
Process Accounting
Standard utilities can help you collect and interpret your system's
process accounting data.

by Keith Gilbertson

While on site at a Fortune 500 corporation recently, I overheard a tech
support person whispering excitedly to a project manager, ``Don't play
any games on your PC! The corporate auditors have a way to find out
exactly what programs you use and for how long!''

After loudly assuring the techie that he was all business and didn't intend
to play games anyway, the manager smiled. Then in a much quieter tone
he said he needn't be concerned; he was using Linux and not Windows,
unlike most of the company.

If the tech's tale is true, the manager may indeed have reason for
concern. Although the rumoured auditing application at this particular
company was developed for Windows, the Linux kernel has a built-in
process accounting facility. It allows system administrators to collect
detailed information in a log file each time a program is executed on a
Linux system. With this capability, our mythical corporate auditor could,
in fact, collect information about who has been playing games on a
Linux computer and for how long.

Although a company's interest in knowing which employees have been
indulging in Solitaire on company equipment is of questionable merit,
there are good reasons to use process accounting (PA). In this article, I
discuss some situations where process accounting is useful, explain
where to obtain and how to use the standard process accounting
commands, and then demonstrate how to use the process accounting
structure and system call in C programs.

Preliminaries

I assume that your system has process accounting support compiled into
the kernel. I make this assumption because the kernels on all of the
Linux systems I have had access to are configured to allow process
accounting, but your distribution may be different. If you compile and
run the first code listing in this article as root with no command-line
arguments but receive an error message, it is likely that process
accounting support is not included in your kernel. You'll need to compile
a new kernel and answer yes to
CONFIG_BSD_PROCESS_ACCOUNTING, which is the BSD Process
Accounting item in the General Setup menu. Recompiling your kernel is
beyond the scope of this article, but instructions can be found at the
Linux Documentation Project (www.tldp.org/HOWTO/Kernel-
HOWTO.html).

On busy systems, keep in mind that turning on process accounting
requires significant disk space. On my Pentium III system with Red Hat
7.2, each time a program is executed, 64 bytes of data are written to the
process accounting log file. While researching this article and running
the process accounting utilities on a test machine with low disk space, I
discovered a monitor process that executes every second. The drive on
that machine filled up quickly. Some server's dæmons will initiate a
separate process for each incoming connection. On a production server
that executes nearly 25,000 processes per hour, approximately 1.1GB of
process accounting data is generated each month. Utilities, such as the
accttrim and handleacct.sh script listed in Table 1, are available to
truncate, back up and compress log files at regular intervals. If you plan
on doing process accounting on a busy system, it will be important for
you to learn about and use these utilities.

Finally, know that you must have root privileges on your Linux system
to enable or disable process accounting, whether using the standard

http://www.tldp.org/HOWTO/Kernel-HOWTO.html
http://www.tldp.org/HOWTO/Kernel-HOWTO.html

commands or creating your own.

Uses of Process Accounting

One of the earliest uses of process accounting was to calculate the CPU
time absorbed by users at computer installations and then bill users
accordingly. With the greater abundance and relatively low expense of
today's computing resources, this application has fallen by the wayside.
If the distributed computing model catches on, however, this application
could again become important.

System administrators may wish to use data collected from the PA
facilities to monitor which programs are most accessed by users, and
then optimize the system configuration for these types of programs. For
example, part of the data collected by the PA facilities includes the
number of bytes that are input and output by the program and the CPU
usage. A system that runs a high percentage of I/O-intensive applications
may need to be optimized in ways that a system running a high
percentage of CPU-bound applications not.

At some point an administrator might be required to evaluate two
products with similar functionality. Let's imagine that before making a
selection, the administrator wishes to see which fish forecasting product
the people are actually using. To do this, process accounting can be
turned on for a week to record the names of all the commands executed
in a log file. The administrator can then parse the log file to find out
which command was run more often.

The most typical application of process accounting is as a supplement to
system security measures. In the case of a break-in on a company server,
the log files created by the process accounting facility are useful for
collecting forensic evidence. A careful look at the programs an attacker
has used on the compromised system can provide useful information

about the damage done, as well as the intruder's methods and possible
motivations. Evidence collected from the process accounting logs also
may be helpful in court. I know of one criminal case in which this data,
when uncontested by the defendant, led to a misdemeanor conviction.

Standard Process Accounting Commands

Even if process accounting facilities have been compiled into your
kernel, you might not have the user commands for process accounting
installed on your system. If this is the case, and you're looking to get
started quickly, first try finding the process accounting commands for
your specific Linux distribution.

The package for your distribution likely is configured to place log files
in the appropriate location for your system's setup, making installation
much simpler. On my Red Hat 7.2 distribution CDs, I found the ps-
acct-6.3.2-9.i386.rpm on the second disk, in the directory. If you use the
gnorpm graphical install tool, the package will appear in the Packages/
Applications/System hierarchy. On a Debian system, install the acct
package.

If you're installing from source, two versions of the utilities are
available. One version, under the BSD license, is available at
www.ibiblio.org/pub/Linux/system/admin/accounts. The filename will
be similar to acct-1.3.73.tar.gz, with small differences depending on the
version number. In order to get these utilities to compile on my system, I
had to edit the lastcomm.c file and comment out the prototype for the
strcpy function.

There is also a process accounting utilities set written by Noel Cragg and
licensed under the GNU GPL. It's available at www.gnu.org/directory/
System_administration/Monitoring/acct.html.

http://www.ibiblio.org/pub/Linux/system/admin/accounts
http://www.gnu.org/directory/System_administration/Monitoring/acct.html
http://www.gnu.org/directory/System_administration/Monitoring/acct.html

The exact process accounting commands installed on your system will
vary depending on the particular package you've chosen. Table 1 shows
a list of the commands you could encounter and the purpose of each.

Table 1. Process Accounting Commands

Command Name Purpose
accton Enables or disables process accounting
acctentries Counts the number of accounting entries in the log file
accttrim Truncates the accounting file specified
dumpacct Dumps the contents of the log file
dump-acct Similar to dumpacct
handleacct.sh Script to compress and backup logs and delete the oldest
lastcomm Prints commands executed on the system, most recent first
sa Summarize accounting information

Installation of the GNU Accounting Utilities

Let's take a quick look at how to install the GNU Accounting Utilities on
a system. Use the following commands:

 tar zxvf acct_6.3.5.orig.tar.gz cd acct-6.3.5 ./configure
make su make install
A few basic process accounting commands have now been installed on
your system. You're now ready to turn on the accounting and start using
the commands.

Using the Utilities

In this brief introduction to using the process accounting commands, I
look at two commands, accton and lastcomm. I've chosen these two
commands because they are standard on all process accounting versions.

The accton command switches process accounting on or off. If a
filename is specified on the command line, that filename will be used to
log the process accounting information. If no argument is specified,
process accounting will be switched off.

To start the process accounting facilities on your system, su to become
root. Make sure that the log file exists by performing a touch on the
desired location. Example:

 touch /var/log/pacct
Then type the full path to your accton program (usually /usr/sbin/accton
or /sbin/accton) followed by the filename. Example:

 /sbin/accton /var/log/pacct
You've just started the process accounting facilities. Note that the data
actually is not added to the file when each process begins execution; it is
written when a process exits. The aforementioned project manager can
play the xbill game all day long and not have this information written to
the process accounting file, as long as he never exits the program. When
he goes home at night, he can choose to leave xbill running and
minimize the window, or he can simply power off his computer without
performing a proper shutdown.
Now that you've switched on the accounting, run a few normal
commands as an ordinary user to get some data for the lastcomm
command, which you'll use next. When you're finished, su to root once
more, and run /usr/sbin/accton or /sbin/accton with no arguments
to switch off process accounting.
The lastcomm command prints information contained in the accounting
log files, with the most recent record printed first. You can use the -f

command-line option to specify a filename. Typically, the process
accounting log file on a system is set up so that only root can read it.
This command is then executed by root, for example:

 lastcomm -f /var/log/pacct
When you type in the above command, the output is similar to this:

 id root stdin 0.00 secs Mon Jul 22 12:41 xauth S
root stdin 0.00 secs Mon Jul 22 12:41 xauth S keithg
stdin 0.00 secs Mon Jul 22 12:41 xauth S keithg stdin 0.01
secs Mon Jul 22 12:41 bubbles X keithg ?? 0.01 secs Mon
Jul 22 12:33 ls keithg ?? 0.01 secs Mon Jul 22 12:26
bash X keithg ?? 0.03 secs Mon Jul 22 08:25
lastcomm displays the command name, options, user name, terminal
and exit time for each command. A particular command, user or terminal
also can be specified on the command line. For example, if you want to
find instances only of when the su program was started, you can type:

 lastcomm -f /var/log/pacct --command su
Now you'll see output like this:

 su root ?? 0.01 secs Mon Jul 22 10:52 su keithg
stdout 0.05 secs Mon Jul 22 09:32 su keithg stdout 0.00
secs Mon Jul 22 09:17 su root ?? 0.00 secs Mon Jul 22
03:29 su keithg tty1 0.00 secs Sun Jul 21 19:49
Notice that on each line, the command listed in the left column is now
su. For more details about these commands and the other programs in
the table, see the respective man pages.

Programming Details

The acct structure for collecting process accounting details is
documented in the header files /usr/include/linux/acct.h and /usr/include/
sys/acct.h. Table 2 displays the members available in the acct struct and
a brief description of each member.

Table 2. Members in the acct struct

Member Name Type Description
ac_flag char Special flags showing process behaviors
ac_uid u_int16_t User ID of the process
ac_gid u_int16_t Group ID of the process
ac_tty u_int16_t Controlling terminal of the process
ac_btime u_int_32_t Process start time
ac_utime comp_t User time
ac_stime comp_t System time
ac_etime comp_t Elapsed time
ac_mem comp_t Average memory usage
ac_io comp_t Characters transferred
ac_rw comp_t Blocks read or written
ac_minflt comp_t Minor pagefaults
ac_majflt comp_t Major pagefaults
ac_swaps comp_t Number of swaps
ac_exitcode u_int32_t Process exitcode
ac_comm char[] First 16 characters of command name
ac_pad char[] Padding bytes

As you can see from the table, a lot of information is packed into the 64-
byte accounting record. If you feel you need more information than is
available with standard process accounting, consult the book by Mann
and Mitchell listed in Resources at the end of this article.

Example Programs

Listing 1. Enabling and Disabling Accounting to a File

/* pa.c
 * Linux demonstration program.
 * Logs process accounting information to a
 * file specified on the command line.
 * If no filename is specified, process
 * accounting is switched off.
 */
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int
main (int argc, char **argv)
{

 int rc;

 if (argc == 1) /* No arguments - switch off */
 {
 printf("Turning off process accounting.\n");
 if ((rc = acct (NULL)))
 {

if (errno == ENOSYS)
{
 printf
 ("It appears your kernel does not"
 " include accounting support\n");
}

 perror("Problem turning off accounting");
return rc;

 }
 }

 else /* cmd line arg - switch accounting on */

 {
 printf

 ("Attempting to log to file %s.\n",
 argv[1]);

 rc =
 creat (argv[1],

S_IRWXU | S_IRGRP | S_IROTH);

 if (rc == -1)
 {

 perror("Problem creating log file");
 return rc;

 }

 if ((rc = acct (argv[1])))
 {

perror("Problem in acct() call");
return rc;

 }

 }

 return 0;
}

Listing 1 is a simple demonstration of the use of the acct system call.
The acct call takes one argument, the name of the file to which process
accounting information is appended. If the argument is NULL, process
accounting will be turned off. In addition, the file already must exist
when the system call is made, or the call will fail and an error will be
returned.

If a program running with the ID of an ordinary user makes a call to
acct, the call also will fail and return an error. Programs that attempt to
switch process accounting on and off must have root privileges to
succeed.

The code in Listing 1 is similar to a typical implementation of the accton
command, but there are two main differences. The first is that this code
will report its actions in messages to standard output. The second is that

if the file specified on the command line does not exist, it will be
created.

The file includes the <unistd.h> header file. All programs that make use
of the acct call should include this file. The program checks to see if argc
is equal to one, meaning no arguments were passed on the command
line. If this is so, the program attempts to turn off process accounting by
calling acct with a NULL argument.

If the command is run with an argument, the program will assume that
the first argument is the filename. If the file does not exist, the program
will attempt to create it with the creat system call. Then, the program
will call acct with the filename as an argument to turn on process
accounting. If an error code is returned from a system call, a message
will be printed and the program will exit.

Listing 2. Parsing the Accounting File

/*
 * paread.c: Linux program to demonstrate reading a
 * process accounting record into memory.
 */

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/acct.h>

int
main (int argc, char *argv[])
{

 int fd;

 int bytesread;

 struct acct a; /* accounting record */

 if (argc == 1)
 {
 printf("You must supply a filename"

 " on the cmd line\n");
 return -1;
 }

 fd = open (argv[1], O_RDONLY);
 if (fd == -1)
 {
 perror ("Problem opening specified file");
 return -1;
 }

 /*
 * Read and print command name from each record
 * in the file
 */
 while ((bytesread =
 read (fd, &a, sizeof (struct acct))) > 0)
 {
 printf ("%s\n", a.ac_comm);
 }
 return 0;
}

Listing 2 demonstrates how to read records from the log file into an acct
structure in memory so that the information can be printed out or
operated upon. This program includes the <sys/acct.h> header file. All
programs that need to work with the acct structure should include this
file. Local variables in the main function include a file descriptor, a
variable to hold the number of bytes read from the file and an acct struct.

The user of the program must specify a filename on the command line.
The program attempts to open this file for read-only access. If the open
was successful, the program will read() a record from the file directly

into the local acct structure, a. Due to space constraints for the article,
I've made the assumption that a read() always will return exactly the
number of bytes requested, until the end of file is reached. The program
continues to read and print the command name from the records until a
zero is returned from the read() call, signalling the end of file condition.

The Listings in this article are intended to be simple introductions to the
system accounting structures. Robust programs would create a buffer to
read multiple accounting records at once, and they would check for
issues such as fewer bytes read from the file than were requested. To see
examples of robust programs, look at the source for the process
accounting utilities that you've installed.

Conclusion

You now have enough information to enable process accounting and use
the standard commands to retrieve information about programs executed
on a Linux system. If you're so inclined, you also can learn to make
custom tools that parse the process accounting log files.

If you're using process accounting for system security, keep in mind that
it is not by any means a comprehensive solution, but only one small tool.
In fact, as Mann and Mitchell point out, you should be careful about
trusting the information in the process accounting log files; the logs may
have been modified by a technically savvy attacker.

With a basic understanding of the process accounting tools in Linux and
some experimentation, you can set up these utilities on your own
computer. If you're fortunate enough to have root access to the systems
at work, you'll also be prepared to remove all traces of the Sokoban
game from the accounting log files--in case that evil corporate auditor
really does show up in your department one day.

Resources

GNU Accounting Utilities, Noel Cragg: www.gnu.org/directory/
System_administration/Monitoring/acct.html

Linux Documentation Project Kernel-HOWTO, Brian Ward, Al Dev (Alavoor
Vasudevan): www.tldp.org/HOWTO/Kernel-HOWTO.html

Linux System Security by Scott Mann and Ellen L. Mitchell, Prentice Hall PTR,
2002.

The Process Accounting Mini-HOWTO, Albert M. C. Tam: www.tldp.org/
HOWTO/mini/Process-Accounting/index.html

Other Process Accounting Utilities: www.ibiblio.org/pub/Linux/system/admin/
accounts

Keith Gilbertson (keith.gilbertson@vt.edu) is currently working as a
librarian at Virginia Tech.

http://www.gnu.org/directory/System_administration/Monitoring/acct.html
http://www.gnu.org/directory/System_administration/Monitoring/acct.html
http://www.tldp.org/HOWTO/Kernel-HOWTO.html
http://www.tldp.org/HOWTO/mini/Process-Accounting/index.html
http://www.tldp.org/HOWTO/mini/Process-Accounting/index.html
http://www.ibiblio.org/pub/Linux/system/admin/accounts
http://www.ibiblio.org/pub/Linux/system/admin/accounts
mailto:keithg@kellnet.com

