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loading, displacement incrementation, invariant imbedding, and continuous
Newton methods. These algorithms are also referred to as “continuous” methods,
to distinguish them from the simplicial homotopy methods, whose theoretical
foundations date back to the very origins of topology.

The homotopies we will consider are sometimes called “artificial-parameter
generic homotopies,” in contrast to natural-parameter homotopies. The distine-
tion has to do with requiring that the homotopy zero curves obey strict smooth-
ness conditions. These conditions gemerally will not hold if the homotopy
parameter Tepresents a physically meaningful quantity, but they can always be
obtained via certain generic constructions using an artificial (i.e., nonphysical)
homotopy parameter. The goal of using these artificial-parameter homotopies is
to solve fixed-point and zero-finding problems with homotopies that avoid
bifurcations and other singular and ill-conditioned behavior. This point is con-
sidered further in this section in the discussion of the simple illustrative example
below. The frameworks for fixed-point and zero-finding problems are slightly
different, so they will be discussed separately.

The fixed-point problem will be considered first. Let B be the closed unit ball
in n-dimensional real Euclidean space E”, and let f: B— Bhe a (% map. Define
po: [0,1) X B— E" by

pad, %) = Mz — f(x)) + (1 — M) (x — a). 1)
The fundamental result [5] is that for almost all a (in the sense of Lebesgue
measure) in the interior of B, there is a zero curve vy C [0, 1] X B of p,, along
which the Jacobian matrix Dpe(}, x) has rank n, emanating from (0, ¢} and
reaching a point (1, #), where % is a fixed point of f. Thus with probability one,
picking a starting point ¢ € int B and following v leads to a fixed point & of f.
This justifies the phrase “globaily convergent with probability one.”

The zero-finding problem

F(x) =0, (2)

where F: E® — E" is a C? map, is more complicated. Suppose there exists
a C* map

p: E™ % [0,1) X E" — E"
such that
(a) then X (m+1+n) Jacqbian matrix Dp(a, A, x) has rank n on the set
p7M0) = [a, A, x) |la € E™, 0= A <1,x € E" pla, N x} = 0},
and for any fixed e € E™,

(b) p4(0, x) = pla, 0, x) = 0 has a unique solution xq,

() pa(l, x) = Fix),
(d) p:*(0) is bounded.
Then the supporting theory [5, 28, 31] says that for almost all a € E™ there

exists a zero curve vy of p, along which the Jacobian matrix Dp. has rank n,
emanating from (0, xo) and reaching a zero x of F at A = 1. v does not intersect
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itself and is disjoint from any other zeros of p,. The globally convergent algorithm
is to pick ¢ & g™ {(which uniquely determines Xo), and then track the homotopy
Z€T0 curve . A simple choice for p, is

Pald, x) = AF(x) + (1 - Mz ~ a). (3)

This satisfieg Properties (a)-(c), but not necessarily (d). There are fairly general
sufficient conditions on F(x) so that (3) will satisfy property (d), but for some

properties (a)-(d).

HOMPACK is designed for “artiﬁcial-parameter generic homotopies,” also
known as “probability-one globally convergent homotopies.” This is in contrast
to “natural—parameter homotopies.” How this limits HOMPACK and what the
advantages and disadvantages of this limitation are will be discussed next,
Included is a simple example that illustrates the probability-one feature.

Our goal is o solve a “parameter~free” system of equations, F(x) = ¢, This
Is in contrast to the problem of solving g natural-parameter homotopy,

attention is devoted to constructing the homotopy, and the curve-tracking
algorithm can he limited to a more well-behaved clagg of curves. The decision to
limit HOMPACK to artificial-parameter generic homotopieg means that it is not
suited to some natural-parameter problems (e.g., those that generate curves that
bifurcate).

structure and coefficients of the origimal system (7). For example, random choiceg
of a wil] generally work,

Thus the artificial homotopy , {a, A, x) might be chosen 80 that the jth
component includes % and not any g, for k#j, and so that the partia] derivativeg

Ip(a, A, x)
Gaj

forj = 1to n are nonzero for ) < ) < 1, for all x. Heye g = {1, ..., a,) and A are
artificial; that is, they have nothing to do with Or any other parameter of the
given problem, Then ¢ is chosen at random. The Transversality Theorem
guarantees that the resulting homotopy curves will be smooth, withoyt bifurca-
tions or singularities, In fact, in practice they tend to be very well conditioned.
This mysterious usefulness of randomly chosen ¢ ig a feature of the “probability-
one” approach to constructing homotopies.
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Fig.1. a=0.

Here is an example to illustrate the “probability-one” concept. Consider the
single equation in one unknown

F(x) = %" — 1,
with the homotopy
ola, A, x) = Ma® — x) + (1= Mz —a),

which is (3) in this special case. If ¢ = 0, this homotopy generates a bifurcation
when \ = 1 (see Figure 1). However, for any other value of the artificial parameter
a, no bifurcation is encountered. See Figures 2 and 3 for the cases ¢ = —0.01 and
a = 0.01. The theory of the method says that for a “randomly chosen” a, the
homotopy path cannot bifurcate. In fact, in this case, bifurcation occurs for only
one value of a.

Now suppose the homotopy
rt, x) = t(x* —x) + (01— Dx

were a “natural homotopy” where ¢ goes from 0 to 1. This is p above, of course,
with @ = 0 and A = ¢, where now tis a physical parameter and we therefore feel
obligated to track the path beginning at (t, x) = {0, 0). Then we would have no
choice but to encounter the singularity at ¢ = 1 But r(t, x) = 0 can be solved for
any fixed value of ¢ using an artificial homotopy like the p above; say,

pla, A, x) = Ap? —x) + (1 - B)x] + (1 — Mz — a),

which has no bifurcations and is globally convergent for almost all values of a.
In many engineering applications, solving r(t, x) = 0 for a few important values
of t is sufficient.
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Table III.  Number of Jacobian Matrix Bvaluations for a Polynomial System
Projective ‘
transformation Scaling Path 1 Path 2 Path 3 Path 4 Total
Yes Yes 53 37 35 46 171

No Yes 41 37 39 1937 2054
Yes No 141 110 132 134 517

No No 102 101 100 21045 21348

The exact solutions (to four significant figures) are

(22, x5} = (.09089, — -09115),
(2342, — .7883),
(01615 + 1.6857, .0002680 + .004428;),
(01615 — 1.685;, 0002680 ~ .004428;).

Table Il shows the number of Jacobian mairix evaluations for POLSYS with
various options applied to this problem. The local curve tracking tolerance was
107" and the end game tolerance wag 1074,

Caveatls

The code was not designed for homotopies whose Zero curves bifurcate, are
unbounded, or oscillate rapidly.

—Singular solutions where rank Do, (1,%) <n may cause HOMPACK to fail to
converge, after wasting time iterating near the solution. This has been observed
for polynomial systems that have multiple solutions,

—The D algorithms are the most robust, but also the most expensive. It i
difficult to predict which algorithm will be best on a given problem,

—Careful use of the SSPAR parameter array (see the comments in FIXPNF or
FIXPQF) will improve the efficiency and robustness of the N and Q routines,

—The POLSYS driver is simple to use, but computationally inefficient. The user
should customize the subroutine FFUNP when maximum efficiency is required
(see, e.g., Chapter 10 of [20]).

—~HOMPACK is not a general curve tracking package. Using it to track zero
curves of natural-parameter imbeddings should be done with extreme caution.
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A = 1), singularities may be encountered. This happens precisely when the
original problem is singular at the solution, because as A — 1 the homotopy
becomes the original system. For some mild singularities in F, the homotopy can
remain nonsingular at A = 1, but in general this is not so.

To summarize, the purpose of probability-one globally convergent homotopy
methods is to create homotopies whose zero curves are well behaved with well-
conditioned Jacobian matrices and that reach a solution for almost all choices of
a parameter (global convergence). Physical phenomena that are the source of
numerical difficulties (such as bifurcation) oceur as a function of natural param-
eters. Unless it is precisely these phenomena that are of interest, artificial
imbeddings are preferable to natural imbeddings.

A very special and common situation is when each component of the nonlinear
function F(x) is a polynomial in n variables. There is an elegant algorithm for
this case that finds all solutions of (2), real and complex, as well as solutions at
infinity. HOMPACK provides an intelligent, easy to use, high-level driver for
polynomial systems.

There are many different algorithms for tracking the zero curve -y; HOMPACK
supports three such algorithms: ordinary differential equation-based, normal
flow, and augmented Jacobian matrix. The ODE-based algorithm was developed
by Watson [36] in 1976, and is the basis for some of the subroutines in
HOMPACK. Sparse and dense Jacobian matrices require substantially different
algorithms, and the development of sparse homotopy algorithms ([4], [37]) was
a crucial advance. The following sections describe the three curve-tracking
algorithms, their sparse-matrix versions, and the special polynomial system
homotopy map.

2. ORDINARY DIFFERENTIAL EQUATION-BASED ALGORITHM
(DENSE JACOBIAN MATRIX)

Depending on the problem, the homotopy map 22{}\, x) may be given by (1), (3),
or something else that is even nonlinear in A. The details for these three cases
are similar, so for the sake of brevity, only the zero-finding problem (2) with
homotopy map (3) will be presented. Assuming that F(x) is C?, a is such that
the Jacobian matrix Dp.(}, x) has full rank along v, and v is bounded, the zero
curve « is C! and can be parameterized by arc length s. Thus A = Als), x = x(s)
along v, and

pa(A(s), x(s)} = 0 (4)
identically in s. Therefore
d _ d\/ds _
I palA(s), 2(s)) = Dpa(A(s), %(s)) (dx/ds) =0, (5)
dr dx
eI
With the initial conditions .
' A(0) =0, x(0) = g, \‘ (7

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Algorithm 652: HOMPACK: A Suite of Codes . 307

Table II. Numerical Results

FIXPDF FIXPNF FIXPQF Arc

n NFE Time NFE Time NFE Time length
Brown’s function

5 87(—3) ! 17(—2) .19 13(—2) 59 2.7
10 85(—2) 2.12 24(~2) 61 10(~2) 1.54 3.7
15 102(—2) =~ 5.64 24(—32) 1.39 15(—2) 4.46 4.4
20 98(—4) 10.44 29(~2) 2.44 11(-2) 5.56 5.1
25 123(—3) 22.83 29(-2) 5.39 15(—2} 11.27 5.7
30 96(-3} 27.99 23(—-2) 6.62 14{—2) 15.46 6.2
35 110(—4) 48.54 28(—2) 11.72 16(—2) 25.41 6.6
40 110(—4) 68.54 26(—2) 15.85 11(—4} 30.99 7.1
45 128(—4) 105.32 30(—3) 24,73 17(-2) 48.01 7.5
50 113(—4) 125.48 29(—2) 32.09 12(~2) 45.18 7.8
Exponential Funetion

2 70(—4} 29 12(-2) 07 5(—2) 14 1.6

3 270(—5) 1.42 39(—2) 31 41(—2) 1.18 51

4 280(—4) 2.08 75(—2) 87 55(—3) 2.96 6.5

5 486(—4) 473 213(—6) 3.38 94{—3) 7.06 145

6 817(—5) 10.20 293(—8) 6.16 106(—3) 9.92 16.9

7 1517(—6) 94,98 433(-8) 11.73 157(—3) 18.49 24.0

8 2031(-7) 60.50 577(—8) 20.73 228(—4) 36.65 47.6

9 4511(—8) 109.82 824(—8) 37.44 278(—4) 5411 61.8
10 5671{-8) 165.32 1001(—9} 53.80 356(—4) 79.45 85.8

tracking tolerance as a power of 10. This tracking tolerance represents the largest
tolerance that succeeded in tracking the zero curve.

Several important general conclusions about the codes can be drawn from
Table II. For Brown’s function, FIXPNF is more efficient in terms of time than
FIXPQF, but it is equally clear from this same data that had the J acobian matrix
evaluations been very expensive, FIXPQF would have been the better code. In
general FIXPNF will be faster if Jacobian matrix evaluations are cheap, and
FIXPQF will be faster (as intended) if the Jacobian matrix computation is
expensive. The exponential function for n = 5 shows that FIXPDF is more
robust than FIXPNF, since FIXPDF succeeded with a tracking tolerance of 107*
and FIXPNF failed at tolerances of 10~ and 107°. Thus counting the time lost
in failures {(not shown in Table 1I), FIXPDF was more efficient than FIXPNF
for this problem. In general, FIXPDF is the most reliable of the three codes, but
it is also the most expensive, sometimes by a wide margin. Similar remarks apply
to the sparse codes FIXP?S.

POLSYS was applied to the polynomial system

Fi(x) = apxi + a3 + GaXiXs + Gk T GsXa +ae=0, forj=12
where

— 00098 @ = —285 g =—01 au= .00987

a2 = 978000 o = 88900 am = —984 g —.124

[ —-9.8 dig = -1.0 Aoz = —29.7 aw = —25

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.
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Table I. Taxonomy of Homotopy Subroutines
x = f{x) Flx)=0 ola, A, x) =0
Dense Sparse Dense Sparse Dense Sparse Algorithm
FIXPDF FIXPDS FIXPDF FIXPDS FIXPDF FIXPDS Ordinary differentia} equation

FIXPNF FIXPNS FIXPNF FIXPNS FIXPNF FIXPNS Normal flow

RHOJAC (subroutines normally provided by the user). These special versiong
are included in HOMPACK, so for a polynomial system the user need only cal]
POLSYS, and define the problem directly to POLSYS by specifying the

10. TESTING

Since work was begun on HOMPACK in 1976, it has been tested on hundreds of
problems. Two early versions of HOMPACK ([29] and [36]) were apph:ed to a

reported in [30] and [32], and to nonlinear two-point boundary value problems
in [31], [33], and [38]. The sparse matrix components of HOMPACK have been
tested on large structural mechanics problems [371. _

Table 11 shows some results for Brown’s function, which has an ill-conditioned
Jacobian matrix, and an exponential function, whose zero curve v has several
sharp turns. Brown’s function is

fl(x) = H —1
i=1
n
filx) = x, + ¥ x—{n+ 1), k=2,...,n.
i=1
The exponential function is

Jelx) = x, — exp(cos(k i xi)), =1,...,n
i=1

=

The starting point was ¢ = 0. The solutions were found with a relative error of
107", and the CPU times are for a VAX 11/785. NFE is the number of dacobian
matrix evaluations. The number in parentheses represents the magnitude of the
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the zero curve Y is the trajectory of the initial value problem {(65-7). When
A(5) = 1, the corresponding x(§) is a zero of F(x). Thus all the sophisticated

ordinary differential equation techniques currently available can he brought to
bear on the problem of tracking ~ 125], [28].

calculated by finding the one-dimensional kernel of the n X (n + 1} Jacobian
matrix

Dpa(X(s), x(s)),

which has full rank according to the theory [28]. Tt is here that a substantial

mount of computation is incurred, and it is imperative that the number of
derivative evaluations be kept small. Once the kernel has heen calculated, the
derivative (d\/ds, dx/ds) is uniquely determined by (6} and continuity. Complete
details for solving the initial valye problem (5-7) and obtaining x(3) are in [28]
and [36]. A discussion of the kernel computation follows.

The Jacobian matrix Dp,is n X (n + 1) with rank n according to the supporting
theory. The crucial observation is that the last n columng of Dp,, corresponding
to [).p,, may not have rank n, and even if they do, some other 1, columns may be
better conditioned. The objective is to avoid choosing n “distinguished” columns,

that accurate tangent vectors (d\/ds, dx/ds) are essential, and the accuracy of
Gaussian elimination may not be good enough. A conceptually elegant, as wej]
as accurate, algorithm is to compute the QR factorization with column inter-
changes [3] of Dp,,

& Dp,P'Pz = oo i Pr=g
0 & *

where @ is a product of Householder reflections and P is a permutation matrix,
and then obtain g vector z € ker Dy, by back substitution. Setting (Pz)rs1=11ig
a convenient choice. Thig scheme provides high accuracy, numerical stability,
and a uniform treatment of all n + 1 columns. Finally,

(d)\ dx) z
-V, — | =+
ds’ ds Tzl

where the sign is chosen to maintain an acute angle with the brevious tangent
vector on . There is a rigorous mathematical criterion, based on a (n+ 1) x
(n+1) determinant, for choosing the sign, but there is no reason to believe that
would be more robust than the angle criterion.

ACM Transactions on Mathematica] Software, Voi, 13, No. 3, Septembar 1987.
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Several features that are a combination of common sense and computational
experience should be incorporated into the algorithm. Since most ordinary
differential equation solvers only control the local error, the longer the arc length
of the zero curve v gets, the farther away the computed points may be from the
true curve v. Therefore when the arc length gets too long, the last computed
point (X, &) is used to calculate
NP(E) + (1= N

1-2X )

a= 8)
Then ps(X, £) = 0 exactly, and the zero curve of p; (A, x} 18 followed starting from
(X, ). A rigorous justification for this strategy was given in [28].

Remember that tracking v was merely a means to an end, namely a zero X of
F(x). Since v itselfis of no interest (usually}, one should not waste computational
effort, following it too closely. However, since v is the only sure way to %, losing
~ can be disastrous [28]. HOMPACK estimates the curvature of each component
of v using finite differences, and reduces the tolerance used by the ordinary
differential equation solver whenever the estimated curvature exceeds some
threshold. The tradeoff between computational efficiency and reliability is very
delicate, and a foolproof strategy appears difficult to achieve. This is the reason
HOMPACK provides several algorithms; no single algorithm is superior overall,
and each of the three beats the other two (sometimes by an order of magnitude)

_on particular problems.

In summary, the algorithms:

1. Sets:=0,v:= (0, a), ypold == yp = (1,0,...,0} restart == false, error ;= initial error
tolerance for the ODE solver.
2, If v; < 0 then go to 23.
3. If s > some constant, then
4, 5:=0.
5. Compute a new vector @ from (8). If

|[newa—oldal >1-+ constant = || oldal,

then go to 23.
. ode error := error.
. Tt | yp — ypold || > (last arc length step) * constant, then
ode error = tolerance < error.
8. ypold = yp.
9. Take a step along the trajectory of (5-7} with the ODE solver. yp = v'(s) is computed
for the ODE solver by 10-12:
10. Find a vector z in the kernel of Dpa(y) using Householder reflections.
11, If z*ypold < 0, then z == —2.
12. yp =2zl z |-
13. If the ODE solver returns an error code, then go to 23.
14. If y4 < 0.99, then go to 2.
15. If restart = true, then go to 20.
16. restart := true.
17. error := final accuracy desired.
18. Ify, = 1, then set (s, ¥) back to the previous point (where y, < 1).
19. Goto 4.
20. If y: <1 then go to 2.
91. Obtain the zero (at y. = 1) by interpolating mesh points used by the ODE solver.
29. Normal return.
23, Error return.

-]
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steps will be taken before a path is abandoned. The use of both the projective
transformation and scaling is recommended for most problems.

9. ORGANIZATIONAL DETAILS

HOMPACK is organized in two different ways: by algorithm/problem type and
by subroutine level. There are three levels of subroutines. The top level consists
of drivers, one for each problem type and algorithm type. Normally these drivers
are called by the user, and the user need know nothing beyond them. They
allocate storage for the lower level routines, and all the arrays are variable
dimension, so there is no limit on problem size. The second subroutine level
implements the major components of the algorithms, such as stepping along the
homotopy zero curve, computing tangents, and the end game for the solution at
\ = 1. A sophisticated user might call these routines directly to have complete
control of the algorithm, or for some other task such as tracking an arbitrary
parameterized curve over an arbitrary parameter range. The lowest subroutine
level handles the numerical linear algebra, and includes some BLAS routines.
All the linear algebra and associated data structure handiing are concentrated in
these routines, so a user could incorporate his or her own data structures by
writing his or her own versions of these low-level routines. Also, by concentrating
the linear algebra in subroutines, HOMPACK can be easily adapted to a vector
or parallel computer.

The organization of HOMPACK by algorithm/problem type is shown in
Table I, which lists the driver name for each algorithm and problem type.

The naming convention is
[21 {F}
FIXP4N ,
lgf 18

where D = ordinary differential equation algorithm, N = normal flow algorithm,
@ =~ augmented Jacobian matrix algorithm, F = dense J acobian matrix, and § =
sparse Jacobian matrix. Using brackets to indicate the three subroutine levels
described above, the natural grouping of the HOMPACK routines is

[FIXPDF] [FODE, ROOT, SINTRP, STEPS] [DCPOSE]

[FIXPDS] [FODEDS, ROOT, SINTRP, STEPDS] [GMFADS, MFACDS, MULTDS,
PCGDS, QIMUDS, SOLVDS]

[FIXPNF} [ROOTNF, STEPNF, [TANGNF]] [ROOT]

[FIXPNS] [(ROOTNS, STEPNS, TANGNS] [GMFADS, MFACDS, MULTDS,
PCGDS, PCGNS, QIMUDS, ROOT, SOLVDS]

[FIXPQF| [ROOTQF, STEPQF, TANGQF] [QRFAQF, QRSLQF, RIUPQF, UPQRQF]

[FIXPQS] [ROOTQS, STEPQS, TANGQS] [GMFADS, MULTDS, PCGQS, SOLVDS]

The BLAS subroutines used by HOMPACK are DAXPY, DCOPY, DDOT,
DNRM?2, DSCAL, DIMACH, IDAMAX.

"The user-written subroutines, of which exactly two must be supplied depending
on the driver chosen, are F, FJAC, FJACS, RHO, RHOA, RHOJAC, RHOJS.

The special-purpose polynomial system solver POLSYS is essentially a high-
level driver for HOMPACK. POLSYS requires special versions of RHO and
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Thus, letting L= logio (1 pis ),

Siz) = E‘i sgn(p;) 10410 1T (1072, ) %
k=1

=1

(57)

ny n
= X sgn(p) 108t e [ gdin,
i=1 k=1

Now choosing e; and v, to minimize the sum of squares of the exponents of the
coefficients of S corresponds to the unconstrained minimum of

1 7 n; I3 2
E(Q, U) = - E [ei + L"j + Z deiij . (58)
2 i=1 j=1 k=1
VE = 0 is the linear equation
Aw=5p (59)
withw = (e, ..., ¢,, Ui, ..., U,) and
Ars = 6rsnr: Ar,n+s = ) drjs;
j=1
An+r,s = E dsjrs An+r,n,+s = E d:jrdijs’
Jj=1 i=1 j=1
br = _2 Lrj; bn-H- = _2 Z Lijdijn
=1 =1 j=1

where r and s take on all integer values from 1 to n, Observe that A does not
depend on the values of the coefficients of F(x) (the p’s), but rather only on the
exponents (the d’s). If any coetficient p; is zero, it must he omitted from the
above calculations. In practice whether p;; is zero will he decided by a threshold
test, and changing this threshold can significantly affect the scaling of the system,

The parameters ", iy Dy, di, defined above constitute the coefficient tableau.
The subroutine SCLGNP uses this tableau to generate the scale factors e; and
Ur, and the subroutine FFUNP uses it to compute system and Jacobian matrix
values for POLSYS. This has the advantage of being very general, but the
disadvantage of usually being less efficient than a specialized FFUNP. If CPU
time is an issue, the user may modify FFUNP to reduce the amount of repeated
computation inherent in its generic form.

The projective transformation functions essentially as a scaling transforma-
tion. Its effect is to shorten arc lengths and bring solutions closer to the unit
sphere. The SCLGNP scaling is different, in that it directly addresses extreme
values in the system coefficients. The two scaling schemes work wel] together.

POLSYS is written so that the user can choose to evoke the projective
transformation or not and evoke scaling or not. If either of these options is
selected, it is transparent to the user; the solutions are returned untransformed
and unscaled. The input to POLSYS is the coefficient tableau and a few
parameters for the path-tracking algorithm (normal flow) used by POLSYS.
POLSYS has a parameter NUMRR (number of reruns) so that 1000*NUMRR
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3. ORDINARY DIFFERENTIAL EQUATION-BASED ALGORITHM
(SPARSE JACOBIAN MATRIX)

occur in many engineering disciplines, and each class of problems has special
characteristics. Nonlinear structural mechanics problems (see references 19-23,
26, 29, 36, 37, 42, 76, 78, 80 in [35]) will be considered here, because they are
representative of many problems outside structural mechanics, and yet have
enough special features to admit efficient solution. As in the previous section,
the fixed-point and general cases are similar to the zero-finding case, 50 oniy the

palx, A)

with the order of the arguments reversed (this is an internal maiter to
HOMPACK and causes no confusion at the user interface, since the user only
specifies #'(x)}. The matrix Dpo(x, ) = ADF(x) + {1 — X! is symmetric {because
it is the Hessian matrix of some energy potential function) and sparse with a
“skyline” structure, such ag

[ ®1 ®3 11 )
¢ % ey %10 %8
e %4 ®7 ey e 31
® s %3 ey °30
L] 2 L] l13 029
L] -] L] L] .12 ‘18 028

L L] L] L] L] L] e L .24 J

Typically such matrices are stored in packed skyline format, in which the upper
triangle is stored in a one-dimensional array indexed as shown above, The
auxiliary array (1, 2, 4, 6, 8, 12, 17, 19, 21, 24, 32) of diagonal indices is also
required. By convention the auxiliary integer array has length n + 1 with the

‘a%pa(x(S), Ms)) = [Depa(x(s), A(s)), Drpalx(s), Ms))] (dx/ds) =0, (9

d)\/ds
o)
ds’ ds

=1, (10)

2
x(0) = g, A{D) =0, {11)
Since the Jacobian matrix has rank n along «, the derivative {dx/ds, d\/ds) is
uniquely determined by (9, 10) and continuity, and the initial value problem
(9-11) can be solved for x(s), A(s). As before, the problem is to solve the initial
value problem (9-1 1), which requires calculating the implicitly defined derivative
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(tangent vector) (dx/ds, d\/ds). The difficulty now is that the first n columns of
the Jacobian matrix Dp,(x, A) are definitely special, and any attempt to treat all
n + 1 columns uniformly would be disastrous from the point of view of storage
allocation. Any algorithm requires computing the kernel of the n X {(n + 1) matrix
Dp.(x, \), which has rank n. This can be elegantly and efficiently done for smail
dense matrices, but the large sparse Jacobian matrix of structural mechanics
presents special difficulties. The approach taken here is to solve Dp,y = 0 using
a preconditioned conjugate gradient algorithm. This conjugate gradient algorithm
will now be described.

Let (%, X) be a point on the zero curve v, and ¥ the unit tangent vector to v at
(Z, A} in the direction of increasing arc length s. Let | 7 | = max;|3:|. Then the

matrix :
. {Dpa(x, A)] (1)

e

where [ is a vector with 1 in the Ath component and zeros elsewhere, is invertible
at (¥, X} and in a neighborhood of (%, A) by continuity. Thus the kernel of Dp,
can be found by solving the linear system of equations

Ay = Frns1 = b. (13)

Given any nonsymmetric, nonsingular matrix A, the system of linear equations
Ay = b can be solved by considering the linear system

AAfz = b,

Since the coefficient matrix for this system is both symmetric and positive
definite, the system can be solved by a conjugate gradient algorithm. Once a
solution vector z is obtained, the vector y from the original system can be
computed as y = A’z. An implementation of the conjugate gradient algorithm in
which y is computed directly, without reference to z, any approximations of z, or
AA‘, is due to Craig [7], and is described in [9] and [13]. Each iterate v’ minimizes
the Fuclidean error norm || y — ¥’|| over the translated Krylov space

¥ + spanir®, AAY®, (AAD%Y, ..., (AAH7'r%,
where r® = b — Ay°. Below {(u, v) denotes the inner product u'v.
Craig’s Method:

Choose y%
Compute r° = b — Ay®;
Compute p° = A"’

For i = 0 step 1 until convergence do

BEGIN
& = (', /(P P
y1+1 =yz + otip’
ri+1 —_ ri _ aiApi 1
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Recall that a solution is isolated if there is a neighborhood containing that

solution and no other solution. The multiplicity of an isolated solution is defined

to be the number of solutions that appear in the isolating neighborhood under

an arbitrarily small random perturbation of the system coefficients. If the solution

is nonsingular (i.e., the system Jacobian matrix is nonsingular at the solution),

then it has multiplicity one. Otherwise it has multiplicity greater than one.
Define a linear function

U(ys, ooy o) = 51 + 2y + oo+ Lpnaen
where £, . . ., £.41 are nonzero complex numbers, and define F”: C**! — C™** by
F? = F/ =1,...
i (y) 7 (y)’ J 1! 3 n! (53)

Fria(y)=uly) - 1

So F”(y) = 0 is a system of n + 1 equations in n + 1 unknowns, referred to as
the projective transformation of F(x) = 0. Since u(y) is linear, it is easy in
practice to replace F”(y) = 0 by an equivalent system of n equations in n
unknowns. The significance of F”{y) is given by the following theorem (see [19]).

THEOREM. If F'(y) = 0 has only a finite number of solutions in CP", then
F”(y) = 0 has exactly d solutions (counting multiplicities) in C™*" and no solutions
at infinity, for almost all £ € C™*,

Under the hypothesis of the theorem, all the solutions of F'(y) = 0 can be
obtained as lines through the solutions to F”(y) = 0. Thus all the solutions to
F(x) = 0 can be obtained easily from the solutions to F”(y) = 0, which lie on
bounded homotopy paths (since F”(y) = 0 has no solutions at infinity).

There is no practical theory to guide the scaling of polynomial systems. A
common sense approach is to scale the variables and equations to minimize the
sum of squares of the exponents of the coefficients. An advantage of this criterion
is that it leads to algorithms that effect scaling by solving a single linear system,
A w = b, where A depends only on the structure of the polynomial system (the
degrees of the variables) and not on the values of the coefficients.

Let

F:(x) = E' |:sz H xgm{ls i = 17 ey My (54)
j=1 k=1

where pj; is a real number and dy is a nonnegative integer. The positive
integer n; is the number of terms in equation i. Call the variable scaling factors
v1, ..., U, and the equation scaling factors e, ..., €,. Define a new set of
independent variables z;, by

%, = 10%z,, fork=1,...,n, (b5}
and a new polynomial system S(z) = 0 by

S;(z) = 105F,(10%z, ..., 10%2,), =1,...,n (56)
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Let C” denote n-dimensional complex Euclidean space, and define G: C" —s cn
by
Gix) =bxi —q, j=1,. . n (50)

where ¢; and &; are nonzero complex numbers and d, is the degree of F;(x), for
J=1,..., n. Define the homotopy map

pehs ) = (1 — NG(x) + \F(x), (51)

where ¢ = (a, b), a = (a,, coos @) € C%and b = (b, L bk)elCm Letd =
di ... d, be the total degree of the system.

THEOREM. For almost all choices of e and b in C*, p7* (0) consists of d smooth
paths emanating from {0} x C", which either diverge to infinity as ) approaches 1
or converge to solutions to F(x) = 0 as : approaches 1. Each geometrically isolated
solution of F(x) = 0 has a path converging to it.

A number of distinct homotopies have been proposed for solving polynomial
systems, e.g., [2], [6], [10], [20], [39]. The homotopy map in (51) is from [20]. As
with all such homotopies, there will be paths diverging to infinity if F{(x) = 0 has
solutions at infinity. These divergent paths are (at least) a nuisance, since they
require arbitrary stopping criteria. Solutions at infinity can be avoided via the
following projective transformation.

Define F’(y) to be the homogenization of F(x):

F;’(J’) =yg{l-lf1f(yl/yn+17 . --syn/yn+l)7 J= 1: reay 12, (52)

Note that, if F’(y°) = 0, then F(ay®) = 0 for any complex scalar «. Therefore,
“solutions” of F’(y) = 0 are (complex) lines through the origin in €™+, The set
of all lines through the origin in €™ is called complex projective n-space,
denoted CP", and is a smooth compact (complex) n-dimensional manifold. The
solutions of F'(y) = 0 in CP" are identified with the solutions and solutions at
infinity of F(x) = 0 as follows. If L. € CP"is a solution to F'(y) = 0 with y =
(Y1, ¥2, ..+, ¥a1) € L and y,uy 5 0, then x = (Y/¥nr1s Yo/ Ynt1s oy YnfYnsr) €
C" is a solution to F(x) = 0. On the other hand, if x € C™ is a solution to Fix)=
0, then the line through ¥ = (x, 1) is a solution to F'{y) =0 with y,0, = 1 # 0.
The most mathematically satisfying definition of solutions to F (x) = 0 at infinity
is simply solutions to F'(y) = 0 (in CP™} generated by y with Yn+1 = 0. However,
to avoid dealing with CP”, these solutions are often taken to be x € C” such that

(a) ¥ = (x, 0) is a solution to F'(¥) =10, and
(b) xis nonzero and the first nonzero component is 1.

This second definition is adequate for some purposes, but it is incomplete. It is
hard, for example, to give a natural definition of nonsingular solution at infinity
using it. See [20, Chap. 3] for a more complete discussion.

A basic result on the structure of the solution set of a polynomial system is
the following classical theorem of Bezout [27]:

THEOREM. There are no more than d isolated solutions to F (¥} =0in CP", If
F'(y) = 0 has only a finite number of solutions in CP™, it has exactly d solutions,
counting multiplicities.
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Bi = (r™ rthy ()
ptl= At + Bp
END

Let § be any nonsingular matrix. The solution to the system Ay = b can be
calculated by solving the system

By=(Q'Aly=Q b=g. (14)

The use of such a matrix is known as preconditioning. Since the goal of using
preconditioning is to decrease the computational effort needed to solve the
original system, @ should be some approximation to A. Then @A would be close
to the identity matrix, and the iterative method described above would converge
more rapidly when applied to (14) than when applied to (13). Tn the following
algorithm B and g are never explicitly formed. The algorithm given above can be
obtained by substituting the identity matrix for .

Craig’s method using a preconditioner:

Choose y°, @;
Compute r® = b — Ay%
Compute 7 = Q7o
Compute p° = 4:'Q "

For i = 0 step 1 until convergence do

BEGIN
a; = (¥, F)}/(p', p)
yi+1 - y: + aipi

Firl = Fi _ aiQ—lApi

.Bi — (]:z‘+1, f;i+1>/(Fi’ F:‘)

pitl = AQFT 4 B:p'
END

For this algorithm, a minimum of 5(n + 1) storage locations is required (in
addition to that for A). The vectors v, 7, and p all require their own locations;
&7 can share with Ap; Q7'Ap can share with A '‘@F. The computation cost per
iteration of this algorithm is:

(a) two preconditioning solves (@ 'v and @),

(b) two matrix-vector products (Av and A%);

(¢) 5(n + 1) multiplications (the inner products (p, p) and (7 7), ap, 8p, and
a@Ap).

The coefficient matrix A4 in the linear system of equations (13), whose solution
¥ yields the kernel of Dp,(&, X), has a very special structure which can be
exploited if (13) is attacked indirectly as follows. Note that the leading n x n
submatrix of A is D, p,, which is symmetric and sparse, but possibly indefinite.
Write

A=M+1L (15)
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where

_ | Dapaiz, N ¢
oy

L = uebi, u= (ka“(xb)\) B C).

The choice of !, as the last row of A to make A invertible is somewhat arbitrary,
and in fact any vector (c¢’, d) outside a set of measure zero (a hyperplane) could
have been chosen. Thus for almost all vectors ¢ the first n columns of M are
independent, and similarly almost all (n + 1)-vectors are independent of the first
n columns of M. Therefore for almost all vectors (cf, d) both A and M are
invertible. Assume that {¢*, d} is so chosen.

Using the Sherman-Morrison formula (L is rank one), the solution y to the
original system Ay = b can be obtained from

_ M™'uef -
y ‘[I O ) enn + I]M b (16)

which requires the solution of two linear systems with the sparse, symmetric,

invertible matrix M. It is the systems Mz = u and Mz = b to which Craig’s
preconditioned conjugate gradient algorithm is actually applied.

The only remaining detail is the choice of the preconditioning matrix Q. Qs
taken as the modified Cholesky decomposition of M, as described by Gill and
Murray [11]. If M is positive definite and well conditioned, & = M. Otherwise, ¢
is a well-conditioned positive definite approximation to M. The use of a positive
definite § is reasonable since, in the context of structural mechanics, DF(x) is
positive definite or differs from a positive definite matrix by a low rank pertur-
bation. The Gill-Murray factorization algorithm can exploit the symmetry and
gparse skyline structure of M; this entire scheme, Equations (13-16), is built
around using the symmetry and sparse skyline structure of the J acobian matrix
D.p. = ADF + (1 — M. Several other possible choices for the preconditioned
conjugate gradient algorithm have been studied in detail by Chan and Saad [4].

For sparse problems, the logic of tracking the zero curve v is exactly the same
as for the dense Jacobian matrix case. The only difference is in the kernel
calculation and the concomitant data structures (step 10 of the algorithm in the
previous section), which are substantially more complicated for the sparse
Jacobian matrix case. These low-level details are best left to the code, where they
are thoroughly documented. '

4. NORMAL-FLOW ALGORITHM (DENSE JACOBIAN MATRIX).

As the homotopy parameter vector a varies, the corresponding homotopy zero
curve v also varies. This family of zero curves is known as the Davidenko flow.
The normal-flow algorithm is so called because the iterates converge to the zero
curve v along the flow normal to the Davidenko flow (in an asymptotic sense).
As before, only the zero-finding case need be described.

The normal-flow algorithm has four phases: prediction, correction, step-size
estimation, and computation of the solution at A = 1. (2) and (3) are the relevant
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involves implementing a more sophisticated control over the ideal starting error
5, used in Eq. (41). The next estimate for the ideal starting error & is computed
using the exact error 6 of the last predicted point, the size of the last Newton
step 657, and the number of iterations i, required by the correction process.

5= 080 (47)

where 6 is a function of §%, §{, and i, as described by Rheinboldt [24].

The goal behind these calculations is to keep the number of corrector iterations
fixed at four. Thus 8 is computed so that if the prediction error had been &
rather than §%, the number of correction steps would have been approximately
four, instead of i,. Once 4, is computed, it is used in (41) to calculate the next
step size. For sharply turning curves, this 8 is too large for convergence in four
corrector iterations consistently. Numerical experiments suggest that the desired
behavior (convergence in four corrector iterations) is obtained by using the
formula

B = 8 bp-1 (48)
instead of (47). HOMPACK uses (48).

8. POLYNOMIAL SYSTEMS

This section describes the POLSYS driver for finding all complex solutions to
polynomial systems with real coefficients. A system of n polynomial equations in
n unknowns,

F(x) =0, (49)

may have many solutions. It is possible to define a homotopy so that all
geometrically isolated solutions of {49) have at least one associated homotopy
path. Generally, (49) will have solutions at infinity, which forces some of the
homotopy paths to diverge to infinity as A approaches 1. However, (49) can be
transformed into a new system that, under reasonable hypotheses, can be proven
to have no solutions at infinity and thus bounded homotopy paths. Because
scaling can be critical to the success of the method, POLSYS includes a general
scaling algorithm (SCLGNP). POLSYS uses an input “tableau” of coefficients
and related parameters to define the polynomial system. This tableau is used to
generate function and partial derivative values (via subroutine FFUNP). The
user need not code any subroutine to be called by POLSYS.

Although the POLSYS homotopy map is defined in complex space, the POL-
SYS code does not use complex computer arithmetic. Using algebraic geometry,
it can be shown that the homotopy parameter X is strictly increasing as a function
of arc length [21]. The existence of an infinite number of solutions or an infinite
number of solutions at infinity does not destabilize the method. Some paths will
converge to the higher dimensional solution components, and these paths will
behave the way paths converging to any singular solution behave. Practical
applications usually seek a subset of the solutions, rather than all solutions [16,
26]. However, the sort of generic homotopy algorithm considered here must find
all solutions and cannot be limited without, in essence, changing it into a
heuristic.
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24. Find § such that p(sh = 1, using void, ypold, v, and yp in (17), yopp = yold, Z©® .=

p(3).
25. limit == 2(l—log,, (ansae + ansre |y} + 1). Do steps 26-33 for k=2, . . | , limit + 2,

26. Update the augmented Jacobian matrix using (37).
27. Take a quasi-Newton step with (46).
28. Ir

| Py _ 1 + | AZ*2 ) < ansee + angre | 2%,

then (rft}fm (solution has been found).
+
29. If [Py 7 — 1| < ansae + ansre,

then
AL = P+l

else do steps 30-33.
30. yold := y, y 1= pte+n
3L. If yold, and y, bracket \ = 1, then yopp := yold.
32. Compute Z* ! with the linear predictor (42) using y and yold.
33 I ZEY — g » ¥ = yoppl, then compute Z%" with the linear predictor
{44} using y and yopp.
34. Return with an error flag.

7. AUGMENTED (S'PARSE) JACOBIAN MATRIX ALGORITHM

The augmented Jacobian matrix algorithm for sparse Jacobian matrices differs
from the dense algorithm in three respects: (1) like the sparse normal flow and
ODE-based algorithms, the low-level numerical linear algebra is changed to take
advantage of the sparsity of the problem; (2} quasi-Newton iterations are aban-
doned in favor of pure Newton iterations; (3) Rheinboldt’s step size control [24)]
is implemented more faithfully because of the use of Newton iterations. Except
for these three changes, the logic for tracking the zero curve v is exactly the

than using a QR factorization, these two linear equations are solved by using the
preconditioned conjugate gradient algorithm described for the sparse ordinary
differential equation-based algorithm (Egs. 14-186). Note however that the mat-
rices in (31) and (35) are different than the matrix in (12), in that the final Tow
1s & tangent vector rather than a standard basis vectar.

The use of Newton iterations rather than quasi-Newton iterations is necessi-
tated by the current lack of a good (comparable to Broyden or BFGS) sparse
quasi-Newton update formula, The fill-in produced by a good (dense) update
formula is unacceptable, and the efficacy of deferred updating [15] is questionabie
(the number of applications of the Sherman-Maorrison formula grows exponen-
tially with the number of deferred updates). Also there is some evidence that, a;
least in the context of structural mechanies [36], a model trust region strategy
with exact (expensive) Jacobian matrix evaluations is better than (cheap) quasi-
Newton updating. The effect of using Newton’s method in the algorithm is to
replace every quasi-Newton update with the calculation of the exact augmented
Jacobian matrix.

The final change for the sparse-matrix algorithm is an enhancement to the
step size control, allowed by the use of Newton iterations. The enhancement
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equations here. For the prediction phase, assume that several points PV ~
(A(s1), x(s1)), P = (A(s2), x(s2)) on 4 with corresponding tangent vectors
(dN/ds(s;), dx/ds(s;)), (dX/ds(ss), dx/ds{s;)) have been found, and A is an
estimate of the optimal step (in arc length) to take along v. The prediction of
the next point on ¥ 1is

Z9 =pis; + h), (17)
where p(s) is the Hermite cubic interpolating (A (s), x(s)) at s, and 2. Precisely,

ps1) = (A(s1), x(s,)), p'{s1) = (dr/ds(s,), dx/ds(s;)),
plsz) = (A(s2), x(ss)), p'(s2) = {d\/ds(s), dx/ds(s;)}),

and each component of p(s} is a polynomial in s of degree less than or equal
to 3.
Starting at the predicted point Z', the corrector iteration is

Z® . gin _ [Dpa(Z(k))]TPa(Z(k))» k=0,1,,.. (18)

where [Dp,(Z%)]t is the Moore-Penrose pseudoinverse of the n X (n + 1)
dJacobian matrix Dp,. Small perturbations of ¢ produce small changes in the
trajectory +y, and the family of trajectories v for varying a is known as the
“Davidenko flow.” Geometrically, the iterates given by (18) return to the zero
curve along the flow normal to the Davidenko flow, hence the name “normal-
flow algorithm.”

A corrector step AZ is the unique minimum norm solution of the equation

EDpaJAZ = ~Pq- (19)

Fortunately AZ can bhe calculated at the same time as the kernel of [Do.], and
with just a little more work, Normally for denge problems the kernel of [Dp.] is
found by computing a QR factorization of [Dp,], and then using back substitution.
By applying this QR factorization to —p. and using back substitution again, a
particular solution v to (19) can be found. Let i # 0 be any vector in the kernel
of [Dp.}. Then the minimum norm solution of (19) is

AZ =p — o u. (20)

Since the kernel of [Dp.] is needed anyway for the tangent vectors, solving (19)
only requires another O{n?) operations beyond those for the kernel. The number
of iterations required for convergence of (18) should he kept small (say < 4) since

several iterations, which results in linear convergence, is rarely cost effective,
When the iteration (18) converges, the final iterate Z®*+V is accepted as the
next point on v, and the tangent vector to the integral curve through Z® ig ysed
for the tangent—-this saves a Jacobian matrix evaluation and factorization at
Z" The step-size estimation described next attempts to balance progress along
¥ with the effort expended on the iteration {(18).
Define a contraction factor

122 -z
Sz oy
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a residual factor

I pZ)1
R=-"7"17, (22
I palZ®) 1 )
a distance factor (Z* = limy .. Z (ky

_1z% - z7]

S NzO -z .

and ideal values I, R, D for these three. Let be the current step size (the
distance from Z* to the previous point found on v), and / the “optimal” step size
for the next step. The goal is to achieve

(24)

o~ Pt
~—~ i~

okl
= | g
jwllw]
T

for some g. This leads to the choice
i = (min{L/L, R/R, D/D})'h, (25)

a worst-case choice. To prevent chattering and unreasonable values, constants
B (minimum allowed step size), hmax (MAXimum allowed step size), Buin
(contraction factor), and Bumax {expansion factor) are chosen, and h is taken as

% = min{max{fun, Buinhs A}, Buaxh, Fmaxd. (26)

There are eight parameters in this process: L, B, D, Ruins Pmaxs Buoins Brass G-
HOMPACK permits the user to specify nondefault values for any of these. The
choice of B from (26) can be refined further. If (18) converged in one iteration,
then 7 should certainly not be smaller than h, hence set

h := max{h, h} 27N

if (18) only required one iteration.

To prevent divergence from the iteration (18), if {18) has not converged afier
K iterations, h is halved and a new prediction is computed. Every time h is
halved the old value hqq is saved. Thus if (18) has failed to converge in K
iterations sometime during this step, the new 7 should not be greater than the
value hoa known to produce failure. Hence in this case

b = min{h.a, h}. {28}

Finally, if (18) required the maximum K iterations, the step size should not
increase, so in this case set

7 := mini{h, h}. (29)

The logic in (27-29) is rarely invoked, but it does have a stabilizing effect on the
algorithm.

The final phase, computation of the solution at A = 1, begins when a point p?
on v is generated such that P® = 1. The solution lies somewhere on y between
the previous point P and P®_ The endgame now consists of iterating until
convergence the sequence of steps: Inverse interpolation with the Hermite cubic

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987,

Algorithm 652: HOMPACK: A Suite of Codes - 299

An exception to these linear prediction schemes ocecurs with the first step of
the final phase. Since the tangents 7" and T® gt P and P? are available,
this information is used to generate a Hermite cubic polynomial p(s) for calcu-
lating the first prediction point Z © This is done by finding the root 5 of the
equation p; (s) = 1. Z is then given by

Z© = p(3). (45)

After the predictor Z*~2 has been determined, a quasi-Newton step is taken
to get the point P***. This step is defined by

plesl) — g2 4 AZ KD (46)

where AZ®? is the solution to (35). Again, the matrix in (35) is produced by
the rank-one updates (36) and (37)-

The alternating process of computing a prediction and taking a guasi-Newton
step is repeated until the solution is found.

In summary, the algorithm is:

1. s:=0;y == (0, a); ypold == (1, 0); h := 0.1; foiled = false; firststep := true; arcae,
arcre -~ absolute, relative error tolerances for tracking v; ansae, ansre = absolute,
relative error tolerances for the answer.
9. Compute the tangent yp at y, using (31) and (32), and update the augmented Jacobian
matrix using (36).
3. If firststep = false then
4. Compute the predicted point Z' with the cubic predictor (17} based on yold,
ypold, y, ¥p.
else

5. Compute the predicted point Z” using a linear predictor based on y and yp.

6. If failed = true then
7. Compute the augmented Jacobian matrix at Z9,
8. Compute the next iterate Z 1 ysing (33).

9. limit == 2(L—logye(arcae + arcre ||y 1)1 + 1). Repeat steps 10-11 until either

| AZ® | < arcae + arcre | Z* |
or
limit iterations have been performed.

10. Update the augmented Jacobian matrix using (37).
11. Compute the next iterate using (33).
12. If the quasi-Newton iteration did not converge in limit steps, then
13. h = h/2; foiled = true.
14. If h is unreasonably small, then return with an error flag.
15. Goto 3.
16. Compute the tangent at the accepted iterate Z® using (31) and (32), and update the
augmented Jacobian matrix using (36).
17. Compute the angle o between the current and previous tangents by (38).
18. If @ > #/3, then
19. h = h/2; fuiled := true.
90. If h is unreasonably small, then return with an error flag.
21. Goto 3.
22. yold :=y, ypold = yp, ¥ == Z" yp = tangent computed in step 16, firststep := false,
failed := false.
23, If y, < 1, then compute a new step size h by Eqgs. (26, 28, 38-41) with £ = 0.01,

5 = min{(arcae + arcre | y ¥, 3 |y — yold 1},

and go to 3.
ACM Fransactions on Mathematical Software, Vol. 13, No. 3, September 1987.



298 - L.T Watson, S. C. Billups and A. P. Morgan

Since £, can be negative, use
& = max (£, Ek) for some small Evin >0, (409

as the predicted curvature for the next step.
The goal in estimating the optimal step size is to keep the error in the prediction
HZ — ZO| relatively constant, so that the number of iterations required by

the corrector will be stable. This is achieved by choosing the step size as

28,
&’
where §;, represents the ideal starting error desired for the prediction step. §, is
chosen as a function of the tolerance for tracking the curve and is also restricted
to be no larger than half of ASg.

As with the normal-flow algorithm, additional refinementis on the optimal step
size are made in order to prevent chattering and unreasonable values, In partic-
ular, k is chosen to satisfy eqs. (26) and (28). This % is then used as the step size
for the next step.

The final phase of the algorithm, computation of the solution at A = 1, is
entered when a point P® is generated such that P® = 1. P? ig the first such
point, so the solution must lie on v somewhere between P® and the previous
point PY. The algorithm for finding this solution is a two-step process that is
repeated until the solution is found. First, starting from a point P®, g prediction
Z% 2 for the solution is generated such that Z¢2 = 1, Second, a single quasi-
Newton iteration is performed to produce a new point P**V cloge to ¥, but not
necessarily on the hyperplane A = 1.

Normally, the prediction Z*~2 ig computed by a secant method using the last
two points P gnd pt-1,

h= (41)

(1- PP

ZH2 = p® 4 (pt-1 _ P®) W’HTTP?)_)'

(42)

However, this formula can potentially produce a disastrous prediction (e.g., if
| PED PH| =« 1~ P{”)), so an additional scheme is added to ensure that
this does not happen. In order to implement this scheme, a point P“P must be
saved. This point is chosen as the last point computed from a quasi-Newton step
that is on the opposite side of the hyperplane A = 1 from P®. Thus, the points
P and P® bracket the solution. The prediction Z%*? may be bad whenever
the inequality

§Z52 ~ PO ) > | p# — plom) | (43)
is true. In this case, Z*2 g recomputed from the equation

(1 - PP
(P — PI)”

This chord method, while much safer than the secant method (42}, is used only
in the special case (43) because it has a much slower rate of convergence than
the secant method.
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(17) for § such that p(5); = 1; two iterations of (18) starting with Z© = p(3);
replacing either P or P®@ by Z® such that the solution on v is always bracketed
by PV and P®. A precise statement of the endgame and the convergence
criterion are given below.

In summary, the algorithm is:

Ls=0y:=(0a)h:= 0.1, firststep 1= true, arcae, arcre .= absolute, relative error
tolerances for tracking Y, ansae, ansre := absolute, relative error tolerances for the
answer.

2. 1f firststep = false then

3. Compute the predicted point Z© using (17),
else

4. Compute the predicted point Z@ using a linear predictor based on y = (g, a)
and the tangent there.

5. Iterate with equation ( 18) until either

VAZ® | < arcae + arcre | Z% I

or
4 iterations have been performed.

6. If the Newton iteration (18) did not converge in 4 steps, then
7. h:=h/3,
8. If h is unreasonably small, then return with an error flag,
9. Goto 2.
10. firststep = falge.
Li. If 3, < 1, then compute a new step size k by (21-29) and go to 2.
12. Do steps 13-18 some fixed number of times.
13. Find § such that p(3), = 1, using yold, ypold, v, yp in (17;.
14. Do two iterations of (18) starting with Z® = p(3), ending with Z@,
15. If

[Z = 1] + | AZV )| < ansae + ansre Iz,

then return (solution has been found),
16. If 7P = 1, then
17. y:=Z%, yp := tangent at Z®,
else
18. yold == Z®, ypold := tangent at, 2.
19. Return with an error flag.

5. NORMAL-FLOW ALGORITHM (SPARSE JACOBIAN MATRIX).

The logic of the predictor, corrector, and step-size estimation phases of this
algorithm is identical to that given in the previous section. Similar to the ordinary
differential equation-based algorithm, the difference between the dense and
sparse Jacobian matrix cases is the low-leve] numerical linear algebra. The main
linear algebra problem is the solution of (19), which also involves the calculation
of the kernel of Dp,(x, A). (19) is solved using the same matrix splitting,
preconditioning matrix, and conjugate-gradient algorithm used for the sparse
ordinary differential equation-based algorithm (equations 12-16). For efficiency,
the kernel and Newton step are calculated together by solving

Dxpa(-fy X) D pa(-f: X) _ 0 _pa(-i’ X)
[ o e :l[v AZ]—L_/k 0 J (30)
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6. AUGMENTED (DENSE) JACOBIAN MATRIX ALGORITHM.

The augmented Jacobian matrix algorithm has four major phases: prediction,
correction, step-size estimation, and computation of the solution at A = 1. Again,
only the zero-finding case is described here. The algorithm here is based on
Rheinboldt [24], but with some significant differences: (1) & Hemite ciibic rather
than a linear predictor is used; (2) a tangent vector rather than a standatd basis
vector is used to augment the Jacobian matrix of the homotopy mépj (3) updated
QR factorizations and quasi-Newton updates are used rather than Newton’s
method; (4) different step-size control, necessitated by the use of quasi-Newton
iterations, is used; (5) a different schéfiie for locating the target point at A = 1is
used that allows the Jacobian matrix of F to be singular at the solution £ provided
rank Dp,(1, £) = n. _ -

The prediction phase is exactly the same as in the normal flow algorithm.
Having the points P® = (A(s1), x(s1)), P® = (A(sz); x{8:)) 001 % with eerresponding
tangent vectors

d'l (Sl ) @(82 )

i - gs @ = ds
X ? ¥ s

the prediction Z© of the next point on v is given by (17)
In order to use this predictor, a means of calculating the tangent vector T at
a point P® is required. This is done by solving the system

0
Dp,(P® : L
[ pT((lit )]3= . (81)
0
1

for z, where Dp, is the n X (n + 1) Jacobian of p,. Normalizing z gives

@ 5
T 32
The last row of (31} insures that the tangent 7 makes an acute angle with
the previous tangent TV, It is the augmentation of the Jacobian matrix with this
additional row that motivates the name “augmented Jacobian matrix algorithm.”
The solution to (31) is found by computing a QR factorization of the matrix, and
then using back substitution [8].
Starting with the predicted point Z®, the correction is performed by a quasi-
Newton iteration defined by

(Of )
Z‘“”:Z(k}—[%z}t} (pa(g )), k=0,1,... (83)

where A® is an approximation to the Jacobian matrix Dp,(Z™). The last row of
the matrix in (33) insures that the iterates lie in a hyperplane perpendicular to
the tangent vector T, (33) is the quasi-Newton iteration for solving the
ACM Transacticns on Mathematical Software, Vol. 13, No. 3, September 1987.
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augmented nosilinear system

(T{Z)rf;(z)z(m)) = 0. (34)
A corréctor step AZ® is the unique solution to the equation
Awl ~pa(Z®)
[T(zit]/lz W ( o J (35)

The matrix on the left side of {hi8 quation is produced by successivezBroyglen
rank-one updates [8] of the matrix in (31). Precigely, lstting Z©V = PP, AT =

Dp(P®), and
M® = [A(k)]
- - T(E)t:

the update foriiiilas aié

[acul (B, (@) ) _
M= [}r}(mt] = [quaw((f: )] + e (T = TV, (36)
and
ey o Ay wa MWAZENAZ N
M) = MW 4 (Aps AZ("’)*AZ(‘*}) Ck=—1,0,... 7
where

. (h+1)y _ (k}
Ape = (PG(Z )0 pa(Z ))

These updates can bé doné in QR-factored form, requiring a total ?f O({’tz)
operations for each iteratior in the corfection process [8]. When the iteration

(33) converges within soté fdlerance, the final iterate Z' is accepted as the next

point on the zero curve v. ,

The step-size estimation algorithm is an adapt&tl@l;l of & procedure developed
by Rheinbg int P wi # ture is
by Rheinbolat {25:-],‘ A_t- gach point P with tangent T® along v, the curvatur
estimated by the formula

|w® | = —A%k | sin{ees/2) [+ (38)

where

= —'T(ﬁi = T{E_D _ o = al-‘CGDS(T(kMT(k_'l)), Asy = |l piE — PED.
Asi, ’

Intuitively, a), represents the angle between the last two tf'mgent vectors, and the

durvature is approximated by the Fuclidean norm of the difference between these

two tangents divided by Asz. .
This curvature data can be extrapolated to produce a prediction for the

curvature for the next step

A Asy, ) 1) (39)
= I p® w® ] - fw ).
o= 1wl + 5 U
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