Technica Report CS75015-R

SOME CLASSTCAL MATHEMATICAL RESULTS
RELATED TO THE PROBLEMS OF THE
FIRMWARE /HARDWARE INTERFACE

T. C. Wesselkamper

July 1975

Department of Computer Science

Virginia Polytechnic Institutre and State University
Blacksburg, Virginia 24061

Some Classical Mathematical Results

Related to the Problems of the

Firmware/Hardware Interface

by
T. C. Wesselkamper
Department of Computer Science

Virginia Polytechnic Institute and State University
Blacksburg, Virginia

Abstract

The paper reviews the Shannon and Reed-Muller Decomposition Theorems
énd notes the relationship of the former to machine instruction set. It
hypoﬁhesizes an instruction set based on Galois field operations and applies
the divided difference methods of Néwton to the automatic generation of a
polynomial representation of an arbitrary funetion. Some numeric results
are given for the fields GF(9) and GF{(16). An extenéion of the methods

to the representation of functions by rational forms is suggested.

Some Classical Mathematical Results

Related to the Problems of the

[

Firmeare/Hardware Interface

by
T. C. Wesselkamper
Dept. of Computer Science
Virginia Polytechnic Institute

and State University
Blacksburg, Virginia

T. Background

1f in 1975 one surveys instruction sets for digital computers of
the present and past one finds a great similarity. A typical recent
example is the Weisbecker machine [1]. 1In an excellent paper Joe
Weisbecker "describes a simplified microcomputer architecture that
offers maximum flexibility at minimum cost." [1, p. 41] We are told:
"ihe ALU is an 8-bit logic network for performing binary
cubtract, logical 'and', 'or' , and texclusive or' on two 8-bit
operands. One opéerand 1is the bus byte and the other is
contained in the D register. The D register can also be
shifted right one bit position. Add, subtract, and shift
operations set a one bit overflow register...which can be
tested by a branch jnstruction.” {1, p- 437
No attempt is made to explain this cholce of functions. They provide
a typical example of the operations provided by designers.

The second recent example is a description of HALL [2] , an assembler
1evel lanpuage for the HYRMAN hardware simulator [3]. The HALL machine
possesses nine arithmetic functions (binary and decimal addition and

T T

subtraction, 'and', 'or', Yexclusive or', left shift and right shift)

and fourteen status instructions.

The work reported herein was supported in part by Natiomal Science
Foundation Grant No. DCR74-18108.

These are given ip Table I, below. (1t should be noted that HALL does
decimal arithmetic in a fashion analogous to the old I8M 1620 or to the
5/360-370 "packed decimal” arithmetic.) | L0
That these designs have not varied significantly ip thirty years may ?
be seen bY comparing them to the instructions propOsed by John von
Neumann for the EDVAC machine in 1945 [4]. gee Table 1I, below. This
in spite of the dual facts that electronics can support much more varied
design and that the class of problems to which computers have come tO
be applied ig far wider than was envisioned when the first computers
were designed for numeric work.
Certain characteristics may Be aoted as common tO the instruction
sets of all current machipes:
1.) all provide arithmetic functions (addition, gubtraction,
multiplication) modulo iL or ZL—1=where 1 is the word size
in bits of the machine;
2.) all provide bit-wise logic operations (conjunction, disjune—
tion, non-equivalence).
The first of these characteristics, modulo arithmetic, is related
+o the fact that digital computers are traditionally regarded by |
designers as machines upon which to pefform numeric calculations.
The second is probably related to the relationship pbetween machine
instruction sets and the discipline of circuit design.
The seminal paper in the field of circuil design was written by
Claude Shannon as 2 graduate student at MLIT in‘1938 [5]. Therein
he shows that {f E(2) denotesS rhe space {0, 1} and if, for some
natural number 1, fis a funetion £: ET(2)E(2), then f may be

represented in the form:

CE(R., Ky eees X) = % wk *
(x> ¥ 0 T a X% gr ey (1)

where for all 3 (4 <3 f_n) x*j {g either %y or'EE , the generalized

gummation sign represents disjunction, and the implied multiplication

is conjunction. ' i

The joys and sorrows of working with the disjunctive normal !

representation of a fynction are well known, as is the fact that a
representation in the form (1) is pot unique.

The above result follows {mnediately from the theorem.which has
come to be called the Shannon Decomposition Theorem, nameliy, if £ is
defined as gbove then there are two functions 8% En_l(2)+E(2) and h:

gl (2)-E(2) such that!

f(xl, iees xn) = xng(xl, Lees Xn—l) +'§;h(xl, v xn_l).
These results have dominated the area of circuit design for its whole
history-

Another decomposition theorem was published in 1954 by Reed (6]l
and Muller [7], which has come tO be called the Reed~-Muller Decomposition
Theorem. Reed proves that if £ 18 again defined as above and if ()

denotes non-equivalence (exclusive—or), then there exist functions 8%

) » B(2) and h: 2y ~ E(2), cuch that:

f(xl, caes xn) = g(xl, vess anl) ﬁ)xhh(xl, cees Xn—l)'
geldom noted 18 the fact that Reed explicitly refers toO deriving the
formula using classic aifference methods, that the method depends
upon the fact that E(2) undet the operations of non-equivalence and
conjunction form a field with twO elements. Reed motes that the method

may be generalized to any finite field.

There are two striking differences between the Shannon theorem
and the Reed-Muller theorem:

1.) Shannon Decomposition uses trhe logical operations:
Reed—Muller Decomposition uses two field operations;

2.) Shannon Decomposition may be generalized to a sﬁace
of arbitrarily many elements, but the number of operators
tequired increases linearly with the size of the space,
Reed-Muller Decomposition may be generalized to a space of
k = pq elements, where P is a prime and q is a natural
number, and the pumber of operators required remains two.

It is with a generalization of Reed's and Muller's Qork to

instruction sets thar we are concerned in this paper.

IT. An Environment

We assume a hypothetical méchine M of fixed word size W,Inot
neceséarily biﬁary~based but at least p-based where P is a prime,

We assume that the iastruction set of M includes addition and
multiplication over the field GF(pw), the field of k = pw elements.
Let E(k) = {0, 1, ceey k~1}. We assume that tﬁe Machine M is to be
used to evaluate functions of the form f: En(k) + E(k) for natural
numbers n,

The question which concerns us is: given this machine M, how would
you program feor it? (A first answer probably should be: slowly and
with much pain.) By "program" we mean the process of firmware/hardware
interface to provide a user with an instruction set which is useable,
familiar, some how pleasant.

The main point of thig paper is that if the hardware is as assumed

above, the process of firmware/hardware interface can itself be automated.

Something needs to be said, before we proceed, about the
reasonableness of the above hypothetical environment. Except for
certain experimentél machines, digital computers have been binary.
Ternary machines have been discussed at length; ternary circuits have
been designed, but have always been prohibitivély expensive to implement.
Recently Mouftah and Jordan at Laval [8] and Etiemble énd Israel at
Paris VI [9] haﬁe built ternary logic devices using off-the-shelf
chips. 1In the light of this it does not now appear that ternary
{and even quinary) machines can be as easily dismissed as unrealistic.
Further, circuits for Gaiois addition and multiplication have been
designed énd implemented for many years [10, 11, 12). Most unreal-
istic is our limitation of the problem domain of concern to problems
of function evaluation. This stems from the problems of incarnating

primitives for, say, string processing and list processing into hardware.

III. Mathematical Results.

Throughout this section and the section which follows we use +
and implied multiplication to denote addition and multiplication over
a field GF(pw). We denote addition and multiplication of integers
modulo k by xty(mod k) and x*y(mod k) respectively. Subtraction and

W
division are over GF(p).

The first two results concern the representation of a function as
a polynomial over a finite field.

If £: E(k) +~ E(k) is a one-place function, then there is a poly-
nomial in one indeterminate which defines f, specifically:

k-1 ;
i

f(x) =% a,x .
i=0 @

This representation is unique.

If g: Ez(k) > E(k) is a two-place function, then there is gz
polynomial in two indeterminates which defines g, specifically:
k-1 i s
g(x,y) =L a5 yJ. _ (3)
i,j=o
This representation is unique.

These results immediately generalize to n-place functions. The
uniqueness of the representation is a radical departure-from the
situation in the case of the representation of a function in disjunctive
form. However the uniquengss gained is useless unless there is an
effective computational means to calculate the coefficients a; and aij'

The computational means is provided by the divided difference
methods of Newton [13] . In the usual.works on finite difference
methods [14, 15] the methods are developed for the real or rational
fields, but the modification of the techniques to finife fields is
direct.

Firstly, we give the formulae for the representation of one-place

functions. Let Fo7 Xpr ocres *k-1 be any permutation of the elements

of E(k). Define a difference operator as follows:

D f(x,) = f(Xj) B f(Xj-l-l) ;

£ J X,~X

J i+l
(4)
Dp_lf(x - Dpﬁlf(x)

DY £(x) = Px 0y il M

x J X - X

] jtp

This difference operator is easily implemented as a recursive procedure.

Newton's Theorem is:

k-1 .
i
fix) = f(xo) +'Z Dxf(xo)(x—xo) - (X_Xi~l)' (5)
i=p _
The polynomial must be expanded to obtain the form of (2) above.
1f £(x,y) is a two-place function and if X s Xys aee, %, 1 and

Tor Tys wees Y-y are two (possibly distinct) permutations of E(k)

then define:

Dif(xj ,_yj *) = f(x]- ,Yj*) - f(xj-l'l’yj *) (6)
| T %
' p-1 _ p-1
sz(xj ,YJ *) = DX f(xj ’yj*) DX f(xj+l ,Yj*l
X, - X,
| Jtp
le(X,,y.*) = f(Xj ’yj*) - f(x,i:yj*_{_l)
¥ 377 =5
Vi 7 Vynpq
p~1 _ .p-1
D}‘rpf(xj,yj*) = jy f(xj,yj*) D f(xi’yj*+l)
Tix T Tikap
In this case, Newton's Theorem is:
k-1 i
£Ce,y) = £0x,,7,) +i=§ D ECx Ly) (x-x) ... (x=x;)
k=l i,
+ iio Dyf(xo,yo) (y-y) - ..(y—yi_l)

+ E— DiDgf(xo,yo)(x—xo)...(x~xi_l)(y—y0)...(y—%__l).

]

(7)

Provided that the recursive procedures for evaluating DX and Dy are
provided with a remembrance of the values already calculated, the method
above ig simple and computationally effective., In the forms (5) and
(7) the representation of the function depends upon the particular permu-
tation of the elements X, and yj chosen. When the polynomials are
multiplied out to obtain the forms (2) and (3}, the resulting polynomial

is unique,

iv. Implementation.

A Galois field GF(p) is a vector space of dimension q over the
fleld GF(p), which coincideg exactly with the ring of integers modulo p-
Addition of the elements of GF(pq) is component-wise., In order to define
multlpllcatlon it is necessary to choose a polynomlal P(x) of degree
- q which is irreducible over GF(p). Two elements of GF(p) are multiplied
as if the coordinates were coefficients of polynomials, the result
being reduced modulo P(x).

In general there is a wide variéty of choice for the polynomial
P(x). The profe551onal algebraist assures us that all of the fields
resulting from different choices of P(x) are isomorphic. Isomorphism
appears to be totally unrelated to Simplicity of implementation.
Different choices of the polynomial P(x) can have a great effect on
the complexity of the implementirng clrcuitry. Complete tableg of
polynomials irreducible over GF(2) for orders to 16 are in [16],
Complete tables of polynomials irreducibie over GF(B) for orders
to 10 are in [17]. The most complete tables for GF(5) and GF(7)

(to orders 5 and 4, respectively) are in [18].

The table below contains some information about the results of the
application of the methods outlined herein to two situations. The
polynomials corresponding to six functions were evaluated for the field:
GF(16) and for the field GF(9). The table below presents the results.
The column "UN" refers to the unnormalized form of the polynomial
.generated ((5) or (7) above); the column "N" refers to the normalized
polynomial ((2) or (3) above). The integer sden is the number of
non-zero ceefficients in the corresponding polynomial. The last two
functions are defined respectively as:

L, if 0< x < (k-1)/2;
Signum(x) = € 0, if x = 0;
k-1, if (k—i)/2< x <k-1.
(That is, the usual association of the high integers with the negative

integers.)

1, if x <y;
Order (x,y) =4 0, if x = V3
-1, if yax.
(Here the high integers are again taken to represent negative integers

and, in particular, k-1 to represent -1.)

GF(16) . GE(9)

NP N NP N
xhy (mod k) 124 124 17 18
x*y(mod k) 129 174 . 17 21
xty{(mod k-1) 134 233 42 69
x*y (mod k-1) 161 206 50 48
Signum(x) . 15 5 8 4
Order(x,y) 184 163 57 55

Specifically, in GF(16) we have:

l4x + 14x2 + 14x4 + l4x8 + XlS’

Signum(x)

and in GF(9) we have:

5x2 + 5X4 + 5x6 + x8.

Signum(x)
These values are, at best, depressing for the
future of a direct simple implementation of the method to words of

8 or 16 bits.

V. A Future Direction.

In the above work we have limited ourselves by using a polynomial
representation of functions. Since in a field of characteristic 2
addition and subtraction coincide and since in a field of character-
istic 3, xtx = -x, there would be ﬁo point in providing subtraction
as a fundamental operation for our hypothetical machine. It may be
profitable to add division to our set of primitive operations.

This may. be mere precisely formulated in the following way. Given
f(x,y), how can one find polynomials P(x,y) and Q(x,y) such that the

follpwing conditions all hold:

1. the degree of P(x,f) is strictly less than the
degree of Q(x);

2. the degree of Q(x,y) is strictly less than k;

3. Q(x,y) is either irreducible or g product of
Irreducible factors (and hence never {);

4. f(x,y) = P(x,y)/Q(x,v).

It may be that this modification will render the
Galois field primitives a viable instruction set for incorporation
into hardware,

In addition to this, the work Yeported at Micro-~7 by
Louise Jones [19] concerning sets of control Primitives needs to be
extended so that suitable control primitivescan be linked to the state

modifying primitives discussed in thig paper.

Table I -- Operations for HALL

Mnemonic Operation Code (hex)

Arithmetic Unit

NO No operation 0
+B : Binary addition X + Y 1
~B Binary subtraction X - Y 2
+D Decimal addition X + Y 3
-D Decimal subtraction X - Y 4
AN And X ¥ 5
OR : Or XY .)
EX Exclusive or X Y 7
SL Shift X left one bit 8
SR Shift X right one bit 9
Status Unit

BITO Set bit to O 0
BITI Set bit to 1 1
IBIT Invert bit 2 .
DIGO Set digit to O 3
DIGT Set digit to 1 4
IDIG Invert digit 5
NOOP No action 7
BZHO Set bit Z = Q% 8
BZLO Set bit A =0 9
DZI0 Set digit Z =0 A
IBZO : Invert bit Z = 0O B
BZHD Set bit 0 < Z < 9%% C
BZLD Set bit 0 < A< 9 D
DZID Set digit 0 < Z <9 E

* Set bit to 1 if Z = 0.
*% Set bit to 1 if Z is a digit, i.e., is a number between 0 and 8.

[2, p. 224]

Table TI -- The Tnstruction Set Proposed for the EDVAC
Instructions consist of <arithmetic instruction> <variation> .
They operated on registers I, J, and A.

Arithmetic Instructions

AD Set A<« 1+ J.

SB Set A<« 1 - J.

ML Set A« A+ I xJ (rounded)

Y Set A < I/J (rounded)

5Q Set A + VI (rounded)

1T Set A+ 1

JJ Set A<+ J

SL If A>0, set A« T; if A < 0, set A < J.

DB Set A < binary equivalent of decimal number I.
BD Set A + decimal equivalent of binary number I.
Variations

33 Do the operation as described above, holding.the

result in A.

A _ _ Do the operation as described above, then set
J < I,I<«A, A<+O.

S Do the operation as described above, then store the
result A into memory location yx and set A <« Q.

F Do the ‘operation as described above, then store the
result into the word immediately following this in-
struction, set A + 0, and perform the altered instruction.

N Do the operation as described above, then store the
result into the work immediately following this din-
struction, set A < 0, and skip the altered instruction.
[4, pp. 250-1]

10.

11.

12.

Bibliography

Joe Weisbecker, "A Simplified Microcbmputer Architecture", IEEETC
(March, 1974) pp. 41-7. : :

R. H. Evans, L. H. Moffett, R, E. Merwin, "Design of Assembly Level
Language for Horizontal Encoded Microprogrammed Contrel Unit',
Micro-7 Preprints (September, 1974) pp. 217-224.

A. J. Nichols, IIT, "aA Midroprogramming Framework for Experimental
Machine Design", SIGMICRO Newsletter, (July, 1971) pp. 17-21.

Donald E. Knuth, "Von Neumann's First Computer Program', Computing
Surveys, (December, 1970), pp. 247-60.

Claude E. Shannon. ™A Symbolic Anélysis of Relay and Switching
Circuits", Trans. Am. Inst., Elec., Eng, 57 (1938), pp. 713-23.

Irving 5. Reed, "A Class of Multiple—error—correcting codes and the
Decoding Scheme'", Trans. IRE - Info. Theory PGIT-4 (Sept. 1954),
pp. 38-49, :

D. E. Muller, "Application of Boolean Algebra to Switching Circuit
Design and to Error Correction”, IRE Trans. - Elec. Comp. EC-3,
No. 3 (Sept. 1954), pp. 6-12.

H. T. Mouftah and I. . Jordan, "A Design Technique for an’ Integrable
Ternary Arithmetic Unit", Proc. 1975 Int. Symp., on Multiple-valued
Logic, (nloomington, Indiana, May 1975), pp. 359-372.

D. Ltiemble and M, Israel, “"Implementation of a Complete Ternary
Algebra - Application to Ternary Flip Flop", Proc. 1975 Int. Symp.
on Multiple-valued Logic, (Bloomington, Indiana, May 1975), pp.
316-329, ' .

James T. Ellison, Uuiversal Function Theory and Galois Logic Studies
(ARCRL-72-0109) (Bedford, iass.: Air Force Cambridge Research
Laboratories, 1972). '

B. A. Christensen, J. T. Ellison, R. A. Eggan, Galois Polynomial

Generation (PX-7703) (St. Paul: Sperry Rand4Univac, 1972).

B. A. Christensen, wWotes on Galois Logic Design (PX-10452) (St.
Paul: Sperry Rand-Univac, 1973).

13. Isaac Newton, "Approaches to a General Theory of Finite Differences"
[1675~6] in D. T. Whiteside (editor), 1he Mathematical Papers of Isaac
Wewton, vol., 4, (Cambridge, The University Press, 1971), pp. 14-73,

14, Charles Jordan, Calculus of Finite pifferences, (New York, Chelsea
Publishing Company, 1v47).

15, L. M. tilne-Thomson, The Calculus of Finite Diftefences, (London,
Macmillan ana Co.,, 1933),

16. W. W. Peterson, Error-Correction Codes, (New York, John Wiley and
Sons, 1961), pp. 472-492,

17. vavid P. wolft, Irreducible Polynomials over Gr(3), unpublished
1.8, probject, Virginia Polytechnic Institute and State University,
(June 1975) pp. 25-57.

ls. Randolph Church, "Tables of Irreducible Polynomials for the wrirst

Four Prime Moduli", annals of Math. 36, no. 1 (January 1935), pp.
198-2u9, ' .

19. wvouise H. Jones, "Microinstruction Sequencing.for structured
Programming", Micro-7 Prepriuts (September, 1974) pp. 277-89.

