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ABSTRACT 

 

 

Exploration of peroxisome proliferator-activated receptor-gamma (PPARγ) as a drug 

target holds applications for treating a wide variety of chronic inflammation-related 

diseases. Type 2 diabetes (T2D), which is a metabolic disease influenced by chronic 

inflammation, is quickly reaching epidemic proportions. Although some treatments are 

available to control T2D, more efficacious compounds with fewer side effects are in great 

demand. Drugs targeting PPARγ typically are compounds that function as agonists 

toward this receptor, which means they bind to and activate the protein. Identifying 

compounds that bind to PPARγ (i.e. binders) using computational docking methods has 

proven difficult given the large binding cavity of the protein, which yields a large target 

area and variations in ligand positions within the binding site. We applied a combined 

computational and experimental concept for characterizing PPARγ and identifying 

binders. The goal was to establish a time- and cost-effective way to screen a large, 

diverse compound database potentially containing natural and synthetic compounds for 

PPARγ agonists that are more efficacious and safer than currently available T2D 

treatments. The computational molecular modeling methods used include molecular 

docking, molecular dynamics, steered molecular dynamics, and structure- and ligand-

based pharmacophore modeling. Potential binders identified in the computational 

component funnel into wet-lab experiments to confirm binding, assess activation, and test 

preclinical efficacy in a mouse model for T2D and other chronic inflammation diseases. 

The initial process used provided α-eleostearic acid as a compound that ameliorates 

inflammatory bowel disease in a pre-clinical trial. Incorporating pharmacophore analyses 

and binding interaction information improved the method for use with a diverse ligand 

database of thousands of compounds. The adjusted methods showed enrichment for full 

agonist binder identification. Identifying lead compounds using our method would be an 

efficient means of addressing the need for alternative T2D treatments. 
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1 Introduction 

1.1 Chronic inflammation 

Symptoms associated with many diseases can be related in some way to a chronic 

inflammation state (1). Type 2 diabetes mellitus (T2D), obesity, inflammatory bowel 

disease (IBD) and the associated manifestations Ulcerative Colitis and Crohn’s Disease, 

atherosclerosis, and colorectal cancer are all examples of diseases that are marked by 

chronic inflammation in various tissues throughout the body (1, 2). Inflammation in the 

abdominal area, specifically adipose deposits in the abdomen, is associated with T2D and 

obesity (3-5). Inflammation in the intestines is associated with IBD and colorectal cancer 

(6-9). Inflammation within the circulatory system is associated with atherosclerosis (10). 

Inflammation in each of these tissues can trigger different gene regulatory events and 

subsequently lead to different phenotypes. Despite the differences in the onset of these 

diseases, they all share the potential for regulation of the inflammatory processes by 

targeting a single regulatory protein that mediates processes contributing to each disease 

(11). 

 

T2D and IBD were the two diseases of interest in this dissertation given the close 

metabolic links between them. In recent years, diagnoses for T2D have approached 

epidemic proportions. Estimates in 2007 suggested 23.5 million individuals over the age 

of 20 have been diagnosed with T2D, with an average annual increase of about 1.6 

million individuals (12). In 2010, the estimate increased to 25.8 million individuals (13). 

The statistics on individuals with IBD are not as clear as those with T2D because there is 

no established set of symptoms associated with the disease (14, 15). Often the symptoms 

expressed, severity, and genetic influences can vary from patient to patient (16). There is 

an increase, however, in the number of individuals that seek medical treatment for 

symptoms that can be associated with the disease (14). Additionally, IBD is often 

misdiagnosed as other related diseases (17), or goes relatively unnoticed by affected 

individuals with less severe symptoms (16). Both diseases can affect individuals in any 

age range, with some ethnic predisposition for each. According to the American Diabetes 

Association and the Centers for Disease Control (CDC), T2D is often seen in individuals 

of African, Native American, Hispanic, and Asian descent (13). The CDC has suggested 

that IBD is prevalent in Caucasian and Ashkenazic Jewish individuals (16). 

1.1.1 Type 2 diabetes 

The incidence of T2D has increased significantly over the last decade. According to the 

CDC, the number of individuals diagnosed with T2D will continue to increase despite the 

existence of effective therapeutics (13). The major symptom seen in T2D patients is 

insulin resistance, which is a result of an inflammation-related stress response in 

overwhelmed adipocytes (18). In the lean, healthy state, normal function includes 

triglyceride and glucose intake from diet. The triglycerides are shuttled to the adipose 

tissue where they can be broken down into fatty acids within the adipocytes. These fatty 

acids are transported to peripheral tissues like skeletal muscle, where they are used in 
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ATP production. Glucose is also taken into skeletal muscle via insulin-regulated glucose 

transporters for use in ATP production. With increased caloric intake, we see an increase 

in the blood levels of triglycerides and glucose that leads to the overweight, and 

eventually the obese, state (18). For most individuals, the body can compensate for the 

increase in calories by increasing fat storage in the adipose tissue. Alternatively, an 

individual that performs frequent, high-impact physical activity can “burn off” the excess 

calories through an increased need for ATP (19). Ultimately, the high levels of fatty acids 

in the blood lead to problems in biological function (18). 

 

If the increase in caloric intake persists, the pro-inflammatory state can be reached. Here, 

the adipocytes are overwhelmed by the high levels of triglycerides. The hypertrophic 

adipocytes trigger a stress response in which the adipocytes release monocyte 

chemotactic protein-one (MCP-1). This protein promotes monocyte infiltration into the 

adipose tissue where these cells differentiate into macrophages. The macrophages secrete 

tumor necrosis factor-alpha (TNF-α), which is a pro-inflammatory cytokine that inhibits 

triglyceride intake in the adipose tissue. As a result, obese individuals exhibit increased 

levels of triglycerides in the blood. Adipocytes that have not undergone apoptosis due to 

the hypertrophic state can still release fatty acids into the blood. At this point, an 

individual would exhibit high levels of triglycerides and fatty acids in the blood. The 

body will proceed to either find alternative storage or excrete as much of the fats as 

possible. Often the fat is stored as ectopic lipid droplets in the muscle and liver. These 

droplets impede mitochondrial function, which reduces ATP production. This reduction 

triggers a signal in the muscle to stop the influx of glucose from the blood. The 

subsequent high blood glucose levels signal increased insulin production, to which 

insulin receptors on the muscle will not respond in the persisting overwhelmed state 

caused by the high triglyceride and fatty acid levels. This state is termed insulin 

insensitivity or insulin resistance depending on the severity of the condition. The term 

stems from the lack of insulin-triggered glucose uptake by the transporters on peripheral 

tissues. (18) 

 

The above pathogenesis translates to obesity, weight gain, and insulin insensitivity in 

T2D. All of these symptoms can be linked to high-fat diets, lack of physical activity, and 

chronic inflammation in the adipose tissue. One common and long-used treatment for 

T2D is prescription of compounds in the thiazolidinedione (TZD) compound family. 

These compounds are known to counteract insulin insensitivity, lower blood glucose 

levels, and suppress inflammation. TZDs were discovered as an effective T2D treatment 

before the protein target was identified as PPARγ in 1994 (20). 

1.1.2 Inflammatory bowel disease 

The specific causes for the inflammation response that leads to inflammatory bowel 

disease (IBD) are unclear. What is known is that a response to commensal bacteria in the 

colon results in chronic inflammation that damages the colonic epithelium. Additional 

details about IBD are provided in Chapter 3 as the introduction to the content therein. 
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1.2 PPARγ 

Originally labeled as an orphan receptor within the nuclear hormone receptor (NHR) 

superfamily of proteins (21), PPARγ has become the focus of a significant amount of 

research over the last 20 years. The popularity of this protein as a target of interest stems 

from the many processes regulated by PPARγ and the other PPAR subtypes, -α and -β/δ. 

PPARs as a group of transcription factors are responsible for regulating inflammation, 

glucose and lipid homeostasis, cell differentiation and proliferation, and vascular function 

and integrity (22). 

 

The first PPAR subtype was identified in 1990 as a protein that induced proliferation of 

peroxisomes, which are eukaryotic organelles involved in catabolism of long-chain fatty 

acids (2, 23). This first subtype was classified as PPARα. Subsequent studies suggested 

the protein regulates peroxisome proliferation rather than directly inducing the process, 

which is where the role as a transcriptional regulator became more clear (24). PPAR-β/δ 

was identified next (25), followed by PPARγ (26, 27). PPARγ was determined to be the 

predominant regulator of adipogenesis and the target for anti-diabetic TZDs. As studies 

with PPARs have progressed, PPARs have been established as important for 

transcriptional regulation of metabolic, inflammatory, and vascular functions. 

 

The PPARγ gene gives rise to several splice variations, with the predominate translatable 

isoforms being γ1 and γ2 (28, 29). PPARγ2 is predominately found in adipose tissue, 

while PPARγ1 is ubiquitously expressed throughout the body in small concentrations 

(28). Additional information about PPARγ can be found in the introduction sections of 

subsequent chapters. 

1.3 Motivation for dissertation project 

As previously mentioned, TZDs have been identified as an effective T2D treatment. The 

problem with TZDs as a therapeutic is the high incidence of serious side effects that 

occur in T2D patients taking these medications. Side effects for rosiglitazone and 

troglitazone include fluid retention, weight gain, hepatotoxicity, an increased risk of heart 

attack, and death (30, 31). Most recently, pioglitazone use has been linked to an increased 

risk for bladder cancer (32, 33). The Food and Drug Administration (FDA) has already 

removed troglitazone drugs from the market (34). In 2011, the FDA placed restrictions on 

Avandia® (GlaxoSmithKline), which contains rosiglitazone as the active ingredient (35). 

Only in extreme cases where no other drugs or treatments have worked can this drug be 

prescribed. 

 

The removal of one drug and restriction of another has fueled the debate regarding the 

appropriateness of PPARγ as a target (36-38). It is important to note that the processes 

regulated by this protein play a significant role in the onset of disease, so restoring some 

level of homeostasis by targeting PPARγ is necessary to combat disease. Therefore, the 

treatment options are more the issue than the target, and an urgent need exists for 

therapeutic alternatives. 
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Lipids and fatty acids are endogenous PPARγ ligands, and they are the primary mediators 

of gene expression or repression in metabolic processes. It has been established that 

prostanoids like prostaglandin, hydrated fatty acids, nitrated fatty acids, oxidized fatty 

acids, and lysophosphatidic acids are PPARγ agonists (39-41). Other natural compounds 

have been experimentally identified to activate PPARγ including conjugated linoleic acid 

(CLA), which is found in ruminant fats (42). CLA, though effective, is found in very low 

concentrations in ruminant fats, hence simple dietary consumption is not enough to see 

benefits (42). The low concentration in fats also hinders any isolation processes. Ideally, 

it should be possible to find compounds that are abundant in nature, exhibit PPARγ 

agonism, and ameliorate T2D at a feasible, low-risk dosage. A compound similar to 

endogenous ligands would hopefully regulate gene expression in the same way and also 

exclude other non-relevant proteins in order to treat the disease with minimal side effects. 

It is also possible for currently available drugs to be repurposed for use in treating T2D. 

Established drugs have the benefit of years of clinical trials and real-world testing by 

consumers. Finding an established therapeutic with minimal side effects in treating other 

diseases would reduce the therapeutic development time-period in which compounds are 

tested to establish safe dosing and disease outcomes. This reduces the development time 

“from bench-top to bedside”, and gets beneficial drugs into the hands of patients more 

quickly, which would reduce the healthcare burden of T2D, IBD, and potentially other 

chronic inflammation-related diseases in a more timely fashion. 

1.4 Organization of the dissertation 

The dissertation has been compiled as a collection of published peer-reviewed papers and 

manuscripts prepared for publication submission. Chapter 1 serves as a general 

introduction to PPARγ as a protein target of interest and the research goal of establishing 

computational docking into and dynamic analysis of PPARγ. Chapter 2 is a published 

review article that will serve as a literature review. Chapter 3 is a published article 

detailing a proof of concept small-scale virtual screen with experimental validation and 

pre-clinical trial. The original citations for Chapters 2 and 3 are provided on the title 

pages. Minor editorial corrections were made for inclusion in the dissertation. Chapter 4 

outlines a large-scale attempt at screening for PPARγ modulators with the inclusion of 

pharmacophore modeling. Chapter 5 describes analyses of PPARγ structure using 

molecular dynamics techniques. Chapter 6 contains concluding remarks that tie all of the 

chapters together and address the goals mentioned in Chapter 1. Chapter 6 is followed by 

the bibliography of references cited. The dissertation ends with appendices that contain 

executive summaries of other publications completed during the PhD process, a table of 

available PPARγ crystal structures, and scripts used in the docking and dynamics 

processes. 
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2.1 Abstract 

Virtual screening (VS) is a discovery technique to identify novel compounds with 

therapeutic and preventative efficacy against disease. Our current focus is on the in silico 

screening and discovery of novel peroxisome proliferator-activated receptor-gamma 

(PPARγ) agonists. It is well recognized that PPARγ agonists have therapeutic 

applications as insulin sensitizers in type 2 diabetes or as anti-inflammatories. VS is a 

cost- and time-effective means for identifying small molecules that have therapeutic 

potential. Our long-term goal is to devise computational approaches for testing the 

PPARγ-binding activity of extensive naturally occurring compound libraries prior to 

testing agonist activity using ligand-binding and reporter assays. This review summarizes 

the high potential for obtaining further fundamental understanding of PPARγ biology and 

development of novel therapies for treating chronic inflammatory diseases. This goal can 

be achieved through evolution and implementation of computational screening processes 

for immunotherapeutics in conjunction with experimental methods for calibration and 

validation of results. 
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2.2 Introduction 

Transdisciplinary research has become a common means of addressing the most pressing 

societal problems. Past discoveries of scientific hallmarks have favored exploring the 

depths of established ideas across scientific disciplines to better understand biological 

systems and processes. This is possible because the wealth of scientific knowledge has 

only scratched the surface of how biological systems work, and often exploring the 

unknown intricacies of biological networks requires knowledge of more than one 

scientific realm. 

The vast amount of information readily available to the scientific community presents a 

valuable and perpetually renewing resource. However, this overabundance also poses a 

problem. There is simply too much information within too many areas of science for one 

person with expertise in a single field to rapidly make novel advances. Take for example 

the question of what factors determine whether an individual suffers from a particular 

disease. When designing a treatment, one can look at the symptoms, the cause of the 

symptoms, genetic differences between healthy and afflicted individuals, genetic 

differences between individuals with the same disease but slightly different symptoms, 

methods for treating the symptoms, methods for controlling or correcting the disease, and 

methods for screening for the disease. This list includes, but is not limited to, disciplines 

such as genetics, bioinformatics, biochemistry, pharmacology, and medicine, and it is the 

combination of all these disciplines that facilitates the development of effective 

preventive and therapeutic approaches. 

In a more general sense, there is also an increasing need for integrating computational 

and experimental approaches. Computers have become a large and vital part of scientific 

exploration and serve to simplify and expedite processes that could take months to years 

for an individual to complete. First, computers allow for organization of scientific 

knowledge. Second, they allow for sharing of ideas and discoveries in an effective and 

timely fashion. Third, computers allow individuals to better analyze experimental results 

and develop more efficacious test methods. The fourth and ultimate benefit of computer 

technology to science is improved efficiency due to a reduced necessity for time, money, 

and resources. 

Peroxisome proliferator-activated receptor (PPAR) research is one of many areas that 

may benefit from advances in computational biology and other transdisciplinary 

approaches. Mixtures of computational and experimental studies have given insight into 

characteristics of PPARs, particularly PPAR-gamma (PPARγ) and its modulators, as well 

as the role of these proteins in treating type 2 diabetes (T2D), gastrointestinal diseases, 

and genetic disorders associated with glucose homeostasis and lipid uptake. 

2.3 Characteristics of PPARγ and the activation process 

PPARγ is one of three known PPAR isoforms (α, δ, and γ). PPARs belong to the nuclear 

hormone receptor superfamily and have been found to regulate inflammation, immunity, 

and metabolism (3, 11). Members of this superfamily are structurally and functionally 

conserved transcription factors that regulate both target gene expression and repression 

after ligand binding occurs (43). A diverse set of natural and synthetic molecules is 
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classified as ligands that can induce activation and expression of PPARs. These ligands 

include nutrients, non-nutrient endogenous ligands, and drugs such as thiazolidinediones 

(TZDs) and fibrates (3, 11, 44). Known endogenous and dietary agonists include 

conjugated linoleic acid (CLA), 9-(S)-hydroxyoctadecadienoic (9-HODE), 13-(S)-

hydroxyoctadecadienoic (13-HODE) acid, and 15-deoxy-12,14-prostaglandin J2 (15d-
PGJ2) (11, 41). 

A great deal of literature focuses on increasing insulin sensitivity by controlling PPARγ 

interactions and altering gene expression of various transcription factors. PPARγ is a 

component of an extensive group of controls for adipogenesis and glucose homeostasis, 

and both of these processes directly affect obesity and T2D (45). PPARγ is located in 

high concentrations in adipocytes, and has also been found in significant amounts in the 

retina, cells of the immune system, and colonic epithelial cells (11, 46). Functionally, 

PPARγ down-regulates the expression of pro-inflammatory cytokines by antagonizing 

the activities of transcription factors such as AP-1 and NF-κB, and favoring the 

nucleocytoplasmic shuttling of the activated p65 subunit of NF-κB (3). As a consequence 

of the important roles PPARs play in controlling metabolic homeostasis and 

inflammatory processes, they are all well recognized as molecular targets for drugs 

against metabolic diseases, such as T2D (47-49), and treatment of immunoinflammatory 

disorders. 

Structurally, PPARγ is composed of a DNA-binding domain (DBD), a hinge region, and 

a ligand-binding domain (LBD). The first step in PPARγ activation is disassociation of 

co-repressors after binding of retinoic acid (RA) to a single retinoid X receptor (RXR) 

subunit. This step is an essential part of numerous endocrine system pathways (45). The 

ligand-bound RXR then associates with ligand-bound PPARγ. To become fully active, 

the PPARγ-RXRα heterodimer requires association of co-activator molecules (45). 

Agonist binding to PPARγ regulates activity by causing conformational changes to the 

LBD, which is composed of approximately 250 amino acids near the C-terminal end of 

the protein (50). Mediation of activity is a direct result of changes to the transcription 

activation function-2 (AF-2) domain (45, 51). These changes vary depending on the type 

of ligand that binds to the LBD. Changes to AF-2 allow for co-activator recruitment, 

followed by transcriptional activation. 

Co-activator recruitment is based on a LXXLL binding motif (nuclear receptor box) 

found on both PPARγ and co-activators like steroid receptor co-activating factor-1 (SRC-

1) that associate for transcription induction after the conformational change of the AF-2 

region (2, 43, 52). The DNA binding domains of PPARγ-RXRα interact with PPAR 

response elements (PPRE) found within the genome (53). Such elements include 5' 

regions for aP2 and PEPCK genes as part of adipogenesis, which suggests PPARγ plays a 

major role in fat cell-specific gene function (53). Though PPARγ is typically known to 

interact with DNA, it can also interact directly with other proteins to induce activity. For 

example, as preadipocytes differentiate, expression of C/EBPβ and C/EBPδ directly 

activate PPARγ and C/EBPα, which promote further differentiation and full insulin 

sensitivity (53). Alternatively, binding by specific ligands can induce activity as well. 

The use of TZDs in the treatment of T2D improves insulin resistance by increasing 

GLUT-4 levels and decreasing the levels of cytokines that induce insulin resistance, such 

as TNF-α and IL-6 (53) by antagonizing the activity of pro-inflammatory transcription 
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factors (3). Therefore, it is important to note that understanding the interactions involved 

in co-activator recruitment is crucial for predicting activity after ligand binding, and 

ultimately treatment of insulin insensitivity and inflammation. 

2.4 Agonists and the ligand-binding domain of PPARγ 

Fatty acids and lipid metabolites have been found to be endogenous ligands for PPAR. 

A recent study by Waku et al. (39) gives insight into how these ligands bind covalently to 

Cys285, thereby modifying PPAR conformations. In particular, these covalent 
modifications induce rearrangement of the side-chain network around the created 

covalent bond in order to generate different transcriptional strengths. This attenuation of 

strength is specific to the ligand type and conformation. Waku et al. also mention that 

Ile267 and Phe287 are two key residues repositioned by covalent binding of fatty acids 

(39). It is also important to note that for some fatty acids, formation of a complex 

containing two fatty acid units is necessary for binding within the LBD of PPAR (41). 

Synthetic ligands that can interact with PPARγ can be divided into at least three classes: 

full agonists, partial agonists, and antagonists. Full agonists bind and alter the 

conformation of the AF-2 domain allowing co-activators to bind for activation of genes 

in both adipogenic and insulin sensitivity processes. Partial agonist binding leads to a 

change that allows for recruitment of co-activators responsible for insulin sensitivity 

without affecting adipogenesis. Antagonists show high affinity, but do not activate 

PPARγ, suggesting the conformational change to AF-2 is either not enough to allow co-

activator association or is similar to that of the inactive conformation. A study conducted 

by Kallenberger and colleagues showed that the dynamics of the AF-2 region plays a 

major role in the genetic regulation capabilities of PPARγ. Binding of a ligand reduces 

AF-2 mobility and allows for regulation of gene expression. Furthermore, the AF-2 

region of PPAR can undergo natural mutations, which result in severe insulin 
insensitivity and cause noticeable changes in dynamics of that AF-2 region (51). 

PPARγ agonists typically possess a small polar region and a hydrophobic region that 

form hydrogen bonds and hydrophobic interactions, respectively, within the LBD. 

Hydrogen bonding typically occurs between His323, Tyr473, and His449 of the PPARγ 

LBD and carbonyl oxygen atoms of the ligand (Figure 2.1) (45, 52, 54). Hydrogen 

bonding of the ligand to Tyr473 is key to the stabilization of the AF-2 region (52, 55). 

The hydrophobic moiety interacts with other residues in the cavity, such as Leu465, 

Leu469, and Ile472, establishing hydrophobic interactions to stabilize the domain (Figure 

2.2) (45, 52, 54). 

In the case of partial agonists, key interactions are different, which result in lesser degrees 

of AF-2 stabilization and differential stabilization of distinct regions of the LBD (41). 

Either of these events leads to activation as a result of a shift of the ligand polar group 

away from the hydrogen-bonding residues. This shift can prevent hydrogen bonding or 

lead to a different hydrogen-bonding network. Changes in the hydrophobic interactions 

between the ligand and residues within the LBD also exist. The combination of these 

events results in conformational changes different enough from those caused by full 

agonist binding to elicit only partial activation and recruitment of different co-activators 

(41, 54). 
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Figure 2.1 Rosiglitazone bound to LBD of PPAR. Helices are labeled with H, followed by a number. Key 

residues involved in hydrogen bonding are labeled. Blue dashed lines represent bonding interactions 

between the hydrogen atoms of the residue and the oxygen atoms of the ligand. (PDB ID 3DZY) (56). 

 

Figure 2.2 Rosiglitazone bound to LBD of PPAR. Helices are labeled with H, followed by a number. 

Some of the key residues involved in hydrophobic interactions are labeled. (PDB ID 3DZY) (56). 

Antagonists for PPAR have not received the same amount of research interest as the full 

and partial agonists. Therefore, little information is available on the binding of this type 

of ligand to the  isoform. Antagonists for PPAR, however, have provided insight into 

how ligands of this class might interact with PPAR due to the conservation of the mode 

of co-repressor binding. Typically, co-repressors bind to PPAR in the absence of ligand. 
The complex is then stabilized by antagonists, which disrupt any potential interactions 

with co-activators, and thereby prevent the initiation of transcription (57). 

The LBD of PPARγ is a large, T-shaped cavity (54) with a volume of approximately 

1440Å3 (45, 54), which can easily accommodate many different ligands due to the 

dynamics of the ligand-binding pocket (58). It is important to note that the type of ligand 

determines which co-activator associates with the PPARγ-RXR heterodimer. The co-

activator then determines the target gene for regulation and the direction of regulation (up 

or down). Thus, knowing the final conformation of the LBD that is necessary to elicit a 

specific activity is crucial for therapeutic development (43). 

Until recently, available crystal structures for PPARγ generally were composed solely of 
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the PPARγ LBD with a ligand bound, a RXR LBD heterodimerized to PPAR, and a 

short segment of a co-activator protein. Chandra and colleagues have published three new 

crystal structures (3DZU, 3DZY, and 3E00 (56)) for PPARγ composed of the DBD, the 
hinge region, and the LBD with ligand bound (56). These structures are in complex with 

RXR, polypeptides that mimic the LXXLL motif for co-activator binding, and a short 

DNA segment representative of a PPRE. Observations related to heterodimerization of 

PPARγ and RXRα, as well as activation of response elements are reported in this study. 

The LBD and DBD of PPARγ are positioned closely together, which aids in coupling of 

the PPARγ LBD to the relatively wide space between the LBD and DBD of RXRα (56). 

The study also discusses the polarity of the PPARγ-RXRα heterodimer, which is 

determined by the (C)-terminal extension of PPARγ and the DBD interactions of the two 

subunits. Table 2.1 contains a list of all currently available structures for PPARγ, which 

can be found in the RCSB PDB online database (59, 60).  

Table 2.1 PDB IDs of published crystal and NMR structures for PPAR with various 
ligands bound. Resolution values are in Angstroms (Å). The “Reference number” 

columns list references for each PDB ID. All PDB IDs list Homo sapiens as the protein 

source for the PPARγ chain. Access date: 23 March 2009. (An updated list can be found 

in Appendix A.) 

PDB 

ID 

Res.1 

(Å) 

Release 

Date 

Reference 

Number 

PDB 

ID 

Res. 

(Å) 

Release 

Date 

Reference 

Number 

1FM6 2.1 2/16/2001 (45) 2Q6S 2.4 10/23/2007 (55) 

1FM9 2.1 2/16/2001 (45) 2Q8S 2.3 10/14/2008 (61) 

1I7I 2.3 3/9/2002 (62) 2QMV n/a 

(NMR) 

9/2/2008 (63) 

1K74 2.3 12/5/2001 (64) 2VSR 2 8/19/2008 (41) 

1KNU 2.5 12/19/2002 (65) 2VST 2.3 8/19/2008 (41) 

1NYX 2.7 7/15/2003 (66) 2VV0 2.5 8/19/2008 (41) 

1PRG 2.2 1/13/2001 (52) 2VV1 2.2 8/19/2008 (41) 

1RDT 2.4 11/9/2004 (67) 2VV2 2.8 8/19/2008 (41) 

1WM0 2.9 9/7/2004 (68) 2VV3 2.8 8/19/2008 (41) 

1ZEO 2.5 4/25/2006 (69) 2VV4 2.3 8/19/2008 (41) 

1ZGY 1.8 7/26/2005 (70) 2ZK0 2.4 2/24/2009 (39) 

2ATH 2.3 8/25/2006 (71) 2ZK1 2.6 2/24/2009 (39) 

2F4B 2.1 2/14/2006 (72) 2ZK2 2.3 2/24/2009 (39) 

2FVJ 2 5/16/2006 (73) 2ZK3 2.6 2/24/2009 (39) 

2G0G 2.5 5/16/2006 (74) 2ZK4 2.6 2/24/2009 (39) 

2G0H 2.3 5/16/2006 (74) 2ZK5 2.5 2/24/2009 (39) 

2GTK 2.1 9/26/2006 (75) 2ZK6 2.4 2/24/2009 (39) 

2HFP 2 9/19/2006 (76) 3B3K 2.6 10/28/2008 (77) 

2HWQ 2 8/7/2007 (78) 3BC5 2.3 11/18/2008 (79) 

2HWR 2.3 8/7/2007 (78) 3CDP 2.8 1/13/2009 (80) 

2I4J 2.1 4/17/2007 (54) 3CDS 2.7 12/30/2008 (77) 

2I4P 2.1 4/17/2007 (54) 3CS8 2.3 6/3/2008 (81) 

2I4Z 2.3 4/17/2007 (54) 3CWD 2.4 7/8/2008 (82) 

2OM9 2.8 4/24/2007 (83) 3D24 2.1 6/10/2008 (82) 
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Table 2.1 continued. 

2P4Y 2.3 1/8/2008 (84) 3D6D 2.4 12/30/2008 (77) 

2POB 2.3 3/18/2008 (85) 3DZU 3.2 10/28/2008 (56) 

2PRG 2.3 7/19/1999 (52) 3DZY 3.1 10/28/2008 (56) 

2Q59 2.2 10/23/2007 (55) 3E00 3.1 10/28/2008 (56) 

2Q5P 2.3 10/23/2007 (55) 3ET0 2.4 2/17/2009 (86) 

2Q5S 2 10/23/2007 (55) 3ET3 2 2/17/2009 (86) 

2Q61 2.2 10/23/2007 (55) 3PRG 2.9 8/30/1999 (43) 

2Q6R 2.4 10/23/2007 (55) 4PRG 2.9 5/27/1999 (87) 

1 1Res. = Resolution 

2.5 Docking 

Docking can be defined as predicting both ligand conformation and orientation within a 

targeted binding site (88). Experimentally derived crystal and NMR protein structures are 

used as the basis for docking, and the physics involved is based on what is known about 

atomic and molecular interactions, as well as laws of thermodynamics. All docking 

methods must include sampling ligand conformations, generating poses of the ligand 

within the receptor binding site, and scoring the poses. 

Before beginning a docking study, one must select from three conformational searching 

methods: systematic, random, and simulation. The systematic method explores the 

degrees of freedom possessed by the torsional bonds of a molecule. To achieve this goal, 

the ligand parts are introduced incrementally in order to obtain an energetically favorable 

conformation. Random searching, as the name implies, is based on generating random 

torsional variations of an initial conformation to test against the target. Simulation 

methods utilize molecular dynamics and energy minimization, and serve best when 

coupled with one or both of the above searching methods (88). 

A large number of docking and dynamics software packages and online servers exist 

(Table 2.2), many of which are freely available for academic research. The variations in 

calculation methods and results make each program slightly different. Therefore, the 

researcher must pick which docking programs are ideal for his or her study. Studies have 

been performed to assess which programs are ideal for specific screening approaches or 

particular protein families. For instance, Kellenberger and colleagues published a 

comparative evaluation of eight widely used docking programs for screening accuracy in 

2004 (89). Of the eight docking programs tested, GLIDE, GOLD, and SURFLEX 

provided the best docking and ranking accuracy within a 2.0 Å cutoff for root-mean 

squared deviation (RMSD), whereas QXP showed promising docking accuracy but 

reduced ranking performance. For ranking, FlexX outperformed QXP with percent 

scoring errors of 15% and 55%, respectively. Efficacy in screening of a compound 

database was found with SURFLEX, with 8 hits for ligands that bind to a difficult target 

out of 50 total compounds. GLIDE, GOLD, and FlexX were deemed good programs for 

virtual screening with hit values of 5, 4, and 4, respectively. Regarding docking times, 

FRED, which did not perform as well with scoring and docking accuracy, took the least 

amount of time to perform docking calculations of the eight programs tested, followed by 

DOCK and FlexX. No single program was deemed the best docking software, but the 

study demonstrated that the characteristics of the ligand and the target have a significant 
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effect on the efficiency of the docking program used (89). 

Table 2.2 List of some commonly used molecular dynamics and docking software 

packages with developer URL. This is not intended to be a comprehensive list of all 

available dynamics and docking programs available. Available programs are typically 

free to download for academic use, but some require the purchase of a license for use. 

Dynamics 

Program Developer Site 

Amber http://ambermd.org/  

AMMP http://www.cs.gsu.edu/~cscrwh/progs/progs.html  

BALLview http://www.ballview.org/  

CHARMM http://www.charmm.org/  

GROMACS http://www.gromacs.org  

LOOS Library http://membrane.urmc.rochester.edu/Software  

YASARA http://www.yasara.org/  

YUP http://rumour.biology.gatech.edu/YammpWeb/  

ZMM http://www.zmmsoft.com/  

  Docking 

Program Developer Site 

AutoDock http://autodock.scripps.edu/  

FlexX http://www.biosolveit.de/FlexX/ 

FRED http://www.eyesopen.com/ 

GLIDE http://www.schrodinger.com/ 

GOLD http://www.ccdc.cam.ac.uk/ 

Sculptor http://sculptor.biomachina.org/  

SLIDE http://www.bch.msu.edu/~kuhn/projects 

SURFLEX http://www.tripos.com/ 

UCSF DOCK http://dock.compbio.ucsf.edu/  

2.6 Virtual screening 

Because the process of finding a novel compound showing bioactivity can be time-

consuming and expensive, structure-based drug design has been established as a vital first 

step to therapeutic development (90). Screening for ligand conformations can be 

performed using a ligand-based or a structure-based approach (91, 92). Ligand-based 

design uses known active and inactive compounds to generate a pharmacophore (92), 

which is often used in conjunction with quantitative structure-activity relationship 

(QSAR) analysis to determine ligand-protein interactions. Receptor-based design requires 

the availability of the receptor structure, which is used to examine the interactions that 

occur with any members of a large database of ligands (91). Computational screening of 

large databases of molecules against the three-dimensional structure of a protein has the 

potential to provide rapid and accurate prediction of the binding modes and affinities of 



 14 

possible hits for lead optimization. One can pre-screen a database of thousands of 

compounds and narrow the field of ligands to two or three potential hits in a significantly 

reduced amount of time compared to laboratory experimental methods. This smaller 

group would increase the efficiency of experimental assays and new agonist discovery. 

VS, which incorporates high-throughput docking techniques, is a means to explore the 

LBD of a protein and make predictions about ligand binding. This technique categorizes 

ligands that bind to the protein of interest and allows predictions to be made about 

activation or inhibition of the protein. 

Development begins with creating an algorithm that can be followed to set up the testing, 

followed by running the testing, and finally analyzing the results. Schneider and Böhm 

define these three issues that must be addressed when performing iterative structure 

generation respectively as, the construction problem, the docking problem, and the 

scoring problem (93). Deciding which protein crystal structure to use for all ligands, 

establishing a set of test parameters, and deciding which ligands to include in the test 

library make up the first part of the process. Typically, a crystal structure with the highest 

resolution and fewest missing atoms and residues will be selected. Setting parameters 

involves re-docking of published structures to reproduce experimentally observed 

docking conformations (88). The compound database, which can contain numbers of 

compounds in the thousands (94), should contain small molecules that, based on known 

chemical interactions between residues of the binding site and known ligands, will bind 

in varying degrees to the protein of interest and potentially yield the desired effect (e.g. 

conformational change and activation or inhibition of protein). Protein flexibility is also 

an important and necessary part of predicting orientations and interactions for many 

protein families (90), and therefore time should be taken to consider how to incorporate 

receptor flexibility as well as the binding site microenvironment (i.e. water and/or ions in 

the binding site). Once the conditions for docking have been established, docking, which 

is the second step, is relatively straightforward. 

The final step, analysis, can often be the most daunting due to the variety of ways output 

can be interpreted and analyzed. The type of program used to perform simulations has a 

significant effect on analysis methods because of the information returned. Some 

programs may be better suited for calculating inhibition constants and free energy of 

binding estimations than others, whereas still other programs may provide more variables 

for consideration. There are many different approaches to analyzing results that one can 

take for scoring the results of a docking study, and these approaches involve examination 

of interactions on either a fragment or atomic level (93). 

2.7 Limitations of virtual screening 

Because VS is not, as of yet, a stand-alone process, ligand-binding and reporter assays 

are essential processes for validating in silico results. Docking predicts ligands that may 

elicit the desired activity, and assays further refine the group of viable candidates to a 

select group of hits, which, at a specific concentration, will activate the protein of 

interest. 

Further research into lesser-understood biochemical processes is necessary to improve 

upon the reliability of VS as a stand-alone process. These processes include protein 

flexibility and induced-fit adaptations, the role of water in solvation, desolvation and 
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ligand binding, and the involvement of electrostatics (88, 95). Though these unknowns 

can prove to be problematic when looking at a single computational method, combining 

strategies is a way to improve upon successful hit rates. Overall, VS saves time and 

resources when searching libraries of compounds to narrow candidates down to a handful 

of potential hits that can then be tested experimentally. There is also potential to find hits 

that may not have been discovered using experimental processes alone. 

Another factor that can limit VS productivity is the amount of information available 

when building a compound library. An information-rich environment is available when 

considering natural compounds for the treatment and prevention of diseases. Natural 

plant extracts typically contain a vast number of components that one would need to sift 

through in order to find the one compound or multiple synergistic compounds that elicit a 

desired mechanistic affect (i.e. activation of PPARs). VS would prove useful after 

fractionation of natural extracts and chemical elucidation of key peaks to aid in 

identifying which compounds within a library are the bioactive compounds. This has the 

potential to minimize the need for serial HTS when testing for a lead candidate. It is 

important to note that fractionation is not a necessary step for VS, but can be useful for 

guiding database building when examining natural extracts for bioactivity. 

2.8 Docking and virtual screening successes  

Despite the present inability of VS to replace HTS, the two can be complementary 

approaches to candidate pharmaceutical and nutraceutical searching because of the 

potential for one method to find activators or inhibitors for which the other method does 

not show results (95). Klebe (95) mentions in a review of VS strategies a comparison 

study performed by two groups searching for Escherichia coli dihydrofolate reductase 

inhibitors from a database of approximately 50,000 compounds. The VS portion of the 

study revealed a number of compounds previously unknown as inhibitors due to 

insufficient concentrations of the compounds being used during experimental testing (95-

98). Klebe also provides a list of targets that have previously been addressed by virtual 

screening. These targets include nuclear receptors such as retinoic acid receptor and 

thyroid hormone receptor (95). 

2.9 Relevance to PPARγ agonist discovery 

Docking techniques would prove useful in the development of new PPAR-based 

therapeutics, including in silico screening of synthetic agonists and natural compounds 

from plant extracts (i.e. botanicals), all of which have shown promise in the treatment and 

prevention of immunoinflammatory diseases through PPARγ agonism. Docking and 

simulation techniques provide a means to pre-screen for and enrich compounds with 

PPARγ agonism and thereby increase the efficiency of HTS. Docking also allows for 

structure-based searches for analogues and derivatives of known agonists.  

To date, there have been several studies utilizing standard docking methods (74, 99-101) 

and VS methods (74, 97, 102-105). Most of these studies focus on derivatives or 

analogues of a particular compound showing high affinity for PPARγ. Studies of this 

nature can serve two purposes: identify hits for therapeutic development and provide 

insight into ligand-protein interactions and ligand selectivity. 
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Xu and colleagues (101) published a study in 2003 in which docking methods were used 

to look at interactions between PPARγ and eighteen known synthetic and natural agonists 

in order to determine the pharmacophore of PPARγ agonists. The group determined that 

PPARγ agonists must have a polar head group and hydrophobic tail in order to form 

necessary hydrogen bonding and hydrophobic contacts with the LBD, respectively (101). 

In another study, Lu and colleagues (74) conducted a structure-based VS search for 

PPARγ partial agonists as candidates for treatment of T2D with fewer side effects than 

full agonists. The search revealed a class of ligands that could then be used to test against 

PPARγ. Two compounds of the class were identified as partial agonists with selectivity 

among the three PPAR subtypes, and would serve as candidates for further testing. Using 

VS, they were able to suggest determinants in ligand specificity. The computational 

results were coupled with x-ray crystallography and assessment of in vitro and in vivo 

protein activity (74). 

A study regarding natural products identified as PPARγ agonists conducted by Salam and 

colleagues (103) also utilized structure-based VS to identify 29 potential agonists for 

experimental testing. Of those compounds, 6 were found to induce PPARγ transcriptional 

activity in vitro. The study also provided insight into the mechanism underlying the 

flavonoid-induced conformational change and activation of PPARγ (103). 

2.10 Future directions 

Naturally occurring compounds with preventive or therapeutic activity (nutraceuticals) 

represent a widely used Complementary and Alternative Medicine (CAM) modality and 

are an alternative to pharmaceuticals (i.e. TZDs) for treating various chronic diseases 

such as T2D. These natural compounds can modulate gene expression (106) and are 

typically safer than synthetic counterparts. In the case of T2D, nutraceuticals have the 

potential to decrease the risk of myocardial infarction, weight gain, and edema associated 

with current synthetic PPAR agonist treatments (49, 107). Unfortunately, finding a 

compound that elicits a desired activity is not always easy because isolating a single 

compound from a bioactive extract is time consuming and expensive (108) and the 

mechanism by which the compound works is often unknown (109). VS, in combination 

with conventional experimental methods, has the potential to put the discovery of 

bioactive botanical constituents in a better competitive position with mainstream 

pharmaceutical research by reducing time and costs. For instance, in a study published by 

Rollinger and colleagues (110), a chemical feature-based pharmacophore modeling VS 

technique, in combination with ethnopharmacology, was utilized to identify inhibitors for 

cyclooxygenase (COX) I and II. Of the thousands of compounds listed in the four 

databases used (WDI, NCI, NPD, and DIOS), the success rate of finding known 

inhibitors within these three-dimensional databases was enhanced through the use of VS 

techniques (110). 

A preliminary comparison of a small group of PDB PPAR structures shows an overall 
conservation of backbone conformation across the available structures. This is relevant to 

the selection of a single macromolecule for large-scale automated testing. These findings 

suggest it is possible to select one macromolecule for all ligand types with a limited 

degree of error. It is important to note that though there is a relative consensus position 

for all key residues, some variation in the positions of key residues due to ligand 
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interactions are present. Therefore, this issue must be considered and several structures 

must be examined when deciding on a single macromolecule crystal structure for VS. 

Another computational method that may prove useful is molecular dynamics (MD), 

which involves the use of computational chemistry to predict the dynamics of complex 

molecular systems and the macroscopic properties of those systems based on detailed 

atomic knowledge (111). Implementing MD would prove useful for examination of 

conformational changes and molecular interactions, which would allow for expansion 

upon what is known about how PPARs interact with ligands and other macromolecules. 

To discover potential nutraceutical/CAM hits, further assessment of PPARγ and ligand 

characteristics is necessary to determine the best screening approach and which scoring 

functions compare for analysis. If the components of an extract are known or if one can 

speculate as to which compounds are present, a database of chemically related 

compounds could be created to test against PPAR, and a smaller hit group can be 
identified for experimentation. Another necessary element is collecting experimentally 

proven properties for comparison to computationally derived data. Future work could 

also encompass finding co-agonists and pan-agonists for PPAR subtypes. 
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3.1 Abstract 

Background: Treatments for inflammatory bowel disease (IBD) are modestly effective 

and associated with side effects from prolonged use. As there is no known cure for IBD, 

alternative therapeutic options are needed. Peroxisome proliferator-activated receptor-

gamma (PPARγ) has been identified as a potential target for novel therapeutics against 

IBD. For this project, compounds were screened to identify naturally occurring PPAR 

agonists as a means to identify novel anti-inflammatory therapeutics for experimental 

assessment of efficacy.  

Methodology/Principal Findings: Here we provide complementary computational and 

experimental methods to efficiently screen for PPARγ agonists and demonstrate 

amelioration of experimental IBD in mice, respectively. Computational docking as part 

of virtual screening (VS) was used to test binding between a total of eighty-one 

compounds and PPAR. The test compounds included known agonists, known inactive 
compounds, derivatives and stereoisomers of known agonists with unknown activity, and 

conjugated trienes. The compound identified through VS as possessing the most 

favorable docked pose was used as the test compound for experimental work. With our 

combined methods, we have identified α-eleostearic acid (ESA) as a natural PPAR 

agonist. Results of ligand-binding assays complemented the screening prediction. In 

addition, ESA decreased macrophage infiltration and significantly impeded the 

progression of IBD-related phenotypes through both PPAR-dependent and –independent 
mechanisms in mice with experimental IBD. 

Conclusions/Significance: This study serves as the first significant step toward a large-

scale VS protocol for natural PPARγ agonist screening that includes a massively diverse 

ligand library and structures that represent multiple known target pharmacophores. 
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3.2 Introduction 

Inflammatory bowel disease (IBD) is a chronic and recurring inflammatory disease with 

two clinical manifestations: ulcerative colitis (UC) and Crohn’s disease (CD). UC and 

CD affect over 4 million individuals in the United States and accrue a significant portion 

of the estimated $1.7 billion in health care costs for prevalent gastrointestinal diseases 

(CDC2007). While the etiopathogenesis of IBD remains unclear, it has been suggested 

that chronic mucosal inflammation characteristic of IBD is associated with a disruption in 

immune homeostasis (112). As such, treatments for IBD should correct this immune 

dysregulation in order to prevent or reduce gut mucosal damage. 

There is no cure for IBD, but treatments are available to combat the associated 

symptoms. One such treatment, 5-aminosalicylic acid, targets the nuclear hormone 

receptor peroxisome proliferator-activated receptor-gamma (PPAR), which is highly 

expressed in the colonic epithelial and immune cells (22, 113-117). PPAR and PPAR 
serve as targets for the treatment of inflammatory and immune-mediated diseases because 

of the role they play in maintaining homeostasis and suppressing inflammation (1, 112, 

117, 118). PPAR in particular is known to play a role in transcriptional regulation of 

anti-inflammatory processes via co-activator recruitment (1, 2, 116). Ligand-induced 

activation of PPAR can antagonize the activity of pro-inflammatory transcription factors 

such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-B), signal 

transducer and activator of transcription (STAT), and activator protein (AP)-1 (119). 

Other IBD treatments currently available include infliximab, which is an anti-tumor 

necrosis factor-alpha (TNF-) antibody (120, 121), and corticosteroids, which 
systemically suppress immunity (122). These medications are modestly successful for the 

long-term management of IBD but are associated with significant side effects, including 

increased risk of infection and cancer (123, 124). Interestingly, the insulin-sensitizing 

PPAR agonists used for treating type 2 diabetes, such as rosiglitazone and pioglitazone, 

have proven useful at ameliorating IBD effects in humans with UC (30). However, 

rosiglitazone, and other PPAR agonists of the thiazolidinediones (TZD) class of anti-
diabetic drugs, are unlikely to be adopted by gastroenterologists for the treatment of IBD 

due to associated side effects (30) including hepatotoxicity, weight gain, fluid retention 

leading to edema, and congestive heart failure (49). In this regard, the U.S. Food and 

Drug Administration (FDA) restricted the use of rosiglitazone in 2010 due to its side 

effects, whereas the European Medicines Agency completely banned its use in the 

European market. Natural therapeutics, such as fatty acids that induce PPAR activation, 

might be a safer alternative to current treatments and TZDs. 

Our group has conducted several preclinical animal model studies to suggest that 

supplementation of diet with fatty acids, such as conjugated linoleic acid (CLA) (42, 118) 

or agonistic botanicals, is effective at ameliorating colonic inflammation in mouse and 

pig models of IBD through a PPAR-dependent mechanism (42, 118, 125, 126). In an 
effort to expedite the drug and natural product therapeutic discovery process, virtual 

screening (VS) can complement traditional experimental methods for identification of 

novel PPAR agonists. VS represents a cost- and time-efficient means of screening 

thousands of compounds within thematic libraries that justify further experimental 

assessment (95). We are undertaking VS to identify novel PPAR agonists within a 
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collective of large compound databases. As a feasibility test, we screened a small group 

of known and proposed agonists, with the inclusion of known negative controls. The 

focus of this small-scale screen was to test our PPAR structural model, and assess 
binding of natural compounds, with significant emphasis on conjugated trienes. 

Conjugated trienes were selected due in part to their structural similarity to CLA. In 

addition, conjugated trienes exhibit effectiveness at ameliorating chronic inflammation 

(5, 127). One such compound, α-eleostearic acid (ESA; 9Z11E13E-18:3), has been found 

at concentrations of 60-80% in tung and bitter gourd seed oils (128). ESA has been 

shown to suppress tumor angiogenesis (129) and MCF-7 breast cancer cell proliferation 

via PPAR activation (130), induce apoptosis via lipid peroxidation (131), and induce 

autophagy-dependent cell death through AKT/mTOR and ERK1/2 signal targeting (132). 

Evidence also indicates that punicic acid plays a significant role in increasing lipid 

peroxidation (133) and inhibiting TNF--induced neutrophil hyperactivation to protect 
against experimentally induced colon inflammation in rats (7). Our group has found that 

punicic acid ameliorates type 2 diabetes-induced inflammation by activating PPAR and 

PPAR, and repressing TNF- expression in white adipose tissue and liver (127) and 
increases peripheral insulin sensitivity (134) without causing any adverse side effects 

(135). We have also demonstrated that punicic acid prevents experimental IBD through 

PPAR- and PPAR-dependent mechanisms (136). Catalpic acid improves abdominal fat 

deposition, improves glucose homeostasis and up-regulates PPAR expression in adipose 
tissue of mice (5). Though these plant-derived conjugated trienes suggest anti-

inflammatory efficacy in various disease models, it has been suggested that ESA induces 

a greater degree of antioxidant activity than punicic acid in mice (137). Punicic acid 

ameliorates both diabetes (136) and gut inflammation (127) without causing side effects 

(135), whereas ESA elicits mainly anti-inflammatory and anti-carcinogenic effects (129-

132). A goal of this study was to test the effectiveness of ESA in an experimental IBD 

model. Additionally, small-scale VS was conducted to test the predictability of our VS 

protocol for identifying PPAR full agonists in the hopes of finding natural therapeutics 

and/or prophylactics for treating IBD and other chronic inflammation-related diseases. 

The computational portion of our study revealed information complementary to the 

predictions of our in vitro analysis, pre-clinical efficacy, and mechanistic testing in mice. 

3.3  Methods 

3.3.1 Docking procedure 

AutoDock 4.0 (138) (AD4) was used for structural model testing, while AutoDock Vina 

(139) (Vina) was used for screening a subset of our in-house ligand database against the 

selected structural models of PPAR. AutoDock Tools 1.5.2 (ADT) was used to build the 
appropriate charged protein and ligand files for docking. Default values for the 

Lamarckian Genetic Algorithm (LGA) were used for docking with AD4, with the 

exception of the maximum number of energy evaluations, which was reduced to 250,000. 

Adjusting this number reduced the screening time without significantly affecting pose 

prediction. Five iterations of AD4 with 50 poses generated per iteration were conducted 

for the re-docking step totaling 250 poses per protein structure model. Vina was used for 

cross-docking and to run the small-scale screening. Three Vina iterations were conducted 
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for each ligand in the cross-docking step, while a single run was conducted for the small-

scale screening. As a means to further sample conjugated triene geometry, three AD4 

iterations of 50 poses each were run for each compound, which was a total of 150 poses 

per conjugated triene for each selected protein structure model. Scripts available through 

the AD4 development site (http://autodock/scripps.edu/) were modified and used to 

automate the screening process. Modifications to the scripts included exchanging the 

AD4 executable for the Vina executable and all subsequent necessary changes for Vina 

functionality. 

3.3.2 Structural model selection: Re-docking component 

Five structures with co-crystallized rosiglitazone were downloaded from the Research 

Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) (59, 60) 

(http://www.pdb.org). The selected structure IDs were 1FM6 (45), 1ZGY (140), 2PRG 

(52), 3CS8 (81), and 3DZY (56). These structures were evaluated to identify a PPAR 

structural model that would be appropriate for docking in a full agonist-like pose. 

Completeness of structure, crystal resolution, and re-docking ability were the factors 

considered. Re-docking refers to the ability of a docking program to reproduce the co-

crystallized binding geometry and orientation of the associated ligand given a rigid 

macromolecule state. The PDB structures were superimposed and rosiglitazone was 

isolated from each protein structural model with the UCSF Chimera software package 

(141). 

Re-docking was conducted with both native and non-native initial rosiglitazone 

conformations. Native refers to use of coordinates for the co-crystallized ligand structure 

of the respective protein structure model, whereas non-native refers to use of initial 

coordinates not found in the original PDB file. For the native test, each isolated 

rosiglitazone was re-docked into its respective protein structure (e.g., five protein models 

each with a different rosiglitazone coordinate files). For the non-native test, a single 

rosiglitazone structure was randomly selected for re-docking into all five structure 

models. Ligand flexibility and random initial geometry for the ligand reduced possible 

bias associated with use of a native ligand for one test structure, which was non-native for 

the other four. A comparison of results for the native and non-native ligand re-docking 

suggested the randomized initial conformation for rosiglitazone does not affect pose 

prediction as the predicted poses for both test sets were similar (data not shown). The 

non-native procedure involved docking of a single ligand structure to the protein 

structures, which is similar to what would be used for large-scale screening. Therefore, 

data from the non-native re-docking was analyzed and provided here. Both the 

superimposed positioning and the use of a single rosiglitazone model established a 

relatively controlled test set: overlaid coordinate space for the test structures, which 

translated to similar grid areas, with a single ligand coordinate file for testing.  

3.3.3 Structural model selection: Cross-docking component 

Co-crystallized ligands from various PDB files were used for cross-docking to test 

predictability for other known agonists. Cross-docking refers to docking different ligand 

structures isolated from multiple PDB structures of the same protein to a single selected 

model structure. Ligands from 1FM9 (45), 2F4B (72), 2HWQ (78), 2I4J (54), 2I4P (54), 
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2VSR (41), 2VST (41), 3ET3 (86), 2VV0 (41), 2VV1 (41), 2ZK1 (39), and 2ZK2 (39) 

were included in the library for this purpose (Table 3.3).  

3.3.4 Small-scale in-house ligand library construction 

Our small-scale ligand library included the rosiglitazone structure from re-docking, 

several of the cross-docking ligands, known PPAR agonists, and known inactive 

compounds. Inclusion of the ligands from the re-docking and cross-docking steps served 

as controls for successful and unsuccessful docking. A search of published literature was 

conducted to find both naturally and synthetically derived compounds shown 

experimentally to either activate or not activate PPAR (103, 142-144). Structural models 
for non-crystallized ligands were downloaded from the UCSF ZINC database online 

(http://zinc.docking.org/). Any structures not available through ZINC were built using the 

Dundee PRODRG2 server (145) (http://davapc1.bioch.dundee.ac.uk/prodrg/). Structures 

built with PRODRG2 were examined to ensure conservation of stereochemistry. Charges 

for all of the ligands in the database and the protein were generated using ADT. Eighty-

one compounds total were tested in this study. A complete list of ligands included in the 

test library can be found in Table 3.S1. 

3.3.5 Docking analysis for re-docking and cross-docking 

The most energetically favorable pose for each ligand of the re-docking (25 lowest 

energy poses) and cross-docking (108 lowest energy poses) steps were used for analysis. 

Reference poses for root mean-squared deviation (RMSD) calculations were taken from 

crystal structure complexes for each ligand. These protein-ligand complex structures 

were superimposed onto the test structures to obtain a common coordinate space prior to 

the RMSD calculation. For re-docking, RMSD values are exact given each PPARγ-

rosiglitazone complex was used as the reference for the respective results. However, the 

reported RMSD values for cross-docking were relative rather than absolute given the co-

crystallized reference ligand coordinates are not relative to the protein structure models 

used for testing. The idea of relative RMSD stems from differences in side chain 

rotamers between the crystal structures. Side chain position is governed, in part, by ligand 

binding, which meant differences could be seen in binding cavity residue positions when 

the rosiglitazone-bound test structures were compared to each additional PPARγ structure 

model. These differences, which affect intramolecular interactions, resulted in minor 

deviations of the backbone on some regions for the superimposed structures relative to 

the test structure. This could mean the position of each co-crystallized reference ligand 

relative to the test structures was shifted slightly as well. However, there were areas of 

the backbone that superimposed without noticeable deviations. As the deviations between 

backbone positions were not consistent, adjusting for any rotamer-induced shifts in co-

crystallized ligand coordinates was not feasible. Therefore, RMSD values for docked 

poses for each ligand were deemed “relative” as an acknowledgement of these minor 

variations in coordinates. An average RMSD, population standard deviation, and variance 

were calculated for each ligand (See Formulas document of Supporting Information). Re-

docking and cross-docking results for each ligand relative to each test protein structure 

were deemed successful if the RMSD was less than 2.0 Å (89). 
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Docking success versus failure for re-docking and cross-docking was assessed 

qualitatively as well. Docked poses for rosiglitazone on the surface of the protein or near 

the opening of the binding cavity were deemed unsuccessful. Poses for which the 

molecule was not properly oriented, such as the imidizole ring of rosiglitazone positioned 

near the cavity opening rather than near the rear of the pocket, were deemed unsuccessful 

as well given such orientations would not match the co-crystallized coordinates. Similar 

conditions relative to each cross-docking ligand were also identified and assessed. 

3.3.6 Docking analysis for small-scale VS 

To prepare for analysis of the small-scale VS results, interactions from various crystal 

structures were identified and cataloged. Reported crystal structure interactions for the 

five rosiglitazone-containing structures from the re-docking step and six fatty acid-

containing structures from the cross-docking step were compiled using RCSB Ligand 

Explorer (146). Residue atoms common to more than one interaction list for a specific 

ligand type were pooled and used as a reference list for analysis after docking. As such, 

there were two master interaction lists: rosiglitazone-like interactions (Table 3.S2) and 

fatty acid-like interactions (Table 3.S3). Common interactions between the two lists were 

also noted (Table 3.S4). 

Perl (147) scripts to automate pose distance measurement calculations and pose 

interaction predictions were also composed and used. The most energetically favorable 

docked pose for each ligand relative to the macromolecule were pooled for analysis. Only 

the potential for a ligand to fall into the full agonist category of ligands was assessed in 

depth for this study. Full agonism has been suggested to require interactions with Ser289, 

His323, His449, and Tyr473, which are residues positioned in the portion of the binding 

cavity proximal to the activation function-two (AF-2) region (Figure 3.S1). Interactions 

in this region govern AF-2 conformational changes necessary for PPAR activation. 

Distance measurements between the top docked poses (77 lowest energy poses) were 

calculated and used to predict interactions. Interactions similar to those seen in the pooled 

crystal structure data were deemed “successful”. Potential hydrogen bonds were assessed 

based on distances between the donor/acceptor heavy atoms of the test ligand pose and 

four key residues. Lengths measuring less than 3.3 Å were considered potential hydrogen 

bond interactions (103, 146). Potential hydrophobic interactions were set to a distance 

threshold of 3.9 Å between carbon atoms (146). Predicted interactions for each ligand 

were counted and a screen for the presence of hydrogen bond interactions with the key 

residues listed above was conducted to determine docking success. 

3.3.7 Ligand binding assay 

ESA was introduced at various concentrations (0.001-10M) to solution containing 

PPAR protein complexed with a fluorophore-bound compound (FluormoneTM, 
Invitrogen). This mixture was allowed to incubate for 20 hours. The ability of the test 

compound, which here was ESA, to displace FluormoneTM was calculated as mean 

polarization, where a decrease in polarization corresponded to an increase in ligand 

binding activity as previously described (148).  
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3.3.8 Transfection of RAW 264.7 cells 

RAW 264.7 mouse macrophage precursor cells (ATCC, Manassas, VA) were grown in 

24-well plates in DMEM high glucose medium (Invitrogen, Carlsbad, CA) containing 

10% fetal bovine serum until 60-70% confluence. Transfected cells were treated with 

varying concentrations of ESA (0, 1, 5, and 10 M; Sigma) or rosiglitazone (1 M; 

Cayman Chemicals, Ann Arbor, MI) for 24 hours. Other details of the protocol were as 

previously described (148, 149). Relative luciferase activity was calculated as a ratio 

between beginning and ending chemiluminescence values for a 10-second time period. 

3.3.9 Animal procedures 

The protocol for animal care and genotyping of the mice was described previously (118). 

An ESA-supplemented diet was tested against a control (AIN-93G-based) diet in a 

dextran sodium sulfate (DSS)-induced IBD mouse model. Sixty mice were divided 

according to diet (ESA versus control), genotype (PPAR flfl; MMTV-Cre-/PPAR-

floxed versus epithelial cell- and immune cell-specific PPAR flfl; MMTV-Cre+/PPAR-
null), and DSS-challenge. Ten mice (5 for each genotype) from the control diet group and 

9 mice (4 PPAR-floxed and 5 PPAR-null) from the ESA diet group were not given 

DSS-treated water as a control for the disease state. Drinking water with 2.5% DSS was 

administered to the test mice for a period of seven days. Body weights and disease 

activity index (DAI) values were recorded each day of the seven-day DSS treatment 

period. Procedures for assigning DAI values have been previously described (118). Mice 

were euthanized on day seven of the DSS challenge by CO2 asphyxiation followed by 

secondary thoracotomy. Blood was withdrawn from the heart, after which spleen, 

mesenteric lymph nodes (MLNs), and colonic samples were examined for gross 

pathological lesions and isolated from each mouse. Organs were examined to assign 

scores based on size and macroscopic inflammatory lesions (0-3). Spleen and MLN were 

crushed to produce single-cell suspensions for flow cytometry, while colon samples were 

used for mRNA isolation and histological examination. This study was approved by the 

Virginia Tech Institutional Animal Care and Use Committee (IACUC) on May 15, 2008 

under animal welfare assurance number A3208-01. 

3.3.10  Histopathology 

Experimental design for histopathology was previously described (118, 125). Epithelial 

erosion, mucosal thickness, and immune cell infiltration were each assessed and scored 

(0-4) for colon cross-sectional samples stained with hematoxylin and eosin from each 

mouse. 

3.3.11  Immunophenotyping 

Whole blood and MLN cells were seeded onto 96-well plates and treated with 

fluorochrome-conjugated antibodies. Monocyte/macrophage subsets were assessed using 

anti-F4/80-PE-Cy5 (5 mg/mL, eBioscience) and anti-CD11b-Alexa Fluor 700 (2 mg/mL, 

eBioscience).  The lymphocyte subset was assessed with anti-CD4-Alexa Fluor 700 (2 

mg/mL; BD Pharmingen), anti-CD8-PerCp-Cy5.5 (2 mg/mL, eBioscience), anti-CD3 PE-

Cy5 (2 mg/mL; BD Pharmingen), anti-FoxP3-PE (2 mg/mL, eBioscience), and anti-IL10-
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PE as previously described (4). Flow results were computed with a BD LSR II flow 

cytometer and data analysis was performed with the FACS Diva software package (BD). 

3.3.12  Quantitative real-time RT-PCR 

Total RNA was isolated from colonic tissue using procedures previously described (125). 

PCR was performed on complementary DNA (cDNA) using Taq DNA polymerase 

(Invitrogen, Carlsbad, CA) and previously described methods and conditions (118, 125).  

cDNA concentrations for genes of interest were examined by quantitative real-time PCR 

using an iCycler IQ System and the iQ SYBR green supermix (Bio-Rad).  A standard 

curve was generated for each gene using methods previously described (125). In addition, 

a melting curve analysis was performed for each product using previously described 

methods (125) in order to determine the number of products synthesized while excluding 

non-specific products and primer dimers. Real-time PCR was used to quantify the 

starting amount of nucleic acid of each unknown cDNA sample.  Primer sequences, the 

length of the PCR product, and gene accession numbers have been outlined previously 

(125, 149). Primers used for this study were the forward and reverse cohorts of VCAM-1, 

ICAM-1, IL-6, and -actin (125). 

3.3.13  Statistical analysis 

Data were analyzed as a completely randomized design with statistical significance 

assessed using the analysis of variance (ANOVA) method. The general linear model 

procedure of the Statistical Analysis Software (SAS) package (SAS Institute Inc., Cary, 

NC) was run for weight, DAI, flow cytometry data, and histopathology scores to 

determine variance across and significance between treatment groups. Statistical 

significance was assessed based on a probability value (p) less than or equal to 0.05. 

Significant models were further assessed using the Fisher’s Protected Least Significant 

Difference multiple comparison method. 

3.4 Results 

3.4.1 Selection of structural model: Re-docking component 

Structures with co-crystallized rosiglitazone (example given in Figure 3.S1) were used 

for re-docking because rosiglitazone was the positive control in the experimental studies, 

it is a known PPAR agonist, and the purpose of this docking feasibility test was to find 

compounds that mimic rosiglitazone-induced activation. The top scoring pose from each 

of the five 50-pose replicates was selected for further analysis. This selection method was 

applied for each of the five starting structures, giving a total of 25 poses for comparison.  

The RMSD and free energy of binding were averaged for the five poses for each protein 

structure model (Table 3.1). Additionally, the population-based standard deviation and 

variance were calculated. The average pose RMSD values for three structures, 1FM6, 

1ZGY, and 2PRG, were within 2.0 Å of the crystal structure position. Of these three, 

1ZGY possessed the highest standard deviation and variance values, which suggested that 

some poses with low and high RMSD values should be present. Examination of the poses 

for all five structures revealed that the lowest RMSD value (0.99 Å) for all rosiglitazone 
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poses was in the 1ZGY pose group as was the pose with the highest RMSD value (3.05 

Å). Thus, we favored the 1ZGY structure for further docking studies because this 

structure enabled docking at the known rosiglitazone binding position as well as docking 

at other energetically favorable positions within the binding site, suggesting that it might 

accommodate ligands of diverse structure.  To further confirm this selection, cross-

docking with known ligands from other PDB structures was conducted. 

 

Table 3.1 Average RMSD and free energy of binding (kcal/mol) for re-docking of 

rosiglitazone (N = 5). 

  RMSD kcal/mol 

PDB 

ID 

Resolution 

(Å) Mean 

Standard 

Deviation Variance Mean 

Standard 

Deviation Variance 

1FM6 2.1 1.76 0.561 0.314 -7.58 0.487 0.237 

1ZGY 1.8 1.91 0.925 0.856 -7.19 0.247 0.061 

2PRG 2.3 1.84 0.357 0.128 -7.66 0.228 0.052 

3CS8 2.3 2.81 0.101 0.010 -6.63 0.184 0.034 

3DZY 3.1 2.82 0.183 0.034 -7.06 0.133 0.018 

3.4.2 Selection of structural model: Cross-docking component 

1ZGY, 1FM6, and 2PRG were included in the cross-docking testing as each showed 

successful re-docking and contained ligand-binding domains without missing loops or 

sequence segments. Structures 3CS8 and 3DZY were missing the H2’-H3 loop and did 

not result in accurate pose prediction for rosiglitazone. Rosiglitazone poses for 3CS8 and 

3DZY occupied the portion of the binding cavity opening in which the H2’-H3 loop 

would normally sit (data not shown). This loop proved necessary for successful agonist 

docking given the poor success rate of re-docking in the absence of this region.  

Vina was used for cross-docking instead of AD4 as the former was more time-efficient 

for the number of ligands used and the number of replicates to be carried out. It has also 

been reported that Vina better predicts poses for ligands with higher numbers of torsions 

(150), which was the case for some of the ligands used in cross-docking. Replicates were 

conducted with Vina for two reasons: to determine if replicates would be necessary in a 

larger-scale study, and to aid in the protein structure model selection process. Three 

replicate screens were run and each lowest-energy pose was analyzed (3 protein models x 

3 replicates x 12 ligands = 108 lowest energy poses). Analysis of the cross-docking 

results included a comparison of RMSD values, free energy of binding, and number and 

identity of known interactions between each ligand and PPAR based on the crystal 
structures of the complexes. Results from comparison of RMSD values and free energy 

of binding are listed in Table 3.2, with full ligand names listed in Table 3.3. To simplify 

the process of cross-docking of several ligands to multiple receptor structures, the initial 

crystal protein-ligand complexes were superimposed prior to docking. This practice 

allowed for RMSD values to be easily calculated between the docked ligand poses and 

crystal reference poses as the structures shared coordinate space. 
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The results relative to each of the test structure models were not completely consistent 

across all the models. The lowest overall average RMSD was seen with 1ZGY for the 

(2S)-ureidofibrate-like derivative. This ligand did not dock as well into 1FM6 and 2PRG. 

A similar comparative docking pattern was seen for 4-HDHA. Only one ligand, PTG 

taken from PDB ID 2ZK1 (PTG-1), docked within the 2.0 Å threshold across the three 

structural models. It should be noted here that the PTG structure taken from PDB ID 

2ZK2 possessed different charges than the same compound from 2ZK1. The difference in 

charge is most likely due to the difference in crystallization states. 2ZK2 had glutathione 

covalently bound to PTG-1 as part of crystallization, whereas 2ZK1 did not. The 

glutathione-PTG-1 compound would therefore have more atoms over which charges 

would be distributed. 

The RMSD, standard deviation, and variance values for farglitazar, 9-HODE, 

indeglitazar, and PTG-1 showed the most consistency across the three proteins, with 

PTG-1 showing favorable average RMSD values and negligible variance for each protein 

structure. For PTG-1, this suggested the ligand docked similarly to all three protein 

structures. When the replicate poses for the four compounds were assessed visually, the 

deviations for the 9-HODE poses were due in large part to variation in the placement of 

the hydrophobic tail portion, the PTG-1 poses docked more similarly to 9-HODE than the 

PTG-1 reference structure, and the indeglitazar poses occupied the middle portion of the 

binding cavity rather than the rear activation site. The placement of the indeglitazar and 

PTG-1 poses appeared to be due to the shape of the binding cavity at the rear of the 

pocket, which was mentioned previously to be the issue with farglitazar. This hindrance 

was seen to a lesser degree with PTG-1 as there is sufficient space to allow interactions 

despite lack of exact congruence to the co-crystallized reference. Indeglitazar and 

farglitazar poses were consistently unsuccessful due to the binding cavity restriction, 

whereas PTG-1 occupied a fatty acid-like orientation given the similarity of this 

compound to the types of ligands that can appropriately fill the allotted molecular space. 

All of the poses had negative calculated free energy of binding values given the ligand 

structures and charge environment of the binding cavity. These values were energetically 

feasible, but were not an indication of the most favorable conformation for ligands that 

did not agree with the reference structure geometry. Therefore, RMSD and free energy of 

binding measurements were not enough to determine successful cross-docking for 

PPARγ. A visual assessment of poses suggested rosiglitazone and fatty acid compounds 

dock the best into the selected models. As such, interactions from crystal structures 

containing these compounds were used to generate a list of favorable interactions that 

might indicate successful docking. The residues considered are listed in Table 3.S4. 
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Table 3.2 Average RMSD and free energy of binding from cross-docking for various 

ligands relative to each listed PDB ID (top row) (N = 3). 

 1FM6 1ZGY 2PRG 

 RMSD (Å) 

PDB 

Ligand 

ID Mean SD1 Var2 Mean SD Var Mean SD Var 

243 2.82 0.199 0.040 2.82 0.014 0.000 2.60 0.040 0.002 

570 3.19 0.000 0.000 3.08 0.007 0.000 3.13 0.050 0.003 

4HD 1.81 0.365 0.134 1.40 0.018 0.000 2.19 0.236 0.056 

9HO 1.73 0.184 0.034 1.85 0.270 0.073 1.70 0.162 0.026 

DRH 2.74 0.030 0.001 1.55 0.209 0.044 2.17 0.251 0.063 

DRJ 1.63 0.807 0.652 1.72 0.417 0.174 2.03 0.175 0.031 

DRY 3.23 0.002 0.000 2.26 0.024 0.001 1.89 0.019 0.000 

EHA 2.47 0.524 0.275 2.45 0.386 0.149 1.89 0.007 0.000 

ET1 2.83 0.001 0.000 2.68 0.003 0.000 2.72 0.001 0.000 

HXA 2.49 0.616 0.380 1.99 0.171 0.029 1.85 0.009 0.000 

PTG-1 1.78 0.000 0.000 1.78 0.005 0.000 1.65 0.019 0.000 

PTG-2 2.68 0.023 0.001 2.53 0.244 0.059 2.53 0.091 0.008 

 Free energy of binding (kcal/mol) 

PDB 

Ligand 

ID Mean SD Var Mean SD Var Mean SD Var 

243 -6.87 0.094 0.009 -6.57 0.047 0.002 -6.47 0.309 0.096 

570 -10.43 0.047 0.002 -11.00 0.000 0.000 -10.50 0.082 0.007 

4HD -7.00 0.163 0.027 -7.53 0.170 0.029 -6.97 0.047 0.002 

9HO -6.40 0.082 0.007 -6.70 0.082 0.007 -6.37 0.094 0.009 

DRH -8.23 0.047 0.002 -8.83 0.125 0.016 -8.17 0.047 0.002 

DRJ -8.63 0.094 0.009 -8.80 0.294 0.087 -8.37 0.094 0.009 

DRY -10.03 0.047 0.002 -10.13 0.047 0.002 -10.37 0.047 0.002 

EHA -10.10 0.082 0.007 -10.10 0.082 0.007 -10.60 0.000 0.000 

ET1 -8.10 0.000 0.000 -8.50 0.000 0.000 -8.50 0.000 0.000 

HXA -7.00 0.327 0.107 -7.90 0.082 0.007 -7.33 0.047 0.002 

PTG-1 -7.00 0.000 0.000 -7.23 0.047 0.002 -7.20 0.082 0.007 

PTG-2 -7.17 0.170 0.029 -7.10 0.082 0.007 -7.47 0.094 0.009 
1SD = Standard Deviation 
2Var = Variance 
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Table 3.3 Full names and structures for compounds listed by ligand ID in Table 3.2. 

Ligand IDs from respective PDB files were used. Ligand structures can be found in Table 

3.S1. 

PDB 

Ligand 

ID 

PDB 

ID Reference Ligand Name1 

243 2VST (41) 13-hydroxyoctadecadienoic acid 

(13-HODE) 

570 1FM9 (45) GI262570 

(Farglitazar) 

4HD 2VV1 (41) (4S,5E,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-

5,7,10,13,16,19-hexaenoic acid 

(4-HDHA) 

9HO 2VSR (41) 9-hydroxyoctadecadienoic acid 

(9-HODE) 

DRH 2I4P (54) (2S)-2-[4-[2-(1,3-benzoxazol-2-yl-heptyl-

amino)ethyl]phenoxy]-2-methyl-butanoic acid 

((2S)-ureidofibrate-like derivative) 

DRJ 2I4J (54) (2R)-2-[4-[2-(1,3-benzoxazol-2-yl-heptyl-

amino)ethyl]phenoxy]-2-methyl-butanoic acid 

((2R)-ureidofibrate-like derivative) 

DRY 2HWQ (78) [(1-{3-[(6-benzoyl-1-propyl-2-naphthyl)oxy]propyl}-

1H-indol-5-yl)oxy]acetic acid 

(5-substituted indoleoxyacetic acid analogue) 

EHA 2F4B (72) (5-{3-[(6-benzoyl-1-propyl-2-naphthyl)oxy]propoxy}-

1H-indol-1-yl)acetic acid 

(Indol-1-yl acetic acid) 

ET1 3ET3 (86) 3-[5-methoxy-1-(4-methoxyphenyl)sulfonyl-indol-3-

yl] propanoic acid 

(indeglitazar) 

HXA 2VV0 (41) Docosa-4,7,10,13,16,19-hexaenoic acid 

PTG 2ZK1 

2ZK2 

(39) 15-deoxy-delta(12,14)-prostaglandin J2 (PTG) 

1Abbreviations for ligands mentioned in the text are in parentheses following the full 

name of the compound. 

Inclusion of the interaction criteria improved the target structure model selection process. 

Based on the crystal structure interactions common to rosiglitazone and known fatty acid 

agonists, the number of possible interactions (Table 3.S5) and instances of key residue 

hydrogen bonding (Table 3.S6) were counted for all the poses. Both sets of data 

suggested that 1ZGY was the most appropriate model relative to 1FM6 and 2PRG for the 

purposes of this study. Poses docked into the 1ZGY model all showed at least one key 

interaction, whereas the other two models returned poses for some ligands that did not 

exhibit any known interactions. Additionally, fatty acid and fatty acid-derivatives 

returned the most favorable poses of all the cross-docking ligand types. If interaction 

analysis is included in the selection process, we see 1ZGY as the predominate candidate 
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for the target structure model in a screen involving rosiglitazone-like and fatty acid 

compounds. 

3.4.3 Conjugated trienes showed association with PPAR in silico 

For the small-scale screen, a library of seventy-seven compounds was selected. These 

compounds included known active and inactive compounds, with alternate 

stereochemistry for some structures. This test set allowed for screening of active versus 

inactive, rosiglitazone-like versus non-TZDs, and molecularly simple versus complex 

compounds. The interaction data (Tables 3.S7 and 3.S8) reinforced the assumption that 

the selected target structure model could accommodate rosiglitazone-like and fatty acid 

compounds. The cross-docking ligands included in the screen docked similarly to what 

was seen with the cross-docking test. Most of the rosiglitazone-like compounds studied 

by Markt et al. (144) showed successful docking. These compounds were Chemical 

Abstracts Service (CAS)# 264908-13-6, CAS# 651724-09-3, CAS# 853652-40-1, 

BRL48482, BVT13, CLX-M1, KRP297, and NNC61-4424 (Table 3.S1). Isomers of 

these compounds with differences in stereochemistry were used as well. Some of these 

structures did not dock as well, which was expected given it has been suggested from 

crystal structure studies that chirality can affect agonist activity (54). We also saw lack of 

favorable docking for bulkier compounds, which contain multiple ring and aromatic 

components, and compounds with multiple hydroxyl groups. These ligands included 

phenolic extracts taken from Glycyrrhiza glabra roots isolated by Kuroda et al. (143), α-

santonin-derived compounds identified by Tanrikulu et al. (142), and flavonoids screened 

by Salam et al. (103) (Table 3.S1). The compounds from Kuroda et al. (143) and 

Tanrikulu et al. (142) compounds were numbered according to extraction fraction and 

deviation from the original α-santonin scaffold, respectively. The Kuroda et al. subset 

included compounds that induced low level activation. The Tanrikulu et al. subset 

contained one highly active compound (Tanrikulu_1), one moderately active compound 

(Tanrikulu_2), and six inactive compounds (Tanrikulu_3 through Tanrikulu_8). The 

selected Salam et al. compounds were apigenin, biochanin-A, chrysin, dihydroquercetin, 

genistein, hesperidin, psi (ψ)-baptigenin, and vitexin. The unsuccessful docking of known 

active compounds in these groups indicated the receptor structure was not appropriate for 

docking of these molecule types. 

All of the conjugated trienes docked successfully but with similar geometry and energy 

scores, so a more detailed test for these compounds was conducted to see if a 

predominant ligand could be identified. AD4 was used to dock jacaric, catalpic, calendic, 

eleostearic, and punicic acids into the selected structural model, 1ZGY. Three iterations 

of 50 poses each were run and the lowest energy pose for each run for each fatty acid was 

selected and compared (15 lowest energy poses). The numbers of potential hydrogen 

bonds and hydrophobic interactions for each pose were calculated (Table 3.S8). The 

lowest energy pose with the most potential hydrogen bond interactions was selected for 

each triene and used for analysis. As there are no crystal structures available with any of 

these compounds co-crystallized, interactions from PDB structures with fatty acids bound 

were used to generate an interaction reference list (Table 3.S3). The four key residues 

that formed hydrogen bonds with rosiglitazone also formed hydrogen bonds with these 

fatty acids. Therefore, poses that possessed these interactions were deemed successful 
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agonists. Unsuccessful poses were those lacking the agonist interactions and poses with 

the reactive polar group pointed away from the activation site. 

All the conjugated trienes showed favorable docked poses and exhibited interactions with 

residues associated with PPAR activation (Table 3.4). The triene poses occupied a space 
similar to that seen with rosiglitazone (Figure 3.1), and exhibited interactions with key 

residues. Of all the replicate poses for triene docking, the ESA replicates consistently 

exhibited the most negative free energy of binding (Table 3.S9). Hydrogen bond 

interactions with only two of the four key residues were seen; however, it is not clear if 

interactions with all four residues are absolutely necessary for activation, or if a reduced 

number of interactions can still induce activation. It is feasible that a reduced number of 

specific interactions may contribute to the specificity seen with ligand-induced co-

activator recruitment for PPARs. A comparison of distance measurements for the 

interactions showed two Tyr473-involved interactions for ESA, punicic acid, and jacaric 

acid. Given the distance measurements, it was proposed that the acid head group 

straddles Tyr473, with one oxygen atom closer to one histidine side chain than the other. 

This was confirmed when the poses were visually assessed. The number of hydrophobic 

interactions was more consistent for the ESA poses compared to punicic and jacaric 

acids. As previously mentioned, it is known that punicic acid binds to PPAR and 

modulates its activity, while ESA possesses greater antioxidant effects. Given the 

combination of what was known experimentally about the compounds and the predicted 

free energy of binding and interactions, ESA was selected as a candidate for validation 

using a ligand-binding assay and further experimental testing in vivo. 

 
Figure 3.1 Predicted docked conformations for α-eleostearic (purple), punicic (cyan), calendic (orange), 

jacaric (green), and catalpic (gold) acids relative to the rosiglitazone-occupied portion of the binding cavity 

(mesh surface) in the rigid PPAR structure model. Key residues with which hydrogen bonding occurs are 

labeled. Atom-specific coloring: red = oxygen; gray = carbon; blue = nitrogen. Table 3.4 contains distance 

measurements for each docked pose. 

3.4.4 ESA bound to and modulated PPAR in vitro 

The results of our molecular docking efforts and various published studies (7, 127, 129-

133, 135, 136) indicated that conjugated trienes, specifically ESA, may bind to and 

modulate PPARγ activity. Ligand-binding and reporter activity assays were conducted to 

test this assumption. A cell-free ligand-binding assay was implemented to determine if 

ESA associated with PPAR in vitro and possessed a similar depolarization pattern to 
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rosiglitazone. The results suggested the depolarization pattern for ESA was similar to that 

seen with the rosiglitazone positive control with no significant difference between the 

two curves (Figure 3.2A).  

 

An assessment of PPAR activity modulation was conducted using RAW 264.7 cells and 

varying ESA concentrations (0-10 M). Relative luciferase activity was measured to 

determine ligand-induced activation. The reporter assay suggested ESA does modulate 

PPAR activity, but at a concentration 10-fold higher than the rosiglitazone control 
(Figure 3.2B), suggesting that there may be a difference in either potency or uptake by 

the cells between both compounds. 

3.4.5 ESA ameliorated clinical signs of IBD 

Under our DSS-induced IBD model, ESA significantly ameliorated IBD in mice with the 

wild phenotype (i.e., PPAR-floxed). This observation was based on the significant 
difference between DAI for the last four days of the seven-day challenge (Figure 3.3). 

IBD-related disease phenotypes were milder in the ESA-fed PPAR-expressing group of 

mice compared to the ESA-fed cell-specific PPAR-null mice. The control groups (no 
ESA) for both genotypes showed no improvement in IBD phenotypes over the seven-day 

time course. Therefore, ESA was effective in ameliorating disease-associated phenotypes 

in mice with DSS colitis through a PPARγ-dependent mechanism. 

Figure 3.2 Ligand-binding (A) and reporter assay (B) results for ESA bound to PPAR with 

rosiglitazone (Ros) as a positive control. (A) Ligand binding was assessed as a measure of mean 

polarization for the displaced FluormoneTM molecule versus increasing concentrations of either ligand. 

(B) Reporter activity was measured as relative luciferase activity for various concentrations of ESA 

versus 1M Ros. Error bars represent standard deviation, while asterisks (*) indicate significance (p ≤ 

0.05) between the data sets. 
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Table 3.4 Distance measurements (in Angstroms [Å]) for docked conjugated triene poses 

displayed in Figure 3.1. Distances were measured between carboxylic oxygen atoms of 

fatty acids and listed atoms for each residue. Free energy of binding is measured in 

kilocalories per mole of ligand (kcal/mol). No value is listed for rosiglitazone as this 

refers to the crystal conformation (denoted "N/A") Residues are labeled as the amino acid 

designation plus the atom name (e.g., S289.OG refers to the oxygen atom in the gamma 

position on serine 289). 

Ligand Color Residue Distance (Å) kcal/mol 

eleostearic acid purple H323.NE2 3.16 -5.6 

  Y473.OH 3.01  

  Y473.OH 3.27  

punicic acid cyan H449.NE2 2.84 -4.28 

  Y473.OH 3.03  

  Y473.OH 3.07  

calendic acid orange H449.NE2 2.81 -4.47 

  Y473.OH 3.10  

catalpic acid gold S289.OG 3.05 -4.48 

  H323.NE2 3.03  

  Y473.OH 3.26  

jacaric acid green H449.NE2 2.84 -4.5 

  Y473.OH 3.16  

  Y473.OH 3.10  

rosiglitazone gray mesh S289.OG 3.02 N/A 

  H323.NE2 2.83  

  H449.NE2 3.02  

  Y473.OH 2.85  

Figure 3.3 Effect of ESA on disease activity scores for PPAR-expressing (A) and PPAR-null (B) 

mice with experimental IBD. PPARγ-null refers to lack of functional PPARγ product in colon epithelial 

and immune cells only. Data points represent averaged disease scores for each group with error bars 

representing standard deviation. Asterisk (*) indicates significance (p ≤ 0.05). 
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3.4.6 Immunophenotypes for harvested tissues 

Changes in immune cell subsets due to DSS-induced colitis were assessed in the 

harvested tissues to investigate the modulation of inflammation by ESA (Figure 3.4). 

Flow cytometry was used to characterize the phenotype of macrophages and T cell 

subsets. DSS augmented the percentages of monocytes or macrophages in the blood and 

spleen (Figure 3.4A and 3.4C). A significant increase in blood monocytes was found in 

ESA-treated mice. The PPAR-expressing mice on the ESA diet exhibited a higher 

percentage of monocytes expressing lymphocyte antigen 6 complex-high (Ly6Chi), which 

was not seen in the PPAR-null group (Figure 3.4B) indicating a PPAR dependency of 
this effect. Higher levels of IL-10 were observed in the spleen of the ESA-fed mice for 

both genotypes although these numerical differences were not statistically significant 

between the two diets for the PPAR-expressing genotype (Figure 3.4D). Lastly, we 

found a numerical decrease in CD8+ T-cells in the ESA diet group (Figure 3.4E), where 

the change was PPARγ-independent.  

 

3.4.7 Histological trends mimicked clinical activity 

There was a significant decrease in epithelial erosion (Figure 3.5A), mucosal thickness 

(Figure 3.5B), and immune cell infiltration (Figure 3.5C) in the ESA-fed PPAR-

expressing mice but not in ESA-fed PPAR-null mice. This suggested amelioration of 

experimental IBD phenotypes by ESA is PPAR-dependent. This agreed with the DAI 

Figure 3.4 Effect of ESA on immune cell subsets of PPAR-expression and PPAR-null mice with 

experimental IBD. Tissues examined included blood (A and D) and spleen (B, C, and E). Values 

represent least square means for percentage of gated cells with error bars to indicate standard error. 

Letters indicate significance (p ≤ 0.05) where a shared letter indicates groups which are not statistically 

significantly different. 
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data and further indicated an ESA-associated PPAR-dependent improvement in IBD 

phenotypes. 

 

3.4.8 Gene expression suggested PPAR-dependent and -independent 

mechanisms 

There was a marked decrease in IL-6 and VCAM-1 mRNA expression between the 

control- and ESA-fed PPAR-expressing groups (Figure 3.6A and 3.6B). The IL-6 

decrease appeared to be PPAR-independent, while the VCAM-1 decrease was PPAR-
dependent. We also found a decrease in ICAM-1 expression between the control and 

ESA diet groups, but this decrease also occurred in the PPAR-null mice suggesting ESA 

can induce ICAM-1 regulation in a PPAR-independent manner (Figure 3.6C).  

 

Figure 3.5 Effect of ESA on histopathological lesions in colons from PPAR-expressing and PPAR-

null mice with experimental IBD. Epithelial erosion (Erosion) (A), immune cell infiltration (Infiltration) 

(B), and mucosal thickness (Thickness) (C) were assessed and averaged for all the DSS-treated group of 

samples. Data are presented as mean score with error bars to indicate standard deviation. Letters 

indicate significance (p ≤ 0.05) where a shared letter indicates groups which are not statistically 

significantly different. 

Figure 3.6 Effect of ESA on colonic concentrations of IL-6 (A), VCAM-1 (B), and ICAM-1 (C) in 

PPAR-expressing and PPAR-null mice with experimental IBD. The mean ratio of expression for each 

protein relative to constitutively expressed β-actin is shown with error bars to indicate standard deviation. 

Letters indicate significance (p ≤ 0.05) where a shared letter indicates groups which are not statistically 

significantly different. 
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3.5  Discussion 

The VS model protein structure and parameters used in this study allowed for prediction 

of docking conformations for rosiglitazone-like and fatty acid compounds. The re-

docking results for rosiglitazone, cross-docking results for PTG-1 and 9-HODE, and the 

conjugated triene docking all suggested 1ZGY is appropriate for screening fatty acids and 

TZD-like compounds. Potential for docking of fatty acid derivative partial agonists, like 

(2S)-ureidofibrate-like derivative, was also seen, but not fully assessed for this study as 

full agonism was the binding type of interest. Thus, we have successfully established a 

VS parameter set appropriate for a large-scale PPAR full agonist search amongst fatty 

acids and fatty acid derivatives. 

Information regarding interactions known to occur with PPARγ agonists is a suitable 

means to identify docking success. However, the success rate may be improved by 

incorporating even more criteria. Such criteria include a more extensive list of key 

interactions and/or establishment of distinct lists to specify interactions characteristic of 

each ligand category (e.g., full agonist, partial agonist, and antagonist). Based on the 

number of interactions and presence of interactions with key residues, we were able to 

determine which ligand types do and do not fit our selected target structure model. 

Combining this with RMSD data allowed us to see which types of ligands dock away 

from the binding cavity given the molecular environment of the selected target structure 

model. This information regarding ligands that would be excluded in a screen for 

compounds that interact similarly to what is seen with rosiglitazone can be used to 

identify one or more additional target structure models to incorporate into a large-scale 

screen. RMSD data, however, would not be available from a screen of unknowns, and 

conclusions would therefore have to be drawn from the interaction and free energy data. 

Due to the high degree of precision observed with the cross-docking ligands, it was 

determined that a single pose for each ligand would be sufficient for the initial analysis 

step in a large-scale screen. Replicates were necessary for the pre-screening analysis in 

which parameters and structure models were tested for predictability. Replicates are 

useful in docking studies to ensure any conclusions are based on consistent interactions. 

However, running replicates for a library numbering in the thousands is computationally 

time-consuming and less than practical given replicate poses may possess geometry that 

is exactly or close to the same. Rather than run replicates on the entire library of 

compounds, it would be feasible to run more detailed docking with compounds selected 

as successful binders of interest with the potential for experimental verification. 

We observed a complementary relationship between the experimental ESA-IBD study 

and the computational screening results. In a recent review, we mentioned previous 

studies in which dual- or pan-agonistic effects have been associated with conjugated 

trienes (151). This information, coupled with other published studies regarding synthetic 

agonists and inactive compounds, provided a means to develop and test computational 

methods for identifying natural agonists. Our docking analysis suggested ESA possessed 

a more favorable binding energy compared to the other conjugated trienes. Though 

comparative relationships have not been established between ESA and all the tested 

trienes, we do know that ESA possesses greater antioxidant effects than punicic acid in 

mice (152). It is plausible that the differences in efficacy between the compounds is 
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interaction-related, which may result in conformational changes that attenuate co-

activator recruitment and subsequent transcriptional regulation. The interaction aspect 

may have been picked up by our study, but the dynamic significance was not. This 

second aspect would require further computational testing to see if differences in protein 

stability and conformation can be detected between the protein-ligand complexes. 

The ligand binding and reporter assays verified that ESA binds to and modulates PPARγ. 

Our docking study suggested fewer interactions occurred in the PPAR-ESA complex 

compared to PPAR-rosiglitazone. It is possible that the absence of interactions with 

Ser289 and His449 could result in a different level of ligand-induced activity attenuation 

or the interactions with His323 and Tyr473 may be more important for fatty acid-induced 

agonism. Given the different levels of agonism, which is ligand-dependent, it is plausible 

that the specificity toward anti-inflammatory mechanisms observed as PPAR-dependent 
in the pre-clinical trial were influenced by some difference in agonism specific to ESA. 

This notion is further supported by the absence of rosiglitazone-associated phenotypes 

seen in studies published by other groups (9, 152). Both the Shah et al. and Ramakers et 

al. studies involved testing rosiglitazone against DSS-induced colitis in mice (9, 152). 

Ramakers et al. showed weight gain in mice treated with rosiglitazone prior to DSS 

challenge, followed by significantly greater weight loss compared to the control after 

DSS challenge (9). Increases in the severity of colitis-specific colon phenotypes were 

also seen, but with a decrease in inflammation (9). The Shah et al. study indicated a 

PPARγ-dependent rosiglitazone-induced decrease in macrophage recruitment, but 

showed no other significant changes to the levels of other cytokines (152).  

We have shown that the immune modulatory actions of ESA may be both PPAR-

dependent and PPARγ-independent in mice with experimental IBD, although its effects 

on disease activity and colonic lesions are dependent on expression of PPAR by immune 

and epithelial cells. It is known that PPAR is highly expressed in immune cells, 

intestinal epithelial cells (IECs), and adipocytes, with lower expression levels throughout 

various tissues of the body. Recently, our group published work in which the severity of 

IBD was tested in a mouse model for IEC-specific PPAR deletion in a C57BL/6 

background (8). It was determined that the absence of PPAR from IECs resulted in 

significantly worse disease scores, greater loss of body weight, and increased 

inflammation in the colon, spleen, and MLN compared to mice expressing PPAR (8). 

Further, it was concluded that the presence of PPAR in IEC contributes to anti-

inflammatory effects, regulation of immune cell distribution, and gene expression 

regulation necessary to counteract IBD symptoms (8). 

Additionally, there are studies in which PPAR expression and the effect of ESA on 
disease pathogenesis have been evaluated in breast cancer cell lines (130, 153), pre-

adipocytes (154), and colon cancer cell lines (40). In all cases the fatty acid was capable 

of significantly ameliorating the disease via PPAR-dependent responses such as induced 

apoptosis of cancer cells (40, 130, 153) and reduced lipid storage during differentiation 

(154). Other conjugated trienes, such as punicic acid and catalpic acid (5, 127) have 

shown reduced inflammation responses in cancer, cardiovascular disease (155), and 

obesity (5, 127, 155). All of these studies are strong examples of how PPAR mediates 
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inflammatory, metabolic, proliferation, signal transduction, and cellular motility 

processes (8) in various cell types. 

It is possible that the presence of other nuclear receptors in the cells play a role in ESA-

mediated effects. PPAR in the colon may play a role in ESA-mediated IBD amelioration 
given the possibility of dual-agonist and pan-agonist modulation seen with PPARs, and 

the ability of all three PPARs to accommodate fatty acids. Further computational and 

experimental tests would be necessary to determine whether ESA mediates both PPAR 

and PPAR transcriptional regulation, which has been previously described for CLA 

(118). The anti-inflammatory responses induced by ESA, which appeared to be PPAR-

independent, might also be attributed to other unforeseen targets in the system. For 

instance, we previously described the potential of PPARγ agonists to bind to lanthionine 

synthetase component C-like protein 2 (LANCL2) (148). Such an association is one 

proposed molecular mechanism of regulating disease-related inflammatory effects in a 

PPARγ-independent manner. 

Beyond what is seen in IBD, it has been shown that ESA binds to and activates estrogen 

receptors in breast cancer cell lines (156). It is also known that hepatocyte nuclear factor-

4α (HNF4α), which is essential for maintaining lipid homeostasis via gene regulation and 

regulating hepatocyte differentiation, is activated by fatty acids (157). It has been 

suggested that PPARα ligands can interfere with HNF4α activity (158), but the 

mechanism by which this occurs is not fully understood. As conjugated trienes like 

punicic acid activate PPARα in adipocytes (127), and PPARα and fatty acids are present 

in liver tissue also, it seems feasible that conjugated trienes could come in contact with 

and bind HNF4α as well. To our knowledge such a study involving HNF4α and ESA or 

any other conjugated trienes has not been conducted. 

The ability of the binding cavity to accommodate many different ligand types represents 

a major technical obstacle when performing computational docking into PPARγ as a 

therapeutic target. The issue stems from the dynamic nature of the binding cavity and 

changes in protein conformation necessary to accommodate different agonists. This 

dynamic nature is not possible with rigid macromolecule docking techniques, and 

incorporation of flexibility can be difficult given the number of residues that can possess 

variable positions and the number of possible rotamers for each residue. The rigidity of 

crystal structures combined with the variability of residue side chain positions proved an 

issue for docking non-native ligands to the selected structure model. For example, the 

docked poses for farglitazar across the three protein structure models examined in the 

cross-docking step reflected a lack of appropriate molecular volume at the rear of the 

binding pocket to accommodate the benzyl ketone group on the ligand (Figure 3.7A). 

When the three structure models were compared to the 1FM9 crystal structure in which 

farglitazar was co-crystallized, the space necessary to accommodate the benzyl ketone 

group of farglitazar was missing given the differences in the side chain positions for 

Phe282 and Phe363 (Figure 3.7B). These residues do not pose an issue for rosiglitazone 

docking, but occupied the portion of the cavity in which farglitazar should have docked, 

which prevented successful cross-docking of this compound to the selected structure 

models. As such, selection of a single model to appropriately accommodate a narrow 

range of ligands and selection of several models to use with a diverse ligand library are 

two avenues toward identifying PPARγ agonists in silico. The first technique is used 
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widely, but the second is not as common due to the amount of time necessary to properly 

identify target structure models. Given the molecular exclusion of the more hydrophobic 

compounds in our small-scale screen, the second technique would be ideal for dealing 

with a diverse library, such as the one we have constructed. Therefore, further testing 

with additional protein structure models capable of accommodating bulkier and more 

hydrophobic compounds would be necessary. 

 

Figure 3.7 Visual assessments of molecular surface differences that result in unsuccessful docking of 

specific ligand types to the selected PPARγ structure model. Farglitazar is represented in both panels with 

atom-specific coloring. (A) 1ZGY and 1FM9 surface representations are green mesh and solid gray, 

respectively. The three poses predicted for farglitazar relative to 1ZGY are shown in magenta, cyan, and 

yellow. (B) Side chain rotamers for F282 and F363 are responsible for the differences in cavity surface at 

the rear of the cavity. Surface colors for 1ZGY and 1FM9 are the same as in (A). Atom-specific coloring: 

gray/black = carbon, blue = nitrogen, red = oxygen, white = hydrogen, and yellow = sulfur. 

An additional technique for improving predictability is molecular dynamics simulation 

and analysis, which is also extremely time consuming and can prove problematic since 

parameters for ligands must be developed. Conformational sampling of the PPARγ 

binding cavity via MD is one means of gleaning useful information in a relatively short 

amount of time. This technique would provide information about predominant 

conformations adopted by PPARγ that would aid in the selection of multiple target 

structure models for docking, and can be easily verified by the large number of available 

crystal structures. 

 PPAR has proven a difficult protein to explore as a drug target given dynamic and 
specificity issues. The large binding cavity and ability of the protein to accommodate a 

wide range of compounds presents an issue for rigid docking screening. The ability of the 

protein to bind compounds of different compound families requires a degree of ligand 

diversity that is often not employed in conventional VS studies. As a means to improve 

our method, we are currently testing additional PPARγ crystal structures as docking 

targets. As a consequence of this study, we have established a need for at least one 

additional target structure model that can accommodate bulker compounds. An analysis 

of MD simulations for unbound active, bound active, and unbound inactive forms of 

PPARγ are ongoing. These simulations, combined with further analysis of available 

crystal structure models, will allow us to develop additional target structure models. 

Incorporating conformational variability by screening against multiple protein 
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conformations of the same protein should improve our screening process. We propose 

matching ligand and protein pharmacophores prior to screening to reduce the incidence of 

screening ligands against a protein structure into which the ligands cannot fit or where the 

charge environment is inappropriate. 

The diversity of our compound database is being expanded as well, and will include an 

extensive list of known PPARγ agonists, decoy compounds that mimic known agonist 

structure but are inactive toward PPARγ, drugs currently available for treatment of other 

diseases, and extracts tested experimentally for PPARγ modulation. Such a library would 

improve enrichment, which is part of the separation of binders from non-binders. Further, 

inclusion of a weighting system based on the occurrence of known interactions would 

improve the separation process. With a diverse library in which available therapeutics are 

included, it may be possible to identify lesser known drug interactions with PPARγ 

linked to side effects seen with patients taking medications for cancer and neurological 

diseases. Given the success of our current study and the pending improvements to our 

method for testing of diverse ligand types, we are making progress toward an extensive 

and highly effective means to computationally identify feasible PPARγ-targeted drug 

candidates. Ideally, the established methods could be applied to the other PPARs, other 

nuclear hormone receptors, and alternate protein family targets where similar 

considerations must be made. 

This study exemplifies how experimental methods can be used to complement and verify 

computational predictions. We have demonstrated that it is possible to predict ligand 

association given information known about the binding cavity of the target. We have also 

established a means to reduce the need for researcher intervention in assessing successful 

binding by incorporating a search for key interactions. More specifically, we have 

successfully established a protocol for screening fatty acid compounds against PPARγ for 

agonism, and were able to predict that ESA and other conjugated trienes would bind to 

and activate PPARγ using molecular docking. These predictions have been verified 

through in vitro assays both here and in our previous work (127, 136). In vivo efficacy 

was assessed as well to determine if disease-associated benefits could be seen given the 

activation of PPARγ by ESA. In this regard, ESA did induce both PPARγ-dependent and 

-independent responses that ameliorated disease activity and intestinal lesions in IBD. 

The scope of this work implies the techniques described here can aid in streamlining drug 

discovery and development techniques as the technology develops. 
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3.7 Supporting Information 

 
Figure 3.S1 Colored ribbon representation of PPAR showing three layers of helical “sandwich”, and co-

crystallized rosiglitazone (PDB ID 1FM6 (45)). Helices for each layer are colored, with helix H12, which 

sits at the rear of the binding cavity (AF-2 region), colored in red. Rosiglitazone is colored in green, with 

oxygen, nitrogen, and sulfur atoms colored red, blue, and yellow, respectively. The insert (upper right) 

shows a close-up view of the molecular surface of the binding cavity. The thiazolidinedione head group of 

rosiglitazone sits at the rear of the binding cavity where it can interact with S289, H323, H449, and Y473 in 

order to change the conformation of the AF-2 region and activate the protein. 
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Formulas 3.S1 

Standard Deviation (σ) refers to the degree to which the measured values deviate from the 

mean. 





n

k

kx
1

2
)(  , where x is a single value, k is the index for the value,  is the 

population mean, and n is the number of values. Variance defines how far the measured 

values are from each other and is defined as 2. 
Root Mean-Squared Deviation (RMSD) is a measure of the change in geometry and 

orientation of a pose from that of the reference control structure. 

     22
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, where n number of equivalent pairs of 

atoms, and v and w are the cooridinate sets for the pose and reference structures. 
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Table 3.S1 List of ligands used for virtual screening. 
Ligand Activity Reference Structure 

GI262570 (Farglitazar) active (45)  

9-hydroxyoctadecadienoic 

acid active (41)  

13-hydroxyoctadecadienoic 

acid active (41) 
 

(4S,5E,7Z,10Z,13Z,16Z,19

Z)-4-hydroxydocosa-

5,7,10,13,16,19-hexaenoic 

acid active (41)  

Docosa-4,7,10,13,16,19-

hexaenoic acid active (41)  

15-deoxy-delta(12,14)-

prostaglandin J2 active (39)  

(5-{3-[(6-benzoyl-1-

propyl-2-

naphthyl)oxy]propoxy}-

1H-indol-1-yl)acetic acid active (72)  
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Table 3.S1 continued 

Ligand Activity Reference Structure 

[(1-{3-[(6-benzoyl-1-

propyl-2-

naphthyl)oxy]propyl}-1H-

indol-5-yl)oxy]acetic acid active (78)  

(2R)-2-(4-{2-[1,3-

benzoxazol-2-

yl(heptyl)amino]ethyl}phe

noxy)-2-methylbutanoic 

acid active (54)  

(2S)-2-(4-{2-[1,3-

benzoxazol-2-

yl(heptyl)amino]ethyl}phe

noxy)-2-methylbutanoic 

acid 

active 

(partial 

agonist) (54)  

3-[5-methoxy-1-(4-

methoxyphenyl)sulfonyl-

indol-3-yl]propanoic acid active (86)  

(9Z,11E)-octadeca-9,11-

dienoic acid (CLA) active   

Calendic Acid active   

Catalpic Acid active   
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Table 3.S1 continued 

Ligand Activity Reference Structure 

Jacaric Acid active   

Kuroda_No10 inactive (143)  

Kuroda_No15 inactive (143)  

Kuroda_No16 active (143)  

Kuroda_No2 active (143)  

Kuroda_No34 active (143)  

Kuroda_No38 active (143)  

Kuroda_No39 active (143)  

Kuroda_No3 active (143)  

Kuroda_No5 active (143)  

Kuroda_No6 active (143)  
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Table 3.S1 continued 

Ligand Activity Reference Structure 

Markt_264908-13-6_1 active (144)  

Markt_264908-13-6_2 active (144)  

Markt_264908-13-6_3 active (144)  

Markt_264908-13-6_4 active (144)  

Markt_651724-09-3_1 active (144)  

Markt_651724-09-3_2 active (144)  

Markt_853652-40-1_1 active (144)  

Markt_853652-40-1_2 active (144)  

Markt_BRL48482_1 active (144)  

Markt_BRL48482_2 active (144)  
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Table 3.S1 continued 

Ligand Activity Reference Structure 

Markt_BVT13 active (144)  

Markt_CLX-M1_1 active (144)  

Markt_CLX-M1_2 active (144)  

Markt_KRP297_1 active (144)  

Markt_KRP297_2 active (144)  

Markt_NNC61-4424_1 active (144)  

Markt_NNC61-4424_2 active (144)  

Tesaglitazar active (144)  

Troglitazone_1 active (144)  

Troglitazone_2 active (144)  

Troglitazone_3 active (144)  
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Table 3.S1 continued 

Ligand Activity Reference Structure 

Troglitazone_4 active (144)  

ψ-baptigenin active (103)  

Punicic Acid active   

Tanrikulu1 active (142)  

Tanrikulu2_1 active (142)  

Tanrikulu2_2 active (142)  

Tanrikulu2_3 active (142)  

Tanrikulu2_4 active (142)  

Tanrikulu3_1 inactive (142)  

Tanrikulu3_2 inactive (142)  
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Table 3.S1 continued 

Ligand Activity Reference Structure 

Tanrikulu3_3 inactive (142)  

Tanrikulu3_4 inactive (142)  

Tanrikulu4 inactive (142)  

Tanrikulu5 inactive (142)  

Tanrikulu6 inactive (142)  

Tanrikulu7_1 inactive (142)  

Tanrikulu7_2 inactive (142)  

Tanrikulu7_3 inactive (142)  

Tanrikulu7_4 inactive (142)  

Tanrikulu8_1 inactive (142)  
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Table 3.S1 continued 

Ligand Activity Reference Structure 

Tanrikulu8_2 inactive (142)  

Tanrikulu8_3 inactive (142)  

Tanrikulu8_4 inactive (142)  

α-Eleostearic Acid active   

Apigenin active (103)  

β-Eleostearic Acid 

low 

active   

Biochanin-A 

low 

active (103)  

Chrysin 

low 

active (103)  

Dihydroquercetin inactive (103)  

Genistein 

low 

active (103)  

Hesperidin 

low 

active (103)  
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Table 3.S1 continued 

Ligand Activity Reference Structure 

Omega-3 conjugated 

linoleic acid inactive   

Rosiglitazone active   

Vitexin inactive (103)  
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Table 3.S2 List of atoms for key residues common to selected rosiglitazone crystal 

structures used to assess potential interactions between docked poses and the protein 

structure model. 

Residue 

Name 

Residue 

Number 

Atom 

Name1 

Residue 

Name 

Residue 

Number 

Atom 

Name 

Residue 

Name 

Residue 

Number 

Atom 

Name 

ILE 281 CG2 HIS 323 NE2 LYS 367 CD 

GLY 284 C ILE 326 CG2 LYS 367 CE 

GLY 284 CA LEU 330 CD1 HIS 449 CE1 

CYS 285 CB LEU 330 CD2 HIS 449 NE2 

GLN 286 CG ILE 341 CG2 LEU 469 CD1 

SER 289 CB MET 348 CE TYR 473 OH* 

SER 289 OG MET 364 CE    
1Atom names are represented by two or three characters, where the first is the atom type, 
the second is the position relative to the residue structure, and the number of the atom is 
more than one is as the designated position (e.g., CG2 corresponds to the second carbon 
atom in the gamma position). 
*Hydroxyl oxygen. 
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Table 3.S3 List of atoms for key residues common to selected fatty acid-bound crystal 

structures used to assess potential interactions between docked poses and the protein 

structure model. 

Residue 

Name 

Residue 

Number 

Atom 

Name1 

Residue 

Name 

Residue 

Number 

Atom 

Name 

Residue 

Name 

Residue 

Number 

Atom 

Name 

PHE 226 CD1 HIS 323 NE2 SER 342 CA 

PRO 227 CD ILE 326 CG2 SER 342 N 

LEU 228 CB ILE 326 O GLU 343 CA 

ILE 281 CG2 TYR 327 CE2 MET 348 CE 

PHE 282 CD1 MET 329 CB LEU 353 CD2 

PHE 282 CE1 MET 329 CE PHE 363 CB 

PHE 282 CZ LEU 330 CA PHE 363 CD2 

CYS 285 CB LEU 330 CD1 PHE 363 CE2 

ARG 288 CB LEU 330 CD2 PHE 363 CZ 

ARG 288 CD LEU 333 CD1 MET 364 CE 

SER 288 CG VAL 339 CG1 MET 364 CG 

ARG 288 CZ VAL 339 CG2 LYS 367 CE 

ARG 288 NE ILE 341 C HIS 449 CE1 

ARG 288 NH1 ILE 341 CA HIS 449 NE2 

SER 289 CB ILE 341 CB TYR 473 CZ 

SER 289 OG ILE 341 CG2 TYR 473 OH* 
1Atom names are represented by two or three characters, where the first is the atom type, 
the second is the position relative to the residue structure, and the number of the atom is 
more than one is as the designated position (e.g., CG2 corresponds to the second carbon 
atom in the gamma position). 
*Hydroxyl oxygen. 
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Table 3.S4 List of atoms for key residues common to rosiglitazone- and fatty acid-

containing PDB structures used to assess potential interactions between docked poses and 

the protein structure model. 

Residue 

Name 

Residue 

Number 

Atom 

Name1 

Residue 

Name 

Residue 

Number 

Atom 

Name 

ILE 281 CG2 ILE 341 CG2 

SER 289 CB MET 348 CE 

SER 289 OG MET 364 CE 

HIS 323 NE2 LYS 367 CE 

ILE 326 CG2 HIS 449 CE1 

LEU 330 CD1 HIS 449 NE2 

LEU 330 CD2 TYR 473 OH* 
1Atom names are represented by two or three characters, where the first is the atom type, 
the second is the position relative to the residue structure, and the number of the atom is 
more than one is as the designated position (e.g., CG2 corresponds to the second carbon 
atom in the gamma position). 
*Hydroxyl oxygen. 
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Table 3.S5 Predicted hydrophobic and hydrogen bond interactions for ligands in cross-

docking test set relative to a reference list of interactions common to rosiglitazone and 

selected fatty acids. Poses were taken from docking of each ligand into each of the three 

listed PPARγ PDB files (top row). Ligand IDs refer to compounds listed in Table 3.3. 

  1FM6 1ZGY 2PRG 

Ligand 

ID 

Hydro-

phobic 

Hydrogen 

bond 

Hydro-

phobic 

Hydrogen 

bond 

Hydro-

phobic 

Hydrogen 

bond 

243 

8 2 10 1 6 4 

6 0 5 4 8 4 

3 1 11 2 9 5 

4HD 

9 3 8 5 12 2 

14 1 10 5 13 0 

15 3 9 3 16 0 

570 

11 0 12 1 5 0 

9 0 11 1 6 0 

9 0 7 1 5 0 

9HO 

9 4 9 3 9 4 

8 5 15 6 10 4 

7 5 10 6 5 4 

DRH 

7 0 14 6 5 4 

9 0 12 3 7 0 

9 0 13 3 8 4 

DRJ 

9 0 12 4 12 5 

13 4 13 4 10 5 

13 4 9 4 12 4 

DRY 

12 0 7 5 11 3 

9 0 6 3 9 4 

13 0 8 3 8 3 

EHA 

10 0 6 2 10 3 

10 2 6 3 9 4 

9 2 14 0 11 4 

ET1 

5 0 8 1 6 1 

5 0 8 1 7 1 

4 0 8 1 7 1 

HXA 

14 3 10 5 13 4 

6 0 10 3 10 2 

7 0 8 3 14 2 

PTG1 

16 5 13 6 15 5 

16 5 13 6 14 2 

16 5 11 6 15 4 
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Table 3.S5 continued 

 1FM6 1ZGY 2PRG 

Ligand 

ID 

Hydro-

phobic 

Hydrogen 

bond 

Hydro-

phobic 

Hydrogen 

bond 

Hydro-

phobic 

Hydrogen 

bond 

PTG2 

6 2 11 1 16 4 

5 2 10 1 16 5 

9 5 11 1 11 3 
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Table 3.S6 Presence or absence of potential hydrogen bond interactions between indicated residues of selected protein structure 

models and replicate poses of ligands listed by ID (Lig ID). A single “x” indicates one potential interaction for the listed residue was 

found for the specified ligand, whereas more than one “x” indicates more than one interaction (e.g., “xx” indicates two interactions 

found). (N = 3) 

 1FM6 1ZGY 2PRG 

Lig 

ID 

HIS 

323 

NE2 

HIS 

449 

NE2 

SER 

289 

OG 

TYR 

473 

OH 

HIS 

323 

NE2 

HIS 

449 

NE2 

SER 

289 

OG 

TYR 

473 

OH 

HIS 

323 

NE2 

HIS 

449 

NE2 

SER 

289 

OG 

TYR 

473 

OH 

243 

 x  x  x   x x x x 

     x xx x x x x x 

   x  x  x x x x xx 

4HD 

 xx  x x x x xx x  x  

 x   x x x xx     

x  x x x  x x     

570 

      x      

      x      

      x      

9HO 

x  x xx  x x x x x x x 

x x x xx x x xx xx x x x x 

x x x xx x x xx xx x x x x 

DRH 

    x x xx xx x x x x 

     xx  x     

     xx  x x x x x 

DRJ 

    x x x x x xx  xx 

x x x x x x x x x xx  xx 

x x x x x x x x x x x x 
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Table 3.S6 continued 

 1FM6 1ZGY 2PRG 

Lig 

ID 

HIS 

323 

NE2 

HIS 

449 

NE2 

SER 

289 

OG 

TYR 

473 

OH 

HIS 

323 

NE2 

HIS 

449 

NE2 

SER 

289 

OG 

TYR 

473 

OH 

HIS 

323 

NE2 

HIS 

449 

NE2 

SER 

289 

OG 

TYR 

473 

OH 

DRY 

    x x x xx x x  x 

     x x x x x x x 

     x x x x x  x 

EHA 

     x  x  x x x 

x   x  x x x x x  xx 

 x  x     x x  xx 

ET1 

      x    x  

      x    x  

      x    x  

HXA 

 x x x x x x xx  xx  xx 

    x  x x x  x  

    x  x x x  x  

PTG1 

x x x xx x x xx xx x x x xx 

x x x xx x x xx xx x  x  

x x x xx x x xx xx x x x x 

PTG2 

 x x    x  x x x x 

 x x    x  x x x xx 

x x x xx   x  x x x  
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Table 3.S7 Predicted hydrophobic and hydrogen bond interactions for ligands in small-scale screening test set relative to a reference 

list of interactions common to rosiglitazone and selected fatty acids (Table 3.S4). Poses were taken from docking of each ligand into 

each of the three listed PPARγ PDB files (top row). Predicted free energy of binding is listed as kcal/mol. 

 1FM6 1ZGY 2PRG 

Ligand kcal/mol Hydrophobic  

Hydrogen 

Bonds kcal/mol Hydrophobic  

Hydrogen 

Bonds kcal/mol Hydrophobic  

Hydrogen 

Bonds 

Farglitazar -10.4 10 0 -11.2 10 0 -10.5 5 0 

Indol-1-yl acetic 

acid 
-10.1 8 2 -10.4 8 2 -10.6 9 4 

5-substituted 

indoleoxyacetic 

acid analogue 

-10.1 9 0 -10.4 9 0 -10.4 10 3 

(2R)-ureidofibrate-

like 
-8.7 14 4 -9.0 14 4 -8.3 10 5 

(2S)-ureidofibrate-

like 
-8.2 10 0 -8.9 10 0 -8.3 6 4 

9-HODE -6.5 9 5 -6.6 9 5 -6.6 8 4 

13-HODE -7.0 6 2 -6.6 6 2 -6.3 7 4 

Indeglitazar -8.1 4 0 -8.5 4 0 -8.5 6 1 

α-Eleostearic Acid -6.4 8 5 -6.5 8 5 -6.5 6 4 

apigenin -8.1 0 0 -8.1 0 0 -7.8 11 2 

β-Eleostearic Acid -6.1 10 5 -6.2 10 5 -6.0 13 5 

BiochaninA -8.0 0 0 -7.7 0 0 -7.8 2 0 

Calendic Acid -6.1 10 5 -5.8 10 5 -5.7 11 4 

Catalpic Acid -5.9 8 4 -5.9 8 4 -6.0 8 2 

chrysin -7.8 6 0 -8.4 6 0 -7.8 0 0 

CLA (18C:c9,t11) -6.0 9 1 -6.4 9 1 -6.3 8 4 

Dihydroquercetin -8.5 3 0 -8.0 3 0 -7.7 6 2 
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Table 3.S7 continued 

 1FM6 1ZGY 2PRG 

Ligand kcal/mol Hydrophobic  

Hydrogen 

Bonds kcal/mol Hydrophobic  

Hydrogen 

Bonds kcal/mol Hydrophobic  

Hydrogen 

Bonds 

Genistein -8.1 0 0 -7.5 0 0 -8.0 4 0 

Hesperidin -9.2 6 0 -10.0 6 0 -9.2 9 0 

Jacaric Acid -5.9 13 5 -6.2 13 5 -5.8 7 4 

Kuroda_No10 -7.1 9 0 -7.3 9 0 -7.2 8 0 

Kuroda_No15 -7.3 2 0 -7.5 2 0 -7.5 10 3 

Kuroda_No16 -7.7 0 0 -8.7 0 0 -8.9 6 0 

Kuroda_No2 -8.4 6 1 -8.8 6 1 -9.2 0 0 

Kuroda_No3 -8.7 3 0 -9.2 3 0 -9.0 6 0 

Kuroda_No34 -9.8 4 0 -9.9 4 0 -9.2 4 0 

Kuroda_No38 -8.9 0 0 -9.4 0 0 -9.5 9 1 

Kuroda_No39 -8.4 12 0 -8.1 12 0 -8.6 10 3 

Kuroda_No5 -7.5 6 0 -9.2 6 0 -8.7 8 0 

Kuroda_No6 -7.5 8 0 -9.0 8 0 -8.1 11 0 

Markt_ 

264908-13-6_1 
-9.9 8 3 -10.5 8 3 -10.1 11 2 

Markt_ 

264908-13-6_2 
-10.4 6 4 -9.6 6 4 -10.3 5 4 

Markt_ 

264908-13-6_3 
-10.1 14 3 -10.0 14 3 -9.8 13 0 

Markt_ 

264908-13-6_4 
-9.5 2 0 -8.8 2 0 -9.9 4 2 

Markt_ 

651724-09-3_1 
-8.3 5 0 -8.7 5 0 -8.4 7 0 

Markt_ 

651724-09-3_2 
-8.6 5 0 -8.8 5 0 -8.7 14 2 
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Table 3.S7 continued 

 1FM6 1ZGY 2PRG 

Ligand kcal/mol Hydrophobic  

Hydrogen 

Bonds kcal/mol Hydrophobic  

Hydrogen 

Bonds kcal/mol Hydrophobic  

Hydrogen 

Bonds 

Markt_ 

853652-40-1_1 
-10.2 9 2 -10.3 9 2 -10.7 9 4 

Markt_ 

853652-40-1_2 
-10.2 14 5 -10.6 14 5 -10.7 11 4 

Markt_ 

BRL48482_1 
-8.9 10 1 -9.3 10 1 -8.9 7 2 

Markt_ 

BRL48482_2 
-9.1 7 4 -9.3 7 4 -9.5 12 4 

Markt_BVT13 -8.1 4 0 -8.6 4 0 -8.2 8 0 

Markt_ 

CLX-M1_1 
-9.9 10 4 -10.2 10 4 -9.9 13 4 

Markt_ 

CLX-M1_2 
-8.4 6 0 -8.6 6 0 -8.7 3 0 

Markt_ 

KRP297_1 
-9.2 9 0 -9.3 9 0 -9.2 7 2 

Markt_ 

KRP297_2 
-9.4 6 1 -9.3 6 1 -9.3 12 4 

Markt_ 

NNC61-4424_1 
-9.5 14 5 -9.4 14 5 -9.8 6 4 

Markt_ 

NNC61-4424_2 
-9.2 10 5 -8.2 10 5 -9.3 12 2 

Markt_ 

tesaglitazar 
-8.7 4 5 -8.6 4 5 -8.6 6 4 

Markt_ 

troglitazone_1 
-10.2 3 4 -10.4 3 4 -10.5 8 4 
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Table 3.S7 continued 

 1FM6 1ZGY 2PRG 

Ligand kcal/mol Hydrophobic  

Hydrogen 

Bonds kcal/mol Hydrophobic  

Hydrogen 

Bonds kcal/mol Hydrophobic  

Hydrogen 

Bonds 

Markt_ 

troglitazone_2 
-9.9 4 4 -10.1 4 4 -10.6 10 4 

Markt_ 

troglitazone_3 
-9.5 5 0 -9.9 5 0 -9.9 5 2 

Markt_ 

troglitazone_4 
-9.2 5 0 -9.7 5 0 -9.7 5 2 

Omega-3 -6.6 11 5 -6.5 11 5 -6.7 9 4 

Ψ-Baptigenin -8.1 4 0 -8.2 4 0 -8.5 8 2 

Punicic Acid -6.3 10 4 -5.7 10 4 -6.2 11 3 

Rosiglitazone -8.7 6 4 -8.5 6 4 -8.7 9 4 

Tanrikulu1 -7.6 9 0 -7.5 9 0 -7.3 7 0 

Tanrikulu2_1 -9.3 4 0 -8.7 4 0 -8.8 3 0 

Tanrikulu2_2 -8.2 13 0 -9.0 13 0 -8.7 8 0 

Tanrikulu2_3 -9.6 10 1 -9.4 10 1 -8.8 3 0 

Tanrikulu2_4 -8.8 8 0 -9.1 8 0 -8.8 4 0 

Tanrikulu3_1 -9.2 7 0 -8.8 7 0 -8.8 6 0 

Tanrikulu3_2 -9.0 10 0 -9.0 10 0 -8.7 10 0 

Tanrikulu3_3 -8.8 6 1 -8.5 6 1 -8.7 8 1 

Tanrikulu3_4 -9.1 6 0 -8.5 6 0 -8.5 10 1 

Tanrikulu4 -8.4 4 0 -8.8 4 0 -9.4 8 0 

Tanrikulu5 -8.1 4 0 -9.2 4 0 -9.4 8 1 

Tanrikulu6 -8.7 3 0 -8.4 3 0 -8.8 4 0 

Tanrikulu7_1 -9.6 7 0 -9.5 7 0 -9.1 4 0 

Tanrikulu7_2 -9.1 6 0 -9.0 6 0 -9.1 10 4 

Tanrikulu7_3 -9.1 7 0 -9.4 7 0 -9.1 3 0 
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Table 3.S7 continued 

 1FM6 1ZGY 2PRG 

Ligand kcal/mol Hydrophobic  

Hydrogen 

Bonds kcal/mol Hydrophobic  

Hydrogen 

Bonds kcal/mol Hydrophobic  

Hydrogen 

Bonds 

Tanrikulu7_4 -9.2 8 0 -9.6 8 0 -9.1 5 0 

Tanrikulu8_1 -9.5 9 1 -9.8 9 1 -9.2 7 0 

Tanrikulu8_2 -9.3 9 0 -9.4 9 0 -9.5 11 4 

Tanrikulu8_3 -9.6 4 0 -9.4 4 0 -9.2 12 3 

Tanrikulu8_4 -9.5 8 0 -9.8 8 0 -9.4 12 5 

Vitexin -9.1 4 0 -11.2 4 0 -8.6 7 0 
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Table 3.S8 Presence or absence of potential hydrogen bond interactions between indicated residues of selected protein structure 

models (top row) and ligand poses. A single “x” indicates one potential interaction for the listed residue was found for the specified 

ligand, whereas more than one “x” indicates more than one interaction (e.g., “xx” indicates two interactions found). 

 1FM6 1ZGY 2PRG 

Ligand 

HIS 

323 

NE2 

HIS 

449 

NE2 

SER 

289 

OG 

TYR 

473 

OH 

HIS 

323 

NE2 

HIS 

449 

NE2 

SER 

289 

OG 

TYR 

473 

OH 

HIS 

323 

NE2 

HIS 

449 

NE2 

SER 

289 

OG 

TYR 

473 

OH 

Farglitazar                

9-HODE x x x xx x x x xx x x x x 

13-HODE  x  x   x  x x x x x 

Indol-1-yl acetic acid  x  x   x  x x x x x 

5-substituted 

indoleoxyacetic acid 

analogue 

         x x x   

(2R)- ureidofibrate-like 

derivative 
x x x x x x x x x xx  xx 

((2S)-ureidofibrate-like 

derivative 
         x x x x 

Indeglitazar             x   

CLA (18C:c9,t11)   x     x  x x x x 

Calendic Acid x x x xx x x x xx x x x x 

Catalpic Acid x x x x x x x x x  x   

Jacaric Acid x x x xx x x x xx x x x x 

Kuroda_No10                

Kuroda_No15          x  x x 

Kuroda_No16                
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Table 3.S8 continued 

 1FM6 1ZGY 2PRG 

Ligand 

HIS 

323 

NE2 

HIS 

449 

NE2 

SER 

289 

OG 

TYR 

473 

OH 

HIS 

323 

NE2 

HIS 

449 

NE2 

SER 

289 

OG 

TYR 

473 

OH 

HIS 

323 

NE2 

HIS 

449 

NE2 

SER 

289 

OG 

TYR 

473 

OH 

Kuroda_No2   x     x        

Kuroda_No34                

Kuroda_No38            x    

Kuroda_No39          x  x x 

Kuroda_No3                

Kuroda_No5                

Kuroda_No6                

Markt_264908-13-6_1 x  x x x  x x   x  x 

Markt_264908-13-6_2 x  x xx x  x xx x x x x 

Markt_264908-13-6_3 x  x x x  x x       

Markt_264908-13-6_4            x  x 

Markt_651724-09-3_1                

Markt_651724-09-3_2            x  x 

Markt_853652-40-1_1  x  x   x  x x x x x 

Markt_853652-40-1_2 x x x xx x x x xx x x x x 

Markt_BRL48482_1   x     x    x  x 

Markt_BRL48482_2 x  x xx x  x xx x x x x 

Markt_BVT13                

Markt_CLX-M1_1 x x x x x x x x x x x x 

Markt_CLX-M1_2                

Markt_KRP297_1            x  x 
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Table 3.S8 continued 

 1FM6 1ZGY 2PRG 

Ligand 

HIS 

323 

NE2 

HIS 

449 

NE2 

SER 

289 

OG 

TYR 

473 

OH 

HIS 

323 

NE2 

HIS 

449 

NE2 

SER 

289 

OG 

TYR 

473 

OH 

HIS 

323 

NE2 

HIS 

449 

NE2 

SER 

289 

OG 

TYR 

473 

OH 

Markt_KRP297_2   x     x  x x x x 

Markt_NNC61-4424_1 x x x xx x x x xx x x x x 

Markt_NNC61-4424_2 x x x xx x x x xx   xx    

Tesaglitazar x xx x x x xx x x x x x x 

Troglitazone_1 x  x xx x  x xx x x x x 

Troglitazone_2 x  x xx x  x xx x x x x 

Troglitazone_3            x  x 

Troglitazone_4            x  x 

ψ-baptigenin            x  x 

Punicic Acid x x x x x x x x x  x x 

Tanrikulu1                

Tanrikulu2_1                

Tanrikulu2_2                

Tanrikulu2_3   x     x        

Tanrikulu2_4                

Tanrikulu3_1                

Tanrikulu3_2                

Tanrikulu3_3   x     x     x   

Tanrikulu3_4            x    

Tanrikulu4                

Tanrikulu5            x    
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Table 3.S8 continued 

 1FM6 1ZGY 2PRG 

Ligand 

HIS 

323 

NE2 

HIS 

449 

NE2 

SER 

289 

OG 

TYR 

473 

OH 

HIS 

323 

NE2 

HIS 

449 

NE2 

SER 

289 

OG 

TYR 

473 

OH 

HIS 

323 

NE2 

HIS 

449 

NE2 

SER 

289 

OG 

TYR 

473 

OH 

Tanrikulu6                

Tanrikulu7_1                

Tanrikulu7_2          x x x x 

Tanrikulu7_3                

Tanrikulu7_4                

Tanrikulu8_1  x     x         

Tanrikulu8_2            x xx x 

Tanrikulu8_3          x x x   

Tanrikulu8_4          xx x x x 

α-Eleostearic Acid x x x xx x x x xx x x x x 

Apigenin            x  x 

β-Eleostearic Acid x x x xx x x x xx x x x xx 

Biochanin-A                

Chrysin                

Dihydroquercetin            x x   

Genistein                

Hesperidin                

Omega-3 conjugated 

linoleic acid 
x x x xx x x x xx x x x x 

Rosiglitazone x x x x x x x x x x x x 

Vitexin                
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Table 3.S9 Predicted free energy of binding and interaction counts for conjugated trienes. 

Docking was performed using AD4 with three top-binding replicates for each ligand (150 

total conformations). The highest energy conformation with the highest number of 

hydrogen bonds was used for analysis in Table 3.4. 

Ligand kcal/mol 

Hydrogen 

bond Hydrophobic 

α-Eleostearic 

-5.75 2 15 

-5.73 1 15 

-5.6 3 16 

Calendic 

-4.49 0 29 

-3.95 1 13 

-4.47 2 7 

Catalpic 

-4.72 1 13 

-4.48 3 9 

-4.31 1 23 

Jacaric 

-4.81 2 11 

-4.97 1 9 

-4.5 3 16 

Punicic 

-4.3 2 16 

-4.28 3 15 

-3.78 1 10 
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4.1 Abstract 

Peroxisome proliferator-activated receptor-gamma (PPARγ) falls within a class of nuclear 

hormone receptors responsible for regulating various metabolic and immune processes. The 

PPAR family of receptors possesses a relatively large binding cavity that imparts a level of 

promiscuity not common to other nuclear receptors. This feature increases the challenge of using 

computational methods to identify PPAR binders, which are compounds that dock favorably into 

a structural model of the protein. Utilizing both ligand- and structure-based pharmacophore 

methods, we sought to improve the prediction of potential agonists by grouping ligands 

according to pharmacophore features. These pharmacophore feature groups were then matched 

to multiple PPARγ crystal structures to account for differences in the structural features of the 

binding cavity that could favor binding of particular types of ligands.  For 22 of the 33 receptor 

structures evaluated we saw an increase in true positive rate (TPR) when screening was restricted 

to compounds sharing features seen with rosiglitazone. The TPR improvement varied with each 

receptor model in that some structures showed positive docking of specific classes of ligands 

while others suggested accommodation of multiple ligands with differing activity type. In the 

context of diverse compound database screening against several models of PPARγ, 

pharmacophore pre-screening reduced the number of compounds that needed to be screened 

while retaining the list of true positives identified with a given receptor structure model. 

Structure models were selected based on differences in binding cavity environment, and each 

model was paired with one or more ligand pharmacophore models. A large-scale screening using 

a marketed drug database verified predictability of the selected structure models. This study 

highlights the steps necessary to improve screening for PPARγ ligands using multiple structure 

models and ligand-based pharmacophore data.  
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4.2 Introduction 

Peroxisome proliferator-activated receptor-gamma (PPARγ) is a ligand-activated transcription 

factor within the nuclear hormone receptor (NHR) superfamily (2). It is one of three PPAR 

subtypes: -α, -β/δ, and -γ (45), and it is involved in transcriptional regulation of numerous 

biological processes including glucose and lipid homeostasis (2, 3, 11, 45), adipocyte 

differentiation (2, 159), cell proliferation, and inflammation regulation (1, 3, 11, 112, 160). 

PPARγ is highly expressed in various cells that make up the immune system (161), as well as 

other cell types throughout the body (4, 22, 162, 163). Given the regulatory roles of PPARγ, this 

protein holds potential as a target for the treatment of metabolic and chronic inflammatory 

diseases, such as metabolic syndrome and inflammatory bowel disease. 

In general, compounds that bind to PPARγ can be either agonists or antagonists (41, 51, 54, 57). 

Agonists can be classified as full, partial, dual, or pan agonists depending on the degree of 

activation and the number of PPAR subtypes activated. This variation in agonism is due to a 

relatively large binding cavity within the ligand-binding domain (LBD) that can accommodate a 

variety of compounds (45, 54). Agonist binding induces a conformational change in the 

activation function-2 (AF-2) domain that governs co-repressor release and co-activator 

recruitment (2, 43, 51, 52, 163). The structure of the bound ligand influences the degree of 

conformational change and/or the conformational dynamics, and therefore influences which co-

activator proteins are recruited. The active PPARγ-agonist-co-activator complex, which is 

heterodimerized with retinoic acid-bound retinoid X receptor-alpha, can associate with PPAR 

response elements (PPRE) on DNA to induce transcription (45, 53, 163). Antagonist binding 

differs in that binding does not induce co-repressor release. Instead the inactive conformation is 

stabilized by binding of the antagonist (57). Typically, PPARγ ligands can be described as 

having a three-module structure consisting of a reactive polar head group, followed by a linker, 

and an effector segment (61, 164). The polar head group tends to interact with residues near helix 

(H) 12, while the effector segment interacts with residues near H3 and the opening to the binding 

cavity. 

Some reports of experimental application of high-throughput screening (HTS) to identify PPARγ 

modulators have appeared (165, 166), though none of the HTS methods used have been widely 

adopted. Moreover, experimental methods can be costly if one wants to screen a diverse 

collection of large numbers of compounds, and would require a significant time commitment. 

Virtual screening is a computational technique for streamlining the drug discovery and 

development process (95). Using three-dimensional (3D) representations of test compounds and 

targets, one can identify potential drug hits based on user-defined binding criteria relevant to the 

system of interest. In the context of docking, a binder is a compound that is deemed to fit well 

within a 3D structural model given a pre-defined list of criteria that must be satisfied. Thus, 

virtual screening involves high-throughput docking to reduce the number of compounds tested 

experimentally by excluding compounds for which interactions with the target are predicted to 

be unfavorable or nonexistent. 

Large-scale virtual screening studies with PPARγ structures often result in generally 

disappointing outcomes (167-171). In the context of docking, the large binding cavity can 

accommodate different types of ligands, many of which would not serve as agonists. An 

approach that can bring additional information to improve success in virtual screening is 
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pharmacophore modeling. Structure-based pharmacophore modeling utilizes receptor structures 

to identify features within the binding cavity that would favor interactions between the target 

receptor and the atoms of potential ligands (90, 91). In contrast, ligand-based pharmacophore 

modeling can be done in the absence of receptor structure models and involves aligning a set of 

known ligands to observe common features that may be key to biological activity (92). 

These two pharmacophore modeling methods independently provide useful structural 

information for establishing criteria for identifying binders in a search for potential agonists. 

Studies using one method or the other have shown identification of agonists for therapeutic 

development that satisfied specific pharmacophore criteria using screening methods performed 

on compound datasets of varying size (172-177). Pharmacophore modeling has been applied to 

virtual screening of ligands for various protein targets including the other PPAR subtypes –α and 

–β/δ (178). A combination of the two pharmacophore methods may narrow the search to 

facilitate compound screening with respect to PPARγ (169-171). Through application of this 

concept, pharmacophore modeling can be an important tool in the discovery and design of novel 

drugs for PPARγ (179). 

In this study, we set out to identify criteria that could be applied in a virtual screen of a diverse 

ligand database using multiple structure models for PPARγ. The goal was to reduce the amount 

of docking necessary to identify binders while improving the frequency with which true potential 

binders were identified. Using pharmacophores as filters (180), we sought to cluster ligands by 

feature similarity, pair ligand clusters to structure models in which the compounds could be 

appropriately accommodated during the docking process, and work out a scoring system where 

pharmacophores and potential interactions are considered when proposing binders for validation 

(Scheme 4.1). A test of the methods with a dataset of compounds with unknown PPARγ binding 

ability indicated that identification of compounds that should bind to PPARγ is possible given a 

diverse compound database, our combined theoretical approach, and the selected criteria for 

identifying binders. 

4.3 Methods 

4.3.1 Catalog of PPARγ 3D structures 

PPARγ structures from the RCSB Protein Data Bank (PDB) (59, 60) were cataloged. As of 

January 2012, 97 structures were available, of which most were complexed with a ligand. In 

some cases, the same ligand was present in multiple structures. An activity type was assigned to 

each structure based on the bound ligand and activity reported in the published experiments (see 

references in Tables 4.1 and 4.2). The activity classes explored in this study were full agonist, 

fatty acid, partial agonist, and antagonist. Although the fatty acid ligands exhibit full agonism, 

they were placed in a separate group because they are the endogenous ligands for PPAR and are 

structurally different from synthetic agonists. 
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Scheme 4.1 Process flow diagram for combined pharmacophore screening methods to identify binders. The diagram 

includes nodes for assessing the test set to establish pharmacophores and nodes for incorporation of unknown 

compound data. Green boxes were used for processes, blue polygons represent data, yellow diamonds signify 

decision nodes, and red ovals indicate terminal nodes. 

4.3.2 Pharmacophore modeling 

A subset of structures and associated ligands was used for the pharmacophore searching process. 

A total of 33 crystal structures containing ligands with clearly defined activity types were used 

for the structure-based pharmacophore analysis (Table 4.1). The selected structures covered the 

four activity types: 11 full agonist-, 5 fatty acid- 15 partial agonist-, and 2 antagonist-containing 

structures. 

For the ligand-based pharmacophore modeling, the ligands from the selected PDB structures 

were separated into groups based on activity. Additional ligands were included in the full and 

partial agonist groups for the ligand-based analysis to expand the number of ligand features that 

were considered. The final counts for each activity type were 22 full agonists, 5 fatty acids, 21 

partial agonists, and 2 antagonists (Table 4.2).  
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Table 4.1 PDB structures used for the structure-based pharmacophore analysis and virtual 

screening. Ligand IDs and names are listed for the co-crystallized compounds, followed by the 

ligand type, structure resolution, and the citation for the paper associated with the structure. 
PDB 

ID 

Ligand 

ID Ligand Name 

Ligand 

Type Res. (Å) Citation 

1FM6 BRL 

2,4-THIAZOLIDINEDIONE, 5-[[4-[2-

(METHYL-2-

PYRIDINYLAMINO)ETHOXY]PHENYL]

METHYL]-(9CL) full 2.10 (45) 

1FM9 570 

2-(2-BENZOYL-PHENYLAMINO)-3-{4-

[2-(5-METHYL-2-PHENYL-OXAZOL-4-

YL)-ETHOXY]-PHENYL}-PROPIONIC 

ACID full 2.10 (45) 

1K74 544 

2-(1-METHYL-3-OXO-3-PHENYL-

PROPYLAMINO)-3-{4-[2-(5-METHYL-2-

PHENYL-OXAZOL-4-YL)-ETHOXY]-

PHENYL}-PROPIONIC ACID full 2.30 (64) 

1RDT 570 

2-(2-BENZOYL-PHENYLAMINO)-3-{4-

[2-(5-METHYL-2-PHENYL-OXAZOL-4-

YL)-ETHOXY]-PHENYL}-PROPIONIC 

ACID full 2.40 (67) 

1WM0 PLB 

2-[(2,4-DICHLOROBENZOYL)AMINO]-5-

(PYRIMIDIN-2-YLOXY)BENZOIC ACID partial 2.90 (68) 

1ZGY BRL 

2,4-THIAZOLIDIINEDIONE, 5-[[4-[2-

(METHYL-2-

PYRIDINYLAMINO)ETHOXY]PHENYL]

METHYL]-(9CL) full 1.80 (70) 

2FVJ RO0 

1-(3,4-DIMETHOXYBENZYL)-6,7-

DIMETHOXY-4-{[4-(2-

METHOXYPHENYL)PIPERIDIN-1-

YL]METHYL}ISOQUINOLINE partial 1.99 (73) 

2G0G SP0 

3-FLUORO-N-[1-(4-FLUOROPHENYL)-3-

(2-THIENYL)-1H-PYRAZOL-5-

YL]BENZENESULFONAMIDE partial 2.54 (74) 

2G0H SP3 

N-[1-(4-FLUOROPHENYL)-3-(2-

THIENYL)-1H-PYRAZOL-5-YL]-3,5-

BIS(TRIFLUOROMETHYL)BENZENESU

LFONAMIDE partial 2.30 (74) 

2HFP NSI 

3-(4-METHOXYPHENYL)-N-

(PHENYLSULFONYL)-1-[3-

(TRIFLUOROMETHYL)BENZYL]-1H-

INDOLE-2-CARBOXAMIDE antagonist 2.00 (76) 

2I4J DRJ 

(2R)-2-(4-{2-[1,3-BENZOXAZOL-2-

YL(HEPTYL)AMINO]ETHYL}PHENOXY

)-2-METHYLBUTANOIC ACID full 2.10 (54) 

2I4P DRH 

(2S)-2-(4-{2-[1,3-BENZOXAZOL-2-

YL(HEPTYL)AMINO]ETHYL}PHENOXY

)-2-METHYLBUTANOIC ACID partial 2.10 (54) 

2I4Z DRH 

(2S)-2-(4-{2-[1,3-BENZOXAZOL-2-

YL(HEPTYL)AMINO]ETHYL}PHENOXY

)-2-METHYLBUTANOIC ACID partial 2.25 (54) 
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Table 4.1 continued. 
PDB 

ID 

Ligand 

ID Ligand Name 

Ligand 

Type Res. (Å) Citation 

2OM9 AJA 

(6AR,10AR)-3-(1,1-DIMETHYLHEPTYL)-

1-HYDROXY-6,6-DIMETHYL-

6A,7,10,10A-TETRAHYDRO-6H-

BENZO[C]CHROMENE-9-CARBOXYLIC 

ACID partial 2.80 (83) 

2P4Y C03 

(2R)-2-(4-CHLORO-3-{[3-(6-METHOXY-

1,2-BENZISOXAZOL-3-YL)-2-METHYL-

6-(TRIFLUOROMETHOXY)-1H-INDOL-

1-YL]METHYL}PHENOXY)PROPANOIC 

ACID partial 2.25 (84) 

2POB GW4 

N-[(2S)-2-[(2-

BENZOYLPHENYL)AMINO]-3-{4-[2-(5-

METHYL-2-PHENYL-1,3-OXAZOL-4-

YL)ETHOXY]PHENYL}PROPYL]ACETA

MIDE full 2.30 (85) 

2PRG BRL 

2,4-THIAZOLIDIINEDIONE, 5-[[4-[2-

(METHYL-2-

PYRIDINYLAMINO)ETHOXY]PHENYL]

METHYL]-(9CL) full 2.30 (52) 

2Q5P 241 

(2S)-2-(3-{[1-(4-METHOXYBENZOYL)-2-

METHYL-5-(TRIFLUOROMETHOXY)-

1H-INDOL-3-

YL]METHYL}PHENOXY)PROPANOIC 

ACID partial 2.30 (55) 

2Q5S NZA 

5-CHLORO-1-(4-CHLOROBENZYL)-3-

(PHENYLTHIO)-1H-INDOLE-2-

CARBOXYLIC ACID partial 2.05 (55) 

2Q6R SF2 

5-CHLORO-1-(3-METHOXYBENZYL)-3-

(PHENYLTHIO)-1H-INDOLE-2-

CARBOXYLIC ACID partial 2.41 (55) 

2Q6S PLB 

2-[(2,4-DICHLOROBENZOYL)AMINO]-5-

(PYRIMIDIN-2-YLOXY)BENZOIC ACID partial 2.40 (55) 

2VSR 9HO 

(9S,10E,12Z)-9-HYDROXYOCTADECA-

10,12-DIENOIC ACID 

full/ 

fatty acid 2.05 (41) 

2VST 243 

(9Z,11E,13S)-13-HYDROXYOCTADECA-

9,11-DIENOIC ACID 

full/ 

fatty acid 2.35 (41) 

2VV0 HXA 

DOCOSA-4,7,10,13,16,19-HEXAENOIC 

ACID 

full/ 

fatty acid 2.55 (41) 

2VV1 4HD 

(4S,5E,7Z,10Z,13Z,16Z,19Z)-4-

HYDROXYDOCOSA-5,7,10,13,16,19-

HEXAENOIC ACID 

full/ 

fatty acid 2.20 (41) 

2VV2 5HE 

(5R,6E,8Z,11Z,14Z,17Z)-5-

HYDROXYICOSA-6,8,11,14,17-

PENTAENOIC ACID 

full/ 

fatty acid 2.75 (41) 

3B3K LRG 

(2S)-2-(BIPHENYL-4-YLOXY)-3-

PHENYLPROPANOIC ACID full 2.60 (77) 

3CDP YRG 

(2S)-2-(4-CHLOROPHENOXY)-3-

PHENYLPROPANOIC ACID partial 2.80 (80) 
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Table 4.1 continued. 
PDB 

ID 

Ligand 

ID Ligand Name 

Ligand 

Type Res. (Å) Citation 

3CS8 BRL 

2,4-THIAZOLIDIINEDIONE, 5-[[4-[2-

(METHYL-2-

PYRIDINYLAMINO)ETHOXY]PHENYL]

METHYL]-(9CL) full 2.30 (81) 

3DZU PLB 

2-[(2,4-DICHLOROBENZOYL)AMINO]-5-

(PYRIMIDIN-2-YLOXY)BENZOIC ACID partial 3.20 (56) 

3DZY BRL 

2,4-THIAZOLIDIINEDIONE, 5-[[4-[2-

(METHYL-2-

PYRIDINYLAMINO)ETHOXY]PHENYL]

METHYL]-(9CL) full 3.10 (56) 

3E00 GW9 

2-CHLORO-5-NITRO-N-

PHENYLBENZAMIDE antagonist 3.10 (56) 

4PRG 072 

(+/-)(2S,5S)-3-(4-(4-

CARBOXYPHENYL)BUTYL)-2-HEPTYL-

4-OXO-5-THIAZOLIDINE partial 2.90 (87) 

4.3.3 Characterization of crystal structure binding cavities 

Generation of structure-based pharmacophores involved application of AutoLigand, which uses a 

grid-based representation of binding potentials to identify sites of favorable interactions in a 

protein binding site (181). This approach calculates atom-specific grids within the binding cavity 

for the selected PDB crystal structures with the resulting affinity potential grid being called an 

envelope (181). The atom types considered for the envelopes were carbon, oxygen, nitrogen, 

hydrogen, and sulfur. Prior to generating the envelopes, UCSF Chimera (141) was used to 

overlay the structures and save protein coordinates to the same coordinate space. The 1FM6 PDB 

structure (45) was used as the reference for overlaying the structures. The grid box dimensions 

were set to 46 Å by 42 Å by 46 Å, with 1.0 Å grid point spacing and the box center at (15.178, -

22.133, 9.98) for all structures. The grid box contained 94,987 total grid points. This box covered 

the entire binding cavity and the exterior surfaces of the ligand-binding domain. Some structures 

that contained the same bound ligand were included because the distance-based protein-ligand 

interactions varied among these crystal structures. 

Ten 300-point envelopes were generated for each structure. The most energetically favorable 

contiguous envelope for each structure was used for comparison among structures within the 

same activity class. A tally of identical points was calculated for the favorable envelopes within 

each activity class. A representative envelope for each activity type was created using the tallies 

for the grid points. USCF Chimera (141) was used to visualize the representative envelopes, and 

the tallies were modifiers for grid point representation. Two visualization techniques were 

applied: (1) sphere radius was adjusted by using the tallies as radius multipliers (181), and (2) 

sphere color was changed as a gradient to measure frequency of point appearance for all 

envelopes in a class independent of atom type. The first representation is a visual histogram of 

atom distribution, while the second is a heat-map-like view of point frequency. Larger spheres 

represent regions where grid points were common between the envelopes of an activity class, 

while smaller spheres represented more unique regions of atom placement for the compared 

envelopes. Binding cavity arms were designated as arms I through III for visualization and 

evaluation of the binding cavity. Names were based on crystal structure data and naming within 
the associated publications (144, 182). Arm I is the main arm of the binding cavity extending 
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from the cavity opening to H12. Arm II is positioned near the cavity opening, while arm III is at 

the rear of the binding cavity near H12. Structures were next grouped based on envelope 

similarity. Activity class was not considered for grouping, which allowed for comparison of 

crystal structure binding pockets across activity classes. 

Table 4.2 List of ligand IDs for agonists and antagonists used in the ligand-based pharmacophore 

analysis. The PDB ID for the crystal structure containing the ligand and the ligand type are listed 

for each ligand ID. Citations not included in Table 4.1 are included for the additional structures 

mentioned in this table. 

PDB ID  Ligand 

ID 

Ligand Type PDB ID Ligand 

ID 

Ligand Type 

1FM6a BRL Full agonist 2ZK1 (39) PTG Full agonist 

1FM9 570 Full agonist 2ZK6 (39) C08 Partial agonist 

1K74 544 Full agonist 2ZNO (183) S44 Full agonist 

1RDT 571 Full agonist 3ADW (184) MYI Full agonist 

1WM0 PLB Partial agonist 3ADX (184) IMN Full agonist 

2ATH (71) 3EA Full agonist 3AN4 (185) M7R Full agonist 

2FVJ RO0 Partial agonist 3B0Q (186) MC5 Full agonist 

2G0G SP0 Partial agonist 3B1M (187) KRC Partial agonist 

2G0H SP3 Partial agonist 3B3K LRG Full agonist 

2HFP NSI Antagonist 3CDP YRG Partial agonist 

2I4J DRJ Full agonist 3CDS (77) GRR Full agonist 

2I4P DRH Partial agonist 3E00 GW9 Antagonist 

2P4Y C03 Partial agonist 3ET0 (86) ET0 Full agonist 

2POB GW4 Full agonist 3FUR (188) Z12 Partial agonist 

2Q59 (55) 240 Full agonist 3GBK (189) 2PQ Full agonist 

2Q5P 241 Partial agonist 3H0A (190) D30 Partial agonist 

2Q5Sa NZA Partial agonist 3HO0 (190) DKD Full agonist 

2Q61 (55) SF1 Partial agonist 3HOD (191) ZZH Full agonist 

2Q6R SF2 Partial agonist 3K8S (192) Z27 Partial agonist 

2VSR 9HO Fatty acid 3LMP (193) CEK Partial agonist 

2VST 243 Fatty acid 3NOA (28) 5BC Full agonist 

2VV0 HXA Fatty acid 3OSI (194) XDH Partial agonist 

2VV1 4HD Fatty acid 3OSW (194) XDI Partial agonist 

2VV2 5HE Fatty acid 3PBA (195) ZXG Partial agonist 

2XKW (196) P1B Full agonist    
aLigands included in grouping with antagonists to fulfill PharmaGist server requirement of at 

least three compounds. 

4.3.4 Identification of ligand-based pharmacophores 

The ligand-based pharmacophores were determined using PharmaGist (179, 197), which is a 

freely available web server for ligand feature prediction. The key features recognized by 

PharmaGist include aromatic, hydrogen bond acceptor, hydrogen bond donor, positively 

charged, negatively charged, and hydrophobic groups. Feature weights were set to 0.3 for 

hydrophobic groups, 1.0 for aromatics, 3.0 for hydrogen bond groups (acceptors and donors), 
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and 1.5 for charged groups (positive and negative). These values are different from the default 

settings, which weighed aromatics the heaviest (3.0), followed by hydrogen bonding groups (1.5) 

and charged groups (1.0). The weights were changed from the default values because hydrogen 

bonding is necessary for full agonism in PPARγ. Files containing coordinates for groups of 

ligands based on activity class were uploaded to PharmaGist. The server uses each uploaded 

ligand as a pivot molecule onto which all the other compounds are overlaid for feature 

comparison and scoring. As only two antagonists were identified, a full and a partial agonist with 

similar molecular composition were included to meet the server minimum of three ligands. Only 

the pairwise results for the two antagonist compounds were evaluated to determine potential 

pharmacophores. With this approach one molecule was used as the pivot molecule onto which 

the other was overlaid to determine feature similarity. 

PharmaGist calculates a feature group score based on the number of features present on each 

ligand, the features shared between overlaid ligands, and the weight assigned to each feature type 

that was common for a given number of ligands. The feature groups then were ranked and 

assessed by these scores. The highest scoring feature group and the group representing the most 

ligands were evaluated for each activity class (full agonist, fatty acid agonist, partial agonist, and 

antagonist). The high scoring group for each was composed of only a few compounds that 

possessed the combination of features that yielded the highest score. The feature group 

representing the most ligands reflects the minimum number of ligand features required for a 

compound to fall within the specified ligand class.   

3D pharmacophore models were generated for the lists of PharmaGist features with the 

Molecular Operating Environment (MOE) software suite (198) using the pivot molecules as the 

representative ligands for each activity class. These models facilitated quick screening of ligand 

databases for ligands that matched the pharmacophores. The 3D pharmacophore models were 

used in MOE to cluster compounds in the databases of PPARγ ligands from the PDB and from 

the database of PPARγ known and decoy compounds obtained from the Directory of Useful 

Decoys (DUD) (169). A test of the pharmacophore models against the known PPARγ actives 

indicated that the fatty acid and full agonist pharmacophores did not match a large enough 

proportion of the training set. Specifically, the fatty acid and full agonist models missed some 

fatty acids and all the TZD compounds, respectively. An additional full agonist model based on 

rosiglitazone, and a fatty acid model based on 9-hydroxyoctadeca-10,12-dienoic acid (9HO; 

PDB ID 2VSR) were included. These models recovered the missing ligands. As some 

compounds did match the initial models, they were maintained in the ligand pharmacophore 

model set. The final number of pharmacophore models used was eight. 

4.3.5 Computational docking  

The training portion of virtual screening was conducted with a total of 3308 ligands: 96 active 

compounds and binding partners from PDB structures, 85 known actives from the DUD, and 

3127 decoys from the DUD, which are structurally similar to actives but do not activate PPARγ. 

The compiled ligand database included duplicates of known agonists; the DUD active dataset 

included compounds from the PDB, and the PDB list contained multiples of some ligands. This 

level of redundancy provided checks for reproducibility and consistency in pose prediction for 

known agonists. Docking was performed against the 33 superimposed PPARγ structure models 

for which binding cavities were characterized using AutoLigand. Identical grid boxes were 
established for docking into each structure model. The grid box size was set to 30 Å by 40 Å by 
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40 Å with the center at (18.656, -21.929, 7.715) and grid spacing of 1.0 Å, which yielded 52,111 

grid points and a total grid volume of 48,000 Å3. 

AutoDock Vina (139) (Vina) was used for docking against the selected PDB structure models. 

Initially, re-docking was done by docking the ligand from each structure back into its cognate 

receptor (199). Cross-docking was then done to see if the structures could accommodate other 

known ligands, which involved docking known ligands from multiple PDB structures into each 

selected protein structure model (199). 

Perl (147) scripts written in-house were used for post-processing of the docked results. This 

analysis included retrieving lowest energy poses and the associated energy scores, measuring 

distances between interacting atoms, and formatting of output for ease of reading and 

assessment. Nine separate poses were predicted for each ligand. Only the most energetically 

favorable pose for each ligand was used for analysis. Reference poses for root-mean-squared 

deviation (RMSD) calculations were those from the crystal structure complexes, therefore 

RMSD values were only calculated for the PDB-associated ligands. The terms “successful pose” 

and “success” were applied to docked poses with an RMSD value less than or equal to 2.0 Å 

(89). 

Interactions between protein and ligand atoms were based on distances between heavy atoms. 

Distances less than or equal to 3.3 Å indicated hydrogen bonds (103, 146), while distances less 

than or equal to 3.9 Å indicated hydrophobic interactions (146). Predicted interactions were 

compared to two crystal structure-derived interaction lists that were derived from five PPARγ-

rosiglitazone PDB structures. One list contained eight residues common to the five PDB 

structures that showed interactions with rosiglitazone. The second list was composed of the four 

residues (Ser289, His323, His449, and Tyr473) known to form hydrogen bonds with multiple 

full agonists. Ligand Explorer (146) was used to identify key interactions in the original PDB 

structures. Here the term “success” was used to describe poses for which hydrogen-bond 

interactions were calculated with the four critical residues. 

4.3.6 Validation of docking protocol 

A total of 2319 compounds from the MicroSource U.S. Drugs (MSUSDrugs) dataset of the 

ZINC online chemical catalog (200) were used for the validation set. These compounds are all 

commercially available drugs. As there are drugs currently available that activate PPARγ, it was 

expected that known agonists like rosiglitazone would be in this test set. No pre-screening was 

performed, however, in order to maintain a level of blind testing. Thus, this database was 

classified as unknowns because the binding activity was not known prior to screening. The 

MSUSDrugs compounds were docked into four PPARγ structure models selected after binding 

cavity analysis to identify representative models ideal for screening. The docking procedure used 

for the training step (described above) was also used for the validation step. 

As a validation of the structure model selection and pharmacophore-based ligand screening 

process, additional filters were applied to the MSUSDrugs docking results in order to rank and 

identify potential binders. Poses that possessed interactions with the four hydrogen-bonding 

residues were ranked according to free energy of binding as calculated by Vina. The ligand-

based pharmacophore models were applied to the compounds as well to predict potential activity 

types for each ligand. Compounds were further evaluated for toxicity based on presence of 

reactive or unstable molecular features and existing therapeutic patents that include targeting of 
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PPARγ. Toxicity was assessed using MOE (198) and the ToxAlerts server (201). MOE 

references two publications in which potentially toxic and reactive molecular groups were 

reported (202, 203). ToxAlerts included these two publications and 23 others dating from 1976 

to 2013. 

4.3.7 Statistical analysis 

Various statistical methods were used to test significance within the data. Percent similarity was 

calculated for each pair of envelopes as a percentage of common grid points. This value was the 

number of common grid points divided by the total number of points, which was 300. A 

distribution of the values was obtained by generating a histogram. Screening statistics included 

indicators of success and failure at accurately predicting active compounds while excluding 

decoys. The primary values considered were specificity and sensitivity. Specificity is a measure 

of the proportion of negatives accurately identified as such. Ideal specificity values should be 

greater than 0.95 or 95 percent. Specificity was used to calculate the false positive rate (FPR), 

which is the frequency with which non-binders are inaccurately identified as binders. Ideal FPRs 

would approach zero. Sensitivity, which is also called the true positive rate (TPR), is the 

probability that a randomly selected item within the test set was a binder accurately predicted as 

such. Sensitivity improves as the value approaches 1.00 or 100 percent. Specificity and 

sensitivity are calculated given true positive, false positives, true negative, and true positives. 

Distinctions between true positives (TP; binders identified as binders) and false negatives (FN; 

binders inaccurately predicted to be non-binders) were determined based on the RMSD values 

for docking the PDB ligands, and presence of key interactions with docked poses for the DUD 

active compounds. TPs would possess RMSD values less than or equal to 2.0 Å for PDB docked 

poses, and interactions with the four key residues for the DUD actives. FNs would possess 

RMSD values over 2.0 Å for the PDB ligands, and no hydrogen-bonding interactions for the 

DUD actives. False positives (FP; non-binders inaccurately predicted to be binders) and true 

negatives (TN; non-binders identified as non-binders) were assessed using interaction predictions 

for the DUD decoy compound docked poses. FPs would possess interactions with the key 

residues, while TNs would not. TPRs and FPRs were used to assess the receiver operating 

characteristic (ROC) space for the structures. The ROC method is a statistic that indicates the 

ability of a test to separate data into two populations (204). Evaluation of the ROC space allowed 

for identification of structures that more accurately predicted binders while excluding non-

binders. 

4.3.8 Virtual screen process flow 

As illustrated in Scheme 4.1, the process flow starts with pharmacophore screening with both 

ligand-based and structure-based methods. The data obtained in these steps established features 

necessary for binder identification. The ligand-based leg served two purposes: to establish ligand 

features common to known agonists and to screen compounds with unknown binding character 

to propose activity type. In the case of known agonists, the pharmacophore models were refined 

to satisfy most if not all of the known dataset. For the screening of unknowns, compounds that 

did not match the models were excluded, while those that did match continued on to the docking 

step. In this study, the known and unknown compounds that did not match the ligand-based 

pharmacophore models were retained to test validity of the process flow. The structure-based leg 

of the process served to establish representative structure models to use for docking. Docking 
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results were then scrutinized for potential interactions with the structure models. Only full 

agonist criteria were used here, but criteria for identifying partial agonists and antagonists could 

be included to detect binders that fit those activity types. Currently, the interactions necessary for 

partial agonist and antagonist binding that are distinct from full agonist interactions are not clear. 

Therefore, these activity classes were excluded for the test of the process flow. Any compounds 

not matching the binder identification criteria at this step were deemed non-binders, while those 

that did match were classified as binders. The binders underwent additional assessment for 

predicted free energy of binding and inhibition constant, potential toxicity, and novelty of the 

compound in the context of PPARγ binding. Compounds that satisfied this assessment were 

classified as hits, which are compounds that could be developed as a lead for experimental 

validation. 

4.4 Results 

4.4.1 Shared features were identified for each ligand type 

The PharmaGist online server reported several lists of features shared by compounds within each 

activity class. The highest overall scoring feature set and the set representative of the most 

ligands were assessed (Table 4.3 and Figure 4.1). Of the full agonists, three molecules aligned to 

give the highest overall feature score of 48.5 with ten features common to these three molecules. 

Within the partial agonist class, three compounds made up the highest overall feature score 

group with a score of 39.2 and nine shared features. The three ligands in this case were 

molecularly similar and were excluded in a second run of the PharmaGist server to determine if 

an additional predominant feature set could be found for the partial agonists. Doing so returned a 

set of three molecules scoring 39.9 with seven shared features. This second group of features was 

noticeably different from the initial partial agonist feature set, and it shared features seen with the 

full agonists. The highest scoring cluster for the fatty acids showed ten features common to the 

five ligands with a score of 27.2. The feature groups for the fatty acids included the carboxylate 

moiety, which was also seen with the first partial agonist highest scoring feature group. Seven of 

the ten features identified for fatty acids were hydrophobic features that characterized the 

aliphatic chains, which distinguished this activity class from the others.  

Table 4.3 Feature scores for ligands submitted to the PharmaGist server. The highest overall 

scores and highest scores for the feature cluster with the most ligands are listed for the full 

agonist, fatty acid, and partial agonist categories. The pair-wise scores for the antagonists are 

included, which are relative to the indicated ligand (ligand ID followed by PDB ID) as the pivot 

molecule. 

  

Full 

agonist Fatty acid 

Partial agonist 

(22 ligands) 

Partial agonist 

(19 ligands) Antagonist 

Highest 

overall score 
48.5 27.2 39.2 39.9 

NSI (2HFP): 8.0 

GW9 (3E00): 10.0 

Most ligands 

represented 
33.6 27.2 20.0 28.9  

The feature clusters that represent the most ligands for each category possessed three features 

each for the full and partial agonists, and ten features for the fatty acids. It was anticipated that 

similarities in the most common features would exist because all the ligands bind to PPARγ. The 

three features for the full agonists and second partial agonist set were two hydrogen bond 
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acceptor groups and an aromatic moiety. Interestingly, the placement of these groups relative to 

the binding cavity was different, however, for each of these two activity classes. The full agonist 

features were closer to H12, while the partial agonist features were closer to H3. The initial 

partial agonist feature set possessed two aromatic groups and one hydrogen bond acceptor group, 

which may suggest greater feature diversity within the partial agonist set compared to the full 

agonists. For the fatty acids, the similarity between the highest scoring cluster and the clustering 

representing most ligands was not surprising given this was the one ligand category where the 

ligand composition was highly similar for the compounds that were analyzed. The antagonist 

feature sets were relatively similar, with each containing one aromatic moiety, one hydrogen 

bond acceptor, and one hydrogen bond donor. The difference between the two was an additional 

aromatic group when NSI (PDB ID 2HFP) was the pivot molecule versus an additional hydrogen 

bond acceptor group when GW9 (PDB ID 3E00) was the pivot molecule. Overall, the pairwise 

antagonist features suggested the two compounds were similar to each other but distinct from the 

other ligands. However, given the variation between the two sets and the limited number of 

available structures, the feature sets for both ligands were used to generate antagonist 

pharmacophore models. For the other activity classes, the feature set representing the most 

ligands was used to make pharmacophore models for classifying ligands in the compound 

database used for virtual screening. The pivot molecule, which was a single ligand onto which 

each subsequent ligand was overlaid, was used as the representative ligand for generating the 

pharmacophore models for each feature set. Once the pharmacophore models were established, 

the next step was to evaluate the PPARγ crystal structures to assess binding cavity similarity and 

identify which ligand pharmacophores would be best suited for the different shaped cavities.  

 
Figure 4.1 Composite of PharmaGist feature groups overlaid onto representative ligands from each ligand type. The 

PDB ID in which each ligand was found is listed in the corresponding cell. Cells without a PDB ID are the same 

ligand as the one listed in the top cell for a given column. Sphere colors for the feature group are as indicated in the 

legend above. Each ligand is shown in stick representation with atom specific coloring: carbon (tan), oxygen (red), 

nitrogen (blue), hydrogen (white), and sulfur (yellow). The ligand for 3PBA contained bromine, which is shown in 

dark red. 
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4.4.2 Binding cavity differences validated the need for docking with multiple 

structure models 

The envelopes generated using AutoLigand are comparable to structure-based pharmacophores 

used to predict potential ligand interactions given a protein structure. Envelopes were created for 

the 33 crystal structures listed in Table 4.1, and then combined based on the activity class of the 

ligand that was present in the crystal structure. Some similarities were observed in the envelopes 

across all activity classes (Figure 4.2). For instance, the atom types predicted to sit in various 

regions of the binding cavity were similar for each activity class (Figure 4.2A). Carbon atom 

points occupied most of the cavities. Oxygen atoms appeared most favorable near H12 and the 

opening of the binding cavity. A third cluster of oxygen atom points appeared at one end of arm 

III. The position of the more electronegative atom types suggested residues in these locations 

were either charged or polar. The frequency with which those atoms appeared for some regions 

was different, however, and presumably based on the type of activity described for the original 

crystal structure. The full agonist and fatty acid containing structures both showed higher 

quantities for sulfur and oxygen atoms at the region of the binding cavity closest to H12 and near 

the entrance to the binding cavity. This characteristic was not seen for the composite envelope 

for the partial agonist-containing structures. The full agonist- and fatty acid-containing structures 

showed a definitive shape to the pocket in which these compounds fit, whereas the envelopes for 

the partial agonist-containing structures contained points spread over more of the pocket. The 

clustering or dispersion of spheres around the binding cavity should indicate conserved or 

promiscuous cavity shape, respectively. This clustering may also translate to conservation or 

promiscuity of activation patterns influenced by conformational changes upon ligand binding. It 

was observed for the antagonist group that points clustered near H12, which also occurred in the 

envelopes for the other activity types. 

Counts of common grid points independent of atom type were also calculated and visualized in a 

heat-map-like representation for each activity class (Figure 4.2B). Such a representation 

indicated patterns in grid points favored for each activity type, which would reflect where ligand 

atoms should sit most favorably within the cavity for a given activity. Fatty acid-containing 

structures suggested favorable ligand positioning along the cavity entrance and arm I of the 

binding cavity. The full agonist-bound structures suggested atoms near H12 were prevalent, 

while the partial agonist-bound structures suggested atoms around H3 were preferred. The 

antagonist containing structures suggested atoms were favored around H12. This class also 

showed points under and beyond His449 that are not as prevalent in the envelopes for the other 

structures. The side chain for His449 sits at a different angle in the antagonist crystal structures 

when compared to structures of the other activity types, which may account for the difference in 

atom placement favorability for that area of the structures. 



 

85 

 

 
Figure 4.2 Compiled envelopes for each activity class shown as (a) an atom-specific visual histogram and (b) grid 

point-specific heat map-like representation. The four hydrogen-bonding residues and the arm designation for the 

binding cavity are shown for each panel on the top two envelopes. The intersection of arms I and II is the entrance to 

the cavity, while the intersection of arms I and III is the far end of the cavity near helix 12. (a) Each atom type tested 

within the binding cavity of the crystal structures is shown with atom-specific coloring indicated by the legend. 

Sphere size increases with frequency at which the indicated atom type appeared within the most energetically 

favorable envelopes for all structures within the activity class. (b) The spheres represent the grid points of the grid 

established within the binding cavity of all the crystal structures tested. Sphere size increases with frequency at 

which the grid point appeared (atom type neglected) within the most energetically favorable envelopes for all 

structures within the activity category. Sphere color also indicates frequency of point appearance as the color 

progresses from blue to red, which is indicated by the color scale under the figure. 

The percent similarity between each pair of envelopes was calculated to divide the structure 

models into groups with similar grid-based docking pockets. Structure models with similar 

docking pockets should accommodate particular groups of ligands in a similar fashion as 

reflected by envelope similarity. A distribution of these values showed a major peak around 0.4 

or 40 percent similarity between pairs of envelopes (Figure 4.3). Using 0.4 as a cutoff value, an 

attempt was made to divide the models into groups with presumably similar binding cavity 

landscapes. The groupings were not clear with this cutoff and resulted in overlapping groups for 

all the models where structures appeared in multiple groups. Given all the envelopes were 

generated using crystal structures for PPARγ with bound ligands, the high degree of similarity 

with a low cutoff value was not surprising. 

 
Figure 4.3 Distribution of percent similarity values for the 33 envelopes. Percent similarity reflects the proportion of 

common points between each pair of envelopes (N = 1089 pairs). 
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The similarity cutoff for dividing the structure models into groups was increased to 0.6 or 60 

percent envelope point similarity, which resulted in groupings that were more distinct. The 

distribution shows a second less pronounced peak around 0.6, which suggested this cutoff might 

be stricter. This cutoff retained similarities while allowing any differences between envelopes to 

be more easily seen. Five structure model groups were established (Table 4.4). Structures in 

Group 1 contained full agonist and fatty acids. Group 2 contained structure models with full and 

partial agonists in the original crystal structures. Group 3 structures contained fatty acids and 

partial agonists. Groups 4 and 5 contained partial agonist-bound structures alone. Group 6 was 

composed of the remaining crystal structures tested that returned low similarity to structures in 

groups 1 through 5 and low similarity to each other. All the activity types are represented in this 

group. Group 6 possessed the largest number of structures and suggested there is a degree of 

specificity within the cavity of these crystal structures that precludes use of them in a docking 

study with a diverse ligand database. Each of the first five groups was assigned ligand 

pharmacophore models based on the types of ligands that should be best accommodated by the 

structure model (Table 4.4). The pairing of ligand-based and structure-based pharmacophore 

models presumes that only ligands that match the ligand pharmacophore will dock into any 

structure model within the group. Ideally, a single structure within each group could be 

established as the representative model because the binding cavities within the group possess a 

higher than average degree of similarity. Docking provided a test of this assumption and was the 

next method to be applied in order to single out the representative structure models for virtual 

screening. 

Table 4.4 Groupings for structure models based on envelope similarity. PDB and ligand IDs 

match those used in Table 4.1. 

Group # PDB ID Model Ligand ID 

1 1FM6, 1ZGY, 2PRG, 2VSR, 2VV2 BRL, MYI, 9HO, HXA 

2 1FM9, 1K74, 1RDT, 2I4Z, 2POB BRL, MYI, SF2, ZXG 

3 2I4J, 2VSR, 2VST, 2VV0, 2VV1, 2VV2 SF2, ZXG, 9HO, HXA  

4 2I4Z, 2P4Y, 2Q5P SF2, ZXG 

5 2Q5S, 2Q6R SF2, ZXG 

6 
1WM0, 2FVJ, 2G0G, 2G0H, 2HFP, 2I4P, 2OM9, 

2Q6S, 3B3K, 3CDP, 3CS8, 3DZU, 3DZY, 3E00, 4PRG   

4.4.3 Ligand binding reproducibility of the PPARγ structure models 

Re-docking and cross-docking were conducted to determine which of the PPARγ crystal 

structures would be suitable for virtual screening. With 2.0 Å as the threshold for RMSD values, 

re-docking results were favorable for 10 out of the 33 analyzed structures (Table 4.5). Successful 

docking results were found for structures with PDB codes 1WM0, 1ZGY, 2FVJ, 2G0G, 2G0H, 

2POB, 2PRG, 2Q5P, 3DZU, and 4PRG, which are full or partial agonist-containing structures. 

During the cross-docking, all the structures showed successful docking of more than one non-

native ligand despite the fact that a majority of the structures did not show successful re-docking. 

A table containing all the RMSD values for the re- and cross-docking poses is in the 

supplemental information (Supplemental Table 4.S1). The re- and cross-docking data provided 

an initial evaluation of how well the structure models could accurately identify binders. It was 

hypothesized that incorporating the pharmacophore screening would improve the predictability 

of structure models best suited for predicting ligands of the activity type represented by the 
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pharmacophore model, which would aid in representative model selection. This concept required 

additional statistical measures of docking potential. 

Table 4.5 RMSD values for re-docking of native ligands into corresponding crystal structure 

models. Results are listed by PDB ID and RMSD values are measured in Angstroms (Å).  

PDB ID RMSD (Å) PDB ID RMSD (Å) PDB ID RMSD (Å) PDB ID RMSD (Å) 

1FM6 3.15 2P4Y 2.56 2I4J 3.06 2VV0 2.20 

1FM9 3.16 2POB 1.33 2I4P 2.83 2VV1 2.47 

1K74 2.97 2Q5P 1.01 2I4Z 3.04 2VV2 2.94 

1RDT 2.97 2Q5S 2.40 20M9 2.49 3B3K 3.35 

1WM0 0.95 2VSR 2.34 2PRG 1.17 3CDP 3.46 

1ZGY 1.25 3DZU 1.10 2Q6R 2.08 3CS8 2.91 

2G0G 0.92 4PRG 1.75 2Q6S 4.13 3DZY 3.08 

2G0H 1.08 2FVJ 0.56 2VST 2.80 3E00 2.41 

2HFP 3.28       

4.4.4 Predictability of binding with PPARγ structures 

The information pertaining to successful or unsuccessful pose prediction was used to calculate 

the frequency at which a structure could accurately predict a binder pose. The initial calculation 

was conducted with just the PDB ligands so RMSD values could be used to assess true positive 

identification. The overall per-model TPRs were extremely low (2.08 to 18.75 percent success 

rates) for the 33 structure models (Table 4.6, original TPRs). The low rates may derive from the 

number and variety of ligands screened and rigid receptor structures during docking. Structures 

could be identified that served better for docking one type of ligand over the other types. For 

example, docking of full and dual agonists to 2PRG (PPARγ-rosiglitazone) was successful, and 

only one partial agonist docked well. Additionally, 2VV0 (PPARγ-HXA) was able to 

accommodate full and partial agonists though the native ligand is a fatty acid, which did not re-

dock well. For some structures, preference of one activity type was evident such as 2I4P, in 

which a partial agonist was natively found and only partial agonists docked successfully to this 

structure. Antagonists in general did not dock well, but two structures, 1FM6 and 3DZY, 

returned favorable docking of the tested antagonists. These structures might prove useful in 

predicting antagonists in a docking study of compounds similar to the two antagonists screened. 

In this case, considerations would have to be set for the best means of distinguishing any 

potential antagonists from full agonists. 

Pharmacophore filtering was applied to the docked poses using the rosiglitazone pharmacophore 

model for calculating adjusted TPRs. A subset of 22 out of the 33 structures showed some 

increase in TPR (Table 4.6, adjusted TPRs). Filtering reduced the total number of compounds for 

calculating the rate, which suggested appropriate pre-screening of test compounds should 

maintain the true binders while reducing the amount of screening that needs to be carried out. 

For cases where the rate decreased, successful binders were lost from the list suggesting the 

rosiglitazone pharmacophore model missed ligands that docked well into those structures. 

Ligands that did not match the rosiglitazone model were presumably not TZD-like full agonists. 

Therefore, the structures with reduced success rates would not be ideal for screening of TZD-like 

full agonists. 
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Table 4.6 True positive rates (TPRs) for each PDB structure in the training phase. Successful 

poses were those that satisfied the RMSD cutoff of 2.0 Å. The original TPRs were calculated 

with the PDB ligands, and the adjusted TPRs were calculated using the subset of ligands that 

matched the rosiglitazone-based pharmacophore model. The percent change was calculated as 

the difference between the original and adjusted TPRs divided by the original value. 

PDB 

ID 

Original 

TPR 

Adjusted 

TPR 

Percent 

change PDB ID 

Original 

TPR 

Adjusted 

TPR 

Percent 

change 

1FM6 7.29 10.64 45.90 2Q5P 4.17 6.38 53.19 

1FM9 12.50 17.02 36.17 2Q5S 3.13 2.13 -31.91 

1K74 17.71 21.28 20.15 2Q6R 4.17 2.13 -48.94 

1RDT 18.75 21.28 13.48 2Q6S 4.17 0.00 -100.00 

1WM0 10.42 2.13 -79.57 2VSR 12.50 14.89 19.15 

1ZGY 13.54 21.28 57.12 2VST 4.17 6.38 53.19 

2OM9 5.21 4.26 -18.30 2VV0 11.46 12.77 11.41 

2FVJ 8.33 8.51 2.13 2VV1 8.33 8.51 2.13 

2G0G 9.38 17.02 81.56 2VV2 4.17 4.26 2.13 

2G0H 5.21 10.64 104.26 3B3K 4.17 6.38 53.19 

2HFP 3.13 4.26 36.17 3CDP 2.08 2.13 2.13 

2I4J 10.42 6.38 -38.72 3CS8 7.29 2.13 -70.82 

2I4P 10.42 6.38 -38.72 3DZU 4.17 0.00 -100.00 

2I4Z 9.38 8.51 -9.22 3DZY 4.17 6.38 53.19 

2P4Y 5.21 4.26 -18.30 3E00 6.25 10.64 70.21 

2POB 15.63 21.28 36.17 4PRG 4.17 4.26 2.13 

2PRG 10.42 21.28 104.26     

It was possible that either the non-TZD accommodating structures were ideal for screening other 

full agonists or the structures were not appropriate for screening of full agonists at all. Eleven 

structures had reduced success rates of which nine were partial agonist containing structures and 

two were full agonist containing structures. When compared to the grouped list of structure 

models based on envelope similarity, these structures were not in structure groups one and two, 

which were predicted to best fit the rosiglitazone model. In taking a closer look at the docking 

results, it was noticed that the compounds that docked well for the eleven structures were either 

exclusively partial agonists or compounds that matched multiple pharmacophore models (full 

agonists, partial agonists, fatty acids, and antagonists). Therefore, the structures with decreasing 

rates would not be useful for screening for full agonists. Some of these structures, however, may 

be better suited for partial agonist prediction. 

Structures for which the rate increased too much would indicate either a structure most 

appropriate for full agonist docking or an improvement in rate due solely to the reduction of total 

actives in the TPR calculation. Two structures showed rates increasing by 100 percent. Of those, 

2PRG showed favorable docking of multiple full, dual, and pan agonists, all of which matched 

the rosiglitazone pharmacophore model and therefore showed an increase in rate given the 

reduction in the total number of ligands considered for the calculation. The other structure, 

2G0H, showed successful docking of partial agonists, one full and one pan agonist. This 



 

89 

 

structure would be less useful when screening for compounds of the full agonism activity type 

despite the increase in rate. Use of this model for docking might result in inaccurate non-binder 

identification given the greater success of partial agonist docking. The 2G0H structure showed a 

low number of successfully docked compounds and therefore would not be an ideal model 

despite the significant rate increase. Again, the increase in rate was due solely to the reduction of 

total actives. 

The structures with a moderate increase in rate were those for which the ligands that docked well 

were partially those that matched the model and partially those that did not. For example, the rate 

for 1ZGY increased by 57.12 percent. The three compounds that did not match the rosiglitazone 

model were a fatty acid, partial agonist and full agonist with a stereoisomer that is a partial 

agonist. The fatty acid compound matched the fatty acid pharmacophores and no others. The 

other two ligands matched multiple pharmacophores but not rosiglitazone. This suggests that the 

structure model is ideal for screening compounds matching the selected pharmacophore while 

possessing enough variability in the binding cavity to screen for other compounds that 

potentially possess similar activity but may not completely match the selected pharmacophore. 

Additionally a structure that can accommodate compounds that do not match the pharmacophore 

models might prove useful for assess novel, uncharacterized ligands. Given these data, a 

structure model showing moderate increase in success rate with the inclusion of pharmacophore 

filtering might prove better suited for diverse ligand screening. The next step was to assess the 

rate at which false positives were predicted and exclusion of true negative compounds. 

4.4.5 Inclusion of the decoys to assess false positive prediction 

The ligand-based pharmacophore models generated from the PharmaGist feature sets were used 

to evaluate the training set of compounds to hypothesize structure model success. The 

predictability of each structure model either increased or decreased depending on the 

pharmacophore used for filtering in the previous test. For the eight pharmacophores used, all of 

the DUD known ligands matched at least one model, while the PDB and the DUD decoy lists 

contained some ligands that did not match any model (Table 4.7). The PDB ligand set possessed 

more ligands than the DUD active set. Including more ligands in the PharmaGist screening or 

adjusting the models based on structural information might recover the missing PDB 

compounds. For the immediate purposes of this study, the pharmacophores were sufficient for 

covering most of the training set and were not adjusted. Most of the training set matched the fatty 

acid and full agonist pharmacophores. This suggested the training set was best suited for 

assessing predictability of full agonist and fatty acid binding. For the remainder of the study, 

emphasis was placed on the full agonist and fatty acid agonist activity class to evaluate the 

success of the progress flow and identify representative model structures for virtual screening. 
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Table 4.7 Counts of ligands that matched each ligand-based pharmacophore model from three 

lists of compounds: known actives from PDB crystal structures, known actives from the DUD 

database, and decoy compounds from the DUD database. The pharmacophore models used are 

listed alphabetically in the top row with the ligand type indicated in the following row. 

  9HO BRL GW9 HXA MYI NSI SF2 ZXG 

Total 

ligands 

searched 

  

Fatty 

acid Full Antagonist 

Fatty 

acid Full Antagonist Partial Partial   

PDB 53 49 5 82 65 16 24 51 99 

DUD 

known 0 76 1 78 75 1 4 73 81 

DUD 

decoy 0 1908 362 2564 1945 335 598 1910 2906 

Inclusion of the decoy compounds allowed for assessment of false positive prediction. A single 

sensitivity and specificity value were calculated for each PDB structure used for the training 

phase given success or failure of docking determined by presence or absence, respectively, of the 

four hydrogen bond interactions. None of the structures did exceptionally well given the low 

TPRs. Despite the seemly overall poor performance, some structures fared better than others for 

accurate prediction of true binders (Figure 4.4). 1K74 was the most successful at identifying true 

binders and neglecting true non-binders, which agrees with the RMSD-based TPR calculation. 

1RDT was the next most successful, but did not exhibit as high a TPR for this step as it did in the 

RMSD-based TPR calculation. Both of these structures were in Group 2 of the grouped structure 

models, which indicated 1K74 would be better suited than 1RDT for full agonist and fatty acid 

agonist prediction. The representative structures for the other similarity-based structure groups 

was less clear given the relative low positive predictability. 

Completeness of structure, the relative docking success of each structure, and any improvements 

in TPR based on pharmacophore screening were considered for identification of the 

representative structure models for the other structure groups. The most successful structures 

were those within the group that had the highest TPRs. The most complete models were those 

containing all the protein residues of the binding cavity necessary for accurate sampling of 

binding poses. 1ZGY performed well in the TPR assessment analysis and possessed the same 

adjusted TPR as 1K74. This structure was also one of the most complete of the structures in 

Group 1 and was therefore selected as the representative structure for this group. The DUD 

dataset proved most effective for assessment of full agonist and fatty acid agonist binding, which 

were not the predominant activity type represented in Groups 3, 4, and 5. For these three groups, 

the most complete structures were identified and used for docking under the assumption that 

agonist binder prediction might be less successful with these structures. The structures in Group 

5 were missing residues within the binding cavity and were excluded. The four PDB models 

selected for the virtual screening validation step were 1ZGY, 1K74, 2I4J, and 2I4Z. 
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Figure 4.4 ROC space for 33 PDB structures used for docking. PDB IDs for the four structures with the highest 

TPR are labeled. Scales for axes were reduced to show data detail. The black dashed line indicates the division 

between the states (better prediction versus worse prediction). 

4.4.6 Screening of known drugs validated screening and scoring methods 

As a means of validating the prediction methods, screening was performed with 2,319 

established drug compounds. These compounds were docked into the four representative 

structure models and compared to the eight pharmacophore models. The interaction data and free 

energy of binding scores were used to rank each list, pharmacophore data was included for the 

models that were paired with each representative structure from the binding cavity comparison 

step. The top ten ranked binders for each structure model were evaluated totaling 40 compounds 

that were assessed for toxicity and novelty based on a patent and paper search for proposed 

binders. Data from the 1ZGY docking is shown here (Table 4.8). Two stereoisomers for 

rosiglitazone appeared in the ninth and tenth position of the top-ten list for 1ZGY with similar 

free energy of binding values. Only the data for the first pose is shown in Table 4.8. The 

remaining data for the other three structures are in the supplemental information (Supplemental 

Tables 4.S2-4.S4). Some compounds appeared in more than one list suggesting some agreement 

in the docking results for all the structures. For instance, folic acid showed up as a hit in the 

1ZGY, 1K74, and 2I4Z lists. The most negative free energy value was observed for the 1ZGY 

pose. Overall, the composition and order of hits was slightly different for all the lists. All of the 

hits matched at least one of the pharmacophore models proposed to fit the binding cavity except 

for some compounds docked into 2I4Z. Five of the ten hits in the 2I4Z list did not match either 

partial agonist model. It was proposed that the 2I4Z structure would be better suited for docking 

of partial agonists, but the full agonist interaction criteria was applied to identify binders. It is 

possible that the hits are an indication of additional pharmacophores to consider and/or a need 

for different interaction criteria to better identify binders with this structure model. 

All of the compounds that appeared in the top-ranked list for 1ZGY either directly interact with 

PPARγ or function as a therapeutic in conjunction with other drugs for treating a PPAR-

associated disease. Rosiglitazone and pioglitazone are well known PPARγ agonists. The 

presence of these compounds in the list is encouraging and immediately strengthens the 

predictability of the virtual screening process. Additionally, flufenamic acid is a non-steroidal 

anti-inflammatory drug that has been shown to activate PPARγ (205). The other four compounds 
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that appeared in patents were listed as compounds used in conjunction with PPARγ agonists. It 

was not clear in the patents if the compounds directly or indirectly activate PPARγ, but the 

addition of the compounds appeared to facilitate the activity of the agonists. Furthermore, the 

disease types listed in the patents included cancers, metabolic disorders, and inflammation-

related diseases that have been linked to PPARγ-mediated regulatory processes. Only two of the 

compounds did not immediately return patent information for PPARγ-related disease 

therapeutics: balsalazide disodium and ceftriaxone sodium trihydrate. Balsalazide disodium is a 

compound that has been suggested to treat active ulcerative colitis, which is a disease in which 

PPARγ and PPARδ play a role (206). The literature suggests this compound directly binds to and 

activates PPARγ (207). The only unclear hit was ceftriaxone sodium trihydrate. No patents or 

published papers appeared to list the compound and PPARγ. This compound could be a 

promising hit, but the presence of toxic molecular groups could prove problematic for 

experiments beyond the in vitro stage. 

Table 4.8 Results from the docking of the MSUSDrugs compounds into 1ZGY for which docked 

poses were deemed successful. All compounds possessed interactions with at least the four 

hydrogen-bonding residues. Compounds are listed by ZINC ID and compound name. The 

following two columns indicate if the compound was classified as toxic using MOE and the 

ToxAlerts server. The characters “+” and “–“indicate if the compound matched or did not match, 

respectively, the pharmacophore model listed (MYI, BRL, 9HO, or HXA). The remainder of the 

table lists the patent number in which the compound was referenced if one was found, the 

calculated free energy of binding score, and the calculated inhibition constant. 

ZINC ID 

Compound 

Name 

Tox. 

MOE 

Tox 

Alerts Patent 

M

Y

I 

B

R

L 

9

H

O 

H

X

A 

Free 

Energy of 

Binding 

(kcal/mol) 

Predicted 

Ki (μM) 

18456289 Folic acid     

EP1605950 

A4 - + + + -9.8 0.066 

01529323 methotrexate     

EP1959950 

A1 - + + + -9.6 0.092 

01540998 

pemetrexed 

disodium     

US8362075 

B2 - + + + -9.6 0.092 

03956919 bezafibrate   yes 

EP2089023 

A2 - - + + -9.0 0.253 

03952881 

balsalazide 

disodium yes yes   - - + + -8.9 0.299 

00968326 

pioglitazone 

hydrochloride     

10 different 

patents - + - - -8.7 0.420 

00086535 

flufenamic 

acid   yes 

EP2303252 

A1 - - - + -8.5 0.588 

35973845 

ceftriaxone 

sodium 

trihydrate yes yes   - - - + -8.5 0.588 

00968328 rosiglitazone   yes 

 US5002953 

(expired 

2012) - + - - -8.4 0.696 
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4.5 Discussion 

The prediction of PPARγ binders is a prominent area of research in recent years given 

therapeutic possibilities for numerous diseases including type 2 diabetes, inflammatory bowel 

disease, and colorectal cancer. Predicting binders encompasses use of various traditional bench-

top methods like high-throughput screening and isothermal titration calorimetry, and newer 

computational methods like molecular docking and pharmacophore modeling. A combined 

approach of applied and theoretical methods is ideal for timely screening and identification of 

potential compounds for therapeutic development. Further development of virtual screening 

scoring and ranking is necessary to improve predictability and potentially expedite the lead 

identification process with a smaller margin of error. In order to address this issue appropriately, 

structural information that translates to activity has to be considered and incorporated into the 

binder identification process. We have shown that adding pharmacophore and interaction 

filtering to the binder identification criteria improved predictability while reducing unnecessary 

screening of compounds that would not fit the models or should not bind given molecular 

composition. 

In a 2004 review by Kitchen of docking and scoring methods, he mentioned considerations for 

improving the hit identification process (88). In the context of energy scoring, Kitchen suggested 

that scoring should derive from knowledge-based structural comparisons in which binding 

interactions are considered (88). Rather than developing an energy score where specific 

interactions are considered as terms or a numerical interaction-derived docking score, we took 

the approach of a binary indication of absence or presence of interactions to complement existing 

energy scoring methods. Kitchen also discussed pre-screening of ligand databases with 3D filters 

(88). Shape-dependent filters can be limiting as he states, but implementing multiple 

pharmacophore models appears to address that limitation when considering diverse ligand 

databases. The filtering allows one to assess compounds that share features with established 

active compounds, but also indicates which compounds do not resemble known actives. Such 

compounds would not be the primary focus of a docking study given they typically would be 

classified as non-binders. A subsequent analysis, however, of the non-matching compounds for 

which key interactions were seen might indicate novel pharmacophores or hits for further study. 

Alternatively, the non-matching compounds may share features within that set that should be 

excluded when screening compounds with unknown activity. 

Few features were shared by all compounds of a single ligand type. Including more ligands 

might reduce common features while facilitating the need for multiple pharmacophores for a 

single ligand type. An examination of crystal structures suggests numerous interactions can arise 

with a given ligand and differences are observed between structures containing the same ligand. 

The promiscuity of PPARγ makes identifying all possible pharmacophores challenging but it has 

proven possible given what is known about binders. 

Similarities among crystal structure binding cavities exist given all the structures considered for 

this study were of PPARγ, but ligand-induced differences were observed that required the use of 

multiple structure models for virtual screening. The subset of crystal structures used here to 

analyze binding cavity similarity was adequate to assess full agonist and fatty acid binding, but 

was not sufficient to assess partial agonists and antagonist binding. Partial agonist binding might 

be possible with additional analyses of key interactions and ligand pharmacophores. There are 

only three crystal structures for PPARγ that contain antagonists, two of which have the same 

ligand. More structures with bound antagonists are needed to better establish differences from 
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the other activity classes. Despite the lack of predictability of partial agonists and antagonists 

with this study, the information gathered for those activity types still serve as a comparison tool 

for identifying full agonists and a starting point for assessing partial agonist and antagonist 

binding. 

An examination of the sample ligands used to generate the pharmacophore models relative to the 

cumulative envelopes for each activity type indicated sampling of various key binding cavity 

regions (Figure 4.5). A bulky or aromatic group and proximal hydrogen bond acceptor group 

appeared to be necessary near H12 for full agonists. This matched what is seen with the TZD 

compound family. The full agonists also filled in more of arm III compared to fatty acids. With 

the fatty acids there are fewer bulky features influencing binding within arm I of the binding 

cavity. Additionally the length of these compounds can fill the cavity while driving the acid 

group to the region where hydrogen bonding must occur for full agonism. The flexible nature of 

the aliphatic tail combined with the region of negative atom types near the entrance matched 

what is seen with activation induced by binding of two fatty acid chains and substituted fatty 

acids (41). Partial agonists possess diverse feature group arrangement, and they appear to fill in 

the area of the binding cavity near the entrance along H3. This agrees with published crystal 

structure data suggesting that H3 is involved in partial agonism and is independent of H12 (54, 

55). The crystal structures available for antagonists bind in such a way that the area of the pocket 

underneath the hydrogen-bonding site was open. The antagonists appeared to bind in the same 

area of the binding cavity as the head group of full agonists, but differences in cavity shape and 

atom type prevalence may provide insight into how these two binder classes diverge. 

Unfortunately, the amount of structural information regarding binding of antagonists is not 

sufficient to draw firmer conclusions. 

The differences seen in the pharmacophore models are beneficial to identifying activity class, 

and combining different models during assessment can strengthen any claims for a specific type. 

The full and partial agonist pharmacophore models suggest differences for the location of key 

features within the pocket necessary for binding. Combining the pharmacophore models would 

allow for distinguishing between full and partial agonists within arm I of the pocket. Compounds 

that satisfied the full agonist model and not the partial agonist models were most likely full 

agonists. Conversely, compounds that satisfy both partial agonist pharmacophores are more 

likely to be partial agonists versus compounds that satisfied one partial agonist and one full 

agonist model, or just the full agonist model. 
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Figure 4.5 The ligands used for generating pharmacophore models in MOE relative to the ligand-specific envelopes. 

The full agonist envelope with (a) the 3ADW ligand MYI or (b) the 1FM6 ligand BRL. The fatty acid envelope with 

(c) the 2VV0 ligand HXA or (d) the 2VSR ligands 9HO. The partial agonist envelope with (e) the 3PBA ligand 

ZGX or (f) the 2Q6R ligand SF2. The antagonist envelope with (g) the 2HFP ligand NSI or (h) the 3E00 ligand 

GW9. 2D drawings of the ligands are shown to the right of the envelope for each panel with colored circles showing 

placement of the pharmacophore feature groups used for generating the models. Circle colors for the feature groups 

are cyan (aromatic), green (hydrogen bond acceptor), yellow (hydrogen bond donor), and gray (hydrophobic). All 

envelopes are shown as gray, transparent spheres relative to the crystal structure-derived pose for each ligand. 

Ligands in the 3D image are in stick representation with atom-specific coloring: carbon = magenta, oxygen = red, 

nitrogen = blue, sulfur = yellow, bromine = dark red, chlorine = green, hydrogen = white. The hydrogen-bonding 

residues are shown as sticks as well. Atom specific coloring was the same except the carbon atoms are gray. 



 

96 

 

A limitation exists that pertains to the use of interactions as a filter for activity type. The 

limitation is lack of information about protein-ligand interactions that are truly indicative of a 

particular activity. Full agonist interaction information will only allow one to identify 

compounds that are potential full agonists. Within this activity type, there are variations that can 

further limit which agonists are identified without an extensive evaluation of differences in 

binding within the class. The same would be true for each of the other activity classes. This idea, 

though limiting, is also a positive when the issue of trying to predict activity type is considered. 

Only full agonists can be identified with full agonist key interaction information. Therefore, the 

true limitation is how much information is known about the interactions that dictate the activity 

type. The full agonist key residues are well established; however, this is not the case for the other 

types of activity. A long list of potential interacting residues is known. What is not clear is which 

residues are required for partial agonists to bind and are unique to the partial agonism activity 

type. The same can be said for antagonists. There may not be a clear distinction between 

subtype-specific full agonists, dual agonists, and pan agonists given all three categories should 

require association with the four hydrogen bonding residues. Nevertheless, there may be 

differences in which additional residues are necessary for other interactions that are shared 

between the PPAR subtypes. In this case, the residues would most likely share residue 

characteristics at key regions of the binding cavities but not necessarily the exact same residues. 

For all the additional agonism types, more analyses would be needed to identify specific residue 

lists for key interactions with each activity class. 

Low success rates still exist for all the structures, but predictions were improved by filtering out 

unsuccessful and unnecessary docking. There is a need, however, to add to the binder 

identification criteria for screening partial agonists. This could be accomplished with a technique 

called steered molecular dynamics, in which interactions necessary to hold a ligand within the 

binding cavity are assessed based on the force required to liberate the ligand from the binding 

cavity. Examining more partial agonist-containing crystal structures might prove useful as well. 

Additional structures are available and more envelopes could be generated to see if other 

structures exist that might prove helpful for finding partial agonists. As a large number of these 

structures are missing areas that are potentially significant for the dynamics of the protein, 

rebuilding of the missing regions and sampling for favorable starting conformations would be 

necessary prior to any dynamic testing or additional envelope screening.  

Calculations could have been adjusted to account for the duplicate ligands. Adjustments would 

include removing duplicates, performing multiple RMSD calculations for the duplicate docked 

poses using the various reference structures, and post-processing evaluation of which duplicate 

poses were successful. It is the opinion of the authors that doing so may have introduced 

unintentional bias. The goal was an evaluation of predictability for multiple PDB structures with 

a level of reproducibility that contributes to enrichment of binder predictability. As the known 

ligand dataset contained duplicate copies of compounds, one would expect those compounds to 

dock the same because they should bind the same experimentally. As already suggested, the 

crystal structures indicated that variations do exist given a single compound. Ideally, the 

duplicates would be helpful to determine the predictability of all binding orientations for a given 

compound. It appeared that predictions of specific binding orientations were favored over others 

given the RMSD values for the duplicate compounds and the position of the docked poses within 

the binding cavity. Assessing the free energy of binding showed precision where RMSD values 

of the docked poses indicated success, and lack of precision in the energy values where RMSD 

indicated unsuccessful docking. This means variation in free energy of binding for duplicate 
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compounds suggested a lack of precision and reproducibility of favorable binding poses. 

Therefore, retaining or excluding structure models not suitable for docking required the inclusion 

of the duplicate compounds and strengthened the model selection process. 

RMSD alone is not a useful metric for assessing structure predictability. Further, re- and cross-

docking are not stringent enough to establish appropriate models for docking. RMSD values can 

be misleading, specifically in the instance where compounds contain ring structures that can 

orient in atom distinct but chemically indistinct positions (167). Brozell et al. provided an 

example of using intramolecular-distance based RMSD calculations to recover lost successful 

poses in the assessment of structure model docking success (167). This method does not help 

with assessment of docked poses for which no native crystal pose is known, as is the case when 

conducting virtual screening with a database of unknowns. Distances that indicated interactions 

retained a range of consistency regardless of which atoms of a ring structure oriented toward the 

residues of interest. Additionally, assessing presence of ligand features improved exclusion of 

non-binders. 

Our analysis suggested pre-screening with ligand-based pharmacophore models and matching 

compounds with structures for which the binding cavity can accommodate key features is a 

useful method for reducing the computational time necessary to screen large, diverse compound 

databases for PPARγ binders. Furthermore, pharmacophore pre-screening may help with further 

classification of the type of agonism that a binder might possess. In such a case, the predicted 

interactions would be weighed more heavily than the free energy of binding score as the 

interactions with key residues are less influenced by the number of atoms that constitute a 

compound. Other factors to consider would include how well the features for the test compound 

align to the pharmacophore models and if compounds match more than one ligand model. With 

these considerations, it is feasible to significantly improve the predictability of potential 

therapeutics for difficult docking targets. 
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4.7 Supporting Information 

Table 4.S1 RMSD values for all tested PDB ligands relative to each of the 33 structure models tested during the training phase. PDB 

(PDBID) and ligand (LigID) identifiers are listed for each ligand. RMSD values were calculated with the crystal structure-derived 

pose of the respective ligand. 

PDBID LigID 1FM6 1FM9 1K74 1RDT 1WM0 1ZGY 2G0G 2G0H 2HFP 2P4Y 2POB 2Q5P 2Q5S 2VSR 3DZU 4PRG 

1FM6 BRL 3.151 2.725 2.153 2.753 3.713 0.853 2.915 2.905 3.021 2.888 2.784 3.021 3.145 3.003 2.677 3.108 

1FM9 570 3.249 3.163 1.618 1.666 3.489 3.238 3.207 3.302 2.177 3.262 1.389 3.021 3.099 3.008 3.07 2.99 

1I7I AZ2 1.462 1.52 1.483 1.682 3.002 2.924 3.545 2.456 2.674 2.809 2.845 3.052 2.596 2.578 3.088 2.834 

1K74 544 3.189 1.513 2.969 1.848 2.911 3.079 3.121 3.219 3.216 3.254 1.432 2.918 3.017 3.215 2.816 2.92 

1KNU YPA 3.067 2.876 2.931 2.966 3.652 3.112 2.953 2.999 3.022 2.308 2.981 2.962 2.968 3.05 2.752 2.764 

1NYX DRF 3.302 2.955 2.858 2.777 2.808 3.219 2.714 3.212 3.414 2.92 2.144 3.129 2.364 2.867 2.785 2.85 

1RDT 570 3.187 1.375 1.667 2.973 3.003 3.047 3.152 3.313 1.924 3.235 3.205 3.042 3.054 3.257 2.999 2.979 

1WM0 PLB 2.233 3.086 2.918 2.117 0.954 1.957 2.732 3.164 2.189 2.82 1.423 2.924 2.871 2.844 1.102 2.849 

1ZEO C01 3.554 2.877 3.902 3.877 2.985 3.358 3.614 3.597 3.166 3.129 2.933 2.921 3.336 2.906 4.813 3.312 

1ZGY BRL 3.161 1.98 2.8 2.829 2.956 1.245 2.709 3.331 3.139 2.988 2.922 2.997 3.118 2.917 2.677 2.977 

2ATH 3EA 3.191 2.795 2.687 2.693 2.696 2.943 2.899 3.223 3.053 2.775 3.121 2.902 2.772 3.077 2.777 2.922 

2F4B EHA 3.272 2.47 2.983 2.507 3.818 3.016 3.27 2.988 2.49 3.116 3.07 3.215 3.1 3.115 3.221 2.286 

2FVJ RO0 2.839 2.991 2.952 3.335 2.55 3.716 2.838 3.259 3.261 2.995 3.011 2.899 3.126 3.058 3.23 3.183 

2G0G SP0 3.572 3.436 3.224 2.769 3.24 3.454 0.919 0.958 2.729 3.166 2.746 2.899 3.239 3.079 3.251 3.19 

2G0H SP3 3.444 3.402 3.205 3.917 2.718 3.434 1.013 1.078 3.393 3.066 2.825 2.782 3.135 2.822 3.101 2.616 

2GTK 208 2.895 2.704 2.714 2.685 3.707 2.825 2.644 3.193 2.907 2.851 2.709 1.642 2.368 1.526 2.349 2.967 

2HFP NSI 3.872 4.023 3.822 3.911 3.696 3.785 3.882 3.54 3.279 3.871 3.673 4.008 3.532 3.337 4.187 3.326 

2HWQ DRY 3.25 3.141 2.202 2.396 3.134 1.899 2.854 2.533 3.127 3.195 2.208 3.142 3.221 2.095 2.681 2.628 

2HWR DRD 3.201 1.737 3.008 2.232 3.806 3.077 3.209 2.558 3.073 3.071 3.131 3.046 3.251 3.161 2.676 2.37 

2I4J DRJ 3.365 3.309 2.997 4.155 3.137 1.47 3.073 2.866 2.674 2.787 2.197 2.616 2.681 3.264 2.879 3.394 

2I4P DRH 3.504 3.246 3.58 2.934 2.691 3.638 2.834 3.531 2.455 2.708 2.837 2.861 2.618 3.145 2.624 3.37 

2I4Z DRH 3.505 3.349 3.56 1.888 3.101 3.221 3.549 3.018 2.861 2.8 3.034 2.917 3.019 3.111 2.699 3.414 

2OM9 AJA 2.59 2.654 2.659 4.474 2.823 2.792 2.605 2.66 3.143 3.159 2.524 3.148 1.927 0.744 2.824 3.113 

2P4Y C03 3.157 2.86 2.344 3.16 4.049 3.081 2.741 2.344 2.75 2.557 2.914 0.765 3.252 2.825 2.958 2.983 

2POB GW4 3.267 2.888 3.145 3.177 3.127 3.462 3.127 3.232 2.045 2.943 1.33 2.965 3.344 3.332 3.098 3.042 

2PRG BRL 3.1 3.367 2.793 2.767 3.012 3.194 2.798 3.259 3.154 2.923 2.899 2.486 3.056 2.76 2.465 2.9 

2Q59 240 3.319 3.075 3.304 3.202 3.16 2.961 3.731 1.795 3.013 3.076 3.328 0.78 3.026 2.211 3.834 2.932 

2Q5P 241 2.539 2.581 2.957 3.022 3.027 3.192 3.48 2.562 3.307 0.907 3.102 1.011 2.813 2.626 1.926 2.913 
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Table 4.S1 continued. 

PDBID LigID 1FM6 1FM9 1K74 1RDT 1WM0 1ZGY 2G0G 2G0H 2HFP 2P4Y 2POB 2Q5P 2Q5S 2VSR 3DZU 4PRG 

2Q5S NZA 2.741 2.671 2.736 4.708 1.621 2.63 3.099 3.165 3.132 2.325 2.609 2.775 2.398 1.649 2.464 2.761 

2Q61 SF1 2.739 2.872 2.694 2.504 1.648 2.903 3.053 2.982 3.345 2.355 2.524 2.699 0.887 1.669 2.418 1.434 

2Q6R SF2 2.741 2.96 2.215 2.6 1.673 2.802 3.195 3.25 3.187 2.288 2.789 2.773 2.779 2.613 2.366 1.538 

2Q6S PLB 1.909 3.071 2.763 1.278 0.801 2.932 2.956 2.596 2.248 2.795 1.796 2.956 2.915 2.96 1.225 2.867 

2Q8S L92 3.613 2.759 2.79 1.567 3.735 3.209 2.819 2.962 3.035 3.017 2.76 2.355 2.518 3.099 2.683 2.444 

2VSR 9HO 3.58 3.426 3.51 3.155 2.768 2.812 2.463 2.244 3.901 2.764 3.167 2.821 2.593 2.336 2.619 3.661 

2VST 243 2.689 3.028 2.912 3.035 3.772 3.085 2.438 2.629 3.438 2.626 3.062 2.432 2.253 2.844 2.818 2.908 

2VV0 HXA 3.249 2.909 2.905 2.843 2.211 3.115 2.798 2.779 3.274 2.742 2.837 2.482 2.937 2.598 2.835 2.799 

2VV1 4HD 3.21 2.657 2.722 2.537 2.946 3.345 2.705 3.029 3.2 3.134 2.675 2.492 2.758 2.568 3.272 2.64 

2VV2 5HE 3.46 2.633 2.975 2.597 2.954 1.78 3.46 3.529 2.733 3.304 2.72 2.654 3.07 1.365 3.114 3.03 

2VV3 4R8 3.208 2.903 2.421 2.935 3.022 3.183 3.25 3.358 2.71 3.068 4.235 2.373 3.122 1.871 3.181 2.722 

2VV4 6OB 2.365 2.712 2.365 2.672 2.606 2.947 2.801 3.619 3.235 2.855 2.641 2.614 2.595 2.254 2.753 2.643 

2VV4 6OC 3.357 2.769 2.765 2.751 2.935 3.342 2.903 2.66 2.936 3.162 2.804 2.989 2.94 2.839 2.889 3.349 

2XKW P1B 2.949 3.232 3.233 3.244 3.082 2.917 3.02 3.241 2.909 3.196 3.15 2.481 2.551 2.873 2.434 3.074 

2XYJ WLM 3.033 1.935 1.818 3.036 2.733 3.017 3.011 2.527 3.057 2.791 2.023 3.014 2.731 2.976 2.857 2.964 

2XYW 08S 3.155 1.696 1.836 2.86 1.839 3.264 2.89 2.159 2.861 3.041 3.152 3.164 2.758 2.524 3.047 2.903 

2XYX Z00 3.088 2.764 2.721 2.771 2.66 3.126 2.876 3.129 3.179 2.743 3.035 2.687 3.077 2.625 3.34 2.985 

2ZK1 PTG 3.755 2.761 2.606 2.627 3.733 3.602 2.809 2.713 2.79 2.883 2.721 2.869 3.068 2.449 3.062 3.478 

2ZK2 PTG 3.677 2.678 2.71 2.712 2.397 2.939 2.566 2.593 3.108 2.866 2.449 2.572 2.344 2.478 2.934 3.499 

2ZK3 OCX 3.687 2.883 2.227 2.894 3.005 3.464 3.046 3.125 2.897 2.917 3.05 2.773 2.921 2.126 3.183 3.054 

2ZK4 OCR 2.725 2.696 2.57 2.973 2.776 2.72 2.739 2.715 3.074 2.696 3.003 2.859 2.724 2.766 2.618 2.709 

2ZK5 NRO 2.44 2.902 2.661 2.937 2.053 2.99 2.916 2.791 2.676 3.005 3.098 2.75 2.827 2.908 2.522 2.951 

2ZNO S44 3.128 2.399 3.256 1.894 4.105 1.433 3.15 2.503 2.96 2.413 1.564 2.21 2.062 1.994 3.254 2.325 

2ZVT PTG 3.539 3.376 2.987 2.171 2.413 3.642 2.823 3.465 2.629 3.053 2.832 2.86 3.048 2.329 3.132 3.423 

3ADS IMN 3.268 3.659 2.209 3.616 3.217 3.384 3.894 3.794 3.506 3.331 3.242 3.078 3.275 3.183 3.631 3.429 

3ADT HID 1.036 2.304 2.355 2.394 3.139 2.039 2.106 2.077 2.928 3.448 3.594 2.99 2.84 2.686 2.893 3.582 

3ADU MYI 1.75 1.693 3.535 2.138 3.323 1.743 1.861 3.693 2.703 3.165 3.303 3.327 3.141 1.966 3.127 3.69 

3ADV SRO 3.27 2.75 2.696 2.674 2.819 2.414 3.084 2.779 3.127 2.343 2.855 2.664 2.706 2.172 2.416 3.473 

3ADW MYI 3.664 2.191 2.303 1.647 3.36 1.869 3.58 2.225 2.748 3.071 3.512 3.012 3.195 2.31 2.994 3.73 

3ADW OCR 3.118 3.367 3.316 2.659 2.879 3.201 3.207 2.144 3.416 2.284 3.022 2.284 2.872 2.495 3.456 3.184 

3ADX IMN 3.787 3.61 0.902 1.076 3.2 3.586 3.875 3.882 3.523 3.046 3.432 3.003 3.407 3.102 3.156 3.38 

3ADX NRO 2.539 2.646 2.872 2.762 1.753 3.231 2.963 2.985 3.385 3.03 3.009 2.713 2.471 2.799 2.772 2.863 

3AN3 M7S 3.035 3.102 3.259 1.915 3.957 3.164 1.793 1.857 2.193 2.54 1.782 2.444 3.305 2.209 3.347 2.577 
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Table 4.S1 continued. 

PDBID LigID 1FM6 1FM9 1K74 1RDT 1WM0 1ZGY 2G0G 2G0H 2HFP 2P4Y 2POB 2Q5P 2Q5S 2VSR 3DZU 4PRG 

3AN4 M7R 3.192 3.048 3.274 2.63 3.858 3.142 1.885 3.206 3.141 2.666 1.826 3.15 2.751 2.341 2.432 2.641 

3B0Q MC5 2.889 3.4 1.084 2.665 2.754 3.426 2.582 3.358 3.206 2.827 2.932 2.939 3.038 3.171 2.515 2.876 

3B0R GW9 1.844 2.451 2.309 2.455 2.817 3.512 2.384 4.045 2.716 3.013 2.477 2.94 2.972 2.526 3.078 3.55 

3B1M KRC 3.229 2.906 3.607 2.447 1.767 1.488 2.822 4.751 2.36 1.829 2.621 2.952 2.179 1.614 2.871 2.123 

3B3K LRG 3.611 3.624 3.701 1.911 3.262 3.464 3.932 2.31 3.708 3.212 1.952 3.149 3.413 2.972 3.375 3.423 

3BC5 ZAA 3.399 1.475 1.069 1.645 2.995 3.175 1.973 3.198 3.303 3.185 2.945 2.833 2.985 2.797 2.913 2.972 

3CDP YRG 3.632 1.824 1.724 3.386 3.123 3.232 2.042 2.324 2.678 3.537 1.714 3.329 3.456 2.885 2.605 3.561 

3CDS GRR 3.668 1.945 1.683 1.802 3.13 3.262 2.003 3.47 2.671 3.5 1.757 3.24 3.425 2.838 3.499 3.586 

3CS8 BRL 3.475 2.735 2.167 2.792 2.39 1.344 2.615 2.917 3.132 2.86 2.817 2.993 3.164 2.877 2.952 3.064 

3CWD LNA 3.533 2.655 2.568 2.696 2.924 3.845 2.462 2.827 2.826 3.04 2.582 2.487 2.989 2.321 2.922 3.362 

3CWD LNB 3.485 2.764 2.684 2.811 2.815 3.957 2.56 2.942 2.915 3.037 2.676 2.328 3.002 2.185 3.029 3.314 

3D6D LRG 2.691 2.601 2.9 2.499 2.086 2.764 2.655 2.743 3.322 2.6 2.838 2.652 2.06 2.319 2.755 2.727 

3DZU PLB 2.741 1.306 2.725 3.132 1.111 2.961 2.514 3.194 2.235 2.795 1.804 2.972 2.921 2.994 1.095 2.885 

3DZY BRL 1.323 2.724 1.029 2.828 3.076 1.449 2.619 3.328 3.237 2.894 2.928 3.019 3.125 2.828 2.501 2.807 

3E00 GW9 3.653 2.512 2.468 2.446 2.777 3.741 2.398 2.481 2.891 2.646 2.577 2.625 2.64 2.44 2.992 3.478 

3ET0 ET0 3.894 2.202 2.272 1.703 3.291 3.31 2.331 3.774 3.182 3.456 3.322 3.46 3.15 2.611 2.979 3.641 

3ET3 ET1 3.682 2.689 1.088 2.685 2.777 2.66 1.172 1.291 2.435 3.083 2.905 2.639 3.157 2.571 3.051 2.991 

3FEJ CTM 1.201 2.712 2.685 2.643 3.031 3.008 2.648 2.667 2.855 2.912 1.781 2.398 3.11 2.394 3.145 2.601 

3FUR Z12 2.832 2.653 2.653 2.728 2.646 3.003 2.849 3.324 3.055 2.929 2.641 2.553 2.847 2.995 2.989 2.838 

3G8I RO7 3.226 3.063 2.959 2.719 3.77 3.125 2.701 3.341 2.909 3.01 2.678 3.095 3.044 2.639 2.672 2.712 

3G9E RO7 2.866 2.893 2.71 2.921 2.448 3.139 2.682 4.175 2.553 2.877 2.801 3.053 2.233 2.446 2.614 2.716 

3GBK 2PQ 3.28 3.177 2.831 3.106 3.883 3.144 2.877 3.227 3.111 3.115 3.068 2.879 3.283 3.398 2.76 2.545 

3H0A D30 2.982 2.47 2.364 2.552 2.169 2.03 3.137 3.249 3.187 2.5 3.11 2.173 3.125 1.569 2.678 1.872 

3HO0 DKD 3.476 2.684 2.71 2.733 3.147 3.57 2.654 3.102 3.722 3.478 2.779 3.32 3.439 2.817 3.67 3.244 

3HOD ZZH 3.655 2.662 1.779 1.816 3.447 3.322 2.674 3.308 2.238 3.531 1.93 3.39 3.469 3.001 3.575 3.442 

3IA6 UNT 2.798 2.824 1.69 2.829 3.015 1.545 2.976 3.51 2.9 3.026 1.514 2.308 2.466 2.651 2.73 2.878 

3K8S Z27 2.78 3.069 1.41 1.882 2.891 3.064 2.328 2.234 2.989 2.709 2.824 2.833 2.986 2.739 2.817 2.966 

3KMG 538 3.011 3.131 1.305 2.945 3.899 2.959 2.506 3.408 3.039 2.544 2.868 3.078 2.736 3.01 2.434 2.968 

3LMP CEK 2.582 2.023 3.634 2.436 3.724 2.26 1.744 4.777 1.501 1.67 2.344 2.903 1.865 1.829 3.218 2.58 

3NOA 5BC 3.373 3.273 3.054 2.081 3.826 2.254 3.269 2.899 2.782 2.684 2.978 3.517 3.311 2.466 2.465 2.465 

3OSI XDH 3.243 2.929 2.403 1.296 2.302 3.286 2.598 2.599 3.217 1.187 2.314 2.241 2.3 2.332 2.418 3.073 

3OSW XDI 3.296 2.845 1.31 2.42 1.813 3.301 2.384 2.418 1.653 1.212 2.871 2.506 4.328 2.412 2.591 2.431 

3PBA ZXG 3.388 3.085 2.564 4.341 2.563 3.393 2.53 2.138 2.63 3.752 2.774 2.55 2.497 2.571 2.628 2.607 
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Table 4.S1 continued. 

PDBID LigID 1FM6 1FM9 1K74 1RDT 1WM0 1ZGY 2G0G 2G0H 2HFP 2P4Y 2POB 2Q5P 2Q5S 2VSR 3DZU 4PRG 

3SP6 IL2 3.325 3.146 3.121 1.714 2.364 3.055 1.659 3.111 2.558 2.504 2.261 2.858 2.879 2.408 3.046 2.887 

4PRG 072 3.117 2.794 3.076 3.172 2.216 3.513 3.164 3.354 3.2 3.256 2.26 3.381 3.434 1.159 3.579 1.746 

 

PDBID LigID 2FVJ 2I4J 2I4P 2I4Z 20M9 2PRG 2Q6R 2Q6S 2VST 2VV0 2VV1 2VV2 3B3K 3CDP 3CS8 3DZY 3E00 

1FM6 BRL 2.83 3.21 3.417 2.8 3.094 2.196 3.018 2.899 2.859 2.945 2.807 2.219 3.071 3.477 2.957 3.101 3.354 

1FM9 570 2.781 3.029 3.326 3.279 2.97 3.234 3.13 3.263 3.126 3.024 3.064 2.935 3.112 3.277 3.394 3.362 3.353 

1I7I AZ2 2.358 3.042 3.071 3.064 3.405 1.48 3.117 3.571 2.31 2.173 1.569 3.017 2.398 2.478 3.08 2.818 2.925 

1K74 544 3.087 2.334 2.944 1.587 3.082 3.218 2.938 2.857 3.026 2.785 2.881 3.162 3.018 3.19 3.001 2.393 3.27 

1KNU YPA 2.304 3.212 2.499 3.174 3.05 1.523 2.746 2.487 2.432 3.043 2.888 2.956 2.719 2.779 2.966 2.208 3.128 

1NYX DRF 2.407 3.211 2.177 2.594 3.081 1.422 2.638 2.226 2.325 2.908 2.892 2.17 2.87 2.884 3.027 2.849 3.054 

1RDT 570 3.13 2.935 3.021 2.724 3.039 3.217 3.046 3.52 2.853 1.88 3.069 2.814 3.093 3.261 3.385 2.393 3.27 

1WM0 PLB 1.975 1.434 2.858 2.825 2.558 2.771 3.005 2.968 2.069 1.377 2.839 3.032 2.954 2.056 0.968 3.228 2.709 

1ZEO C01 2.959 3.373 3.581 3.445 3.533 3.009 3.082 2.966 2.829 2.904 2.912 3.485 2.825 2.947 3.4 3.477 3.34 

1ZGY BRL 2.957 3.376 3.321 2.311 3.317 2.221 2.988 2.885 2.822 2.953 2.833 2.914 2.912 3.102 3.001 3.034 3.345 

2ATH 3EA 2.765 3.066 3.082 2.684 3.307 2.174 2.98 2.582 2.592 2.662 2.749 2.876 2.733 2.65 2.512 3.053 2.97 

2F4B EHA 3.064 2.21 2.525 3.224 3.005 1.931 3.214 4.16 3.105 3.301 2.98 3.009 3.106 3.032 2.312 3.131 2.639 

2FVJ RO0 0.557 3.275 2.886 2.89 3.037 2.554 3.102 4.189 3.025 3.366 3.074 3.02 3.026 2.593 3.382 3.488 1.452 

2G0G SP0 2.754 3.324 3.349 3.337 3.655 2.788 3.224 3.257 3.166 2.753 2.755 3.395 3.546 3.155 3.132 3.286 2.349 

2G0H SP3 2.891 3.278 2.75 2.752 3.491 3.367 3.256 3.597 2.948 2.755 2.862 3.338 3.028 2.992 3.325 3.32 3.004 

2GTK 208 2.216 1.747 2.329 1.74 1.728 2.011 2.582 2.256 2.311 1.56 1.678 2.584 2.421 2.551 2.835 3.157 2.261 

2HFP NSI 3.975 3.884 3.896 3.86 3.289 3.326 3.587 3.336 3.449 4.055 3.391 3.304 3.911 3.394 3.811 3.89 3.017 

2HWQ DRY 2.88 2.268 2.605 3.146 2.476 3.295 3.238 3.039 2.847 3.24 3.183 3.167 2.959 2.766 3.368 3.139 3.239 

2HWR DRD 2.918 2.346 2.326 2.775 3.054 3.284 3.219 3.133 3.038 2.653 3.042 3.176 2.71 2.676 3.109 3.165 3.248 

2I4J DRJ 2.742 3.059 3.357 3.044 3.314 3.366 1.94 3.043 2.48 3.046 2.941 2.591 2.947 2.945 3.289 2.927 2.346 

2I4P DRH 2.729 3.072 2.825 3.021 3.218 2.526 2.903 3.012 2.326 3.028 2.051 2.873 2.882 2.999 3.296 3.561 2.553 

2I4Z DRH 2.773 3.458 3.391 3.041 3.295 2.916 2.943 3.736 2.425 3.053 2.666 2.888 2.859 2.985 3.311 2.941 2.636 

2OM9 AJA 3.177 2.363 2.643 2.769 2.492 2.83 2.498 2.739 2.888 2.796 2.6 2.618 2.866 2.574 2.684 2.542 2.812 

2P4Y C03 1.053 3.009 2.977 3.021 3.106 2.396 2.965 4.31 0.986 1.127 3.026 3.076 2.799 1.109 2.852 3.013 2.625 

2POB GW4 3.087 2.781 3.006 3.262 2.978 3.204 3.328 3.934 2.819 2.086 3.372 2.856 3.18 3.275 3.364 3.431 3.323 

2PRG BRL 2.734 3.032 3.206 3.26 3.046 1.169 2.634 2.945 2.789 2.937 3.221 3.158 2.77 2.775 2.762 3.067 2.843 

2Q59 240 1.601 2.888 3.261 2.89 3.077 2.881 3.252 2.673 0.969 0.891 2.242 2.3 1.079 3.023 3.001 3.278 1.207 

2Q5P 241 1.142 3.015 0.834 3.163 2.835 2.332 2.565 3.006 1.075 0.769 3.016 2.449 3.123 1.167 2.65 3.174 2.585 
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Table 4.S1 continued. 

PDBID LigID 2FVJ 2I4J 2I4P 2I4Z 20M9 2PRG 2Q6R 2Q6S 2VST 2VV0 2VV1 2VV2 3B3K 3CDP 3CS8 3DZY 3E00 

2Q5S NZA 2.786 1.623 1.678 2.742 2.719 2.81 2.397 2.707 2.358 2.645 1.602 2.489 2.23 2.554 2.563 2.375 2.505 

2Q61 SF1 2.747 1.664 1.675 2.706 2.2 2.84 2.4 2.659 2.649 2.217 2.163 2.222 2.304 2.626 2.59 2.757 2.481 

2Q6R SF2 2.812 1.646 1.573 2.605 2.789 2.936 2.077 1.756 2.689 2.822 2.209 2.286 2.241 2.644 2.698 2.885 2.819 

2Q6S PLB 3.063 1.523 1.815 1.844 2.125 2.957 2.948 4.133 2.174 2.948 2.967 2.985 2.202 2.073 1.01 3.12 2.699 

2Q8S L92 2.877 2.985 3.054 1.751 3.094 2.594 3.125 2.662 2.665 2.997 2.771 2.424 2.726 2.948 2.753 2.981 3.025 

2VSR 9HO 2.932 3.329 3.446 3.455 3.547 3.794 2.776 2.608 2.139 2.9 2.276 3.191 3.755 4.507 1.68 3.348 3.766 

2VST 243 2.927 2.4 2.359 3.115 2.837 2.611 2.721 2.524 2.803 2.79 2.582 3.121 2.502 3.943 3.215 2.934 3.221 

2VV0 HXA 2.743 3.041 3.233 2.947 3.09 3.151 2.714 2.211 2.756 2.196 2.923 1.738 2.757 2.461 2.245 3.021 2.852 

2VV1 4HD 2.773 3.097 3.026 3.146 3.243 3.207 3.11 2.706 3.271 2.752 2.465 2.68 2.766 3.169 2.972 2.496 2.743 

2VV2 5HE 2.673 3.179 2.87 3.122 2.991 2.004 2.989 2.708 3.054 2.426 2.733 2.941 2.589 2.737 3.108 2.907 2.514 

2VV3 4R8 2.975 2.913 2.975 3.117 2.892 2.221 2.963 3.627 3.007 2.467 3.183 2.894 2.855 2.996 2.816 3.14 2.242 

2VV4 6OB 2.853 3.165 2.982 2.967 3.031 3.445 1.386 4.017 2.84 2.881 3.625 2.121 2.764 2.667 2.82 2.582 2.763 

2VV4 6OC 2.449 3.062 3.098 3.131 3.219 2.813 2.9 2.948 3.041 3.032 2.848 2.148 3.169 3.574 2.952 2.504 2.782 

2XKW P1B 3.194 2.88 2.866 2.832 2.441 2.946 2.41 2.503 3.037 3.291 2.616 2.862 1.858 2.033 1.514 3.12 3.175 

2XYJ WLM 2.451 2.982 3.119 3.111 3.172 2.872 2.72 3.783 2.675 3.13 2.054 2.961 3.047 3.082 2.943 2.826 2.848 

2XYW 08S 2.925 2.809 3.02 1.916 3.054 3.031 2.602 2.715 2.591 2.021 2.868 2.099 3.157 3.112 3.307 2.833 2.622 

2XYX Z00 2.972 3.139 2.604 1.86 3.299 3.251 2.577 3.126 3.264 2.833 2.857 3.134 3.149 3.206 3.046 3.174 3.285 

2ZK1 PTG 2.921 3.354 3.386 3.175 3.424 2.839 2.75 2.656 3.19 2.918 2.79 2.651 3.097 3.076 3.142 3.277 2.534 

2ZK2 PTG 2.628 3.059 3.158 3.154 3.448 2.413 2.328 3.8 2.982 2.724 2.474 2.474 2.909 3.728 3.124 2.609 2.352 

2ZK3 OCX 2.925 3.154 3.113 3.495 3.405 2.126 3.114 2.903 2.822 2.328 2.853 2.867 3.057 2.532 3.058 2.376 2.557 

2ZK4 OCR 2.837 2.792 2.926 2.83 2.887 2.703 2.491 2.543 2.78 2.682 2.746 2.669 3.679 3.708 3.05 2.675 2.583 

2ZK5 NRO 2.724 2.65 2.684 2.641 2.753 2.815 3.078 2.505 2.824 2.968 2.064 2.818 2.59 2.867 1.497 2.904 3.338 

2ZNO S44 2.9 3.043 3.202 2.009 2.036 1.33 2.107 4.202 3.16 2.192 2.118 1.495 3.181 3.164 2.935 3.409 2.826 

2ZVT PTG 2.361 2.963 3.082 3.105 3.233 2.779 3.352 2.384 3.092 2.823 2.828 2.843 3.129 3.068 2.97 2.988 3.214 

3ADS IMN 2.344 3.282 3.426 3.479 3.344 3.223 3.269 3.258 3.222 3.069 3.149 2.707 3.31 3.529 3.442 3.724 3.521 

3ADT HID 3.177 3.685 2.758 3.517 3.573 1.066 2.566 3.043 3.412 2.781 3.023 2.71 2.396 3.697 2.468 2.849 2.51 

3ADU MYI 2.082 3.56 3.617 3.298 3.688 1.792 2.859 3.288 3.683 3.386 3.252 2.941 2.068 3.68 2.215 3.599 2.011 

3ADV SRO 3.062 3.471 2.662 3.92 3.426 2.204 2.297 2.912 3.925 2.804 2.399 1.858 3.037 3.176 2.539 2.692 2.818 

3ADW MYI 3.396 3.455 3.402 3.492 3.576 2.251 2.855 3.32 3.58 3.395 3.182 2.688 2.16 3.591 2.133 3.227 2.298 

3ADW OCR 2.403 3.093 3.327 3.313 2.915 3.364 2.918 2.424 2.818 2.385 2.789 2.878 3.86 4.025 2.346 2.766 2.646 

3ADX IMN 2.22 3.399 3.452 3.396 3.423 3.351 2.93 3.19 3.356 2.801 2.906 3.374 3.007 2.879 3.386 3.353 2.236 

3ADX NRO 2.772 2.847 2.282 2.716 2.719 2.731 2.036 2.591 3.043 2.96 1.983 2.739 3.053 2.597 2.749 3.048 2.959 

3AN3 M7S 3.101 3.248 3.26 2.258 2.358 2.453 2.507 3.82 2.69 1.607 2.431 3.16 3.158 3.149 2.896 3.165 3.132 
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Table 4.S1 continued. 

PDBID LigID 2FVJ 2I4J 2I4P 2I4Z 20M9 2PRG 2Q6R 2Q6S 2VST 2VV0 2VV1 2VV2 3B3K 3CDP 3CS8 3DZY 3E00 

3AN4 M7R 1.819 3.3 3.398 3.292 2.391 2.333 3.189 4.105 2.517 2.001 2.319 2.492 2.379 2.374 2.913 3.192 2.857 

3B0Q MC5 2.587 3.286 2.885 3.118 3.517 3.167 2.746 2.857 2.489 2.923 2.906 2.887 2.573 3.006 2.869 2.907 2.863 

3B0R GW9 2.062 3.447 3.454 3.544 3.404 2.953 3.132 3.016 2.942 2.879 2.242 2.489 2.961 2.94 3.145 2.47 2.544 

3B1M KRC 2.789 1.585 2.268 2.203 1.899 1.528 2.724 4.103 2.911 1.971 2.246 2.675 1.773 2.906 2.458 2.707 3.088 

3B3K LRG 2.083 3.452 3.33 3.137 3.556 3.221 3.249 3.295 3.391 3.104 3.167 3.079 3.351 3.436 3.261 3.432 1.831 

3BC5 ZAA 2.361 3.022 2.997 3.123 2.919 2.873 3.178 3.764 3.085 2.856 1.945 2.777 2.844 2.974 3.161 3.03 2.432 

3CDP YRG 2.044 3.474 3.521 3.403 3.526 3.638 3.271 3.103 3.449 3.338 3.333 2.764 2.772 3.458 2.091 3.503 1.91 

3CDS GRR 2.027 3.458 3.539 3.437 3.544 3.32 3.312 3.115 3.506 2.957 1.766 2.775 2.755 3.438 3.023 3.45 1.931 

3CS8 BRL 2.622 2.98 3.291 2.812 3.084 2.245 2.988 3.521 2.833 2.713 2.585 2.897 3.085 3.081 2.905 1.139 2.699 

3CWD LNA 2.571 3.174 3.221 3.28 3.535 2.404 2.369 2.834 3.027 2.383 2.376 2.791 3.118 3.259 2.742 3.08 3.13 

3CWD LNB 2.621 3.117 3.16 3.239 3.488 2.262 2.196 2.738 2.998 2.256 2.441 2.83 3.19 3.342 2.737 2.959 3.134 

3D6D LRG 2.555 2.723 2.776 4.287 2.869 2.95 2.723 2.015 2.759 2.496 2.608 2.551 2.526 2.708 2.775 2.55 2.976 

3DZU PLB 3.112 1.175 1.838 1.921 2.167 2.969 2.977 1.271 2.155 2.957 2.985 2.987 2.054 2.869 1.063 3.149 2.771 

3DZY BRL 2.715 2.479 2.857 3.325 3.2 2.268 2.998 2.86 2.85 2.922 2.811 2.477 2.944 3.109 2.96 3.08 3.093 

3E00 GW9 2.314 2.926 2.948 2.94 3.42 2.546 2.739 2.716 2.899 2.787 2.552 2.555 2.949 2.571 2.871 1.564 2.405 

3ET0 ET0 2.757 3.437 3.51 3.485 3.716 2.533 3.233 3.261 3.698 3.067 3.358 3.073 3.101 3.679 2.38 3.699 2.064 

3ET3 ET1 2.497 3.432 3.476 3.407 3.356 2.726 3.047 2.771 3.061 2.683 2.702 2.644 3.063 2.952 3.305 3.456 3.185 

3FEJ CTM 2.726 3.04 2.544 2.481 2.499 1.61 2.222 3.826 2.768 2.928 2.973 2.445 2.837 2.786 2.756 1.251 2.962 

3FUR Z12 2.014 2.661 2.684 2.613 2.998 2.856 2.793 2.493 2.675 1.698 2.879 2.652 2.974 2.623 3.221 3.244 2.44 

3G8I RO7 2.767 2.307 3.203 2.716 2.908 2.606 2.932 2.997 2.901 2.906 3.101 2.451 2.432 2.712 2.906 3.752 3.035 

3G9E RO7 2.665 3.14 3.198 3.117 2.821 2.746 2.62 3.702 3.04 2.994 3.106 2.4 2.558 2.527 2.916 3.066 2.976 

3GBK 2PQ 3.11 2.202 2.951 3.142 3.128 3.22 3.359 4.089 2.553 3.141 3.394 3.446 2.862 2.656 3.393 3.368 3.043 

3H0A D30 2.563 2.093 1.691 2.082 2.457 2.033 3.184 2.211 3.198 3.042 2.154 2.151 3.189 3.212 3.028 3.087 2.911 

3HO0 DKD 2.97 3.554 3.459 3.157 3.496 3.973 3.492 3.444 3.489 3.204 3.473 3.445 3.416 3.263 3.381 3.482 2.073 

3HOD ZZH 2.875 3.486 3.292 3.406 3.543 4.02 3.325 3.235 3.448 3.104 2.824 2.73 1.222 3.49 3.307 3.424 1.924 

3IA6 UNT 2.884 2.325 2.411 1.758 2.813 2.627 3.179 2.633 2.688 3.019 2.328 2.305 2.895 2.997 2.875 1.102 3.121 

3K8S Z27 3.057 2.873 2.726 1.829 1.359 2.981 2.834 3.941 2.996 2.981 2.736 2.957 2.757 3.199 2.782 3.037 2.801 

3KMG 538 2.372 1.537 2.283 2.931 1.564 2.979 2.947 3.761 2.298 1.455 2.792 3.026 2.721 2.812 3.191 3.024 2.569 

3LMP CEK 2.757 1.742 1.726 1.953 2.332 2.011 1.546 4.095 1.656 2.723 2.291 1.962 2.896 2.659 2.35 2.556 2.697 

3NOA 5BC 3.162 2.262 2.402 2.662 2.527 3.184 2.697 3.18 2.627 3.121 2.405 3.098 3.105 2.599 2.586 3.688 2.974 

3OSI XDH 1.607 2.748 2.305 4.338 1.58 2.333 1.633 1.933 2.407 1.715 1.569 3.004 2.548 2.56 1.736 2.925 2.694 

3OSW XDI 2.571 2.419 1.328 2.381 3.105 3.213 2.266 1.959 4.42 2.334 1.313 2.414 2.19 2.565 2.391 3.067 2.366 

3PBA ZXG 0.899 2.607 2.635 2.595 2.595 2.594 2.976 3.794 2.419 2.574 2.582 3.125 2.561 2.36 3.21 3.298 2.582 
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Table 4.S1 continued. 

PDBID LigID 2FVJ 2I4J 2I4P 2I4Z 20M9 2PRG 2Q6R 2Q6S 2VST 2VV0 2VV1 2VV2 3B3K 3CDP 3CS8 3DZY 3E00 

3SP6 IL2 2.573 2.447 3.009 3.103 3.324 2.198 3.053 2.352 2.798 2.498 2.499 2.485 2.968 2.907 2.325 3.261 2.56 

4PRG 072 2.554 3.245 1.018 2.649 3.323 3.293 3.145 2.372 3.442 3.301 2.703 3.314 3.16 2.264 3.238 2.839 3.208 
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Table 4.S2 Scoring table for MSUSDrugs compounds docked into the 1K74 structure model. Only the top ten results that satisfied the 

sorting criteria are shown. Toxicity was evaluated by two different programs with an “X” to indicate the compound was reported as 

toxic. Ligand pharmacophore model screening was applied to assess potential activity. The marker “+” indicates the compound 

matched the model, while “-“ indicates a non-match. “Bind Free E” refers to the free energy of binding prediction calculated by 

AutoDock Vina. Inhibition constants (Ki) were calculated based on the predicted free energy values. Interactions are listed relative to 

residues within the binding cavity that are known to interaction with the positive control rosiglitazone. Predicted interactions were 

measured with cutoffs and represented as “x” for hydrogen bond, “o” for hydrophobic, “/” for the threshold value of 4.0 Å, and “-“ 

indicates no distances within the threshold were measured. 

ZINC ID 

Compound 

name 

Tox. 

MOE 

Tox 

Alerts  

M

Y

I 

B

R

L 

Bind Free 

E (kcal/ 

mol) Ki (μM) 

CYS

.285.

CB 

HIS.

323.

NE2 

HIS.

449.

NE2 

ILE.

341.

CG2 

MET.

348. 

CE 

MET.

364. 

CE 

SER.

289.

OG 

TYR

.473.

OH 

18456279 

leucovorin 

calcium   X - + -9.4 0.129 

ooo//

oo x x/ ooo - - x /x 

06920406 methotrexate X X - + -9.3 0.152 

oooo

o x xxx / - oo / x/ 

18456289 folic acid   X - + -9.3 0.152 

oooo

oo x x// - - - x /x 

01529323 methotrexate X X - + -9 0.253 ooo/ xx x - - - x xx 

18202555 

leucovorin 

calcium   X - + -9 0.253 

o/o//

/oo x x o/o/ - - x /x 

03842753 trifluridine   X - + -8.9 0.299 o x x - - - x x 

00156820 flumequine   X - + -8.7 0.420 oooo x / - - / x /x 

03830400 

cefamandole 

nafate   X - + -8.7 0.420 oo// x/ / oo o - xx xx 

03875368 nitrofurantoin X X - + -8.4 0.696 / x x - - - x /xxx 

03927870 

fludarabine 

phosphate X X - + -8.4 0.696 o x x/ - - - xx x 
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Table 4.S3 Scoring table for MSUSDrugs compounds docked into the 2I4J structure model. Only the top ten results that satisfied the 

sorting criteria are shown. Toxicity was evaluated by two different programs with an “X” to indicate the compound was reported as 

toxic. Ligand pharmacophore model screening was applied to assess potential activity. The marker “+” indicates the compound 

matched the model, while “-“ indicates a non-match. “Bind Free E” refers to the free energy of binding prediction calculated by 

AutoDock Vina. Inhibition constants (Ki) were calculated based on the predicted free energy values. Interactions are listed relat ive to 

residues within the binding cavity that are known to interaction with the positive control rosiglitazone. Predicted interactions were 

measured with cutoffs and represented as “x” for hydrogen bond, “o” for hydrophobic, “/” for the threshold value of 4.0 Å, and “-“ 

indicates no distances within the threshold were measured. 

ZINC ID 

Compound 

name 

Tox 

MOE 

Tox 

Alerts 

9

H

O 

H

X

A 

Bind Free 

E (kcal/ 

mol) Ki (μM) 

CYS

.285.

CB 

HIS.

323.

NE2 

HIS.

449.

NE2 

ILE.

341.

CG2 

MET.

348. 

CE 

MET

.364. 

CE 

SER

.289.

OG 

TYR

.473.

OH 

03830429 cefoperazone   X - + -10.9 0.010 o /x/ x/ /oo / - /x x 

30320646 nadide X X + + -10.3 0.028 o x x / / - /xxx x 

12503222 famotidine   X - + -6.9 8.755 / x x - - - xx x 

17860482 ascorbic acid     - + -5.6 78.550 / /x xx/ - - - xx x 

01843030 allantoin   X - - -5.4 110.090 - x x - - - /x/x x 

03831134 miglitol   X - + -5.4 110.090 oo x /x - - - xx /x 

03860468 

glucosamine 

hydrochloride   X - + -5.4 110.090 - x x - - - x/ / 

03860468 

glucosamine 

hydrochloride   X - - -5.4 110.090 - x x - - - x/ / 

19364219 

ethambutol 

hydrochloride   X - - -5.4 110.090 ooo x /x/ - - - xxx/ x 

00113442 metronidazole X   - - -5.2 154.294 oo x x - - - x x 
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Table 4.S4 Scoring table for MSUSDrugs compounds docked into the 2I4Z structure model. Only the top ten results that satisfied the 

sorting criteria are shown. Toxicity was evaluated by two different programs with an “X” to indicate the compound was reported as 

toxic. Ligand pharmacophore model screening was applied to assess potential activity. The marker “+” indicates the compound 

matched the model, while “-“ indicates a non-match. “Bind Free E” refers to the free energy of binding prediction calculated by 

AutoDock Vina. Inhibition constants (Ki) were calculated based on the predicted free energy values. Interactions are listed relative to 

residues within the binding cavity that are known to interaction with the positive control rosiglitazone. Predicted interactions were 

measured with cutoffs and represented as “x” for hydrogen bond, “o” for hydrophobic, “/” for the threshold value of 4.0 Å, and “-“ 

indicates no distances within the threshold were measured. 

ZINC ID 

Compound 

name 

Tox 

MOE 

Tox 

Alerts 

S

F

2 

Z

X

G 

Bind Free 

E (kcal/ 

mol) 

Ki 

(μM) 

CYS

.285.

CB 

HIS.

323.

NE2 

HIS.

449.

NE2 

ILE.

341.

CG2 

MET.

348. 

CE 

MET.

364. 

CE 

SER.

289.

OG 

TYR

.473.

OH 

03830431 cefoperazone   X - + -10.2 0.033 o /x x o - - x/ x 

04474460 cholecalciferol     - - -9.6 0.092 oooo x x oo o o / x 

18456289 folic acid   X - + -9.5 0.109 ooo x /x o/ - /o xx / 

00538483 

trazodone 

hydrochloride   X - - -9.2 0.180 - x x - - o x x 

03978669 cholecalciferol     - - -9.2 0.180 oooo x x o - o // x 

03830398 

cefamandole 

nafate   X - - -9 0.253 /o x /x/ o - - x /x 

03830490 

cefuroxime 

axetil   X - - -8.8 0.354 /o/o x // - - o 

x/xx

x x 

00002062 salsalate   X - + -8.4 0.696 o/ x x - - - /xxx/ / 

03830487 

cefuroxime 

sodium   X - + -8.3 0.824 oo/ / x/ // - - xxx x 

05421253 sulfabenzamide X X - + -8 1.367 o/o / x - - oo xx / 
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5.1 Abstract 

Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear receptor for 

which activation is mediated by ligand binding. The molecular composition of the ligand 

dictates conformational changes that lead to activation of the protein and co-activator 

recruitment for regulation of genes. Presently, little is known about the differences in 

dynamics between the active and inactive states, and the ligand bound and unbound 

states. In this study, we used molecular dynamics simulation to sample conformations for 

apo, active, inactive, unbound, and bound systems to evaluate differences in dynamics 

among systems. Differences in loop fluctuations appeared to dictate activation in both 

ligand-dependent and ligand-independent ways. The dynamics of the helix(H)-2’-H3, 

H2-strand1, and H9-H10 loops seemed to be affected most by the activation state. The 

presence of rosiglitazone appeared to have the greatest influence on protein dynamics. 

Additionally, steered molecular dynamics techniques were used to ascertain which amino 

acid residues contribute to binding of three different ligands. The interactions necessary 

for binding of full agonists and partial agonists varied according to key molecular 

features of each ligand. This study shows that unique residues necessary for binding of 

specific compounds can be identified. Such findings would improve drug discovery 

outcomes and facilitate prediction of downstream biological effects in vivo. 
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5.2 Introduction 

Peroxisome proliferator-activated receptor-gamma (PPARγ) is one of three subtypes 

responsible for metabolic, inflammatory, vascular, and cellular processes. PPARs are 

members of the nuclear hormone receptor (NHR) family of proteins that regulate 

expression of various genes. NHRs share structural similarity with sequence variations 

that govern ligand binding, co-regulator recruitment, and dimerization. The differences in 

sequence divide the NHRs into subfamilies, but the similarities contribute to dynamics 

shared by all NHRs. Teotico et al. proposed similarities in dynamics between pregnane X 

receptor (PXR), estrogen receptor-α (ERα), and PPARγ using molecular dynamics (MD) 

simulations (208). The simulations suggested parallels in activation-function-2 (AF-2) 

domain dynamics for these receptors (208). AF-2 is the surface cleft onto which co-

regulators associate through interactions with the LXXLL motif (209). This motif is 

common to NHRs and therefore presumes the correlated motion observed in the Teotico 

et al. study would be seen with other NHRs. As ligands are important for inducing 

conformational changes that prepare the AF-2 region for co-regulator recruitment, the 

effects mediated by ligand binding are of interest. 

PPARγ was originally classified as an orphan receptor with unknown binding partners. 

The discovery that anti-diabetic thiazolidinediones (TZDs) target this protein influenced 

interest in and research of PPARγ. TZDs were classified as agonists because they activate 

rather than inhibit PPARγ and up-regulate biological processes mediated by the receptor, 

such as insulin sensitization and adipogenesis (2, 73, 210, 211). PPARγ agonism can be 

divided into four types: full, partial, dual, and pan. Full and partial agonists tend to be 

subtype-specific, while dual agonists bind to two PPAR subtypes, and pan agonists bind 

to all three. Dual and pan agonists can be of the full or partial activation class. The 

agonism type alters specificity for co-regulators, and subsequent recognition of certain 

PPAR response elements (PPREs) (211, 212) (Figure 5.1). Tissue type and the cell 

proteome also dictate specificity. PPARγ is predominantly expressed in adipose tissue 

(2). Full agonism in fat can turn on adipocyte differentiation, improve insulin sensitivity, 

and turn off inflammatory processes, whereas partial agonism might lead to expression of 

only insulin sensitizing genes. Additionally, studies have shown that different compounds 

that fall within the same activity class can regulate different sets of genes (212). 
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Figure 5.1 KEGG pathway for PPARs (213, 214). 

Over 100 crystal structures of PPARγ, usually in complex with a ligand, have been 

deposited in the RCSB Protein Data Bank (PDB) (59, 60). These static structures provide 

a wealth of knowledge regarding the interactions between ligands and PPARγ, but the 

dynamic differences that occur upon ligand binding are less clear. The literature suggests 

the active position of H12 is more stable than the inactive position (41, 52, 208, 215). 

However, PPARγ can oscillate between inactive and active conformations without a 

bound ligand. The binding of a ligand shifts conformational preference to the active state 

(41, 52, 208, 215). Full agonists can bind in H3-independent, H12-dependent manner 

while partial agonists bind in a H3-dependent, H12-independent mechanism. Each of 

these governs interactions with residues within the binding cavity to drive conformational 

changes. 

Specific residues are involved in ligand-dependent and ligand-independent stabilization 

of tertiary structure (Figure 5.2). Residues Arg397, Arg443, Glu324, and Tyr477 are 

involved in ligand-independent stabilization of the AF-2 domain, which is composed of 

H12 and regions of H3, H3’, and H4 (182). Residues Ser289, His323, His449, and 

Tyr473 are responsible for ligand-dependent stabilization of primarily H12, which 

directly influences the state of the AF-2 region (182). This is how differences in agonism 
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influence conformational variation of the AF-2 region and subsequence co-regulator 

recruitment. 

 

Figure 5.2 A 3D representation of the key residues responsible for ligand-independent and ligand-

dependent stabilization of the AF-2 region. Rosiglitazone is shown in surface and stick representation 

within the binding cavity. Ligand-independent residues are colored magenta. Ligand-dependent residues 

are colored cyan. H12 is colored green. 

The combination of interactions that translate to AF-2 resurfacing can vary per agonism 

type, and even per ligand within an agonism type. Crystal structures provide some insight 

as to which interactions contribute to each activity type, but the large number of 

interactions recovered from crystal structure data and differences between those lists is 

problematic when attempting to distinguish between activity type. Further, differences in 

interaction information for the same ligand in multiple crystal structures suggests a 

shorter list of interactions are required for binding, while other interactions may be more 

a result of the binding event. For example, five rosiglitazone-containing structures each 

possess slightly different lists of interactions (45, 52, 56, 70, 81). A comparison of those 

lists narrows the list of common residues with which interactions may be necessary for 

binding to eight (Ile281, Gly284, Ser289, His323, Ile326, Ile341, His449, and Tyr473), 

but which are actually required for ligand binding and which are a consequence of 

binding is not clear. 

The goal of this study was to apply MD simulation to examine the dynamics of apo, 

bound, unbound, active, and inactive PPARγ structures to ascertain differences between 

these states. This information, in conjunction with static structures of PPARγ in complex 

with ligands from experimental and computational studies, would indicate which regions 

of the protein are most influenced by the presence of a ligand in the binding cavity and 

the activation state of the protein. Given the similarity in tertiary structure between 

NHRs, this knowledge could contribute to agonist discovery for other orphan receptors. 

An additional goal was to ascertain key residues necessary for binding of different ligand 

types. Crystal structures provide some indication of the differences in interactions 

necessary for binding, but the specifics of which interactions are pivotal to each agonism 

type are less clear. Such knowledge would aid in classifying the activity of compounds 

that bind to PPARγ, thereby contributing to the drug development process and 

identification of novel therapeutics. 
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5.3 Methods 

5.3.1 Structure preparation for molecular dynamics simulations 

Two crystal structures from the RCSB PDB website (59, 60) were used for the 

simulations: 1PRG and 2PRG (52). The 1PRG structure is an apo, homodimer of the 

ligand-binding domain (LBD) of PPARγ, while 2PRG is a rosiglitazone-bound 

homodimer of the LBD complexed with a short peptide segment of steroid receptor 

coactivator-1 (SRC-1). As part of transcriptional regulation, PPARγ heterdimerizes with 

retinoid X receptor-alpha (RXRα) (216). Therefore, the homodimer complex in the 

crystal structure is believed to be an artifact that arises from conservation of the 

dimerization interface for NHRs and exclusion of the RXRα protein from the 

crystallization process (216). Rosiglitazone is a known PPARγ agonist in the TZD 

compound group that has been used in many studies as a positive control (199, 211). 

Coordinates for crystal waters and the SRC-1 peptide were removed from the coordinate 

files. Simulations were done using a single subunit from the homodimers (Figure 5.3). 

Because 1PRG contains one subunit in the active conformation (chain A) and one subunit 

in the inactive conformation (chain B), based on the position of H12, each subunit was 

used in separate simulations for the apo-active (AA) and apo-inactive (AI) states. The 

2PRG file contains two ligand-bound subunits, but chain B was missing atoms and hence 

excluded. The remaining chain from 2PRG (chain A) was used to represent the bound-

active (BA) state, and removal of the ligand coordinates was used to create the unbound-

active (UA) state. A bound-inactive (BI) state also was established by superimposing the 

AI and BA chains, and inserting the ligand coordinates for rosiglitazone from the BA 

chain into the AI chain. The placement of rosiglitazone within the binding cavity of the 

inactive form did not result in any unfavorable overlap of atoms. All of the above 

preparation steps were performed with UCSF Chimera (141). 

 

Figure 5.3 Ribbon representations of the five states for MD simulations. The apo structures, derived from 

structure 1PRG, did not have a ligand within the binding site of the crystal structure. The ligand in the 

bound systems (2PRG) was rosiglitazone, which is shown as sticks and an atom-colored surface. Helix 12 

is shown in green for all structures to illustrate the placement of the helix in the active and inactive states. 

The unbound active (UA) structure is the same as the bound active (BA) structure but with the ligand 

removed The area for the ligand is shown as a dot surface to indicate the ligand was removed from that 

position. Atom colors: carbon = gray, oxygen = red, nitrogen = blue, sulfur = yellow. 
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5.3.2 System equilibration 

Simulations of the five systems were performed using GROMACS v4.5.4 (217) for 

system set-up and analysis. Each system was prepared in the same way, and three 

replicates were run for each system. A replicate was an independent simulation with a 

unique, randomly generated seed value for setting initial velocities. The protein or 

protein-ligand complexes were placed in a dodecahedral box filled with TIP3P water 

(24). A 1.0-nm distance was set between the solute and box edges to avoid periodic 

boundary artifacts. The AMBER03 force field (218, 219) was used to establish topologies 

for all the systems. Rosiglitazone parameters were built with Antechamber (220, 221). 

Five sodium ions were randomly substituted for water molecules within the box to 

balance the net charge of -5.0 e- on the protein which established a net-neutral system. 

Table 5.1 lists the system size for each test system. 

Table 5.1 Systems established for MD simulations. Each system was assigned a two-

letter abbreviation as defined in Figure 5.3, and each replicate was given a number (1 

through 3). All systems contained five sodium ions that contributed to the total number of 

atoms. 

Model System 
Number 
atoms 

Simulation IDs Waters 
Total number 

of atoms 

AA Apo active 4,401 AA1, AA1, AA3 48,513 52,919 

AI Apo inactive 4,401 AI1, AI3, AI3 49,137 53,543 

UA Unbound active 4,422 UA1, UA2, UA3 39,123 43,550 

BA Bound active 4,466 BA1, BA3, BA3 39,072 43,543 

BI Bound inactive 4,445 BI1, BI2, BI3 47,376 51,826 

Steepest descent energy minimization was performed using a step size of 0.01 nanometer 

(nm) with a maximum force cutoff of 10.0 kJ/mol/nm. The systems were then 

equilibrated in two phases during which the energy minimized systems were adjusted to 

biologically relevant conditions. To accomplish this, an isochoric-isothermal (NVT) 

ensemble was performed for 50,000 steps, followed by the isothermal-isobaric (NPT) 

ensemble for an additional 50,000 steps. In both ensembles, the time-step was set to 2 fs 

and the positions of the heavy atoms were restrained. Temperature for each system was 

increased to 300 K and regulated with velocity rescaling to dampen any significant 

temperature changes over the course of the simulation (222). The Parrinello-Rahman 

barostat was used to regulate pressure fluctuations (223, 224). The average pressure for 

the systems was 1 bar. Short-range cutoffs for neighbor searching atoms, the Particle-

mesh Ewald (PME) summation cutoff for Coulombic interactions (225), and Lennard-

Jones interactions were set to 1.0 nm. 

5.3.3 Production simulation and analysis 

After equilibration, unrestrained simulations were carried out for 100 ns per simulation. 

Root-mean-square deviation (RMSD) was calculated for each trajectory and the resulting 

curve was used as a qualitative evaluation of convergence. The 100 ns simulation time 

was deemed sufficient based on block averaging where the RMSD was averaged for 

successive windows of 10 ns  from the end of the trajectory (i.e. last 10 ns, last 20 ns, last 

30 ns, etc.). The resulting standard deviations were compared for all the blocks. Values 

less than two standard deviations (0.02 nm) for the last 50 ns were considered indicative 



 

115 

 

of convergence, and thus the last 50 ns of each trajectory was used for analyses. The 

Grace software package was used to generate 2D line art for the RMSD and RMSF data 

(226). 

Analyses included root-mean-square fluctuation (RMSF) assessment and RMSD 

clustering. The cutoff for RMSD clustering was set to 0.2, 0.15, and 0.1 nm. Only 

clustering with the 0.1 nm cutoff resulted in more than one or two clusters of 

conformations. Conformations were clustered based on a neighbor searching method in 

which a cluster was established for a single conformation and all the conformations that 

satisfied the cutoff value were placed into that cluster. The remaining conformations were 

clustered similarly until all conformations were included in a cluster. The center, or 

median, conformation is the one with the most neighbors. The median conformation of 

the first cluster was used for analysis.  

Distances between pairs of atoms over the course of the MD simulations also were 

analyzed as a way to compare conformational differences among states. A distance cutoff 

of 1.0 nm was assigned for assessing contacts between atom pairs. 

5.3.4 Principal components analysis 

Atomic coordinates for 10,001 frames of each replicate were used to construct a 

covariance matrix. This matrix was used to calculate eigenvalues and eigenvectors, which 

correspond to the major magnitudes and directions of motion, respectively. The matrix 

allowed evaluation of correlated and anti-correlated motions that persisted during the 

trajectory. Additionally, eigenvalues indicated the percentage of motion detected by each 

component, while projections of the eigenvectors onto the trajectories illustrated the 

predominant motions for a given simulation. The first and second principal component 

projections of each simulation represented the major motions and were plotted against 

each other to identify clustering of sampled conformations. 

5.3.5 Steered molecular dynamics 

Steered molecular dynamics (SMD) is a computational method akin to atomic force 

microscopy in that forces are measured as one entity is separated from another under the 

influence of an external biasing force. In this case, forces were applied to the ligand to 

pull it from the binding cavity (227, 228). Force curves facilitate the identification of 

interactions that must be overcome in order for the ligand to exit the cavity. These 

interactions indicate which residues are potentially necessary for the binding process and 

stabilize the PPARγ-ligand complex in the active form. The assumption is made that 

pulling the ligand from the binding cavity should indicate the path of, and interactions 

necessary for, ligand binding (227). Three PDB structures were used for SMD: 2PRG 

(PPARγ-BRL; PB), 2I4J (54) (PPARγ-R-enantiomer; PR), and 2I4P (54) (PPARγ-S-

enantiomer; PS) (Table 5.2 and Figure 5.4). As previously mentioned, 2PRG is a PPARγ-

rosiglitazone complex, while 2I4J and 2I4P are complexes containing ligands that are 

stereoisomers. The 2I4J structure contains (2R)-2-[4-[2-(1,3-benzoxazol-2-yl-heptyl-

amino)ethyl]phenoxy]-2-methyl-butanoic acid (R-enantiomer), which acts as a full 

agonist. The 2I4P structure contains (2S)-2-[4-[2-(1,3-benzoxazol-2-yl-heptyl-

amino)ethyl]phenoxy]-2-methyl-butanoic acid (S-enantiomer), which acts as a partial 

agonist. 
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Figure 5.4 Ribbon representations of the SMD systems. Ligands within the 3D structure are shown in stick 

and surface representation. Each ligand is represented in 2D under each 3D structure. Atom colors: carbon 

= gray, oxygen = red, nitrogen = blue, sulfur = yellow.  

SMD was performed with GROMACS v4.0.7 (26). Complexes were inserted in a 

12x12x15 nm rectangular box, which are considerably larger than those for the 

unrestrained simulations. These larger boxes allowed the ligand to exit the binding cavity 

without crossing a periodic boundary during pulling. A dummy atom of zero mass was 

attached by a virtual spring to the center of mass (COM) of the solvent-exposed portion 

of the ligand for pulling at a constant velocity. Only the solvent-exposed portion of the 

ligand was used because pulling from the COM of the whole ligand resulted in 

destabilization of the PPARγ structure. A pull vector was established for each complex 

that was positioned such that the ligand exited the cavity through an opening that was 

surrounded by H3, H5, the H2’-H3 loop and the s1-s2-s3 β-sheet (Figure 5.5). The spring 

constant was set to 1000 kJ/mol·nm2, and the pull rate was set to 0.008 nm per second. 

These values were determined after several tests of different pull rates to find the ideal 

rate for the simulations without significant distortion of tertiary structure. Pulling 

simulations were run for 375,000 steps with a 2 fs time step to yield 750 ps of simulation 

time. This time frame was sufficient for the ligands to exit the binding cavity and be 

pulled far enough from the protein to ensure the force calculations dropped to near zero at 

the end of each simulation. The pulling was performed three times for each system. 

Temperature was set to 310 K and the Nose-Hoover thermostat was used to regulate 

temperature. The Parrinello-Rahman barostat was used to regulate pressure around 1 bar. 

Short-range cutoffs were set to 1.4 nm for the neighbor list, Coulomb, and van der Waals 

terms to account for residue rearrangement as the ligand was pulled from the cavity. 
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Table 5.2 Systems established for SMD simulations. Each system was assigned a two-

letter abbreviation as defined in Figure 5.4, and each replicate was given a number (1 

through 3). All systems included five sodium ions. 

Model System 
Number 
atoms 

Simulation IDs Waters 
Total number 

of atoms 

PB PPARγ-rosiglitazone 4,466 PB1, PB2, PB3 209,631 214,102 

PR PPARγ-R-enantiomer 4,469 PR1, PR2, PR3 209,760 214,234 

PS PPARγ-S-enantiomer 4,469 PS1, PS2, PS3 209,646 214,120 

 

 

Figure 5.5 Illustration of the origin of pulling for SMD simulations. The areas of the PPARγ structure 

through which each ligand was pulled are shown in orange. Panel B, which is rotated approximately 90 

degrees, contains an arrow and spring that loosely illustrates the direction of pulling for the ligands. 

Distances between atoms of the ligand and residues within the binding cavity were 

measured over the course of the pulling trajectory. Residues within 1.0 nm of the ligand 

as it exited the cavity were catalogued. Electrostatic and van der Waals energies between 

the ligand and the catalogued residues were calculated and averaged over the simulation 

time. Only the first twenty most negative energy values were considered for analysis. 

5.4 Results 

5.4.1 RMSD analysis: System stabilization 

The RMSD analysis for all three replicates of each system indicated that the systems had 

converged within the criterion set for these simulations (Figure 5.6). That is, differences 

in block averages over the last 50 ns of each simulation fell within two standard 

deviations. Based on these results, the last 50 ns of each simulation was used for further 

analyses.  
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Figure 5.6 RMSD plots over 100 ns for three replicates of each system. Running averages were calculated 

with a block length of 1000 points. The panels indicate RMSD for the (A) AA, (B) UA, (C) BA, (D) AI, 

and (E) BI systems. 

5.4.2 RMSD analysis: Conformation clustering 

Clustering of conformations from the last 50 ns of each simulation indicated minimal 

variation in the dynamics of individual replicates. The cutoff of 0.2 nm for distinct 

clusters produced one or two clusters for all replicates. A more stringent cutoff of 0.1 nm 

produced more clusters, and the first five clusters in most instances captured a large 

proportion of the sampled conformations (Table 5.3). The median conformation for the 

first cluster was taken as the representative coordinate set for each replicate. These 

frames were compared to identify structural differences among the systems. 

Table 5.3 RMSD clustering using a cutoff of 0.1 nm. Percentages for the top five clusters 

only are shown. The final row yields the total percentage of conformations contained in 

the top five clusters. 

 AA AI UA BA BI 

 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

1 24.0 33.3 31.9 21.9 20.8 17.5 60.0 53.7 49.8 50.0 24.8 41.6 34.7 22.7 45.2 

2 20.0 16.3 15.5 16.5 17.0 12.5 11.6 11.9 26.1 16.7 15.2 30.0 13.6 17.0 22.4 

3 8.7 14.9 11.5 13.3 11.5 10.3 9.1 8.3 13.9 12.1 11.9 16.4 9.8 13.6 8.3 

4 7.5 12.0 8.5 2.9 6.1 8.9 6.5 7.6 2.9 6.6 9.1 4.4 8.6 10.4 5.9 

5 7.0 5.1 4.9 2.7 6.0 4.0 3.0 4.8 2.6 3.4 6.9 2.4 6.2 6.0 4.0 

T 67.2 81.6 72.3 57.3 61.4 53.2 90.2 86.3 95.3 88.8 67.9 94.8 72.9 69.7 85.8 
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Figure 5.7 Representative structures for each system taken from RMSD cluster one. The structures are the 

median member of the first cluster for the representative replicate. The active and inactive systems are 

compared separately. (a) Systems AA1 (gray), UA1 (green), and BA2 (coral) are superimposed. (b) 

Systems AI1 (blue) and BI1 (magenta) are superimposed. The H2’-H3 loop is highlighted in a darker 

version of the previously mentioned colors. 

The representative structures from the first cluster for the UA and BA replicates were 

similar in conformation, which is indicated by RMSD values less than 0.2 nm between 

most structure pairs (Table 5.4). The UA systems appeared to predominately sample 

conformations similar to the BA systems given the small RMSD values. This was 

anticipated given the starting conformations for each set were the same with the 

exception of the presence or absence of the rosiglitazone. Visual inspection of the protein 

backbones for the first cluster representatives agreed with this (Figure 5.7A). The only 

noticeable difference between the UA and BA sets was the position of the H2’-H3 loop. 

This difference was most likely the result of the presence of the ligand in the BA set. 

Though an RMSD could not be reliably calculated between the AA set and the UA and 

BA sets due to the difference in the number of atoms, the cluster one structures were 

visually similar. An estimate of RMSD based on superposition of one structure over 

another suggested that the deviations from the AA representative structure to the UA and 

BA representative structures were both 0.11 nm. The only noticeable differences were in 

the H2’-H3 and H2-s1 loops. 

Table 5.4 RMSD values in nanometers (nm) for the center conformation of cluster one 

for each 2PRG-derived system. Only systems with the same number of atoms were 

compared. 

  UA1 UA2 UA3 BA1 BA2 

UA2 0.149         

UA3 0.174 0.171       

BA1 0.174 0.159 0.182     

BA2 0.180 0.162 0.203 0.153   

BA3 0.196 0.189 0.218 0.207 0.193 

The cluster one structures for the AA set of simulations were similar to each other, but 

distinct from the AI and BI sets according to the larger RMSD values (Table 5.5). The 

most noticeable difference between the AA replicates and the other two is the location of 
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H12, which is in the inactive position for AI and BI (Figure 5.7B). Despite the addition of 

the rosiglitazone in set BI, H12 did not adopt the active position. This was most likely a 

result of the length of the simulation time.  Noticeable differences in the location of H12 

relative to H3 were observed for the AI and BI systems. The position of H12 was more 

consistent for the BI systems than for the AI set. It is understood that significant 

conformational rearrangement would be necessary for H12 to shift into the active 

position upon ligand binding. It stands to reason that the presence of rosiglitazone caused 

the difference in the position of H12 relative to H3 for the two sets. Next, the backbone 

fluctuations for each replicate were evaluated to determine specific regions of variations 

in protein dynamics. 

Table 5.5 RMSD values in nanometers (nm) for the middle member of cluster one for 

each 1PRG-derived system. Only systems with the same number of atoms were 

compared. 

  AA1 AA2 AA3 AI1 AI2 AI3 BI1 BI2 

AA2 0.190               

AA3 0.271 0.243             

AI1 0.269 0.267 0.301           

AI2 0.332 0.304 0.350 0.313         

AI3 0.305 0.272 0.245 0.256 0.297       

BI1 0.394 0.361 0.337 0.286 0.282 0.294     

BI2 0.429 0.399 0.444 0.389 0.268 0.366 0.292   

BI3 0.373 0.360 0.315 0.275 0.321 0.268 0.254 0.365 

5.4.3 Loop regions showed noticeable fluctuations from initial conformations 

Fluctuations in backbone atom positions over time revealed five regions where the 

structure deviated the most from the initial conformation in all the systems (Figure 5.8). 

These regions appeared in the H2-s1, H2’-H3, H8-H9, H9-H10, and H11-H12 loops, with 

some fluctuations occurring in H12. H12 showed less fluctuation in the simulations of the 

active systems than in those of the inactive systems. The H8-H9 peak was consistently 

low in the simulations of the active orientation, but appeared to be higher in the 

simulations of the inactive forms. The H8-H9 and H9-H10 loops showed opposing peaks 

for a portion of the simulations. If the H8-H9 loop showed a peak, then the H9-H10 

region did not and vice versa. These two loops are positioned on opposite sides of the 

protein, and the observed fluctuations may be indicative of larger domain motions 

occurring on one side of the protein that influence fluctuations on the other side. The 

H2’-H3 and H9-H10 loops showed the highest degree of fluctuations in the most 

replicates. Though the H2’-H3 and H9-H10 loops lay at distal portions of the protein, it is 

possible that the motions of one region influenced the other as motion translates across 

the sandwiched helices. The H2-s1 loop showed fluctuations in all systems, but these 

fluctuations were less pronounced in the simulations of the active forms. This loop 

moved definitively less in the BA systems compared to the others. Overall, the state, 

either active or inactive, appeared to influence loop dynamics, but no ligand-based 

distinction could be made. 

The minor dynamics inconsistencies for the loops in the replicates warranted further 
evaluation of the conformations sampled. It appeared that there may be some interplay in 
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loop dynamics, but how the combination of activation and bound states influenced these 

dynamics could not be determined. The nature of molecular dynamics presents a large 

amount of data, which can prove difficult to assess when trying to pull out subtle 

differences between the motions of key regions. Principal components analysis was the 

next step as it is a means by which the major motions for each replicate could be isolated 

and compared to aid in identifying system-dependent dynamic differences. 

 
Figure 5.8 Backbone RMSF for three replicates of each system. Panels show RMSF for the (A) AA, (B) 

UA, (C) BA, (D) AI, and (E) BI systems. A 3D representation of the PPARγ structures is shown in panel F 

as a reference for the RMSF peaks. Peaks on one RMSF curve are numbered to show where highlighted 

regions of the protein are located for all the curves. 

5.4.4 Principal components analysis 

Principal components analysis was performed to examine global motion of PPARγ. The 

majority of the observed motions laid within the first and second principal components 

for each simulation (Table 5.6). Distinct clustering of the motions was observed for each 

system when the conformations sampled for the first two principal components were 

plotted against each other (Figure 5.9). At least two predominant clusters were identified 

for each system. Clusters were areas of several red pixels clustered together. 

Conformational sampling of all activation and bound states were seen for the various 

regions of the protein, but some systems indicated shifts toward sampling of specific 

states. The UA simulations showed conformations that shifted toward the bound state 

(Figure 5.9B), while the BA simulations showed conformations that shifted toward the 

active state (Figure 5.9C). The AI simulations indicated heavy sampling of the inactive 

state with a cluster of conformations occurring in the bound-active quadrant. The 

presence of the ligand in the BI simulations shifted the conformational sampling toward 

the unbound-active quadrant with less conformational sampling in the bound-inactive 

quadrant. What remained to be seen was which regions of the PPARγ structure 

contributed to favoring of one conformation versus another. This required an assessment 

of correlated and anti-correlated motion between different regions of the protein. 
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Table 5.6 Percentage of motion possessed by each of the top five eigenvalues for the last 

50 ns of each trajectory. The index value in the first column refers to the component of 

motion. The final row is the total percent of motion for the five components of each 

replicate. 

  

AA

1 

AA

2 

AA

3 

UA

1 

UA

2 

UA

3 

BA

1 

BA

2 

BA

3 AI1 AI2 AI3 BI1 BI2 BI3 

1 15.0 26.2 30.6 18.7 17.0 17.8 16.4 20.1 29.0 25.3 28.8 22.4 19.4 23.5 18.4 

2 12.4 11.0 11.9 10.4 9.1 14.9 7.6 14.1 8.4 11.2 12.9 15.2 10.1 11.9 9.0 

3 8.1 7.0 7.2 8.4 6.9 5.3 6.8 9.4 6.6 6.2 5.8 5.9 8.3 8.1 8.8 

4 5.6 4.4 5.1 6.9 4.5 4.9 5.8 5.6 4.0 5.6 4.3 5.2 4.7 3.7 4.9 

5 4.8 4.1 3.8 3.6 3.8 3.9 4.7 3.6 3.4 3.7 3.3 4.0 3.9 3.6 4.4 

  46.0 52.6 58.6 48.1 41.2 46.8 41.4 52.8 51.4 51.9 55.0 52.7 46.5 50.9 45.4 

 

 
Figure 5.9 Clustering of conformations within the first two principal components for each system. Graphs 

reflect all the recorded conformations sampled for the last 50 ns of three replicates. Frequency with which 

each conformation occurred is shown with the heat map scale where red is most frequent and blue is least 

frequent. Transparent white lines indicate the origin axes and establish quadrants for conformational 

sampling relative to activation and bound states. The top half of each graph corresponds to inactive motion, 

while the bottom half corresponds to active motion. The left half indicates unbound states, while the right 

half indicates bound states. Panels: (A) AA, (B) UA, (C) BA, (D) AI, and (E) BI systems.  

An examination of the structure showed that H3 sits at the middle of the binding cavity 

and extends the length of the protein.  Given the location of this region, all other portions 

of the protein should have some motion relative to it. Therefore, all regions of PPARγ 

were examined for motions relative to H3 (Figure 5.10). Here, only representative 

simulations are presented for ease of explanation. The major dynamics for all replicates 

of a given system were similar. The H2’-H3 loop (residues Lys265 to Glu276) exhibited 

correlated motion for the N-terminal half of H3 and anti-correlated motion for the rest in 
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the AA1 and BA2 system, but all correlated motion in the AI1 system (Figure 5.10, green 

rectangle). A shift from more correlated motion to more anti-correlated motion can be 

seen when the AI and BI segments were compared. The same could be seen from the 

UA1 state to the BA2 state. The area from s3 to the middle of H7 showed mostly 

independent motion, but appeared to move contrary to H3 in the AA1 system (Figure 

5.10, purple rectangle). H11 showed an anti-correlated trend in motion with H3, but this 

motion was not as pronounced in the AI1 replicate. Overall, the AA1 and BA1 replicates 

showed more anti-correlated motion in the highlighted regions compared to the other 

systems. This data suggested that the H2’-H3 loop dynamics relative to H3 were 

dependent on the activation state and presence of a ligand. This loop moved with H3 in 

the AI system, but in a different direction relative to or independent of H3 in the other 

systems. Additionally, movement of H11 relative to H3 was anti-correlated in the active 

forms and mostly independent of H3 in the simulations of the inactive systems. Thus, it 

would appear H11 dynamics were more dependent on activation state than the presence 

of a ligand. 

There are other regions that show greater correlated motion with H3. These include parts 

of H4 and H12. These segments make up the AF-2 domain that is the location for co-

activator association. The movement of the regions around the binding cavity relative to 

H3 suggested conformational rearrangement given the activation state and presence of 

rosiglitazone. The presence of rosiglitazone influenced movement of the regions around 

the binding cavity either away from or against the motions of H3. Rosiglitazone is known 

to interact more with H12 than H3, and the simulations indicate that this interaction may 

be H3-independent. The portions of PPARγ away from the binding cavity show more 

correlated motion with H3, which may suggest concerted conformational rearrangement 

in this region to facilitate co-activator recruitment. Principal components analysis 

provided a global perspective of the major motions present in each system, but the 

existence of specific residue-residue interactions that govern activation was unclear. An 

analysis of contacts between residues that would designate interactions was needed. 

 
Figure 5.10 Segments of covariance graphs that correspond to H3 (plotted on Y-axis and shown in red and 

orange in panel F) relative to the rest of the PPARγ structure (X-axis). The rectangles indicate areas on the 

plots showing differences in correlated (red) and anti-correlated (blue) motion. The colors for the rectangles 

correspond to the colored regions in panel F: green = H2’-H3 loop (atoms 175-210), orange = H3 (atoms 

211-288), purple = s3 to the middle of H7 (atoms 415-486), and blue = H11 (atoms 709-747). Graphs 

indicate motion for each atom of the backbone. The systems represented by each panels are (a) AA1, (b) 

AI1, (c) UA1, (d) BA2, and (e) BI1. 
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5.4.5 Presence of interactions over time 

Crystal structure data indicate there are sets of interactions that should persist in the 

absence of ligand (ligand-independent) and interactions that should occur and persist in 

the presence of a ligand (ligand-dependent). It was hypothesized that combinations of 

these interactions should occur in the systems, and that the presence of certain 

interactions would be dictated by the activation state and presence of rosiglitazone. 

Ligand-independent interactions were present for all systems (Figure 5.11). In most cases 

interactions between Glu324 and Arg397 and between Glu324 and Arg443 persisted with 

minimal decrease in contacts over the course of the simulations. Less prominent ligand-

independent interactions, such as Arg397-Arg443 and Glu324-Arg443, dropped off over 

time. The ligand-dependent interactions dropped off quickly for the AI systems (Figure 

5.11B), with some persistence over time for the AA (Figure 5.11A) and UA systems 

(Figure 5.11C). Specifically, the H323-Y473 contacts were maintained over time for the 

AA and UA sets. This interaction appears to be dependent more on the activation state 

than the presence of a ligand. 

The inclusion of rosiglitazone made a noticeable difference in the interactions present 

over the course of the simulations (Figures 5.11D and 5.11E). In both of the ligand-bound 

systems, additional ligand-dependent contacts were present and were maintained over the 

course of the trajectory. An assessment of interactions with rosiglitazone was included, 

which showed interactions between the ligand and key residues of the binding cavity. 

Thus, the simulations appropriately sampled ligand-bound conformations. Though H12 is 

in the inactive conformation for the BI set of simulations, ligand-dependent interactions 

did occur. It was previously mentioned that H12 moved away from the binding cavity in 

the BI trajectories, which is why an interaction between rosiglitazone and Tyr473 was not 

observed as it was in the BA simulations. It is also important to note that the overall 

number of contacts for the BI set was lower than those for the BA set. It is possible that 

there is an additional condition necessary for the ligand-dependent interactions to persist 

with stronger interactions in the BI simulations and for H12 to adopt the active position.  

Overall, the most contacts that were consistent over the course of the simulation were 

seen in the BA set. This suggested the ligand-bound, active conformation possessed the 

most interactions that would contribute to stability of the active complex. The BI 

simulation followed next, suggesting the presence of the ligand contributed in some way 

to the stability of the protein despite the inactive conformation for H12. The ligand-

dependent contacts did drop off over time, which indicated the position of H12, and thus 

the active conformation, is necessary to maintain the stability imparted by the ligand. The 

presence of some ligand-dependent interactions in the apo and unbound systems 

suggested that the structures were able to adopt some aspects of the active conformation 

without the ligand, which agrees with literature that suggests PPARγ can transition 

between the active and inactive states independent of a ligand (39, 43, 52). 
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Figure 5.11 Number of contacts within 1 nm of each pair of residues listed. Dotted lines indicate ligand-

independent residue pairs, while solid lines indicate ligand-dependent residue pairs. Panels show the 

number of contacts for the (A) AA1, (B) AI1, (C) UA1, (D) BA2, and (E) BI1 replicates.  

5.4.6 Steered MD: Changes in force indicated differences in interactions 

The MD analysis indicated that the dynamics of the loop regions were dependent to some 

extent on the activation state and the presence of a ligand. An assessment of surface 

dynamics provided hints to areas where protein-ligand interactions governed ligand 

binding, but a more detailed list of residues specific to binding was necessary to improve 

the ability to predict agonism. The pulling simulations provided a comparison of binding 

for three compounds that exhibit differences in activity due to differences in ligand 

molecular structure. 

An examination of the force curves for the three pulling simulations for each system 

suggested differences in binding strength between the agonists (Figure 5.12). The force 

curves for rosiglitazone showed peaks that reached just over 500 kJ/mol/nm with 

definitive changes in force over time that suggested release of strong interactions (Figure 

5.12A). Both enantiomer systems possessed force curves with broad major force peaks 

and valleys (Figure 5.12B and 5.12C).  The presence and release of strong, ligand-

dependent interactions was less clear in terms of the enantiomers and warranted a 

detailed residue-by-residue analysis of the energies that result from release of key binding 

interactions. 
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Figure 5.12 Calculated forces over time for (A) rosiglitazone, (B) R-enantiomer, and (C) S-enantiomer as 

each was pulled from the binding cavity of respective PPARγ structures. 

5.4.7 Persistent forces indicated key residues for ligand binding 

The force curves indicated approximate time points for examining binding interactions. 

The average energy values for electrostatic and van der Waals terms over time indicated 

which residues interacted most strongly with each ligand (Figure 5.13). All three ligands 

showed large, negative energy values for Cys285, Arg288, and Ser289. Cys285 and 

Ser289, which are located on H3, occupy the middle of the binding cavity. H3 is 

positioned at the middle of the binding cavity, which means all three ligands sit close to, 

and potentially interact with, the residues on H3. The large energy values for all three 

compounds relative to Cys285 and Ser289 suggested these residues are involved in 

binding regardless of which ligand binds. Arg288 sits near the opening to the binding 

cavity. The van der Waals energy values for the enantiomer systems were higher than 

what was seen with rosiglitazone. This suggested that interactions with this residue were 

more important for the enantiomers than rosiglitazone. 

Interactions with the key hydrogen bond residues appeared to vary by ligand. The 

rosiglitazone simulations indicated highly negative electrostatic energy values for His449 

and Tyr473, with some interactions between rosiglitazone and His323. The R-enantiomer 

registered noticeable energy values for these three residues, but the S-enantiomer pulling 

simulations did not suggest strong interactions with His323. Though both enantiomers 

showed energy values within the top 20 values reported for His449 and Tyr473, the 

partial agonist pulling suggested less energy was necessary to separate the ligand from 

Tyr473. 
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Figure 5.13 Average total energies measured for interactions between the listed residues and ligands. The 

electrostatic (black bars) component and van der Waals (VDW; white bars) component of the energy values 

are shown for residues within 1.0 nm of a ligand as it was pulled from the binding cavity. Panels 

correspond to the pulling simulations for (a) rosiglitazone, (b) the R-enantiomer, and (c) the S-enantiomer. 

Error bars indicate standard deviation for each mean. The top 20 energy values are shown for each ligand. 

Residues with no energy values for a particular system indicate those for which the energies were not in the 

top 20 values. 

An examination of the average energy fluctuations over time for the residues with higher 

average energies indicated some residues showed stronger interactions with certain 

ligands than others (Figure 5.14). This analysis required examination of interactions with 

residues beyond the top 20 reported and made the details of which residues most likely 

contributed to holding the ligand within the binding cavity clearer. A drastic change in 

energy in a short time window indicated release of interactions between the residue and 

the ligand. All ligands showed persistent interactions with Cys285 (Figure 5.14A-5.14C) 

and His449 (Figure 5.14J-5.14L). A potentially stronger interaction was observed 

between rosiglitazone and Ser289 (Figure 5.14D) when compared to the enantiomers 

(Figure 5.14E and 5.14F). Energy values for rosiglitazone and His323 persisted over time 

(Figure 5.14G), which was not the case for the enantiomers. The energy terms for the R-

enantiomer indicated the interaction between His323 and this ligand were quickly 

overcome during the pulling (Figure 5.14H). Interactions between His323 and the S-

enantiomer were minimal given the small energies calculated with minimal fluctuations 

(Figure 5.14I). All ligands showed energy values for Tyr473, but the electrostatic 

component contributed more to the average total energy for rosiglitazone and the R-

enantiomer (Figure 5.14M and 5.14N). The van der Waals portion of energy showed 

noticeable fluctuations for the S-enantiomer (Figure 5.14O). This difference suggested 

electrostatic interactions, most likely in the form of hydrogen bonds, are necessary for the 

full agonists to bind, but not the partial agonist. Taken together, this data indicated any 

interactions with Cys285, Ser289, His449, and Tyr473 do not necessarily depend on 
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activity type, but the strength and type of interaction does depend on activity type. 

Additionally, the His323-rosiglitazone interaction may be more specific to that ligand. 

 

Figure 5.14 Average interaction energy fluctuations over time for five residues relative to rosiglitazone (A, 

D, G, J, M), the R-enantiomer (B, E, H, K, N), and the S-enantiomer (C, F, I, L, O). 

Most of the residues present in the energy terms lists were similar between the simulation 

sets, but some unique residues were observed for each list (Figure 5.15). More unique 

residue-ligand interactions were seen for the rosiglitazone pulling simulations (Figure 

5.15A). Those residues were Val339, Leu340, and Arg350, which all sit near the opening 

of the binding cavity. The unique residues for the enantiomers were Ala292 on H3 for the 

full agonist R-enantiomer (Figure 5.15B) and Met364 on the H6’-H7 loop for the partial 

agonist S-enantiomer (Figure 5.15C). These residues sit on opposite sides of the binding 

cavity and may reflect interactions governed by the chiral differences for these ligands. 



 

129 

 

 

Figure 5.15 Common and unique residues with large energy values over the course of the pulling 

simulations. Residues unique to each structure are highlighted in red while residues shared between two 

structures are shown in either blur or green to indicate which structures possessed shared residues. Circles 

indicate location of the highlighted residues. Panels correspond to the pulling simulations for (a) 

rosiglitazone, (b) the R-enantiomer, and (c) the S-enantiomer. 

The residues unique to rosiglitazone did not show energy trends that indicated strong 

interactions for the enantiomers (Figure 5.16). Of the three, Arg350 was not within 1 nm 

of either enantiomer and therefore no energy values were calculated. The energy curves 

for Val339 and Leu340 showed persisting interactions with rosiglitazone (Figure 5.16A 

and 5.16D). This was not the case for the R-enantiomer (Figure 5.16B and 5.16E), but 

minor interactions may have been present for the S-enantiomer (Figure 5.16C and 5.16F). 

The energy curve for Arg350 appeared to reflect a strong, mostly Coulombic interaction 

with rosiglitazone. 

 
Figure 5.16 Average energies over time for three residues unique to rosiglitazone binding. 
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The residues unique to the enantiomers did not show energy trends for rosiglitazone 

(Figure 5.17) because these residues were not within 1 nm of this ligand during the 

pulling simulations. Ala292 appeared to have stronger interactions with the R-enantiomer 

than the S form (Figure 5.17A and 5.17B), while Met364 showed a more persistent 

interaction with the S-enantiomer than the R form (Figure 5.17C and 5.17D). The 

interaction data combined suggested similarity and differences in residues necessary for 

ligand binding. Table 5.7 indicates the residue associations deemed necessary for binding 

according to this data. 

 

Figure 5.17 Average energies over time for two residues unique to enantiomer binding. 

Table 5.7 List of residues with which interactions were purposed to be necessary for 

ligand binding. “Yes” and “No” indicate energy terms that either persisted or quickly 

dissipated, respectively. “Weak” indicates energy terms with less pronounced energy 

curves but potential interactions. 

Residue Rosiglitazone R-enantiomer S-enantiomer 

Cys285 Yes Yes Yes 

Arg288 No Yes Yes 

Ser289 Yes Weak Weak 

Ala292 No Yes No 

His323 Yes No No 

Val339 Yes No Weak 

Leu340 Yes Weak Yes 

Arg350 Yes No No 

Met364 Yes No Yes 

His449 Yes Weak Yes 

Tyr473 Yes Weak Weak 
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5.5 Discussion 

The MD data in our study meshes with data observed by others who have conducted 

simulations with PPARγ and other nuclear receptors. SMD simulations with other NHRs 

and each suggested multiple entry/exit pathways for ligand binding and unbinding (229, 

230). Genest et al. performed pulling simulations with a partial agonist-bound PPARγ 

structure and identified at least three possible entry and exit points (231). All of these 

studies suggested ligands might enter the binding cavity on the H12 side of the protein. In 

the active conformation, the helix blocks access to the cavity (229-231). But this is not 

the case in the inactive form where the position of H12 away from the AF-2 domain 

leaves the binding cavity accessible to ligand entry (229). Perakyla suggested that the 

H12 surface on vitamin D receptors is the entry point for the inactive form, which closes 

off after activation and leaves the opening near the H2’-H3 loop as a solvent-accessible 

exit point (229). Our data showed motions of H12 away from the main body of the 

protein in the simulations of the inactive forms, which seems to agree with the idea of a 

H12-gated entry point in the inactive conformation. 

In a 2008 study, Teotico et al. showed that the helices that make up the AF-2 domain of  

PXR, ERα, and PPARγ move in a correlated manner in the presence of ligand, and in an 

anti-correlated fashion when a ligand is not present (208). In the simulations of the active 

orientations, our data showed some correlated motion between areas of H3 and H12, but 

independent motion between H3 and the H3’ to H4 region. More anti-correlated motion 

was seen in the simulations of the inactive forms for these regions. Although we didn’t 

see strong indicators of correlated motion between the regions highlighted by Teotico et 

al., the observation of anti-correlated motion in the AI simulations with a transition to 

more independent motion in the BI simulations suggested congruence with their work. 

The shifts in conformational sampling suggested a concerted effort of helix 

rearrangement between the states. Some correlated motion may occur between the helices 

of the AF-2 region, but longer simulations time or a reduction in the contributions of the 

loop regions to the major components of motion might be required to see this activity. It 

is not clear which, if either, condition might contribute to the differences between our 

study and theirs, but we have established longer simulations times than the published 

work. Further, Teotico et al. suggested that H3 of PXR acts as a bridge between the AF-2 

region and the β-sheet that sits near the cavity opening (208). Our data suggested 

connections in motion between the loop regions of PPARγ, and that H3 may serve as the 

mediator of long-distance loop motions across the LBD, which agrees with their 

conclusions. 

The data presented here show that minor conformational differences translate to major 

differences in motion across the LBD. We have also shown that differences in 

conformational sampling can be achieved and observed over a relatively short simulation 

time. Longer simulation times would be beneficial, particularly for the BI system to see if 

any common conformations arise between systems. Simulations performed with larger 

systems would also be of interest. The active form of PPARγ is a part of a larger complex 

with RXRα and co-activator proteins. It is possible that some of the loop dynamics would 

change in the presence of these other proteins. Chandra et al. published a PDB structure 

in 2008 of the active RXRα-PPARγ-SRC-1 complex associated with DNA (56). The 
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structure indicates that the H2-s1 loop sits close to DNA and the H9-H10 loop sits above 

the DNA-binding domain of RXRα. The proximity of each of these could significantly 

affect the motion of these regions, and with this additional simulation data, the interplay 

between the loops might be better understood. 

The SMD portion of this study has proven helpful for identifying specific residues 

necessary for ligand binding. Sets of residues have been proposed as advantageous to 

binding of each tested ligand. Additional analysis of the energy terms and more SMD 

simulations with different PPARγ-ligand complexes of varying activity types would 

facilitate building a more extensive list of key binding residues. The partial agonists in 

particular would be of great interest given the differences in binding that arise within this 

activity type. Studies have shown PPARγ partial agonists can mediate responses similar 

to those seen with TZDs while excluding downstream effects that can result in undesired 

side effects (210) and references therein). Recent work has suggested partial agonist fatty 

acids in particular can improve insulin sensitization without turning on the adipogenesis 

processes typically activated by TZDs that lead to excessive weight gain and perpetuation 

of the chronic inflammation state (210, 232). Additional pharmacophore analysis and MD 

work with an emphasis on naturally derived partial agonists would contribute to 

understanding the intricacies of partial agonism and subsequent dynamic changes. 

Some insight to the agonism process is provided here, but very little is known about 

antagonism. Antagonists bind in such a way that H12 sits in an active-like position, but 

co-repressors are recruited instead of co-activators (56, 76). Therefore, the antagonists are 

capable of influencing H12 dynamics while maintaining an inactive PPARγ 

conformation. Few antagonists have been identified, which limits the information 

available on the binding patterns for this activity class. These compounds sit close to H12 

similar to full agonists, but do not appear to interact with the remainder of the binding 

cavity, which the agonists do (56, 76). The dynamics sampled in this study would benefit 

from simulations of an antagonist-bound system to elucidate the dynamics that contribute 

to stabilization of the inactive form of PPARγ. As a whole, the study presented here 

serves as a first major step toward better understanding of the dynamics that direct 

differences in binding patterns for different activity types. 
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6 Conclusions 

Despite the wealth of knowledge available through the numerous publications on PPARγ, 

a gap still exists regarding the intricacies of the ligand binding process. The major issue 

with appropriately assessing binding is reconciling how binding drives the many roles 

that PPARs can play throughout the body. There is a level of specificity that is necessary 

for turning certain genes on and off. Tissue specificity and differences in expression 

patterns contribute to differential regulation, and in many cases, factors and proteins that 

are co-expressed with PPARγ also influence downstream effects (211). 

The range of activity classes seen for PPARγ ligands further complicates the challenge of 

binder identification. The many processes that require regulation also require differences 

in ligand-induced conformational changes. Subtype-specific full agonists, partial 

agonists, dual agonists, pan agonists, and antagonists are individual classes of activity 

that result in differences in dynamic responses upon binding. The partial agonists as a 

class contain additional subclasses of activation that result in reduced co-activator 

recruitment relative to full agonists, and divergent regulation patterns. The structure-

based pharmacophore modeling indicated that the partial-agonist containing crystal 

structures possessed more diverse binding cavities than the full agonist counterparts did. 

A variety of responses is seen experimentally with partial agonists, which seem to be 

directly influenced by the ligand. For example, the partial agonist KR-62776 results in 

differential expression of 42 genes compared to rosiglitazone (233). With these 

differences in expression, an increase in insulin sensitization without activation of 

adipogenesis processes can be seen due to the up-regulation of extracellular signal-

regulated kinase (ERK)1/2 (233). Compare this to GW0072, which also increases insulin 

sensitization without increased adipogenesis, but does so by preventing adipocyte 

differentiation through selective recruitment of co-activators (87). As more studies have 

been done to determine the mechanism of action of TZDs, it has become clear that these 

compounds, which are believed to be full agonists, might be better termed partial 

agonists. The TZDs exhibit partial agonism in the selectivity of processes up-regulated 

and a level of partial antagonism in precluding binding of other agonists (211, 212). 

Endogenous ligands may be the only true PPARγ full agonists (211, 212). As the field of 

PPARγ drug discovery and development moves forward, there appears to be a need to 

move away from the TZD model of agonism and focus more on the fatty acid model. 

TZDs have served as a means to assess therapeutic potential. A new model that combines 

the mechanisms behind fatty acid binding with the highly efficacious gene regulatory and 

dynamic differences seen with synthetics may prove a better approach to therapeutic 

development. Alternatively, greater knowledge of the specifics of endogenous ligand 

binding with a focus on therapeutic development to mimic fatty acid binding would be 

the best means of maintaining the combination of regulatory processes that result in 

metabolic homeostasis. The VS process described here is poised to approach therapeutic 

development with a fatty acid-focused model that includes TZD-like efficacy assessment. 

In a 2006 review, Klebe outlined the steps and considerations necessary for virtual 

screening with large databases (95). The nine major considerations explained in the study 

were target selection, druggability of the selected protein, target geometry, protein 

flexibility and adaptability, protonation state, assessment of protein “hot spots” for 
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binding, the role of water in ligand binding, ligand selection, and identification of binders 

through scoring, ranking, and validation methods (95). The preliminary steps of target 

selection (3, 6, 127, 163), druggability assessment (234), and “hot spots” identification 

(148, 199) have been considered and established for PPARγ by others. The outstanding 

issues were addressed in this project. 

We have maintained and regularly updated an internal database of PPARγ crystal 

structures for docking and dynamics studies. PPARγ has been well established as a target 

for therapeutic development, and research has shown benefits of targeting this protein in 

various diseases (2, 130, 136, 235-237). The LBD is the primary location for small-

molecule association, and the LBD contains a large binding cavity with broad affinity for 

various compounds, but with a propensity for fatty acid binding given the role of this 

protein in fatty acid sensing and regulation. 

Addressing the issue of target geometry and protein flexibility can be handled by 

incorporating multiple structure models into the docking procedure. Rueda et al. 

performed a benchmark study using ensembles of crystal structures for binder 

identification (238). They concluded that docking with multiple structure models resulted 

in less uncertainty in the identification of binders compared to single model tests (238). 

They also suggested that apo structures should be excluded from the ensemble, and 

structures that contain a large ligand provide a better binding cavity for ligand position 

sampling (238). Their study did not include PPARγ, and other benchmarking studies have 

used a single PPARγ structure (169, 170). This study included aspects of the methods in 

these previous studies with PPARγ as a single target of interest. 

The issue of establishing the protonation state for the binding cavity has been addressed 

by focusing on the protonation of residues within the binding cavity assuming the 

biological pH of 7.0. Crystal structure assessment indicated that water is not involved in 

interactions that result in full agonism and therefore water was excluded as a factor. The 

use of supercomputers to perform the screening reduced the immediate need for stringent 

ligand selection. Computer innovations have made screening of compound databases 

numbering in the tens of thousands possible in a feasible amount of time. Further, it is 

possible to use freely available software and scripting languages to perform VS. 

Supercomputing power can expedite the process, which can be obtained through federally 

funded resources made available to the research community. There are more tools 

available with commercial software packages that can improve efficiency and 

productivity. MOE (198), as an example, has proven helpful for pharmacophore 

searching, sorting, and modeling. Lastly, the use of pharmacophore filtering serves two 

purposes: as a means to address the scoring and ranking issue by pairing compounds with 

structures that can sterically fit them to improve the quality of predicted poses, and as a 

post-processing means of proposing activity based on what is known about existing 

PPARγ ligands. 

When conducting virtual screening with a difficult target, one has to understand the limits 

of the data available. Screening for particular types of binders can be done given what is 

known about key interactions. Part of the screening process should pertain to matching 

the docking data to what is known about key interactions. Proposing binders can be done 

better in a setting where the different activity classes can be compared so that data 

pertaining to an undesired activity class can be excluded (239). Over the course of the 
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studies conducted here, it has become apparent that comparisons work better for 

assessing hits, as it is easier to identify binders if one also knows what should not bind or 

does not satisfy the desired criteria. 

Free energy of binding alone is not sufficient for assessing docking success when 

screening diverse ligands. Free energy calculations for AutoDock4, and presumably other 

docking programs, are highly influenced by the number of atoms in the ligand. Arbitrary 

scores, such as those used in the DOCK 6 program, are only useful if the molecules being 

tested are molecularly similar. Molecule size may not heavily influence interaction 

information. Instead, interactions depend on the presence of key molecular groups with 

the characteristics necessary for binding. Molecule size may play a larger role in driving 

the process of binding and filling the cavity to promote interactions. Furthermore, it is 

possible to enrich the division of binders and non-binders given the characteristics of the 

screened ligands and the interactions that are presented based on those characteristics.  

The need for screening to find alternative PPARγ agonists is pressing despite recent 

developments in the push to lift or reevaluate restrictions placed on Avandia®. The 

original 2007 meta-analysis performed by Nissen and Wolski to assess any risk 

associated with rosiglitazone use has come into question given a 2009 clinical trial 

designated RECORD funded by GlaxoSmithKline (240, 241). The meta-analysis 

suggested an increase in cardiovascular events, specifically myocardial infarction, in 

patients taking the rosiglitazone-containing medication (240). The RECORD trial 

indicated that no significant link between rosiglitazone and myocardial infarction could 

be determined, but there was some slight increase in risk for heart failure and potentially 

other cardiovascular events (241). Nissen and Wolski updated their meta-analysis in 2010 

by combining the RECORD study data with data from other studies (242). The authors 

noted that in all cases, an increase in low-density lipoprotein cholesterol was found that 

could contribute to the cardiovascular issues and the overall risk for any cardiovascular 

problems was high (242). The authors concluded that the existence of other insulin 

sensitizing drugs with lower risk-benefits ratios for cardiovascular mortality warrants the 

continued restriction on rosiglitazone (242). 

The larger concern that should be considered for PPARγ therapeutic discovery that was 

suggested by Nissen and Wolski’s conclusions is the risk associated with currently 

available insulin sensitizing agents. The existence of risk that can lead to death or 

development of severe side effects validates the need for additional screening for PPARγ 

binders. Assessing novelty, toxicity, considering downstream effects, and including 

derivation of compounds from endogenous and fatty acid agonists may be the ideal 

approach for finding novel agonists with disease benefits and reduced risk. We have 

proposed focusing on natural compounds that serve as PPARγ agonists to introduce 

endogenous-like compounds to restore homeostasis. As observed in the study in Chapter 

3, the efficacy of natural compounds can be lower than synthetic compounds because of 

differences in affinity or differences in therapeutic drug levels. Existing drugs can be 

repurposed, but patents can limit which compounds can be considered for therapeutic 

efficacy in alternate diseases. Additionally, there is a wealth of knowledge about toxic 

groups that can be screened against to aid in identifying compounds that might be less 

toxic and result in fewer severe side effects. A third avenue worth exploring is use of VS 

to identify multiple targets for established compounds, especially cases where side effects 
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are known. Often side effects are the result of a compound binding to other proteins and 

subsequently mediating responses other than those of interest. In the case of TZDs, 

affinity values, therapeutic blood levels, alternate binding partners, and activation 

patterns for these compounds contribute to the severe side effects seen in patients that 

take these medications (211, 243). Rosiglitazone may also play a role in the 

phosphorylation mechanisms that control PPARγ (243). Selected hits can be excluded or 

retained accordingly depending on the desired biological outcomes. 

The original goal of the project that led to this dissertation work was to identify 

compounds that bind to PPARγ and pipe these potential binders into in vitro and pre-

clinical experiments for efficacy in a T2D model. PPARγ as a screening target proved to 

be more complex and involved than originally imagined. As this project has unfolded, the 

challenges that arose have provoked interesting questions. Although the goal of finding a 

novel T2D therapeutic was not achieved, we have verified the effectiveness of our virtual 

screening process by identifying compounds that show benefits in a variety of chronic-

inflammation associated diseases. The methods developed herein are a novel approach 

toward efficient identification of PPARγ-dependent therapeutics for treating chronic 

inflammation-related diseases. 
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8 Appendices 

8.1 Appendix A: Executive summary 

 

Executive summary of additional published works 

 

The articles summarized below were written and published in peer reviewed journals 

during the course of the predoctoral period. As the articles do not pertain directly to 

completion of the dissertation work, they are summarized here below the full citation for 

the papers. 

 

Bassaganya-Riera J, Guri AJ, Lu P, Climent M, Carbo A, Sobral BW, Evans C, 

Horne WT, Lewis SN, Bevan DR, and Hontecillas R. (2011) Abscisic acid 

Regulates Inflammation via Ligand-Binding Domain-Independent Activation of 

PPAR g. J. Biol. Chem. 286(4):2504-16. DOI: 10.1074/jbc.M110.160077. 

Abscisic acid (ABA) was shown to ameliorate T2D and inflammation in a seeming 

PPARγ-dependent manner that did not involve direct binding to PPARγ. Docking was 

used to complement experimental results showing ABA does not bind to PPARγ. 

Experiments suggested ABA up-regulates PPARγ expression and this may be mediated 

by lanthionine synthetase C-like 2 (LANCL2). Docking of ABA into LANCL2 suggested 

favorable binding sites. It was suggested that ABA binds to LANCL2 as part of a 

bifurcated pathway that activates PPARγ for anti-inflammatory responses. My role for 

this study was docking of ABA into PPARγ. I performed the docking and analysis, and 

wrote the sections pertaining to this component for the paper. I also was involved in 

reviewing and editing the full manuscript before and during the review process. This 

paper is the most relevant to my primary research of all the papers included in the 

appendices, but will not be included as a chapter given I was not the primary author. 

 

Lewis SN, Nsoesie E, Weeks C, Qiao D, Zhang, L. (2011) Prediction of Disease 

and Phenotype Associations from Genome-Wide Association Studies. PLoS 

ONE. 6(11): e27175. doi: 10.1371/journal.pone.0027175. 

Lewis SN, Nsoesie E, Weeks C, Qiao D, Zhang, L. (2011) Meta-analysis of 

Genome-Wide Association Studies to Understand Disease Relatedness. Type I 

Diabetes / Book 3: InTech. p. 199-212. ISBN 979-953-307-127-4. 

Both of these publications derived from use of bioinformatics, genetics, and computer 

science techniques to mine genetic variation data for similarities between 61 diseases and 

phenotypes. The goal of the parent study was to collect, catalog, and compare single 

nucleotide polymorphism (SNP) data to see if similarities could be quantified for four 

levels: SNP, gene, protein, and pathway. This approach was adopted as a means to assess 

relatedness potentially ignored or overlooked by genome-wide association studies alone. 

As data was grouped for each successive level, the clarity of connections between 

diseases was more pronounced. Multiple sclerosis, type 1 diabetes, and rheumatoid 

arthritis were identified as three diseases with predominant similarity for all levels. Our 
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data meshed with peripheral medical observations published mostly as editorial letters for 

various medical journals that speculate relationships exist between pairs of these diseases. 

The book chapter included detailed statistical analysis of the data set with added genomic 

data from online bioinformatics databases. Emphasis was placed on type 1 diabetes 

relatedness. Author Contributions: Dr. Zhang conceived and designed the original study 

with suggestions on improvements from myself and the other three authors. All authors 

contributed equally to performing the screening, scripting, analysis of the data, and 

writing of the manuscript. Dr. Zhang, Dr. Nsoesie, and I composed and revised the 

manuscript and book chapter during the review process. 

 

Lu P, Bevan DR, Lewis SN, Hontecillas R, Bassaganya-Riera J. (2010) 

Molecular modeling of lanthionine synthetase component C-like protein 2: a 

potential target for the discovery of novel type 2 diabetes prophylactics and 

therapeutics. J Mol Model. 17(3):543-553.DOI: 10.1007/s00894-010-0748-y. 

Lu P, Hontecillas R, Horne WT, Carbo A, Viladomiu M, Pedragosa M, Bevan 

DR, Lewis SN. (2012) Computational Modeling-Based Discovery of Novel 

Classes of Anti-Inflammatory Drugs That Target Lanthionine Synthetase C-Like 

Protein 2. PLoS ONE 7(4): e34643. doi:10.1371/journal.pone.0034643. 

The above papers were computational modeling studies of LANCL2 using methods 

similar to those mentioned within the dissertation for PPARγ. The first study proposed 

ABA and diabetic thiazolidinedione drugs bind to LANCL2 and possess a role in 

quenching T2D phenotypes. This paper was a follow up to the Bassaganya-Riera et al. 

2011 article in which it was proposed that ABA binds to LANCL2 instead of PPARγ. 

The second study involved the use of virtual screening to mine compounds from the 

National Cancer Institute database for LANCL2 binders potentially effective at treatment 

of inflammatory diseases. One compound, NSC61610, was identified and tested in vitro 

as a LANCL2 binder that ameliorated chemically-induced colitis in mice. My primary 

role was consultant for the docking and dynamics procedures and analysis for both 

studies. I was involved in the review process as well. 
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8.2 Appendix B: PPARγ PDB table 

The following is a list of PPARγ crystal structures available through the Protein Data Bank (PDB) website. The list was last updated 

on June 3, 2013. The structures most recently added (deposition date between 2011 and 2013) do not have a ligand type designations. 

PDB 

ID 

Chain 

ID 

Ligand 

ID 

Ligand 

Type 

Ki 

(nM) 

Kd 

(nM) 

EC50 

(nM) 

IC50 

(nM) 

Dep. 

Date 

Reso-

lution 
Citation Author Title 

1FM6 D BRL full 

 * 8-

440 

(BDB)   

 * 4-

2880 

(BDB) 

 * 30-

50000 

(BDB

) 

2000-

08-16 2.10 

Gampe Jr., R.T., 

Montana, V.G., 

Lambert, M.H., Miller, 

A.B., Bledsoe, R.K., 

Milburn, M.V., 

Kliewer, S.A., Willson, 

T.M., Xu, H.E. 

Asymmetry in the 

PPARgamma/RXRalpha 

crystal structure reveals the 

molecular basis of 

heterodimerization among 

nuclear receptors. 

1FM9 D 570 full 

 * 1.1 

(BDB) 

 * 1 

(BMO

AD_64

56)   

 * 0.34-

0.6 

(BDB) 

 * 217 

(BDB

) 

2000-

08-16 2.10 

Gampe Jr., R.T., 

Montana, V.G., 

Lambert, M.H., Miller, 

A.B., Bledsoe, R.K., 

Milburn, M.V., 

Kliewer, S.A., Willson, 

T.M., Xu, H.E. 

Asymmetry in the 

PPARgamma/RXRalpha 

crystal structure reveals the 

molecular basis of 

heterodimerization among 

nuclear receptors. 

1I7I A AZ2 dual 

 * 18-

200 

(BDB)   

 * 13-

3528 

(BDB) 

 * 350 

(BDB

) 

2001-

03-09 2.35 

Cronet, P., Petersen, 

J.F., Folmer, R., 

Blomberg, N., Sjoblom, 

K., Karlsson, U., 

Lindstedt, E.L., 

Bamberg, K. 

Structure of the 

PPARalpha and -gamma 

ligand binding domain in 

complex with AZ 242; 

ligand selectivity and 

agonist activation in the 

PPAR family. 



 

157 

 

1K74 D 544 full 

 * 1 

(BDB)   

 * 0.2-

2.7 

(BDB)   

2001-

10-18 2.30 

Xu, H.E., Lambert, 

M.H., Montana, V.G., 

Plunket, K.D., Moore, 

L.B., Collins, J.L., 

Oplinger, J.A., Kliewer, 

S.A., Gampe Jr., R.T., 

McKee, D.D., Moore, 

J.T., Willson, T.M. 

Structural determinants of 

ligand binding selectivity 

between the peroxisome 

proliferator-activated 

receptors. 

1KNU A YPA dual   

 * 170 

(BDB) 

 * 170 

(BDB)   

2001-

12-19 2.50 

Sauerberg, P., 

Pettersson, I., Jeppesen, 

L., Bury, P.S., 

Mogensen, J.P., 

Wassermann, K., 

Brand, C.L., Sturis, J., 

Woldike, H.F., 

Fleckner, J., Andersen, 

A.-S.T., Mortensen, 

S.B., Svensson, L.A., 

Rasmussen, H.B., 

Lehmann, S.V., 

Polivka, Z., Sindelar, 

K., Panajotova, V., 

Ynddal, L., Wulff, E.M. 

Novel tricyclic-alpha-

alkyloxyphenylpropionic 

acids: dual 

PPARalpha/gamma 

agonists with 

hypolipidemic and 

antidiabetic activity 

1NYX A DRF dual 

 * 90 

(BDB)   

 * 570-

600 

(BDB) 

 * 92 

(BDB

) 

2003-

02-14 2.65 

Ebdrup, S., Pettersson, 

I., Rasmussen, H.B., 

Deussen, H.-J., Frost 

Jensen, A., Mortensen, 

S.B., Fleckner, J., 

Pridal, L., Nygaard, L., 

Sauerberg, P. 

Synthesis and biological 

and structural 

characterization of the 

dual-acting peroxisome 

proliferator-activated 

receptor alpha/gamma 

agonist ragaglitazar 
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1PRG A 

 

apo         

1998-

07-02 2.20 

Nolte, R.T., Wisely, 

G.B., Westin, S., Cobb, 

J.E., Lambert, M.H., 

Kurokawa, R., 

Rosenfeld, M.G., 

Willson, T.M., Glass, 

C.K., Milburn, M.V. 

Ligand binding and co-

activator assembly of the 

peroxisome proliferator-

activated receptor-gamma. 

1RDT D 570 full 

 * 1.1 

(BDB)   

 * 0.34-

0.6 

(BDB) 

 * 217 

(BDB

) 

2003-

11-06 2.40 

Haffner, C.D., Lenhard, 

J.M., Miller, A.B., 

McDougald, D.L., 

Dwornik, K., Ittoop, 

O.R., Gampe Jr., R.T., 

Xu, H.E., Blanchard, 

S., Montana, V.G., 

Consler, T.G., Bledsoe, 

R.K., Ayscue, A., 

Croom, D. 

Structure-based design of 

potent retinoid X receptor 

alpha agonists. 

1WM0 X PLB partial         

2004-

07-01 2.90 

Ostberg, T., Svensson, 

S., Selen, G., 

Uppenberg, J., Thor, 

M., Sundbom, M., 

Sydow-Backman, M., 

Gustavsson, A.L., 

Jendeberg, L. 

A new class of peroxisome 

proliferator-activated 

receptor agonists with a 

novel binding epitope 

shows antidiabetic effects 

1ZEO A C01 dual     

 * 390 

(BDB) 

 * 210 

(BDB

) 

 * 210 

(BM

OAD

_3325

4) 

2005-

04-19 2.50 

Shi, G.Q., Dropinski, 

J.F., McKeever, B.M., 

Xu, S, Becker, J.W., 

Berger, J.P., MacNaul, 

K.L., Elbrecht, A., 

Zhou, G., Doebber, 

T.W., Wang, P., Chao, 

Y.-S., Forrest, M., 

Heck, J.V., Moller, 

D.E., Jones, B.A. 

Design and Synthesis of 

alpha-Aryloxyphenylacetic 

Acid Derivatives: A Novel 

Class of PPAR 

alpha/gamma Dual 

Agonists with Potent 

Antihyperglycemic and 

Lipid Modulating Activity 



 

159 

 

1ZGY A BRL full 

 * 8-

440 

(BDB)   

 * 4-

2880 

(BDB) 

 * 30-

50000 

(BDB

) 

 * 500 

(BM

OAD

_7439

) 

2005-

04-22 1.80 

Li, Y., Choi, M., Suino, 

K., Kovach, A., 

Daugherty, J., Kliewer, 

S.A., Xu, H.E. 

Structural and biochemical 

basis for selective 

repression of the orphan 

nuclear receptor liver 

receptor homolog 1 by 

small heterodimer partner. 

2ATH A 3EA full     

 * 230 

(BDB) 

 * 152 

(BDB

) 

 * 152 

(BM

OAD

_3325

1) 

2005-

08-25 2.28 

Mahindroo, N., Huang, 

C.-F., Peng, Y.-H., 

Wang, C.-C., Liao, C.-

C., Lien, T.-W., 

Chittimalla, S.K., 

Huang, W.-J., Chai, C.-

H., Prakash, E., Chen, 

C.-P., Hsu, T.-A., Peng, 

C.-H., Lu, I.-L., Lee, 

L.-H., Chang, Y.-W., 

Chen, W.-C., Chou, Y.-

C., Chen, C.-T., 

Goparaju, C.M.V., 

Chen, Y.-S., Lan, S.-J., 

Yu, M.-C., Chen, X., 

Chao, Y.-S., Wu, S.-Y., 

Hsieh, H.-P. 

Novel indole-based 

peroxisome proliferator-

activated receptor agonists: 

design, SAR, structural 

biology, and biological 

activities 

2F4B A EHA pan     

 * 70 

(BDB) 

 * 50 

(BDB

) 

 * 50 

(BM

OAD

_3325

5) 

2005-

11-23 2.07 

Mahindroo, N., Wang, 

C.C., Liao, C.C., 

Huang, C.F., Lu, I.L., 

Lien, T.W., Peng, Y.H., 

Huang, W.J., Lin, Y.T., 

Hsu, M.C., Lin, C.H., 

Tsai, C.H., Hsu, J.T., 

Chen, X., Lyu, P.C., 

Chao, Y.S., Wu, S.Y., 

Hsieh, H.P. 

Indol-1-yl Acetic Acids as 

Peroxisome Proliferator-

Activated Receptor 

Agonists: Design, 

Synthesis, Structural 

Biology, and Molecular 

Docking Studies 



 

160 

 

2FVJ A RO0 partial         

2006-

01-31 1.99 

Burgermeister, E., 

Schnoebelen, A., 

Flament, A., Benz, J., 

Stihle, M., Gsell, B., 

Rufer, A., Ruf, A., 

Kuhn, B., Maerki, H.P., 

Mizrahi, J., Sebokova, 

E., Niesor, E., Meyer, 

M. 

A novel partial agonist of 

peroxisome proliferator-

activated receptor-gamma 

(PPARgamma) recruits 

PPARgamma-coactivator-

1alpha, prevents 

triglyceride accumulation, 

and potentiates insulin 

signaling in vitro 

2G0G A SP0 partial       

 * 512 

(BDB

) 

2006-

02-13 2.54 

Lu, I.L., Huang, C.F., 

Peng, Y.H., Lin, Y.T., 

Hsieh, H.P., Chen, 

C.T., Lien, T.W., Lee, 

H.J., Mahindroo, N., 

Prakash, E., Yueh, A., 

Chen, H.Y., Goparaju, 

C.M., Chen, X., Liao, 

C.C., Chao, Y.S., Hsu, 

J.T., Wu, S.Y. 

Structure-Based Drug 

Design of a Novel Family 

of PPARgamma Partial 

Agonists: Virtual 

Screening, X-ray 

Crystallography, and in 

Vitro/in Vivo Biological 

Activities 

2G0H A SP3 partial       

 * 

22.7 

(BDB

) 

 * 

22.7 

(BM

OAD

_3325

2) 

2006-

02-13 2.30 

Lu, I.L., Huang, C.F., 

Peng, Y.H., Lin, Y.T., 

Hsieh, H.P., Chen, 

C.T., Lien, T.W., Lee, 

H.J., Mahindroo, N., 

Prakash, E., Yueh, A., 

Chen, H.Y., Goparaju, 

C.M., Chen, X., Liao, 

C.C., Chao, Y.S., Hsu, 

J.T., Wu, S.Y. 

Structure-Based Drug 

Design of a Novel Family 

of PPARgamma Partial 

Agonists: Virtual 

Screening, X-ray 

Crystallography, and in 

Vitro/in Vivo Biological 

Activities 

2GTK A 208 dual       

 * 250 

(BM

OAD

_3325

3) 

2006-

04-28 2.10 

Kuhn, B., Hilpert, H., 

Benz, J., Binggeli, A., 

Grether, U., Humm, R., 

Meyer, M., Mohr, P. 

Structure-based design of 

indole propionic acids as 

novel PPARalpha/gamma 

co-agonists 



 

161 

 

2HFP A NSI 

antagon

ist       

 * 3 

(BDB

) 

 * 3 

(BM

OAD

_3380

1) 

2006-

06-25 2.00 

Hopkins, C.R., O'neil, 

S.V., Laufersweiler, 

M.C., Wang, Y., 

Pokross, M., Mekel, 

M., Evdokimov, A., 

Walter, R., 

Kontoyianni, M., 

Petrey, M.E., 

Sabatakos, G., 

Roesgen, J.T., 

Richardson, E., Demuth 

Jr., T.P. 

Design and synthesis of 

novel N-sulfonyl-2-indole 

carboxamides as potent 

PPAR-gamma binding 

agents with potential 

application to the treatment 

of osteoporosis. 

2HW

Q A DRY dual     

 * 2210 

(BDB)   

2006-

08-01 1.97 

Mahindroo, N., Peng, 

Y.H., Lin, C.H., Tan, 

U.K., Prakash, E., Lien, 

T.W., Lu, I.L., Lee, 

H.J., Hsu, J.T.A., Chen, 

X., Liao, C.C., Lyu, 

P.C., Chao, Y.S., Wu, 

S.Y., Hsieh, H.P. 

Structural basis for the 

structure-activity 

relationships of 

peroxisome proliferator-

activated receptor agonists 

2HWR A DRD dual     

 * 210 

(BDB)   

2006-

08-01 2.34 

Mahindroo, N., Peng, 

Y.H., Lin, C.H., Tan, 

U.K., Prakash, E., Lien, 

T.W., Lu, I.L., Lee, 

H.J., Hsu, J.T.A., Chen, 

X., Liao, C.C., Lyu, 

P.C., Chao, Y.S., Wu, 

S.Y., Hsieh, H.P. 

Structural basis for the 

structure-activity 

relationships of 

peroxisome proliferator-

activated receptor agonists 



 

162 

 

2I4J A DRJ full 

 * 88 

(BDB) 

 * 

684.8 

(BDB) 

 * 73.3 

(BDB)   

2006-

08-22 2.10 

Pochetti, G., Godio, C., 

Mitro, N., Caruso, D., 

Galmozzi, A., Scurati, 

S., Loiodice, F., 

Fracchiolla, G., 

Tortorella, P., 

Laghezza, A., 

Lavecchia, A., 

Novellino, E., Mazza, 

F., Crestani, M. 

Insights into the 

mechanism of partial 

agonism: crystal structures 

of the peroxisome 

proliferator-activated 

receptor gamma ligand-

binding domain in the 

complex with two 

enantiomeric ligands 

2I4P A DRH partial 

 * 971 

(BDB) 

 * 

1978 

(BDB) 

 * 593 

(BDB)   

2006-

08-22 2.10 

Pochetti, G., Godio, C., 

Mitro, N., Caruso, D., 

Galmozzi, A., Scurati, 

S., Loiodice, F., 

Fracchiolla, G., 

Tortorella, P., 

Laghezza, A., 

Lavecchia, A., 

Novellino, E., Mazza, 

F., Crestani, M. 

Insights into the 

mechanism of partial 

agonism: crystal structures 

of the peroxisome 

proliferator-activated 

receptor gamma ligand-

binding domain in the 

complex with two 

enantiomeric ligands. 

2I4Z A DRH partial 

 * 971 

(BDB) 

 * 

1978 

(BDB) 

 * 593 

(BDB)   

2006-

08-23 2.25 

Pochetti, G., Godio, C., 

Mitro, N., Caruso, D., 

Galmozzi, A., Scurati, 

S., Loiodice, F., 

Fracchiolla, G., 

Tortorella, P., 

Laghezza, A., 

Lavecchia, A., 

Novellino, E., Mazza, 

F., Crestani, M. 

Insights into the 

mechanism of partial 

agonism: crystal structures 

of the peroxisome 

proliferator-activated 

receptor gamma ligand-

binding domain in the 

complex with two 

enantiomeric ligands 

2OM9 A AJA partial         

2007-

01-21 2.80 

Ambrosio, A.L.B., 

Dias, S.M.G., 

Polikarpov, I., Zurier, 

R.B., Burstein, S.H., 

Garratt, R.C. 

Ajulemic Acid, a Synthetic 

Nonpsychoactive 

Cannabinoid Acid, Bound 

to the Ligand Binding 

Domain of the Human 

Peroxisome Proliferator-

activated Receptor gamma 



 

163 

 

2P4Y A C03 partial 

 * 1 

(BMO

AD_47

728)       

2007-

03-13 2.25 

Einstein, M., Akiyama, 

T.E., Castriota, G.A., 

Wang, C.F., McKeever, 

B., Mosley, R.T., 

Becker, J.W., Moller, 

D.E., Meinke, P.T., 

Wood, H.B., Berger, 

J.P. 

The differential 

interactions of peroxisome 

proliferator-activated 

receptor gamma ligands 

with Tyr473 is a physical 

basis for their unique 

biological activities. 

2POB A GW4 full         

2007-

04-26 2.30 

Trump, R.P., Cobb, 

J.E., Shearer, B.G., 

Lambert, M.H., Nolte, 

R.T., Willson, T.M., 

Buckholtz, R.G., Zhao, 

S.M., Leesnitzer, L.M., 

Iannone, M.A., Pearce, 

K.H., Billin, A.N., 

Hoekstra, W.J. 

Cocrystal structure guided 

array synthesis of 

PPARgamma inverse 

agonists 

2PRG A BRL full 

 * 8-

440 

(BDB)   

 * 4-

2880 

(BDB) 

 * 30-

50000 

(BDB

) 

1998-

08-14 2.30 

Nolte, R.T., Wisely, 

G.B., Westin, S., Cobb, 

J.E., Lambert, M.H., 

Kurokawa, R., 

Rosenfeld, M.G., 

Willson, T.M., Glass, 

C.K., Milburn, M.V. 

Ligand binding and co-

activator assembly of the 

peroxisome proliferator-

activated receptor-gamma. 

2Q59 A 240 full       

 * 2 

(BDB

) 

2007-

05-31 2.20 

Bruning, J.B., 

Chalmers, M.J., Prasad, 

S., Busby, S.A., 

Kamenecka, T.M., He, 

Y., Nettles, K.W., 

Griffin, P.R. 

Partial Agonists Activate 

PPARgamma Using a 

Helix 12 Independent 

Mechanism 

2Q5P A 241 partial     

 * 1-2 

(BDB) 

 * 1-2 

(BDB

) 

2007-

06-01 2.30 

Bruning, J.B., 

Chalmers, M.J., Prasad, 

S., Busby, S.A., 

Kamenecka, T.M., He, 

Y., Nettles, K.W., 

Partial Agonists Activate 

PPARgamma Using a 

Helix 12 Independent 

Mechanism 



 

164 

 

Griffin, P.R. 

2Q5S A NZA partial     

 * 55 

(BDB) 

 * 26 

(BDB

) 

2007-

06-01 2.05 

Bruning, J.B., 

Chalmers, M.J., Prasad, 

S., Busby, S.A., 

Kamenecka, T.M., He, 

Y., Nettles, K.W., 

Griffin, P.R. 

Partial Agonists Activate 

PPARgamma Using a 

Helix 12 Independent 

Mechanism 

2Q61 A SF1 partial         

2007-

06-04 2.20 

Bruning, J.B., 

Chalmers, M.J., Prasad, 

S., Busby, S.A., 

Kamenecka, T.M., He, 

Y., Nettles, K.W., 

Griffin, P.R. 

Partial Agonists Activate 

PPARgamma Using a 

Helix 12 Independent 

Mechanism 

2Q6R A SF2 partial         

2007-

06-01 2.41 

Bruning, J.B., 

Chalmers, M.J., Prasad, 

S., Busby, S.A., 

Kamenecka, T.M., He, 

Y., Nettles, K.W., 

Griffin, P.R. 

Partial Agonists Activate 

PPARgamma Using a 

Helix 12 Independent 

Mechanism 

2Q6S B PLB partial         

2007-

06-01 2.40 

Bruning, J.B., 

Chalmers, M.J., Prasad, 

S., Busby, S.A., 

Kamenecka, T.M., He, 

Y., Nettles, K.W., 

Griffin, P.R. 

Partial Agonists Activate 

PPARgamma Using a 

Helix 12 Independent 

Mechanism 



 

165 

 

2Q8S A L92 dual     

 * 140 

(BDB) 

 * 185 

(BDB

) 

 * 185 

(BM

OAD

_4773

0) 

2007-

06-11 2.30 

Casimiro-Garcia, A., 

Bigge, C.F., Davis, 

J.A., Padalino, T., 

Pulaski, J., Ohren, J.F., 

McConnell, P., Kane, 

C.D., Royer, L.J., 

Stevens, K.A., 

Auerbach, B.J., Collard, 

W.T., McGregor, C., 

Fakhoury, S.A., 

Schaum, R.P., Zhou, H. 

Effects of modifications of 

the linker in a series of 

phenylpropanoic acid 

derivatives: Synthesis, 

evaluation as 

PPARalpha/gamma dual 

agonists, and X-ray 

crystallographic studies. 

2QMV A 

 

NMR         

2007-

07-17   

Moras, D., 

Gronemeyer, H., Gaal, 

V.L., Scheen, A.J., 

Cock, T.-A., Houten, 

S.M., Auwerx, 

Stumvoll, M., Haering, 

H., Uppenberg, J., 

Svensson, C., Jaki, M., 

Bertilsson, G., 

Jendeberg, L., 

Berkenstam, A. 

High Resolution Structure 

of Peroxisone 

Proliferation-Activated 

Receptor gamma and 

Characterisation of its 

Interaction with the Co-

activator Transcriptional 

Intermediary Factor 2 

2VSR A 9HO 

full/fatt

y acid         

2008-

04-29 2.05 

Itoh, T., Fairall, L., 

Amin, K., Inaba, Y., 

Szanto, A., Balint, B.L., 

Nagy, L., Yamamoto, 

K., Schwabe, J.W.R. 

Structural Basis for the 

Activation of Pparg by 

Oxidised Fatty Acids 

2VST A 243 

full/fatt

y acid         

2008-

04-29 2.35 

Itoh, T., Fairall, L., 

Amin, K., Inaba, Y., 

Szanto, A., Balint, B.L., 

Nagy, L., Yamamoto, 

K., Schwabe, J.W.R. 

Structural Basis for the 

Activation of Pparg by 

Oxidised Fatty Acids 



 

166 

 

2VV0 A HXA 

full/fatt

y acid         

2008-

06-02 2.55 

Itoh, T., Fairall, L., 

Amin, K., Inaba, Y., 

Szanto, A., Balint, B.L., 

Nagy, L., Yamamoto, 

K., Schwabe, J.W.R. 

Structural Basis for the 

Activation of Pparg by 

Oxidised Fatty Acids 

2VV1 A 4HD 

full/fatt

y acid         

2008-

06-02 2.20 

Itoh, T., Fairall, L., 

Amin, K., Inaba, Y., 

Szanto, A., Balint, B.L., 

Nagy, L., Yamamoto, 

K., Schwabe, J.W.R. 

Structural Basis for the 

Activation of Pparg by 

Oxidised Fatty Acids 

2VV2 A 5HE 

full/fatt

y acid         

2008-

06-02 2.75 

Itoh, T., Fairall, L., 

Amin, K., Inaba, Y., 

Szanto, A., Balint, B.L., 

Nagy, L., Yamamoto, 

K., Schwabe, J.W.R. 

Structural Basis for the 

Activation of Pparg by 

Oxidised Fatty Acids 

2VV3 A 4R8 

covalent 

full         

2008-

06-02 2.85 

Itoh, T., Fairall, L., 

Amin, K., Inaba, Y., 

Szanto, A., Balint, B.L., 

Nagy, L., Yamamoto, 

K., Schwabe, J.W.R. 

Structural Basis for the 

Activation of Pparg by 

Oxidised Fatty Acids 

2VV4 B 6OB 

covalent 

full         

2008-

06-02 2.35 

Itoh, T., Fairall, L., 

Amin, K., Inaba, Y., 

Szanto, A., Balint, B.L., 

Nagy, L., Yamamoto, 

K., Schwabe, J.W.R. 

Structural Basis for the 

Activation of Pparg by 

Oxidised Fatty Acids 

2VV4 A 6OC 

covalent 

full         

2008-

06-02 2.35 

Itoh, T., Fairall, L., 

Amin, K., Inaba, Y., 

Szanto, A., Balint, B.L., 

Nagy, L., Yamamoto, 

K., Schwabe, J.W.R. 

Structural Basis for the 

Activation of Pparg by 

Oxidised Fatty Acids 

2XKW A P1B full         

2010-

07-14 2.02 

Mueller, J.J., Schupp, 

M., Unger, T., 

Kintscher, U., 

Heinemann, U. 

Binding Diversity of 

Pioglitazone by 

Peroxisome Proliferator-

Activated Receptor-



 

167 

 

Gamma 

2YFE A YFE full     

2011-

04-05 2.00 

Weidner, C., De Groot, 

J.C., Prasad, A., 

Freiwald, A., 

Quedenau, C., Kliem, 

M., Witzke, A., 

Kodelja, V., Han, C.-T., 

Giegold, S., Baumann, 

M., Klebl, B., Siems, 

K., Mueller-Kuhrt, L., 

Schuermann, A., 

Schueller, R., Pfeiffer, 

A.F.H., Schroeder, 

F.C., Buessow, K., 

Sauer, S. 

Amorfrutins are potent 

antidiabetic dietary natural 

products. 

2ZK0 A 

 

apo         

2008-

03-12 2.36 

Waku, T., Shiraki, T., 

Oyama, T., Fujimoto, 

Y., Maebara, K., 

Kamiya, N., Jingami, 

H., Morikawa, K. 

Structural insight into 

PPARgamma activation 

through covalent 

modification with 

endogenous fatty acids 

2ZK1 A PTG full         

2008-

03-12 2.61 

Waku, T., Shiraki, T., 

Oyama, T., Fujimoto, 

Y., Maebara, K., 

Kamiya, N., Jingami, 

H., Morikawa, K. 

Structural insight into 

PPARgamma activation 

through covalent 

modification with 

endogenous fatty acids 

2ZK2 A PTG full         

2008-

03-12 2.26 

Waku, T., Shiraki, T., 

Oyama, T., Fujimoto, 

Y., Maebara, K., 

Kamiya, N., Jingami, 

H., Morikawa, K. 

Structural insight into 

PPARgamma activation 

through covalent 

modification with 

endogenous fatty acids 

2ZK3 A OCX 

covalent 

full         

2008-

03-12 2.58 

Waku, T., Shiraki, T., 

Oyama, T., Fujimoto, 

Y., Maebara, K., 

Kamiya, N., Jingami, 

Structural insight into 

PPARgamma activation 

through covalent 

modification with 



 

168 

 

H., Morikawa, K. endogenous fatty acids 

2ZK4 A OCR 

covalent 

full         

2008-

03-12 2.57 

Waku, T., Shiraki, T., 

Oyama, T., Fujimoto, 

Y., Maebara, K., 

Kamiya, N., Jingami, 

H., Morikawa, K. 

Structural insight into 

PPARgamma activation 

through covalent 

modification with 

endogenous fatty acids 

2ZK5 A NRO 

covalent 

full         

2008-

03-12 2.45 

Waku, T., Shiraki, T., 

Oyama, T., Fujimoto, 

Y., Maebara, K., 

Kamiya, N., Jingami, 

H., Morikawa, K. 

Structural insight into 

PPARgamma activation 

through covalent 

modification with 

endogenous fatty acids 

2ZK6 A C08 partial         

2008-

03-12 2.41 

Waku, T., Shiraki, T., 

Oyama, T., Maebara, 

K., Nakamori, R., 

Morikawa, K. 

The nuclear receptor 

PPARgamma individually 

responds to serotonin- and 

fatty acid-metabolites 

2ZNO A S44 full     

 * 41-43 

(BDB)   

2008-

04-30 2.40 

Oyama, T., Toyota, K., 

Waku, T., Hirakawa, 

Y., Nagasawa, N., 

Kasuga, J., Hashimoto, 

Y., Miyachi, H., 

Morikawa, K. 

Adaptability and selectivity 

of human peroxisome 

proliferator-activated 

receptor (PPAR) pan 

agonists revealed from 

crystal structures 

2ZVT A PTG full         

2008-

11-19 1.90 

Waku, T., Shiraki, T., 

Oyama, T., Morikawa, 

K. 

Atomic structure of mutant 

PPARgamma LBD 

complexed with 15d-PGJ2: 

novel modulation 

mechanism of 

PPARgamma/RXRalpha 

function by covalently 

bound ligands 



 

169 

 

3ADS A IMN full (x2)     

 * 

50000 

(BDB)   

2010-

01-29 2.25 

Waku, T., Shiraki, T., 

Oyama, T., Maebara, 

K., Nakamori, R., 

Morikawa, K. 

The nuclear receptor 

PPARgamma individually 

responds to serotonin- and 

fatty acid-metabolites 

3ADT A HID full (x2)         

2010-

01-29 2.70 

Waku, T., Shiraki, T., 

Oyama, T., Maebara, 

K., Nakamori, R., 

Morikawa, K. 

The nuclear receptor 

PPARgamma individually 

responds to serotonin- and 

fatty acid-metabolites 

3ADU A MYI full (x2)         

2010-

01-29 2.77 

Waku, T., Shiraki, T., 

Oyama, T., Maebara, 

K., Nakamori, R., 

Morikawa, K. 

The nuclear receptor 

PPARgamma individually 

responds to serotonin- and 

fatty acid-metabolites 

3ADV A SRO full (x2)         

2010-

01-29 2.27 

Waku, T., Shiraki, T., 

Oyama, T., Maebara, 

K., Nakamori, R., 

Morikawa, K. 

The nuclear receptor 

PPARgamma individually 

responds to serotonin- and 

fatty acid-metabolites 

3ADW A MYI full         

2010-

01-29 2.07 

Waku, T., Shiraki, T., 

Oyama, T., Maebara, 

K., Nakamori, R., 

Morikawa, K. 

The nuclear receptor 

PPARgamma individually 

responds to serotonin- and 

fatty acid-metabolites 

3ADW A OCR partner         

2010-

01-29 2.07 

Waku, T., Shiraki, T., 

Oyama, T., Maebara, 

K., Nakamori, R., 

Morikawa, K. 

The nuclear receptor 

PPARgamma individually 

responds to serotonin- and 

fatty acid-metabolites 

3ADX A IMN full     

 * 

50000 

(BDB)   

2010-

01-29 1.95 

Waku, T., Shiraki, T., 

Oyama, T., Maebara, 

K., Nakamori, R., 

Morikawa, K. 

The nuclear receptor 

PPARgamma individually 

responds to serotonin- and 

fatty acid-metabolites 

3ADX A NRO partner         

2010-

01-29 1.95 

Waku, T., Shiraki, T., 

Oyama, T., Maebara, 

K., Nakamori, R., 

Morikawa, K. 

The nuclear receptor 

PPARgamma individually 

responds to serotonin- and 

fatty acid-metabolites 



 

170 

 

3AN3 A M7S 

select 

full         

2010-

08-30 2.30 

Ohashi, M., Oyama, T., 

Nakagome, I., Satoh, 

M., Nishio, Y., 

Nobusada, H., Hirono, 

S., Morikawa, K., 

Hashimoto, Y., 

Miyachi, H. 

Design, Synthesis, and 

Structural Analysis of 

Phenylpropanoic Acid-

Type PPAR gamma-

Selective Agonists: 

Discovery of Reversed 

Stereochemistry-Activity 

Relationship 

3AN4 A M7R full         

2010-

08-30 2.30 

Ohashi, M., Oyama, T., 

Nakagome, I., Satoh, 

M., Nishio, Y., 

Nobusada, H., Hirono, 

S., Morikawa, K., 

Hashimoto, Y., 

Miyachi, H. 

Design, Synthesis, and 

Structural Analysis of 

Phenylpropanoic Acid-

Type PPAR gamma-

Selective Agonists: 

Discovery of Reversed 

Stereochemistry-Activity 

Relationship 

3B0Q A MC5 full         

2011-

06-13 2.10 

Tomioka, D., 

Hashimoto, H., Sato, 

M., Shimizu, T. 

Crystal structure of human 

PPAR gamma in complex 

with MCC555 

3B0R A GW9 

antagon

ist         

2011-

06-13 2.15 Shimizu, T. 

Human PPAR gamma 

ligand binding dmain 

complexed with GW9662 

in a covalent bonded form 

3B1M A KRC partial         

2011-

07-05 1.60 

Wakabayashi, K., 

Hayashi, S., Matsui, Y., 

Matsumoto, T., 

Furukawa, A., Kuroha, 

M., Tanaka, N., Inaba, 

T., Kanda, S., Tanaka, 

J., Okuyama, R., 

Wakimoto, S., Ogata, 

T., Araki, K., Ohsumi, 

J. 

Pharmacology and in Vitro 

Profiling of a Novel 

Peroxisome Proliferator-

Activated Receptor gamma 

Ligand, Cerco-A 



 

171 

 

3B3K A LRG full     

 * 480-

5930 

(BDB)   

2007-

10-22 2.60 

Montanari, R., 

Saccoccia, F., Scotti, 

E., Crestani, M., Godio, 

C., Gilardi, F., 

Loiodice, F., 

Fracchiolla, G., 

Laghezza, A., 

Tortorella, P., 

Lavecchia, A., 

Novellino, E., Mazza, 

F., Aschi, M., Pochetti, 

G. 

Crystal Structure of the 

Peroxisome Proliferator-

Activated Receptor gamma 

(PPARgamma) Ligand 

Binding Domain 

Complexed with a Novel 

Partial Agonist: A New 

Region of the Hydrophobic 

Pocket Could Be Exploited 

for Drug Design 

3BC5 A ZAA 

dual 

(a/g)     

 * 4 

(BDB) 

 * 5 

(BDB

) 

2007-

11-12 2.27 

Zhang, H., Ryono, 

D.E., Devasthale, P., 

Wang, W., O'Malley, 

K., Farrelly, D., Gu, L., 

Harrity, T., Cap, M., 

Chu, C., Locke, K., 

Zhang, L., Lippy, J., 

Kunselman, L., 

Morgan, N., Flynn, N., 

Moore, L., 

Hosagrahara, V., 

Zhang, L., Kadiyala, P., 

Xu, C., Doweyko, 

A.M., Bell, A., Chang, 

C., Muckelbauer, J., 

Zahler, R., Hariharan, 

N., Cheng, P.T. 

Design, synthesis and 

structure-activity 

relationships of azole acids 

as novel, potent dual PPAR 

alpha/gamma agonists. 

3CDP A YRG partial     

 * 2700-

7940 

(BDB)   

2008-

02-27 2.80 

Pochetti, G., Montanari, 

R., Mazza, F., Crestani, 

M., Godio, C., 

Loiodice, F., 

Fracchiolla, G., 

Lavecchia, A., 

Novellino, E. 

Crystal structures of 

PPARgamma ligand 

binding domain complexed 

with new partial and full 

agonists: a new region of 

the hydrophobic pocket 

could be exploited for drug 

design 



 

172 

 

3CDS A GRR full     

 * 3600 

(BDB)   

2008-

02-27 2.65 

Montanari, R., 

Saccoccia, F., Scotti, 

E., Crestani, M., Godio, 

C., Gilardi, F., 

Loiodice, F., 

Fracchiolla, G., 

Laghezza, A., 

Tortorella, P., 

Lavecchia, A., 

Novellino, E., Mazza, 

F., Aschi, M., Pochetti, 

G. 

Crystal Structure of the 

Peroxisome Proliferator-

Activated Receptor gamma 

(PPARgamma) Ligand 

Binding Domain 

Complexed with a Novel 

Partial Agonist: A New 

Region of the Hydrophobic 

Pocket Could Be Exploited 

for Drug Design 

3CS8 A BRL full 

 * 8-

440 

(BDB)   

 * 4-

2880 

(BDB) 

 * 30-

50000 

(BDB

) 

2008-

04-09 2.30 

Li, Y., Kovach, A., 

Suino-Powell, K., 

Martynowski, D., Xu, 

H.E. 

Structural and biochemical 

basis for the binding 

selectivity of peroxisome 

proliferator-activated 

receptor gamma to PGC-

1alpha. 

3CWD A LNA 

partial/f

ull       

 * 

1610 

(BDB

) 

2008-

04-21 2.40 

Li, Y., Zhang, J., 

Schopfer, F.J., 

Martynowski, D., 

Garcia-Barrio, M.T., 

Kovach, A., Suino-

Powell, K., Baker, P.R., 

Freeman, B.A., Chen, 

Y.E., Xu, H.E. 

Molecular recognition of 

nitrated fatty acids by 

PPAR gamma. 

3CWD A LNB 

partial/f

ull     

 * 45-70 

(BDB) 

 * 410 

(BDB

) 

2008-

04-21 2.40 

Li, Y., Zhang, J., 

Schopfer, F.J., 

Martynowski, D., 

Garcia-Barrio, M.T., 

Kovach, A., Suino-

Powell, K., Baker, P.R., 

Freeman, B.A., Chen, 

Y.E., Xu, H.E. 

Molecular recognition of 

nitrated fatty acids by 

PPAR gamma. 



 

173 

 

3D6D A LRG full     

 * 480-

5930 

(BDB)   

2008-

05-19 2.40 

Montanari, R., 

Saccoccia, F., Scotti, 

E., Crestani, M., Godio, 

C., Gilardi, F., 

Loiodice, F., 

Fracchiolla, G., 

Laghezza, A., 

Tortorella, P., 

Lavecchia, A., 

Novellino, E., Mazza, 

F., Aschi, M., Pochetti, 

G. 

Crystal Structure of the 

Peroxisome Proliferator-

Activated Receptor gamma 

(PPARgamma) Ligand 

Binding Domain 

Complexed with a Novel 

Partial Agonist: A New 

Region of the Hydrophobic 

Pocket Could Be Exploited 

for Drug Design 

3DZU D PLB partial         

2008-

07-30 3.20 

Chandra, V., Huang, P., 

Hamuro, Y., Raghuram, 

S., Wang, Y., Burris, 

T.P., Rastinejad, F. 

Structure of the intact 

PPAR-gamma-RXR-alpha 

nuclear receptor complex 

on DNA. 

3DZY D BRL full 

 * 8-

440 

(BDB)   

 * 4-

2880 

(BDB) 

 * 30-

50000 

(BDB

) 

2008-

07-30 3.10 

Chandra, V., Huang, P., 

Hamuro, Y., Raghuram, 

S., Wang, Y., Burris, 

T.P., Rastinejad, F. 

Structure of the intact 

PPAR-gamma-RXR-alpha 

nuclear receptor complex 

on DNA. 

3E00 D GW9 

antagon

ist         

2008-

07-30 3.10 

Chandra, V., Huang, P., 

Hamuro, Y., Raghuram, 

S., Wang, Y., Burris, 

T.P., Rastinejad, F. 

Structure of the intact 

PPAR-gamma-RXR-alpha 

nuclear receptor complex 

on DNA. 



 

174 

 

3ET0 A ET0 full         

2008-

10-06 2.40 

Artis, D.R., Lin, J.J., 

Zhang, C., Wang, W., 

Mehra, U., Perreault, 

M., Erbe, D., Krupka, 

H.I., England, B.P., 

Arnold, J., Plotnikov, 

A.N., Marimuthu, A., 

Nguyen, H., Will, S., 

Signaevsky, M., Kral, 

J., Cantwell, J., 

Settachatgull, C., Yan, 

D.S., Fong, D., Oh, A., 

Shi, S., Womack, P., 

Powell, B., Habets, G., 

West, B.L., Zhang, 

K.Y., Milburn, M.V., 

Vlasuk, G.P., Hirth, 

K.P., Nolop, K., Bollag, 

G., Ibrahim, P.N., 

Tobin, J.F. 

Scaffold-based discovery 

of indeglitazar, a PPAR 

pan-active anti-diabetic 

agent 



 

175 

 

3ET3 A ET1 pan         

2008-

10-06 1.95 

Artis, D.R., Lin, J.J., 

Zhang, C., Wang, W., 

Mehra, U., Perreault, 

M., Erbe, D., Krupka, 

H.I., England, B.P., 

Arnold, J., Plotnikov, 

A.N., Marimuthu, A., 

Nguyen, H., Will, S., 

Signaevsky, M., Kral, 

J., Cantwell, J., 

Settachatgull, C., Yan, 

D.S., Fong, D., Oh, A., 

Shi, S., Womack, P., 

Powell, B., Habets, G., 

West, B.L., Zhang, 

K.Y., Milburn, M.V., 

Vlasuk, G.P., Hirth, 

K.P., Nolop, K., Bollag, 

G., Ibrahim, P.N., 

Tobin, J.F. 

Scaffold-based discovery 

of indeglitazar, a PPAR 

pan-active anti-diabetic 

agent 

3FEJ A CTM full 

 * 740 

(BMO

AD_54

157)       

2008-

11-30 2.01 

Grether, U., Benardeau, 

A., Benz, J., Binggeli, 

A., Blum, D., Hilpert, 

H., Kuhn, B., Maerki, 

H.P., Meyer, M., Mohr, 

P., Puntener, K., Raab, 

S., Ruf, A., Schlatter, 

D. 

Design and biological 

evaluation of novel, 

balanced dual 

PPARalpha/gamma 

agonists 



 

176 

 

3FUR A Z12 partial 

 * 10 

(BMO

AD_54

272)       

2009-

01-14 2.30 

Motani, A., Wang, Z., 

Weiszmann, J., McGee, 

L.R., Lee, G., Liu, Q., 

Staunton, J., Fang, Z., 

Fuentes, H., Lindstrom, 

M., Liu, J., Biermann, 

D.H.T., Jaen, J., 

Walker, N.P., Learned, 

R.M., Chen, J.-L., Li, 

Y. 

INT131: a selective 

modulator of PPAR 

gamma 

3G9E A RO7 

dual 

(a/g)     

 * 21 

(BDB) 

 * 19 

(BDB

) 

 * 19 

(BM

OAD

_5415

6) 

2009-

02-13 2.30 

Benardeau, A., Benz, J., 

Binggeli, A., Blum, D., 

Boehringer, M., 

Grether, U., Hilpert, H., 

Kuhn, B., Marki, H.P., 

Meyer, M., Puntener, 

K., Raab, S., Ruf, A., 

Schlatter, D., Mohr, P. 

Aleglitazar, a new, potent, 

and balanced dual 

PPARalpha/gamma agonist 

for the treatment of type II 

diabetes. 

3GBK A 2PQ full     

 * 50 

(BDB)   

2009-

02-19 2.30 

Lin, C.-H., Peng, Y.-H., 

Coumar, M.S., 

Chittimalla, S.K., Liao, 

C.-C., Lyn, P.-C., 

Huang, C.-C., Lien, T.-

W., Lin, W.-H., Hsu, 

J.T.-A., Cheng, J.-H., 

Chen, X., Wu, J.-S., 

Chao, Y.-S., Lee, H.-J., 

Juo, C.-G., Wu, S.-Y., 

Hsieh, H.-P. 

Design and structural 

analysis of novel 

pharmacophores for potent 

and selective peroxisome 

proliferator-activated 

receptor gamma agonists 



 

177 

 

3H0A D D30 partial 

 * 33 

(BDB) 

 * 33 

(BMO

AD_54

154)   

 * 160 

(BDB)   

2009-

04-08 2.10 

Connors, R.V., Wang, 

Z., Harrison, M., 

Zhang, A., Wanska, M., 

Hiscock, S., Fox, B., 

Dore, M., Labelle, M., 

Sudom, A., Johnstone, 

S., Liu, J., Walker, 

N.P., Chai, A., Siegler, 

K., Li, Y., Coward, P. 

Identification of a 

PPARdelta agonist with 

partial agonistic activity on 

PPARgamma. 

3HO0 A DKD full     

 * 400-

860 

(BDB)   

2009-

06-01 2.60 

Fracchiolla, G., 

Laghezza, A., 

Piemontese, L., 

Tortorella, P., Mazza, 

F., Montanari, R., 

Pochetti, G., Lavecchia, 

A., Novellino, E., 

Pierno, S., Conte 

Camerino, D., Loiodice, 

F. 

New 2-Aryloxy-3-phenyl-

propanoic Acids As 

Peroxisome Proliferator-

Activated Receptors 

alpha/gamma Dual 

Agonists with Improved 

Potency and Reduced 

Adverse Effects on 

Skeletal Muscle Function 

3HOD A ZZH full     

 * 572-

580 

(BDB)   

2009-

06-02 2.10 

Fracchiolla, G., 

Laghezza, A., 

Piemontese, L., 

Tortorella, P., Mazza, 

F., Montanari, R., 

Pochetti, G., Lavecchia, 

A., Novellino, E., 

Pierno, S., Conte 

Camerino, D., Loiodice, 

F. 

New 2-Aryloxy-3-phenyl-

propanoic Acids As 

Peroxisome Proliferator-

Activated Receptors 

alpha/gamma Dual 

Agonists with Improved 

Potency and Reduced 

Adverse Effects on 

Skeletal Muscle Function 



 

178 

 

3IA6 A UNT 

dual 

(a/g)     

 * 13 

(BDB) 

 * 3 

(BDB

) 

 * 3 

(BM

OAD

_5426

7) 

2009-

07-13 2.31 

Casimiro-Garcia, A., 

Bigge, C.F., Davis, 

J.A., Padalino, T., 

Pulaski, J., Ohren, J.F., 

McConnell, P., Kane, 

C.D., Royer, L.J., 

Stevens, K.A., 

Auerbach, B., Collard, 

W., McGregor, C., 

Song, K. 

Synthesis and evaluation of 

novel alpha-heteroaryl-

phenylpropanoic acid 

derivatives as 

PPARalpha/gamma dual 

agonists. 

3K8S A Z27 partial         

2009-

10-14 2.55 

Li, Y., Wang, Z., 

Furukawa, N., Escaron, 

P., Weiszmann, J., Lee, 

G., Lindstrom, M., Liu, 

J., Liu, X., Xu, H., 

Plotnikova, O., Prasad, 

V., Walker, N., 

Learned, R.M., Chen, 

J.-L. 

T2384, a novel antidiabetic 

agent with unique 

peroxisome proliferator-

activated receptor gamma 

binding properties 

3KMG A 538 

partial/f

ull         

2009-

11-10 2.10 

Lamotte, Yann, 

Martres, Paul, Faucher, 

Nicolas, Laroze, Alain, 

Grillot, Didier, 

Ancellin, Nicolas, 

Saintillan, Yannick, 

Beneton, Veronique, 

Gampe, Robert 

Synthesis and biological 

activities of novel indole 

derivatives as potent and 

selective PPAR-gamma 

modulators 

3LMP A CEK partial         

2010-

01-31 1.90 

Furukawa, A., Arita, T., 

Satoh, S., 

Wakabayashi, K., 

Hayashi, S., Matsui, Y., 

Araki, K., Kuroha, M., 

Ohsumi, J. 

Discovery of a novel 

selective PPARgamma 

modulator from (-)-

Cercosporamide 

derivatives 



 

179 

 

3NOA A 5BC full         

2010-

06-25 1.98 

Peng, Y.H., Coumar, 

M.S., Leou, J.S., Wu, 

J.S., Shiao, H.Y., Lin, 

C.H., Lyu, P.C., Hsieh, 

H.P., Wu, S.Y. 

Crystal structure of human 

PPAR-gamma ligand 

binding domain complex 

with a potency improved 

agonist 

3OSI A XDH partial         

2010-

09-09 2.70 

Riu, A., Grimaldi, M., 

le Maire, A., Bey, G., 

Phillips, K., 

Boulahtouf, A., Perdu, 

E., Zalko, D., Bourguet, 

W., Balaguer, P. 

Peroxysome Proliferator-

Activated Receptor 

Gamma is a Target for 

Halogenated Analogues of 

Bisphenol-A. 

3OSW A XDI partial         

2010-

09-10 2.55 

Riu, A., Grimaldi, M., 

le Maire, A., Bey, G., 

Phillips, K., 

Boulahtouf, A., Perdu, 

E., Zalko, D., Bourguet, 

W., Balaguer, P. 

Peroxysome Proliferator-

Activated Receptor 

Gamma is a Target for 

Halogenated Analogues of 

Bisphenol-A. 

3PBA A ZXG partial         

2010-

10-20 2.30 

Riu, A., le Maire, A., 

Grimaldi, M., 

Audebert, M., 

Hillenweck, A., 

Bourguet, W., 

Balaguer, P., Zalko, D. 

Characterization of Novel 

Ligands of ER{alpha}, 

Er{beta}, and 

PPAR{gamma}: The Case 

of Halogenated Bisphenol 

A and Their Conjugated 

Metabolites. 

3PRG A 

 

apo         

1998-

08-24 2.90 

Uppenberg, J., 

Svensson, C., Jaki, M., 

Bertilsson, G., 

Jendeberg, L., 

Berkenstam, A. 

Crystal structure of the 

ligand binding domain of 

the human nuclear receptor 

PPARgamma. 

3QT0 A 486      

2011-

02-22 2.50 

Lin, S., Han, Y., Rong, 

H., Zheng, S., Lin, S.-

C., Li, Y. 

Revealing a steroid 

receptor ligand as a unique 

PPARgamma agonist 



 

180 

 

3R5N A MLO      

2011-

03-18 2.00 

Zhang, H., Xu, X., 

Chen, L., Chen, J., Hu, 

L., Jiang, H., Shen, X. 

Crystal structure of 

PPARgammaLBD 

complexed with the agonist 

magnolol 

3R8A A HIG    

* 591 

(BDB)  

2011-

03-23 2.41 

Casimiro-Garcia, A., 

Filzen, G.F., Flynn, D., 

Bigge, C.F., Chen, J., 

Davis, J.A., Dudley, 

D.A., Edmunds, J.J., 

Esmaeil, N., Geyer, A., 

Heemstra, R.J., Jalaie, 

M., Ohren, J.F., 

Ostroski, R., Ellis, T., 

Schaum, R.P., Stoner, 

C. 

X-ray crystal structure of 

the nuclear hormone 

receptor PPAR-gamma in a 

complex with a compound 
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8.3 Appendix C: Virtual screening process  

8.3.1 Steps for process 

The basic steps for performing VS using the methods divulged in this dissertation are as 

follows: 

1. Download PDB structure complexed with a ligand. 

2. Perform re-docking to test predictability of the structure. 

3. Based on a catalogue of known active compounds (either from the PDB or from 

DUD), perform additional docking (cross-docking) to assess predictability with 

non-native ligands. 

4. Repeat steps 1 through 3 for additional structure models under consideration for 

unknown screening. If using multiple structure models, superimpose the 

structures before performing docking. 

5. Perform ligand-based pharmacophore screening using PharmaGist or Molecular 

Operating Environment (MOE). 

a. Given a multi-mol2 of ligands, PharmaGist 

(http://bioinfo3d.cs.tau.ac.il/PharmaGist/) will provide sets of features that 

can then be used to generate 3D models in MOE by selecting the pivot 

molecule as the representative for the feature set. The pharmacophore 

tools in MOE will automatically generate features based on the ligand 

provided and that set can be adjusted to match the common features 

proposed by PharmaGist. 

b. If a multi-mol2 file of ligands is imported as a database in MOE (see 

tutorials in MOE for making a database), the pharmacophore elucidation 

tool can be used to find common features. Groups of ligands with similar 

activity type should be used to do this (similar to the PharmaGist step). 

6. Compare the created 3D pharmacophore models to the database of unknown 

compounds in MOE. MOE will generate a database of the compounds that match 

the pharmacophore model, which you can open and save as a text file for further 

manipulation. A separate database would need to be generated for each 3D model 

compared. 

7. Using the scripts and commands provided below (step 1 and step 2), prepare the 

unknown ligands for screening by creating PDBQT files, upload these and the 

PDBQT files for the receptor models to the supercomputer. A copy of the 

AutoDock Vina (Vina) executable should be uploaded as well. 

8. The grid box tools in AutoDock Tools (ADT) should be used to determine the 

grid box center and size with a 1.0 Å grid space. These values should be recorded 

into a configuration file (config.txt) to use for docking with Vina. The 

configuration file should be uploaded to the super computer as well. 

9. Use the shell script in step 4 as a guide for running the docking on a 

supercomputer. Multiple scripts would need to be created for dockings with the 

dataset of ligands divided into multiple directories. 

10. The scripts in step 5 are for post processing of the docking output files. The table 

of energies and list of scored poses relative to key residues should be downloaded 

to determine binders. This data combined should be combined with the ligand 
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pharmacophore lists to determine binders. The data can be imported into a 

spreadsheet program (like Microsoft Excel) to sort the data. 

a. Sort by presence of key interactions. 

b. Sort by free energy of binding (most negative to least negative) 

11. Use MOE and/or the ToxAlert server (https://ochem.eu/home/show.do) to 

determine toxicity for the top binders on the list. 

12. An online search for patents and publications that reference the top binders and 

the protein of interest will determine novelty of the selected binders. 

8.3.2 Scripts for performing virtual screening 

Below are the Shell and Perl scripts used to perform VS with a large ligand database. The 

scripts were designed to work with a ligand database numbering in the thousands and 

more than one protein receptor model into which all the ligands were docked. The scripts 

can be adjusted for use with smaller databases or a single receptor model. Shells scripts 

for execution on a supercomputer have the #PBS special character in the header of the 

script. Headers also include a short description of the script and any additional scripts or 

files necessary for execution. Shell scripts that should be executed on an individual 

machine (not the supercomputer) are executed with the prefix “sh”. Perl scripts require 

the “perl” prefix to run. 

 

8.3.3 Step 1: Prepare the ligand files for docking (prepare_ligand.sh) 

 
# Must have split_multi_mol2_file.py and prepare_ligand4.py in 
# working directory. 
# These scripts can be found within the AutoDock4 python scripts 
# or in the online tutorial: http://autodock.scripps.edu/faqs-
help/tutorial/using-autodock4-for-virtual-screening 
 
# Ask user for path in which files are to be created. 
# Path should also contain the multi-mol2 file with all the 
# ligands for docking 
echo "Enter the path of the VS Directory:" 
read VSROOT 
cd $VSROOT 
 
# Make directory for the ligand PDBQT files 
mkdir Ligands 
echo "Enter the name of the multi-mol2 file (EXCLUDING the .mol2 extension):" 
read ligs 
cd $VSROOT/Ligands 
 
# create links to the python script to split the multi-mol2 and 
# the multi-mol2 into the Ligands directory 
# This section can be commented out if the ligands are already 
# split into individual mol2 files. 
ln -s $VSROOT/split_multi_mol2_file.py . 
ln -s $VSROOT/"$ligs".mol2 . 
# Path for the pythonsh executable may be different depending on 
# how MGLTools was installed. This should be checked before 
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# running, or is a good place to start for debugging if 
# the script doesn’t work. 
/Library/MGLTools/1.5.6rc2/bin/pythonsh split_multi_mol2_file.py -i 
"$ligs".mol2 
\rm "$ligs".mol2 
\rm split_multi_mol2_file.py 
 
# Use the prepare_ligand4.py to prepare a PDBQT for each ligand 
for f in `ls *.mol2`; do 
    echo $f 
     /Library/MGLTools/1.5.6rc2/bin/pythonsh $VSROOT/prepare_ligand4.py -l $f 
-d $VSROOT/ligand_dict.py 
    done 
 

8.3.4 Step 2: command line items for dividing ligand files into separate 

directories for VS on supercomputer. 

 
# This implies parallel serial runs of the AutoDock Vina program 
# To incorporate this into the shell script, create a loop 
# with a counter. The max value should be the total number of 
# ligand files divided by 300. This will be the number of 
# directories created. 
#mv `ls | head -300` directory_name 
 
# If lists are created first... 
# (Helpful if docking stops unexpectedly on supercomputer and you need to pick 
up where you left off. 
# For this, list the completed dockings into a text file and delete these from 
the full list of ligands.) 
#cat dockings1_done_list.txt | xargs -I % mv % directory_name 
 
# Ligands and receptor(s) files should be uploaded to 
# the supercomputer. Lists of each ligand directory should be  
# made to use with the lsvs_mpi.sh script. 
# Create config.txt that contains the size and center location  
# for the grid box. 
# The box information should be established using ADT. 
 
# Example config.txt 
#center_x = 18.656 
#center_y = -21.929 
#center_z = 7.715 
#size_x = 30 
#size_y = 40 
#size_z = 40 
 

8.3.5 Step 3: Large-scale screening script for running serial dockings on a 

supercomputer (lsvs_mpi.sh). 

 
# The shell script should be copied, one for each directory of  
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# ligands. 
#!/bin/bash 
 
## The time limit for the job.  If it runs over this it will be killed. 
## -lwalltime=0:05:0 would be five minutes. 
# A ligand directory containing 300 ligands should take about 48 hours on 6 
processors. 
# This estimate was calculated using HokieOne 
#PBS -l walltime=00:48:00:00 
 
# Set the number of nodes, and the number of processors per node (generally 
should be 6) 
# HokieOne: 6 processors per node 
# BlueRidge: 16 processors per node 
#PBS -l nodes=1:ppn=6 
 
#PBS -W group_list=hokieone 
#PBS -q normal_q 
#PBS -A hokieone ## set account to bevanlab for BlueRidge 
 
# Uncomment and add your email address to get an email when your job starts, 
completes, or aborts 
##PBS -M snl@vt.edu 
##PBS -m bea 
 
## Get in to the directory qsub was run from 
cd $PBS_O_WORKDIR 
 
# Run the MPI program mpiProg. The -np flag tells MPI how many processes to 
use. $PBS_NP 
# is an environment variable that holds the number of processes you requested. 
So if you 
# selected nodes=4:ppn=6 above, $PBS_NP will hold 24. 
VSROOT="/home/lewissn/msusdrugs_lsvs" 
for f in `cat ligand1.list`; do 
   LIG=`basename $f .pdbqt` 
 
   for g in `cat receptor.list`; do 
   REC=`basename $g .pdbqt` 
   $VSROOT/vina --config $VSROOT/config.txt --receptor $VSROOT/Receptors/"$g" 
--ligand $VSROOT/Ligands/"$f" --log 
$VSROOT/Dockings11/"${LIG}"_"${REC}"_log.txt --out 
$VSROOT/Dockings11/"${LIG}"_"${REC}"_out.pdbqt --cpu $PBS_NP 
   done 
done 
exit; 

 

8.3.6 Step 4: Post processing of the docked poses (post-process.sh). 

 
# Requires two text files: directory.list and receptor.list 
# first contains list of directory names, second contains list of receptor 
filenames 
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# Also need list of interactions for which to search relative to docked poses 
(key_intxns_list.txt) 
# list should be in the format: HIS 449 NE2 (3-letter residue name, residue 
number, atom name) 
# Script requires five perl scripts in working directory (included below): 
# 1. vina_pdbqt2pdb_multi.pl 
# 2. vina_parse_E.pl 
# 3. all_energy_pose_multi.pl 
# 4. calc_all_dist_ato.pl 
# 5. weighted_score_key_intxns.pl 
 
#!/bin/bash 
 
## The time limit for the job.  If it runs over this it will be killed. 
## -lwalltime=0:05:0 would be five minutes. 
#PBS -l walltime=00:12:00:00 
 
# Set the number of nodes, and the number of processors per node (generally 
should be 6) 
#PBS -l nodes=1:ppn=6 
 
#PBS -W group_list=hokieone 
#PBS -q normal_q 
#PBS -A hokieone 
 
# Uncomment and add your email address to get an email when your job starts, 
completes, or aborts 
#PBS -M snl@vt.edu 
#PBS -m bea 
 
## Get in to the directory qsub was run from 
cd $PBS_O_WORKDIR 
 
# Run the MPI program mpiProg. The -np flag tells MPI how many processes to 
use. $PBS_NP 
# is an environment variable that holds the number of processes you requested. 
So if you 
# selected nodes=4:ppn=6 above, $PBS_NP will hold 24. 
 
# recursive running of perl script to calculate distances for docked poses 
relative to protein. 
 
# needed paths 
VSPATH=/home/lewissn/msusdrugs_lsvs 
RECPATH=$VSPATH/Receptors 
 
cd $VSPATH 
 
# isolate lowest energy pose and create PDB file 
for j in `cat $VSPATH/directory.list`; do 
   perl vina_pdbqt2pdb_multi.pl "$j" 
   done 
 
# generate list of energies from lowest energy poses 
for i in `cat $VSPATH/directory.list`; do 
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   cd "$i" 
   perl $VSPATH/vina_parse_E.pl pdb_files 
   cd $VSPATH 
   done 
 
# create table of energies 
perl all_energy_pose_multi.pl directory.list table_energies.txt 
 
# need to reorganize files into folders with receptor name 
for b in `cat receptor.list`; do 
   DIR=`basename $b .pdbqt` 
   mkdir $DIR 
   cd $VSPATH/$DIR 
   mv $VSPATH/Dockings*/pdb_files/*_$DIR*.pdb ./ 
   cd $VSPATH 
   done 
 
# remove pdb_files directories as no longer needed 
rm -r $VSPATH/Dockings*/pdb_files/ 
 
# calculate distances 
for g in `cat $VSPATH/receptor.list`; do 
   DIR=`basename $g .pdbqt` 
   cd $VSPATH/$DIR 
   perl $VSPATH/calc_all_dist_auto.pl 4.0 $RECPATH/"$g" $VSPATH/$DIR 
   cd $VSPATH 
done 
 
# find poses with desired interactions 
for f in `cat $VSPATH/receptor.list`; do 
   DIR=`basename $f .pdbqt` 
   cd $VSPATH/$DIR 
   cp $VSPATH/key_intxn_list.txt ./ 
   perl $VSPATH/weighted_score_key_intxns.pl key_intxn_list.txt distances 
"$DIR"_scored.txt "$DIR"_success.txt 
   rm ./key_intxn_list.txt 
   cd $VSPATH 
   echo "Finished interaction scoring for $DIR!" 
done 
 
exit; 

 

8.3.7 vina_pdbqt2pdb_multi.pl 

 
=head1 
Objective: Write PDB formated text file using PDBQT formated text file. 
Input: multi-PDBQT Vina output file. Coded to process one file at a time. 
   Can be changed to process multiple files in this format. Sections are 
commented out 
Output: PDB file with same file name 
 
Format for input: 
   MODEL 1 
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   HETATM    1  C7  735 A 469      25.676  17.012  -1.075  1.00 17.50     
0.260 C  
   HETATM    2  O8  735 A 469      24.450  17.131  -1.095  1.00 19.39    -
0.267 OA 
   etc. 
   ENDMDL 
Execution: perl vina_pdbqt2pdb.pl 
 
1Apr11 
Written by Nikki Lewis 
18Dec12 added conditional to read in .pdb files as well as .pdbqt for parsing 
energy information. 
 
2Jan12 edit to read in arguments with script execution for scripting on 
HOKIEONE 
new usage: perl vina_pdbqt2pdb_multi.pl directory 
=cut 
 
#!C:/Perl/bin -w # for PC 
#!/usr/bin/perl -w # for Unix 
 
use strict; 
 
#-- ask user for directory name 
#-- read in all text file names into array 
my $dir = $ARGV[0]; 
opendir DIR, $dir or die "Directory $dir could not be opened.\n"; # open 
directory 
my @file_array = grep{$_ =~ /(.pdbqt)/} readdir DIR; # get file names 
 
#-- report number of files 
my $count = @file_array; 
print "$count PDBQT files were found.\n"; 
 
#-- make directory to hold PDB files 
my $path = 'pdb_files'; 
mkdir "$dir/$path" or print "$dir/$path exists\n"; 
 
for(my $i=0; $i<@file_array; $i++) 
{ 
   my($output,$file_contents_ref); 
   ($output,$file_contents_ref) = make_pdb($dir,$file_array[$i]); 
 
   open(OUT, ">$dir/$path/$output"); 
   my @temp = @$file_contents_ref; 
   for(my $j=0; $j<@temp; $j++) 
   { 
      print OUT $temp[$j]; 
   } 
   print OUT "END\n"; 
   close OUT; 
} 
 
print "Finished!\n"; 
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# subroutine input: input file name and path 
# output: output file name and contents 
 
sub make_pdb { 
   my ($dir,$input) = @_; 
   my @file_contents; 
    
   # create output file for PDB using PDBQT file name 
   my $output = $input; 
   $output =~ s/pdbqt/pdb/; 
   # IMPORTANT: each iteration of code will overwrite output previously in 
named output file  
 
   # open PDBQT file 
   unless (open(TEXTFILE, "$dir/$input")) # open text file 
   { 
      print "Could not open file $input!\n"; 
   } 
 
   my $line; # comment out this for multiple files 
   # read in each line 
   while($line = <TEXTFILE>) 
   { 
      if($line =~ /(MODEL 1)/) 
      { 
         push(@file_contents,"REMARK MODEL 1\n"); 
      } 
      elsif($line =~ /(REMARK VINA RESULT)/) 
      { 
         push(@file_contents,$line); 
      } 
      # look for HETATM lines 
      elsif($line =~ /(HETATM)/ || $line =~ /(ATOM)/) 
      { 
         my $charge = substr($line,70,6); 
         $line =~ s/$charge/      /; 
         push(@file_contents,$line); 
      } 
      elsif($line =~ /(ENDMDL)/) 
      { 
         last; 
      } 
   } 
 
   # close text file after recording energy value 
   close TEXTFILE; 
    
   return ($output,\@file_contents); 
} 
 
exit; 
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8.3.8 vina_parse_E.pl 

 
=head1 
Print the model number and Vina energy value line from each PDBQT output file 
in a directory. 
25Oct12 NLewis 
Usage: perl vina_parse_E.pl dir_name 
=cut1 
 
#!C:/Perl/bin -w # for PC 
#!/usr/bin/perl -w # for Unix 
 
use strict; 
 
# read in directory name with script execution line 
my $dir = $ARGV[0]; 
 
# open $dir and read in file contents with .pdbqt extention 
opendir DIR, $dir or die "Directory $dir could not be opened.\n"; 
my @file_array = grep{$_ =~ /(.pdbqt)|(.pdb)/} readdir DIR; 
 
# report number of pdbqt files read 
my $count = scalar(@file_array); 
print "$count files found.\n"; 
 
# generate and open output file 
open(OUT, ">parsed_energies.txt"); 
 
# open each file, record model and energies in array, print file name and 
energy values to output file 
my %file_energies; 
for(my $i=0; $i<@file_array; $i++) 
{ 
   unless(open(TEXTFILE, "$dir/$file_array[$i]")) 
   { 
      print "Could not open file $file_array[$i]!\n"; 
   } 
 
   my @model; 
   my @energy; 
   while(my $line = <TEXTFILE>) 
   { 
      if($line =~ /^(REMARK VINA RESULT)/) 
      { 
         chomp $line; 
         my @blah = split(':',$line); 
         $blah[1] =~ s/^\s+//; # remove leading spaces 
         my @temp = split(/\s+/,$blah[1]); # index [0] should have energy 
value 
         push(@energy, "$temp[0]\t"); # push energy value into array 
      } 
      else {} 
   } 
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   # print all to output file 
   #print OUT "$file_array[$i]\t@energy\n"; 
 
   # print 1st/lowest energy to output 
   print OUT "$file_array[$i]\t$energy[0]\n"; 
 
   close TEXTFILE; 
} 
 
close OUT; 
exit; 

 

8.3.9 all_energy_pose_multi.pl 

 
=head 
Script to read parsed energy lists for multiple docked poses and report most 
negative energy value and pose. 
Specific to file structure with directories named by PDB ID. 
 
Input: list of directory names containing "parsed_energies.txt" 
   EXAMPLE: ligand_protein_out.pdb \t -#.# \n 
Output: tab delimited table of all energy values  
 
usage: perl all_energy_pose.pl dir_name_list.txt output_name.txt 
19Dec12 NLewis 
 
2Jan13 original script adjusted for use on HOKIEONE where file structure is 
not dependent on PDB ID as directory name 
new usage: perl all_energy_pose_multi.pl directory.list output_name.txt 
=cut 
 
#!C:/Perl/bin -w 
#!/usr/bin/perl -w 
 
use strict; 
 
# directory name list 
my $input = $ARGV[0]; 
unless ( open(INFILE, "$input") ) 
{ 
   print "Could not open directory list $input\n"; 
} 
my @directories = <INFILE>; 
close INFILE; 
chomp (@directories); 
 
my $output = $ARGV[1]; 
my @array_addy; 
my %pose_name; 
my %rec_names; 
 
# set output file name 
open(OUT, ">$output"); 
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for(my $i=0; $i<@directories; $i++) 
{ 
   opendir DIR, $directories[$i] or die "Directory $directories[$i] could not 
be opened.\n"; 
 
   # open energy list file 
   unless (open (ENERGY, "$directories[$i]/parsed_energies.txt")) 
   { 
     print "Could not open energy file 
$directories[$i]/parsed_energies.txt\n"; 
   } 
    
   my $line; 
   while ($line = <ENERGY>) 
   { 
      chomp $line; 
      my ($pose, $energy) = split(/\t/,$line); 
      my ($lig,$no,$pro,$out); 
      my $new_lig; 
 
      if($pose =~ /(_\d_)/) 
      { 
         ($lig,$no,$pro,$out) = split('_',$pose); 
          $new_lig = $lig."_".$no; 
      } 
      else 
      { 
         ($lig, $pro, $out) = split('_',$pose); 
         $no = ''; 
         $new_lig = $lig; 
      } 
      # now have ligand name 
 
      if(exists $rec_names{$pro}) {} # record receptor names 
      else 
      { $rec_names{$pro} = 1; } 
 
      if(exists $pose_name{$new_lig}) # look for ligand name 
      { 
        if(exists $pose_name{$new_lig}->{$pro}) # look for protein name 
        { $pose_name{$new_lig}->{$pro} .= ",$energy"; } 
        else 
        { $pose_name{$new_lig}->{$pro} = $energy; } 
      } 
      else # if ligand not in hash, set hash for holding proteins and energies 
      { 
         my %hash; 
         $hash{$pro} = $energy; 
         $pose_name{$new_lig} = \%hash; 
      } 
 
   } 
} 
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foreach my $rec (sort keys %rec_names) 
{ 
   print OUT "\t$rec"; 
} 
print OUT "\n"; 
 
foreach my $key (sort keys %pose_name) # sort by ligand name 
{ 
   print OUT "$key"; 
   my $ref = $pose_name{$key}; 
   my %hash = %$ref; 
   foreach my $k (sort keys %hash) # sort by protein name 
   { 
      print OUT "\t$hash{$k}"; 
   } 
   print OUT "\n"; 
} 
 
close OUT; 
 
exit; 
 

8.3.10 calc_all_dist_auto.pl 

 
=head1 
Calculate the distance between the docked conformation of a ligand and all 
residues of the macromolecule within a certain threshold. 
Edited version of calc_atom_dist_auto_2Nov10.pl 
 
Input File Format Examples: 
Ligand file 
   HETATM    1  OAB DRG     1       9.181  -6.482  37.145  1.00 20.00      
puni O 
   or 
   ATOM ...etc... 
Protein file 
   ATOM      1  N   MET A 206      14.807   5.817   3.398  1.00 65.59           
N 
 
Edit: 21Dec10 
 
No longer need interaction file as script will calculate all distances for all 
atoms. 
This script will probably take considerablly longer to run. 
NOTE: Make sure protein PDB file DOES NOT contain hydrogen atoms. The script 
does not contain a conditional for exclusion of these atoms. 
 
5Jul12 Added conditional that will ignore hydrogen atoms in protein. 
 
18Dec12 Edited to run with execution through shell script 
usage perl calc_all_dist_auto.pl 4.0 protein.pdb results_dir 
=cut 
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#!C:/Perl/bin -w 
#!/usr/bin/perl -w 
 
use strict; 
 
#22Feb12 include mkdir command for distances folder 
mkdir 'distances' or print "Directory distances exists.\n"; 
 
# get threshold value from user 
#print "threshold value for distance measurements: "; 
#my $threshold = <STDIN>; 
#chomp $threshold; 
my $threshold = $ARGV[0]; 
 
# read in coordinates for protein atoms 
# read in lines with 'ATOM' 
# input: protein PDB 
 
#print "protein file name (no hydrogen atoms): "; 
#my $protein = <STDIN>; 
#chomp $protein; 
my $protein = $ARGV[1]; 
 
  unless (open (PRO, "$protein")) 
   { 
 print "Could not open file $protein!\n"; 
 exit; 
   } 
 
# VARIABLES 
my $pro_line; # variable for while loop reading in file 
my ($bx, $by, $bz); # atom coordinates 
my ($res_name, $res_num, $res_atom_name); # residue atom attributes 
my %pro_atom_coordinates; # hash to hold relevant residues 
# these match atoms read from interaction file 
my $res_id; # combined $res_name and $res_num 
my $atom_id; # combined $res_atom_name and 3 coordinates 
 
# pull out reisdue name, residue number, atom name, and each of 3 coordinates 
while($pro_line = <PRO>) 
{ 
   if($pro_line =~ /^(ATOM)/) 
   { 
      $res_atom_name = substr($pro_line,12,4); # position 12 for 4 characters 
      # atom names should be only 3 characters long 
      $res_atom_name =~ s/\s//g; # remove whitespace 
 
      # conditional for hydrogen atoms 
      # do nothing if atom type is "H*" 
      if ($res_atom_name =~ /^H/) 
      {} 
      else 
      { 
      $res_name = substr($pro_line,17,3); # position 17 for 3 characters 
      # residues names should be only 3 characters long 
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      $res_num = substr($pro_line,23,3); 
      # residue numbers should be a max of 3 digits 
      $res_num =~ s/\s//g; # remove whitespace 
 
      # set up residue id (residue name and number) 
      $res_id = "$res_name\t$res_num\t$res_atom_name"; # use $res_id as key 
for hash 
 
      # save $res_id --> coordinates to %pro_atom_coordinates if match found 
         # coordinates 
         $bx = substr($pro_line,30,8); 
         $bx =~ s/\s//g; # remove whitespace 
         $by = substr($pro_line,38,8); 
         $by =~ s/\s//g; # remove whitespace 
         $bz = substr($pro_line,46,8); 
         $bz =~ s/\s//g; # remove whitespace 
 
         # associate coordinates with $res_atom_name 
         $atom_id = "$bx,$by,$bz"; 
 
         # put all atom-coordinate pairs into hash by residue ID 
         if(exists $pro_atom_coordinates{$res_id}) 
         { 
         } 
         else 
         { 
            $pro_atom_coordinates{$res_id} = $atom_id; 
         } 
      } 
   } 
} 
# Now have hash for protein information 
# $res_id = $res_name,$res_num 
# $atom_id = $res_atom_name,$bx,$by,$bz; 
# $res_id --> $atom_id 
# Example HIS\t449\tNE2 --> x,y,z 
 
close PRO; 
my $pro_coord_ref = \%pro_atom_coordinates; # reference to send to subroutines 
 
#---------------------------------------------------- 
 
# get input files names 
# a list should be created of all the pose PDB files to compare to the protein 
file 
# should be list of complete file names (with .pdb) 
 
# get list of all poses in directory 
#print "result directory name: "; 
#my $dir = <STDIN>; 
#chomp $dir; 
my $dir = $ARGV[2]; 
opendir DIR, $dir or die "Directory $dir could not be opened.\n"; # comment 
out this and subsequent 2 lines for specific list option above 
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my @res_list = grep{$_ =~ /(.pdb)/} readdir DIR; 
my $result_list = \@res_list; 
 
# send results list and reference for protein coordinates to subroutine 
get_ligand ($dir,$result_list,$pro_coord_ref); 
 
print "***Finished distance calculation for $dir!***\n"; 
# END OF MAIN 
 
#------------------------------------------------------- 
#subroutine 
# Get coordinate information for posed ligand. 
# Send ligand information to another subroutine (calc_dist_out) for distance 
calculation 
# and printing. 
# Input: $results (list of pose PDBs), $pro_coord_ref (reference for hash 
# with protein coordinates) 
# Return: N/A 
#-------------------------------------------------------- 
sub get_ligand { 
  my ($dir,$result_list,$pro_ref) = @_; 
 
  # split results list into array for loop 
  my @ligand = @$result_list; 
#  my @ligand = split(/\n/, @$result_list); 
 
  # loop for opening ligand and parsing coordinates 
  for(my $i=0; $i<@ligand; $i++) 
  { 
     unless (open (LIG, "$dir/$ligand[$i]")) # open file 
     { 
      print "Could not open file $ligand[$i]!\n"; 
      exit; 
     } 
 
     # hash for ligand atom coordinates 
     my %atom_coordinates; 
 
     # variables for getting coordinates 
     my $lig_line; 
     my ($ax, $ay, $az); 
     my ($lig_name, $atom_name); 
 
     # read in line with 'HETATM' 
     # pull out ligand name and atom name, each of 3 coordinates 
     while($lig_line = <LIG>) 
     { 
        if($lig_line =~ /^(HETATM)/ || $lig_line =~ /^(ATOM)/) 
        { 
           $atom_name = substr($lig_line,12,4); # position 13 for 3 characters 
           $atom_name =~ s/\s//g; 
            
           $lig_name = substr($lig_line,17,3); # position 17 for 3 characters 
           # ligand names should be only 3 characters long 
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           # coordinates 
           $ax = substr($lig_line,30,8); 
           $ax =~ s/\s//; # remove whitespace 
           $ay = substr($lig_line,38,8); 
           $ay =~ s/\s//; # remove whitespace 
           $az = substr($lig_line,46,8); 
           $az =~ s/\s//; # remove whitespace 
 
           if($atom_name !~ /^H/) # ignore hydrogens in ligand 
           { 
             # put all atom coordinates into hash 
             # all atom names should be unique 
             my $lig_id = "$lig_name\t$atom_name"; 
 
             if(exists $atom_coordinates{$atom_name}) {} 
             else { $atom_coordinates{$lig_id} = "$ax,$ay,$az"; } 
           } 
         } 
       } 
     # Now have hash for ligand information 
     # ligand_name --> $lig_name 
     # $atom_name --> $ax,$ay,$az 
     # Example: DRG\tC1 --> x,y,z 
    close LIG; 
 
    # Call subroutine to calculate distances and print to output file. 
    # Send reference for atom coordinate hash, ligand file name, 
    # and reference for protein coordinate hash. 
    # \%atom_coordinates, $ligand[$i], and $pro_ref 
    calc_dist_out(\%atom_coordinates, $ligand[$i], $pro_ref); 
   } 
} 
 
#--------------------------------------------------- 
# subroutine 
# Calculate distances and print date to output file. 
# Input: \%atom_coordinates, $ligand[$i], and $pro_ref 
# (atom coordinate hash reference, ligand pose file name, and protein 
coordinate hash reference) 
# Return: N/A 
#--------------------------------------------------- 
sub calc_dist_out { 
   my ($lig_coord_ref, $lig_filename, $pro_coord_ref)=@_; 
 
   # reference hashes 
   #my %atom_coordinates = %$lig_coord_ref; 
   my %pro_atom_coordinates = %$pro_coord_ref; 
 
   # creat output file 
   # remove .pdb extension 
   $lig_filename =~ s/.pdb/.txt/; 
   open (OUT, ">distances/intxns_$lig_filename"); 
 
   print OUT 
"Ligand_Name\tAtom1\tRes_Name\tRes_Num\tAtom2\tcalc_dist\tinteraction\n"; 
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   # calculate distance between each protein and ligand atom 
   # only keep distances less than 4.000 Angstrom 
   my ($key,$value); 
   while(($key,$value) = each %pro_atom_coordinates) 
   { 
      # set protein atom coordinates 
      my @pro_xyz = split(',',$value); # split $value into separate 
coordinates 
      my $bx = $pro_xyz[0]; 
      my $by = $pro_xyz[1]; 
      my $bz = $pro_xyz[2]; 
 
      # measure protein atom against each ligand atom 
      my ($k, $v); 
      while (($k,$v) = each %$lig_coord_ref) 
      { 
         my @atm_xyz = split(',',$v); 
         my $ax = $atm_xyz[0]; 
         my $ay = $atm_xyz[1]; 
         my $az = $atm_xyz[2]; 
 
         # calculate distance 
         my $distance = sprintf("%.3f", (sqrt(($ax-$bx)**2 + ($ay-$by)**2 + 
($az-$bz)**2))); 
 
         # print distance if less than threshold in Angstroms 
         my $phobic = 3.90; 
         my $philic = 3.30; 
         if($distance <= $phobic && $distance > $philic) 
         { 
           my @temp_pro = split(/\t/,$key); # [0]Res_Name [1]Res_No 
[2]Atom2 
            my @temp_lig = split(/\t/,$k); # [0]Lig_Name [1]Atom1 
 
            if($temp_pro[2] =~ /^C/ && $temp_lig[1] =~ /^C/) 
            { 
               print OUT "$k\t$key\t$distance\thydrophobic\n"; 
            } 
         } 
         elsif($distance <= $philic) 
         { 
            # check that both atoms are not carbon atoms 
            my @temp_pro = split(/\t/,$key); # [0]Res_Name [1]Res_No [2]Atom2 
            my @temp_lig = split(/\t/,$k); # [0]Lig_Name [1]Atom1 
 
            if($temp_pro[2] !~ /^C/ && $temp_lig[1] !~ /^C/) 
            { 
               print OUT "$k\t$key\t$distance\thydrogen bond\n"; 
            } 
         } 
         elsif($distance <= $threshold) 
         { 
            print OUT "$k\t$key\t$distance\tthreshold reached\n"; 
         } 
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      } 
   } 
 
   close OUT; 
} 
exit; 

 

8.3.11 weighted_score_key_intxns.pl 

 
=head 
Find specific residue interactions given directory of potential interaction 
lists. 
 
INPUT:: 
Desired residue list format (e.g., key_intxns.txt): 
SER\t289\tOG 
HIS 323 NE2 
HIS 449 NE2 
TYR 473 OH 
 
Potential Interaction list format: 
Ligand_Name Atom1 Res_Name Res_Num Atom2 calc_dist distance_type 
4HD\tO3\tHIS\t449\tNE2t\3.214\thydrogen bond 
4HD O2  HIS 449 NE2 2.954 hydrogen bond 
4HD C11 LEU 330 CD1 3.448 hydrophobic 
4HD C10 LEU 330 CD1 3.575 hydrophobic 
 
OUTPUT:: 
List of each interaction with associated filenames 
 
10Jan11 
 
18Dec12: edited to work with shell script 
usage: perl weighted_score_key_intxns_4Sep12.pl key_intxn_list.txt distances 
scored.txt success.txt 
=cut 
 
#!C:/Perl/bin -w 
#!/usr/bin/perl -w 
 
use strict; 
 
#---------------get interaction list------------------------ 
#print "key interaction file name: "; 
#my $interactions = <STDIN>; 
#chomp $interactions; 
my $interactions = $ARGV[0]; 
 
  unless (open (INT, "$interactions")) 
   { 
 print "Could not open file $interactions!\n"; 
 exit; 
   } 
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# hash for interaction records 
my %intxn_records; 
my $intxn_count = 0; 
 
# read in lines and set up hash with list of interactions 
my $line; 
while($line = <INT>) 
{ 
   chomp $line; 
   my @temp = split(/\s/,$line); # split line 
   my $residue = "$temp[0]\t$temp[1]\t$temp[2]";  # recombine residue info 
 
   if(!exists $intxn_records{$residue}) 
   { 
       $intxn_records{$residue} = 1; 
       $intxn_count++; 
   } 
} 
 
# reference for interaction list 
my $ref_intxns = \%intxn_records; 
 
# Now have hash with interactions for comparison 
# Example: HIS 449 NE2 -> 1 
 
close INT; 
#-------------------------------------------- 
 
#------------get list of interaction filenames------------------------- 
#print "directory name containing interaction lists: "; 
#my $dir = <STDIN>; 
#chomp $dir; 
my $dir = $ARGV[1]; 
opendir DIR, $dir or die "Directory $dir could not be opened.\n"; # comment 
out this and subsequent 2 lines for specific list option above 
my @res_list = grep{$_ =~ /(.txt)/} readdir DIR; 
my $result_count = @res_list; 
print "Found $result_count TXT files.\n"; 
 
# get score output filename 
#print "score output file name: "; 
#my $output = <STDIN>; 
#chomp $output; 
my $output = $ARGV[2]; 
open (OUT, ">$output"); 
 
# get successful pose output filename 
#print "successful output file name: "; 
#my $success = <STDIN>; 
#chomp $success; 
my $success = $ARGV[3]; 
open (SUC, ">$success"); 
#DEBUG 
#print SUC "crystal residue count: $intxn_count\n"; 
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my %file_intxn_info; # for each input file, address for hash with matching 
interaction information 
my %pose_counts; # counts for matching interactions for each input file 
 
for(my $i=0; $i<@res_list; $i++) 
{ 
   # send to subroutine 
   # set %file_intxn_info key to file name and find interactions for each file 
in directory 
   ( $file_intxn_info{$res_list[$i]}, $pose_counts{$res_list[$i]} ) = 
match_intxns($dir,$res_list[$i],$ref_intxns); 
#DEBUG   print SUC "$res_list[$i] = $pose_counts{$res_list[$i]}\n"; 
} 
 
# print output file header 
print OUT "Filename"; 
foreach my $res (sort keys %intxn_records) 
{ 
   $res =~ s/\t/\./g; 
   print OUT "\t$res"; 
} 
print OUT "\n"; 
 
# print data collected from input files 
my ($key,$value); 
foreach $key (sort keys %file_intxn_info) 
{ 
   $value = $file_intxn_info{$key}; # set value equal to list of filenames for 
each interaction 
 
   print OUT "$key"; # print filename to score output 
 
   my $k; 
   my %value_hash = %$value; 
   foreach $k (sort keys %value_hash) 
   { 
       print OUT "\t$value_hash{$k}"; 
   } 
    
   print OUT "\n"; # print newline 
 
   if($intxn_count == $pose_counts{$key}) 
   { 
      print SUC "$key\n"; # print filename to success output 
   } 
} 
 
print "***Finished!***\n"; 
close OUT; 
close SUC; 
closedir DIR; 
# END OF MAIN 
#------------------------------------------------------------------ 
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#---subroutine--------------------------- 
# objective: determine if the desired interactions are present in a file 
# input: directory with lists, input file name, reference for hash of residues 
to look for 
# output: hash of interactions with corresponding weight (if found), counter 
for number of interactions recorded 
#----------------------------------------- 
sub match_intxns { 
   my ($dir,$filename,$ref_intxns) = @_; 
   my %info_hash; 
    
   # open file 
   unless (open (INPUT, "$dir/$filename")) 
   { 
    print "Could not open file $filename!\n"; 
    exit; 
   } 
    
   my $line; 
   my %file_contents; 
   my $motif; 
   while ($line = <INPUT>) 
   { 
      chomp $line; # remove newline 
      my @temp = split(/\t/,$line); 
      #BRL C5 GLY 284 C 3.992 threshold reached 
      #[0]      [1]     [2]     [3]    [4]       [5]     [6] 
      $motif = "$temp[2]\t$temp[3]\t$temp[4]"; 
 
      if(exists $file_contents{$motif}) # put file contents in hash for 
comparison to reference file 
      { $file_contents{$motif} .= ";$temp[6]"; } 
      else 
      { $file_contents{$motif} = "$temp[6]"; } 
   } 
 
   my $info_count = 0; 
   my %deref_intxns = %$ref_intxns; 
   foreach my $item (sort keys %deref_intxns) # check file contents against 
reference list 
   { 
 
      my $marker = ''; # set marker for table 
      if(exists $file_contents{$item}) # if key from reference hash exists in 
file contents... 
      { 
         $info_count++; 
         my $holder = $file_contents{$item}; # set value from contents hash 
         if($holder =~ /;/) 
         { 
            my @temp = split(/;/,$holder); # split value if contains ; 
            foreach my $a (@temp) # assign marker for each interaction from 
file 
            { 
               if($a =~ /(hydrogen bond)/) 
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               { $marker .= 'x'; } 
               elsif($a =~ /(hydrophobic)/) 
               { $marker .= 'o'; } 
               elsif($a =~ /(threshold reached)/) 
               { $marker .= '/'; } 
            } 
         } 
         else 
         { 
            if($holder =~ /(hydrogen bond)/) 
            { $marker = 'x'; } 
            elsif($holder =~ /(hydrophobic)/) 
            { $marker = 'o'; } 
            elsif($holder =~ /(threshold reached)/) 
            { $marker = '/'; } 
         } 
      } 
      else 
#      { } # do nothing if interaction does not match residues from reference 
file 
      { $marker = "-"; } # if key from reference not in file contents, insert 
place holder 
 
      if(exists $info_hash{$item}) 
      { $info_hash{$item} .= "$marker"; }  # add marker if residue in hash 
already 
      else                             #(for instances with more than one 
interaction with single residue) 
      { 
        $info_hash{$item} = $marker; 
 
      }   # else, add to hash and increment counter for success check 
   } 
 
   close INPUT; 
   return (\%info_hash,$info_count); 
} 
exit; 
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8.4 Appendix D: Molecular dynamics input files 

 

This section contains example input files used for MD and SMD. 

 

8.4.1 Energy minimization (EM) 

 
; LINES STARTING WITH ';' ARE COMMENTS 
title       = Minimization  ; Title of run 
 
; Parameters describing what to do, when to stop and what to save 
integrator  = steep     ; Algorithm (steep = steepest descent minimization) 
emtol       = 1000.0    ; Stop minimization when the maximum force < 10.0 
kJ/mol 
emstep      = 0.01      ; Energy step size 
nsteps      = 50000     ; Maximum number of (minimization) steps to perform 
energygrps  = Protein   ; Which energy group(s) to write to disk 
 
; Parameters describing how to find the neighbors of each atom and how to 
calculate the interactions 
nstlist     = 1         ; Frequency to update the neighbor list and long range 
forces 
ns_type     = grid      ; Method to determine neighbor list (simple, grid) 
rlist       = 1.0       ; Cut-off for making neighbor list (short range 
forces) 
coulombtype = PME       ; Treatment of long range electrostatic interactions 
rcoulomb    = 1.0       ; long range electrostatic cut-off 
rvdw        = 1.0       ; long range Van der Waals cut-off 
pbc         = xyz       ; Periodic Boundary Conditions (yes/no) 

 

8.4.2 Isochoric-isothermal ensemble (NVT) 

 
title       = NVT equilibration 
define      = -DPOSRES  ; position restrain the protein and ligand 
; Run parameters 
integrator  = md        ; leap-frog integrator 
nsteps      = 50000     ; 2 * 50000 = 100 ps 
dt          = 0.002     ; 2 fs 
; Output control 
nstxout     = 100       ; save coordinates every 0.2 ps 
nstvout     = 100       ; save velocities every 0.2 ps 
nstenergy   = 100       ; save energies every 0.2 ps 
nstlog      = 100       ; update log file every 0.2 ps 
energygrps  = Protein 
; Bond parameters 
continuation    = no            ; first dynamics run 
constraint_algorithm = lincs    ; holonomic constraints 
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constraints     = all-bonds     ; all bonds (even heavy atom-H bonds) 
constrained 
lincs_iter      = 1             ; accuracy of LINCS 
lincs_order     = 4             ; also related to accuracy 
; Neighborsearching 
ns_type     = grid      ; search neighboring grid cells 
nstlist     = 5         ; 10 fs 
rlist       = 1.0       ; short-range neighborlist cutoff (in nm) 
rcoulomb    = 1.0       ; short-range electrostatic cutoff (in nm) 
rvdw        = 1.0       ; short-range van der Waals cutoff (in nm) 
; Electrostatics 
coulombtype     = PME       ; Particle Mesh Ewald for long-range 
electrostatics 
pme_order       = 4         ; cubic interpolation 
fourierspacing  = 0.16      ; grid spacing for FFT 
; Temperature coupling 
tcoupl      = V-rescale                     ; modified Berendsen thermostat 
tc-grps     = Protein non-Protein    ; two coupling groups - more accurate 
tau_t       = 0.1   0.1                     ; time constant, in ps 
ref_t       = 300   300                     ; reference temperature, one for 
each group, in K 
; Pressure coupling 
pcoupl      = no        ; no pressure coupling in NVT 
; Periodic boundary conditions 
pbc         = xyz       ; 3-D PBC 
; Dispersion correction 
DispCorr    = EnerPres  ; account for cut-off vdW scheme 
; Velocity generation 
gen_vel     = yes       ; assign velocities from Maxwell distribution 
gen_temp    = 300       ; temperature for Maxwell distribution 
gen_seed    = -1        ; generate a random seed 

 

8.4.3 Isothermal-isobaric ensemble (NPT) 

 
title       = NPT equilibration 
define      = -DPOSRES  ; position restrain the protein and ligand 
; Run parameters 
integrator  = md        ; leap-frog integrator 
nsteps      = 50000     ; 2 * 50000 = 100 ps 
dt          = 0.002     ; 2 fs 
; Output control 
nstxout     = 100       ; save coordinates every 0.2 ps 
nstvout     = 100       ; save velocities every 0.2 ps 
nstenergy   = 100       ; save energies every 0.2 ps 
nstlog      = 100       ; update log file every 0.2 ps 
energygrps  = Protein 
; Bond parameters 
continuation    = yes           ; first dynamics run 
constraint_algorithm = lincs    ; holonomic constraints 
constraints     = all-bonds     ; all bonds (even heavy atom-H bonds) 
constrained 
lincs_iter      = 1             ; accuracy of LINCS 
lincs_order     = 4             ; also related to accuracy 
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; Neighborsearching 
ns_type     = grid      ; search neighboring grid cells 
nstlist     = 5         ; 10 fs 
rlist       = 1.0       ; short-range neighborlist cutoff (in nm) 
rcoulomb    = 1.0       ; short-range electrostatic cutoff (in nm) 
rvdw        = 1.0       ; short-range van der Waals cutoff (in nm) 
; Electrostatics 
coulombtype     = PME       ; Particle Mesh Ewald for long-range 
electrostatics 
pme_order       = 4         ; cubic interpolation 
fourierspacing  = 0.16      ; grid spacing for FFT 
; Temperature coupling 
tcoupl      = V-rescale                     ; modified Berendsen thermostat 
tc-grps     = Protein non-Protein    ; two coupling groups - more accurate 
tau_t       = 0.1   0.1                     ; time constant, in ps 
ref_t       = 300   300                     ; reference temperature, one for 
each group, in K 
; Pressure coupling 
pcoupl      = Parrinello-Rahman             ; pressure coupling is on for NPT 
pcoupltype  = isotropic                     ; uniform scaling of box vectors 
tau_p       = 2.0                           ; time constant, in ps 
ref_p       = 1.0                           ; reference pressure, in bar 
compressibility = 4.5e-5                    ; isothermal compressibility of 
water, bar^-1 
refcoord_scaling    = com 
; Periodic boundary conditions 
pbc         = xyz       ; 3-D PBC 
; Dispersion correction 
DispCorr    = EnerPres  ; account for cut-off vdW scheme 
; Velocity generation 
gen_vel     = no        ; velocity generation off after NVT 
 

8.4.4 Production MD 

 
title       = MD FOR PCA 
; Run parameters 
integrator  = md        ; leap-frog integrator 
nsteps      = 50000000    ; 0.002 * 50000000 = 100000 ps (100 ns) 
dt          = 0.002     ; 2 fs 
; Output control 
nstxout     = 0         ; suppress .trr output 
nstvout     = 0         ; suppress .trr output 
nstenergy   = 2500      ; save energies every 5 ps 
nstlog      = 2500      ; update log file every 5 ps 
nstxtcout   = 2500      ; write .xtc trajectory every 5 ps 
energygrps  = Protein 
; Bond parameters 
continuation    = yes           ; first dynamics run 
constraint_algorithm = lincs    ; holonomic constraints 
constraints     = all-bonds     ; all bonds (even heavy atom-H bonds) 
constrained 
lincs_iter      = 1             ; accuracy of LINCS 
lincs_order     = 4             ; also related to accuracy 
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; Neighborsearching 
ns_type     = grid      ; search neighboring grid cells 
nstlist     = 5         ; 10 fs 
rlist       = 1.0       ; short-range neighborlist cutoff (in nm) 
rcoulomb    = 1.0       ; short-range electrostatic cutoff (in nm) 
rvdw        = 1.0       ; short-range van der Waals cutoff (in nm) 
; Electrostatics 
coulombtype     = PME       ; Particle Mesh Ewald for long-range 
electrostatics 
pme_order       = 4         ; cubic interpolation 
fourierspacing  = 0.16      ; grid spacing for FFT 
; Temperature coupling 
tcoupl      = V-rescale                     ; modified Berendsen thermostat 
tc-grps     = Protein non-Protein    ; two coupling groups - more accurate 
tau_t       = 0.1   0.1                     ; time constant, in ps 
ref_t       = 300   300                     ; reference temperature, one for 
each group, in K 
; Pressure coupling 
pcoupl      = Parrinello-Rahman             ; pressure coupling is on for NPT 
pcoupltype  = isotropic                     ; uniform scaling of box vectors 
tau_p       = 2.0                           ; time constant, in ps 
ref_p       = 1.0                           ; reference pressure, in bar 
compressibility = 4.5e-5                    ; isothermal compressibility of 
water, bar^-1 
; Periodic boundary conditions 
pbc         = xyz       ; 3-D PBC 
; Dispersion correction 
DispCorr    = EnerPres  ; account for cut-off vdW scheme 
; Velocity generation 
gen_vel     = no        ; assign velocities from Maxwell distribution 

 

8.4.5 SMD 

title       = Umbrella pulling simulation 
define      = -DPOSRES_B 
; Run parameters 
integrator  = md 
dt          = 0.002 
tinit       = 0 
nsteps      = 375000    ; 750 ps 
nstcomm     = 10 
; Output parameters 
nstxout     = 500      ; every 1 ps 
nstvout     = 500 
nstfout     = 500 
nstxtcout   = 500       ; every 1 ps 
nstenergy   = 500 
; Bond parameters 
constraint_algorithm    = lincs 
constraints             = all-bonds 
continuation            = yes       ; continuing from NPT 
; Single-range cutoff scheme 
nstlist     = 5 
ns_type     = grid 
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rlist       = 1.4 
rcoulomb    = 1.4 
rvdw        = 1.4 
; PME electrostatics parameters 
coulombtype     = PME 
fourierspacing  = 0.12 
fourier_nx      = 0 
fourier_ny      = 0 
fourier_nz      = 0 
pme_order       = 4 
ewald_rtol      = 1e-5 
optimize_fft    = yes 
; Berendsen temperature coupling is on in two groups 
Tcoupl      = Nose-Hoover 
tc_grps     = Protein   Non-Protein 
tau_t       = 0.5       0.5 
ref_t       = 310       310 
; Pressure coupling is on 
Pcoupl          = Parrinello-Rahman 
pcoupltype      = isotropic 
tau_p           = 1.0 
compressibility = 4.5e-5 
ref_p           = 1.0 
; Generate velocities is off 
gen_vel     = no 
; Periodic boundary conditions are on in all directions 
pbc     = xyz 
; Long-range dispersion correction 
DispCorr    = EnerPres 
; Pull code 
pull            = umbrella 
pull_geometry   = direction 
pull_vec1       = -1.018 0.036 0.993 
pull_start      = yes       ; define initial COM distance > 0 
pull_ngroups    = 1 
pull_group0     = r_365 
pull_group1     = BRL 
pull_rate1      = 0.008      ; 0.001 nm per ps = 10 nm per ns 
pull_k1         = 1000      ; kJ mol^-1 nm^-2 
 

8.4.6 Steps for preparing SMD protein and ligand files 

1. Add charges in UCSF Chimera 

a. Add hydrogen atoms  

b. Add charges: Tools --> Structure editing --> Add charges --> amberff_03.r1, 

AM1-BCC 

c. Set net charge (program predicts net charge) 

2. Save mol2 

3. Run: antechamber -i in.mol2 -fi mol2 -o .prep -fo prepi -c bcc -s 2 
4. Run: parmchk -i .prep -f prepi -o .frcmod -p 

/usr/local/amber10/dat/leap/parm/gaff.dat 
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a. The path has to be changed for the gaff.dat part to match settings on your 

computer. 

b. Check the output for errors that can be fixed. 

5. Edit/create leap_ros.in text file, which should contain the following: 

logfile log_2prg.log 

source leaprc.ff03 

source leaprc.gaff 

frcmod = loadAmberParams ros.frcmod 

loadAmberPrep ros.prep 

saveamberparm BRL ros.top ros.crd 

savepdb BRL ros.pdb 

quit 

NOTE: unit name (e.g. BRL) can't be numbers or get error that unit is double 

instead of characters. Have to change ligand ID in .prep file and set your ID to 

match as in leap_ros.in above. 

6. Run: xleap -f leap_ros.in 

7. Run: perl amb2gmx_mask.pl --prmtop ros.top --crd ros.crd --outname ros_top 

a. Depending on the version of amber on the machine, the keywords section 

of the perl script may need to be masked by adding an asterisk (*) before 

the words. The original amb2gmx.pl can be downloaded from the 

AMBER site. 

8. Change ros_top.top to .itp and edit the following: 

a. Remove defaults section at beginning 

b. Remove system and molecules section at end 

c. Change "solute" to three-letter ligand ID 


