their associated colors.

Color Black Blue Green Yellow Red White
Value 1 2 3 4 5 6

A different color is used to represent the targets and anti-targets; in this case, yellow repre-

sents a target, and red represents an anti-target. These values were chosen to minimize false

positive cases. During a path traversal, every value recorded by the color sensor is stored in

a single vector. After the path has been traversed, the results are processed in the following

manner. The single vector is copied so that there are now two identical vectors. The two

vectors are processes in a similar manner, although one of the vectors is analyzed to find the
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number of targets, while the other vector is analyzed to find the number of anti-targets. In

the target vector, every vector element that is not equal to the target color value is set to 0.

Likewise, in the anti-target vector, every vector element that is not equal to the anti-target

color value is set to 0. Each vector is then processed to determine the number of transitions,

that is, the number of times that an element is zero while the two following elements are non-

zero. The number of transitions accurately indicates the number of targets (or anti-targets

as appropriate) observed along the path just traversed.

5.2.2.3 Barcode Reader

The barcode sensor is used to determine the AVEPs position. My advisor, Charles Bostian,

noted that in an indoor scenario, a simple, cheap and accurate method of determining

position is to reference it to an object with known location. This led to the idea of using

barcodes at specific locations to fix a position, and using a barcode reader to determine the

presence of a barcode, thus indicating current position [115].

As mentioned previously, despite being mounted on the chassis, the barcode reader connects

directly to the SKIRL platform over USB. The barcode reader is accessible through the

SKIRL OS device driver interface /dev. The specific interface for the barcode reader is

/dev/hidraw0. The barcode reader itself operates in a mode that continually scans for

barcodes, and once it scans one, the data embedded in the barcode is immediately available

for decoding. Using the information available from [116], a barcode can be translated into a

number, indicating a specific location on the test track.

The barcode reader is a threaded module, running in a continuous loop separate from (but

started by) the controller. The value encoded in the barcode is relayed to the controller

using a callback passed to the barcode reader when it is instantiated.
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5.2.3 Radio Subsystem

The radio subsystem is responsible for all AVEP communications operation. The radio

subsystem runs in its own thread, allowing it to run concurrently with, but independent of

the main process. The radio subsystem is originally instantiated by the AVEP controller,

after which the radio subsystem FSM takes over.

5.2.3.1 Radio Subsystem Finite State Machine

The radio subsystem FSM is responsible for all AVEP RF operations. The acAVEP con-

troller uses the subsystem function set_state(current_state) to set the radio subsystem

state of operation. The controller consists of of five states: “stop”, “stream”, “update”,

“reconfigure”, and “listen”. Each FSM state is responsible for a different aspect of RF

operations.

The “stop” state is the default state of operation for the radio subsystem FSM. When the

controller starts the radio subsystem, the FSM drops into this state, as it does when it

completes any of its operations, represented by the other FSM states.

The “stream” state is used to stream data from the AVEP to a NBR. While the AVEP

traverses a path, it transmits data packets to the NBR. The data payload inside the packet

is not a significant aspect of this research, but payloads could include any type of operational

data as required by the mission. (In my first round of AFRL funded research, payload data

included video images captured by network nodes [117].)

The “update” state is used by the AVEP to request updates from the NBR. Each time the

AVEP completes a path traversal, it sends a request to the NBR for an update. When

the NBR receives the request, it replies by transmitting a packet containing information



79

on the number of packets that the NBR received from the AVEP while the AVEP was

traversing its selected test bed path. This information can be used by the AVEP to improve

its understanding of the RF environment.

The “reconfigure” state is used by the AVEP to notify the NBR of a new RF configuration.

Every time the AVEP reaches Node 1 on the test bed, the AVEP makes a decision about

how to operate. The solution generated by the decision maker at this point can include a

new RF operational profile: frequency, modulation, bit rate, etc. However, If the AVEP

unilaterally changes its operational profile, the receiving NBR won’t be able to receive the

data, as it is still operating using an old profile. For this reason, using the original operational

parameters, the AVEP notifies the NBR of the new operational profile, and waits for the

NBR acknowledgment. When the AVEP receives the reconfiguration acknowledgment, it

then reconfigures its own radio using the new parameters, knowing that the NBR has done

the same, and that both RF systems are ready to start communicating using the new RF

profile.

The “listen” state is used by the AVEP for RF sensing. In its initial iterations of operation,

the AVEP explores its environment. During this exploration, the AVEP controller sets the

state of the radio subsystem to “listen”, causing the radio subsystem to record RSSI along

the path. This RSSI information is used by the decision making module to determine some

RF path characteristics (see Section 6.3).

5.2.3.2 Packet Structure

The RFM22B RFIC provides a very flexible platform for RF applications, but the downside

to the flexibility is that it does not provide pre-existing support for packet structure or

protocols above the PHY. To support AVEP operation, I developed a packet structure based
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on the transmission control protocol (TCP) standard [118]. The packet structure is shown

in Figure 5.2.

Figure 5.2: RF subsystem packet structure.

Most of the header fields are self explanatory. The “packet number” field contains a three

byte integer indicating the number of the current packet. The “time stamp” contains an

eight byte value indicating the time the packet header was packed, or put together. The

“location” field contains a two byte integer that corresponds to the most recent location of

the radio node. For the AVEP, this corresponds to the last barcode the AVEP recorded.

The “flags” field is used to provide control information for coordination between transmitter
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and receiver nodes. Figure 5.3 shows the flags available to a Node A radio (NAR), such as

the AVEP.

Figure 5.3: Organization of flags field in RF subsystem packet. This figure shows the flags
available to a Node A radio.

The “node a” flag is used to indicate that the packet is coming from the NAR. The “send command”

is used to indicate to that the NAR is passing a reconfiguration command to the NBR. The

“request data” flag is used by the NAR to request an information update from the NBR.

The “send stream” flag is used to indicate that the NAR is send a stream of data to the
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NBR while the AVEP is traversing a path.

5.2.4 Motion Subsystem

Similar to the radio subsystem, the motion subsystem is responsible for all AVEP motion.

The motion subsystem also runs in its own thread, again for concurrent but independent.

The motion subsystem is originally instantiated by the AVEP controller, after which the

motion subsystem FSM takes over.

5.2.4.1 Motion Subsystem Finite State Machine

The motion subsystem FSM is responsible for all AVEP motion operations. The acAVEP

controller uses the subsystem function set_state(current_state) to set the motion sub-

system state of operation. The controller implements only two states: “stop”, and “go”.

The “stop” state is the default state of operation for the motion subsystem FSM. When the

controller starts the motion subsystem, the FSM drops into this state, as it does when it

completes its actual motion operation, as represented by the “go” state.

The “go” state is used by the AVEP controller to initiate operational motion. This the

motion operation is governed by a motion behavior described below in Section 5.2.5. The

behavior is employed until the AVEP reaches the end of its chosen test bed path, indicated

by arrival at test bed Node 2.

5.2.5 Motion Behavior: Follow The Line

The motion subsystem uses a line-following algorithm. This is a simplistic method of im-

plementing robot motion, where the robot uses a sensor to detect a line on the ground, and
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the robot follows the line as it moves forward [119]. The algorithm trades off between two

sub-behaviors, “follow the line” and “find the line”. The “follow the line” state causes the

AVEP to move forward in a straight line until the light sensor (Section 5.2.2.1) indicates

that the AVEP is no longer following the line. At this point, forward motion is halted and

the AVEP proceeds to “find the line”. The AVEP starts to turn in place about its z-axis,

sweeping out larger and larger arcs as it seeks to find the test bed path—the line—with the

light sensor. When the path has been found, turning motion is halted, and forward motion

is again commenced via the “follow the line” behavior. Using the “follow the line” and “find

the line” sub-behaviors, the AVEP is able to move effective along test bed paths by following

the black lines marked out on the test bed.

5.3 Path Data Structure

CRs and AVs both require relevant and up-to-date information on their environment to

operate effectively. AVs often use evidence grids to represent environmental data [47], while

CRs commonly use internal or external databases to store RF information [19, 62]. I have

developed a method inherently suited to multi-domain knowledge storage that uses graph

structures to represent environmental data. The PDS is the system’s central data storage

component, labeled as “(Multi-Domain) World View” in Figure 4.16.

A single PDS is a software object that represents a graph edge, specifically a single test bed

path. It can be instantiated multiple times to represent multiple paths. As shown in Figure

5.4, the test bed graph —originally presented in Figure 3.3—contains three individual paths

between Node 1 and Node 2. Each path is a route that the AVEP can traverse as it moves

from Node 1 to Node 2, and each path is represented by a single PDS.

The PDS extends the concept of a weighted graph [120], or more specifically a weighted edge.
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Figure 5.4: The test bed graph contains three separate paths between Node 1 and Node 2.
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Table 5.2: Knobs and meters available stored in path data structure.

Knob Name Knob Settings
Bitrate 2.0, 2.4, 4.8, 9.6, 19.2, 38.4, 57.6, 125.0 (kbps)
Transmit Power 8.0, 11.0, 14.0, 17.0 (dBm)
Rotor Power 25.0 - 80.0, steps of 5.0

Meters
Targets
Anti-targets
RSSI

Weighted graphs use weight to represent some cost associated with a particular graph edge,

such as the distance between two cities in the traveling salesman problem, or the distance

between two routers in a network. The PDS builds on the concept of an edge weight by using

the weight as a data storage mechanism. The edge weight becomes multiple weights, each

one representing a particular environmental characteristic, and all describing that particular

graph edge.

For this research, each of the three instantiated PDS objects maintains physical and RF

characteristics of a particular test bed path, such as path name, path distance or length,

whether the path has been explored or not, and system knobs and meters along the path.

Table 5.2 shows the knobs and meters stored in the PDS. Additionally, each PDS maintains

a record of the most recent system solution for the path, as determined by the decision

making module. Further solution details are presented in Section 6.3.

Currently the experimental test bed contains only three paths, each of which connects the

same two nodes, Node 1 and Node 2. However, in a more complicated test bed layout, there

would be additional nodes with additional edges and their attendant paths. An example is

shown in Figure 5.5. In such a scenario, path search algorithms such as Dijkstra’s algorithm

[121] or D* Lite [122] can be used to determine a path of travel for the AVEP that spans

multiple edges. The path search algorithm would use the data stored in each PDS object to



86

evaluate each possible route.

Figure 5.5: A more complicated test bed layout with additional nodes and edges, and their
attendant paths.

5.4 Node B Radio Architecture

The NBR is a stand alone radio node based on the SKIRL radio platform described in Section

4.4.1. It is based on the same RF stack that provides radio functionality in the AVEP, but

has no motion capabilities, in hardware or in software. The primary function of the NBR is

to provide a node with which the AVEP can communicate during its operation.

The NBR uses a FSM to switch between three states : “listen”, “receive”, and “transmit”.

The default state is “receive”, where it waits to receive a transmission from the AVEP. When

it receives a packet from the AVEP, it parses the packet header, reading the value of the

flags in the “flags” field, and sending an appropriate reply as necessary. Figure 5.6 shows

the flags available to a NBR in replying to control flags from a NAR.
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If an incoming packet contains the “send stream” flag, the NBR records the packet number

of the incoming packet, and then returns to “receive” state to await another packet. If an

incoming packet contains the “request data” flag, the NBR calculates the total number of

data stream packets it has received since the last update. Before it transmits this informa-

tion back to the NAR, it enters the “listen” state to implement LBT as described in Section

4.5.3.2. When the channel is clear, the NAR enters the “transmit” state and transmits

the data back to the NAR, using the “send data” flag, and returns to the “receive” state.

If an incoming packet contains the “send command” flag, the NBR parses the packet to

determine the new radio configuration to implement. It then enters “listen” before trans-

mitting an acknowledgment to the NAR using the using the “ack command” flag. The NBR

then reconfigures its radio parameters and once again enters the “receive” state to await

communications from the NAR.
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Figure 5.6: Organization of flags field in RF subsystem packet. This figure shows the flags
available to a Node B radio for communication with a Node A radio.
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5.5 Conclusion

This chapter discussed the AVEP operational and control algorithms. I presented the details

of the FSM that controls the overall operation of the AVEP as well as the FSMs that control

the radio and motion subsystems. I also introduced and described the PDS, a graph-based

method for storing data on the AVEP that is particularly suited to multi-domain information.

In this chapter, I tried to fill out the operational details of the AVEP, building on the high

level discussion of hardware and software components in the last chapter. I described in

detail the operation and flow of all aspects of the AVEP, with the intention of providing

insight into how the AVEP was implemented and how it operates. This chapter, when

combined with the last chapter and the information provided in the next chapter, should

provide a comprehensive view of UMDDM, in both theory and application.

The next chapter presents the learning and decision making algorithms that underpin UMDDM.

I discuss the development of the decision making algorithm and its objective functions. I

present two stages of learning, learning the environment, and learning from experience. I

also show how all the steps fit together to provide true UMDDM.



Chapter 6

Learning and Decision Making

6.1 Introduction

This chapter discusses the learning and decision making aspects of this research. The learning

and decision making processes make up the cognitive core of this research, providing intelli-

gent action and introspection for the AVEP. Learning and decision making in the AVEP are

closely entwined; learning feeds decision making, and decision making feeds learning. The

learning and decision making processes presented here are the essence of UMDDM.

Decision making “is the process of selecting a possible course of action from all the available

alternatives,” [123]. Sometimes this is also referred to as reasoning [124]. Clearly the ultimate

point of making a decision—selecting a possible course of action—is actually to act. Decision

making is the process of deciding on a course of action, which is passed to the RF and MOT

subsystems, the system’s actuators.

The Oxford English Dictionary defines the verb “learn” as “to acquire knowledge” specifically

“ as a result of study, experience, or teaching” [125]. However, the concept of what is machine

90
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learning is a moving target. Machine learning is closely tied to artificial intelligence (AI), and

therefore subject to the “odd paradox”, the concept that once AI has solved a problem, that

problem and the corresponding solution no longer belong to the domain of AI [126, 127].

Karen Haigh differentiates between adaptation, where a system can change its behavior

based on current conditions; and learning, wherein a system uses its experience to change

its adaptation methods, effectively adaptive adaptation [127]. In this research, learning is

used in two distinct ways, learning the environment, and learning from experience. Learning

the environment provides information for decision making, while learning from experience

evaluates the decisions and provides feedback to the decision maker.

The AVEP cognitive process implements a cycle similar to Mitola’s cognition cycle [22], and

the observe, decide, and act (ODA) loop [15], and brings to bear the observation noted in

Section 1.1, namely that CRs and AVs perform similar tasks, albeit in different domains:

• Analyze their environment,

• Make and execute a decision,

• Evaluate the result (learn from experience), and

• Repeat as required.

The ODA loop and the observations above are so similar that they can be effectively com-

bined into a single loop, shown in Figure 6.1. The specific cognition process the AVEP uses

Figure 6.1: The ODA loop applied to CR and AV scenarios.

is shown in Figure 6.2.

The remainder of this chapter is organized as follows. Section 6.2 discusses the first aspect
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of learning, learning the environment. Section 6.3 discusses decision making, while Section

6.4 presents the second aspect of learning, learning from experience. Section 6.5 contains

some concluding remarks with a look ahead to the next chapter.

6.2 Learn The Environment

There is a significant body of research that deals with decision making and learning, from

perspectives that include pure AI, economics, child development, CR, and AVs. Much of

what is published deals with the decision making and learning processes themselves, skipping

right over the acquisition of information that supports these processes. The AVEP learn the

environment process is responsible for gathering this information, collecting meter values

during AVEP operation.

The AVEP uses its sensor systems to learn the environment. The AVEP is programmed with

some initial information to jump-start the learning process. This includes path length for

individual paths in the test bed. In the AFRL systems that this research supports, UAVs fly

preprogrammed flight paths, and the AVEP emulates this setup with a priori knowledge of

the test bed paths. Information such as number of targets and anti-targets along the path as

well as RF noise are sensed and stored as the AVEP actually travels the test bed paths. The

mechanics of the environmental learning process are discussed in Section 5.2.1.1, while the

individual sensors used to gather the information are presented in Section 5.2.2. It should

be noted that while the AVEP gathers its initial information during an exploration phase,

Figure 6.2: The cognition cycle used by the AVEP.
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and then moves into an “exploitation” phase (using the information it has obtained to carry

out its operational duties), the AVEP continues to gather environmental information about

its current path of travel during operation. Additionally, the AVEP maintains a record

of the last time it received information about a given path. If the meters corresponding

to a given path have not been updated within a certain number of iterations, the AVEP

switches from operational (or “exploit”) mode to exploration mode, and explores that path

to updates its internal path data. In this manner, the AVEP is able to maintain up-to-date

information about its changing environment, ensuring effective decision making with relevant

information.

6.3 Decision Making

Decision making is the process of choosing an action or outcome from a set of possible ac-

tions or outcomes. Optimization theory often refers to multiple criteria decision making

(MCDM), while CR research often uses multi-objective optimization (MOO), but they both

refer to decision and planning involving multiple conflicting criteria that should be consid-

ered simultaneously [128]. Rondeau uses evolutionary based genetic algorithms (GAs) to

address his MOO problems [70], and this approach has been embraced by researchers in a a

wide variety of application domains, including economics, mechanical engineering, and cryp-

tography [129–131]. Guided search algorithms like GAs are well suited to finding solutions

in large search spaces. Additional techniques that have been investigated for guided search

include simulated annealing [124] and swarming algorithms [132].

Zitzler and Theile present a general formulation for multiple objective optimization problems

in [133], shown in (6.1).
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min/max ȳ = f(x̄) = (f1(x̄), . . . , f1(x̄))

subject to x̄ = (x1, x2, . . . , xm) ∈ X

ȳ = (y1, y2, . . . , yn) ∈ Y (6.1)

That is, we seek to minimize (or maximize) a vector function f that maps a tuple of m input

parameters to a tuple of n output parameters, or objectives. The set x̄ is the set of input

parameters, and ȳ is the of objective values determined by the objective functions. The

set of solutions to a multi-objective problem lie on the Pareto front, which consists of all

the solution sets ȳ which are non-dominated, that is, those sets that cannot be improved in

some dimension without a decrease in some other dimension. Multi-objective optimization

problems are naturally problems in balancing trade-offs [134]. Attempting to minimize both

BER and equivalent isotropically radiated power (EIRP) in the RF domain is a perfect

example. With all other factors held constant, minimizing BER requires increased transmit

power, while reducing transmit power correspondingly drives an increase in BER. In the

MOT domain, for a given travel distance, attempting to minimize both travel time and

vehicle velocity results in the same interplay. Multi-objective optimization balances the

trade-offs, and provides decision making capability in the face of multiple competing decision

criteria.

6.3.1 Objective Functions

This work is the first to combine flexibility in the RF with flexibility in the MOT domain.

To implement this flexibility, any decision making process must take into account both

domains in the objective functions used. In order to clearly show the concept of UMDDM,
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the proof of concept prototype AVEP implements only a few objective functions in total.

As mentioned in Chapter 3, I have chosen to follow the example set by DARPA in the

DRC. Decision making will be based on a variety of factors, including mission success and

completion time. For the RF domain, I have chosen to BER as one objective. BER is a

commonly used metric for evaluating wireless communication systems. I also chose packet

delivery to evaluate RF performance. Packet delivery is based on the concept of goodput

or throughput, and integrates consideration of the chosen MOT metric. The single chosen

MOT objective function is time, the time it takes the AVEP to traverse a single test bed

path. In addition to the RF and MOT objective functions, the AVEP also uses a target/anti-

target objective function to evaluate mission based parameters. The objective functions are

explored in greater detail below.

This section presents the four objective functions used in the AVEP decision making process.

I use the same format used in [70]. For each objective, I list the required knobs, meters, and

other objective functions used in the objective function calculation.

6.3.1.1 Target/Anti-target Score

Dependencies

Knobs: None

Meters: Targets, anti-targets

Objectives: None

I developed the target/anti-target score to incorporate consideration of mission success into

the decision making process. While this work is modeled on AFRL UAV scenarios, I am not

privy to the missions the United States Air Force (USAF) is flying. And although it likely

goes with out saying, I will explicitly state that I do not have access to USAF or AFRL
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UAV mission parameters. As a result, I developed the details of this objective function to

model a plausible UAV mission objective, namely tracking and observing some target while

avoiding some other anti-target. Further, I wished to show a reasonable trade off between the

desirable aspects of the mission (finding targets) and the undesirable aspects of the mission

(encountering anti-targets). Clearly, if the USAF uses a mission objective like this, the

weightings would change based on the specific mission. The risk inherent in encountering a

large number of anti-targets may be considered acceptable in order to complete a high value

mission.

Targets (X) and anti-targets (Y ) are mission-based parameters. They attempt to model

mission priorities. Targets are objects that the AVEP should track, while anti-targets are

objects that the AVEP should avoid, in the course of its mission. During AVEP operation,

targets and anti-targets are represented by colored pieces of cardboard placed along the test

bed paths. As the AVEP travels the path, it records the presence of the targets and anti-

targets as described in Section 5.2.2.2. The target/anti-target score (Z) is an objective that

is used to incorporate mission information into the decision making process. In the scenario

presented in Section 1.4 (second research project), a UAV carrying out a mission might

reasonably be required to find and track a number of targets, while avoiding or minimizing

detection by hostile entities (anti-targets). The Z function (6.2) defines a series of cases for

possible values of X and Y , with instances where X > Y given greater value. Note that

where X ≤ Y , Z ← 0. This incorporates the mission directive to avoid anti-targets. A

graphical representation of the objective function is shown in Figure 6.3, where Z ∼ f(X, Y )

and X ∈ Z, X = {x | 0 ≤ x ≤ 20}, Y ∈ Z, Y = {y | 0 ≤ y ≤ 20}.
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Z =















































































































































0 if X = 0 or X < Y ,

0.2 if X = 1 and Y = 0,

0.2*(X - Y) if 1 < X <= 3 and Y <= (X − 2),

0.15*(X - Y) if 4 < X <= 6 and Y <= (X − 3),

0.2*(X - Y) if 4 < X <= 6 and Y <= (X − 2),

0.2*(X - Y) if X > 6, Y <= (X − 4), and 0.2 ∗ (X − Y ) <= 1.0,

1.0 if X > 6 and, Y <= (X − 4), and 0.2 ∗ (X − Y ) > 1.0,

0.15*(X - Y) if X > 6 and Y <= (X − 3),

0.1*(X - Y) if X > 6 and Y <= (X − 2),

0 otherwise.

(6.2)
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Figure 6.3: Graphical representation of Z objective function as a function of targets and
anti-targets.
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6.3.1.2 Time

Dependencies

Knobs: Rotor power

Meters: None

Objectives: None

Time refers to the length of time required for the AVEP to traverse a given path. The time

required to travel a given distance at constant velocity is given by a standard first semester

physics equation: (6.3):

T = d/v (6.3)

where T is time, d is the distance traveled, and v is the velocity. However in this case,

while the distance traveled along a given path is known, AVEP velocity is not known. The

available system knob is rotor power, and rotor power is controlled through a unitless number

{Protor : 64 > Protor 6 128}. Without further exploration, there is no indication how this

value relates to velocity. I ran repeated tests of the AVEP, driving it along a fixed length

(0.762 meter) path using various rotor power values. Table 6.1 shows the values gathered

during these experiments.

Table 6.1: Rotor power and time measurements for AVEP, used to determine AVEP velocity.

Rotor power Time (sec)

25 6.636803 7.384832 6.820400 7.033324 6.615562
35 6.011670 5.473605 5.078091 4.992305 5.963818
45 4.268262 4.179882 3.975959 4.217389 4.037789
55 4.829124 4.848656 3.488006 3.301235 4.727865
65 4.387924 5.452579 6.348041 6.948240 4.474748
75 5.597478 4.591388 6.627983 6.298144 7.116761

I generated a 3rd-order polynomial equation to fit the data, and a plot of the experimental

data and a 3rd-order polynomial are shown in Figure 6.4. Using the now generated polyno-
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mial, I can determine the expected time to traverse a given distance with using a particular

value of rotor power as input.
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Figure 6.4: Experimentally recorded values of time (to travel a fixed-length path) and req-
uisite AVEP rotor power values, with 3rd order polynomial fit.

While the experimental data and plotted data are valid for a path distance of 0.762 meters

(30 inches), the calculation of the polynomial used in the calculation of objective function

includes some additional steps. Knowing that the distance in the experiment is 0.762 meters,

I divide the experimentally generated time results by the distance to come up with a unit

time value, the time it takes the AVEP to travel a meter using the rotor power value currently

under test (6.4).

t̂ = texp/d (6.4)
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Multiple mathematical calculation packages provide the functionality for generating polyno-

mial fits to data. The numerical Python package NumPy [135] provides the olyfit\end{verb} and \begin{verb}

functions for fitting data with polynomials. The Python code listing below shows how the

polynomial is generated.

import numpy as np

distance = 0.762

t_total = np.array([6.636803, 7.384832, 6.820400, 7.033324, 6.615562,

6.011670, 5.473605, 5.078091, 4.992305, 5.963818,

4.268262, 4.179882, 3.975959, 4.217389, 4.037789,

4.829124, 4.848656, 3.488006, 3.301235, 4.727865,

4.387924, 5.452579, 6.348041, 6.948240, 4.474748,

5.597478, 4.591388, 6.627983, 6.298144, 7.116761])

unit_t = t_total / distance

power = [25, 25, 25, 25, 25,

35, 35, 35, 35, 35,

45, 45, 45, 45, 45,

55, 55, 55, 55, 55,

65, 65, 65, 65, 65,

75, 75, 75, 75, 75]

z3 = np.polyfit(power, unit_t, 3)

poly3 = np.poly1d(z3)

Using the polynomial generated, a simple function can provide the expected time the AVEP

will require to travel a given distance with specified rotor power:

def calculate_time(self, rotor_power, distance):
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unit_time_given_power = self.poly3(rotor_power)

total_time = unit_time_given_power * distance

return total_time

where self.poly3 is the same polynomial calculated previously.

Note that as rotor power increases, the corresponding time first decreases, then starts to

increase again. This is an artifact of the AVEP line-following motion algorithm. High

rotor power causes high AVEP velocity for a very short period of time, but this velocity

immediately goes to 0 when the AVEP moves off the line it follows. The AVEP must stop

and reacquire the line, before starting to move forward again. And because the AVEP is

moving faster when it diverges from its path, it travels farther from the path before stopping,

and takes longer to reacquire the line.

Figure 6.5 shows a graphical representation of the objective function, where T ∼ f(D,Protor)

and D = {1.575, 1.219, 2.223} (m), Protor ∈ Z, Protor = {p | 5 ≤ p ≤ 80}.
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Figure 6.5: Graphical representation of T objective function as a function of path distance
and rotor power.
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6.3.1.3 Bit Error Rate

Dependencies

Knobs: Bit rate, EIRP

Meters: RSSI

Objectives: None

BER is a metric that is commonly used to evaluate the performance of communication

systems. Equations for calculating BER vary according to the type of modulation employed,

as well as the type of channel in use. For the purpose of this research, I have assumed an

additive white gaussian noise (AWGN). The type of modulation employed is dictated by my

choice of the RFM22B RFIC. While the RFIC can use FSK, GFSK, or OOKmodulations, the

AVEP currently only uses FSK. The RFIC data sheet does not provide many details about

the inner workings of the RF modem, therefore in the absence of additional information, I

have assumed that based on the low cost of the RFIC, it employs noncoherent detection.

Sklar [136] provides an equation for calculating BER for noncoherently detected FSK (6.5):

B =

(

1

2

)

e
−

1

2

Eb
N0 (6.5)

where B is the BER, and Eb/N0 is the energy per bit to noise power spectral density ratio.

While Eb/N0 is commonly used in textbooks and theoretical research, it is a difficult con-

cept to use in practical applications and implementations where SNR is easily and readily

determined. Fortunately Sklar [136] also presents the relationship between Eb/N0 and SNR

for binary signals (6.6):

Eb

N0

=
s

n

(

Bw

Rs

)

(6.6)

where s/n is the (linear, non-dB) signal to noise ratio, Bw is the signal bandwidth, and Rs
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is the bit rate.

Due to the non-linear nature of FSK, analysis of FSK spectrum is non-trivial [137], however

one source [138] provides (6.7) for calculating the bandwidth of binary FSK:

Bw = 2

(

fdev +
Rs

2

)

(6.7)

where fdev is the maximum frequency deviation, which can be read from a register on the

RFIC. Through repeated measurements on spectrum analyzer, I found that the bandwidth

can be approximated as Bw = 100 kHz across the full range of RFIC data rates.

A link power budget is used to calculate the received power at a receiving terminal (6.8):

PR = PT +Gantenna − Lp − Lmisc (6.8)

where PR is the power level at the receiver, PT is the power level at the transmitter or EIRP,

Gantenna is the antenna gain, Lp is the path loss, and Lmisc represents miscellaneous losses

not accounted for elsewhere. In this work, I have assumed that Gantenna = 0 and Lmisc = 0.

The modified link budget is shown in (6.9).

PR = PT − Lp (6.9)

Pratt, Bostian, and Allnutt present a detailed discussion of path loss in [139]. Path loss

is dependent on both frequency and distance, and it would be difficult to calculate path

loss with any degree of accuracy without knowing if mulitpath or shadowing are present.

However, I can empirically determine a value for path loss in the test bed experiments

through repeated measurements. I determined that the path loss experienced by the AVEP

is Lp ≈ 90 dB.
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A noise power budget can be used to calculate noise power; however I have approximated

the noise power using RSSI measurements. RSSI can be read from a register on the RFIC.

The RFIC data sheet provides a figure that graphs the relationship between input power in

dBm and RSSI [45]. Using the table, I derived a simple linear equation for input power and

RSSI (6.10).

Pin =

(

RSSI − 125.0

2.0

)

− 60.0 (6.10)

Using (6.10), and reading RSSI values in the absence of any input signal, I have approximated

the noise power as N = −92 dBm.

With all the pieces now in place, I can calculate the BER the AVEP can expect to experience

along a particular path in the test bed, as shown in the code listing below:

def calculate_ber(self, EIRP, Rs, Noise, Lp):

rate_list = [2e3, 2.4e3, 4.8e3, 9.6e3, 19.2e3, 38.4e3, 57.6e3, 125e3]

idx = rate_list.index(Rs)

fd_list = [2e3, 2.4e3, 4.8e3, 9.6e3, 19.2e3, 38.4e3, 57.6e3, 125e3]

fd = fd_list[idx]

Bw = 2*(fd + Rs/2)

SNR = EIRP - Lp - Noise

snr = 10.0**(SNR/10.0)

ebn0 = snr*Bw/Rs

Pb = (0.5)*np.exp((-0.5*ebn0))

return Pb

Figure 6.6 shows the standard BER vs. Eb/N0 curve for noncoherent FSK, called a waterfall

curve. Figure 6.7 shows the resultant Eb/N0 values as a function of SNR in dB and Rs in

kbps.
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Figure 6.6: BER waterfall curve for noncoherent FSK.



108

1
2

3
4

5
0

50
100

150

0

5

10

15

20

25

Rs (kbps)
SNR (dB)

E
b/

N
0 

(d
B

)

Figure 6.7: Eb/N0 values as a function of SNR and Rs.



109

Combining Figures 6.6 and 6.7 into a single plot, Figure 6.8 where B ∼ f(SNR, Rs) and

SNR ∈ R, SNR = {x | 1 ≤ x ≤ 15} (dB), Rs = {2.4, 4.8, 9.6, 19.2, 38.4, 57.6, 125} (kbps).
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Figure 6.8: Graphical representation of B objective function as a function of SNR and Rs.
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6.3.1.4 Packet Delivery

Dependencies

Knobs: Bit rate

Meters: None

Objectives: Time

Packet delivery measures the number of packets that can be transmitted by the AVEP while

it traverses a single test bed path. The time it takes for a single packet to be transmitted

and arrive at the other end of a link is given by (6.11):

tpacket =
dprop
c

+
lpkt
Rs

(6.11)

where dprop is the propagation distance, c is the speed of light, , lpkt is the length of the

transmitted packet (number of bits) and Rs is the bit rate. The term dprop/c represents the

propagation delay, or the time it takes a signal to travel from one point to another through

the air. The term lpkt/Rs represents the transmission delay, or the amount of time it takes

to transfer all the bits of a packet on to the medium. Leon-Garcia and Widjaja refer to this

as block transmission time [140].

In the case of repeated transmissions, system latency must be considered. System latency

is the delay that occurs before the system can send another packet after it has completed

transmitting a packet. System latency arises when the system must handle other tasks before

it can resume sending packets. In the case of the AVEP, the system is managing sensor

information as well as the MOT subsystem in addition to the RF subsystem, so system

latency is nontrivial. However, I have defined packet delivery as the number of packets that

can be transmitted by the AVEP while it traverses a single test bed path. This definition
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allows me to remove the time it takes to receive the packet from the calculation. In fact,

the time required to transmit packets is simply a function of the transmitter: how fast it

can move the bits on to the medium, and how long it takes before it can repeat the process.

Therefore, the total number of packets the AVEP can transmit during a single path traverse

is equal to the time it takes to traverse the path divide by the time it takes the AVEP to

transmit the packets (6.12):

G =
T

tsys +
lpkt
Rs

(6.12)

where G is packet delivery, T is time, as calculated in 6.3.1.2, and tsys is the system latency.

Packet delivery is similar to throughput or goodput, common metrics used to evaluate wire-

less network performance. While BER is a measure of RF performance in a particular

channel, packet delivery formulated in this manner implicitly ties together MOT and RF

parameters.

Figure 6.9 shows a graphical representation of the G objective function, where G ∼ f(T,Rs)

and T ∈ R, T = {t | 0 < t ≤ 50}, Rs = {2.4, 4.8, 9.6, 19.2, 38.4, 57.6, 125} (kbps).
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6.3.2 Decision Making Process

The decision making process starts off with generating a solution space. This solution space

contains all the possible solutions the AVEP can implement at a given moment.

The decision maker module uses the system knobs and meters to calculate the objectives

according to the equations in 6.3.1. A complete solution space is a list of solutions, where

each element in the list is itself a list with objective values as elements (6.13),

S = [[Z1, T1, B1, G1],

[Z2, T2, B2, G2],

...
...

...
...

[Zn, Tn, Bn, Gn]]

(6.13)

where S is the solution space, and Si = [Zi, Ti, Bi, Gi] is an individual solution. The solution

space is generated by looping through all possible values of the input parameters, including

the knobs and meters, and calculating each objective value in turn. This is feasible because

the solution space is rather small in this case, only 1152 solutions. At the same time that

the decision maker generates the solution space, it also creates a corresponding parameter

space param, where parami is a Python dictionary containing the input parameters that

result in solution Si.

The decision maker uses a nondominated sort to generate a population of suitable solutions.

A vector x dominates vector y if no value of x is less than y and one value of x is strictly

greater than y. In a collection of vectors, any one vector that is not dominated by any other

vector in the collection is nondominated. The optimal solutions to a MOO problem are the

nondominated solutions, also known as the Pareto-optimal solutions [141]. A nondominated

sort is a tool used in MOO to determine which members of a population best satisfy a
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MOO problem. A large number of MOO problems are not expressed in terms of a common

metric. Rapoport discusses the difficulty of dealing with multifaceted problems even when

the problem can be expressed in terms of a single parameter, let alone problems that can not

be boiled down to a common metric [134]. Nondominated sort is one effective way for dealing

with exactly these types of complex problems, by ranking populations according to how the

components of individual members compare to the same components of other members in

the population. The nondominated sorting method is used in the nondominated sorting

genetic algorithm (NSGA) presented by Srinivas and Deb in [141]. As noted previously, the

decision making solution space is relatively small, and a guided search method such as a

GA is not required for effective search. Shi, Chen, and Shi isolated the nondominated sort

algorithm in the NSGA [142], and I have used it to do a population based multi-objective

sort on the search space.

The nondominated sort algorithm generates a list of nondominated results, as shown in

[141, 142], from which a single solution is randomly selected for implementation by the

AVEP. However nondominated does not necessarily mean “good”. Controlled experiments

have shown that, given the right objective function inputs, is possible that one or more

nondominated solution exist where Z = 0 or B ≈ 0.5. Clearly, these are not “good” values.

And yet, in certain cases, these values show up in the nondominated results. This is where

system policy comes into play.

Policy is often used to implement legal or procedural limits on CR operation [60, 143]. In

this case, policy is used to indicate minimum and maximum desired values for individual

solution objectives. The policy file contains the following lines:

min_z = 0.1

max_ber = 0.25
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notifying the decision maker it is to select solutions that have a minimum Z value of 0.1,

and a maximum B value of 0.25. When the decision maker selects a value at random from

the current Pareto front, it checks the solution against the policy. If an objective value does

not satisfy the policy, the decision maker chooses another solution and repeats the check.

The first nondominated solution that satisfies the policy is the solution that the AVEP will

implement. The decision maker returns the solution and the corresponding parameters to

the AVEP controller for implementation. If the decision maker is unable to select a solution

that meets the AVEP requirements and policy restrictions, the AVEP will use a solution

that is not fully compliant with the policy generate a new solution on the next iteration.

6.4 Learn From Experience

The second aspect of learning is to learn from experience, where the AVEP modifies its

current behavior based on its previous behavior. The decision maker calculates a score for

each solution in the solution space. The score is a weighted sum of the objective values in

a single solution, resulting in a single value for each solution in the solution space. Ron-

deau mentions several scoring methods for multi-objective optimization problems, including

the weighted-sum approach, the linear-logarithmic function, and the constant-elasticity-of-

substitution function. Considerable work can go into choosing the coefficients that weight

individual scores in each method [70]. For the sake of simplicity, I have chosen to use a

weighted-sum approach, described below, where the weights for each value to be summed

are equal to 1. While the weight value was also chosen for the sake of simplicity, the ulti-

mate justification is that the weighted-sum method using unity weights achieves the desired

results, as shown in Chapter 7.

For a solution space, the scoring function normalizes objective values in the solution space
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so that they are each scaled (0, 1), that is, F = {f | 0 ≤ f ≤ 1}, where F is an objective

value in the solution space. (This scaling process is not actually performed on the Z values,

as the Z objective function is defined such that Z = {z | 0 ≤ z ≤ 1}.)

With all the values in the solution space normalized, a single score for a solution [Z, T , B,

G] can be generated. Recalling that I wish to minimize the bit error rate and the time of

travel along a path, and maximize the packet delivery and target/anti-target value, (6.14)

is a reasonable and simple method of scoring the solutions in the solution space:

S = Z − T − B +G (6.14)

where S is the solution score. This score is returned to the AVEP along with the solution

itself and the solution parameters, where it is used in the second stage of the learning

process. The second stage learning process is designed to provide AVEP learning in the

mode of machine learning or cognition. While the decision maker provides decision and

action functions, the second stage learning provides context to the decisions. Second stage

learning provides the adaptive adaptation that differentiates cognitive systems from simply

adaptive systems according to Haigh [127].

The second stage learning process uses the solution score to determine whether to apply

the current solution, or use a different solution. The nondominated sort generates a set of

nondominated solutions, any of which may be suitable for AVEP operation. The solution

score attempts to provide so method of comparing solutions from one iteration to the next.

When the decision maker returns a solution and a score, the AVEP controller compares

the current score with the score associated with the most recently implemented solution.

If the current score is higher than the previous score, or if there is no previous score, then

the AVEP implements the current solution. But if the current score is not higher than
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the previous score, and the previous solution is still valid (that is, if the environment in

which the previous solution was generated has not changed), then the AVEP will reuse the

previously generated solution. Thus the AVEP can choose to implement a solution returned

by the decision maker if the solution provides an improvement in performance as indicated

by the solution score, or the AVEP can choose to use a solution that provided satisfactory

performance previously.

In addition to allowing the AVEP to incrementally increase the effectiveness of AVEP per-

formance, the second stage learning process provides a level of persistence to the decision

making process. The decision maker operates only on the information it has on hand, the

meters recorded as the AVEP traverses each path. But the second stage learning provides

context for those decisions. The AVEP can compare solutions from different iterations,

different points in time, and choose which one to ultimately implement.

However, there is a risk associated with using the previous solution if the current solution

does not have a high score. The AVEP reads environmental meters as it traverses a path. If

the AVEP continually uses the previous solution, it is continually traversing the same path,

and any changes occuring on other paths remain unobserved. Therefore, the AVEP keeps

track of the number of times it dispenses with the current solution in favor of the previous

solution. When this occurs a certain number of times (currently the threshold is set at 5),

the AVEP automatically explores the other paths to record the path meters. After this

re-exploration process, the AVEP goes back to generating and implementing solutions, now

with up to date information.
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6.5 Conclusion

This chapter presented the learning and decision making algorithms I implemented for

UMDDM. The learning and decision making processes make up the cognitive core of this

research, providing intelligent action and introspection for the AVEP. I discussed the manner

in which the AVEP learns the environment, which provides information used in the decision

making process. The decision maker generates solutions for the AVEP to implement, and

provides a solution score that the AVEP uses for a second stage of learning, learning from

experience. This second stage of learning provides the AVEP with the capabilities to modify

its behavior based on its current and previous performance.

This chapter concludes the discussion of UMDDM algorithms and AVEP implementation

details. I have attempted to provide a comprehensive discussion of the ideas behind this

research, through a detailed presentation of the AVEP system components, the AVEP control

algorithms, and the UMDDM learning and decision making algorithms.

The next chapter presents experimental results in two sections, software-based simulation,

and robot-deployed live tests. I will verify that the decision making process works for individ-

ual objective functions, then verify the results when considering all four objective functions

together. I will conduct the tests first by software simulation, then again in live tests.



Chapter 7

Experimental Results

7.1 Introduction

This chapter presents AVEP experimental tests and results. The experiments are divided

into two sections, software-based simulation, and robot-deployed live tests.

As noted previously in this dissertation as well as by others [70, 85], there is a lack of

standardized experimental procedures or metrics for CR. My work combining CR and AV

research further highlights this situation. In order to validate the experimental results, I will

start simply and build up. As noted in 3.6, the AVEP objective functions are target/anti-

target score (Z), travel time (T ), bit error rate (B), and packet delivery (G). I will verify

that the decision making process works for individual objective functions; that is, I will

isolate an individual objective function and show that the decision making process returns a

solution that makes sense when the objective function is the only one considered [88]. The

next step is to evaluate the results when considering all four objective functions together. I

will evaluate the full decision making process over many iterations, in scenarios representing

119
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static environments, a simple dynamic environment (environment changes once during the

scenario), and rapidly changing dynamic environments (values can change dramatically from

iteration to iteration).

The remainder of this chapter is organized as follows. Section 7.2 presents the details of

software simulation, while Section 7.3 deals with the results from the live tests. Section 7.4

summarizes and presents concluding remarks.

7.2 Simulation Results

The simulation results are generated in software. I use the same modules for simulation

as those deployed on the AVEP. The simulation controller employs the same FSM as the

AVEP controller (Section 5.2.1.1), but while the AVEP employs actual environmental and

RF sensing, the simulation uses a pre-generated set of environmental parameters (X, Y ,

and Noise) that are fed to the simulation controller during every iteration. The simulation

controller feeds the values to the decision maker, which generates a solution space and returns

a solution to the simulation controller. The simulation controller also implements the second

stage learning process, as discussed in Section 6.4.

7.2.1 Individual Objective Functions

I first demonstrated the effectiveness of the decision making process in [88]. I isolated a

single objective and showed that the system was able to make an appropriate choice, and I

reproduce the results here.

The three lines below reproduce the Python dictionaries that store the solution parameters

generated during the decision making process.
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{’dist’:62.0, ..., ’Z’: 0.0, ...}

{’dist’:48.0, ..., ’Z’: 0.40, ...}

{’dist’:87.5, ..., ’Z’: 0.599, ...}

These results were generated when the decision maker was asked to choose a solution that

maximizes the Z score. Each dictionary represents a different test bed path, and the RF

and MOT parameters the AVEP would implement while traversing the path. Of the three

possible paths, the decision making process chose the third, the path with the highest Z

score.

When the decision maker was asked to choose a solution that minimized the time, T , the

second path was chosen. Clearly, in the absence of any other considerations, the path with

the shortest length will result in the shortest travel time.

{’dist’:62.0, ’T’:8.967, ..., ’rotor power’: 50.0, ...}

{’dist’:48.0, ’T’:6.942, ..., ’rotor power’: 50.0, ...}

{’dist’:87.5, ’T’:12.655, ..., ’rotor power’: 50.0, ...}

Tasked with minimizing the B objective, BER, the decision maker selected a solution that

uses high transmit power and low data rate. This is a “pure” RF solution, i.e., the choice of

solution in this case requires no consideration of MOT parameters. In this case, the choice of

path has no impact, as the solution parameters are the same for each path, and the decision

maker selected the first path.

{..., ’Rs’:2000.0, ’B’:0.0, ..., ’EIRP’:17.0, ...}

{..., ’Rs’:2000.0, ’B’:0.0, ..., ’EIRP’:17.0, ...}

{..., ’Rs’:2000.0, ’B’:0.0, ..., ’EIRP’:17.0, ...}

The final objective function the decision maker optimized in isolation was packet delivery,
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maximizing G. The decision maker used a high bit rate while driving the rotor power (and

therefore the AVEP speed) down to increase the time available to transmit the packets. This

combination of RF and MOT parameters, implemented on the longest path in the test bed

(the third path) resulted in the best results for G. This clearly shows the coupled nature of

RF and MOT parameters, and is a simple example of why I am considering RF and MOT

together.

{’dist’:62.0, ’T’:14.5, ’Rs’:57600.0, ..., ’rotor power’: 25.0, ’G’:45}

{’dist’:48.0, ’T’:11.2, ’Rs’:57600.0, ..., ’rotor power’: 25.0, ’G’:35}

{’dist’:87.5, ’T’:20.4, ’Rs’:57600.0, ..., ’rotor power’: 25.0, ’G’:64}
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7.2.2 Multi-domain Decision Making in a Static Environment

The next step is to evaluate the full UMDDM process in a static environment, i.e., an

environment that does not change from iteration to iteration. The environment for an

iteration is established by fixing the meters for each path that the decision maker will use

in the decision making process. The parameters used for this analysis are shown in Table

7.1. The X and Y are values that are reproducible in the test bed, while the Noise value

represents the empirically determined value as discussed in Section 6.3.1.3.

Table 7.1: Environmental parameters (meters) used in evaluating UMDDM in a static envi-
ronment.

Path Targets X Anti-targets Y Noise (dBm)

A 5 1 -92
B 3 0 -92
C 5 3 -92

I ran the decision maker through 20 iterations, simulating the choices the AVEP would make

if it traveled around the test bed 20 times. The results are shown in Table 7.2. The table

highlights several different aspects of the decision making and learning process. The “Mode”

column shows whether the AVEP is actively communicating while traversing its chosen path

(“Exploit”), or whether it is exploring the path environment to ensure up-to-date meter

values (“Explore”). Notice that the second stage learning process ensures that the AVEP

does not spend all its time exploiting the best path at the expense of exploring the other

paths. Rather, the second stage learning process ensures that the AVEP does maintain up-

to-date meter readings by periodically re-exploring other paths. Also note that the solution

scores never decrease. Over the course of an entire operational session, the score increases,

indicating that the AVEP is incrementally improving its performance over the long term.

The first three iterations of the operational session are used to explore each of the three

paths. Iteration four is the first time the decision maker must generate a solution and
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Table 7.2: Results of UMDDM decision making simulation in a static environment over 20
iterations.

Iteration Path traversed Mode New/Prev solution Solution score

1 A Explore N/A N/A
2 B Explore N/A N/A
3 C Explore N/A N/A
4 C Exploit New solution 0.2319
5 A Exploit New solution 0.5874
6 A Exploit Prev solution 0.5874
7 A Exploit Prev solution 0.5874
8 A Exploit Prev solution 0.5874
9 A Exploit Prev solution 0.5874
10 B Exploit New solution 0.6013
11 B Exploit Prev solution 0.6013
12 A Explore N/A N/A
13 C Explore N/A N/A
14 B Exploit Prev solution 0.6013
15 B Exploit Prev solution 0.6013
16 B Exploit Prev solution 0.6013
17 B Exploit Prev solution 0.6013
18 B Exploit Prev solution 0.6013
19 A Explore N/A N/A
20 C Explore N/A N/A
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parameters to implement. While new solutions are generated each iteration that the AVEP

is not exploring, in this scenario, the AVEP implements the new solutions on iterations 4, 5,

and 10. Table 7.3 shows the solutions generated by the decision maker for those iterations.

The trade-offs inherent in choosing one nondominated solution over another are clear. From

iterations 4 to iteration 5, T is decreased as desired, and Z is increased (also desirable), but

at the cost of a decrease in G.

Table 7.3: Solutions generated by decision maker on iterations 4, 5, and 10, and the scores
associated with each solution.

Iteration Z T B G Score

4 0.4000 13.0587 0 31 0.2319
5 0.5999 9.2530 0 29 0.5874
10 0.6000 7.4189 0 24 0.6013

Table 7.4 shows the parameters that AVEP uses to implement the solutions shown in Table

7.3 above. The differences and trade-offs between solutions are more obvious here. The

AVEP starts out on the longest path, but as it switches to shorter paths, it increases the bit

rate and reduces its motive power slightly to maintain a reasonable value for packet delivery.

This scenario is a perfect example of how MOT and RF parameters can be exchanged to

ensure mission success.

Table 7.4: Parameters associated with solutions shown in Table 7.3.

Iteration Path Length (m) Rs (kbps) EIRP (dBm) Rotor power

4 C 2.223 9.6 17.0 55
5 A 1.575 57.6 17.0 55
10 B 1.219 125.0 17.0 40

The nondominated sort algorithm generates a front with 154 members (out of a solution

space with 1152 members). Using UMDDM, the AVEP uses an optimal solution every time

it must make a decision. For comparison, I used Python’s random number generator to gen-

erate 50 uniformly distributed samples from the solution space, and none of the randomly
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selected solutions was present in the nondominated solution set.1 Clearly UMDDM provides

better results than selecting operational parameters at random. UMDDM also implements

intelligent adaptation, using the second stage learning, which provides incremental improve-

ment in operational performance over time. This is highlighted by the increasing score,

recorded in Tables 7.2 and 7.3.

It should be noted with that with the environmental parameters set as noted in Table 7.1,

and with the available set of knobs, the BER will always be 0. Figure 6.8 shows that for a

wide range of RS values, the B value (BER) is effectively 0 for SNR values greater than 5

dB. If I increase the Noise value in the simulated environment to −82 dBm, this will generate

some variability in B values in the solutions space generated by the decision maker. Table

7.5 shows the results of running the simulation again with the higher noise value. There is

nothing significant to observe in this table as compared to Table 7.2, but I have included the

information for the sake of completeness.

Table 7.6 shows the solutions generated by the decision maker and implemented by the

AVEP in the scenario where the simulated environment has noise N = −82 dBm. Note

that the higher noise does result in variability in the B values. Again, the trade-offs are

clear when choosing one nondominated solution over another. For example, from iteration

6 to 10, the T value worsens (time increases) while the B value improves (BER decreases).

From iteration 10 to 14, the T value improves, while the B value worsens. Table 7.7 shows

the parameters used to implement the solutions in this scenario. As in the previous static

scenario, the decision maker generates solution with maximum EIRP. The decision maker

seeks to minimize B, and this can be done by driving the transmit power up. In this

working proof of concept prototype, I implemented only 4 objective functions that clearly

1I used the “random” module from the Python Standard Library. I used a seed of 0 for repeatability,
and generated a list of 20 values using the following code: [random.randint(0, 1151) for i in range(50)]. I
compared each of the values in the list with the values in the nondominated solution and recorded which
ones, if any, were common in both. There were no common values.
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Table 7.5: Results of UMDDM decision making simulation in a static environment with
N = −82 dBm.

Iteration Path traversed Mode New/Prev solution Solution score

1 A Explore N/A N/A
2 B Explore N/A N/A
3 C Explore N/A N/A
4 B Exploit New solution 0.4256
5 B Exploit Prev solution 0.4256
6 B Exploit New solution 0.5295
7 B Exploit Prev solution 0.5295
8 B Exploit Prev solution 0.5295
9 B Exploit Prev solution 0.5295
10 B Exploit New solution 0.5726
11 B Exploit Prev solution 0.5726
12 A Explore N/A N/A
13 C Explore N/A N/A
14 B Exploit New solution 0.5750
15 B Exploit New solution 0.5846
16 B Exploit Prev solution 0.5846
17 B Exploit Prev solution 0.5846
18 B Exploit Prev solution 0.5846
19 B Exploit Prev solution 0.5846
20 B Exploit Prev solution 0.5846
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show the multi-domain aspects of UMDDM. There are methods to reduce the tendency to

drive input parameters to their maximum values, such as including the parameter as an

objective function [70,144] or penalizing solutions that result in high transmit power [145].

Table 7.6: Solutions generated by decision maker for simulated environment where N = −82
dBm.

Iteration Z T B G Score

4 0.6000 8.2233 0 15 0.4256
6 0.6000 9.4762 0.0209 30 0.5295
10 0.6000 9.8670 1.6111e-5 30 0.5726
14 0.6000 9.4762 5.0631e-4 29 0.5750
15 0.6000 7.4189 5.0631e-4 23 0.5846

Table 7.7: Parameters associated with solutions shown in Table 7.6.

Iteration Path Length (m) Rs (kbps) EIRP (dBm) Rotor power

4 B 1.219 4.8 17.0 35
6 B 1.219 125 17.0 30
10 B 1.219 38.4 17.0 75
14 B 1.219 57.6 17.0 30
15 B 1.219 57.6 17.0 40
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7.2.3 Multi-domain Decision Making in a Simple Dynamic Envi-

ronment

To evaluate UMDDM in a simple dynamic environment, I generated a scenario that changed

the parameters of Path B at iteration 10, as noted in Table 7.8.

Table 7.8: Environmental parameters (meters) used in evaluating UMDDM in a simple
dynamic environment.

Iterations Path Targets X Anti-targets Y Noise (dBm)

A 5 1 -82
1-10 B 3 0 -82

C 5 3 -82
A 5 1 -82

11-20 B 0 0 -82
C 5 3 -82

The results of this test scenario are shown in Table 7.9. The AVEP uses the second stage

learning to increase the score on iterations 4 and 6, but the score drops again on iteration 13.

This reflects the change in the environment that occurs on iteration 11; however, this change

is not registered until iteration 13. During iteration 13, the AVEP traverses path B and

updates its internal information. This updated information is incorporated into the learning

process, and a new solution space is generated. The selected solution has a lower score

than the previously implemented solution, but the AVEP recognizes that the environment

in which the previous solution was generated no longer exists, and the previous solution is

not relevant. As before, the AVEP periodically re-explores paths that have not been recently

traversed, in order to maintain up to date information for effective decision making.

Table 7.10 shows the solutions generated by the decision maker and implemented by the

AVEP in this scenario, which simulates a slowly changing dynamic environment. Once

again, it is possible observe the trade-offs associated with selecting a solution from multiple
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Table 7.9: Results of UMDDM decision making simulation in a simple dynamic environment
over 20 iterations.

Iteration Path traversed Mode New/Prev solution Solution score

1 A Explore N/A N/A
2 B Explore N/A N/A
3 C Explore N/A N/A
4 B Exploit New solution 0.5211
5 B Exploit Prev solution 0.5211
6 B Exploit New solution 0.5819
7 B Exploit Prev solution 0.5819
8 B Exploit Prev solution 0.5819
9 B Exploit Prev solution 0.5819
10 B Exploit Prev solution 0.5819
11 A Explore N/A N/A
12 C Explore N/A N/A
13 B Exploit Prev solution 0.5819
14 A Exploit New solution 0.5408
15 A Exploit Prev solution 0.5408
16 A Exploit Prev solution 0.5408
17 A Exploit Prev solution 0.5408
18 A Exploit Prev solution 0.5408
19 B Explore N/A N/A
20 C Explore N/A N/A
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nondominated solutions. From iteration 4 to iteration 6, the T value is improved, while

the B and G values decline (BER increases and packet delivery is reduced). From iteration

6 to iteration 10, the T and B values improve, while the G value again decreases. Table

7.11 shows the parameters associated with each implemented, and a corresponding trade-off

between parameters can also be observed.

Table 7.10: Solutions generated by decision maker in a simple dynamic environment, and
the scores associated with each solution.

Iteration Z T B G Score

4 0.6000 11.2310 5.1918e-10 31 0.5211
6 0.6000 7.4189 5.0631e-4 28 0.5819
14 0.5999 8.2233 5.1918e-10 25 0.5408

Table 7.11: Parameters associated with solutions shown in Table 7.10.

Iteration Path Length (m) Rs (kbps) EIRP (dBm) Rotor power

4 B 1.219 19.2 17.0 25
6 B 1.219 57.6 17.0 70
14 A 1.575 19.2 17.0 50
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7.2.4 Multi-domain Decision Making in a Highly Dynamic Envi-

ronment

I created a randomly generated scenario to test the AVEP decision making and learning

performance in a highly dynamic environment. Table 7.12 shows the meters for the first 10

iterations of this scenario. This scenario represents situations where the AVEP encounters a

rapidly changing environment. Such situations might arise as a result of high speed operation

or extremely hostile environments.

The results of this test scenario are shown in Table 7.13. In this scenario where the environ-

ment changes dramatically with every iteration, the AVEP implements a new solution every

iteration and is unable to use previous solutions in a attempt to increase its performance

from one iteration to the next, as indicated by the solution score. While the AVEP does

seek to maintain high performance by selecting nondominated solutions from the solution

space generated by the decision maker, the AVEP does not “chase” a single best solution.

Newman et al. have shown that a system which changes operationally parameters in re-

sponse to environmental cues too readily can be “herded” or exploited, guided to operate

in a manner beneficial to external agents [146]. As the AVEP makes decisions based only

on the information is has gathered, it is possible that in a highly dynamic environment, the

AVEP will miss some opportunities, such as the extremely beneficial environment offered by

path C on iteration 9. On the other hand, the AVEP continues to operate even while in

a hostile environment, such as that of path C on iteration 4. The AVEP seeks to improve

performance after every iteration, whether in a favorable or hostile environment.

Table 7.14 shows the solutions generated by the decision maker and implemented by the

AVEP in this scenario, which simulates a rapidly changing dynamic environment. Once

again, it is possible observe the trade-offs associated with selecting a solution from multiple
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Table 7.12: Environmental parameters (meters) used in evaluating UMDDM in a highly
dynamic environment.

Iterations Path Targets X Anti-targets Y Noise (dBm)

A 6 7 -87.1
1 B 8 7 -83.1

C 3 0 -76.7
A 3 8 -75.5

2 B 10 3 -71.5
C 1 1 -83.1
A 6 4 -90.7

3 B 5 6 -68.3
C 6 8 -98.2
A 9 10 -85.5

4 B 9 6 -86.5
C 0 7 -60.11
A 9 2 -78.6

5 B 5 3 -76.0
C 9 4 -87.6
A 0 5 -77.7

6 B 9 6 -77.8
C 9 2 -98.2
A 6 1 -86.9

7 B 2 3 -81.8
C 5 4 -76.9
A 0 6 -81.6

8 B 1 1 -82.3
C 3 5 -76.9
A 1 6 -80.0

9 B 7 5 -69.5
C 10 2 -86.8
A 4 2 -81.6

10 B 5 5 -91.7
C 10 7 -85.0
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Table 7.13: Results of UMDDM decision making simulation in a highly dynamic environment
over 10 iterations.

Iteration Path traversed Mode New/Prev solution Solution score

1 A Explore N/A N/A
2 B Explore N/A N/A
3 C Explore N/A N/A
4 C Exploit New solution 0.0002
5 A Exploit New solution -0.0372
6 A Exploit New solution 0.7539
7 B Exploit New solution 0.7901
8 A Exploit New solution -0.1051
9 A Exploit New solution -0.2588
10 B Exploit New solution -0.2849

nondominated solutions. This scenario presents instances where selected solutions are not

fully policy compliant (Z < 0.1 for iterations 4, 5, 6, 8, and 9). While the decision maker

does generate every possible solution in the solution space, it does not exhaustively search

the solution space for a solution. Instead, the decision maker uses the nondominated sort to

select a suitable subsection of the entire population, and makes an effort to choose a solution

that satisfies policy. But if the decision maker is unable to find a compliant solution, the

decision maker will return a solution that is not compliant with policy. This avoids a deadlock

state, searching for a nondominated solution that satisfies policy which may not exist. On

the other hand, the decision maker may miss solutions that are compliant and return a

non-complaint solution. I have chosen to accept this trade off, as the result is a system that

is robust and stable in the face of hostile environments with limited solution possibilities:

implementing a non-compliant solution ensures that AVEP operation actually continues, and

with limited delay.

In this highly dynamic environment, the second stage learning process is unable to improve

performance from one iteration to the next through the use of previously implemented so-

lutions; in this scenario, previous solutions are never applicable as the environment along
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every path changes with every iteration. In this case, the AVEP is intelligent enough not to

use previous results while the environment is rapidly changing. Yet if the environment were

to settle, the AVEP would then apply the second stage learning process and seek iterative

improvement using previously implemented solutions. Table 7.15 shows the parameters that

correspond to the solutions generated and implemented in this scenario.

Table 7.14: Solutions generated by decision maker in a highly dynamic environment, and
the scores associated with each solution.

Iteration Z T B G Score

4 0.0 17.9867 0 58 -0.1208
5 0.0 12.2401 0 37 -0.0228
6 0.0 13.8606 1.6038e-5 44 0.2599
7 1.0 9.8670 3.3715e-4 18 -0.0372
8 0.0 14.5068 8.8464e-11 48 -0.0393
9 0.0 12.7449 0 24 -0.0057
10 1.0 9.8670 2.2734e-7 13 -0.1060

Table 7.15: Parameters associated with solutions shown in Table 7.14.

Iteration Path Length (m) Rs (kbps) EIRP (dBm) Rotor power

4 C 2.223 125.0 17.0 75
5 A 1.575 38.4 17.0 30
6 A 1.575 125.0 17.0 80
7 B 1.219 4.8 17.0 75
8 A 1.575 57.6 17.0 25
9 A 1.575 4.8 17.0 75
10 A 1.575 2.4 17.0 75
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7.3 Live Test Results

In this section, I present the results from the live tests conducted using the AVEP on the

test bed. I will evaluate the full decision making process over many iterations, in scenarios

representing static environments, a simple dynamic environment (environment changes once

during the scenario), and rapidly changing dynamic environments (values can change dra-

matically from iteration to iteration). Figure 7.1 shows the AVEP in operation during one

of the live test experiments.

Figure 7.1: AVEP in operation during a live test experiment.

7.3.0.1 Live Multi-domain Decision Making in a Static Environment

This scenario mirrors the software simulation of the full UMDDM process in a static envi-

ronment. The environment for an iteration is established by fixing the meters for each path
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that the decision maker will use in the decision making process. The parameters used for

this analysis are shown in Table 7.16. Notice that these are the same values as in Table

7.1. The X and Y are values that fixed by using pieces of colored paper on a given test bed

path. The Noise value is a close approximation of the Noise value seen by the receiver while

operating in the test bed.

Table 7.16: Environmental parameters (meters) used in evaluating live UMDDM in a static
environment.

Path Targets X Anti-targets Y Noise (dBm)

A 5 1 -92
B 3 0 -92
C 5 3 -92

Test bed experiments are run in real time in the test bed, and as a result take much longer

to complete than the software simulations. I ran the test bed experiments for 10 iterations,

and changed the threshold that controls the re-exploration of alternative paths from 5 to

3. In this manner, I still show all the details of the decision making and learning processes,

while completing the experiments in a reasonable time. Table 7.17 shows the results from a

live test bed experiment in a static environment.

Table 7.17: Results of live UMDDM in a static environment over 10 iterations.

Iteration Path traversed Mode New/Prev solution Solution score

1 A Explore N/A N/A
2 B Explore N/A N/A
3 C Explore N/A N/A
4 C Exploit New solution 0.3648
5 A Exploit New solution 0.5713
6 A Exploit Prev solution 0.5713
7 A Exploit Prev solution 0.5713
8 A Exploit Prev solution 0.5713
9 B Explore N/A N/A
10 C Explore N/A N/A

During live tests, the AVEP uses the first three iterations to explore the environment, record-
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ing the number of targets and anti-targets along each path, and recording the noise level

observed by the RFIC while traversing each path. As with the software simulations above,

the decision maker generates a new solution on iteration 4. On iteration 5, the AVEP again

uses a new solution, but continues to use that solution on iterations 6, 7, and 8. From

iteration 4 to 5, the score increases, indicating that the AVEP is incrementally improving its

performance over the long term. The second stage learning process ensures that the AVEP

maintains up to date information. After three iterations using the same previous solution,

the AVEP switches from “Exploit” to “Explore” mode and re-explores paths B and C to

obtain up to date information.

Table 7.18 shows the solutions generated by the decision maker and implemented by the

AVEP on iterations 4 and 5 during the live experiments in a static environment. As men-

tioned previously, the noise in the test bed environment is approximately N = −92 dBm as

observed by the RFIC. At this level and for a wide range of RS values, the B value (aka

BER) is effectively 0 for SNR values greater than 5 dB. This can be observed in the table.

The trade-offs associated with selecting a solution among nondominated candidates is again

observable. From iteration 4 to 5, the Z and T values at the expense of reduced packet

delivery. Table 7.19 shows the corresponding trade-offs in parameters: Rs is reduced, while

the AVEP rotor power is increased.

Table 7.18: Solutions generated by decision maker during live tests in a static environment.

Iteration Z T B G Score

4 0.4000 14.9903 0 46 0.3648
5 0.5999 9.5827 0 29 0.5713

By transmitting a broadband signal on the frequency that the AVEP uses, and by trans-

mitting at very low power, it is possible to simulate a higher noise floor in the test bed

environment. Using this method, I was able to raise the noise to approximately N = −83
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Table 7.19: Parameters associated with solutions shown in Table 7.18.

Iteration Path Length (m) Rs (kbps) EIRP (dBm) Rotor power

4 C 2.223 57.6 17.0 35
5 A 1.575 38.4 17.0 55

dBm, which resulted in some variability in the B values generated by the decision maker. I

re-ran the static environment test bed experiment using the broadband signal to raise the

noise floor. The results are shown in Table 7.20.

Table 7.20: Results of live UMDDM in a static environment over 10 iterations using higher
noise floor.

Iteration Path traversed Mode New/Prev solution Solution score

1 A Explore N/A N/A
2 B Explore N/A N/A
3 C Explore N/A N/A
4 A Exploit New solution 0.3169
5 B Exploit New solution 0.4665
6 A Exploit New solution 0.9670
7 A Exploit Prev solution 0.9670
8 A Exploit Prev solution 0.9670
9 A Exploit Prev solution 0.9670
10 B Explore N/A N/A

Table 7.21 shows the solutions generated by the decision maker in this re-run test bed

experiment. Note the value of B on iteration 6. This is a result of the increased noise floor,

and the higher data rate shown in Table 7.22. I conducted the remaining experiments in

this chapter using the broadband signal to increase the noise floor observed the RFIC.

Table 7.21: Solutions generated by decision maker during live tests in a static environment
with higher noise floor.

Iteration Z T B G Score

4 0.5999 13.8606 0 26 0.3169
5 0.6000 9.8670 0 23 0.4665
6 0.5999 12.2401 1.7094e-4 39 0.9670
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Table 7.22: Parameters associated with solutions shown in Table 7.18.

Iteration Path Length (m) Rs (kbps) EIRP (dBm) Rotor power

4 A 1.575 4.8 17.0 80
5 B 1.219 9.6 17.0 75
6 A 1.575 125.0 17.0 30
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7.3.0.2 Live Multi-domain Decision Making in a Simple Dynamic Environment

Having now shown that the AVEP can learn its surroundings by exploring the paths during

test bed experiments, I inteintionally bypassed the initial exploration process for this exper-

iment. By pre-loading the AVEP with the information that would have been learned during

the initial path explorations, I can focus on the showing how the AVEP uses decision making

and the second stage learning process during the test bed experiment.

This experiment shows the operation of the AVEP in a simple dynamic environment, as in

Section 7.2.3. Table 7.23 shows the changes in the number of target and anti-targets pieces

on paths A and B from iterations 1-5 to iterations 6-10.

Table 7.23: Environmental parameters (meters) used in evaluating UMDDM in a simple
dynamic environment during a live experiment.

Iterations Path Targets X Anti-targets Y Noise (dBm)

A 5 1 -82
1-5 B 3 0 -82

C 5 3 -82
A 3 1 -82

6-10 B 0 0 -82
C 5 3 -82

Table 7.24 shows the experimental results for this live test bed experiment in a simple

dynamic environment. As in the simulations, the AVEP seeks to maintain or increase per-

formance, as indicated by the solution score. In the simulations, the only time that the score

decreased was when the environment changed from one iteration to the next. Note that

the score does drop on iteration 3, when the environment has not in fact changed. This is

due to sensor jitter; during live tests, the chassis mounted sensors will occasionally register

more targets or anti-targets than actually exist due to the motion of the AVEP itself. This

could be fixed with a more sophisticated sensing algorithm, but that is outside the scope of

this work. On iteration 6, the target and anti-target values do change, and this is correctly
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observed by the AVEP. On iteration 6, the AVEP traverse path B using a previously de-

veloped solution, but observes that the environment has changed and discards the solution.

The AVEP selects path A for the next iteration, and develops a solution based on expired

data. As soon as the AVEP traverses path A, it observers that path A has also changed,

and discards the expired solution for path A as well. On iteration 8, the AVEP implements

a solution that corresponds to the current path environment, and uses this solution for the

remaining iterations of the experiment.

Table 7.24: Results of live UMDDM in a simple dynamic environment over 10 iterations in
a live experiment.

Iteration Path traversed Mode New/Prev solution Solution score

1 A Exploit New solution 0.5874
2 A Exploit New solution 0.6301
3 C Exploit New solution -0.0057
4 A Exploit New solution 0.2850
5 B Exploit New solution 0.5981
6 B Exploit Prev solution 0.5981
7 A Exploit New solution 0.2630
8 A Exploit New solution 0.1286
9 A Exploit Prev solution 0.1286
10 A Exploit Prev solution 0.1286

Table 7.25 shows the solutions generated by the decision maker and implemented by the

AVEP during the live experiment in a simple dynamic environment. As directly above,

this table also show the results of the changing environment and the solutions generated in

iterations 7 and 8 to accommodate the changes. Table 7.26 shows the parameters associated

with each solution.
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Table 7.25: Solutions generated by decision maker during live tests in a simple dynamic
environment.

Iteration Z T B G Score

1 0.5999 14.5067 1.7094e-4 46 0.5874
2 0.5999 8.9673 0 21 0.6301
3 0.4000 13.8907 0 18 -0.0057
4 0.5999 13.8606 0.1709e-4 44 0.2850
5 0.6000 9.0251 0.1709e-4 29 0.5981
7 0.5999 10.6217 0 12 0.2630
8 0.5999 8.9673 0 11 0.1286

Table 7.26: Parameters associated with solutions shown in Table 7.25.

Iteration Path Length (m) Rs (kbps) EIRP (dBm) Rotor power

1 A 1.575 125.0 17.0 25
2 A 1.575 9.6 17.0 50
3 C 2.223 2.4 17.0 60
4 A 1.575 125.0 17.0 80
5 B 1.219 125.0 17.0 70
7 A 1.575 2.0 17.0 35
8 A 1.575 2.4 17.0 50
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7.3.0.3 Live Multi-domain Decision Making in a Highly Dynamic Environment

For this live experiment, I again created a randomly generated scenario to test the AVEP

decision making and learning performance in a highly dynamic environment. Using the

randomly generated environmental parameters , I was able to implement the experiment

by changing the target and anti-target parameters along each path between every iteration

of the experiment. While I did conduct this experiment while transmitting a broadband

signal to raise the noise floor, further refinements to the test bed’s RF environment are not

practical. Table 7.27 shows the meters for 10 iterations.

The results of this live test experiment are shown in Table 7.28. As in the highly dynamic

tests scenario simulation, in this experiment where the environment changes dramatically

with every iteration, the AVEP implements a new solution every iteration and is unable to

use previous solutions in a attempt to increase its performance from one iteration to the

next, as indicated by the solution score. The AVEP makes decisions based only on the

information is has gathered. While it is possible that in a highly dynamic environment the

AVEP will miss some opportunities, in this experiment the AVEP manages to exploit some

of the better path environments, such as path B on iteration 3, path C on iteration 8, and

path A on iteration 10.

Table 7.29 shows the solutions generated by the decision maker and implemented by the

AVEP in this experiment. As mentioned in previous experiment, I transmitted a broadband

signal to increase the noise as observed by the RFIC. Even with this signal raising the

noise floor, there is very little variability in the B values of the solutions generated by the

decision maker. This is due to the nature of the B objective function. Figure 6.8 shows

that for a wide range of RS values, the B value (aka BER) is effectively 0 for SNR values

greater than 5 dB. In live experiments, it is difficult to fix the laboratory RF environment, as
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Table 7.27: Environmental parameters (meters) used in evaluating UMDDM in a highly
dynamic environment during a live experiment.

Iterations Path Targets X Anti-targets Y Noise (dBm)

A 1 3 -82
1 B 1 2 -82

C 3 3 -82
A 0 3 -82

2 B 0 1 -82
C 3 5 -82
A 0 5 -82

3 B 5 0 -82
C 2 2 -82
A 1 5 -82

4 B 3 4 -82
C 0 2 -82
A 5 2 -82

5 B 3 5 -82
C 3 4 -82
A 3 3 -82

6 B 1 4 -82
C 1 4 -82
A 2 3 -82

7 B 3 4 -82
C 0 0 -82
A 4 4 -82

8 B 1 2 -82
C 2 0 -82
A 2 3 -82

9 B 4 1 -82
C 3 2 -82
A 5 1 -82

10 B 3 4 -82
C 3 1 -82
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Table 7.28: Results of live UMDDM in a simple dynamic environment over 10 iterations in
a live experiment.

Iteration Path traversed Mode New/Prev solution Solution score

1 C Exploit New solution 0.2933
2 A Exploit New solution 0.5864
3 B Exploit New solution 0.3793
4 B Exploit New solution 0.5709
5 B Exploit New solution -0.0290
6 C Exploit New solution -0.1066
7 C Exploit New solution -0.4853
8 C Exploit New solution -0.2433
9 C Exploit New solution 0.1396
10 A Exploit New solution -0.2701

opposed to simulations, where the noise value can be fixed to a specific value to ensure that

the decision maker generates solutions with variability in the B values. Still, it is possible

observe the trade-offs made between solutions from one iteration to the next. For example,

from iteration 5 to iteration 6, the Z and T values degrade (Z goes down, T goes up), but

the G value improves by more than double. Table 7.30 shows the parameters associated with

the solutions generated by the decision maker and implemented by the AVEP in this live

experiment.

Table 7.29: Solutions generated by decision maker in a highly dynamic environment during
a live experiment.

Iteration Z T B G Score

1 0.4000 16.4519 0 46 0.2933
2 0.5999 9.5827 1.5031e-8 30 0.5864
3 0.6000 7.6200 0 10 0.3793
4 0.6000 7.4189 0 22 0.5709
5 0.6000 7.4189 0 22 -0.0290
6 0.4000 16.4519 0 46 -0.1066
7 0.4000 16.4519 0 21 -0.4853
8 0.4000 19.5613 0 47 -0.2433
9 0.4000 17.9867 0 54 0.1396
10 0.5999 9.2530 0 12 -0.2701
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Table 7.30: Parameters associated with solutions shown in Table 7.29.

Iteration Path Length (m) Rs (kbps) EIRP (dBm) Rotor power

1 C 2.223 192.0 17.0 70.0
2 A 1.575 57.6 17.0 40.0
3 B 1.219 2.4 17.0 60.0
4 B 1.219 38.4 17.0 40.0
5 B 1.219 38.4 17.0 40.0
6 C 2.223 19.2 17.0 70.0
7 C 2.223 2.4 17.0 70.0
8 C 2.223 9.6 17.0 80.0
9 C 2.223 38.4 17.0 75.0
10 A 1.575 2.4 17.0 55.0
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7.4 Conclusion

This chapter presented AVEP experimental tests and results, both in software simulation

and in live tests. I verified that the decision making process works for individual objective

functions by isolating an individual objective function and showing that the decision making

process returned a solution that made sense when the objective function is the only one

considered [88]. I next evaluated the results when considering all four objective functions

together. I evaluated the full decision making process over many iterations, in scenarios

representing static environments, a simple dynamic environment (environment changes once

during the scenario), and rapidly changing dynamic environments (values can change dra-

matically from iteration to iteration).

In static and simple dynamic environments, the second stage learning process ensures that

the AVEP does not spend all its time exploiting the best path at the expense of exploring the

other paths. Rather, the second stage learning process ensures that the AVEP does main-

tain up-to-date meter readings by periodically re-exploring other paths. In highly dynamic

environment, the second stage learning process is unable improve performance from one it-

eration to the next through the use of previously implemented solutions; previous solutions

are never applicable as the environment along every path changes with every iteration. In

these cases, the AVEP is intelligent enough not to use previous results while the environment

is rapidly changing. Yet if the environment were to settle, the AVEP would then apply the

second stage learning process and seek iterative improvement using previously implemented

solutions.

This chapter concludes the description of UMDDM and the design, development, implemen-

tation, and deployment of the AVEP and the UMDDM algorithms. I have shown that the

AVEP can learn the RF and MOT parameters of the environment, choose a solution that
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maximizes the objective functions, and implement the solution to ensure mission success.

I have also shown that AVEP is also capable of learning from experience, modifying its

behavior over time increase its performance.



Chapter 8

Conclusions

This chapter presents a summary of the research in this dissertation, lists my research con-

tributions, and discusses areas for future research.

8.1 Summary

This research started several years ago with a simple observation, namely that CRs and AVs

perform similar tasks, albeit in different domains:

• Analyze their environment,

• Make and execute a decision,

• Evaluate the result (learn from experience), and

• Repeat as required.

This observation led to try to combine CR and AV intelligence into a single intelligent agent,

with the ability to leverage flexibility in the RF and motion (MOT) domains. I call this idea

unified multi-domain decision making (UMDDM).

150
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This dissertation has presented my work on UMDDM, the development of UMDDM al-

gorithms and the implementation of the AVEP test platform, a working proof of concept

prototype that deploys UMDDM on a live system.

Chapter 1 introduced the concept of UMDDM and discussed the conception of my research

idea: combining CR and AV decision making into a single intelligent agent. My previous

research, funded by AFRL, has dealt with exploring CR applications for UAVs, and has led

directly to the research I presented in this dissertation.

Chapter 2 provided an overview of current CR and AV research, looking in particular at

efforts to combine CRs and AVs. However, few people are looking at combined CR and

AV solutions, and those that are do so from one perspective only. No one else is looking at

unified solutions, solutions that leverage flexibility in both RF and MOT domains.

Chapter 3 presents an overview of the experimental procedure used to develop and verify

UMDDM as well as the underlying experimental philosophy. I highlighted all the components

involved in developing and testing the UMDDM algorithms, including the experimental test

bed, the autonomous robotic AVEP, and the stand alone NBR. I highlighted an experimental

procedure that relies on software simulation combined with live tests to show the capabilities

of UMDDM.

Chapters 4, 5, and 6 lay out the details of the AVEP, a working proof of concept prototype

that implements UMDDM. Chapter 4 is a high level system overview, presenting the hard-

ware and software components that I designed and built to support my research in UMDDM.

The AVEP is an autonomous robotic platform capable of making and executing decisions

that leverage flexibility and intelligent adaptation in both RF and MOT domains.

Chapter 5 presents the AVEP operational and control algorithms. I stepped through the

AVEP FSM which provides top level control, pulling all the subcomponents and sensors to-
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gether into a single integrated system. I also stepped through the RF and MOT subsystems,

giving the operational details of the communication system as well as the motion algorithm.

Chapter 6 discusses the learning and decision making aspects of this research. The learning

and decision making algorithms make up the cognitive core of this research, providing intelli-

gent action and introspection for the AVEP. UMDDM uses two stages of learning. The first

stage of learning provide environmental awareness through sensor data acquisition, and feeds

the decision making process. The decision maker uses the sensor data (meters) along with

knowledge of its own capabilities (knobs) to generate possible solutions for the AVEP to im-

plement. The second stage of learning provides intelligent adaptation based on the system’s

experiences, allowing it to implement a new solution or use a previous solution that may

provide better performance in the current environment. The two stages of learning combine

with the decision making process to implement UMDDM. As a result, the working proof

of concept prototype AVEP is able to leverage flexibility in both RF and MOT domains to

ensure mission success.

Chapter 7 presents the experimental tests and results that I used to validate my UMDDM

research. I divided the experiments into two section, software-based simulation and robot-

deployed live tests. I verified that the decision making process works for individual objective

functions by isolating an individual objective function and showing that the decision mak-

ing process returns a solution that makes sense when the objective function is the only

one considered. I then evaluated the results when considering all four objective functions

together, with scenarios representing static environments, slowly changing dynamic envi-

ronments (values change a small amount from iteration to iteration), and rapidly changing

dynamic environments (values can change dramatically from iteration to iteration). The

software simulations allowed me to highlight the details of the decision making and learning

UMDDM algorithms, while the live tests showed that I was able to implement my ideas in
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a working proof of concept prototype.

8.2 Contributions

This research has made the following contributions to knowledge:

• I have initiated the exploration of unified multi-domain decision making (UMDDM). As

mentioned several times through this dissertation, CRs and AVs perform similar tasks in

order to fulfill their intended missions. They both analyze their environment, make and

execute a decision, evaluate the result (learn from their actions) and repeat the process as

required. AVs are increasingly present in tactical and public safety roles, and both motion

and communication are fundamental aspects of AV operation. Knowing that need to move

affects communication, and the need to communicate affects motion, it not only makes

sense but becomes increasingly imperative that RF and MOT be considered together in

AV research. This dissertation presents the first work in UMDDM, where flexibility in RF

and MOT domains are considered with equal importance.

• I have designed and implemented a working proof of concept prototype AV with UMDDM.

This autonomous robotic platform AVEP is able to leverage flexibility in both RF and

MOT domains to ensure mission success. The AVEP performs live tests in a laboratory

test bed, showing the real life capabilities of UMDDM. Further, the controller software

is written in such a way that it can be ported to other AV platforms, such as the UAVs

used by AFRL in Rome, NY.

• I have developed and implemented an experimental procedure based on both software

simulation and live (non-simulation) tests. Further, I have provided the experimental

results that show UMDDM in use on a working proof of concept prototype AV.

• I have designed and deployed a wholly new inexpensive CR platform using commercial
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off the shelf (COTS) hardware and free and open source software. The radio platform,

called SKIRL, is based on the BeagleBoard-xM single board computer and the Hope RF

RFM22B RFIC. It is ideally suited for low cost CR experimentation and deployment. An

overview of SKIRL with an example application is available in [10].

• I have advanced the state of CR for mobile applications. I have developed, implemented,

and tested new hardware, software, and algorithms for mobile CR. My SKIRL radio plat-

form is a low cost low power system ideally suited to mobile CR and intelligent sensor

networks. While UMDDM is intended for AV deployment, it is also ideally suited for sit-

uational awareness in mobile CR applications. My dissertation provides extensive details

on the software algorithms, and control and data structures I implemented to support

UMDDM, and these are all applicable to mobile CR research.

• I have provided an introduction to CR concepts and methods for the AV research com-

munity. At the same time, I have provided an introduction to AV concepts and methods

for the CR community. This dissertation itself opens the doors to the possibilities of

crossover between CR and AV research. I have shown the possibility of combined CR

and AV decision making in a single intelligent agent, showcased by my working proof of

concept prototype AVEP.

8.3 Future Research

This dissertation is the first step in UMDDM, and provides a foundation for future work. I

have implemented decision making and learning algorithms that leverage flexibility in both

RF and MOT. I have also designed and deployed a working proof of concept prototype

robotic platform that implements my UMDDM algorithms in live tests.

My research focuses on a limited set of controllable RF and MOT parameters. The most
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obvious next step to expand the set of controllable parameters: a quadrocopter or airplane-

based UAV provide much more flexibility in the MOT domain, capable of movement in three

dimensions. RF considerations can be extended to a full set of PHY parameters, and recon-

figurability can be extended up the network stack. While this provides additional flexibility,

additional RF and MOT parameters do not push this research forward significantly.

Deploying UMDDM on multiple platforms opens the doors to the new ideas in swarming,

both from the physical and RF perspective. UMDDM can also be extended to additional

domains, beyond RF and MOT. Weather is capable of affecting movement and communi-

cation significantly; a torrential rain storm increases RF attenuation dramatically, and may

inhibit motion of vehicles via strong winds or muddy ground. These considerations could be

integrated into the decision making process with the development of appropriate objective

functions.

UMDDM currently uses a population based nondominated sort method to implement de-

cision making, but decision making research can provide more sophisticated decision mak-

ing options. Case based decision making and recognition primed decision making are two

methods that are used to model the way humans make decisions. However, researchers are

currently exploring other biologically inspired decision making methods, such as emulating

the way the human body makes decisions in the healing process [147]. These methods have

the potential to extend UMDDM into new application areas.

I believe that my research into UMDDM is just the beginning. The future of RF commu-

nications needs to take into account the totality of the environment, and the future of AV

research needs to enable flexibility in multiple domains to ensure mission success. While I

have outlined a few areas where I believe that my research can be extended, I feel that the

next step in UMDDM will be in a direction that is completely unexpected, an advancement

that I could not predict. But the next step will move UMDDM forward for the benefit of



156

all.
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