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(ABSTRACT)



Lock-based concurrency control suffers from programmability, scalability, and composability
challenges. These challenges are exacerbated in emerging multicore architectures, on which
improved software performance must be achieved by exposing greater concurrency. Trans-
actional memory (TM) is an emerging alternative synchronization model for shared memory
objects that promises to alleviate these difficulties.

In this dissertation, we consider software transactional memory (STM) for concurrency con-
trol in multicore real-time software, and present a suite of real-time STM contention man-
agers for resolving transactional conflicts. The contention managers are called ECM, RCM,
LCM, PNF, and FBLT. RCM and ECM resolve conflicts using fixed and dynamic priorities
of real-time tasks, respectively, and are naturally intended to be used with the fixed priority
(e.g., G-RMA) and dynamic priority (e.g., G-EDF) multicore real-time schedulers, respec-
tively. LCM resolves conflicts based on task priorities as well as atomic section lengths, and
can be used with G-EDF or G-RMA schedulers. Transactions under ECM, RCM, and LCM
may retry due to conflicts with higher priority tasks even when there are no shared objects,
i.e., transitive retry. PNF avoids transitive retry and optimizes processor usage by lowering
the priority of retrying transactions, thereby enabling other non-conflicting transactions to
proceed. PNF, however, requires a priori knowledge of all requested objects for each atomic
section, which is inconsistent with the semantics of dynamic STM. Moreover, its centralized
design increases overhead. FBLT avoids transitive retry, do not require a priori knowledge
of requested objects, and has a decentralized design.

We establish upper bounds on transactional retry costs and task response times under the
contention managers through schedulability analysis. Since ECM and RCM preserve the
semantics of the underlying real-time scheduler, their maximum transactional retry cost
is double the maximum atomic section length. This is improved in the design of LCM,
which achieves shorter retry costs and tighter upper bounds. As PNF avoids transitive retry
and improves processor usage, it yields shorter retry costs and tighter upper bounds than
ECM, RCM, and LCM. FBLT’s upper bounds are similarly tight because it combines the
advantages of PNF and LCM.

We formally compare the proposed contention managers with each other, with lock-free
synchronization, and with multiprocessor real-time locking protocols. Our analysis reveals
that, for most cases, ECM, RCM, and LCM achieve higher schedulability than lock-free
synchronization only when the atomic section length does not exceed half of lock-free syn-
chronization’s retry loop length. With equal periods and greater access times for shared
objects, atomic section length under ECM, RCM, and LCM can be much larger than the
retry loop length while still achieving better schedulability. With proper values for LCM’s
design parameters, atomic section length can be larger than the retry loop length for better
schedulability. Under PNF, atomic section length can exceed lock-free’s retry loop length and
still achieve better schedulability in certain cases. FBLT achieves equal or better schedu-
lability than lock-free with appropriate values for design parameters. The schedulability
advantage of the contention managers over multiprocessor real-time locking protocols such
as Global OMLP and RNLP depends upon the value of smax/Lmax, the ratio of the max-
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imum transaction length to the maximum critical section length. FBLT’s schedulability is
equal or better than Global OMLP and RNLP if smax/Lmax ≤ 2.

Checkpointing enables partial roll-back of transactions by recording transaction execution
states (i.e., checkpoints) during execution, allowing roll-back to a previous checkpoint instead
of transaction start, improving task response time. We extend FBLT with checkpointing
and develop CP-FBLT, and identify the conditions under which CP-FBLT achieves equal or
better schedulability than FBLT.

We implement the contention managers in the Rochester STM framework and conduct ex-
perimental studies using a multicore real-time Linux kernel. Our studies reveal that among
the contention managers, CP-FBLT has the best average-case performance. CP-FBLT’s
higher performance is due to the fact that PNF’s and LCM’s advantages are combined into
the design of FBLT, which is the base of CP-FBLT. Moreover, checkpointing improves task
response time. The contention managers were also found to have equal or better average-case
performance than lock-free synchronization: more jobs meet their deadlines using CP-FBLT,
FBLT, and PNF than lock-free synchronization by 34.6%, 28.5%, and 32.4% (on average), re-
spectively. The superiority of the contention managers is directly due to their better conflict
resolution policies.

Locking protocols such as OMLP and RNLP were found to perform better: more jobs meet
their deadlines under OMLP and RNLP than any contention manager by 12.4% and 13.7%
(on average), respectively. However, the proposed contention managers have numerous qual-
itative advantages over locking protocols. Locks do not compose, whereas STM transactions
do. To allow multiple objects to be accessed in a critical section, OMLP assigns objects to
non-conflicting groups, where each group is protected by a distinct lock. RNLP assumes that
objects are accessed in a specific order to prevent deadlocks. In contrast, STM allows multi-
ple objects to be accessed in a transaction in any order, while guaranteeing deadlock-freedom,
which significantly increases programmability. Moreover, STM offers platform independence:
the proposed contention managers can be entirely implemented in the user-space as a library.
In contrast, real-time locking protocols such as OMLP and RNLP must be supported by the
underlying platform (i.e., operating system or virtual machine).
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Chapter 1

Introduction

Embedded systems sense physical processes and control their behavior, typically through
feedback loops. Since physical processes are concurrent, computations that control them
must also be concurrent, enabling them to process multiple streams of sensor input and
control multiple actuators, all concurrently. Often, such computations need to concurrently
read/write shared data objects. Typically, they must also process sensor input and react,
satisfying application-level time constraints.

The de facto standard for programming concurrency is the threads abstraction, and the de
facto synchronization abstraction is locks. Lock-based concurrency control has significant
programmability, scalability, and composability challenges [73]. Coarse-grained locking (e.g.,
a single lock guarding a critical section) is simple to use, but permits no concurrency: the
single lock forces concurrent threads to execute the critical section sequentially, in a one-
at-a-time order. This is a significant limitation, especially with the emergence of multicore
architectures, on which improved software performance must be achieved by exposing greater
concurrency.

With fine-grained locking, a single critical section is broken down into several critical sections
– e.g., each bucket of a hash table is guarded by a unique lock. Thus, threads that need to
access different buckets can do so concurrently, permitting greater parallelism. However, this
approach has low programmability: programmers must acquire only necessary and sufficient
locks to obtain maximum concurrency without compromising safety, and must avoid dead-
locks when acquiring multiple locks. Moreover, locks can lead to livelocks, lock-convoying,
and priority inversion.

Perhaps, the most significant limitation of lock-based code is its non-composability. For
example, atomically moving an element from one hash table to another using those tables’
(lock-based) atomic methods is not possible in a straightforward manner: if the methods
internally use locks, a thread cannot simultaneously acquire and hold the locks of the methods
(of the two tables); if the methods were to export their locks, that will compromise safety.

1
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Lock-free synchronization [72], which uses atomic hardware synchronization primitives (e.g.,
Compare And Swap [83, 84], Load-Linked/Store-Conditional [134]), also permits greater
concurrency, but has even lower programmability: lock-free algorithms must be custom-
designed for each situation (e.g., a data structure [30, 63, 71, 77, 112]). Most importantly,
reasoning about the correctness of lock-free algorithms is significantly difficult [72].

1.1 Transactional Memory

Transactional memory (TM) is an alternative synchronization model for shared memory
data objects that promises to alleviate these difficulties. With TM, programmers write
concurrent code using threads, but organize code that read/write shared memory objects as
memory transactions, which speculatively execute, while logging changes made to objects–
e.g., using an undo-log or a write-buffer. Objects read and written by transactions are also
monitored, in read-sets and write-sets, respectively. Two transactions conflict if they access
the same object and one access is a write. (Conflicts are usually detected by detecting non-
empty read- and write-set intersections.) When that happens, a contention manager (CM)
resolves the conflict by aborting one and committing the other, yielding (the illusion of)
atomicity. Aborted transactions are re-started, after rolling-back the changes–e.g., undoing
object changes using the undo-log (eager), or discarding the write buffer (lazy).

In addition to a simple programming model (locks are excluded from the programming inter-
face), TM provides performance comparable to lock-based synchronization [124], especially
for high contention and read-dominated workloads, and is composable. TM’s first imple-
mentation was proposed in hardware, called hardware transactional memory (or HTM) [76].
HTM has the lowest overhead, but HTM transactions are usually limited in space and time.
Examples of HTMs include TCC [70], UTM [4], Oklahoma [136], ASF [44], and Bulk [35].
TM implementation in software, called software transactional memory (or STM) was pro-
posed later [132]. STM transactions do not need any special hardware, are not limited in size
or time, and are more flexible. However, STM has a higher overhead, and thus lower per-
formance, than HTM. Examples of STMs include RSTM [144], TinySTM [122], Deuce [90],
and AtomJava [78].

Listing 1.1: STM example

BEGIN TRANSACTION;
stm : : wr ptr<Counter> wr( m counter ) ;
wr−>s e t v a l u e (wr−>g e t v a l u e (wr ) + 1 , wr ) ;

END TRANSACTION;

Listing 1.1 shows an example STM code written against RSTM [133]’s interface. RSTM’s
BEGIN TRANSACTION and END TRANSACTION keywords are used to enclose a critical section,
which creates a transaction for the enclosed code block and guarantees its atomic execution.
The first line inside the transaction creates a write pointer to a variable “m counter” of
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type “Counter”. The second line reads the current value of the counter variable through
”wr−>get value”. The counter value is incremented through the “wr−>set value” opera-
tion.

Hybrid TM (or HyTM) was subsequently proposed in [103], which combines HTM with
STM, and avoids their limitations. Examples of HyTMs include SpHT [100], VTM [120],
HyTM [45], LogTM [113], and LogTM-SE [151].

TM is increasingly gaining traction: Intel has released a C++ compiler with STM sup-
port [85]. Oracle [36, 139], AMD [1, 44], and Intel [86] have released experimental or com-
modity hardware with HTM support. GCC has released language extensions to support
STM [138].

1.2 STM for Real-Time Software

Given the hardware-independence and flexibility of STM, which are significant advantages,
we focus on STM in this dissertation. STM’s programmability, scalability, and composability
advantages are also compelling for concurrency control in multicore embedded real-time
software. However, this will require bounding transactional retries, as real-time threads,
which subsume transactions, must satisfy application-level time constraints. Transactional
retry bounds in STM are dependent on the CM policy at hand (analogous to the way thread
response time bounds are OS scheduler-dependent).

Despite the large body of work on STM contention managers, relatively few results are known
on real-time contention management. STM concurrency control for real-time systems has
been previously studied, but in a limited way. For example, [109] proposes a restricted version
of STM for uniprocessors. Uniprocessors do not need contention management. [61] bounds
response times in distributed multicore systems with STM synchronization. They consider
Pfair scheduling [82], which is largely only of theoretical interest1, limit to small atomic
regions with fixed size, and limit transaction execution to span at most two quanta. [125]
presents real-time scheduling of transactions and serializes transactions based on transac-
tional deadlines. However, the work does not bound transactional retries and response times.

[128] proposes real-time HTM, which of course, requires hardware with TM support. The
retry bound developed in [128] assumes that the worst-case conflict between atomic sections
of different tasks occurs when the sections are released at the same time. We show that, this
assumption does not cover the worst-case scenario (see Chapter 4). [60] presents a contention
manager that resolves conflicts using task deadlines. The work also establishes upper bounds
on transactional retries and task response times. However, similar to [128], [60] also assumes
that the worst-case conflict between atomic sections occurs when the sections are released

1This is due to Pfair class of algorithm’s time quantum-driven nature of scheduling and consequent high
run-time overheads.
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simultaneously. Besides, [60] assumes that all transactions have equal lengths. The ideas
in [60] are extended in [13], which presents three real-time CM designs. But no retry bounds
or schedulability analysis techniques are presented for those CMs.

Thus, past efforts on real-time STM are limited, and do not answer important fundamental
questions:

(1) How to design “general purpose” real-time STM contention managers for multicore ar-
chitectures? By general purpose, we mean those that do not impose any restrictions
on transactional properties (e.g., transaction lengths, number of transactional objects,
levels of transactional nestings), which are key limitations of past work.

(2) What tight upper bounds exist for transactional retries and task response times under
such real-time CMs?

(3) How does the schedulability of real-time CMs compare with that of lock-free synchro-
nization and real-time locking protocols? i.e., are there upper bounds or lower bounds
for transactional lengths below or above which is STM superior to lock-free and locking
protocols?

(4) How does transactional retry costs and task response times of real-time CMs compare
with that of lock-free and real-time locking protocols in practice (i.e., on average)?

(5) How does real-time CMs qualitatively compare with lock-free synchronization and real-
time locking? i.e., how does the techniques compare from an application and systems
programmer’s perspective?

1.3 Research Contributions

In this dissertation, we answer these questions. We present a suite of real-time STM con-
tention managers, called RCM [54], ECM [54], LCM [53], PNF [57], and FBLT [56]. The
contention managers progressively improve transactional retry and task response time up-
per bounds (and consequently improve STM’s schedulability advantages) and also relax the
underlying task models.

RCM and ECM resolve conflicts using fixed and dynamic priorities of real-time tasks, re-
spectively, and are naturally intended to be used with the fixed priority (e.g., G-RMA [31])
and dynamic priority (e.g., G-EDF [31]) multicore real-time schedulers, respectively. LCM
resolves conflicts based on task priorities as well as atomic section lengths, and can be used
with G-EDF or G-RMA schedulers. Transactions under ECM, RCM, and LCM can restart
because of other transactions that share no objects with them. This is called transitive
retry. Transitive retry causes a transaction to abort and retry due to another non-conflicting
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transaction, which increases retry costs. Besides, under LCM, higher priority transactions
can be blocked by lower priority transactions in certain conditions.

PNF avoids transitive retry, and also optimizes processor usage by lowering the priority
of retrying transactions, and thereby allows other non-conflicting transactions to proceed.
Thus, PNF reduces retry costs. However, PNF is a centralized contention manager and
needs a priori knowledge of all requested objects of each transaction, which is not consistent
with the semantics of dynamic STM [74]. Being a centralized contention manager, PNF
induces significant overhead due to the contention between transactions (on the centralized
contention manager). Under PNF, transactions may be non-conflicting, yet they delay each
other as they wait to be served by the centralized contention manager. Also, under PNF,
higher priority transactions and higher priority real-time tasks can be blocked by lower
priority non-preemptive transactions.

FBLT combines the benefits of PNF and LCM, and avoids PNF’s problems. Under FBLT,
each newly released transaction is aborted for a specified number of times. Afterwards,
similar to PNF, a transaction becomes non-preemptive and therefore cannot be aborted by
any other preemptive or non-atomic real-time task. Also, FBLT is a decentralized con-
tention manager that defaults to LCM when conflicting non-preemptive transactions have
not reached their maximum abort numbers yet.

We establish upper bounds on transactional retry costs and task response times under the
contention managers through schedulability analysis. Since ECM and RCM preserve the
semantics of the underlying real-time scheduler, their maximum transactional retry cost is
double the maximum atomic section length. This is improved in the design of LCM, which
achieves shorter retry costs and upper bounds. However, ECM, RCM, and LCM are affected
by transitive retries when transactions access multiple objects, which is eliminated in the
design of PNF, yielding further reduced retry costs and upper bounds. FBLT combines the
advantages of PNF and LCM by resolving conflicts using timestamps instead of transaction’s
original priority. This design yields further reduced retry costs and upper bounds.

We formally compare the proposed contention managers with each other, with lock-free syn-
chronization [49], and with multiprocessor real-time locking protocols such as OMLP [22,29]
and RNLP [149]. Our analysis reveals that, for most cases, ECM, RCM, and LCM (with
G-EDF or G-RMA scheduler) achieve higher schedulability than lock-free synchronization
only when the atomic section length does not exceed one half of the length of lock-free
synchronization’s “retry loop.”2 With equal periods and longer access times to shared ob-
jects, atomic section length under ECM, RCM, and LCM (with G-EDF or G-RMA) can be
much larger than lock-free synchronization’s retry loop length, while still achieving better
schedulability. LCM (with G-EDF or G-RMA) achieves equal or better schedulability than
lock-free for atomic section lengths larger than the lock-free retry loop length with appropri-

2Lock-free synchronization optimistically attempts to modify a shared data structure, and retries the
attempt upon failure. This logic is often enclosed in a loop, which is repeated until the modification attempt
succeeds [73].



Mohammed El-Shambakey Chapter 1. Introduction 6

ate values for design parameters. LCM/G-EDF has equal or better schedulability than ECM,
whereas LCM/G-RMA’s schedulability is equal or better than RCM’s schedulability depend-
ing upon design parameters. Under PNF, atomic section length can exceed lock-free’s retry
loop length and still achieve better schedulability depending upon design parameters. FBLT
also achieves equal or better schedulability than lock-free synchronization with appropriate
values for design parameters.

We also establish the conditions under which the proposed contention managers achieve equal
or better schedulability than the OMLP and RNLP locking protocols. The schedulability
advantage of the contention managers depends upon the value of smax/Lmax, the ratio of
the maximum transaction length to the maximum critical section length. With high num-
ber of processors and low number of tasks (besides other conditions), schedulability of the
contention managers is equal or better than that of OMLP and RNLP while smax/Lmax ≥ 1.
FBLT’s schedulability is equal or better than OMLP and RNLP if smax/Lmax ≤ 2.

Checkpointing is a technique that enables partial roll-back of transactions [91]. The method
involves saving the transaction execution state, i.e., taking a checkpoint, using special API
calls, throughout the transaction execution. Thus, when a transaction is aborted, it can be
rolled back to a previous checkpoint instead of the start of the transaction, improving task
response time. Checkpoints can be recorded, for example, at each newly accessed object.
Taking a checkpoint, however, induces overhead. To exploit checkpointing for real-time
STM, we extend FBLT with checkpointing and develop CP-FBLT (i.e., FBLT augmented
with checkpointing). We develop upper bounds for transaction retry costs and task response
times for CP-FBLT. We also identify the conditions under which CP-FBLT achieves equal or
better schedulability than FBLT. Our main result is that the overhead of taking checkpoints
should not exceed the reduction in task response time. Otherwise, checkpointing is not
effective.

Why are we concerned about expanding STM’s schedulability advantage? When STM’s
schedulability advantage holds, programmers can reap STM’s significant programmability
and composability benefits in multicore real-time software. Thus, by expanding STM’s
schedulability advantage, we increase the range of real-time software for which those benefits
can be tapped. Our results, for the first time, thus provides a fundamental understanding
of when to use, and not use, STM concurrency control in multicore real-time software.

We also implement the proposed contention managers in the Rochester STM framework [133].
Using this implementation, running atop the ChronOS multicore real-time Linux kernel [48],
which supports a range of multicore real-time schedulers, we conducted a comprehensive suite
of experimental studies. The studies used a synthetic benchmark suite that was derived from
the Baker’s taskset [12], which is widely used in the real-time systems literature for similar
experimental studies (e.g., [15, 25,26,33,34,47]).

Our studies reveal that among the contention managers, CP-FBLT has the best average-
case performance. CP-FBLT’s higher performance is due to the fact that PNF’s and LCM’s
advantages are combined into the design of FBLT, which is the base of CP-FBLT. Moreover,
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Table 1.1: Qualitative comparison between locking, STM and lock-free synchronization
Locking STM Lock-free

Compositionality No Yes No
Nesting OMLP: No Yes No

RNLP: Yes
Deadlock OMLP: No No No

RNLP: Programmer
dependent

Implementation
complexity

Hard Simple Hard

Transparency OMLP: No Yes Yes
RNLP: Yes

Platform dependence Dependent Independent Independent

checkpointing improves task response time.

The contention managers show equal or better average-case performance than lock-free: more
jobs meet their deadlines using CP-FBLT, FBLT, and PNF than lock-free synchronization
by 34.6%, 28.5%, and 32.4% (on average), respectively. The superiority of the contention
managers over lock-free is directly due to their better conflict resolution policies. The com-
parison between the contention managers and the locking protocols, however, revealed the
superiority of the latter: more jobs meet their deadlines under OMLP and RNLP than
any contention manager by 12.4% and 13.7% on average, respectively. However, the con-
tention managers have numerous qualitative advantages over locking protocols. Locks do
not compose, whereas STM transactions do. Support for nested critical sections is gener-
ally complicated for locking protocols, whereas it is trivial with STM. To allow multiple
objects to be accessed in a critical section, OMLP assigns objects to non-conflicting groups,
where each group is protected by a distinct lock. RNLP assumes that objects are accessed
in a specific order to prevent deadlocks. In contrast, STM allows multiple objects to be
accessed in a transaction in any order, while guaranteeing deadlock-freedom, which signif-
icantly increases programmability. From a systems programmer’s perspective, OMLP and
RNLP are relatively difficult to implement, whereas proposed contention managers are easy
to implement. From an application programmer’s perspective, OMLP is not transparent as
it requires the description of additional information (i.e., what objects will be needed in each
critical section). For RNLP to avoid order on object access, RNLP needs to know required
objects for each critical section a priori. In contrast, no such extra information is needed
for using proposed contention managers (except for PNF), which significantly increases pro-
grammability. STM offers platform independence: the proposed contention managers can be
entirely implemented in the user-space as a library. In contrast, OMLP and RNLP must be
supported by the underlying platform (i.e., operating system or virtual machine). Table 1.1
qualitatively compares locking, STM, and lock-free synchronization.
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1.4 Organization

The rest of this dissertation is organized as follows.

Chapter 2 overviews past and related work on real-time concurrency control. Chapter 3
describes our task and system models, and other assumptions.

Chapter 4 describes the ECM and RCM contention managers, derives upper bounds for their
retry costs and response times, and compares their schedulability with lock-free synchroniza-
tion and real-time locking protocols. Chapters 5, 6, and 7 similarly describe the LCM, PNF,
and FBLT contention managers, respectively.

Chapter 8 extends FBLT (Chapter 7) with checkpointing to develop CP-FBLT. We upper
bound retry costs and response times under CP-FBLT, and derive conditions under which
CP-FBLT has equal or better schedulability than FBLT in Chapter 8.

Chapter 9 describes our implementation and reports our experimental studies. Appendix A
presents properties of all tasksets used in experiments. Appendecies B and C presents results
in full.

Chapter 10 qualitatively compares proposed contention managers against lock-free and lock-
ing protocols.

We conclude the dissertation and outline potential future research directions in Chapter 11.



Chapter 2

Past and Related Work

Many mechanisms appeared for concurrency control for real-time systems. These methods
include locking [32, 101], lock-free [5, 7, 8, 39, 42, 49, 58, 59, 81, 95] and wait-free [6, 16, 37, 39,
40, 43, 59, 79, 121, 137, 140, 141]. In general, real-time locking protocols have disadvantages
like: 1) serialized access to shared object, resulting in reduced concurrency and reduced
utilization. 2) increased overhead due to context switches. 3) possibility of deadlock when
lock holder crashes. 3) some protocols requires apriori knowledge of ceiling priorities of locks.
This is not always available. 4) Operating system data structures must be updates with this
knowledge which reduces flexibility. For real-time lock-free, the most important problem is
to bound number of failed retries and reduce cost of a single loop. The general technique to
access lock-free objects is “retry-loop”. Retry-loop uses atomic primitives (e.g., CAS) which
is repeated until success. To access a specific data structure efficiently, lock-free technique
is customized to that data structure. This increases difficulty of response time analysis.
Primitive operations do not access multiple objects concurrently. Although some attempts
made to enable multi-word CAS [7], but it is not available in commodity hardware [111].
For real-time wait-free protocols. It has a space problem due to use of multiple buffers. This
is inefficient in some applications like small-memory real-time embedded systems. Wait-free
has the same problem of lock-free in handling multiple objects.

The rest of this Chapter is organized as follows, Section 2.1 summarizes previous work on
real-time locking protocols. In Section 2.2, we preview related work on lock-free and wait-
free methods for real-time systems. Section 2.3 provides concurrency control under real-time
database systems as a predecessor and inspiration for real-time STM. Section 2.4 previews
related work on contention management. Contention management policy affects response
time analysis of real-time STM.

9
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2.1 Real-Time Locking Protocols

A lot of work has been done on real-time locking protocols. Locks in real-time systems
can lead to priority inversion [32, 101]. Under priority inversion, a higher priority job is
not allowed to run because it needs a resource locked by a lower priority job. Different
locking protocols appeared to solve this problem, but exposing other problems. Most of
real-time blocking protocols are based on Priority Inheritance Protocol (PIP) [32, 51, 130],
Priority Ceiling Protocol (PCP) [32, 38,51,89, 96,118,119,130] and Stack Resource Protocol
(SRP) [11, 32,65].

In PIP [32, 130], resource access is done in FIFO order. A resource holder inherits highest
priority of jobs blocked on that resource. When resource holder releases the resource and
it holds no other resources, its priority is returned to its normal priority. If it holds other
resources, its priority is returned to highest priority job blocked on other resources. Under
PIP, a high priority job can be blocked by lower priority jobs for at most the minimum of
number of lower priority jobs and number of shared resources. PIP suffers from chained
blocking, in which a higher priority task is blocked for each accessed resource. Besides, PIP
suffers from deadlock where each of two jobs needs resources held by the other. So, each job
is blocked because of the other. [51] provides response time analysis for PIP when used with
fixed-priority preemptive scheduling on multiprocessor system.

PCP [32, 119, 130] provides concept of priority ceiling. Priority ceiling of a resource is the
highest priority of any job that can access that resource. For any job to enter a critical
section, its priority should be higher the priority ceiling of any currently accessed resource.
Otherwise, the resource holder inherits the highest priority of any blocked job. Under PCP,
a job can be blocked for at most one critical section. PCP prevents deadlocks. [38] extends
PCP to dynamically scheduled systems.

Two protocols extend PCP to multiprocessor systems: 1) Multiprcoessor PCP (M-PCP)
[96,118,119] discriminates between global resources and local resources. Local resources are
accessed by PCP. A global resource has a base priority greater than any task normal priority.
Priority ceiling of a global resource equals sum of its base priority and highest priority of any
job that can access it. A job uses a global resource at the priority ceiling of that resource.
Requests for global resources are enqueued in a priority queue according to normal priority
of requesting job. 2) Parallel-PCP (P-PCP) [51] extends PCP to deal with fixed priority
preemptive multiprocessor scheduling. P-PCP, in contrast to PCP, allows lower priority jobs
to allocate resources when higher priority jobs already access resources. Thus, increasing
parallelism. Under P-PCP, a higher priority job can be blocked multiple times by a lower
priority job. With reasonable priority assignment, blocking time by lower priority jobs is
small. P-PCP uses αi parameter to specify permitted number of jobs with basic priority
lower than i and effective priority higher than i. When αi is small, parallelism is reduced,
so as well blocking from lower priority tasks. Reverse is true. [51] provides response time
analysis for P-PCP.
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[106] extends P-PCP to provide Limited-Blocking PCP (LB-PCP). LB-PCP provides more
control on indirect blocking from lower priority tasks. LB-PCP specify additional counters
that control number of times higher priority jobs can be indirectly blocked without the need
of reasonable priority assignment as in P-PCP. [106] analyzes response time of LB-PCP and
experimentally compares it to P-PCP. Results show that LB-PCP is appropriate for task
sets with medium utilization.

PCP can be unfair from blocking point of view. PCP can cause unnecessary and long blocking
for tasks that do not need any resources. Thus, [89] provides Intelligent PCP (IPCP) to
increase fairness and to work in dynamically configured system (i.e., no a priori information
about number of tasks, priorities and accessed resources). IPCP initially optimizes priorities
of tasks and resources through learning. Then, IPCP tunes priorities according to system
wide parameters to achieve fairness. During the tuning phase, penalties are assigned to tasks
according to number of higher priority tasks that can be blocked.

SRP [11, 32, 65] extends PCP to allow multiunit resources and dynamic priority scheduling
and sharing runtime stack-based resources. SRP uses preemption level as a static parameter
assigned to each task despite its dynamic priority. Resource ceiling is modified to include
number of available resources and preemption levels. System ceiling is the highest resource
ceiling. A task is not allowed to preempt unless it is the highest priority ready one, and its
preemption level is higher than the system ceiling. Under SRP, a job can be blocked at most
for one critical section. SRP prevents deadlocks. Multiprocessor SRT (M-SRP) [64] extends
SRP to multiprocessor systems. M-SRP, as M-PCP, discriminates between local and global
resources. Local resources are accessed by SRP. Request for global resource are enqueued in
a FIFO queue for that resource. Tasks with pending requests busy-wait until their requests
are granted.

Another set of protocols appeared for PFair scheduling [20]. [80] provide initial attempts
to synchronize tasks with short and long resources under PFair. In Pfair scheduling, each
task receives a weight that corresponds to its share in system resources. Tasks are scheduled
in quanta, where each quantum has a specific job on a specific processor. Each lock has a
FIFO queue. Requesting tasks are ordered in this FIFO queue. If a task is preempted during
critical section, then other tasks can be blocked for additional time known as frozen time.
Critical sections requesting short resources execute at most in two quanta. By early lock-
request, critical section can finish in one quanta, avoiding the additional blocking time. [80]
proposes two protocols to deal with short resources: 1) Skip Protocol (SP) leaves any lock
request in the FIFO queue during frozen interval until requesting task is scheduled again. 2)
Rollback Protocol (RP) discards any request in the FIFO queue for the lock during frozen
time. For long resources, [80] uses Static Weight Server Protocol (SWSP) where requests for
each resource l is issued to a corresponding server S. S orders requests in a FIFO queue and
has a static specific weight.

Flexible Multiprocessor Locking Protocol (FMLP) [20] is the most famous synchronization
protocol for PFair scheduling. The FMLP allows non-nested and nested resources access



Mohammed El-Shambakey Chapter 2. Past and Related Work 12

without constraints. FMLP is used under global and partitioned deadline scheduling. Short
or long resource is user defined. Resources can be grouped if they are nested by some task
and have the same type. Request to a specific resource is issued to its containing group.
Short groups are protected by non-preemptive FIFO queue locks, while long groups are
protected by FIFO semaphore queues. Tasks busy-wait for short resources and suspend on
long resources. Short request execute non-preemptively. Requests for long resources cannot
be contained within requests for short resources. A job executing a long request inherits
highest priority of blocked jobs on that resource’s group. FMLP is deadlock free.

[22] is concerned with suspension protocols. Schedulability analysis for suspension protocols
can be suspension-oblivious or suspension-aware. In suspension-oblivious, suspension time is
added to task execution. While in suspension-aware, it is not. [22] provides Optimal Multi-
processor Locking Protocol (OMLP). Under OMLP, each resource has a FIFO queue of length
at most m, and a priority queue. Requests for each resource are enqueued in the correspond-
ing FIFO queue. If FIFO queue is full, requests are added to the priority queue according
to the requesting job’s priority. The head of the FIFO queue is the resource holding task.
Other queued requests are suspended until their turn come. OMLP achieves O(m) priority
inversion (pi) blocking per job under suspension oblivious analysis. This is why OMLP is
asymptotically optimal under suspension oblivious analysis. Under suspension aware analy-
sis, FMLP is asymptotically optimal. [23] extends work in [22] to clustered-based scheduled
multiprocessor system. [23] provides concept of priority donation to ensure that each job is
preempted at most once. In priority donation, a resource holder priority can be uncondition-
ally increased. Thus, a resource holder can preempt another task. The preempted task is
predetermined such that each job is preempted at most once. OMLP with priority donation
can be integrated with k-exclusion locks (K-OMLP). Under K-exclusion locks, there are k
instances of the same resource than can be allocated concurrently. K-OMLP has the same
structure of OMLP except that there are K FIFO queues for each resource. Each FIFO
queue corresponds to one of the k instances. K-OMLP has O(m/k) bound for pi-blocking
under s-oblivious analysis. [55] extends the K-OMLP in [23] to global scheduled multiproces-
sor systems. The new protocol is Optimal K-Exclusion Global Locking Protocol (O-KGLP).
Despite global scheduling is a special case of clustering, K-OMLP provides additional cost
to tasks requesting no resources if K-OMLP is used with global scheduling. O-KGLP avoids
this problem.

[149] presents RNLP protocol to access nested resources. FMLP [20], FMLP+ [26] and
OMLP family protocols [22, 29] use “group locking” to support nesting. “Group Locking”
combines all resources that can be accessed by one atomic section in any task within a
single group. Each group is protected by a single lock. Any task acquiring a resource
must hold the group lock first. “Group locking” reduces parallelism if two or more tasks
are not accessing the same resources, yet these tasks execute serially because resources
belong to the same group. “Group locking” requires static assignment of resources to groups
before execution. While “Group Locking” supports coarse-grained resource nesting, RNLP
supports fine-grained resource nesting. RNLP is used under s-oblivious and s-aware analysis.
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Progress is guaranteed via priority inheritance, priority boosting or priority donation. RNLP
worst case analysis approximates worst case analysis of FMLP, FMLP+ and OMLP family,
but RNLP increases parallelism through fine-grained resource nesting. Thus, average case
analysis for RNLP is better than other protocols. RNLP requires a strict partial order on
resources (which can be avoided in case of global scheduling). Resources should be acquired
in their order to prevent deadlocks and improve pi-blocking bounds. RNLP is composed
of two phases: Token Lock and Request Satisfaction Mechanism (RSM). These two stages
differ according to the scheduler and waiting mechanism. Token Lock bounds number of
jobs with incomplete resource requests to k. k is usually n or m. RSM serializes access
to shared resources. In RSM, each resource θa has a queue of k length. For a job τxi to
access θa, τ

x
i must first obtain a token. ts(τxi ) is the timestamp of token acquisition. τxi is

inserted in θa’s queue according to increasing timestamp order. τxi acquires θa when τxi is
the head of θa’s queue, and no other task τ yj accesses a resource θb < θa and ts(τ yj ) < ts(τxi ).
τxi can access nested resources using the same rules. τxi releases its token when it finishes
its outer most request. If requested resources in any critical section for τxi are known a
priori, this relaxes RNLP’s rules and improves concurrency [148]. If requested resources are
known a priori for each atomic section, then τxi can access resources in any order without
deadlock. This is because requests are spotted in the corresponding resources’ queues at
the beginning of each critical section in increasing timestamp order. Design of Token Lock
differs according to scheduler and waiting mechanism. For global schedulers, RNLP makes
use of a k-exclusion locking protocol named O-KGLP [55] to implement the Token Lock. [149]
suggests an improved k-exclusion locking protocol (I-KGLP) for globally scheduled systems
that reduces pi-blocking bounds (I-KGLP exists in the longer version of [149] and introduced
as Replica Request Donation Global Locking Protocol (R2DGLP ) later in [150]). Under
globally scheduled systems when I-KGLP is used with priority inheritance RSM (I-RSM),
pi-blocking is bounded by (2m−1)Lmax per outermost request, where Lmax is the maximum
length of any outermost critical section.

[148] extends RNLP [149]. Atomic resource request is done using Dynamic Group Locks
(DGL). The timestamp of token acquisition is recorded for each requested resource in a DGL
in the corresponding resource queue. A job is ready when it is the head of all requested re-
source queues. DGL requests can be nested themselves. DGL reduces progress blocking
when certain jobs are uselessly blocked. This reduction is done by splitting resources into
groups that are not going to nest together. Thus, different instances of RNLP can be in-
stantiated for different resource groups with different progress and request blocking bounds.
Worst-case blocking bounds using DGL are the same under original RNLP [149]. [148] dis-
criminates between short and long resources. Short resource requests do not have to wait on
long resources. Each type of resources has their own tokens. Short requests can be nested
with long requests, but versa is not true. A request of nested long and short resources
competes for a long token, while a request with only short resources competes for a short
token. Long requests cannot reserve slots in short resources queues, even if the short re-
sources will be nested in the future. [148] supports concurrent access to replicas of multiple
resources. If DGLs are used, then atomic resource requests are placed in the shortest queues
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of corresponding resources.

2.2 Real-Time Lock-Free and Wait-Free Synchroniza-

tion

Due to locking problems (e,g,. priority inversion, high overhead and deadlock), research has
been done on non-blocking synchronization using lock-free [5, 7, 8, 39, 42, 58, 59, 81, 95] and
wait-free algorithms [6,16,37,39,40,43,59,79,121,137,140,141]. Lock-free iterates an atomic
primitive (e.g., CAS) inside a retry loop until successfully accessing object. When used
with real-time systems, number of failed retries must be bounded [5,7]. Otherwise, tasks are
highly likely to miss their deadlines. Wait-free algorithms, on the other hand, bound number
of object access by any operation due to use of sized buffers. Synchronization under wait-free
is concerned with: 1) single-writer/multi-readers where a number of reading operations may
conflict with one writer. 2) multi-writer/multi-reader where a number of reading operations
may conflict with number of writers. The problem with wait-free algorithms is its space cost.
As embedded real-time systems are concerned with both time and space complexity, some
work appeared trying to combine benefits of locking and wait-free.

[5] considers lock-free synchronization for hard-real time, periodic, uniprocessor systems. [5]
upper bounds retry loop failures and derives schedulability conditions with Rate Monotonic
(RM), and Earliest Deadline First (EDF). [5] compares, formally and experimentally, lock-
free objects against locking protocols. [5] concludes that lock-free objects often require less
overhead than locking-protocols. They require no information about tasks and allow addi-
tion of new tasks simply. Besides, lock-free object do not induce excessive context switches
nor priority inversion. On the other hand, locking protocols allow nesting. Besides, per-
formance of lock-free depends on the cost of “retry-loops”. [7] extends [5] to generate a
general framework for implementing lock-free objects in uniprcocessr real-time systems. The
framework tackles the problem of multi-objects lock-free operations and transactions through
multi-word compare and swap (MWCAS) implementation. [7] provides a general approach
to calculate cost of operation interference based on linear programming. [7] compares the
proposed framework with real-time locking protocols. Lock-free objects are prefered if cost
of retry-loop is less than cost of lock-access-unlock sequence. [8] extends [5,7] to use lock-free
objects in building memory-resident transactions for uniprocessor real-time systems. Lock-
free transactions, in contrast to lock-based transactions, do not suffer from priority inversion,
deadlocks, complicated data-logging and rolling back. Lock-free transaction do not require
kernel support.

[49] presents two synchronization methods under G-EDF scheduled real-time multiprocessor
systems for simple objects. The first synchronization technique uses queue-based spin locks,
while the other uses lock-free. The queue lock is FIFO ordered. Each task appends an
entry at the end of the queue, and spins on it. While the task is spinning, it is non-
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preemptive. The queue could have been priority-based but this complicates design and
does not enhance worst case response time analysis. Spinning is suitable for short critical
sections. Disabling preemption requires kernel support. So, second synchronization method
uses lock-free objects. [49] bounds number of retries. [49] , analytically and experimentally,
evaluates both synchronization techniques for soft and hard real-time analysis. [49] concludes
that queue locks have a little overhead. They are suitable for small number of shared object
operations per task. Queue locks are not generally suitable for nesting. Lock-free have high
overhead compared with queue locks. Lock-free is suitable for small number of processors
and object calls in the absence of kernel support.

[81] uses lock-free objects under PFair scheduling for multiprocessor system. [81] provides
concept of supertasking to reduce contention and number of failed retries. This is done by
collecting jobs that need a common resource into the same supertask. Members of the same
supertask run on the same processor. Thus, they cannot content together. [81] upper bounds
worst case duration for lock-free object access with and without supertasking. [81] optimizes,
not replaces, locks by lock-free objects. Locks are still used in situations like sharing external
devices and accessing complex objects.

Lock-free objects are used with time utility models where importance and criticality of tasks
are separated [42,95]. [95] presents MK-Lock-Free Utility Accrual (MK-LFUA) algorithm that
minimizes system level energy consumption with lock-free synchronization. [42] uses lock-
free synchronization for dynamic embedded real-time systems with resource overloads and
arbitrary activity arrivals. Arbitrary activity arrivals are modelled with Universal Arrival
Model (UAM). Lock-free retries are upper bounded. [42] identifies the conditions under
which lock-free is better than lock-based sharing. [58] builds a lock-free linked-list queue on
a multi-core ARM processor.

Wait-free protocols use multiple buffers for readers and writers. For single-writer/multiple-
readers, each object has a number of buffers proportional to maximum number of reader’s
preemptions by the writer. This bounds number of reader’s preemptions. Readers and
writers can use different buffers without interfering each other.

[43] presents wait-free protocol for single-writer/multiple-readers in small memory embedded
real-time systems. [43] proves space optimality of the proposed protocol, as it required the
minimum number of buffers. The protocol is safe and orderly. [43] also proves, analytically
and experimentally, that the protocol requires less space than other wait-free protocols. [40]
extends [43] to present wait-free utility accrual real-time scheduling algorithms (RUA and
DASA) for real-time embedded systems. [40] derives lower bounds on accrued utility com-
pared with lock-based counterparts while minimizing additional space cost. Wait-free algo-
rithms experimentally exhibit optimal utility for step time utility functions during underload,
and higher utility than locks for non-step utility functions. [121] uses wait-free to build three
types of concurrent objects for real-time systems. Built objects has persistent states even if
they crash. [141] provides wait-free queue implementation for real-time Java specifications.

A number of wait-free protocols were developed to solve multi-writer/multi-reader problem
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in real-time systems. [140] provides m-writer/n-reader non-blocking synchronization proto-
col for real-time multiprocessor system. The protocol needs n + m + 1 slots. [140] provides
schedulability analysis of the protocol. [6] presents wait-free methods for multi-writer/multi-
reader in real-time multiprocessor system. The proposed algorithms are used for both
priority and quantum based scheduling. For a B word buffer, the proposed algorithms
exhibit O(B) time complexity for reading and writing, and Θ(B) space complexity. [137]
provides a space-efficient wait-free implementation for n-writer/n-reader synchronization in
real-time multiprocessor system. The proposed algorithm uses timestamps to implement
the shared buffer. [137] uses real-time properties to bound timestamps. [37] presents wait-
free implementation of the multi-writer/multi-reader problem for real-time multiprocessor
synchronization. The proposed mechanism replicates single-writer/multi-reader to solve the
multi-writer/multi-reader problem. [37], as [137], uses real-time properties to ensure data
coherence through timestamps.

Each synchronization technique has its benefits. So, a lot of work compares between lock-
ing, lock-free and wait-free algorithms. [59] compares building snapshot tool for real-time
system using locking, lock-free and wait-free. [59] analytically and experimentally compares
the three methods. [59] concludes that wait-free is better than its competitors. [39] presents
synchronization techniques under LNREF [41] (an optimal real-time multiprocessor sched-
uler) for simple data structures. Synchronization mechanisms include lock-based, lock-free
and wait-free. [39] derives minimum space cost for wait-free synchronization. [39] compares,
analytically and experimentally, between lock-free and lock-based synchronization under
LNREF.

Some work tried to combine different synchronization techniques to combine their benefits.
[79] uses combination of lock-free and wait-free to build real-time systems. Lock-free is used
only when CAS suffices. The proposed design aims at allowing good real-time properties
of the system, thus better schedulability. The design also aims at reducing synchronization
overhead on uni and multiprocessor systems. The proposed mechanism is used to implement
a micro-kernel interface for a uni-processor system. [16] combines locking and wait-free for
real-time multiprocessor synchronization. This combination aims to reduce required space
cost compared to pure wait-free algorithms, and blocking time compared to pure locking
algorithms. The proposed scheme is jsut an idea. No formal analysis nor implementation is
provided.

2.3 Real-Time Database Concurrency Control

Real-time database systems (RTDBS) is not a synchronization technique. It is a predeces-
sor and inspiration for real-time transactional memory. RTDBS itself uses synchronization
techniques when transactions conflict together. RTDBS is concerned not only with logical
data consistency, but also with temporal time constraints imposed on transactions. Tempo-
ral time constraints require transactions finish before their deadlines. External constraints



Mohammed El-Shambakey Chapter 2. Past and Related Work 17

require updating temporal data periodically to keep freshness of database. RTDBS allow
mixed types of transactions. But a whole transaction is of one type. In real-time TM, a
single task may contain atomic and non-atomic sections.

High-Priority two Phase Locking (HP-2PL) protocol [97, 98, 116, 153] and Real-Time Opti-
mistic Concurrency (RT-OCC) protocol [46, 62, 97–99, 153] are the most two common pro-
tocols for RTDBS concurrency . HP-2PL works like 2PL except that when a higher priority
transaction request a lock held by a lower priority transaction, lower priority transaction re-
leases the lock in favor of the higher priority one. Then, lower priority transaction restarts.
RT-OCC delays conflict resolution till transaction validation. If validating transaction cannot
be serialized with conflicting transactions, a priority scheme is used to determine which trans-
action to restart. In Optimistic Concurrency Control with Broadcast Commit (OCC-BC),
all conflicting transactions with the validating one are restarted. HP-2PL may encounter
deadlock and long blocking times, while transactions under RT-OCC suffer from restart time
at validation point.

Other protocols were developed based on HP-2PL [97, 98, 116] and RT-OCC [10, 62, 97, 99].
HP-2PL, and its derivatives, are similar to locking protocols in real-time systems. They
have the same problems in real-time locking protocols like priority inversion. So, the same
solutions exist for the RTDBS locking protocols. Despite RT-OCC, and its derivatives, use
locks in their implementation, their behaviour is closer to abort and retry semantics in TM.
Some work integrates different protocols to handle different situations [116,152].

[97] presents Reduced Ceiling Protocol (RCP) which is a combination of Priority Ceiling
Protocol (PCP) and Optimistic Concurrency Protocol (OCC). RCP targets database sys-
tems with mixed hard and soft real-time transactions (RTDBS). RCP aims at guarantee of
schedulabiltiy of hard real-time transactions, and minimizing deadline miss of soft real-time
transactions. Soft real-time transactions are blocked in favor of conflicting hard real-time
transactions. While hard real-time transactions use PCP to synchrnonize among themselves,
soft real-time transactions use OCC. Hard real-time transactions access locks in a tow phase
locking (2PL) fashion. Seized locks are released as soon as hard real-time transaction no
longer need them. This reduces blocking time of soft real-time transactions. [97] derives
analytical and experimental evaluation of RCP against other synchronization protocols.

[152], like [97], deals with mixed transaction. [152] classifies mixed transactions into hard
(HRT), soft (SRT) and non (NRT) real-time transactions. HRT has higher priority than SRT.
SRT has higher priority than NRT. [152] aims at guranting deadlines of HRTs, minimizing
miss rate of SRTs and reducing response time of NRTs. So, [152] deals with inter and intra-
transaction concurrency. HRTs use PCP for concurrency control among themselves. SRTs
use WAIT-50, and NRTs use 2PL. SRT and NRT are blocked or aborted in favor of HRT.
If NRT requests a lock held by SRT, then NRT is blocked. If SRT requests a lock held by
NRT, WAIT-50 is applied. Experimental evaluation showed effective improvement in overall
system performance. Performance objectives of each transaction type was met.

[62] is concerned with semantic lock concurrency control. The semantic lock technique
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allows negotiation between logical and temporal constraints of data and transactions. It also
controls imprecision resulting from negotiation. Thus, the semantic lock considers scheduling
and concurrency of transactions. Semantic lock uses a compatibility function to determine
if the release transaction is allowed to proceed or not.

Time Interval OCC protocols try to reduce number of transaction restarts by dynamic
adjustment of serialization timestamps. Time interval OCC may encounter unnecessary
restarts. [10] presents Timestamp Vector based OCC to resolve these unnecessary restarts.
Timestamp Vector base OCC uses a timestamp vector instead of a single timestamp as in
Time Interval OCC protocols. Experimental comparison between Timestamp Vector OCC
and previous Time Interval OCC shows higher performance of Timestamp Vector OCC.

[46] aims to investigate performance improvement of priority congnizant OCC over incog-
nizant counterparts. In OCC-BC, all conflicting transactions with the validating transaction
are restarted. [46] wonders if it is really worthy to sacrifice all other transactions in favor of
one transaction. [46] proposes Optimistic Concurrency Control- Adaptive PRiority (OCC-
APR) to answer this question. A validating transaction is restarted if it has sufficient time
to its deadline if restarted, and higher priority transactions cannot be serialized with the
conflicting transaction. Sufficient time estimate is adapted according to system feedback.
System feedback is affected by contention level. [46] experimentally concludes that integrat-
ing priority into concurrency control management is not very useful. Time Interval OCC
showed better performance.

WAIT-X [46, 99] is one of the optimistic concurrency control (OCC) protocols. WAIT-X
is a prospective (forward validation) OCC. Prospective means it detects conflicts between
a validating transaction and conflicting transaction that may commit in the future. In
retrospective (backward validation) protocols, conflicts are detected between a validating
transaction and already committed transactions. Retrospective validation aborts validating
transaction if it cannot be serialized with already committed conflicting transactions. When
WAIT-X detects a conflict, it can either abort validating transaction, or commit validating
transaction and abort other conflicting transactions, or it can dealy validating a transction
slightly hoping that conflicts resolve themsleves someway. Which action to take is a function
of priorities of vlaidating and conflicting transactions. WAIT-X can delay validating trans-
action until percetage of higher priority transactions in the conflict set is lower than X%.
WAIT-50 is a common implementation of WAIT-X.

[92] is concerned with concurrency control for multiprocessor RTDBS. [92] uses priority cap
to modify Reader/Write Prirority Ceiling Protocol (RWPCP) [131] to work on multiprocessor
systems. The proposed protocol, named One Priority Inversion RWPCP (1PI-RWPCP), is
deadlock-free and bounds number of priority inversions for any transaction to one. [92] derives
feasiblity condition for any transaction under 1PI-RWPCP. [92] experimentally compares
performance of 1PI-RWPCP against RWPCP.

[116] combines locking, multi-version and valid confirmation concurrency control mecha-
nisms. The proposed method adopts different concurrency control mechanism according to
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idiographic situation. Experiments show lower rate of transactional restart of the proposed
mechanis compared to 2PL-HP.

[98] is concerned with RTDBS containing periodically updated data and one time transac-
tactions. [98] provides two new concurrency control protocols to balance freshness of data
and transaction performance. [98] proposes HP-2PL with Delayed Restart (HP-2PL-DR) and
HP-2PL with Delayed Restart and Pre-declaration (HP-2PL-DRP) based on HP-2PL. Before
a transaction T restarts in HP-2PL-DR, next update time of each temporal data accessed
by T is checked. If next update time starts before currently re-executing T , then T ’s restart
time is delayed until the next udpate. Otherwise, T is restarted immediately. If Tr and
Tn are two transactions under HP-2PL-DRT. Tr is requesting a lock held by Tn. If priority
of Tr is greater than priority of Tn, then Tn releases the lock in favor of Tr. Othewise, Tr
fails. If Tn releases the lock and Tn is a one time transaction, then Tn restarts immediately.
Otherwise, Tn lock waiting time is updated. Experiments show improved performance of
HP-2PL-DR and HP-2PL-DRP over HP-2PL.

2.4 Real-Time TM Concurrency Control

Concurrency control in TM is done through contention managers. Contention managers are
used to ensure progress of transactions. If one or more transactions conflict on an object,
contention manager decides which transaction to commit. Other transactions abort or wait.
Mostly, contention managers are distributed or decentralized [68, 69, 126, 127], in the sense
that each transaction maintains its own contention manager. Contention managers may
not know which objects will be needed by transactions and their duration. Past work on
contention managers can be classified into two classes: 1) Contention management policy
that decides which transaction commits and which do other actions [67–69,126,127,135]. 2)
Implementation of contention management policy in practice [19, 50, 66, 108, 126, 135]. The
two classes are orthogonal. The second class tries to increase the benefit of the the contention
management policy in reality by considering different aspects in TM design (e.g., lazy versus
eager, visible versus invisible readers). Second class suggests contention managers should
be proactive instead of reactive. This can prevent conflicts before they happen. Contention
managers can be supported a lot if they are integrated into system schedulers. This provides
a global view of the system (due to applications feedback) and reduces overhead of the
implementation of contention manager.

Contention management policy ranges from never aborting enemies to always aborting
them [126, 127]. These two extremes can lead to deadlock, starvation, livelock and major
loss of performance. Contention manager policy lies in between. Depending on heuristics,
contention manager balances between decisions complexity against quality and overhead.

Different types of contention management policies can be found in [67–69,126,127,135] like:
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1. Passive and Aggressive: Passive contention manager aborts current transaction, while
aggressive aborts enemy.

2. Polite: When conflicting on an object, a transaction spins exponensially for average of
2(n+k) ns, where n is number of times to access the object, and k is a tuning parameter.
Spinning times is bounded by m. Afterwards, any enemy is aborted.

3. Karma: It assigns priorities to transaction based on the amount of work done so far.
Amount of work is measured by number of opened objects by current transaction.
Higher priority transaction aborts lower priority one. If lower priority transaction tries
to access an object for a number of times greater than priority difference between itself
and higher priority transaction, enemy is aborted.

4. Eruption: It works like Karma except it adds priority of blocked transaction to the
transaction blocking it. This way, enemy is sped-up, allowing blocked transactions to
complete faster.

5. Kindergarten: A transaction maintains a hit list (initially empty) of enemies who
previously caused current thread to abort. When a new enemy is encountered, current
transaction backs off for a limited amount of time. The new enemy is recorded in the
hit list. If the enemy is already in the hit list, it is aborted. If current transaction is
still blocked afterwards, then it is aborted.

6. Timestamp: It is a fair contention manager. Each transaction gets a timestamp when it
begins. Transaction with newer timestamp is aborted in favour of the older. Otherwise,
transaction waits for a fixed intervals, marking the enemy flag as defunct. If the enemy
is not done afterwards, it is killed. Active transaction clear their flag when they notice
it is set.

7. Greedy: Each transaction is given a timestamp when it starts. The earlier the times-
tamp of a transaction, the higher its priority. If transaction A conflicts with transaction
B, and B is of lower priority or is waiting for another transaction, then A aborts B.
Otherwise, A waits for B to commit, abort or starts waiting.

8. Randomized: It aborts current transaction with some probability p, and waits with
probability 1− p.

9. PublishedTimestamp: It works like Timestamp contention manager except it has a new
definition for an “inactive” transaction. Each transaction maintains a “recency” flag.
Recency flag is updated every time the transaction makes a request. Each transaction
maintains its own “inactivity” threshold parameter that is doubled every time it is
aborted up to a specific limit. If the enemy “recency” flag is behind the system global
time by amount exceeding its “inactivity” threshold, then enemy is aborted.
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10. Polka: It is a combination of Polite and Karma contention managers. Like Karma, it
assigns priorities based on amount of job done so far. A transaction backs off for a
number of intervals equals difference in priority between itself and its enemy. Unlike
Karma, back-off length increases exponentially.

11. Prioritized version of some of the previous contention managers appeared. Prioritized
contention managers include base priority of the thread holding the transaction into
contention manager policy. This way, higher priority threads are more favoured.

[9] compares performance of different contention managers against an optimal, clairvoyant
contention manager. The optimal contention manager knows all resources needed by each
transaction, as well as its release time and duration. Comparison is based on the “makespan”
concept which is amount of time needed to finish a specific set of transactions. The ratio
between makespan of analyzed contention manager and the makespan of the optimal con-
tention manager is known as competitive ratio. [9] proves that any contention manager can
be of O(s) competitive ratio if the contention manager is work conserving (i.e., always lets
the maximal set of non-conflicting transactions run), and satisfies pending property [68]. The
paper proves that this result is asymptotically tight as no on-line work conserving contention
manager can achieve better result. [9] also proves that the makespan of greedy contention
manager is O(s) instead of O(s2) [68]. This allows transactions of arbitrary release time and
durations in contrast to what is assumed in [68]. For randomized contention managers, a
lower bound of Ω(s) if transaction can modify their resource needs when they are reinvoked.

[67] analyzes different contention managers under different situations. [67] concludes that
no single contention manager is suitable for all cases. Thus, [67] proposes a polymorphic
contention manager that changes contention managers on the fly throughout different loads,
concurrent threads of single load and even different phases of a single thread. To implement
polymorphic contention manager, it is important to resolve conflicts resulting from different
contention managers in the same application by different methods. The easiest way is to
abort the enemy contention manager if it is of different type. [67] uses generic priorities for
each transaction regardless of the transaction’s contention manager. Upon conflict between
different classes of contention manager, highest priority transaction is committed.

[135] provides a comprehensive contention manager attempting to achieve low overhead for
low contention, and good throughput and fairness in case of high contention. The main com-
ponents of comprehensive contention manager are lazy acquisition, extendable timestamp-
based conflict detection, and efficient method for capturing conflicts and priorities.

[108] is concerned with implementation issues. [108] considers problems resulting from pre-
vious contention management policies like backing off and waiting for time intervals. These
strategies make transactions suffer from many aborts that may lead to livelocks, and in-
creased vulnerability to abort because of transactional preemption due to higher priority
tasks. Imprecise information and unpredictable benefits resulting from handling long trans-
actions make it difficult to make correct conflict resolution decisions. [108] discriminates be-
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tween decisions for long and short transactions, as well as, number of threads larger or lower
than number of cores. [108] suggests a number of user and kernel level support mechanisms
for contention managers, attempting to reduce overhead in current contention managers’
implementations. Instead of spin-locks and system calls, the paper uses shared memory seg-
ments for communication between kernel and STM library. It also proposes reducing priority
of loser threads instead of aborting them. [108] increases time slices for transactions before
they are preempted by higher priority threads. This way, long transactions can commit
quickly before they are suspended, reducing abort numbers.

For high number of cores, back-off strategies perform poorly. This is due to hot spots cre-
ated by small set of conflicts. These hotspots repeat in predictable manner. [19] introduces
proactive contention manger that uses history to predict these hotspots and scheduler trans-
actions around them without programmer’s input. Proactive contention manager is useful
in high contention, but has high cost for low contention. So, [19] uses a hybrid contention
managers that begins with back-off strategy for low contention. After a specific threshold
for contention level, hybrid contention manager switches to proactive manager.

Contention managers concentrate on preventing starvation through fair policies. They are
not suitable for specific systems like real-time systems where stronger behavioural guarantees
are required. [66] proposes user-defined priority transactions to make contention manage-
ment suitable for these specific systems. It investigates the correlation between consistency
checking (i.e., finding memory conflicts) and user-defined priority transactions. Transaction
priority can be static or dynamic. Dynamic priority increases as abort numbers of transaction
increases.

Contention managers are limited in: 1) they are reactive, and suitable only for imminent
conflicts. They do not specify when aborted transaction should restart, making them conflict
again easily. 2) Contention managers are decentralized because they consume a large part
of traffic during high contention. Decentralization prevents global view of the system and
limit contention management policy to heuristics. 3) As contention managers are user-level
modules, it is difficult to integrate them in HTM. [126] tackles the previous problems by
adaptive transaction scheduling (ATS). ATS uses contention intensity feedback from the
application to adaptively decide number of concurrent transactions running within critical
sections. ATS is called only when transaction starts in high contention. Thus, resulting
traffic is low and scheduler can be centralized. ATS is integrated into HTM and STM.

[50] presents CAR-STM, a scheduling-based mechanism for STM collision avoidance and
resolution. CAR-STM maintains a transaction queue per each core. Each transaction is
assigned to a queue by a dispatcher. At the beginning of the transaction, dispatcher uses a
conflict probability method to determine the suitable queue for the transaction. The queue
with high contention for the current transaction is the most suitable one. All transactions in
the same queue are executed by the same thread, thus they are serialized and cannot collide
together. CAR-STM uses a serializing contention manager. If one transaction conflicts
with another transaction, the former transaction is moved to the queue of the latter. This
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prevents further collision between them unless the second transaction is moved to a third
queue. Thus, CAR-STM uses another serialization strategy in which the two transactions
are moved to the third queue. This guarantees conflict between transactions for at most
once.

[111] uses HTM to build single and double linked queue, and limited capacity queue. HTM
is used as an alternative synchronization operation to CAS and locks. [111] provides worst
case time analysis for the implemented data structures. It experimentally compares the
implemented data structures with CAS and lock. [111] reverses the role of TM. Transactions
are used to build the data structure, instead of accessing data structures inside transactions.
[129] presents an implementation for HTM in a Java chip multiprocessor system (CMP).
The used processor is JOP, where worst case execution time analysis is supported.

[14] presents two steps to minimize and limit number of transactional aborts in real-time
multiprocessor embedded systems. [14] assumes tasks are scheduled under partitioned EDF.
Each task contains at most one transaction. [14] uses multi-versioned STM. In this method,
read-only transactions use recent and consistent snapshot of their read sets. Thus, they
do not conflict with other transactions and commit on first try. This reduction in abort
number comes at the cost of increased memory storage for different versions. [14] uses real-
time characteristics to bound maximum number of required versions for each object. Thus,
required space is bounded. [14] serializes conflicting transaction in a chronological order. Ties
are broken using least laxity and processor identification. [14] does not provide experimental
evaluation of its work.

[17] studies the effect of eager versus lazy conflict detection on real-time schedulability. In
eager validation, conflicts are detected as soon as they occur. One of the conflicting trans-
actions should be aborted immediately. In lazy validation, conflict detection is delayed to
commit time. [17] assumes each task is a complete transaction. [17] proves that synchronous
release of tasks does not necessarily lead to worst case response time of tasks. [17] also proves
that lazy validation will always result in a longer or equal response time than eager vali-
dation. Experiments show that this gap is quite high if higher priority tasks interfere with
lower priority ones.

[107]proposes an adaptive scheme to meet deadlines of transactions. This adaptive scheme
collects statistical information about execution length of transactions. A transaction can
execute in any of three modes depending on its closeness to deadline. These modes are
optimistic, visible read and irrevocable. The optimistic mode defers conflict detection to
commit time. In visible read, other transactions are informed that a particular location has
been read and subject to conflict. Irrevocable mode prevents transaction from aborting. As
a transaction gets closer to its deadline, it moves from optimistic to visible read to irrevo-
cable mode. Deadline transactions are supported by the underlying scheduler by disabling
preemption for them. Experimental evaluation shows improvement in number of committed
transactions without noticeable degradation in transactional throughput.

Previous CMs try to enhance response time of real-time tasks using different policies for
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conflict resolution. Checkpointing does not require aborted transaction to restart from be-
ginning. Thus, Checkpointing can be plugged into different CMs to further improve response
time. [91] introduces checkpointing as an alternative to closed nesting transactions [142]. [91]
uses boosted transactions [75] instead of closed nesting [88,117,142] to implement checkpoint-
ing. Booseted transactions are based on linearizable objects with abstract states and concrete
implementation. Methods under boosted transaction have well defined semantics to transit
objects from one state to another. Inverse methods are used to restore objects to previous
states. Upon a conflict, a transaction does not need to revert to its beginning, but rather to
a point where the conflict can be avoided. Thus, checkpointing enables partial abort. [143]
applies checkpointing in distributed transactional memory using Hyflow [123].



Chapter 3

Models and Assumptions

We consider a multicore system withm identical processors and n sporadic tasks τ1, τ2, . . . , τn.
The kth instance (or job) of a task τi is denoted τ ki . Each task τi is specified by its worst case
execution time (WCET) ci, its minimum period Ti between any two consecutive instances,
and its relative deadline Di. We assume implicit deadline systems (i.e., Di = Ti). Job τ ji is
released at time rji and must finish no later than its absolute deadline dji = rji +Di. The time
interval between start and end of τ ji is the response time of τ ji . Maximum response time of
any job of τi is upper bounded by Rup

i . Under a fixed priority scheduler such as G-RMA,
pi determines τi’s (fixed) priority and it is constant for all instances of τi. Under a dynamic
priority scheduler such as G-EDF, τ ji ’s priority, pji , is determined by its absolute deadline.
Any job of task τj may interfere with a single job of τi for a number of times, gAij(L), during
a duration L ≤ Ti under scheduler A. If τi and τj are independent from each other, then
Iij(L) is the amount of time any job of τj increases response time of a single job of τi during
an interval L.

Shared objects. A task may need to access (i.e., read, write) shared, in-memory objects while
it is executing any of its atomic sections. Synchronization between different tasks accessing
shared objects is done by Software Transactional Memory(STM). Terms “Atomic Section”,
“Critical Section” and “Transaction” are used interchangeably throughout this document.
The set of atomic sections of task τi is denoted si. |si| is number of transactions in τi. s

k
i is

the kth atomic section of τi. s
k
i starts at S(ski ). Each object, θ, can be accessed by multiple

tasks. The set of distinct objects accessed by any job of τi is Θi. Θk
i is the set of distinct

objects accessed by ski . s
k
i (Θ) states that the ski accesses set of objects Θ ⊆ Θk

i . If more than
one atomic section are trying to access the same object(s) at the same time, and at least one
access is a “write” operation, then these atomic sections are said to “conflict” together. If ski
conflicts with slj and ski starts before slj, then ski is called “interfered” atomic section, and slj
is called “interfering” atomic section. The time length of ski is len(ski ) if ski runs alone (i.e., ski
does not conflict with any other atomic section, nor ski is preempted by any real-time task).
To simplify notations, len(c1.sb1a1 + ...+ cz.sbzaz) denotes summation of product of constant ci

25



Mohammed El-Shambakey Chapter 3. Models/Assumptions 26

by length of atomic section sbiai where 1 ≤ i ≤ z. The maximum-length atomic section in any
job of τi is simax , whereas the maximum length atomic section among all tasks is smax. The
maximum length atomic section in all tasks that accesses any object in Θ is smax(Θ).

γi is the set of tasks that share any object with τi. Whereas γki is the set of tasks sharing
objects with ski . Atomic sections are non-nested. When STM is compared against lock-free,
each atomic section is assumed to access only one object to allow a head-to-head comparison
with lock-free synchronization [49]. Due to “Transitive Retry” (Section 4.1.2), an atomic
section ski can conflict with another atomic section slj with no shared objects between ski and
slj. While Θi contains distinct objects accessed directly by any atomic section in τi, Θ∗i is
the set of distinct objects not directly accessed by any atomic section in τi. Objects in Θ∗i
can cause one or more atomic sections in τi to abort and retry due to transitive retry. Thus,
objects in Θ∗i are indirectly(transitively) accessed by atomic sections in τi. Θi ∩Θ∗i = ∅. γ∗i
is the set of tasks, other than τi, that access any object in Θ∗i . Θex

i is the extended set of
distinct objects accessed directly or indirectly by any atomic section in τi. Thus, Θex

i is the
union of Θi and Θ∗i . γ

ex
i is the set of tasks, other than τi, that access any object in Θex

i . Θkex

i

is the subset of objects in Θex
i accessed directly or indirectly by ski . γ

kex

i is the set of tasks,
other than τi, that access any object in Θkex

i .

STM retry cost. If two or more atomic sections conflict, then a contention manager(CM)
resolves the conflict. CM will commit one section and abort and retry the others, increasing
the time to execute the aborted sections. Each time ski aborts and retries, S(ski ) is updated
to the new restart time. The maximum increased time that an atomic section ski will take to
execute due to conflict with another section slj, is W k

i (slj). The maximum time that a task
τi’s atomic sections have to retry due to conflict with any atomic section in tasks other than
τi over an interval L is RCi(L). If L is omitted, then L = Ti. If i is omitted, then RCi(L)
refers to retry cost of any task τi, 1 ≤ i ≤ n. RCire(L), RCire and RCre are similar to
RCi(L), RCi and RC, respectively. While RC results from conflict between atomic sections,
RCre results from preemption of a job- executing an atomic section- by a higher priority job.
The maximum total retry cost by all atomic sections in τi during an interval L is the sum
of RCi(L) and RCire(L). i is omitted if it is known. Priority of atomic sections is one of the
used parameters by CMs to resolve conflicts. po(s

k
i ) is the original priority of atomic section

ski . Throughout this document, if ski belongs to job τ ji , then po(s
k
i ) = plj. Effective priority

(or for simplicity just “priority”) of ski is p(ski ). p(s
k
i ) = po(s

k
i ) unless p(ski ) changes by the

underlying synchronization technique. max sjlik(θ) is the maximum length atomic section in
all tasks that accesses θ and its priority is lower than p(slj) and higher than p(ski ). Whereas

max sjlik(Θ) is the maximum length max sjlik(θ) that access any object θ ∈ Θ. Previous
notations are summarized in Table 3.1.
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Table 3.1: Notations

General notations
TM Transactional Memory.
CM Contention Manager.
STM Software Transactional Memory.
HTM Hardware Transactional Memory.
ECM Earliest Deadline Contention Manager.
RCM Ratemonotonic Contention Manager.
LCM Length-based Contention Manager.
PNF Priority with Negative value and First access contention manager.
FBLT First Bounded, Last Timestamp contention manager.
CPFBLT Checkpointing First Bounded, Last Timestamp contention

manager.
G-EDF Global Earliest Deadline First scheduler.
RMS Rate-Monotonic Scheduling.
G-RMA Global Rate-Monotonic Scheduler.

Real-time task’s notations
τi ith task in the task set.

τ ji jth instance (job) of the ith task. τi is used to generally represent
any instance τ ji (j is indeterminate).

ci Worst case execution time (WCET) of any instance of τi.
Ti Minimum period between any two consequitive instances of τi.
Di Relative deadline of any instance of τi. In case of implicit deadline

system, Di = Ti.

rji Release time of job τ ji .

dji Absolute deadline of job τ ji (dji = rji +Di). d
j
i is also the absolute

deadline of any atomic section (transaction) in τ ji .

pji , pi pji is priority of job τ ji . If pji is fixed for all jobs of τi, then pji = pi,
∀j.

gAij(L) Maximum number of interferences made by any job τ yj to only one
job τxi during an interval L, where L ≤ Ti, under scheduling
algorithm A.

m Number of processors in a multiprocessor systems.
n Number of tasks in a set of sporadic tasks.

Atomic section’s (transaction’s) notations
θ, Θ θ is one object that can be accessed within an atomic section

(transaction) of any task. Whereas Θ is a set of objects.
si Set of atomic sections (transactions) in any job of τi.
ski The kth atomic section (transaction) in any job of τi.
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po(s
k
i ), p(s

k
i ) po(s

k
i ) is the orginal priority of atomic section (transaction) ski .

Throughout this document, if ski belongs to job τ ji , then
po(s

k
i ) = plj. p(s

k
i ) = po(s

k
i ) unless priority of ski changes due to

behaviour of underlying synchronization technique.
Θi Set of distinct objects accessed directly by any job of τi.
Θk
i The set of distinct objects accessed directly by ski . Θk

i ⊆ Θi.
ski (Θ) The same as ski . s

k
i (Θ) states that ski accesses a set of objects

Θ ⊆ Θk
i .

Θk
i (θa) Set of distinct objects accessed by ski for the first time after ski ’s

first access to θa. Θk
i (θa) ⊆ Θk

i .
len
(
ski
)

Time length of ski in absence of conflict with any other atomic
section and preemption by any real-time job.

len
(∑z

i=1 cis
bi
ai

)
Summation of the product of constant ci by the length of
transaction sbiai where 1 ≤ i ≤ z.

γi Set of tasks other than τi that access at least one object in Θi.
γki Set of tasks that share any object with ski . Each task in γi has

direct access to at least one object in Θk
i .

simax The maximum length atomic section (transaction) in any job of τi.
smax(Θ) The maximum length atomic section (transaction) in all tasks

that accesses any object θ ∈ Θ.
smax Length of the longest atomic section (transaction) in all tasks.
S(ski ) Start time of ski . S(ski ) is updated each time ski aborts and retries.

max sjlik(θ) The maximum length atomic section (transaction) in all tasks
that accesses θ and its priority is lower than p(slj) and higher than
p(ski ).

max sjlik(Θ) max{max sjlik(θ) : ∀θ ∈ Θ}.
W k
i (slj) The maximum time ski aborts and retries due to a conflict with slj.

If ski was executing before slj was released, then ski is called
“interfered transaction”, whereas “slj” is called “interfering
transaction”.

Θ∗i Set of distincit objects not accessed directly by transactions in τi,
but can cause transactions in τi to retry. While Θi respresent
“direct objects” accessed by τi, Θ∗i represent “indirect objects”
accessed by transactions in τi. Θi ∩Θ∗i = ∅.

Θex
i Extended set of objects accessed “directly” or “indirectly” by τi

(i.e., Θex
i = Θi ∪Θ∗i ).

Θkex

i Subset of objects in Θex
i that are accessed directly or indirectly by

ski .
γ∗i Set of tasks, other than τi, that access at least one object in Θ∗i .
γexi Set of tasks, other than τi, that access at least one object in Θex

i .
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γk
ex

i Set of tasks, other than τi, that access objects in Θkex

i .
RCi(L), RCi,
RC

RCi(L) is maximum retry cost of any job in τi due to conflict
between transactions in τi and transactions in other tasks during
an interval L. If L is omitted, then L = Ti. If i is omitted, then i
can be any task (i.e., i ≤ n).

RCire(L), RCire ,
RCre(L)

RCire(L) is maximum retry cost of any job in τi due to release of
higher priority jobs of tasks other than τi during an interval L. If
L is omitted, then L = Ti. If i is omitted, then i can be any task
(i.e., i ≤ n).

RCito(L),
RCto(L)

Maximum total retry cost of any job in τi during an interval L
(i.e., RCito(L) = RCi(L) +RCire(L)). If i is known, then i is
omitted.

Iij(L) In absence of retry cost, Wij(L) is the amount of time any job of
τj increases response time of any job of τi.

cpki (θ) Recorded checkpoint in ski for the newly accessed object θ.
∇k
i∗ Time interval between start of ski and the first access to the first

shared object between ski and any other transaction.
tccp, t

r
cp Time cost to construct and remove a single checkpoint.

rmax Maximum execution cost of a single iteration of any retry-loop
lock-free of any task.



Chapter 4

The ECM and RCM Contention
Managers

We consider software transactional memory (STM) for concurrency control in multicore em-
bedded real-time software. We investigate real-time contention managers (CMs) for resolving
transactional conflicts, including those based on dynamic and fixed priorities, and establish
upper bounds on transactional retries and task response times. We identify the conditions
under which STM (with the proposed CMs) is superior to lock-free synchronization [49] and
real-time locking protocols (i.e., OMLP [22,29] and RNLP [149]).

The rest of this Chapter is organized as follows, Section 4.1 investigates Earliest Deadline
Contention Manager under G-EDF scheduling (ECM) and illustrates its behaviour. We pro-
vide computations of workload interference and retry cost analysis under ECM. Section 4.2
presents Rate Monotonic Contention Manager under G-RMA scheduling (RCM). It also in-
cludes retry cost and response time analysis under RCM. Section 4.3 compares performance
between any two synchronization techniques in terms of total utilization. Total utilization of
ECM and RCM is compared against total utilization of lock-free in Section 4.4 and real-time
locking protocols in Section 4.5. We conclude the Chapter in Section 4.6.

4.1 ECM

Since only one atomic section among many that share the same object can commit at any
time under STM, those atomic sections execute in sequential order. A task τi’s atomic
sections are interfered by other tasks that share the same objects with τi. Hereafter, we will
use ECM to refer to a multicore system scheduled by G-EDF and resolves STM conflicts
using the EDF CM. ECM was originally introduced in [60] and analyzed in more details
in [54]. ECM will abort and retry an atomic section of τxi , ski due to a conflicting atomic
section of τ yj , slj, if the absolute deadline of τ yj is less than or equal to the absolute deadline

30
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of τxi . ECM behaviour is shown in Algorithm 1. [60] assumes the worst case scenario for
transactional retry occurs when conflicting transactions are released simultaneously. [60] also
assumes all transactions have the same length. Here, we extend the analysis in [60] to a more
worse conflicting scenario and consider distinct-length transactions.

Algorithm 1: ECM

Data: ski → interfered atomic section. slj → interfering atomic section
Result: which atomic section aborts

1 if dki < dlj then
2 slj aborts;

3 else
4 ski aborts;
5 end

4.1.1 Illustrative Example

Behaviour of ECM can be illustrated by the following example:

• Transaction ski ∈ τxi begins execution. Currently, ski does not conflict with any other
transaction.

• Transaction slj ∈ τ
y
j is released while ski is still running. Θk

i ∩ Θl
j 6= ∅. d

y
j < dxi . So,

pyj > pxi . Hence, ECM will abort and restart ski in favour of slj.

• Transaction svh ∈ τuh is released while slj is still running. duh < dyj < dxi . So, puh > pyj > pxi .

slj and ski will abort and retry until svh commits.

• svh commits. slj executes while ski aborts and retries.

• slj commits. ski executes.

4.1.2 Transitive Retry

With multiple objects per transaction, ECM will face transitive retry, which we illustrate
with an example.

Example 1. Consider three atomic sections sx1 , sy2, and sz3 belonging to jobs τx1 ,τ y2 , and
τ z3 , with priorities pz3 > py2 > px1 , respectively. Assume that sx1 and sy2 share objects, sy2 and
sz3 share objects. sx1 and sz3 do not share objects. sz3 can cause sy2 to retry, which in turn
will cause sx1 to retry. This means that sx1 may retry transitively because of sz3, which will
increase the retry cost of sx1 .
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Assume another atomic section sf4 is introduced. Priority of sf4 is higher than priority of sz3.
sf4 shares objects only with sz3. Thus, sf4 can make sz3 to retry, which in turn will make sy2 to
retry, and finally, sx1 to retry. Thus, transitive retry will move from sf4 to sx1 , increasing the
retry cost of sx1 . The situation gets worse as more tasks of higher priorities are added, where
each task shares objects with its immediate lower priority task. τ z3 may have atomic sections
that share objects with τx1 , but this will not prevent the effect of transitive retry due to sx1 .

Definition 1. Transitive(indirect) Retry: A transaction ski suffers from transitive retry
when ski retries due to a higher priority transaction shz , and Θh

z ∩Θk
i = ∅.

Claim 1. ECM suffers from transitive retry for multi-object transactions.

Proof. ECM depends on priorities to resolve conflicts between transactions. Thus, lower
priority transaction must always be aborted for a conflicting higher priority transaction.
Claim follows.

Because of transitive retry, Θi for any τi is extended to include any object θ 6∈ Θi, but θ
can make at least one transaction ski ∈ τi retry transitively. The new set of objects that
can cause direct or indirect retry of at least one transaction in τi is denoted as Θex

i . Θex
i is

obtained by being initialized to Θi (i.e., the set of objects that are already accessed by any
transaction ski ∈ τi). We then cycle through all transactions belonging to all other higher
priority tasks. Each transaction slj that accesses at least one of the objects in Θex

i adds all
other objects accessed by slj to Θex

i . The loop over all higher priority tasks is repeated, each
time with the new Θex

i , until there are no more transactions accessing any object in Θex
i .

However, this solution may over-extend the set of conflicting objects, and may even contain
all objects accessed by all tasks. Θ∗i represent the set of objects not accessed directly by any
transaction in τi, but any θ ∈ Θ∗i can make at least one transaction in τi retry transitively.
Thus, Θex

i = Θi + Θ∗i . Similarly, the distinct set of objects that can make ski retry directly
or indirectly(transitively) is denoted as Θkex

i . γi is the extended to γexi . While γi is the set
of tasks- other than τi- that access at least one object θ ∈ Θi, γ

ex
i is the set of tasks- other

than τi- that access at least one object θ ∈ Θex
i .

4.1.3 G-EDF Interference

Claim 2. Regardless of the used scheduler, maximum number of jobs of τj that can exist in
time interval L is upper bounded by ⌈

L

Tj

⌉
+ 1 (4.1)

where at most two jobs τj can be partially included in L. The remaining jobs of τj are totally
included in L.
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Proof. Generally, L = aTj + b, 0 ≤ b < Tj. a is the maximum number of jobs of τj that
contribute by their minimum periods Tj during L. If b ≥ Tj, then there are more than a jobs
of τj contributing by their minimum periods Tj during L, which contradicts definition of a.
The remaining interval b(= L− aTj, b > 0) can be divided between at most two jobs of τj.
If b can be divided between more than two jobs of τj, then there is more than a jobs of τj
that contribute by their minimum periods Tj during L. This contradicts definition of a. So,

if b > 0, then maximum number of jobs of τj that can exist during L is a+ 2 =
⌈
L
Tj

⌉
+ 1 .

If b = 0, then jobs of τj can be shifted to the left or the right during L. This results in a+ 1
jobs of τj during L. So, if b = 0, then maximum number of jobs of τj that can exist during

L is a+ 1 =
⌈
L
Tj

⌉
+ 1. Claim follows.

Claim 3. Let Ti = aTj + b, where a =
⌊
Ti
Tj

⌋
and 0 ≤ b < Tj. Under G-EDF scheduler,

maximum number of jobs of τj that can interfere with one job τxi during time interval L(=
Ti − f , 0 ≤ f < Ti) is

ggedfij (L) =


⌈
Ti
Tj

⌉
, f ≤ b

⌈
L
Tj

⌉
+ 1 , Otherwise

(4.2)

Proof. L = Ti − f = aTj + b − f . If b − f ≥ 0, then following proof of Claim 2, b − f
can be devided between at most two jobs of τj during L. These two jobs of τj are: 1)
carried-in job (i.e., τ sj where rsj < rxi and dsj < dxi [18]). 2) carried-out job (τ ej where rej > rxi
and dsj > dxi [18]). Under G-EDF, only jobs of τj with absolute deadline less than dxi can
interfere with τxi . Thus, carried-out job of τj cannot interfere with τxi . So, b− f can be the
contribution of only the carried-in job. Following proof of Claim 2, maximum number of

jobs of τj that can interfere with τxi is a+ 1 =
⌈
Ti
Tj

⌉
if f ≤ b. Otherwise, Claim 2 is used to

determine maximum number of jobs of τj during L. Claim follows.

The maximum number of times a task τj interferes with τi under G-EDF is illustrated in
Figure 4.1. Upper bound on maximum interference of τj to τi (when there are no atomic
sections) in L ≤ Ti is given in [18]. It should be noted that we consider only implicit deadline
systems (i.e., ∀τi, Ti = Di). Implicit deadline system is a special case of constrained deadline
system (i.e., ∀τi, Di ≤ Ti) considered by [18]. The interference of τj to τi during L = Ti − f
where f ≤ b (as shown in Fig 4.1(a)), in the absence of atomic sections, is upper bounded
by:

I1
ij (Ti) ≤

⌊
Ti
Tj

⌋
cj +min

(
cj, Ti −

⌊
Ti
Tj

⌋
Tj

)
≤

⌈
Ti
Tj

⌉
cj (4.3)
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Figure 4.1: Maximum interference of jobs of τj to τxi running on different processors, under
G-EDF. Ti = aTj + b

The interference of τj to τi during an interval L = Ti−f where f > b, as shown in Fig 4.1(b),
in the absence of atomic sections is upper bounded by:

I2
ij (L) ≤

(⌈
L− cj
Tj

⌉
+ 1

)
cj (4.4)

Here, τ 1
j contributes by all its cj, and dk−1

j does not have to coincide with L, as τ k−1
j has

a higher priority than that of τi. Thus, the overall interference of τj to τi, over an interval
L ≤ Ti is:

Iij (L) = min
(
I1
ij (Ti) , I

2
ij (L)

)
(4.5)

[18] upper bounds maximum response time of any job of τi. Upper bound on maximum
response time of any job of τi is calculated by iteration of (4.6), starting from Rup

i = ci.

Rup
i = ci +

⌊
1

m

∑
j 6=i

Iij (Rup
i )

⌋
(4.6)

where Iij (Rup
i ) is calculate by (4.5).

4.1.4 Retry Cost of Atomic Sections

Claim 4. Let ski and slj be two conflicting transactions. ski has a lower priority than slj. Let
the lower priority transaction always aborts and retries due to the higher priority transaction.
slj interfere only once with ski . ski aborts and retries due to slj for at most

len
(
ski + slj

)
(4.7)

Proof. slj must start at least when ski starts and not later than ski finishes. Otherwise, there
will be no conflict between ski and slj. s

k
i must retry during execution of slj because of higher

priority of slj. The part of ski that started before beginning of slj will be repeated. Thus, the
worst case interference between ski and slj occurs when slj starts just when ski reaches its end
of execution. So, maximum retry cost of ski due to slj is calculated by 4.7. Claim follows.
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Claim 5. Let conflict between transactions be resolved by priority (i.e., lower priority trans-
action aborts and retries due to higher priority transactions). Let conf

{
ski
}

be the set of
all transactions that do not belong to any job of τi and are conflicting, directly or indi-
rectly(transitively), with ski . Each transaction slj ∈ conf

{
ski
}

contributes to the retry cost of
ski by at most

len
(
slj +max sjlik(Θ)

)
(4.8)

where max sjlik(Θ) is the maximum length atomic section (transaction) in conf{ski } that

accesses Θ and its priority is lower than p(slj) and higher than or equal to p(ski ). max sjlik 6∈ sj
and Θ ⊆ Θkex

i ∩Θl
j.

Proof. As conflict is resolved by transactional priority, then only transactions with higher
priorities than p(ski ) will cause ski to abort and retry. Also, slj will abort only transactions with
lower priority than p(slj). As transactions that belong to the same job execute sequentially,
and jobs of the same task execute sequentially , so ski is not aborted by other transactions
that belong to τi. So, at any point of time after ski was first released, and before the last
successful run of ski (i.e., the run at which ski commits), one of the following cases happens:

1. slj has finished before ski starts. Or, slj starts after ski finishes. In this case, slj will not
cause ski to abort and retry. (4.8) still upper bounds effect of slj to the retry cost of ski .

2. slj is the only transaction that is currently aborting ski . So, (4.8) follows directly from

Claim 4 as len
(
ski
)
≤ len

(
max sjlik(Θ)

)
.

3. A set of transactions S ⊆ conf{ski } are currently aborting ski . s
l
j ∈ S and slj itself is

not aborting and retrying due to any other transaction with higher priority than p(slj).
So, slj executes only once. slj aborts one of the transactions with lower priority than
p(slj) for only once. Thus, (4.8) upper bounds effect of slj to the retry cost of ski .

4. A set of transactions S ⊆ conf{ski } are currently aborting ski . slj ∈ S and slj itself
is aborting and retrying due to other transactions with higher priority than p(slj).
Without losing generality, let suh be the transaction that is currently aborting slj, and
suh is not aborting and retrying due to any other higher priority transaction. Then, slj
and ski are both waiting for suh to finish. Thus, the time of retrial of slj due to suh is
covered by effect of suh to the retry cost of ski . When suh finishes and slj is not aborted
by any other higher priority transaction, effect of slj to the retry cost of ski is the same
as in the third case. By expanding this case to more than three transactions, then each
transaction slj is either aborting one of the lower priority transactions only once (i.e.,
the last successful run of slj), or ski and slj are aborted by a higher priority transaction
suh. When slj is retrying due to the higher priority transaction suh, s

l
j retrial time is not

considered in retry cost of ski because it is already covered by the effect of the higher
priority transaction suh to the retry cost of ski .
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Claim follows.

Claim 6. Under ECM, the total retry cost suffered by all transactions in any job τxi ∈ τi
during interval L ≤ Ti due to direct and indirect conflict with other transactions in jobs with
higher priority than τxi is upper bounded by:

RCi (L) ≤ (4.9)∑
τj∈γexi

(
ggedfij

∑
∀slj , (Θ=Θlj∩Θexi ) 6=∅ len

(
slj + smax(Θ)

))
where smax(Θ) 6∈ sj and ggedfij is calculated by (4.2).

Proof. ECM is used with G-EDF scheduler. Thus, p(ski ) is a dynamic priority that depends
on the absolute deadline of containing job τxi . So, conf

{
ski
}

for any ski includes each trans-
action slj 6∈ si where Θl

j ∩Θkex

i 6= ∅. The worst case retry cost of any ski occurs when p(ski ) is

the lowest priority among all other conflicting transactions during Ti. g
gedf
ij is the maximum

number of jobs of τj ∈ γexi that can interfere with one job of τj. Following Claims 3, 4 and 5,
Claim follows.

Claim 7. Under ECM, upper bound on total retry cost given by (4.10) can be tightened by
considering carried in job of each τj (i.e., τ inj where rinj < rxi and dinj < dxi as defined in [18])

conflicting with τxi during interval L = Ti − f , where Ti = aTj + b, a =
⌊
Ti
Tj

⌋
and f ≤ b.

(4.10) will be modified to

RCi(L) ≤


∑

τj∈γexi
(λ1 (j) + χ (i, j)) , f ≤ b∑

τj∈γexi

((⌈
L
Tj

⌉
+ 1
)∑

∀slj ,(Θ=Θexi ∩Θlj)6=∅
len
(
slj + smax(Θ)

))
, Otherwise

(4.10)
where

• smax 6∈ sj.
• λ1 (j) =

∑
∀slj∈[dinj −δ,dinj ],(Θ=Θexi ∩Θlj)

len
(
sl
∗
j + smax (Θ)

)
, where δ = min (cj, b) and sl

∗
j

is the part of slj that is contained in interval
[
dinj − δ, dinj

]
.

• χ (i, j) =
⌊
Ti
Tj

⌋∑
∀slj ,(Θ=Θexi ∩Θlj) 6=∅

len
(
slj + smax (Θ)

)
.

Proof. Following proof of Claim 3, maximum number of jobs of τj that can interfere with τxi

is
⌈
Ti
Tj

⌉
. By definition of carried-in jobs [18] and G-EDF scheduler, there will be

⌊
Ti
Tj

⌋
jobs

of τj that exist by their whole periods Tj in the interval L. Carried-in job of τj (i.e., τ inj )
will exist by at most δ = min (cj, b) during L. τ inj is delayed by its maximum jitter to give
its maximum contribution during L. Thus, τ inj starts execution at dinj − cj. Consequently,

only transactions of τ inj that are contained in
[
dinj − δ, dinj

]
can exist in the interval L. Also,

if transaction slj is partially contained in
[
dinj − δ, dinj

]
, only the part of slj contained in
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Figure 4.2: Effect of carried in job of τj to retry cost of transactions in τi

[
dinj − δ, dinj

]
(i.e., sl

∗
j ) can conflict with transactions in τxi . λ(j) stands for the retry cost of

transactions in τxi due to conflict with transactions of τ inj . Whereas, χ(i, j) stands for the
retry cost of transactions in τxi due to conflict with transactions of other jobs of τj (i.e., non
carried-in jobs). Combining the previous notions with Claim 6, Claim follows.

Effect of transactions in carried in job is shown in Figure 4.2. There are two sources of
retry cost for any τxi under ECM. First is due to conflict between τxi ’s transactions and
transactions of other jobs. This is denoted as RCi. Second is due to the preemption of any
transaction in τxi due to the release of all higher priority jobs. This is denoted as RCire .
It is up to the implementation of the contention manager to avoid RCre. Here, as we are
concerned with maximum total retry cost introduced by ECM, we assume that ECM does
not avoid RCre. Thus, we introduce RCre for ECM technique.

Claim 8. Under ECM, the total retry cost suffered by all transactions in any job τxi ∈ τi
during an interval L ≤ Ti due to release of jobs with higher priority than τxi is upper bounded
by

RCire(L) ≤
∑
∀τj∈ζi


⌈
L
Tj

⌉
simax , L ≤ Ti − Tj

⌊
Ti
Tj

⌋
simax , L > Ti − Tj

(4.11)

where ζi = {τj : (τj 6= τi) ∧ (Dj < Di)}.

Proof. Two conditions must be satisfied for any τ lj to be able to preempt τxi under G-EDF:
rxi < rlj < dxi , and dlj ≤ dxi . Without the first condition, τ lj would have been already released
before τxi . Thus, τ lj will not preempt τxi . Without the second condition, τ lj will be of lower
priority than τxi and will not preempt it. If Dj ≥ Di, then there will be at most one instance
τ lj with higher priority than τxi . τ lj must have been released at most at rxi , which violates the

first condition. The other instance τ l+1
j would have an absolute deadline greater than dxi .

This violates the second condition. Hence, only tasks with shorter relative deadline than Di

are considered. These jobs are grouped in ζi.

The total number of released instances of τj during any interval L ≤ Ti is
⌈
L
Ti

⌉
+ 1. The

“carried-in” jobs (i.e., each job released before rxi and has an absolute deadline before dxi [18])
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are discarded as they violate the first condition. The “carried-out” jobs (i.e., each job released
after rxi and has an absolute deadline after dxi [18]) are also discarded because they violate
the second condition. Thus, the number of considered higher priority instances of τj during

the interval L ≤ Ti − Tj is
⌈
L
Tj

⌉
. The number of considered higher priority instances of τj

during interval L > Ti − Tj is
⌊
Ti
Tj

⌋
.

The worst RCire for τxi occurs when τxi is always interfered at the end of execution of its
longest atomic section, simax . τ

x
i will have to retry for len(simax). Claim follows.

Claim 9. Under ECM, the total retry cost suffered by all transactions in any job τxi ∈ τi
during an interval L ≤ Ti is upper bounded by:

RCito(L) = RCi(L) +RCire(L) (4.12)

where RCi(L) is the maximum retry cost resulting from conflict between transactions in τxi
and transactions of other jobs. RCi(L) is calculated by (4.10). RCire(L) is the maximum
retry cost resulting from the release of higher priority jobs, which preempt transactions in
τxi . RCire(L) is calculated by (4.11).

Proof. Under ECM, transactions in any job τxi ∈ τi retry due to: 1) conflicting transactions
of jobs with higher priority than τxi . 2) release of higher priority jobs that preempt τxi . Thus,
(4.12) follows directly from Claims 7 and 8. Claim follows.

4.1.5 Upper Bound on Response Time

Claim 10. Under ECM, maximum response time of any job τxi ∈ τi is upper bounded by

Rup
i = ci +RCito(R

up
i ) +

⌊
1

m

∑
j 6=i

Iij(R
up
i )

⌋
(4.13)

where:

• Rup
i ’s initial value is ci +Rup

i (ci).
• RCito(R

up
i ) is calculated by (4.12).

• cj of any job τ yj ∈ τj with pyj > pxi is modified to

cji = cj −

 ∑
slj ,(Θ=Θexi ∩Θlj)6=∅

len
(
slj
)+RCjito(R

up
i ) (4.14)

• RCjito(R
up
i ) is the same as RCjto(R

up
i ) excluding atomic sections in τj that access shared

objects between τi and τj. τi does not contribute to RCjre(R
up
i ).
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• Iij(Rup
i ) is calculated by (4.5) with cj replaced by cji and changing (4.4) to

Iij(R
up
i ) = max





Rupi −

(
cji+

∑
sl
j
,(Θ=Θex

i
∩Θl

j) 6=∅
len(slj)

)
Tj

+ 1

 cji⌈
Rupi −cj
Tj

⌉
.cji + cj −

∑
slj ,(Θ=Θexi ∩Θlj)6=∅

len(slj)

(4.15)

Proof. To obtain an upper bound on the maximum response time (i.e., Rup
i ) of any job

τxi of τi, the term RCito(R
up
i ) must be added to the interference of other tasks during the

non-atomic execution of τxi . But this requires modification of the WCET of each task as
follows.

cj of each interfering task τj should be inflated to accommodate the interference of each
task τk, k 6= j, i. Meanwhile, atomic regions that access shared objects between τj and τi
should not be considered in the inflation cost, because they have already been calculated in
τi’s retry cost. As an upper bound on Rup

i is calculated, then jobs of τj with higher priority
than τxi are only considered. Thus, τxi has no contribution in RCjre(R

up
i ). Thus, τj’s inflated

WCET becomes:

cji = cj −

 ∑
slj ,(Θ=Θexi ∩Θlj) 6=∅

len
(
slj
)+RCjito(R

up
i )

which is given by ( 4.14). cji is the new WCET of τj relative to τi.
∑

slj ,(Θ=Θexi ∩Θlj)6=∅
len(slj) is

the sum of lengths of all atomic sections in τj that access any object θ ∈ Θex
i .
∑

slj ,(Θ=Θexi ∩Θlj)6=∅
len(slj) is subtracted from cj because

∑
slj ,(Θ=Θexi ∩Θlj)6=∅

len(slj) is already included inRCito(R
up
i ).

RCjito(R
up
i ) is the RCjto(R

up
i ) without including the shared objects between τi and τj. The

calculated WCET is relative to task τi, as it changes from task to task. The upper bound
on the response time of τxi , denoted Rup

i , can be calculated iteratively, by modifying (4.6),
as follows:

Rup
i = ci +RCito(R

up
i ) +

⌊
1

m

∑
j 6=i

Iij(R
up
i )

⌋
which is given by (4.13). Rup

i ’s initial value is ci + Rup
i (ci). Iij(R

up
i ) is calculated by (4.5)

with cj replaced by cji, and changing (4.4) to

Iij(R
up
i ) = max





Rupi −

(
cji+

∑
sl
j
,(Θ=Θex

i
∩Θl

j) 6=∅
len(slj)

)
Tj

+ 1

 cji⌈
Rupi −cj
Tj

⌉
.cji + cj −

∑
slj ,(Θ=Θexi ∩Θlj)6=∅

len(slj)
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as given by (4.15). Eq(4.4) is modified to (4.15) because there are two cases for the first job
of τj (i.e., τ 1

j ) contributing to the retry cost of τxi :

Case 1. τ 1
j (shown in Figure 4.1(b)) contributes by cji. Thus, other instances of τj will begin

after this modified WCET, but the sum of the shared objects’ atomic section lengths is re-
moved from cji, causing other instances to start earlier. Thus, the term

∑
slj ,(Θ=Θexi ∩Θlj) 6=∅

len(slj)

is added to cji to obtain the correct start time.

Case 2. τ 1
j contributes by its cj, but the sum of the shared atomic section lengths between

τi and τj should be subtracted from the contribution of τ 1
j , as they are already included in

the retry cost.

It should be noted that subtraction of
∑

slj ,(Θ=Θexi ∩Θlj)6=∅
len(slj) is done in the first case to

obtain the correct start time of other instances, while in the second case, this is done to
get the correct contribution of τ 1

j . The maximum is chosen from the two terms in (4.15),
because they differ in the contribution of their τ 1

j s, and the number of instances after that.
Claim follows.

4.2 RCM

As G-RMA is a fixed priority scheduler, a task τi will be interfered by those tasks with
priorities higher than τi (i.e., pj > pi). Upon a conflict, the RMA CM will commit the
transaction that belongs to the higher priority task. Hereafter, we use RCM [54] to refer
to a multicore system scheduled by G-RMA and resolves STM conflicts by the RMA CM.
RCM is shown in Alogrithm 2.

Algorithm 2: RCM

Data: ski → interfered atomic section. slj → interfering atomic section
Result: which atomic section aborts

1 if Ti < Tj then
2 slj aborts;

3 else
4 ski aborts;
5 end

The same illustrative example in Section 4.1.1 is applied for RCM except that tasks’ priorities
are fixed.

Claim 11. RCM suffers from transitive retry for multi-object transactions.

Proof. The proof is the same as proof of Claim 1.
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4.2.1 Maximum Task Interference

Figure 4.3 illustrates the maximum interference caused by a task τj to a task τi under G-
RMA. As τj is of higher priority than τi, τ

k
j will interfere with τi even if it is not totally

included in Ti. Unlike the G-EDF case shown in Figure 4.2, where only the δ part of τ 1
j is

considered, in G-RMA, τ kj can contribute by the whole cj, and all atomic sections contained
in τ kj must be considered. This is because, in G-EDF, the worst-case pattern releases τai
before d1

j by δ time units, and τai cannot be interfered before it is released. But in G-RMA,
τai is already released, and can be interfered by the whole τ kj , even if this makes it infeasible.
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Figure 4.3: Max interference of τj to τi in G-RMA

Thus, the maximum contribution of τ bj to τai for any duration L is upper bounded by Claim 2,
where L can extend to Ti. Note the contrast with ECM, where L cannot be extended directly
to Ti, as this will have a different pattern of worst case interference from other tasks.

4.2.2 Retry Cost of Atomic Sections

Claim 12. Under RCM, total retry cost suffered by all transactions in any job τxi ∈ τi during
interval L ≤ Ti due to direct and indirect conflict with other transactions in jobs with higher
priorities than τxi is upper bounded by:

RCi (L) ≤
∑

τj∈γexi , pj>pi

 ∑
slj ,(Θ=Θexi ∩Θlj)6=∅

((⌈
L

Tj

⌉
+ 1

)
len
(
slj + smax (Θ)

)) (4.16)

where smax (Θ) belongs to a job with lower priority than pj.

Proof. Under G-RMA, priorities of tasks are fixed. Thus, as pj > pi, then any job of τj
will have a higher priority than τxi . So, Claim 2 gives maximum number of jobs of τj that
interfere with τxi during interval L. By definition of RCM, only transactions with lower
priority than pj can be aborted and retried due to transactions in sj. Thus, smax (Θ) cannot
belong to transactions with priorities at least equal to pj. Following proof of Claim 6, Claim
follows.



Mohammed El-Shambakey Chapter 4. ECM and RCM 42

Claim 13. Under RCM, the total retry cost suffered by all transactions in any job τxi ∈ τi
during an interval L ≤ Ti due to release of jobs with higher priority than τxi is upper bounded
by

RCire(L) =
∑

∀τj , pj>pi

(⌈
L

Tj

⌉
simax

)
(4.17)

Proof. The proof is the same as that for Claim 8, except that G-RMA uses static priority.
Thus, the carried-out jobs will be considered in the interference with τxi . The carried-in jobs
are still not considered because they are released before rxi . Claim follows.

Claim 14. Under RCM, the total retry cost suffered by all transactions in any job τxi ∈ τi
during an interval L ≤ Ti is upper bounded by:

RCito(L) = RCi(L) +RCire(L) (4.18)

where RCi(L) is the maximum retry cost resulting from conflict between transactions in τxi
and transactions of other jobs. RCi(L) is calculated by (4.16). RCire(L) is the maximum
retry cost resulting from the release of higher priority jobs, which preempt transactions in
τxi . RCire(L) is calculated by (4.17).

Proof. Using Claims 12 and 13, and following proof of Claim 9, Claim follows.

4.2.3 Upper Bound on Response Time

Claim 15. Under RCM, maximum response time of any job τxi ∈ τi is upper bounded by

Rup
i = ci +RCito(R

up
i ) +

 1

m

∑
j 6=i,pj>pi

Iij(R
up
i )

 (4.19)

where:

• Rup
i ’s initial value is ci +Rup

i (ci).
• RCito(R

up
i ) is calculated by (4.18).

• cj of any job τ yj ∈ τj, where pj > pi and Θj ∩Θex
i 6= ∅, is calculated by (4.14).

• Iij(Rup
i ) is calculated by (4.4) with cj replaced by cji.

Proof. Using Theorem 7 in [18], Claim 14 and following proof of Claim 10, Claim follows.
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4.3 Analytical Performance Comparison

Let total utilization required by a synchronization technique A be UA =
∑
∀τi

ei+co
A
i

Ti
, where

ei is the worst case execution time for any job of τi, and coAi is the maximum additional cost
added by synchronization technique A to any job in τi. All synchronization techniques in
this dissertation are used under G-EDF and G-RMA schedulers. Thus, all synchronization
techniques have the same schedulability criteria under the same scheduler. So, we compare
performance of synchronization techniques using total utilization as done by Claim 3 in [60].
Claim 3 in [60] is extended to compare performance of not only contention managers against
lock-free, but also contention managers against each other and contention managers against
locking protocols. So, performance of synchronization technique A is equal or better than
performance of synchronization technique B if

UA ≤ UB∑
∀τi

ei + coAi
Ti

≤
∑
∀τi

ei + coBi
Ti

(4.20)

Eq(4.20) holds if for each τi
coAi ≤ coBi (4.21)

Thus, (4.21) is a sufficient condition for synchronization technique A to have equal or better
performance than synchronization technique B.

Retry-loop lock-free [49] and locking protocols (i.e., OMLP [22,29] and RNLP [149]) assume
all atomic sections have the same length of the longest atomic section among all tasks.
Claim 3 in [60] assumes equal lengths for atomic sections. Performance of synchronization
technique A is equal or better than performance of synchronization technique B if (4.21)
holds assuming all atomic sections have the same maximum atomic section length and coAi is
linearly proportional to lengths of atomic sections. Thus, total utilization of any contention
manager assumes the maximum transactional length for all transactions when performance of
contention managers is compared against lock-free and locking protocols. As each transaction
has the same length under different contention managers, then the assumption of equal length
for all transactions still holds when performance of different contention managers is compared
against each other.

4.4 STM versus Lock-Free

We now would like to understand when STM will be beneficial compared to lock-free syn-
chronization. The retry-loop lock-free approach in [49] is the most relevant to our work. As
lock-free instructions access only one object, then Θk

i for any ski will be restricted to one
object only (i.e., Θk

i = θki ). Thus, transitive retry cannot happen, Θex
i = Θi and γexi = γi.
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4.4.1 ECM versus Lock-Free

Claim 16. Following notions in Section 4.3, ECM’s total utilization is better or equal to
that of [49]’s retry-loop lock-free approach if the size of smax does not exceed one half of that
of rmax, where rmax is the maximum execution cost of a single iteration of any lock-free retry
loop of any task. With equal periods for conflicting tasks and high access times to shared
objects, the size of smax can be much larger than rmax.

Proof. Using Claim 3, (4.10) can be upper bounded, during Ti, as:

RCmax
i (Ti) ≤

∑
τj∈γi

⌈Ti
Tj

⌉ ∑
∀slj ,(Θ=Θlj∩Θi)6=∅

(2.smax)


where smax is the maximum length atomic section among all tasks. Similarly, (4.11) is upper
bounded, during Ti, as:

RCmax
ire ≤

∑
∀τj∈ζi

⌊
Ti
Tj

⌋
smax

where ζi = {τj : (τj 6= τi) ∧ (Dj < Di)}. Thus, RCito given by (4.12) can be upper bounded,
during Ti, as:

RCmax
ito ≤

∑
τj∈γi

⌈Ti
Tj

⌉ ∑
∀slj ,(Θ=Θlj∩Θi)6=∅

(2.smax)


+

∑
∀τj∈ζi

⌊
Ti
Tj

⌋
smax

 (4.22)

Retry cost of τi during interval Ti due to conflict with other jobs under retry-loop lock-free
is given in [49] as:

LRC ≤
∑
τj∈γi

(⌈
Ti
Tj

⌉
+ 1

)
.βij.rmax (4.23)

where βij is the number of retry loops of τj that access shared objects between τi and τj.
Eq(4.23) needs to be extended to include effect of release of any higher priority job, τ lj ,
preempting τ ki when τ ki is trying to access an object θ. Release of jobs under ECM and lock-
free is independent from accessed objects. Thus, ECM and lock-free have the same pattern
of jobs’ release. Thus, retry cost of τi during Ti due to release of higher priority jobs under
retry-loop lock-free is obtained directly from Claim 8 with replacing smax by rmax. Thus,
total retry cost of any job of τi during interval Ti due to conflict of other jobs and release of
higher priority jobs is upper bounded by:

LRCto ≤

∑
τj∈γi

(⌈
Ti
Tj

⌉
+ 1

)
.βij

+

∑
τj∈ζi

⌊
Ti
Tj

⌋ rmax (4.24)
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By substitution of (4.22) and (4.24) into (4.21), then ECM achieves equal or better total
utilization than lock-free if((∑

∀τj∈γi

(
2
⌈
Ti
Tj

⌉∑
∀slj ,(Θ=Θlj∩Θi)6=∅

))
+
(∑

∀τj∈ζi

⌊
Ti
Tj

⌋))
smax

≤
((∑

∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij

)
+
(∑

∀τj∈ζi

⌊
Ti
Tj

⌋))
rmax

∴
smax
rmax

≤

(∑
∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij

)
+
(∑

∀τj∈ζi

⌊
Ti
Tj

⌋)
(∑

∀τj∈γi

(
2
⌈
Ti
Tj

⌉∑
∀slj ,(Θ=Θlj∩Θi) 6=∅

))
+
(∑

∀τj∈ζi

⌊
Ti
Tj

⌋) (4.25)

Let
∑
∀slj ,(Θ=Θlj∩Θi)6=∅ = β∗ij and

∑
∀τj∈ζi

⌊
Ti
Tj

⌋
= c1. Then, (4.25) becomes

smax
rmax

≤

(∑
∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij

)
+ c1(∑

∀τj∈γi

(
2
⌈
Ti
Tj

⌉
β∗ij

))
+ c1

(4.26)

We want to get the lower bound over smax/rmax that preserves equal or better total utilization
for ECM than lock-free:

Each lock-free instruction accesses only one object once. Each transaction accesses only one
object to enable comparison with lock-free. An object θ can be accessed multiple times
within the same transaction. Thus, βij ≤ β∗ij.

∵

(∑
∀τj∈γi

(⌈
Ti
Tj

⌉)
β∗ij

)
+ c1(∑

∀τj∈γi

(
2
⌈
Ti
Tj

⌉
β∗ij

))
+ 2c1

≤

(∑
∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij

)
+ c1(∑

∀τj∈γi

(
2
⌈
Ti
Tj

⌉
β∗ij

))
+ c1

Thus, (4.26) holds if

smax
rmax

≤

(∑
∀τj∈γi

⌈
Ti
Tj

⌉
β∗ij

)
+ c1(∑

∀τj∈γi

(
2
⌈
Ti
Tj

⌉
β∗ij

))
+ 2c1

=
1

2

Thus, the lower bound over smax/rmax that preserves equal or better total utilization for
ECM than lock-free is 0.5. Now, we want to get the upper bound over smax/rmax that
preserves equal or better total utilization for ECM than lock-free:

Minimum value for
⌈
Ti
Tj

⌉
is 1. So, 2

⌈
Ti
Tj

⌉
≥
⌈
Ti
Tj

⌉
+ 1, ∀i, j. Thus, to get upper bound on

smax/rmax,
⌈
Ti
Tj

⌉
assumes its minimum value (i.e., 1). Otherwise, the denominator of (4.26)

gets larger than numerator, and smax/rmax moves away from its upper bound.
⌈
Ti
Tj

⌉
→ 1 for
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any i, j if all conflicting tasks have equal periods. Thus, by substitution of
⌈
Ti
Tj

⌉
= 1 into

(4.26), we get

smax
rmax

≤

(∑
∀τj∈γi 2βij

)
+ c1(∑

∀τj∈γi 2β∗ij

)
+ c1

(4.27)

As we are looking for the upper bound over smax/rmax, then βij >> β∗ij. Thus, smax can be
much larger than rmax while still maintaining equal or better total utilization for ECM than
lock-free. From the previous notions, Claim follows.

4.4.2 RCM versus Lock-Free

Claim 17. Following notions in Section 4.3, RCM’s total utilization is equal or better than
that of [49]’s retry-loop lock-free approach if the size of smax does not exceed one half of that
of rmax, where rmax is the maximum execution cost of a single iteration of any lock-free retry
loop of any task. With equal periods for conflicting tasks and high access times to shared
objects, the size of smax can be much larger than rmax.

Proof. Following the same steps in proof of Claim 16 with the following modifications:

Equation (4.16) is upper bounded by:

∑
τj∈γi, pj>pi

 ∑
slj , (Θ=Θlj∩Θi)6=∅

((⌈
Ti
Tj

⌉
+ 1

)
2smax

) (4.28)

Equation (4.17) is upper bounded by:

RCire(Ti) =
∑

∀τj , pj>pi

(⌈
Ti
Tj

⌉
smax

)
(4.29)

Thus,

RCmax
ito ≤

∑
τj∈γi, pj>pi

 ∑
slj , (Θ=Θlj∩Θi)6=∅

((⌈
Ti
Tj

⌉
+ 1

)
2smax

)+
∑

∀τj , pj>pi

(⌈
Ti
Tj

⌉
smax

)
(4.30)

As lock-free is independent from the underlying scheduler, then LRC is still calculated by
(4.23). Release of jobs under RCM and lock-free is independent from accessed objects. Thus,
RCM and lock-free have the same pattern for object release. Thus, retry cost of transactions
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in τi during Ti due to release of higher priority jobs under retry-loop lock-free is obtained
directly from Claim 13 with replacing smax by rmax. Thus,

LRCto ≤

∑
τj∈γi

(⌈
Ti
Tj

⌉
+ 1

)
.βij

+

 ∑
τj , pj>pi

⌈
Ti
Tj

⌉ rmax (4.31)

Similar to proof of Claim 16, RCM has equal or better total utilization than lock-free if for
each τi

smax
rmax

≤

(∑
∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij

)
+
(∑

∀τj ,pj>pi

⌈
Ti
Tj

⌉)
(∑

∀τj∈γi, pj>pi

(
2
(⌈

Ti
Tj

⌉
+ 1
)∑

∀slj ,(Θ=Θlj∩Θi)6=∅

))
+
(∑

∀τj ,pj>pi

⌈
Ti
Tj

⌉) (4.32)

∵
∑

∀τj∈γi, pj>pi

2

(⌈
Ti
Tj

⌉
+ 1

) ∑
∀slj ,(Θ=Θlj∩Θi)6=∅

 ≤ ∑
∀τj∈γi

2

(⌈
Ti
Tj

⌉
+ 1

) ∑
∀slj ,(Θ=Θlj∩Θi) 6=∅


∴ Eq(4.32) holds if

smax
rmax

≤

(∑
∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij

)
+
(∑

∀τj ,pj>pi

⌈
Ti
Tj

⌉)
(∑

∀τj∈γi

(
2
(⌈

Ti
Tj

⌉
+ 1
)∑

∀slj ,(Θ=Θlj∩Θi) 6=∅

))
+
(∑

∀τj ,pj>pi

⌈
Ti
Tj

⌉) (4.33)

Let
∑
∀slj ,(Θ=Θlj∩Θi)6=∅ = β∗ij and

∑
∀τj ,pj>pi

⌈
Ti
Tj

⌉
= c1. Then (4.32) becomes

smax
rmax

≤

(∑
∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij

)
+ c1(∑

∀τj∈γi

(
2
(⌈

Ti
Tj

⌉
+ 1
)
β∗ij

)
+ c1

) (4.34)

We want to get lower bound over smax/rmax that preserves equal or better total utilization
for RCM than lock-free:

Similar to proof of Claim 16, βij assumes its minimum value β∗ij.

∵

(∑
∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij

)
+ c1(∑

∀τj∈γi

(
2
(⌈

Ti
Tj

⌉
+ 1
)
β∗ij

)
+ 2c1

) ≤
(∑

∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij

)
+ c1(∑

∀τj∈γi

(
2
(⌈

Ti
Tj

⌉
+ 1
)
β∗ij

)
+ c1

) (4.35)

Then (4.34) holds if

smax
rmax

≤

(∑
∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij

)
+ c1(∑

∀τj∈γi

(
2
(⌈

Ti
Tj

⌉
+ 1
)
β∗ij

)
+ 2c1

) =
1

2
(4.36)
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We want to get upper bound over smax/rmax that preserves equal or better total utilization
for RCM than lock-free:

Similar to proof of Claim 16,
⌈
Ti
Tj

⌉
assumes its minimum value (i.e., 1), βij >> β∗ij. Thus,

smax can be much larger than rmax. From the previous notions, Claim follows.

4.5 STM versus Locking protocols

Performance of different CMs is compared against real-time locking protocols (i.e., OMLP [22,
29] and RNLP [149]) using total utilization under G-EDF and G-RMA. In [22,29,148,149],
priority inversion bound (pi-blocking) is considered part of each task’s execution time. Thus,
each task’s WCET is inflated by pi-blocking bounds. Similarly, under different CMs, each
task’s WCET is inflated by its total retry cost (i.e., retry cost due to direct and indirect
conflict with other tasks. Besides retry cost due to release of higher priority jobs). Following
notions in Section 4.3, total utilization of a specific STM CM algorithm A is equal or better
than total utilization of a real-time locking protocol B if

∀τi, RCA(Ti) ≤ PIB(Ti) (4.37)

If τi has no critical sections, then RCA(Ti) = PIB(Ti) = 0. Thus, independent tasks will not
be considered in (4.37).

4.5.1 Priority Inversion under OMLP

Under OMLP [22,29], PIOMLP (Ti) for any job τxi is upper bounded by

PIOMLP (Ti) ≤
nr∑
k=1

Ni,k(2m− 1)Lmax (4.38)

Where nr is total number of resources. Ni,k is maximum number of times resource k is
accessed by τi. Lmax is the maximum length critical section in all tasks. Let Ni =

∑nr
k=1Ni,k,

which is the total number of critical sections in any job τxi . Thus, (4.38) becomes

PIOMLP (Ti) ≤ Ni(2m− 1)Lmax (4.39)

Let Nmax = max {Ni}∀i, Nmin = min {Ni}∀i, Φmax = max
⌈
Ti
Tj

⌉
∀i, j

. As independent tasks

are not considered in (4.37), ∴ Nmax, Nmin ≥ 1.

OMLP uses group locking to access multiple (i.e., nested) objects in a critical section. Thus,
all objects within the same atomic section are protected by the same lock (i.e., resource).
Sections 4.5.5 and 4.5.6 investigates comparison between different CMs and fine-grained
locking protocols (i.e., RNLP) to access multiple objects within a critical section without
group locking.
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4.5.2 ECM versus OMLP

Claim 18. Following notions in Section 4.3, total utilization of ECM is equal or better than
total utilization of OMLP if

smax
Lmax

≤ Nmin (2m− 1)

(2Nmax + 1) (n− 1)Φmax

(4.40)

As number of atomic sections in each task increases, all tasks have equal periods and equal
number of atomic sections, and number of processors is at least equal to number of tasks,
then smax can be at least equal to Lmax with total utilization of ECM equal or better than
total utilization of OMLP.

Proof. Substitute RCA(Ti) in (4.37) by (4.22) with γi replaced with γexi and Θi replaced with
Θex
i . Substitute PIB(Ti) in (4.37) by (4.39). ∴ (4.37) holds if ∀τi(∑

τj∈γexi

(⌈
Ti
Tj

⌉∑
∀slj ,(Θ=Θlj∩Θexi ) 6=∅ (2.smax)

))
+
(∑

∀τj∈ζi

⌊
Ti
Tj

⌋
smax

)
≤ Ni (2m− 1)Lmax (4.41)

Let Ni,j =
∑
∀slj ,(Θ=Θlj∩Θi)6=∅. So, Ni,j is number of transactions in any job of τj conflicting

with any transaction in any job of τi. Thus, (4.41) becomes(
2
(∑

∀τj∈γexi

(⌈
Ti
Tj

⌉
Ni,j

))
+
(∑

∀τj∈ζi

⌊
Ti
Tj

⌋))
smax

≤ Ni (2m− 1)Lmax (4.42)

∴
smax
Lmax

≤ Ni (2m− 1)

2
(∑

∀τj∈γexi

(⌈
Ti
Tj

⌉
Ni,j

))
+
(∑

∀τj∈ζi

⌊
Ti
Tj

⌋) (4.43)

Let Nmax = max {Ni}∀i, Nmin = min {Ni}∀i, Φmax = max
⌈
Ti
Tj

⌉
∀i, j

. By definition of γexi and

ζi, n − 1 ≥ |ζi|, |γexi |. ∵ Nmax ≥ Ni,j, Nmin ≤ Ni and Φmax ≥
⌈
Ti
Tj

⌉
≥
⌊
Ti
Tj

⌋
. ∴ Eq(4.43)

holds if

smax
Lmax

≤ Nmin (2m− 1)

2
(∑

∀τj∈γexi
(ΦmaxNmax)

)
+
(∑

∀τj∈ζi Φmax

)
≤ Nmin (2m− 1)

(2Nmax + 1) (n− 1)Φmax

(4.44)

To get the maximum upper bound over smax/Lmax, let Nmin reaches its maximum value and
Nmax reaches its minimum value (i.e., Nmin = Nmax by definition of Nmin and Nmax). Thus,
all tasks have the same number of atomic sections. Let Φmax reaches its minimum value (i.e.,
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Φmax = 1 by definition of Φmax). Thus, all tasks have the same periods. By substitution of
Φmax = 1 and Nmin = Nmax = N , where N is constant, in (4.44), then

smax
Lmax

≤ N (2m− 1)

(2N + 1) (n− 1)

≤ 2m− 1(
2 + 1

N

)
(n− 1)

(4.45)

As we are looking for maximum upper bound over smax/Lmax, N assumes its maximum value
(i.e., N →∞) in (4.45). Thus,

smax
Lmax

≤ 2m− 1

2 (n− 1)
(4.46)

∴ smax ≥ Lmax if 2m − 1 ≥ 2(n − 1). As m and n are integers, ∴ smax ≥ Lmax if m ≥ n.
Claim follows.

4.5.3 RCM versus OMLP

Claim 19. Following notions in Section 4.3, total utilization of RCM is equal or better than
total utilization of OMLP if

smax
Lmax

≤ Nmin (2m− 1)

(2 (Φmax + 1)Nmax + Φmax) (n− 1)
(4.47)

As number of atomic sections in each task increases, all tasks have equal periods and equal
number of atomic sections, and number of processors is at least double the number of tasks,
then smax can be at least equal to Lmax with total utilization of RCM equal or better than
total utilization of OMLP.

Proof. Substitute RCA(Ti) in (4.37) by (4.30) with γi replaced with γexi and Θi replaced with
Θex
i . Following the same steps in proof of Claim 18, Claim follows.

4.5.4 Priority Inversion under RNLP

Under RNLP [149] for global scheduling and I-KGLP token lock (introduced as R2DGLP
in [150]), PIRNLP (Ti) for any job τxi is upper bounded by (2m− 1)Lmax for each outermost
request, where Lmax is the maximum length of any outermost request. Thus, if Ni is total
number of outermost critical sections in any job of τi, then

PIRNLP (Ti) = Ni(2m− 1)Lmax (4.48)

Let Nmax = max {Ni}∀i, Nmin = min {Ni}∀i, Φmax = max
⌈
Ti
Tj

⌉
. As independent tasks are

not considered in (4.37), ∴ Nmax, Nmin ≥ 1.
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In contrast to OMLP, RNLP supports nesting of objects. Thus, each object can be accessed
individually without being grouped with other objects in the same critical section.

4.5.5 ECM versus RNLP

Claim 20. Following notions in Section 4.3, total utilization of ECM is equal or better than
total utilization of RNLP if

smax
Lmax

≤ Nmin (2m− 1)

(2Nmax + 1) (n− 1)Φmax

(4.49)

As number of atomic sections in each task increases, all tasks have equal periods and equal
number of atomic sections, and number of processors is at least equal to number of tasks,
then smax can be at least equal to Lmax with total utilization of ECM equal or better than
total utilization of RNLP.

Proof. Substitute RCA(Ti) in (4.37) by (4.22) with γi replaced with γexi and Θi replaced with
Θex
i . Substitute PIB(Ti) in (4.37) by (4.48). ∴ (4.37) becomes(∑

τj∈γexi

(⌈
Ti
Tj

⌉∑
∀slj ,(Θ=Θlj∩Θexi ) 6=∅ (2smax)

))
+
(∑

∀τj∈ζi

⌊
Ti
Tj

⌋
smax

)
≤ Ni (2m− 1)Lmax (4.50)

Following the same steps of proof of Claim 18, Claim follows.

4.5.6 RCM versus RNLP

Claim 21. Following notions in Section 4.3, total utilization of RCM is equal or better than
total utilization of RNLP if

smax
Lmax

≤ Nmin (2m− 1)

(2 (Φmax + 1)Nmax + Φmax) (n− 1)
(4.51)

As number of atomic sections in each task increases, all tasks have equal periods and equal
number of atomic sections, and number of processors is at least double the number of tasks,
then smax can be at least equal to Lmax with total utilization of RCM equal or better than
total utilization of RNLP.

Proof. Substitute RCA(Ti) in (4.37) by (4.30). γi is replaced with γexi and Θi is replaced with
Θex
i . Substitute PIB(Ti) in (4.37) by (4.48). Following the same steps of proof of Claim 18,

Claim follows.
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4.6 Conclusions

ECM and RCM use jobs’ priorities to resolve conflicts between transactions. The transaction
with lower priority aborts and retries due to the transaction with higher priority. As each
transaction can access multiple objects, a transaction may abort indirectly due to another
transaction with no shared objects between them. The indirect retrial is denoted as transitive
retry. Under both ECM and RCM, a task incurs at most 2smax retry cost for each of its
atomic sections due to a conflict with another task’s atomic section. Transactions can also
retry due to release of higher priority jobs that preempt a transaction in a lower priority job.

The smax/rmax ratio is a sufficient condition to determine whether STM is better or as good
as lock-free based on total utilization. ECM and RCM have equal or better total utilization
than retry-loop lock-free if smax does not exceed one half of rmax. smax can exceed rmax with
equal periods between conflicting tasks, and large access times to the same object within the
same transaction.

Performance of ECM and RCM was compared against real-time locking protocols (i.e.,
OMLP and RNLP) in terms of total utilization. As number of atomic sections in each
task increases, all tasks have equal periods and equal number of atomic sections, and num-
ber of processors is at least equal to number of tasks, then smax can be at least equal to Lmax
with total utilization of ECM equal or better than total utilization of OMLP and RNLP.
The same results apply to total utilization comparison between RCM and locking protocols
except that number of processors should be at least double number of tasks.



Chapter 5

The LCM Contention Manager

Under ECM and RCM (Chapter 4), each atomic section can be aborted for at most 2smax
by a single interfering atomic section. We present a novel contention manager (CM) for
resolving transactional conflicts, called length-based CM (or LCM) [53]. LCM can reduce
the abortion time of a single atomic section due to an interfering atomic section below 2smax.
We upper bound transactional retries and response times under LCM, when used with G-
EDF and G-RMA schedulers. We identify the conditions under which LCM outperforms
ECM, RCM, retry-loop lock-free [49] and real-time locking protocols (i.e., OMLP [22, 29]
and RNLP [149]).

The rest of this Chapter is organized as follows: Section 5.1 presents Length-based Con-
tention Manager (LCM) and illustrates its behaviour. Section 5.2 derives LCM properties.
Retry cost and response time analysis of tasks under LCM/G-EDF is given in Section 5.3.
Performance of LCM/G-EDF is compared to performance of ECM, lock-free and locking
protocols based on total utilization in Section 5.4. Section 5.5 gives retry cost and response
time analysis for LCM/G-RMA. Performance of LCM/G-RMA is compared against RCM,
lock-free and locking protocols based on total utilization in Section 5.6. We conclude Chapter
in Section 5.7.

5.1 Length-based CM

LCM resolves conflicts based on the priority of conflicting transactions, besides the length
of the interfering atomic section, and the length of the interfered atomic section. Priority of
each transaction equals priority of its containing job (i.e., p

(
ski
)

= pxi where ski ∈ τxi ). ECM
and RCM (Chapter 4) use only priorities to resolve conflicts. LCM allows lower priority jobs
to retry for lesser time than that under ECM and RCM, but higher priority jobs, sometimes,
wait for lower priority ones with bounded priority-inversion.

53
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5.1.1 Design and Rationale

Algorithm 3: LCM

Data: ski and slj are two conflicting atomic sections.
ψ → predefined threshold ∈ [0, 1].
δki → remaining execution length of ski .
s
(
ski
)
→ start time of ski . s

(
ski
)

is updated each time ski aborts and retries to the start time of the
new retry.
s
(
slj
)
→ the same as s

(
ski
)

but for slj .

Result: which atomic section of ski or slj aborts

1 if s
(
ski
)
< s

(
slj
)
then

2 if p
(
ski
)
> p

(
slj
)
then

3 slj aborts;

4 else
5 cklij = len(slj)/len(ski );

6 αkl
ij = ln(ψ)/(ln(ψ)− cklij );

7 α =
(
len(ski )− δki

)
/len(ski );

8 if α ≤ αkl
ij then

9 ski aborts;
10 else
11 slj aborts;

12 end

13 end

14 else
15 Swap ski and slj ;

16 end

For both ECM and RCM, ski can be totally repeated if slj — which belongs to a higher
priority job τ bj than τai — conflicts with ski at the end of its execution, while ski is just about
to commit. Thus, LCM, shown in Algorithm 3, uses the remaining length of ski when it is
interfered, as well as len(slj), to decide which transaction must be aborted. If ski starts before
slj, then ski is the interfered atomic section and slj is the interfering atomic section (step 1).

Otherwise, ski and slj are swapped (step 15). If p
(
ski
)

was greater than p
(
slj
)
, then ski would

be the one that commits, because it belongs to a higher priority job, and it started before
slj (step 3). Otherwise, cklij is calculated (step 5) to determine whether it is worth aborting
ski in favour of slj, because len(slj) is relatively small compared to the remaining execution
length of ski (explained further).

We assume that:
cklij = len(slj)/len(ski ) (5.1)

where cklij ∈]0,∞[, to cover all possible lengths of slj. Our idea is to reduce the opportunity
for the abort of ski if it is close to committing when interfered and len(slj) is large. This abort
opportunity is increasingly reduced as ski gets closer to the end of its execution, or len(slj)
gets larger.
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On the other hand, as ski is interfered early, or len(slj) is small compared to ski ’s remaining
length, the abort opportunity is increased even if ski is close to the end of its execution. To
decide whether ski must be aborted or not, we use a threshold value ψ ∈ [0, 1] that determines
αklij (step 6), where αklij is the maximum percentage of len(ski ) below which slj is allowed to
abort ski and is calculated as

αklij =
ln (Ψ)

ln (Ψ)− cklij
(5.2)

Thus, if the already executed part of ski — when slj interferes with ski — does not exceed
αklij len(ski ), then ski is aborted (step 9). Otherwise, slj is aborted (step 11).
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Figure 5.1: Interference of ski by various lengths of slj

The behaviour of LCM is illustrated in Figure 5.1. In this figure, the horizontal axis cor-
responds to different values of α ranging from 0 to 1, and the vertical axis corresponds to
different values of abort opportunities, f(cklij , α), ranging from 0 to 1 and calculated by (5.3):

f(cklij , α) = e
−cklij α
1−α (5.3)

where cklij is calculated by (5.1).

Figure 5.1 shows one atomic section ski (whose α changes along the horizontal axis) inter-
fered by five different lengths of slj. For a predefined value of f(cklij , α) (denoted as ψ in
Algorithm 3), there corresponds a specific value of α (which is αklij in Algorithm 3) for each
curve. For example, when len(slj) = 0.1× len(ski ), s

l
j aborts ski if the latter has not executed

more than α3 percentage (shown in Figure 5.1) of its execution length. As len(slj) decreases,
the corresponding αklij increases (as shown in Figure 5.1, α3 > α2 > α1).

Equation (5.3) achieves the desired requirement that the abort opportunity is reduced as
ski gets closer to the end of its execution (as α → 1, f(cklij , 1) → 0), or as the length of
the conflicting transaction increases (as cklij → ∞, f(∞, α) → 0). Meanwhile, this abort
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opportunity is increased as ski is interfered closer to its release (as α→ 0, f(cklij , 0)→ 1), or
as the length of the conflicting transaction decreases (as cklij → 0, f(0, α)→ 1).

LCM is not a centralized CM, which means that, upon a conflict, each transactions has to
decide whether it must commit or abort. LCM suffers from transitive retry (Section 4.1.2).

Claim 22. LCM suffers from transitive retry for multi-object transactions.

Proof. Following the proof of Claim 1, Claim follows.

5.1.2 LCM Illustrative Example

Behaviour of LCM can be illustrated by the following example:

• Transaction ski ∈ τxi begins execution. Currently, ski does not conflict with any other
transaction.

• Transaction slj ∈ τ yj is released while ski is still running. Θkex

i ∩ Θl
j 6= ∅ and pyj >

pxi (where priority is dynamic in G-EDF, and fixed in G-RMA). cklij , α
kl
ij and α are

calculated by steps 5 to 7 in Algorithm 3. ski has not reached α percentage of its
execution length yet.

• α < αklij . Then, slj is allowed to abort and restart ski .

• slj commits. ski executes again.

• Transaction svh ∈ τuh is released while ski is running. Θkex

i ∩ Θv
h 6= ∅ and puh > pxi . c

kv
ih ,

αkvih and α are calculated by steps 5 to 7 in Algorithm 3. ski has already passed α
percentage of its execution length. So, svh aborts and restarts in favour of ski .

• Transaction sba ∈ τ fa is released. Θkex

i ∩ Θb
a 6= ∅ and pfa > pxi but pfa < puh. ckbia , αkbia

and α are calculated by steps 5 to 7 in Algorithm 3. ski has not reached α percentage
of its execution length yet. So, sba is allowed to abort ski . Because sba is just starting,
LCM allows svh to abort sba. So, the highest priority transaction is not blocked by an
intermediate priority transaction sba.

• When svh commits. sba is allowed to execute while ski is retrying.

• When sba commits, ski executes.

• Transaction snc ∈ τ zo is released while ski is running. Θkex

i ∩Θn
c 6= ∅ and pzo < pxi . So, ski

commits first, then snc is allowed to proceed.



Mohammed El-Shambakey Chapter 5. LCM 57

5.2 Properties

LCM properties are given by the following Lemmas. These properties are used to derive
retry cost and response time of transactions and tasks under LCM.

Claim 23. r
(
ski
)

is updated each time ski aborts and retries to the new start time of the new
retry to avoid deadlock that can result from conflicting transactions aborting each other.

Proof. Assume a set of transactions S that are conflicting together. Each transaction aborts
and retries due to the others. So, a higher priority transaction slj aborts and retries due
to a lower priority transaction ski . ski itself aborts and retries due to another transaction.
Thus, the new r

(
ski
)

will be at least equal to the new r
(
slj
)
. By definition of LCM, slj

will be chosen to commit first because of its higher priority. By extending this result to all
transactions in S, the highest priority transaction will commit. Thus, deadlock is avoided.
Claim follows.

Claim 24. Let slj interferes once with ski at most at αklij . p
(
slj
)
> p

(
ski
)
. Then, the maximum

contribution of slj to ski ’s retry cost is:

W k
i (slj) ≤ αklij len

(
ski

)
+ len

(
slj

)
(5.4)

Proof. If slj interferes with ski at a Υ percentage, where Υ < αklij , then the retry cost of ski is
Υlen(ski ) + len(slj), which is lower than that calculated in (5.4). Besides, if slj interferes with
ski after αklij percentage, then ski will not abort.

Claim 25. A higher priority transaction, slj, aborts and retries due to a lower priority
transaction, ski , if slj interferes with ski after the αklij percentage. slj’s retry cost, due to ski is
upper bounded by:

W l
j(s

k
i ) ≤

(
1− αklij

)
len
(
ski

)
(5.5)

Proof. It is derived directly from Claim 24, as slj will have to retry for the remaining length
of ski .

Claim 26. As length of ski - interfered by a higher priority transaction slj - increases, then
αklij also increases.

Proof. As len
(
ski
)

increases, then cklij decreases by definition of (5.1). Noting that ln(Ψ) ≤
0 because Ψ ∈ [0, 1]. Thus, αklij increases as cklij decreases by definition of (5.2). Claim
follows.



Mohammed El-Shambakey Chapter 5. LCM 58

Claim 27. Let conf
{
ski
}

be the set of all transactions that do not belong to any job of
τi and are conflicting, directly or indirectly(transitively), with ski . Each transaction slj ∈
conf

{
ski
}
, p
(
slj
)
> p

(
ski
)

contributes to the retry cost of ski by at most

len
(
slj + αjlmaxsmax(Θ)

)
(5.6)

where smax(Θ) is the maximum length atomic section (transaction) in conf{ski } that accesses
at least one object in Θ and its priority is lower than p(slj). smax (Θ) 6∈ sj and Θ ⊆ Θkex

i ∩Θl
j.

αjlmax is calculated by (5.2) due to interference of smax (Θ) by slj.

Proof. Under ECM and RCM (Chapter 4), lower priority transactions abort and retry only
due to higher priority transactions. Whereas, under LCM, a transaction ski can be aborted
due to higher priority transactions. ski can also be delayed by lower priority transactions.
Thus, proof follows proof of Claim 5 with the following modifications:

• According to Claims 24 and 25, slj can cause lower priority transactions to retry and
higher priority transactions to be delayed. From Claims 24 and 25, it appears that
contribution of slj to the retry cost of lower priority transactions is greater than delay
caused by slj to higher priority transactions. Thus, retry cost caused by slj to lower
priority transactions is taken as the contribution of slj to the retry cost of ski .
• By Claim 26 and definition of smax (Θ), αjlmax is the maximum α that results from

interference of a lower priority transaction- accessing any object θ ∈ Θ - by slj.
• ski can abort and retry due to higher priority transactions. Also, ski can be delayed due

to lower priority transactions. Thus, p (smax) < p
(
slj
)
, but p

(
sjlmax

)
does not have to

be greater than p
(
ski
)
.

Claim follows.

Claim 28. Let conf
{
ski
}

be the set of all transactions that do not belong to any job of
τi and are conflicting, directly or indirectly(transitively), with ski . Each transaction slj ∈
conf

{
ski
}
, p
(
slj
)
< p

(
ski
)

contributes to the delay of ski by at most(
1− αjlmin

)
len
(
slj
)

(5.7)

where αjlmin is the minimum αlyjx- calculated by (5.2)- that results from delay of any higher

priority transaction syx by the lower priority slj.

Proof. If slj is to abort and retry, then the delay to ski that results from each retry of slj is
covered by Claim 27. Thus, the delay that results from slj when it does not retry is given by

Claim 25 by minimizing αklij in (5.5) to its minimum value (i.e., αjlmin). Claim follows.

Claim 29. Under LCM with G-EDF and G-RMA, priority inversion time for any job τxi
during Ti is bounded.



Mohammed El-Shambakey Chapter 5. LCM 59

Proof. Under LCM, priority of each transaction ski equals priority of its containing job τxi .
Under G-EDF, number of lower priority jobs of τj that are released during Ti is upper
bounded by 1. Under G-RMA, number of lower priority jobs of τj that are released during

Ti is upper bounded by
⌈
Ti
Tj

⌉
+ 1. Number of transactions is fixed for each job. So, by

Claim 28, Claim follows.

5.3 Retry Cost and Response Time of LCM/G-EDF

Claim 30. Under LCM/G-EDF, the total retry cost suffered by all transactions in any job
τxi ∈ τi during interval L ≤ Ti due to direct and indirect conflict with other transactions is
upper bounded by:

RCi (L) ≤
∑
τj∈γexi

ggedfij

∑
∀slj , (Θ=Θlj∩Θexi ) 6=∅

len
(
slj + αjlmaxsmax(Θ)

) (5.8)

where smax (Θ) 6∈ sj and αjlmax is given by (5.2) due to interference of the lower priority

smax (Θ) by the higher priority slj. g
gedf
ij is calculated by (4.2).

Proof. From Claims 24 and 25, it appears that contribution of slj to the retry cost of lower
priority transactions is greater than delay caused by slj to higher priority transactions. Thus,
retry cost caused by slj to lower priority transactions is taken as the contribution of slj to
the retry cost of ski . Under G-EDF, priorities are determined by the absolute deadline
of the job. Thus, the same transaction slj can be of higher or lower priority than p

(
ski
)

according to the absolute deadline of containing job of slj. So, only jobs of τj ∈ γi that have
an absolute deadline that at most coincides with dxi are considered. Thus, delay of lower
priority transactions is ignored. Following Claim 27 and Claim 6, Claim follows

Claim 31. Under LCM/G-EDF, the total retry cost suffered by all transactions in any job
τxi ∈ τi during an interval L ≤ Ti due to release of jobs with higher priority than τxi is upper
bounded by

RCire(L) ≤
∑
∀τj∈ζi


⌈
L
Tj

⌉
simax , L ≤ Ti − Tj

⌊
Ti
Tj

⌋
simax , L > Ti − Tj

(5.9)

where ζi = {τj : (τj 6= τi) ∧ (Dj < Di)}.

Proof. LCM/G-EDF and ECM has the same pattern for release of jobs. Thus, proof is the
same as proof of Claim 8. Claim follows.
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Claim 32. Under LCM/G-EDF, the total retry cost suffered by all transactions in any job
τxi ∈ τi during an interval L ≤ Ti is upper bounded by:

RCito(L) = RCi(L) +RCire(L) (5.10)

where RCi(L) is the maximum retry cost resulting from conflict between transactions in τxi
and transactions of other jobs. RCi(L) is calculated by (5.8). RCire(L) is the maximum
retry cost resulting from the release of higher priority jobs, which preempt transactions in
τxi . RCire(L) is calculated by (5.9).

Proof. Proof follows directly from Claims 30, 31 and proof of Claim 9.

Claim 33. Under LCM/G-EDF, maximum response time of any job τxi ∈ τi is upper bounded
by Claim 10 where RCito(R

up
i ) is upper bounded by (5.10).

Proof. Proof follows directly from Claim 32 and proof of Claim 10.

5.4 Total utilization of LCM/G-EDF

Following notions in Section 4.3, we compare performance of LCM/G-EDF against ECM
(Chapter 4), lock-free [49] and locking protocols (i.e., OMLP [22, 29] and RNLP [149]) in
terms of total utilization to understand when LCM/G-EDF will perform better.

5.4.1 LCM/G-EDF versus ECM

Claim 34. Following notions in Section 4.3, total utilization of LCM/G-EDF is always equal
or better than ECM.

Proof. Under ECM, RCto
ECM(Ti) is upper bounded by (4.22) with replacing γi by γexi .
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RCto
LCM/G−EDF (Ti) is given by (5.10) and upper bounded by

RCto
LCM/G−EDF (Ti) ≤

 ∑
τj∈γexi

⌈Ti
Tj

⌉ ∑
∀slj , (Θ=Θlj∩Θexi ) 6=∅

len
(
slj + αjlmaxsmax(Θ)

)


+

∑
τj∈ζi

⌊
Ti
Tj

⌋
simax


≤

(1 + αmax)
∑
τj∈γexi

⌈Ti
Tj

⌉ ∑
∀slj , (Θ=Θlj∩Θexi )6=∅

 smax


+

∑
τj∈ζi

⌊
Ti
Tj

⌋
smax

 (5.11)

where smax is the length of the longest transaction among all tasks. αmax is the maximum
value of αklxy for any two transactions skx and sly. By substitution of RCto

LCM/G−EDF and

RCto
ECM(Ti) into (4.21), the LCM/G-EDF has equal or better total utilization than ECM if

αmax ≤ 1. But αmax is always less than or equal to 1. Claim follows.

5.4.2 LCM/G-EDF versus Lock-free

As mentioned in Section 4.4, the retry-loop lock-free approach in [49] is the most relevant
to our work. As lock-free instructions access only one object, then Θk

i for any ski will be
restricted to one object only (i.e., Θk

i = θki ). Thus, transitive retry cannot happen, Θex
i = Θi

and γexi = γi.

Claim 35. Following notions in Section 4.3, total utilization of LCM/G-EDF is equal or bet-
ter than that of [49]’s retry-loop lock-free approach if smax does not exceed rmax/ (1 + αmax),
where smax is the length of longest transaction among all tasks, rmax is the maximum
execution cost of a single iteration of any lock-free retry loop of any task, and αmax =
max

{
αklxy
}
∀skx, sly

. With equal periods for conflicting tasks and high access times to shared

objects, smax can be much larger than rmax.

Proof. Using Claim 32 and following the same steps of proof of Claim 16, Claim follows.
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5.4.3 LCM/G-EDF versus OMLP

Claim 36. Following the same notations in Sections 4.3 and 4.5.1, total utilization of
LCM/G-EDF is equal or better than total utilization of OMLP if

smax
Lmax

≤ Nmin (2m− 1)

((1 + αmax)Nmax + 1) (n− 1)Φmax

(5.12)

where αmax = max
{
αklxy
}
∀skx, sly

. As number of atomic sections in each task increases, all tasks

have equal periods and equal number of atomic sections, αmax approaches 0, and number of
processors is at least equal to half number of tasks, then smax can be at least equal to Lmax
with total utilization of LCM/G-EDF equal or better than total utilization of OMLP.

Proof. αmax ≥ 0 as defined in Section 5.1.1. Using Claim 32 and following the same steps of
proof of Claim 18, Claim follows.

5.4.4 LCM/G-EDF versus RNLP

Claim 37. Following the same notations in Sections 4.3 and 4.5.4, total utilization of
LCM/G-EDF is equal or better than total utilization of RNLP if

smax
Lmax

≤ Nmin (2m− 1)

((1 + αmax)Nmax + 1) (n− 1)Φmax

(5.13)

where αmax = max
{
αklxy
}
∀skx, sly

. As number of atomic sections in each task increases, all tasks

have equal periods and equal number of atomic sections, αmax approaches 0, and number of
processors is at least equal to half number of tasks, then smax can be at least equal to Lmax
with total utilization of LCM/G-EDF equal or better than total utilization of RNLP.

Proof. αmax ≥ 0 as defined in Section 5.1.1. Using Claim 32 and following the same steps of
proof of Claim 20, Claim follows.

5.5 Retry Cost and Response Time of LCM/G-RMA

Claim 38. Under LCM/G-RMA, the total retry cost suffered by all transactions in any job
τxi ∈ τi during interval L ≤ Ti due to direct and indirect conflict with other transactions is
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upper bounded by:

RCi (L) ≤

 ∑
τj∈γexi , pj>pi

(⌈
L

Tj

⌉
+ 1

) ∑
slj ,(Θ=Θexi ∩Θlj)6=∅

len
(
slj + αjlmaxsmax (Θ)

)
+

 ∑
τz∈γexi , pz<pi

(⌈
L

Tz

⌉
+ 1

) ∑
slz ,(Θ=Θexi ∩Θlz)6=∅

len
((

1− αzlmin
)
slz
) (5.14)

where smax (Θ) 6∈ sj and αjlmax is given by (5.2) due to interference of the lower priority
smax (Θ) by the higher priority slj. α

zl
min is the minimum αlyzx- calculated by (5.2)- that results

from delay of a any higher priority transaction syx by the lower priority slz.

Proof. Proof follows from Claims 27, 28 and proof of Claim 12.

Claim 39. Under LCM/G-RMA, the total retry cost suffered by all transactions in any job
τxi ∈ τi during an interval L ≤ Ti due to release of jobs with higher priority than τxi is upper
bounded by

RCire(L) =
∑

∀τj , pj>pi

(⌈
L

Tj

⌉
simax

)
(5.15)

Proof. LCM/G-RMA and RCM has the same pattern for release of jobs. Thus, proof is the
same as proof of Claim 13. Claim follows.

Claim 40. Under LCM/G-RMA, the total retry cost suffered by all transactions in any job
τxi ∈ τi during an interval L ≤ Ti is upper bounded by:

RCito(L) = RCi(L) +RCire(L) (5.16)

where RCi(L) is the maximum retry cost resulting from conflict between transactions in τxi
and transactions of other jobs. RCi(L) is calculated by (5.14). RCire(L) is the maximum
retry cost resulting from the release of higher priority jobs, which preempt transactions in
τxi . RCire(L) is calculated by (5.15).

Proof. Using Claims 38, 39 and proof of Claim 14, Claim follows.

Claim 41. Under LCM/G-RMA, maximum response time of any job τxi ∈ τi is upper
bounded by Claim 15 where RCito(R

up
i ) is upper bounded by (5.16).

Proof. Proof follows directly from Claim 40 and proof of Claim 15.
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5.6 Total utilization of LCM/G-RMA

As in Section 5.4, we compare the total utilization of LCM/G-RMA against RCM (Chap-
ter 4), lock-free [49] and locking protocols (i.e., OMLP [22,29] and RNLP [149]) to understand
when LCM/G-RMA will perform better.

5.6.1 LCM/G-RMA versus RCM

Claim 42. Following notions in Section 4.3, LCM/G-RMA’s total utilization is equal or
better than RCM if:

1− αmin
1− αmax

≤

∑
∀τj∈γexi ,pj>pi

((⌈
Ti
Tj

⌉
+ 1
)∑

∀slj ,(Θ=Θlj∩Θexi )6=∅

)
2
∑
∀τz∈γexi ,pz<pi

∑
∀slz ,(Θ=Θlz∩Θexi )6=∅

(5.17)

where αmax = max{αklxy}∀skx,sly , αmin = min{αklxy}∀skx,sly .

Proof. Let RCto
LCM/G−RMA be the total retry cost for any job of τi under LCM/G-RMA.

RCto
LCM/G−RMA is given by (5.16) and upper bounded by:

(1 + αmax)
(∑

∀τj∈γexi ,pj>pi

((⌈
Ti
Tj

⌉
+ 1
)∑

∀slj ,(Θ=Θlj∩Θexi ) 6=∅

)
smax

)
+ (1− αmin)

(∑
∀τz∈γexi ,pz<pi

((⌈
Ti
Tz

⌉
+ 1
)∑

∀slz ,(Θ=Θlz∩Θexi ) 6=∅

)
smax

)
+

(∑
∀τj ,pj>pi

⌈
Ti
Tj

⌉)
smax (5.18)

Let RCto
RCM be the total retry cost for any job of τi under RCM. RCto

RCM is given by (4.18)
and upper bounded by:

2
∑

∀τj∈γexi ,pj>pi

(⌈Ti
Tj

⌉
+ 1

) ∑
∀slj ,(Θ=Θlj∩Θexi )6=∅


+

 ∑
∀τj ,pj>pi

⌈
Ti
Tj

⌉
 smax (5.19)

⌈
Ti
Tz

⌉
= 1, ∀τi, τz where pz < pi because Ti < Tz by definition of G-RMA and implicit deadline

tasks. By substitution of (5.18) and (5.19) into (4.21), Claim follows.

5.6.2 LCM/G-RMA versus Lock-free

As mentioned in Section 4.4, the retry-loop lock-free approach in [49] is the most relevant
to our work. As lock-free instructions access only one object, then Θk

i for any ski will be
restricted to one object only (i.e., Θk

i = θki ). Thus, transitive retry cannot happen, Θex
i = Θi

and γexi = γi.
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Claim 43. Following notions in Section 4.3, total utilization of LCM/G-RMA’s is equal or
better than that of [49]’s retry-loop lock-free approach if smax does not exceed rmax/ (1 + αmax),
where smax is the length of longest transaction among all tasks, rmax is the maximum
execution cost of a single iteration of any lock-free retry loop of any task, and αmax =
max

{
αklxy
}
∀skx, sly

. With high access times to shared objects, smax can be much larger than
rmax.

Proof. Let RCto
LCM/G−RMA be the total retry cost for any job of τi under LCM/G-RMA.

RCto
LCM/G−RMA is given by (5.16) and upper bounded by (5.18) where γexi is replaced with

γi and Φex
i is replaced with Φi. Let LRCto be the total retry cost for any job of τi under

retry-loop lock-free with G-RMA. LRCto is upper bounded by (4.31). Similar to proof of
Claim 17, total utilization of LCM/G-RMA is equal or better than total utilization of retry-
loop lock-free if for each τi:

(1 + αmax)
(∑

∀τj∈γi,pj>pi

((⌈
Ti
Tj

⌉
+ 1
)∑

∀slj ,(Θ=Θlj∩Θi)6=∅

)
smax

)
+ (1− αmin)

(∑
∀τj∈γi,pj<pi

((⌈
Ti
Tj

⌉
+ 1
)∑

∀slj ,(Θ=Θlj∩Θi)6=∅

)
smax

)
+

(∑
∀τj ,pj>pi

⌈
Ti
Tj

⌉)
smax

≤
((∑

∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij

)
+
(∑

∀τj ,pj>pi

⌈
Ti
Tj

⌉))
rmax (5.20)

By definition of G-RMA and implicit deadline tasks,
⌈
Ti
Tj

⌉
= 1, ∀τi, τj where pj < pi. So,

(5.20) becomes

(1 + αmax)
(∑

∀τj∈γi,pj>pi

((⌈
Ti
Tj

⌉
+ 1
)∑

∀slj ,(Θ=Θlj∩Θi)6=∅

)
smax

)
+ 2 (1− αmin)

(∑
∀τj∈γi,pj<pi

(∑
∀slj ,(Θ=Θlj∩Θi) 6=∅

)
smax

)
+

(∑
∀τj ,pj>pi

⌈
Ti
Tj

⌉)
smax

≤
((∑

∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij

)
+
(∑

∀τj ,pj>pi

⌈
Ti
Tj

⌉))
rmax (5.21)

The set of tasks {τj|τj 6= τi} can be devided into four sets dependinong on priority and object
sharing between τi and τj. So, {τj|τj 6= τi} = {τl} ∪ {τ̃l} ∪ {τh} ∪ {τ̃h}, where:

• {τl} = {τj| (τj 6= τi) ∧ (pj < pi) ∧ (τj ∈ γi)} is the set of tasks τj other than τi where
τj has direct conflict with τi and priority of τj is lower than priority of τi. Let β∗il
be the number of transactions in τl ∈ {τl} that has direct conflict with τi (i.e.,
β∗il =

∑
∀sxl ,(Θ=Θxl ∩Θi)6=∅). Let βil be the number of times a lower priority job of τl

accesses shared objects with a higher priority job of τi using retry-loop lock-free [49].
As one object can be accessed multiple times within the same transaction, and lock-free
instruction accesses one object only once, then βil ≥ β∗il.
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• {τ̃l} = {τj| (τj 6= τi) ∧ (pj < pi) ∧ (τj 6∈ γi)} is the set of tasks τj other than τi where τj
has no direct conflict with τi and priority of τj is lower than priority of τi.
• {τh} = {τj| (τj 6= τi) ∧ (pj > pi) ∧ (τj ∈ γi)} is the set of tasks τj other than τi where
τj has direct conflict with τi and priority of τj is higher than priority of τi. Let
β∗ih be the number of transactions in τh ∈ {τh} that has direct conflict with τi (i.e.,
β∗ih =

∑
∀sxh,(Θ=Θxh∩Θi)6=∅). Let βih be the number of times a higher priority job of τh

accesses shared objects with a lower priority job of τi using retry-loop lock-free [49]. As
one object can be accessed multiple times within the same transaction, and lock-free
instruction accesses one object only once, then βih ≥ β∗ih.
• {τ̃h} = {τj| (τj 6= τi) ∧ (pj > pi) ∧ (τj 6∈ γi)} is the set of tasks τj other than τi where
τj has no direct conflict with τi and priority of τj is higher than priority of τi.

Thus, (5.21) becomes

(1 + αmax)
(∑

∀τh∈{τh}

((⌈
Ti
Th

⌉
+ 1
)
β∗ih

)
smax

)
+ 2 (1− αmin)

(∑
∀τl∈{τl} β

∗
ilsmax

)
+

((∑
∀τh∈{τh}

⌈
Ti
Th

⌉)
+
(∑

∀τ̃h∈{τ̃h}

⌈
Ti
T̃h

⌉))
smax

≤
((∑

∀τh∈{τh}

(⌈
Ti
Th

⌉
+ 1
)
βih

)
+
(

2
∑
∀τl∈{τl} βil

))
rmax

+
((∑

∀τh∈{τh}

⌈
Ti
Th

⌉)
+
(∑

∀τ̃h∈{τ̃h}

⌈
Ti
T̃h

⌉))
rmax (5.22)

∴
∑
∀τh∈{τh}

(
(1 + αmax)

((⌈
Ti
Th

⌉
+ 1
)
β∗ih

)
+
⌈
Ti
Th

⌉)
smax

+ 2 (1− αmin)
(∑

∀τl∈{τl} β
∗
ilsmax

)
+

((∑
∀τ̃h∈{τ̃h}

⌈
Ti
T̃h

⌉))
smax

≤
∑
∀τh∈{τh}

(((⌈
Ti
Th

⌉
+ 1
)
βih

)
+
⌈
Ti
Th

⌉)
rmax

+
(

2
∑
∀τl∈{τl} βil

)
rmax

+
(∑

∀τ̃h∈{τ̃h}

⌈
Ti
T̃h

⌉)
rmax (5.23)

(5.23) is satisfied if for each τi:

•
smax
rmax

≤

∑
∀τh∈{τh}

(((⌈
Ti
Th

⌉
+ 1
)
βih

)
+
⌈
Ti
Th

⌉)
∑
∀τh∈{τh}

(
(1 + αmax)

((⌈
Ti
Th

⌉
+ 1
)
β∗ih

)
+
⌈
Ti
Th

⌉) (5.24)

To find the lower bound over smax/rmax that satisfies (5.24), let βih assumes its mini-
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mum value (i.e., βih = β∗ih). Thus, (5.24) is satisfied if

smax
rmax

≤

∑
∀τh∈{τh}

(((⌈
Ti
Th

⌉
+ 1
)
β∗ih

)
+
⌈
Ti
Th

⌉)
∑
∀τh∈{τh} (1 + αmax)

(((⌈
Ti
Th

⌉
+ 1
)
β∗ih

)
+
⌈
Ti
Th

⌉)
=

1

1 + αmax
≤ 1

2
(5.25)

To find the upper bound over smax/rmax that satisfies (5.24), let βih >> (1 + αmax) β
∗
ih.

Thus, smax can be much larger than rmax.
•

2 (1− αmin)

 ∑
∀τl∈{τl}

β∗ilsmax

 ≤
2

∑
∀τl∈{τl}

βil

 rmax

∴
smax
rmax

≤
∑
∀τl∈{τl} βil

(1− αmin)
(∑

∀τl∈{τl} β
∗
il

) (5.26)

To find the lower bound over smax/rmax that satisfies (5.26), let βil assumes its minimum
value (i.e., βil = β∗il). Thus, (5.26) is satisfied if

smax
rmax

≤ 1

1− αmin
≤ 1 (5.27)

To find the upper bound over smax/rmax that satisfies (5.26), let βil >> (1− αmin) β∗il.
Thus, smax can be much larger than rmax.
•  ∑

∀τ̃h∈{τ̃h}

⌈
Ti

T̃h

⌉ smax ≤

 ∑
∀τ̃h∈{τ̃h}

⌈
Ti

T̃h

⌉ rmax (5.28)

∴
smax
rmax

≤ 1

By taking the minimum lower bound and the maximum upper bound from the previous
cases, Claim follows.

5.6.3 LCM/G-RMA versus OMLP

Claim 44. Following the same notations in Sections 4.3 and 4.5.1, total utilization of
LCM/G-RMA is equal or better than total utilization of OMLP if

smax
Lmax

≤ Nmin (2m− 1)

(n− 1) ((1 + αmax) ((Φmax + 1)Nmax) + 2 (1− αmin)Nmax + Φmax)
(5.29)
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where αmax = max
{
αklxy
}
∀skx, sly

and αmin = min{αklxy}∀skx,sly . As number of atomic sections in

each task increases, all tasks have equal periods and equal number of atomic sections, αmax
approaches αmin, and number of processors is at least double number of tasks, then smax can
be at least equal to Lmax with total utilization of LCM/G-RMA equal or better than total
utilization of OMLP.

Proof. αmax ≥ αmin by definition. Substitute RCA(Ti) in (4.37) by (5.18). Following the
same steps in proof of Claim 18, Claim follows.

5.6.4 LCM/G-RMA versus RNLP

Claim 45. Following the same notations in Sections 4.3 and 4.5.4, total utilization of
LCM/G-RMA is equal or better than total utilization of RNLP if

smax
Lmax

≤ Nmin (2m− 1)

(n− 1) ((1 + αmax) ((Φmax + 1)Nmax) + 2 (1− αmin)Nmax + Φmax)
(5.30)

where αmax = max
{
αklxy
}
∀skx, sly

and αmin = min{αklxy}∀skx,sly . As number of atomic sections in

each task increases, all tasks have equal periods and equal number of atomic sections, αmax
approaches αmin, and number of processors is at least double number of tasks, then smax can
be at least equal to Lmax with total utilization of LCM/G-RMA equal or better than total
utilization of RNLP.

Proof. αmax ≥ αmin by definition. Substitute RCA(Ti) in (4.37) by (5.18). Following the
same steps of proof of Claim 20, Claim follows.

5.7 Conclusions

In ECM and RCM, a task incurs at most 2smax retry cost for each of its atomic section
due to conflict with another task’s atomic section. With LCM, this retry cost is reduced to
(1 + αmax)smax for each aborted atomic section. In ECM and RCM, higher priority tasks
are not delayed due to lower priority tasks, whereas in LCM, they are. In LCM/G-EDF,
delay due to a lower priority job is encountered only from a task τj’s last job instance during
τi’s period. Contribution of a transaction slj to the retry cost of a lower priority transaction
is higher than delay caused by slj to a higher priority transaction. Thus, under LCM/G-
EDF, each transaction is assumed to contribute in the abort and retry of a lower priority
transaction. Hence, delay of higher priority transactions due to lower priority transactions
is ignored under LCM/G-EDF. This is not the case with LCM/G-RMA, because of fixed
priority under G-RMA.
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Performance of LCM/G-EDF is always equal or better than ECM’s in terms of total utiliza-
tion. Whereas, total utilization of LCM/G-RMA is equal or better than RCM’s depending
on αmin and αmax. Total utilization of LCM (with G-EDF and G-RMA) is equal or bet-
ter than total utilization of retry-loop lock-free if smax does not exceed rmax/ (1 + αmax).
With high number of object access within each transaction, smax can be much larger than
rmax with equal or better total utilization for LCM (with G-EDF and G-RMA) than total
utilization of retry-loop lock-free.

Total utilization of LCM was compared against real-time locking protocols (i.e., OMLP and
RNLP) under G-EDF and G-RMA. As number of atomic sections in each task increases,
all tasks have equal periods and equal number of atomic sections, αmax approaches 0, and
number of processors is at least equal to half number of tasks, then smax can be at least equal
to Lmax with total utilization of LCM/G-EDF equal or better than total utilization of OMLP
and RNLP. The same results apply to total utilization comparison between LCM/G-RMA
and locking protocols except that αmax approaches αmin and number of processors should
be at least double number of tasks.



Chapter 6

The PNF Contention Manager

In this chapter, we present a novel contention manager for resolving transactional conflicts,
called PNF [57]. We upper bound transactional retries and task response times under PNF,
when used with the G-EDF and G-RMA schedulers. We formally identify the conditions
under which PNF outperforms previous real-time STM contention managers, lock-free and
locking protocols.

The rest of this Chapter is organized as follows: Section 6.1 discusses limitations of previous
contention managers and the motivation to PNF. Section 6.2 give a formal description of
PNF. Section 6.3 derives PNF’s properties. We upper bound retry cost and response time
under PNF in Section 6.4. Performance comparison between PNF and other synchronization
techniques in terms of total utilization is given in Section 6.5. We conclude Chapter in
Section 6.6.

6.1 Limitations of ECM, RCM, and LCM

With multiple objects per transaction, ECM, RCM (Chapter 4) and LCM (Chapter 5) face
transitive retry as shown by Claims 1, 11 and 22. Thus, a transaction ski can abort and retry
due to another transaction slj where Θk

i ∩ Θl
j = ∅. Retry cost and response time analysis-

presented in Chapters 4 and 5- extend the set of objects accessed by any task τi to include any
object that can cause direct or indirect(transitive) retry to any transaction in τi. However,
this solution may over-extend the set of conflicting objects, and may even contain all objects
accessed by all tasks.

In addition to the transitive retry problem, retrying higher priority transactions can prevent
lower priority tasks from running. This happens when all processors are busy with higher
priority jobs. When a transaction retries, the processor time is wasted. Thus, it would be
better to give the processor to some other task.

70
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Essentially, what we present is a new contention manager that avoids the effect of transitive
retry. We call it, Priority contention manager with Negative values and First access (or
PNF). PNF also tries to enhance processor utilization. This is done by allocating processors
to jobs with non-retrying transactions. PNF is described in Section 6.2.

6.2 The PNF Contention Manager

Algorithm 4 describes PNF. It manages two sets. The first is the m-set, which contains at
most m non-conflicting transactions, where m is the number of processors, as there cannot be
more than m executing transactions (or generally, m executing jobs) at the same time. When
a transaction is entered in the m-set, it executes non-preemptively and no other transaction
can abort it. A transaction in the m-set is called an executing transaction. This means that,
when a transaction is executing before the arrival of higher priority conflicting transactions,
then the one that started executing first will be committed (Step 8) (hence the term “First
access” in the algorithm’s name). The second set is the n-set, which holds the transactions
that are retrying because of a conflict with one or more of the executing transactions (Step 6),
where n stands for the number of tasks in the system. Transactions in the n-set are known
as retrying transaction. n-set also holds transactions that cannot currently execute, because
processors are busy, either due to processing executing transactions and/or higher priority
jobs. Any transaction in the n-set is assigned a temporal priority of -1 (Step 7) (hence the
word “Negative” in the algorithm’s name). A negative priority is considered smaller than
any normal priority, and a transaction continues to hold this negative priority until it is
moved to the m-set, where it restores its normal priority.

A job τ yx holding a transaction in the n-set can be preempted by any other job τ lz with normal
priority, even if τ lz does not have transactions conflicting with τ yx . Hence, the n-set is of length
n, as there can be at most n jobs. Transactions in the n-set whose jobs have been preempted
are called preempted transactions. The n-set list keeps track of preempted transactions,
because as it will be shown, all preempted and non-preempted transactions in the n-set are
examined when any executing transaction commits. Then, one or more transactions are
selected from the n-set to be executing transactions. If a retrying transaction is selected as
an executing transaction, the task that owns the retrying transaction regains its priority.

When a new transaction is released, and if it does not conflict with any of the executing
transactions (Step 1), then it will allocate a slot in the m-set and becomes an executing
transaction. When this transaction is released (i.e., its containing task is already allocated
to a processor), it will be able to access a processor immediately. This transaction may have
a conflict with any of the transactions in the n-set. However, since transactions in the n-set
have priorities of -1, they cannot prevent this new transaction from executing if it does not

1An idle processor or at least one that runs a non-atomic section task with priority lower than the task
holding n(z).
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Algorithm 4: PNF
Data: Executing Transaction: is one that cannot be aborted by any other transaction, nor

preempted by a higher priority task;
m-set: m-length set that contains only non-conflicting executing transactions;
n-set: n-length set that contains retrying transactions for n tasks in non-increasing order of priority;
n(z): transaction at index z of the n-set;

ski : a newly released transaction;

slj : one of the executing transactions;
Result: atomic sections that will commit

1 if ski does not conflict with any executing transaction then
2 Assign ski as an executing transaction;

3 Add ski to the m-set;

4 Select ski to commit

5 else
6 Add ski to the n-set according to its priority;

7 Assign temporary priority -1 to the job that owns ski ;

8 Select transaction(s) conflicting with ski for commit;

9 end

10 if slj commits then
11 for z=1 to size of n-set do
12 if n(z) does not conflict with any executing transaction then
13 if processor available1 then
14 Restore priority of task owning n(z);
15 Assign n(z) as executing transaction;
16 Add n(z) to m-set and remove it from n-set;
17 Select n(z) for commit;

18 else
19 Wait until processor available
20 end

21 end
22 move to the next n(z);

23 end

24 end

conflict with any of the executing transactions.

When one of the executing transactions commits (Step 10), it is time to select one of the
n-set transactions to commit. The n-set is traversed from the highest priority to the lowest
priority (priority here refers to the original priority of the transactions, and not -1) (Step 11).
If an examined transaction in the n-set, sbh, does not conflict with any executing transaction
(Step 12), and there is an available processor for it (Step 13) (“available” means either an
idle processor, or one that is executing a job of lower priority than sbh), then sbh is moved
from the n-set to the m-set as an executing transaction and its original priority is restored.
If sbh is added to the m-set, the new m-set is compared with other transactions in the n-set
with lower priority than sbh. Hence, if one of the transactions in the n-set, sgd, is of lower
priority than sbh and conflicts with sbh, it will remain in the n-set.
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The choice of the new transaction from the n-set depends on the original priority of trans-
actions (hence the term “P” in the algorithm name). The algorithm avoids interrupting an
already executing transaction to reduce its retry cost. In the meanwhile, it tries to avoid
delaying the highest priority transaction in the n-set when it is time to select a new one to
commit, even if the highest priority transaction arrives after other lower priority transactions
in the n-set.

6.2.1 Illustrative Example

We illustrate PNF with an example. We use the following notions: sba(θ1, θ2, θ3) means that sba
accesses objects θ1, θ2, θ3. If sba ∈ τ ja , ∴ po(s

b
a) = pja, where po(s

b
a) is the original priority of sba.

p(sba) = −1, if sba is a retrying transaction; p(sba) = po(s
b
a) otherwise. m-set= {sba, ski } means

that the m-set contains transactions sba and ski regardless of their order. n-set= {sba, ski }
means that the n-set contains transactions sba and ski in that order, where po(s

b
a) > po(s

k
i ).

m-set (n-set) = {φ} means that m-set (n-set) is empty. Assume there are five processors.

1. Initially, m-set= n-set= {φ}. sba(θ1, θ2) ∈ τ ba is released and checks m-set for conflict-
ing transactions. As m-set is empty, sba finds no conflict and becomes an executing
transaction. sba is added to m-set. m-set= {sba} and n-set= {φ}. sba is executing on
processor 1.

2. sdc(θ3, θ4) ∈ τ dc is released and checks m-set for conflicting transactions. sdc does not
conflict with sba as they access different objects. sdc becomes an executing transaction
and is added to m-set. m-set= {sba, sdc} and n-set= {φ}. sdc is executing on processor
2.

3. sfe (θ1, θ5) ∈ τ fe is released and po(s
f
e ) < po(s

b
a). sfe conflicts with sba when it checks

m-set. sfe is added to n-set and becomes a retrying transaction. p(sfe ) becomes −1.
m-set= {sba, sdc} and n-set= {sfe}. sfe is retrying on processor 3.

4. shg(θ1, θ6) ∈ τhg is released and po(s
h
g) > po(s

b
a). s

h
g conflicts with sba. Though shg is of

higher priority than sba, s
b
a is an executing transaction. So sba runs non-preemptively. shg

is added to n-set before sfe , because po(s
h
g) > po(s

f
e ). p(s

h
g) becomes−1. m-set= {sba, sdc}

and n-set= {shg , sfe}. shg is retrying on processor 4.

5. sji (θ5, θ7) ∈ τ ji is released. po(s
j
i ) < po(s

f
e ). s

j
i does not conflict with any transaction

in m-set. Though sji conflicts with sfe and po(s
j
i ) < po(s

f
e ) < po(s

h
g), s

f
e and shg are

retrying transactions. sji becomes an executing transaction and is added to m-set.
m-set= {sba, sdc , s

j
i} and n-set= {shg , sfe}. s

j
i is executing on processor 5.

6. τ lk is released. τ lk does not access any object. plk < po(s
f
e ) < po(s

h
g), but p(sfe ) = p(shg) =

−1. Since there are no more processors, τ lk preempts τ fe , because the currently assigned
priority to τ fe = p(sfe ) = −1 and po(s

h
g) > po(s

f
e ). τ

l
k is running on processor 3. This

way, PNF optimizes processor usage. The m-set and n-set are not changed. Although
sfe is preempted, n-set still records it, as sfe might be needed (as will be shown in the
following steps).
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7. sji commits. sji is removed from m-set. Transactions in n-set are checked from the first
(highest po) to the last (lowest po) for conflicts against any executing transaction. shg is
checked first because po(s

h
g) > po(s

f
e ). s

h
g conflicts with sba, so shg cannot be an executing

transaction. Now it is time to check sfe , even though sfe is preempted in step 6. sfe
also conflicts with sba, so sfe cannot be an executing transaction. m-set= {sba, sdc} and
n-set= {shg , sfe}. Now, sfe can be retrying on processor 5 if τ ji has finished execution.

Otherwise, τ ji continues running on processor 5 and sfe is still preempted. This is
because, p(sfe ) = −1 and pji > p(sfe ). Let us assume that τ ji is still running on processor
5.

8. sba commits. sba is removed from m-set. Transactions in n-set are checked as done in
step 7. shg does not conflict with any executing transaction any more. shg becomes an
executing transaction. shg is removed from n-set and added tom-set, som-set= {sdc , shg}.
Now, sfe is checked against the new m-set. sfe conflicts with shg , so sfe cannot be an
executing transaction. sfe can be retrying on processor 1 if τ ba has finished execution.
Otherwise, sfe remains preempted, because p(sfe ) = −1 and pba > p(sfe ). n-set= {sfe}.
Let us assume that τ ba is still running on processor 1.

9. shg commits. shg is removed from m-set. τhg continues execution on processor 4. Trans-
actions in n-set are checked again. sfe is the only retrying transaction in the n-set, and
it does not conflict with any executing transactions. Now, the system has τ ba running
on processor 1, sdc executing on processor 2, τ lk running on processor 3, τhg running on

processor 4, and τ ji running on processor 5. sfe can become an executing transaction
if it can find a processor. Since pji , p

l
k < po(s

f
e ), s

f
e can preempt the lowest in priority

between τ ji and τ lk. s
f
e now becomes an executing transaction. sfe is removed from the

n-set and added to the m-set. So, m-set= {sdc , sfe} and n-set= {φ}. If pji , p
l
k were of

higher priority than po(s
f
e ), then sfe would have remained in n-set until a processor

becomes available.

The example shows that PNF avoids transitive retry. This is illustrated in step 5, where
sji (θ5, θ7) is not affected by the retry of sfe (θ1, θ5). The example also explains how PNF
optimizes processor usage. This is illustrated in step 6, where the retrying transaction sfe is
preempted in favor of τ lk.

6.3 Properties

Claim 46. Transactions scheduled under PNF do not suffer from transitive retry.

Proof. Proof is by contradiction. Assume that a transaction ski is retrying because of a
higher priority transaction slj, which in turn is retrying because of another higher priority
transaction shz . Assume that ski and shz do not conflict, yet, ski is transitively retrying due to
shz . Note that shz and slj cannot exit together in the m-set as they have shared objects. But
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they both can be in the n-set, as they can conflict with other executing transactions. We
have three cases:

Case 1: Assume that shz is an executing transaction. This means that slj is in the n-set.
When ski arrives, by the definition of PNF, it will be compared with the m-set, which contains
shz . Now, it will be found that ski does not conflict with shz . Also, by the definition of PNF,
ski is not compared with transactions in the n-set. When ski newly arrives, priorities of n-set
transactions are lower than any normal priority. Therefore, as ski does not conflict with any
other executing transaction, it joins the m-set and becomes an executing transaction. This
contradicts the assumption that ski is transitively retrying because of shz .

Case 2: Assume that shz is in the n-set, while slj is an executing transaction. When ski arrives,
it will conflict with slj and joins the n-set. Now, ski retries due to slj, and not shz . When slj
commits, the n-set is traversed from the highest priority transaction to the lowest one: if shz
does not conflict with any other executing transaction and there are available processors, shz
becomes an executing transaction. When ski is compared with the m-set, it is found that it
does not conflict with shz . Additionally, if it also does not conflict with any other executing
transaction and there are available processors, then ski becomes an executing transaction.
This means that ski and shz are executing concurrently, which violates the assumption of
transitive retry.

Case 3: Assume that shz and slj both exist in the n-set. When ski arrives, it is compared with
the m-set. If ski does not conflict with any executing transactions and there are available
processors, then ski becomes an executing transaction. Even though ski has common objects
with slj, s

k
i is not compared with slj, which is in the n-set. If ski joins the n-set, it is because,

it conflicts with one or more executing transactions, not because of shz , which violates the
transitive retry assumption. If the three transactions ski , s

l
j and shz exist in the n-set, and shz

is chosen as a new executing transaction, then slj remains in the n-set. This leads to Case
1. If slj is chosen, because shz conflicts with another executing transaction and slj does not,
then this leads to Case 2.

Claim 47. The first access property of PNF prevents transitive retry.

Proof. The proof is by contradiction. Assume that the retry cost of transactions in the
absence of the first access property is the same as when first access exists. Now, assume that
PNF is devoid of the first access property. This means that executing transactions can be
aborted.

Assume three transactions ski , s
l
j, and shz , where shz ’s priority is higher than slj’s priority, and

slj’s priority is higher than ski ’s priority. Assume that slj conflicts with both ski and shz . s
k
i

and shz do not conflict together. If ski arrives while shz is an executing transaction and slj
exists in the n-set, then ski becomes an executing transaction itself while slj is retrying. If ski
did not commit at least when shz commits, then slj becomes an executing transaction. Due
to the lack of the first access property, slj will cause ski to retry. So, the retry cost for ski will
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be len(shz + slj). This retry cost for ski is the same if it had been transitively retrying because
of shz . This contradicts the first assumption. Claim follows.

From Claims 46 and 47, PNF does not increase the retry cost of multi-object transactions.
However, this is not the case for ECM, RCM and LCM as shown by Claims 1, 11 and 22.

Claim 48. Under PNF, any job τxi is not affected by the retry cost in any other job τ lj.

Proof. As explained in Section 4, PNF assigns a temporary priority of -1 to any job that
includes a retrying transaction. So, retrying transactions have lower priority than any other
normal priority for any real-time task. When τxi is released and τ lj has a retrying transaction,
τxi will have a higher priority than τ lj . Thus, τxi can run on any available processor while τ lj
is retrying one of its transactions. Claim follows.

6.4 Retry Cost and Response Time Under PNF

We now derive an upper bound on the retry cost of any job τxi under PNF during an interval
L ≤ Ti. Since all tasks are sporadic (i.e., each task τi has a minimum period Ti), Ti is the
maximum study interval for each task τi.

Claim 49. Under PNF, the maximum retry cost suffered by a transaction ski due to a trans-
action slj is len(slj).

Proof. By PNF’s definition, ski cannot have started before slj. Otherwise, ski would have been
an executing transaction and slj cannot abort it. So, the earliest release time for ski would
have been just after slj starts execution. Then, ski would have to wait until slj commits.
Claim follows.

Claim 50. The retry cost for any job τxi due to conflicts between its transactions and trans-
actions of other jobs under PNF during an interval L ≤ Ti is upper bounded by:

RCi(L) ≤
∑
τj∈γi

 ∑
∀slj ,(Θ=Θlj∩Θi)6=∅

((⌈
L

Tj

⌉
+ 1

)
len
(
slj
)) (6.1)

Proof. Consider a transaction ski belonging to job τxi . Under PNF, higher priority transac-
tions than ski can become executing transaction before ski . A lower priority transaction sfv
can also become an executing transaction before ski . This happens when ski conflicts with
any executing transaction while sfv does not. The worst case scenario for ski occurs when
ski has to wait in the n-set, while all other conflicting transactions with ski are chosen to
be executing transactions. The maximum number of jobs of any task τj that can interfere
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with τxi during interval L is
⌈
L
Tj

⌉
+ 1. From the previous observations and Claim 49, Claim

follows.

Claim 51. In contrast to ECM, RCM and LCM, release of any higher priority job τ lj dur-
ing execution of a lower priority transaction ski does not increase retry cost of ski . Thus,
RCire(L) = 0 and RCito(L) = RCi(L), where L ≤ Ti and RCi(L) is given by (6.1).

Proof. Under PNF, executing transactions have higher priority than any other real-time
task. Thus, release of a higher priority task τ lj will not preempt any executing transaction
ski . Retrying transactions are already retrying when higher priority tasks are released. When
a retrying transaction ski is chosen to be an executing transaction, and all processors are busy
with executing transactions except the processor running τ lj , then τ lj is preempted in favour
of the executing transaction ski by definition of PNF. Thus, τ lj does not increase retry cost
of ski . Claim follows.

Claim 52. The maximum blocking time for any job in τi due to lower priority jobs during
an interval L ≤ Ti is upper bounded by:

Di(L) ≤ max∀τxi ∈τi

 1

m

∑
∀τ lj ,plj<pxi

(⌈ L
Tj

⌉
+ 1

) ∑
∀shj ,Θhj ∩Θi=∅

len
(
shj
) (6.2)

During Di(L), all processors are unavailable for τxi .

Proof. Under PNF, executing transactions are non preemptive. So, an executing transaction
ski can delay a higher priority job τxi , where po

(
ski
)
< pxi , if no other processors are available.

Through this proof, we call an ski with po
(
ski
)
< pxi an original lower priority transaction

compared to priority of τxi . An original lower priority executing transactions can be con-
flicting or non-conflicting with any transaction in τxi . They also can exist when τxi is newly
released, or after that. So, we have the following cases:

Original lower priority conflicting transactions after τxi is released: This case is already
covered by the retry cost in (6.1).

Original lower priority conflicting transactions when τxi is newly released: Each original
lower priority conflicting transaction shj will delay τxi for len(shj ). The effect of shj is already
covered by (6.1). Besides, (6.1) does not divide the retry cost by m as done in (6.2). Thus,
the worst case scenario requires inclusion of shj in (6.1), and not in (6.2).

Original lower priority non-conflicting transactions when τxi is newly released: τxi is delayed
if there are no available processors for it. Otherwise, τxi can run in parallel with these non-
conflicting original lower priority transactions. Each original lower priority non-conflicting
transaction shj will delay τxi for len(shj ).

Original lower priority non-conflicting transactions after τxi is released: This situation can
happen if τxi is not currently running any executing transaction. A retrying transaction ski is
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chosen to be an executing transaction. All processors are busy with executing transactions
except the processor running τxi . Thus, τxi is preempted in favour of executing transac-
tion ski . Otherwise, τxi can run in parallel with these original lower priority non-conflicting
transactions.

Each original lower priority non-conflicting transaction shj will delay τxi for len(shj ).

From the previous cases, original lower priority non-conflicting transactions act as if they
were higher priority jobs interfering with τxi . So, the blocking time can be calculated by the
interference workload given by Theorem 7 in [18]. Claim follows.

Claim 53. The response time Rup
i of a job τxi under PNF/G-EDF is upper bounded by:

Rup
i = ci +RCito(R

up
i ) +Di(R

up
i ) +

⌊
1

m

∑
∀j 6=i

Iij(R
up
i )

⌋
(6.3)

where RCito(R
up
i ) is calculated by (6.1). Di(R

up
i ) is modified from (6.2) to fit G-EDF as

follows:

Di(R
up
i ) ≤

 1

m

∑
∀τj

{
0 , Rup

i ≤ Ti − Tj∑
∀shj ,Θhj ∩Θi=∅ len

(
shj
)

, Rup
i > Ti − Tj

 (6.4)

and Iij(R
up
i ) is calculated by (4.5).

Proof. Proof is similar to proof of Claim 10 except that: 1) Total retry cost given by (6.1)
(due to Claim 51) and blocking time given by (6.2) are added to each ci. 2) Due to Claim 48,
each cj is not changed to cji. G-EDF uses absolute deadlines for scheduling. This defines
which jobs of the same task can be of lower priority than τxi , and which will not. Any
instance τhj , released between rxi − Tj and dxi − Tj, will be of higher priority than τxi . Before
rxi −Tj, τhj would have finished before τxi is released. After dxi −Tj, dhj would be greater than
dxi . Thus, τhj will be of lower priority than τxi . So, during Ti, there can be only one instance
τhj of τj with lower priority than τxi . τhj is released between dxi − Tj and dxi . Consequently,
during Rup

i < Ti − Tj, no existing instance of τj is of lower priority than τxi . Hence, 0 is
used in the first case of (6.4). But if Rup

i > Ti − Tj, there can be only one instance τhj of τj

with lower priority than τxi . Hence,
⌈
Rupi
Ti

⌉
+ 1 in (6.2) is replaced with 1 in the second case

in (6.4). Claim follows.

Claim 54. The response time Rup
i of a job τxi under PNF/G-RMA is upper bounded by:

Rup
i = ci +RCi(R

up
i ) +Di(R

up
i ) +

 1

m

∑
∀j 6=i,pj>pi

Iij(R
up
i )

 (6.5)

where RC(Rup
i ) is calculated by (6.1), Di(R

up
i ) is calculated by (6.2), and Iij(R

up
i ) is calcu-

lated by (4.4).
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Proof. Proof is same as of Claim 53, except that G-RMA assigns fixed priorities. Hence,
(6.2) can be used directly for calculating Di(R

up
i ) without modifications. Claim follows.

6.5 PNF versus Competitors

We now (formally) compare the performance of G-EDF (G-RMA) with PNF against ECM
(Chapter 4), RCM (Chapter 4), LCM (Chapter 5), retry-loop lock-free [49] and locking proto-
cols((i.e., OMLP [22,29] and RNLP [149]). Such a comparison will reveal when PNF outper-
forms others. Toward this, we compare the total utilization under G-EDF (G-RMA)/PNF,
with that under the other synchronization methods as outlined in Section 4.3. Total utiliza-
tion comparison between PNF and other synchronization techniques is done as in Sections 5.4
and 5.6 with the addition of Di(Ti) - given by (6.4) under G-EDF and (6.2) under G-RMA
- to the inflated execution time of any job of τi under PNF.

6.5.1 PNF versus ECM

Claim 55. Following notions in Section 4.3, total utilization of PNF/G-EDF is equal or
better than ECM’s if for each task τi total number of transactions in any task τj 6= τi - that
has no direct conflict with any transaction in τi - divided by number of processors is not
greater than maximum number of jobs- with higher priority than current job of τi - that can
be released during Ti.

Proof. Proof follows from proof of Claim 34 with the following modification: Under PNF,
ci is inflated with RCto

PNF/G−EDF (Ti) given by (6.1) and Di(Ti) given by (6.4). Thus, total

utilization of PNF/G-EDF is equal or better than ECM’s if for each τi:(∑
∀τj∈γi

(∑
∀slj ,Θlj∩Θi 6=∅

(⌈
Ti
Tj

⌉
+ 1
)))

+

⌊∑
∀τj

∑
∀sh
j
,Θh
j
∩Θi=∅

m

⌋
≤

(∑
∀τj∈γexi

(
2
⌈
Ti
Tj

⌉∑
∀slj ,Θlj∩Θexi 6=∅

))
+
(∑

∀τj∈ζi

⌊
Ti
Tj

⌋)
(6.6)

∵ γi ⊆ γexi , Θi ⊆ Θex
i and 2

⌈
Ti
Tj

⌉
≥
⌈
Ti
Tj

⌉
+ 1, ∴

∑
∀τj∈γi

(∑
∀slj ,Θlj∩Θi 6=∅

(⌈
Ti
Tj

⌉
+ 1
))
≤∑

∀τj∈γexi

(
2
⌈
Ti
Tj

⌉∑
∀slj ,Θlj∩Θexi 6=∅

)
. So, (6.6) holds if

⌊∑
∀τj

∑
∀sh
j
,Θh
j
∩Θi=∅

m

⌋
≤
∑
∀τj∈ζi

⌊
Ti
Tj

⌋
.∑

∀τj

∑
∀shj ,Θhj ∩Θi=∅ is the total number of transactions in any task τj 6= τi that has no direct

conflict with any transaction in τi.
∑
∀τj∈ζi

⌊
Ti
Tj

⌋
is the maximum number of jobs- with higher

priority than current job of τi - that can be released during Ti. Thus, Claim follows.
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6.5.2 PNF versus RCM

Claim 56. Following notions in Section 4.3, total utilization of PNF/G-RMA is equal or
better than RCM’s if for each task τi total number of transactions in tasks with lower priority
than pi does not exceed one half of maximum number of jobs with higher priority than pi that
can be released during Ti.

Proof. Proof follows from proof of Claim 42 with the following modification: Under PNF,
ci is inflated with RCto

PNF/G−RMA(Ti) given by (6.1) and Di(Ti) given by (6.2). Thus, total

utilization of PNF/G-RMA is equal or better than RCM’s if for each τi:(∑
∀τj∈γi

(∑
∀slj ,Θlj∩Θi 6=∅

(⌈
Ti
Tj

⌉
+ 1
)))

+

2
∑
∀τj ,pj<pi

(∑
∀sh
j
,Θh
j
∩Θi=∅

)
m


≤

(
2
∑
∀τj∈γexi ,pj>pi

(∑
∀slj ,Θlj∩Θexi 6=∅

(⌈
Ti
Tj

⌉
+ 1
)))

+
(∑

∀τj ,pj>pi

⌈
Ti
Tj

⌉)
(6.7)

∴
(∑

∀τj∈γi,pj>pi

(∑
∀slj ,Θlj∩Θi 6=∅

(⌈
Ti
Tj

⌉
+ 1
)))

+
(

2
∑
∀τj∈γi,pj<pi

(∑
∀slj ,Θlj∩Θi 6=∅

))
+

2
∑
∀τj ,pj<pi

(∑
∀sh
j
,Θh
j
∩Θi=∅

)
m


≤

(
2
∑
∀τj∈γexi ,pj>pi

(∑
∀slj ,Θlj∩Θexi 6=∅

(⌈
Ti
Tj

⌉
+ 1
)))

+
(∑

∀τj ,pj>pi

⌈
Ti
Tj

⌉)
(6.8)

Eq(6.8) holds if

∴
(∑

∀τj∈γi,pj>pi

(∑
∀slj ,Θlj∩Θi 6=∅

(⌈
Ti
Tj

⌉
+ 1
)))

+
(

2
∑
∀τj ,pj<pi

(∑
∀slj ,Θlj∩Θi 6=∅

))
+

(
2
∑
∀τj ,pj<pi

(∑
∀shj ,Θhj ∩Θi=∅

))
≤

(
2
∑
∀τj∈γexi ,pj>pi

(∑
∀slj ,Θlj∩Θexi 6=∅

(⌈
Ti
Tj

⌉
+ 1
)))

+
(∑

∀τj ,pj>pi

⌈
Ti
Tj

⌉)
(6.9)

∴
(∑

∀τj∈γi,pj>pi

(∑
∀slj ,Θlj∩Θi 6=∅

(⌈
Ti
Tj

⌉
+ 1
)))

+
(

2
∑
∀τj ,pj<pi

(∑
∀slj

))
≤

(
2
∑
∀τj∈γexi ,pj>pi

(∑
∀slj ,Θlj∩Θexi 6=∅

(⌈
Ti
Tj

⌉
+ 1
)))

+
(∑

∀τj ,pj>pi

⌈
Ti
Tj

⌉)
(6.10)

∵ γi ⊆ γexi and Θi ⊆ Θex
i , ∴

∑
∀τj∈γi,pj>pi

(∑
∀slj ,Θlj∩Θi 6=∅

(⌈
Ti
Tj

⌉
+ 1
))

is always less than

2
∑
∀τj∈γexi ,pj>pi

(∑
∀slj ,Θlj∩Θexi 6=∅

(⌈
Ti
Tj

⌉
+ 1
))

. Thus, (6.10) holds if
∑
∀τj ,pj<pi

(∑
∀slj

)
does

not exceed one half of
∑
∀τj ,pj>pi

⌈
Ti
Tj

⌉
.
∑
∀τj ,pj<pi

(∑
∀slj

)
is total number of transactions in

tasks with lower priority than τi.
∑
∀τj ,pj>pi

⌈
Ti
Tj

⌉
is maximum number of jobs with higher

priority than pi that can be released during Ti. Claim follows.
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6.5.3 PNF versus LCM/G-EDF

Claim 57. Following notions in Section 4.3, PNF/G-EDF’s total utilization is equal or
better than LCM/G-EDF’s if for each task τi:

• Maximum number of jobs of τj ∈ γi - with higher priority than current job of τi - that
can exist during Ti is not less than 1/αmax.
• Total number of transactions in any task τj 6= τi - that has no direct conflict with

any transaction in τi - divided by number of processors is not greater than maximum
number of jobs- with higher priority than current job of τi - that can be released during
Ti.

Proof. Proof follows from proof of Claim 55 where RCto
LCM/G−EDF (Ti) is upper bounded by

(5.11). Total utilization of PNF/G-EDF is equal or better than total utilization of LCM/G-
EDF if for each τi(∑

∀τj∈γi

(∑
∀slj ,Θlj∩Θi 6=∅

(⌈
Ti
Tj

⌉
+ 1
)))

+

⌊∑
∀τj

∑
∀sh
j
,Θh
j
∩Θi=∅

m

⌋
≤

(
(1 + αmax)

∑
∀τj∈γexi

(∑
∀slj ,Θlj∩Θexi 6=∅

⌈
Ti
Tj

⌉))
+
(∑

∀τj∈ζi

⌊
Ti
Tj

⌋)
(6.11)

∵ γi ⊆ γexi and Θi ⊆ Θex
i . ∴ (6.11) holds if(∑

∀τj∈γi

(∑
∀slj ,Θlj∩Θi 6=∅

(⌈
Ti
Tj

⌉
+ 1
)))

+

⌊∑
∀τj

∑
∀sh
j
,Θh
j
∩Θi=∅

m

⌋
≤

(
(1 + αmax)

∑
∀τj∈γi

(∑
∀slj ,Θlj∩Θi 6=∅

⌈
Ti
Tj

⌉))
+
(∑

∀τj∈ζi

⌊
Ti
Tj

⌋)
(6.12)

Eq(6.12) holds if:

1. For each τi and τj ∈ γi

∑
∀τj∈γi

 ∑
∀slj ,Θlj∩Θi 6=∅

(⌈
Ti
Tj

⌉
+ 1

) ≤ (1 + αmax)
∑
∀τj∈γi

 ∑
∀slj ,Θlj∩Θi 6=∅

⌈
Ti
Tj

⌉
∴ ∀τj ∈ γi,

⌈
Ti
Tj

⌉
+ 1 ≤ (1 + αmax)

⌈
Ti
Tj

⌉
∴ ∀τj ∈ γi,

1

αmax
≤
⌈
Ti
Tj

⌉
By (4.2),

⌈
Ti
Tj

⌉
is maximum number of jobs of τj - with higher priority than current

job of τi - that can exist during Ti.
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2.

⌊∑
∀τj

∑
∀sh
j
,Θh
j
∩Θi=∅

m

⌋
≤
∑
∀τj∈ζi

⌊
Ti
Tj

⌋
.
∑
∀τj

∑
∀shj ,Θhj ∩Θi=∅ is total number of transactions

in any task τj 6= τi that has no direct conflict with any transaction in τi.
∑
∀τj∈ζi

⌊
Ti
Tj

⌋
is the maximum number of jobs- with higher priority than current job of τi - that can
be released during Ti.

From the previous observations, Claim follows.

6.5.4 PNF versus LCM/G-RMA

Claim 58. Following notions in Section 4.3, total utilization of PNF/G-RMA is equal or
better than LCM/G-RMA’s if:

• αmin is small (i.e., αmin→0).
• For each task τi, total number of transactions in tasks with lower priority than pi and

have no direct conflict with any transaction in τi divided by number of processors does
not exceed one half of maximum number of jobs with higher priority than pi that can
be released during Ti.

Proof. Proof follows from proof of Claim 56 where RCto
LCM/G−RMA(Ti) is upper bounded

by (5.18). Total utilization of PNF/G-RMA is equal or better than total utilization of
LCM/G-RMA if for each τi:(∑

∀τj∈γi

(∑
∀slj ,Θlj∩Θi 6=∅

(⌈
Ti
Tj

⌉
+ 1
)))

+

∑∀τj ,pj<pi((⌈ TiTj ⌉+1

)∑
∀sh
j
,Θh
j
∩Θi=∅

)
m


≤ (1 + αmax)

(∑
∀τj∈γexi ,pj>pi

(∑
∀slj ,Θlj∩Θexi 6=∅

(⌈
Ti
Tj

⌉
+ 1
)))

+ (1− αmin)
(∑

∀τj∈γexi ,pj<pi

(∑
∀slj ,Θlj∩Θexi 6=∅

(⌈
Ti
Tj

⌉
+ 1
)))

+
(∑

∀τj ,pj>pi

⌈
Ti
Tj

⌉)
(6.13)

∴
(∑

∀τj∈γi,pj>pi

(∑
∀slj ,Θlj∩Θi 6=∅

(⌈
Ti
Tj

⌉
+ 1
)))

+
(

2
∑
∀τj∈γi,pj<pi

(∑
∀slj ,Θlj∩Θi 6=∅

))
+

2
∑
∀τj ,pj<pi

(∑
∀sh
j
,Θh
j
∩Θi=∅

)
m


≤ (1 + αmax)

(∑
∀τj∈γexi ,pj>pi

(∑
∀slj ,Θlj∩Θexi 6=∅

(⌈
Ti
Tj

⌉
+ 1
)))

+ (1− αmin)
(

2
∑
∀τj∈γexi ,pj<pi

(∑
∀slj ,Θlj∩Θexi 6=∅

))
+

(∑
∀τj ,pj>pi

⌈
Ti
Tj

⌉)
(6.14)
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∵ γi ⊆ γexi , Θi ⊆ Θex
i and αmax ≥ 0, then

∑
∀τj∈γi,pj>pi

(∑
∀slj ,Θlj∩Θi 6=∅

(⌈
Ti
Tj

⌉
+ 1
))

is never

bigger than (1 + αmax)
(∑

∀τj∈γexi ,pj>pi

(∑
∀slj ,Θlj∩Θexi 6=∅

(⌈
Ti
Tj

⌉
+ 1
)))

. Thus, (6.14) holds if:

1. For each τi

∑
∀τj∈γi,pj<pi

 ∑
∀slj ,Θlj∩Θi 6=∅

 ≤ (1− αmin)

 ∑
∀τj∈γexi ,pj<pi

 ∑
∀slj ,Θlj∩Θexi 6=∅

 (6.15)

Eq(6.15) holds if αmin → 0.

2. For each τi 2
∑
∀τj ,pj<pi

(∑
∀shj ,Θhj ∩Θi=∅

)
m

 ≤ ∑
∀τj ,pj>pi

⌈
Ti
Tj

⌉
(6.16)

Eq(6.15) holds if ∑
∀τj ,pj<pi

(∑
∀shj ,Θhj ∩Θi=∅

)
m

≤

∑
∀τj ,pj>pi

⌈
Ti
Tj

⌉
2∑

∀τj ,pj<pi

(∑
∀shj ,Θhj ∩Θi=∅

)
is total number of transactions in tasks with lower priority

than pi that do not have direct conflict with any transaction in τi.
∑
∀τj ,pj>pi

⌈
Ti
Tj

⌉
is

maximum number of jobs with higher priority than pi that can be released during Ti.

From previous observations, Claim follows.

6.5.5 PNF versus Lock-free Synchronization

As mentioned in Section 4.4, the retry-loop lock-free approach in [49] is the most relevant
to our work. As lock-free instructions access only one object, then Θk

i for any ski will be
restricted to one object only (i.e., Θk

i = θki ). Thus, transitive retry cannot happen, Θex
i = Θi

and γexi = γi.

Claim 59. Following notions in Section 4.3. If, for each task τi, maximum number of jobs-
with higher priority than current job of τi - that can be released during Ti is not less than total
number of transactions in any task τj 6= τi that has no direct conflict with any transaction
in τi, then total utilization of PNF under G-EDF is equal or better than that of retry-loop
lock-free [49] with smax/rmax ≥ 1. smax is the length of longest transaction among all tasks.
rmax is the maximum execution cost of a single iteration of any lock-free retry loop of any
task.
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Proof. Following the same steps of proof Claim 35, total utilization of PNF is equal or better
than total utilization of retry-loop lock-free under G-EDF if for each task τi((∑

∀τj∈γi

((⌈
Ti
Tj

⌉
+ 1
)∑

∀slj ,Θlj∩Θi 6=∅

))
+

⌊∑
∀τj

∑
∀sh
j
,Θh
j
∩Θi=∅

m

⌋)
smax

≤
((∑

∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij

)
+
(∑

∀τj∈ζi

⌊
Ti
Tj

⌋))
rmax (6.17)

Let β∗ij =
∑
∀slj ,Θlj∩Θi 6=∅. Thus, (6.17) becomes

smax
rmax

≤

((∑
∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij

)
+
(∑

∀τj∈ζi

⌊
Ti
Tj

⌋))
((∑

∀τj∈γi

((⌈
Ti
Tj

⌉
+ 1
)
β∗ij

))
+

⌊∑
∀τj

∑
∀sh
j
,Θh
j
∩Θi=∅

m

⌋) (6.18)

∵ βij ≥ β∗ij, then (6.18) holds if
∑
∀τj∈ζi

⌊
Ti
Tj

⌋
≥
⌊∑

∀τj

∑
∀sh
j
,Θh
j
∩Θi=∅

m

⌋
.
∑
∀τj∈ζi

⌊
Ti
Tj

⌋
is maxi-

mum number of jobs- with higher priority than current job of τi - that can be released during
Ti.
∑
∀τj

∑
∀shj ,Θhj ∩Θi=∅ is total number of transactions in any task τj 6= τi that has no direct

conflict with any transaction in τi.
∑
∀τj∈ζi

⌊
Ti
Tj

⌋
≥
⌊∑

∀τj

∑
∀sh
j
,Θh
j
∩Θi=∅

m

⌋
allows smax/rmax ≥ 1

with equal or better total utilization for PNF than retry-loop lock-free with G-EDF.

Claim 60. Following notions in Section 4.3. If, for each task τi, maximum number of jobs
with higher priority than pi that can be released during Ti is not less than double of total
number of transactions in tasks with lower priority than pi that have no direct conflict with
any transaction in τi divided by number of processors, then total utilization of PNF is equal
or better than that of retry-loop lock-free [49] under G-RMA with smax/rmax ≥ 1. smax is
the length of longest transaction among all tasks. rmax is the maximum execution cost of a
single iteration of any lock-free retry loop of any task.

Proof. Following the same steps of proof Claim 43, total utilization of PNF is equal or better
than total utilization of retry-loop lock-free under G-RMA if for each task τi(∑

∀τj∈γi

((⌈
Ti
Tj

⌉
+ 1
)∑

∀slj ,Θlj∩Θi 6=∅

))
+

2
∑
∀τj ,pj<pi

(∑
∀sh
j
,Θh
j
∩Θi=∅

)
m

 smax

≤
((∑

∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij

)
+
(∑

∀τj ,pj>pi

⌈
Ti
Tj

⌉))
rmax (6.19)

Let β∗ij =
∑
∀slj ,Θlj∩Θi 6=∅, then (6.19) becomes

smax
rmax

≤

((∑
∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij

)
+
(∑

∀τj ,pj>pi

⌈
Ti
Tj

⌉))
(∑

∀τj∈γi

((⌈
Ti
Tj

⌉
+ 1
)
β∗ij

))
+

2
∑
∀τj ,pj<pi

(∑
∀sh
j
,Θh
j
∩Θi=∅

)
m

 (6.20)
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∵ βij ≥ β∗ij, then (6.20) holds if
∑
∀τj ,pj>pi

⌈
Ti
Tj

⌉
≥

2
∑
∀τj ,pj<pi

(∑
∀sh
j
,Θh
j
∩Θi=∅

)
m

.
∑
∀τj ,pj>pi

⌈
Ti
Tj

⌉
is maximum number of jobs with higher priority than pi that can be released during Ti.∑
∀τj ,pj<pi

(∑
∀shj ,Θhj ∩Θi=∅

)
is total number of transactions in tasks with lower priority than

pi that have no direct conflict with any transaction in τi.

6.5.6 PNF versus Locking Protocols

Claim 61. Following the same notations in Sections 4.3 and 4.5.1, total utilization of PNF
is equal or better than total utilization of OMLP under G-EDF if

smax
Lmax

≤ Nmin (2m− 1)

(n− 1)Nmax

(
Φmax + 1 + 1

m

) (6.21)

As all tasks have equal periods and equal number of atomic sections, and number of processors
exceeds number of tasks, then smax can be at least equal to Lmax with shcedulability of PNF
equal or better than total utilization of OMLP under G-EDF.

Proof. Use (6.1) for RCito(Ti) and (6.4) for Di(Ti) under PNF/G-EDF. Following the same
steps of proof of Claim 18, Claim follows.

Claim 62. Following the same notations in Sections 4.3 and 4.5.1, total utilization of PNF
is equal or better than total utilization of OMLP under G-RMA if

smax
Lmax

≤ Nmin (2m− 1)

(n− 1)Nmax

(
Φmax + 1 + 2

m

) (6.22)

As all tasks have equal periods and equal number of atomic sections, and number of processors
exceeds number of tasks, then smax can be at least equal to Lmax with total utilization of PNF
equal or better than total utilization of OMLP under G-RMA.

Proof. Use (6.1) for RCito(Ti) and (6.2) for Di(Ti) under PNF/G-RMA. Following the same
steps of proof of Claim 18, Claim follows.

Claim 63. Following the same notations in Sections 4.3 and 4.5.4, total utilization of PNF
is equal or better than total utilization of RNLP under G-EDF if

smax
Lmax

≤ Nmin (2m− 1)

(n− 1)Nmax

(
Φmax + 1 + 1

m

) (6.23)

As all tasks have equal periods and equal number of atomic sections, and number of processors
exceeds number of tasks, then smax can be at least equal to Lmax with total utilization of PNF
equal or better than total utilization of RNLP under G-EDF.
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Proof. Use (6.1) for RCito(Ti) and (6.4) for Di(Ti) under PNF/G-EDF. Following the same
steps of proof of Claim 20, Claim follows.

Claim 64. Following the same notations in Sections 4.3 and 4.5.4, total utilization of PNF
is equal or better than total utilization of RNLP under G-RMA if

smax
Lmax

≤ Nmin (2m− 1)

(n− 1)Nmax

(
Φmax + 1 + 2

m

) (6.24)

As all tasks have equal periods and equal number of atomic sections, and number of processors
exceeds number of tasks, then smax can be at least equal to Lmax with total utilization of PNF
equal or better than total utilization of RNLP under G-RMA.

Proof. Use (6.1) for RCito(Ti) and (6.2) for Di(Ti) under PNF/G-RMA. Following the same
steps of proof of Claim 20, Claim follows.

6.6 Conclusions

Transitive retry increases transactional retry cost under ECM, RCM, and LCM. PNF avoids
transitive retry by avoiding transactional preemptions. PNF reduces the priority of aborted
transactions to enable other tasks to execute, increasing processor usage. Executing trans-
actions are not preempted due to the release of higher priority jobs. On the negative side of
PNF, higher priority jobs can be blocked by executing transactions of lower priority jobs.

PNF/G-EDF’s total utilization is equal or better than ECM’s if, for each task τi, total
number of transactions in any task τj 6= τi - that has no direct conflict with any transaction
in τi - divided by number of processors is not greater than maximum number of higher
priority jobs than current job of τi that can be released during Ti. Similar condition holds
for the total utilization comparison between PNF/G-EDF and LCM/G-EDF, in addition to
maintain a lower bound of 1/αmax over maximum number of higher priority jobs of τj that
can exist during Ti and have direct conflict with any transaction in τi.

Total utilization of PNF/G-RMA is equal or better than RCM’s if, for each task τi, total
number of transactions in tasks with lower priority than pi does not exceed one half of
maximum number of jobs with higher priority than pi that can be released during Ti. Total
utilization of PNF/G-RMA is equal or better than LCM/G-RMA’s if αmin → 0 and, for each
task τi, total number of transactions in tasks with lower priority than pi and have no direct
conflict with any transaction in τi divided by number of processors does not exceed one half
of maximum number of jobs with higher priority than pi that can be released during Ti.

Total utilization of PNF under G-EDF and G-RMA is equal or better than total utilization
of retry-loop lock-free [49] with smax/rmax ≥ 1 if, for each task τi, maximum number of
higher priority jobs than current job of τi - that can be released during Ti - is not less than
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maximum number of lower priority transactions in any task τj 6= τi that has no direct conflict
with any transaction in τi.

Total utilization of PNF was compared against real-time locking protocols (i.e., OMLP and
RNLP) under G-EDF and G-RMA. As all tasks have equal periods and equal number of
atomic sections, and number of processors exceeds number of tasks, then smax can be at least
equal to Lmax with total utilization of PNF equal or better than total utilization of OMLP
and RNLP under G-EDF and G-RMA.



Chapter 7

The FBLT Contention Manager

In this chapter, we present a novel contention manager for resolving transactional conflicts,
called FBLT [56]. We upper bound transactional retries and task response times under FBLT,
when used with the G-EDF and G-RMA schedulers. We formally identify the conditions
under which FBLT has better performance than the previous previous CMs, lock-free and
locking protocols in terms of total utilization.

The rest of this Chapter is organized as follows: Section 7.1 discusses limitations of previous
contention managers and the motivation to FBLT. Section 7.2 give a formal description of
FBLT. We upper bound retry cost and response time under FBLT in Section 7.3. Total
utilization comparison between FBLT and previous synchronization techniques is given in
Section 7.4. We conclude Chapter in Section 7.5.

7.1 Motivation

With multiple objects per transaction, ECM, RCM (Chapter 4) and LCM (Chapter 5) face
transitive retry as shown by Claims 1, 11 and 22. PNF (Chapter 6) is designed to avoid
transitive retry by concurrently executing at most m non-conflicting transactions together
as shown by Claim 46. These executing transactions are non-preemptive. Thus, execut-
ing transactions cannot be aborted due to direct or indirect conflict with other transactions.
However, with PNF, all objects accessed by each transaction must be known a-priori. There-
fore, this is not suitable with dynamic STM implementations [74]. Additionally, PNF is a
centralized CM. This implementation increases overhead.

Thus, we propose the First Bounded, Last Timestamp contention manager (or FBLT) that
achieves the following goals:

1. Reduce the retry cost of each transaction ski due to another transaction slj, just as
LCM does compared to ECM and RCM.

88
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2. Avoid or bound the effect of transitive retry, similar to PNF, without prior knowledge
of accessed objects by each transaction, enabling dynamic STM.

3. Reduce overhead through decentralized design.

7.2 The FBLT Contention Manager

Algorithm 5 illustrates FBLT. Each transaction ski can be aborted during Ti for at most
Ωk
i times. ηki records the number of times ski has already been aborted up to now. If ski

and slj have not joined the m set yet, then they are preemptive transactions. Preemptive
transactions resolve conflicts using LCM (Algorithm 3) (step 2). Thus, FBLT defaults to
LCM when no transaction reaches its Ω. If only one of the transactions is in the m set, then
the non-preemptive transaction (the one in m set) aborts the other one (steps 15 to 26). ηki
is incremented each time ski is aborted as long as ηki < Ωk

i (steps 5 and 18). Otherwise, ski is
added to the m set and its priority is increased to m prio (steps 7 to 9 and 20 to 22). When
the priority of ski is increased to m prio, ski becomes a non-preemptive transaction. Non-
preemptive transactions cannot be aborted by other preemptive transactions, nor by any
other real-time job. The m set can hold at most m concurrent transactions because there
are m processors in the system. r(ski ) records the time ski joined the m set (steps 8 and 21).
When non-preemptive transactions conflict together (step 27), the transaction that joined
m set first is the one to commit first (steps 29 and 31). Thus, non-preemptive transactions
are executed in increasing order of joining the m set.

7.2.1 Illustrative Example

We now illustrate FBLT’s behavior with the following example:

1. Transaction ski (θ1, θ2) is released while m set = ∅. ηki = 0 and Ωk
i = 3.

2. Transaction sba(θ2) is released while ski (θ1, θ2) is running. p(sba) > p(ski ) and ηki < Ωk
i .

Applying LCM, ski (θ1, θ2) is aborted in favor of sba and ηki is incremented to 1.
3. sba(θ2) commits. ski (θ1, θ2) runs again. Transaction sdc(θ2) is released while ski (θ1, θ2) is

running. p(sdc) > p(ski ). Applying LCM, ski (θ1, θ2) is aborted again in favor of sdc(θ2).
ηki is incremented to 2.

4. sdc(θ2) commits. sfe (θ2, θ3) is released. p(sfe ) > p(ski ) and Ωf
e = 2. ski (θ1, θ2) is aborted

in favour of sfe (θ2, θ3) and ηki is incremented to 3.
5. slj(θ3) is released. p(slj) > p(sfe ). sfe (θ2, θ3) is aborted in favor of slj(θ3) and ηfe is

incremented to 1.
6. ski (θ1, θ2) and sfe (θ2, θ3) are compared again. ∵ ηki = Ωk

i , ∴ ski (θ1, θ2) is added to m set.
m set =

{
ski (θ1, θ2)

}
. ski (θ1, θ2) becomes a non-preemptive transaction. As sfe (θ2, θ3) is

a preemptive transaction, ∴ sfe (θ2, θ3) is aborted in favour of ski (θ1, θ2), despite p(sfe )
being greater than the original priority of ski (θ1, θ2). ηfe is incremented to 2.
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Algorithm 5: FBLT

Data: ski : interfered transaction;

slj : interfering transaction;

Ωk
i : maximum number of times ski can be aborted during Ti;

ηki : number of times ski has already been aborted up to now;
m set: contains at most m non-preemptive transactions. m is number of processors;
m prio: priority of any transaction in m set. m prio is higher than any priority of any real-time task;

r(ski ): time point at which ski joined m set;
Result: atomic sections that will abort

1 if ski , s
l
j 6∈ m set then

2 Apply LCM (Algorithm 3);

3 if ski is aborted then
4 if ηki < Ωk

i then
5 Increment ηki by 1;
6 else
7 Add ski to m set;

8 Record r(ski );

9 Increase priority of ski to m prio;

10 end

11 else
12 Swap ski and slj ;

13 Go to Step 3;

14 end

15 else if slj ∈ m set, ski 6∈ m set then
16 Abort ski ;

17 if ηki < Ωk
i then

18 Increment ηki by 1;
19 else
20 Add ski to m set;

21 Record r(ski );

22 Increase priority of ski to m prio;

23 end

24 else if ski ∈ m set, slj 6∈ m set then
25 Swap ski and slj ;

26 Go to Step 15;

27 else
28 if r(ski ) < r(slj) then
29 Abort slj ;

30 else
31 Abort ski ;
32 end

33 end
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7. slj(θ3) commits but shg(θ3) is released. p(shg) > p(sfe ) but ηfe = Ωf
e . So, sfe (θ2, θ3)

becomes a non-preemptive transaction. m set =
{
ski (θ1, θ2), sfe (θ2, θ3)

}
.

8. ski (θ1, θ2) and sfe (θ2, θ3) are now non-preemptive transactions. ski (θ1, θ2) and sfe (θ2, θ3)
still conflict together. So, they are executed according to their addition order to the
m set. So, ski (θ1, θ2) commits first, followed by sfe (θ2, θ3).

9. shg(θ3) will continue to abort and retry in favour of sfe (θ2, θ3) until sfe (θ2, θ3) commits
or ηhg = Ωh

g . Even if shg(θ3) joined the m set, shg(θ3) will still abort and retry in favour
of sfe (θ2, θ3), because sfe (θ2, θ3) joined the m set earlier than shg(θ3).

It is seen from steps 2 to 6 that ski (θ1, θ2) can be aborted due to direct conflict with other
transactions, or due to transitive retry. Irrespective of the reason for the conflict, once a
transaction has reached its Ω, the transaction becomes a non-preemptive one (steps 6 and
7). Non-preemptive transactions have higher priority than other preemptive transactions
(steps 6 and 7). Non-preemptive transactions execute in their arrival order to the m set.

7.3 Retry Cost and Response Time Bounds

We now derive an upper bound on the retry cost of any job τxi under FBLT during an interval
L ≤ Ti. Since all tasks are sporadic (i.e., each task τi has a minimum period Ti), Ti is the
maximum study interval for each task τi.

Claim 65. The total retry cost for any job τxi under FBLT with G-EDF and G-RMA due to
1) conflicts between its transactions and transactions of other jobs during an interval L ≤ Ti
and 2) release of higher priority jobs during L is upper bounded by:

RCito(L) ≤
∑
∀ski

Ωk
i len(ski ) +

∑
∀skiz∈χki

len(skiz)

+RCire(L) (7.1)

where χki is the set of at most m − 1 maximum length transactions conflicting directly or
indirectly (through transitive retry) with ski . Each transaction skiz ∈ χki belongs to a distinct
task τj. RCire(L) is the retry cost resulting from the release of higher priority jobs which
preempt τxi . RCire(L) is calculated by (4.11) for G-EDF, and (4.17) for G-RMA schedulers.

Proof. By the definition of FBLT, ski ∈ τxi can be aborted a maximum of Ωk
i times before

ski joins the m set. Transactions preceding ski in the m set can conflict directly with ski , or
indirectly through transitive retry. The worst case scenario for ski after joining the m set
occurs if ski is preceded by m − 1 maximum length conflicting transactions. Hence, in the
worst case, ski has to wait for the previous m−1 transactions to commit first. The priority of
ski after joining the m set is higher than any real-time job. Therefore, the non-preemptive ski
is not aborted due to release of any real-time job with higher priority than original priority of
ski . Following proofs of Claims 8 and 13, retry cost of ski - before ski joins m set- due to release
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of higher priority jobs is calculated by (4.11) for G-EDF, and (4.17) for G-RMA. Transactions
of each task execute sequentially. Thus, the non-preemptive ski cannot be preceded in the
m set by two or more transactions of the same task. So, each transaction skiz ∈ χki belong to
a distinct task. Claim follows.

Claim 66. Under FBLT with G-EDF and G-RMA, the blocking time of a job τxi due to
lower priority jobs is upper bounded by:

D(τxi ) =
∑
maxm

{sjmax}∀τ lj , plj<pxi (7.2)

where sjmax is the maximum length transaction in any job τ lj with original priority lower than
pxi . The right hand side of (7.2) is the sum of the m maximum transactional lengths in all
jobs with lower priority than τxi .

Proof. The worst case blocking time for τxi occurs when the maximum length m transactions
in lower priority jobs than τxi are executing non-preemptively. The m non-preemptive trans-
actions execute sequentially if they conflict with each other. τxi is delayed by the sequential
execution of non-preemptive transactions if jobs with higher priority than pxi are released as
soon as one of the non-preemptive transactions commits. No transaction with lower priority
than pxi can be released while τxi is waiting for a processor. Claim follows.

Claim 67. The response time Rup
i of any job τxi under FBLT with G-EDF and G-RMA is

upper bounded by:

Rup
i = ci +RCito(R

up
i ) +D(τxi ) +

⌊
1

m

∑
∀j 6=i

Iij(R
up
i )

⌋
(7.3)

where RCito(R
up
i ) is calculated by (7.1), D(τxi ) is calculated by (7.2), and Iij(R

up
i ) is calculated

by (4.15) for G-EDF, and (4.4) for G-RMA. cj of any job τ yj 6= τxi , p
y
j > pxi is inflated to cji

as given by (4.14).

Proof. Using Claims 10, 15, 65 and 66, Claim follows.

7.4 Total utilization Comparison

We now (formally) compare performance of FBLT with G-EDF and G-RMA against ECM
(Chapter 4), RCM (Chapter 4), LCM (Chapter 5), PNF (Chapter 6), retry-loop lock-free [49]
and locking protocols((i.e., OMLP [22, 29] and RNLP [149]). Such a comparison will re-
veal when FBLT outperforms others. Toward this, we compare the total utilization under
FBLT, with that under the other synchronization methods as outlined in Section 4.3. Total
utilization comparison between FBLT and other synchronization techniques is done as in
Sections 5.4 and 5.6 with the addition of D(τxi ) - as given by (7.2)- to the inflated execution
time of any job τxi under FBLT.
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7.4.1 FBLT versus ECM

Claim 68. Let Ωmax
i = max{Ωk

i }∀ski be the maximum abort number for any preemptive

transaction ski in τi. Following notions in Section 4.3, total utilization of FBLT is equal to
or better than ECM’s if Ωmax

i of any τi is not greater than double the difference between ratio
of maximum number of transactions in all jobs with higher priority than current job of τi
and have direct or indirect conflict with transactions in τi to total number of transactions in
any job of τi and number of processors. Formally, total utilization of FBLT is equal or better
than ECM’s if for each τi

Ωmax
i ≤ 2

∑∀τj∈γexi
(⌈

Ti
Tj

⌉∑
∀slj ,(Θ=Θlj∩Θexi )6=∅

)
|si|

−m

 (7.4)

Proof. Proof follows from proof of Claim 34 with the following modification: Under FBLT, ci
is inflated with RCto

FBLT (Ti) given by (7.1) and D(τxi ) given by (7.2). Thus, total utilization
of FBLT is equal or better than ECM’s if for each τi:

m+
∑
∀ski

(
Ωk
i +m− 1

)
≤

∑
∀τj∈γexi

2

⌈
Ti
Tj

⌉ ∑
∀slj ,(Θ=Θlj∩Θexi )6=∅

 (7.5)

∵ |si| =
∑
∀ski

, where |si| is total number of transactions in any job of τi. ∵ Ωmax
i ≥ Ωk

i , ∴
(7.5) holds if

m+ |si| (Ωmax
i +m− 1) ≤

∑
∀τj∈γexi

2

⌈
Ti
Tj

⌉ ∑
∀slj ,(Θ=Θlj∩Θexi )6=∅

 (7.6)

∴ Ωmax
i ≤

(∑
∀τj∈γexi

(
2
⌈
Ti
Tj

⌉∑
∀slj ,(Θ=Θlj∩Θexi )6=∅

))
− (1 + |si|)m+ |si|

|si|
(7.7)

∵ |si| ≥ 1, ∴ 1+|si|
|si| ≤ 2. Thus, (7.7) holds if

Ωmax
i ≤ 2

∑∀τj∈γexi
(⌈

Ti
Tj

⌉∑
∀slj ,(Θ=Θlj∩Θexi )6=∅

)
|si|

−m

 (7.8)

∵
∑
∀τj∈γexi

(⌈
Ti
Tj

⌉∑
∀slj ,(Θ=Θlj∩Θexi )6=∅

)
is the maximum number of transactions in all jobs with

higher priority than current job of τi and have direct or indirect conflict with transactions
in τi, Claim follows.
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7.4.2 FBLT versus RCM

Claim 69. Let Ωmax
i = max{Ωk

i }∀ski be the maximum abort number for any preemptive

transaction ski in τi. Following notions in Section 4.3, total utilization of FBLT is equal to
or better than RCM’s if Ωmax

i of any τi is not greater than double the difference between ratio
of maximum number of transactions in all jobs with higher priority than pi and have direct
or indirect conflict with transactions in τi to total number of transactions in any job of τi and
number of processors. Formally, total utilization of FBLT is equal to or better than RCM’s
if for each τi

Ωmax
i ≤ 2

∑∀τj∈γexi ,pj>pi

((⌈
Ti
Tj

⌉
+ 1
)∑

∀slj ,(Θ=Θlj∩Θexi )6=∅

)
|si|

−m

 (7.9)

Proof. Proof is similar to proof of Claim 68 except that RCto
RCM(Ti) is given by (5.19).

7.4.3 FBLT versus LCM/G-EDF

Claim 70. Let Ωmax
i = max{Ωk

i }∀ski be the maximum abort number for any preemptive

transaction ski in τi. Following notions in Section 4.3, total utilization of FBLT is equal
to or better than LCM/G-EDF’s if double number of processors subtracted from ratio of
1 +αmax multiplied by maximum number of transactions in all jobs with higher priority than
current job of τi and have direct or indirect conflict with transactions in τi to total number
of transactions in any job of τi is not less than Ωmax

i of any τi. Formally, total utilization of
FBLT is equal to or better than LCM/G-EDF’s if for each τi

Ωmax
i ≤

(1 + αmax)
∑
∀τj∈γexi

(⌈
Ti
Tj

⌉∑
∀slj ,(Θ=Θlj∩Θexi ) 6=∅

)
|si|

− 2m (7.10)

Proof. Proof is similar to proof of Claim 68 except that RCto
LCM/G−EDF (Ti) is given by

(5.11).

7.4.4 FBLT versus G-RMA/LCM

Claim 71. Let Ωmax
i = max{Ωk

i }∀ski be the maximum abort number for any preemptive

transaction ski in τi. Following notions in Section 4.3, total utilization of FBLT is equal to
or better than G-RMA/LCM’s if double number of processors subtracted from ratio of sum
of:

• product of 1+αmax by maximum number of transactions in all jobs with higher priority
than current job of τi and have direct or indirect conflict with transactions in τi.
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• product of 1−αmin by maximum number of transactions in all jobs with lower priority
than current job of τi and have direct or indirect conflict with transactions in τi

to total number of transactions in any job of τi is not less than Ωk
i of any τi. Formally, total

utilization of FBLT is equal to or better than G-RMA/LCM’s if for each τi

Ωmax
i (7.11)

≤

(
(1+αmax)

∑
∀τj∈γexi ,pj>pi

((⌈
Ti
Tj

⌉
+1

)∑
∀sl
j
,Θl
j
∩Θex

i
6=∅

))
|si|

+

(
2(1−αmin)

∑
∀τj∈γexi ,pj<pi

(∑
∀sl
j
,Θl
j
∩Θex

i
6=∅

))
|si| − 2m

Proof. Proof is similar to proof of Claim 68 except that RCto
G−RMA/LCM(Ti) is given by

(5.18).

7.4.5 FBLT versus PNF/G-EDF

Claim 72. Let Ωmax
i = max{Ωk

i }∀ski be the maximum abort number for any preemptive

transaction ski in τi. Following notions in Section 4.3, total utilization of FBLT is equal or
better than PNF/G-EDF’s if sum of double number of processors and maximum number of
higher priority jobs- other than current job of τi - that can be released during Ti subtracted
from ratio of sum of:

• Maximum number of transactions- in any job of τj 6= τi that can exist during Ti- that
have direct conflict with any transaction in τi.
• Floor of total number of transactions in any task τj 6= τi - that has no direct conflict

with any transaction in τi - divided by number of processors

to total number of transactions in any job of τi is not less than Ωmax
i of any τi. Formally,

total utilization of FBLT is equal to or better than PNF/G-EDF’s if for each τi

Ωmax
i ≤

∑
∀τj∈γi

(∑
∀slj ,Θlj∩Θi 6=∅

(⌈
Ti
Tj

⌉
+ 1
))

+

⌊∑
∀τj

∑
∀sh
j
,Θh
j
∩Θi=∅

m

⌋
|si|

−
∑
∀τj∈ζi

⌊
Ti
Tj

⌋
−2m (7.12)

Proof. Proof is similar to proof of Claim 68 except that RCto
PNF/G−EDF (Ti) is given by (6.1)

and Di(Ti) given by (6.4).

7.4.6 FBLT versus PNF/G-RMA

Claim 73. Let Ωmax
i = max{Ωk

i }∀ski be the maximum abort number for any preemptive

transaction ski in τi. Following notions in Section 4.3, total utilization of FBLT is equal or
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better than PNF/G-RMA’s if sum of double number of processors and maximum number of
higher priority jobs- other than current job of τi - that can be released during Ti subtracted
from ratio of sum of:

• Maximum number of transactions- in any job of τj 6= τi that can exist during Ti- that
have direct conflict with any transaction in τi.
• Floor of double of total number of transactions in any task τj with lower priority than pi

- that has no direct conflict with any transaction in τi - divided by number of processors

to total number of transactions in any job of τi is not less than Ωk
i of any τi. Formally, total

utilization of FBLT is equal to or better than PNF/G-RMA’s if for each τi

Ωmax
i ≤

∑
∀τj∈γi

(∑
∀slj ,Θlj∩Θi 6=∅

(⌈
Ti
Tj

⌉
+ 1
))

+

2
∑
∀τj ,pj<pi

(∑
∀sh
j
,Θh
j
∩Θi=∅

)
m


|si|

−2m−
∑

∀τj ,pj>pi

⌈
Ti
Tj

⌉
(7.13)

Proof. Proof is similar to proof of Claim 68 except that RCto
PNF/G−RMA(Ti) is given by (6.1)

and Di(Ti) given by (6.2).

7.4.7 FBLT versus Lock-free

Claim 74. Let Ωmax
i = max{Ωk

i }∀ski be the maximum abort number for any preemptive

transaction ski in τi. Following notions in Section 4.3, total utilization of FBLT under G-
EDF is equal or better than total utilization of lock-free if for each task τi

smax
rmax

≤

∑
∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij +

∑
∀τj∈ζi

⌊
Ti
Tj

⌋
m+ |si| (Ωmax

i +m− 1) +
∑
∀τj∈ζi

⌊
Ti
Tj

⌋
Proof. Using Claim 65 and following the same steps of proof of Claim 16, total utilization
of FBLT is equal or better than that of retry-loop lock-free under G-EDF if for each task τi(

m+
∑
∀ski

(
Ωk
i +m− 1

)
+
∑
∀τj∈ζi

⌊
Ti
Tj

⌋)
smax

≤
(∑

∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij +

∑
∀τj∈ζi

⌊
Ti
Tj

⌋)
rmax (7.14)

smax
rmax

≤

∑
∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij +

∑
∀τj∈ζi

⌊
Ti
Tj

⌋
m+

∑
∀ski

(
Ωk
i +m− 1

)
+
∑
∀τj∈ζi

⌊
Ti
Tj

⌋ (7.15)
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∵ |si| =
∑
∀ski

, where |si| is total number of transactions in any job of τi. ∵ Ωmax
i ≥ Ωk

i , ∴
(7.15) holds if

smax
rmax

≤

∑
∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij +

∑
∀τj∈ζi

⌊
Ti
Tj

⌋
m+ |si| (Ωmax

i +m− 1) +
∑
∀τj∈ζi

⌊
Ti
Tj

⌋ (7.16)

Claim follows.

Claim 75. Let Ωmax
i = max{Ωk

i }∀ski be the maximum abort number for any preemptive

transaction ski in τi. Following notions in Section 4.3, total utilization of FBLT under G-
RMA is equal or better than that of lock-free if for each task τi

smax
rmax

≤

∑
∀τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
βij +

∑
∀τj ,pj>pi

⌈
Ti
Tj

⌉
m+ |si| (Ωmax

i +m− 1) +
∑
∀τj ,pj>pi

⌈
Ti
Tj

⌉
Proof. Proof is the same as proof of Claim 74 except that RCire under FBLT is given by
(4.17) and LRCto under lock-free is given by (4.31).

7.4.8 FBLT versus Locking Protocols

Claim 76. Following the same notations in Sections 4.3 and 4.5.1, total utilization of FBLT
is equal or better than total utilization of OMLP under G-EDF if for each τi

smax
Lmax

≤ Ni (2m− 1)

m+Ni (Ωmax
i +m− 1) +

∑
∀τj∈ζi

⌊
Ti
Tj

⌋
Let Ωmax = max{Ωmax

i }∀τi. As number of atomic sections in each task increases, all tasks
have equal number of atomic sections, and number of processors is not less than Ωmax, then
smax can be at least equal to Lmax with total utilization of FBLT equal or better than total
utilization of OMLP under G-EDF. In any case, smax should not exceed 2.Lmax.

Proof. Use (7.1) for RCito(Ti) and (7.2) for Di(Ti) under G-EDF/FBLT. |si| = Ni by defini-
tion of |si| and Ni. Following the same steps of proof of Claim 18, Claim follows.

Claim 77. Following the same notations in Sections 4.3 and 4.5.1, total utilization of FBLT
is equal or better than total utilization of OMLP under G-RMA if for each τi

smax
Lmax

≤ Ni (2m− 1)

m+Ni (Ωmax
i +m− 1) +

∑
∀τj ,pj>pi

⌈
Ti
Tj

⌉
Let Ωmax = max{Ωmax

i }∀τi. As number of atomic sections in each task increases, all tasks
have equal number of atomic sections, and number of processors is not less than Ωmax, then
smax can be at least equal to Lmax with total utilization of FBLT equal or better than total
utilization of OMLP under G-RMA. In any case, smax should not exceed 2.Lmax.
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Proof. Proof is the same as proof of Claim 76.

Claim 78. Following the same notations in Sections 4.3 and 4.5.4, total utilization of FBLT
is equal or better than total utilization of RNLP under G-EDF if for each τi

smax
Lmax

≤ Ni (2m− 1)

m+Ni (Ωmax
i +m− 1) +

∑
∀τj∈ζi

⌊
Ti
Tj

⌋
Let Ωmax = max{Ωmax

i }∀τi. As number of atomic sections in each task increases, all tasks
have equal number of atomic sections, and number of processors is not less than Ωmax, then
smax can be at least equal to Lmax with total utilization of FBLT equal or better than that of
RNLP under G-EDF. In any case, smax should not exceed 2.Lmax.

Proof. Use (7.1) for RCito(Ti) and (7.2) for Di(Ti) under G-EDF/FBLT. Following the same
steps of proof of Claim 20, Claim follows.

Claim 79. Following the same notations in Sections 4.3 and 4.5.4, total utilization of FBLT
is equal or better than total utilization of RNLP under G-RMA if for each τi

smax
Lmax

≤ Ni (2m− 1)

m+Ni (Ωmax
i +m− 1) +

∑
∀τj ,pj>pi

⌈
Ti
Tj

⌉
Let Ωmax = max{Ωmax

i }∀τi. As number of atomic sections in each task increases, all tasks
have equal number of atomic sections, and number of processors is not less than Ωmax, then
smax can be at least equal to Lmax with total utilization of FBLT equal or better than that of
RNLP under G-RMA. In any case, smax should not exceed 2.Lmax.

Proof. Proof is the same as proof of Claim 78.

7.5 Conclusions

Transitive retry increases transactional retry costs under ECM, RCM, and LCM. PNF avoids
transitive retry by avoiding transactional preemptions. PNF avoids transitive retry cost
by concurrently executing non-conflicting transactions, which are non-preemptive. How-
ever, PNF requires a-priori knowledge about objects accessed by each transaction. Besides,
PNF is a centralized CM. This is incompatible with dynamic STM implementations. Thus,
we introduce the FBLT contention manager. Under FBLT, each transaction is allowed to
abort for no larger than a specified number of times. Afterwards, the transaction becomes
non-preemptive. Non-preemptive transactions have higher priorities than other preemptive
transactions and real-time jobs. Non-preemptive transactions resolve their conflicts accord-
ing to the order they become non-preemptive (i.e., FBLT aborts the later non-preemptive
transaction in favour of the earlier non-preemptive transaction).
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By proper adjustment of the maximum abort number for any preemptive transaction of any
task τi (i.e., Ωmax

i ), FBLT’s total utilization is equal to or better than total utilization of
other CMs. Ratio between smax for FBLT on one side and rmax for lock-free and Lmax for
locking protocols on the other side also depends on Ωmax

i . As Ωmax
i decreases, smax/rmax

and smax/Lmax increase. As number of atomic sections in each task increases, all tasks have
equal number of atomic sections, and number of processors is not less than max Ωmax

i for
any τi, then smax can be at least equal to Lmax with total utilization of FBLT equal or better
than total utilization of OMLP and RNLP under G-EDF and G-RMA. In any case, smax
should not exceed 2.Lmax.



Chapter 8

FBLT Contention Manager with
Checkpointing

In this chapter, we consider checkpointing [91] with software transactional memory (STM)
concurrency control for embedded multicore real-time software, and present a modified ver-
sion of FBLT contention manager called Checkpointing FBLT (CP-FBLT). We upper bound
transactional retries and task response times under CP-FBLT, and identify when CP-FBLT
is a more appropriate alternative to FBLT without checkpointing.

The rest of this Chapter is organized as follows: We present the motivation for intro-
ducing checkpointing into FBLT in Section 8.1. We introduce checkpointing FBLT (CP-
FBLT) that combines original FBLT with checkpointing in Section 8.2. We establish CP-
FBLT’s retry and response time upper bounds under G-EDF and G-RMA schedulers in
Section 8.3. We also identify the conditions under which CP-FBLT is a better alternative to
non-checkpointing FBLT in Section 8.4. We conclude Chapter in Section 8.5.

8.1 Motivation

[91] introduces checkpointing as an alternative to closed nesting transactions [142]. [91] uses
boosted transactions [75] instead of closed nesting [88,117,142] to implement checkpointing.
Upon a conflict, a transaction does not need to revert to its beginning, but rather to a point
where the conflict can be avoided. Thus, checkpointing enables partial abort. [143] applies
checkpointing in distributed transactional memory using Hyflow [123]. Checkpointing is used
for fault tolerance in real-time systems [2, 3, 93,94,102,105].

Under checkpointing [91], a transaction ski ∈ τi does not need to restart from the beginning
upon a conflict on object θ. ski just needs to return to the first point it accessed θ. If ski needs
to restart from its beginning, then the time between the beginning of ski and the first access

100
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to θ is wasted. Besides, restarting ski from its beginning increases the chances of aborting ski
by other transactions. Thus, response time of τi can be improved by checkpointing unless ski
acquires all its objects at its beginning. While previous CMs (i.e., ECM, RCM (Chapter 4),
LCM (Chapter 5), PNF (Chapter 6) and FBLT (Chapter 7)) without checkpointing try to
resolve conflicts using proper strategies, checkpointing enhances performance by reducing
aborted part of each transaction. Thus, checkpointing acts as a complementary component
to different CMs to further enhance response time. Checkpointing integrated into CMs
allows programmers to reap STM’s significant programmability and composability benefits
for multicore embedded real-time software.

Behaviour of some CMs, like PNF (Chapter 6), can make checkpointing useless. PNF requires
a priori knowledge of accessed objects within transactions. Only the first m non-conflicting
transactions are allowed to execute concurrently and non-preemptively. Thus, PNF makes
no use of checkpointing because there is no conflict between non-preemptive transactions.

Other CMs (e. g., FBLT (Chapter 7)) allow conflicting transaction to run concurrently. So,
FBLT can benefit from checkpointing. FBLT, by definition, depends on LCM. LCM, in turn,
depends on ECM for G-EDF and RCM for G-RMA. Like PNF, FBLT allows any transaction
ski to be a non-preemptive transaction if ski has been aborted for a specified number of times
Ωk
i . Non-preemptive transactions cannot be aborted by preemptive transactions, nor by non-

critical sections in real-time jobs. FBLT, unlike PNF, allow non-preemptive transactions to
abort each other. Non-preemptive transactions resolve conflicts using time of being a non-
preemptive transaction. As FBLT tries to combine advantages of other CMs, we extend
FBLT to checpointing FBLT (CP-FBLT) to improve response time over original FBLT.

8.2 Checkpointing FBLT (CP-FBLT)

CP-FBLT depends on LCM (Chapter 5) with checkpointing. So, we initially illustrate LCM
integrated with checkpointing (Section 8.2.1). Afterwards, we illustrate FBLT with check-
pointing in (Section 8.2.2).

8.2.1 Checkpointing LCM (CPLCM)

Algorithm 6 presents LCM integrated with checkpointing to give CPLCM. A new checkpoint
is recorded for each newly accessed object θ by any transaction suh (step 2). Checkpoint is
recorded when θ is accessed for the first time because any further changes to θ will be
discarded upon conflict. CPLCM uses priorities of ski and slj, the remaining length of ski
when it is interfered, as well as len(slj), to decide which transaction must be aborted. If slj
starts after ski and pki > plj, then slj would be the transaction to abort (step 6). Otherwise,
cklij , α

kl
ij and α are calculated (steps 9, 10 and 11) to determine whether it is worth aborting

ski in favour of slj. If len(slj) is relatively small compared to len(ski ), then cklij approaches
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Algorithm 6: CPLCM

Data: ski and slj are two conflicting atomic sections.
ψ → predefined threshold ∈ [0, 1].
δki → remaining execution length of ski when interfered by slj .

s
(
ski
)
→ start time of ski . s

(
ski
)

is updated each time ski aborts and retries to the start time of the
new retry.
s
(
slj
)
→ the same as s

(
ski
)

but for slj .
cpuh(θ)→ recorded checkpoint in transaction suh for newly accessed object θ.
Result: which atomic section of ski or slj aborts

1 foreach newly accessed θ requested by any transaction suh do
2 Add a checkpoint cpuh(θ)
3 end

4 if s
(
ski
)
< s

(
slj
)
then

5 if p
(
ski
)
> p

(
slj
)
then

6 slj aborts and retreats to cplj(θ
kl
ij );

7 Remove all checkpoints in slj recorded after cplj(θ
kl
ij )

8 else
9 cklij = len(slj)/len(ski );

10 αkl
ij = ln(ψ)/(ln(ψ)− cklij );

11 α =
(
len(ski )− δki

)
/len(ski );

12 if α ≤ αkl
ij then

13 ski aborts and retreats to cpki (θklij );

14 Remove all checkpoints in ski recorded after cpki (θklij )

15 else
16 slj aborts and retreats to cplj(θ

kl
ij );

17 Remove all checkpoints in slj recorded after cplj(θ
kl
ij )

18 end

19 end

20 else
21 Swap ski and slj ;

22 end
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its minimum value (i.e., 0), and αklij approaches its maximum value (i.e., 1) (steps 9, 10).
Otherwise, cklij approaches its maximum value (i.e., ∞), and αklij approaches its minimum
value (i.e., 0). Ψ is a predefined threshold that lies in [0, 1]. The remaining execution length
of ski (i.e., δki ) is used to calculate α (step 11). If ski still has much work to do, then δki
approaches len(ski ) and α approaches 0. Otherwise, α approaches 1. If len(ski ) is much
longer than len(slj), or ski still has much work to do when interfered by slj, then α tends to
be smaller than αklij . Consequently, ski aborts in favour of slj. When ski aborts upon a conflict
with slj on object θklij , then checkpoints in ski recorded after cpki (θ

kl
ij ) are removed (step 14).

Prior checkpoints to cpki (θ
kl
ij ) remain the same. Also, if slj aborts in favour of ski , then all

checkpoints in slj recorded after cplj(θ
kl
ij ) are removed (steps 7, 17).

8.2.2 CP-FBLT

Algorithm 7 illustrates FBLT integrated with checkpointing to give CP-FBLT. A new check-
point is recorded for each newly accessed object θ by any transaction suh (step 2). Checkpoint
is recorded when θ is accessed for the first time because any further changes to θ will be
discarded upon conflict. Each transaction ski can be aborted during Ti for at most Ωk

i times
before ski becomes a non-preemptive transaction. ηki records the number of times ski has
already been aborted up to now. If ski and slj have not joined the m set yet, then they are
preemptive transactions. Preemptive transactions resolve conflicts using CPLCM (step 5).
Thus, CP-FBLT defaults to CPLCM when the conflicting transactions (ski and slj) have
not reached their Ωs (Ωk

i and Ωl
j). ηki is incremented each time ski is aborted as long as

ηki < Ωk
i (steps 8 and 22). Otherwise, ski is added to the m set and priority of ski is in-

creased to m prio (steps 10 to 12 and 24 to 26). When the priority of ski is increased to
m prio, ski becomes a non-preemptive transaction. Non-preemptive transactions cannot be
aborted by other preemptive transactions, nor by any other real-time job (steps 18 to 30).
Non-preemptive transactions can conflict with each other. The m set can hold at most m
concurrent transactions because there are m processors in the system. r(ski ) records the time
ski joined the m set (steps 11 and 25). When non-preemptive transactions conflict together
(step 31), the transaction that joined m set first becomes the transaction that commits first
(steps 33 and 36). When ski aborts due to a conflict on θklij with slj, then ski retreats to
cpki (θ

kl
ij ). All checkpoints recorded after cpki (θ

kl
ij ) are removed (steps 20, and 37). Similarly,

slj removes all checkpoints recorded after cplj(θ
kl
ij ) if aborted by ski (step 34).

8.3 CP-FBLT Retry Cost

In the following Claims, it is assumed that tccp is the maximum time taken to construct a
single checkpoint. trcp is the maximum time to remove a single checkpoint. Let initial access
of ski to objects θ1, θ2, ..., θg, ..., θz be in that order. Θk

i (θg) ⊆ Θk
i is the set of distinct objects

accessed by ski for the first time after ski ’s first access to θg. If all objects before θg are not
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Algorithm 7: CP-FBLT
Data:
ski : interfered transaction.
slj : interfering transaction.

Ωk
i : maximum number of times ski can be aborted during Ti.

ηki : number of times ski has already been aborted up to now.
m set: contains at most m non-preemptive transactions. m is number of processors.
m prio: priority of any transaction in m set. m prio is higher than any priority of any real-time task.
r(ski ): time point at which ski joined m set.
cpuh(θ): recorded checkpoint in transaction suh for newly accessed object θ
Result: which transaction, ski or slj , aborts

1 foreach newly accessed θ requested by any transaction suh do
2 Add a checkpoint cpuh(θ)
3 end

4 if ski , s
l
j 6∈ m set then

5 Apply CPLCM (Algorithm 6);

6 if ski is aborted then
7 if ηki < Ωk

i then
8 Increment ηki by 1;
9 else

10 Add ski to m set;

11 Record r(ski );

12 Increase priority of ski to m prio;

13 end

14 else
15 Swap ski and slj ;

16 Go to Step 6;

17 end

18 else if slj ∈ m set, ski 6∈ m set then
19 ski aborts and retreats to cpki (θklij );

20 Remove all checkpoints in ski recorded after cpki (θklij );

21 if ηki < Ωk
i then

22 Increment ηki by 1;
23 else
24 Add ski to m set;

25 Record r(ski );

26 Increase priority of ski to m prio;

27 end

28 else if ski ∈ m set, slj 6∈ m set then
29 Swap ski and slj ;

30 Go to Step 18;

31 else
32 if r(ski ) < r(slj) then
33 slj aborts and retreats to cplj(θ

kl
ij );

34 Remove all checkpoints in slj recorded after cplj(θ
kl
ij );

35 else
36 ski aborts and retreats to cpki (θklij );

37 Remove all checkpoints in ski recorded after cpki (θklij );

38 end

39 end
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shared between ski and any other transaction, then ∇k
i∗ is the time interval between start of

ski and the first access to θg by ski . So, ∇k
i∗ is the time interval between start of ski and the

first access to any shared object between ski and any other transaction.

Claim 80. Assume only two transaction ski and slj conflicting together. Let ski begins at time

S
(
ski
)

and slj begins at time S
(
slj
)
. Let 4 = S

(
slj
)
−S

(
ski
)
. In the absence of checkpointing,

retry cost of ski due to slj is given by

BASE RCkl
ij ≤

{
len
(
slj
)

+4 ,−len
(
slj
)
≤ 4 ≤ len

(
ski
)

0 , Otherwise
(8.1)

BASE RCkl
ij is upper bounded by

len
(
slj + ski

)
(8.2)

which is the same upper bound given by Claim 4.

Proof. Due to absence of checkpointing, ski aborts and retries from its beginning due to
slj. So, ski retries for the period starting from S

(
ski
)

to the end of execution of slj. slj
ends execution at S

(
slj
)

+ len
(
slj
)
. If S

(
slj
)
< S

(
ski
)
− len

(
slj
)
, then slj finishes execution

before start of ski and there will be no conflict. Also, if S
(
slj
)
> S

(
ski
)

+ len
(
ski
)
, then slj

starts execution after ski finishes execution and there will be no conflict. Thus, (8.1) follows.
Equation (8.2) is derived by substitution of 4 by its maximum value (i.e., len

(
ski
)
). Claim

follows.

Claim 81. Assume only two transactions ski and slj conflicting on one object θ. Let ∇l
j be

the time interval between the start of slj and the first access to θ. Similarly, let ∇k
i be the

time interval between the start of ski and the first access to θ. Let 4 be the time difference
between start of slj to the start of ski . So, 4 < 0 if slj starts before ski . Under checkpointing,
ski aborts and retries due to slj for

RC0klij ≤


len
(
slj
)
−∇k

i +4
+
(
trcp + tccp

)
|Θk

i (θ)|
, if
4 ≥ ∇k

i − len
(
slj
)

4 ≤ len
(
ski
)
−∇l

j

0 , Otherwise

(8.3)

where |Θk
i (θ)| is the number of objects in Θk

i (θ). RC0klij is upper bounded by

len
(
slj + ski

)
−∇l

j −∇k
i +

(
trcp + tccp

)
|Θk

i (θ)| (8.4)

Proof. As ski and slj conflict only on one object θ, there will be no conflict before both ski and
slj access θ. Retry cost of ski due to slj is derived by Claim 80 excluding parts of ski and slj
before both transactions access θ. Thus, excluding the parts of ski and slj that do not cause

conflict. So, len
(
ski
)

in Claim 80 is substituted by len
(
ski
)
−∇k

i . len
(
slj
)

is substituted by

len
(
slj
)
−∇l

j. 4 in Claim 80 is substituted by 4+∇l
j −∇k

i . Claim follows.
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Claim 82. Assume only two transactions ski and slj conflicting on a number of objects
θ1, θ2 ... θz. Let ∇k

i∗ be the time interval between start of ski and the first access to the first
object accessed by ski and shared with slj (e.g., θi). Let ∇l

j∗ be the time interval between start
of slj and the first access to the first object accessed by slj and shared with ski (e.g., θj). θi
and θj may not be the same. With checkpointing, retry cost of ski due to slj is upper bounded
by

RC1klij ≤ len
(
ski + slj

)
−∇k

i∗ −∇l
j∗ +

(
trcp + tccp

)
|Θk

i (θi)| (8.5)

Proof. Proof follows directly from Claim 81 by maximizing (8.4). len
(
ski
)
, as well as, len

(
slj
)

in (8.4) cannot be changed. Thus, by choosing minimum values of∇k
i and∇l

j that correspond
to shared objects between ski and slj, (8.4) is maximized. Claim follows.

Claim 83. If slj is conflicting indirectly (through transitive retry) with ski , then ski is assumed
to retreat to the first shared object between ski and any other transaction in calculating the
upper bound of retry cost of ski due to slj.

Proof. If slj is conflicting indirectly with ski , then slj is accessing an object θ that does not
belong to Θk

i . In this case, to get an upper bound for the retry cost of ski due to slj, s
k
i is

assumed to retreat to the first shared object between ski and any other transaction as given
by ( 8.5). Claim follows.

Claim 84. Assume only two non-preemptive transactions ski and slj under CP-FBLT. With
checkpointing, retry cost of ski due to direct or indirect conflict with slj is upper bounded by

RC2klij ≤ len
(
slj
)
−∇k

i∗ +
(
trcp + tccp

)
|Θk

i (θi)| (8.6)

where ∇k
i∗ is the length between start of ski and the first access to θi. θi is the first shared

object between ski and any other transaction.

Proof. Proof follows directly from Claims 81, 82 and 83 except that slj must have become
non-preemptive before ski . So, slj starts execution non-preemptively before ski . Otherwise, by
definition of CP-FBLT, slj will not be able to abort ski . Thus, 4 must not exceed 0. Claim
follows.

Claim 85. Let ski be a non-preemptive transaction under CP-FBLT. Let χki be the set of
transactions conflicting (directly or indirectly) with ski . Each transaction slj ∈ χki belongs
to a distinct task. Transactions in χki are organized in non-increasing order of RC2klij for
each slj ∈ χki . Total retry cost of non-preemptive transaction ski due to other non-preemptive
transactions is upper bounded by

RC3ki ≤
a=min(|χki |,m−1)∑

a=1

RC2ki
(
χki (a)

)
(8.7)

where χki (a) is the ath transaction in χki . If χki (a) = slj, then RC2ki
(
χki (a)

)
= RC2klij .
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Proof. By definition of CP-FBLT, a transaction ski can be preceded by at most m− 1 non-
preemptive transactions. As non-preemptive transactions are organized in the order they
become non-preemptive, no two non-preemptive transactions can belong to the same task.
Maximum retry cost of non-preemptive ski occurs when: 1) ski is preceded by at most m− 1
transactions conflicting with ski . 2) Each conflicting transaction slj to ski must have one of the
highest m− 1 values for RC2klij . 3) Non-preemptive transactions preceding ski are executing
sequentially. Thus, retry cost of non-preemptive ski can be upper bounded by Claim 84 for
at most the first m− 1 transactions in χki . If the third condition is not satisfied, then (8.7)
still gives a correct, but not tight, upper bound. Claim follows.

Claim 86. Under CP-FBLT, a preemptive transaction ski aborts and retries for at most

RC4ki ≤ Ωk
i

(
len
(
ski
)
−∇k

i∗ +
(
trcp + tccp

)
|Θk

i (θi)|
)

(8.8)

where ∇k
i∗ is the length between start of ski and the first access to θi. θi is the first shared

object between ski and any other transaction.

Proof. No transaction will make preemptive ski aborts and retries before min
(
∇k
i∗
)
. By

checkpointing, ski will not retreat earlier than min
(
∇k
i∗
)
. By definition of CP-FBLT, pre-

emptive ski aborts for at most Ωk
i times before it becomes non-preemptive. Claim follows.

Claim 87. The total retry cost of any job τxi under CP-FBLT due to 1) conflicts with other
transactions during an interval L. 2) release of higher priority jobs during execution of
preemptive transactions is upper bounded by

RC(L)ito =
∑
∀ski

((
trcp + tccp

)
|Θk

i |+RC4ki +RC3ki
)

+RCre(L) (8.9)

where RCre(L) is the retry cost resulting from the release of higher priority jobs during
execution of preemptive transactions. RCire(L) is calculated by (4.11) for G-EDF, and (4.17)
for G-RMA schedulers.

Proof. Following Claims 83, 85, 86 and 65, Claim follows.

Any newly released task τxi can be blocked by m lower priority non-preemptive transactions.
Blocking time D(τxi ) of any job τxi is independent of checkpointing. Thus, D(τxi ) is calculated
by Claim 66. Claim 67 is used to calculate response time under CP-FBLT where RCito(Ti)
is calculated by (8.9).

8.4 CP-FBLT versus FBLT

Claim 88. Following notions in Section 4.3, total utilization of CP-FBLT is equal or better
than FBLT’s if for each transaction, ski , time cost of constructing and removing each check-
point divided by minimum distance between start of ski and the first access to the first shared
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object between ski and any other transaction slj does not exceed

Ωk
i +min

(
|χki |,m− 1

)
1 + Ωk

i +min
(
|χki |,m− 1

)
where χki is defined in Claim 85. If each transaction, ski , conflicts with at least one other
transaction, slj, then the lower bound over time cost of constructing and removing each
checkpoint divided by minimum distance between start of ski and the first access to the first
shared object between ski and any other transaction slj should not exceed 0.5 to achieve better
total utilization for CP-FBLT than total utilization of FBLT.

Proof. Let upper bound on retry cost of any task τxi during Ti under FBLT be denoted as
RCncp

i . RCncp
i is calculated by Claim 1 in [56]. Let upper bound on retry cost of any task τxi

during Ti under CP-FBLT be denoted as RCcp
i . RCcp

i is calculated by (8.9). Let Bi be the
upper bound on blocking time of any newly released task τxi during Ti due to lower priority
jobs. Bi is the same for both CP-FBLT and FBLT. Bi is calculated by Claim 2 in [56]. For
CP-FBLT total utilization to be better than total utilization of FBLT:∑

∀τi

ci +RCcp
i +Bi

Ti
≤
∑
∀τi

ci +RCncp
i +Bi

Ti
(8.10)

∵ Bi and ci are the same for each τi under CP-FBLT and FBLT, then (8.10) holds if:

∀τi, RCcp
i ≤ RCncp

i∑
∀ski

(
trcp + tccp

)
|Θk

i |
+

∑
∀ski

Ωk
i

(
len
(
ski
)
−∇k

i∗ +
(
trcp + tccp

)
|Θk

i (θi) |
)

+
∑
∀ski

(∑min(|χki |,m−1)
a=1

(
len
(
χki (a)

)
−∇k

i∗ +
(
trcp + tccp

)
|Θk

i (θi) |
))

≤
∑
∀ski

(
Ωk
i len

(
ski
)

+
∑min(|νki |,m−1)

a=1 len
(
νki (a)

))
(8.11)

where νki is the set of at most m − 1 longest transactions conflicting directly or indirectly
with ski . Thus, transactions in νki are organized in non-increasing order of len(slj)∀slj∈νki .

∵ Θk
i (θi) ⊆ Θk

i , ∴ ∀ski ,
(
trcp + tccp

)
|Θk

i | ≥
(
trcp + tccp

)
|Θk

i (θi) |. Thus, (8.11) holds if∑
∀ski

(
trcp + tccp

)
|Θk

i |
+

∑
∀ski

Ωk
i

(
len
(
ski
)
−∇k

i∗ +
(
trcp + tccp

)
|Θk

i |
)

+
∑
∀ski

(∑min(|χki |,m−1)
a=1

(
len
(
χki (a)

)
−∇k

i∗ +
(
trcp + tccp

)
|Θk

i |
))

≤
∑
∀ski

(
Ωk
i len

(
ski
)

+
∑min(|νki |,m−1)

a=1 len
(
νki (a)

))
(8.12)
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∴ (8.12) holds if for each ski (
trcp + tccp

)
|Θk

i |
+ Ωk

i

(
len
(
ski
)
−∇k

i∗ +
(
trcp + tccp

)
|Θk

i |
)

+
∑min(|χki |,m−1)

a=1

(
len
(
χki (a)

)
−∇k

i∗ +
(
trcp + tccp

)
|Θk

i |
)

≤ Ωk
i len

(
ski
)

+
∑min(|νki |,m−1)

a=1 len
(
νki (a)

)
(8.13)

∴
(
1 + Ωk

i +min
(
|χki |,m− 1

)) (
trcp + tccp

)
|Θk

i | −
(
Ωk
i +min

(
|χki |,m− 1

))
∇k
i∗

+ Ωk
i len

(
ski
)

+
∑min(|χki |,m−1)

a=1 len
(
χki (a)

)
≤ Ωk

i len
(
ski
)

+
∑min(|νki |,m−1)

a=1 len
(
νki (a)

)
(8.14)

By definition of χki and νki , νki (a) ≥ χki (a),∀a. Thus, (8.14) holds if(
1 + Ωk

i +min
(
|χki |,m− 1

)) (
trcp + tccp

)
|Θk

i | ≤
(
Ωk
i +min

(
|χki |,m− 1

))
∇k
i∗

∴

(
trcp + tccp

)
|Θk

i |
∇k
i∗

≤
Ωk
i +min

(
|χki |,m− 1

)
1 + Ωk

i +min
(
|χki |,m− 1

) (8.15)

Let κki = Ωk
i +min

(
|χki |,m− 1

)
. ∴ (8.15) becomes

∴

(
trcp + tccp

)
|Θk

i |
∇k
i∗

≤ 1

1 + 1
κki

(8.16)

If κki → ∞, then the upper bound over
(trcp+tccp)|Θki |

∇ki∗
to achieve better total utilization for

CP-FBLT over FBLT is 1. If each transaction ski conflicts with at least another transaction,
then the minimum value for κki = 1 by substituting Ωk

i = 0 (i.e., minimum value for Ωk
i ).

Thus, the lower bound over
(trcp+tccp)|Θki |

∇ki∗
to achieve better total utilization for CP-FBLT over

FBLT is 0.5. Claim follows.

8.5 Conclusion

Past research on real-time CMs focused on developing different conflict resolution strategies
for transactions. Except for LCM (Chapter 5), no policy was made to reduce the length of
conflicting transactions. In this Chapter, we analysed effect of checkpointing over FBLT CM.
Analysis shows that CP-FBLT has equal or better total utilization than FBLT if, for each ski ,
time cost of constructing and removing each checkpoint starting from the first shared object,
θi, between ski and any other transaction does not exceed half the length between start of ski
and the first access to θi. Some CMs make no use of checkpointing due to behaviour of that
CM (e.g, under PNF, all non-preemptive transactions are non-conflicting).



Chapter 9

Implementation and Experimental
Evaluations

Having established upper bounds for retry cost and response time of different contention
managers, and the conditions under which each one is preferred. We now would like to un-
derstand how each CM retries in practice (i.e., on average) compared with that of competitor
methods. Also, we would like to know the effect of each CM on response time of real-time
jobs compared to lock-free and locking protocols. Since this can only be understood exper-
imentally, we implement ECM, RCM, LCM, PNF, FBLT, OMLP, RNLP and lock-free and
conduct experimental studies.

The rest of this Chapter is organized as follow: Section 9.1 outlines the used methodology
to generate different tasksets and run experiments. Section 9.2 outlines properties of used
task sets and atomic sections for comparing different contention managers, locking proto-
cols and lock-free. Section 9.3 presents used metrics to evaluate performance of different
synchronization techniques. Section 9.4 discusses experimental results.

9.1 Methodology

We used the ChronOS real-time Linux kernel [48] and the RSTM library [144]. We mod-
ified RSTM to include implementations of ECM, RCM, LCM, PNF and FBLT contention
managers and to support checkpointing. We modified ChronOS to include implementations
of G-EDF and G-RMA schedulers and Global OMLP [22, 29] and RNLP [149] locking pro-
tocols. For the retry-loop lock-free implementation, we used a loop that reads an object
and attempts to write to the object using a compare-and-swap (CAS) instruction. The task
retries until the CAS succeeds. We use an 8 core, 2GHz AMD Opteron platform.

Experiments ran over a set of tasksets. Each taskset consists of a number of tasks. Each

110
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task is represented by a single thread. Our system assumes sporadic task model. The least
common multiplier of periods of all tasks in a single taskset is called Hyperperiod of this
taskset. Each task τi in a single taskset runs a number of jobs(i.e., instances) equal to
hyperperiod of the taskset divided by period of the task, Ti.

9.2 Tasksets

We collected properties of tasksets from [12, 20, 21, 23–25, 27–29, 96, 104, 115] with some
modifications due to insertion of transactions into tasks. Each task’s period, Ti, is an integer
uniformly distributed from [10ms, 100ms]. Utilization of each task, ui, is derived from three
uniform distributions: [0.001, 0.1] (light), [0.1, 0.4] (medium), and [0.5, 0.9](heavy). Worst
case execution time for each task, ei, is calculated as ei = ui.Ti. Total utilization of all tasks
in a given specific taskset should not exceed Û . Different tasksets are generated for each
Û ∈ {2, 4, 6, 8} where 8 is the maximum number of cores on the tested platform as given
in Section 9.1. Tasks are added to each taskset until Û is reached. If last task makes total
utilization exceeds Û , then the last task is removed.

Each task has a number of atomic sections(transactions). Atomic section properties are prob-
abilistically controlled using three parameters: the maximum(maxTx) and minimum(minTx)
lengths of any atomic section within the task, and the total(toTx) length of atomic sections
within any task. Each of the 3 parameters (minTx,maxTx and toTx) is derived from 3
uniform distributions: [0, 0.3) (light), [0.3, 0.6) (medium), [0.6, 1] (heavy). Each value of
minTx,maxTx and toTx is relative to ei. Thus, each of minTx,maxTx and toTx does not
exceed ei. maxTx is chosen such that maxTx ≤ toTx. Similarly, minTx is chosen such that
minTx ≤ maxTx. Total number of shared objects, N r, is either 5, 20 or 40. Number of objects
per each atomic section, N r

i , is chosen from 3 uniform distributions: [0, 0.3) (light), [0.3, 0.6)
(medium), [0.6, 1] (heavy). As lock-free cannot access more than one object in one atomic
operation, tasks share one object per transaction when lock-free is included in comparison.
Different parameters for tasks and transactions are summarized in Table 9.1. Appendix A
presents properties of each taskset where: 1) “ID” is the taskset ID. 2) “no tasks” is num-
ber of tasks within each taskset. 3) “total tx dis”, “max tx dis” and “min tx dis” are the
distributions for deriving toTx, maxTx and minTx, respectively. 4) “total no obj” is total
number of shared objects among all tasks (i.e., N r). 5) “no obj tx dis” is the distribution
for deriving ratio of accessed objects per each transaction relative to total number of shared
objects (i.e., N r

i ). 6) “u i dis” is the distribution to derive utilization of each task relative
to total utilization (i.e., ui/Û).

To simplify reading task properties and writing results, we used MySQL database to store
properties of tasksets and results. Properties for tasksets and results are organized into 4
major tables: 1) First table has properties for each taskset. Properties include number of
tasks under each dataset, utilization cap and tasks’ utilization distribution. Properties also
include distributions of total, maximum and minimum length of atomic sections within any
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task under each dataset. 2) Second table holds properties about each task of each taskset.
Properties include worst case execution time, period and relative deadline. 3) Third table
holds properties on the structure of each task of each dataset. Each task is organized into
a number of portions. Each portion is either an atomic or non-atomic section. Each record
in the table represents one portion of a specific task of a specific taskset. Properties for
each portion include portion type (i.e., atomic or non-atomic), portion length and accessed
objects in atomic sections. 4) Fourth table holds results. Each record represents a job of a
specific task under a specific taskset. Results of each job include absolute start and end time
for this job, retry cost under different CMs and lock-free and blocking time under locking
protocols.

Table 9.1: Tasksets’ and transactions’ properties

Û {2, 4, 6, 8}
Ti uniformly chosen from [10ms, 100ms]
ui Uniformly chosen from [0.001, 0.1] (light), [0.1, 0.4] (medium), and

[0.5, 0.9](heavy).
∑
∀i ui ≤ Û

ei ui.Ti
toTx Uniformly chosen from [0, 0.3) (light), [0.3, 0.6) (medium), [0.6, 1] (heavy)

relative to ei
maxTx Uniformly chosen from [0, 0.3) (light), [0.3, 0.6) (medium), [0.6, 1] (heavy)

relative to ei. maxTx ≤ toTx
minTx Uniformly chosen from [0, 0.3) (light), [0.3, 0.6) (medium), [0.6, 1] (heavy)

relative to ei. minTx ≤ maxTx
N r 5, 20, 40
N r
i Uniformly chosen from (0, 0.3) (light), [0.3, 0.6) (medium), [0.6, 1] (heavy)

9.3 Performance Measurements

We record two measurements to compare different CMs against lock-free and locking pro-
tocols. Deadline Satisfaction Ratio (DSR) and Average Retry Cost (Avg RC). Deadline
Satisfaction Ratio (DSR) is calculated for each taskset as ratio between number of jobs that
successfully met their deadlines to total number of jobs for the specified taskset under a
specified synchronization technique. Thus, for taskset i

DSR =
Deadlinesmet

Total deadlines

“DSR” shows contribution of different synchronization techniques to response time of each
job. DSRA

B measures how much DSR of synchronization technique A exceeds DSR of syn-
chronization technique B, on average.
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Retry cost of each job τ lk contributes to response time of τ lk, consequently to DSR. Thus, we
measure Average Retry Cost (Avg RC) for a each taskset. “Avg RC” is the average value
for retry cost of all jobs under the specified taskset under a specific CM. Thus, for taskset i

Avg RC = Average(Rertry cost for each job for taskset i)

“Avg RC” for different CMs is compared against average retry cost for lock-free and block-
ing time for locking protocols. Blocking time for dataset i under locking protocols is the
summation of time taken by each critical section in each job under taskset i to obtain all
required locks.

9.4 Results

Appendixes B and C record “DSR” and “Avg RC” for different CMs compared to lock-free
and locking protocols. Atomic lock-free instruction accesses only object. Thus, lock-free is
not applied to any taskset with multiple objects per critical section.

9.4.1 General results for DSR

1. DSR results for all tasksets are given in Appendix B. CP-FBLT has the highest DSR
compared to other contention managers. DSRCP−FBLT

ECM = 31.3%. 77.2% of tasksets
have higher DSR under CP-FBLT than ECM. 8.8% of tasksets have equal DSR under
both CP-FBLT and ECM. DSRCP−FBLT

LCM = 31.2%. 76.7% of tasksets have higher
DSR under CP-FBLT than LCM. 8.8% of tasksets have equal DSR under both CP-
FBLT and LCM. DSRCP−FBLT

PNF = 8.8%. 51.9% of tasksets have higher DSR under
CP-FBLT than PNF. 7.8% of tasksets have equal DSR under CP-FBLT and PNF.
DSRCP−FBLT

FBLT = 4.6%. 54.1% of tasksets have higher DSR under CP-FBLT than
FBLT. 9.5% of tasksets have equal DSR under CP-FBLT and FBLT.

2. On contrast to lock-free, proposed contention managers use different policies to re-
solve conflicts. Thus, more jobs meet their deadlines under STM than lock-free.
DSRCP−FBLT

LF = 34.6%. 68.9% of tasksets have higher DSR under CP-FBLT than
lock-free. 2.5% of tasksets have equal DSR under both CP-FBLT and lock-free.
DSRFBLT

LF = 28.5%. 63.9% of tasksets have higher DSR under FBLT than lock-free.
7.4% of tasksets have equal DSR under both FBLT and lock-free. DSRPNF

LF = 32.4%.
61.5% of tasksets have higher DSR under PNF than lock-free. 8.2% of tasksets have
equal DSR under both PNF and lock-free. DSRLF

LCM = 2.7%. 55.7% of tasksets have
higher DSR under LCM than lock-free. 13.9% of tasksets have equal DSR under both
LCM and lock-free. DSRLF

ECM = 5.3%. 49.2% of tasksets have higher DSR under ECM
than lock-free. 16.4% of tasksets have equal DSR under both ECM and lock-free.
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3. Generally, more jobs meet their deadlines under OMLP and RNLP than any contention
manager by 12.4% and 13.7% on average, respectively. OMLP uses group locking that
protects all required objects in the same atomic section by the same resource. Current
implementation of RNLP requires a priori knowledge of requested objects per each
atomic section. Thus, OMLP and RNLP have the advantage of a priori knowledge of
requested objects per each atomic section. Only PNF has the same advantage. But
PNF induces a lot of overhead because it is a centralized contention manager. To
examine effect of a-priori knowledge of required objects, we modified FBLT to FBLT-
P. Under FBLT-P, each transactions accesses all required objects at the beginning of
the transaction. Thus, each transaction knows a priori what objects are going to be
accessed. Results show that DSR of FBLT-P increased over DSR of CP-FBLT by
19.5%. Additionally, atomic sections under OMLP and RNLP do not have to retry,
nor to make decisions upon a conflict in each retry. Under OMLP and RNLP, tasks
suspend after making requests for acquiring specific locks. After obtaining all required
locks, atomic sections can proceed without abortion upon a conflict. Thus, locking
protocols make a decision only once regarding which atomic section to proceed, whereas
a transaction can invoke the contention manager many times even if the contention
manager is going to make the same decision. 71% of tasksets under FBLT-P have
DSR lower than DSR of OMLP by at most DSROMLP

FBLT−P = 14.6%. 71.9% of tasksets
under FBLT-P have DSR lower than DSR of RNLP by at most DSRRNLP

FBLT−P = 15.9%.
65.6% of tasksets under CP-FBLT have DSR lower than DSR of OMLP by at most
DSROMLP

CP−FBLT = 33.2%. 66.2% of tasksets under CP-FBLT have DSR lower than DSR
of RNLP by at most DSRRNLP

CP−FBLT = 34.5%. 58.6% of tasksets under FBLT have DSR
lower than DSR of OMLP by at most DSROMLP

FBLT = 37.8%. 58.8% of tasksets under
FBLT have DSR lower than DSR of RNLP by at most DSRRNLP

FBLT = 39%. 55.3% of
tasksets under PNF have DSR lower than DSR of OMLP by at most DSROMLP

PNF =
42%. 55% of tasksets under PNF have DSR lower than DSR of RNLP by at most
DSRRNLP

PNF = 43.3%. 39% of tasksets under LCM have DSR lower than DSR of OMLP
by at most DSROMLP

LCM = 64.4%. 38% of tasksets under LCM have DSR lower than
DSR of RNLP by at most DSRRNLP

LCM = 65.7%. 39% of tasksets under ECM have DSR
lower than DSR of OMLP by at most DSROMLP

ECM = 64.5%. 38% of tasksets under
ECM have DSR lower than DSR of RNLP by at most DSRRNLP

ECM = 65.8%.

4. Figure 9.1 is an example for tasksets [1,27], [541,567], [1081,1107] and [1621,1647] with
total utilizations of 2,4,6 and 8 respectively. Generally, Different CMs show similar
DSR performance to each other with no single optimal CM (i.e., no single CM alawys
shows the best DSR). DSR performance of different CMs ranges from 85% to 100%.
Under specified tasksets, number and length of transactions per each task is small.
Thus, contention is low. Generally, different CMs show equal or higher DSR than
Lock-free.

5. Figure 9.2 is an example of tasksets [28,36], [568,576], [1108,1116] and [1648,1656] with
total utilizations 2, 4, 6 and 8, respectively. Total transactional length per each task
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Figure 9.1: DSR for Tasksets 2, 542, 1082 and 1622

lies between 33% and 66% of each task length. Total number of objects is 5 which
increases contention. However, maximum transactional length does not exceed 33%
of each task length. Thus, each task contains at least 2 transactions. With large
number of transactions and small length of each transaction, different CMs- except
for CP-FBLT, show poor DSR performance at low utilizations (up to 4). However,
as utilization increases, DSR for PNF and FBLT increases. DSR of ECM and LCM
degrades to 0 mostly after total utilization of 4. Generally, CP-FBLT shows the best
DSR among CMs. Lock-free shows poor DSR compared to other synchronization
techniques. However, lock-free’s DSR starts to increase after total utilization of 6 to
coincide with DSR of locking protocols at total utilization of 8.

6. Figure 9.3 is an example for tasksets [37,54], [577,594], [1657,1134] and [1648,1674]
with total utilizations 2, 4, 6 and 8, respectively. Tasksets have the same properties
as in point 5 except than total number of objects is increased to 20 and 40. Thus,
more objects are accessed by each transaction. In conrast to point 5, mostly at low
utilizations, ECM and LCM show equal or better DSR compared to FBLT and PNF.
However, DSR of ECM and LCM mostly degrades after total utilization of 4. DSR for
PNF and FBLT mostly increase after total utilization of 4 and coincide with CP-FBLT
after total utilization of 6. PNF and FBLT show better DSR than ECM and LCM
after total utilization of 5. CP-FBLT still shows the best DSR among CMs.

7. Figure 9.4 is an example of tasksets [55,66], [595,606], [1135,1146] and [1675,1686]
with total utilizations 2, 4, 6 and 8, respectively. Maximum transactional length can
reach total transactional length for any task. Thus, each task contains at least 1
transaction. Total number of objects is 5 and 20. CP-FBLT shows the best DSR
among CMs. Mostly, DSR of ECM and LCM degrad continuously. DSR of PNF and
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Figure 9.2: DSR for Tasksets 28, 568, 1108 and 1648
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Figure 9.3: DSR for Tasksets 38, 578, 1118 and 1658

FBLT mostly increases after total utilization of 4. Lock-free shows poor DSR. After
total utilization of 6, DSR of lock-free increases until it coincides with locking protocols
at total utilization of 8.

8. Figure 9.5 is an example of tasksets [67,106], [607,646], [1147,1186] and [1687,1726]
with total utilizations 2, 4, 6 and 8, respectively. Tasks have the same properties
as tasks in point 7 except that more objects are accessed per each transaction. As
more objects are accessed, additional overhead is introduced by CP-FBLT. Thus, CP-
FBLT shows the best DSR up to total utilization of 6. Afterwards, DSR of CP-FBLT
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Figure 9.4: DSR for Tasksets 55, 595, 1135 and 1675

degrades and DSR of FBLT increases. Generally, between total utilizations of 6 and
8, either CP-FBLT or FBLT shows the best DSR. DSR of ECM and LCM degrades
as total utilization increases. PNF shows equal or better DSR than ECM and LCM.
Lock-free shows poor DSR. After total utilization of 6, DSR of lock-free increases until
it coincides with locking protocols at total utilization of 8.
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Figure 9.5: DSR for Tasksets 83, 623, 1163 and 1703

9. Figure 9.6 is an example for tasksets [107,108], [647,648], [1187,1188] and [1727,1728]
with total utilizations 2, 4, 6 and 8, respectively. ECM and LCM show better DSR
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than other CMs up to total utilization of 4.5. Then PNF and CP-FBLT show better
DSR up to total utilization of 7.5. Finally, FBLT show better DSR up to 8.
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Figure 9.6: DSR for Tasksets 107, 647, 1187 and 1727

10. Figure 9.7 is an example for tasksets [109,137], [649,677], [1189,1217] and [1729,1757]
with total utilizations 2, 4, 6 and 8, respectively. Each task contains a large number of
small length transactions. DSR for OMLP and RNLP decrease after total utilization
of 4 and 6, respectively. DSR for lock-free is poor but increases after total utilization
of 6. Different CMs show varying DSRs up to total utilization of 4. Afterwards, PNF,
FBLT and CP-FBLT show better DSR than ECM and LCM.

11. Figure 9.8 is an example of tasksets [138,155], [678,695], [1218,1235] and [1758,1775]
with total utilizations 2, 4, 6 and 8, respectively. Tasks have the same properties as
in point 10 except that maximum transactional length increases. Thus, total number
of transactions per any task can be lower than that specified in point 10. PNF and
CP-FBLT show equal or better DSR than other CMs starting from total utilization of
4.

12. Figure 9.9 is an example of tasksets [156,232], [696,772], [1236,1312] and [1776,1852]
with total utilizations of 2, 4, 6 and 8, respectively. Generally, CP-FBLT shows bet-
ter DSR than other CMs. After total utilization of 5 or 6, DSRs of FBLT and PNF
sometimes outperform DSR of CP-FBLT. Lock-free shows poor DSR. After total uti-
lization of 6, DSR of lock-free increases until it coincides with locking protocols at total
utilization of 8.

13. Figure 9.10 is an example of tasksets [233,243], [773,783], [1313,1323] and [1853,1863]
with total utilizations 2, 4, 6 and 8, respectively. Generally, CP-FBLT shows equal or
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Figure 9.7: DSR for Tasksets 110, 650, 1190 and 1730
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Figure 9.8: DSR for Tasksets 138, 678, 1218 and 1758

better DSR than other CMs. DSR of CP-FBLT degrades after total utilization of 4
and rises again after 6.

14. Figure 9.11 is an example of tasksets [244,255], [784,795], [1324,1335] and [1864,1875]
with total utilizations 2, 4, 6 and 8, respectively. Each task contains, at most, 2 long
transactions. CP-FBLT mostly shows equal or better DSR to other CMs in total
utilizations of [2,5] and [7,8]. PNF shows best DSR among CMs in totoal utilizations
of [5,7]. FBLT shows equal or better DSR to CP-FBLT after total utilization of 7.
DSR of OMLP degrades after total utilization of 6. Lock-free shows poor DSR. After
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Figure 9.9: DSR for Tasksets 165, 705, 1245 and 1785
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Figure 9.10: DSR for Tasksets 233, 773, 1313 and 1853

total utilization of 6, DSR of lock-free increases until it coincides with RNLP at total
utilization of 8.

15. Figure 9.12 is an example of tasksets [256,261], [796,801], [1336,1341] and [1876,1881]
with total utilizations 2, 4, 6 and 8, respectively. CMs show the same DSR pattern as
in point 14 except that CP-FBLT and FBLT show equal or better DSR compared to
other CMs for all utilizations.

16. Figure 9.13 is an example of tasksets [262,270], [802,810], [1342,1350] and [1882,1890].
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Figure 9.11: DSR for Tasksets 244, 784, 1324 and 1864

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2  3  4  5  6  7  8

D
S

R

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure 9.12: DSR for Tasksets 256, 796, 1336 and 1876

CMs show DSR pattern similar to points 14 and 15.

A closer look at CP-FBLT

1. DSR of CP-FBLT is at least 0.9 usually when summation of transactions’ lengths per
each task is at least 1/3 of each task’s length, accessed objects per each transaction
is at most 2/3 of total shared objects and total utilization is lower than 8. 48.7% of
tasksets achieve DSR in [0.9,1[ under CP-FBLT.
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Figure 9.13: DSR for Tasksets 262, 802, 1342 and 1882

2. DSR of CP-FBLT is between 0.8 and 0.9 usually when summation of transactions’
lengths per each task is at least 1/3 of each task’s length, each transaction accesses
a small portion of total shared objects and total utilization is lower than 6. 10.3% of
tasksets achieve DSR in [0.8,0.9[ under CP-FBLT.

3. DSR of CP-FBLT is between 0.7 and 0.8 usually when summation of transactions’
lengths per each task is between 1/3 and 2/3 of each task’s length, number of trans-
actions per each task is small and total utilization does not exceed 4. 4.8% of tasksets
achieve DSR in [0.7,0.8[ under CP-FBLT.

4. DSR of CP-FBLT is between 0.6 and 0.7 usually when summation of transactions’
lengths per each task is at least 1/3 of each task’s length, number of transactions per
each task is small and total utilization approaches 2 or 8. 2% of tasksets achieve DSR
in [0.6,0.7[ under CP-FBLT.

5. DSR of CP-FBLT is between 0.5 and 0.6 usually when summation of transactions’
lengths per each task is at least 1/3 of each task’s length and total utilization does not
exceed 6. 1.3% of tasksets achieve DSR in [0.5,0.6[ under CP-FBLT.

6. DSR of CP-FBLT is between 0.4 and 0.5 usually when summation of transactions’
lengths per each task is at least 1/3 of each task’s length and total utilization is close
to 2 or 8. 1.4% of tasksets achieve DSR in [0.4,0.5[ under CP-FBLT.

7. DSR of CP-FBLT is between 0.2 and 0.4 usually when summation of transactions’
lengths per each task is at least 1/3 of each task’s length and total utilization is at
least 4. 2% of tasksets achieve DSR in [0.2,0.4[ under CP-FBLT.
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8. DSR of CP-FBLT is between 0.1 and 0.2 usually when summation of transactions’
lengths per each task is at least 2/3 of each task’s length and accessed objects per each
transaction does not exceed 2/3 of total shared objects. 5% of tasksets achieve DSR
in [0.1,0.2[ under CP-FBLT.

9. DSR of CP-FBLT is at most 0.1 usually when summation of transactions’ lengths per
each task is at least 2/3 of each task’s length, accessed objects per each transaction are
at least 2/3 of total shared objects and total utilization is at least 6. 24.6% of tasksets
achieve DSR in [0,0.1[ under CP-FBLT.

10. CP-FBLT has the highest DSR among proposed contention managers. DSR compar-
ison between DSR of CP-FBLT and other contention managers was given by Point 1
in Section 9.4.1.

A closer look at DSR of FBLT

1. DSR of FBLT is at least 0.9 usually when summation of transactions’ lengths per each
task is at least 1/3 of each task’s length, number of transactions per each task is large,
accessed objects per each transaction is at most 2/3 of total shared objects and total
utilization is at least 6. 37.8% of tasksets achieve DSR in [0.9,1[ under FBLT.

2. DSR of FBLT is between 0.8 and 0.9 usually when summation of transactions’ lengths
per each task is at least 1/3 of each task’s length, accessed objects per each transaction
is at most 2/3 of total shared objects and total utilization does not equal 4. 14.2% of
tasksets achieve DSR in [0.8,0.9[ under FBLT.

3. DSR of FBLT is between 0.7 and 0.8 usually when summation of transactions’ lengths
per each task is at least 2/3 of each task’s length, number of transactions per each task
is small, accessed objects per each transaction is at most 1/3 of total shared objects
and total utilization does not equal 4. 4.26% of tasksets achieve DSR in [0.7,0.8[ under
FBLT.

4. DSR of FBLT is between 0.6 and 0.7 usually when summation of transactions’ lengths
per each task is at least 1/3 of each task’s length, accessed objects per each transaction
is at most 2/3 of total shared objects and total utilization is at most 6. 2.5% of tasksets
achieve DSR in [0.6,0.7[ under FBLT.

5. DSR of FBLT is between 0.4 and 0.6 usually when summation of transactions’ lengths
per each task is at least 1/3 of each task’s length, accessed objects per each transaction
is at least 1/3 of total shared objects and total utilization is at most 4. 4.5% of tasksets
achieve DSR in [0.4,0.6[ under FBLT.

6. DSR of FBLT is between 0.3 and 0.4 usually when summation of transactions’ lengths
per each task is at least 2/3 of each task’s length, number of transactions per each task
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is small, accessed objects per each transaction is at least 1/3 of total shared objects
and total utilization lies between 4 and 6. 2.2% of tasksets achieve DSR in [0.3,0.4[
under FBLT.

7. DSR of FBLT is between 0.2 and 0.3 usually when summation of transactions’ lengths
per each task is at least 2/3 of each task’s length, number of transactions per each task
is small, accessed objects per each transaction is at most 2/3 of total shared objects
and total utilization is less than 8. 4.4% of tasksets achieve DSR in [0.2,0.3[ under
FBLT.

8. DSR of FBLT is between 0.1 and 0.2 usually when summation of transactions’ lengths
per each task is at least 2/3 of each task’s length, number of transactions per each task
is small, accessed objects per each transaction is at least 1/3 of total shared objects and
total utilization is close to 4. 7.3% of tasksets achieve DSR in [0.1,0.2[ under FBLT.

9. DSR of FBLT is less than 0.1 usually when summation of transactions’ lengths per
each task is at least 2/3 of each task’s length, accessed objects per each transaction is
at least 1/3 of total shared objects and total utilization is between 4 and 6. 22.7% of
tasksets achieve DSR in [0,0.1[ under FBLT.

10. DSRFBLT
ECM = 26.7%. 62.9% of tasksets have higher DSR under FBLT than ECM.

12.2% of tasksets have equal DSR under both FBLT and ECM. DSRFBLT
LCM = 26.5%.

62.8% of tasksets have higher DSR under FBLT than LCM. 12.8% of tasksets have
equal DSR under both FBLT and LCM. DSRFBLT

PNF = 4.2%. 43.2% of tasksets have
higher DSR under FBLT than PNF. 10.5% of tasksets have equal DSR under both
FBLT and PNF.

A closer look at DSR of PNF

1. PNF can be implemented using locks, or lock-free or combination of both (cas and casX
as defined in RSTM R5). PNF is a centralized CM. Thus, there is a high contention
on the main service of PNF from different transactions (even non-conflicting ones).
Contention on the main service of PNF can be reduced by avoiding organization of
retrying transactions in n set according to priority. If any retrying transaction ski finds
no conflict with current non-preemptive transactions, ski becomes a non-preemptive
transaction even if n set contains another transaction, slj, with higher priority than ski .
The same analysis in Chapter 6 applies to the less restricted PNF.

2. DSR of PNF is at least 0.9 usually when summation of transactions’ lengths per each
task is at most 2/3 of each task’s length, number of transactions per each task is small
and total utilization does not equal 4. 26.8% of tasksets achieve DSR of at least 0.9
under PNF.
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3. DSR of PNF lies within 0.8 and 0.9 usually when summation of transactions’ lengths
per each task is at least 1/3 of each task’s length, number of transactions per each task
is small, accessed objects per each transaction does not exceed 1/3 of shared objects
and total utilization is at least 6. 13.87% of tasksets achieve DSR in [0.8,0.9[ under
PNF.

4. DSR of PNF lies within 0.6 and 0.8 usually when summation of transactions’ lengths
per each task is at least 1/3 of each task’s length and number of transactions per each
task is small. 12.2% of tasksets achieve DSR in [0.6,0.8[ under PNF.

5. DSR of PNF lies within 0.5 and 0.6 usually when summation of transactions’ lengths
per each task is at least 2/3 of each task’s length, number of transactions per each task
is high and total utilization is less or greater than 6. 4% of tasksets achieve DSR in
[0.5,0.6[ under PNF.

6. DSR of PNF lies within 0.4 and 0.5 usually when summation of transactions’ lengths
per each task is at least 2/3 of each task’s length, number of transactions per each
task is small and accessed objects per each transaction is at most 2/3 of total shared
objects. 3.7% of tasksets achieve DSR in [0.4,0.5[ under PNF.

7. DSR of PNF lies within 0.3 and 0.4 usually when summation of transactions’ lengths
per each task is at least 2/3 of each task’s length. 5% of tasksets achieve DSR in
[0.3,0.4[ under PNF.

8. DSR of PNF lies within 0.2 and 0.3 usually when summation of transactions’ lengths
per each task is at least 2/3 of each task’s length and accessed objects per each trans-
action is at least 1/3 of total shared objects. 4.82 % of tasksets achieve DSR in [0.2,0.3[
under PNF.

9. DSR of PNF lies within 0.1 and 0.2 mostly when summation of transactions’ lengths
per each task is at least 2/3 of each task’s length, accessed objects per each transaction
is at least 1/3 of total shared objects and total utilization is at least 4. 8.7% of tasksets
achieve DSR in [0.1,0.2[ under PNF.

10. DSR of PNF is at most 0.1 usually when summation of transactions’ lengths per each
task is at least 2/3 of each task’s length, number of transactions per each task is small,
accessed objects per each transaction is at least 2/3 of total shared objects and total
utilization does not equal 6. 21% of tasksets achieve DSR in [0,0.1[ under PNF.

11. DSRPNF
ECM = 22.5%. 69.1% of tasksets have higher DSR under PNF than ECM. 10%

of tasksets have equal DSR under both PNF and ECM. DSRPNF
LCM = 22.4%. 68.4%

of tasksets have higher DSR under PNF than LCM. 9.4% of tasksets have equal DSR
under both PNF and LCM.
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A closer look at DSR of LCM

1. DSR of LCM is at least 0.8 mostly when summation of transactions’ lengths per each
task is at most 2/3 of each task’s length, number of transactions is small and total
utilization is mostly low(< 4). 25.28% of tasksets achieve DSR of at least 0.8 under
LCM.

2. DSR of LCM is between 0.2 and 0.8 mostly when summation of transactions’ lengths
per each task is at least 1/3 of each task’s length, number of transactions is small, each
transaction accesses at most 2/3 of shared objects and total utilization is usually at
most 6. 14.2% of tasksets achieve DSR in [0.2,0.8[ under LCM.

3. DSR of LCM is between 0.1 and 0.2 mostly when summation of transactions’ lengths
per each task is at least 1/3 of each task’s length, each transaction accesses at least 1/3
of shared objects and total utilization is usually at most 6. 2.8% of tasksets achieve
DSR in [0.1,0.2[ under LCM.

4. DSR of LCM is at most 0.1 mostly when summation of transactions’ lengths per each
task is at least 1/3 of each task’s length and total utilization is at least 6. 57.8% of
tasksets achieve DSR in [0,0.1[ under LCM.

5. DSRLCM
ECM = 0.13%. 38.6% of tasksets have higher DSR under LCM than ECM. 28%

of tasksets have equal DSR under both LCM and ECM.

A closer look at DSR of ECM

1. DSR for ECM is at least 0.9 usually if summation of transactions’ lengths per each
task is at most 2/3 of each task’s length, number of transactions per each task is small
and total utilization is low(≤ 2). 18.7% of tasksets acheive DSR of at least 0.9 under
ECM.

2. DSR for ECM is between 0.8 and 0.9 generally when each task contains at least one
transaction of at most 2/3 of task’s length at low total utilizations(≤ 4). As total
utilization increases, number and length of transactions decrease to keep DSR between
0.8 and 0.9. 7.3% of tasksets acheive DSR in [0.8,0.9[ under ECM.

3. DSR for ECM lies within 0.7 and 0.8 generally for small number of transactions per
each task at low total utilizations(≤ 2). 3.6% of jobs acheive DSR in [0.7,0.8[ under
ECM.

4. DSR of ECM lies within 0.4 and 0.7 generally when summation of all transactional
lengths per each task is not less than 1/3 of each task’s length at low total utilization(≤
4). DSR decreases as number of transactions per each task decreases and total utiliza-
tion increases up to 8. 5.8% of tasksets achieve DSR in [0.4,0.7[ under ECM.
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5. DSR of ECM usually lies within 0.2 and 0.4 when summation of transactions’ lengths
is at least 1/3 of each task’s length at all total utilizations and each task accesses at
least 1/3 of objects and total utilization usually does not exceed 6. 4.54% of tasksets
achieve DSR in [0.2,0.4[ under ECM.

6. DSR of ECM usually lies within 0.1 and 0.2 when summation of transactions’ lengths
per each task is at least 2/3 of each task’s length, number of transactions is small, each
task accesses at least 2/3 of shared objects and total utilization is at least 4. 2.5% of
tasksets achieve DSR in [0.1,0.2[ under ECM.

7. DSR of ECM is usually at most 0.1 when summation of transactions’ lengths per each
task is at least 2/3 of each task’s length and total utilization is usually high(≥ 6).
57.5% of tasksets achieve DSR of at most 0.1 under ECM.

9.4.2 General results for Avg RC

1. Figure 9.14 is an example of tasksets [1,27], [541,567], [1081,1107] and [1621,1647] with
total utilizations of 2, 4, 6 and 8, respectively. Average retry cost for different CMs is
high compared to locking protocols and lock-free. PNF, FBLT and CP-FBLT generally
show shorter average retry cost than ECM and LCM. FBLT and CP-FBLT show close
average retry cost at total utilizations 2 and 8. Usually, average retry cost of FBLT is
high compared to CP-FBLT and vice versa between total utilizations 2 and 8.
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Figure 9.14: Average RC for Tasksets 3, 543, 1083 and 1623

2. Figure 9.15 is an example of tasksets [28,66], [568,606], [1108,1146] and [1648,1686]
with total utilizations 2, 4, 6 and 8, respectively. Average retry cost for ECM and
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LCM is high compared to locking protocols and lock-free. PNF, FBLT and CP-FBLT
generally show shorter average retry cost than ECM and LCM. Average retry cost of
ECM and LCM generally increases with increasing total utilization. Average retry cost
of ECM and LCM reaches its maximum at total utilization of 6 or 8. Average retry
cost of PNF and FBLT increases from total utilization 2 to 4 or 6 then decreases up to
total utilization of 6 to be close to locking protocols and lock-free. Average retry cost
of CP-FBLT decreases from total utilization 2 to 4 to be close to locking protocols and
lock-free.
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Figure 9.15: Average RC for Tasksets 28, 568, 1108 and 1648

3. Figure 9.16 is an example of tasksets [67,78], [607,618], [1147,1158] and [1687,1698]
with total utilizations of 2, 4, 6 and 8, respectively. “Avg RC” has the same pattern as
in point 2 except that average retry cost of CP-FBLT increases after total utilization
of 6. At total utilization of 8, average retry cost of CP-FBLT is close to average retry
cost of ECM and LCM.

4. Figure 9.17 is an example of tasksets [79,96], [619,636], [1159,1176] and [1699,1716] with
total utilizations of 2, 4, 6 and 8, respectively. “Avg RC” shows the same pattern as in
point 3 except that average retry cost of PNF decreases as total utilization approaches
6, then increases again until total utilization of 8.

5. Figure 9.18 is an example of tasksets [97,105], [637,645], [1177,1185] and [1717,1725]
with total utilizations of 2, 4, 6 and 8, respectively. “Avg RC” has the same pattern
as in point 4 except that average retry cost of FBLT reaches its maximum at total
utilization 4 or 6. Afterwards, average retry cost of FBLT decreases to be close to
locking protocols at total utilization of 8.
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Figure 9.16: Average RC for Tasksets 67, 607, 1147 and 1687
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Figure 9.17: Average RC for Tasksets 81, 621, 1161 and 1701

6. Figure 9.19 is an example of tasksets [106,129], [646,669], [1186,1209] and [1721,1749]
with total utilizations of 2, 4, 6 and 8, respectively. “Avg RC” has the same pattern as
in point 5 except that average retry cost of CP-FBLT reaches its reaches its minimum
value at total utilization of 6. Afterwards, average retry cost of CP-FBLT increases.

7. Figure 9.20 is an example of tasksets [130,138], [670,678], [1210,1218] and [1750,1758]
with total utilizations of 2, 4, 6 and 8, respectively. “Avg RC” has the same patter
as in point 6 except that average retry cost of PNF generally increases with increasing
total utilization.
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Figure 9.18: Average RC for Tasksets 97, 637, 1177 and 1717
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Figure 9.19: Average RC for Tasksets 106, 646, 1186 and 1726

8. Figure 9.21 is an example of tasksets [139,157], [679,697], [1219,1237] and [1759,1777]
with total utilizations of 2, 4, 6 and 8, respectively. “Avg RC” has the same pattern as
in point 7 except that average retry cost of PNF generally reaches its maximum value
at total utilizations 4 or 6.

9. Figure 9.22 is an example of tasksets [158,177], [698,717], [1238,1257] and [1778,1797]
with total utilizations of 2, 4, 6 and 8, respectively. “Avg RC” has the same pattern
as in point 8 except that average retry cost of CP-FBLT decreases between total
utilizations of 2 and 6, then increases.
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Figure 9.20: Average RC for Tasksets 130, 670, 1210 and 1750
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Figure 9.21: Average RC for Tasksets 139, 679, 1219 and 1759

10. Figure 9.23 is an example of tasksets [178,184], [718,724], [1258,1264] and [1798,1804]
with total utilizations of 2, 4, 6 and 8, respectively. “Avg RC” has the same pattern
as in point 9 except that average retry cost of CP-FBLT reaches its minimum value
within total utilizations 2 and 4.

11. Figure 9.24 is an example of tasksets [185,210], [725,750], [1265,1290] and [1805,1830]
with total utilizations 2, 4, 6 and 8, respectively. “Avg RC” has the same pattern as
in point 10 except that average retry cost of FBLT reaches its maximum value at total
utilization of 4, then decreases to be close to locking protocols at total utilization of 6.
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Figure 9.22: Average RC for Tasksets 158, 698, 1238 and 1778
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Figure 9.23: Average RC for Tasksets 178, 718, 1258 and 1798

12. Figure 9.25 is an example of tasksets [211,233], [751,773], [1291,1313] and [1831,1853].
“Avg RC” has the same pattern as in point 11 except that average retry cost of PNF
either increases with total utilization or reaches its maximum value at total utilization
of 4 or 6.

13. Figure 9.26 is an example of tasksets [234,270], [774,810], [1314,1350] and [1854,1890]
with total utilizations of 2, 4, 6 and 8, respectively. “Avg RC” has the same pattern
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Figure 9.24: Average RC for Tasksets 185, 725, 1265 and 1805
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Figure 9.25: Average RC for Tasksets 211, 751, 1291 and 1831

as in point 12 except that average retry cost of FBLT reaches its maximum value at
total utilization of 4 or 6. Average retry cost of CP-FBLT reaches its minimum value
within total utilizations 2 and 4, and at total utilization of 8.

Closer look at Avg RC of different CMs

14. CP-FBLT shows shortest Avg RC among contention managers. 89% of tasksets have
shorter Avg RC under CP-FBLT than ECM. 2.3% of tasksets have equal Avg RC
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Figure 9.26: Average RC for Tasksets 234, 774, 1314 and 1854

under CP-FBLT and ECM. 80.7% of tasksets have shorter Avg RC under CP-FBLT
than LCM. 2.8% of tasksets have equal Avg RC under CP-FBLT and LCM. 61.1% of
tasksets have shorter Avg RC under CP-FBLT than PNF. 9.4% of tasksets have equal
Avg RC under CP-FBLT and PNF. 53.1% of tasksets have shorter Avg RC under
CP-FBLT than FBLT. 16.9% of tasksets have equal Avg RC under CP-FBLT and
FBLT. Average retry cost of CP-FBLT is equal or shorter than average retry cost of
other CMs when summation of transactions’ lengths per each task is at least 1/3 of
task’s length and number of transactions per each task is small (i.e.,≤ 2) for any total
utilization, especially at 4. 52.4% of tasksets have Avg RC of CP-FBLT shorter or
equal to blocking time of each of OMLP and RNLP. 55% of tasksets have equal or
shorter Avg RC of CP-FBLT compared to Avg RC of lock-free.

15. 86% of tasksets have shorter Avg RC under FBLT than ECM. 2.3% of tasksets have
equal Avg RC under FBLT and ECM. 77.5% of tasksets have shorter Avg RC under
FBLT than LCM. 2.2% of tasksets have equal Avg RC under FBLT and LCM. 63.3%
of tasksets have shorter Avg RC under FBLT than PNF. 11.2% of tasksets have equal
Avg RC under FBLT and PNF. Average retry cost of FBLT is equal or shorter than
average retry cost of other CMs when summation of transactions’ lengths per each task
is at least 1/3 of task’s length, number of transactions per each task is small (i.e.,≤ 2)
and total utilization is at least 8. 39.7% of tasksets have Avg RC of FBLT shorter
or equal to blocking time of each of OMLP and RNLP. 46% of tasksets have equal or
shorter Avg RC of FBLT compared to Avg RC of lock-free.

16. 75.3% of tasksets have shorter Avg RC under PNF than ECM. 2% of tasksets have
equal Avg RC under PNF and ECM. 67.5% of tasksets have shorter Avg RC under
PNF than LCM. 1.9% of tasksets have equal Avg RC under PNF and LCM. . Average



Mohammed El-Shambakey Chapter 9. Experiments 135

retry cost of PNF is equal or shorter than average retry cost of other CMs when
summation of transactions’ lengths per each task is at least 1/3 of task’s length, number
of transactions per each task is small (i.e.,≤ 2) and total utilization is at least 6. 15.8%
of tasksets have Avg RC of PNF shorter or equal to blocking time of each of OMLP and
RNLP. 32% of tasksets have equal or shorter Avg RC of PNF compared to Avg RC of
lock-free.

17. 69.5% of tasksets have shorter Avg RC under LCM than ECM. 2.3% have equal
Avg RC under LCM and ECM. Average retry cost of LCM is equal or better than
average retry cost of other CMs when summation of transactions’ lengths per each
task is at least 2/3 of task’s length, number of transactions per each task is small
(i.e.,≤ 3) and total utilization does not exceed 6. 3.5% of tasksets have Avg RC of
LCM shorter or equal to blocking time of each of OMLP and RNLP. Avg RC of LCM
is equal or longer than Avg RC of lock-free. 8.2% of tasksets have equal or shorter
Avg RC of LCM compared to Avg RC of lock-free.

18. Average retry cost of ECM is equal or better than average retry cost of other CMs
when summation of transactions’ lengths per each task is at least 2/3 of task’s length,
number of transactions per each task is small (i.e.,≤ 3), number of accessed objects
per each task is small and total utilization is 2. 2.7% of tasksets have Avg RC of
ECM shorter or equal to blocking time of each of OMLP and RNLP. Avg RC of ECM
is equal or longer than Avg RC of lock-free. 7.4% of tasksets have equal Avg RC of
ECM compared to Avg RC of lock-free.

9.5 Results Summary

1. Experiments show that CP-FBLT has the highest DSR among contention managers.
Superiority of CP-FBLT results from combining benefits of PNF and LCM into design
of FBLT (the base of CP-FBLT). Besides, checkpointing reduces response time of CP-
FBLT compared to FBLT. More jobs meet their deadlines under STM than lock-free
because of conflict resolution policies. DSR comparison within contention managers
and against lock-free is summarized in Table 9.2. “Avg%” is the average increase of
DSR of each contention manager in the left column to DSR of each contention manager
and lock-free in the first row. “TS(>)%” is percentage of tasksets with a higher DSR
under each contention manager in the first column than contention managers and
lock-free in the first row. “TS(=)%” is percentage of tasksets that has the same DSR
under both synchronization techniques in the first column and first row. Blank cell
in Table 9.2 indicate that synchronization technique is compared to itself, or the two
synchronization techniques have already been compared.

2. More jobs meet their deadlines under OMLP and RNLP than any contention manager
by 12.4% and 13.7% on average, respectively. OMLP uses group locking that protects
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Table 9.2: DSR comparison within CMs and with lock-free
FBLT PNF LCM ECM LF

Avg% 4.6 8.8 31.2 31.3 34.6
CP-FBLT TS(>)% 54.1 51.9 76.7 77.2 68.9

TS(=)% 9.5 7.8 8.8 8.8 2.5
Avg% 4.2 26.5 26.7 28.5

FBLT TS(>)% 43.2 62.8 62.9 63.9
TS(=)% 10.5 12.8 12.2 7.4
Avg% 22.4 22.5 32.4

PNF TS(>)% 68.4 69.1 61.5
TS(=)% 9.4 10 8.2
Avg% 0.13 -2.7

LCM TS(>)% 38.6 55.7
TS(=)% 28 13.9
Avg% -5.3

ECM TS(>)% 49.2
TS(=)% 16.4

all required objects in the same atomic section by the same resource. Current imple-
mentation of RNLP requires a priori knowledge of requested objects per each atomic
section. Thus, OMLP and RNLP have the advantage of a priori knowledge of requested
objects per each atomic section. Only PNF has the same advantage. But PNF induces
a lot of overhead because it is a centralized contention manager. To examine effect of
a-priori knowledge of required objects, we modified FBLT to FBLT-P. Under FBLT-
P, each transactions accesses all required objects at the beginning of the transaction.
Thus, each transaction knows a priori what objects are going to be accessed. Results
show that DSR of FBLT-P increased over DSR of CP-FBLT by 19.5%. Additionally,
atomic sections under OMLP and RNLP do not have to retry, nor to make decisions
upon a conflict in each retry. Under OMLP and RNLP, tasks suspend after making
requests for acquiring specific locks. After obtaining all required locks, atomic sections
can proceed without abortion upon a conflict. Thus, locking protocols make a deci-
sion only once regarding which atomic section to proceed, whereas a transaction can
invoke the contention manager many times even if the contention manager is going to
make the same decision. DSR comparison between locking protocols and contention
managers is summarized in Table 9.3. “Avg%” is the average increase of DSR of each
locking protocol in first column to DSR of each contention manager in the first row.
“TS(≥)%” is percentage of tasksets, under each contention manager, with DSR lower
than DSR of locking protocol by at most “Avg%”.

3. CP-FBLT shows the shortest Avg RC among proposed contention managers. Avg RC
comparison between proposed contention managers, lock-free and locking protocols is
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Table 9.3: DSR comparison between CMs and locking protocols
FBLT-P CP-FBLT FBLT PNF LCM ECM

OMLP
Avg% 14.6 33.2 37.8 42 64.4 64.5

TS(≥)% 71 65.6 58.6 55.3 39 39

RNLP
Avg% 15.9 34.5 39 43.3 65.7 65.8

TS(≥)% 71.9 66.2 58.8 55 38 38

summarized in Table 9.4. “TS(>)%” is percentage of tasksets, under each contention
manager in first column of Table 9.4, that has shorter Avg RC than each synchroniza-
tion technique in first row of Table 9.4. “TS(=)%” is percentage of tasksets, under
each contention manager in first column of Table 9.4, that has equal Avg RC with each
synchronization technique in first row of Table 9.4. Blank cell in Table 9.4 indicate
that contention manager is compared to itself, or the two synchronization techniques
have already been compared.

Table 9.4: Avg RC comparison between CMs, locking protocols and lock-free
FBLT PNF LCM ECM OMLP RNLP LF

CP-FBLT TS(>)% 53.1 61.1 80.7 88.9 52.4 38 40.2
TS(=)% 16.9 9.4 2.8 2.3 0.2 14.5 14.8

FBLT TS(>)% 63.3 77.5 86 38.6 23.1 17.2
TS(=)% 11.2 2.2 2.3 1.2 16.7 28.7

PNF TS(>)% 67.5 75.3 16.5 9.2 18
TS(=)% 1.9 2 0.3 5.8 13.9

LCM TS(>)% 69.5 3.6 3.1 0.8
TS(=)% 2.3 0.1 0.4 7.4

ECM TS(>)% 2.7 2.6 0
TS(=)% 0 0 7.4



Chapter 10

Qualitative Comparison Between
STM, Locking Protocols and
Lock-Free

We compared proposed contention managers against retry-loop lock-free [49] and locking
protocols (i.e., Global OMLP [22, 29] and RNLP [149]) analytically in Chapters 4 to 7 and
quantitatively in Chapter 9. In this Chapter, we compare the proposed contention managers
against retry-loop lock-free and locking protocols qualitatively.

The rest of this Chapter is organized as follows, Section 10.1 compares compositionality for
the three synchronization techniques. Section 10.2 compares priority inversion and its bonuds
under the synchronization techniques. The ability to access multi-objects per each atomic
section (i.e., nesting) is compared in Section 10.3. Convoying is compared in Section 10.4.
Deadlocks and livelocks are compared in Section 10.5. Section 10.6 compares dependence
of different synchronization techniques on the underlying platform and how this dependence
affects implementation. Section 10.7 compares the amount of a priori knowledge required
by each synchronization technique. Complexity to upper bounds retry cost, blocking time
and response time for the three synchronization techniques is compared in Section 10.8. We
conclude the Chapter in Section 10.10.

10.1 Compositionality

Compositionality means when an object in the system satisfies a specific property, then the
system as a whole satisfies this property [73]. Compositionality is important because it
allows building the system in a modular way. Each module (or component) distinguishes
between its implementation and its interface. As long as the component is composable,
then programmers need not know its implementation. Programmers can rely only on the

138
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properties provided by the interface to build a system that satisfies these properties.

Locking protocols (including OMLP and RNLP) are not composable. To access multiple
objects under OMLP and RNLP, either these objects must be protected by a global lock as
in OMLP, or each object exposes its own lock as in RNLP. Thus, it is up to the program-
mer to decide how to use locks to satisfy correctness of the system. Lock-free objects are
not composable as each object has different design alternatives. Thus, programmers must
know implementation details of these alternatives to ensure correctness of the system. On
contrast to locking and lock-free, STM allows compositionality as all objects are accessed in
one transaction. If there is a conflict on any object inside the atomic block, the whole trans-
action restarts. Compositionality for different synchronization techniques is summarized in
Table 10.1.

Table 10.1: Compositionality comparison
Locking STM Lock-free

Compositionality No Yes No

10.2 Priority Inversion

Priority inversion occurs when a higher priority job is not allowed to run because it needs a
resource locked by a lower priority job [32, 101]. Priority inversion can be sometimes useful
to prevent starvation of lower priority jobs. On the other hand, response times of higher
priority jobs are elongated. Thus, priority inversion must be bounded.

Locking protocols bound priority inversion using priority inheritance [32,51,130] and priority
ceiling [32, 38, 51, 89, 96, 118, 119, 130]. Global OMLP [22, 29] and RNLP [149] use priority
inheritance. Under retry-loop lock-free, there is no guarantee that a higher priority task
will get access to a required object before a conflicting lower priority task. Thus, priority
inversion can occur under lock-free synchronization. Due to nature of hard real-time systems,
a higher priority task can conflict with a bounded number of lower priority tasks. Thus,
priority inversion under lock-free is bounded. Usually under STM, priority inversion is
simply avoided by having the higher priority task aborting the lower priority one (i.e., ECM
and RCM). According to design of contention manager, priority inversion is bounded as
given by Claims 29, 52 and 66 for LCM, PNF and FBLT. As CP-FBLT is based on FBLT,
CP-FBLT also bounds priority inversion. Priority inversion for different synchronization
techniques is summarized in Table 10.2.
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Table 10.2: Priority inversion comparison
Locking STM Lock-free

Priority inversion Bounded Avoided or bounded Bounded

10.3 Nesting

Nesting means the ability to access multiple objects in the same atomic section individu-
ally [149]. Nesting is important as it allows the design of fine-grained objects and increases
concurrency (i.e., synchronization technique accesses only the needed parts of the object,
not the whole object).

Lock-free does not allow nesting as lock-free primitives access only one object. OMLP does
not allow nesting because all objects that are accessed in the same atomic section are pro-
tected by the same lock. RNLP and STM allow nesting. STM not only allows access of
multiple object per transaction, but also allows nesting of transactions inside each other.
Transactions can be nested linearly, where each transaction has at most one pending trans-
action [114]. Nesting can also be done in parallel, where transactions execute concurrently
within the same parent [147]. Linear nesting can be 1) flat: If a child transaction aborts,
then the parent transaction also aborts. If a child commits, no effect is taken until the
parent commits. Modifications made by the child transaction are only visible to the parent
until the parent commits, after which they are externally visible. 2) Closed [88]: Similar to
flat nesting, except that if a child transaction conflicts, it is aborted and retried, without
aborting the parent, potentially improving concurrency over flat nesting. 3) Open [87]: If
a child transaction commits, its modifications are immediately externally visible, releasing
memory isolation of objects used by the child, thereby potentially improving concurrency
over closed nesting. However, if the parent conflicts after the child commits, then compen-
sating actions are executed to undo the actions of the child, before retrying the parent and
the child. Nesting for different synchronization techniques is summarized in Table 10.3

Table 10.3: Nesting comparison
Locking STM Lock-free

Nesting
OMLP: No

Yes No
RNLP: Yes

10.4 Convoying

Convoying occurs when descheduling a task holding a lock [73]. Other tasks waiting for the
lock are queued, waiting for the lock and unable to progress. Thus, convoying avoidance is
important to ensure progress of the system.
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Global OMLP and RNLP avoid lock convoying by priority inheritance. STM and lock-free
objects do not suffer from convoying as they do not hold locks. Besides, all objects accessed
by a preempted transaction under STM are available to all other transactions. Convoying
for different synchronization techniques is summarized in Table 10.4

Table 10.4: Convoying comparison
Locking STM Lock-free

Convoying No No No

10.5 Deadlock and Livelock

Deadlock occurs if two or more tasks holding objects needed by each other. Each task
is waiting for the others to finish and no task releases its objects [31, 73]. Thus, no task
progresses.

For multiple objects, locking protocols avoid deadlock by accessing objects in order as as-
sumed in RNLP. It is programmer’s responsibility to impose order on objects. If requested
objects in each critical section are known a priori, then objects can be requested at once.
Thus, no need for objects’ order. OMLP avoids deadlocks by group locking. Under group
locking, all objects accessed in the same critical section are protected by the same lock.
Lock-free objects use atomic primitives that access only one object. So, there is no chance
for deadlock under lock-free objects. Deadlocks cannot occur under STM because contention
manager allows only one transaction to proceed and aborts the others. Thus, objects can be
accessed in any order under STM. Livelocks [73] are similar to deadlocks, except that tasks
are changing their status with regard to each other with no progress (i.e., each task releases
its objects for the other task). By definition of OMLP, RNLP, STM and lock-free, livelocks
do not occur. Deadlock and livelock for different synchronization techniques are summarized
in Table 10.5

Table 10.5: Deadlock/Livelock comparison
Locking STM Lock-free

Deadlock
OMLP: No

No No
RNLP: Programmer dependent

Livelock No No No
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10.6 Platform Dependence and Implementation Com-

plexity

By “Platform Dependence”, we mean how much a specific synchronization technique is
related to the underlying system (e.g., operating system, virtual machine and scheduler).
Platform dependence is important for synchronization technique portability. It is more useful
for legacy applications to use libraries than to rebuild the whole system. “Implementation
Complexity” is related to “Platform Dependence”. If the implementation requires detailed
knowledge of the underlying platform (e.g., data structures and schedulers’ details), then
implementation becomes complex. If implementations requires moderate knowledge of the
underlying platform (e.g., APIs), then implementation is at most of medium complexity.

STM, in general, is built as user-space library with a specific programming language (e.g.,
RSTM [144],TinySTM [122] and HyflowCPP [146] for C and C++. Deuce [90] and HyFlow
[145] for Java). Using products, like Jini [52], different languages can communicate with
each other. Thus, STM libraries can be independent on programming languages. Imple-
mentation of proposed contention managers was simply done by addition of header files to
RSTM [144]. Proposed contention managers do not require modification of ChronOS. In
contrast to STM, OMLP and RNLP are implemented inside kernel of ChronOS. OMLP and
RNLP used “FIFO” and “Priority” queues inside kernel to organize requests by tasks to
different objects. ChronOS structures and schedulers have been modified to enable suspen-
sion of tasks requesting locks, non-preemptive execution of tasks holding locks and priority
inheritance. Thus, OMLP and RNLP are very dependent on ChronOS. Retry-loop lock-free
uses atomic primitives such as CAS operations. Thus, retry-loop lock-free is independent on
the underlying system. So, implementation of OMLP and RNLP is the most complex among
synchronization techniques because OMLP and RNLP are tailored inside kernel. Implemen-
tations of proposed contention managers and lock-free are less complicated than OMLP and
RNLP. Platform dependence and implementation complexity for different synchronization
techniques are summarized in Table 10.6

Table 10.6: Platform dependence/Implementation complexity comparison
Locking STM Lock-free

Platform dependence Dependent Independent Independent
Implementation complexity Hard Simple Simple

10.7 Transparency

By transparency we mean how much information about real-time tasks and shared objects
must be provided a priori by programmer to the synchronization technique [31]. With less
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information, the synchronization technique becomes more flexible and more applicable to
commercial applications.

OMLP must know a priori all objects accessed by each atomic section in each task. This
information is important to form groups of objects and assignment of a distinct lock to
each group (i.e., group locking). Despite a priori knowledge of required object per each
atomic section is beneficial to RNLP, this information is not necessary for RNLP to work.
Nevertheless, if objects are not know a priori for RNLP, objects must be accessed in order to
prevent deadlock. Imposing order on object access is a programmer responsibility. Except
for PNF (Chapter 6), all proposed contention managers require no previous knowledge about
required object per each transaction. In contrast to OMLP, PNF requires knowledge only
about required object for the current transaction when transaction starts. OMLP requires
a priori knowledge about all objects accessed by each atomic section in all tasks to compute
group locks. Retry-loop lock-free does not need any information about any objects. Thus,
retry-loop lock-free is the most transparent synchronization technique. Transparency for
different synchronization techniques is summarized in Table 10.7.

Table 10.7: Transparency comparison
Locking STM Lock-free

Transparency
OMLP: No

Yes Yes
RNLP: Yes

10.8 Upper Bounds Complexity

By “Upper Bound Complexity” we mean how long does it take to calculate theoretical
upper bounds over retry cost, blocking and response time under different synchronization
techniques. Theoretical upper bounds are used to determine feasibility of a given taskset
under a specific synchronization technique. As complexity of upper bounds’ calculation
decreases, it will be faster to determine feasibility of the taskset. Schedulers can use the
theoretical upper bounds to test effect of addition of new tasks (i.e., whether the addition of
a new task will render the taskset to be infeasible). Complexity of upper bounds’ calculation
depends on amount of required information about real-time tasks and accessed objects. To
get tighter upper bounds, more information is needed which increases complexity.

As given in Chapters 4 to 7, upper bounds on retry cost and response time depend on accessed
objects by each transaction, number and lengths of transactions per each task, periods and
deadlines of each job, number of tasks and number of processors. Eq(4.38) upper bounds
blocking time under OMLP. Eq(4.38) is given by Lemma 15 in [29] and tightened by Theorem
4 in [29]. Upper bound of blocking time under RNLP, given in [149], can be extended by the
same analysis in [29]. Thus, OMLP and RNLP will need the same information required by
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proposed contention managers to calculate upper bounds over blocking time. Despite retry-
loop lock access only one object for each atomic primitive, retry-loop lock-free still needs the
same information by proposed contention managers to upper bound retry cost and response
time. Thus, the three synchronization techniques have equal complexity to calculate upper
bounds for retry cost, blocking and response time. Upper bound complexity for different
synchronization techniques is summarized in Table 10.8.

Table 10.8: Upper bound complexity comparison
Locking STM Lock-free

Upper bound complexity Equal Equal Equal

10.9 Memory

We compare STM against lock-free and locking protocols in terms of required memory space
and memory management. Without reasonable maximum amount of memory space, and
without lightweight memory management, performance of STM can degrade. Proposed con-
tention managers are integrated into object-based non-blocking RSTM [144]. As described
in [110], each writer makes its own copy of the object data while keeping a pointer to the old
object data. Writer makes modifications to its copy of the object data. Object header has a
pointer to the most recent transaction that acquired the object, known as Owner. Owner has
a pointer to the old object data. Upon commit, the new object data becomes the current
object data. Upon abort, the old object data is the current object data. When a writer
acquires an object, it invokes the contention manager to resolve any conflicts. Thus, object
copies of aborted transactions become obsolete and marked as “retired” to be reclaimed
later. Readers do not have to make copies of the object data. Instead each object has a list
of pointers to visible readers. So, for n tasks and Nr objects, the maximum required memory
space occurs when all the n tasks are executing transactions concurrently and each transac-
tion tries to modify each of the Nr objects. At any time instant before reclaiming obsolete
object data copies of aborted transactions, there can be at most n.Nr copies of the objects.
Proposed contention managers do not add any memory requirements except for PNF. PNF
requires at most 3 lists: 1) A list of pointers to non-preemptive transactions. 2) A list of
pointers to retrying transactions. 3) A list of pointers to used objects by non-preemptive
transactions.

Similar to STM, retry-loop lock-free [49] needs at least a copy of the old data as a verification
upon update. In contrast to STM, retry-loop lock-free uses atomic operations that need a
copy of a single word, not the whole object. To compare STM and lock-free in terms of
memory space, it is assumed that each object consumes a single word and each transaction
accesses only one object. Thus, for n concurrent transactions released by n tasks, both STM
and lock-free need n copies of objects at most. STM will need additional space for metadata
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(e.g., owner and descriptor fields). Besides, lock-free does not need memory management to
reclaim obsolete data by aborted transactions.

In OMLP [22, 29] under G-EDF, each lock has two queues. A FIFO queue of m size and a
priority queue of max(n −m, 0) size. Thus, the required space for each lock is max(n,m).
OMLP uses “group locking” that collects all objects that can be accessed with the same
atomic section into the same group. Each group is protected by one lock. Thus, maximum
memory requirements occurs when each object belongs to a distinct group. In this case,
there are Nr locks for Nr objects. Consequently, OMLP needs Nr.max(n,m) slots for all
queues. Each slot contains a pointer to a requesting task. Thus, if n > m, then OMLP needs
n.Nr slots for pointers, whereas STM needs n.Nr copies of objects. Thus, OMLP needs equal
or less space than STM. If n ≤ m, then STM may need less space than OMLP if the size
for any object does not exceed m/n multiplied by the size for any pointer. In contrast to
STM, OMLP does not need memory management to reclaim obsolete data. OMLP does not
record metadata as in STM.

In RNLP [148–150] under G-EDF, each object has a queue of length m. Despite objects can
be grouped into “dynamic groups” as presented by [148], the maximum space requirement
occurs when each object is accessed individually. Thus, each object is protected by a separate
lock. For any task to request an object, it must first obtain a token. The token queue is a
FIFO queue of length m. Additional tasks requesting tokens are organized in a priority queue
of length max(n−m, 0). Consequently, RNLP needs m.Nr +max(n,m) slots for all queues.
Each slot contains a pointer to a requesting task. If m ≥ n, then RNLP needs m(Nr + 1)
slots for pointers, whereas STM needs n.Nr copies of objects. Thus, STM may require less
space than RNLP if the size for any object does not exceed m(Nr+1)

n.Nr
multiplied by size of any

pointer. Otherwise, if n < m, then STM may require less space than RNLP if the size for
any object does not exceed m.Nr+n

n.Nr
multiplied by size of any pointer. In contrast to STM,

RNLP does not need memory management to reclaim obsolete data. RNLP does not record
metadata as in STM. Memory comparison between different synchronization techniques is
summarized in Table 10.9

Table 10.9: Memory comparison between locking, STM and lock-free
Locking STM Lock-free

Memory
Space compared

to STM
Dependent - Less

Memory
management

Low High Low



Mohammed El-Shambakey Chapter 10. Qualitative Comparison 146

10.10 Conclusion

We compared proposed contention managers against retry-loop lock-free [49] and locking
protocols (i.e., Global OMLP [22, 29] and RNLP [149]) analytically in Chapters 4 to 7 and
quantitatively in Chapter 9. In this Chapter, we compared the proposed contention managers
against retry-loop lock-free and locking protocols qualitatively. The complete qualitative
comparison between the three synchronization techniques is give in Table 10.10.

Table 10.10: Qualitative comparison between locking, STM and lock-free
Locking STM Lock-free

Compositionality No Yes No

Priority inversion Bounded
Avoided or
bounded

Bounded

Nesting OMLP: No Yes No
RNLP: Yes

Convoying No No No
Deadlock OMLP: No No No

RNLP:
Programmer
dependent

Livelock No No No
Platform dependence Dependent Independent Independent

Implementation complexity Hard Simple Hard
Transparency OMLP: No Yes Yes

RNLP: Yes

Upper bound complexity Equal Equal Equal

Memory
Space compared

to STM
Dependent - Less

Memory
management

Low High Low



Chapter 11

Conclusions and Future Work

11.1 Conclusions

In this dissertation, we designed, analyzed, and experimentally evaluated six real-time CMs.
Designing real-time CMs is straightforward. The simplest logic is to use the same rationale
as that of the underlying real-time scheduler. This was shown in the design of ECM and
RCM. ECM allows the transaction with the earliest absolute deadline (i.e., dynamic priority)
to commit first. RCM allows the transaction with the smallest period (i.e., fixed priority)
to commit first. We established upper bounds for retry costs and response times under
ECM and RCM, and identified sufficient conditions under which they have equal or better
performance than lock-free and locking protocols in terms of total utilization.

As each transaction can access multiple objects, a transaction may abort indirectly due to
another transaction with no shared objects between them. The indirect retrial is denoted as
transitive retry. Under both ECM and RCM, a task incurs at most 2smax retry cost for each
of its atomic sections due to a conflict with another task’s atomic section. Transactions can
also retry due to release of higher priority jobs that preempt a transaction in a lower priority
job.

The smax/rmax ratio is a sufficient condition to determine whether STM is better or as good
as lock-free. ECM and RCM have equal or better total utilization than retry-loop lock-free
if smax does not exceed one half of rmax. smax can exceed rmax with equal periods between
conflicting tasks, and large access times to the same object within the same transaction.
Performance of ECM and RCM were compared against real-time locking protocols (i.e.,
OMLP and RNLP) in terms of total utilization. As number of atomic sections in each task
increases, all tasks have equal periods and equal number of atomic sections, and number
of processors is at least equal to number of tasks, then smax can be at least equal to Lmax
with total utilization of ECM equal or better than total utilization of OMLP and RNLP.
The same results apply to total utilization comparison between RCM and locking protocols

147
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except that number of processors should be at least double number of tasks.

In ECM and RCM, a task incurs at most 2smax retry cost for each of its atomic section
due to conflict with another task’s atomic section. With LCM, this retry cost is reduced to
(1+αmax)smax for each aborted atomic section. In ECM and RCM, higher priority tasks are
not blocked due to lower priority tasks, whereas in LCM, they are. In LCM/G-EDF, blocking
due to a lower priority job is encountered only from a task τj’s last job instance during τi’s
period. Contribution of a transaction slj to the retry cost of a lower priority transaction is
higher than blocking caused by slj to a higher priority transaction. Thus, under LCM/G-
EDF, each transaction is assumed to contribute in the abort and retry of a lower priority
transaction. Hence, blocking of higher priority transactions due to lower priority transactions
is ignored under LCM/G-EDF. This is not the case with LCM/G-RMA, because of fixed
priority under G-RMA. Blocking time under LCM is bounded.

Total utilization of LCM/G-EDF is always equal or better than ECM’s. Whereas, total
utilization of LCM/G-RMA is equal or better than RCM’s depending on αmin and αmax.
Total utilization of LCM (with G-EDF and G-RMA) is equal or better than total utilization
of retry-loop lock-free if smax does not exceed rmax/ (1 + αmax). With high number of object
access within each transaction, smax can be much larger than rmax with equal or better total
utilization for LCM (with G-EDF and G-RMA) than total utilization of retry-loop lock-free.
Total utilization of LCM was compared against real-time locking protocols (i.e., OMLP and
RNLP) under G-EDF and G-RMA. As number of atomic sections in each task increases,
all tasks have equal periods and equal number of atomic sections, αmax approaches 0, and
number of processors is at least equal to half number of tasks, then smax can be at least equal
to Lmax with total utilization of LCM/G-EDF equal or better than total utilization of OMLP
and RNLP. The same results apply to total utilization comparison between LCM/G-RMA
and locking protocols except that αmax approaches αmin and number of processors should
be at least double number of tasks.

Transitive retry increases transactional retry cost under ECM, RCM, and LCM. PNF avoids
transitive retry by avoiding transactional preemptions. PNF reduces the priority of aborted
transactions to enable other tasks to execute, increasing processor usage. Executing trans-
actions are not preempted due to the release of higher priority jobs. On the negative side
of PNF, higher priority jobs can be blocked by executing transactions of lower priority jobs.
PNF/G-EDF’s total utilization is equal or better than ECM’s if, for each task τi, total num-
ber of transactions in any task τj 6= τi - that has no direct conflict with any transaction in τi -
divided by number of processors is not greater than maximum number of higher priority jobs
than current job of τi that can be released during Ti. Similar condition holds for the total
utilization comparison between PNF/G-EDF and LCM/G-EDF, in addition to maintain a
lower bound of 1/αmax over maximum number of higher priority jobs of τj that can exist
during Ti and have direct conflict with any transaction in τi. Total utilization of PNF/G-
RMA is equal or better than RCM’s if, for each task τi, total number of transactions in tasks
with lower priority than pi does not exceed one half of maximum number of jobs with higher
priority than pi that can be released during Ti. Total utilization of PNF/G-RMA is equal
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or better than LCM/G-RMA’s if αmin → 0 and, for each task τi, total number of transac-
tions in tasks with lower priority than pi and have no direct conflict with any transaction
in τi divided by number of processors does not exceed one half of maximum number of jobs
with higher priority than pi that can be released during Ti. Total utilization of PNF under
G-EDF and G-RMA is equal or better than total utilization of retry-loop lock-free [49] with
smax/rmax ≥ 1 if, for each task τi, maximum number of higher priority jobs than current
job of τi - that can be released during Ti - is not less than maximum number of lower pri-
ority transactions in any task τj 6= τi that has no direct conflict with any transaction in
τi. Total utilization of PNF was compared against real-time locking protocols (i.e., OMLP
and RNLP) under G-EDF and G-RMA. As all tasks have equal periods and equal number
of atomic sections, and number of processors exceeds number of tasks, then smax can be at
least equal to Lmax with total utilization of PNF equal or better than total utilization of
OMLP and RNLP under G-EDF and G-RMA.

PNF requires a priori knowledge about objects accessed by each transaction. Besides, PNF
is a centralized CM. This is incompatible with dynamic STM implementations. Thus, we
introduce the FBLT contention manager. Under FBLT, each transaction is allowed to abort
for no larger than a specified number of times. Afterwards, the transaction becomes non-
preemptive. Non-preemptive transactions have higher priorities than other preemptive trans-
actions and real-time jobs. Non-preemptive transactions resolve their conflicts according to
the order they become non-preemptive (i.e., FBLT aborts the later non-preemptive transac-
tion in favour of the earlier non-preemptive transaction).

By proper adjustment of the maximum abort number for any preemptive transaction of any
task τi (i.e., Ωmax

i ), FBLT’s total utilization is equal to or better than total utilization of
other CMs. Ratio between smax for FBLT on one side and rmax for lock-free and Lmax for
locking protocols on the other side also depends on Ωmax

i . As Ωmax
i decreases, smax/rmax

and smax/Lmax increase. As number of atomic sections in each task increases, all tasks have
equal number of atomic sections, and number of processors is not less than maximum Ωmax

i

for any τi, then smax can be at least equal to Lmax with total utilization of FBLT equal or
better than total utilization of OMLP and RNLP under G-EDF and G-RMA. In any case,
smax should not exceed 2.Lmax.

Past research on real-time CMs focused on developing different conflict resolution strategies
for transactions. Except for LCM (Chapter 5), no policy was made to reduce the length
of conflicting transactions. We analysed effect of checkpointing over FBLT CM and iden-
tified conditions under which CP-FBLT can have reduced response time than FBLT. Some
CMs make no use of checkpointing due to behaviour of that CM (e.g, under PNF, all non-
preemptive transactions are non-conflicting).

We also implemented previous CMs, lock-free, OMLP and RNLP locking protocols in ChronOS
real-time operating system and conducted experimental studies. We compared different syn-
chronization techniques in term of Deadline Satsifaction Ratio (DSR) and Average Retry
Cost (Avg RC). Our experimental studies revealed, among the contention managers, CP-
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FBLT performs the best. DSR for CP-FBLT exceeds DSR of ECM, LCM, PNF and FBLT
by 31.3%, 31.2%, 8.8% and 4.6% on average, respectively. Percentages of tasksets, under
CP-FBLT, that have DSR at least equal to DSR of ECM, LCM, PNF and FBLT are 86%,
85.5%, 59.6% and 63.6% on average, respectively. CP-FBLT’s higher performance is due to
the fact that PNF’s and LCM’s advantages are combined into the design of FBLT, which is
the base of CP-FBLT. Moreover, checkpointing improves task response time.

Contention managers show equal or better performance than lock-free: More jobs meet their
deadlines using CP-FBLT, FBLT and PNF than lock-free synchronization by 34.5%, 28.4%
and 32.4% (on average), respectively. Average percentage of jobs that meet their deadlines
using ECM and LCM are slightly lower than lock-free by 5.2% and 2.6%, respectively. Supe-
riority of contention managers to lock-free results from conflict resolution policy of contention
managers. STM allows access of multiple objects per transaction, while lock-free do not.

Generally, more jobs meet their deadlines under OMLP and RNLP than any contention
manager by 12.4% and 13.7% on average, respectively. 66% of tasksets, under CP-FBLT,
have lower DSR than OMLP and RNLP by at most 33.5% on average. 58.7% of tasksets,
under FBLT, have lower DSR than OMLP and RNLP by at most 38% on average. 55% of
tasksets, under PNF, have lower DSR than OMLP and RNLP by at most 43% on average.
38.5% of tasksets, under each of ECM and LCM, have lower DSR than OMLP and RNLP
by at most 65% on average. Higher DSR of OMLP and RNLP results from priori knowledge
of required object per each critical section. Thus, priority inversion is reduced. Only PNF
has the same advantage. But PNF induces a lot of overhead because it is a centralized
contention manager. Additionally, atomic sections under OMLP and RNLP do not have to
retry, nor to make decisions upon a conflict in each retry. Whereas a contention manager
has to be invoked on each conflict, even if it will make the same decision. However, the
contention managers have numerous qualitative advantages over locking protocols. Locks
do not compose, whereas STM transactions do. Support for nested critical sections is gen-
erally complicated for locking protocols, whereas it is trivial with STM. To allow multiple
objects to be accessed in a critical section, OMLP assigns objects to non-conflicting groups,
where each group is protected by a distinct lock. RNLP assumes that objects are accessed
in a specific order to prevent deadlocks. In contrast, STM allows multiple objects to be
accessed in a transaction in any order, while guaranteeing deadlock-freedom, which signif-
icantly increases programmability. From a systems programmer’s perspective, OMLP and
RNLP are relatively difficult to implement, whereas proposed contention managers are easy
to implement. From an application programmer’s perspective, OMLP is not transparent as
it requires the description of additional information (i.e., what objects will be needed in each
critical section). For RNLP to avoid order on object access, RNLP needs to know required
objects for each critical section a priori. In contrast, no such extra information is needed
for using proposed contention managers (except for PNF), which significantly increases pro-
grammability. STM offers platform independence: the proposed contention managers can
be entirely implemented in the user-space as a library. In contrast, OMLP and RNLP must
be supported by the underlying platform (i.e., operating system or virtual machine).
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11.2 Future Work

Based on dissertation’s results, we propose the following directions for future research.

1. One way to imitate suspension behaviour of locking protocols is to delay transac-
tions upon conflict instead of abortion. Delaying transactions is implemented in
contention managers such as Kindergarten, Timestamp, Randomized, Greedy, Polka
[67–69, 126, 127, 135]. A transaction waits for different amount of times according to
contention manager. To delay a transaction under proposed contention managers for
real-time systems, delay time should not increase response time nor average retry cost
compared to contention mangers with no delay of transactions. Analysis of upper
bounds over average retry cost, response time and schedulability should take delay
time into account.

2. Results showed that CP-FBLT achieved higher DSR than other CMs. Thus, one
direction for future research is to extend all CMs with chechpointing and checkpointing
scheduling policy. Current implementation of CP-FBLT records a new checkpoint for
each newly accessed object. Checkpointing scheduling looks for the best location of
checkpoints to reduce retry cost and improve DSR. Also, checkpointing scheduling
must take into account the overhead of creation and removal of checkpoints.

3. PNF, FBLT and CP-FBLT showed mixed DSR patterns depending on different pa-
rameters (e.g., total utilization, number of objects, number and length of transactions
in each task). It will be useful to develop a hybrid CM that adaptively chooses the
suitable CM depending on these parameters. The developed CM should be able to
adapt new values for the underlying parameters of the CM (e.g., Ωk

i in FBLT and Ψ
in LCM) to reduce retry cost and increase DSR. If transactions can wait as given in
point 1, then the developed CM should be able to determine the proper delay value
for each transaction according to situation in hand.

4. Extending proposed CMs into soft real-time systems. Under soft real-time systems,
tasks can miss their deadlines within a bounded time interval. Depending on the
current dissertation’s results, soft real-time systems can make good use of STM CMs.

5. Development of new CMs to further reduce retry cost and increase DSR. Extending
experiments’ scale to total utilization higher than 8. Development of standard bench-
marks devoted to test effect of synchronization techniques on hard and/or soft real-time
systems.
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Appendix A

Tasksets’ Properties

ID no tasks total tx dis totalTx max tx dis maxTx min tx dis minTx total no obj no obj tx dis Û u i dist

1 11 ul 0.1 ul 0.08 ul 0.05 5 ul 2 ul

2 3 ul 0.11 ul 0.09 ul 0.05 5 ul 2 um

3 2 ul 0.06 ul 0.01 ul 0.01 5 ul 2 uh

4 12 ul 0.26 ul 0.05 ul 0.03 5 um 2 ul

5 3 ul 0.27 ul 0.19 ul 0.17 5 um 2 um

6 2 ul 0.03 ul 0.02 ul 0.01 5 um 2 uh

7 12 ul 0.08 ul 0.06 ul 0.04 5 uh 2 ul

8 4 ul 0.01 ul 0.01 ul 0.01 5 uh 2 um

9 2 ul 0.07 ul 0.07 ul 0.06 5 uh 2 uh

10 9 ul 0.17 ul 0.16 ul 0.14 20 ul 2 ul

11 4 ul 0.29 ul 0.25 ul 0.16 20 ul 2 um

12 2 ul 0.25 ul 0.23 ul 0.22 20 ul 2 uh

13 11 ul 0.12 ul 0.12 ul 0.09 20 um 2 ul

14 3 ul 0.26 ul 0.09 ul 0.09 20 um 2 um

15 2 ul 0.16 ul 0.08 ul 0.03 20 um 2 uh

16 12 ul 0.06 ul 0.03 ul 0.01 20 uh 2 ul

17 4 ul 0.26 ul 0.04 ul 0.04 20 uh 2 um

18 2 ul 0.19 ul 0.06 ul 0.05 20 uh 2 uh

19 10 ul 0.29 ul 0.27 ul 0.12 40 ul 2 ul

20 4 ul 0.08 ul 0.01 ul 0.01 40 ul 2 um

21 2 ul 0.03 ul 0.02 ul 0.01 40 ul 2 uh

22 12 ul 0.04 ul 0.02 ul 0.02 40 um 2 ul

23 3 ul 0.21 ul 0.12 ul 0.07 40 um 2 um

24 2 ul 0.06 ul 0.03 ul 0.03 40 um 2 uh

25 12 ul 0.33 ul 0.11 ul 0.1 40 uh 2 ul

26 4 ul 0.31 ul 0.07 ul 0.01 40 uh 2 um
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ID no tasks total tx dis totalTx max tx dis maxTx min tx dis minTx total no obj no obj tx dis Û u i dist

27 2 ul 0.22 ul 0.13 ul 0.02 40 uh 2 uh

28 8 um 0.55 ul 0.04 ul 0.02 5 ul 2 ul

29 3 um 0.56 ul 0.28 ul 0.15 5 ul 2 um

30 2 um 0.42 ul 0.1 ul 0.04 5 ul 2 uh

31 11 um 0.57 ul 0.03 ul 0.01 5 um 2 ul

32 4 um 0.62 ul 0.07 ul 0.05 5 um 2 um

33 2 um 0.56 ul 0.26 ul 0.13 5 um 2 uh

34 14 um 0.63 ul 0.3 ul 0.01 5 uh 2 ul

35 3 um 0.61 ul 0.31 ul 0.18 5 uh 2 um

36 2 um 0.57 ul 0.04 ul 0.01 5 uh 2 uh

37 10 um 0.34 ul 0.18 ul 0.18 20 ul 2 ul

38 3 um 0.35 ul 0.17 ul 0.17 20 ul 2 um

39 2 um 0.47 ul 0.08 ul 0.02 20 ul 2 uh

40 11 um 0.35 ul 0.18 ul 0.15 20 um 2 ul

41 3 um 0.6 ul 0.25 ul 0.1 20 um 2 um

42 2 um 0.36 ul 0.33 ul 0.29 20 um 2 uh

43 12 um 0.65 ul 0.07 ul 0.04 20 uh 2 ul

44 4 um 0.49 ul 0.17 ul 0.02 20 uh 2 um

45 2 um 0.53 ul 0.18 ul 0.05 20 uh 2 uh

46 13 um 0.49 ul 0.33 ul 0.1 40 ul 2 ul

47 4 um 0.58 ul 0.24 ul 0.15 40 ul 2 um

48 2 um 0.49 ul 0.07 ul 0.04 40 ul 2 uh

49 12 um 0.51 ul 0.34 ul 0.11 40 um 2 ul

50 3 um 0.66 ul 0.12 ul 0.03 40 um 2 um

51 2 um 0.52 ul 0.04 ul 0.03 40 um 2 uh

52 13 um 0.58 ul 0.27 ul 0.26 40 uh 2 ul

53 4 um 0.35 ul 0.16 ul 0.08 40 uh 2 um

54 2 um 0.61 ul 0.17 ul 0.01 40 uh 2 uh

55 10 um 0.65 um 0.57 ul 0.27 5 ul 2 ul

56 3 um 0.4 um 0.38 ul 0.01 5 ul 2 um

57 2 um 0.51 um 0.35 ul 0.28 5 ul 2 uh

58 13 um 0.49 um 0.45 ul 0.02 5 um 2 ul

59 4 um 0.6 um 0.5 ul 0.2 5 um 2 um

60 2 um 0.6 um 0.43 ul 0.19 5 um 2 uh

61 10 um 0.59 um 0.44 ul 0.26 5 uh 2 ul

62 3 um 0.55 um 0.43 ul 0.34 5 uh 2 um

63 2 um 0.6 um 0.57 ul 0.21 5 uh 2 uh

64 7 um 0.46 um 0.36 ul 0.05 20 ul 2 ul

65 3 um 0.49 um 0.4 ul 0.28 20 ul 2 um

66 2 um 0.64 um 0.58 ul 0.04 20 ul 2 uh
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67 14 um 0.36 um 0.36 ul 0.12 20 um 2 ul

68 3 um 0.41 um 0.37 ul 0.08 20 um 2 um

69 2 um 0.6 um 0.47 ul 0.08 20 um 2 uh

70 9 um 0.45 um 0.35 ul 0.18 20 uh 2 ul

71 4 um 0.66 um 0.55 ul 0.02 20 uh 2 um

72 2 um 0.42 um 0.41 ul 0.1 20 uh 2 uh

73 9 um 0.54 um 0.41 ul 0.24 40 ul 2 ul

74 4 um 0.35 um 0.35 ul 0.26 40 ul 2 um

75 2 um 0.4 um 0.4 ul 0.12 40 ul 2 uh

76 10 um 0.34 um 0.34 ul 0.16 40 um 2 ul

77 4 um 0.65 um 0.58 ul 0.06 40 um 2 um

78 2 um 0.44 um 0.4 ul 0.1 40 um 2 uh

79 8 um 0.63 um 0.62 ul 0.03 40 uh 2 ul

80 4 um 0.44 um 0.37 ul 0.28 40 uh 2 um

81 2 um 0.41 um 0.38 ul 0.16 40 uh 2 uh

82 12 um 0.49 um 0.41 um 0.37 5 ul 2 ul

83 4 um 0.56 um 0.48 um 0.41 5 ul 2 um

84 2 um 0.38 um 0.38 um 0.34 5 ul 2 uh

85 10 um 0.37 um 0.34 um 0.34 5 um 2 ul

86 4 um 0.36 um 0.34 um 0.34 5 um 2 um

87 2 um 0.66 um 0.38 um 0.34 5 um 2 uh

88 12 um 0.5 um 0.35 um 0.34 5 uh 2 ul

89 4 um 0.4 um 0.4 um 0.34 5 uh 2 um

90 2 um 0.5 um 0.48 um 0.35 5 uh 2 uh

91 11 um 0.59 um 0.35 um 0.34 20 ul 2 ul

92 3 um 0.49 um 0.4 um 0.39 20 ul 2 um

93 2 um 0.56 um 0.43 um 0.39 20 ul 2 uh

94 11 um 0.5 um 0.39 um 0.39 20 um 2 ul

95 4 um 0.35 um 0.35 um 0.34 20 um 2 um

96 2 um 0.34 um 0.34 um 0.34 20 um 2 uh

97 10 um 0.56 um 0.4 um 0.35 20 uh 2 ul

98 4 um 0.56 um 0.34 um 0.34 20 uh 2 um

99 2 um 0.61 um 0.47 um 0.37 20 uh 2 uh

100 11 um 0.62 um 0.46 um 0.44 40 ul 2 ul

101 3 um 0.47 um 0.42 um 0.35 40 ul 2 um

102 2 um 0.36 um 0.36 um 0.35 40 ul 2 uh

103 13 um 0.62 um 0.47 um 0.41 40 um 2 ul

104 3 um 0.51 um 0.37 um 0.34 40 um 2 um

105 2 um 0.39 um 0.39 um 0.38 40 um 2 uh

106 16 um 0.6 um 0.59 um 0.55 40 uh 2 ul
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107 4 um 0.41 um 0.36 um 0.36 40 uh 2 um

108 2 um 0.54 um 0.53 um 0.34 40 uh 2 uh

109 14 uh 0.77 ul 0.11 ul 0.02 5 ul 2 ul

110 3 uh 0.76 ul 0.18 ul 0.04 5 ul 2 um

111 2 uh 0.68 ul 0.22 ul 0.02 5 ul 2 uh

112 10 uh 0.95 ul 0.23 ul 0.03 5 um 2 ul

113 3 uh 0.92 ul 0.3 ul 0.18 5 um 2 um

114 2 uh 0.71 ul 0.13 ul 0.02 5 um 2 uh

115 11 uh 0.74 ul 0.24 ul 0.14 5 uh 2 ul

116 3 uh 0.84 ul 0.07 ul 0.07 5 uh 2 um

117 2 uh 0.94 ul 0.17 ul 0.05 5 uh 2 uh

118 8 uh 0.98 ul 0.27 ul 0.04 20 ul 2 ul

119 4 uh 0.69 ul 0.17 ul 0.1 20 ul 2 um

120 2 uh 0.71 ul 0.06 ul 0.03 20 ul 2 uh

121 11 uh 0.92 ul 0.05 ul 0.05 20 um 2 ul

122 3 uh 0.89 ul 0.3 ul 0.03 20 um 2 um

123 2 uh 0.91 ul 0.14 ul 0.04 20 um 2 uh

124 13 uh 0.85 ul 0.12 ul 0.08 20 uh 2 ul

125 3 uh 0.96 ul 0.29 ul 0.19 20 uh 2 um

126 2 uh 0.71 ul 0.11 ul 0.09 20 uh 2 uh

127 11 uh 0.93 ul 0.31 ul 0.25 40 ul 2 ul

128 4 uh 0.69 ul 0.04 ul 0.01 40 ul 2 um

129 2 uh 0.95 ul 0.04 ul 0.04 40 ul 2 uh

130 12 uh 0.78 ul 0.1 ul 0.03 40 um 2 ul

131 3 uh 0.86 ul 0.15 ul 0.03 40 um 2 um

132 2 uh 0.86 ul 0.02 ul 0.02 40 um 2 uh

133 10 uh 0.95 ul 0.02 ul 0.02 40 uh 2 ul

134 3 uh 0.84 ul 0.1 ul 0.02 40 uh 2 um

135 2 uh 0.94 ul 0.17 ul 0.03 40 uh 2 uh

136 11 uh 0.76 um 0.51 ul 0.28 5 ul 2 ul

137 3 uh 0.72 um 0.49 ul 0.13 5 ul 2 um

138 2 uh 0.75 um 0.46 ul 0.1 5 ul 2 uh

139 10 uh 0.84 um 0.53 ul 0.12 5 um 2 ul

140 4 uh 0.79 um 0.5 ul 0.2 5 um 2 um

141 2 uh 0.99 um 0.59 ul 0.3 5 um 2 uh

142 11 uh 0.95 um 0.53 ul 0.26 5 uh 2 ul

143 3 uh 0.71 um 0.58 ul 0.08 5 uh 2 um

144 2 uh 0.83 um 0.59 ul 0.24 5 uh 2 uh

145 11 uh 0.75 um 0.42 ul 0.06 20 ul 2 ul

146 4 uh 0.88 um 0.45 ul 0.19 20 ul 2 um
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147 2 uh 0.7 um 0.56 ul 0.29 20 ul 2 uh

148 10 uh 0.8 um 0.49 ul 0.31 20 um 2 ul

149 4 uh 0.68 um 0.65 ul 0.13 20 um 2 um

150 2 uh 0.97 um 0.5 ul 0.29 20 um 2 uh

151 10 uh 0.83 um 0.54 ul 0.33 20 uh 2 ul

152 3 uh 0.93 um 0.48 ul 0.13 20 uh 2 um

153 2 uh 0.81 um 0.37 ul 0.25 20 uh 2 uh

154 12 uh 0.87 um 0.62 ul 0.27 40 ul 2 ul

155 4 uh 0.79 um 0.52 ul 0.17 40 ul 2 um

156 2 uh 0.83 um 0.67 ul 0.15 40 ul 2 uh

157 13 uh 0.85 um 0.59 ul 0.24 40 um 2 ul

158 3 uh 0.9 um 0.44 ul 0.13 40 um 2 um

159 2 uh 0.78 um 0.36 ul 0.19 40 um 2 uh

160 11 uh 0.67 um 0.53 ul 0.02 40 uh 2 ul

161 3 uh 0.68 um 0.65 ul 0.18 40 uh 2 um

162 2 uh 0.69 um 0.35 ul 0.17 40 uh 2 uh

163 14 uh 0.96 um 0.54 um 0.5 5 ul 2 ul

164 4 uh 0.82 um 0.39 um 0.34 5 ul 2 um

165 2 uh 0.82 um 0.47 um 0.34 5 ul 2 uh

166 10 uh 0.72 um 0.61 um 0.53 5 um 2 ul

167 4 uh 0.91 um 0.49 um 0.34 5 um 2 um

168 2 uh 0.73 um 0.54 um 0.47 5 um 2 uh

169 9 uh 0.76 um 0.51 um 0.39 5 uh 2 ul

170 3 uh 0.8 um 0.48 um 0.37 5 uh 2 um

171 2 uh 0.79 um 0.55 um 0.36 5 uh 2 uh

172 12 uh 0.87 um 0.52 um 0.36 20 ul 2 ul

173 4 uh 0.78 um 0.54 um 0.48 20 ul 2 um

174 2 uh 0.87 um 0.55 um 0.47 20 ul 2 uh

175 10 uh 0.85 um 0.53 um 0.37 20 um 2 ul

176 4 uh 0.88 um 0.39 um 0.35 20 um 2 um

177 2 uh 0.94 um 0.6 um 0.38 20 um 2 uh

178 15 uh 0.81 um 0.34 um 0.34 20 uh 2 ul

179 4 uh 0.73 um 0.58 um 0.45 20 uh 2 um

180 2 uh 0.92 um 0.65 um 0.46 20 uh 2 uh

181 11 uh 0.96 um 0.48 um 0.35 40 ul 2 ul

182 4 uh 0.88 um 0.43 um 0.39 40 ul 2 um

183 2 uh 0.96 um 0.36 um 0.34 40 ul 2 uh

184 14 uh 0.79 um 0.38 um 0.36 40 um 2 ul

185 3 uh 0.75 um 0.62 um 0.35 40 um 2 um

186 2 uh 0.79 um 0.58 um 0.46 40 um 2 uh
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187 11 uh 0.89 um 0.5 um 0.46 40 uh 2 ul

188 3 uh 0.85 um 0.44 um 0.35 40 uh 2 um

189 2 uh 0.75 um 0.5 um 0.36 40 uh 2 uh

190 12 uh 0.75 uh 0.68 ul 0.33 5 ul 2 ul

191 4 uh 0.7 uh 0.68 ul 0.1 5 ul 2 um

192 2 uh 0.76 uh 0.69 ul 0.25 5 ul 2 uh

193 10 uh 0.93 uh 0.68 ul 0.26 5 um 2 ul

194 3 uh 0.77 uh 0.68 ul 0.08 5 um 2 um

195 2 uh 0.96 uh 0.7 ul 0.22 5 um 2 uh

196 10 uh 0.73 uh 0.7 ul 0.01 5 uh 2 ul

197 4 uh 0.94 uh 0.91 ul 0.24 5 uh 2 um

198 2 uh 0.97 uh 0.93 ul 0.14 5 uh 2 uh

199 11 uh 0.9 uh 0.78 ul 0.03 20 ul 2 ul

200 3 uh 0.71 uh 0.71 ul 0.33 20 ul 2 um

201 2 uh 0.78 uh 0.74 ul 0.14 20 ul 2 uh

202 13 uh 0.74 uh 0.74 ul 0.27 20 um 2 ul

203 4 uh 0.83 uh 0.77 ul 0.17 20 um 2 um

204 2 uh 0.72 uh 0.67 ul 0.11 20 um 2 uh

205 11 uh 0.81 uh 0.72 ul 0.13 20 uh 2 ul

206 3 uh 0.73 uh 0.71 ul 0.28 20 uh 2 um

207 2 uh 0.79 uh 0.77 ul 0.26 20 uh 2 uh

208 12 uh 0.71 uh 0.68 ul 0.11 40 ul 2 ul

209 3 uh 0.7 uh 0.7 ul 0.07 40 ul 2 um

210 2 uh 0.76 uh 0.74 ul 0.12 40 ul 2 uh

211 13 uh 0.76 uh 0.71 ul 0.18 40 um 2 ul

212 3 uh 0.69 uh 0.68 ul 0.03 40 um 2 um

213 2 uh 0.78 uh 0.75 ul 0.04 40 um 2 uh

214 9 uh 0.83 uh 0.78 ul 0.07 40 uh 2 ul

215 3 uh 0.93 uh 0.68 ul 0.34 40 uh 2 um

216 2 uh 0.96 uh 0.84 ul 0.11 40 uh 2 uh

217 13 uh 0.85 uh 0.7 um 0.42 5 ul 2 ul

218 4 uh 0.85 uh 0.69 um 0.35 5 ul 2 um

219 2 uh 0.88 uh 0.71 um 0.56 5 ul 2 uh

220 11 uh 0.81 uh 0.79 um 0.55 5 um 2 ul

221 3 uh 0.82 uh 0.79 um 0.35 5 um 2 um

222 2 uh 0.96 uh 0.94 um 0.35 5 um 2 uh

223 12 uh 0.91 uh 0.82 um 0.51 5 uh 2 ul

224 4 uh 0.76 uh 0.72 um 0.4 5 uh 2 um

225 2 uh 0.71 uh 0.67 um 0.36 5 uh 2 uh

226 10 uh 0.82 uh 0.73 um 0.51 20 ul 2 ul
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227 3 uh 0.73 uh 0.71 um 0.38 20 ul 2 um

228 2 uh 0.9 uh 0.71 um 0.38 20 ul 2 uh

229 10 uh 0.8 uh 0.73 um 0.55 20 um 2 ul

230 4 uh 0.8 uh 0.69 um 0.44 20 um 2 um

231 2 uh 0.75 uh 0.67 um 0.35 20 um 2 uh

232 9 uh 0.76 uh 0.68 um 0.34 20 uh 2 ul

233 4 uh 0.78 uh 0.74 um 0.41 20 uh 2 um

234 2 uh 0.88 uh 0.81 um 0.49 20 uh 2 uh

235 16 uh 0.77 uh 0.7 um 0.51 40 ul 2 ul

236 4 uh 0.82 uh 0.8 um 0.51 40 ul 2 um

237 2 uh 0.96 uh 0.75 um 0.48 40 ul 2 uh

238 12 uh 0.94 uh 0.81 um 0.58 40 um 2 ul

239 3 uh 0.83 uh 0.71 um 0.52 40 um 2 um

240 2 uh 0.93 uh 0.91 um 0.56 40 um 2 uh

241 11 uh 0.87 uh 0.7 um 0.46 40 uh 2 ul

242 3 uh 0.94 uh 0.76 um 0.6 40 uh 2 um

243 2 uh 0.85 uh 0.79 um 0.64 40 uh 2 uh

244 11 uh 0.87 uh 0.78 uh 0.71 5 ul 2 ul

245 3 uh 0.88 uh 0.75 uh 0.74 5 ul 2 um

246 2 uh 0.83 uh 0.69 uh 0.69 5 ul 2 uh

247 13 uh 0.93 uh 0.7 uh 0.67 5 um 2 ul

248 4 uh 0.75 uh 0.68 uh 0.67 5 um 2 um

249 2 uh 0.74 uh 0.72 uh 0.71 5 um 2 uh

250 12 uh 0.95 uh 0.77 uh 0.75 5 uh 2 ul

251 3 uh 0.76 uh 0.73 uh 0.68 5 uh 2 um

252 2 uh 0.87 uh 0.81 uh 0.68 5 uh 2 uh

253 11 uh 0.97 uh 0.76 uh 0.76 20 ul 2 ul

254 3 uh 0.8 uh 0.68 uh 0.67 20 ul 2 um

255 2 uh 0.68 uh 0.68 uh 0.67 20 ul 2 uh

256 8 uh 0.73 uh 0.68 uh 0.67 20 um 2 ul

257 4 uh 0.85 uh 0.85 uh 0.76 20 um 2 um

258 2 uh 0.9 uh 0.87 uh 0.85 20 um 2 uh

259 14 uh 0.9 uh 0.83 uh 0.82 20 uh 2 ul

260 3 uh 0.88 uh 0.78 uh 0.73 20 uh 2 um

261 2 uh 0.81 uh 0.72 uh 0.69 20 uh 2 uh

262 18 uh 0.8 uh 0.76 uh 0.75 40 ul 2 ul

263 4 uh 0.7 uh 0.7 uh 0.67 40 ul 2 um

264 2 uh 0.81 uh 0.81 uh 0.69 40 ul 2 uh

265 9 uh 0.79 uh 0.73 uh 0.73 40 um 2 ul

266 4 uh 0.82 uh 0.74 uh 0.73 40 um 2 um
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267 2 uh 0.68 uh 0.67 uh 0.67 40 um 2 uh

268 10 uh 0.79 uh 0.75 uh 0.7 40 uh 2 ul

269 4 uh 0.91 uh 0.7 uh 0.67 40 uh 2 um

270 2 uh 0.95 uh 0.82 uh 0.78 40 uh 2 uh

271 22 ul 0.03 ul 0.02 ul 0.02 5 ul 4 ul

272 7 ul 0.2 ul 0.12 ul 0.1 5 ul 4 um

273 4 ul 0.21 ul 0.19 ul 0.09 5 ul 4 uh

274 21 ul 0.13 ul 0.04 ul 0.03 5 um 4 ul

275 8 ul 0.01 ul 0.01 ul 0.01 5 um 4 um

276 4 ul 0.21 ul 0.18 ul 0.11 5 um 4 uh

277 22 ul 0.04 ul 0.01 ul 0.01 5 uh 4 ul

278 7 ul 0.11 ul 0.11 ul 0.04 5 uh 4 um

279 4 ul 0.28 ul 0.24 ul 0.16 5 uh 4 uh

280 25 ul 0.08 ul 0.07 ul 0.07 20 ul 4 ul

281 8 ul 0.32 ul 0.01 ul 0.01 20 ul 4 um

282 4 ul 0.09 ul 0.07 ul 0.06 20 ul 4 uh

283 19 ul 0.01 ul 0.01 ul 0.01 20 um 4 ul

284 7 ul 0.33 ul 0.2 ul 0.15 20 um 4 um

285 4 ul 0.16 ul 0.02 ul 0.01 20 um 4 uh

286 23 ul 0.29 ul 0.28 ul 0.06 20 uh 4 ul

287 7 ul 0.07 ul 0.03 ul 0.03 20 uh 4 um

288 4 ul 0.13 ul 0.07 ul 0.05 20 uh 4 uh

289 25 ul 0.02 ul 0.02 ul 0.01 40 ul 4 ul

290 8 ul 0.05 ul 0.02 ul 0.01 40 ul 4 um

291 5 ul 0.32 ul 0.23 ul 0.23 40 ul 4 uh

292 23 ul 0.28 ul 0.27 ul 0.23 40 um 4 ul

293 7 ul 0.14 ul 0.04 ul 0.03 40 um 4 um

294 5 ul 0.09 ul 0.05 ul 0.05 40 um 4 uh

295 22 ul 0.21 ul 0.07 ul 0.06 40 uh 4 ul

296 8 ul 0.14 ul 0.08 ul 0.03 40 uh 4 um

297 4 ul 0.16 ul 0.11 ul 0.1 40 uh 4 uh

298 26 um 0.37 ul 0.17 ul 0.1 5 ul 4 ul

299 8 um 0.51 ul 0.18 ul 0.1 5 ul 4 um

300 4 um 0.65 ul 0.21 ul 0.11 5 ul 4 uh

301 22 um 0.49 ul 0.32 ul 0.32 5 um 4 ul

302 8 um 0.42 ul 0.04 ul 0.01 5 um 4 um

303 4 um 0.41 ul 0.03 ul 0.03 5 um 4 uh

304 21 um 0.66 ul 0.23 ul 0.1 5 uh 4 ul

305 7 um 0.41 ul 0.29 ul 0.12 5 uh 4 um

306 4 um 0.63 ul 0.31 ul 0.06 5 uh 4 uh
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307 26 um 0.36 ul 0.27 ul 0.14 20 ul 4 ul

308 7 um 0.57 ul 0.32 ul 0.03 20 ul 4 um

309 4 um 0.53 ul 0.32 ul 0.14 20 ul 4 uh

310 21 um 0.56 ul 0.19 ul 0.03 20 um 4 ul

311 8 um 0.64 ul 0.12 ul 0.02 20 um 4 um

312 4 um 0.59 ul 0.29 ul 0.16 20 um 4 uh

313 21 um 0.34 ul 0.23 ul 0.13 20 uh 4 ul

314 8 um 0.58 ul 0.04 ul 0.03 20 uh 4 um

315 5 um 0.5 ul 0.04 ul 0.02 20 uh 4 uh

316 23 um 0.45 ul 0.26 ul 0.18 40 ul 4 ul

317 9 um 0.5 ul 0.24 ul 0.06 40 ul 4 um

318 4 um 0.54 ul 0.08 ul 0.02 40 ul 4 uh

319 24 um 0.47 ul 0.02 ul 0.02 40 um 4 ul

320 7 um 0.57 ul 0.32 ul 0.17 40 um 4 um

321 5 um 0.64 ul 0.16 ul 0.13 40 um 4 uh

322 23 um 0.46 ul 0.25 ul 0.18 40 uh 4 ul

323 7 um 0.42 ul 0.25 ul 0.22 40 uh 4 um

324 4 um 0.55 ul 0.07 ul 0.04 40 uh 4 uh

325 27 um 0.42 um 0.35 ul 0.32 5 ul 4 ul

326 8 um 0.64 um 0.64 ul 0.31 5 ul 4 um

327 4 um 0.48 um 0.4 ul 0.21 5 ul 4 uh

328 24 um 0.48 um 0.38 ul 0.28 5 um 4 ul

329 7 um 0.49 um 0.46 ul 0.33 5 um 4 um

330 4 um 0.39 um 0.37 ul 0.19 5 um 4 uh

331 24 um 0.45 um 0.38 ul 0.18 5 uh 4 ul

332 8 um 0.45 um 0.36 ul 0.05 5 uh 4 um

333 5 um 0.62 um 0.5 ul 0.07 5 uh 4 uh

334 26 um 0.6 um 0.45 ul 0.19 20 ul 4 ul

335 8 um 0.49 um 0.35 ul 0.25 20 ul 4 um

336 4 um 0.37 um 0.35 ul 0.04 20 ul 4 uh

337 29 um 0.52 um 0.45 ul 0.04 20 um 4 ul

338 7 um 0.36 um 0.36 ul 0.23 20 um 4 um

339 4 um 0.64 um 0.38 ul 0.03 20 um 4 uh

340 26 um 0.39 um 0.34 ul 0.19 20 uh 4 ul

341 8 um 0.38 um 0.37 ul 0.1 20 uh 4 um

342 5 um 0.43 um 0.34 ul 0.21 20 uh 4 uh

343 23 um 0.65 um 0.39 ul 0.3 40 ul 4 ul

344 8 um 0.59 um 0.47 ul 0.28 40 ul 4 um

345 4 um 0.45 um 0.39 ul 0.12 40 ul 4 uh

346 21 um 0.36 um 0.36 ul 0.08 40 um 4 ul
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347 8 um 0.58 um 0.54 ul 0.24 40 um 4 um

348 4 um 0.43 um 0.42 ul 0.29 40 um 4 uh

349 20 um 0.35 um 0.34 ul 0.15 40 uh 4 ul

350 8 um 0.66 um 0.63 ul 0.33 40 uh 4 um

351 4 um 0.59 um 0.52 ul 0.23 40 uh 4 uh

352 19 um 0.64 um 0.39 um 0.39 5 ul 4 ul

353 8 um 0.48 um 0.38 um 0.34 5 ul 4 um

354 5 um 0.34 um 0.34 um 0.34 5 ul 4 uh

355 20 um 0.41 um 0.38 um 0.37 5 um 4 ul

356 7 um 0.56 um 0.39 um 0.34 5 um 4 um

357 4 um 0.57 um 0.35 um 0.35 5 um 4 uh

358 25 um 0.36 um 0.35 um 0.35 5 uh 4 ul

359 7 um 0.6 um 0.42 um 0.35 5 uh 4 um

360 4 um 0.56 um 0.52 um 0.46 5 uh 4 uh

361 17 um 0.55 um 0.43 um 0.41 20 ul 4 ul

362 7 um 0.47 um 0.45 um 0.4 20 ul 4 um

363 4 um 0.5 um 0.48 um 0.36 20 ul 4 uh

364 17 um 0.43 um 0.43 um 0.34 20 um 4 ul

365 7 um 0.56 um 0.42 um 0.41 20 um 4 um

366 4 um 0.38 um 0.38 um 0.38 20 um 4 uh

367 28 um 0.62 um 0.37 um 0.35 20 uh 4 ul

368 7 um 0.38 um 0.34 um 0.34 20 uh 4 um

369 5 um 0.65 um 0.51 um 0.48 20 uh 4 uh

370 24 um 0.54 um 0.42 um 0.35 40 ul 4 ul

371 8 um 0.49 um 0.34 um 0.34 40 ul 4 um

372 4 um 0.5 um 0.45 um 0.39 40 ul 4 uh

373 26 um 0.53 um 0.39 um 0.34 40 um 4 ul

374 8 um 0.6 um 0.53 um 0.51 40 um 4 um

375 5 um 0.52 um 0.45 um 0.37 40 um 4 uh

376 24 um 0.41 um 0.39 um 0.39 40 uh 4 ul

377 8 um 0.37 um 0.37 um 0.35 40 uh 4 um

378 5 um 0.35 um 0.34 um 0.34 40 uh 4 uh

379 20 uh 0.77 ul 0.22 ul 0.17 5 ul 4 ul

380 7 uh 0.72 ul 0.2 ul 0.08 5 ul 4 um

381 4 uh 0.74 ul 0.27 ul 0.08 5 ul 4 uh

382 21 uh 0.87 ul 0.14 ul 0.09 5 um 4 ul

383 7 uh 0.93 ul 0.32 ul 0.04 5 um 4 um

384 5 uh 0.96 ul 0.01 ul 0.01 5 um 4 uh

385 29 uh 0.73 ul 0.26 ul 0.02 5 uh 4 ul

386 9 uh 0.86 ul 0.13 ul 0.12 5 uh 4 um
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387 4 uh 0.71 ul 0.28 ul 0.09 5 uh 4 uh

388 25 uh 0.67 ul 0.18 ul 0.04 20 ul 4 ul

389 8 uh 0.68 ul 0.06 ul 0.06 20 ul 4 um

390 4 uh 0.85 ul 0.06 ul 0.03 20 ul 4 uh

391 19 uh 0.69 ul 0.07 ul 0.06 20 um 4 ul

392 9 uh 0.78 ul 0.27 ul 0.18 20 um 4 um

393 4 uh 0.72 ul 0.34 ul 0.2 20 um 4 uh

394 28 uh 0.83 ul 0.19 ul 0.06 20 uh 4 ul

395 7 uh 0.94 ul 0.13 ul 0.07 20 uh 4 um

396 4 uh 0.69 ul 0.25 ul 0.2 20 uh 4 uh

397 23 uh 0.76 ul 0.08 ul 0.04 40 ul 4 ul

398 8 uh 0.78 ul 0.1 ul 0.02 40 ul 4 um

399 4 uh 0.78 ul 0.3 ul 0.2 40 ul 4 uh

400 26 uh 0.73 ul 0.31 ul 0.17 40 um 4 ul

401 7 uh 0.7 ul 0.19 ul 0.03 40 um 4 um

402 4 uh 0.8 ul 0.29 ul 0.04 40 um 4 uh

403 23 uh 0.77 ul 0.12 ul 0.09 40 uh 4 ul

404 8 uh 0.82 ul 0.07 ul 0.07 40 uh 4 um

405 4 uh 0.68 ul 0.26 ul 0.23 40 uh 4 uh

406 25 uh 0.89 um 0.36 ul 0.07 5 ul 4 ul

407 9 uh 0.93 um 0.51 ul 0.21 5 ul 4 um

408 5 uh 0.69 um 0.47 ul 0.3 5 ul 4 uh

409 22 uh 0.97 um 0.64 ul 0.05 5 um 4 ul

410 8 uh 0.99 um 0.48 ul 0.04 5 um 4 um

411 4 uh 0.72 um 0.64 ul 0.14 5 um 4 uh

412 32 uh 0.69 um 0.43 ul 0.12 5 uh 4 ul

413 8 uh 0.92 um 0.62 ul 0.03 5 uh 4 um

414 4 uh 0.69 um 0.5 ul 0.28 5 uh 4 uh

415 26 uh 0.84 um 0.49 ul 0.08 20 ul 4 ul

416 8 uh 0.87 um 0.64 ul 0.24 20 ul 4 um

417 4 uh 0.88 um 0.43 ul 0.18 20 ul 4 uh

418 25 uh 0.68 um 0.35 ul 0.29 20 um 4 ul

419 7 uh 0.9 um 0.49 ul 0.3 20 um 4 um

420 5 uh 0.79 um 0.53 ul 0.11 20 um 4 uh

421 24 uh 0.84 um 0.42 ul 0.25 20 uh 4 ul

422 8 uh 0.87 um 0.38 ul 0.19 20 uh 4 um

423 5 uh 0.71 um 0.38 ul 0.27 20 uh 4 uh

424 27 uh 0.93 um 0.39 ul 0.34 40 ul 4 ul

425 8 uh 0.7 um 0.37 ul 0.3 40 ul 4 um

426 5 uh 0.89 um 0.59 ul 0.04 40 ul 4 uh
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ID no tasks total tx dis totalTx max tx dis maxTx min tx dis minTx total no obj no obj tx dis Û u i dist

427 25 uh 0.84 um 0.42 ul 0.2 40 um 4 ul

428 8 uh 0.91 um 0.6 ul 0.21 40 um 4 um

429 4 uh 0.77 um 0.59 ul 0.16 40 um 4 uh

430 24 uh 0.91 um 0.56 ul 0.15 40 uh 4 ul

431 9 uh 0.93 um 0.49 ul 0.23 40 uh 4 um

432 4 uh 0.78 um 0.67 ul 0.19 40 uh 4 uh

433 23 uh 0.97 um 0.45 um 0.37 5 ul 4 ul

434 8 uh 0.94 um 0.36 um 0.34 5 ul 4 um

435 4 uh 0.93 um 0.54 um 0.34 5 ul 4 uh

436 22 uh 0.73 um 0.66 um 0.59 5 um 4 ul

437 7 uh 0.73 um 0.55 um 0.35 5 um 4 um

438 4 uh 0.95 um 0.46 um 0.44 5 um 4 uh

439 20 uh 0.91 um 0.37 um 0.37 5 uh 4 ul

440 7 uh 0.99 um 0.55 um 0.42 5 uh 4 um

441 4 uh 0.93 um 0.54 um 0.45 5 uh 4 uh

442 24 uh 0.8 um 0.67 um 0.53 20 ul 4 ul

443 8 uh 0.71 um 0.37 um 0.36 20 ul 4 um

444 4 uh 0.98 um 0.47 um 0.34 20 ul 4 uh

445 28 uh 0.85 um 0.35 um 0.35 20 um 4 ul

446 8 uh 0.9 um 0.41 um 0.36 20 um 4 um

447 5 uh 0.69 um 0.55 um 0.44 20 um 4 uh

448 20 uh 0.76 um 0.38 um 0.35 20 uh 4 ul

449 7 uh 0.69 um 0.37 um 0.34 20 uh 4 um

450 4 uh 0.92 um 0.43 um 0.34 20 uh 4 uh

451 24 uh 0.94 um 0.44 um 0.38 40 ul 4 ul

452 8 uh 0.98 um 0.37 um 0.37 40 ul 4 um

453 4 uh 0.77 um 0.66 um 0.57 40 ul 4 uh

454 24 uh 0.73 um 0.41 um 0.34 40 um 4 ul

455 8 uh 0.89 um 0.59 um 0.51 40 um 4 um

456 4 uh 0.8 um 0.35 um 0.35 40 um 4 uh

457 20 uh 0.95 um 0.44 um 0.38 40 uh 4 ul

458 8 uh 0.87 um 0.59 um 0.43 40 uh 4 um

459 4 uh 0.93 um 0.55 um 0.41 40 uh 4 uh

460 31 uh 0.88 uh 0.76 ul 0.04 5 ul 4 ul

461 7 uh 0.87 uh 0.75 ul 0.15 5 ul 4 um

462 4 uh 0.89 uh 0.69 ul 0.22 5 ul 4 uh

463 20 uh 0.77 uh 0.71 ul 0.01 5 um 4 ul

464 8 uh 0.72 uh 0.67 ul 0.04 5 um 4 um

465 4 uh 0.97 uh 0.69 ul 0.22 5 um 4 uh

466 27 uh 0.81 uh 0.7 ul 0.21 5 uh 4 ul
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ID no tasks total tx dis totalTx max tx dis maxTx min tx dis minTx total no obj no obj tx dis Û u i dist

467 7 uh 0.78 uh 0.67 ul 0.3 5 uh 4 um

468 4 uh 0.96 uh 0.84 ul 0.16 5 uh 4 uh

469 25 uh 0.88 uh 0.8 ul 0.31 20 ul 4 ul

470 8 uh 0.83 uh 0.67 ul 0.25 20 ul 4 um

471 5 uh 0.67 uh 0.67 ul 0.15 20 ul 4 uh

472 21 uh 0.78 uh 0.67 ul 0.09 20 um 4 ul

473 7 uh 0.71 uh 0.7 ul 0.07 20 um 4 um

474 5 uh 0.93 uh 0.71 ul 0.2 20 um 4 uh

475 20 uh 0.72 uh 0.7 ul 0.19 20 uh 4 ul

476 8 uh 0.7 uh 0.67 ul 0.04 20 uh 4 um

477 4 uh 0.9 uh 0.69 ul 0.21 20 uh 4 uh

478 21 uh 0.77 uh 0.67 ul 0.08 40 ul 4 ul

479 7 uh 0.73 uh 0.7 ul 0.11 40 ul 4 um

480 5 uh 0.99 uh 0.82 ul 0.19 40 ul 4 uh

481 25 uh 0.81 uh 0.73 ul 0.21 40 um 4 ul

482 7 uh 0.77 uh 0.67 ul 0.2 40 um 4 um

483 4 uh 0.79 uh 0.67 ul 0.1 40 um 4 uh

484 25 uh 0.96 uh 0.83 ul 0.17 40 uh 4 ul

485 8 uh 0.71 uh 0.67 ul 0.23 40 uh 4 um

486 5 uh 0.97 uh 0.84 ul 0.28 40 uh 4 uh

487 20 uh 0.79 uh 0.73 um 0.64 5 ul 4 ul

488 7 uh 0.98 uh 0.74 um 0.42 5 ul 4 um

489 5 uh 0.76 uh 0.75 um 0.38 5 ul 4 uh

490 23 uh 0.84 uh 0.67 um 0.64 5 um 4 ul

491 8 uh 0.8 uh 0.74 um 0.4 5 um 4 um

492 4 uh 0.77 uh 0.75 um 0.62 5 um 4 uh

493 22 uh 0.94 uh 0.87 um 0.6 5 uh 4 ul

494 8 uh 0.74 uh 0.73 um 0.4 5 uh 4 um

495 4 uh 0.75 uh 0.73 um 0.53 5 uh 4 uh

496 23 uh 0.86 uh 0.75 um 0.63 20 ul 4 ul

497 7 uh 0.83 uh 0.77 um 0.66 20 ul 4 um

498 5 uh 0.93 uh 0.9 um 0.65 20 ul 4 uh

499 26 uh 0.72 uh 0.7 um 0.64 20 um 4 ul

500 7 uh 0.74 uh 0.7 um 0.66 20 um 4 um

501 5 uh 0.67 uh 0.67 um 0.58 20 um 4 uh

502 22 uh 0.97 uh 0.87 um 0.37 20 uh 4 ul

503 7 uh 0.79 uh 0.76 um 0.59 20 uh 4 um

504 4 uh 0.88 uh 0.75 um 0.48 20 uh 4 uh

505 22 uh 0.9 uh 0.71 um 0.64 40 ul 4 ul

506 8 uh 0.91 uh 0.91 um 0.41 40 ul 4 um
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ID no tasks total tx dis totalTx max tx dis maxTx min tx dis minTx total no obj no obj tx dis Û u i dist

507 4 uh 0.78 uh 0.67 um 0.54 40 ul 4 uh

508 25 uh 0.91 uh 0.8 um 0.5 40 um 4 ul

509 7 uh 0.87 uh 0.86 um 0.62 40 um 4 um

510 4 uh 0.78 uh 0.67 um 0.42 40 um 4 uh

511 21 uh 0.67 uh 0.67 um 0.6 40 uh 4 ul

512 7 uh 0.85 uh 0.68 um 0.55 40 uh 4 um

513 4 uh 0.9 uh 0.78 um 0.45 40 uh 4 uh

514 26 uh 0.96 uh 0.92 uh 0.76 5 ul 4 ul

515 8 uh 0.97 uh 0.86 uh 0.79 5 ul 4 um

516 4 uh 0.82 uh 0.77 uh 0.69 5 ul 4 uh

517 24 uh 0.93 uh 0.81 uh 0.79 5 um 4 ul

518 8 uh 0.74 uh 0.72 uh 0.72 5 um 4 um

519 5 uh 0.88 uh 0.7 uh 0.7 5 um 4 uh

520 23 uh 0.83 uh 0.68 uh 0.68 5 uh 4 ul

521 7 uh 0.75 uh 0.73 uh 0.7 5 uh 4 um

522 4 uh 0.95 uh 0.85 uh 0.77 5 uh 4 uh

523 28 uh 0.83 uh 0.81 uh 0.75 20 ul 4 ul

524 8 uh 0.69 uh 0.69 uh 0.69 20 ul 4 um

525 4 uh 0.97 uh 0.75 uh 0.69 20 ul 4 uh

526 21 uh 0.81 uh 0.71 uh 0.7 20 um 4 ul

527 7 uh 0.69 uh 0.69 uh 0.67 20 um 4 um

528 4 uh 0.77 uh 0.74 uh 0.68 20 um 4 uh

529 25 uh 0.8 uh 0.75 uh 0.72 20 uh 4 ul

530 8 uh 0.81 uh 0.69 uh 0.69 20 uh 4 um

531 5 uh 0.83 uh 0.83 uh 0.77 20 uh 4 uh

532 19 uh 0.76 uh 0.75 uh 0.75 40 ul 4 ul

533 8 uh 0.9 uh 0.86 uh 0.83 40 ul 4 um

534 4 uh 0.94 uh 0.84 uh 0.67 40 ul 4 uh

535 23 uh 0.73 uh 0.72 uh 0.67 40 um 4 ul

536 7 uh 0.95 uh 0.9 uh 0.69 40 um 4 um

537 4 uh 0.86 uh 0.86 uh 0.83 40 um 4 uh

538 23 uh 0.78 uh 0.76 uh 0.68 40 uh 4 ul

539 7 uh 0.7 uh 0.7 uh 0.69 40 uh 4 um

540 5 uh 0.89 uh 0.8 uh 0.79 40 uh 4 uh

541 33 ul 0.02 ul 0.01 ul 0.01 5 ul 6 ul

542 11 ul 0.3 ul 0.29 ul 0.18 5 ul 6 um

543 7 ul 0.23 ul 0.07 ul 0.02 5 ul 6 uh

544 35 ul 0.01 ul 0.01 ul 0.01 5 um 6 ul

545 11 ul 0.14 ul 0.12 ul 0.02 5 um 6 um

546 7 ul 0.23 ul 0.04 ul 0.04 5 um 6 uh
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ID no tasks total tx dis totalTx max tx dis maxTx min tx dis minTx total no obj no obj tx dis Û u i dist

547 31 ul 0.13 ul 0.11 ul 0.01 5 uh 6 ul

548 12 ul 0.3 ul 0.13 ul 0.06 5 uh 6 um

549 6 ul 0.03 ul 0.01 ul 0.01 5 uh 6 uh

550 45 ul 0.25 ul 0.12 ul 0.06 20 ul 6 ul

551 11 ul 0.21 ul 0.12 ul 0.07 20 ul 6 um

552 7 ul 0.13 ul 0.08 ul 0.03 20 ul 6 uh

553 31 ul 0.04 ul 0.02 ul 0.02 20 um 6 ul

554 13 ul 0.12 ul 0.06 ul 0.02 20 um 6 um

555 6 ul 0.32 ul 0.16 ul 0.09 20 um 6 uh

556 37 ul 0.32 ul 0.04 ul 0.01 20 uh 6 ul

557 12 ul 0.3 ul 0.07 ul 0.01 20 uh 6 um

558 7 ul 0.12 ul 0.04 ul 0.04 20 uh 6 uh

559 36 ul 0.32 ul 0.26 ul 0.25 40 ul 6 ul

560 12 ul 0.17 ul 0.16 ul 0.1 40 ul 6 um

561 6 ul 0.23 ul 0.06 ul 0.02 40 ul 6 uh

562 35 ul 0.03 ul 0.03 ul 0.03 40 um 6 ul

563 11 ul 0.18 ul 0.11 ul 0.04 40 um 6 um

564 6 ul 0.11 ul 0.05 ul 0.03 40 um 6 uh

565 35 ul 0.15 ul 0.14 ul 0.04 40 uh 6 ul

566 11 ul 0.04 ul 0.03 ul 0.03 40 uh 6 um

567 7 ul 0.13 ul 0.02 ul 0.01 40 uh 6 uh

568 34 um 0.41 ul 0.1 ul 0.05 5 ul 6 ul

569 13 um 0.62 ul 0.04 ul 0.01 5 ul 6 um

570 7 um 0.42 ul 0.14 ul 0.05 5 ul 6 uh

571 36 um 0.52 ul 0.26 ul 0.05 5 um 6 ul

572 11 um 0.53 ul 0.3 ul 0.18 5 um 6 um

573 7 um 0.35 ul 0.16 ul 0.13 5 um 6 uh

574 37 um 0.49 ul 0.33 ul 0.29 5 uh 6 ul

575 12 um 0.57 ul 0.03 ul 0.02 5 uh 6 um

576 7 um 0.39 ul 0.05 ul 0.05 5 uh 6 uh

577 36 um 0.38 ul 0.2 ul 0.04 20 ul 6 ul

578 11 um 0.46 ul 0.06 ul 0.03 20 ul 6 um

579 7 um 0.59 ul 0.27 ul 0.08 20 ul 6 uh

580 35 um 0.55 ul 0.09 ul 0.04 20 um 6 ul

581 11 um 0.55 ul 0.09 ul 0.06 20 um 6 um

582 6 um 0.55 ul 0.26 ul 0.14 20 um 6 uh

583 35 um 0.65 ul 0.14 ul 0.06 20 uh 6 ul

584 12 um 0.43 ul 0.21 ul 0.19 20 uh 6 um

585 7 um 0.61 ul 0.14 ul 0.03 20 uh 6 uh

586 37 um 0.63 ul 0.29 ul 0.09 40 ul 6 ul
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ID no tasks total tx dis totalTx max tx dis maxTx min tx dis minTx total no obj no obj tx dis Û u i dist

587 12 um 0.43 ul 0.19 ul 0.11 40 ul 6 um

588 7 um 0.39 ul 0.01 ul 0.01 40 ul 6 uh

589 34 um 0.55 ul 0.16 ul 0.14 40 um 6 ul

590 11 um 0.35 ul 0.12 ul 0.09 40 um 6 um

591 7 um 0.4 ul 0.11 ul 0.03 40 um 6 uh

592 34 um 0.5 ul 0.02 ul 0.02 40 uh 6 ul

593 12 um 0.63 ul 0.22 ul 0.09 40 uh 6 um

594 7 um 0.52 ul 0.07 ul 0.07 40 uh 6 uh

595 40 um 0.64 um 0.63 ul 0.23 5 ul 6 ul

596 11 um 0.38 um 0.34 ul 0.1 5 ul 6 um

597 7 um 0.35 um 0.34 ul 0.13 5 ul 6 uh

598 32 um 0.35 um 0.35 ul 0.09 5 um 6 ul

599 12 um 0.61 um 0.39 ul 0.06 5 um 6 um

600 7 um 0.39 um 0.34 ul 0.34 5 um 6 uh

601 32 um 0.6 um 0.47 ul 0.34 5 uh 6 ul

602 11 um 0.55 um 0.52 ul 0.27 5 uh 6 um

603 7 um 0.49 um 0.4 ul 0.05 5 uh 6 uh

604 38 um 0.46 um 0.39 ul 0.04 20 ul 6 ul

605 12 um 0.47 um 0.34 ul 0.16 20 ul 6 um

606 6 um 0.59 um 0.53 ul 0.32 20 ul 6 uh

607 33 um 0.57 um 0.44 ul 0.22 20 um 6 ul

608 13 um 0.45 um 0.37 ul 0.29 20 um 6 um

609 7 um 0.5 um 0.36 ul 0.21 20 um 6 uh

610 47 um 0.41 um 0.37 ul 0.11 20 uh 6 ul

611 11 um 0.46 um 0.35 ul 0.04 20 uh 6 um

612 6 um 0.47 um 0.39 ul 0.29 20 uh 6 uh

613 35 um 0.61 um 0.5 ul 0.13 40 ul 6 ul

614 11 um 0.43 um 0.42 ul 0.33 40 ul 6 um

615 7 um 0.62 um 0.59 ul 0.14 40 ul 6 uh

616 31 um 0.53 um 0.51 ul 0.22 40 um 6 ul

617 11 um 0.38 um 0.38 ul 0.3 40 um 6 um

618 7 um 0.6 um 0.43 ul 0.29 40 um 6 uh

619 37 um 0.41 um 0.4 ul 0.31 40 uh 6 ul

620 11 um 0.63 um 0.48 ul 0.18 40 uh 6 um

621 7 um 0.46 um 0.34 ul 0.21 40 uh 6 uh

622 35 um 0.37 um 0.36 um 0.34 5 ul 6 ul

623 12 um 0.53 um 0.44 um 0.35 5 ul 6 um

624 7 um 0.49 um 0.43 um 0.43 5 ul 6 uh

625 33 um 0.64 um 0.36 um 0.35 5 um 6 ul

626 12 um 0.41 um 0.35 um 0.34 5 um 6 um
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627 7 um 0.48 um 0.38 um 0.36 5 um 6 uh

628 34 um 0.4 um 0.36 um 0.35 5 uh 6 ul

629 13 um 0.5 um 0.37 um 0.37 5 uh 6 um

630 7 um 0.58 um 0.38 um 0.35 5 uh 6 uh

631 31 um 0.53 um 0.48 um 0.4 20 ul 6 ul

632 10 um 0.55 um 0.37 um 0.35 20 ul 6 um

633 7 um 0.52 um 0.51 um 0.46 20 ul 6 uh

634 38 um 0.62 um 0.52 um 0.35 20 um 6 ul

635 11 um 0.46 um 0.45 um 0.44 20 um 6 um

636 6 um 0.53 um 0.37 um 0.36 20 um 6 uh

637 39 um 0.46 um 0.34 um 0.34 20 uh 6 ul

638 12 um 0.55 um 0.46 um 0.41 20 uh 6 um

639 7 um 0.52 um 0.36 um 0.36 20 uh 6 uh

640 36 um 0.5 um 0.34 um 0.34 40 ul 6 ul

641 12 um 0.43 um 0.34 um 0.34 40 ul 6 um

642 7 um 0.49 um 0.34 um 0.34 40 ul 6 uh

643 33 um 0.4 um 0.36 um 0.35 40 um 6 ul

644 11 um 0.43 um 0.36 um 0.36 40 um 6 um

645 7 um 0.47 um 0.47 um 0.41 40 um 6 uh

646 39 um 0.44 um 0.37 um 0.35 40 uh 6 ul

647 11 um 0.34 um 0.34 um 0.34 40 uh 6 um

648 7 um 0.53 um 0.34 um 0.34 40 uh 6 uh

649 34 uh 0.95 ul 0.08 ul 0.03 5 ul 6 ul

650 11 uh 0.86 ul 0.17 ul 0.13 5 ul 6 um

651 6 uh 0.7 ul 0.05 ul 0.04 5 ul 6 uh

652 33 uh 0.95 ul 0.27 ul 0.15 5 um 6 ul

653 11 uh 0.89 ul 0.25 ul 0.18 5 um 6 um

654 7 uh 0.92 ul 0.04 ul 0.04 5 um 6 uh

655 31 uh 0.85 ul 0.2 ul 0.13 5 uh 6 ul

656 12 uh 0.96 ul 0.16 ul 0.14 5 uh 6 um

657 7 uh 0.97 ul 0.04 ul 0.02 5 uh 6 uh

658 31 uh 0.96 ul 0.05 ul 0.02 20 ul 6 ul

659 12 uh 0.98 ul 0.08 ul 0.06 20 ul 6 um

660 7 uh 0.71 ul 0.29 ul 0.04 20 ul 6 uh

661 34 uh 0.71 ul 0.11 ul 0.03 20 um 6 ul

662 12 uh 0.84 ul 0.26 ul 0.04 20 um 6 um

663 7 uh 0.78 ul 0.15 ul 0.13 20 um 6 uh

664 33 uh 0.9 ul 0.24 ul 0.22 20 uh 6 ul

665 13 uh 0.96 ul 0.3 ul 0.27 20 uh 6 um

666 7 uh 0.89 ul 0.19 ul 0.1 20 uh 6 uh
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ID no tasks total tx dis totalTx max tx dis maxTx min tx dis minTx total no obj no obj tx dis Û u i dist

667 39 uh 0.97 ul 0.16 ul 0.07 40 ul 6 ul

668 13 uh 0.71 ul 0.2 ul 0.05 40 ul 6 um

669 7 uh 0.85 ul 0.08 ul 0.04 40 ul 6 uh

670 36 uh 0.84 ul 0.15 ul 0.02 40 um 6 ul

671 11 uh 0.73 ul 0.07 ul 0.03 40 um 6 um

672 7 uh 0.85 ul 0.22 ul 0.09 40 um 6 uh

673 39 uh 0.96 ul 0.04 ul 0.04 40 uh 6 ul

674 13 uh 0.85 ul 0.2 ul 0.09 40 uh 6 um

675 7 uh 0.93 ul 0.28 ul 0.11 40 uh 6 uh

676 36 uh 0.85 um 0.64 ul 0.08 5 ul 6 ul

677 12 uh 0.99 um 0.48 ul 0.23 5 ul 6 um

678 7 uh 0.95 um 0.51 ul 0.24 5 ul 6 uh

679 38 uh 0.91 um 0.64 ul 0.29 5 um 6 ul

680 12 uh 0.92 um 0.51 ul 0.11 5 um 6 um

681 7 uh 0.86 um 0.44 ul 0.06 5 um 6 uh

682 33 uh 0.69 um 0.51 ul 0.24 5 uh 6 ul

683 11 uh 0.67 um 0.52 ul 0.1 5 uh 6 um

684 7 uh 0.73 um 0.39 ul 0.32 5 uh 6 uh

685 35 uh 0.71 um 0.51 ul 0.26 20 ul 6 ul

686 12 uh 0.68 um 0.35 ul 0.04 20 ul 6 um

687 7 uh 0.8 um 0.65 ul 0.13 20 ul 6 uh

688 35 uh 0.8 um 0.5 ul 0.3 20 um 6 ul

689 11 uh 0.8 um 0.67 ul 0.31 20 um 6 um

690 7 uh 0.84 um 0.52 ul 0.31 20 um 6 uh

691 33 uh 0.96 um 0.54 ul 0.15 20 uh 6 ul

692 12 uh 0.76 um 0.44 ul 0.12 20 uh 6 um

693 7 uh 0.71 um 0.46 ul 0.26 20 uh 6 uh

694 35 uh 0.85 um 0.46 ul 0.16 40 ul 6 ul

695 11 uh 0.94 um 0.56 ul 0.28 40 ul 6 um

696 7 uh 0.79 um 0.64 ul 0.12 40 ul 6 uh

697 33 uh 0.78 um 0.55 ul 0.03 40 um 6 ul

698 12 uh 0.99 um 0.36 ul 0.13 40 um 6 um

699 7 uh 0.82 um 0.39 ul 0.05 40 um 6 uh

700 33 uh 0.76 um 0.65 ul 0.16 40 uh 6 ul

701 12 uh 0.93 um 0.55 ul 0.02 40 uh 6 um

702 6 uh 0.78 um 0.62 ul 0.12 40 uh 6 uh

703 32 uh 0.98 um 0.46 um 0.38 5 ul 6 ul

704 12 uh 0.68 um 0.44 um 0.38 5 ul 6 um

705 7 uh 0.99 um 0.64 um 0.37 5 ul 6 uh

706 37 uh 0.84 um 0.56 um 0.4 5 um 6 ul
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707 11 uh 0.85 um 0.64 um 0.43 5 um 6 um

708 7 uh 0.86 um 0.44 um 0.37 5 um 6 uh

709 35 uh 0.69 um 0.37 um 0.36 5 uh 6 ul

710 11 uh 0.77 um 0.59 um 0.35 5 uh 6 um

711 6 uh 0.9 um 0.41 um 0.41 5 uh 6 uh

712 35 uh 0.7 um 0.51 um 0.39 20 ul 6 ul

713 11 uh 0.69 um 0.34 um 0.34 20 ul 6 um

714 7 uh 0.73 um 0.38 um 0.36 20 ul 6 uh

715 36 uh 0.85 um 0.46 um 0.43 20 um 6 ul

716 12 uh 0.95 um 0.42 um 0.35 20 um 6 um

717 6 uh 0.98 um 0.61 um 0.49 20 um 6 uh

718 33 uh 0.69 um 0.59 um 0.45 20 uh 6 ul

719 12 uh 0.84 um 0.41 um 0.34 20 uh 6 um

720 8 uh 0.76 um 0.47 um 0.41 20 uh 6 uh

721 37 uh 0.74 um 0.35 um 0.35 40 ul 6 ul

722 12 uh 0.85 um 0.45 um 0.38 40 ul 6 um

723 7 uh 0.73 um 0.57 um 0.48 40 ul 6 uh

724 33 uh 0.76 um 0.63 um 0.5 40 um 6 ul

725 12 uh 0.67 um 0.46 um 0.35 40 um 6 um

726 7 uh 0.67 um 0.38 um 0.37 40 um 6 uh

727 33 uh 0.67 um 0.64 um 0.46 40 uh 6 ul

728 12 uh 0.71 um 0.57 um 0.46 40 uh 6 um

729 7 uh 0.99 um 0.37 um 0.35 40 uh 6 uh

730 35 uh 0.94 uh 0.94 ul 0.25 5 ul 6 ul

731 12 uh 0.77 uh 0.77 ul 0.2 5 ul 6 um

732 7 uh 0.81 uh 0.71 ul 0.21 5 ul 6 uh

733 34 uh 0.7 uh 0.68 ul 0.19 5 um 6 ul

734 11 uh 0.78 uh 0.78 ul 0.32 5 um 6 um

735 6 uh 0.76 uh 0.73 ul 0.05 5 um 6 uh

736 31 uh 0.67 uh 0.67 ul 0.07 5 uh 6 ul

737 12 uh 0.99 uh 0.69 ul 0.06 5 uh 6 um

738 7 uh 0.88 uh 0.85 ul 0.31 5 uh 6 uh

739 42 uh 0.91 uh 0.85 ul 0.25 20 ul 6 ul

740 11 uh 0.73 uh 0.68 ul 0.25 20 ul 6 um

741 6 uh 0.7 uh 0.67 ul 0.32 20 ul 6 uh

742 40 uh 0.97 uh 0.74 ul 0.19 20 um 6 ul

743 11 uh 0.91 uh 0.76 ul 0.19 20 um 6 um

744 7 uh 0.93 uh 0.86 ul 0.22 20 um 6 uh

745 32 uh 0.82 uh 0.73 ul 0.03 20 uh 6 ul

746 11 uh 0.76 uh 0.67 ul 0.12 20 uh 6 um
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ID no tasks total tx dis totalTx max tx dis maxTx min tx dis minTx total no obj no obj tx dis Û u i dist

747 6 uh 0.89 uh 0.82 ul 0.16 20 uh 6 uh

748 29 uh 0.68 uh 0.67 ul 0.05 40 ul 6 ul

749 12 uh 0.79 uh 0.78 ul 0.22 40 ul 6 um

750 6 uh 0.84 uh 0.67 ul 0.09 40 ul 6 uh

751 31 uh 0.86 uh 0.76 ul 0.2 40 um 6 ul

752 11 uh 0.69 uh 0.67 ul 0.04 40 um 6 um

753 7 uh 0.97 uh 0.89 ul 0.18 40 um 6 uh

754 35 uh 0.71 uh 0.68 ul 0.05 40 uh 6 ul

755 11 uh 0.99 uh 0.93 ul 0.12 40 uh 6 um

756 7 uh 0.83 uh 0.83 ul 0.12 40 uh 6 uh

757 34 uh 0.77 uh 0.76 um 0.48 5 ul 6 ul

758 12 uh 0.92 uh 0.8 um 0.56 5 ul 6 um

759 7 uh 0.75 uh 0.7 um 0.53 5 ul 6 uh

760 35 uh 0.74 uh 0.73 um 0.63 5 um 6 ul

761 11 uh 0.99 uh 0.82 um 0.59 5 um 6 um

762 7 uh 0.85 uh 0.82 um 0.48 5 um 6 uh

763 25 uh 0.86 uh 0.68 um 0.57 5 uh 6 ul

764 11 uh 0.94 uh 0.85 um 0.65 5 uh 6 um

765 7 uh 0.77 uh 0.72 um 0.56 5 uh 6 uh

766 31 uh 0.83 uh 0.82 um 0.59 20 ul 6 ul

767 10 uh 0.67 uh 0.67 um 0.48 20 ul 6 um

768 7 uh 0.94 uh 0.7 um 0.54 20 ul 6 uh

769 32 uh 0.9 uh 0.71 um 0.51 20 um 6 ul

770 12 uh 0.85 uh 0.74 um 0.62 20 um 6 um

771 7 uh 0.9 uh 0.67 um 0.46 20 um 6 uh

772 33 uh 0.68 uh 0.68 um 0.65 20 uh 6 ul

773 12 uh 0.78 uh 0.73 um 0.57 20 uh 6 um

774 7 uh 0.88 uh 0.73 um 0.67 20 uh 6 uh

775 33 uh 0.75 uh 0.74 um 0.37 40 ul 6 ul

776 12 uh 0.98 uh 0.97 um 0.36 40 ul 6 um

777 7 uh 0.75 uh 0.71 um 0.36 40 ul 6 uh

778 32 uh 0.7 uh 0.7 um 0.5 40 um 6 ul

779 12 uh 0.69 uh 0.69 um 0.55 40 um 6 um

780 7 uh 0.69 uh 0.67 um 0.62 40 um 6 uh

781 34 uh 0.83 uh 0.67 um 0.58 40 uh 6 ul

782 11 uh 0.91 uh 0.71 um 0.63 40 uh 6 um

783 7 uh 0.88 uh 0.76 um 0.37 40 uh 6 uh

784 36 uh 0.92 uh 0.86 uh 0.67 5 ul 6 ul

785 13 uh 0.86 uh 0.76 uh 0.69 5 ul 6 um

786 7 uh 0.93 uh 0.79 uh 0.79 5 ul 6 uh
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787 36 uh 0.74 uh 0.71 uh 0.69 5 um 6 ul

788 12 uh 0.92 uh 0.77 uh 0.71 5 um 6 um

789 7 uh 0.87 uh 0.74 uh 0.72 5 um 6 uh

790 35 uh 0.9 uh 0.76 uh 0.7 5 uh 6 ul

791 12 uh 0.95 uh 0.94 uh 0.81 5 uh 6 um

792 7 uh 0.8 uh 0.79 uh 0.7 5 uh 6 uh

793 32 uh 0.85 uh 0.85 uh 0.79 20 ul 6 ul

794 11 uh 0.67 uh 0.67 uh 0.67 20 ul 6 um

795 7 uh 0.97 uh 0.91 uh 0.9 20 ul 6 uh

796 41 uh 0.86 uh 0.77 uh 0.74 20 um 6 ul

797 11 uh 0.74 uh 0.74 uh 0.72 20 um 6 um

798 7 uh 0.99 uh 0.98 uh 0.96 20 um 6 uh

799 38 uh 0.76 uh 0.67 uh 0.67 20 uh 6 ul

800 13 uh 0.82 uh 0.8 uh 0.77 20 uh 6 um

801 7 uh 0.96 uh 0.8 uh 0.8 20 uh 6 uh

802 33 uh 0.81 uh 0.68 uh 0.68 40 ul 6 ul

803 10 uh 0.7 uh 0.67 uh 0.67 40 ul 6 um

804 7 uh 0.71 uh 0.67 uh 0.67 40 ul 6 uh

805 41 uh 0.79 uh 0.74 uh 0.68 40 um 6 ul

806 11 uh 0.92 uh 0.68 uh 0.68 40 um 6 um

807 7 uh 0.67 uh 0.67 uh 0.67 40 um 6 uh

808 35 uh 0.95 uh 0.92 uh 0.76 40 uh 6 ul

809 11 uh 0.74 uh 0.67 uh 0.67 40 uh 6 um

810 6 uh 0.81 uh 0.75 uh 0.68 40 uh 6 uh

811 47 ul 0.08 ul 0.01 ul 0.01 5 ul 8 ul

812 15 ul 0.09 ul 0.03 ul 0.03 5 ul 8 um

813 10 ul 0.24 ul 0.05 ul 0.04 5 ul 8 uh

814 47 ul 0.13 ul 0.05 ul 0.01 5 um 8 ul

815 15 ul 0.25 ul 0.08 ul 0.01 5 um 8 um

816 9 ul 0.32 ul 0.3 ul 0.17 5 um 8 uh

817 47 ul 0.09 ul 0.02 ul 0.01 5 uh 8 ul

818 15 ul 0.2 ul 0.17 ul 0.04 5 uh 8 um

819 9 ul 0.23 ul 0.02 ul 0.02 5 uh 8 uh

820 47 ul 0.07 ul 0.04 ul 0.03 20 ul 8 ul

821 15 ul 0.1 ul 0.03 ul 0.01 20 ul 8 um

822 10 ul 0.08 ul 0.03 ul 0.03 20 ul 8 uh

823 49 ul 0.16 ul 0.09 ul 0.08 20 um 8 ul

824 16 ul 0.33 ul 0.31 ul 0.29 20 um 8 um

825 9 ul 0.2 ul 0.19 ul 0.04 20 um 8 uh

826 41 ul 0.28 ul 0.11 ul 0.07 20 uh 8 ul
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ID no tasks total tx dis totalTx max tx dis maxTx min tx dis minTx total no obj no obj tx dis Û u i dist

827 16 ul 0.25 ul 0.19 ul 0.1 20 uh 8 um

828 10 ul 0.2 ul 0.13 ul 0.05 20 uh 8 uh

829 42 ul 0.3 ul 0.09 ul 0.01 40 ul 8 ul

830 16 ul 0.07 ul 0.07 ul 0.06 40 ul 8 um

831 9 ul 0.31 ul 0.18 ul 0.08 40 ul 8 uh

832 47 ul 0.05 ul 0.03 ul 0.01 40 um 8 ul

833 16 ul 0.32 ul 0.17 ul 0.17 40 um 8 um

834 9 ul 0.3 ul 0.17 ul 0.12 40 um 8 uh

835 50 ul 0.19 ul 0.14 ul 0.09 40 uh 8 ul

836 15 ul 0.26 ul 0.05 ul 0.01 40 uh 8 um

837 10 ul 0.1 ul 0.05 ul 0.01 40 uh 8 uh

838 48 um 0.48 ul 0.33 ul 0.14 5 ul 8 ul

839 16 um 0.42 ul 0.32 ul 0.03 5 ul 8 um

840 9 um 0.63 ul 0.19 ul 0.16 5 ul 8 uh

841 49 um 0.5 ul 0.05 ul 0.01 5 um 8 ul

842 16 um 0.62 ul 0.2 ul 0.18 5 um 8 um

843 9 um 0.5 ul 0.12 ul 0.12 5 um 8 uh

844 43 um 0.54 ul 0.19 ul 0.1 5 uh 8 ul

845 16 um 0.66 ul 0.27 ul 0.01 5 uh 8 um

846 9 um 0.57 ul 0.33 ul 0.1 5 uh 8 uh

847 52 um 0.61 ul 0.26 ul 0.18 20 ul 8 ul

848 14 um 0.41 ul 0.26 ul 0.23 20 ul 8 um

849 9 um 0.6 ul 0.13 ul 0.04 20 ul 8 uh

850 44 um 0.54 ul 0.16 ul 0.14 20 um 8 ul

851 15 um 0.48 ul 0.07 ul 0.06 20 um 8 um

852 10 um 0.6 ul 0.04 ul 0.01 20 um 8 uh

853 48 um 0.59 ul 0.2 ul 0.07 20 uh 8 ul

854 17 um 0.34 ul 0.26 ul 0.18 20 uh 8 um

855 10 um 0.44 ul 0.22 ul 0.21 20 uh 8 uh

856 48 um 0.49 ul 0.15 ul 0.12 40 ul 8 ul

857 16 um 0.66 ul 0.17 ul 0.11 40 ul 8 um

858 9 um 0.55 ul 0.03 ul 0.02 40 ul 8 uh

859 46 um 0.37 ul 0.1 ul 0.08 40 um 8 ul

860 16 um 0.46 ul 0.12 ul 0.01 40 um 8 um

861 9 um 0.54 ul 0.17 ul 0.09 40 um 8 uh

862 45 um 0.39 ul 0.18 ul 0.07 40 uh 8 ul

863 15 um 0.47 ul 0.08 ul 0.03 40 uh 8 um

864 9 um 0.36 ul 0.02 ul 0.02 40 uh 8 uh

865 46 um 0.42 um 0.42 ul 0.24 5 ul 8 ul

866 15 um 0.43 um 0.4 ul 0.31 5 ul 8 um
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ID no tasks total tx dis totalTx max tx dis maxTx min tx dis minTx total no obj no obj tx dis Û u i dist

867 9 um 0.48 um 0.44 ul 0.32 5 ul 8 uh

868 51 um 0.61 um 0.37 ul 0.01 5 um 8 ul

869 16 um 0.37 um 0.37 ul 0.11 5 um 8 um

870 8 um 0.43 um 0.42 ul 0.16 5 um 8 uh

871 49 um 0.37 um 0.34 ul 0.01 5 uh 8 ul

872 14 um 0.46 um 0.36 ul 0.26 5 uh 8 um

873 10 um 0.4 um 0.36 ul 0.08 5 uh 8 uh

874 44 um 0.59 um 0.48 ul 0.15 20 ul 8 ul

875 16 um 0.51 um 0.39 ul 0.3 20 ul 8 um

876 10 um 0.48 um 0.48 ul 0.1 20 ul 8 uh

877 42 um 0.62 um 0.55 ul 0.08 20 um 8 ul

878 16 um 0.55 um 0.51 ul 0.31 20 um 8 um

879 9 um 0.45 um 0.38 ul 0.05 20 um 8 uh

880 54 um 0.43 um 0.37 ul 0.13 20 uh 8 ul

881 15 um 0.54 um 0.37 ul 0.06 20 uh 8 um

882 10 um 0.6 um 0.57 ul 0.13 20 uh 8 uh

883 49 um 0.65 um 0.54 ul 0.24 40 ul 8 ul

884 17 um 0.5 um 0.5 ul 0.14 40 ul 8 um

885 9 um 0.47 um 0.42 ul 0.24 40 ul 8 uh

886 48 um 0.37 um 0.36 ul 0.08 40 um 8 ul

887 15 um 0.66 um 0.41 ul 0.29 40 um 8 um

888 9 um 0.4 um 0.4 ul 0.01 40 um 8 uh

889 48 um 0.5 um 0.37 ul 0.07 40 uh 8 ul

890 16 um 0.44 um 0.42 ul 0.1 40 uh 8 um

891 9 um 0.64 um 0.37 ul 0.26 40 uh 8 uh

892 51 um 0.52 um 0.36 um 0.34 5 ul 8 ul

893 16 um 0.6 um 0.58 um 0.53 5 ul 8 um

894 9 um 0.41 um 0.34 um 0.34 5 ul 8 uh

895 52 um 0.66 um 0.49 um 0.47 5 um 8 ul

896 16 um 0.46 um 0.38 um 0.35 5 um 8 um

897 9 um 0.34 um 0.34 um 0.34 5 um 8 uh

898 43 um 0.57 um 0.38 um 0.35 5 uh 8 ul

899 15 um 0.65 um 0.65 um 0.58 5 uh 8 um

900 9 um 0.5 um 0.48 um 0.4 5 uh 8 uh

901 46 um 0.51 um 0.36 um 0.34 20 ul 8 ul

902 17 um 0.47 um 0.35 um 0.35 20 ul 8 um

903 9 um 0.58 um 0.43 um 0.38 20 ul 8 uh

904 42 um 0.59 um 0.34 um 0.34 20 um 8 ul

905 15 um 0.63 um 0.6 um 0.54 20 um 8 um

906 9 um 0.37 um 0.36 um 0.34 20 um 8 uh
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ID no tasks total tx dis totalTx max tx dis maxTx min tx dis minTx total no obj no obj tx dis Û u i dist

907 48 um 0.44 um 0.39 um 0.36 20 uh 8 ul

908 15 um 0.61 um 0.59 um 0.4 20 uh 8 um

909 9 um 0.35 um 0.35 um 0.35 20 uh 8 uh

910 53 um 0.57 um 0.42 um 0.38 40 ul 8 ul

911 14 um 0.41 um 0.39 um 0.38 40 ul 8 um

912 9 um 0.54 um 0.53 um 0.36 40 ul 8 uh

913 48 um 0.47 um 0.4 um 0.39 40 um 8 ul

914 15 um 0.54 um 0.43 um 0.38 40 um 8 um

915 9 um 0.56 um 0.42 um 0.35 40 um 8 uh

916 54 um 0.4 um 0.4 um 0.38 40 uh 8 ul

917 16 um 0.34 um 0.34 um 0.34 40 uh 8 um

918 9 um 0.37 um 0.37 um 0.36 40 uh 8 uh

919 49 uh 0.82 ul 0.26 ul 0.22 5 ul 8 ul

920 16 uh 0.81 ul 0.26 ul 0.18 5 ul 8 um

921 9 uh 0.96 ul 0.01 ul 0.01 5 ul 8 uh

922 45 uh 0.98 ul 0.05 ul 0.05 5 um 8 ul

923 14 uh 0.88 ul 0.07 ul 0.07 5 um 8 um

924 10 uh 0.88 ul 0.17 ul 0.13 5 um 8 uh

925 49 uh 0.91 ul 0.13 ul 0.03 5 uh 8 ul

926 15 uh 0.95 ul 0.22 ul 0.12 5 uh 8 um

927 9 uh 0.97 ul 0.21 ul 0.01 5 uh 8 uh

928 49 uh 0.75 ul 0.29 ul 0.24 20 ul 8 ul

929 15 uh 0.79 ul 0.08 ul 0.04 20 ul 8 um

930 9 uh 0.93 ul 0.08 ul 0.05 20 ul 8 uh

931 41 uh 0.91 ul 0.22 ul 0.08 20 um 8 ul

932 14 uh 0.69 ul 0.3 ul 0.04 20 um 8 um

933 9 uh 0.82 ul 0.27 ul 0.03 20 um 8 uh

934 52 uh 0.91 ul 0.34 ul 0.34 20 uh 8 ul

935 15 uh 0.88 ul 0.32 ul 0.03 20 uh 8 um

936 9 uh 0.78 ul 0.17 ul 0.17 20 uh 8 uh

937 46 uh 0.7 ul 0.19 ul 0.12 40 ul 8 ul

938 18 uh 0.78 ul 0.27 ul 0.14 40 ul 8 um

939 9 uh 0.69 ul 0.27 ul 0.16 40 ul 8 uh

940 44 uh 0.95 ul 0.21 ul 0.08 40 um 8 ul

941 16 uh 0.96 ul 0.19 ul 0.1 40 um 8 um

942 9 uh 0.81 ul 0.07 ul 0.01 40 um 8 uh

943 43 uh 0.84 ul 0.05 ul 0.05 40 uh 8 ul

944 15 uh 0.68 ul 0.29 ul 0.2 40 uh 8 um

945 9 uh 0.74 ul 0.11 ul 0.07 40 uh 8 uh

946 43 uh 0.91 um 0.51 ul 0.26 5 ul 8 ul
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ID no tasks total tx dis totalTx max tx dis maxTx min tx dis minTx total no obj no obj tx dis Û u i dist

947 15 uh 0.99 um 0.46 ul 0.15 5 ul 8 um

948 9 uh 0.84 um 0.66 ul 0.01 5 ul 8 uh

949 40 uh 0.67 um 0.34 ul 0.27 5 um 8 ul

950 16 uh 0.78 um 0.41 ul 0.33 5 um 8 um

951 9 uh 0.82 um 0.37 ul 0.32 5 um 8 uh

952 42 uh 0.79 um 0.39 ul 0.33 5 uh 8 ul

953 16 uh 0.95 um 0.66 ul 0.31 5 uh 8 um

954 9 uh 0.97 um 0.64 ul 0.02 5 uh 8 uh

955 40 uh 0.75 um 0.47 ul 0.04 20 ul 8 ul

956 15 uh 0.8 um 0.57 ul 0.1 20 ul 8 um

957 10 uh 0.69 um 0.52 ul 0.13 20 ul 8 uh

958 45 uh 0.72 um 0.4 ul 0.11 20 um 8 ul

959 15 uh 0.79 um 0.35 ul 0.07 20 um 8 um

960 10 uh 0.96 um 0.58 ul 0.09 20 um 8 uh

961 44 uh 0.89 um 0.5 ul 0.31 20 uh 8 ul

962 16 uh 0.85 um 0.67 ul 0.22 20 uh 8 um

963 9 uh 0.7 um 0.49 ul 0.09 20 uh 8 uh

964 48 uh 0.67 um 0.36 ul 0.33 40 ul 8 ul

965 16 uh 0.82 um 0.6 ul 0.08 40 ul 8 um

966 9 uh 0.93 um 0.59 ul 0.19 40 ul 8 uh

967 45 uh 0.79 um 0.44 ul 0.19 40 um 8 ul

968 14 uh 0.96 um 0.48 ul 0.02 40 um 8 um

969 10 uh 0.67 um 0.5 ul 0.34 40 um 8 uh

970 50 uh 0.98 um 0.5 ul 0.29 40 uh 8 ul

971 16 uh 0.68 um 0.34 ul 0.23 40 uh 8 um

972 9 uh 0.95 um 0.47 ul 0.18 40 uh 8 uh

973 50 uh 0.75 um 0.6 um 0.59 5 ul 8 ul

974 14 uh 0.83 um 0.35 um 0.35 5 ul 8 um

975 9 uh 0.93 um 0.57 um 0.48 5 ul 8 uh

976 47 uh 0.91 um 0.6 um 0.53 5 um 8 ul

977 16 uh 0.67 um 0.52 um 0.36 5 um 8 um

978 9 uh 0.69 um 0.61 um 0.56 5 um 8 uh

979 43 uh 0.82 um 0.53 um 0.52 5 uh 8 ul

980 16 uh 0.9 um 0.44 um 0.41 5 uh 8 um

981 9 uh 0.67 um 0.55 um 0.36 5 uh 8 uh

982 38 uh 0.97 um 0.49 um 0.36 20 ul 8 ul

983 15 uh 0.79 um 0.49 um 0.38 20 ul 8 um

984 9 uh 0.8 um 0.58 um 0.36 20 ul 8 uh

985 46 uh 0.68 um 0.44 um 0.44 20 um 8 ul

986 15 uh 0.9 um 0.51 um 0.34 20 um 8 um
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ID no tasks total tx dis totalTx max tx dis maxTx min tx dis minTx total no obj no obj tx dis Û u i dist

987 9 uh 0.71 um 0.62 um 0.35 20 um 8 uh

988 50 uh 0.74 um 0.45 um 0.4 20 uh 8 ul

989 16 uh 0.7 um 0.51 um 0.48 20 uh 8 um

990 8 uh 0.76 um 0.39 um 0.34 20 uh 8 uh

991 43 uh 0.96 um 0.39 um 0.35 40 ul 8 ul

992 15 uh 0.77 um 0.52 um 0.38 40 ul 8 um

993 10 uh 0.93 um 0.56 um 0.47 40 ul 8 uh

994 48 uh 0.81 um 0.34 um 0.34 40 um 8 ul

995 16 uh 0.86 um 0.5 um 0.36 40 um 8 um

996 9 uh 0.75 um 0.59 um 0.34 40 um 8 uh

997 41 uh 0.69 um 0.37 um 0.36 40 uh 8 ul

998 14 uh 0.69 um 0.65 um 0.51 40 uh 8 um

999 9 uh 0.98 um 0.42 um 0.34 40 uh 8 uh

1000 45 uh 0.71 uh 0.68 ul 0.26 5 ul 8 ul

1001 16 uh 0.72 uh 0.72 ul 0.31 5 ul 8 um

1002 9 uh 0.75 uh 0.69 ul 0.28 5 ul 8 uh

1003 48 uh 0.98 uh 0.89 ul 0.24 5 um 8 ul

1004 17 uh 0.84 uh 0.71 ul 0.06 5 um 8 um

1005 9 uh 0.86 uh 0.81 ul 0.22 5 um 8 uh

1006 42 uh 0.67 uh 0.67 ul 0.14 5 uh 8 ul

1007 16 uh 0.82 uh 0.67 ul 0.33 5 uh 8 um

1008 9 uh 0.79 uh 0.73 ul 0.08 5 uh 8 uh

1009 49 uh 0.77 uh 0.72 ul 0.08 20 ul 8 ul

1010 16 uh 0.88 uh 0.7 ul 0.09 20 ul 8 um

1011 9 uh 0.7 uh 0.69 ul 0.17 20 ul 8 uh

1012 46 uh 0.78 uh 0.74 ul 0.03 20 um 8 ul

1013 15 uh 0.94 uh 0.92 ul 0.21 20 um 8 um

1014 9 uh 0.8 uh 0.73 ul 0.25 20 um 8 uh

1015 47 uh 0.92 uh 0.9 ul 0.27 20 uh 8 ul

1016 15 uh 0.77 uh 0.73 ul 0.22 20 uh 8 um

1017 9 uh 0.92 uh 0.71 ul 0.1 20 uh 8 uh

1018 45 uh 0.83 uh 0.7 ul 0.09 40 ul 8 ul

1019 15 uh 0.82 uh 0.82 ul 0.31 40 ul 8 um

1020 9 uh 0.89 uh 0.84 ul 0.3 40 ul 8 uh

1021 43 uh 0.81 uh 0.69 ul 0.31 40 um 8 ul

1022 16 uh 0.96 uh 0.81 ul 0.31 40 um 8 um

1023 9 uh 0.82 uh 0.71 ul 0.17 40 um 8 uh

1024 53 uh 0.97 uh 0.94 ul 0.07 40 uh 8 ul

1025 17 uh 0.99 uh 0.69 ul 0.2 40 uh 8 um

1026 9 uh 0.76 uh 0.75 ul 0.11 40 uh 8 uh
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ID no tasks total tx dis totalTx max tx dis maxTx min tx dis minTx total no obj no obj tx dis Û u i dist

1027 47 uh 0.79 uh 0.72 um 0.6 5 ul 8 ul

1028 15 uh 0.95 uh 0.84 um 0.59 5 ul 8 um

1029 9 uh 0.86 uh 0.86 um 0.45 5 ul 8 uh

1030 44 uh 0.72 uh 0.69 um 0.59 5 um 8 ul

1031 15 uh 0.71 uh 0.71 um 0.49 5 um 8 um

1032 9 uh 0.88 uh 0.84 um 0.36 5 um 8 uh

1033 39 uh 0.68 uh 0.67 um 0.48 5 uh 8 ul

1034 16 uh 0.91 uh 0.9 um 0.49 5 uh 8 um

1035 9 uh 0.87 uh 0.86 um 0.38 5 uh 8 uh

1036 49 uh 0.71 uh 0.67 um 0.47 20 ul 8 ul

1037 16 uh 0.84 uh 0.75 um 0.61 20 ul 8 um

1038 9 uh 0.85 uh 0.7 um 0.66 20 ul 8 uh

1039 51 uh 0.77 uh 0.76 um 0.43 20 um 8 ul

1040 15 uh 0.92 uh 0.82 um 0.46 20 um 8 um

1041 9 uh 0.86 uh 0.67 um 0.58 20 um 8 uh

1042 43 uh 0.94 uh 0.83 um 0.63 20 uh 8 ul

1043 16 uh 0.68 uh 0.67 um 0.39 20 uh 8 um

1044 10 uh 0.9 uh 0.84 um 0.35 20 uh 8 uh

1045 48 uh 0.77 uh 0.69 um 0.6 40 ul 8 ul

1046 16 uh 0.9 uh 0.84 um 0.64 40 ul 8 um

1047 10 uh 0.97 uh 0.74 um 0.4 40 ul 8 uh

1048 41 uh 0.76 uh 0.74 um 0.37 40 um 8 ul

1049 15 uh 0.92 uh 0.71 um 0.6 40 um 8 um

1050 9 uh 0.82 uh 0.76 um 0.37 40 um 8 uh

1051 50 uh 0.98 uh 0.68 um 0.37 40 uh 8 ul

1052 16 uh 0.7 uh 0.7 um 0.46 40 uh 8 um

1053 9 uh 0.9 uh 0.84 um 0.47 40 uh 8 uh

1054 42 uh 0.98 uh 0.81 uh 0.75 5 ul 8 ul

1055 16 uh 0.78 uh 0.78 uh 0.72 5 ul 8 um

1056 9 uh 0.98 uh 0.78 uh 0.67 5 ul 8 uh

1057 44 uh 0.96 uh 0.72 uh 0.7 5 um 8 ul

1058 14 uh 0.73 uh 0.7 uh 0.7 5 um 8 um

1059 9 uh 0.99 uh 0.84 uh 0.79 5 um 8 uh

1060 47 uh 0.92 uh 0.78 uh 0.74 5 uh 8 ul

1061 15 uh 0.82 uh 0.79 uh 0.68 5 uh 8 um

1062 9 uh 0.82 uh 0.7 uh 0.7 5 uh 8 uh

1063 50 uh 0.67 uh 0.67 uh 0.67 20 ul 8 ul

1064 15 uh 0.94 uh 0.91 uh 0.83 20 ul 8 um

1065 9 uh 0.77 uh 0.69 uh 0.68 20 ul 8 uh

1066 57 uh 0.88 uh 0.75 uh 0.69 20 um 8 ul
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ID no tasks total tx dis totalTx max tx dis maxTx min tx dis minTx total no obj no obj tx dis Û u i dist

1067 15 uh 0.7 uh 0.7 uh 0.68 20 um 8 um

1068 10 uh 0.7 uh 0.67 uh 0.67 20 um 8 uh

1069 43 uh 0.86 uh 0.75 uh 0.73 20 uh 8 ul

1070 15 uh 0.81 uh 0.68 uh 0.68 20 uh 8 um

1071 9 uh 0.85 uh 0.72 uh 0.71 20 uh 8 uh

1072 46 uh 0.74 uh 0.72 uh 0.7 40 ul 8 ul

1073 15 uh 0.7 uh 0.7 uh 0.67 40 ul 8 um

1074 9 uh 0.88 uh 0.83 uh 0.74 40 ul 8 uh

1075 49 uh 0.84 uh 0.73 uh 0.71 40 um 8 ul

1076 15 uh 0.82 uh 0.71 uh 0.69 40 um 8 um

1077 9 uh 0.74 uh 0.7 uh 0.67 40 um 8 uh

1078 46 uh 0.77 uh 0.75 uh 0.7 40 uh 8 ul

1079 16 uh 0.87 uh 0.8 uh 0.78 40 uh 8 um

1080 9 uh 0.75 uh 0.71 uh 0.71 40 uh 8 uh
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Figure B.1: DSR for Tasksets 1, 271, 541 and 811
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Figure B.2: DSR for Tasksets 2, 272, 542 and 812
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Figure B.3: DSR for Tasksets 3, 273, 543 and 813

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 2  3  4  5  6  7  8

D
S

R

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure B.4: DSR for Tasksets 4, 274, 544 and 814
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Figure B.5: DSR for Tasksets 5, 275, 545 and 815
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Figure B.6: DSR for Tasksets 6, 276, 546 and 816
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Figure B.7: DSR for Tasksets 7, 277, 547 and 817
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Figure B.8: DSR for Tasksets 8, 278, 548 and 818
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Figure B.9: DSR for Tasksets 9, 279, 549 and 819
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Figure B.10: DSR for Tasksets 10, 280, 550 and 820
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Figure B.11: DSR for Tasksets 11, 281, 551 and 821
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Figure B.12: DSR for Tasksets 12, 282, 552 and 822
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Figure B.13: DSR for Tasksets 13, 283, 553 and 823
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Figure B.14: DSR for Tasksets 14, 284, 554 and 824
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Figure B.15: DSR for Tasksets 15, 285, 555 and 825

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 2  3  4  5  6  7  8

D
S

R

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure B.16: DSR for Tasksets 16, 286, 556 and 826
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Figure B.17: DSR for Tasksets 17, 287, 557 and 827
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Figure B.18: DSR for Tasksets 18, 288, 558 and 828
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Figure B.19: DSR for Tasksets 19, 289, 559 and 829
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Figure B.20: DSR for Tasksets 20, 290, 560 and 830
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Figure B.21: DSR for Tasksets 21, 291, 561 and 831
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Figure B.22: DSR for Tasksets 22, 292, 562 and 832
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Figure B.23: DSR for Tasksets 23, 293, 563 and 833
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Figure B.24: DSR for Tasksets 24, 294, 564 and 834
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Figure B.25: DSR for Tasksets 25, 295, 565 and 835
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Figure B.26: DSR for Tasksets 26, 296, 566 and 836
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Figure B.27: DSR for Tasksets 27, 297, 567 and 837
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Figure B.28: DSR for Tasksets 28, 298, 568 and 838
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Figure B.29: DSR for Tasksets 29, 299, 569 and 839
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Figure B.30: DSR for Tasksets 30, 300, 570 and 840
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Figure B.31: DSR for Tasksets 31, 301, 571 and 841
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Figure B.32: DSR for Tasksets 32, 302, 572 and 842
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Figure B.33: DSR for Tasksets 33, 303, 573 and 843
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Figure B.34: DSR for Tasksets 34, 304, 574 and 844
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Figure B.35: DSR for Tasksets 35, 305, 575 and 845
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Figure B.36: DSR for Tasksets 36, 306, 576 and 846
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Figure B.37: DSR for Tasksets 37, 307, 577 and 847
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Figure B.38: DSR for Tasksets 38, 308, 578 and 848
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Figure B.39: DSR for Tasksets 39, 309, 579 and 849
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Figure B.40: DSR for Tasksets 40, 310, 580 and 850
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Figure B.41: DSR for Tasksets 41, 311, 581 and 851
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Figure B.42: DSR for Tasksets 42, 312, 582 and 852
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Figure B.43: DSR for Tasksets 43, 313, 583 and 853
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Figure B.44: DSR for Tasksets 44, 314, 584 and 854
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Figure B.45: DSR for Tasksets 45, 315, 585 and 855
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Figure B.46: DSR for Tasksets 46, 316, 586 and 856
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Figure B.47: DSR for Tasksets 47, 317, 587 and 857
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Figure B.48: DSR for Tasksets 48, 318, 588 and 858
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Figure B.49: DSR for Tasksets 49, 319, 589 and 859
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Figure B.50: DSR for Tasksets 50, 320, 590 and 860
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Figure B.51: DSR for Tasksets 51, 321, 591 and 861

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2  3  4  5  6  7  8

D
S

R

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure B.52: DSR for Tasksets 52, 322, 592 and 862
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Figure B.53: DSR for Tasksets 53, 323, 593 and 863
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Figure B.54: DSR for Tasksets 54, 324, 594 and 864
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Figure B.55: DSR for Tasksets 55, 325, 595 and 865
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Figure B.56: DSR for Tasksets 56, 326, 596 and 866
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Figure B.57: DSR for Tasksets 57, 327, 597 and 867
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Figure B.58: DSR for Tasksets 58, 328, 598 and 868
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Figure B.59: DSR for Tasksets 59, 329, 599 and 869
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Figure B.60: DSR for Tasksets 60, 330, 600 and 870
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Figure B.61: DSR for Tasksets 61, 331, 601 and 871
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Figure B.62: DSR for Tasksets 62, 332, 602 and 872
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Figure B.63: DSR for Tasksets 63, 333, 603 and 873
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Figure B.64: DSR for Tasksets 64, 334, 604 and 874
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Figure B.65: DSR for Tasksets 65, 335, 605 and 875
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Figure B.66: DSR for Tasksets 66, 336, 606 and 876
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Figure B.67: DSR for Tasksets 67, 337, 607 and 877
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Figure B.68: DSR for Tasksets 68, 338, 608 and 878
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Figure B.69: DSR for Tasksets 69, 339, 609 and 879
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Figure B.70: DSR for Tasksets 70, 340, 610 and 880
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Figure B.71: DSR for Tasksets 71, 341, 611 and 881

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  3  4  5  6  7  8

D
S

R

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure B.72: DSR for Tasksets 72, 342, 612 and 882
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Figure B.73: DSR for Tasksets 73, 343, 613 and 883
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Figure B.74: DSR for Tasksets 74, 344, 614 and 884
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Figure B.75: DSR for Tasksets 75, 345, 615 and 885
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Figure B.76: DSR for Tasksets 76, 346, 616 and 886
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Figure B.77: DSR for Tasksets 77, 347, 617 and 887
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Figure B.78: DSR for Tasksets 78, 348, 618 and 888
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Figure B.79: DSR for Tasksets 79, 349, 619 and 889
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Figure B.80: DSR for Tasksets 80, 350, 620 and 890
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Figure B.81: DSR for Tasksets 81, 351, 621 and 891
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Figure B.82: DSR for Tasksets 82, 352, 622 and 892
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Figure B.83: DSR for Tasksets 83, 353, 623 and 893
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Figure B.84: DSR for Tasksets 84, 354, 624 and 894
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Figure B.85: DSR for Tasksets 85, 355, 625 and 895
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Figure B.86: DSR for Tasksets 86, 356, 626 and 896
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Figure B.87: DSR for Tasksets 87, 357, 627 and 897
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Figure B.88: DSR for Tasksets 88, 358, 628 and 898
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Figure B.89: DSR for Tasksets 89, 359, 629 and 899
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Figure B.90: DSR for Tasksets 90, 360, 630 and 900



Mohammed El-Shambakey Appendix B. Deadline Satisfaction Results 240

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 2  3  4  5  6  7  8

D
S

R

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure B.91: DSR for Tasksets 91, 361, 631 and 901
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Figure B.92: DSR for Tasksets 92, 362, 632 and 902
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Figure B.93: DSR for Tasksets 93, 363, 633 and 903
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Figure B.94: DSR for Tasksets 94, 364, 634 and 904
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Figure B.95: DSR for Tasksets 95, 365, 635 and 905
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Figure B.96: DSR for Tasksets 96, 366, 636 and 906
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Figure B.97: DSR for Tasksets 97, 367, 637 and 907
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Figure B.98: DSR for Tasksets 98, 368, 638 and 908
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Figure B.99: DSR for Tasksets 99, 369, 639 and 909
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Figure B.100: DSR for Tasksets 100, 370, 640 and 910
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Figure B.101: DSR for Tasksets 101, 371, 641 and 911
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Figure B.102: DSR for Tasksets 102, 372, 642 and 912



Mohammed El-Shambakey Appendix B. Deadline Satisfaction Results 246

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 2  3  4  5  6  7  8

D
S

R

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure B.103: DSR for Tasksets 103, 373, 643 and 913
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Figure B.104: DSR for Tasksets 104, 374, 644 and 914
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Figure B.105: DSR for Tasksets 105, 375, 645 and 915
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Figure B.106: DSR for Tasksets 106, 376, 646 and 916
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Figure B.107: DSR for Tasksets 107, 377, 647 and 917
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Figure B.108: DSR for Tasksets 108, 378, 648 and 918
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Figure B.109: DSR for Tasksets 109, 379, 649 and 919
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Figure B.110: DSR for Tasksets 110, 380, 650 and 920
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Figure B.111: DSR for Tasksets 111, 381, 651 and 921
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Figure B.112: DSR for Tasksets 112, 382, 652 and 922



Mohammed El-Shambakey Appendix B. Deadline Satisfaction Results 251

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  3  4  5  6  7  8

D
S

R

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure B.113: DSR for Tasksets 113, 383, 653 and 923
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Figure B.114: DSR for Tasksets 114, 384, 654 and 924
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Figure B.115: DSR for Tasksets 115, 385, 655 and 925
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Figure B.116: DSR for Tasksets 116, 386, 656 and 926
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Figure B.117: DSR for Tasksets 117, 387, 657 and 927
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Figure B.118: DSR for Tasksets 118, 388, 658 and 928
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Figure B.119: DSR for Tasksets 119, 389, 659 and 929
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Figure B.120: DSR for Tasksets 120, 390, 660 and 930
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Figure B.121: DSR for Tasksets 121, 391, 661 and 931
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Figure B.122: DSR for Tasksets 122, 392, 662 and 932
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Figure B.123: DSR for Tasksets 123, 393, 663 and 933
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Figure B.124: DSR for Tasksets 124, 394, 664 and 934
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Figure B.125: DSR for Tasksets 125, 395, 665 and 935
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Figure B.126: DSR for Tasksets 126, 396, 666 and 936
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Figure B.127: DSR for Tasksets 127, 397, 667 and 937
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Figure B.128: DSR for Tasksets 128, 398, 668 and 938
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Figure B.129: DSR for Tasksets 129, 399, 669 and 939
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Figure B.130: DSR for Tasksets 130, 400, 670 and 940
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Figure B.131: DSR for Tasksets 131, 401, 671 and 941
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Figure B.132: DSR for Tasksets 132, 402, 672 and 942
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Figure B.133: DSR for Tasksets 133, 403, 673 and 943
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Figure B.134: DSR for Tasksets 134, 404, 674 and 944
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Figure B.135: DSR for Tasksets 135, 405, 675 and 945
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Figure B.136: DSR for Tasksets 136, 406, 676 and 946
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Figure B.137: DSR for Tasksets 137, 407, 677 and 947
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Figure B.138: DSR for Tasksets 138, 408, 678 and 948
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Figure B.139: DSR for Tasksets 139, 409, 679 and 949
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Figure B.140: DSR for Tasksets 140, 410, 680 and 950
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Figure B.141: DSR for Tasksets 141, 411, 681 and 951
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Figure B.142: DSR for Tasksets 142, 412, 682 and 952
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Figure B.143: DSR for Tasksets 143, 413, 683 and 953
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Figure B.144: DSR for Tasksets 144, 414, 684 and 954
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Figure B.145: DSR for Tasksets 145, 415, 685 and 955
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Figure B.146: DSR for Tasksets 146, 416, 686 and 956
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Figure B.147: DSR for Tasksets 147, 417, 687 and 957
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Figure B.148: DSR for Tasksets 148, 418, 688 and 958
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Figure B.149: DSR for Tasksets 149, 419, 689 and 959
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Figure B.150: DSR for Tasksets 150, 420, 690 and 960
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Figure B.151: DSR for Tasksets 151, 421, 691 and 961
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Figure B.152: DSR for Tasksets 152, 422, 692 and 962
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Figure B.153: DSR for Tasksets 153, 423, 693 and 963
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Figure B.154: DSR for Tasksets 154, 424, 694 and 964
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Figure B.155: DSR for Tasksets 155, 425, 695 and 965
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Figure B.156: DSR for Tasksets 156, 426, 696 and 966
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Figure B.157: DSR for Tasksets 157, 427, 697 and 967
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Figure B.158: DSR for Tasksets 158, 428, 698 and 968
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Figure B.159: DSR for Tasksets 159, 429, 699 and 969
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Figure B.160: DSR for Tasksets 160, 430, 700 and 970
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Figure B.161: DSR for Tasksets 161, 431, 701 and 971

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  3  4  5  6  7  8

D
S

R

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure B.162: DSR for Tasksets 162, 432, 702 and 972
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Figure B.163: DSR for Tasksets 163, 433, 703 and 973
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Figure B.164: DSR for Tasksets 164, 434, 704 and 974
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Figure B.165: DSR for Tasksets 165, 435, 705 and 975
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Figure B.166: DSR for Tasksets 166, 436, 706 and 976
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Figure B.167: DSR for Tasksets 167, 437, 707 and 977

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  3  4  5  6  7  8

D
S

R

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure B.168: DSR for Tasksets 168, 438, 708 and 978
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Figure B.169: DSR for Tasksets 169, 439, 709 and 979
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Figure B.170: DSR for Tasksets 170, 440, 710 and 980
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Figure B.171: DSR for Tasksets 171, 441, 711 and 981
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Figure B.172: DSR for Tasksets 172, 442, 712 and 982
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Figure B.173: DSR for Tasksets 173, 443, 713 and 983
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Figure B.174: DSR for Tasksets 174, 444, 714 and 984
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Figure B.175: DSR for Tasksets 175, 445, 715 and 985
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Figure B.176: DSR for Tasksets 176, 446, 716 and 986
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Figure B.177: DSR for Tasksets 177, 447, 717 and 987
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Figure B.178: DSR for Tasksets 178, 448, 718 and 988
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Figure B.179: DSR for Tasksets 179, 449, 719 and 989
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Figure B.180: DSR for Tasksets 180, 450, 720 and 990
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Figure B.181: DSR for Tasksets 181, 451, 721 and 991
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Figure B.182: DSR for Tasksets 182, 452, 722 and 992
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Figure B.183: DSR for Tasksets 183, 453, 723 and 993
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Figure B.184: DSR for Tasksets 184, 454, 724 and 994
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Figure B.185: DSR for Tasksets 185, 455, 725 and 995

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  3  4  5  6  7  8

D
S

R

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure B.186: DSR for Tasksets 186, 456, 726 and 996
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Figure B.187: DSR for Tasksets 187, 457, 727 and 997
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Figure B.188: DSR for Tasksets 188, 458, 728 and 998
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Figure B.189: DSR for Tasksets 189, 459, 729 and 999
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Figure B.190: DSR for Tasksets 190, 460, 730 and 1000
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Figure B.191: DSR for Tasksets 191, 461, 731 and 1001
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Figure B.192: DSR for Tasksets 192, 462, 732 and 1002
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Figure B.193: DSR for Tasksets 193, 463, 733 and 1003
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Figure B.194: DSR for Tasksets 194, 464, 734 and 1004
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Figure B.195: DSR for Tasksets 195, 465, 735 and 1005
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Figure B.196: DSR for Tasksets 196, 466, 736 and 1006
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Figure B.197: DSR for Tasksets 197, 467, 737 and 1007
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Figure B.198: DSR for Tasksets 198, 468, 738 and 1008
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Figure B.199: DSR for Tasksets 199, 469, 739 and 1009
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Figure B.200: DSR for Tasksets 200, 470, 740 and 1010
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Figure B.201: DSR for Tasksets 201, 471, 741 and 1011

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 2  3  4  5  6  7  8

D
S

R

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure B.202: DSR for Tasksets 202, 472, 742 and 1012
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Figure B.203: DSR for Tasksets 203, 473, 743 and 1013
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Figure B.204: DSR for Tasksets 204, 474, 744 and 1014
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Figure B.205: DSR for Tasksets 205, 475, 745 and 1015
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Figure B.206: DSR for Tasksets 206, 476, 746 and 1016
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Figure B.207: DSR for Tasksets 207, 477, 747 and 1017
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Figure B.208: DSR for Tasksets 208, 478, 748 and 1018



Mohammed El-Shambakey Appendix B. Deadline Satisfaction Results 299

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  3  4  5  6  7  8

D
S

R

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure B.209: DSR for Tasksets 209, 479, 749 and 1019
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Figure B.210: DSR for Tasksets 210, 480, 750 and 1020
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Figure B.211: DSR for Tasksets 211, 481, 751 and 1021
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Figure B.212: DSR for Tasksets 212, 482, 752 and 1022
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Figure B.213: DSR for Tasksets 213, 483, 753 and 1023
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Figure B.214: DSR for Tasksets 214, 484, 754 and 1024
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Figure B.215: DSR for Tasksets 215, 485, 755 and 1025

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  3  4  5  6  7  8

D
S

R

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure B.216: DSR for Tasksets 216, 486, 756 and 1026
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Figure B.217: DSR for Tasksets 217, 487, 757 and 1027
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Figure B.218: DSR for Tasksets 218, 488, 758 and 1028
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Figure B.219: DSR for Tasksets 219, 489, 759 and 1029
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Figure B.220: DSR for Tasksets 220, 490, 760 and 1030
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Figure B.221: DSR for Tasksets 221, 491, 761 and 1031
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Figure B.222: DSR for Tasksets 222, 492, 762 and 1032
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Figure B.223: DSR for Tasksets 223, 493, 763 and 1033
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Figure B.224: DSR for Tasksets 224, 494, 764 and 1034
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Figure B.225: DSR for Tasksets 225, 495, 765 and 1035
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Figure B.226: DSR for Tasksets 226, 496, 766 and 1036
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Figure B.227: DSR for Tasksets 227, 497, 767 and 1037
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Figure B.228: DSR for Tasksets 228, 498, 768 and 1038
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Figure B.229: DSR for Tasksets 229, 499, 769 and 1039
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Figure B.230: DSR for Tasksets 230, 500, 770 and 1040
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Figure B.231: DSR for Tasksets 231, 501, 771 and 1041
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Figure B.232: DSR for Tasksets 232, 502, 772 and 1042
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Figure B.233: DSR for Tasksets 233, 503, 773 and 1043
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Figure B.234: DSR for Tasksets 234, 504, 774 and 1044
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Figure B.235: DSR for Tasksets 235, 505, 775 and 1045
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Figure B.236: DSR for Tasksets 236, 506, 776 and 1046
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Figure B.237: DSR for Tasksets 237, 507, 777 and 1047
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Figure B.238: DSR for Tasksets 238, 508, 778 and 1048
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Figure B.239: DSR for Tasksets 239, 509, 779 and 1049

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  3  4  5  6  7  8

D
S

R

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure B.240: DSR for Tasksets 240, 510, 780 and 1050
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Figure B.241: DSR for Tasksets 241, 511, 781 and 1051
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Figure B.242: DSR for Tasksets 242, 512, 782 and 1052
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Figure B.243: DSR for Tasksets 243, 513, 783 and 1053

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  3  4  5  6  7  8

D
S

R

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

LF

Figure B.244: DSR for Tasksets 244, 514, 784 and 1054
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Figure B.245: DSR for Tasksets 245, 515, 785 and 1055
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Figure B.246: DSR for Tasksets 246, 516, 786 and 1056
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Figure B.247: DSR for Tasksets 247, 517, 787 and 1057
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Figure B.248: DSR for Tasksets 248, 518, 788 and 1058
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Figure B.249: DSR for Tasksets 249, 519, 789 and 1059
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Figure B.250: DSR for Tasksets 250, 520, 790 and 1060
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Figure B.251: DSR for Tasksets 251, 521, 791 and 1061
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Figure B.252: DSR for Tasksets 252, 522, 792 and 1062
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Figure B.253: DSR for Tasksets 253, 523, 793 and 1063
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Figure B.254: DSR for Tasksets 254, 524, 794 and 1064
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Figure B.255: DSR for Tasksets 255, 525, 795 and 1065
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Figure B.256: DSR for Tasksets 256, 526, 796 and 1066
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Figure B.257: DSR for Tasksets 257, 527, 797 and 1067
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Figure B.258: DSR for Tasksets 258, 528, 798 and 1068
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Figure B.259: DSR for Tasksets 259, 529, 799 and 1069
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Figure B.260: DSR for Tasksets 260, 530, 800 and 1070
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Figure B.261: DSR for Tasksets 261, 531, 801 and 1071
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Figure B.262: DSR for Tasksets 262, 532, 802 and 1072
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Figure B.263: DSR for Tasksets 263, 533, 803 and 1073
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Figure B.264: DSR for Tasksets 264, 534, 804 and 1074
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Figure B.265: DSR for Tasksets 265, 535, 805 and 1075
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Figure B.266: DSR for Tasksets 266, 536, 806 and 1076
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Figure B.267: DSR for Tasksets 267, 537, 807 and 1077
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Figure B.268: DSR for Tasksets 268, 538, 808 and 1078
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Figure B.269: DSR for Tasksets 269, 539, 809 and 1079
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Figure B.270: DSR for Tasksets 270, 540, 810 and 1080
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Figure C.1: Avg RC for Tasksets 1, 271, 541 and 811
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Figure C.2: Avg RC for Tasksets 2, 272, 542 and 812
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Figure C.3: Avg RC for Tasksets 3, 273, 543 and 813
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Figure C.4: Avg RC for Tasksets 4, 274, 544 and 814
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Figure C.5: Avg RC for Tasksets 5, 275, 545 and 815
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Figure C.6: Avg RC for Tasksets 6, 276, 546 and 816
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Figure C.7: Avg RC for Tasksets 7, 277, 547 and 817
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Figure C.8: Avg RC for Tasksets 8, 278, 548 and 818
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Figure C.9: Avg RC for Tasksets 9, 279, 549 and 819
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Figure C.10: Avg RC for Tasksets 10, 280, 550 and 820
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Figure C.11: Avg RC for Tasksets 11, 281, 551 and 821
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Figure C.12: Avg RC for Tasksets 12, 282, 552 and 822
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Figure C.13: Avg RC for Tasksets 13, 283, 553 and 823
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Figure C.14: Avg RC for Tasksets 14, 284, 554 and 824
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Figure C.15: Avg RC for Tasksets 15, 285, 555 and 825
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Figure C.16: Avg RC for Tasksets 16, 286, 556 and 826
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Figure C.17: Avg RC for Tasksets 17, 287, 557 and 827

-500000

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 2  3  4  5  6  7  8

Av
er

ag
e 

R
C

 (n
se

c)

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure C.18: Avg RC for Tasksets 18, 288, 558 and 828
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Figure C.19: Avg RC for Tasksets 19, 289, 559 and 829
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Figure C.20: Avg RC for Tasksets 20, 290, 560 and 830
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Figure C.21: Avg RC for Tasksets 21, 291, 561 and 831
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Figure C.22: Avg RC for Tasksets 22, 292, 562 and 832
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Figure C.23: Avg RC for Tasksets 23, 293, 563 and 833
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Figure C.24: Avg RC for Tasksets 24, 294, 564 and 834
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Figure C.25: Avg RC for Tasksets 25, 295, 565 and 835
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Figure C.26: Avg RC for Tasksets 26, 296, 566 and 836
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Figure C.27: Avg RC for Tasksets 27, 297, 567 and 837
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Figure C.28: Avg RC for Tasksets 28, 298, 568 and 838
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Figure C.29: Avg RC for Tasksets 29, 299, 569 and 839

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 2  3  4  5  6  7  8

Av
er

ag
e 

R
C

 (n
se

c)

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

LF

Figure C.30: Avg RC for Tasksets 30, 300, 570 and 840
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Figure C.31: Avg RC for Tasksets 31, 301, 571 and 841
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Figure C.32: Avg RC for Tasksets 32, 302, 572 and 842
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Figure C.33: Avg RC for Tasksets 33, 303, 573 and 843
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Figure C.34: Avg RC for Tasksets 34, 304, 574 and 844
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Figure C.35: Avg RC for Tasksets 35, 305, 575 and 845
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Figure C.36: Avg RC for Tasksets 36, 306, 576 and 846
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Figure C.37: Avg RC for Tasksets 37, 307, 577 and 847
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Figure C.38: Avg RC for Tasksets 38, 308, 578 and 848



Mohammed El-Shambakey Appendix C. Average Retry Cost 350

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 2  3  4  5  6  7  8

Av
er

ag
e 

R
C

 (n
se

c)

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure C.39: Avg RC for Tasksets 39, 309, 579 and 849
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Figure C.40: Avg RC for Tasksets 40, 310, 580 and 850
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Figure C.41: Avg RC for Tasksets 41, 311, 581 and 851
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Figure C.42: Avg RC for Tasksets 42, 312, 582 and 852
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Figure C.43: Avg RC for Tasksets 43, 313, 583 and 853
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Figure C.44: Avg RC for Tasksets 44, 314, 584 and 854
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Figure C.45: Avg RC for Tasksets 45, 315, 585 and 855
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Figure C.46: Avg RC for Tasksets 46, 316, 586 and 856
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Figure C.47: Avg RC for Tasksets 47, 317, 587 and 857
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Figure C.48: Avg RC for Tasksets 48, 318, 588 and 858
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Figure C.49: Avg RC for Tasksets 49, 319, 589 and 859
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Figure C.50: Avg RC for Tasksets 50, 320, 590 and 860
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Figure C.51: Avg RC for Tasksets 51, 321, 591 and 861
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Figure C.52: Avg RC for Tasksets 52, 322, 592 and 862
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Figure C.53: Avg RC for Tasksets 53, 323, 593 and 863
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Figure C.54: Avg RC for Tasksets 54, 324, 594 and 864
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Figure C.55: Avg RC for Tasksets 55, 325, 595 and 865
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Figure C.56: Avg RC for Tasksets 56, 326, 596 and 866
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Figure C.57: Avg RC for Tasksets 57, 327, 597 and 867
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Figure C.58: Avg RC for Tasksets 58, 328, 598 and 868
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Figure C.59: Avg RC for Tasksets 59, 329, 599 and 869
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Figure C.60: Avg RC for Tasksets 60, 330, 600 and 870
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Figure C.61: Avg RC for Tasksets 61, 331, 601 and 871
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Figure C.62: Avg RC for Tasksets 62, 332, 602 and 872
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Figure C.63: Avg RC for Tasksets 63, 333, 603 and 873
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Figure C.64: Avg RC for Tasksets 64, 334, 604 and 874
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Figure C.65: Avg RC for Tasksets 65, 335, 605 and 875
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Figure C.66: Avg RC for Tasksets 66, 336, 606 and 876
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Figure C.67: Avg RC for Tasksets 67, 337, 607 and 877
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Figure C.68: Avg RC for Tasksets 68, 338, 608 and 878
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Figure C.69: Avg RC for Tasksets 69, 339, 609 and 879
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Figure C.70: Avg RC for Tasksets 70, 340, 610 and 880
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Figure C.71: Avg RC for Tasksets 71, 341, 611 and 881
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Figure C.72: Avg RC for Tasksets 72, 342, 612 and 882
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Figure C.73: Avg RC for Tasksets 73, 343, 613 and 883
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Figure C.74: Avg RC for Tasksets 74, 344, 614 and 884
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Figure C.75: Avg RC for Tasksets 75, 345, 615 and 885
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Figure C.76: Avg RC for Tasksets 76, 346, 616 and 886
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Figure C.77: Avg RC for Tasksets 77, 347, 617 and 887
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Figure C.78: Avg RC for Tasksets 78, 348, 618 and 888
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Figure C.79: Avg RC for Tasksets 79, 349, 619 and 889
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Figure C.80: Avg RC for Tasksets 80, 350, 620 and 890
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Figure C.81: Avg RC for Tasksets 81, 351, 621 and 891
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Figure C.82: Avg RC for Tasksets 82, 352, 622 and 892
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Figure C.83: Avg RC for Tasksets 83, 353, 623 and 893
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Figure C.84: Avg RC for Tasksets 84, 354, 624 and 894



Mohammed El-Shambakey Appendix C. Average Retry Cost 373

-2e+06

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 2  3  4  5  6  7  8

Av
er

ag
e 

R
C

 (n
se

c)

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure C.85: Avg RC for Tasksets 85, 355, 625 and 895
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Figure C.86: Avg RC for Tasksets 86, 356, 626 and 896
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Figure C.87: Avg RC for Tasksets 87, 357, 627 and 897
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Figure C.88: Avg RC for Tasksets 88, 358, 628 and 898
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Figure C.89: Avg RC for Tasksets 89, 359, 629 and 899
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Figure C.90: Avg RC for Tasksets 90, 360, 630 and 900
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Figure C.91: Avg RC for Tasksets 91, 361, 631 and 901
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Figure C.92: Avg RC for Tasksets 92, 362, 632 and 902
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Figure C.93: Avg RC for Tasksets 93, 363, 633 and 903
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Figure C.94: Avg RC for Tasksets 94, 364, 634 and 904
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Figure C.95: Avg RC for Tasksets 95, 365, 635 and 905
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Figure C.96: Avg RC for Tasksets 96, 366, 636 and 906
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Figure C.97: Avg RC for Tasksets 97, 367, 637 and 907
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Figure C.98: Avg RC for Tasksets 98, 368, 638 and 908
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Figure C.99: Avg RC for Tasksets 99, 369, 639 and 909
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Figure C.100: Avg RC for Tasksets 100, 370, 640 and 910
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Figure C.101: Avg RC for Tasksets 101, 371, 641 and 911
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Figure C.102: Avg RC for Tasksets 102, 372, 642 and 912
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Figure C.103: Avg RC for Tasksets 103, 373, 643 and 913
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Figure C.104: Avg RC for Tasksets 104, 374, 644 and 914
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Figure C.105: Avg RC for Tasksets 105, 375, 645 and 915
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Figure C.106: Avg RC for Tasksets 106, 376, 646 and 916



Mohammed El-Shambakey Appendix C. Average Retry Cost 384

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 2  3  4  5  6  7  8

Av
er

ag
e 

R
C

 (n
se

c)

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure C.107: Avg RC for Tasksets 107, 377, 647 and 917
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Figure C.108: Avg RC for Tasksets 108, 378, 648 and 918
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Figure C.109: Avg RC for Tasksets 109, 379, 649 and 919
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Figure C.110: Avg RC for Tasksets 110, 380, 650 and 920
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Figure C.111: Avg RC for Tasksets 111, 381, 651 and 921
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Figure C.112: Avg RC for Tasksets 112, 382, 652 and 922
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Figure C.113: Avg RC for Tasksets 113, 383, 653 and 923
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Figure C.114: Avg RC for Tasksets 114, 384, 654 and 924
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Figure C.115: Avg RC for Tasksets 115, 385, 655 and 925
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Figure C.116: Avg RC for Tasksets 116, 386, 656 and 926
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Figure C.117: Avg RC for Tasksets 117, 387, 657 and 927
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Figure C.118: Avg RC for Tasksets 118, 388, 658 and 928
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Figure C.119: Avg RC for Tasksets 119, 389, 659 and 929
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Figure C.120: Avg RC for Tasksets 120, 390, 660 and 930
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Figure C.121: Avg RC for Tasksets 121, 391, 661 and 931
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Figure C.122: Avg RC for Tasksets 122, 392, 662 and 932
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Figure C.123: Avg RC for Tasksets 123, 393, 663 and 933
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Figure C.124: Avg RC for Tasksets 124, 394, 664 and 934
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Figure C.125: Avg RC for Tasksets 125, 395, 665 and 935
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Figure C.126: Avg RC for Tasksets 126, 396, 666 and 936



Mohammed El-Shambakey Appendix C. Average Retry Cost 394

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 2  3  4  5  6  7  8

Av
er

ag
e 

R
C

 (n
se

c)

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure C.127: Avg RC for Tasksets 127, 397, 667 and 937
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Figure C.128: Avg RC for Tasksets 128, 398, 668 and 938
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Figure C.129: Avg RC for Tasksets 129, 399, 669 and 939
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Figure C.130: Avg RC for Tasksets 130, 400, 670 and 940
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Figure C.131: Avg RC for Tasksets 131, 401, 671 and 941
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Figure C.132: Avg RC for Tasksets 132, 402, 672 and 942
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Figure C.133: Avg RC for Tasksets 133, 403, 673 and 943
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Figure C.134: Avg RC for Tasksets 134, 404, 674 and 944
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Figure C.135: Avg RC for Tasksets 135, 405, 675 and 945
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Figure C.136: Avg RC for Tasksets 136, 406, 676 and 946
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Figure C.137: Avg RC for Tasksets 137, 407, 677 and 947
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Figure C.138: Avg RC for Tasksets 138, 408, 678 and 948
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Figure C.139: Avg RC for Tasksets 139, 409, 679 and 949

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 2  3  4  5  6  7  8

Av
er

ag
e 

R
C

 (n
se

c)

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure C.140: Avg RC for Tasksets 140, 410, 680 and 950
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Figure C.141: Avg RC for Tasksets 141, 411, 681 and 951
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Figure C.142: Avg RC for Tasksets 142, 412, 682 and 952
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Figure C.143: Avg RC for Tasksets 143, 413, 683 and 953
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Figure C.144: Avg RC for Tasksets 144, 414, 684 and 954
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Figure C.145: Avg RC for Tasksets 145, 415, 685 and 955
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Figure C.146: Avg RC for Tasksets 146, 416, 686 and 956
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Figure C.147: Avg RC for Tasksets 147, 417, 687 and 957
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Figure C.148: Avg RC for Tasksets 148, 418, 688 and 958
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Figure C.149: Avg RC for Tasksets 149, 419, 689 and 959
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Figure C.150: Avg RC for Tasksets 150, 420, 690 and 960
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Figure C.151: Avg RC for Tasksets 151, 421, 691 and 961
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Figure C.152: Avg RC for Tasksets 152, 422, 692 and 962
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Figure C.153: Avg RC for Tasksets 153, 423, 693 and 963
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Figure C.154: Avg RC for Tasksets 154, 424, 694 and 964
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Figure C.155: Avg RC for Tasksets 155, 425, 695 and 965
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Figure C.156: Avg RC for Tasksets 156, 426, 696 and 966
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Figure C.157: Avg RC for Tasksets 157, 427, 697 and 967
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Figure C.158: Avg RC for Tasksets 158, 428, 698 and 968
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Figure C.159: Avg RC for Tasksets 159, 429, 699 and 969
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Figure C.160: Avg RC for Tasksets 160, 430, 700 and 970
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Figure C.161: Avg RC for Tasksets 161, 431, 701 and 971

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 2  3  4  5  6  7  8

Av
er

ag
e 

R
C

 (n
se

c)

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure C.162: Avg RC for Tasksets 162, 432, 702 and 972
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Figure C.163: Avg RC for Tasksets 163, 433, 703 and 973
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Figure C.164: Avg RC for Tasksets 164, 434, 704 and 974
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Figure C.165: Avg RC for Tasksets 165, 435, 705 and 975
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Figure C.166: Avg RC for Tasksets 166, 436, 706 and 976
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Figure C.167: Avg RC for Tasksets 167, 437, 707 and 977

-1e+07

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 2  3  4  5  6  7  8

Av
er

ag
e 

R
C

 (n
se

c)

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure C.168: Avg RC for Tasksets 168, 438, 708 and 978
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Figure C.169: Avg RC for Tasksets 169, 439, 709 and 979
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Figure C.170: Avg RC for Tasksets 170, 440, 710 and 980
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Figure C.171: Avg RC for Tasksets 171, 441, 711 and 981

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 2  3  4  5  6  7  8

Av
er

ag
e 

R
C

 (n
se

c)

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure C.172: Avg RC for Tasksets 172, 442, 712 and 982
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Figure C.173: Avg RC for Tasksets 173, 443, 713 and 983
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Figure C.174: Avg RC for Tasksets 174, 444, 714 and 984
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Figure C.175: Avg RC for Tasksets 175, 445, 715 and 985
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Figure C.176: Avg RC for Tasksets 176, 446, 716 and 986
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Figure C.177: Avg RC for Tasksets 177, 447, 717 and 987
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Figure C.178: Avg RC for Tasksets 178, 448, 718 and 988
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Figure C.179: Avg RC for Tasksets 179, 449, 719 and 989
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Figure C.180: Avg RC for Tasksets 180, 450, 720 and 990
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Figure C.181: Avg RC for Tasksets 181, 451, 721 and 991
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Figure C.182: Avg RC for Tasksets 182, 452, 722 and 992
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Figure C.183: Avg RC for Tasksets 183, 453, 723 and 993
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Figure C.184: Avg RC for Tasksets 184, 454, 724 and 994



Mohammed El-Shambakey Appendix C. Average Retry Cost 423

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 2  3  4  5  6  7  8

Av
er

ag
e 

R
C

 (n
se

c)

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure C.185: Avg RC for Tasksets 185, 455, 725 and 995
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Figure C.186: Avg RC for Tasksets 186, 456, 726 and 996
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Figure C.187: Avg RC for Tasksets 187, 457, 727 and 997
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Figure C.188: Avg RC for Tasksets 188, 458, 728 and 998



Mohammed El-Shambakey Appendix C. Average Retry Cost 425

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 2  3  4  5  6  7  8

Av
er

ag
e 

R
C

 (n
se

c)

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure C.189: Avg RC for Tasksets 189, 459, 729 and 999
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Figure C.190: Avg RC for Tasksets 190, 460, 730 and 1000
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Figure C.191: Avg RC for Tasksets 191, 461, 731 and 1001
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Figure C.192: Avg RC for Tasksets 192, 462, 732 and 1002
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Figure C.193: Avg RC for Tasksets 193, 463, 733 and 1003
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Figure C.194: Avg RC for Tasksets 194, 464, 734 and 1004
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Figure C.195: Avg RC for Tasksets 195, 465, 735 and 1005
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Figure C.196: Avg RC for Tasksets 196, 466, 736 and 1006
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Figure C.197: Avg RC for Tasksets 197, 467, 737 and 1007
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Figure C.198: Avg RC for Tasksets 198, 468, 738 and 1008
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Figure C.199: Avg RC for Tasksets 199, 469, 739 and 1009
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Figure C.200: Avg RC for Tasksets 200, 470, 740 and 1010
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Figure C.201: Avg RC for Tasksets 201, 471, 741 and 1011
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Figure C.202: Avg RC for Tasksets 202, 472, 742 and 1012
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Figure C.203: Avg RC for Tasksets 203, 473, 743 and 1013
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Figure C.204: Avg RC for Tasksets 204, 474, 744 and 1014
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Figure C.205: Avg RC for Tasksets 205, 475, 745 and 1015
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Figure C.206: Avg RC for Tasksets 206, 476, 746 and 1016
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Figure C.207: Avg RC for Tasksets 207, 477, 747 and 1017
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Figure C.208: Avg RC for Tasksets 208, 478, 748 and 1018
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Figure C.209: Avg RC for Tasksets 209, 479, 749 and 1019
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Figure C.210: Avg RC for Tasksets 210, 480, 750 and 1020
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Figure C.211: Avg RC for Tasksets 211, 481, 751 and 1021

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 2  3  4  5  6  7  8

Av
er

ag
e 

R
C

 (n
se

c)

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure C.212: Avg RC for Tasksets 212, 482, 752 and 1022
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Figure C.213: Avg RC for Tasksets 213, 483, 753 and 1023
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Figure C.214: Avg RC for Tasksets 214, 484, 754 and 1024
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Figure C.215: Avg RC for Tasksets 215, 485, 755 and 1025
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Figure C.216: Avg RC for Tasksets 216, 486, 756 and 1026
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Figure C.217: Avg RC for Tasksets 217, 487, 757 and 1027
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Figure C.218: Avg RC for Tasksets 218, 488, 758 and 1028
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Figure C.219: Avg RC for Tasksets 219, 489, 759 and 1029
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Figure C.220: Avg RC for Tasksets 220, 490, 760 and 1030
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Figure C.221: Avg RC for Tasksets 221, 491, 761 and 1031
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Figure C.222: Avg RC for Tasksets 222, 492, 762 and 1032
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Figure C.223: Avg RC for Tasksets 223, 493, 763 and 1033
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Figure C.224: Avg RC for Tasksets 224, 494, 764 and 1034
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Figure C.225: Avg RC for Tasksets 225, 495, 765 and 1035
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Figure C.226: Avg RC for Tasksets 226, 496, 766 and 1036
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Figure C.227: Avg RC for Tasksets 227, 497, 767 and 1037
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Figure C.228: Avg RC for Tasksets 228, 498, 768 and 1038
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Figure C.229: Avg RC for Tasksets 229, 499, 769 and 1039
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Figure C.230: Avg RC for Tasksets 230, 500, 770 and 1040
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Figure C.231: Avg RC for Tasksets 231, 501, 771 and 1041
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Figure C.232: Avg RC for Tasksets 232, 502, 772 and 1042
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Figure C.233: Avg RC for Tasksets 233, 503, 773 and 1043
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Figure C.234: Avg RC for Tasksets 234, 504, 774 and 1044
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Figure C.235: Avg RC for Tasksets 235, 505, 775 and 1045
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Figure C.236: Avg RC for Tasksets 236, 506, 776 and 1046
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Figure C.237: Avg RC for Tasksets 237, 507, 777 and 1047
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Figure C.238: Avg RC for Tasksets 238, 508, 778 and 1048
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Figure C.239: Avg RC for Tasksets 239, 509, 779 and 1049
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Figure C.240: Avg RC for Tasksets 240, 510, 780 and 1050
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Figure C.241: Avg RC for Tasksets 241, 511, 781 and 1051
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Figure C.242: Avg RC for Tasksets 242, 512, 782 and 1052
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Figure C.243: Avg RC for Tasksets 243, 513, 783 and 1053

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 2  3  4  5  6  7  8

Av
er

ag
e 

R
C

 (n
se

c)

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

LF

Figure C.244: Avg RC for Tasksets 244, 514, 784 and 1054
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Figure C.245: Avg RC for Tasksets 245, 515, 785 and 1055
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Figure C.246: Avg RC for Tasksets 246, 516, 786 and 1056
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Figure C.247: Avg RC for Tasksets 247, 517, 787 and 1057

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 2  3  4  5  6  7  8

Av
er

ag
e 

R
C

 (n
se

c)

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure C.248: Avg RC for Tasksets 248, 518, 788 and 1058
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Figure C.249: Avg RC for Tasksets 249, 519, 789 and 1059
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Figure C.250: Avg RC for Tasksets 250, 520, 790 and 1060
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Figure C.251: Avg RC for Tasksets 251, 521, 791 and 1061
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Figure C.252: Avg RC for Tasksets 252, 522, 792 and 1062
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Figure C.253: Avg RC for Tasksets 253, 523, 793 and 1063
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Figure C.254: Avg RC for Tasksets 254, 524, 794 and 1064
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Figure C.255: Avg RC for Tasksets 255, 525, 795 and 1065
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Figure C.256: Avg RC for Tasksets 256, 526, 796 and 1066
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Figure C.257: Avg RC for Tasksets 257, 527, 797 and 1067
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Figure C.258: Avg RC for Tasksets 258, 528, 798 and 1068
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Figure C.259: Avg RC for Tasksets 259, 529, 799 and 1069
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Figure C.260: Avg RC for Tasksets 260, 530, 800 and 1070
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Figure C.261: Avg RC for Tasksets 261, 531, 801 and 1071
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Figure C.262: Avg RC for Tasksets 262, 532, 802 and 1072
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Figure C.263: Avg RC for Tasksets 263, 533, 803 and 1073
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Figure C.264: Avg RC for Tasksets 264, 534, 804 and 1074



Mohammed El-Shambakey Appendix C. Average Retry Cost 463

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 2  3  4  5  6  7  8

Av
er

ag
e 

R
C

 (n
se

c)

Total utilization

ECM

LCM

PNF

FBLT

OMLP

RNLP

CPFBLT

Figure C.265: Avg RC for Tasksets 265, 535, 805 and 1075
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Figure C.266: Avg RC for Tasksets 266, 536, 806 and 1076
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Figure C.267: Avg RC for Tasksets 267, 537, 807 and 1077
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Figure C.268: Avg RC for Tasksets 268, 538, 808 and 1078
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Figure C.269: Avg RC for Tasksets 269, 539, 809 and 1079
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Figure C.270: Avg RC for Tasksets 270, 540, 810 and 1080


	Introduction
	Transactional Memory
	STM for Real-Time Software
	Research Contributions
	Organization

	Past and Related Work
	Real-Time Locking Protocols
	Real-Time Lock-Free and Wait-Free Synchronization
	Real-Time Database Concurrency Control
	Real-Time TM Concurrency Control

	Models and Assumptions
	The ECM and RCM Contention Managers
	ECM
	Illustrative Example
	Transitive Retry
	G-EDF Interference
	Retry Cost of Atomic Sections
	Upper Bound on Response Time

	RCM
	Maximum Task Interference
	Retry Cost of Atomic Sections
	Upper Bound on Response Time

	Analytical Performance Comparison
	STM versus Lock-Free
	ECM versus Lock-Free
	RCM versus Lock-Free

	STM versus Locking protocols
	Priority Inversion under OMLP
	ECM versus OMLP
	RCM versus OMLP
	Priority Inversion under RNLP
	ECM versus RNLP
	RCM versus RNLP

	Conclusions

	The LCM Contention Manager
	Length-based CM
	Design and Rationale
	LCM Illustrative Example

	Properties
	Retry Cost and Response Time of LCM/G-EDF
	Total utilization of LCM/G-EDF
	LCM/G-EDF versus ECM
	LCM/G-EDF versus Lock-free
	LCM/G-EDF versus OMLP
	LCM/G-EDF versus RNLP

	Retry Cost and Response Time of LCM/G-RMA
	Total utilization of LCM/G-RMA
	LCM/G-RMA versus RCM
	LCM/G-RMA versus Lock-free
	LCM/G-RMA versus OMLP
	LCM/G-RMA versus RNLP

	Conclusions

	The PNF Contention Manager
	Limitations of ECM, RCM, and LCM
	The PNF Contention Manager
	Illustrative Example

	Properties
	Retry Cost and Response Time Under PNF
	PNF versus Competitors
	PNF versus ECM
	PNF versus RCM
	PNF versus LCM/G-EDF
	PNF versus LCM/G-RMA
	PNF versus Lock-free Synchronization
	PNF versus Locking Protocols

	Conclusions

	The FBLT Contention Manager
	Motivation
	The FBLT Contention Manager
	Illustrative Example

	Retry Cost and Response Time Bounds
	Total utilization Comparison
	FBLT versus ECM
	FBLT versus RCM
	FBLT versus LCM/G-EDF
	FBLT versus G-RMA/LCM
	FBLT versus PNF/G-EDF
	FBLT versus PNF/G-RMA
	FBLT versus Lock-free
	FBLT versus Locking Protocols

	Conclusions

	FBLT Contention Manager with Checkpointing
	Motivation
	Checkpointing FBLT (CP-FBLT)
	Checkpointing LCM (CPLCM)
	CP-FBLT

	CP-FBLT Retry Cost
	CP-FBLT versus FBLT
	Conclusion

	Implementation and Experimental Evaluations
	Methodology
	Tasksets
	Performance Measurements
	Results
	General results for DSR
	General results for Avg_RC

	Results Summary

	Qualitative Comparison Between STM, Locking Protocols and Lock-Free
	Compositionality
	Priority Inversion
	Nesting
	Convoying
	Deadlock and Livelock
	Platform Dependence and Implementation Complexity
	Transparency
	Upper Bounds Complexity
	Memory
	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Tasksets' Properties
	Complete Deadline Satisfaction Results
	Complete Average Retry Cost Results

