
Alexander Rian Young

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering

Charles W. Bostian, Chair
Kathleen Meehan
Timothy Pratt
Jeffrey H. Reed
Craig A. Woolsey

7 December, 2012
Blacksburg, Virginia

Keywords: Cognitive Radio, Autonomous Vehicles, Multi-domain Decision Making, Multi-objective Optimization

Copyright ©2012 Alexander Rian Young

Alexander Rian Young

(ABSTRACT)

This dissertation presents the theory, design, implementation and successful deployment of a cognitive engine decision algorithm by which a cognitive radio-equipped mobile robot may adapt its motion and radio parameters through multi-objective optimization. This provides a proof-of-concept prototype cognitive system that is aware of its environment, its user’s needs, and the rules governing its operation. It is to take intelligent action based on this awareness to optimize its performance across both the mobility and radio domains while learning from experience and responding intelligently to ongoing environmental mission changes. The prototype combines the key features of cognitive radios and autonomous vehicles into a single package whose behavior integrates the essential features of both.

The use case for this research is a scenario where a small unmanned aerial vehicle (UAV) is traversing a nominally cyclic or repeating flight path (an “orbit”) seeking to observe targets and where possible avoid hostile agents. As the UAV traverses the path, it experiences varying RF effects, including multipath propagation and terrain shadowing. The goal is to provide the capability for the UAV to learn the flight path with respect both to motion and RF characteristics and modify radio parameters and flight characteristics proactively to optimize performance. Using sensor fusion techniques to develop situational awareness, the UAV should be able to adapt its motion or communication based on knowledge of (but not limited to) physical location, radio performance, and channel conditions. Using sensor information from RF and mobility domains, the UAV uses the mission objectives and its knowledge of the world to decide on a course of action. The UAV develops and executes a multi-domain action; action that crosses domains, such as changing RF power and increasing
its speed.

This research is based on a simple observation, namely that cognitive radios and autonomous vehicles perform similar tasks, albeit in different domains. Both analyze their environment, make and execute a decision, evaluate the result (learn from experience), and repeat as required. This observation led directly to the creation of a single intelligent agent combining cognitive radio and autonomous vehicle intelligence with the ability to leverage flexibility in the radio frequency (RF) and motion domains. Using a single intelligent agent to optimize decision making across both mobility and radio domains is unified multi-domain decision making (UMDDM).
Acknowledgments

This dissertation is the culmination of years of work. I have not been alone in this work, but any attempt to thank those involved will be incomplete. Thank you to everyone.

I wish to thank Charles Bostian for all the opportunities and challenges, the gentle guidance and the hard questions.

I have sorely missed Judy Hood over these past two years. While Judy was an administrator nonpareil, Judy was also a friend and mentor, an excellent guide through the maze of graduate school regulations, a sounding board for new ideas, and friendly ear when I just couldn’t figure out how to deal with a confusing situation. I miss our discussions of books and art and music and life. Thank you Judy.

Thank you to all the members of CWT, past and present. We made great things together, and I am glad to have been part of so many compelling (neat!) projects. We challenged each other, collaborated and competed, alternately working together smoothly and driving each other crazy. But I wouldn’t change it.

Nick: hockey.py. Wow. This may not have started there, but that’s probably when I first realized it was actually possible. Al: sometimes you drive me absolutely nuts. But if I can explain something to your satisfaction, I’ve probably got it covered. Thank you to both of you.
I would like to thank my parents and siblings for all the love and support over many many years.

Amanda, my wife, I thank you for everything. The promise of our future together and our family has driven me forward, pulled me through to the end. Thank you, and yes.

Max, your wonder and excitement about the world, math, robots, the lab, about everything... You’ve opened my eyes once again to the wonders in the world around me.

Unless otherwise noted, all figures are the work of the author.
Grant Information

This material is based upon work supported by the National Science Foundation under Grant No. CNS-0519959. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).

This material is based on research sponsored by Air Force Research Laboratory under Agreement # FA8750-11-2-0014. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory or the U.S. Government.
Contents

List of Figures xiv
List of Tables xviii
Acronyms xxi

1 Introduction 1

1.1 Summary and Overview 1
1.2 Problem of Interest 5
1.3 Contributions 8
1.4 This Work in the Context of My Research Assignment 8
1.5 Desired Results from this Research 10

2 Literature Review 12

2.1 Introduction 12
2.2 Cognitive Radio 13
2.3 Autonomous Vehicles .. 19
2.4 CR/AV Convergence .. 22
 2.4.1 AVs with CR .. 23
2.5 Conclusion ... 26

3 Experiment Design and Philosophy 27
 3.1 Introduction .. 27
 3.2 Experimental Intent ... 28
 3.3 Experimental Design .. 28
 3.4 Evaluation of Test Results .. 29
 3.5 Experimental Components .. 31
 3.5.1 AVEP ... 31
 3.5.2 Node B Radio ... 31
 3.5.3 AVEP Test Bed .. 33
 3.6 Experimental Procedure .. 35
 3.6.1 Experimental Data .. 35
 3.6.2 Software Simulation .. 36
 3.6.3 Live Testing ... 36
 3.7 Conclusion .. 36

4 Hardware and Software Choices for System Implementation 38
4.1 Introduction .. 38

4.2 Hardware Systems for Cognitive Radio 39
 4.2.1 Hardware Overview 39
 4.2.2 Dispensing with SDR 39
 4.2.3 RFIC-Based RF Platforms for CR 41
 4.2.4 Computational Platforms for Low Cost CR 42
 4.2.5 RF Hardware Selection 43

4.3 Robotics Hardware Systems Suitable for the Topic of this Dissertation 43

4.4 Research Hardware Platform: AVEP 44
 4.4.1 Physical Components: SKIRL Radio Platform 44
 4.4.1.1 BeagleBoard-xM 44
 4.4.1.2 Hope RF RFM22B 47
 4.4.1.3 Trainer Board 53
 4.4.2 SKIRL Integration 54
 4.4.3 Physical Components: NXT Brick and Chassis 55
 4.4.3.1 Sensors .. 57

4.5 System Software .. 58
 4.5.1 Software Options and Choices 58
 4.5.2 System Architecture 59
 4.5.3 Radio Software .. 60

ix
4.5.3.1 Radio Driver ... 62
4.5.3.2 Radio API .. 62
 4.5.3.2.1 Listen Function 63
 4.5.3.2.2 Receive Function 64
 4.5.3.2.3 Transmit Function 64
4.5.4 Motion Software ... 66
 4.5.4.1 Motion API .. 68
4.6 Conclusion .. 68

5 Algorithms and Software Development 70
 5.1 Introduction ... 70
 5.2 Operation and Control 71
 5.2.1 Controller ... 71
 5.2.1.1 Controller Finite State Machine 71
 5.2.1.1.1 FSM State: first_time 71
 5.2.1.1.2 FSM State: before_traverse 73
 5.2.1.1.3 FSM State: traverse_path 73
 5.2.1.1.4 FSM State: after_traverse 75
 5.2.1.1.5 FSM State: go_to_beginning 75
 5.2.2 Sensors .. 75
5.2.2.1 NXT Light Sensor .. 76
5.2.2.2 NXT Color Sensor .. 76
5.2.2.3 Barcode Reader ... 77
5.2.3 Radio Subsystem ... 78
 5.2.3.1 Radio Subsystem Finite State Machine 78
 5.2.3.2 Packet Structure .. 79
5.2.4 Motion Subsystem ... 82
 5.2.4.1 Motion Subsystem Finite State Machine 82
5.2.5 Motion Behavior: Follow The Line 82
5.3 Path Data Structure ... 83
5.4 Node B Radio Architecture 86
5.5 Conclusion ... 89

6 Learning and Decision Making 90
 6.1 Introduction .. 90
 6.2 Learn The Environment 92
 6.3 Decision Making ... 93
 6.3.1 Objective Functions 94
 6.3.1.1 Target/Anti-target Score 95
 6.3.1.2 Time .. 99
8 Conclusions

8.1 Summary ... 150
8.2 Contributions ... 153
8.3 Future Research .. 154

Bibliography .. 157
List of Figures

1.1 Conceptional representation of multi-domain action implemented by proof-of-concept prototype mobile robot. .. 2

1.3 UAV on SAR search mission using RF and motion flexibility to maintain connectivity and ensure mission success. This UAV is part of a proposal that extends the research in this dissertation. 11

3.1 Autonomous vehicle experiment platform ... 32

3.2 Photograph of AVEP test bed. ... 33

3.3 The central aspect of test bed graph is three paths (edges) that diverge from the decision point at Node 1 and converge again at Node 2. 34

4.1 Autonomous vehicle experiment platform ... 45

4.2 BeagleBoard-xM single board computer. ©2013 IEEE, used with permission. 46

4.3 Hope RF RFM22B FSK RFIC. ©2013 IEEE, used with permission. 47
4.4 CW power delivered to a 50 ohm load as a function of carrier frequency for a stock 433 MHz RFM22B and for the same module with the output networks removed. ©2013 IEEE, used with permission. 48

4.6 RFM22B transmit filter network. 49

4.7 RFM22B transmit filter network with bypass. The dotted line show the implemented short circuit used to bypass the filter network. 49

4.8 RSSI values as a function of CW RF power at the antenna terminal. ©2013 IEEE, used with permission. 50

4.9 Receiver’s passband characteristics. ©2013 IEEE, used with permission. 51

4.11 BeagleBoard-xM trainer board. 53

4.12 SKIRL radio package, showing BeagleBoard-xM, trainer board, and RFM22B. 54

4.13 SKIRL schematic showing individual components along with their functions. ©2013 IEEE, used with permission. 55

4.14 NXT Brick and chassis. 56

4.15 Conceptual AVEP system architecture showing components and process flow. 59

4.16 High-layer software organization of AVEP system. 60
4.17 AVEP radio software stack. ©2013 IEEE, used with permission.

4.18 Radio software stack compared to SKIRL hardware components. ©2013 IEEE, used with permission.

4.19 Flow chart showing logic and flow of API's listen function.

4.20 Flow chart showing logic and flow of API's receive function.

4.21 Flow chart showing logic and flow of API's transmit function.

5.1 AVEP controller finite state machine.

5.2 RF subsystem packet structure.

5.3 Organization of flags field in RF subsystem packet. This figure shows the flags available to a Node A radio.

5.4 The test bed graph contains three separate paths between Node 1 and Node 2.

5.5 A more complicated test bed layout with additional nodes and edges, and their attendant paths.

5.6 Organization of flags field in RF subsystem packet. This figure shows the flags available to a Node B radio for communication with a Node A radio.

6.1 The ODA loop applied to CR and AV scenarios.

6.2 The cognition cycle used by the AVEP.

6.3 Graphical representation of Z objective function as a function of targets and anti-targets.

6.4 Experimentally recorded values of time (to travel a fixed-length path) and requisite AVEP rotor power values, with 3rd order polynomial fit.
6.5 Graphical representation of T objective function as a function of path distance and rotor power. .. 103

6.6 BER waterfall curve for noncoherent FSK. ... 107

6.7 E_b/N_0 values as a function of SNR and R_s. 108

6.8 Graphical representation of B objective function as a function of SNR and R_s. 109

6.9 Graphical representation of G objective function as a function of time and bit rate. ... 112

7.1 AVEP in operation during a live test experiment. 136
List of Tables

3.1 Path length (in meters) of each path in the test bed. 34

5.1 Values returned by the NXT color sensor and their associated colors. 76

5.2 Knobs and meters available stored in path data structure. 85

6.1 Rotor power and time measurements for AVEP, used to determine AVEP velocity. 99

7.1 Environmental parameters (meters) used in evaluating UMDDM in a static environment. 123

7.2 Results of UMDDM decision making simulation in a static environment over 20 iterations. 124

7.3 Solutions generated by decision maker on iterations 4, 5, and 10, and the scores associated with each solution. 125

7.4 Parameters associated with solutions shown in Table 7.3. 125

7.5 Results of UMDDM decision making simulation in a static environment with $N = -82$ dBm. 127

xviii
7.6 Solutions generated by decision maker for simulated environment where $N = -82$ dBm. ... 128

7.7 Parameters associated with solutions shown in Table 7.6. 128

7.8 Environmental parameters (meters) used in evaluating UMDDM in a simple dynamic environment. ... 129

7.9 Results of UMDDM decision making simulation in a simple dynamic environment over 20 iterations. ... 130

7.10 Solutions generated by decision maker in a simple dynamic environment, and the scores associated with each solution. 131

7.11 Parameters associated with solutions shown in Table 7.10. 131

7.12 Environmental parameters (meters) used in evaluating UMDDM in a highly dynamic environment. .. 133

7.13 Results of UMDDM decision making simulation in a highly dynamic environment over 10 iterations. ... 134

7.14 Solutions generated by decision maker in a highly dynamic environment, and the scores associated with each solution. 135

7.15 Parameters associated with solutions shown in Table 7.14. 135

7.16 Environmental parameters (meters) used in evaluating live UMDDM in a static environment. .. 137

7.17 Results of live UMDDM in a static environment over 10 iterations. 137

7.18 Solutions generated by decision maker during live tests in a static environment. 138

7.19 Parameters associated with solutions shown in Table 7.18. 139
7.20 Results of live UMDDM in a static environment over 10 iterations using higher noise floor. 139

7.21 Solutions generated by decision maker during live tests in a static environment with higher noise floor. 139

7.22 Parameters associated with solutions shown in Table 7.18. 140

7.23 Environmental parameters (meters) used in evaluating UMDDM in a simple dynamic environment during a live experiment. 141

7.24 Results of live UMDDM in a simple dynamic environment over 10 iterations in a live experiment. 142

7.25 Solutions generated by decision maker during live tests in a simple dynamic environment. 143

7.26 Parameters associated with solutions shown in Table 7.25. 143

7.27 Environmental parameters (meters) used in evaluating UMDDM in a highly dynamic environment during a live experiment. 145

7.28 Results of live UMDDM in a simple dynamic environment over 10 iterations in a live experiment. 146

7.29 Solutions generated by decision maker in a highly dynamic environment during a live experiment. 146

7.30 Parameters associated with solutions shown in Table 7.29. 147
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABM</td>
<td>agent based modeling.</td>
</tr>
<tr>
<td>AFRL</td>
<td>Air Force Research Lab.</td>
</tr>
<tr>
<td>AI</td>
<td>artificial intelligence.</td>
</tr>
<tr>
<td>API</td>
<td>application programming interface.</td>
</tr>
<tr>
<td>ASIC</td>
<td>application-specific integrated circuit.</td>
</tr>
<tr>
<td>AV</td>
<td>autonomous vehicle.</td>
</tr>
<tr>
<td>AVEP</td>
<td>autonomous vehicle experimental platform.</td>
</tr>
<tr>
<td>AWGN</td>
<td>additive white gaussian noise.</td>
</tr>
<tr>
<td>BAA</td>
<td>broad agency announcement.</td>
</tr>
<tr>
<td>BER</td>
<td>bit error rate.</td>
</tr>
<tr>
<td>CAM</td>
<td>communication-aware motion.</td>
</tr>
<tr>
<td>CE</td>
<td>cognitive engine.</td>
</tr>
<tr>
<td>CN</td>
<td>cognitive network.</td>
</tr>
<tr>
<td>CNI</td>
<td>Communication Networks Insittute.</td>
</tr>
<tr>
<td>CORNET</td>
<td>Cognitive Radio Network Testbed.</td>
</tr>
<tr>
<td>CR</td>
<td>cognitive radio.</td>
</tr>
</tbody>
</table>
CRC cyclic redundancy check.
CRE cognitive radio engine.
CRS cognitive radio system.
CW continuous wave.
CWT Center for Wireless Telecommunications.

DARPA Defense Advanced Research Projects Agency.
DGC DARPA Grand Challenge.
DRC DARPA Robotics Challenge.
DS dynamic spectrum.
DSA dynamic spectrum access.
DSP digital signal processing.
DSS dynamic spectrum sharing.
DUC DARPA Urban Challenge.

EIRP equivalent isotropically radiated power.
EM electromagnetic radiation.

FIFO first in first out.
FSK frequency shift keying.
FSM finite state machine.

GA genetic algorithm.
GFSK gassian frequency shift keying.
GPIO general purpose I/O.
GPS global positioning system.

I/O input/output.
I2C inter-integrated circuit.

LBT listen before talk.

MAC media access control.
MAV micro air vehicle.
MCDM multiple criteria decision making.
MCU microcontroller unit.
MDDM multi-domain decision making.
MDF mission data file.
MoE measure of effectiveness.
MOO multi-objective optimization.
MOT motion.
MUAV micro unmanned aerial vehicle.

NAR Node A radio.
NBR Node B radio.
NSGA nondominated sorting genetic algorithm.

ODA observe, decide, and act.
OE Open Embedded.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOK</td>
<td>on-off keying.</td>
</tr>
<tr>
<td>OS</td>
<td>operating system.</td>
</tr>
<tr>
<td>OTA</td>
<td>over the air.</td>
</tr>
<tr>
<td>P/MAC</td>
<td>position/motion-aware communication.</td>
</tr>
<tr>
<td>PDS</td>
<td>path data structure.</td>
</tr>
<tr>
<td>PHY</td>
<td>physical layer.</td>
</tr>
<tr>
<td>POMDP</td>
<td>partially observed Markov decision process.</td>
</tr>
<tr>
<td>PU</td>
<td>primary user.</td>
</tr>
<tr>
<td>QoS</td>
<td>quality of service.</td>
</tr>
<tr>
<td>RCR</td>
<td>railway cognitive radio.</td>
</tr>
<tr>
<td>RF</td>
<td>radio frequency.</td>
</tr>
<tr>
<td>RFIC</td>
<td>radio frequency integrated circuit.</td>
</tr>
<tr>
<td>RNDF</td>
<td>route network definition file.</td>
</tr>
<tr>
<td>RSSI</td>
<td>received signal strength indicator.</td>
</tr>
<tr>
<td>RX</td>
<td>receive.</td>
</tr>
<tr>
<td>SDR</td>
<td>software define radio.</td>
</tr>
<tr>
<td>SNR</td>
<td>signal-to-noise ratio.</td>
</tr>
<tr>
<td>SPI</td>
<td>serial peripheral interface.</td>
</tr>
<tr>
<td>SU</td>
<td>secondary user.</td>
</tr>
<tr>
<td>T/R</td>
<td>transmit/receive.</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>TCP</td>
<td>transmission control protocol.</td>
</tr>
<tr>
<td>TX</td>
<td>transmit.</td>
</tr>
<tr>
<td>UAV</td>
<td>unmanned aerial vehicle.</td>
</tr>
<tr>
<td>UGV</td>
<td>unmanned ground vehicle.</td>
</tr>
<tr>
<td>UMDDM</td>
<td>unified multi-domain decision making.</td>
</tr>
<tr>
<td>USB</td>
<td>universal serial bus.</td>
</tr>
<tr>
<td>USRP</td>
<td>Universal Software Radio Peripheral.</td>
</tr>
<tr>
<td>USV</td>
<td>unmanned surface vehicle.</td>
</tr>
<tr>
<td>V2I</td>
<td>vehicle-to-infrastructure.</td>
</tr>
<tr>
<td>V2V</td>
<td>vehicle-to-vehicle.</td>
</tr>
<tr>
<td>VN</td>
<td>vehicular network.</td>
</tr>
<tr>
<td>VT</td>
<td>Virginia Tech.</td>
</tr>
<tr>
<td>WNaN</td>
<td>Wireless Network after Next.</td>
</tr>
<tr>
<td>XG</td>
<td>neXt Generation.</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Summary and Overview

This dissertation deals with cognitive radios (CRs)—intelligent radio frequency (RF) communication systems—and autonomous vehicles (AVs)—vehicles capable of intelligent and independent motion. In this research, I present the first true integration of AV and CR, combining radio learning and environmental learning into a single intelligent agent: a proof-of-concept prototype mobile robot that can adapt its motion and radio parameters through multi-objective optimization. Using sensor information from RF and mobility domains, the robot uses mission objectives and its knowledge of the world to decide on a course of action. The robot develops and executes a multi-domain action; action that crosses domains, such as changing RF power and increasing its speed. A conceptual representation of this process is shown in Figure 1.1.

The idea for this dissertation began with a small seed, a kernel of thought planted by a web comic. The xkcd web comic called “New Pet,” shown in Figure 1.2 [1], shows a small robot
built using a net book computer, and using Python [2] to provide the robot with a soul. While this is clearly a joke, Python is very flexible and powerful. Python has been used repeatedly and successfully to build and control robots. When I read the web comic, I realized that in our research at the Virginia Tech (VT) Center for Wireless Telecommunications (CWT), we were already using Python to build software define radio (SDR) and CR applications using GNU Radio [3]. This idea developed further with the simple but fundamental observation that CRs and AVs perform similar tasks, albeit in different domains:

- Analyze their environment,
- Make and execute a decision,
- Evaluate the result (learn from experience), and
- Repeat as required.

CR and AV research highlights the limitations of current systems. While visiting an un-
manned aerial vehicle (UAV) lab, I observed a simulation that replayed results obtained during live flight UAV tests. The UAV under test flew a nominally repeating flight path over a large field, while transmitting and receiving RF data packets. Every time the UAV passed over a certain corner of the field, the UAV experienced poor RF performance. Yet the UAV continued to fly the same path on every iteration, making no change in RF parameters or motion behavior.

As mobile sensor platforms, AVs are the perfect example of agents that must operate in both the RF and physical domains, maintaining mission and communications situational awareness based on input from a variety of sensors and making intelligent decisions based on this awareness. This research is based on two fundamental assumptions:

1. The need to move affects AV communication, and
2. The need to communicate affects AV motion.

The first point is known by everyone who uses a cell phone; everyone has a story to tell about a certain part of their commute where their cell phone coverage always drops out. Communications researchers know that shadowing and multipath are highly location dependent, and can vary greatly over very short distances.

To illustrate the second, consider that AVs are effectively mobile sensor platforms. AVs are used as data collection platforms across a wide variety of application domains, including tactical [4], disaster response [5, 6], and environmental and wildlife management [7, 8] operations. In all these cases, the collection of information, and subsequent relay of the same to those who need the information, is critical to AV mission success.

Faced with the above, a scenario in which an AV requires effective communications, and where the vehicle’s inherent motion and mobility intrinsically affect that same communications, it becomes imperative to consider motion and communications together, a coupled
problem with a coupled solution.

1.2 Problem of Interest

Currently autonomous vehicles do not use RF information in their decision making process; that is, no AV uses RF information for unified multi-domain decision making. From the perspective of an operational AV, possible courses of action that could improve the RF environment do not exist and are not considered in any decision making process.

The intent of this research is to combine RF and other information for a unified decision making progress. I expect to improve mission performance by potentially trading off RF with other mission parameters. The result is a system with two equally important degrees of freedom:

- RF agility, and
- Physical mobility (motion).

Although CRs and AVs are very similar, the two research fields have essentially no crossover or shared experience: each field of research has developed independent of the other. Any attempt to combine the two fields will necessarily run into challenges and constraints from both. The development of a suitable experimental platform is one such challenge, one that presents challenges in traditional AV research topics such as motion planning, route planning, and positioning, as well as radio and CR topics like physical layer (PHY) adaptation, media access control (MAC) protocols, data packet structure, and synchronization. However, in both domains, these are well developed fields of research and many good solutions have been presented already. This research will build that work, abstracting out the complexity of the underlying issues involved in platform development to focus on the true topic of this
research. Specifically, simplified methods of motion planning, route planning, positioning, PHY reconfiguration, and media access have been implemented, resulting in a platform that focuses on the areas where CR and AV cognition come together, and not the details of CR and AV implementation.

These ideas ultimately led to the work described in detail here: an implementation of the VT cognitive engine (CE) on a BeagleBoard-xM single board computer based on the Texas Instruments DM3730 processor and its successful use to provide simultaneous intelligent control of a frequency-agile and mode-agile radio and an autonomous vehicle. This provides a proof-of-concept prototype of a cognitive system that is aware of its environment, its users needs, and the rules governing its operation, and able to take intelligent action based on this awareness to optimize its performance across both the mobility and radio domains while learning from experience and responding intelligently to ongoing environmental and mission changes. It combines the key features of CRs and AVs into a single package whose behavior integrates the essential aspects of both.

The use case for this research is a scenario where a small UAV is traversing a nominally cyclic or repeating flight path (an orbit) seeking to observe targets and where possible avoid hostile agents. As the UAV traverses the path, it experiences varying RF effects, including multipath propagation and terrain shadowing. The goal is to provide the capability for the UAV to learn the flight path with respect both to motion and RF characteristics and modify radio parameters and flight characteristics proactively to optimize performance. Using sensor fusion techniques to develop situational awareness, the UAV should be able to adapt its motion or communication based on knowledge of (but not limited to) physical location, radio performance, and channel conditions. Using sensor information from RF and motion (MOT) domains, the UAV uses the mission objectives and its knowledge of the world, to decide on a course of action. The UAV develops and executes a multi-domain action; action
that crosses domains, such as changing the RF power and increasing its speed.

I present in detail the design of a low-cost (less than $250) package called SKIRL, based on the BeagleBoard-XM computer and the Hope RF RFM22B RF integrated circuit that is suitable for installation in the small experimental UAVs flown by USAFRL. In the work documented here, SKIRL is integrated with a set of target, navigational, and environmental sensors mounted on a LEGO wheeled vehicle that executes a hypothetical two-dimensional mission based on the UAV use case while avoiding the costs and potential security problems associated with a flight test. Experiments with the system demonstrate its ability to explore and learn a multidimensional environment that combines changing RF, location, and mission data and to optimize its mission performance intelligently. So far as I am aware, this is the first successful demonstration of its kind.

Beginning with a review of the literature of CR cognitive radio and AV research, I discuss the rationale for combining the two technologies and move through the practical steps of designing, building, and testing a prototype. I show how the architecture of a typical CR (consisting of a CE and a programmable RF unit) can be expanded to include the sensors and actuators associated with an autonomous vehicles and provide the software and hardware details necessary for implementation. This includes possibly the first development of a low-cost cognitive radio platform based on a low-cost RF integrated circuit instead of a SDR. I explore the issues associated with testing and evaluating a cognitive device and develop an appropriate test procedure for the prototype considered here. The test results clearly demonstrate that the vehicle is capable of exploring and learning a complex environment and meeting the intended objectives.

Sections of this dissertation have been previously published as separate articles [9,10]. Where I include material from these papers, I make an explicit note and include the appropriate citation.
1.3 Contributions

This dissertation contributes both to the conceptual side of combining CR and AV intelligence into a single intelligent agent, with the ability to leverage flexibility in the RF and MOT domains as well as to practical implementation issues. I call the underlying theory unified multi-domain decision making (UMDDM). After reviewing its origins in the literature of CRs and AVs (Chapter 2), I explore the development and implementation of UMDDM as cognitive engine decision algorithms by which a CR-equipped mobile robot—in this case the autonomous vehicle experimental platform (AVEP)—may adapt its motion and radio parameters through multi-objective optimization (Chapter 6). I discuss the design and implementation of a platform combining CR and AV intelligence, the AVEP test platform, a working proof of concept prototype that deploys UMDDM on a live system. In the process I design and deploy a wholly new inexpensive CR platform using commercial off the shelf (COTS) hardware and free and open source software (Chapters 4 and 5). I review the philosophical and practical issues associated with testing intelligent machines and develop a test procedure for the prototype system (Chapter 3). Using this procedure I evaluate its performance and report the results (Chapter 7).

1.4 This Work in the Context of My Research Assignment

My research has been funded by the Air Force Research Lab (AFRL) in Rome, NY. Current and previous rounds of funding have focused on AVs (specifically UAVs) and CR.

The proposal for the first round of this work was titled “The Application of Cognitive Radio for Coordinated UAV Missions” and this title is a good description of the work. UAVs
support many types of missions, ranging from tactical surveillance and reconnaissance to humanitarian. Reliable communications is critical. For this project we developed a system that provides reliable back haul communications for a small network of UAVs. The operational scenario assumes that several UAVs are conducting a surveillance mission, gathering photographic data and analyzing the images for the presence of a high value target. UAVs are connected to each other using an ad-hoc 802.11g wifi network for intra-UAV communications. Communications between the UAV swarm and a headquarters node is over a high-power back haul hosted by one of the UAVs. To conserve mission resources, individual UAVs share responsibility for the back haul; UAVs host the back haul link in turn, sharing responsibility in round robin fashion. UAVs that are not currently hosting the back haul forward their captured images to the gateway node, the one hosting the back haul. The gateway node then sends all images on to the headquarters system. Mission resources are additionally conserved by adjusting the rate of intra-UAV communications to accommodate high priority traffic. As each UAV is gathering its photographic data, it is analyzing the image for the presence of a high value target. If it determines it has found such a target, it increases its image capture rate and its intra-UAVs data transfer rate. At the same time, it sends out a message to all the other UAVs in the swarm indicating that it has found a target. The other UAVs accommodate the higher data rate associated with the finding of a target by reducing their own intra-UAV data transfer rate.

The second research project was titled “Low-cost Electronics Technology for Enhanced Communications and Situational Awareness for Networks of Small UAVs”. The research deals with a scenario where a UAV is flying an nominally cyclic or repeating flight path. As the UAV traverses the path, it experiences varying RF effects, including multipath propagation and terrain shadowing. The goal is to provide the capability for the UAV to learn the flight path with respect to motion and RF characteristics, and modify radio parameters and/or
motion behavior proactively to mitigate deleterious effects. Using sensor fusion techniques to develop situational awareness, the UAV should be able to adapt its motion or communication based on knowledge of (but not limited to) physical location, antenna orientation, radio performance, and channel conditions. Using sensor information from RF and MOT (MOT for physical motion) domains, the UAV uses the mission objectives and its knowledge of the world, to decide on a course of action. The UAV develops and executes a multi-domain action; action that crosses domains, such as changing the RF power and increasing its speed.

1.5 Desired Results from this Research

The “blue sky” vision for this research takes a few different forms: emergency response robots exploring harsh (e.g. radioactive) environments looking for signs of life on behalf of susceptible human emergency responders; mobile robots dropped into a post-Katrina New Orleans that adjust their position and RF parameters to create a self-organizing network for replacement communications infrastructure; swarms of UAVs, unmanned ground vehicles (UGVs), and unmanned surface vehicles (USVs) that can communicate with each other and use their full degrees of freedom—both RF and motion—to cooperatively ensure mission success; even rovers that can intelligently explore new worlds, where RF and motion flexibility can be traded off against each other to fulfill the mission.

A more practical goal for this research differs only in scope: design, develop, and deploy a vehicle capable of carrying out a mission (e.g. explore a test environment, track targets, and relay data to base), while operating within predefined bounds (e.g. minimum speed, maximum mission duration, minimum quality of service (QoS)), and leveraging degrees of freedom in the RF domain and the physical mobility domain (hereafter referred to as MOT).

The research described in this dissertation will serve as a basis for future tactical and emer-
gency response AV research. I have already submitted a proposal to extend my research to a fully mobile prototype based on a quadrocopter aerial vehicle, with the CE interfacing with both the quadrocopter’s autopilot and the communication subsystem. The proposed UAV will carry out an appropriate public safety mission, such as SAR search, while using motion and RF flexibility to maintain connectivity and ensure mission success. Figure 1.3 shows the proposed quadrocopter conducting a SAR search mission.

Figure 1.3: UAV on SAR search mission using RF and motion flexibility to maintain connectivity and ensure mission success. This UAV is part of a proposal that extends the research in this dissertation.

The next chapter presents the current state of research on CRs and AVs, including a brief history of both CR and AV research. I also survey the limited scope of current research that combines RF adaptability with robotic motion.
Chapter 2

Literature Review

2.1 Introduction

The literatures of cognitive radio and autonomous vehicles are both large and comprehensive. In this chapter I will identify and describe the founding writings and key literature that relates to my work. The central aspect of this research presented in this dissertation is the convergence of CR and AV technologies, and as such, I look to current research in both fields, to provide a foundation of understanding upon which to build. As flexible adaptable systems that operate independently and intelligently, CRs and AVs share many characteristics. In this chapter, I attempt to look at both fields from a historical perspective, and highlight current trends that relate to ongoing efforts to bring the fields closer together.
2.2 Cognitive Radio

The field of CR is a wide one, covering many diverse sub-areas. Many different groups have tried to define CR, and these definitions vary according to the group and their interests and requirements. The IEEE [11], Wireless Innovation Forum (formerly SDR Forum) [12], ITU-R [13], and FCC [14] each have their own somewhat different definitions for CR. In “Essentials of Cognitive Radio”, Linda Doyle writes, “In very simple terms, a cognitive radio is a very smart radio,” [15]. This definition is very appealing in its simplicity. Because of the multiplicity of (completely valid) definitions, I have chosen to adopt a broad definition of CR for this work, focusing on system’s ability to learn from experience. Thus: A cognitive radio is a radio that is able to adapt its behavior based on changes in its environment, and is able to learn from previous experiences.

Radio technology has a long history going back to the late 19th century. For much of that time radio transmitters and receivers were defined by their hardware, at best allowing their user to select from a limited range of operating frequencies and a few modulation types. Design focused on efficiency and power consumption.

Things began to change in the late 1980s when researchers recognized that transmitters and receivers were really cascaded analog signal processing blocks performing well defined mathematical operations. These could be replaced by software driven digital signal processing blocks, leading in principle to software radios.

Joseph Mitola is credited with inventing the term “software radio” to describe a radio implementation wherein the individual radio components such as mixers, filters, and amplifiers, are implemented as software function blocks and the RF signal is a data stream that is acted upon by each function block in turn [16]. A software radio performs all signal processing functions digitally; a software defined radio retains some analog components at its front
(antenna) end. The distinction is somewhat arbitrary. Here I use the term “software radio” to apply to both. Software radio offers important capabilities for radio design, including potentially unlimited reconfigurability and the ability to build and deploy new components.

Software radio is the core technology behind the US military Joint Tactical Radio System (JTRS). Based on open standards, JTRS is intended to reuse existing system configurations while allowing evolving technologies to build a family of software programmable and modular communications systems aimed at communications connectivity for warfighters in the digital battlefield environment [17]. Software radio is also a promising technology for public safety and emergency response communications. A flexible and adaptable radio architecture can overcome the inherent incompatibilities that are highlighted when multiple public safety and emergency response agencies mobilize in the face of large-scale disaster [18, 19]. For a thorough analysis of both software radio theory and representative applications, see [20, 21].

Mitola also introduced the phrase and concept of CR, a logical extension of the flexibility embodied by software radio [22]. CR builds on the flexibility of radio components written and deployed in software, incorporating knowledge of the radio’s capabilities and current configuration into an adaptive decision making process that seeks to optimize the radio’s performance. Mitola’s CR prototype is smart communication device that adapts to a user’s needs and changes in the environment. Mitola focused on high-level intelligence in the form of a PDA-like device that communicated conversationally with the user to determine the user’s needs and to relay information to the user [22].

Simon Haykin was one of the first to realize the potential of CR. In his highly influential

1The golden age actress Hedy Lamarr may have developed one of the first cognitive communication systems. In 1942, Lamarr and George Antheil received a patent for a “Secret Communication System” that used preemptive adaptation in the form of frequency hopping to maintain secret communications for the purpose remote control of aircraft. Player piano rolls allowed a transmitter and receiver to synchronize their tuning adaptations [23]. This work presages the preemptive adaptation techniques of communication systems such as Bluetooth.
paper [24], Haykin identified the “promise of a new frontier in wireless communications.” CR would improve spectrum utilization through dynamic coordination of the spectrum sharing process, focusing on interference between radio nodes, and awareness of and adaptation to the RF environment.

Other researchers realized that CR could be applied to lower layers of the radio “stack”. CR could be applied to the physical layer, as in [25]. CR research has since grown to cover an extremely wide range of topics, including (but not limited to), spectrum sensing, situational awareness, smart antenna techniques, signal classification, spectrum management, PHY and MAC layer adaptation, network optimization, cooperative relay, rendezvous methods, protocol schemes, network stack adaptation, artificial intelligence, waveform design, primary user detection, and ontology.

Managing radio and spectral resources for effective operations has long been and continues to be a major concern both to military and civilian authorities [26]. The proliferation of mobile devices capable of receiving and sending massive amounts of data (e.g. streaming video from mobile handsets) has cellular communications providers concerned with balancing limited network resources and high user demand.

Dynamic spectrum access (DSA) has been seen as the answer to the problem of spectrum scarcity, and was the first practical application of CR; the first economically viable use case. Dynamic spectrum access deals with management and sharing of spectrum from the perspective of a limited resource. DSA continues to capture the attention of CR researchers, to the extent that there have been limited advances in other applications.

Much of the current research in DSA is theoretical and does not account for real world implementation issues. However, an early practical DSA demonstration showed a network of six DARPA neXt Generation (XG) radio nodes capable of using spectrum over a wide
range of frequencies as opportunistic secondary users [27]. Shortly thereafter, Nolan et al. presented a live system capable of identifying holes in the RF spectrum and configuring a radio link to exploit those holes. Further, the system showed that it was repeatedly able to reconfigure the link as the spectrum occupancy changed over time [28]. In [29], Preston Marshall notes that there has been significant research into the mechanics underlying effective DSA, including spectrum brokers utilizing spectrum databases, and methods of distributed and fused spectrum sensing. However, Marshall notes that there has been little investigation of RF signal metrics such as adjacent channel energy in DSA scenarios. Marshall himself addressed this deficiency in [30].

The first successful cognitive radio architecture consists of an intelligent software package called a CE directing an electronically controlled mode-agile and frequency-agile RF platform. This is commonly, but not necessarily, a SDR [9].

The first prototype cognitive radios, employing the VT cognitive engine and genetic algorithms, were built by Rieser et al., in 2004. The RF unit was a 5.8 GHz Proxim Tsunami radio with the following electronically settable knobs: transmitter power, modulation type and index, forward error correction (FEC), uplink/downlink time slot ratio (fibs), and center frequency. The test radios established a video link on a fixed frequency and a jammer was then turned on. The radios were not allowed to change frequency but cooperatively adjusted all of the other knobs to minimize the effect of the jammer. If the jammer went away and subsequently returned, the radios remembered their earlier settings and returned immediately to them [9].

The concept of a CE as an intelligent software package that “turns the knobs” and “reads the meters” of an electronically configurable radio transceiver is now over ten years old [31]. The first successful cognitive engines were highly complex, with a steep learning curve, and difficult to port from one host computer to another [32]. As a result, my laboratory colleagues
and I developed Cognitive System Enabling Radio Evolution (CSERE), a flexible and user friendly CE. CSERE is written in Python for universal porting, and capable of run-time evolution by hot-swapping modules (optimizers, for example) as its operating environment and mission evolve.

Based on our experience with previous software-based, adaptive, and cognitive radio systems, we developed a road map for development that was based on three key principles:

- Extremely modular architecture;
- High level of data introspection; and,
- Easy to use when installing, modifying or running in an experiment.

By modularity, we wanted to develop a system that was built of reusable blocks that could be integrated to form a complete cognitive engine, but where the individual blocks could be easily modified or in fact entirely removed and replaced with other blocks. We also wanted the blocks to be usable by other code so that individual blocks could be integrated into other projects without requiring the full functionality of the cognitive engine or the other components. “Data introspection” means that we wanted to develop software that offered easy access any of the intermediate data or final results that the cognitive engine’s components generated during run time operation. And perhaps most importantly, we wanted a cognitive engine that was simple to install and operate, and simple to experiment with and modify.

Further information on CSERE, including system organization and architecture, run time details, and application programming interface (API), are available in [33].

The most widely deployed DSA radios are those using the Defense Advanced Research Projects Agency (DARPA) sponsored XG technology [27] discussed above. An advanced hand-held prototype incorporating XG and an excellent platform for implementing a va-
riety of cognitive radio applications is the DARPA Wireless Network after Next (WNaN) radio [34,35]. Researchers at the Canadian Communications Research Centre have developed an 802.11 based prototype cognitive radio called both the WiFi CR and CORAL which they describe as a building block for building cognitive radios and networks capable of performing DSA and other cognitive functions [36, 37]. Virginia Tech researchers have set up what is probably the first permanently deployed, large-scale cognitive and software defined radio network test bed emphasizing PHY and MAC reconfigurability. With 48 nodes, the Cognitive Radio Network Testbed (CORNET) covers 100 MHz to 4 GHz, and is based primarily on the Ettus Universal Software Radio Peripheral (USRP) [38] with a Motorola RFIC4 daughterboard. Code for each node runs on its own Intel Xeon processor-based server. While used primarily for DSA to date, it offers users a large and flexible test bed on which researchers can try out almost any proposed cognitive radio code [39].

Academic CR development has focused primarily on two radio platforms: the USRP and the Wireless Open-Access Research Platform (WARP) from Rice University [40]. A high-performance laptop typically runs much or all of the associated software. A brand new entry in the RF platform market is the Phi from Per Vices [41]. The Phi is a PCI Express card platform that installs directly into a computer chassis. This integration eliminates any wire interconnect, allowing extremely high transfer rates, up to 8 Gbps. The Phi covers 100 kHz to 4 GHz with up to 200 MHz bandwidth, and like the USRP, works with GNU Radio [42].

Christodoulou, Tawk, and Jayaweera have revisited Rieser’s and Rondeau’s vision of a cognitive radio engine (CRE) that “does not have to be limited to dynamic spectrum sharing (DSS), to simply an upgraded version of SDR, or even to a number-crunching machine that can perform pre-defined cross-layer optimizations.” The researchers emphasize self-management, self-reconfiguration, and self-learning in their system which they call Radiobot. They have developed an architecture wherein a CE controls a reconfigurable hardware plat-
form (in this case a reconfigurable antenna), and fabricated a proof-of-concept RF front-end featuring said reconfigurable antenna, but missing any CE) or CR component. In fact, they may have missed their own point, by talking up wide-open learning and adaptation potential, and then limiting themselves to reconfigurable antennas [43].

Recent work on mobile and portable applications employs CEs and software that run on single-board computers like the BeagleBoard [44]. While SDRs dominated the early years of cognitive radio building, this is changing in response to the availability of low-cost CMOS transceiver chips like the Motorola RFIC series and the Hope RF RFM22B [45]. A cognitive engine can reconfigure these rapidly by loading new values into registers, and the development time and cost and the power consumption are a small fraction of that for an SDR with similar capabilities. For more information on RF platforms for CE, see [9, 10]. The work in this dissertation extends the research area of building practical cognitive radios in small low-cost packages.

2.3 Autonomous Vehicles

As with CRs, the field of AV is a wide one. However, unlike CR, the phrase “autonomous vehicle” has not been defined by multiple standards committees. The Oxford English Dictionary defines “autonomous” as “Of a machine, apparatus, etc.: capable of carrying out, without supervision, tasks typically performed by humans,” [46]. Conner [47] provides provides the following definition of an AV:

1. It is a machine that can move,
2. It reacts autonomously, and
3. It reacts in an apparently intelligent manner.
This definition of an AV is compelling in its clear simplicity. Thus, following the simplicity of the example set by the CR definition above, and guided by the definition provided by Conner, I have chosen the following broad definition for AVs: *an autonomous vehicle is a machine that is capable of independent motion, can act and react autonomously in order to carry out a defined mission, and is capable of learning.*

The history of AVs is closely entwined with the history of robotics. In their discussion on the origin of robots, Asimov and Frenkel start off with *Monster* in Shelley’s “Frankenstein”, an autonomous and mobile organic agent capable of exploring and interacting with its environment, and capable of learning as well [48, 49]. For Asimov and Frankel, Shelley’s book appeared at an appropriate time, in the midst of the scientific and technological advances industrial revolution. However the term “robot” did not appear until 1920, in Čapek’s play “R.U.R.: Rossum’s Universal Robots” [50, 51]. The formalization of methods dealing with control and communication processes as statistical information was laid forth by Wiener in his influential book “Cybernetics”, where he drew connections between the human nervous system, computers, control systems, and communication systems [52]. Wiener was a key participant in the Macy Conferences, a series of meetings between scholars from a variety of fields including mathematics, psychology, sociology, statistics, logic, and anthropology. These conferences explored topics such as neural networks, feedback mechanisms, information theory and decision theory. All these topics are fundamental to the design and development aspects of the systems we call robots or autonomous vehicles.

The idea of robotic systems and autonomous vehicles has been evolving for several decades [53], with significant advancements occurring in recent years. Conner provides a very thorough discussion of robotics and autonomous vehicles from both a historical and philosophical perspective in [47], while Vanderbilt highlights some of the more recent advancements [54].
The DARPA Grand Challenge (DGC) is an autonomous vehicle research and development program with the goal of developing technology that will keep war fighters off the battlefield and out of harm’s way. The 2007 DARPA Urban Challenge (DUC) was designed to accelerate the development of autonomous ground vehicle technology for operations in an urban environment. The vehicles faced a series of driving challenges, while obeying the rules of the road [55].

To meet the objectives for the DUC, teams’ vehicles were required to complete multiple missions over a defined course. The course itself and the missions were defined using route network definition file (RNDF) and mission data file (MDF) formats, respectively [56]. The course was defined as a set of accessible roads and areas in which an autonomous vehicle was permitted to travel. The MDF provided a series of checkpoints that had to be visited in sequence by a vehicle. While vehicles were required to travel to each of the checkpoints in order, and stay within the bounds defined by the RNDF, the manner in which they might do so was unspecified. While completing the challenge missions, vehicles had to contend with and accommodate various challenges, including static obstacles, other moving vehicles and varying course conditions.

One of the most exciting and visible examples of AV technology and research in the past several years is the Google car [57], a project led by Sebastian Thrun, formerly part of Stanford’s DARPA Grand Challenge and Urban Challenge teams. There has been very little published that directly addresses the car’s technological innovations; in fact the biggest topic of discussion surrounding the Google car is legal, dealing with motor vehicle regulations [58, 59].
2.4 CR/AV Convergence

The central aspect of this research is the convergence of CR and AV technologies. Railway cognitive radio (RCR) appears to be one of the first efforts to integrate SDR and CR platforms into a vehicle. RCR seeks to condense multiple radios into a single unit, for flexible adaptability [60]. RCR offers the potential for interoperability between otherwise incompatible systems, an important factor that drives CR research in public safety as well [61, 62]. Amanna et al. highlight the potential for CR to use global positioning system (GPS) to provide intelligent spectrum policy adaptation based on location. For example, a train that crosses international borders must adhere to the mandated spectrum policies of both nations to avoid conflicts with other railroads. However, Amanna et al. don’t explore any other possibilities to adapt radio operation performance based on location information [60].

Troxel et al. also look at applications of CR in mobile scenarios. Using a team of mobile radio nodes, they constructed a system that used learning to optimize network performance. They sought to have the nodes cooperate to improve the team’s performance, rather than have each node optimize local performance. Using neural networks and multiple runs, they found that the radio teams could show improvement from one run to the next. Interestingly, while location information is recorded by the mobile radio nodes, it is not used in the adaptation process. The measurement and communication software remained unaware of the paths taken by the radio node [63].

Vehicular networking, an active new research area [64, 65] also leads logically to the combination of CR with AVs. Vehicular networks (VNs) offer the potential for increased safety and reduced resource consumption through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. However, VNs still have to deal with limited spectrum resources, and in fact have to share that same spectrum with non-mobile radio communication systems.
DSA is seen as the de-facto solution to this problem, using spectrum holes opportunistically to provide necessary bandwidth [64, 66]. In their VN overview, Di Felice et al. discuss the potential for vehicles to tap into national spectrum databases, such as those compiled by Shared Spectrum [67]. Using location information as provided by GPS in conjunction with a geolocation database can provide information about the bands and primary users (PUs), allowing vehicles to adjust their radio operation to avoid interference with licensed users without resorting to spectrum sensing. Di Felice et al. also identify the possibility of “future route-determining software” that could use RF information to “identify the regions where the user may have the best travel experience, going beyond the shortest distance alone.” This is a key observation. The possibilities extend far beyond simple DSA and spectrum holes, as this dissertation will show.

2.4.1 AVs with CR

None of the above research actually deal with AVs. The concept of combining CR and AV technology seemed to originate with Hauris [68], who simply recast the work of Rieser et al. [69, 70] in an AV scenario. And while Hauris specifically addresses optimization of RF parameters for a “geographically varying wireless network” in the introduction, no effort is made to consider geographic information (i.e. position) in the optimization process.

Angermann, Frassl and Lichtenstern take a step closer to CR/AV convergence with a communication relay chain based on quadrocopter micro air vehicles (MAVs) [71]. A central node calculates position for each MAV node based on simple geometry, dividing the end-to-end link into equally spaced relays based on the number of nodes present. The central node pushes the position information out to each node, who attempt to perform station keeping without any onboard positioning information. The non-distributed nature of the decision
making limits the potential of the system, as does the lack of onboard positioning on each node.

Communication-aware motion (CAM) is where we start to see CR and AV systems come together. CAM refers to mobile nodes that are capable of taking communication parameters into account when planning and executing motion. Mostofi notes that “a mobile network that is deployed in an outdoor environment can experience uncertainty in communication, navigation and sensing.” In this situation, “optimum motion-planning decisions considering only sensing and navigation may not be the best for communication, resulting in communication and sensing trade offs,” [72]. While Mostofi presents a method of using noise variance, signal-to-noise ratio (SNR), and statistical channel models to plan and adapt motion, Mostofi limits his work to one perspective. His observation quoted above opens the door to much more: the possible benefits of adapting RF operation as well.

Hager, Burdin, and Landry explore emergent behavior in tactical networks using agent based modeling (ABM) [73]. As the number of interactions in tactical wireless networks increases, the risk of emergent misbehavior or emergent failure also increases. The researchers believe that the opportunity for emergent successes should also be considered for tactical applications. And while they don’t explicitly address CAM, they do in fact make use of some CAM behaviors in their simulation with their empty-buffer behavior. But again, they do not look into the possibilities that come with the ability to adapt RF operation.

CAM has been seen as a solution to propagation problems. While traditional CR designers may change frequencies, data rate, modulation, or encoding to compensate for poor channel conditions [70], Lindhe and Johansson have identified CAM as a method to increase average communication throughput [74]. In a multipath fading environment, robots can measure the SNR and adapt their motion to maximize communication performance. Allowing a robot to “spend slightly more time at positions where the channel is good” ensures that network
performance improved over scenarios where the robots did not stop at all.

A team of researchers at the Communication Networks Institute (CNI) of the Dortmund University of Technology have explored CAM in their effort to build a micro unmanned aerial vehicle (MUAV) system targeted at disaster response [75]. A series of publications detail the team’s efforts to design the system from the ground up [76–79], but the most relevant is [80]. The CNI team develop motion control algorithms that balance the competing needs of spatial coverage and connectivity between nodes. The result is a “clusterbreathing” algorithm based on received signal strength indicator (RSSI). Specifically, swarms of MUAV nodes perform station keeping based on maximum and minimum values of RSSI. The result is a swarm that seems to breathe, as the swarm expands and contracts in order to ensure that RSSI levels remain within limits.

The research discussed here, as well as other CAM research efforts, all seem to miss one major point: while motion can be modified based on communication performance, so can radio operation be adapted based on location and motion. As mentioned at the beginning of this section, all this research approaches the same problem from only one perspective.

The other perspective, the opposite side of CAM, is position/motion-aware communication (P/MAC). And there is very little research in this area. Amanna et al. briefly allude to P/MAC, but limit possibilities to matters of policy, that which is required by regulations. Di Felice et al. also seem to flirt with the idea of P/MAC, in the form of geolocation and national spectrum databases that vehicles can access in order to more easily perform vehicle-based DSA [64]. But again, Di Felice et al. seem to miss the potential that exists; the concept of extending location based decision-making beyond DSA completely lost.
2.5 Conclusion

Both cognitive radio and autonomous vehicle technology are logical extensions of trends that began with making communications systems and vehicles more reliable and flexible and now are focused on removing their need for human operators. Bringing them together is an idea whose time has come. Insufficient time has elapsed for it to have much literature of its own. In this chapter I have tried to trace the development of both fields and to report on early efforts to bring them together.

The next chapter opens the discussion on UMDDM with an overview of the experimental procedure I developed to showcase the possibilities of UMDDM. I discuss the intent and the design philosophy of the experimental process I developed for this research.
Chapter 3

Experiment Design and Philosophy

3.1 Introduction

As discussed in Chapter 1, the use case for this research is a scenario where a UAV is flying an nominally cyclic or repeating flight path. As the UAV traverses the path, it experiences varying RF effects, including multipath propagation and terrain shadowing. The goal is to provide the capability for the UAV to learn the flight path with respect to motion and RF characteristics, and modify radio parameters and/or motion behavior proactively to mitigate deleterious effects.

Experiments and the resultant data are fundamental requirements for new research. This chapter starts the discussion and exploration of UMDDM, discussing the experiments that support the research presented in this dissertation. The remainder of this chapter is organized as follows. Section 3.2 lays out the intent and high level goals of the research experiments. Section 3.3 discusses the design of the experiments in order to achieve the high level goals. Section 3.6 discusses the implementation details of the experimental process.
Section 3.4 discusses how the experimental results are to be evaluated. I conclude with some summarizing comments in Section 3.7.

3.2 Experimental Intent

This research explores the convergence of CRs and AVs, leveraging UMDDM. UMDDM is a natural extension of multi-objective optimization, and has precedent in cognitive network (CN) research, which seeks to optimize multiple aspects of the network stack, not just the PHY layer. UMDDM extends these concepts beyond the communication world into the physical motion-based world. This research is explicitly concerned with RF and MOT parameters. Thus any experiment must clearly show the choices and trade-offs the system makes in the RF and MOT domains.

I have developed a test scenario that specifically targets the use case and the UMDDM ideas I developed in this research. I use a combination of software simulation and live testing. Live testing in this case means over the air (OTA) transmission combined with actual motion.

3.3 Experimental Design

The experiment is based on the use case developed for my AFRL funded work. Resource and space limitations preclude the use of actual UAVs. I have instead used a ground robot and designed an indoor test track which is presented in Section 3.5.3.

The experimental procedure has been developed to specifically target RF and MOT parameters. The experimental procedure consists of two major components: software simulation, and live testing.
The core of the system is the decision making component. The decision maker uses data from the system’s sensors to generate solutions that the system uses to implement action. The simulation is a software analysis of the system’s core decision making component. For the live system testing, I built a robotic component, called the AVEP. The decision making code that is analyzed in the simulation is implemented as part of the AVEP, which is then deployed on the testbed described below in Section 3.5.3. (The decision maker itself is discussed in further detail in Section 6.3.)

3.4 Evaluation of Test Results

Traditionally the performance of a CR has been measured using various figures of merit including throughput/goodput, network stability, and spectrum utilization [70, 81, 82]. These metrics are very appealing due to their familiarity to RF engineers, and their representation of real RF channel and network characteristics. However, many CR researchers are interested not only in RF metrics, but in the performance of the cognition process itself, the ability to determine whether a given solution applied during the cognition process is in fact suitable to the present scenario. Zhao et al. provide an overview of performance metrics, “from node-level to network-level and application level.” While they also used a CR testbed for evaluating the process of selecting, incorporating, and evaluating performance metrics and utility functions, they limited themselves to traditional RF metrics: QoS, spectral efficiency, power efficiency, and time of solution adaptation [83]. Dietrich, Wolfe, and Vanhoy have proposed a method of evaluating CR performance using psychometric approaches, i.e., psychological measurement models that are used in testing of humans, [84]. Kaminski has proposed the use of measure of effectiveness (MoEs) to evaluate CR performance using a two stage algorithm based on neural networks [85]. Clearly, there is not current consensus

AV performance is primarily evaluated an AV’s ability to perform its intended task. Techy et al. note “UAVs hold the desired altitude with high precision and converge to a phase-synchronized state” in [7]. The rules for the DUC state that vehicles must demonstrate the ability to “Complete a mission defined by an ordered series of checkpoints in a complex route network,” while observing standard traffic etiquette and regulations [55]. The rules for the 2012 RoboCup state simply “The team scoring the greater number of goals during a match is the winner;” [86]. DARPA has recently announced a new robotics challenge seeking to foster innovative research in the area of robotics for disaster response. The broad agency announcement (BAA) indicates that the scoring criteria and competition rules “have not yet been defined,” but that candidate scoring criteria includes “successful event completion, completion time, data rate, and energy consumption,” [87]. Similar the the CR situation described above, there does not appear to be a standard method for measuring and evaluating AV performance.

Evaluating the performance of the AVEP is not straightforward. CR researchers have proposed methods of evaluating the cognitive aspects of CRs, but there are no standards, nor are there even fully implemented prototypes. Methods for evaluating performance of AVs focus primarily on whether the AV in question can successfully complete its assigned task. In light of this, I have followed the example set by DARPA in the DARPA Robotics Challenge (DRC). I will evaluate the AVEP on a variety of factors, including mission success and completion time. Additionally, I will consider two common RF metrics: bit error rate (BER) and packet delivery.
3.5 Experimental Components

There are three major components used in the experimental testing, the AVEP, the Node B radio (NBR), and AVEP test bed. This section describes their capability and their missions; technical details appear later.

3.5.1 AVEP

The research in this dissertation includes software algorithms as well as a physical component; a robotic/RF hybrid system that implements the software algorithms in a laboratory environment. The AVEP, shown in Figure 4.1 is the hardware and software platform that I developed to deploy the UMDDM algorithms. The AVEP consists of two distinct physical subsystems, the computational platform and the chassis. The chassis provides the mobility capability, while the computational platform runs all system and control software, as well as the algorithms developed for this research. The AVEP is discussed in greater detail in Section 4.4.

3.5.2 Node B Radio

While the AVEP consists of an RF component and a MOT component, the NBR consists simply of an RF component, as a stand alone radio. However, it is the radio system with which the AVEP communicates when the AVEP is employing its RF capabilities. The NBR is discussed in greater detail in Section 5.4.
Figure 3.1: Autonomous vehicle experiment platform
3.5.3 AVEP Test Bed

The AVEP test bed is used as the testing ground for the physical AVEP implementation. The test bed represents a single section of the UAV flight path; one critical point where the AVEP must make a choice. A picture of the test bed is shown in Figure 3.2.

The central aspect of the test bed (Figure 3.3) is three paths that diverge from the decision point at Node 1 and converge again at Node 2. Both Node 1 and Node 2 have barcodes marking their position, and a barcode reader is used by the AVEP to determine position, as discussed in Sections 4.4.3.1 and 5.2.2.3.

The test bed has been designed so that each path has a different length, enough of a length difference to ensure that travel along each path by the AVEP is a different experience. Table 3.1 lists the path length (in meters) of each path in the test bed.
Figure 3.3: The central aspect of test bed graph is three paths (edges) that diverge from the decision point at Node 1 and converge again at Node 2.

Table 3.1: Path length (in meters) of each path in the test bed.

<table>
<thead>
<tr>
<th>Path</th>
<th>Length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.575</td>
</tr>
<tr>
<td>2</td>
<td>1.219</td>
</tr>
<tr>
<td>3</td>
<td>2.223</td>
</tr>
</tbody>
</table>
3.6 Experimental Procedure

This section discusses the experimental research, both the data generated, and the processes used. The decision making component that uses and generates the experimental data is written in Python, and the same code/module is used in the software simulation as well as the live test system on the AVEP.

3.6.1 Experimental Data

Data is at the heart of the decision making process. Sensor data provides the input to the decision maker. The decision maker uses several objective functions in its decision making process. The individual objective functions represent both the RF and MOT domains, and are:

- Z, Target/Anti-target Value,
- T, Time,
- B, Bit Error Rate, and
- G, Packet Delivery.

In this system, I wish to minimize the bit error rate and the time of travel along a path, and maximize the packet delivery and target/anti-target value. I use a nondominated sort to determine the final solution $[Z, T, B, G]$ that the AVEP will implement. The decision making process, and the objective functions and their supporting algorithms are discussed in depth in Chapter 6.
3.6.2 Software Simulation

Software simulation focuses on the decision making component, Running the decision making module through multiple iterations with inputs simulating actual environments the AVEP would encounter. I first evaluate each objective function individually, as in [88]. I then observe the output of the decision maker when it evaluates all the objective functions together and generates a single multi-domain solution.

3.6.3 Live Testing

For live testing, I integrate the decision maker into the full AVEP system, and run a series of experiments on the AVEP test bed. These live experiments validate the operation of the decision making module, but also demonstrate the operation of the full AVEP. During tests, the AVEP navigates the AVEP test bed, while communicating with the NBR. Each action the AVEP executes during operation is generated by the decision maker.

3.7 Conclusion

In this chapter, I presented the experiments that support the research presented in this dissertation. I laid out the intent and high level goals of the research experiments, then discussed the design of the experiments in order to achieve the high level goals. I discussed the difficulties in evaluating the performance of CR and AV systems in isolation, a problem that is compounded when I combine CR and AV systems. However, I developed a plan based on recent DARPA challenges, and presented a plan for evaluating the AVEP.

The next chapter presents the hardware and software components that I built to support the research in this dissertation. I describe the hardware and software components from a
high level system perspective, and attempt to provide a framework of understanding for a more detailed discussion of my research in subsequent chapters, where I describe the AVEP operational algorithms and the UMDDM decision making and learning algorithms.
Chapter 4

Hardware and Software Choices for System Implementation

4.1 Introduction

This chapter presents the hardware and software components that I designed and built to support the research in this dissertation. I will describe the systems themselves, and highlight some of the choices made as well as the reasoning behind those choices.¹

The software discussion will cover architecture and organization, but any discussion of the algorithms involved will be held until Chapter 5.

The remainder of this chapter is organized as follows. Section 4.2 discusses hardware options and selection of hardware components for CR systems, while Section 4.3 discusses the same for robotic systems. Section 4.4 presents the details of the hardware components for the research platform.

¹Much of the material in this chapter is taken from [10].
4.2 Hardware Systems for Cognitive Radio

4.2.1 Hardware Overview

For the purpose of this research, the hardware parts of a CR system consist of a computational platform and a radio platform. (In some circumstances these may reside on a single circuit board.) The computational platform (usually) supports both the CE and either some of the DSP functions required by an SDR—SDR designs differ in how their internal signal processing functions are divided between software and hardware—or the control functions required by an RF application-specific integrated circuit (ASIC). An ASIC may eliminate the need for some or all digital signal processing (DSP) operations on the computational platform. The radio platform provides the remaining analog and digital RF functions required to transmit and receive communications signals.

A CR must sense its environment with sufficient sensitivity and fidelity, and reconfigure itself appropriately to accomplish its mission. To the usual specifications like receiver sensitivity and dynamic range, transmitter output power, and data rate, a CR adds frequency, waveform and output power agility requirements.

4.2.2 Dispensing with SDR

Engineers’ perceptions of software defined radios and their approach to designing them differs somewhat according to their backgrounds and experience. Communications theorists may view a radio as a series of blocks performing ideal mathematical operations, perhaps unaware of issues like spurious response, dynamic range, bandwidth, etc., that do not arise in ideal cases. RF engineers may not initially appreciate that an SDR is really a computer system that must perform real time calculations in a way that mimics the pipeline processing of
analog radios, where a continuous sequence of signal values works its way through a chain. The difficulty of processing the current block of signal samples in time to be ready for the next block can be a challenge for SDRs running on a single-board computer.

Software radio offers important capabilities for CR design, including potentially unlimited reconfigurability and the ability to build new components, but it also brings problems like overhead, resource consumption, and time delays associated with reconfiguration. These issues are nontrivial. For many practical applications, SDRs are inherently embedded real-time systems, requiring hardware platforms and tools and expertise that engineers focusing on the applications of CR may well lack. Hardware and software issues can severely limit the performance of real SDR-based CR which, instead of having infinite configurability, when deployed may simply select from a relatively small set of pre-programmed modulations and modulation parameters. For many CR researchers, the net result may be a radio whose cost, reliability, and RF capabilities are comparable to those of an off-the-shelf radio frequency integrated circuit (RFIC) or single-board transceiver. Consequently, for some applications requiring low cost and small form factor CRs, there is now interest in CR designs that leverage WiFi and cellular chip sets and general purpose RFICs.

None of the above is meant to downplay the power and almost unlimited freedom that baseband processing of RF and microwave signals offers for the implementation of CR, as well as its widespread use of SDR for many applications. An excellent tutorial on RF baseband signal processing and its practical implementation in USRPs can be found in [21]. This discussion addresses the need to build a small form factor cognitive radio that will run on a modest single-board computer rather than, for example, on a desktop or laptop running LabVIEW. As in many designs for practical applications, tradeoffs between flexibility and cost, power consumption, and size apply.
4.2.3 RFIC-Based RF Platforms for CR

“A key bottleneck in CR experimentation has always been (and we believe continues to be) the availability of appropriate frequency-agile RF front-ends that can easily be coupled with the parts of the CR that carry out the digital processing,” [89]. The recent availability of low-cost RFIC modules with reasonable performance which can take over the RF platform’s tasks alleviates this problem. Their use represents a change from familiar designs employing the widely used USRP family of products. Typically a USRP is responsible for relatively few steps in the communications chain, and much of the processing is done elsewhere. RFICs remove this processing load from the computational platform.

As alternatives to SDR, I am interested in frequency agile electronically controllable full RF solutions in low-cost small form factor packages. Currently available products are capable of transmitting and receiving a variety of frequency shift keying (FSK)-based modulations in multiple bands, typically between 200-900 MHz, or in the 2.4 GHz band. Data rates can vary between 1-600 kbps. While these are low for commercial applications, they are adequate for CR experimentation. Frequency, transmit power, data rate, and modulation type are all user configurable, and the modules provide information about RSSI, link quality, and cyclic redundancy check (CRC) status. Additionally, users can customize the data packet structure. One example of these flexible and reconfigurable RFIC-based RF platforms is the RFM22B from Hope RF Electronics [45], which is discussed in Section 4.4.1.2. Others include the Maxim 7032 [90] and the Motorola RFIC4 and RFIC5, which offer higher performance but which are not commercially available [91].

In contrast to SDR systems, where radio operation is determined by software blocks, an RFIC is controlled by reading from and writing into memory registers within the device itself. Instead of generating a software emulation of a radio communication chain that
implements data sources, mixers, filters and modulators, the cognitive engine writes control
bits into registers to set the desired communication parameters. Radio reconfiguration is a
simple matter of changing a few register values. In contrast, for radio reconfiguration, SDR
platforms must build and load new software blocks or radio chains.

4.2.4 Computational Platforms for Low Cost CR

As discussed above, the computational platform usually supports both the CE and either the
DSP functions required by an SDR or the control functions required by an RF ASIC. Moving
away from SDR and employing a RF platform like the RFM22B reduces the computational
load. No DSP intensive calculations are required; the computational platform needs only
support the high-level cognition functionality and RFIC configuration and control. High end
laptops are no longer required.

Microcontroller-based platforms like the Arduino [92], and chipKIT [93] are the lowest-end
option for RFIC based cognitive radios. These boards generally have the same form factor or
footprint, but vary widely in types of microcontroller chips, and target applications ranging
from robotics to home automation to remote sensing. They are popular due to their low
cost (the Arduino itself is less than $30 USD), and the ease with which users can jump in
and build working projects very quickly.

Single board computers are the next level above microcontroller chips. These are often
designed as development platforms for set-top boxes (cable boxes) and mobile systems. They
feature small form factors, low power consumption, and a wealth of input/output (I/O)
options, as well as the processing power to support intensive graphics operations. Unlike
the microcontroller-based platforms discussed above, these platforms are full computers.
Their operating system provides file management, task scheduling, and drivers for I/O and
peripherals. Current choices include Raspberry Pi [94], BeagleBone [95], PandaBoard [96], and Gumstix Overo [97]. The Raspberry Pi is notable because of its extreme low cost ($35 USD).

4.2.5 RF Hardware Selection

The hardware I chose to use in this research includes the Hope RF RFM22B RFIC and BeagleBoard-xM. I alluded to reasons for choosing the RFIC above; cost, reduced computational complexity, and sufficient RF flexibility for this research. Additionally, the RFM22B has a selection of example applications that helped to guide development efforts [98, 99].

The choice of the BeagleBoard-xM was motivated largely by the wealth of pre-existing institutional knowledge; previous research by CWT and others at Virginia Tech leveraged the BeagleBoard [44,100,101]. Furthermore, the size of the BeagleBoard-xM-based RF platform (described in Section 4.4.1) is perfect for deployment on AFRL UAVs.

4.3 Robotics Hardware Systems Suitable for the Topic of this Dissertation

There are a wealth of robotics platforms around, including iRobot’s Roomba-based Create [102] as well as their industrial platforms [103], Aldebaran’s humanoid Nao [104], platforms designed for use with Arduinos [105], and Lego’s Mindstorms NXT 2.0 robotics kit [106], and more besides. They range from providing the bare minimum (wheels and a level platform for the 2WD Arduino compatible Mobile platform) to fully articulated turn-key systems (Nao robot), and their respective costs are commensurate with their capabilities.

I chose to use the Lego Mindstorms toolkit as the robotics platform, due to the comparatively
low cost (> $600 USD for all the required components), and its form flexibility; I could customize the form factor as required to accommodate the RF platform.

4.4 Research Hardware Platform: AVEP

The AVEP, shown in Figure 4.1 is the hardware and software platform that I developed to deploy and test the UMDDM algorithms presented in this dissertation. It is a robotic line follower with integrated RF communication system. The AVEP is composed of two distinct physical subsystems, the SKIRL radio platform, and the NXT brick and chassis. SKIRL is the major computational component of the system, while the NXT brick and chassis enable AVEP MOT capability and select environmental sensing capabilities. The AVEP components are discussed in greater detail below.

4.4.1 Physical Components: SKIRL Radio Platform

As noted above, SKIRL is the major computational component of the system, and is responsible for running all the control software, as well as radio operation. SKIRL comprises three components discussed below: BeagleBoard-xM single board computer, Hope RF RFM22B RFIC, and trainer board.

4.4.1.1 BeagleBoard-xM

The BeagleBoard-xM is a low-power, low-cost, single-board computer, using Texas Instruments components. The BeagleBoard-xM features a TI DM3730 with 1 GHz ARM Cortex A8, onboard Ethernet and 4 port USB hub, with a small footprint (8.26 cm x 8.26 cm). Designed and built to target mobile and video applications, the BeagleBoard-xM supports the
Figure 4.1: Autonomous vehicle experiment platform
addition of expansion boards that can provide additional functionality. The BeagleBoard-xM fully supports Linux and the attendant free and open source tool chains and development environments such as gcc, Python, Emacs, Subversion, etc. The BeagleBoard-xM also has many I/O ports available for interfacing with other components, using serial peripheral interface (SPI) or inter-integrated circuit (I2C), in addition to standard general purpose I/O (GPIO).
4.4.1.2 Hope RF RFM22B

The Hope RF RFM22B [45] shown in Figure 4.3 is a low cost highly configurable transceiver capable of transmitting and receiving FSK, gaussian frequency shift keying (GFSK), and on-off keying (OOK) waveforms between 240 MHz and 930 MHz with a maximum transmitter output power of +13 dBm. Advertised receiver sensitivity ranges from -121 dBm to -101 dBm, depending on data rate and modulation used. The module is marketed as a fully contained radio solution, providing all the necessary mixing, filtering, tuning, and A/D components to transmit and receive packetized bit data.

While the data sheet might be read to imply continuous 240 MHz – 930 MHz, the RFM22B is sold in three versions designed for operation in the 433, 868, and 915 MHz bands. These differ in their output impedance matching and filter networks. For experimental transceivers operating in closed RF environments, removing the output networks allows satisfactory op-
Figure 4.4: CW power delivered to a 50 ohm load as a function of carrier frequency for a stock 433 MHz RFM22B and for the same module with the output networks removed. ©2013 IEEE, used with permission.

Figure 4.4: CW power delivered to a 50 ohm load as a function of carrier frequency for a stock 433 MHz RFM22B and for the same module with the output networks removed. ©2013 IEEE, used with permission.

Operation over a continuous frequency range 250 to 900 MHz. See Figure 4.4 for an illustration of the transmitter frequency coverage with and without modification.

The RFIC contains a filter network between the microcontroller unit (MCU) and the transmit/receive (T/R) switch. Figure 4.5 presents the reference design of the RFM22B as presented in the data sheet [45]. However, our experience indicates that the filter implementation on-chip actually looks like the network shown in Figure 4.6, and the network can be bypassed (Figure 4.7) to increase the transmit power to the level shown in Figure 4.4).

The RFM22B’s receiving characteristics of interest are shown in Figure 4.8 and Figure 4.9. The RSSI indicator—which is used to sense whether a channel is occupied or clear—has a useful range extending from about -60 dBm to -10 dBm and the effective RF bandwidth for measuring RF energy in a channel is about 100 kHz.

Figure 4.6: RFM22B transmit filter network.

Figure 4.7: RFM22B transmit filter network with bypass. The dotted line show the implemented short circuit used to bypass the filter network.
Figure 4.8: RSSI values as a function of CW RF power at the antenna terminal. ©2013 IEEE, used with permission.
The module’s operation is configured (and reconfigured) by values stored in its internal registers. Figure 4.10 shows some of the memory registers on the RFM22B that can be set to configure the radio operation (and subsequently read to determine what the current configuration is).

As an example of how the radio is controlled, the two lines below set the data rate by writing values (txdr1 and txdr0) to the upper and lower transmit data rate registers TX Data Rate 1 and TX Data Rate 0. The data rate value is a 16 bit value, and TX Data Rate 1 holds the upper 8 bits of the value, while TX Data Rate 0 holds the lower 8 bits.

```
self._set_reg_tx_rate_1(txdr1)
self._set_reg_tx_rate_0(txdr0)
```

The primary I/O mechanism for the RF module is a first in first out (FIFO) buffer. Serial
|----|----|------------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|

data bytes are written to the transmit (TX) FIFO buffer in succession for transmission. When the buffer is full, the accumulated bytes are transmitted. Received data is likewise stored serially in the receive (RX) FIFO buffer. Continued reads will transfer all the data out of the buffer to the user. From the user perspective, it appears that the TX and RX FIFO buffers are one and the same, as they are both accessed through writing to and reading from the same register address, however there are in fact two FIFO buffers, one for TX and one for RX and internal RFIC controls ensure proper access to the appropriate FIFO.

A SPI bus is the primary method of interaction with the RFM22B, and four SPI lines are used to send and receive data to and from the module. GPIO is used for secondary signaling; controlling a T/R switch and providing a path for reading hardware interrupts.
There are minor issues to be resolved in interfacing the radio platform and the BeagleBoard-xM. The trainer board shown in Figure 4.11 and available from Tin Can Tools [107] solves these problems while providing access to SPI, I2C, and GPIO interfaces, a circuit prototyping area, and an onboard ATMEGA ATmega328 processor. It provides level translators that convert the 1.8 V signals from the BeagleBoard-xM to 3.3 V for serial communication with the radio module, and it converts the radio module signals from 3.3 V to 1.8 V for serial communication in the opposite direction.
4.4.2 SKIRL Integration

Fully integrated, the SKIRL radio platform components stack to make a single package, as shown in Figure 4.12. The system schematic in Figure 4.13 shows the components and their functions. The radio module provides FSK-based radio communications and the trainer board provides logic level translation for serial communications. The BeagleBoard-xM contains a Linux kernel and Ubuntu operating system. The BeagleBoard-xM also contains the software that operates the radio, from the users perspective. While all the radio operations actually take place on the radio module itself, the software on the BeagleBoard-xM initializes the radio module and controls its operation by reading values from and writing values to the radio module’s registers. Communication between the radio module and the BeagleBoard-xM is achieved using four SPI communication lines, and three GPIO lines. In addition to the signaling lines, the BeagleBoard-xM also provides power and ground to the trainer board and—indirectly via the trainer board—to the radio module.
4.4.3 Physical Components: NXT Brick and Chassis

The NXT brick and chassis form (Figure 4.14) the motion platform of the AVEP. Both the brick and the chassis come from the Lego Mindstorms NXT robotics toolkit [106]. The chassis features wheels and rotors for locomotion, as well as various sensors used by the system. The NXT brick forms the structural core of the chassis; the rotors, sensors, and Lego interconnect pieces all connect to the NXT brick, and the SKIRL platform rests physically on the brick.

The NXT brick contains an ARM processor and integrated LCD for display. The brick contains 3 rotor connector ports and 4 sensor connector ports. The ARM processor on the brick natively supports 2 languages (the graphical NXT-G language and NI’s LabVIEW for Lego Mindstorms), and with minimal effort is capable of running programs written in many more languages.
Figure 4.14: NXT Brick and chassis.
4.4.3.1 Sensors

The chassis currently carries three sensors, a light sensor, color sensor, and barcode reader. The light and color sensors are NXT native sensors, and connect to the brick. The light sensor responds to reflected light and measures the intensity of the reflected light. This functionality is used in the AVEP line following algorithm. The color sensor also responds to reflected light, but in contrast to the light sensor, the color sensor analyzes the reflected light to determine the light color. The color sensor is used in the AVEP target/anti-target detection algorithm. Unlike the light and color sensors, the barcode reader is not an NXT native sensor, nor is it connected to the NXT brick. While the barcode sensor is mounted on the chassis, it connects directly to the SKIRL radio platform. The NXT sensors were chosen due to their capability to integrate with the NXT brick, and for their relatively low cost.

The barcode reader is used in the position/location algorithm. The barcode was chosen as the method of position/location determination due to its simplicity and low cost. The testbed is set up indoors, and GPS works very poorly (if at all) indoors. As well, standard GPS does not have sufficient resolution to be useful at the scale used by the testbed. Other indoor positioning systems that use infrared [108] are prohibitively expensive for this research. The barcode is a hand held laser scanner similar to those use in retail point-of-sale systems. The barcode scanner has a trigger button to activate the laser, but for this research, I configured the laser to remain on continuously, allowing the scanner automatically to read any barcode that the laser passes over. Modern smart phones such as the iPhone or Android based phones can take a picture of a barcode with their integrated cameras and then use image recognition software to read the value embedded in the barcode image. However, I found the time to take a picture and analyze the barcode took too long to be practical; while the hand held scanner can read and decode a barcode in less than 1 second, the smart phone method often took up to 5 seconds to return a result.
The sensors and the algorithm they support are discussed in further detail in Chapter 5.

4.5 System Software

4.5.1 Software Options and Choices

The recommended operating system for the BeagleBoard-xM is Angstrom [109], and it is used in the board validation process [110]. Angstrom is configured using the Open Embedded (OE) embedded development framework [111]. OE allows users to deploy a full operating environment for the BeagleBoard-xM, including operating system (OS) and tool chains. OE builds the operating environment on a separate system, cross compiled for the BeagleBoard-xM platform. For a more detailed discussion of development for the BeagleBoard, see [112]. OE allows completely custom distribution builds for the BeagleBoard, at the expense of having to build every aspect of that custom distribution. Alternatives to Angstrom and OE include OS and tools from the Linaro project [113] and the Ubuntu ARM project [114]. Ubuntu has a history of stable operation and a large selection of available packages. As our laboratory uses Ubuntu on all research and development workstations, I decided to leverage the wealth of institutional knowledge with regards to system installation and support and chose the Ubuntu ARM as the OS for the SKIRL computational platform.

For cognitive engine code and control software for SKIRL, Python [2] was the obvious choice for this work. Python is easy to read and code, and Python applications are readily ported to multiple platforms. As with other choices, our institutional knowledge of Python helped make the choice; the CSERE cognitive engine [33] is implemented entirely in Python, and GNU Radio [3] makes heavy use of Python as well.
4.5.2 System Architecture

The concept for the AVEP system architecture is presented in Figure 4.15. The architecture is inspired by the work of DARPA Grand Challenge (DGC) and DUC competitors. Figure 4.16 shows the software organization of the AVEP as implemented. The controller is computational and functional core of the system, and is responsible for starting the radio and motion software, as well as integrating the cognition, route planning, positioning, and other sensor information.

All system software for SKIRL runs on the BeagleBoard-xM. While the microcontroller on the trainer board is capable of hosting and running programs written in C or assembly, the microcontroller is currently unused. The radio module itself is effectively a closed system; while I can interact with it at some level using its readable and writable registers, its internal operation is hidden. The AVEP system is written entirely in Python. Python provides cross-
platform functionality and is easy to read and code, with its similarity to pseudo-code.

4.5.3 Radio Software

The radio software is written and organized as a stack (Figure 4.17), with each layer providing functionality to the layer above and built on the layer below.

An application is built on top of the API which is in turn built on top of the driver. Figure shows how the radio software stack corresponds to SKIRL hardware. Applications and the API correspond to the GPP component in the hardware stack, while the driver crosses the divide between the RF module and the GPP component. The register access functions correspond directly to the RF module, while the drivers helper functions correspond to the GPP component.
Figure 4.17: AVEP radio software stack. ©2013 IEEE, used with permission.

Figure 4.18: Radio software stack compared to SKIRL hardware components. ©2013 IEEE, used with permission.
4.5.3.1 Radio Driver

The radio driver is the base interface for all interaction with the RF module. The radio drive uses the Python SPI driver to enable the bit-level communication with the RF module, and provides direct access to the RF modules configuration registers using register-specific functions. An example is:

```python
_set_reg_operating_mode_1(0x01)
```

The function sets the value of register 0x07, Operating Mode and Function Control 1, writing the hexadecimal value 0x01 into the register. The leading underscore (‘_’) indicates that the function is intended to be a private function, used only by other functions provided by the driver. These other functions are publicly accessible helper functions, such as:

```python
set_op_mode(ready)
```

The publicly accessible functions are designed to be more user-friendly, using strings for input rather than hexadecimal values. This improves code readability and eases debugging. Many radio operations such as setting the frequency require reading and setting multiple registers, and the helper functions consolidate these multiple operations into a single function.

4.5.3.2 Radio API

The radio API is the interface for operating the radio module. It provides:

- Radio initialization,
- RF front end T/R switch control,
- Access to the air interface for listen, receive, and transmit operations,
• Timeout and random back-off, and
• Interrupt monitoring.

The radio API provides an initialization function that is responsible for setting up GPIO-based communication lines and configuring the radio module in a default mode. This allows a user to start using the radio module quickly with little effort. The default configuration enables radio operation at 434 MHz using GFSK at 4.8 kbps. Default payload length is 17 bytes. This default configuration is based on sample code provided by Hope RF [98].

The GPIO-based communication lines are used by the API’s T/R switch to control the transmit and receive antennas. Each antenna is controlled by a single GPIO line, switching the antenna on or off. The T/R switch function has three states tx, rx, and off. Internally, the T/R switch always disables one antenna before enabling the other.

Hardware interrupts are used to indicate that certain events have occurred, including when a packet has been received and a packet has been sent. The system enables the specific interrupt for a particular event, and then loops to perform an action until the interrupt occurs. In this case, the interrupt port is tied to a GPIO line. When the radio module generates an interrupt, the GPIO line is driven low and the value GPIO line can be read by software.

A central service provided by the API is access to the air interface, using the listen, receive and transmit functions.

4.5.3.2.1 Listen Function The listen function provides carrier sense or listen before talk (LBT) capability, using RSSI. The radio module is put into receive mode, and the RSSI level is checked by reading register 0x26 Received Signal Strength Indicator. If this value is above a user indicated threshold, the listen function returns clear to the calling function.
It the RSSI value is not above the user indicated threshold, the listen function goes into
a random back off period before checking the RSSI level again. This behavior is repeated
a finite number of times, until the listen function either returns clear indicating a clear
channel, or the maximum number of iterations is exceeded and the listen function returns
busy indicating the channel is not clear. The logic for the listen function is shown in Figure
4.19.

4.5.3.2.2 Receive Function The receive function is used to receive a packet over the
air. The receiver uses two modes, with timeout and without, as shown in Figure 4.20. The
receive process involves waiting for a hardware interrupt to signal that a packet has been
received, then reading the received packet from the radio modules RX FIFO buffer. It is
important, therefore to have a method to interrupt the waiting action. A timer can be started
in an independent thread, and a flag is set when the timer expires. Periodically checking for
this timeout flag allows the packet receiver process to escape its wait loop, and return to its
parent process. This is useful behavior for a radio node that wishes both to transmit and
receive data regularly. However, some radio nodes’ primary function is to receive data, and
for this a receive timeout is unnecessary. In this situation, the timeout timer is not enabled,
and the process continuously waits for a hardware interrupt, indicating that a packet has
been received, returning to the parent process only when the packet has been read from the
RX FIFO buffer.

4.5.3.2.3 Transmit Function The transmit function (Figure 4.21) is used to transmit
packets over the air. Packets are loaded into the radio modules TX FIFO buffer. When the
transmitter function sets the operational mode of the radio module to transmit, the radio
automatically transmits all the data in the FIFO buffer, raising an interrupt when it is done.
After setting the operational mode to transmit, the receive process loops until the interrupt
Figure 4.19: Flow chart showing logic and flow of API’s listen function.
is raised to ensure that all data has been sent, before returning to the parent process.

4.5.4 Motion Software

As with the radio software, the motion software operates on-board SKIRL, but is responsible for communicating with and controlling an off-board component, in this case the NXT brick. While the NXT brick is capable of running programs on its ARM processor, I have instead chosen to control the sensors directly from SKIRL, effectively using the brick as a pipe through which to control the sensors and rotors. I am using a Python library called nxt-python that provides direct access to the brick and its components over universal serial bus (USB). Unlike the radio software, there is no explicit motion driver. Where the radio driver provides basic connectivity to the RFIC, connectivity to the brick is provided by the nxt-python library.
Figure 4.21: Flow chart showing logic and flow of API’s transmit function.
4.5.4.1 Motion API

The motion API the core of the AVEP motion system, and is the interface for operating the motion module. It provides:

- Rotor and sensor initialization,
- Rotor state information,
- Motion actions such as “go_forward”, “halt_motion”, and “find_line”.

The AVEP system uses a single connection to the NXT brick for all communication and control. This connection is established at the highest level, and passed to the motion API by the controller. The motion API uses the connection to initialize the AVEP rotors and sensors.

The simple “go_forward” function is the basis of all AVEP forward motion. The left and right rotors are engaged and allowed to run until the “halt_motion” function is called, which applies a braking function to the rotors. The “find_line” function turns the AVEP in place about its vertical axis until a line is detected. The AVEP turns first clockwise then anti-clockwise, sweeping out increasing arcs until the light sensor detects a line beneath it. These three functions combine to provide a more sophisticated motion algorithm. The algorithm is used by the motion subsystem and is discussed in further detail in Chapter 5.

4.6 Conclusion

This chapter has discussed the hardware and software components that I built to support the research in this dissertation, in the form of the AVEP. The AVEP is a prototype robotic platform that integrates RF and MOT decision making and flexibility into a single system. The AVEP is capable of autonomous motion using a line following algorithm. A new RF
and computational platform called SKIRL provides integrated system control and RF communication capabilities. SKIRL and the AVEP use a low cost RFIC, in contrast to the SDR systems often used in CR research. The AVEP hosts a number of sensors that provide environmental information to aid in positioning, motion planning, and target detection. The AVEP is programmed entirely in easy-to-read, easy-to-debug Python.

In discussing the hardware and software components of the AVEP, I have tried to paint a clear picture of all the components from a system level. This should provide a framework of understanding for the next two chapters, which present and discuss the algorithms I developed to implement UMDDM.

The next chapter presents the AVEP operational and control algorithms. In it, I present details of the various finite state machines (FSMs) that control the AVEP and the MOT and RF subsystems, as well as the sensor algorithms that read sensor raw data and generate useful information for the system. I also provide details on the path data structure (PDS), the graph-based data structure that the AVEP uses as its data storage mechanism.
Chapter 5

Algorithms and Software Development

5.1 Introduction

This chapter presents the AVEP operational and control algorithms. These are the algorithms that govern the operation of the AVEP; how it moves and communicates and how the sensors operate. This chapter builds on the discussion of the last chapter, which provided information on hardware and system software. This chapter discusses the algorithms that run on that hardware, integrating all the separate hardware components into a single system capable of autonomous operation leveraging RF and MOT flexibility. This chapter also presents details of the NBR, the node on the other end of the AVEP communication link.

In the material which follows, Section 5.2 discusses the run-time and operational aspects of the AVEP. Section 5.3 presents the PDS, a new and innovative method for organizing and
storing multi-domain environmental information. Section 5.4 discusses the operation of the NBR, while Section 5.5 provides a summary with concluding remarks.

5.2 Operation and Control

This section presents the algorithms that provide the operational logic for the AVEP; the logic flow of the controller, the data collection algorithms used by the sensors, and the logic flows of the RF and MOT subsystems.

5.2.1 Controller

The controller is the central system component, and the hierarchical top layer of the system. The controller starts and manages the other modules, coordinating interactions between all the various subsystems.

5.2.1.1 Controller Finite State Machine

As the controller is the core of the AVEP system, so the FSM (shown in Figure 5.1) is the heart of the controller. The FSM consists of five states ("first_time", "before_traverse", "traverse_path", "after_traverse", "return_to_beginning") and these five states handle all the functions of the AVEP after initialization. The FSM uses the "fsm_state" variable to determine the current state.

5.2.1.1.1 FSM State: first_time The "first_time" state is entered only once, when the controller FSM is first started. This state uses default motion parameters to move the AVEP to the first barcode location, where it stops. Finally, the state variable "fsm_state" is set to
Figure 5.1: AVEP controller finite state machine.
“before_traverse”, indicating the next FSM state.

5.2.1.1.2 FSM State: before_traverse The “before_traverse” state is entered every time the AVEP reaches the first barcode location. This state uses the decision making module to determine which path to traverse. The decision making module and the decision making process are explored in detail in Section 6.3. This state is responsible for setting the parameters for the radio and motion subsystems before the AVEP traverses its chosen path. In order to ensure that the radio is properly configured and that the NBR can receive the AVEP RF transmissions, this state sends a data packet to the NBR containing the radio parameters that the AVEP will use during its path traversal. To ensure that communication is always possible, the AVEP transmits the reconfiguration information to the NBR before it reconfigures its radio. When the AVEP receives an acknowledgment from the NBR, the AVEP reconfigures its radio and motion subsystems with the predetermined parameters as determined by the decision making module. If the reconfiguration was faulty or the AVEP could not reestablish communication with the NBR, the AVEP could fall back to a default configuration or use a control channel to reestablish communication. This feature is not currently implemented, however. Finally, the state variable “fsm_state” is set to “traverse_path”, indicating the next FSM state.

5.2.1.1.3 FSM State: traverse_path The “traverse_path” state is entered every time the AVEP traverses its chosen path. There are two possible behaviors the AVEP can employ during this state, dependent on whether or not the path has been previously explored.

If the path is unexplored, the AVEP sets the state of the radio subsystem to “listen”, causing the radio subsystem to record the RSSI of a continuous wave (CW) signal transmitted by the NBR. A CW signal is used to simplify the process of determining the RSSI. The RFIC
operates as a black box with respect to many of its functions, including the way it samples the RSSI. Sampling the RSSI for an incoming modulated signal results in widely varying RSSI results. No doubt, the RFIC sometimes samples RSSI during a break in the transmission, and samples on the rising of falling edge of the waveform as well as sampling during the peak transmission. However, recording the RSSI of a CW signal provides much more consistent results. The RSSI information is used by the decision making module to determine some RF path characteristics (see Section 6.3). The AVEP sets the state of the motion subsystem to “go”, engaging actual forward motion of the AVEP along its chosen path. As the AVEP moves along the path, it records the time it takes to travel the length of the path, and the number of targets and anti-targets encountered along the path. Targets and anti-targets are discussed further in Sections 5.2.2 and 6.3.1.1, but for ease of discussion in this chapter, a target is an object the AVEP wishes to find and record, while an anti-target is something it wishes to avoid.

If the path has been previously explored, the AVEP sets the state of the radio subsystem to “stream”, causing the radio subsystem to transmit data packets to the NBR, using the radio parameters as determined and set during the previous “before_traverse” FSM state. As in the “listen” mode described directly above, the AVEP sets the motion subsystem state to “go”, and the AVEP traverses its chosen path, again recording the time of traversal, and number of targets and anti-targets along the path.

In either case, When the AVEP reaches the end of the path, indicated by the second location barcode, and recorded by the barcode sensor, the AVEP halts its motion by setting the motion subsystem state to “stop”, and stores the time, target, and anti-target information in the PDS. Obviously an airplane style UAV could not stop in midflight, and while a helicopter style could pause in midair, this is not ideal operation. In practice, the duration for which the AVEP is halted is not observable; the housekeeping operations the AVEP
conducts in this period are concluded very quickly. Additionally, the halt of motion provides an easy way to differentiate between different stages of operation while performing tests.

The PDS is discussed further in Section 5.3. Finally, the state variable “fsm_state” is set to “after_traverse”, indicating the next FSM state.

5.2.1.1.4 FSM State: after_traverse The “after_traverse” state is entered every time the AVEP reaches the second barcode location. During this state, the AVEP updates parameter information in the path data structure for the current path. Specifically, the knobs and meters from the just completed traverse are recorded in a historical manner, as “previous_knobs” and “previous_meters”. Additionally, the path is now recorded as having been explored. The AVEP again communicates with the NBR, requesting an update. This update includes the number of packets received by the NBR. Finally, the state variable “fsm_state” is set to “go_to_beginning”, indicating the next FSM state.

5.2.1.1.5 FSM State: go_to_beginning The “go_to_beginning” state is used by the AVEP every time it finishes a path traversal (including the “after_traverse” state) and needs to return to the start of the test course. The AVEP leaves the radio subsystem off, but engages the motion subsystem. The AVEP then follows the return path until it arrives back at the beginning, as indicated by the first location barcode.

5.2.2 Sensors

The AVEP uses three sensors for data collection: NXT light sensor, NXT color sensor, and barcode reader.
5.2.2.1 NXT Light Sensor

As mentioned previously, the NXT light sensor is used in the motion control algorithm. The light sensor is a NXT native sensor that is connected to the NXT brick, and the AVEP uses the nxt-python library to control it. The light sensor uses reflected light to determine the presence of the test track line beneath it. The threshold value for the light sensor for the test track line is 500. If the light sensor reads a value above the threshold, the test track line is not present beneath the light sensor, and if the sensor reads a value below the threshold, the test track line is present beneath the light sensor.

5.2.2.2 NXT Color Sensor

The NXT color sensor is used in the target tracking algorithm. As with the light sensor, the color sensor is a NXT native sensor that is connected to the NXT brick, and the AVEP uses the nxt-python library to control it. The color sensor uses reflected light to determine the color of an object below the sensor. The sensor returns a value which indicates the specific color of the object (Table 5.1).

<table>
<thead>
<tr>
<th>Color</th>
<th>Black</th>
<th>Blue</th>
<th>Green</th>
<th>Yellow</th>
<th>Red</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

A different color is used to represent the targets and anti-targets; in this case, yellow represents a target, and red represents an anti-target. These values were chosen to minimize false positive cases. During a path traversal, every value recorded by the color sensor is stored in a single vector. After the path has been traversed, the results are processed in the following manner. The single vector is copied so that there are now two identical vectors. The two vectors are processed in a similar manner, although one of the vectors is analyzed to find the
number of targets, while the other vector is analyzed to find the number of anti-targets. In the target vector, every vector element that is not equal to the target color value is set to 0. Likewise, in the anti-target vector, every vector element that is not equal to the anti-target color value is set to 0. Each vector is then processed to determine the number of transitions, that is, the number of times that an element is zero while the two following elements are non-zero. The number of transitions accurately indicates the number of targets (or anti-targets as appropriate) observed along the path just traversed.

5.2.2.3 Barcode Reader

The barcode sensor is used to determine the AVEPs position. My advisor, Charles Bostian, noted that in an indoor scenario, a simple, cheap and accurate method of determining position is to reference it to an object with known location. This led to the idea of using barcodes at specific locations to fix a position, and using a barcode reader to determine the presence of a barcode, thus indicating current position [115].

As mentioned previously, despite being mounted on the chassis, the barcode reader connects directly to the SKIRL platform over USB. The barcode reader is accessible through the SKIRL OS device driver interface /dev. The specific interface for the barcode reader is /dev/hidraw0. The barcode reader itself operates in a mode that continually scans for barcodes, and once it scans one, the data embedded in the barcode is immediately available for decoding. Using the information available from [116], a barcode can be translated into a number, indicating a specific location on the test track.

The barcode reader is a threaded module, running in a continuous loop separate from (but started by) the controller. The value encoded in the barcode is relayed to the controller using a callback passed to the barcode reader when it is instantiated.
5.2.3 Radio Subsystem

The radio subsystem is responsible for all AVEP communications operation. The radio subsystem runs in its own thread, allowing it to run concurrently with, but independent of the main process. The radio subsystem is originally instantiated by the AVEP controller, after which the radio subsystem FSM takes over.

5.2.3.1 Radio Subsystem Finite State Machine

The radio subsystem FSM is responsible for all AVEP RF operations. The acAVEP controller uses the subsystem function \texttt{set_state(current_state)} to set the radio subsystem state of operation. The controller consists of five states: “stop”, “stream”, “update”, “reconfigure”, and “listen”. Each FSM state is responsible for a different aspect of RF operations.

The “stop” state is the default state of operation for the radio subsystem FSM. When the controller starts the radio subsystem, the FSM drops into this state, as it does when it completes any of its operations, represented by the other FSM states.

The “stream” state is used to stream data from the AVEP to a NBR. While the AVEP traverses a path, it transmits data packets to the NBR. The data payload inside the packet is not a significant aspect of this research, but payloads could include any type of operational data as required by the mission. (In my first round of AFRL funded research, payload data included video images captured by network nodes [117].)

The “update” state is used by the AVEP to request updates from the NBR. Each time the AVEP completes a path traversal, it sends a request to the NBR for an update. When the NBR receives the request, it replies by transmitting a packet containing information
on the number of packets that the NBR received from the AVEP while the AVEP was traversing its selected test bed path. This information can be used by the AVEP to improve its understanding of the RF environment.

The “reconfigure” state is used by the AVEP to notify the NBR of a new RF configuration. Every time the AVEP reaches Node 1 on the test bed, the AVEP makes a decision about how to operate. The solution generated by the decision maker at this point can include a new RF operational profile: frequency, modulation, bit rate, etc. However, if the AVEP unilaterally changes its operational profile, the receiving NBR won’t be able to receive the data, as it is still operating using an old profile. For this reason, using the original operational parameters, the AVEP notifies the NBR of the new operational profile, and waits for the NBR acknowledgment. When the AVEP receives the reconfiguration acknowledgment, it then reconfigures its own radio using the new parameters, knowing that the NBR has done the same, and that both RF systems are ready to start communicating using the new RF profile.

The “listen” state is used by the AVEP for RF sensing. In its initial iterations of operation, the AVEP explores its environment. During this exploration, the AVEP controller sets the state of the radio subsystem to “listen”, causing the radio subsystem to record RSSI along the path. This RSSI information is used by the decision making module to determine some RF path characteristics (see Section 6.3).

5.2.3.2 Packet Structure

The RFM22B RFIC provides a very flexible platform for RF applications, but the downside to the flexibility is that it does not provide pre-existing support for packet structure or protocols above the PHY. To support AVEP operation, I developed a packet structure based
on the transmission control protocol (TCP) standard [118]. The packet structure is shown in Figure 5.2.

![Figure 5.2: RF subsystem packet structure.](image)

Most of the header fields are self explanatory. The “packet number” field contains a three byte integer indicating the number of the current packet. The “time stamp” contains an eight byte value indicating the time the packet header was packed, or put together. The “location” field contains a two byte integer that corresponds to the most recent location of the radio node. For the AVEP, this corresponds to the last barcode the AVEP recorded. The “flags” field is used to provide control information for coordination between transmitter
and receiver nodes. Figure 5.3 shows the flags available to a Node A radio (NAR), such as the AVEP.

![Figure 5.3: Organization of flags field in RF subsystem packet. This figure shows the flags available to a Node A radio.](image)

The “node_a” flag is used to indicate that the packet is coming from the NAR. The “send_command” flag is used to indicate that the NAR is passing a reconfiguration command to the NBR. The “request_data” flag is used by the NAR to request an information update from the NBR. The “send_stream” flag is used to indicate that the NAR is sending a stream of data to the
NBR while the AVEP is traversing a path.

5.2.4 Motion Subsystem

Similar to the radio subsystem, the motion subsystem is responsible for all AVEP motion. The motion subsystem also runs in its own thread, again for concurrent but independent. The motion subsystem is originally instantiated by the AVEP controller, after which the motion subsystem FSM takes over.

5.2.4.1 Motion Subsystem Finite State Machine

The motion subsystem FSM is responsible for all AVEP motion operations. The acAVEP controller uses the subsystem function \texttt{set_state(current_state)} to set the motion subsystem state of operation. The controller implements only two states: “stop”, and “go”.

The “stop” state is the default state of operation for the motion subsystem FSM. When the controller starts the motion subsystem, the FSM drops into this state, as it does when it completes its actual motion operation, as represented by the “go” state.

The “go” state is used by the AVEP controller to initiate operational motion. This the motion operation is governed by a motion behavior described below in Section 5.2.5. The behavior is employed until the AVEP reaches the end of its chosen test bed path, indicated by arrival at test bed Node 2.

5.2.5 Motion Behavior: Follow The Line

The motion subsystem uses a line-following algorithm. This is a simplistic method of implementing robot motion, where the robot uses a sensor to detect a line on the ground, and
the robot follows the line as it moves forward [119]. The algorithm trades off between two sub-behaviors, “follow the line” and “find the line”. The “follow the line” state causes the AVEP to move forward in a straight line until the light sensor (Section 5.2.2.1) indicates that the AVEP is no longer following the line. At this point, forward motion is halted and the AVEP proceeds to “find the line”. The AVEP starts to turn in place about its z-axis, sweeping out larger and larger arcs as it seeks to find the test bed path—the line—with the light sensor. When the path has been found, turning motion is halted, and forward motion is again commenced via the “follow the line” behavior. Using the “follow the line” and “find the line” sub-behaviors, the AVEP is able to move effective along test bed paths by following the black lines marked out on the test bed.

5.3 Path Data Structure

CRs and AVs both require relevant and up-to-date information on their environment to operate effectively. AVs often use evidence grids to represent environmental data [47], while CRs commonly use internal or external databases to store RF information [19, 62]. I have developed a method inherently suited to multi-domain knowledge storage that uses graph structures to represent environmental data. The PDS is the system’s central data storage component, labeled as “(Multi-Domain) World View” in Figure 4.16.

A single PDS is a software object that represents a graph edge, specifically a single test bed path. It can be instantiated multiple times to represent multiple paths. As shown in Figure 5.4, the test bed graph—originally presented in Figure 3.3—contains three individual paths between Node 1 and Node 2. Each path is a route that the AVEP can traverse as it moves from Node 1 to Node 2, and each path is represented by a single PDS.

The PDS extends the concept of a weighted graph [120], or more specifically a weighted edge.
Figure 5.4: The test bed graph contains three separate paths between Node 1 and Node 2.
Table 5.2: Knobs and meters available stored in path data structure.

<table>
<thead>
<tr>
<th>Knob Name</th>
<th>Knob Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitrate</td>
<td>2.0, 2.4, 4.8, 9.6, 19.2, 38.4, 57.6, 125.0 (kbps)</td>
</tr>
<tr>
<td>Transmit Power</td>
<td>8.0, 11.0, 14.0, 17.0 (dBm)</td>
</tr>
<tr>
<td>Rotor Power</td>
<td>25.0 - 80.0, steps of 5.0</td>
</tr>
</tbody>
</table>

Meters

- Targets
- Anti-targets
- RSSI

Weighted graphs use weight to represent some cost associated with a particular graph edge, such as the distance between two cities in the traveling salesman problem, or the distance between two routers in a network. The PDS builds on the concept of an edge weight by using the weight as a data storage mechanism. The edge weight becomes multiple weights, each one representing a particular environmental characteristic, and all describing that particular graph edge.

For this research, each of the three instantiated PDS objects maintains physical and RF characteristics of a particular test bed path, such as path name, path distance or length, whether the path has been explored or not, and system knobs and meters along the path. Table 5.2 shows the knobs and meters stored in the PDS. Additionally, each PDS maintains a record of the most recent system solution for the path, as determined by the decision making module. Further solution details are presented in Section 6.3.

Currently the experimental test bed contains only three paths, each of which connects the same two nodes, Node 1 and Node 2. However, in a more complicated test bed layout, there would be additional nodes with additional edges and their attendant paths. An example is shown in Figure 5.5. In such a scenario, path search algorithms such as Dijkstra’s algorithm [121] or D* Lite [122] can be used to determine a path of travel for the AVEP that spans multiple edges. The path search algorithm would use the data stored in each PDS object to
evaluate each possible route.

Figure 5.5: A more complicated test bed layout with additional nodes and edges, and their attendant paths.

5.4 Node B Radio Architecture

The NBR is a stand alone radio node based on the SKIRL radio platform described in Section 4.4.1. It is based on the same RF stack that provides radio functionality in the AVEP, but has no motion capabilities, in hardware or in software. The primary function of the NBR is to provide a node with which the AVEP can communicate during its operation.

The NBR uses a FSM to switch between three states: "listen", "receive", and "transmit". The default state is "receive", where it waits to receive a transmission from the AVEP. When it receives a packet from the AVEP, it parses the packet header, reading the value of the flags in the "flags" field, and sending an appropriate reply as necessary. Figure 5.6 shows the flags available to a NBR in replying to control flags from a NAR.
If an incoming packet contains the “send_stream” flag, the NBR records the packet number of the incoming packet, and then returns to “receive” state to await another packet. If an incoming packet contains the “request_data” flag, the NBR calculates the total number of data stream packets it has received since the last update. Before it transmits this information back to the NAR, it enters the “listen” state to implement LBT as described in Section 4.5.3.2. When the channel is clear, the NAR enters the “transmit” state and transmits the data back to the NAR, using the “send_data” flag, and returns to the “receive” state. If an incoming packet contains the “send_command” flag, the NBR parses the packet to determine the new radio configuration to implement. It then enters “listen” before transmitting an acknowledgment to the NAR using the using the “ack_command” flag. The NBR then reconfigures its radio parameters and once again enters the “receive” state to await communications from the NAR.
Figure 5.6: Organization of flags field in RF subsystem packet. This figure shows the flags available to a Node B radio for communication with a Node A radio.
5.5 Conclusion

This chapter discussed the AVEP operational and control algorithms. I presented the details of the FSM that controls the overall operation of the AVEP as well as the FSMs that control the radio and motion subsystems. I also introduced and described the PDS, a graph-based method for storing data on the AVEP that is particularly suited to multi-domain information.

In this chapter, I tried to fill out the operational details of the AVEP, building on the high level discussion of hardware and software components in the last chapter. I described in detail the operation and flow of all aspects of the AVEP, with the intention of providing insight into how the AVEP was implemented and how it operates. This chapter, when combined with the last chapter and the information provided in the next chapter, should provide a comprehensive view of UMDDM, in both theory and application.

The next chapter presents the learning and decision making algorithms that underpin UMDDM. I discuss the development of the decision making algorithm and its objective functions. I present two stages of learning, learning the environment, and learning from experience. I also show how all the steps fit together to provide true UMDDM.
Chapter 6

Learning and Decision Making

6.1 Introduction

This chapter discusses the learning and decision making aspects of this research. The learning and decision making processes make up the cognitive core of this research, providing intelligent action and introspection for the AVEP. Learning and decision making in the AVEP are closely entwined; learning feeds decision making, and decision making feeds learning. The learning and decision making processes presented here are the essence of UMDDM.

Decision making “is the process of selecting a possible course of action from all the available alternatives,” [123]. Sometimes this is also referred to as reasoning [124]. Clearly the ultimate point of making a decision—selecting a possible course of action—is actually to act. Decision making is the process of deciding on a course of action, which is passed to the RF and MOT subsystems, the system’s actuators.

The Oxford English Dictionary defines the verb “learn” as “to acquire knowledge” specifically “as a result of study, experience, or teaching” [125]. However, the concept of what is machine
learning is a moving target. Machine learning is closely tied to artificial intelligence (AI), and therefore subject to the “odd paradox”, the concept that once AI has solved a problem, that problem and the corresponding solution no longer belong to the domain of AI [126, 127]. Karen Haigh differentiates between adaptation, where a system can change its behavior based on current conditions; and learning, wherein a system uses its experience to change its adaptation methods, effectively adaptive adaptation [127]. In this research, learning is used in two distinct ways, learning the environment, and learning from experience. Learning the environment provides information for decision making, while learning from experience evaluates the decisions and provides feedback to the decision maker.

The AVEP cognitive process implements a cycle similar to Mitola’s cognition cycle [22], and the observe, decide, and act (ODA) loop [15], and brings to bear the observation noted in Section 1.1, namely that CRs and AVs perform similar tasks, albeit in different domains:

- Analyze their environment,
- Make and execute a decision,
- Evaluate the result (learn from experience), and
- Repeat as required.

The ODA loop and the observations above are so similar that they can be effectively combined into a single loop, shown in Figure 6.1. The specific cognition process the AVEP uses is shown in Figure 6.2.

The remainder of this chapter is organized as follows. Section 6.2 discusses the first aspect
of learning, learning the environment. Section 6.3 discusses decision making, while Section 6.4 presents the second aspect of learning, learning from experience. Section 6.5 contains some concluding remarks with a look ahead to the next chapter.

6.2 Learn The Environment

There is a significant body of research that deals with decision making and learning, from perspectives that include pure AI, economics, child development, CR, and AVs. Much of what is published deals with the decision making and learning processes themselves, skipping right over the acquisition of information that supports these processes. The AVEP learn the environment process is responsible for gathering this information, collecting meter values during AVEP operation.

The AVEP uses its sensor systems to learn the environment. The AVEP is programmed with some initial information to jump-start the learning process. This includes path length for individual paths in the test bed. In the AFRL systems that this research supports, UAVs fly preprogrammed flight paths, and the AVEP emulates this setup with a priori knowledge of the test bed paths. Information such as number of targets and anti-targets along the path as well as RF noise are sensed and stored as the AVEP actually travels the test bed paths. The mechanics of the environmental learning process are discussed in Section 5.2.1.1, while the individual sensors used to gather the information are presented in Section 5.2.2. It should be noted that while the AVEP gathers its initial information during an exploration phase,

![Figure 6.2: The cognition cycle used by the AVEP.](image-url)
and then moves into an “exploitation” phase (using the information it has obtained to carry out its operational duties), the AVEP continues to gather environmental information about its current path of travel during operation. Additionally, the AVEP maintains a record of the last time it received information about a given path. If the meters corresponding to a given path have not been updated within a certain number of iterations, the AVEP switches from operational (or “exploit”) mode to exploration mode, and explores that path to updates its internal path data. In this manner, the AVEP is able to maintain up-to-date information about its changing environment, ensuring effective decision making with relevant information.

6.3 Decision Making

Decision making is the process of choosing an action or outcome from a set of possible actions or outcomes. Optimization theory often refers to multiple criteria decision making (MCDM), while CR research often uses multi-objective optimization (MOO), but they both refer to decision and planning involving multiple conflicting criteria that should be considered simultaneously [128]. Rondeau uses evolutionary based genetic algorithms (GAs) to address his MOO problems [70], and this approach has been embraced by researchers in a wide variety of application domains, including economics, mechanical engineering, and cryptography [129–131]. Guided search algorithms like GAs are well suited to finding solutions in large search spaces. Additional techniques that have been investigated for guided search include simulated annealing [124] and swarming algorithms [132].

Zitzler and Theile present a general formulation for multiple objective optimization problems in [133], shown in (6.1).
\[
\text{min/} \max \bar{y} = f(\bar{x}) = (f_1(\bar{x}), \ldots, f_1(\bar{x}))
\]
subject to
\[
\bar{x} = (x_1, x_2, \ldots, x_m) \in X
\]
\[
\bar{y} = (y_1, y_2, \ldots, y_n) \in Y
\] (6.1)

That is, we seek to minimize (or maximize) a vector function \(f \) that maps a tuple of \(m \) input parameters to a tuple of \(n \) output parameters, or objectives. The set \(\bar{x} \) is the set of input parameters, and \(\bar{y} \) is the set of objective values determined by the objective functions. The set of solutions to a multi-objective problem lie on the Pareto front, which consists of all the solution sets \(\bar{y} \) which are non-dominated, that is, those sets that cannot be improved in some dimension without a decrease in some other dimension. Multi-objective optimization problems are naturally problems in balancing trade-offs [134]. Attempting to minimize both BER and equivalent isotropically radiated power (EIRP) in the RF domain is a perfect example. With all other factors held constant, minimizing BER requires increased transmit power, while reducing transmit power correspondingly drives an increase in BER. In the MOT domain, for a given travel distance, attempting to minimize both travel time and vehicle velocity results in the same interplay. Multi-objective optimization balances the trade-offs, and provides decision making capability in the face of multiple competing decision criteria.

6.3.1 Objective Functions

This work is the first to combine flexibility in the RF with flexibility in the MOT domain. To implement this flexibility, any decision making process must take into account both domains in the objective functions used. In order to clearly show the concept of UMDDM,
the proof of concept prototype AVEP implements only a few objective functions in total. As mentioned in Chapter 3, I have chosen to follow the example set by DARPA in the DRC. Decision making will be based on a variety of factors, including mission success and completion time. For the RF domain, I have chosen to BER as one objective. BER is a commonly used metric for evaluating wireless communication systems. I also chose packet delivery to evaluate RF performance. Packet delivery is based on the concept of goodput or throughput, and integrates consideration of the chosen MOT metric. The single chosen MOT objective function is time, the time it takes the AVEP to traverse a single test bed path. In addition to the RF and MOT objective functions, the AVEP also uses a target/anti-target objective function to evaluate mission based parameters. The objective functions are explored in greater detail below.

This section presents the four objective functions used in the AVEP decision making process. I use the same format used in [70]. For each objective, I list the required knobs, meters, and other objective functions used in the objective function calculation.

6.3.1.1 Target/Anti-target Score

Dependencies

Knobs: None

Meters: Targets, anti-targets

Objectives: None

I developed the target/anti-target score to incorporate consideration of mission success into the decision making process. While this work is modeled on AFRL UAV scenarios, I am not privy to the missions the United States Air Force (USAF) is flying. And although it likely goes without saying, I will explicitly state that I do not have access to USAF or AFRL
UAV mission parameters. As a result, I developed the details of this objective function to model a plausible UAV mission objective, namely tracking and observing some target while avoiding some other anti-target. Further, I wished to show a reasonable trade off between the desirable aspects of the mission (finding targets) and the undesirable aspects of the mission (encountering anti-targets). Clearly, if the USAF uses a mission objective like this, the weightings would change based on the specific mission. The risk inherent in encountering a large number of anti-targets may be considered acceptable in order to complete a high value mission.

Targets \((X)\) and anti-targets \((Y)\) are mission-based parameters. They attempt to model mission priorities. Targets are objects that the AVEP should track, while anti-targets are objects that the AVEP should avoid, in the course of its mission. During AVEP operation, targets and anti-targets are represented by colored pieces of cardboard placed along the test bed paths. As the AVEP travels the path, it records the presence of the targets and anti-targets as described in Section 5.2.2.2. The target/anti-target score \((Z)\) is an objective that is used to incorporate mission information into the decision making process. In the scenario presented in Section 1.4 (second research project), a UAV carrying out a mission might reasonably be required to find and track a number of targets, while avoiding or minimizing detection by hostile entities (anti-targets). The \(Z\) function \((6.2)\) defines a series of cases for possible values of \(X\) and \(Y\), with instances where \(X > Y\) given greater value. Note that where \(X \leq Y, Z \leftarrow 0\). This incorporates the mission directive to avoid anti-targets. A graphical representation of the objective function is shown in Figure 6.3, where \(Z \sim f(X, Y)\) and \(X \in \mathbb{Z}, X = \{x \mid 0 \leq x \leq 20\}, Y \in \mathbb{Z}, Y = \{y \mid 0 \leq y \leq 20\}\).
\[Z = \begin{cases}
0 & \text{if } X = 0 \text{ or } X < Y, \\
0.2 & \text{if } X = 1 \text{ and } Y = 0, \\
0.2(X - Y) & \text{if } 1 < X \leq 3 \text{ and } Y \leq (X - 2), \\
0.15(X - Y) & \text{if } 4 < X \leq 6 \text{ and } Y \leq (X - 3), \\
0.2(X - Y) & \text{if } 4 < X \leq 6 \text{ and } Y \leq (X - 2), \\
0.2(X - Y) & \text{if } X > 6, \ Y \leq (X - 4), \text{ and } 0.2(X - Y) \leq 1.0, \\
1.0 & \text{if } X > 6 \text{ and, } Y \leq (X - 4), \text{ and } 0.2(X - Y) > 1.0, \\
0.15(X - Y) & \text{if } X > 6 \text{ and } Y \leq (X - 3), \\
0.1(X - Y) & \text{if } X > 6 \text{ and } Y \leq (X - 2), \\
0 & \text{otherwise.}
\end{cases} \]
Figure 6.3: Graphical representation of Z objective function as a function of targets and anti-targets.
6.3.1.2 Time

Dependencies

Knobs: Rotor power
Meters: None
Objectives: None

Time refers to the length of time required for the AVEP to traverse a given path. The time required to travel a given distance at constant velocity is given by a standard first semester physics equation: (6.3):

\[T = \frac{d}{v} \]

(6.3)

where \(T \) is time, \(d \) is the distance traveled, and \(v \) is the velocity. However in this case, while the distance traveled along a given path is known, AVEP velocity is not known. The available system knob is rotor power, and rotor power is controlled through a unitless number \(\{P_{\text{rotor}} \geq 64 \leq 128\} \). Without further exploration, there is no indication how this value relates to velocity. I ran repeated tests of the AVEP, driving it along a fixed length (0.762 meter) path using various rotor power values. Table 6.1 shows the values gathered during these experiments.

Table 6.1: Rotor power and time measurements for AVEP, used to determine AVEP velocity.

<table>
<thead>
<tr>
<th>Rotor power</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>6.636803</td>
</tr>
<tr>
<td>35</td>
<td>6.011670</td>
</tr>
<tr>
<td>45</td>
<td>4.268262</td>
</tr>
<tr>
<td>55</td>
<td>3.829924</td>
</tr>
<tr>
<td>65</td>
<td>4.387924</td>
</tr>
<tr>
<td>75</td>
<td>5.597478</td>
</tr>
</tbody>
</table>

I generated a 3rd-order polynomial equation to fit the data, and a plot of the experimental data and a 3rd-order polynomial are shown in Figure 6.4. Using the now generated polyno-
mial, I can determine the expected time to traverse a given distance with using a particular value of rotor power as input.

![Figure 6.4: Experimentally recorded values of time (to travel a fixed-length path) and requisite AVEP rotor power values, with 3rd order polynomial fit.](image)

While the experimental data and plotted data are valid for a path distance of 0.762 meters (30 inches), the calculation of the polynomial used in the calculation of objective function includes some additional steps. Knowing that the distance in the experiment is 0.762 meters, I divide the experimentally generated time results by the distance to come up with a unit time value, the time it takes the AVEP to travel a meter using the rotor power value currently under test (6.4).

\[
\hat{t} = \frac{t_{exp}}{d}
\]

(6.4)
Multiple mathematical calculation packages provide the functionality for generating polynomial fits to data. The numerical Python package NumPy [135] provides the \texttt{polyfit} and \texttt{poly1d} functions for fitting data with polynomials. The Python code listing below shows how the polynomial is generated.

```python
import numpy as np

distance = 0.762

t_total = np.array([6.636803, 7.384832, 6.820400, 7.033324, 6.615562,
                   6.011670, 5.473605, 5.078091, 4.992305, 5.963818,
                   4.268262, 4.179882, 3.975959, 4.217389, 4.037789,
                   4.829124, 4.848656, 3.488006, 3.301235, 4.727865,
                   4.387924, 5.452579, 6.348041, 6.948240, 4.474748,
                   5.597478, 4.591388, 6.627983, 6.298144, 7.116761])

unit_t = t_total / distance

power = [25, 25, 25, 25, 25,
          35, 35, 35, 35, 35,
          45, 45, 45, 45, 45,
          55, 55, 55, 55, 55,
          65, 65, 65, 65, 65,
          75, 75, 75, 75, 75]

z3 = np.polyfit(power, unit_t, 3)
poly3 = np.poly1d(z3)

Using the polynomial generated, a simple function can provide the expected time the AVEP will require to travel a given distance with specified rotor power:

```python
def calculate_time(self, rotor_power, distance):
```
unit_time_given_power = self.poly3(rotor_power)
total_time = unit_time_given_power * distance
return total_time

where self.poly3 is the same polynomial calculated previously.

Note that as rotor power increases, the corresponding time first decreases, then starts to increase again. This is an artifact of the AVEP line-following motion algorithm. High rotor power causes high AVEP velocity for a very short period of time, but this velocity immediately goes to 0 when the AVEP moves off the line it follows. The AVEP must stop and reacquire the line, before starting to move forward again. And because the AVEP is moving faster when it diverges from its path, it travels farther from the path before stopping, and takes longer to reacquire the line.

Figure 6.5 shows a graphical representation of the objective function, where \( T \sim f(D, P_{\text{rotor}}) \) and \( D = \{1.575, 1.219, 2.223\} \) (m), \( P_{\text{rotor}} \in \mathbb{Z}, P_{\text{rotor}} = \{p | 5 \leq p \leq 80\} \).
Figure 6.5: Graphical representation of $T$ objective function as a function of path distance and rotor power.
6.3.1.3 Bit Error Rate

Dependencies

Knobs: Bit rate, EIRP
Meters: RSSI
Objectives: None

BER is a metric that is commonly used to evaluate the performance of communication systems. Equations for calculating BER vary according to the type of modulation employed, as well as the type of channel in use. For the purpose of this research, I have assumed an additive white gaussian noise (AWGN). The type of modulation employed is dictated by my choice of the RFM22B RFIC. While the RFIC can use FSK, GFSK, or OOK modulations, the AVEP currently only uses FSK. The RFIC data sheet does not provide many details about the inner workings of the RF modem, therefore in the absence of additional information, I have assumed that based on the low cost of the RFIC, it employs noncoherent detection. Sklar [136] provides an equation for calculating BER for noncoherently detected FSK (6.5):

\[ B = \left( \frac{1}{2} \right) e^{-\frac{1}{2} \frac{E_b}{N_0}} \]  (6.5)

where \( B \) is the BER, and \( E_b/N_0 \) is the energy per bit to noise power spectral density ratio. While \( E_b/N_0 \) is commonly used in textbooks and theoretical research, it is a difficult concept to use in practical applications and implementations where SNR is easily and readily determined. Fortunately Sklar [136] also presents the relationship between \( E_b/N_0 \) and SNR for binary signals (6.6):

\[ \frac{E_b}{N_0} = \frac{s}{n} \left( \frac{Bw}{R_s} \right) \]  (6.6)

where \( s/n \) is the (linear, non-dB) signal to noise ratio, \( Bw \) is the signal bandwidth, and \( R_s \)
is the bit rate.

Due to the non-linear nature of FSK, analysis of FSK spectrum is non-trivial [137], however one source [138] provides (6.7) for calculating the bandwidth of binary FSK:

\[ Bw = 2 \left( f_{dev} + \frac{R_s}{2} \right) \] (6.7)

where \( f_{dev} \) is the maximum frequency deviation, which can be read from a register on the RFIC. Through repeated measurements on spectrum analyzer, I found that the bandwidth can be approximated as \( Bw = 100 \text{ kHz} \) across the full range of RFIC data rates.

A link power budget is used to calculate the received power at a receiving terminal (6.8):

\[ P_R = P_T + G_{antenna} - L_p - L_{misc} \] (6.8)

where \( P_R \) is the power level at the receiver, \( P_T \) is the power level at the transmitter or EIRP, \( G_{antenna} \) is the antenna gain, \( L_p \) is the path loss, and \( L_{misc} \) represents miscellaneous losses not accounted for elsewhere. In this work, I have assumed that \( G_{antenna} = 0 \) and \( L_{misc} = 0 \). The modified link budget is shown in (6.9).

\[ P_R = P_T - L_p \] (6.9)

Pratt, Bostian, and Allnutt present a detailed discussion of path loss in [139]. Path loss is dependent on both frequency and distance, and it would be difficult to calculate path loss with any degree of accuracy without knowing if multipath or shadowing are present. However, I can empirically determine a value for path loss in the test bed experiments through repeated measurements. I determined that the path loss experienced by the AVEP is \( L_p \approx 90 \text{ dB} \).
A noise power budget can be used to calculate noise power; however, I have approximated the noise power using RSSI measurements. RSSI can be read from a register on the RFIC. The RFIC data sheet provides a figure that graphs the relationship between input power in dBm and RSSI [45]. Using the table, I derived a simple linear equation for input power and RSSI (6.10).

$$P_{in} = \left( \frac{RSSI - 125.0}{2.0} \right) - 60.0 \quad (6.10)$$

Using (6.10), and reading RSSI values in the absence of any input signal, I have approximated the noise power as $N = -92$ dBm.

With all the pieces now in place, I can calculate the BER the AVEP can expect to experience along a particular path in the test bed, as shown in the code listing below:

```python
def calculate_ber(self, EIRP, Rs, Noise, Lp):
 rate_list = [2e3, 2.4e3, 4.8e3, 9.6e3, 19.2e3, 38.4e3, 57.6e3, 125e3]
 idx = rate_list.index(Rs)
 fd_list = [2e3, 2.4e3, 4.8e3, 9.6e3, 19.2e3, 38.4e3, 57.6e3, 125e3]
 fd = fd_list[idx]
 Bw = 2*(fd + Rs/2)
 SNR = EIRP - Lp - Noise
 snr = 10.0**(SNR/10.0)
 ebn0 = snr*Bw/Rs
 Pb = (0.5)*np.exp((-0.5*ebn0))
 return Pb
```

Figure 6.6 shows the standard BER vs. $E_b/N_0$ curve for noncoherent FSK, called a waterfall curve. Figure 6.7 shows the resultant $E_b/N_0$ values as a function of SNR in dB and $R_s$ in kbps.
Figure 6.6: BER waterfall curve for noncoherent FSK.
Figure 6.7: $E_b/N_0$ values as a function of SNR and $R_s$. 
Combining Figures 6.6 and 6.7 into a single plot, Figure 6.8 where $B \sim f(\text{SNR}, R_s)$ and $\text{SNR} \in \mathbb{R}$, $\text{SNR} = \{x \mid 1 \leq x \leq 15\}$ (dB), $R_s = \{2.4, 4.8, 9.6, 19.2, 38.4, 57.6, 125\}$ (kbps).

Figure 6.8: Graphical representation of $B$ objective function as a function of SNR and $R_s$. 
6.3.1.4 Packet Delivery

Dependencies

Knobs: Bit rate
Meters: None
Objectives: Time

Packet delivery measures the number of packets that can be transmitted by the AVEP while it traverses a single test bed path. The time it takes for a single packet to be transmitted and arrive at the other end of a link is given by (6.11):

\[ t_{\text{packet}} = \frac{d_{\text{prop}}}{c} + \frac{l_{\text{pkt}}}{R_s} \]  

(6.11)

where \( d_{\text{prop}} \) is the propagation distance, \( c \) is the speed of light, \( l_{\text{pkt}} \) is the length of the transmitted packet (number of bits) and \( R_s \) is the bit rate. The term \( d_{\text{prop}}/c \) represents the propagation delay, or the time it takes a signal to travel from one point to another through the air. The term \( l_{\text{pkt}}/R_s \) represents the transmission delay, or the amount of time it takes to transfer all the bits of a packet on to the medium. Leon-Garcia and Widjaja refer to this as block transmission time [140].

In the case of repeated transmissions, system latency must be considered. System latency is the delay that occurs before the system can send another packet after it has completed transmitting a packet. System latency arises when the system must handle other tasks before it can resume sending packets. In the case of the AVEP, the system is managing sensor information as well as the MOT subsystem in addition to the RF subsystem, so system latency is nontrivial. However, I have defined packet delivery as the number of packets that can be transmitted by the AVEP while it traverses a single test bed path. This definition
allows me to remove the time it takes to receive the packet from the calculation. In fact, the time required to transmit packets is simply a function of the transmitter: how fast it can move the bits on to the medium, and how long it takes before it can repeat the process. Therefore, the total number of packets the AVEP can transmit during a single path traverse is equal to the time it takes to traverse the path divide by the time it takes the AVEP to transmit the packets (6.12):

\[ G = \frac{T}{t_{sys} + \frac{l_{pkt}}{R_s}} \]  

(6.12)

where \( G \) is packet delivery, \( T \) is time, as calculated in 6.3.1.2, and \( t_{sys} \) is the system latency.

Packet delivery is similar to throughput or goodput, common metrics used to evaluate wireless network performance. While BER is a measure of RF performance in a particular channel, packet delivery formulated in this manner implicitly ties together MOT and RF parameters.

Figure 6.9 shows a graphical representation of the \( G \) objective function, where \( G \sim f(T, R_s) \) and \( T \in \mathbb{R}, T = \{t \mid 0 < t \leq 50\}, R_s = \{2.4, 4.8, 9.6, 19.2, 38.4, 57.6, 125\} \) (kbps).
Figure 6.9: Graphical representation of $G$ objective function as a function of time and bit rate.
6.3.2 Decision Making Process

The decision making process starts off with generating a solution space. This solution space contains all the possible solutions the AVEP can implement at a given moment.

The decision maker module uses the system knobs and meters to calculate the objectives according to the equations in 6.3.1. A complete solution space is a list of solutions, where each element in the list is itself a list with objective values as elements (6.13),

\[
S = [[Z_1, T_1, B_1, G_1],
    [Z_2, T_2, B_2, G_2],
    : : : : 
    [Z_n, T_n, B_n, G_n]]
\]  

(6.13)

where \( S \) is the solution space, and \( S_i = [Z_i, T_i, B_i, G_i] \) is an individual solution. The solution space is generated by looping through all possible values of the input parameters, including the knobs and meters, and calculating each objective value in turn. This is feasible because the solution space is rather small in this case, only 1152 solutions. At the same time that the decision maker generates the solution space, it also creates a corresponding parameter space \( \text{param} \), where \( \text{param}_i \) is a Python dictionary containing the input parameters that result in solution \( S_i \).

The decision maker uses a nondominated sort to generate a population of suitable solutions. A vector \( \mathbf{x} \) dominates vector \( \mathbf{y} \) if no value of \( \mathbf{x} \) is less than \( \mathbf{y} \) and one value of \( \mathbf{x} \) is strictly greater than \( \mathbf{y} \). In a collection of vectors, any one vector that is not dominated by any other vector in the collection is nondominated. The optimal solutions to a MOO problem are the nondominated solutions, also known as the Pareto-optimal solutions [141]. A nondominated sort is a tool used in MOO to determine which members of a population best satisfy a
MOO problem. A large number of MOO problems are not expressed in terms of a common metric. Rapoport discusses the difficulty of dealing with multifaceted problems even when the problem can be expressed in terms of a single parameter, let alone problems that can not be boiled down to a common metric [134]. Nondominated sort is one effective way for dealing with exactly these types of complex problems, by ranking populations according to how the components of individual members compare to the same components of other members in the population. The nondominated sorting method is used in the nondominated sorting genetic algorithm (NSGA) presented by Srinivas and Deb in [141]. As noted previously, the decision making solution space is relatively small, and a guided search method such as a GA is not required for effective search. Shi, Chen, and Shi isolated the nondominated sort algorithm in the NSGA [142], and I have used it to do a population based multi-objective sort on the search space.

The nondominated sort algorithm generates a list of nondominated results, as shown in [141, 142], from which a single solution is randomly selected for implementation by the AVEP. However nondominated does not necessarily mean “good”. Controlled experiments have shown that, given the right objective function inputs, is possible that one or more nondominated solution exist where \( Z = 0 \) or \( B \approx 0.5 \). Clearly, these are not “good” values. And yet, in certain cases, these values show up in the nondominated results. This is where system policy comes into play.

Policy is often used to implement legal or procedural limits on CR operation [60, 143]. In this case, policy is used to indicate minimum and maximum desired values for individual solution objectives. The policy file contains the following lines:

\[
\begin{align*}
\text{min}_z &= 0.1 \\
\text{max}_\text{ber} &= 0.25
\end{align*}
\]
notifying the decision maker it is to select solutions that have a minimum $Z$ value of 0.1, and a maximum $B$ value of 0.25. When the decision maker selects a value at random from the current Pareto front, it checks the solution against the policy. If an objective value does not satisfy the policy, the decision maker chooses another solution and repeats the check. The first nondominated solution that satisfies the policy is the solution that the AVEP will implement. The decision maker returns the solution and the corresponding parameters to the AVEP controller for implementation. If the decision maker is unable to select a solution that meets the AVEP requirements and policy restrictions, the AVEP will use a solution that is not fully compliant with the policy generate a new solution on the next iteration.

6.4 Learn From Experience

The second aspect of learning is to learn from experience, where the AVEP modifies its current behavior based on its previous behavior. The decision maker calculates a score for each solution in the solution space. The score is a weighted sum of the objective values in a single solution, resulting in a single value for each solution in the solution space. Rondeau mentions several scoring methods for multi-objective optimization problems, including the weighted-sum approach, the linear-logarithmic function, and the constant-elasticity-of-substitution function. Considerable work can go into choosing the coefficients that weight individual scores in each method [70]. For the sake of simplicity, I have chosen to use a weighted-sum approach, described below, where the weights for each value to be summed are equal to 1. While the weight value was also chosen for the sake of simplicity, the ultimate justification is that the weighted-sum method using unity weights achieves the desired results, as shown in Chapter 7.

For a solution space, the scoring function normalizes objective values in the solution space
so that they are each scaled \((0, 1)\), that is, \(F = \{f \mid 0 \leq f \leq 1\}\), where \(F\) is an objective value in the solution space. (This scaling process is not actually performed on the \(Z\) values, as the \(Z\) objective function is defined such that \(Z = \{z \mid 0 \leq z \leq 1\}\).)

With all the values in the solution space normalized, a single score for a solution \([Z, T, B, G]\) can be generated. Recalling that I wish to minimize the bit error rate and the time of travel along a path, and maximize the packet delivery and target/anti-target value, (6.14) is a reasonable and simple method of scoring the solutions in the solution space:

\[
S = Z - T - B + G
\]

where \(S\) is the solution score. This score is returned to the AVEP along with the solution itself and the solution parameters, where it is used in the second stage of the learning process. The second stage learning process is designed to provide AVEP learning in the mode of machine learning or cognition. While the decision maker provides decision and action functions, the second stage learning provides context to the decisions. Second stage learning provides the adaptive adaptation that differentiates cognitive systems from simply adaptive systems according to Haigh [127].

The second stage learning process uses the solution score to determine whether to apply the current solution, or use a different solution. The nondominated sort generates a set of nondominated solutions, any of which may be suitable for AVEP operation. The solution score attempts to provide a method of comparing solutions from one iteration to the next. When the decision maker returns a solution and a score, the AVEP controller compares the current score with the score associated with the most recently implemented solution. If the current score is higher than the previous score, or if there is no previous score, then the AVEP implements the current solution. But if the current score is not higher than
the previous score, and the previous solution is still valid (that is, if the environment in
which the previous solution was generated has not changed), then the AVEP will reuse the
previously generated solution. Thus the AVEP can choose to implement a solution returned
by the decision maker if the solution provides an improvement in performance as indicated
by the solution score, or the AVEP can choose to use a solution that provided satisfactory
performance previously.

In addition to allowing the AVEP to incrementally increase the effectiveness of AVEP per-
formance, the second stage learning process provides a level of persistence to the decision
making process. The decision maker operates only on the information it has on hand, the
meters recorded as the AVEP traverses each path. But the second stage learning provides
context for those decisions. The AVEP can compare solutions from different iterations,
different points in time, and choose which one to ultimately implement.

However, there is a risk associated with using the previous solution if the current solution
does not have a high score. The AVEP reads environmental meters as it traverses a path. If
the AVEP continually uses the previous solution, it is continually traversing the same path,
and any changes occurring on other paths remain unobserved. Therefore, the AVEP keeps
track of the number of times it dispenses with the current solution in favor of the previous
solution. When this occurs a certain number of times (currently the threshold is set at 5),
the AVEP automatically explores the other paths to record the path meters. After this
re-exploration process, the AVEP goes back to generating and implementing solutions, now
with up to date information.
6.5 Conclusion

This chapter presented the learning and decision making algorithms I implemented for UMDDM. The learning and decision making processes make up the cognitive core of this research, providing intelligent action and introspection for the AVEP. I discussed the manner in which the AVEP learns the environment, which provides information used in the decision making process. The decision maker generates solutions for the AVEP to implement, and provides a solution score that the AVEP uses for a second stage of learning, learning from experience. This second stage of learning provides the AVEP with the capabilities to modify its behavior based on its current and previous performance.

This chapter concludes the discussion of UMDDM algorithms and AVEP implementation details. I have attempted to provide a comprehensive discussion of the ideas behind this research, through a detailed presentation of the AVEP system components, the AVEP control algorithms, and the UMDDM learning and decision making algorithms.

The next chapter presents experimental results in two sections, software-based simulation, and robot-deployed live tests. I will verify that the decision making process works for individual objective functions, then verify the results when considering all four objective functions together. I will conduct the tests first by software simulation, then again in live tests.
Chapter 7

Experimental Results

7.1 Introduction

This chapter presents AVEP experimental tests and results. The experiments are divided into two sections, software-based simulation, and robot-deployed live tests.

As noted previously in this dissertation as well as by others [70, 85], there is a lack of standardized experimental procedures or metrics for CR. My work combining CR and AV research further highlights this situation. In order to validate the experimental results, I will start simply and build up. As noted in 3.6, the AVEP objective functions are target/anti-target score ($Z$), travel time ($T$), bit error rate ($B$), and packet delivery ($G$). I will verify that the decision making process works for individual objective functions; that is, I will isolate an individual objective function and show that the decision making process returns a solution that makes sense when the objective function is the only one considered [88]. The next step is to evaluate the results when considering all four objective functions together. I will evaluate the full decision making process over many iterations, in scenarios representing
static environments, a simple dynamic environment (environment changes once during the scenario), and rapidly changing dynamic environments (values can change dramatically from iteration to iteration).

The remainder of this chapter is organized as follows. Section 7.2 presents the details of software simulation, while Section 7.3 deals with the results from the live tests. Section 7.4 summarizes and presents concluding remarks.

### 7.2 Simulation Results

The simulation results are generated in software. I use the same modules for simulation as those deployed on the AVEP. The simulation controller employs the same FSM as the AVEP controller (Section 5.2.1.1), but while the AVEP employs actual environmental and RF sensing, the simulation uses a pre-generated set of environmental parameters ($X$, $Y$, and Noise) that are fed to the simulation controller during every iteration. The simulation controller feeds the values to the decision maker, which generates a solution space and returns a solution to the simulation controller. The simulation controller also implements the second stage learning process, as discussed in Section 6.4.

#### 7.2.1 Individual Objective Functions

I first demonstrated the effectiveness of the decision making process in [88]. I isolated a single objective and showed that the system was able to make an appropriate choice, and I reproduce the results here.

The three lines below reproduce the Python dictionaries that store the solution parameters generated during the decision making process.
These results were generated when the decision maker was asked to choose a solution that maximizes the $Z$ score. Each dictionary represents a different test bed path, and the RF and MOT parameters the AVEP would implement while traversing the path. Of the three possible paths, the decision making process chose the third, the path with the highest $Z$ score.

When the decision maker was asked to choose a solution that minimized the time, $T$, the second path was chosen. Clearly, in the absence of any other considerations, the path with the shortest length will result in the shortest travel time.

Tasked with minimizing the $B$ objective, BER, the decision maker selected a solution that uses high transmit power and low data rate. This is a “pure” RF solution, i.e., the choice of solution in this case requires no consideration of MOT parameters. In this case, the choice of path has no impact, as the solution parameters are the same for each path, and the decision maker selected the first path.

The final objective function the decision maker optimized in isolation was packet delivery,
maximizing $G$. The decision maker used a high bit rate while driving the rotor power (and therefore the AVEP speed) down to increase the time available to transmit the packets. This combination of RF and MOT parameters, implemented on the longest path in the test bed (the third path) resulted in the best results for $G$. This clearly shows the coupled nature of RF and MOT parameters, and is a simple example of why I am considering RF and MOT together.

\{'dist': 62.0, 'T': 14.5, 'Rs': 57600.0, ..., 'rotor power': 25.0, 'G': 45\}
\{'dist': 48.0, 'T': 11.2, 'Rs': 57600.0, ..., 'rotor power': 25.0, 'G': 35\}
\{'dist': 87.5, 'T': 20.4, 'Rs': 57600.0, ..., 'rotor power': 25.0, 'G': 64\}
7.2.2 Multi-domain Decision Making in a Static Environment

The next step is to evaluate the full UMDDM process in a static environment, i.e., an environment that does not change from iteration to iteration. The environment for an iteration is established by fixing the meters for each path that the decision maker will use in the decision making process. The parameters used for this analysis are shown in Table 7.1. The $X$ and $Y$ are values that are reproducible in the test bed, while the Noise value represents the empirically determined value as discussed in Section 6.3.1.3.

Table 7.1: Environmental parameters (meters) used in evaluating UMDDM in a static environment.

<table>
<thead>
<tr>
<th>Path</th>
<th>Targets X</th>
<th>Anti-targets Y</th>
<th>Noise (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>1</td>
<td>-92</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>0</td>
<td>-92</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>3</td>
<td>-92</td>
</tr>
</tbody>
</table>

I ran the decision maker through 20 iterations, simulating the choices the AVEP would make if it traveled around the test bed 20 times. The results are shown in Table 7.2. The table highlights several different aspects of the decision making and learning process. The “Mode” column shows whether the AVEP is actively communicating while traversing its chosen path (“Exploit”), or whether it is exploring the path environment to ensure up-to-date meter values (“Explore”). Notice that the second stage learning process ensures that the AVEP does not spend all its time exploiting the best path at the expense of exploring the other paths. Rather, the second stage learning process ensures that the AVEP does maintain up-to-date meter readings by periodically re-exploring other paths. Also note that the solution scores never decrease. Over the course of an entire operational session, the score increases, indicating that the AVEP is incrementally improving its performance over the long term.

The first three iterations of the operational session are used to explore each of the three paths. Iteration four is the first time the decision maker must generate a solution and
Table 7.2: Results of UMDDM decision making simulation in a static environment over 20 iterations.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Path traversed</th>
<th>Mode</th>
<th>New/Prev solution</th>
<th>Solution score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.2319</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.5874</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5874</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5874</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5874</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5874</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.6013</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.6013</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>13</td>
<td>C</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>14</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.6013</td>
</tr>
<tr>
<td>15</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.6013</td>
</tr>
<tr>
<td>16</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.6013</td>
</tr>
<tr>
<td>17</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.6013</td>
</tr>
<tr>
<td>18</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.6013</td>
</tr>
<tr>
<td>19</td>
<td>A</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>20</td>
<td>C</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
parameters to implement. While new solutions are generated each iteration that the AVEP
is not exploring, in this scenario, the AVEP implements the new solutions on iterations 4, 5,
and 10. Table 7.3 shows the solutions generated by the decision maker for those iterations.
The trade-offs inherent in choosing one nondominated solution over another are clear. From
iterations 4 to iteration 5, $T$ is decreased as desired, and $Z$ is increased (also desirable), but
at the cost of a decrease in $G$.
Table 7.3: Solutions generated by decision maker on iterations 4, 5, and 10, and the scores
associated with each solution.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>$Z$</th>
<th>$T$</th>
<th>$B$</th>
<th>$G$</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.4000</td>
<td>13.0587</td>
<td>0</td>
<td>31</td>
<td>0.2319</td>
</tr>
<tr>
<td>5</td>
<td>0.5999</td>
<td>9.2530</td>
<td>0</td>
<td>29</td>
<td>0.5874</td>
</tr>
<tr>
<td>10</td>
<td>0.6000</td>
<td>7.4189</td>
<td>0</td>
<td>24</td>
<td>0.6013</td>
</tr>
</tbody>
</table>

Table 7.4 shows the parameters that AVEP uses to implement the solutions shown in Table
7.3 above. The differences and trade-offs between solutions are more obvious here. The
AVEP starts out on the longest path, but as it switches to shorter paths, it increases the bit
rate and reduces its motive power slightly to maintain a reasonable value for packet delivery.
This scenario is a perfect example of how MOT and RF parameters can be exchanged to
ensure mission success.
Table 7.4: Parameters associated with solutions shown in Table 7.3.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Path</th>
<th>Length (m)</th>
<th>$R_s$ (kbps)</th>
<th>EIRP (dBm)</th>
<th>Rotor power</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>C</td>
<td>2.223</td>
<td>9.6</td>
<td>17.0</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>1.575</td>
<td>57.6</td>
<td>17.0</td>
<td>55</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>1.219</td>
<td>125.0</td>
<td>17.0</td>
<td>40</td>
</tr>
</tbody>
</table>

The nondominated sort algorithm generates a front with 154 members (out of a solution
space with 1152 members). Using UMDDM, the AVEP uses an optimal solution every time
it must make a decision. For comparison, I used Python’s random number generator to gen-
erate 50 uniformly distributed samples from the solution space, and none of the randomly
selected solutions was present in the nondominated solution set.\footnote{I used the “random” module from the Python Standard Library. I used a seed of 0 for repeatability, and generated a list of 20 values using the following code: \texttt{[random.randint(0, 1151) for i in range(50)]}. I compared each of the values in the list with the values in the nondominated solution and recorded which ones, if any, were common in both. There were no common values.} Clearly UMDDM provides better results than selecting operational parameters at random. UMDDM also implements intelligent adaptation, using the second stage learning, which provides incremental improvement in operational performance over time. This is highlighted by the increasing score, recorded in Tables 7.2 and 7.3.

It should be noted with that with the environmental parameters set as noted in Table 7.1, and with the available set of knobs, the BER will always be 0. Figure 6.8 shows that for a wide range of $R_s$ values, the $B$ value (BER) is effectively 0 for SNR values greater than 5 dB. If I increase the Noise value in the simulated environment to $-82$ dBm, this will generate some variability in $B$ values in the solutions space generated by the decision maker. Table 7.5 shows the results of running the simulation again with the higher noise value. There is nothing significant to observe in this table as compared to Table 7.2, but I have included the information for the sake of completeness.

Table 7.6 shows the solutions generated by the decision maker and implemented by the AVEP in the scenario where the simulated environment has noise $N = -82$ dBm. Note that the higher noise does result in variability in the $B$ values. Again, the trade-offs are clear when choosing one nondominated solution over another. For example, from iteration 6 to 10, the $T$ value worsens (time increases) while the $B$ value improves (BER decreases). From iteration 10 to 14, the $T$ value improves, while the $B$ value worsens. Table 7.7 shows the parameters used to implement the solutions in this scenario. As in the previous static scenario, the decision maker generates solution with maximum EIRP. The decision maker seeks to minimize $B$, and this can be done by driving the transmit power up. In this working proof of concept prototype, I implemented only 4 objective functions that clearly
Table 7.5: Results of UMDDM decision making simulation in a static environment with $N = -82$ dBm.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Path traversed</th>
<th>Mode</th>
<th>New/Prev solution</th>
<th>Solution score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.4256</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.4256</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.5295</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5295</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5295</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5295</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.5726</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5726</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>13</td>
<td>C</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>14</td>
<td>B</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.5750</td>
</tr>
<tr>
<td>15</td>
<td>B</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.5846</td>
</tr>
<tr>
<td>16</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5846</td>
</tr>
<tr>
<td>17</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5846</td>
</tr>
<tr>
<td>18</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5846</td>
</tr>
<tr>
<td>19</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5846</td>
</tr>
<tr>
<td>20</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5846</td>
</tr>
</tbody>
</table>
show the multi-domain aspects of UMDDM. There are methods to reduce the tendency to drive input parameters to their maximum values, such as including the parameter as an objective function [70, 144] or penalizing solutions that result in high transmit power [145].

Table 7.6: Solutions generated by decision maker for simulated environment where $N = -82$ dBm.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>$Z$</th>
<th>$T$</th>
<th>$B$</th>
<th>$G$</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.6000</td>
<td>8.2233</td>
<td>0</td>
<td>15</td>
<td>0.4256</td>
</tr>
<tr>
<td>6</td>
<td>0.6000</td>
<td>9.4762</td>
<td>0.0209</td>
<td>30</td>
<td>0.5295</td>
</tr>
<tr>
<td>10</td>
<td>0.6000</td>
<td>9.8670</td>
<td>1.6111e-5</td>
<td>30</td>
<td>0.5726</td>
</tr>
<tr>
<td>14</td>
<td>0.6000</td>
<td>9.4762</td>
<td>5.0631e-4</td>
<td>29</td>
<td>0.5750</td>
</tr>
<tr>
<td>15</td>
<td>0.6000</td>
<td>7.4189</td>
<td>5.0631e-4</td>
<td>23</td>
<td>0.5846</td>
</tr>
</tbody>
</table>

Table 7.7: Parameters associated with solutions shown in Table 7.6.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Path</th>
<th>Length (m)</th>
<th>$R_s$ (kbps)</th>
<th>EIRP (dBm)</th>
<th>Rotor power</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>B</td>
<td>1.219</td>
<td>4.8</td>
<td>17.0</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1.219</td>
<td>125</td>
<td>17.0</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>1.219</td>
<td>38.4</td>
<td>17.0</td>
<td>75</td>
</tr>
<tr>
<td>14</td>
<td>B</td>
<td>1.219</td>
<td>57.6</td>
<td>17.0</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>B</td>
<td>1.219</td>
<td>57.6</td>
<td>17.0</td>
<td>40</td>
</tr>
</tbody>
</table>
7.2.3 Multi-domain Decision Making in a Simple Dynamic Environment

To evaluate UMDDM in a simple dynamic environment, I generated a scenario that changed the parameters of Path B at iteration 10, as noted in Table 7.8.

Table 7.8: Environmental parameters (meters) used in evaluating UMDDM in a simple dynamic environment.

<table>
<thead>
<tr>
<th>Iterations</th>
<th>Path</th>
<th>Targets X</th>
<th>Anti-targets Y</th>
<th>Noise (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>A</td>
<td>5</td>
<td>1</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>3</td>
<td>0</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5</td>
<td>3</td>
<td>-82</td>
</tr>
<tr>
<td>11-20</td>
<td>A</td>
<td>5</td>
<td>1</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0</td>
<td>0</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5</td>
<td>3</td>
<td>-82</td>
</tr>
</tbody>
</table>

The results of this test scenario are shown in Table 7.9. The AVEP uses the second stage learning to increase the score on iterations 4 and 6, but the score drops again on iteration 13. This reflects the change in the environment that occurs on iteration 11; however, this change is not registered until iteration 13. During iteration 13, the AVEP traverses path B and updates its internal information. This updated information is incorporated into the learning process, and a new solution space is generated. The selected solution has a lower score than the previously implemented solution, but the AVEP recognizes that the environment in which the previous solution was generated no longer exists, and the previous solution is not relevant. As before, the AVEP periodically re-explores paths that have not been recently traversed, in order to maintain up to date information for effective decision making.

Table 7.10 shows the solutions generated by the decision maker and implemented by the AVEP in this scenario, which simulates a slowly changing dynamic environment. Once again, it is possible observe the trade-offs associated with selecting a solution from multiple
Table 7.9: Results of UMDDM decision making simulation in a simple dynamic environment over 20 iterations.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Path traversed</th>
<th>Mode</th>
<th>New/Prev solution</th>
<th>Solution score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.5211</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5211</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.5819</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5819</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5819</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5819</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5819</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>13</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5819</td>
</tr>
<tr>
<td>14</td>
<td>A</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.5408</td>
</tr>
<tr>
<td>15</td>
<td>A</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5408</td>
</tr>
<tr>
<td>16</td>
<td>A</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5408</td>
</tr>
<tr>
<td>17</td>
<td>A</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5408</td>
</tr>
<tr>
<td>18</td>
<td>A</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5408</td>
</tr>
<tr>
<td>19</td>
<td>B</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>20</td>
<td>C</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
nondominated solutions. From iteration 4 to iteration 6, the $T$ value is improved, while the $B$ and $G$ values decline (BER increases and packet delivery is reduced). From iteration 6 to iteration 10, the $T$ and $B$ values improve, while the $G$ value again decreases. Table 7.11 shows the parameters associated with each implemented, and a corresponding trade-off between parameters can also be observed.

Table 7.10: Solutions generated by decision maker in a simple dynamic environment, and the scores associated with each solution.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>$Z$</th>
<th>$T$</th>
<th>$B$</th>
<th>$G$</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.6000</td>
<td>11.2310</td>
<td>5.1918e-10</td>
<td>31</td>
<td>0.5211</td>
</tr>
<tr>
<td>6</td>
<td>0.6000</td>
<td>7.4189</td>
<td>5.0631e-4</td>
<td>28</td>
<td>0.5819</td>
</tr>
<tr>
<td>14</td>
<td>0.5999</td>
<td>8.2233</td>
<td>5.1918e-10</td>
<td>25</td>
<td>0.5408</td>
</tr>
</tbody>
</table>

Table 7.11: Parameters associated with solutions shown in Table 7.10.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Path</th>
<th>Length (m)</th>
<th>$R_s$ (kbps)</th>
<th>EIRP (dBm)</th>
<th>Rotor power</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>B</td>
<td>1.219</td>
<td>19.2</td>
<td>17.0</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1.219</td>
<td>57.6</td>
<td>17.0</td>
<td>70</td>
</tr>
<tr>
<td>14</td>
<td>A</td>
<td>1.575</td>
<td>19.2</td>
<td>17.0</td>
<td>50</td>
</tr>
</tbody>
</table>
Multi-domain Decision Making in a Highly Dynamic Environment

I created a randomly generated scenario to test the AVEP decision making and learning performance in a highly dynamic environment. Table 7.12 shows the meters for the first 10 iterations of this scenario. This scenario represents situations where the AVEP encounters a rapidly changing environment. Such situations might arise as a result of high speed operation or extremely hostile environments.

The results of this test scenario are shown in Table 7.13. In this scenario where the environment changes dramatically with every iteration, the AVEP implements a new solution every iteration and is unable to use previous solutions in an attempt to increase its performance from one iteration to the next, as indicated by the solution score. While the AVEP does seek to maintain high performance by selecting nondominated solutions from the solution space generated by the decision maker, the AVEP does not “chase” a single best solution. Newman et al. have shown that a system which changes operationally parameters in response to environmental cues too readily can be “herded” or exploited, guided to operate in a manner beneficial to external agents [146]. As the AVEP makes decisions based only on the information it has gathered, it is possible that in a highly dynamic environment, the AVEP will miss some opportunities, such as the extremely beneficial environment offered by path C on iteration 9. On the other hand, the AVEP continues to operate even while in a hostile environment, such as that of path C on iteration 4. The AVEP seeks to improve performance after every iteration, whether in a favorable or hostile environment.

Table 7.14 shows the solutions generated by the decision maker and implemented by the AVEP in this scenario, which simulates a rapidly changing dynamic environment. Once again, it is possible observe the trade-offs associated with selecting a solution from multiple
Table 7.12: Environmental parameters (meters) used in evaluating UMDDM in a highly dynamic environment.

<table>
<thead>
<tr>
<th>Iterations</th>
<th>Path</th>
<th>Targets X</th>
<th>Anti-targets Y</th>
<th>Noise (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>6</td>
<td>7</td>
<td>-87.1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>8</td>
<td>7</td>
<td>-83.1</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3</td>
<td>0</td>
<td>-76.7</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>3</td>
<td>8</td>
<td>-75.5</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>10</td>
<td>3</td>
<td>-71.5</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1</td>
<td>1</td>
<td>-83.1</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>6</td>
<td>4</td>
<td>-90.7</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>5</td>
<td>6</td>
<td>-68.3</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>6</td>
<td>8</td>
<td>-98.2</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>9</td>
<td>10</td>
<td>-85.5</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>9</td>
<td>6</td>
<td>-86.5</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0</td>
<td>7</td>
<td>-60.11</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>9</td>
<td>2</td>
<td>-78.6</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>5</td>
<td>3</td>
<td>-76.0</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>9</td>
<td>4</td>
<td>-87.6</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>0</td>
<td>5</td>
<td>-97.7</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>9</td>
<td>6</td>
<td>-77.8</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>9</td>
<td>2</td>
<td>-98.2</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>6</td>
<td>1</td>
<td>-86.9</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>2</td>
<td>3</td>
<td>-81.8</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5</td>
<td>4</td>
<td>-76.9</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>0</td>
<td>6</td>
<td>-81.6</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>-82.3</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3</td>
<td>5</td>
<td>-76.9</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>1</td>
<td>6</td>
<td>-80.0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>7</td>
<td>5</td>
<td>-69.5</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>10</td>
<td>2</td>
<td>-86.8</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>4</td>
<td>2</td>
<td>-81.6</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>5</td>
<td>5</td>
<td>-91.7</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>10</td>
<td>7</td>
<td>-85.0</td>
</tr>
</tbody>
</table>
Table 7.13: Results of UMDDM decision making simulation in a highly dynamic environment over 10 iterations.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Path traversed</th>
<th>Mode</th>
<th>New/Prev solution</th>
<th>Solution score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.0002</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>Exploit</td>
<td>New solution</td>
<td>-0.0372</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.7539</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.7901</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>Exploit</td>
<td>New solution</td>
<td>-0.1051</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>Exploit</td>
<td>New solution</td>
<td>-0.2588</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>Exploit</td>
<td>New solution</td>
<td>-0.2849</td>
</tr>
</tbody>
</table>

nondominated solutions. This scenario presents instances where selected solutions are not fully policy compliant ($Z < 0.1$ for iterations 4, 5, 6, 8, and 9). While the decision maker does generate every possible solution in the solution space, it does not exhaustively search the solution space for a solution. Instead, the decision maker uses the nondominated sort to select a suitable subsection of the entire population, and makes an effort to choose a solution that satisfies policy. But if the decision maker is unable to find a compliant solution, the decision maker will return a solution that is not compliant with policy. This avoids a deadlock state, searching for a nondominated solution that satisfies policy which may not exist. On the other hand, the decision maker may miss solutions that are compliant and return a non-compliant solution. I have chosen to accept this trade off, as the result is a system that is robust and stable in the face of hostile environments with limited solution possibilities: implementing a non-compliant solution ensures that AVEP operation actually continues, and with limited delay.

In this highly dynamic environment, the second stage learning process is unable to improve performance from one iteration to the next through the use of previously implemented solutions; in this scenario, previous solutions are never applicable as the environment along
every path changes with every iteration. In this case, the AVEP is intelligent enough not to use previous results while the environment is rapidly changing. Yet if the environment were to settle, the AVEP would then apply the second stage learning process and seek iterative improvement using previously implemented solutions. Table 7.15 shows the parameters that correspond to the solutions generated and implemented in this scenario.

Table 7.14: Solutions generated by decision maker in a highly dynamic environment, and the scores associated with each solution.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Z</th>
<th>T</th>
<th>B</th>
<th>G</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0</td>
<td>17.9867</td>
<td>0</td>
<td>58</td>
<td>-0.1208</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>12.2401</td>
<td>0</td>
<td>37</td>
<td>-0.0228</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>13.8606</td>
<td>1.6038e-5</td>
<td>44</td>
<td>0.2599</td>
</tr>
<tr>
<td>7</td>
<td>1.0</td>
<td>9.8670</td>
<td>3.3715e-4</td>
<td>18</td>
<td>-0.0372</td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
<td>14.5068</td>
<td>8.8464e-11</td>
<td>48</td>
<td>-0.0393</td>
</tr>
<tr>
<td>9</td>
<td>0.0</td>
<td>12.7449</td>
<td>0</td>
<td>24</td>
<td>-0.0057</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>9.8670</td>
<td>2.2734e-7</td>
<td>13</td>
<td>-0.1060</td>
</tr>
</tbody>
</table>

Table 7.15: Parameters associated with solutions shown in Table 7.14.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Path</th>
<th>Length (m)</th>
<th>$R_s$ (kbps)</th>
<th>EIRP (dBm)</th>
<th>Rotor power</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>C</td>
<td>2.223</td>
<td>125.0</td>
<td>17.0</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>1.575</td>
<td>38.4</td>
<td>17.0</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1.575</td>
<td>125.0</td>
<td>17.0</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>1.219</td>
<td>4.8</td>
<td>17.0</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>1.575</td>
<td>57.6</td>
<td>17.0</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>1.575</td>
<td>4.8</td>
<td>17.0</td>
<td>75</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>1.575</td>
<td>2.4</td>
<td>17.0</td>
<td>75</td>
</tr>
</tbody>
</table>
7.3 Live Test Results

In this section, I present the results from the live tests conducted using the AVEP on the test bed. I will evaluate the full decision making process over many iterations, in scenarios representing static environments, a simple dynamic environment (environment changes once during the scenario), and rapidly changing dynamic environments (values can change dramatically from iteration to iteration). Figure 7.1 shows the AVEP in operation during one of the live test experiments.

![Figure 7.1: AVEP in operation during a live test experiment.](image)

7.3.0.1 Live Multi-domain Decision Making in a Static Environment

This scenario mirrors the software simulation of the full UMDDM process in a static environment. The environment for an iteration is established by fixing the meters for each path
that the decision maker will use in the decision making process. The parameters used for this analysis are shown in Table 7.16. Notice that these are the same values as in Table 7.1. The $X$ and $Y$ are values that fixed by using pieces of colored paper on a given test bed path. The Noise value is a close approximation of the Noise value seen by the receiver while operating in the test bed.

Table 7.16: Environmental parameters (meters) used in evaluating live UMDDM in a static environment.

<table>
<thead>
<tr>
<th>Path</th>
<th>Targets X</th>
<th>Anti-targets Y</th>
<th>Noise (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>1</td>
<td>-92</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>0</td>
<td>-92</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>3</td>
<td>-92</td>
</tr>
</tbody>
</table>

Test bed experiments are run in real time in the test bed, and as a result take much longer to complete than the software simulations. I ran the test bed experiments for 10 iterations, and changed the threshold that controls the re-exploration of alternative paths from 5 to 3. In this manner, I still show all the details of the decision making and learning processes, while completing the experiments in a reasonable time. Table 7.17 shows the results from a live test bed experiment in a static environment.

Table 7.17: Results of live UMDDM in a static environment over 10 iterations.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Path traversed</th>
<th>Mode</th>
<th>New/Prev solution</th>
<th>Solution score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.3648</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.5713</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5713</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5713</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5713</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

During live tests, the AVEP uses the first three iterations to explore the environment, record-
ing the number of targets and anti-targets along each path, and recording the noise level observed by the RFIC while traversing each path. As with the software simulations above, the decision maker generates a new solution on iteration 4. On iteration 5, the AVEP again uses a new solution, but continues to use that solution on iterations 6, 7, and 8. From iteration 4 to 5, the score increases, indicating that the AVEP is incrementally improving its performance over the long term. The second stage learning process ensures that the AVEP maintains up to date information. After three iterations using the same previous solution, the AVEP switches from “Exploit” to “Explore” mode and re-explores paths B and C to obtain up to date information.

Table 7.18 shows the solutions generated by the decision maker and implemented by the AVEP on iterations 4 and 5 during the live experiments in a static environment. As mentioned previously, the noise in the test bed environment is approximately $N = -92$ dBm as observed by the RFIC. At this level and for a wide range of $R_S$ values, the $B$ value (aka BER) is effectively 0 for SNR values greater than 5 dB. This can be observed in the table.

The trade-offs associated with selecting a solution among nondominated candidates is again observable. From iteration 4 to 5, the $Z$ and $T$ values at the expense of reduced packet delivery. Table 7.19 shows the corresponding trade-offs in parameters: $R_s$ is reduced, while the AVEP rotor power is increased.

Table 7.18: Solutions generated by decision maker during live tests in a static environment.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Z</th>
<th>T</th>
<th>B</th>
<th>G</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.4000</td>
<td>14.9903</td>
<td>0</td>
<td>46</td>
<td>0.3648</td>
</tr>
<tr>
<td>5</td>
<td>0.5999</td>
<td>9.5827</td>
<td>0</td>
<td>29</td>
<td>0.5713</td>
</tr>
</tbody>
</table>

By transmitting a broadband signal on the frequency that the AVEP uses, and by transmitting at very low power, it is possible to simulate a higher noise floor in the test bed environment. Using this method, I was able to raise the noise to approximately $N = -83$
Table 7.19: Parameters associated with solutions shown in Table 7.18.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Path</th>
<th>Length (m)</th>
<th>$R_s$ (kbps)</th>
<th>EIRP (dBm)</th>
<th>Rotor power</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>C</td>
<td>2.223</td>
<td>57.6</td>
<td>17.0</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>1.575</td>
<td>38.4</td>
<td>17.0</td>
<td>55</td>
</tr>
</tbody>
</table>

dBm, which resulted in some variability in the $B$ values generated by the decision maker. I re-ran the static environment test bed experiment using the broadband signal to raise the noise floor. The results are shown in Table 7.20.

Table 7.20: Results of live UMDDM in a static environment over 10 iterations using higher noise floor.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Path traversed</th>
<th>Mode</th>
<th>New/Prev solution</th>
<th>Solution score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.3169</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.4665</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.9670</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.9670</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.9670</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.9670</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>Explore</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 7.21 shows the solutions generated by the decision maker in this re-run test bed experiment. Note the value of $B$ on iteration 6. This is a result of the increased noise floor, and the higher data rate shown in Table 7.22. I conducted the remaining experiments in this chapter using the broadband signal to increase the noise floor observed the RFIC.

Table 7.21: Solutions generated by decision maker during live tests in a static environment with higher noise floor.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>$Z$</th>
<th>$T$</th>
<th>$B$</th>
<th>$G$</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.5999</td>
<td>13.8606</td>
<td>0</td>
<td>26</td>
<td>0.3169</td>
</tr>
<tr>
<td>5</td>
<td>0.6000</td>
<td>9.8670</td>
<td>0</td>
<td>23</td>
<td>0.4665</td>
</tr>
<tr>
<td>6</td>
<td>0.5999</td>
<td>12.2401</td>
<td>1.7094e-4</td>
<td>39</td>
<td>0.9670</td>
</tr>
</tbody>
</table>
Table 7.22: Parameters associated with solutions shown in Table 7.18.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Path</th>
<th>Length (m)</th>
<th>$R_s$ (kbps)</th>
<th>EIRP (dBm)</th>
<th>Rotor power</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A</td>
<td>1.575</td>
<td>4.8</td>
<td>17.0</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>1.219</td>
<td>9.6</td>
<td>17.0</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1.575</td>
<td>125.0</td>
<td>17.0</td>
<td>30</td>
</tr>
</tbody>
</table>
### 7.3.0.2 Live Multi-domain Decision Making in a Simple Dynamic Environment

Having now shown that the AVEP can learn its surroundings by exploring the paths during test bed experiments, I intentionally bypassed the initial exploration process for this experiment. By pre-loading the AVEP with the information that would have been learned during the initial path explorations, I can focus on the showing how the AVEP uses decision making and the second stage learning process during the test bed experiment.

This experiment shows the operation of the AVEP in a simple dynamic environment, as in Section 7.2.3. Table 7.23 shows the changes in the number of target and anti-targets pieces on paths A and B from iterations 1-5 to iterations 6-10.

Table 7.23: Environmental parameters (meters) used in evaluating UMDDM in a simple dynamic environment during a live experiment.

<table>
<thead>
<tr>
<th>Iterations</th>
<th>Path</th>
<th>Targets X</th>
<th>Anti-targets Y</th>
<th>Noise (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>A</td>
<td>5</td>
<td>1</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>3</td>
<td>0</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5</td>
<td>3</td>
<td>-82</td>
</tr>
<tr>
<td>6-10</td>
<td>A</td>
<td>3</td>
<td>1</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0</td>
<td>0</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5</td>
<td>3</td>
<td>-82</td>
</tr>
</tbody>
</table>

Table 7.24 shows the experimental results for this live test bed experiment in a simple dynamic environment. As in the simulations, the AVEP seeks to maintain or increase performance, as indicated by the solution score. In the simulations, the only time that the score decreased was when the environment changed from one iteration to the next. Note that the score does drop on iteration 3, when the environment has not in fact changed. This is due to sensor jitter; during live tests, the chassis mounted sensors will occasionally register more targets or anti-targets than actually exist due to the motion of the AVEP itself. This could be fixed with a more sophisticated sensing algorithm, but that is outside the scope of this work. On iteration 6, the target and anti-target values do change, and this is correctly
observed by the AVEP. On iteration 6, the AVEP traverse path B using a previously developed solution, but observes that the environment has changed and discards the solution. The AVEP selects path A for the next iteration, and develops a solution based on expired data. As soon as the AVEP traverses path A, it observes that path A has also changed, and discards the expired solution for path A as well. On iteration 8, the AVEP implements a solution that corresponds to the current path environment, and uses this solution for the remaining iterations of the experiment.

Table 7.24: Results of live UMDDM in a simple dynamic environment over 10 iterations in a live experiment.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Path traversed</th>
<th>Mode</th>
<th>New/Prev solution</th>
<th>Solution score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.5874</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.6301</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>Exploit</td>
<td>New solution</td>
<td>-0.0057</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.2850</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.5981</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.5981</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.2630</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.1286</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.1286</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>Exploit</td>
<td>Prev solution</td>
<td>0.1286</td>
</tr>
</tbody>
</table>

Table 7.25 shows the solutions generated by the decision maker and implemented by the AVEP during the live experiment in a simple dynamic environment. As directly above, this table also show the results of the changing environment and the solutions generated in iterations 7 and 8 to accommodate the changes. Table 7.26 shows the parameters associated with each solution.
Table 7.25: Solutions generated by decision maker during live tests in a simple dynamic environment.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Z</th>
<th>( T )</th>
<th>( B )</th>
<th>( G )</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5999</td>
<td>14.5067</td>
<td>1.7094e-4</td>
<td>46</td>
<td>0.5874</td>
</tr>
<tr>
<td>2</td>
<td>0.5999</td>
<td>8.9673</td>
<td>0</td>
<td>21</td>
<td>0.6301</td>
</tr>
<tr>
<td>3</td>
<td>0.4000</td>
<td>13.8907</td>
<td>0</td>
<td>18</td>
<td>-0.0057</td>
</tr>
<tr>
<td>4</td>
<td>0.5999</td>
<td>13.8606</td>
<td>0.1709e-4</td>
<td>44</td>
<td>0.2850</td>
</tr>
<tr>
<td>5</td>
<td>0.6000</td>
<td>9.0251</td>
<td>0.1709e-4</td>
<td>29</td>
<td>0.5981</td>
</tr>
<tr>
<td>7</td>
<td>0.5999</td>
<td>10.6217</td>
<td>0</td>
<td>12</td>
<td>0.2630</td>
</tr>
<tr>
<td>8</td>
<td>0.5999</td>
<td>8.9673</td>
<td>0</td>
<td>11</td>
<td>0.1286</td>
</tr>
</tbody>
</table>

Table 7.26: Parameters associated with solutions shown in Table 7.25.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Path</th>
<th>Length (m)</th>
<th>( R_s ) (kbps)</th>
<th>EIRP (dBm)</th>
<th>Rotor power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1.575</td>
<td>125.0</td>
<td>17.0</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1.575</td>
<td>9.6</td>
<td>17.0</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>2.223</td>
<td>2.4</td>
<td>17.0</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1.575</td>
<td>125.0</td>
<td>17.0</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>1.219</td>
<td>125.0</td>
<td>17.0</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>1.575</td>
<td>2.0</td>
<td>17.0</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>1.575</td>
<td>2.4</td>
<td>17.0</td>
<td>50</td>
</tr>
</tbody>
</table>
7.3.0.3 Live Multi-domain Decision Making in a Highly Dynamic Environment

For this live experiment, I again created a randomly generated scenario to test the AVEP decision making and learning performance in a highly dynamic environment. Using the randomly generated environmental parameters, I was able to implement the experiment by changing the target and anti-target parameters along each path between every iteration of the experiment. While I did conduct this experiment while transmitting a broadband signal to raise the noise floor, further refinements to the test bed’s RF environment are not practical. Table 7.27 shows the meters for 10 iterations.

The results of this live test experiment are shown in Table 7.28. As in the highly dynamic tests scenario simulation, in this experiment where the environment changes dramatically with every iteration, the AVEP implements a new solution every iteration and is unable to use previous solutions in an attempt to increase its performance from one iteration to the next, as indicated by the solution score. The AVEP makes decisions based only on the information it has gathered. While it is possible that in a highly dynamic environment the AVEP will miss some opportunities, in this experiment the AVEP manages to exploit some of the better path environments, such as path B on iteration 3, path C on iteration 8, and path A on iteration 10.

Table 7.29 shows the solutions generated by the decision maker and implemented by the AVEP in this experiment. As mentioned in previous experiment, I transmitted a broadband signal to increase the noise as observed by the RFIC. Even with this signal raising the noise floor, there is very little variability in the $B$ values of the solutions generated by the decision maker. This is due to the nature of the $B$ objective function. Figure 6.8 shows that for a wide range of $R_S$ values, the $B$ value (aka BER) is effectively 0 for SNR values greater than 5 dB. In live experiments, it is difficult to fix the laboratory RF environment, as
Table 7.27: Environmental parameters (meters) used in evaluating UMDDM in a highly dynamic environment during a live experiment.

<table>
<thead>
<tr>
<th>Iterations</th>
<th>Path</th>
<th>Targets X</th>
<th>Anti-targets Y</th>
<th>Noise (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1</td>
<td>3</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1</td>
<td>2</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3</td>
<td>3</td>
<td>-82</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>0</td>
<td>3</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3</td>
<td>5</td>
<td>-82</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>0</td>
<td>5</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>5</td>
<td>0</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>2</td>
<td>2</td>
<td>-82</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1</td>
<td>5</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>3</td>
<td>4</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0</td>
<td>2</td>
<td>-82</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>5</td>
<td>2</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>3</td>
<td>5</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3</td>
<td>4</td>
<td>-82</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>3</td>
<td>3</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1</td>
<td>4</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1</td>
<td>4</td>
<td>-82</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>2</td>
<td>3</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>3</td>
<td>4</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0</td>
<td>0</td>
<td>-82</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>4</td>
<td>4</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1</td>
<td>2</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>2</td>
<td>0</td>
<td>-82</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>2</td>
<td>3</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>4</td>
<td>1</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3</td>
<td>2</td>
<td>-82</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>5</td>
<td>1</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>3</td>
<td>4</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3</td>
<td>1</td>
<td>-82</td>
</tr>
</tbody>
</table>
Table 7.28: Results of live UMDDM in a simple dynamic environment over 10 iterations in a live experiment.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Path traversed</th>
<th>Mode</th>
<th>New/Prev solution</th>
<th>Solution score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.2933</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.5864</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.3793</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.5709</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>Exploit</td>
<td>New solution</td>
<td>-0.0290</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>Exploit</td>
<td>New solution</td>
<td>-0.1066</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>Exploit</td>
<td>New solution</td>
<td>-0.4853</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>Exploit</td>
<td>New solution</td>
<td>-0.2433</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>Exploit</td>
<td>New solution</td>
<td>0.1396</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>Exploit</td>
<td>New solution</td>
<td>-0.2701</td>
</tr>
</tbody>
</table>

opposed to simulations, where the noise value can be fixed to a specific value to ensure that the decision maker generates solutions with variability in the $B$ values. Still, it is possible observe the trade-offs made between solutions from one iteration to the next. For example, from iteration 5 to iteration 6, the $Z$ and $T$ values degrade ($Z$ goes down, $T$ goes up), but the $G$ value improves by more than double. Table 7.30 shows the parameters associated with the solutions generated by the decision maker and implemented by the AVEP in this live experiment.

Table 7.29: Solutions generated by decision maker in a highly dynamic environment during a live experiment.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>$Z$</th>
<th>$T$</th>
<th>$B$</th>
<th>$G$</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4000</td>
<td>16.4519</td>
<td>0</td>
<td>46</td>
<td>0.2933</td>
</tr>
<tr>
<td>2</td>
<td>0.5999</td>
<td>9.5827</td>
<td>1.5031e-8</td>
<td>30</td>
<td>0.5864</td>
</tr>
<tr>
<td>3</td>
<td>0.6000</td>
<td>7.6200</td>
<td>0</td>
<td>10</td>
<td>0.3793</td>
</tr>
<tr>
<td>4</td>
<td>0.6000</td>
<td>7.4189</td>
<td>0</td>
<td>22</td>
<td>0.5709</td>
</tr>
<tr>
<td>5</td>
<td>0.6000</td>
<td>7.4189</td>
<td>0</td>
<td>22</td>
<td>-0.0290</td>
</tr>
<tr>
<td>6</td>
<td>0.4000</td>
<td>16.4519</td>
<td>0</td>
<td>46</td>
<td>-0.1066</td>
</tr>
<tr>
<td>7</td>
<td>0.4000</td>
<td>16.4519</td>
<td>0</td>
<td>21</td>
<td>-0.4853</td>
</tr>
<tr>
<td>8</td>
<td>0.4000</td>
<td>19.5613</td>
<td>0</td>
<td>47</td>
<td>-0.2433</td>
</tr>
<tr>
<td>9</td>
<td>0.4000</td>
<td>17.9867</td>
<td>0</td>
<td>54</td>
<td>0.1396</td>
</tr>
<tr>
<td>10</td>
<td>0.5999</td>
<td>9.2530</td>
<td>0</td>
<td>12</td>
<td>-0.2701</td>
</tr>
</tbody>
</table>
Table 7.30: Parameters associated with solutions shown in Table 7.29.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Path</th>
<th>Length (m)</th>
<th>$R_s$ (kbps)</th>
<th>EIRP (dBm)</th>
<th>Rotor power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>2.223</td>
<td>192.0</td>
<td>17.0</td>
<td>70.0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1.575</td>
<td>57.6</td>
<td>17.0</td>
<td>40.0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1.219</td>
<td>2.4</td>
<td>17.0</td>
<td>60.0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1.219</td>
<td>38.4</td>
<td>17.0</td>
<td>40.0</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>1.219</td>
<td>38.4</td>
<td>17.0</td>
<td>40.0</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>2.223</td>
<td>19.2</td>
<td>17.0</td>
<td>70.0</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>2.223</td>
<td>2.4</td>
<td>17.0</td>
<td>70.0</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>2.223</td>
<td>9.6</td>
<td>17.0</td>
<td>80.0</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>2.223</td>
<td>38.4</td>
<td>17.0</td>
<td>75.0</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>1.575</td>
<td>2.4</td>
<td>17.0</td>
<td>55.0</td>
</tr>
</tbody>
</table>
7.4 Conclusion

This chapter presented AVEP experimental tests and results, both in software simulation and in live tests. I verified that the decision making process works for individual objective functions by isolating an individual objective function and showing that the decision making process returned a solution that made sense when the objective function is the only one considered [88]. I next evaluated the results when considering all four objective functions together. I evaluated the full decision making process over many iterations, in scenarios representing static environments, a simple dynamic environment (environment changes once during the scenario), and rapidly changing dynamic environments (values can change dramatically from iteration to iteration).

In static and simple dynamic environments, the second stage learning process ensures that the AVEP does not spend all its time exploiting the best path at the expense of exploring the other paths. Rather, the second stage learning process ensures that the AVEP does maintain up-to-date meter readings by periodically re-exploring other paths. In highly dynamic environment, the second stage learning process is unable improve performance from one iteration to the next through the use of previously implemented solutions; previous solutions are never applicable as the environment along every path changes with every iteration. In these cases, the AVEP is intelligent enough not to use previous results while the environment is rapidly changing. Yet if the environment were to settle, the AVEP would then apply the second stage learning process and seek iterative improvement using previously implemented solutions.

This chapter concludes the description of UMDDM and the design, development, implementation, and deployment of the AVEP and the UMDDM algorithms. I have shown that the AVEP can learn the RF and MOT parameters of the environment, choose a solution that
maximizes the objective functions, and implement the solution to ensure mission success. I have also shown that AVEP is also capable of learning from experience, modifying its behavior over time increase its performance.
Chapter 8

Conclusions

This chapter presents a summary of the research in this dissertation, lists my research contributions, and discusses areas for future research.

8.1 Summary

This research started several years ago with a simple observation, namely that CRs and AVs perform similar tasks, albeit in different domains:

- Analyze their environment,
- Make and execute a decision,
- Evaluate the result (learn from experience), and
- Repeat as required.

This observation led to try to combine CR and AV intelligence into a single intelligent agent, with the ability to leverage flexibility in the RF and motion (MOT) domains. I call this idea unified multi-domain decision making (UMDDM).
This dissertation has presented my work on UMDDM, the development of UMDDM algorithms and the implementation of the AVEP test platform, a working proof of concept prototype that deploys UMDDM on a live system.

Chapter 1 introduced the concept of UMDDM and discussed the conception of my research idea: combining CR and AV decision making into a single intelligent agent. My previous research, funded by AFRL, has dealt with exploring CR applications for UAVs, and has led directly to the research I presented in this dissertation.

Chapter 2 provided an overview of current CR and AV research, looking in particular at efforts to combine CRs and AVs. However, few people are looking at combined CR and AV solutions, and those that do so do so from one perspective only. No one else is looking at unified solutions, solutions that leverage flexibility in both RF and MOT domains.

Chapter 3 presents an overview of the experimental procedure used to develop and verify UMDDM as well as the underlying experimental philosophy. I highlighted all the components involved in developing and testing the UMDDM algorithms, including the experimental test bed, the autonomous robotic AVEP, and the stand alone NBR. I highlighted an experimental procedure that relies on software simulation combined with live tests to show the capabilities of UMDDM.

Chapters 4, 5, and 6 lay out the details of the AVEP, a working proof of concept prototype that implements UMDDM. Chapter 4 is a high level system overview, presenting the hardware and software components that I designed and built to support my research in UMDDM. The AVEP is an autonomous robotic platform capable of making and executing decisions that leverage flexibility and intelligent adaptation in both RF and MOT domains.

Chapter 5 presents the AVEP operational and control algorithms. I stepped through the AVEP FSM which provides top level control, pulling all the subcomponents and sensors to-
gether into a single integrated system. I also stepped through the RF and MOT subsystems, giving the operational details of the communication system as well as the motion algorithm.

Chapter 6 discusses the learning and decision making aspects of this research. The learning and decision making algorithms make up the cognitive core of this research, providing intelligent action and introspection for the AVEP. UMDDM uses two stages of learning. The first stage of learning provide environmental awareness through sensor data acquisition, and feeds the decision making process. The decision maker uses the sensor data (meters) along with knowledge of its own capabilities (knobs) to generate possible solutions for the AVEP to implement. The second stage of learning provides intelligent adaptation based on the system’s experiences, allowing it to implement a new solution or use a previous solution that may provide better performance in the current environment. The two stages of learning combine with the decision making process to implement UMDDM. As a result, the working proof of concept prototype AVEP is able to leverage flexibility in both RF and MOT domains to ensure mission success.

Chapter 7 presents the experimental tests and results that I used to validate my UMDDM research. I divided the experiments into two section, software-based simulation and robot-deployed live tests. I verified that the decision making process works for individual objective functions by isolating an individual objective function and showing that the decision making process returns a solution that makes sense when the objective function is the only one considered. I then evaluated the results when considering all four objective functions together, with scenarios representing static environments, slowly changing dynamic environments (values change a small amount from iteration to iteration), and rapidly changing dynamic environments (values can change dramatically from iteration to iteration). The software simulations allowed me to highlight the details of the decision making and learning UMDDM algorithms, while the live tests showed that I was able to implement my ideas in
a working proof of concept prototype.

8.2 Contributions

This research has made the following contributions to knowledge:

• I have initiated the exploration of unified multi-domain decision making (UMDDM). As mentioned several times through this dissertation, CRs and AVs perform similar tasks in order to fulfill their intended missions. They both analyze their environment, make and execute a decision, evaluate the result (learn from their actions) and repeat the process as required. AVs are increasingly present in tactical and public safety roles, and both motion and communication are fundamental aspects of AV operation. Knowing that need to move affects communication, and the need to communicate affects motion, it not only makes sense but becomes increasingly imperative that RF and MOT be considered together in AV research. This dissertation presents the first work in UMDDM, where flexibility in RF and MOT domains are considered with equal importance.

• I have designed and implemented a working proof of concept prototype AV with UMDDM. This autonomous robotic platform AVEP is able to leverage flexibility in both RF and MOT domains to ensure mission success. The AVEP performs live tests in a laboratory test bed, showing the real life capabilities of UMDDM. Further, the controller software is written in such a way that it can be ported to other AV platforms, such as the UAVs used by AFRL in Rome, NY.

• I have developed and implemented an experimental procedure based on both software simulation and live (non-simulation) tests. Further, I have provided the experimental results that show UMDDM in use on a working proof of concept prototype AV.

• I have designed and deployed a wholly new inexpensive CR platform using commercial
off the shelf (COTS) hardware and free and open source software. The radio platform, called SKIRL, is based on the BeagleBoard-xM single board computer and the Hope RF RFM22B RFIC. It is ideally suited for low cost CR experimentation and deployment. An overview of SKIRL with an example application is available in [10].

- I have advanced the state of CR for mobile applications. I have developed, implemented, and tested new hardware, software, and algorithms for mobile CR. My SKIRL radio platform is a low cost low power system ideally suited to mobile CR and intelligent sensor networks. While UMDDM is intended for AV deployment, it is also ideally suited for situational awareness in mobile CR applications. My dissertation provides extensive details on the software algorithms, and control and data structures I implemented to support UMDDM, and these are all applicable to mobile CR research.

- I have provided an introduction to CR concepts and methods for the AV research community. At the same time, I have provided an introduction to AV concepts and methods for the CR community. This dissertation itself opens the doors to the possibilities of crossover between CR and AV research. I have shown the possibility of combined CR and AV decision making in a single intelligent agent, showcased by my working proof of concept prototype AVEP.

### 8.3 Future Research

This dissertation is the first step in UMDDM, and provides a foundation for future work. I have implemented decision making and learning algorithms that leverage flexibility in both RF and MOT. I have also designed and deployed a working proof of concept prototype robotic platform that implements my UMDDM algorithms in live tests.

My research focuses on a limited set of controllable RF and MOT parameters. The most
obvious next step to expand the set of controllable parameters: a quadrocopter or airplane-based UAV provide much more flexibility in the MOT domain, capable of movement in three dimensions. RF considerations can be extended to a full set of PHY parameters, and reconfigurability can be extended up the network stack. While this provides additional flexibility, additional RF and MOT parameters do not push this research forward significantly.

Deploying UMDDM on multiple platforms opens the doors to the new ideas in swarming, both from the physical and RF perspective. UMDDM can also be extended to additional domains, beyond RF and MOT. Weather is capable of affecting movement and communication significantly; a torrential rain storm increases RF attenuation dramatically, and may inhibit motion of vehicles via strong winds or muddy ground. These considerations could be integrated into the decision making process with the development of appropriate objective functions.

UMDDM currently uses a population based nondominated sort method to implement decision making, but decision making research can provide more sophisticated decision making options. Case based decision making and recognition primed decision making are two methods that are used to model the way humans make decisions. However, researchers are currently exploring other biologically inspired decision making methods, such as emulating the way the human body makes decisions in the healing process [147]. These methods have the potential to extend UMDDM into new application areas.

I believe that my research into UMDDM is just the beginning. The future of RF communications needs to take into account the totality of the environment, and the future of AV research needs to enable flexibility in multiple domains to ensure mission success. While I have outlined a few areas where I believe that my research can be extended, I feel that the next step in UMDDM will be in a direction that is completely unexpected, an advancement that I could not predict. But the next step will move UMDDM forward for the benefit of
all.
Bibliography


