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The interaction between sound and ultrasound waves in a weakly compressible viscous liquid with
gas bubbles is considered. Using the method of multiple scales one- and two-dimensional nonlinear
interaction equations are derived. Thedegeneracy of the interactionis found in bubbly fluids. This
phenomenon lies in the fact that the interaction coefficients vanish at a certain frequency of
ultrasound. We demonstrate that the integrable Davey–Stewartson I~DSI! system of equation can
describe the two-dimensional sound-ultrasound evolution. The DSI equations are remarkable by
their solutions referred to as dromions. In bubbly fluids the dromion represents the localized focused
ultrasound wave which can alter the direction of its motion under changes in the boundary
conditions for the sound wave. The condition of singular focusing of ultrasound in bubbly fluids is
obtained. By numerical analysis of the interaction models, we reveal such processes as
intensification of ultrasound by sound, nonlinear instability of a sound profile, and prove the validity
of the singular focusing condition. Finally, possible applications of the results are outlined. ©2001
American Institute of Physics.@DOI: 10.1063/1.1416502#
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I. INTRODUCTION

Liquids with gas bubbles have strongly pronounced n
linear acoustic properties due to nonlinear oscillations
bubbles and high compressibility of gas. Within recent d
cades theoretical and experimental investigations have
tected many kinds of nonlinear wave phenomena in bub
fluids, in particular, the ultrasound self-focusing,1,2 the sound
self-transparency,3 wave front conjugation,4 the acoustic
phase echo,5 subharmonic wave generation,6 the intensifica-
tion of sound waves in nonuniform bubbly fluids,7,8 the
structure formation in acoustic cavitation,9–11and difference-
frequency sound generation.12,13

To date, long and short waves in bubbly fluids were st
ied independently. The Korteveg–de Vries~KdV! equation
was proposed14 for describing the evolution of long-wav
disturbances in an ideal liquid with adiabatic gas bubb
The existence of the long-wave KdV soliton was confirm
by many experiments.15,16 The nonlinear Schro¨dinger~NLS!
equation was obtained17 as an equation for a short-wav
modulation in polydisperse bubbly mixtures. The generat
of short-wave subharmonics in bubbly liquids was inves
gated by a means of geometrical acoustics.6

Despite different length scales, long and short waves
interact. Benney18 was the first to call attention to the poss
bility of such a wave interaction on the water surface. T
interaction comes into particular prominence when the gr
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speed of short waves is equal to the phase speed of the
wave ~the long-wave–short-wave resonance19!. The reso-
nance requires a special type of dispersion relation, e.g.,
sisting of two branches, and therefore, occurs in a limi
number of physical systems. Examples of such systems
waves on the water surface20 and waves in a collision-free
plasma.21 We demonstrate here that the resonance condi
is also satisfied for pressure waves in a bubbly fluid.

The interaction of long and short waves is described
nonresonant and resonant models. With no damping the n
resonant one-dimensional model consists of the nonlin
Schrödinger equation for the short-wave envelope and
algebraic correlation between the long-wave profile and
square of the envelope modulus.22 The resonant model rep
resents the Zakharov equations.21 The two-dimensional inter-
action is governed by the Davey–Stewartson~DS! system of
equations.23 There are only two integrable forms of the D
equations referred to as DSI and DSII equations.24 In the
nonintegrable case the solutions of this system can posse
blowup instability. As a result, singular focusing tak
place.25,26

The paper is devoted to the theoretical description of
interaction between sound and ultrasound waves in visc
bubbly fluids. The nonlinear wave phenomena presen
here, such as degeneracy of the interaction, nonlinear in
bility of sound waves and singular focusing of ultrasoun
are novel for bubbly fluid dynamics. The remainder of t
paper is structured as follows. In Sec. II the equations
motion for bubbly fluids and the dispersion relation for pla
sound waves in these media are considered. The metho
multiple scales is described in Sec. III. We demonstrate

ess:
.

2 © 2001 American Institute of Physics
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method on the problem of weakly two-dimensional sou
evolution in a bubbly fluid~Sec. IV!. The one-dimensiona
interaction equations are proposed in Sec. V. We analyze
degeneracy of the interactionand propose new equations fo
the degenerate resonant interaction in Sec. VI. Section
deals with the two-dimensional interaction. We construct
DS equations and demonstrate that their unique propertie
a dromion solution and singular focusing are true of bub
fluids. The numerical modeling of the one-dimensional re
nant interaction, two-dimensional defocusing and singu
focusing of ultrasound is conducted in Sec. VIII. We co
clude by some words about possible applications of the
sults in Sec. IX.

II. BASIC EQUATIONS

Consider a mixture of a uniform liquid containin
spherical gas bubbles. Assume that the liquid is weakly co
pressible, all bubbles have the same radius, the pressu
the bubbles varies according to the polytropic law. Supp
that the medium is noncollisional, i.e., we do not take in
account direct interactions and collisions between bubb
and the processes of bubble breakup, adhesion, and fo
tion. Neglect the effect of external forces as well as the c
illary effects. The motion of such a bubbly fluid is describ
by the equations27–29

dr

dt
1r div v50,

dn

dt
1nb div v50,

r
dv

dt
1gradp50,

~1!

r lFa
d2a

dt2
1

3

2 S da

dt D
2G1

4me f

a

da

dt
5pg2p,

r l2r l05
p2p0

Cl
2

,

r5r l~12ag!, ag5 4
3 pa3nb , pg /p05~a0 /a!3k.

Here v5ui1wj is the velocity vector of the mixture;d/dt
5]/]t1u]/]x1w]/]y is the substantive derivative with re
spect to time;p,r are the pressure and mass density of
mixture;r l is the true density of the liquid;Cl is the speed of
sound in the pure liquid;pg , ag , a, andnb are the pressure
volume content, radius, and number density of the bubb
k is the polytropic exponent, and the subscript 0 refers to
unperturbed state of the mixture.

The processes in question suggest the oscillatory reg
of a radial bubble motion. Then all dissipative effects c
take into account on a basis of effective viscosity,29 i.e., a
certain effective coefficientme f , allowing for the liquid vis-
cosity, m l , thermal damping,m (T), and other dissipative
mechanisms, is introduced:me f5m l1m (T)1 • • • .

Going over dimensionless variables

ã5
a

a0
21, p̃5

p

p0
21, r̃5

r2r0

r*
, ũ5

u

y*
,

ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub

128.173.125.76 On: Wed,
d

he

II
e
as

y
-
r

-
e-

-
in
e

s
a-
-

e

s;
e

e
n

w̃5
w

y*
, t̃ 5

t

t*
, x̃5

x

l *
, ỹ5

y

l *
,

where

r* 5r0ag0 , ~2a!

y* 5S ag0p0

r0
D 1/2

, ~2b!

t* 5a0S r0

p0
D 1/2

, ~2c!

l * 5
a0

~ag0!1/2
, ~2d!

and ignoring the terms of orderag0 as compared to unity
one can reduce the system of Eqs.~1! to the following equa-
tions for the perturbations in the pressurep̃, mass densityr̃
and bubble radiusã:16,30

]2r

]t2
2

]2p

]x2
2

]2p

]y2
50, ~3a!

r212b2p1~11a!350, ~3b!

~11a!
]2a

]t2
1

3

2 S ]a

]t D
2

1
m*

11a

]a

]t
2~11a!23k1p1150,

~3c!

b5S p0

r l0ag0Cl
2D 1/2

, ~4a!

m* 5
4me f

a0~p0r0!1/2
. ~4b!

Hereafter the tilde is omitted.
Consider the vector solution to Eqs.~3!, z5(a,p,r), in

the form of a longitudinal plane harmonic wave propagat
alongx: zÄz0 exp$i(kx2vt)%, wherez05(A,P,R) is the con-
stant vector of the solution amplitudes,k andv are the wave-
number and the frequency. The solution is valid whenk and
v are related by the dispersion relation

v41 im* v32S 3k1
k213

b2 D v22
im* k2

b2
v1

3kk2

b2
50.

~5!

Later we shall supposek andv to be non-negative~the wave
travels from the left to the right!.

In the nondissipative case,m* 50, relation~5! falls into
two branches~Fig. 1!

v6
2 ~k!5 1

2 $3k1~k213!b226~@3k2~k213!b22#2

136kb22!1/2%. ~6!

The subscripts ‘‘2’’ and ‘‘ 1’’ identify the lower ~or low-
frequency! and upper~or high-frequency! branches, respec
tively.
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The long-wave asymptotics of the low-frequen
branch,v l(kl)5v2uk→0 , and the short-wave asymptotics
the high-frequency branch,vs(ks)5v1uk→` , can be written
as follows:

v l5cekl1O~kl
3! for kl→0,

vs5cfks1O~ks
21! for ks→`,

where

ce5v l /kl ukl→05~b21k21!21/2, ~7a!

cf5dvs /dksuks→`5b21 ~7b!

are the equilibrium andfrozenspeeds of sound in the bubb
mixture.

Dispersion relation~6! allows the existence of the long
wave–short-wave resonance. Actually, the group speed
short waves

cg5dvs /dks5ksvs
21~vs

223k!~2b2vs
223kce

22

2ks
2!21 ~8!

is infinitesimal whenks→0, and it follows from~2.7! that
cf.ce . Therefore, for any sufficiently smallkl5klr , there
exists such aks5ksr that the long-wave–short-wave res
nance condition

cg~ksr!5cp~klr !, ~9!

is satisfied ~the long-dash lines in Fig. 1!. Here cp(kl)
5v l /kl is the phase speed of the long wave.

The wave numbers of the long and short waves can
related by the formulakl5«kks , where«k is a certain small
parameter. Upon neglecting the terms of order«k , the reso-
nance condition~9! is simplified

cg~ksr!5ce . ~10!

It should be noted that the long-wave–short-wave resona
in bubbly fluids has nothing to do with the resonance
bubble oscillation which occurs under the conditionv
5A3k ~for reasonably large bubbles!. The valueA3k corre-
sponds to the horizontal asymptote of the low-frequen
branch. Because the short-wave frequencyvs belongs to the
high-frequency branch, it is always aboveA3k. The Min-
naert resonance is, therefore, beyond the scope of this p

FIG. 1. Dispersion curve for a mixture of water with air bubbles und
normal conditions and with a volume gas contentag051.131024.
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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Suppose that«k51023 and consider water with ai
bubbles of the radiusa050.1 mm under normal condition
(p050.1 MPa,r l05103 kg m23) and with the volume gas
content ag052.2231024. The wavelengths of the shor
and long waves are thenls'0.67 cm andl l'6.7 m,
respectively. The equilibrium speed of soundCe[cel * /t*
'730 m s21. Thus, the frequency of the long waveV l

5Ce /l l'110 Hz ~audible sound!. Obviously, the short-
wave frequencyVs5vs /(2pt* )>1/(2pbt* )'35.6 kHz
lies in the ultrasound region. Moreover, from~2c! it follows
that a decrease in the bubble radiusa0 leads to increasing the
short-wave frequencyVs . Hence, the long-wave–shor
wave interaction in a bubbly fluid can be considered as
interaction of ultrasound and audible sound propagating
this medium.

III. THE METHOD OF MULTIPLE SCALES

Let us introduce a parameter«!1 to satisfy the condi-
tions

pl5« lL, ps5«sS, p5pl1ps exp$ iQ%,

L,S5O~1!. ~11!

Here pl ,ps are the long- and short-wave pressure pertur
tions in the mixture;l ,s are some numbers~exponents of
smallness!; Q5ksx02vst0 is the phase of the short wave
We express similarly the perturbations in the bubble rad
and mass density of the mixture. Suppose also that«k<«.

The nonlinear wave equations describing the interact
between long and short pressure waves may be obtained
ing the method of multiple scales.31 According to this
method, the vector solutionz to system~3! expands in pow-
ers of the parameter« determined above into the long- an
short-wave components

z5« l (
m>1

«m21zm
(0)1 (

m,n>1
( « (s1m21)n@zm

(n)einQ1c.c.#,

~12!

and fast (t0 ,x0 ,y0) and slow variables (tn ,xn ,yn)
5«n(t0 ,x0 ,y0), wheren51,2,. . . , areintroduced. The in-
troduction of the slow variables results in the followin
asymptotic series:

]

]c
→ ]

]c0
1 (

n>1
«n

]

]cn
, c5t,x, or y. ~13!

The long- and short-wave componentszm
(0) , zm

(n), m, n
51,2,... depend only on the slow variables. The short w
is considered to be plane because the phaseQ does not con-
tain the fast variabley0 , but its amplitude may depend on th
slow variablesyn , n51,2,... . The numbers (l ,s) play a key
role in this asymptotic method because they define a typ
long-wave–short-wave interaction equations.30

We make use of the following ‘‘multiscale-expansion
procedure for the derivation of interaction equations:

~1! Once we have decided upon the values ofl and s, we
substitute the multiscale expansions~12! and ~13! into
the equations for perturbations~3!. In doing so, we re-
strict our attention to cubic terms of Eqs.~3!, because the

r
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higher-order nonlinearities have negligibly small effec
on the long-wave–short-wave interaction.32

~2! The resulting system of equations is split into the zer
(n50), first (n51), and second harmonics (n52) and
then, if possible, reduces to one equation for each h
monic of pressure perturbationp.

~3! The algebraic relationship between the second-harm
amplitudep1

(2) and a square of the first-harmonic amp
tude @p1

(1)#2 is deduced from the leading order of th
second-harmonic equation.

~4! Using this relationship, we eliminatep1
(2) from the first-

harmonic equation and obtain the coupled system of
zeroth- and first-harmonic equations. The system is
closed yet. We should also eliminate the unknownspm

(0)

andpm
(1) , wherem52,3,. . . , from the equations. To do

this would require some assumptions of the unknow
The easiest way is to assume that they are equal to z

~5! Now, each of the obtained equations contains the te
of different orders. The next step is therefore splitting t
equations into the orders of«. With a few exceptions
~see below!, we follow this. The expressions appearin
in each order of« are equated to zero. This gives
bunch of asymptotic equations for the long-wave pro
p1

(0) and short-wave envelopep1
(1) . Among the equations

involving the interaction terms, the lowermost-order
ones represent the equations for long-wave–short-w
interaction. In particular, the interaction terms of t
lowermost order for the short and long waves a
p1

(0)p1
(1) and the second derivative ofup1

(1)u2 ~with re-
spect tot or x), respectively. They come from quadrat
nonlinearity. From~12! and ~13!, it follows that the in-
teraction equations occur in the orders of« l 1s ~for the
short wave! and «2s12 ~for the long wave!. The lower-
order equations, when present, are linear and with
dispersive terms.~This can be arranged by choosing t
numbersl ands.! They give additional information abou
interacting waves: the waves interact in the frame m
ing with the group speed of short waves and so on. T
issue, which can not be resolved by choosingl and s,
emerges in the case of degeneracy, when the abov
teraction terms vanish. In the degeneracy case,interac-
tion is of higher order of« than dispersion. We cannot
cut down the dispersive terms and should take into
count the interaction terms. The equations for degene
interaction therefore contain the terms of different ord
of «.

IV. WEAKLY TWO-DIMENSIONAL EVOLUTION OF
SOUND WAVES

Consider the method of multiple scales on the probl
of weakly two-dimensional evolution of sound waves in bu
bly fluids. Substitute the multiscale expansions~12! and~13!
into Eqs. ~3! provided that there is no ultrasound (zm

(n)50
andl 52, wheren51,2,. . . ) and thederivatives ofzm

(0) with
respect toy are much less than those with respect tox, i.e.,
all unknowns do not depend ony1 . This means that al
changes iny are slower than inx ~in the direction of wave
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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motion! and can be considered as transverse perturbation
the wave profile. Then the following equations~of order«4)

@k~12b2c2!21#
]2a1

(0)

]j2
50,

r1
(0)523~11kb2!a1

(0) , ~14!

p1
(0)523ka1

(0) ,

will be true. Herej5x12ct1 . Equations~14! have a unique
solution whenc5ce @cf. ~7a!#. Thus, long waves travel with
the equilibrium speed of soundCe5cel * /t* in bubbly flu-
ids. In view of ~14! andc5ce , the Kadomtsev–Petviashvil
~KP! equation33 for the sound profileL5p1

(0) occurs in the
order of«6

]

]j S ]L

]t
12sL

]L

]j
1x

]3L

]j3 D 1
1

2

]2L

]z2
50. ~15!

Here t5t2 and z5y2 . The coefficients s5(k
11)ce

3/(4k2) and x5ce
5/(6k2) are always positive. When

denoting

T5tA s3

27x
, X5jA s

3x
, Y5zA s3

162x
, ~16!

Eq. ~15! takes the canonical form

]

]X S ]L

]T
16L

]L

]X
1

]3L

]X3D 13sKP

]2L

]Y2
50 ~17!

with sKP51, which is referred to as KPI equation.34 The
sign of sKP may be negative for a number of other physic
systems~nonlinear optics and water waves25! and Eq.~17! is
then known as KPII equation. Both the KPI and KPII a
integrable by means of the inverse scattering transform.34–36

The simplest soliton solution to~17!, regardless ofsKP, is
given by

L52V2 sech2 V~X24V2T2X0!, V,X05const, ~18!

which represents the famous KdV soliton. This is not surp
ing, since the KdV equation follows from~17! in the case
that L does not depend onz ~the one-dimensional soun
wave!:

]L

]T
16L

]L

]X
1

]3L

]X3
50. ~19!

The important question arises of whether such a solit
wave is unstable in the bubbly mixture with respect to tra
verse perturbations, i.e., whether these perturbations des
the one-dimensional solution~18!. There are a number o
analytical25,33,37,38and numerical works39,40 which showed
that if sKP521 ~the KPII case!, a KdV soliton is linearly
unstable: It transforms into a chain of two-dimensional li
solitons and/or lumps under a periodic transverse pertu
tion. In contrast, a numerical simulation using the K
equation,41 which holds for bubbly mixtures as shown abov
reveals that the solution~18! is stable. Hence, there is n
transverse instability of solitary waves in bubbly liquids. Pr
viously, Gavrilyuk has argued that the KPII equation is va
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for bubbly liquids, and therefore, ‘‘solitary waves in bubb
liquids are linearly unstable.’’42 However, if these waves
were unstable with respect to transverse perturbations,
experimental results of Nakoryakov and his co-workers14 on
the existence of KdV solitons in bubbly liquids would b
questionable. This is because such experiments would
for using extremely narrow channels wherein the depende
of the wave profile on the transverse coordinate could
neglected. Fortunately, Gavriluk’s conclusion was in erro

V. ONE-DIMENSIONAL INTERACTION

Let us put (l ,s)5(2,1) andsubstitute expansions~12!
and ~13! into Eqs. ~3!. Suppose that all unknowns do n
depend ony0 , y1 , y2 , . . . ~the one-dimensional case!. We
then split the resulting expressions into harmonics of
short wave, exp$inQ%, n50,1,2, . . . and restrict our attentio
to order«4 for the zeroth harmonic and«3 for the first har-
monic. We also assume that the damping coefficientm* is of
order «2 ~weak damping!: m* 5«2m, m;O(1). Then, the
following equations for interaction will be true:

L5L01
a

cg
22ce

2

]2uSu2

]j2
, ~20a!

i
]S

]t
1b

]2S

]j2
1 iGS1guSu2S5dLS. ~20b!

HereL5p1
(0) is the sound profile;S5p1

(1) is the ultrasound
envelope. In doing so,L5L(j)1L0 , S5S(t,j), t5t2 , j
5x12cgt1 (L0 is the initial sound profile which is assume
to be constant!. The coefficients

a52
ce

2cg
2

k~vs
223k!2

@vs
229k~k11!#, ~21a!

b5
cg

2ks
F11

cg

vs
223k

$4ksvs1cg~ks
213~11kb2!

26b2vs
2!%G , ~21b!

d52
cgvs

2

2kks~vs
223k!2

@vs
229k~k11!#, ~21c!

G5
mvscg~b2vs

22ks
2!

2ks~vs
223k!

, ~21d!

g52
@vs

223k~3k11!#d

~vs
223k!2

2
cg~b2vs

22ks
2!

4ksvs
2~vs

223k!3
@2vs

4

127k2~k11!vs
2127k2~k11!2#. ~21e!

cg andce are determined from~8! and ~7a!.
Due to the absence of derivatives in~20a! the resulting

model describes the formation of an inertialess sound by
ultrasound wave packet and their subsequent interac
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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Substitution~20a! into ~20b! and notationS̃5Sexp$idL0t%
give the Ginzburg–Landau~GL! equation inS̃

i
]S̃

]t
1b

]2S̃

]j2
1g8uS̃u2S̃1 iGS̃50, g85g2

ad

cg
22ce

2
.

~22!

Generally, the GL equation does not have analyti
solutions.32 But in the nondissipative case (G50), Eq. ~22!
known as the nonlinear Schro¨dinger ~NLS! equation is inte-
grable. The NLS equation possesses soliton solutions43 if the
Benjamin–Feir instability criterion44

bg8.0, ~23!

is satisfied. It is worth noting that the Benjamin–Feir ins
bility is the modulational~temporal! instability of spatially
uniform solutions to the nonlinear Schro¨dinger equation. The
unstable spatially uniform solution is deformed into a train
localized waves calledbright NLS solitons.38 For bubbly flu-
ids, the Benjamin–Feir instability regions were given on t
parameter plane (ks ,b) earlier.16 The physical significance o
this instability in the bubbly fluids may be the following. Le
us assume that a monochromatic ultrasound wave propag
through the bubbly medium. Its amplitudeSdoes not depend
on x and, therefore, represents the spatially uniform solut
to the NLS equation. Suppose that the condition~23! is sat-
isfied for the wave, i.e., the values for the wave frequen
and bubbly fluid parameters are in the Benjamin–Feir ins
bility region. This monochromatic wave will be unstable
spatial periodic perturbations. As a result, a train of localiz
short-wave packets will be generated with the passage
time. Hence, it is impossible to sustain a monochroma
ultrasonic signal in the bubbly fluid if the Benjamin–Fe
instability criterion is satisfied~spatial pressure perturbation
inevitably occur in experiments!.

The interaction model~20! becomes incorrect ifcg5ce

~the resonant case!. This is because the term on the righ
hand side of~20a! goes to infinity. It is necessary to chang
the exponents of smallnessl ands. Under resonance condi
tion ~10! and (l ,s)5~2, 3/2!, substitution of expansions~12!
and ~13! into system~3! results in the Zakharov equation
with damping~which arises in the orders of«5 for the zeroth
harmonic and«7/2 for the first harmonic!:

]L

]t
1

a

2ce

]uSu2

]j
50, i

]S

]t
1b

]2S

]j2
1 iGS5dLS. ~24!

Now L5L(t,j), S5S(t,j), t5t2 , j5x12cgt1 .
In contrast to the previous~nonresonant! model, the ef-

fects of sound on ultrasound are nontrivial. The dynamics
resonant sound–ultrasound interaction depends on the in
conditions for the sound wave.

The Zakharov equations, atG50, is one of the inte-
grable nonlinear wave models. Their spatially uniform so
tions are always unstable. The instability evolves for the p
turbations with the wave numberK,(6A3uaduuS0u2)1/3. As
a result, there exist the envelope soliton solutions45 for any
values of the coefficients.
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VI. DEGENERACY OF THE INTERACTION

The NLS and Zakharov equations are classical mod
for the long-wave–short-wave interaction. Are there any s
cial features of the sound-ultrasound interaction in bub
fluids? It turns out there exists one peculiarity.

In the bubbly fluids, the interaction coefficientsa andd
can vanish simultaneously~Fig. 2!. This happens when th
ultrasound frequency

vs53@k~k11!#1/2. ~25!

The interaction between sound and ultrasound is thendegen-
eratedbecause the equations for interaction are separate

However, such a degeneracy does not mean the abs
of interaction. Certainly, the sound profileL(j,z) is equal to
zero in the nonresonant degenerate case. But if we take
account the zeroth-harmonic terms up to order«5, the inter-
action betweenS5p1

(1) andL15p2
(0) can occur

L15
il

cg
22ce

2 FS
]S*

]j
2S*

]S

]j G ,
~26!

i
]S

]t
1b

]2S

]j2
1 iGS1guSu2S50.

The coefficient l5(k11)1/2ce
2cg

3/@3k5/2(3k12)2# never
vanishes. Here the quasimonochromatic ultrasonic sig
will also generate sound but of much smaller intensity th
in the nondegenerate case.

A. Resonant degeneracy: The case „ l ,s …Ä„2,3Õ2…

Under condition~25! Eqs. ~24! turn into the uncoupled
equations:

]L

]t
50, ~27a!

i
]S

]t
1b

]2S

]j2
1 iGS50. ~27b!

FIG. 2. Coefficientsa and d versus the wave numberks (k51.4, b
50.447). The white point corresponds to the degeneracy of the interac
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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From ~27a! it follows the invariance of an initial sound pro
file with respect to the timet. Equation~27b! describes the
linear dispersion and dissipation of the ultrasound wa
packet.

To construct the model of the degenerate resonant in
action we substitute~12! and ~13! into ~3! and consider all
terms up to order«6 for the long-wave component and«9/2

for the short-wave one. AgainL5p1
(0) andS5p1

(1) are func-
tions of j5x12cgt1 , t5t2 . Denote other components a
L15p2

(0) , L25p3
(0) , S15p2

(1) , S25p3
(1) and assume thatL1

and S1 evolve in accordance with Eqs.~27! and L2

5L2(j), S25S2(j). Then, under conditions~25! and ~10!,
the degenerate sound–ultrasound interaction is governe
the equations

]L

]t
1«H x

]3L

]j3
1s

]L2

]j
2 ilFS*

]2S

]j2
2S

]2S*

]j2 G J 50, ~28a!

]S

]t
2 ib

]2S

]j2
1GS1«H h

]3S

]j3
1 igS2S* 1G8

]S

]j
2nL

]S

]j

2
n

2
S

]L

]j J 50. ~28b!

Equations~28! describe the degenerate interaction betwe
low-intensity sound and ultrasound. This is because the
plitude of the sound wave is less than the ultrasound en
lope (l .s). Obviously, if S50, Eq. ~28b! reduces to the
KdV equation~19! in a more slower timet35«t2 .

It should be noted that~28! is determined only by the
parameterk. First, this follows from the degeneracy cond
tion ~25! according to which the ultrasound frequencyvsr

depends only onk. Second, when~25! is substituted into the
dispersion relation~6!, a relation is obtained which relate
the quantitiesksr , b, and k. Together with the resonanc
condition ~10! the latter expression constitutes a set of tw
algebraic equations inksr andb with the parameterk. Hence
ksr , b are completely expressed viak

vsr53@k~k11!#1/2, ksr5
3~k11!

k1/2~3k12!
,

~29!

b5
@3k~k11!11#1/2

k~3k12!
.

For example, if one considers a mixture of water with
bubbles of the radiusa050.1 mm, under normal condition
and the volume gas contentag0'3•1024, the degeneracy o
resonant interaction occurs when the ultrasound freque
f sr'87.5 kHz.

All coefficients of system~28! are positive atk>1

cg5ce5
k~3k12!

~3k11!~k11!1/2
,

~30a!

s5
k~3k12!3

4~3k11!3~k11!1/2
,

n.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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l5
k3/2

6~3k11!4~3k12!~k11!3/2
@27k3118k2118k

14#, ~30b!

b5
3k5/2~3k12!

2~k11!3/2~3k11!3
@3k213k12#, ~30c!

h5
k3~3k12!

6~3k11!5~k11!5/2
@81k4154k3181k2160k

128#, ~30d!

g5
~k11!1/2

12k1/2~3k11!~3k12!2
@9k22#,

x5
k3~3k12!5

6~k11!5/2~3k11!5
, ~30e!

n5
k~3k12!

~3k11!2~k11!1/2
, G5

3km

2~3k11!
, ~30f!

G85
k3/2m

2~k11!2~3k11!3~3k12!
@189k41405k3

1288k2179k14#. ~30g!

Due to the presence of the damping termGS of lower order
« in comparison with the interaction terms, the fast decay
the ultrasonic signal takes place. This leads to the neglig
action of ultrasound on sound. In order to ‘‘catch’’ effects
sound on ultrasound, we need large sound amplitudes.
this seems to contradict the perturbation theory accordin
which the sound profileL should be less than«21. Conse-
quently, we may argue that weak damping suppresses
resonant interaction between low-intensity sound and ul
sound in the case of degeneracy.

B. Resonant degeneracy: The case „ l ,s …Ä„1, 1…

It turns out that the resonant degenerate interaction
be described by other models. One of such models oc
when (l ,s)5~1,1!, i.e., in the context of high-intensity soun
in the ultrasonic field.

With choosing (l ,s)5~1,1!, the interaction is usually
trivial

L5L0~j!, i
]S

]t1
5dLS. ~31!

But provided that the conditions of resonant degeneracy~29!
are satisfied, i.e.,d50, and damping is weak, the followin
equations~of order«3 for L andS) will govern the interac-
tion in the timet5t2:

]L

]t
1s

]L2

]j
1«H x

]3L

]j3
1§

]L3

]j
1%

]LuSu2

]j
1G̃uSu2

2 ilS S*
]2S

]j2
2S

]2S*

]j2 D J 50, ~32a!
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]S

]t
1b

]2S

]j2
2gS2S* 1 iGS5 inL

]S

]j
1 i

n

2
S

]L

]j
1 d̃L2S.

~32b!

Here

G̃5
2m

3k~3k11!~3k12!2
,

d̃5
~3k12!2

36k1/2~k11!1/2~3k11!
, ~33a!

§5
~3k12!3

36~k11!3/2~3k11!5
@27k4162k3145k217k22#,

~33b!

%5
1

6~k11!1/2~3k11!5~3k12!
@27k3136k224#; ~33c!

the other coefficients were defined above.
We include the terms of order« in Eq. ~32a!. Otherwise,

the sound wave will be governed by the Hopf equation

]L

]t
1s

]L2

]j
50. ~34!

The Hopf equation describes the process of shock wave
mation from an initially smooth profile. Mathematically th
implies that the derivatives ofL andSwith respect toj must
go to infinity at some spatial pointj5j* in a finite time.
Hence, the terms of order«, containing these derivatives
become rather large to be able to influence the dynamic
sound–ultrasound interaction.

VII. TWO-DIMENSIONAL INTERACTION

Let us consider the two-dimensional interaction, i.e.,
us take into account the dependence of wave perturbat
on the transverse coordinatey. When (l ,s) equals (2,1), sub-
stitution of multiscale expansions~12! and~13! into Eqs.~3!
results in the Davey–Stewartson~DS! equations with damp-
ing

~cg
22ce

2!
]2L

]j2
2ce

2 ]2L

]z2
5a

]2uSu2

]j2
, ~35a!

i
]S

]t
1b

]2S

]j2
1%

]2S

]z2
1 iGS1guSu2S5dLS. ~35b!

Here L[p1
(0)5L(j,z)1L0 ; S[p1

(1)5S(t,j,z); t5t2 ; j
5x12cgt1 ; z5y1 . The coefficient

%5
cg

2ks
. ~36!

Unlike the one-dimensional case, the resonance condi
cg5ce does not require to change the exponents of smalln
l ands, and the form of equations is conserved.

It should be noted Eq.~35a! does not contain the term
]2uSu2/]z2. This term disappears in going from the radi
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perturbationsa1
(0) anda1

(1) to the pressure perturbationsp1
(0)

and p1
(1) . In particular, the zeroth-harmonic equation fora

has the form

F ]2

]t1
2

2ce
2S ]2

]x1
2

1
]2

]y1
2D Ga1

(0)

~37!

5Fa1

]2

]t1
2

1a2S ]2

]x1
2

1
]2

]y1
2D G ua1

(1)u2,

where

a152
61b2@vs

223k~3k11!#

3~11kb2!
,

~38!

a25
vs

223k~3k11!

3~11kb2!
.

From Eq.~3! it follows that

a1
(1)5

p1
(1)

~vs
223k!

1O~«!,

~39!

a1
(0)52

1

3k F p1
(0)1

3a2~11kb2!

~vs
223k!2

up1
(1)u2G1O~«!.

Substitution of Eqs.~39! into Eq. ~38! leads to the cancella
tion of the second derivatives ofup1

(1)u2 with respect tox1

and y1 . We then have the following zeroth-harmonic equ
tion for p:

]2p1
(0)

]t1
2

2ce
2S ]2

]x1
2

1
]2

]y1
2D p1

(0)5
a

cg
2

]2up1
(1)u2

]t1
2

, ~40!

which is reduced to Eq.~35a!.

A. Dromions in bubbly fluids

WhendÞ0 andG50, Eqs.~35! can be transformed into
the canonical form.20,23 For this purpose, we perform th
substitutionsL(j,z)→d21]C/]j and S̃5Sexp$idL0t% and
introduce the notations5ce

22(ce
22cg

2):

s
]2C

]j2
1

]2C

]z2
52

ad

ce
2

]uS̃u2

]j
,

~41!

i
]S̃

]t
1b

]2S̃

]j2
1%

]2S̃

]z2
1guS̃u2S̃5S̃

]C

]j
.

It is known24 that Eqs.~41! are nonintegrable for mos
values of the coefficients. The exception is the case w
~41! can be represented as

d1

]2Q

]x2
1

]2Q

]y2
52d2

]uAu2

]x
,

~42!

i
]A

]t
1n

]2A

]x2
1

]2A

]y2
52nuAu2A1A

]Q

]x
,

with n561, d152n, d252.
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Depending on the sign ofn, Eqs.~42! are divided into
the Davey–Stewartson I~DSI! equations, of hyperbolic-
elliptic type (n51), and the Davey–Stewartson II~DSII!
equations, of elliptic-hyperbolic type (n521). The integra-
bility of the DSI and DSII equations by inverse scatteri
transform was proved in numerous publications~the reader is
referred to Ref. 35 for a list of relevant articles!.

Since the coefficientsb and% in ~35! are always posi-
tive @cf. ~21! and~36!#, the DSI case is only possible for th
interacting waves in bubbly fluids. To show this, it is enou
to perform the substitutionsQ5C, A5g1/2S̃, x5j/b1/2, y
5z/%1/2, t5t in Eqs.~41!. The DSI equations occur when

d15
%

b
@12cg

2/ce
2#521, d25

ad%

gb1/2ce
2

52. ~43!

You might see before that the coefficientsa andd were of
the same sign~Fig. 2!. Hence, to satisfy the first condition o
~43!, g should be positive. Then the radicand in the seco
condition is also positive.

The intersection of the curvesd1521 andd252 on the
parameter plane (ks , b), plotted in Fig. 3~a!, proves the sat-
isfaction of conditions~43!. Figure 3~b! shows two points of
this intersection (D1 andD2) that correspond to the volum
gas contentsag01'2.0431024, ag02'1.4231024 and the
ultrasound frequenciesVs1'0.11 MHz,Vs2'0.14 MHz ~in
the case of a mixture of water with air bubbles of the rad
0.1 mm under normal conditions!.

Among all solutions of the DSI equation, so-called ‘‘dro
mion’’ solution46 stands out. This solution represents a loc
ized and exponentially decaying ultrasound waveA which
can scatter energy during the interaction with perturbatio
in contrast to usual soliton solutions. The dromion aris
when nonzero boundary conditions for the sound profileQ
are given and therefore exists due to energy exchange
tween sound and ultrasound waves.

Of even greater importance is the fact that the drom
~ultrasound wave! travels along the trajectory determined b
the time dependence of the boundary conditions for
sound wave~at infinity!. Setting the law that governs th
variation of these boundary conditions, one can control
motion of the dromion.

Fokas and Santini46 showed that the DSI equations go
ern the evolution ofN dromions (N is natural! for arbitrary
time-dependent boundary conditions forQ and any initial

FIG. 3. Map of parameter plane, showing where the DSI equations go
the sound–ultrasound interaction in bubbly fluids.
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conditions forA decaying at infinity. To find a one-dromio
solution it is necessary to rotate the system of coordina
through 45°:x→ x̃1 ỹ, y→ x̃2 ỹ. By introducing the vari-
ables U[(]Q/]x2uAu2)/2 and V[(]Q/]y2uAu2)/2 ~the
tilde is omitted!, Eqs.~42! with n51 can then be written in
the form

i
]A

]t
1

]2A

]x2
1

]2A

]y2
1~U1V!A50,

]U

]y
5

]uAu2

]x
,

~44!
]V

]x
5

]uAu2

]y
.

d

u-

r
ve

s
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Provided that the boundary conditions forU on y andV on x
at 2` are of the form of one-dimensional KdV solitons

Uuy→2`5
8kr

2 exp~h11h1* !

@11exp~h11h1* !#2
,

~45!

Vux→2`5
8l r

2 exp~h21h2* !

@11exp~h21h2* !#2
,

Eqs.~44! are easily integrated and give a one-dromion so
tion of the form47
A5
x exp~h11h2!

11exp~h11h1* !1exp~h21h2* !1l exp~h11h1* 1h21h2* !
. ~46!
a
as

ar

qs.

ort

s,
Here

h15~kr1 ik i !x1~22krki1 iV i !t, ~47a!

h25~ l r1 i l i !y1~22l r l i1 iv i !t, ~47b!

V i1v i5kr
21ki

21 l r
21 l i

2 , ~47c!

x52~2kr l r~l21!!1/2, ~47d!

andl, kr , ki , l r , l i are arbitrary real numbers~parameters
of the solution!. The spatial distributions of the ultrasoun
envelopeuS̃u5g21/2uAu and of the sound profileL5(U1V
12uAu2)/(2d), which correspond to the one-dromion sol
tion given by Eqs.~45!–~47!, are illustrated in Fig. 4.

The numerical experiments47 confirm the fact that the
motion of the dromion structure occurs along the trajecto
determined by the boundary conditions for the long wa
For example, when the variables in Eqs.~45! are changed as

h11h1* 5krx1V r sin~wt!,

h21h2* 5 l rx1v r cos~wt!,

i.e., the crosspoint of the sound wave~point C in Fig. 4!
revolves around the origin, the dromion propagates qua
tably around a circle.

FIG. 4. One-dromion solution of the DSI equations withl53, kr5 l r

54/5, ki5 l i51/5.
y
.

is-

B. Singular focusing

If the coefficients b, %, s, ad are positive and
g.2ad/ce

2 , the solution to Eqs.~41! with the boundary
condition

uS̃u→0 for j21z2→`, ~48!

tends to infinity for reasonably large amplitudes within
finite time interval.25 This phenomenon is often referred to
singular focusingor blowup instabilityof two-dimensional
wave perturbations. There are experimental data48 which
confirm the existence of the singular focusing in nonline
optics.

The singular focusing of the solutions to Eqs.~41! is
corroborated by the analysis of conservation laws. From E
~41! it follows that the integrals:

M5E E
2`

1`

uS̃u2djdz, ~49!

Px5E E
2`

1`S S̃*
]S̃

]j
2S̃

]S̃*

]j
D djdz,

~50!

Py5E E
2`

1`S S̃*
]S̃

]z
2S̃

]S̃*

]z
D djdz,

E5E E
2`

1`FbU]S̃

]j
U2

1%U]S̃

]z
U2

2
1

2 S guS̃u41
sce

2

ad U]C

]j U
2

1
ce

2

ad U]C

]z U
2D Gdjdz, ~51!

are conserved. The first integral is the ‘‘mass’’ of the sh
wave. The next two integrals are thej- andz-components of
the short-wave ‘‘momentum.’’ We obtain~49! and ~50! by
multiplying the second equation of~41!, respectively into
2S̃* , S̃j* , and S̃z* , then taking the real parts of the result
and integrating them with respect toj and z between2`
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and ` using the boundary condition~48!. The integral~51!
may be interpreted as the ‘‘total energy’’ of interacting lo
and short waves. The ‘‘energy’’ can be negative under
condition of singular focusing and large initial amplitudes
ultrasound waves. The steps of deriving~51! are following:
~i! The second equation of~41! is multiplied into 2S̃t* and
the real part of the result is considered;~ii ! the real part
contains the interaction term

]uS̃u2

]t

]C

]j
,

which is calculated using the first equation of~41!; ~iii ! the
obtained expression is integrated with the use of~48!.

From ~41! it follows also the relation:

d2I

dt2
58E, I 5E E

2`

1`S j2

%
1

z2

b D uS̃u2djdz, ~52!

whereI is the ‘‘inertia moment’’~a positive-definite magni-
tude!. The derivation of~52! is not trivial and is shown in
detail by Ghidaglia and Saut24 ~see also Ref. 25!. When E
,0, the ‘‘virial theorem’’ ~52! causes the ‘‘inertia moment’
to vanish in a finite time. Physically, this means that t

FIG. 5. Regions of the blowup instability (g f5g1ad/ce
2).

FIG. 6. Nondissipative evolution of~a! the sound wave,pL5« l p0L, and~b!
the ultrasound wave packet,upSu5«sp0uSu, according to Eqs.~24!. Water
with air bubbles of the radius 1 mm under normal conditions and«50.1,
L05S055, DL50.25,DS50.05,ag05331024, m50. The curves labeled
1, 2, 3, 4, 5, 6, and 7 are for the instants of timet50.019, 0.171, 0.209,
0.294, 0.437, 0.532, and 0.722 s, respectively. Heret5t/«2 and x
5(a0ag0

21/2/«)j.
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ultrasonic perturbation distributed initially in space will b
concentrated at some spatial point with time. Since the m
of the ultrasound wave is conserved, this process lead
increasing the wave amplitude at the spatial point and,
nally, results in the blowup instability.

In the bubbly fluid, the coefficientsb, % are always
positive, anda andd are of the same sign. Hence, the si
gular focusing of ultrasound is possible in the bubbly m
tures if49

ce.cg , g.2ad/ce
2 . ~53!

The regions of the blowup instability, determined by con
tion ~53!, are plotted in Fig. 5.

VIII. NUMERICAL ANALYSIS

A. Degenerate resonant interaction

The models~28! and~32! are integrated numerically us
ing a three-layer explicit scheme with a fourth order of a
proximation with respect to the spatial coordinate propo
earlier50 for the numerical solution of the KdV equation~see
details in the Appendix!. Periodic boundary conditions an
an initial condition of the form

Lut505L0~11DL@12cosj#!,
~54!

Sr ut505S0~11DS@12cosj#!, Si ut5050,

whereSr5Re(S); Si5Im(S), are used in the integration.
The results of numerical investigation of~28! are repre-

sented in Figs. 6–8. Figure 6 shows the spatial distributi
of the ultrasound envelope and the sound profile~damping is
not considered!. It is clear that a sinusoidal profile foruSu is

FIG. 7. Nonlinear distortions of the ultrasound wave packet. The value
parameters are listed in Fig. 6. The curves labeled 1, 2, 3, and 4 are fo
instants of timet50.4557, 0.4652, 0.4747, and 0.4842 s, respectively.

FIG. 8. The maximal value of the ultrasound amplitude versus time.
other parameters are the same as in Fig. 6.
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formed. The amplitude of this profile increases up to
instant of timet50.294 s and then sharply decreases at
50.437 s, and, after a certain time, it increases again, re
ing a maximum value att50.722 s@Fig. 6~a!#. In the case of
sinusoidal initial conditions ultrasound has no action
sound and the sound wave propagates in accordance wit
KdV equation~19!. It is important to note that an increase
the ultrasound amplitude occurs during the formation o
second hump in the sound profile~the two-soliton solution of
the KdV equation! and a decrease happens when the hu
disappears@Fig. 6~b!#. From this it follows that the formation

FIG. 9. Tendency to a shock wave formation in model~26!. Here«50.1,
L05S055, DL5DS50.05, p050.1 MPa,k51.4. The curves labeled 1, 2
and 3 are for the instants of timet50, 0.133, and 0.285 s.

FIG. 10. Evolution of the sound perturbationpL5« l p0L. The parameters
are given in the legend and in Fig. 9.
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of a two-humped profile is accompanied by a significant
turn flow of energy from sound to ultrasound, on account
which, in spite of strong dispersion, the amplitude of t
ultrasound wave increases. The return flow of energy is p
vided by the interaction termsL]S/]j andS]L/]j. WhenL
increases or, at least, does not decrease at some spatial
j5j* , these terms ensure a positiveness of the deriva
]S/]t and, hence, increasing the ultrasound amplitude at
point j* in time. Going through the periods of growth an
fall, this amplitude grows on the whole which is seen from
comparison of the ultrasonic distribution at the instants
time t50.209 s andt50.722 s@curves 3 and 7 in Fig. 6~a!#.
The essential smallness and briefness of the nonlinear di
tions in the ultrasound profile should be noted. These dis
tions appear when the amplitude of ultrasound reduces@cf.
Fig. 7#. Consequently, we have the linear intensification
ultrasound by sound here.

The results obtained can be given the following physi
interpretation. Suppose that quasimonochromatic hi
frequency~ultrasonic! and low-frequency~sonic! oscillations
are excited in a bubbly fluid. In general, these perturbati
will propagate in the medium in the form of an ultrasou
wave packet and a sound wave. When the long-wave–sh
wave resonance condition is satisfied, interaction occ
which obeys the Zakharov equations~24!. This system de-
scribes the formation of a soliton structure for the giv
boundary-initial conditions~in the nondissipative case!.45

Obviously, the soliton is a consequence of significant non
ear distortions in the ultrasound profile. However, an isola
ultrasound frequency exists in a bubbly fluid, that is, t
frequency of ‘‘degeneracy’’ at which the resonant interacti
has a completely different character. First, the sound w
propagates independently of the ultrasound wave and ob
the KdV equation. Second, due to the action of the sou
wave on the ultrasound wave a sinusoidal profile of the
trasound envelope is formed. This profile experiences ne
gible and short-term nonlinear distortions. This means t
practically all the energy of ultrasound will be contained
its first harmonic. Third, due to the flow of energy from th
sound wave to the ultrasound wave, the growth of the sh
wave amplitude takes place.

What happens if we add damping? Restrict our attent
to very small damping (m* 5«3m) because small one (m*
5«2m) suppresses any interaction in this model~cf. above!.
Of course, the very weak damping leads to the attenuatio

FIG. 11. Spatial distribution of the sound perturbation according to E
~26! for different values of the damping coefficient.
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FIG. 12. Nonresonant defocusing of ultrasound a
sound in a bubbly fluid (S0525, k51.4).
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ultrasonic perturbations. Ifm is large enough, the amplitud
of the short wave decreases exponentially in time~thin solid
line in Fig. 8!. The interaction between sound and ultrasou
waves appears for a smaller damping coefficient. Due to
interaction, the attenuation curve of the ultrasound amplit
becomes of graduated type~thick solid line in Fig. 8!. A
slower attenuation is due to increasing the ultrasound am
tude ~in the nondissipative case!.

The absolutely different situation is observed for mod
~32!. Figure 9 shows the sonic distribution with respect tox
at m50 at different instants of time. It is clear that soun
propagates with its profile becoming steeper since, when
account is taken of terms of order«, the equation for the
sound wave is the Hopf equation~34!.

Figures 10 and 11 represent the subsequent evolutio
the sonic and ultrasonic perturbations in the presence~thick
line! and absence~thin and dashed lines! of weak damping. A
shock profile is not formed. This is due to the contribution
terms of order« in the first equation of~32!. If the ultrasonic
perturbations are not generated (S050), the sound wave will
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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propagate in accordance with the strongly nonlinear K
equation

]L

]t
1s

]L2

]j
1«§

]L3

]j
1«x

]3L

]j3
50 ~55!

~Fig. 10, dashed line!. But if S0.0, the sound profile fails
~Fig. 10, thin line!. Thus, the nondissipative interaction b
tween high intensity sound and ultrasound results in non
ear instability in the case of resonant degeneracy. Note
this instability appears due to the tendency to a shock w
formation and the presence of the terms with cubic non
earity, %](LuSu2)/]j and d̃L2S, in Eqs.~32!. The values of
the sound profile are quite different in two close points
the shock. This difference is doubled and transmitted to
ultrasound wave due to the termd̃L2S and leads to the fur-
ther steepness of the ultrasound profile. Due to the te
%](LuSu2)/]j the originating jump inS influences the sound
wave and, finally, results in the nonlinear instability.
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Weak damping suppresses the nonlinear instability
results in insignificant decreasing the amplitude and velo
of a solitary sound wave. The disappearance of the instab
comes from the fast attenuation of the ultrasonic signal: T
contribution of S into L becomes small even during th
steepness of the ultrasonic distribution. Nevertheless, if
reduce the damping coefficient, the nonlinear instability w
arise again~Fig. 11, thick curve!. This is because the ultra
sound amplitude decreases slowly now, and nonlinear dis
tions are large enough for the destruction of the sound p
file.

B. Singular focusing

The results of numerical analysis of Eqs.~35! are illus-
trated in Figs. 12–15. The first equation is solved by
Fourier transform method,51 the second equation by th
alternating-direction implicit method.52 The boundary and
initial conditions are as follows:

L~j,z!, S~t,j,z!50, for j21z2→` ~56a!

and

S~t50,j,z!5S0 exp$2~j21z2!%. ~56b!

Here S0 takes real values. The coefficients in~35! are se-
lected so thatce.cg @then the first equation of~35! is of
elliptic type#. We analyze four cases:~1! ks50.5, b50.4; ~2!
ks51.036, b50.4; ~3! ks50.5, b50.25; ~4! ks50.574, b
50.25. The first two cases are considered on the assump
that m50. The first case corresponds to the stable nonre
nant interaction becauseceÞcg and point~0.5; 0.4! lies in
the stable region~cf. Fig. 5!.

Numerical analysis confirms analytical results. T
stable interaction leads to defocusing of sound and ul
sound waves~Fig. 12!. In the second case we are also in t
stable region but near the resonant curve (cg→ce). The nu-
merical solution of~35! defocuses again@Fig. 13~a!#. But
now the defocusing slows down and is accompanied by
modification of the wave profile@Fig. 13~b!#.

In the third case the unstable nonresonant interac
takes place. Indeed, with no damping the high intensity
trasound wave (S0.40) is shrinking and growing in time
~Fig. 14!. This results in the blowup instability later. Wea

FIG. 13. Defocusing of ultrasound in the resonant case:~a! the ultrasound
envelopeuSu versusj (z50) at different instants of time;~b! comparison of
the nonresonant~thick curve! and resonant~dashed curve! ultrasound pro-
files att51.
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damping suppresses this instability untilm exceeds some
cutoff value. It should be noted that a similar cut-off influ
ence of damping on singular focusing was observed for
generalized KdV equation with nonlinearities of four
order.53

The singular focusing of nondissipative interaction
evident in the fourth~unstable resonant! case. Now the fo-
cusing is accelerated and accompanied by the strong de
mation of the ultrasound profile~Fig. 15!. Also, the ampli-
tude threshold for singular focusing reduces toS0520.
Hence the long-wave–short-wave resonance enhances
probability of singular focusing of ultrasound in bubbly flu
ids.

IX. POSSIBLE APPLICATIONS

In conclusion, we would like to outline possible applic
tions of such sound–ultrasound interactions.

First, the phenomenon of degeneracy of the interact
can be used for ultrasound diagnostics of weakly visc
bubbly fluids in narrow channels. Narrow channels are
sential here in order that transverse instabilities do
evolve. If we find some value of the degeneracy frequen
experimentally, we can evaluate the radius of the bub
a0d , and the volume gas contentag0d . Indeed, from condi-
tion ~29! and formulas~2! and ~4a! it follows that ag0d de-
pends only on the ambient pressurep0 , mass density of a
carrier liquid, r l0 , speed of sound in the liquid,Cl , and
polytropic exponentk:

ag0d5
p0k2~3k12!2

r l0Cl
2@3k~k11!11#

.

If ag0d is known, there is no problem to finda0d because

a0d5
3

2p f sd
A p0k~k11!

r l0~12ag0d!
,

where f sd is the degeneracy frequency. Of course, act
bubbly fluids are polydispersed. This requires to include
bubble size distribution in the equations of motion. There
two changes in the equations for perturbations~3! if the bub-
bly fluid becomes polydisperse~see Ref. 16!. First, we have

(
j 52

N
a j 0

ag0
~11aj !

3,

instead of (11a)3 in Eq. ~3b!. HereN21 is the number of
disperse~or bubble! fractions (N51 corresponds to the dis
persive medium!, a j 0 and aj are the initial volume conten
and perturbation in the bubble radius forj th fraction, ag0

5( j 52
N a j 0 is the total initial volume gas content. Second,

Eq. ~3c!, a is replaced byaj and the first two terms are
multiplied by

j j5
aj 0

a*
(aj 0 is the initial bubble radius forj th fraction,a* is a cer-
tain representative radius of bubbles!. There areN11 equa-
tions for perturbations at all: The first is for the pressu
perturbation, the second is for the density perturbation,
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FIG. 14. Nonresonant singular focusing of ultrasou
and sound in a bubbly fluid (S0530; k51.4; m50).
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the remainingN21 equations are for the perturbations
bubble radii. Anyway, the equations have the same form,
hence the above results should be valid for polydisperse b
bly fluids. For example, there exists the long-wave–sh

FIG. 15. Spatial distribution of the ultrasound envelopeuSu at different
instants of time in the case of resonant singular focusing. HereS0520; k
51.4, m50.
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wave resonance and the nonresonant one-dimensiona
namics is governed by the nonlinear Schro¨dinger equation.16

The main problem is to ‘‘catch’’ the degeneracy fr
quency. To do this the following ideas can be exploited. U
ally, if we create ultrasound and sound in bubbly fluids
multaneously, so that resonance condition~10! is satisfied,
these waves will interact according to the Zakharov eq
tions with damping~24!. The result of this interaction is the
formation and the subsequent decay of the ultrasound e
lope and the appearance of an additional sonic~long-wave!
component proportional to a square of the ultrasound en
lope modulus. Since weak damping leads to decreasing
ultrasound amplitude, the additional long-wave compon
will be also damped out butnot so fast as in the degenera
case. Under degeneracy condition~29!, ultrasound will not
influence the long wave essentially. This gives us a chanc
verify the degeneracy phenomenon experimentally. The
perimental setup can be designed on a basis of
difference-frequency sound generation technique.12,54

Second, the dromion property to travel on the trac
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defined by the evolution of sound wave, can be drawn on
control ultrasonic action processes in bubbly fluids. If t
ultrasonic disturbance is created in a liquid with gas bubb
the parameters of which satisfy the existence of the drom
there is then a possibility to focus the disturbance at so
point of space and ‘‘remotely’’ control its motion by soun
~on significant distance from the focus point!.

Third, singular focusing of ultrasound is possibly a ve
dangerous phenomenon, especially in the case of lo
wave–short-wave resonance. It may result in explosio
violent cavitation in a liquid with microbubbles, for exampl
in human tissue, blood, and ocean water. Currently, the w
range of potential medical applications of high intensity
cused ultrasound~HIFU!, such as lithotripsy,55 cancer
therapy,56 and gene therapy,57 is being developed. It should
be noted that HIFU must be exploited in tissue in circu
stances where the blowup instability condition is not sa
fied.

The above-listed applications of the results invite furth
theoretical and experimental investigations. Our followi
efforts will be aimed at the elucidation of more compl
theoretical models and the performance of required exp
ments.
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APPENDIX: NUMERICAL METHOD FOR SOLVING
DEGENERATE EQUATIONS

The equations for resonant degenerate interaction~28!
and ~32! have been solved numerically using a three-la
explicit scheme with a fourth order of approximation wi
respect to the spatial coordinate.50 In the appendix, the finite-
difference approximation of only Eqs.~28! is presented. The
discrete equations of the second model are too cumbers
to be given here. According to the scheme, the equation
the long-wave profileL looks as follows:

L j
n115L j

n211
sDt

3Dx
L j

n@L j 12
n 28L j 11

n 18L j 21
n 2L j 22

n #

2
lDt

3~Dx!2
Sij

n@Srj 12
n 216Srj 11

n 130Srj
n

216Srj 21
n 1Srj 22

n #1
lDt

3~Dx!2
Srj

n@Sij 12
n

216Sij 11
n 130Sij

n216Sij 21
n 1Sij 22

n #

1
xDt

4~Dx!3
@L j 13

n 28L j 12
n 113L j 11

n 213L j 21
n
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18L j 22
n 2L j 23

n #. ~A1!

Because the short-wave envelope is complex-valuedS
5Sr1 iSi), Eq. ~28b! breaks down into the following dis
crete equations:

Srj
n115Srj

n212
mDt

6Dx
L j

n@Srj 12
n 28Srj 11

n 18Srj 21
n

2Srj 22
n #2

nDt

6Dx
Srj

n@L j 12
n 28L j 11

n 18L j 21
n

2L j 22
n #12gDtSij

n@~Srj
n!21~Sij

n!2#

1
b̃Dt

6~Dx!2
@Sij 12

n 216Sij 11
n 130Sij

n216Sij 21
n

1Sij 22
n #1

hDt

4~Dx!3
@Srj 13

n 28Srj 12
n 113Srj 11

n

213Srj 21
n 18Srj 22

n 2Srj 23
n # ~A2!

and

Sij
n115Sij

n212
mDt

6Dx
L j

n@Sij 12
n 28Sij 11

n 18Sij 21
n

2Sij 22
n #2

nDt

6Dx
Sij

n@L j 12
n 28L j 11

n 18L j 21
n

2L j 22
n #22gDtSrj

n@~Srj
n!21~Sij

n!2#

2
b̃Dt

6~Dx!2
@Srj 12

n 216Srj 11
n 130Srj

n216Srj 21
n

1Srj 22
n #1

hDt

4~Dx!3
@Sij 13

n 28Sij 12
n 113Sij 11

n

213Sij 21
n 18Sij 22

n 2Sij 23
n #. ~A3!

Here subscripts and superscripts denote spatial and tem
locations,Dt and Dx are the time and spatial steps,t5t3

5«t, x5j, L j
n5L(xj ,tn),Srj

n5Sr(xj ,tn), Sij
n5Si(xj ,tn),

xj5( j 21)Dx, tn5nDt, and b̃5b/«. The indexesj and n
take the values from 1 and 0 toJ andN, respectively.

The boundary conditions are periodic

L0
n115LJ

n11 , LJ11
n115L1

n11 , LJ12
n115L2

n11 ,

LJ13
n115L3

n11 ,

Sr0
n115SrJ

n11 , SrJ11
n115Sr1

n11 ,

SrJ12
n115Sr2

n11 , SrJ13
n115Sr3

n11 , ~A4!

Si0
n115SiJ

n11 , SiJ11
n115Si1

n11 ,

SiJ12
n115Si2

n11 , SiJ13
n115Si3

n11 .

The stability analysis for the numerical scheme has b
performed using the Neumann method.52 According to this
method, we assume that

L j
n215L8eat1 ikx, Srj

n215Sr8eat1 ikx,

Sij
n215Si8eat1 ikx,
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L j
n5L j

n21eaDt, Srj
n5Srj

n21eaDt, Sij
n5Sij

n21eaDt,

L j 11
n215L j

n21eikDx, Srj 11
n215Srj

n21eikDx,

Sij 11
n215Sij

n21eikDx.

Substitution of Eqs.~A4! into the finite-difference equation
leads to a system of algebraic equations inL j

n21 , Srj
n21, and

Sij
n21 for each of the models. From the compatibility cond

tion we obtain a polynomial equation in exp(aDt). The sta-
bility criterion follows from solving this equation and i
based on the fact that the linear instability evolves wh
exp(aDt).1.

The stability analysis for Eqs.~A1!–~A3! results in the
polynomial equation of the fourth order which has rath
unwieldy solutions. We have examined the approximate
lutions to this equation using Mathematica and obtained
following stability criterion atb̃'4.9 andh'0.06:

Dt<minS 0.042Dx3,
0.216Dx3

x D . ~A5!

The stability criterion for the finite-difference equations
~32! is even simpler

Dt<minS 3A2Dx2

32b
,

0.216Dx3

«x D . ~A6!
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