

VTGemini: Universal iOS Application for Guided Emergency Response
and Notification for the Virginia Tech Community

Kyle Lynn Schutt

Thesis submitted to the faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science and Applications

Osman Balci, Chair

James D. Arthur

Eli Tilevich

April 23, 2013

Blacksburg, Virginia

Keywords: Emergency management, iOS mobile software engineering, emergency

notification, emergency guidance

VTGemini: Universal iOS Application for Guided Emergency Response
 and Notification for the Virginia Tech Community

Kyle Lynn Schutt

Abstract

The ubiquitous use of mobile devices and smartphones in the United States presents an

interesting opportunity for application developers with respect to emergency management.

Software engineers from the federal government to individuals have recognized the unique

prospect of utilizing always-connected devices to assist in emergency notification, preparedness,

and response. The federal government has instituted and ratified multiple acts and mandates with

respect to mobile communications during a crisis such as the Commercial Mobile Alert System.

Likewise, individual organizations and developers have created mobile applications that access

weather alerts from the National Weather Service. Many of these applications utilize push

notification architectures to notify users and stakeholders about impeding emergency situations.

While most of these applications are geared towards a national audience, there are a few that are

highly granular with a focus on the local community. This thesis presents a universal iOS

application running on all iOS mobile devices: iPhone, iPad, iPad Mini, and iPod Touch for the

Virginia Tech community. The application is highly granular with respect to emergency response

guidance and notification by providing clear, concise, and supportive information to citizens

during a crisis. Additionally, the application provides another medium of delivery for the Office

of Emergency Management at Virginia Tech to potentially mitigate the extent of collateral

damage and secondary incidents while saving lives.

iii

Acknowledgments

First off, I would like to acknowledge and thank Officer Geof Allen of the Virginia Tech Police

Department for proposing the original idea for a mobile application that guides citizen in the

proper response to an incident. Without his idea and subsequent communications with Dr.

Osman Balci, this application would not have been possible.

With that, I would like to thank Dr. Osman Balci for his support during the research. He

provided great advice throughout my studies at Virginia Tech, both professionally and

personally.

I would like to acknowledge Michael Mulhare of the Office of Emergency Management (OEM)

for his belief, support, and encouragement for my research and development of this application.

He proved to be an invaluable asset to the project and helped us achieve our goals. Additionally,

I would like to thank Kendall Woodard for her work on the user interface with respect to the

icons, images, and layouts. Her work single-handedly brought our application and the OEM

website together visually.

I would like to thank Layla Wang, who provided code and guidance for the expanding table view

rows, and Michael Enriquez for developing the sliding view controller. Furthermore, I would like

to acknowledge Carl Harris of Communications Network Services (CNS) for feedback on the

VT Alerts integration, and for developing a static library that allowed our application to register

and receive emergency notifications. I would also like to acknowledge Michael Irwin for his

assistance in creating the VT Alerts static library and server side applications. Additionally, I

would like to thank Peter Sforza for his support as a committee member at-large.

Finally, I would like to thank Serdar Aslan and Vincent Ngo for software testing and providing

valuable feedback.

iv

Table of Contents

Abstract .. ii

Acknowledgments .. iii

List of Figures .. vi

Chapter 1 : Introduction ... 1

1.1 Problem Definition .. 1
1.2 Objectives of the Software Application ... 1
1.3 Importance of the App .. 2

1.4 Thesis Overview ... 2

Chapter 2 : Background ... 3

2.1 Virginia Tech Police Department .. 3
2.2 Office of Emergency Management at Virginia Tech .. 3
2.3 Communications Network Services at Virginia Tech .. 5

Chapter 3 : Related Work ... 6

3.1 Emergency Notification ... 6
3.1.1 Commercial Mobile Alert System ... 6
3.1.2 Service Providers ... 7

3.1.3 Third-Party Apps .. 8

3.2 Emergency Guidance and Incident Response .. 10
3.2.1 Red Cross Apps ... 11
3.2.2 FEMA App .. 12

3.2.3 ReadyVA App .. 12

3.3 Conclusions and Thoughts ... 12

Chapter 4 : VTGemini Design and Implementation ... 14

4.1 Resource Loading and Management .. 15
4.2 Configuration Files and Resources ... 17

4.2.1 Callbox Locations ... 18

4.2.2 Desk Reference ... 18

4.2.3 Guide Configuration ... 19
4.2.4 Welcome Screen .. 19

4.2.5 Header Images and Guide Icons ... 20
4.2.6 Fetching ... 20

4.3 Custom Color Scheme and Layout ... 20
4.4 Collection View ... 21
4.5 Guides .. 22

4.6 Sliding View Controller .. 23
4.6.1 Expanding Menu Items .. 25

4.6.2 Search.. 25

4.7 Callboxes .. 27
4.8 Building Information .. 28

4.9 VT Alerts Integration ... 31
4.10 Developer Menu ... 37

v

Chapter 5 : VTGemini Evaluation .. 39

5.1 Accuracy ... 39
5.2 Functionality .. 39

5.3 Maintainability ... 39
5.4 Interoperability .. 40
5.5 Usability .. 40
5.6 Dependability .. 41
5.7 Performance ... 41

Chapter 6 : Concluding Remarks and Future Research ... 43

6.1 Concluding Remarks .. 43

6.2 Future Research ... 44

References ... 45

vi

List of Figures

Figure 1: Classroom Poster generated by OEM [Virginia Tech, 2012b]. 4
Figure 2: Overview of the CMAS architecture [Sprint, 2013]. .. 7

Figure 3: View of the pull to refresh mechanism. .. 16
Figure 4: An example guide. ... 18
Figure 5: Initial test of a collection view. ... 21
Figure 6: Welcome Screen for VTGemini with the new layout and color scheme. 21
Figure 7: Initial guide list. ... 22

Figure 8: Quick Reference Collection View. .. 22

Figure 9: Initial test of the sliding view controller. .. 24

Figure 10: Sliding View Controller showing the menu with expanded items. 24
Figure 11: Active search for the term "win". .. 26
Figure 12: Initial callbox map design. .. 28
Figure 13: Final version of the callbox locations.. 28

Figure 14: List of all Virginia Tech buildings. ... 29
Figure 15: Building detail of a selected item. ... 29

Figure 16: Directions to selected building. ... 30
Figure 17: Final version of the building information popup... 30
Figure 18: Table view of active alerts. .. 32

Figure 19: Step-by-step guidance view. .. 33

Figure 20: Map view of an active alert. .. 33
Figure 21: Architecture for the development version of the VT Alerts system. 34
Figure 22: VT Alerts test administration portal. ... 35

Figure 23: Example Active Alert. ... 36
Figure 24: Registering a device for VT Alerts. ... 36

Figure 25: VT Alerts Architecture and Workflow [Harris, 2011]. ... 37
Figure 26: Developer Menu for VTGemini. ... 38

1

Chapter 1 : Introduction

1.1 Problem Definition

The nearly ubiquitous use of handheld, internet-connected devices in the United States presents

an interesting opportunity for emergency and incident managers, and first responders. While

there has been an increase in ñbig dataò analysis through social media streams to analyze and

understand the nature of incidents and tragedies (e.g., the Crisis, Tragedy, and Recovery

Network (CTRnet) [Crisis, Tragedy, and Recovery Network, 2013]), there has been little

research into using mobile devices to help guide and instruct citizens within the immediate area

of a threat. There are some emergency managers who utilize social media to alert and instruct

citizens about an ongoing incident; however, social media is subject to a lot of noise for

individual users and there is no direct way to discern the difference between a tweet from a

celebrity and one from a local crisis management office.

Furthermore, alerts and notifications that are issued from entities like the National Weather

Service (NWS) do provide high-level, commonly-accepted instructions for citizens [National

Oceanic and Atmospheric Administration, 2013b]. These alerts and notifications tend to apply to

a county level and are, therefore, not granular enough for citizens within the immediate vicinity

of an on-going incident. Likewise, individual corporations and entities within a county may

require specific responses to incidents for its employees or dependents. While many of these

entities may have detailed emergency action plans, these plans become useless in an emergency

where a citizen may be required to act quickly by following a set of steps and list points.

An important part of emergency response management is the ability to minimize collateral and

secondary incidents by providing guidance to members of the general public. During an eminent

threat, guidance must be simple, clear, and concise to achieve maximum effectiveness.

Additionally, educating the public on emergency preparedness through crime prevention

initiatives prior to a crisis can help mitigate the scope of collateral and secondary incidents.

To address these problems, we have designed and implemented a mobile solution that focuses on

users within an immediate area-of-interest for an incident. The software application was

designed to focus on the specific needs and interests of a community, Virginia Tech, and to

provide direct access to guides and information developed by the Office of Emergency

Management (OEM) at Virginia Tech [Virginia Tech, 2013d]. Additionally, the application

utilizes simplified step-by-step guides of the more verbose documentation on the proper response

to an emergency by a citizen. Along with providing guidance to a citizen, the application

supplies another method for notifying citizens of on-going VT Alerts through the Virginia Tech

Emergency Notification System (ENS) [Virginia Tech, 2013b]. Finally, the application is not

meant to replace existing OEM protocols but, only, to augment and enhance these protocols to

improve their efficacy during an emergency situation [Virginia Tech, 2013e].

1.2 Objectives of the Software Application

The goal of this research is to develop a mobile software application (app) that addresses the

problems of guidance and notification for specific threats and incidents within the Virginia Tech

2

community. The granularity of the domain is an important aspect of this app since it is designed

to work specifically and exclusively with the accepted OEM practices of Virginia Tech. While

the narrow domain of the app is not unique among mobile apps, it is unique among the class of

apps geared towards emergency management. Specifically, the guidance protocols are unique

and applicable only to the Virginia Tech community and it is not recommended that these

protocols be enacted at other universities, business, and other entities. Finally, the notification

system is maintained by Communications Network Services (CNS) at Virginia Tech and is only

activated for incidents involving the Virginia Tech community [Virginia Tech, 2013a].

Therefore, users and citizens with no affiliation (geographically, personally, or otherwise) will

find little utility in the app.

Additionally, this thesis catalogs and details the process in which we developed the app, with a

focus on the design decisions we made in each iteration of development. In particular, we discuss

several unofficial common user interface components and integrated JavaScript to assist in

content generation and management. The design decisions and processes we chose are meant to

inform and guide other mobile app developers in their own development life cycles with respect

to certain requirements like network congestion mitigation and accessibility to content during a

crisis.

1.3 Importance of the App

The stated problem is critical to any organization, especially campuses, which are responsible for

a large population during an emergency. The ability to provide instruction and information to a

group of people quickly and effectively will aid first responders and prevent secondary incidents.

Additionally, because the number of smartphone users has increased with the proliferation of

iPhones and Android devices, there is an opportunity to reach citizens in new and innovative

ways during an incident. By creating an app that provides emergency response guidance, users

will be able to gain access to important information regarding an active threat. The app can take

advantage of the features offered in iOS devices like the Global Positioning System (GPS), a

familiar user interface, network connectivity, and data management to provide context-sensitive

instructions for the user.

We designed and implemented the iOS app with full cooperation and investment by the Virginia

OEM and CNS at Virginia Tech. The goal of the app is to provide meaningful, helpful, and

supportive information to citizens during an incident to minimize additional harm or damage,

augment currently accepted protocols, and assist first responders through educating citizens on

scene. The impact of the app is that of a more educated public that can potentially mitigate

additional losses and save lives.

1.4 Thesis Overview

In Chapter 2, this thesis provides some background to the origin of the app and specific entities

within Virginia Tech. Chapter 3 describes our analysis of the current landscape of emergency

management apps. In Chapter 4, we discuss a detailed breakdown of the evolution and

description of the app. Chapter 5 provides a self-evaluation of the app with respect to quality

indicators. Finally, in Chapter 6, we state some conclusions and future work.

3

Chapter 2 : Background

In this chapter, we provide background information on various departments at Virginia Tech that

assisted us in creating VTGemini. We describe the work domain and brief description of the

entity as well as their contribution to the app.

2.1 Virginia Tech Police Department

The Virginia Tech Police Department (VTPD) is responsible for students, faculty, and staff

within the borders of the Virginia Tech campus [Virginia Tech, 2013c]. This includes law

enforcement and crime prevention activities throughout the community. Many of their programs

are designed to educate community members in self-defense through Rape Aggression Defense

(RAD) classes and the Student Policy Academy. Additionally, they maintain lists of committed

crimes and ongoing crime alerts [Virginia Tech, 2013f]. Their website and community outreach

informs citizens on safety and emergency training while providing access to Safe Ride, a

nighttime safety escort, and finger printing.

The VTPD contains a plethora of safety and emergency information that is useful during an

emergency situation. However, disseminating that information in a timely manner is difficult due

to network congestion and a lack of an appropriate medium for delivery. The idea of a mobile

app assisting citizens during VT Alerts began to form. An officer of the VTPD generated a high-

level design for a step-by-step guidance app as a ñwhat to doò during an incident. The initial idea

was to notify citizens through e-mail or text message with the guide to inform them how to

properly respond to the ongoing alert. This idea was quickly eliminated in favor of a native app

due to the uncertainty surrounding a consistently available network connection. During an alert,

the network (both cellular and internet) tends to become highly congested. Moreover, a web-

based mobile app was disregarded because of network concerns.

2.2 Office of Emergency Management at Virginia Tech

The Office of Emergency Management (OEM) at Virginia Tech is responsible for preparing,

managing, and recovering from incidents and threats to the community. Along with internal

protocols to ensure the continuity of operations at Virginia Tech, OEM provides many publicly

available datasets for what to do in case of an emergency. Besides the online resources, every

classroom includes a ñClassroom Posterò (Figure 1) that provides a simple guide to specific

alerts and other information [Virginia Tech, 2012b]. Additional materials include the Desk

Reference which provides information for all possible alerts on campus and the Blue Light

(callbox or emergency phone) map [Virginia Tech, 2012a; Virginia Tech, 2012c]. OEM also

provides training programs and certification programs for coordinators and citizens alike.

OEM is one of the stakeholders and users of ENS. As such, they are responsible for the content,

duration, and timing of each alert. Additionally, OEM manages the content of each of the alert

guides. There are five major categories of alerts that can occur on campus: Hazardous Materials,

Health, Facilities, Physical Threat, and Weather and Natural Disaster related emergencies

[Virginia Tech, 2013g]. Each of these categories is further broken down into subcategories. The

4

guides provide detailed information about the incident, how to prepare for the incident, what to

do during the incident, and how to recover from the incident.

Figure 1: Classroom Poster generated by OEM [Virginia Tech, 2012b].

While the online guides located on the OEM website are quite extensive and detailed, not all of

the information is required during an active alert. During an ongoing incident, it is prudent to

present citizens with concise yet informative information about the incident. Therefore, OEM

provides a Desk Reference that is given out to citizens that contains information that can be

quickly accessed and relayed during an emergency.

5

2.3 Communications Network Services at Virginia Tech

Communications Network Services (CNS) is the telecommunications service provider for

Virginia Tech. They provide the ñvoice, data, and video services to é the University

communityò [Virginia Tech, 2013a]. Most importantly, CNS is responsible for maintaining and

managing network infrastructure during a VT Alert by providing a secure, reliable channel to

issue alerts to the community. All critical infrastructures must be maintained and operational

during an alert to meet specific mandates and guidelines.

CNS has previously worked on and researched the integration of VT Alerts and iOS Push

Notifications (APN) to provide another channel of disseminating VT Alerts [Apple, Inc., 2013a].

Currently, CNS has created a secure RESTful endpoint that will allow devices to register and,

subsequently, receive notifications from VT Alerts [Fielding, 2000]. The goal of the endpoint is

to create an API that any vendor with a notification architecture can subscribe to and receive

alerts. Although we are using iOS Push Notifications, their system will be scaled to include

Android Push Notifications or any other app that registers via the API.

6

Chapter 3 : Related Work

This chapter provides an overview and analysis of the current mobile app landscape in terms of

emergency notifications and guidance, and incident response. The analysis will help us

understand the relationship between VTGemini and other emergency management apps.

3.1 Emergency Notification

There are two different types of emergency notifications that we address in this section. The first

type of notification is based on a userôs service provider and the federal rule for the Commercial

Mobile Alert Service (CMAS) [Federal Communications Commission, 2013a]. Most of the

major service providers in the United States have adopted these standards, as have most handset

manufacturers. The second type of notification is less restrictive and more informal. These

notifications include local (county or state) level notifications about specific weather-related

emergencies or other naturally occurring incidents. These types of notification can also include

specific announcements within a certain county.

3.1.1 Commercial Mobile Alert System

CMAS was born out of the Warning, Alert, and Response Network Act, Title VI passed in 2006

[Federal Communications Commission, 2006]. The purpose of CMAS is to provide a new

network layer to deliver emergency notifications to consumers. The network traffic on this layer

is required to have at least equal priority to active data and voice transmissions to a device.

Internally, Alert Messages sent via CMAS are limited to ninety alpha-numeric characters and

must include the type of alert and severity. The FCC has, currently, defined three types of alerts

that are allowed to be sent through the system (in order of importance): Presidential, Imminent

Threat, and Amber Alerts [Federal Communications Comission, 2013b]. As an added capability,

CMAS allows for geographically targeted messages in a specific geofence [Federal

Communications Comission, 2013b]. This allows providers to be flexible in the target area and

less restricted by jurisdictional boundaries.

While actual numbers and analysis of successful alert delivery are not published, the provision

that alerts cannot preempt active voice calls (or any functionality on a device) and the mobile

nature of cell phones it is possible that some CMAS alerts are never received by their intended

target. That being said, there are several telecommunication companies who have dedicated

resources to creating, maintaining, and administering an emergency wireless network that

operates independently of commercial systems. One such company is TeleCommunication

Systems, Inc. that provides extensive CMAS solutions and E911 services to the public

[TeleCommunications Systems, Inc., 2013]. An overview of the CMAS architecture is shown in

Figure 2.

Many of the most popular smartphone manufactures and mobile operating system designers

include CMAS capability directly into new handsets; this includes all versions of Appleôs iOS

devices running iOS 6 or higher. As part of its provisioning, CMAS is a voluntary service for

both consumers and providers. A consumer can opt out of the service by simply turning off

notifications provided that their service provider is CMAS-compatible. As stated above, most of

7

the major service providers in the United States support and promote CMAS compliance;

however, many smaller service providers have opted out based on implementation costs, lack of

consumer interest, geographic restrictions, or other reasons.

Figure 2: Overview of the CMAS architecture [Sprint, 2013].

3.1.2 Service Providers

Prior to the WARN act ratified by congress in 2006, many service providers (especially service

providers with a large market share) had implemented a Wireless Emergency Alerts system. As

of 2012, Verizon, AT&T, and Sprint have upgraded their networks to comply with CMAS and

they have rebranded their legacy systems as such. Since CMAS requires a hardware and software

upgrade to existing devices, many older devices are not CMAS-compatible while newer devices

(after 2007) include the necessary hardware and only require a software upgrade to receive

CMAS alerts [Federal Communications Commission, 2013a]. Although the FCC ruling for

CMAS outlines specific characteristics and requirements for service providers on how to

implement and manage CMAS alerts, each provider implements the system in a different way

[Federal Communications Commission, 2013a].

Verizonôs CMAS implementation only covers portions of its coverage area and there may be

areas that are covered by Verizon but are not CMAS-capable [Verizon Wireless, 2013]. As a

matter of course, a mobile device that is outside of Verizonôs service area cannot receive CMAS

alerts. As per the ruling, their implementation allows for geographically targeted alerts which are

8

issued for each device in the target area. This means that if a user is travelling to another

geographic area and their home area receives an alert the user will not receive that alert. AT&T

and Sprint have very similar implementations as Verizon, if not identical, as per the requirements

of CMAS [AT&T, 2013; Sprint, 2013]. An interesting implementation point for Verizon is that

while they comply with the geographic targeting of CMAS messages, they also have the

capability to issue alerts on specific radio towers [Verizon Wireless, 2013]. This effectively

narrows the target area considerably and provides a high granularity of control of emergency

notifications.

3.1.3 Third -Party App s

There are a number of third-party apps that are non-CMAS compliant and are not required to be

such. Many of these apps implement their own notification structures based on their own internal

needs and rely directly upon a notification service. In this review of apps, we focus primarily on

iOS apps as this provides a direct comparison to the VTGemini iOS app. These apps, like

VTGemini, are subject to the reliability and stability of Appleôs Push Notification services and

infrastructure.

There are several types of emergency notification apps that can be found on the App Store. Some

of them are for specific types of emergencies like hurricane, earthquake, or tsunami advisories

and warnings. Since our solution includes emergencies of all different types for the Virginia

Tech community, we primarily focus on apps with similar functionality and scope in terms of

emergency notifications.

3.1.3.1 Wunderground

Wundergroud is an open-source aggregator of weather data and alerts from individual weather

stations, airports, and Meteorological Assimilation Data Ingest System stations [Weather

Underground, Inc., 2013a]. As part of an iOS app, Wunderground displays a current locale with

information about the currently observed conditions and forecasts [Weather Underground, Inc.,

2013b]. Additionally and most importantly, it advises the user about current alerts with a small

notification image. The app does not actively notify the user of ongoing alerts when the app is

launched or when the user switches locales. The user must access and view the alerts by clicking

on the alert image. However, there is no indication to how many active alerts are ongoing or

even the severity of those alerts.

Once the user has clicked on the alert image, the app displays a collection view of all active

alerts in a nice overlay. Unfortunately, the content of these alerts are directly from the NWS

albeit with some formatting to ensure some level of readability. The NWS alerts are notoriously

written and published in all caps which make it difficult to read quickly. Additionally, the

formatting includes a profuse usage of the ellipsis to communicate information. In its earlier

years, NWS only issued current observations and short forecasts. Currently, NWS issues

statements that include instructions and advice based on the type and content of the alert.

As an important note, if the app is running in the background or not running at all, these alerts

are never seen by the user. In order to receive Push Notifications from the app for a particular

9

area, there is an extra step required: the user must go into the settings of the app and navigate to

ñSevere Weather Notificationsò. The user must manually enter a location they wish to receive

alerts in the form of Push Notifications from. There are several pros and cons to this approach,

but overall we believe this to be a poor design choice for several reasons. The first is the

unnecessary step of adding a location when it would be easier to add a ñSubscribe to Alertsò

button to the main screen. Secondly, it does not address the issue of a user moving to a new

location. The current system requires the user to enter a new location every time they travelled.

Congruently, the user continues to receive alerts from previously added locations which would

diminish the usefulness of the app if the user is constantly bombarded with weather alerts.

Finally, the decision to use the alert text directly from the NWS can be a deterrent since the

readability and intuitiveness of these text alerts is questionable. A concise and descriptive alert

message would be far more effective to convey the same information. Overall, the app excels at

its primary purpose, displaying weather information, but falls short on effectively providing

users the ability to receive emergency alerts.

3.1.3.2 National Oceanic and Atmospheric Administration

While National Oceanic and Atmospheric Administration (NOAA) and NWS have not

developed a native app, there is a plethora of apps that access and display data originating from

these organizations [National Oceanic and Atmospheric Administration, 2013a; National

Oceanic and Atmospheric Administration, 2013b]. NOAA recommends two iOS-based apps:

Weather HD and Storm Shield [The E.W. Scripps Company, 2013; Vimov, 2013]. Weather HD

is a free app that provides a feature rich and immersive environment with animations and 3D

views of currently observed conditions at the userôs current location or other ñfavoritedò

locations. While the main focus of Weather HD is weather observations, it also includes the

ability to send Push Notifications for severe weather alerts. Storm Shield is pay-for-use app that

works directly with NOAA and NWS data and radio with a focus on weather warnings and

watches for user selected areas.

As stated above, Weather HD is more of a currently-observed-conditions app for the userôs

location and saved locations then an alerting mechanism. It includes very well designed

animations depicting the current conditions, and a process-intensive 3D model of the earth

showing the userôs saved locations and the current cloud conditions around the globe. Similar to

the Wunderground app, it displays an alert at the top of the screen that originated from NWS.

The placement of the alert banner is a poor design choice for several reasons. First, the new iOS

notification center interferes with and hides the alert message when a notification is received.

Secondly, the design of the alert message intuitively indicates that the user should ñpull downò to

view the alert. Unfortunately, this gesture is the exact same gesture required for the iOS

notification ñwindow shadeò functionality and, thus, the userôs only option is to tap on the alert

to view the details. The Weather HD app does a much better job of formatting the NWS alert

message then Wunderground. The app properly capitalizes and removes unnecessary ellipses

from the alert message. As for Push Notifications, the free version of Weather HD does not

include this functionality. Similar to other apps, the user selects which locales they wish to

receive notifications.

10

Storm Shieldôs mission is to send emergency alerts to users based on the storm instead of the

county [The E.W. Scripps Company, 2013]. Currently, most alert system issue warnings and

watches on the county level with seemingly no regard to the movement and location of the storm

in question. Storm Shield differs itself by analyzing the storm and issues alerts to users only

when their location (or saved locations) fall within a polygon based on the storms meteorological

characteristics. The app allows the user to receive or ignore almost every known NWS alert type

from Flood to Fog to Air Stagnation, and enter up to five saved locales for a total of six possible

locations including the userôs current location. Additionally, it is difficult to see the value in the

app because the interface is simple, elegant, and informative. The added cost is the server-side

analytics and weather tracking that is done to determine the approximate storm polygons and

perform point-in-polygon analysis for all known users of the app.

3.1.3.3 CodeRED

Unlike the previous apps which are primarily weather-related with integrated Push Notifications,

CodeRED is focused on alerts [Emergency Communications Network, LLC., 2013]. These alerts

can include community-related, weather-related, or marine alerts. The free version does not

allow you to receive alerts other than the community-related alerts. The app requires the user to

acknowledge that it will be using Push Notification, but we were unable to find any

documentation about the actual usage of this feature. The app includes settings for setting the

alerts details, such as the sound to be played, as well as requirements for when to receive alerts.

The overall design and look-and-feel of the app is amateur, at best, with a reliance on modal

views instead of navigation controllers. The app fails to inform or elicit any emotional response

from the user when it is being used which ultimately decreases its usefulness as a notification

app.

3.1.3.4 Arlington County Alerts

The final app that we reviewed was the Arlington County Alerts iOS app [Roam Secure, Inc.,

2013]. This app is different from the previous apps because it is designed specifically for a

particular county, in this case Arlington, Virginia. As an important note, this app was not created

or endorsed by Arlington County as it was developed by a third-party vendor [Roam Secure,

Inc., 2013, p. FAQ]. Likewise, the data feeds and streams are of incidents that occur in Arlington

but are not generated by Arlington County officials. Although this app is very simple, its use

case and niche are compelling. It eliminates some of the complexity of a generic app for any

jurisdiction and focuses solely on the needs and desires of a specific county. The app includes

NWS warnings and watches for Arlington County, but it also contains Traffic Alerts with respect

to accidents, congestion, and road work. Additionally, the app includes any county mandates or

restrictions such as water or power based on current infrastructure conditions.

3.2 Emergency Guidance and Incident Response

Now that we have discussed the possible apps and mechanisms for receiving emergency alerts

and notifications, we can review and analyze the current landscape for apps that provide

information about properly responding to ongoing incidents and emergencies. Similar to the

notification apps we discussed above, we attempt to analyze apps based on their granularity. For

11

example, the Red Cross and the Federal Emergency Management Agency (FEMA) apps are

geared towards a national audience while the ReadyVA app is aimed for residents of Virginia

[The American Red Cross, 2013a; USA.gov, 2013; Virgina Department of Emergency

Management, 2012].

3.2.1 Red Cross App s

The Red Cross has created several iOS apps that aid users in preparing and reacting to ongoing

or upcoming emergency threats like hurricanes and tornadoes [The American Red Cross, 2013a].

Each type of incident is contained within its own native app. Each of the apps is identical in

design with only differences in the content based on the type of emergencies. The Red Cross

contracted the firm 3 Sided Cube from the United Kingdom to create each of these apps [3 Sided

Cube, 2013]. The apps are very well designed and organized, and include guides, games, maps,

and other information for users.

The Red Cross has four natural disaster apps: hurricane, tornado, wildfire, and earthquakes. The

fifth app is First Aid. The design of each app is identical, so we will discuss the functionality of

the apps from a high-level to reduce redundancies. The app includes guides for before, during,

and after an incident which is similar to the VTGemini app for incidents at Virginia Tech. Each

of these guides presents the user with a list of things to know and understand. Additionally, the

guides include a checklist of items to complete before, during, or after an incident. For example,

in the case of an impending hurricane, the citizen may want to fill up their car or board up

windows and doors. Each of the guides also contains related links to additional guides and

checklists. This app contains very deep integration with content management and relational

connections with the content. This is evident throughout the app and especially within the

guidesô dynamic and interactive views.

The apps allow the user to create and manage an emergency plan, complete with meeting and

evacuation points, pet friendly hotels and emergency contacts. As part of teaching the user about

a specific emergency, the apps include an instructional workshop in the form of a game where

users can unlock achievements and badges as they progress through different steps and acquire

new knowledge about an incident. The game is quite useful when learning and provides helpful

answers to questions a user might have missed. The long-term benefit of including the game is

questionable, but it does successfully keep users interested and interacting with the app.

Although we do not cover these apps in the previous section, they do include the ability to

receive Push Notifications from several locations. In general, the first location will be wherever

you first installed and ran the app. However, it is possible to enable ñMonitoring Locationò

which will continually update and issue alerts based on the deviceôs current location.

The First Aid app is slightly different than the other app because it does not actively notify the

user of any alerts and provides a far more interactive learning environment [The American Red

Cross, 2013b]. The app is connected to the Apple Game Center to gamify learning first aid for

specific injuries and emergencies. The app provides two versions of an injury: one that is a

detailed reference guide, and the other that is a quick guide for treating a wound or injury.

12

While, individually, these apps are extremely rich in content, fun to use, and well designed, they

lack full integration with each other. It is possible to open other Red Cross apps from within the

current app via the integrated ñCollect Them Allò view. There is little to no data sharing amongst

the apps, specifically when it comes to creating an emergency response plan. Additionally and

similarly to other apps, the guides are generic and may not be completely applicable to specific

locales.

3.2.2 FEMA App

The FEMA iOS app is simply a port of the mobile web site and stored locally on the device

[USA.gov, 2013]. All of the views are displayed in a web view and content is displayed via

HTML. The app contains many of the FEMA accepted definitions and guides with respect to

emergencies and disasters. The guides are displayed in long lists of what to do before, during,

and after an incident. The interaction and design is very simplistic and unintuitive. There is not

much to analyze in this app because of the lack of interactive native views, but it is useful to be

aware of such an app.

3.2.3 ReadyVA App

The ReadyVA iOS was developed by the Virginia Department of Emergency Management to

provide information about possible threats and disasters in Virginia [Virgina Department of

Emergency Management, 2012]. Many of the guides are generic, however, and can be applied to

any state. These guides have similar content to our app as well as the Red Cross and FEMA apps.

Similar to VTGemini, these guides are geared and tailored to the unique needs of the

Commonwealth of Virginia. Similar to the Red Cross apps, ReadyVA allows citizens to generate

emergency preparedness kits which consist of a checklist of items and tasks that the citizen

wishes to complete during certain incidents.

Additionally, the ReadyVA app aggregates ongoing alerts for all counties within Virginia. It

does not, however, include the ability to send Push Notifications to the user. There are actually

three different views for alerts: the local view which displays alerts based on the userôs current

location, the ñAlertsò view which is a poorly designed table view for weather alerts and

statements, and a third view which displays alerts from a user selected county in Virginia.

3.3 Conclusions and Thoughts

Af ter reviewing and analyzing the apps, we conclude that the VTGemini app fits between the

ReadyVA and Red Cross app in terms of design. VTGemini incorporates the ability to display

local content and remote content in the same view. VTGemini is similar to the ReadyVA app in

that our target audience is well-defined and, relatively small. VTGemini is designed specifically

for members of the Virginia Tech community since it incorporates processes and policies that

directly relate to the unique needs of the university. We will discuss our design decisions in the

next chapter in further detail.

Additionally, emergency and disaster notifications in VTGemini are deeply integrated with the

VT Alerts system and, therefore, incorporate Push Notifications similar to the Red Cross apps.

13

The Push Notifications that VTGemini receives are fine-grain messages directed at specific

campuses within Virginia Tech, such as the Blacksburg main campus or the National Capital

Region campus.

Finally, the guides that VTGemini provides to the user follow similar protocols from FEMA

based on their guidelines, but are also modified to match the needs and requirements of the

Virginia Tech community. VTGemini presents each of these guides as an overview, before,

during, and after set of views.

14

Chapter 4 : VTGemini Design and Implementation

We have designed and implemented the VTGemini app using Appleôs mobile operating system:

iOS. We chose to create our app with iOS instead of other mobile operating systems, such as

Windows Phone or Android, because the quality of the development environment provided by

Apple is far superior to that offered by Microsoft or Google. The development environment and

the implementation of certain technologies allowed us to rapidly develop high quality apps.

Additionally, the device landscape is far simpler to navigate than the competitors, particularly

Android devices, where we only need to develop and deploy to iPhone, iPod Touch and iPad

mobile devices.

Our main focus was to create an app that addresses the primary needs of the stakeholders while

providing an innovative and unique user experience that effectively communicates the

emergency preparedness guidelines that have been created by the OEM at Virginia Tech.

Therefore, we focused our efforts on developing a universal high-definition app for all versions

of the iPhone, iPod Touch, and iPad mobile devices.

With our target devices in mind, we began to decouple the user interface with the knowledge

base created by the OEM. The mobile app is agnostic to any changes to the knowledge base such

that modifications to either the mobile app or the knowledge base can be done independently. In

order to accomplish this, we needed to create a normalized property-list schema that represented

the information found in the Emergency Information Desk Reference for Blacksburg as well as

the emergency response guides from the OEM website to avoid ambiguity and simplify

maintainability.

The normalized property-list files acted as the knowledge base for the mobile app. Each

document contains data with regard to a particular incident and references to related topics or

questionnaires for how a citizen should react to an incident. The documents were maintained on

a server and accessed by a web-based administrative portal that allows authorized personnel to

create, modify, or remove documents from a repository.

After the initial design and implementation of VTGemini, we decided that a new interface design

with useful icons and layouts were necessary to create a positive user experience. Our software

engineering design approach followed incremental development, iterative refinement, and

progressive elaboration. At this time, we began working closely with OEM who had employed a

designer to help create and maintain the images and icons used in the Desk Reference. The

sharing of these resources was necessary to create a common user interface experience regardless

of where the user was accessing the information. The user could visit the OEM website and see

the same sets of icons as what is used within VTGemini. Additionally, the user could open the

Desk Reference and see the same content that is generated with the app.

As the incremental design phase came to an end, we began working on a new design and

architecture for the entire system. There was a large amount of new images and icons that were

to be used within the app, and now we had the content of the guides to include. We still needed

to create a universal app for all of the devices; this is a requirement that was non-negotiable since

we are trying to reach as many members of Virginia Tech community as possible.

15

We eliminated the need to generate a separate normalized knowledge base of the guides since we

now had access to guides from OEM. We refocused our efforts by creating index-like property-

list files that organized and linked content with each other appropriately. The property-list files

also allowed us to create a dynamic interface where it was easier to modify the content by simply

changing the property-list configuration.

Similar to the initial design, these configuration files were stored on a web-server and accessed

on-demand. Later in this chapter, we discuss the configuration files in more depth. In addition to

the configuration files being stored on the web-server, there was a time where all of the resources

were stored remotely as well (we discuss the design choice later in this chapter). Furthermore,

we discuss the commonly implemented user interface components that we used through our app

later in this chapter.

4.1 Resource Loading and Management

As stated in our overview and design definition above, we wanted to incorporate commonly

accepted design components and third-party libraries to assist with the display and management

of content. A commonly used component in iOS design for table views is the idea of ñpull to

refreshò. It was first introduced by Loren Brichter, the developer behind Tweetie, in 2008 as a

way to fetch new tweets for a user [Brichter, 2013]. The app has since been bought by Twitter

and is now the current Official Twitter app. The gesture has since become ubiquitous in mobile

apps that load content remotely. The intuitiveness of the gesture is the key to its success; once a

user has performed the gesture on a table view, the user almost expects all table view to react

accordingly.

Since the initial design of our app required the system to fetch configuration and property-list

files remotely to be displayed in a table view, this gesture was a logical choice to implement. In

Figure 3, we show the act of pulling the table view down to review the view for refreshing the

content. Once the user has pulled the table view passed a certain threshold, the view controller is

notified to reload and perform any operations necessary to grab new content. It is important to

note that this gesture is not needed in environments where data is static; it is most useful in

dynamic data sets that are primarily loaded asynchronously from a remote web-server. In the

case of dynamic content that changes locally on the devices, the usefulness of the ñpull to

refreshò gesture is trivial since we can easily notify the view to reload its data if the underlying

mutable data is modified.

Since its introduction, many developers have created various designs and code-behind

implementations to achieve similar results. In the release of iOS 6, Apple introduced the new

UIRefreshControl that allows user to fetch content on-demand [Apple, Inc, 2013b]. The

gesture is very much the same as the original, but it does include a fancy tear-drop animation to

indicate when the refresh will execute.

As we have discussed, the number of resources included with the system is very large. As such,

our initial design of the app was to host all of the images, icons, configurations, and guide details

on a web-server that would automatically download, update, and store resources that had been

16

changed or modified. In fact, we had created an entire architecture to support the ability to fetch

content remotely.

The only configuration file and resource to be included in the app was a master resource list that

maintained the version and file name of every resource used within the system. On the server-

side, there was another resource list that maintained the current version and name of a resource.

At startup, the app would compare these two files to determine what, if any, resource needed to

downloaded or modified. While this is a simplistic method of version control for resources

within an app, our primary concern was space on the device and ensuring the size of the app did

not exceed the 50 MB limit imposed by Apple [Apple, Inc., 2013c]. While the size of an app can

most certainly exceed 50 MB, this limit forces user to have an active WiFi connection in order to

download an app. Once the architecture and system were implemented, it was simply a matter of

caching and downloading the resources as they were needed by the app. We believed that this

would allow us to dynamically update and modify content remotely without having to submit an

update to Appleôs App Store.

Figure 3: View of the pull to refresh mechanism.

However, we eventually moved away from this architecture that supported remotely loaded

content, with the exception of a few resources, for an entirely local implementation. The three

main reasons for loading and managing resources locally are network concerns, OEM guide

release and review schedule, and offline accessibility and performance. Each of these reasons

17

were realized and implemented at different points in the life cycle of the app. For example,

offline accessibility has been a concern since the inception of the app.

One of the most prominent network concerns that we encountered was network congestion.

Network congestion is a huge concern for this type of app since we are loading many individual

icons and images. With several thousand potential users, the impact on servers at Virginia Tech

is potentially crippling. This is even more prominent problem during an actual emergency

situation because even more people will be accessing the app to download content. Additionally,

whenever a VT Alert is issued and a legitimate emergency situation has arisen on campus, the

servers instantly become overloaded by members of the community and the country-at-large as

try to access Virginia Tech resources and services to gain more information about the ongoing

threat or incident.

The second reason to eliminate remotely loaded content has to do with review and release

schedule of OEM guides. We determined that the guides and other information are updated at

most quarterly; although it is more likely that the guides are changed only twice a year. Since the

update schedule is infrequent, the need for additional infrastructure to support frequent updates

to resources is diminished. Therefore, there is a benefit to keeping a single copy of the guide

locally on the device and update the app as needed.

The final reason to maintain the resources locally is offline accessibility and performance. One

of the requirements for our app was to be able to access guides even if there is a complete

network failure, which is common during a developing emergency situation. The only way for

this to work properly is to store the content locally on the device. In our previous architecture,

we loaded the resource as needed and stored them locally to increase performance. Since some

citizens will only use the app during an emergency situation, this would mean they would be

unable to access resources during an emergency situation and the network failed. Therefore,

offline accessibility is crucial to the apps operation. Finally, by loading and accessing local

resources we increase the overall performance of the app by avoiding lag and load times over the

network.

As previously stated, all of our critical resources are stored and loaded locally on the device but

there were other external resources that we did load remotely. The details of some of the

resources will be discussed in subsequent sections such as the difference between local and

remote guides. Furthermore, some of the resources for web-based APIôs are loaded remotely like

that of the Google Maps JavaScript API.

4.2 Configuration F iles and Resources

There are several configuration files that are used by VTGemini to manage and display content

within the system. While these have changed and evolved over time, their essence was first

created in the initial design of the app. This section aims to describe each of the configuration

files and their relationship within the app. These descriptions are meant to be informative but

also contain technical details to assist future developers in maintaining the app.

18

4.2.1 Callbox Locations

The callbox locations configuration file is fairly straight forward: the key for each entry in the

dictionary is the name (or descriptive name) of the location of a blue light emergency phone.

Each entry is an array with two items: latitude and longitude. These locations were located

manually by using the callbox map offered by OEM.

4.2.2 Desk Reference

The desk reference configuration file includes all known guides that are in the Desk Reference.

This is the most important configuration file as it provides details about the offline guides and

how to access these guides. Each entry contains the following five keys: Image, Highlighted,

Name, Header, and Link. Image and Highlighted provides a reference to the name of the image

resource included in the app that represents the given guide. Name is the descriptive name of the

guide. Header is the image reference to image displayed at the top of the guide. Link is the name

of the HTML file that contains the content we wish to display for the selected guide.

Figure 4: An example guide.

19

In Figure 4, the Preparedness guide is displayed. The header image is at the top and colored

green. The body of the guide is an HTML file that shows the content where the headings are

styled with the same color. The HTML files stored locally by the system are the Desk Reference

content files. Each one is surrounded by a unique div that assists with the styling of each file

based on the defined color scheme. This color scheme can be found in the global.css file.

4.2.3 Guide Config uration

The ñGuidesò configuration file is, by far, the most complex of files because it maintains the

hierarchical structure of the menu and submenus. A menu that contains submenus contains a key

called ñObjectsò which contains more menus. Each menu item must contain the following:

Image, Highlighted, Level, and Name. If the submenu contains a link-out without any submenus,

then it contains the Web-Link property instead of the Objects property. The app automatically

assumes that a menu with the Objects property contains submenus, so even if a menu with the

Objects property also contains a Web-Link property, then the Web-Link Property is ignored. A

menu item that is a link-out may also contain the CSSDivName property which defines the color

scheme for the current menu item.

A menu item may also contain a Level and Order properties. The Level property indicates the

indentation level; the indentation level is a fifteen point indent from the left side. Therefore, a

Level of zero means no indent while a Level of one is a fifteen point indent. The Order property

is a secondary measure to ensure that submenus are correctly organized when they are displayed

by a collection view or a table view.

4.2.4 Welcome Screen

The ñWelcome Screenò configuration file is used to properly organize the main collection view.

Each section is represented by the first-level key name, with rows defined within each section.

The overall organization of this document is directly mirrored in the app (See Figure 6). Each

entry in the dictionary is slightly different because of these actions. All action types include an

Image, Highlighted, and Color property. The Color property is the hexadecimal value of the

primary color of its image.

The first action type is a simple segue. An entry of this type needs to provide a Segue Name. The

Segue Name refers to the name of a segue attached to the welcome view in the storyboard file.

Image and Highlighted are similar to other configuration files. The second action type is an

internal link. An entry of this type requires the Link property. This can either be to a property list

file or an HTML file. If it is a property list file, then the app automatically generates a new

collection view to display the contents of the file. The third action type is a link-out. An entry of

this type requires the Web-Link property. This property, unlike Link, cannot be a property list

and must be a valid URL.

20

4.2.5 Header Images and Guide Icons

The Header Images group includes all the images needed when displaying a particular guide that

has a defined Header property. There are three versions of each header file: normal, @2x, and

~iPad [Apple, Inc., 2013d]. The last two versions are identical, but older non-retina version of

the iPad load the lower resolution image (normal) instead of a high resolution version which it

can display properly. The Guide Icons group includes all the images required by various guides

and sub-guides. There are two versions of each guide icon: normal and @2x. The first version is

used for non-retina iOS devices while @2x is used for retina devices.

4.2.6 Fetching

The Fetching group includes auxiliary files that help load files and data from the network. The

maps.html file is used by the building information view that we discussed section 4.8. It

accepts specific parameters that allow us to generate the callout feature with information from

VTGemini. It also is responsible for searching the DOM of a given webpage to determine the

metadata description of a given building. It also contains additional supporting files for jQuery

and the required CSS styling.

4.3 Custom Color Scheme and Layout

In order to match the branding requirements for Virginia Tech, we implemented our custom

design and color scheme for the entire app [Virginia Tech, 2013h]. The primary colors are burnt

orange and Chicago maroon which are the official colors of Virginia Tech. We also included a

few other colors to help provide context to certain items within the app. For example, Figure 6

shows the home screen where each section as a defined color scheme. The icons and the font

color are defined by a specific color as defined by OEM. Additionally, the colors used in the app

match the colors in the Desk Reference to provide visual cues that we are indeed accessing the

same content (See Figure 4 and Figure 6).

Each screen contains a custom navigation bar and tool bar. In our implementation, we overrode

the drawing of each of these views in order for us to insert our custom drawing. For the

navigation bar, we are using the Core Graphics package from Apple to draw a Chicago maroon

rectangle with a burnt orange stroke at the bottom [Apple, Inc., 2013e]. For the tool bar, we

perform a similar operation except the stroke is drawn at the top. Additionally, we used the Core

Graphics current context to insert the Virginia Tech logo and the envelope icon. The envelope

icon acts as a button since we added a tap gesture to the image view containing the icon to

launch a mail composer view from within VTGemini.

As a continuation of the color scheme, every screen has a very soft yellow hue to help minimize

eye strain generally associated with bright white backgrounds. Additionally, the table and

collection views implement custom section headers of Chicago maroon with white text.

21

4.4 Collection View

As part of the new design, a custom menu structure was implemented such that we eliminated

the use of a tabbed app. A tabbed app requires a tab bar at the bottom of every screen eliminates

useful screen real estate. With that in mind, we decided to use a collection view to display

different menu items on the home screen in a logical manner. Figure 5 shows our initial test of

the collection view for the ñWelcomeò screen. The content of the view is loaded directly from a

property-list file that can be modified to create a new menu structure without changing the code

of the app. Figure 6 shows the redesign of the collection view with the custom color scheme and

new layout for the Welcome screen.

Figure 5: Initial test of a collection view.

Figure 6: Welcome Screen for VTGemini with

the new layout and color scheme.

When a user selects a menu item, the system reads the model associated with the item and segue

based on what is defined in the model. The content of the next view after a segue is determined

by the link within the model. For example, if a user taps on the ñGuidesò menu item the system

navigates to another collection view and displays all known guide objects. These guide objects

are loaded directly from another configuration file that defines each guide model. This is a

