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Abstract

Most definitions of an expert system include some reference to the ability of the system
to perform at a level close to human expert performance. Yet the validation of expert
systems, that is, the testing of systems so as to ascertain that they achieve an acceptable
level of performance, has (with a few exceptions) been ad-hoc, informal, and in some cases

of dubious value.

This paper attempts to establish validation as an important concern in expert systems
research and development. The problems in validating an expert system are discussed, and
a number of methods for validating expert systems, both qualitative and quantitative, are

presented.



1 Introduction

Most definitions of an expert system {ES) include some reference to the ability of the system
to perform at a level close to human expert performance. Yet the validation of expert
systems, that is, the testing of systems so as to ascertain that they achieve an acceptable
level of performance, has {with a few exceptions) been ad-hoc, informal, and in some cases

of dubious value.

Typically, the performance of an ES has been validated by running a pumber of test
cases through the system, and comparing the “pesult” {i.e., the classification, final cert ainty
factors, the advice given, or whatever) from the system against either known results or
expert opinion. A percentage is calenlated for the success rate of the system, and subjective
judgement is used to both analyse this and explain the failure of the ES where its result
was in contradiction to the known result or expert opinion. Examples of this approach span
from an early validation of MYCIN [1], to a recently reported validation of a chest pain
diagnosis system called EMERGE [2]. This simple approach presents a number of problems.
The final percentage obtained is a function of the choice of test cases, and its accuracy is
a function of the number of test cases. Where the system is compared against the expert
on whose knowtedge the system is built, as happened with PROSPECTOR [3], the value of

the so-called validation is dubious.

| As many developed expert systems have been research prototypes, the purpose of the
validation has often been to qualitatively measure system performance (e.g., see Miller et al.
(4] on the medical .diagnosis system INTERNIST-1), or validation has simply been part of
an overall evaluation aimed at assessing the value of an ES to a particular domain (e.g., see
Kulikowski and Weiss [5] on the medical diagnosis system CASNET, or Hausen and Messier
[6] on the auditing ES EDP-XPERT). However, the performance of expert systems that are
to be used on a regular basis, particularly in critical areas, must be validated very carefully.
Thus an increase in the use of formal validation methods can be seen in the development
of some implemented systems. Both a later validation of MYCIN {7}, and a validation of

the chemotherapy adviser ONCOCIN i8], like MYCIN developed at Stanford, used formal




methods backed up by statistical tests. The performance of the VAX configuration system
R1/XCON also underwent some elements of formal validation (see Bachant and McDermott

[8], and the discussion in Gaschnig et al. [10]}.

1.1 Verification, Validation and Evaluation

It should be noted that here we are only concerned with the velidation of performance.
Typically, this is part of the broader area of eveluation, which seeks to assess the overall
value of an ES. In addition to exhibiting an acceptable level of performance, an ES should
be useable, efficient, and cost-effective. Validation is the cornerstone of evaluation, since,

for example, a highly effecient implementation of an invalid system is useless.

It can often be difficult to separate validation of performance from other aspects of eval-
uation. For instance, testing can be difficult if users balk at using the system due to lack of
human factor considerations, e.g., a poorly designed interface. For this reason, it is impor-
tant that at the outset of development it is decided whether or not to separate validation.
In many instances, particularly ground breaking applications, a policy of overall evaluation
may seem more relevant, especially if at the start it is determined that a reasonable level
of performance will be difficult to obtain. For a discussion of evaluation, sce Gaschnig et

al. {10].

Validation is often confused with verification. Simply stated, verification refers to build-
ing the system right (i.c., substantiating that the system is a correct implementation of the
specification), whereas validation refers to building the right system (ie., substantiating
that the system performs with an acceptable level of accuracy). In modeling studies, it is
well to remember the dictum that nobody solves the problem; rather, everybody solves the
model that he has constructed of the problem. Since an ES is & model of human reason-
ing and knowledge, its level of representativeness must be justified through the process of

validation.

The purpose of this paper is twofold. First, we wish to establish validation, and evalu-

ation, as an important concern in ES research and development. Second, we present both



qualitative and quantitative methods of formal validation, some taken from other areas
of computer-based model validation, that can be applied to expert systems. The work
presented here draws upon our experience in developing expert systems (some of which is
presented in O’Keefe et al. [11]) and using validation methods in a number of areas of

computer-based modeling.

In the next section of the paper we cover the problems that are encountered in tryiug
to validate ES performance. This is followed by a discussion of a number of basic concepts
fuildamental to validation, a review of some appropriate qualitative methods, and a discus-
sion on the use of quantitative methods. The paper finishes with a number of conclusions

regarding the application of validation methods.

2 The Problems of Validating an Expert System

We believe that there are seven major problems that are encountered in trying to validate
ES performance: (1) what to validate, (2) what to validate against, {3} what to validate
with, {4) when to validate, (5} how to control the cost of validation, {6} how to control bias,
and (7) how to cope with multiple results. All of these, to a greater or lesser extent, are
encountered in trying to validate any computer-based model. In this section, we discuss

these problems and provide some guidelines.

2.1 What to Validate

As pointed out by Gaschnig et al. [10], it is possible to validate either the final result
{often called the conclusion) of the system, any intermediate results that are obtained, the
reasoning of the system, or any combination of these three. Chandrasekaran {12] discusses
the importance of validating the reasoning process, since a poor reasoning process that
provides a correct result can not be “scaled up” to a larger domain of application, or may

give a different result when used with an extended knowledge base.

What to validate is intrinsically linked to which stage we are at in the development

process. At any stage, if the performance of part of the system can he measured for a given



set of inputs, that part should be validated so as to catch errors as early as possible in the
development life cycle. Typically, we may wish to concentrate on validating the reasoning
process early on in development, and only be concerned with the validity of final results

when the knowledge base is more complete.

A further problem is that it may be difficult, and in some cases impossible, to classify
the result of an ES as right or wrong. In discussing the validation of CASNET, Kulikowski

and Weiss {5] state the following:

“Classifying conclusions as being merely correct or incorrect is an oversimpli-
fication. The program’s conclusions are presented not as single unique diagnoses

but rather as combinations of judgements about a patient’s status.”

However, in such cases it is often possible to get experts to classify the results, interme-
diate results and reasoning into several categories. For instance, Hickam et al. [8] got
chemotherapy protocol experts to classify the performance of ONCOCIN as ideal, accept-

able, sub-optimal, and unacceptable.

2.2 What to Validate Against

As well as being validated against expert performance, in some cases an ES can be validated
against known results (e.g., in validating an ES that predicts the financial performance of a
company in the upcoming financial year, for past case histories the present financial position
of the company will give a known result). As many have pointed out {e.g., Chandrasekaran
[12]), it can be unfair to expect an ES to perform at a level close to known results when
human experts can not perform at this level. Typically, expert systems ghould be validated
against experts, although where available known results can provide a useful background

for validation.

A problem with known results is that previous expert decisions may precipitate the
result. Suppose that in the financial system example above, the prediction of performance

is used by a bank to decide whether or not to continue financial support of the company.



If an expert had decided that the financial position of company X will be very poor in a
years time, and thus implements withdrawal of financial support, the presently known poor

financial position of X may in part be due to the previous expert decision.

2.8 What to Validate With

In an ideal world, a large number of documented previous cases, representing work from a
number of experts on a complete range of problems, will be available for use in validation.
Typically, in a less than ideal world, only a small zample will be available, drawn from a

single or a few experts. In extreme cases, no test cases will be available.

Further, the “success” of any validation is biased by the choice of test cases. Any used
in the development of the system should be discarded, since (supposedly) the system will
have already been altered so as to successfully handle the case. In many domains, a large
number of situations are fairly standard, and can be handled with limited expertise. For
example, suppose we are developing a medical diagnosis system in a domain where 90% of
the cases are standard, and the other 10% require considerable skill. A success rate for the

ES, when validated against test cases, of 90%, would not inspire confidence in the system.

" For a fair cross-sectional validation of the system, the sample of test cases should be
randomly selected using stratified sampling, that is, randomly selected within each iden-
tifiable type of result. For instance, if an expert classifies a diagnosis as A, B or C, and
previous histories indicate that these classifications respectively occur 80%, 15% and 5% of
the time, then a collection of 200 test cases should include 160, 30 and 10 instances where
A, B and C were respectively the result. In many instances, more detailed validation will
require testing the system against a small number of obscure or difficult cases, perhaps cases
that even top experts find difficult, and qualitatively assessing how well the system handles

these.

The number of test cases used obviously has an effect on the confidence that can be
placed upon the validity of the system performance. However, the law of large numbers

simply does not apply here. The issue is not the largeness of the number of cases; it is



the coverage of the test cases. This is how well they reflect the input domain. The input
domain is the population of permissible input [13]. (This should not be confused with the
application domain in which the ES operates.) The larger the size of the input domain, the

more difficult it becomes to validate the ES.

If no historic test cases are available, or all of them have been used in developing the
sf,rstem, it may be possible to synthesise test cases by getting experts to randomly create
cases. This is problematical, siuce any set of synthesised cases is unlikely to represent a
well stratified sample. Further, experts are unlikely to expend as much time or effort on
a synthetic problem as on a real problem, and their reasoning and results may well suffer.
However, in some instances, this may well be the only means of providing such a sample of

test cases.

2.4 When to Validate

There is little agreement on when to validate an ES. In discussing R1 /XCON, Bachant and
McDermott [9] relate the folly of expecting high performance from s system early in its

career, stating that:

“To expect anything close to perfection during the first few years a system
1s being used (especially if the task is significantly more than a toy) is probably

a very serious mistake.”
whereas Buchanan and Shortliffe [14] (p. 695) state that:

“we believe that high performance is a stne qua non for an ES and thus

deserves separate evaluation early in a program’s evolution.”

Although these two statements appear to be contradictory advice, we believe that there is
really no contradiction. Typically, an ES must exhibit acceptable performance at some early
stage of development. However, the level of acceptance may be very different for differing

systems. With a research prototype, medium performance, and indications that the basic




approach is correct, may be acceptable. As the system is extended, further validation may
be necessary, but such validation should concentrate on validating the extensions, indicating
areas that may need improvement or fine tuning. With non-critical applications, such as
R1/XCON, it is possible to put the system in the field and validate the gystem as it is
used. In critical applications, where life {e.g., some medical diagnosis applications) or large
amounts of money (e.g., some manufacturing applications) is at stake, field testing is usually
impossible (although in certain instances it may be possible to run the system in parallel

with the present manual system).

2.5 How to Control the Cost of Validation

Validation can be time-consuming and expensive. Assessing the amount of money and effort

that should be applied to validation is a difficult task.

- We believe that the cost of validation can be controlled by designing formal validation
methods that are integrated within the development process. The value of validation is
obviously directly linked to the value of the system to its users, and the risk mvolved in

using a poorly validated system. These ideas are developed further in a subsequent section.

2.8 How to Control Bias

An ES may be validated against an expert whose expertise is biased when compared to
other experts. When judging ES performance, an expert biased against the introduction
of computer-based systems may give similarly biased opinions, unfairly assessing the ES.
Selecting the set of test cases so as to guarantee good performance by the ES is an example

of developer bias.

Expert bias can be controlled by the use of blinded evaluation and cross checking, both
used in the ONCOCIN validation {8]. When judging performance, experts should not be
able to distinguish between human expert and program performance. Bias between experts
can be checked for with a number of statistical tests, as will be discussed later. Developer

bias can only be controlled by honest professionalism.




2.7 How to Cope with Multiple Results

A serious problem exists with the validation of an ES with multiple results, refered to as
the multiple response problem. It is not appropriate to test the validity of a multivariate
response ES by testing the validity separately for each of the response variables. (See
Shannon [15] (p. 229) for an illustration of this problem in validation of simulation models).
A multivariate approach must be used to incorporate the correlation among the results and

to test for the overall validity of the ES.

For example, in a medical diagnosis system that prescribes appropriate drug treatment
for patients, prescription of two types of drug may be valid if each is separately considered
as a treatment, yet the combination of the drugs may be unacceptable, and hence the overalf

response of the system is invalid,

3 Some Basic Concepts

In this section, we introduce a number of basic concepts in the validation of expert sys-
tems, namely, acceptable range of performance, input domain, test of validity, formality of

validation, and ES builder’s/ES user’s risk.

3.1 Acceptable Range of Performance

The concept of validation should not be considered as a binary decision variable where
the ES is absolutely valid or absolutely invalid. Since an ES is a representation or an
abstraction of reality, perfect performance can not be expected. The level of performance
that is acceptable to the users is called the acceptable range of performance, and should be
specified at some stage of development. In some cases, an acceptable range of performance

may be specified by a third party, a government agency, or the project sponsor.

Suppose that an ES produces a classification A, B, Cor D. It may be possible to specify
a acceptable range of performance in terms of the occurence of each result. For instance,

it may be decided that the system should always correctly classify A and B, but that some




variation in classifying C and D is acceptable. Further, the prebability of a particular
mcorrect classification may be vital. For example, it may be vital that the system never
gives a result of B when the known result is A, ie., Prob(B | A) should be shown to be

ZEro.

Frequently, the acceptable range of performance will reflect the ability to perform at a

level equivalent to human expertise. Bachant and McDermott (9] pointed cut that:

“the people who used R1 did not demand more of it than of its human

predecessors.”

Thus it may be possible to specify an acceptable range of performance with regard to the

performance of the human experts that the system models.

3.2 Imput Domain

An ES should be developed for a specific purpose or application and its adequacy or validity
should be assessed ouly in terms of that purpose with regard to a prescribed snput domain.

An ES may be valid for one input domain, and completely absurd for another.

3.2 Test of Validity

It is important to realise that an ES can only be tested for validity under a prescribed input
domain and for an acceptable range of performance related to the purpose for which the ES

is intended.

3.4 Pormality of Validation

The application of validation can range from formal to informal. Formal validation requires
. establishing when validation should occur within the development life cycle, the identifica-

tion of validation methods, the specification of the input domain and the level of acceptance,
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State of the ES
ES is Valid ES is Invalid
‘Action | Accept as Valid | Correct Decision | ES User’s Risk

{Type II Error)
Declare Invalid | ES Builder’s Risk Correct Decision

{Type I Error)
Figure 1: Types of Risk in Validation

and (where appropriate} the relevant application of statistical techniques. Informal vali-
dation is typically done at the end of development, i3 often an after-thought, and employs
ad-hoc methods.

As would be expected, most validation processes are somewhere between formal and
informal. Yet it is generally accepted that validation is frequently too informal, and that
developers do not consider their approach to validation early enough, and hence do not

build it into the development life cycle.

3.5 ES Builder’s/ES User’s Risk

Testing validity can result in four possible outcomes as depicted in Figure 1. Two of these
outcomes are called the type I and type II errors. Type 1 error is commited if the validity
of the ES is rejected when in fact it is sufficiently valid. Type II error is commited if the
validity of the ES is accepted when in fact it is invalid. The probability of type I error is
called the ES Builder’s Risk and the probability of Type II error is called the ES User’s
Risk. (See Balci and Sargent [16] for a quantification of these risks in using statistical

hypothesis testing for the validation of simulation models.}

The major consequence of commiting type I error is that the cost of developing the ES
is going to increase unnecessarily. The additional cost may not be negligible; for example, it
may precipitate the abandonment of a system that has cost a considerable amount of effort

to develop. On the other hand, the consequences of commiting type II error can be very

i1




dramatic. For example, a medical diagnosis system may incorrectly diagnose a patient’s
illness, with the consequence that the patient suffers through mistreatment. Therefore, in
critical applications, it is essential that we minimize the User’s Risk as much as possible.
Objective consideration of the two types of risk, their relative importance, and the cost if

each should occur, will help to provide a basis for the design of the validation process,

4 Qualitative Validation

Qualitative approaches to validation empioy subjective comparisons of performance. This
does not imply that they are mformal; it is possible to design a highly formal qualitative
validation process. Qualitative methods can he combined with quantitative ones, where
appropriate. If ES responses can somehow be quantified {ie., expressed in terms of numbers),

then we can employ quantitative (statistical) techniques.

In this section we review seven common qualitative approaches to validation, some of

which have been used in validating expert system performance.

4.1 Pace validation

Face validation is useful as a preliminary approach to validation. The project team mem-
bers, potential users of the ES, people knowledgeable about the application domain, using
their knowledge and intuition, subjectively compare ES performance against human expert
performance. The results obtained from an ES running under a given set of test cases are

assessed “at face value” with regard to a prescribed acceptable range of performance.

As discussed by McDermott [17], R1/XCON was validated by a group of six experts
reviewing its performance on fifty orders. Perceived mistakes were rectified prior to imple-

mentation.
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4.2 Predictive Validation

Predictive validation requires using historic test cases, and either known results or measures
of human expert performance on those cases. The ES is driven by past input data from
the test cases, and its results are compared with the corresponding results, either known
or obtained from the human expert. As discussed previously, a number of reported ES

validations, e.g., Hudson et al. [2], have used this approach.

4.3 'Turing Tests

Turing tests aim to validate an ES against human experts, by getting experts to evaluate
the performance of other experts and the ES without knowledge of who is performing. The
assessments of system performance can then be compared with the assessments of human
performance. This process of blind evaluation has the advantageous side effect of elirﬁinating
any anti or pro computer bias. If the assessments can be objectively measured {e.g., experts
can conclude that a test case was handled correctly or incorrectly, or assess performance tc
be expert, good, fair, or poor), then statistical techniques can be used to test for variation

between the ES and human experts, and consistency between experts.

Chandrasekaran [12] has argued for using Turing tests in validating medical expert
systems. Such tests have been used in validating both MYCIN {7] and ONCOCIN [8].

4.4 Field Tests

Fields tests involve placing a prototype version of the ES “in the feld”, and then catching
perceived errors in performance as they occur. From the developers point of view, this
has two considerable advantages. Pirst, the burden of testing is placed upon the users.
Second, the acceptable range of performance is obtained implicitly, since users may cease
to report problems when an acceptable range of performance is reached. {This may, of
course, backfire, with users reporting any minor problem that occurs for the duration of

the existence of the system).
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Field testing is only possible in non-critical applications, where users can assess the
correctness of the ES performance. Subsequent to its implementation, R.1 /XCON underwent
counsiderable field testing, as discussed by Bachant and McDermott [9]. With Ri /XCON, an
incorrect result is easy to observe, since the VAX configuration will either not fit together

or not work.

4.5 Subsystem Validation

Subsystem validation requires the decomposition of the ES into subsystems, where the
performance of each can be observed under a given set of input data. In this approach,

each subsystem is validated one at a time as they are developed.

Subsystem validation has three significant advantages: (1) validation is incorporated
within the development life cycle and carried out along with the development, (2) it is much
easier to validate subsystems since they are less complex and more manageable, and (3} error
detection is much easier since they are localized. The disadvantages of subsystem validation
are that it may not be possible to observe the input-output behavior of a subsystem, and
sﬁccessfully validating each subsystem does not imply the overall validity of the whole BS

since error tolerances can accumulate to be significant in the overall performance of the ES.

In some instances, it may be possible to identify a subsystem where all possible outputs
can be generated for all possible inputs. This can occur in production rule systems, where a
group of rules may apply crisp logical inference on a limited discrete input domain. If user
judgements are gathered on a continuous scale, and used as certainty factors, it is possible
to simulate the performance of a subsystem over the range of permissible input. For an

example of this, see Langlotz et al. [18].

4.6 Sensitivity Analysis

Sensitivity analysis is performed by systematically changing the values of the ES input
variables and parameters over some range of interest and cbserving the effect upon the

performance of the ES. Suppose we have a system that gives complete satisfaction {i.e.,
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final result, intermediate results and reasoning are all assessed to be sufficiently expert)
when dealing with case C. If C uses inputs (data, user judgements etc.} 1y, ¢, ...,1,, then a
sensitivity analysis validation would involve altering each input, and assessing the change
in performance of the ES. For instance, if i3 is “the temperature of the patient”, and our
satisfactory consultation case included a temperature of 101 degrees, and further we know
that for this case temperature should have no effect on diagnosis, then altering ¢3 to any
other value, while leaving 4y, ¢; and 44,15, ..., %, as before, should not alter the final result,

intermediate results, or perhaps even the reasoning process.

To our knowledge, sensitivity analysis has not been used by expert system developers as
a validation method, or at least not explicitly used. I may prove to be the most powerful
qualitative methbd available; it is especially useful where few or no test cases are available.
It is also highly appropriate for systems which use uncertainty measures, and require users
to provide judgements for premise uncertainty, since these can be altered as desired, and

the effect on intermediate and final uncertainty measures can be examined.

4.7 Visual Interaction

Visual interactive validation involves providing a visual animation of the workings of the
ES, and allowing experts to interact with it, altering parameters as desired. In essence, this
can be viewed as au environment for interactive face validation, subsystem validation, and
sensitivity analysis. It has been very successfully employed in the validation of Operations

Research models, particularly discrete-event simulations [19].

This approach to validation may have some applicability to expert systems, particu-
larly with the appearance of a number of graphical interfaces to knowledge-based systems
(e.g., see Richer and Clancey [20] on GUIDON-WATCH). Experts can watch the reasoning
process, the access of rules, the propergation of uncertainty etc., and hence validate the

reasoning process.
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5 Quantitative Validation

Quantitative approaches to validation employ statistical techniques for the comparison of
ES performance against either test cases or human experts. Here we present, and discuss
the applicability, of three types of quantitative methods : (1) paired t-tests, {2) Hotelling’s
one-sample T? test, and (3) simultaneous confidence intervals. This is followed by some
discussion on measuring consistency between experts, an important issue when performing

validation against multiple experts.

Quantitative validation methods generally fall into two categories, Either a confidence
snterval for one or more measures is constructed, and subjectively compared against an ac-
ceptable range of performance, or a formal kypothesis test is used to compare measurements

against a predetermined acceptable range of performance, where the hypotheses are :-

Hp : The ES is valid for the acceptable range of performance under the prescribed input

domain.

H,; : The ES is invalid for the acceptable range of performance under the prescribed input

domain.

5.1 Paired i-Tests

As has been seen, producing a single proportion as a measure of performance is of limited
value. A far more appropriate method is to use a paired &-test to compare the difference
between observed results. For the final result from the ES, the difference between ES
performance, and human expert performance or known results, is measured. We construct
an interval D; where D; = X; - ¥, X; are results from the ES, and Y; are either known
results or results from human expert performance. Notice that this can cover many types
of result. I a final judgement is produced on a continuous scale, for example -5 to +5 as in
PROSPECTOR, then X; can be the system’s judgement, and Y; can be the human expert’s
judgement. If both known results and expert performance is known, we could {for example)

get a third-party expert to measure the performance of each on a scale of, for instance, 1

15




to 10, under blind evaluation, and thus X; and ¥; will be the absolute performance of the

system and the expert, respectively.

For the differences D; a confidence interval can be produced thus
d+ tm——l,a-,)'zsd/\/ﬁ
where d is the mean difference, 84 the standard deviation, and tn—1,e/2 18 the value from

the ¢ distribution with n degrees of freedom, n being the number of test cases. If zero lies

in the confidence interval, than we can accept Hp.

5.2 Hotelling’s One-Sample T? Test

A previous section discussed the problems of multivariate responses. Whilst a paired &test
is appropriate where a single final result is obtained from the ES, simultaneously applying
a paired #test to a number of final results is inappropriate, since performances on each
measure can be expected to be correlated. In this case, Hotelling’s one-sample T2 test

should be used.

Consider the validation of an ES against a human expert performance. Exactly the
same input is given to the ES and to the human expert. Assuming that we have k responses
(measureable results) as the expected output, we determirne the differences between the
corresponding k paired responses. Repeating this for different input vahies we construct k
vectors of differences, one for each response. Then, the one-sample T? test is used to test
if the means cf the difference vectors are significantly different from zero simultaneously
(or jointly). (See Balci and Sargent [21] about how this test is used in the validation of

multivariate response trace-driven simulation models.)

5.3 Simultaneous Confildence Intervals

Simultaneous confidence intervals or joint confidence regions can be constructed for the
differences of the paired responses to validate a multivariate response ES. Usually, the

confidence intervals or regions constructed are compared with a prescribed acceptable range
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of performance. (See Balei and Sargent [22] about how this approach is used in the validation

of simulation models.)

5.4 Measures of Consistency

If an ES is to be compared against a number of experts, or multiple experts are going to be
compared against the system in a Turing test, then a major consideration is the consistency

between experts {often called inter-obacrver reliabslity).

One commonly used measure of consistency is the interclass correlation coeflicient, which
has been used, for instance, to evaluate reliability between legal judges. If a judgement by
expert 1 on text case j is denoted Y;;, then a model for expert reliability is ¥;; = U + E; + i
where U is the mean rating across all experts, E; is the effect of the sth expert (ie., deviation
from the mean U), and &ij is the error term. From this model, a correlation co-efficient can
be produced and tested. If Y; is a categorical variable (for example, expert, good, fair or
poor), rather than a continuous variable, then the kappa statistic can be used to measure
reliability [23].

A related statistic suggested by Williams [24], compares the joint agreement of several
experts with that of the system. This is appropriate in Turing tests where the Judge-
ment of multiple experts is agregated, for example, where the ES performs a task normally
performed by a number of related experts. Other tests, including confidence interval ap-

proaches, are discussed in Fleiss [25].

6 Conclusions

As was once the case with knowledge aquisition, validation of performance is seen as a “black
art”. Yet few would disagree with the statement that an ES should exhibit an acceptable
and reliable level of performance. Validation, and evaluation, is an important concern for

most ES developers, that requires considerably more attention then it presently receives,

Throughout this paper, we have made a number of points regarding the problems of, and
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approaches to, validating ES performance. We will reiterate some of the more important

ones here:

1. A system can only be validated against an acceptable range of performence, for a
prescribed input domain. Previous human performance can give an indication of the

acceptable range.

2. Validation should be built into the development cycle. It is often necessary to carry
out a cross-sectional validation of performance prior to implementation, and specific

validation tests as the system evolves after implementation.

‘3. It is important to consider the risks involved in using a system that is actually invalid
{ES user’s risk), relative to the risks involved in not using a system that is actually

valid (ES builder’s risk).

4. Choose an appropriate qualitative method. Field testing may be acceptable for non-
critical applications. Turing tests are useful for comparing the system against experts
in a blinded evaluation, and can avoid pro or anti computer bias. Subsystem validation

and sensitivity analysis are useful for validating specific areas of concern.

5. Use quantitative methods where applicable. Use them as informatively as possible, for
instance, produce confidence intervals rather than single point estimates. Be aware of

the multiple response problem, and use appropriate multivariate techniques.

However, the bulk of this paper has been necessarily descriptive, What is needed by BS
developers is a methodology that is prescriptive, ie., explains how to validate expert systems
under certain conditions {eg., consultative applications, real-time critical applications) and
certain constriants (eg., money, development time). Yet experience in ES validation is, at
the present time, limited. A methodology, or methodologies, will only evolve in the light of

future collective experience and critical appraisal of that experience.
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