
CS5604 – Information Storage and Retrieval

Project Report

Generation of a User Interface Prototype
from an Integrated Scenario Specification

Project Members:
Colaso, Vikrant

Lobo, Lester
Shah, Anuj

Shastri, Priya

Client:
Kelapure, Rohit

Instructor:
Dr. Edward A. Fox

Fall, 2002

Generation of a User Interface Prototype from an Integrated Scenario Specification

 2

Table of Contents

1. Introduction … … … … … … … … … … … … … … … … … … … .… … ..… … . .3

2. Design and Architecture Details....................................… ……4

2.1 Problems Faced … .5

2.2 Project design… ..6

2.2.1 Modifications integrated into the SUIP design… … … … … .… … … … … … 6

2.2.2 Flow of control in the design… … … … … … … … … … … … … … … … … ...8

3. User Manual… .… … … … ..9

Appendix A: Generated UIML code … … … … … … … … … ..… … … … … … ..10

Appendix B: Snapshot of the UI prototype … ..… … … … … … ..… … … … … ...12

References… .13

Generation of a User Interface Prototype from an Integrated Scenario Specification

 3

1. Introduction
 This report discusses the design for the generation of a device independent user

interface prototype for services offered by a digital library from an Integrated Scenario

Specification using class diagrams and collaboration diagrams as input. The project was

conceived as an extension to the SUIP tool, which generates a User interface in java. But

this approach has an inherent problem. The interfaces thus generated have the java ‘look

and feel’ and this can’t be changed if the user so desires. Our design overcomes this

drawback by generating the interface in UIML which is device independent and thus it is

possible to render the code in java, HTML, WML and other languages.

The report aims at providing details about the intricacies of the design and the

tries to answer the common ‘how to’ questions to get the code running. In addition, it also

lists possible enhancements to the code that could be taken up as future work.

Generation of a User Interface Prototype from an Integrated Scenario Specification

 4

2. Design and Architecture Details
 Our project was to basically extend the functionality of the SUIP tool so that it

generates the interface code in UIML. The following concept map shows where we

concentrated our efforts in the whole SUIP scenario.

Fig1: Project Concept Map

Generation of a User Interface Prototype from an Integrated Scenario Specification

 5

As seen in the concept map the project involved converting the partial specifications

into the UIML code. To achieve this goal, we had to undertake several activities before

getting down to writing code for the final deliverable.

We took the following approach to realize our objective:

1. Understanding the SUIP algorithm in order to understand where our design would

fit into the code

2. Obtaining the latest UIML specification. (UIML v2.0 and v3.0)

3. Installing the UIML renderer. (LiquidUI)

4. Modifying the SUIP algorithm in order to integrate our design into the SUIP code.

5. Preparing a demonstrable prototype.

2.1 Problems Faced
We were faced with several problematic issues during the course of the project.

Some were due to our assumptions and the others were due to the non-standardization of

UIML. We have listed the hurdles that we faced below:

1. We started our design assuming that UIML had the ability to call functions across

files. However, we couldn’t find such functionality in the specification. We thus

had to abandon our initial design based on our assumptions. We decided to split

the files into 2 types - .stat and .act files. The .stat files contained the UI part,

which was static content. The .act files had the action listeners for the UI

components. The final output is a single file which concatenates the .stat and .act

files.

2. We realized that the UIML renderer renders only the older version of the UIML

specification much later and by this time we already had the UIML code

generated as per the latest specification. We ended up creating 2 deliverables so

that we had a demonstrable prototype.

3. One more difficulty was getting the UIML renderer (LiquidUI) up and running.

The documentation provided by the software is insufficient to do this. It took us

some time to realize that the software required jdk1.1 (now obsolete) for the

installation. However, the ironical part is that the same software requires jdk1.3 to

run.

Generation of a User Interface Prototype from an Integrated Scenario Specification

 6

4. Finally, we had problems regarding the SUIP code obtained from the authors

since the code provided had bugs. We had to debug this code before beginning

our design.

2.2 Logical Flow of the Design

The code written for our project modified 3 files of the original SUIP code:

1. UIGraph.java

2. Util.java

3. SUIP.java

The UIGraph.java file is concerned with the generation of the .stat and .act files from

the partial specifications generated by the SUIP code.

The Util.java file is concerned with the generation of the Main Window for SUIP and

the Simulation Window, which shows the transitions between the states of the state chart

diagram. The states correspond to the status of the UI components.

The SUIP.java file is the main application file, which starts the entire process and it

contains the code for combining the .stat and .act files into a single resultant file

“final.uiml”.

2.2.1 Modifications Integrated into the SUIP Design

The following functions were integrated into the UIGraph.java file:

Function Name Function Description

generateuimlFile

This function was created in line with our initial approach of

creating multiple .uiml files which could call each other. This

function creates a .uiml file with the initial headers. Code for

generating the static content of the .uiml files has been

written. However, the further development on this approach

was abandoned because we couldn’t find a way of function

calling between .uiml files.

Generation of a User Interface Prototype from an Integrated Scenario Specification

 7

generateuimlLwidget This function generates the UIML equivalent of the java label

code.

generateuimlCwidget This function generates the UIML equivalent of the java

Checkbox code. Since the renderer didn’t support the

checkbox group, we implemented this as a button group

having radio buttons. This in effect had the same

functionality as the checkbox group

generateuimlBwidget This function generates the UIML equivalent of the java

button widget

generateStatFile This function creates the .stat and .act files. It however

doesn’t populate the files.

generateUimlControllor This function generates the UIML equivalent of the java

action listeners of the various UI components. In our project,

the action listeners correspond to button actions and menu

actions

ActivateUimlWidgets This function generates the comments on state transitions

which are in turn displayed in the simulation window

DesactivateUimlWidgets This function deactivates the UI components depending on

the transition of the states in the state transition diagram

chooseUimlScenario This function generates the UI for choosing the regular or the

error scenario

The following function was modified in the Util.java file:

MenuForUIObject – This function was modified to generate UIML code for the main

SUIP terminal and the simulation window.

The following modifications were done in the SUIP.java file:

 Code was written to concatenate the .stat and .act files into a single UIML file

“final.uiml”.

Generation of a User Interface Prototype from an Integrated Scenario Specification

 8

2.2.2 Flow of Control in the Design

generateFrame()

1. Loop through Use Cases
2. generateuimlFile()
3. generateStatFile
4. Generate headers in .stat files
5. Loop through UI components in the use case

If textfield ? generateuimlIwidget()
If Label ? generateuimlLwidget()
If Button ? generateuimlBwidget()
If CheckBox ? generateuimlBwidget()

 6. generateUimlControllor()

1. Generate menu Action listener for the main SUIP terminal
2. ActivateUimlWidgets()
3. Loop through buttons in each use case

o DescativateUimlWidgets()
o ActivateUimlWidgets()
o ChooseUimlScenario()

generateUimlControllor()

1. Creates SUIP Terminal
2. Creates Simulation window

MenuForUIObject() [Util.java]

1. Concatenate .stat and .act files into final.uiml

main() [SUIP.java]

UIGraph.java

Fig 2. Flow of Control

Generation of a User Interface Prototype from an Integrated Scenario Specification

 9

3. User Manual

To use our deliverable following steps are to be taken.

1. Unzip the SuipSpec V2.0.zip to the destination folder

2. (Note: SuipSpec V3.0.zip can’t be rendered completely because UIML spec v3.0

can’t be rendered by the renderer)

3. Open a DOS window and go to the destination directory where the file has been

unzipped

4. Go to the SuipSpec V2.0\libprj\UIObjects\Terminal directory

5. On the command prompt type :

6. javac *.java

7. java SUIP classDiagramFile

8. This generates the final.uiml file, which is the output file to be rendered. The file

is created in the SuipSpec V2.0 directory

9. Download the UIML renderer LiquidUI. This can be downloaded at the following

link

10. http://www.harmonia.com/products/liquidui/download.htm

11. Install jdk1.1 since it is required for LiquidUI installation. This version is obsolete

but can be obtained from the archive at the following link:

12. http://java.sun.com/products/archive/index.html

13. Install jdk1.3 to run the renderer. This is a requirement by the renderer. The

jdk1.3 can be obtained at the following link

14. http://java.sun.com/j2se/1.3/download.html

15. Once the installation is complete and the final.uiml file has been generated it is

necessary to check if the vocabulary file(UIML2_0g.dtd) is present in the same

directory. If not place this file in the same directory as the output file.

16. The file “final.uiml” is now ready to be opened by the renderer, which then shows

the UI prototype.

Generation of a User Interface Prototype from an Integrated Scenario Specification

 10

Appendix A: Generated UIML code sample

<?xml version="1.0"?>
<!DOCTYPE uiml PUBLIC "-//Harmonia//DTD UIML 2.0 Draft//EN" "UIML2_0g.dtd">
<uiml>
 <interface id="myinterface">
 <structure>
 <part id="loan_Dialog1" class="JFrame">
 <style>

<property name="title" part-name="loan_Dialog1">Choose
Scenarios</property>
<property name="size" part-name="loan_Dialog1">300,109</property>

 <property name="layout">java.awt.BorderLayout</property>
 <property name="visible">false</property>

 </style>
 <part id="loanD1Group1" class="ButtonGroup">
 <part id="loanD1radio1" class="JRadioButton">
 <style>

 <property name="bounds">25,25,188,25</property>
 <property name= "text"> {cancelLoan,regularLoan} </property>

 <property name="enabled">true</property>
 <property name="borderAlignment" >North </property>
 </style>
 </part>
 <part id="loanD1radio2" class="JRadioButton">
 <style>

 <property name="bounds">25,50,125,25</property>
 <property name="text">{errorUserLoan}</property>
 <property name="enabled">true</property>
 <property name="borderAlignment">Center</property>

 </style>
 </part>
 </part>
 </part>

</structure>

<behavior>
 <rule>
 <condition>

<event class="actionPerformed" part-name="loanD1radio1"/>
 </condition>
 <action>

<property part-name="txtArea1" name="content">DISPLAY
</property>
<property part-name="txtArea1" name="content"> <property part-
name="L 2" name="text"/></property>

Generation of a User Interface Prototype from an Integrated Scenario Specification

 11

 <property part-name="txtArea1" name="content"></property>
<property part-name="txtArea1" name="content">DISPLAY
</property>
<property part-name="txtArea1" name="content"> <property part-
name="L 3" name="text"/></property>

 <property part-name="txtArea1" name="content"> </property>
<property part-name="txtArea1" name="content">DISPLAY
</property>
<property part-name="txtArea1" name="content"> <property part-
name="L 4" name="text"/></property>

 <property part-name="txtArea1" name="content"> </property>
<property part-name="txtArea1" name="content">ENTER
</property>
<property part-name="txtArea1" name="content"> <property part-
name="L 5" name="text"/></property>

 <property part-name="txtArea1" name="content"> </property>
<property part-name="txtFld5" name="enabled">true</property>

 <property part-name="txtFld5" name="text"></property>
 <property part-name="button2" name="enabled">true </property>
 <property part-name="txtArea1" name="content">CLICK
 BUTTON </property>
 <property part-name="txtArea1" name="content">
 <property part-name="button2" name="text"/></property>
 <property part-name="txtArea1" name="content">

</property>

<property part-name="loan_Dialog1" name="visible">false
</property>

 </action>
 </rule>

 </behavior>
 </interface>
 <peers>

 <presentation source="Java_1.3_Harmonia_1.0.uiml#vocab"
base="Java_1.3_Harmonia_1.0"/>

 </peers>
</uiml>

Generation of a User Interface Prototype from an Integrated Scenario Specification

 12

Appendix B: Snapshots of the UI prototype

Generation of a User Interface Prototype from an Integrated Scenario Specification

 13

References

1. Project page : http://collab.dlib.vt.edu/runwiki/wiki.pl?IsRprojKelapureThree

2. Scenario synthesis algorithm 1: http://www.iro.umontreal.ca/labs/gelo/suip/GELO-82.pdf

3. Scenario synthesis algorithm 2:

http://www.iro.umontreal.ca/~labgelo/Publications/Papers/ccpe-2001.pdf

4. Scenario synthesis algorithm 3:

http://www.iro.umontreal.ca/labs/gelo/suip/bookChapter.pdf

5. The SUIP tool for scenario-based prototyping: http://www.iro.umontreal.ca/labs/gelo/suip/

6. UIML draft specification version 3.0 : http://www.uiml.org/specs/uiml3/DraftSpec.htm

7. UIML draft specification version 2.0 : http://www.uiml.org/specs/uiml2/DraftSpec.htm

8. List of java classes supported by the renderer:

http://www.uiml.org/toolkits/Java_1.3_Harmonia_1.0.uiml

