
NOTE ON THE EFFECTIVENESS OF

STOCHASTIC OPTIMIZATION ALGORITHMS

FOR ROBUST DESIGN

Manjula A. Iyer1, Rhonda D. Phillips1

Michael W. Trosset2, Layne T. Watson3

1Department of Computer Science
Virginia Polytechnic Institute and State University

Blacksburg, VA, 24061, USA
e-mail: {manjula,rdphllps}@vt.edu

2Department of Statistics
Indiana University

Bloomington, IN 47405, USA
e-mail: trosset@indiana.edu

3Departments of Computer Science and Mathematics
Virginia Polytechnic Institute and State University

Blacksburg, VA, 24061, USA
e-mail: ltw@cs.vt.edu

Abstract: Robust design optimization (RDO) uses statistical de-
cision theory and optimization techniques to optimize a design
over a range of uncertainty (introduced by the manufacturing pro-
cess and unintended uses). Since engineering objective functions
tend to be costly to evaluate and prohibitively expensive to inte-
grate (required within RDO), surrogates are introduced to allow
the use of traditional optimization methods to find solutions. This
paper explores the suitability of radically different (deterministic
and stochastic) optimization methods to solve prototypical robust
design problems. The algorithms include a genetic algorithm us-
ing a penalty function formulation, the simultaneous perturbation
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stochastic approximation (SPSA) method, and two gradient-based
constrained nonlinear optimizers (method of feasible directions
and sequential quadratic programming). The results show that
the fully deterministic standard optimization algorithms are con-
sistently more accurate, consistently more likely to terminate at
feasible points, and consistently considerably less expensive than
the fully nondeterministic algorithms.
AMS Subject Classification: 65C20, 65K05, 68U99
Key Words: design under uncertainty, genetic algorithm, multi-
disciplinary design optimization, stochastic optimization

1. Introduction

Uncertainty is prevalent and unavoidable in engineering de-
sign, yet modern design methods ignore uncertainty, improperly
address uncertainty, or require significant computational resources
to effectively consider uncertainty. Uncertainty can be introduced
by the manufacturing process that yields a finished product dif-
ferent from the original design and operational use of the actual
product that differs from intended use or exceeds the limits of
constraints on which the design is based. Statistical decision the-
ory, and the Bayes’ principle in particular, provide a means to
quantify uncertainty and rigorously incorporate uncertainties in
the design process, but this is often computationally expensive.

RDO, an exceedingly challenging class of multidisciplinary de-
sign optimization (MDO), considers both noise and design vari-
ables [1]. Given the large expense of calculating accurate MDO
results, it is computationally infeasible to evaluate functions at
more than 100 or so design points [2]. The computational com-
plexity involved in evaluating functions has led to the use of sur-
rogates, which are low cost approximations of both the objective
and constraint functions. Methods used include classical response
surface approximations (RS) [3], Bayesian estimators known as
DACE [4], and variable-complexity modeling (VCM) [5].

Effectively using the Bayes principle to consider uncertainty
in design is further hindered by the high computational expense
of calculating expectations, which require numerical integrations.
Just as surrogates reduce computational complexity associated
with function evaluations, it may be possible to use surrogates to
effectively reduce the computational complexity associated with
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calculating expectations [6]. Reducing the computational cost of
robust design techniques will make robust design increasingly ac-
cessible, allowing for more reliable, quicker, and less expensive
engineering designs.

This paper explores the suitability of radically different op-
timization techniques to solve prototypical robust design prob-
lems. While optimization problem formulations can be either de-
terministic or stochastic, algorithms used to solve either of the
formulations may be deterministic or stochastic as well. There
is no intrinsic reason why a deterministic formulation would re-
quire use of a deterministic algorithm or a stochastic formulation
would require a stochastic algorithm. In fact, certain determinis-
tic optimization problems are often best solved by stochastic al-
gorithms, and vice versa. Furthermore, the same applies to global
optimization—there is no inherent reason why nondeterministic
algorithms should be more efficient for global optimization than
deterministic algorithms.

This work compares the results of two deterministic optimiza-
tion algorithms and two stochastic optimization algorithms used
to solve example robust design problems. Each algorithm is com-
pared in terms of the quality of the resulting designs (feasibility
and objective function values) and the amount of work required
to achieve an acceptable design (measured in system analyses).
Performance could be examined for either progress-based opti-
mization (i.e., algorithm termination based on perceived conver-
gence) or budget-based optimization (i.e., algorithm termination
based on a maximum number of allowed system analyses). Results
for only the former are presented here—a budget-based analysis
will be the topic of future work. In addition to the comparison
of optimization algorithms, empirical evidence is gathered to aid
engineers in choosing appropriate parameters for the various op-
timization algorithms.

The remaining sections of this paper are organized as follows.
Section 2 provides a brief introduction to robust design optimiza-
tion (RDO). Section 3 describes the optimization algorithms used,
and Section 4 introduces the example problems formulated to test
the optimization algorithms’ suitability to solve RDO problems.
Section 5 contains experimental results and discussion, and Sec-
tion 6 concludes the paper.
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2. Robust Design Optimization

Welch and Sacks, in relation to the design and analysis of
computer experiments (DACE), described the class of problems
discussed in this paper as quantifying designable engineering pa-
rameters and manufacturing process parameters in order to use
models to generate quality characteristics [7]. The designable en-
gineering parameters should then be chosen such that the quality
of the end result product is good across the variability of man-
ufacturing conditions. This problem predates computer models
as Taguchi first proposed an engineering design process in three
stages that would evaluate and fine tune a design after noise was
considered [8].

Using statistical decision theory techniques, an optimization
problem can be formulated for robust design problems. An objec-
tive function for a RDO problem has the form f : A × B → ℜ,
where a ∈ A are the design variables, b ∈ B are the manufacturing
process variables, and f(a; b) represents the loss from operating
design a under conditions b. The goal is to find a∗ ∈ A such that,
for every b ∈ B,

f(a∗; b) ≤ f(a; b) ∀a ∈ A,

although this goal may be impossible to realize. Finding a∗ ∈ A
that minimizes f(a; b) for each b ∈ B is addressed in statistical
decision theory by finding a decision rule that minimizes risk.
Using Bayes principle to minimize average loss, the optimization
problem becomes

min
a∈A

φ(a),

with objective function

φ(a) =

∫

B

f(a; b)p(b) db,

where p is a probability density on B and can be customized to
fit a particular application such as the probability distribution of
random manufacturing errors.

Welch and Sacks proposed applying a numerical optimizer to
an objective function of the above form, but with some modifi-
cations [7]. Evaluating the function f above is often expensive,
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but performing the integration is much more expensive, rendering
traditional optimization methods intractable for these problems.
Welch and Sacks proposed the following scheme (an instance of
well known response surface techniques), referred to as DACE, for
optimization of an expensive objective function ψ : A→ ℜ.
1. Choose parameter points a1, . . . , aN ∈ A.
2. Compute ψ(a1), . . . , ψ(aN).

3. Construct a Bayesian estimator (surrogate) ψ̂(a) for ψ(a).

4. Minimize ψ̂ over A.
DACE has gained popularity as an alternative to traditional

optimization of computationally expensive objective functions
that do not include uncertainty. This work is focused on algo-
rithms for optimization problems involving uncertainty, and builds
on a previous work that explored the cost of integration in comput-
ing the loss φ(a) [6]. This work explores the application of various
deterministic and stochastic optimization methods to RDO prob-
lems, with the ultimate application being to a surrogate objective
function in a RS, VCM, or DACE framework.

3. Algorithms

This section contains short descriptions of the optimization
methods used to obtain the results listed in Section 5.

Genetic Algorithms. Genetic algorithms (GAs) were first
introduced by Holland, and have been used in many fields includ-
ing medicine, engineering, and business to optimize functions that
are not well suited to traditional optimization methods [9][10][11].
There are important differences between GAs and traditional op-
timization methods. GAs consider entire populations of designs
rather than single designs, and each design or individual is rep-
resented as an encoded string. GAs do not require gradients and
need only objective function values (fitnesses of individuals). GAs
are not deterministic as they involve random steps in their search,
and they search globally for solutions, which makes this class of
algorithms arguably more effective than deterministic exhaustive
search for many problems.

The biological rationale is that GAs move toward an optimal
solution to an optimization problem in the same manner that
evolutionary processes yield superior individuals through natural
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selection. Two parent individuals reproduce to form a new indi-
vidual that preserves and forms new genetic information. Individ-
uals survive based on fitness, which is measured by an objective
function, and more fit individuals are more likely to pass on ge-
netic information to the next generation, resulting in a more fit
population.

In populations, evolution is simulated by propagation of the
species through reproduction and random variations in genetics.
Fitness is evaluated based on each individual’s objective function
value, and rules for survival and reproduction are predetermined
to select fitter individuals most often. This search attempts to
locate the most fit individual, or the individual that minimizes
(or analogously, maximizes) the objective function. Formally, the
goal is to approximate a global minimum point a∗ ∈ A of a real-
valued objective function f : A→ ℜ, i.e., f(a) ≥ f(a∗) ∀a ∈ A.

SPSA. SPSA (simultaneous perturbation stochastic approxi-
mation) is an algorithm for stochastic optimization of multivariate
systems that relies only on the measurement of the objective func-
tion to be optimized [12]. Like GAs, this algorithm does not re-
quire the gradient of the objective function. SPSA has been shown
to be very effective in high dimensional problems as it provides
a reasonable solution using a relatively small number of measure-
ments of the function values.

The most important feature of SPSA is the underlying gradient
approximation that requires only two objective function measure-
ments per iteration regardless of the dimension of the optimization
problem. These two measurements are made by simultaneously
and randomly varying all of the variables in the problem (the
“simultaneous perturbation”).

Consider the problem of minimizing a differentiable loss func-
tion L(θ), where θ is a p-dimensional vector. The optimization
problem is finding the minimizing point θ∗ such that the gradient
∇L(θ∗) = 0. The general form of the SPSA algorithm is

θ̂k+1 = θ̂k − akĝk(θ̂k),

where ĝk(θ̂k) is the estimate of the gradient g(θ) at the iterate θ̂k,
and the sequence ak ↓ 0 [12].

Let y(·) represent a measurement of L(·) that contains an error
(i.e., y(·) = L(·)+ noise) and let ck be a small positive number.
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One-sided gradient approximations require measurements y(θ̂k)

and y(θ̂k+ perturbation) and two-sided gradient approximations

require measurements y(θ̂k) and y(θ̂k± perturbation).
The simultaneous perturbation approximation has all elements

of θ̂k randomly perturbed to obtain two measurements of y(·).
Each component of the gradient approximation is a ratio involving
the individual components in the perturbation vector and the dif-
ference in the two corresponding measurements. Each component

ĝki(θ̂k), i = 1, . . ., p, for the two-sided simultaneous perturbation
is given by

ĝki(θ̂k) =
y(θ̂k + ck∆k)− y(θ̂k − ck∆k)

2ck∆ki

,

where ∆k is a p-dimensional random perturbation vector, the dis-
tribution of which is specified by the user.

Standard Gradient-based Algorithms. Two gradient-
based optimizers, a sequential quadratic programming (SQP)
method and a modified method of feasible directions (MMFD),
from the Design Optimization Tools (DOT) software (Version 4.0,
distributed by Vanderplaats Research & Development) are used
to obtain results. Descriptions of SQP and MMFD are available
in [13], and [14] includes a comparison of DOT to optimizers com-
monly used to solve MDO problems.

4. Example Problems

In order to evaluate the given algorithms, two representative
robust design problems have been selected. Descriptions of the
two example problems follow.

Problem 1. Let d = (d1, d2)
t be the design variables, with

design bounds d1 ∈ [−10, 10] and d2 ∈ [0, 10]. Let X = (X1, X2)
t

be the uncertainty, a random vector of unknown physical param-
eters or operating conditions, and assuming X1 ∼ Uniform(−1, 1)
and X2 ∼ Uniform(−3/4, 3/4). The following algorithm denotes
a “coupled analysis” y(d,X):

y2 ← 5
Do until convergence:
{y1 ← d2

1 + d2 − y2/5 +X1;

y2 ← d1 − d
2
2 + (1/2)e−y2

1 +X2}
Return (y1, y2)
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Let

f(d,X) =

{

1, if product d fails under X ,
0, otherwise,

where failure is indicated by y1(d,X) < 8 or y2(d,X) > 5. The
probability that failure occurs is E[f(d,X)], and τ > 0 indicates
a tolerable probability of failure.

Setting aside the prospect of failure, let

L(d,X) = (d1 + 1)2 + 10d2
2 + y1(d,X)

represent the loss that occurs as a result of a successful operating
design d under condition X . The comparable risk of operating
design d is denoted by

R(d) = E[L(d,X)] = (d1 + 1)2 + 10d2
2 + E[y1(d,X)].

The optimization problem is

min
d
R(d) subject to E[f(d,X)] ≤ τ,

d1 ∈ [−10, 10],

d2 ∈ [0, 10].

Refer to [6] for contour plots of this objective function R(d)
and the expected value E[f(d,X)]. The design domain contains
sizeable regions in which the constraint is flat, where the probabil-
ity of success or failure of the design is equal to one. In these cases,
gradient based optimizers will likely fail if an infeasible design is
given in these flat sections because the gradient will evaluate to
zero. Furthermore, within these flat regions Monte Carlo based
integrators will produce an exact result after one function evalu-
ation. Problem 1 with τ = 0.015 has two local minima: 25.861 at
d ≈ (3.104, 0)t, and 12.642 at d ≈ (−2.904, 0)t.

Problem 2. Problem 2 is a modification of Problem 1 that
contains no flat constraint regions in the domain. Changing the
distribution of the noise variables from a uniform to a normal
removed the flat regions, but unfortunately resulted in a more
challenging integrand.
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Let d = (d1, d2)
t be the design variables, with design bounds

d1 ∈ [−10, 10] and d2 ∈ [0, 10]. Let X = (X1, X2)
t be the uncer-

tainty, a random vector of unknown physical parameters or oper-
ating conditions, and assuming X1 ∼ N(0, 1) and X2 ∼ N(0, 1).
The following algorithm denotes a “coupled analysis” y(d,X):

y2 ← 5
Do until convergence:
{y1 ← d2

1 + d2 − y2/5 +X1;

y2 ← d1 − d
2
2 + (1/2)e−y2

1 + 40X2}
Return (y1, y2)

Let

f(d,X) =

{

1, if product d fails under X ,
0, otherwise,

where failure means y1(d,X) > 30 and y2(d,X) < −80. The
probability that failure occurs is E[f(d,X)], and τ > 0 indicates
a tolerable probability of failure.

Setting aside the prospect of failure, let

L(d,X) = d2
1 + 10(d2 − 7)2 + y1(d,X)

represent the loss that occurs as a result of a successful operating
design d under condition X . The comparable risk of operating
design d is denoted by

R(d) = E[L(d,X)] = d2
1 + 10(d2 − 7)2 + E[y1(d,X)].

The optimization problem is

min
d
R(d) subject to E[f(d,X)] ≤ τ,

d1 ∈ [−10, 10],

d2 ∈ [0, 10].

Refer to [6] for contour plots of this objective function R(d)
and the expected value E[f(d,X)]. Problem 2 with τ = 0.015 has
two local minima: 25.240 at d ≈ (0.055, 5.881)t, and 416.669 at
d ≈ (8.024, 1.636)t.
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5. Results and Discussion

Results for Problem 1. All results are for the failure tol-
erance τ = 0.015. For the gradient-based algorithms MMFD and
SQP in DOT, the same error tolerances and algorithmic choices
as in [6] are used here, for comparison purposes. Results are given
for two starting points d, (−10, 10)t and (10, 6), since the starting
point matters for gradient-based algorithms. For Problem 1 with
both starting points, DOT SQP failed in all but a couple cases,
so Tables 1 and 2 do not give results for SQP.

For the GA, the real variables d1, d2 were not encoded, but
used directly in real number crossover as described in [15]. Some
experimentation was done with the mutation rate and population
size, with the best results being obtained for mutation probabil-
ity 0.01 with population size 20. The crossover probability was
1.0. The GA termination criterion was ten consecutive genera-
tions without improvement in the fitness. As described in [15], an
elitist selection strategy was used, with parents being chosen by a
roulette wheel algorithm based on population rank.

Spall’s algorithm SPSA was implemented with ck = 0.01 and
∆k ∼ Symmetric Bernoulli(−1,+1) (i.e., each component of ∆k is
a random variable (X − n/2)/(n/2), where X is a Bernoulli ran-
dom variable for n = 20 trials with p = 0.5), and the termination

criterion was ‖θ̂k+1 − θ̂k‖ ≤ 0.001.
In the tables, DOT MMFD with a quasi-Monte Carlo inte-

gration algorithm to compute the expectations is the base case,
since it always correctly found a local minimum point. This is a
completely deterministic algorithm, since quasi-Monte Carlo in-
tegration is effectively deterministic [6]. For comparison, DOT
MMFD was also implemented with a true Monte Carlo integra-
tor. GA and SPSA with Monte Carlo integration are both fully
nondeterministic, both in the optimization algorithm and in the
expectation computation (integrals). In all the tables, “number of
points” refers to the number of times the integrand in an expecta-
tion integral is evaluated. More points generally means more ac-
curate integrals, and thus more accurate objective and constraint
function values. “Reported optimum” is the purported optimum
value of R(d) found by the algorithm, with the mean and stan-
dard deviation σ from 10 runs. When different runs terminate
near different local optimum points, two averages (one for each
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local optimum cluster) are reported on separate lines in the ta-
bles; the data in the remainder of such a pair of rows applies to
all 10 runs. The number of times y(d,X) is evaluated defines the
number of “system analyses,” which in an MDO problem is the
number of converged coupled subsystem analyses that must be
completed (here there are two subsystems with state variables y1
and y2). “Optimizer calls” refers to the number of times the algo-
rithm calls the subroutine that evaluates R(d) and the constraints;
this is more meaningful for DOT than the other algorithms. The
last column, “percent feasible,” is the percent of the 10 runs that
resulted in the final point being actually feasible, where feasibil-
ity is determined with high accuracy (within 10−8, using, e.g.,
an adaptive Newton-Cotes algorithm for the integrals). Since a
GA and SPSA cannot deal explicitly with constraints, a penalty
function formulation is used:

lim
λ→∞

min
d∈D

R(d) + λ
(

E[f(d,X)]− τ
)

+
,

where w+ ≡ max{0, w}, D = [−10, 10] × [0, 10], and λ (initially

109) is adjusted to ensure feasibility within the accuracy of the
other computations.

From Tables 1 and 2 the following observations can be made.
As expected, DOT is sensitive to the starting point, and from
both starting points DOT converged to the larger local minimum
25.86. The GA and SPSA did get close to the global minimum
12.64 occasionally, but neither the GA nor SPSA were as con-
sistently accurate and feasible as DOT MMFD with the quasi-
Monte Carlo integrator. Furthermore, for each number of points
(integrand samples per integral calculation), DOT MMFD QMC
required far fewer system analyses than both the GA and SPSA.
Succinctly, the GA and SPSA consistently required more work for

lower quality results than DOT MMFD QMC.
Results for Problem 2. All of the general comments earlier

about algorithm parameters and table format likewise apply to
Tables 3 and 4 for Problem 2 (for which τ = 0.015 also). DOT
MMFD frequently failed for Problem 2 [6], so only results for DOT
SQP are shown. The dash entries in the tables mean DOT SQP
failed to converge. Problem 2 has two local minima, 25.24 and
416.67, sometimes found by different runs of the GA and SPSA.
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Table 1. Performance-based results for Problem 1. The initial
point d = θ0 = (−10, 10)t.

No. Reported System Optimizer %
Pts. Optimum Analyses Calls Feas.

Mean(σ) Mean(σ) Mean(σ)

DOT (MMFD), Quasi-MC Integrator

101 25.39 8.80E+02 43.0 0
102 25.87 8.80E+03 43.0 100
103 25.86 7.60E+04 37.0 100
104 25.86 7.80E+05 38.0 100
105 25.86 7.40E+06 36.0 100

DOT (MMFD), MC Integrator

101 25.05(0.39) 1.01E+03(2.81E+02) 49.5(14.0) 0
102 25.76(0.11) 1.05E+04(1.98E+03) 51.4(9.9) 20
103 25.83(0.04) 9.70E+04(1.90E+04) 47.5(9.5) 30
104 25.86(0.01) 9.12E+05(2.18E+05) 44.6(10.9) 80
105 25.86(0.00) 7.84E+06(8.00E+04) 38.2(0.4) 40

GA, MC Integrator

101 11.99(1.23) 1.53E+04(3.19E+03) 305.4(97.9) 40
26.12(2.21)

102 12.12(1.05) 1.69E+05(5.57E+04) 356.7(83.9) 40
25.78(1.46)

103 12.26(1.80) 1.87E+06(3.16E+04) 402.8(101.9) 50
25.89(2.51)

104 13.20(3.22) 2.40E+07(7.01E+06) 399.1(91.8) 100
27.16(2.93)

105 13.66(2.78) 2.55E+08(6.11E+07) 377.6(88.1) 80
29.73(4.76)

SPSA, MC Integrator

101 13.97(4.53) 2.67E+03(8.62E+02) 52.6(10.1) 60
102 11.43(5.32) 1.58E+04(6.54E+03) 49.4(7.8) 50
103 13.87(1.88) 3.12E+05(7.54E+04) 64.3(9.5) 80

25.14(3.12)
104 12.81(2.36) 2.22E+06(5.96E+05) 55.6(7.8) 100

25.93(1.76)
105 14.16(2.11) 1.97E+07(3.21E+06) 59.8(9.9) 100

27.16(2.32)
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Table 2. Performance-based results for Problem 1. The initial
point d = θ0 = (10, 6)t.

No. Reported System Optimizer %
Pts. Optimum Analyses Calls Feas.

Mean(σ) Mean(σ) Mean(σ)

DOT (MMFD), Quasi-MC Integrator

101 25.39 1.16E+03 57.00 0
102 25.87 1.08E+04 53.00 100
103 25.86 1.10E+05 54.00 100
104 25.86 1.18E+06 58.00 100
105 25.86 1.14E+07 56.00 100

DOT (MMFD), MC Integrator

101 22.63(5.26) 1.10E+03(1.89E+02) 54.10(9.45) 10
102 25.79(0.04) 1.18E+04(1.51E+03) 58.00(7.56) 40
103 25.84(0.04) 1.16E+05(1.89E+04) 57.20(9.43) 40
104 25.85(0.01) 1.10E+06(1.35E+05) 54.00(6.74) 20
105 25.86(0.00) 1.11E+07(8.35E+05) 54.30(4.17) 20

SPSA, MC Integrator

101 25.97(5.64) 3.86E+03(7.14E+02) 61.2(7.6) 50
102 22.43(3.32) 2.45E+04(5.36E+03) 58.6(9.8) 50

11.96(2.42)
103 14.93(3.66) 4.43E+05(3.68E+04) 51.4(6.5) 70
104 12.76(3.46) 3.12E+06(8.23E+05) 55.6(9.6) 50
105 12.59(2.11) 2.93E+07(4.41E+06) 61.4(8.9) 50

25.73(0.00)

When this occurs, two “mean reported optimum” values are given
in the tables in consecutive rows; the data in the remainder of
these two rows applies to all 10 runs.

Referring to Table 3, DOT SQP with the quasi-Monte Carlo
integrator correctly found the global minimum 25.24 with at least
104 points, and always terminated with a feasible point (except
for the failures at 10 and 100 points). DOT SQP with the Monte
Carlo integrator mostly failed, indicating that SQP is not a robust
technique in the presence of noise. For 103 points, the GA came
close to both local optima, but for more points the GA usually
failed to come close to either solution, showing the typical erratic
behavior of GAs (admittedly a larger number of runs would have
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Table 3. Performance-based results for Problem 2. The initial
point d = θ0 = (−10, 10)t.

No. Reported System Optimizer %
Pts. Optimum Analyses Calls Feas.

Mean(σ) Mean(σ) Mean(σ)

DOT (SQP), Quasi-MC Integrator

101 — — — —
102 — — — —
103 25.63 1.22E+05 60.0 100
104 25.24 9.20E+05 45.0 100
105 25.25 9.20E+06 45.0 100

DOT (SQP), MC Integrator

101 255(217) 1.22E+03(6.00E+02) 60.0(30.0) 10
102 39.42(0.00) 3.60E+04(0.00E+00) 179.0(0.0) 10
103 29.38(3.89) 2.56E+05(1.68E+05) 127.0(84.2) 20
104 29.68(0.00) 1.02E+06(0.00E+00) 50.0(0.0) 10
105 294(186) 1.35E+07(3.92E+06) 66.7(19.6) 20

GA, MC Integrator

101 19.12(3.59) 1.21E+04(2.22E+03) 420.2(87.9) 40
102 25.65(9.97) 3.56E+05(1.58E+04) 499.4(91.5) 50
103 24.63(3.21) 4.78E+06(3.68E+04) 503.4(77.8) 40

417(1.24)
104 17.83(0.00) 2.63E+07(8.85E+05) 456.4(90.1) 80

441(17)
105 23.54(5.74) 5.85E+08(7.76E+07) 401.9(100.2) 80

SPSA, MC Integrator

101 22.23(5.65) 1.43E+03(6.89E+02) 73.7(8.2) 80
102 19.48(8.34) 9.86E+03(8.82E+02) 79.5(6.9) 40
103 28.97(4.46) 5.44E+04(1.26E+03) 66.3(4.8) 100
104 29.43(0.00) 4.38E+05(2.22E+04) 68.4(7.6) 80

441(10)
105 25.12(3.86) 2.46E+06(9.55E+04) 71.7(5.8) 60

likely found the solutions, but at considerably more cost). SPSA

did well for 105 points, but otherwise failed to find a correct local

optimum. DOT SQP QMC was consistently more accurate, more

feasible, and much cheaper than the GA. SPSA was consistently
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Table 4. Performance-based results for Problem 2. The initial
point d = θ0 = (10, 6)t.

No. Reported System Optimizer %
Pts. Optimum Analyses Calls Feas.

Mean(σ) Mean(σ) Mean(σ)

DOT (SQP), Quasi-MC Integrator

101 — — — —
102 35.89 4.42E+04 220.00 100
103 25.74 6.20E+04 30.00 100
104 — — — —
105 25.24 2.68E+07 133.00 100

DOT (SQP), MC Integrator

101 76.88(96.19) 2.76E+03(1.34E+03) 136.80(66.81) 20
102 151.99(127.36) 8.40E+03(3.00E+03) 41.00(15.00) 0
103 30.48(4.17) 2.92E+05(6.58E+04) 144.80(32.90) 50
104 28.40(2.95) 2.95E+06(1.57E+06) 146.67(78.53) 10
105 25.37(0.26) 1.24E+07(1.77E+06) 61.00(8.86) 30

SPSA, MC Integrator

101 23.32(3.28) 3.54E+03(4.56E+02) 81.6(6.9) 30
410(44.1)

102 25.46(6.63) 2.36E+03(7.73E+02) 82.3(7.3) 50
103 21.84(5.64) 3.35E+04(6.45E+03) 89.8(10.1) 10
104 20.43(7.99) 7.85E+05(4.55E+04) 91.3(9.8) 0
105 22.96(5.55) 6.66E+06(8.88E+04) 88.4(8.7) 20

412(0.00)

cheaper than DOT SQP QMC, but less feasible, and correct only
for 105 points. The best SQP result, for 104 points, was cheaper
than the best SPSA result, for 105 points. Except for DOT SQP
QMC, none of the algorithms did well on Problem 2. Overall,
DOT SQP QMC was more consistently accurate and feasible than

the GA or SPSA, and the best SQP result was much cheaper than

the best GA or SPSA result.
For the other starting point d = (10, 6)t (Table 4), SPSA never

found a correct solution, although it came close for 102 points,
where it was cheaper than DOT SQP QMC. The fact that for
more points SPSA never came close to a correct solution suggests
that the good result for 102 points was an accident. Also note
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the low percentages of feasible final points for SPSA. DOT SQP
QMC also did not do well from this starting point, but it did get

the correct result for 105 points.

6. Conclusions

Robust engineering design, being by definition design under
uncertainty involving random variables, is inherently a stochastic
optimization problem. Such problems have both deterministic and
stochastic formulations, which can both be solved by either deter-
ministic or nondeterministic algorithms. This work tested the rea-
sonable presumption that nondeterministic algorithms (a genetic
algorithm, Spall’s simultaneous perturbation stochastic approx-
imation algorithm) are better suited to robust design problems
than standard deterministic optimization algorithms (method
of feasible directions, sequential quadratic programming). The
stochastic element of the test problems is an expectation inte-
gral E[f(d,X)], which can be evaluated with varying accuracy,
and whose approximation is itself a random variable. E[f(d,X)]
was approximated by (deterministic) quasi-Monte Carlo and (non-
deterministic) Monte Carlo techniques, which agree to arbitrary
precision (well beyond the optimization algorithm tolerances) for
large enough samples. The comparison was between a fully deter-
ministic standard optimization algorithm (MMFD or SQP with
quasi-Monte Carlo integration) and a fully nondeterministic opti-
mization algorithm (GA or SPSA with Monte Carlo integration)
on several test problems with several starting points. With occa-
sional exceptions, the overall conclusion is that a fully determinis-
tic algorithm was consistently more accurate, more often feasible,
and considerably more computationally efficient than both fully
nondeterministic algorithms.
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