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The interaction between sound and ultrasound waves in a weakly compressible viscous liquid with
gas bubbles is considered. Using the method of multiple scales one- and two-dimensional nonlinear
interaction equations are derived. Ttiegeneracy of the interactida found in bubbly fluids. This
phenomenon lies in the fact that the interaction coefficients vanish at a certain frequency of
ultrasound. We demonstrate that the integrable Davey—Stewart&l)l system of equation can
describe the two-dimensional sound-ultrasound evolution. The DSI equations are remarkable by
their solutions referred to as dromions. In bubbly fluids the dromion represents the localized focused
ultrasound wave which can alter the direction of its motion under changes in the boundary
conditions for the sound wave. The condition of singular focusing of ultrasound in bubbly fluids is
obtained. By numerical analysis of the interaction models, we reveal such processes as
intensification of ultrasound by sound, nonlinear instability of a sound profile, and prove the validity
of the singular focusing condition. Finally, possible applications of the results are outline200®
American Institute of Physics[DOI: 10.1063/1.1416502

I. INTRODUCTION speed of short waves is equal to the phase speed of the long
wave (the long-wave—short-wave resonahite The reso-
Liquids with gas bubbles have strongly pronounced nonnance requires a special type of dispersion relation, e.g., con-
linear acoustic properties due to nonlinear oscillations okisting of two branches, and therefore, occurs in a limited
bubbles and high compressibility of gas. Within recent denumber of physical systems. Examples of such systems are
cades theoretical and experimental investigations have devaves on the water surfaCeand waves in a collision-free
tected many kinds of nonlinear wave phenomena in bubblyplasma?! We demonstrate here that the resonance condition
fluids, in particular, the ultrasound self-focusihgthe sound s also satisfied for pressure waves in a bubbly fluid.
self-transparency, wave front conjugatiofi, the acoustic The interaction of long and short waves is described by
phase echd,subharmonic wave generatibiihe intensifica- nonresonant and resonant models. With no damping the non-
tion of sound waves in nonuniform bubbly flui4§,the resonant one-dimensional model consists of the nonlinear
structure formation in acoustic cavitatiént' and difference-  Schralinger equation for the short-wave envelope and an
frequency sound generatidh®® algebraic correlation between the long-wave profile and a
To date, long and short waves in bubbly fluids were studsquare of the envelope modultfsThe resonant model rep-
ied independently. The Korteveg—de Vri@édV) equation resents the Zakharov equatidiishe two-dimensional inter-
was proposeld for describing the evolution of long-wave action is governed by the Davey—Stewart$Di$) system of
disturbances in an ideal liquid with adiabatic gas bubblesequationg? There are only two integrable forms of the DS
The existence of the long-wave KdV soliton was confirmedequations referred to as DSI and DSII equatith# the
by many experiment$»*® The nonlinear Schdinger(NLS)  nonintegrable case the solutions of this system can possess a
equation was obtainéflas an equation for a short-wave blowup instability. As a result, singular focusing takes
modulation in polydisperse bubbly mixtures. The generatiorplace?2
of short-wave subharmonics in bubbly liquids was investi-  The paper is devoted to the theoretical description of the
gated by a means of geometrical acoustics. interaction between sound and ultrasound waves in viscous
Despite different length scales, long and short waves cahubbly fluids. The nonlinear wave phenomena presented
interact. Bennelf was the first to call attention to the possi- here, such as degeneracy of the interaction, nonlinear insta-
bility of such a wave interaction on the water surface. Thebility of sound waves and singular focusing of ultrasound,

interaction comes into particular prominence when the grougre novel for bubbly fluid dynamics. The remainder of the

paper is structured as follows. In Sec. Il the equations of
dAuthor to whom correspondence should be addressed. Present addresms:otlon for bUb_bly fluids and.the dISperS.lon relation for plane
Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123.Sound waves in these media are considered. The method of

Electronic mail: damir@math.vt.edu. multiple scales is described in Sec. lll. We demonstrate this
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method on the problem of weakly two-dimensional sound _ w _ t - X .y
evolution in a bubbly fluid(Sec. IV). The one-dimensional W= I t= o X= T y=1—
interaction equations are proposed in Sec. V. We analyze the
degeneracy of the interactiaand propose new equations for where
the degenerate resonant interaction in Sec. VI. Section VII
deals with the two-dimensional interaction. We construct the ~ P* ~ Po%go: (2a)

DS equations and demonstrate that their unique properties as @yoPo| Y2
a dromion solution and singular focusing are true of bubbly v, =( 2 0) (2b)
fluids. The numerical modeling of the one-dimensional reso- Po
nant interaction, two-dimensional defocusing and singular o) 2
focusing of ultrasound is conducted in Sec. VIIl. We con- t,=ag —) , (20
clude by some words about possible applications of the re- Po
sults in Sec. IX.
= (20)
" (a0
Il. BASIC EQUATIONS and ignoring the terms of ordery, as compared to unity,

one can reduce the system of E(.to the following equa-

Consider a mixwre of a uniform liquid containing ...t the nerturbations in the pressiiremass density
spherical gas bubbles. Assume that the liquid is weakly com- P 16,30 P i y

pressible, all bubbles have the same radius, the pressure #7d Pubble radiua:
the bubbles varies according to the polytropic law. Supposgz

that the medium is noncollisional, i.e., we do not take into” P _ 7P _ — =0, (33
account direct interactions and collisions between bubblegt®  dx*>  dy
and the processes of bubble breakup, adhesion, and forma-

_1_h2 3_
tion. Neglect the effect of external forces as well as the cap? 1-b%p+(1+a)°=0, (3b)
illary effects. The motion of such a bubbly fluid is described 2a 3/0a\2 * ga
by the equatiors™ (a4 3 5] + 1 o~ (1+2) ¥+p+1=0,
dp . dn ) 30
a-i—p divv=0, a+nbd|vv—0,
( Po )1/2
dv b=| ———=] . (4a)
Pat +gradp=0, Pi0agoCl
1
d’a 3/da\?| 4uesda @ o e 4b)
pla——+5| o T =Py P, K= 12°
dez2  2\dt a dt ao(Popo)
p—p Hereafter the tilde is omitted.
P~ Plo= O, Consider the vector solution to Eg8), z=(a,p,p), in

C|2 the form of a longitudinal plane harmonic wave propagating
alongx: z=z, expfi(kx—wt)}, wherezy= (A,P,R) is the con-
stant vector of the solution amplitudésandw are the wave-
Herev=ui+wj is the velocity vector of the mixtured/dt  number and the frequency. The solution is valid wkeand
=d/dt+udl 9x+wdl Jy is the substantive derivative with re- « are related by the dispersion relation
spect to time;p,p are the pressure and mass density of the

p=p(l—ay), ag=3ma’n,, pg/po=(ag/a)®*.

mixture; p; is the true density of the liquicZ, is the speed of b i 3 kK*+3| , iu*k®  3kk? o
sound in the pure liquidpy, @, a, andn, are the pressure, @ Hipt 0 | 3Kt bz | 2 @+ b2
volume content, radius, and number density of the bubbles; (5)
k is the polytropic exponent, and the subscript 0 refers to the .
unperturbed state of the mixture. Later we shall suppodeandw to be non-negativéthe wave

The processes in question suggest the oscillatory regiméavels from the left to the rigbli _ .
of a radial bubble motion. Then all dissipative effects can [N the nondissipative casg,” =0, relation(S) falls into
take into account on a basis of effective viscodity,e., a WO branchegFig. 1)
certain effective coefficient.;, allowing for the liquid vis- 5 1 5 _s ) P
cosity, u;, thermal dampingu.(™, and other dissipative % (K)=2{3k+(k"+3)b™ "= ([3x— (k*+3)b™"]
mechanisms, is iptrodu_ce;dcef=ﬂ|4_rﬂm+ cee +36Kb~2)12). ®)
Going over dimensionless variables
The subscripts =" and “ +” identify the lower (or low-
a= 3_1 p= B_l b= P—Po U= u frequency and upper(or high-frequency branches, respec-
Qo Po Px Uy tively.
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@ Suppose thate,=10"2 and consider water with air
6 bubbles of the radiugy;=0.1 mm under normal conditions
4 (Po=0.1 MPa,p,p=10° kgm 3) and with the volume gas
o —— content ago=2.22<10 *. The wavelengths of the short
4_/// and Ior)g waves are _th§w5~0.67 cm and\;=6.7 m,
respectively. The equilibrium speed of sou@d=c,l, /t,
- ~730 m s Thus, the frequency of the long waue@,
2 PP =C./\=~110 Hz (audible sound Obviously, the short-
i wave frequencyQgs=w/(27t,)=1/(27bt,)~35.6 kHz
) | lies in the ultrasound region. Moreover, frdi@c) it follows
0 & 2 &, 4k that a decrease in the bubble radiydeads to increasing the

short-wave frequencyl;. Hence, the long-wave—short-
wave interaction in a bubbly fluid can be considered as the
interaction of ultrasound and audible sound propagating in
this medium.

FIG. 1. Dispersion curve for a mixture of water with air bubbles under
normal conditions and with a volume gas contegt=1.1x 1074

The long-wave asymptotics of the Iow-frquency Il THE METHOD OF MULTIPLE SCALES
branch,w, (k)= _|¢_ o, and the short-wave asymptotics of

the high-frequency branclyg(ks) = w |¢_.. , can be written Let us introduce a parameterl to satisfy the condi-
as follows: tions
w=cckj+0O(K¥) for k—0, p=e'L, ps=e°S, p=p+psexpiod},
ws=Cikg+O(ks ) for kg—oo, L,S=0(1). (11
where Here p,,ps are the long- and short-wave pressure perturba-
_ 2 -1 tions in the mixture;l,s are some numbergxponents of
Ce= @ /Ki[qo=(b"+ )75 (78 smalinesy 0 =KkXo— wdt, is the phase of the short wave.

ci=dwe/dky .=b"1 (7b) We express similarly the p_erturbations in the bubble radius
s and mass density of the mixture. Suppose also ¢hate.
are the equilibrium anérozenspeeds of sound in the bubbly The nonlinear wave equations describing the interaction
mixture. between long and short pressure waves may be obtained us-
Dispersion relatior(6) allows the existence of the long- ing the method of multiple scalés. According to this

wave—short-wave resonance. Actually, the group speed dnethod, the vector solutionto system(3) expands in pow-
short waves ers of the parameter determined above into the long- and

short-wave components
cy=dwg/dks=kswg (05— 3k)(2b%wi—3kc,? P

_kg)fl ®) ZZSIle Sm—lzsg)_i_m%l 2 8(s+m—l)n[zg\)ein®+c_c.]'
is infinitesimal whenks—0, and it follows from(2.7) that (12
Ci>Cq. Therefore, for any SUfﬁCientIy SmaIH|:k|r , there and fast (leo’yo) and slow variables t(] ,Xn,yn)
exists such & =k, that the long-wave—short-wave reso- =£"(ty,X0,Y0), Wheren=1,2,. .., areintroduced. The in-
nance condition troduction of the slow variables results in the following
Cy(ks)=Cp(kyr), (9)  asymptotic series:
is satisfied (the long-dash lines in Fig.)1 Here c,(k;) i i+ ni —tx or 13
= w, /K, is the phase speed of the long wave. b ao ngl & oy y=tx, ory. (13

The wave numbers of the long and short waves can be
related by the formulk, = ek, whereg, is a certain small
parameter. Upon neglecting the terms of oregr the reso-
nance conditior(9) is simplified

The long- and short-wave componem$, zZ, m, n
=1,2,... depend only on the slow variables. The short wave
is considered to be plane because the pleases not con-
tain the fast variablg,, but its amplitude may depend on the
Cy(Ksr) =Ce. (100  slow variablesy,, n=1,2,.... The numberd (s) play a key

It should be noted that the long-wave—short-wave resonanﬁ%)rl%ICV;T/'S_assggst?\:\?:\fen?ﬁtt:;it?:ncae:iztt%eﬂi define a type of

in bubbly fluids has nothing to do with the resonance of We make use of the following “multiscale-expansion”

bubble oscillation which occurs under the conditian o . . .
— 3k (for reasonably large bubbledThe valuey3x corre- procedure for the derivation of interaction equations:

sponds to the horizontal asymptote of the low-frequencyl) Once we have decided upon the valued afnds, we

branch. Because the short-wave frequengybelongs to the substitute the multiscale expansiofi®) and (13) into
high-frequency branch, it is always aboy@«. The Min- the equations for perturbatiorf8). In doing so, we re-

naert resonance is, therefore, beyond the scope of this paper. strict our attention to cubic terms of E(d8), because the
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higher-order nonlinearities have negligibly small effectsmotion and can be considered as transverse perturbations in

on the long-wave—short-wave interactitn. the wave profile. Then the following equatiofef orders*)
(2) The resulting system of equations is split into the zeroth 2.(0)
(n=0), first (n=1), and second harmonica£2) and n2.2y d7ay”
. ) _ [k(1—b“c”)—1] =0,
then, if possible, reduces to one equation for each har- 9E?
monic of pressure perturbatiqgn ©) 20 .(0)
(3) The algebraic relationship between the second-harmonic  P1~ = —3(1+«b%a;”, (14

amplitudep(lz) and a square of the first-harmonic ampli-
tude [p{M]? is deduced from the leading order of the
second-harmonic equation. will be true. Here¢=x,—ct;. Equationg14) have a unique

(4) Using this relationship, we eIiminaxe‘f) from the first-  solution whenc=c, [cf. (7@)]. Thus, long waves travel with
harmonic equation and obtain the coupled system of théhe equilibrium speed of soun@d.=cl, /t, in bubbly flu-
zeroth- and first-harmonic equations. The system is noids. In view of (14) andc=c,, the Kadomtsev—Petviashvili
closed yet. We should also eliminate the unknowff8  (KP) equatiori® for the sound profile.=p{®) occurs in the
andp'Y, wherem=2,3,.. ., from the equations. To do order of&®

Pl ~3cald,

this would require some assumptions of the unknowns. 3 )
The easiest way is to assume that they are equal to zero. 7 £+20L£+Xﬁ 4 E &:0. (15)
(5) Now, each of the obtained equations contains the terms 9§\ a7 9& " aEs) 2 922

of different orders. The next step is therefore splitting the
equations into the orders ef. With a few exceptions

(see belowy, we follow this. The expressions appearing
in each order ofe are equated to zero. This gives a

bunch of asymptotic equations for the long-wave profile o o o
p{» and short-wave envelogg’ . Among the equations T=74 27 X= 5\/%, Y={ 162, (16)
involving the interaction termsthe lowermost-order
ones represent the equations for long-wave—short-waved. (15 takes the canonical form
interaction. In particular, the interaction terms of the 3
lowermost order for the short and long waves are |- ﬁ E

g +6L—o + +3
p{¥p{M) and the second derivative ¢p{M|? (with re- oxX\ T X X3
spect tot or x), respectively. They come from quadratic
nonlinearity. From(12) and (13), it follows that the in-

Here 7=t, and (=y,. The coefficients o=(«
+1)c3/(4x?) and y=c2/(6«?) are always positive. When
denoting

9°L

—= 1
P (17)

Ok

with op=1, which is referred to as KPI equatidhThe
. ) ) N sign of oxp May be negative for a number of other physical
tehractlon eq“aé'og‘jg’c?ur 'r:' tf|1e orders:-ﬁjl*_h (fcl)r the systemgnonlinear optics and water wa&sand Eq.(17) is
short wavé and (for the long wavé: The lower- then known as KPII equation. Both the KPI and KPII are

g'rder e'quat|ons,Tv;]/hen prgsent, are Jlrtl)earhand' W'thhouiﬁ”ltegrable by means of the inverse scattering transfit.
ispersive terms(This can be arranged by choosing the the simplest soliton solution tfl7), regardless obrgp, is
numberd ands.) They give additional information about given by

interacting waves: the waves interact in the frame mov-
ing with the group speed of short waves and so on. The L=2V?secB V(X—4V?T—X,), V,X,=const, (18

ISSUe, Wh.'Ch hcan not bfedresolved by cr?ooslhr@wdbs, .which represents the famous KdV soliton. This is not surpris-
emerges in the case of degeneracy, when the above 'ri}ig, since the KdV equation follows frorfl7) in the case

tfarac_tlon te_rms vanish. In the dggener_acy caseyac- that L does not depend od (the one-dimensional sound
tion is of higher order ofs than dispersionWe cannot wave:

cut down the dispersive terms and should take into ac-

count the interaction terms. The equations for degenerate gL L 9L

interaction therefore contain the terms of different orders 7+ T 6L -5+ —=0. (19
¢ aT X 9X

of ¢.

The important question arises of whether such a solitary
wave is unstable in the bubbly mixture with respect to trans-
IV. WEAKLY TWO-DIMENSIONAL EVOLUTION OF verse perturbations, i.e., whether these perturbations destroy
SOUND WAVES the one-dimensional solutiofl8). There are a number of
analyticaf>**3"3and numerical work€4° which showed
Consider the method of multiple scales on the problenthat if oxp= —1 (the KPIl casg¢ a KdV soliton is linearly
of weakly two-dimensional evolution of sound waves in bub-unstable: It transforms into a chain of two-dimensional line
bly fluids. Substitute the multiscale expansi@hg) and(13) solitons and/or lumps under a periodic transverse perturba-
into Egs. (3) provided that there is no ultrasoundﬁnr?=0 tion. In contrast, a numerical simulation using the KPI
andl=2, wheren=1,2,...) and thederivatives oszT?) with equatiorf}! which holds for bubbly mixtures as shown above,
respect toy are much less than those with respeckto.e., reveals that the solutiofil8) is stable. Hence, there is no
all unknowns do not depend oy,. This means that all transverse instability of solitary waves in bubbly liquids. Pre-
changes iry are slower than ix (in the direction of wave viously, Gavrilyuk has argued that the KPIl equation is valid
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for bubbly liquids, and therefore, “solitary waves in bubbly Substitution(20a into (20b) and notationS= Sexp{isLy7
liquids are linearly unstable*> However, if these waves give the Ginzburg—Landa(GL) equation ind
were unstable with respect to transverse perturbations, the

experimental results of Nakoryakov and his co-workeos s 973 _ 5 ad
the existence of KdV solitons in bubbly liquids would be ia—+ﬁ—2+y’|S|Z§+iFS=0, V=75
guestionable. This is because such experiments would call T 29 CgCe

for using extremely narrow channels wherein the dependence (22)

of the wave profile on the transverse coordinate could b%enerally

) . : the GL equation does not have analytical
neglected. Fortunately, Gavriluk’s conclusion was in error.

solutions®? But in the nondissipative casé& €0), Eq.(22)
known as the nonlinear Schiimger (NLS) equation is inte-
grable. The NLS equation possesses soliton solutfanthe

V. ONE-DIMENSIONAL INTERACTION Benjamin—Feir instability criterioh

Let us put (,s)=(2,1) andsubstitute expansiond2) By >0, (23
and (13) into Egs.(3). Suppose that all unknowns do not o _ _ o o
depend onyy, y;, Yo, ... (the one-dimensional casewe IS satisfied. It is worth noting that the Benjamin—Feir insta-

then split the resulting expressions into harmonics of thellity is the modulational(temporal instability of spatially
short wave, expn®}, n=0,1,2, ... and restrict our attention uniform solutions to the nonlinear Scldioger equation. The
to ordere for the zeroth harmonic anef® for the first har-  uUnstable spatially uniform solution is deformed into a train of
monic. We also assume that the damping coeffigighis of ~ localized waves calletright NLS 3°|it9”§8 For bubbly flu-
order £2 (weak damping w* =s2u, u~O(1). Then, the ids, the Benjamin—Feir instability regions were given on the

following equations for interaction will be true: parameter planekg,b) earlier'® The physical significance of
this instability in the bubbly fluids may be the following. Let
a 9? us assume that a monochromatic ultrasound wave propagates
L=Lo+ m 8—52’ (208 through the bubbly medium. Its amplitu&oes not depend
9 - on x and, therefore, represents the spatially uniform solution
92S to the NLS equation. Suppose that the conditi@8) is sat-
ia—+ﬁ—2+iFS+ ¥|S|2S=6LS. (20p  isfied for the wave, i.e., the values for the wave frequency
T 29 and bubbly fluid parameters are in the Benjamin—Feir insta-

HereL=p{? is the sound profileS=p{") is the ultrasound bility region. This monochromatic wave will be unstable to
envelope. In doing sd,=L(&)+L,y, S=S(r,8), r=t,, ¢  Shatial periodic perturbations. As a result, a train of localized
=x,—Cgty (Lo is the initial sound profile which is assumed Short-wave packets will be generated with the passage of
to be constant The coefficients time. Hence, it is impossible to sustain a monochromatic
ultrasonic signal in the bubbly fluid if the Benjamin—Feir
cicé ) instability criterion is satisfiedspatial pressure perturbations
a=- m[ws_g"("* DI (213 inevitably occur in experiments
s The interaction mode(20) becomes incorrect i€,=c,
(the resonant caseThis is because the term on the right-
5 {4ksws+ cg(k§+ 3(1+ «b?) hand side of20a goes to infinity. It is necessary to change
ws— 3K the exponents of smallnessinds. Under resonance condi-
tion (10) and (,s)=(2, 3/2, substitution of expansiond2)
—6b2w§)}], (21b and (13) into system(3) results in the Zakharov equations
with damping(which arises in the orders ef for the zeroth
harmonic and: " for the first harmonik

Cq

-
B_Z_ks

Cg“’§ 2
O i paplei TNt L, 210

 2iky(w2— 3k e ds?_ 4SS

(97'+2_Ce € 0, IE+B&—§2+IFS=5L8. (24

)
2kg(w2—3k)

(@10 Now L=L(7.§), S=S(r.8), 7=tp, =X Cgl;.
In contrast to the previougonresonantmodel, the ef-

[w§_3K(3K+ 1)]6 cg(b2 g_ k§) , fects of sound on uItrasound. are non_wtrivial. The dynamiqs_qf
y=- > > - EYe sl resonant sound—ultrasound interaction depends on the initial
(05— 3k) 4ksws(ws—3k) conditions for the sound wave.
+27K2(/<+1)w§+27;<2(;<+1)2]. (219 The Zakharov equations, dt=0, is one of the inte-

grable nonlinear wave models. Their spatially uniform solu-
Cq andc, are determined froni8) and (7a). tions are always unstable. The instability evolves for the per-

Due to the absence of derivatives (20a the resulting turbations with the wave numb&r< (63| ad|Sy|?) Y. As
model describes the formation of an inertialess sound by aa result, there exist the envelope soliton solutfdrisr any
ultrasound wave packet and their subsequent interactiowvalues of the coefficients.
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From (273 it follows the invariance of an initial sound pro-
file with respect to the time. Equation(27b) describes the
0,2 linear dispersion and dissipation of the ultrasound wave
packet.

To construct the model of the degenerate resonant inter-
action we substituté12) and (13) into (3) and consider all
terms up to ordee® for the long-wave component ard’?

0 o for the short-wave one. Agaib= p(o) andS= p(ll) are func-
tions of é=x;,—c4ty, 7=t,. Denote other components as
N L,=p%, L,=p{, (’J Si=p, S,=p{" and assume that,
EE Iy and S; evolve in accordance with Eqs(27) and L,
=L,(£), S,=5,(&). Then, under condition&5) and (10),
—0,20 5 p % the degenerate sound—ultrasound interaction is governed by
s the equations
FIG. 2. Coefficientsa and § versus the wave numbde, (k=1.4, b
=0.447). The white point corresponds to the degeneracy of the interaction?L { L JL? S IS ]
—tei{x—S+o———INS —— =0, (283
aT Pl 29 9E? 9E?
VI. DEGENERACY OF THE INTERACTION as | 9°S °S ) , aS 0S
E—IB—Z—I—FS%—‘S 77—+|7$ S +T &_f_VL<9_§
The NLS and Zakharov equations are classical models 43 08
for the long-wave—short-wave interaction. Are there any spe- » L]
cial features of the sound-ultrasound interaction in bubbly —-S—}=0 (28b)
fluids? It turns out there exists one peculiarity. 20§

In the bubbly fluids, the interaction coefficientsand §
can vanish simultaneouslfFig. 2). This happens when the
ultrasound frequency

Equations(28) describe the degenerate interaction between
low-intensity sound and ultrasound. This is because the am-
plitude of the sound wave is less than the ultrasound enve-

ws=3[k(k+1)]¥2 (25  lope (>s). Obviously, if S=0, Eq. (28b) reduces to the
KdV equation(19) in a more slower time;=«&t,.
The interaction between sound and ultrasound is tlegyen- It should be noted thaf28) is determined only by the

eratedbecause the equations for interaction are separated.parameter. First, this follows from the degeneracy condi-
However, such a degeneracy does not mean the absengeén (25) according to which the ultrasound frequeney,
of interaction. Certainly, the sound profi€¢, ) is equalto  depends only om. Second, whefi25) is substituted into the
zero in the nonresonant degenerate case. But if we take inifispersion relatior(6), a relation is obtained which relates
account the zeroth-harmonic terms up to orelgrthe inter-  the quantitiesks,, b, and . Together with the resonance
action betweers= p(l) andL,= p(o) can occur condition (10) the latter expression constitutes a set of two
algebraic equations iks, andb with the parametek. Hence

L DN ﬁS* . ) ksr, b are completely expressed via
1_ s 1
co—ck 35 23
3(k+1
2 (26) wsr:3[K(K+1)]l/21 ksrzl/z(—)v
S IS e k'q(3k+2)
|E+,6’F+|FS+)/|S| S=0. (29)
¢ [Bk(x+1)+1]12
The coefficient A = («x+1)"2cicy/[ 3«43k +2)?] never T k(3k+2)

vanishes. Here the quasimonochromatic ultrasonic signal
will also generate sound but of much smaller intensity tharF-or example, if one considers a mixture of water with air

in the nondegenerate case. bubbles of the radiuag=0.1 mm, under normal conditions
and the volume gas conteaf,,~3- 10" %, the degeneracy of
A. Resonant degeneracy: The case (/,s)=(2,3/2) resonant interaction occurs when the ultrasound frequency

fo,~87.5 kHz.

Under condition(25) Egs.(24) turn into the uncoupled Al coefficients of systen(28) are positive at=1

equations:

JL k(3k+2)

—_— C :C = ,

a7 =0 (279 T Bk 1) (k1)1

(309

'&S+5028+'rs 0 @7h k(3k+2)3

i—+B8—+iT'S=0. - ,

It T 9 4(3k+1)3(k+1)2
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A < [27k3+ 182+ 18 _as+ﬁazs S2S* +il'S=i Las+' Vsal‘ +38L%s
= K K K i—+B8—-— i'S=ivL —=+izS— )
6(3k+ 1)4(3k+2)(k+ 1) o Pag Y g€ 27 0E
32h
+4], (30b (320
Here
3k%(3k+2) )
=2 L) 3[3K +3k+2], (300 T 2u
(ke + 1) 3xc+1) 3x(3k+1)(3x+2)?’
3(3k+2
p—— 5 : [ 81x*+ 54k + 81+ 60k % (3x+2)° (333
6(3K+ 1) (K+ 1) 36K1/2(K+ 1)1/2(3K+ 1) !
e sod = (3k+2)° [27k*+ 62«3+ 45k%+ Tk — 2]
= (K+1)1/2 [9K_2] g_3&K+:l.)3/2(3K+1)5 “ “ “ ) ’
’ 12Y2(3k+1)(3k+2)? ’ (33b
K3(3K+2)5 _ 1 3. ap2_ a7
_ o= [27x°+36k“—4]; (330
X St DPBrt 1S (309 6(x+1)Y%(3k+1)5(3k+2)
the other coefficients were defined above.
= k(3k+2) _ 3kp (30f) We include the terms of orderin Eq. (323. Otherwise,
(3k+1)%(k+1)¥? 2(3x+1)’ the sound wave will be governed by the Hopf equation
S L aL?
= [ 189*+ 4053 FrRArT I (39
2(k+1)%(3k+1)3(3k+2)
5 The Hopf equation describes the process of shock wave for-
+288“+ 79« +4]. (309  mation from an initially smooth profile. Mathematically this

Due to the presence of the damping ter® of lower order

implies that the derivatives @f andSwith respect ta€ must

e in comparison with the interaction terms, the fast decay o0 to infinity at some spatial poinf=¢, in a finite time.

the ultrasonic signal takes place. This leads to the negligiblElence, the terms of order, containing these derivatives,
action of ultrasound on sound. In order to “catch” effects of become rather large to be able to influence the dynamics of
sound on ultrasound, we need large sound amplitudes. B§ound—-ultrasound interaction.

this seems to contradict the perturbation theory according to

which the sound profile. should be less than™*. Conse-

quently, we may argue that weak damping suppresses th@|. TwO-DIMENSIONAL INTERACTION

resonant interaction between low-intensity sound and ultra-

sound in the case of degeneracy. Let us consider the two-dimensional interaction, i.e., let

us take into account the dependence of wave perturbations
(l,s)=(1,1) on the transverse coordinateWhen (,s) equals (2,1), sub-
It turns out that the resonant degenerate interaction Caf]g;l:tlltzninoihn;ulljt:\f:le—g)t(gv?/gftlsggg :m:;%iat;)nlgtv(\)/i;qj;r? i
be described by other models. One of such models occurs y q P

when (,s)=(1,1), i.e., in the context of high-intensity sound

B. Resonant degeneracy: The case

in the ultrasonic field. . 9L 2(92|_ 9?|9?
With choosing (,s)=(1,1), the interaction is usually (Cg=C)——H—Cem=a——, (359
o 23 4 23
trivial
oS S, —(928+ —(728+Ts+ |S|25=6LS (35b
= | — = | | — .
L=Lo(é), i5-=dLs (31) LA Y

Here L=p{¥=L(£,0)+Lo; S=pV=S(1.£,0); r=tp; &
=X;—Cgty; {=Y1. The coefficient

But provided that the conditions of resonant degene(aéy
are satisfied, i.e.§=0, and damping is weak, the following
equations(of ordere? for L andS) will govern the interac-

tion in the timer=t,: _ S
0= 2k (36)
gL gL? #AL aL®  aLs)? - . . : L
—to——tel x5 tsot0 +r|s|2 Unlike the one-dimensional case, the resonance condition
It 29 Z3 J€ Ié cy= C. does not require to change the exponents of smallness
2 26 | ands, and the form of equations is conserved.
—i)\( S* ——Sﬁ =0 (329 It should be noted Eq3538 does not contain the term
9E? 9E? 9%|S|%19¢2. This term disappears in going from the radius
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perturbationsa® anda{") to the pressure perturbatiop§”
and p{". In particular, the zeroth-harmonic equation for
has the form

(92 52 az
—cil = +—||a”
37
92 #? 9 )12
=| a5 Tas 5+ |lay’l%
a5 x5 ayg
where
6+b[w2—3k(3k+1)]
a'l=— y
3(1+ «kb?)
(38
02—3k(3k+1)
Ap=—"_
3(1+«b?)
From Eq.(3) it follows that
" (1)
1
a =—+o g),
L 30 (
1 3a(1+ kb?) 39
©__ 1| oy & ()2
aj 3| P1 (02— 312 [pi’[7|+O(e).

Substitution of Eqs(39) into Eqg. (38) leads to the cancella-

tion of the second derivatives ¢p{™|? with respect tox,

andy,. We then have the following zeroth-harmonic equa-

tion for p:
&Zp(o) ) 92 P © ac92|p(1)|
& | PO =5 (40)
g axs  dy; cg dti

which is reduced to Eq.353.

A. Dromions in bubbly fluids

Sound-ultrasound interaction in bubbly fluids 3589

b b
5 P
0.30
5=2
1
P 0.25
223 o] T 021785 |
0.20
0 25 k, 0.65 0.85 1.05 k
(a) (6)

FIG. 3. Map of parameter plane, showing where the DSI equations govern
the sound—ultrasound interaction in bubbly fluids.

Depending on the sign of, Egs.(42) are divided into
the Davey—Stewartson (DSI) equations, of hyperbolic-
elliptic type (v=1), and the Davey—Stewartson (DSlII)
equations, of elliptic-hyperbolic typevE —1). The integra-
bility of the DSI and DSII equations by inverse scattering
transform was proved in numerous publicati¢tie reader is
referred to Ref. 35 for a list of relevant articles

Since the coefficient® and ¢ in (35) are always posi-
tive [cf. (21) and(36)], the DSI case is only possible for the
interacting waves in bubbly fluids. To show this, it is enough
to perform the substitution® =¥, A=y"% x=¢/pY2 y
={lpY? t=rin Egs.(41). The DSI equations occur when

_e 2727 _ade

o1 ,8[1 cglcel 1, o, yﬁl’zci 2.
You might see before that the coefficientsand 6 were of
the same sigiiFig. 2). Hence, to satisfy the first condition of
(43), v should be positive. Then the radicand in the second
condition is also positive.

The intersection of the curvey = —1 ands,=2 on the
parameter planek(, b), plotted in Fig. 3a), proves the sat-
isfaction of conditiong43). Figure 3b) shows two points of

(43

When §+ 0 andl’ =0, Egs.(35) can be transformed into this intersection D, andD,) that correspond to the volume
the canonical for?>?® For this purpose, we perform the gas contentsyyo;~2.04x 104, ago~1.42x10"* and the

substitutionsL(£,)— 6~ *9W/d¢ and S=SexplidLyr and
introduce the notatiowr=c *(c3—c?):

az\lf P¥  adi|S?
agz Pa c2 9’
- (41)
JS . S az’é % (9\If
| — e .
ar ,952 e aL? Ty ag

ultrasound frequencie@¢;~0.11 MHz,Q ,,~0.14 MHz(in
the case of a mixture of water with air bubbles of the radius
0.1 mm under normal conditions

Among all solutions of the DSI equation, so-called “dro-
mion” solutior*® stands out. This solution represents a local-
ized and exponentially decaying ultrasound wavavhich
can scatter energy during the interaction with perturbations,
in contrast to usual soliton solutions. The dromion arises
when nonzero boundary conditions for the sound prdfile

It is knowr?* that Eqgs.(41) are nonintegrable for most are given and therefore exists due to energy exchange be-
values of the coefficients. The exception is the case whetween sound and ultrasound waves.

(41) can be represented as

5,702 7°Q aZQ_ a|A|?
ax? ay2 2 ox
(42)
oA 82A+(92A_ A2A+AaQ
T aE e ARG

W|th V:il, 51:_1/, 52:2

Of even greater importance is the fact that the dromion
(ultrasound wavgtravels along the trajectory determined by
the time dependence of the boundary conditions for the
sound wave(at infinity). Setting the law that governs the
variation of these boundary conditions, one can control the
motion of the dromion.

Fokas and Santiffi showed that the DSI equations gov-
ern the evolution olN dromions ( is natura) for arbitrary
time-dependent boundary conditions f@rand any initial
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conditions forA decaying at infinity. To find a one-dromion Provided that the boundary conditions fdrony andV on x
solution it is necessary to rotate the system of coordinateat —oo are of the form of one-dimensional KdV solitons
through 45°:x—x+Yy, y—x—y. By introducing the vari-

ables U=(0Q/dx—|A|?)/2 and V=(dQ/dy—|A|?)/2 (the Ul B 8k exp( 71+ %)
tilde is omitted, Egs.(42) with »=1 can then be written in y— o [1+exp( 7, + 7]1:)]2’
the form 45)
_(9A+(92A+(92A+(U+V)A 0 U J|A|? Y 812 exp( 7,+ 7%)
|_ - - = y - = y ﬂfw: L
T ax2 gy ay  ox T [rexpinpt )]
44
ﬂ: J|Al? 44 Eqgs.(44) are easily integrated and give a one-dromion solu-
X ay tion of the fornf’
_ X expl 71+ 72) 46
L+exp(nyt 77)+expna+ 73) + N explni+ 71 + 72+ 73)
|
Here B. Singular focusing
1= (K, +ikj)x+(— 2k k+iQ))t, (473 If the coefficients 8, ¢, o, «d are positive and
. . y>—a§/c§, the solution to Eqs(41) with the boundary
2=l +il)y+ (=2l i +iwpt, (47D condition
Qi+ o =k2+ k2 +12+12, (470 B0 for &2+ 2o, (48)
X=2(2k (A= 1))"2, (470

tends to infinity for reasonably large amplitudes within a
and\, k,, k;, |,, |, are arbitrary real numberparameters finite time interval?® This phenomenon is often referred to as
of the solution. The spatial distributions of the ultrasound Singular focusingor blowup instabilityof two-dimensional
envelope|~S|=y*1’2|A| and of the sound profile = (U+V wave perturba.tlons. There are expenmenFaI ﬁa\mhlch
+2|A|2)/(28), which correspond to the one-dromion solu- con_ﬁrm the existence of the singular focusing in nonlinear
tion given by Eqs(45)—(47), are illustrated in Fig. 4. optics. , _ _

The numerical experimerfifsconfirm the fact that the The singular focusing of the solutions to Eqdl) is
motion of the dromion structure occurs along the trajectonySOrroPorated by the analysis of conservation laws. From Egs.
determined by the boundary conditions for the long wave (41 it follows that the integrals:

For example, when the variables in E¢45) are changed as

+ o0
M= S|2déde, 49
71+ 75 =k x+Q, sin(wt), fJﬂJ “dédZ (49)
72+ 75 =l X+ o, cogwt), +w(~* Js ~fs*)
Py = S — —-S—|déede,
i.e., the crosspoint of the sound waygoint C in Fig. 4 X f f_oc & ¢ ¢d¢
revolves around the origin, the dromion propagates quasis- (50)
tably around a circle. +o0 ,é*(fé IS ded
Py_f fﬂc 9 Sog |dedd
E_f Jw a§2+ 79°
“) )Pl Tela
1 §4+UC§&‘I’2 c2 |ow|? ded (51
-3 S| 2o | 0E| T we|ar &dg, (51

are conserved. The first integral is the “mass” of the short
wave. The next two integrals are teand {-components of
the short-wave “momentum.” We obtait49) and (50) by
multiplying the second equation d#1), respectively into
FIG. 4. One-dromion solution of the DSI equations with=3, k=1, 2S*, E , and S? , then taking the real parts of the results,
=4/5, ki=1;=1/5. and integrating them with respect foand { between—
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Sound-ultrasound interaction in bubbly fluids

”~ y <0
o > » 4
c c D .
. 2! 7> 0152 ; . 5 e
0.285; ) ) :
079 FIG. 7. Nonlinear distortions of the ultrasound wave packet. The values of
= parameters are listed in Fig. 6. The curves labeled 1, 2, 3, and 4 are for the
0 25 kg instants of timet=0.4557, 0.4652, 0.4747, and 0.4842 s, respectively.

FIG. 5. Regions of the blowup instabilityy{= y+ a8/c2).

ultrasonic perturbation distributed initially in space will be

ande using the boundary conditio8). The integral(51) concentrated at some sp_anal point with tn_ne. Since the mass
of the ultrasound wave is conserved, this process leads to

may be interpreted as the “total energy” of interacting long. ing th litude at th tial point and. fi
and short waves. The “energy” can be negative under thé:cllre"’lrsmglt ?n \;\;]avilamp '.l:] (ta g’l't € spatial point and, fi-
condition of singular focusing and large initial amplitudes of ally, results in the blowup Instabifity.

ultrasound waves. The steps of derivifil) are following: In the bubbly fluid, the coefficients8, ¢ are always

. ) . o o positive, anda and 6 are of the same sign. Hence, the sin-
(i) The second equation @¢#1) is multiplied into 257 and gular focusing of ultrasound is possible in the bubbly mix-

the real part of the result is considered; the real part tures if
contains the interaction term ,
~ Ce>Cy, Y>—adlcy. (53
332 ow s o . .
a7 <T§’ The regions of the blowup instability, determined by condi-

tion (53), are plotted in Fig. 5.
which is calculated using the first equation(dfl); (iii) the
obtained expression is integrated with the usé4@.

From (41) it follows also the relation:

d?l e
— =8E, |=j f
dt? o

wherel is the “inertia moment”(a positive-definite magni-
tude). The derivation of(52) is not trivial and is shown in
detail by Ghidaglia and Saift(see also Ref. 25WhenE
<0, the “virial theorem” (52) causes the “inertia moment”
to vanish in a finite time. Physically, this means that the

VIIl. NUMERICAL ANALYSIS
A. Degenerate resonant interaction

The modelq28) and(32) are integrated numerically us-
ing a three-layer explicit scheme with a fourth order of ap-
proximation with respect to the spatial coordinate proposed
earlieP? for the numerical solution of the KdV equatigsee
details in the Appendix Periodic boundary conditions and
an initial condition of the form

L|;—o=Lo(1+AL[1-cosé]),
Sil,—0=So(1+AS[1—cosé]), Si,-0=0,

(52

&£ 2
o B

S)2d¢de,

(54)

0.17

0.16

P4, kPa

;. kPa
9 i

\

B
/TS

s

N

whereS, =Re(S); S=Im(S), are used in the integration.
The results of numerical investigation (#8) are repre-

sented in Figs. 6—8. Figure 6 shows the spatial distributions

of the ultrasound envelope and the sound prdtiEemping is

not considerend It is clear that a sinusoidal profile fog| is

kP kP
o1 A it 1 e’
4 4 5
D\ N /\ \/]
0.16 o 7 08
0.15 N A 5 d — g =00,5%107° kgt
0 2 3 xm 0 1 2 3 xm —— Heg=25x10"" kgt st
() (b) 04+
FIG. 6. Nondissipative evolution ¢&) the sound wavep, =&'pgL, and(b)
the ultrasound wave packéps|=e°po|S|, according to Eqs(24). Water
with air bubbles of the radius 1 mm under normal conditions ard.1, 0.0 l 1
Lo=Sp=5,AL=0.25,AS=0.05,5=3%10"*, x=0. The curves labeled 0 0.06 0.12 0.18 t=

1, 2, 3, 4,5, 6, and 7 are for the instants of titve0.019, 0.171, 0.209,
0.294, 0.437, 0.532, and 0.722 s, respectively. Herer/s2 and x
=(a0a§01/2/a)§.

FIG. 8. The maximal value of the ultrasound amplitude versus time. The
other parameters are the same as in Fig. 6.
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54 5.65 !’m\\ el s
f '\ — — p=0,8=0
2 540
52
\ J/\
\
1 5.15

50

0 1 2 4.90

3 xm 0 1 2 3
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FIG. 9. Tendency to a shock wave formation in mo¢8). Heree=0.1,
Lo=S,=5,AL=AS=0.05,p,=0.1 MPa,x=1.4. The curves labeled 1, 2,
and 3 are for the instants of tinte=0, 0.133, and 0.285 s.

FIG. 11. Spatial distribution of the sound perturbation according to Egs.
(26) for different values of the damping coefficient.

formed. The amplitude of this profile increases up to thedf & two-humped profile is accompanied by a significant re-
instant of timet=0.294 s and then sharply decreaseg at turn flow of energy from sound to ultrasound, on account of
=0.437 s, and, after a certain time, it increases again, reachthich, in spite of strong dispersion, the amplitude of the
ing a maximum value at=0.722 [Fig. 6@)]. In the case of Ultrasound wave increases. The return flow of energy is pro-
sinusoidal initial conditions ultrasound has no action onvided by the interaction termsdS/9¢ andSdL/d¢. WhenlL

sound and the sound wave propagates in accordance with tHicreases or, at least, does not decrease at some spatial point
KdV equation(19). It is important to note that an increase in §=¢x . these terms ensure a positiveness of the derivative
the ultrasound amplitude occurs during the formation of &S/@7 and, hence, increasing the ultrasound amplitude at the
second hump in the sound profiliae two-soliton solution of ~ Point &, in time. Going through the periods of growth and
the KdV equatiop and a decrease happens when the humg@ll, this amplitude grows on the whole which is seen from a

disappear§Fig. 6(b)]. From this it follows that the formation comparison of the ultrasonic distribution at the instants of
timet=0.209 s and=0.722 s[curves 3 and 7 in Fig.(@].

The essential smallness and briefness of the nonlinear distor-

p,kPa : : tions in the ultrasound profile should be noted. These distor-
5 65 :ﬂf[l. :.,:2 t=0.04275 tions appear when the amplitude of ultrasound reddicés
' e w-tg=0 Fig. 7]. Consequently, we have the linear intensification of
’%\ ultrasound by sound here.
540 / W The results obtained can be given the following physical
// \\ interpretation. Suppose that quasimonochromatic high-
5.15 = \ frequency(ultrasoni¢ and low-frequencysonig oscillations
rd &% are excited in a bubbly fluid. In general, these perturbations
4.90 will propagate in the medium in the form of an ultrasound
wave packet and a sound wave. When the long-wave—short-
p,.kPa T wave resonance condition is satisfied, interaction occurs
565 P o which obeys the Zakharov equatio(®4). This system de-
//\\\ scribes the formation of a soliton structure for the given
540 AW boundary-initial conditions(in the nondissipative cas&
' N/ \\ Obviously, the soliton is a consequence of significant nonlin-
;/ | ear distortions in the ultrasound profile. However, an isolated
5.15 N ultrasound frequency exists in a bubbly fluid, that is, the
Q\.ﬁj frequency of “degeneracy” at which the resonant interaction
4.90 has a completely different character. First, the sound wave
propagates independently of the ultrasound wave and obeys
Py, kPa T the KdV equation. Second, due to the action of the sound
6 s 4 ﬂ, i P P 0 0Ees wave on the ultrasound wave a sinusoidal profile of the ul-
| '\ LT trasound envelope is formed. This profile experiences negli-
l \ ) ‘ W 1 gible and short-term nonlinear distortions. This means that
\ \ practically all the energy of ultrasound will be contained in
5 '1 11 i ] v ‘ 1T its first harmonic. Third, due to the flow of energy from the
l\) \] ) \j \j J \ Lj sound wave to the ultrasound wave, the growth of the short-
o wave amplitude takes place.
4 0 ] 5 3 What happens if we add damping? Restrict our attention
x,m

FIG. 10. Evolution of the sound perturbatign =¢'p,L. The parameters

are given in the legend and in Fig. 9.

to very small damping £* =&%u) because small oneuf
=g2u) suppresses any interaction in this mogt#l above.
Of course, the very weak damping leads to the attenuation of
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t=10.39633

FIG. 12. Nonresonant defocusing of ultrasound and
sound in a bubbly fluid $,= 25, k=1.4).

t=10.9986

ultrasonic perturbations. |f is large enough, the amplitude propagate in accordance with the strongly nonlinear KdV
of the short wave decreases exponentially in tithén solid  equation

line in Fig. 8. The interaction between sound and ultrasound

waves appears for a smaller damping coefficient. Due to the 5 JL2 JL3 LR
interaction, the attenuation curve of the ultrasound amplitude Ir + 075 +es TE +ex F =
becomes of graduated tygéhick solid line in Fig. 8. A §

slower attenuation is due to increasing the ultrasound ampli-_ ] ) ] )
tude (in the nondissipative case (Fig. 10, dashed line But if Sy>0, the sound profile fails

The absolutely different situation is observed for model(Fig- 10, thin ling. Thus, the nondissipative interaction be-
(32). Figure 9 shows the sonic distribution with respeckto Ween high intensity sound and ultrasound results in nonlin-
at =0 at different instants of time. It is clear that sound €&" instability in the case of resonant degeneracy. Note that

propagates with its profile becoming steeper since, when nf!iS instability appears due to the tendency to a shock wave
account is taken of terms of order the equation for the formation and the presence of the terms with cubic nonlin-
sound wave is the Hopf equatid84). earity, 0d(L|S|?)/9¢ and 5L2S, in Egs.(32). The values of
Figures 10 and 11 represent the subsequent evolution éfe sound profile are quite different in two close points on

the sonic and ultrasonic perturbations in the presdtiiek  the shock. This difference is doubled and transmitted to the
line) and absencéhin and dashed ling®f weak damping. A ultrasound wave due to the teréL2S and leads to the fur-
shock profile is not formed. This is due to the contribution ofther steepness of the ultrasound profile. Due to the term
terms of ordek in the first equation of32). If the ultrasonic @ d(L|S|?)/¢ the originating jump irSinfluences the sound
perturbations are not generate®} € 0), the sound wave will wave and, finally, results in the nonlinear instability.

0 (55)



3594 Phys. Fluids, Vol. 13, No. 12, December 2001 D. B. Khismatullin and I. Sh. Akhatov

SN — damping suppresses this instability until exceeds some
20 |- rz0wes A IS I 5 cutoff value. It should be noted that a similar cut-off influ-
/ \ o T 2% ence of damping on singular focusing was observed for the
15 \ Y N generalized KdV equation with nonlinearities of fourth
y , \ s LA order>®
10 “ Dy The singular focusing of nondissipative interaction is
5 /l “\\ 3 /1 RAAN evident in the fourth(unstable resonantase. Now the fo-
j \ / - \ cusing is accelerated and accompanied by the strong defor-
0 b \ BTN B mation of the ultrasound profiléFig. 15. Also, the ampli-
60 26 00 26 ¢ 50 26 00 25 ¢ tude threshold for singular focusing reduces $g=20.
() (b Hence the long-wave—short-wave resonance enhances the

probability of singular focusing of ultrasound in bubbly flu-
FIG. 13. Defocusing of ultrasound in the resonant céaethe ultrasound ids

envelopd S| versus¢ ({=0) at different instants of timel) comparison of
the nonresonanthick curve and resonantdashed curveultrasound pro-

files at7=1. IX. POSSIBLE APPLICATIONS

In conclusion, we would like to outline possible applica-
Weak damping suppresses the nonlinear instability anéions of such sound—ultrasound interactions.
results in insignificant decreasing the amplitude and velocity ~ First, the phenomenon of degeneracy of the interaction
of a solitary sound wave. The disappearance of the instabilitgan be used for ultrasound diagnostics of weakly viscous
comes from the fast attenuation of the ultrasonic signal: Thdubbly fluids in narrow channels. Narrow channels are es-
contribution of S into L becomes small even during the sential here in order that transverse instabilities do not
steepness of the ultrasonic distribution. Nevertheless, if wevolve. If we find some value of the degeneracy frequency
reduce the damping coefficient, the nonlinear instability willexperimentally, we can evaluate the radius of the bubble,
arise again(Fig. 11, thick curvé This is because the ultra- agy, and the volume gas conteatq. Indeed, from condi-
sound amplitude decreases slowly now, and nonlinear distotion (29) and formulas(2) and (4a) it follows that a4o4 de-
tions are large enough for the destruction of the sound propends only on the ambient pressyrg, mass density of a
file. carrier liquid, p;g, speed of sound in the liquidz,;, and
polytropic exponeni:
B. Singular focusing

Pok%(3k+2)?
The results of numerical analysis of Eq85) are illus- Qg0d= > .
P . Lo P10Ci[3k(k+1)+1]
trated in Figs. 12—15. The first equation is solved by the d

Fourier transform methotl, the second equation by the |f agoq IS known, there is no problem to firahy because
alternating-direction implicit methotf. The boundary and

initial conditions are as follows: agq= 3 / Pox(k+1)
27fsq V pro(1—agoqg)’

L(£&0), S(1,60)=0, for &+ (56a

where f¢4 is the degeneracy frequency. Of course, actual
bubbly fluids are polydispersed. This requires to include the
S(7=0,¢,0)=Spexp[— (&2+?)}. (56b)  bubble size distribution in the equations of motion. There are
two changes in the equations for perturbati¢@)sif the bub-
bly fluid becomes polydisperdeee Ref. 1§ First, we have
N

and

Here S, takes real values. The coefficients (85) are se-
lected so that.>c, [then the first equation of35) is of
elliptic type]. We analyze four caseét) ks=0.5,b=0.4;(2) @jo 5

k.=1.036, b=0.4; (3) k.=0.5, b=0.25: (4) k,=0.574, b Zza_(1+aj) :

=0.25. The first two cases are considered on the assumption . 9

that = 0. The first case corresponds to the stable nonresdnstead of (k-a)® in Eq. (3b). HereN—1 is the number of
nant interaction becausg# c, and point(0.5; 0.4 lies in  disperse(or bubblg fractions (N=1 corresponds to the dis-
the stable regioiicf. Fig. 5). persive medium «jo anda; are the initial volume content

Numerical analysis confirms analytical results. Theand perturbation in the bubble radius fith fraction, aqo
stable interaction leads to defocusing of sound and ultra= =]L,ajo is the total initial volume gas content. Second, in
sound wavesFig. 12. In the second case we are also in theEQ. (30), a is replaced bya; and the first two terms are
stable region but near the resonant cureg-¢c,). The nu-  multiplied by
merical solution of(35) defocuses agaifFig. 13a)]. But a

. . . j0
now the defocusing slows down and is accompanied by the gjza—
modification of the wave profil€Fig. 13b)]. *

In the third case the unstable nonresonant interactiolia;, is the initial bubble radius fojth fraction,a, is a cer-
takes place. Indeed, with no damping the high intensity ultain representative radius of bubbleShere areN+1 equa-
trasound wave $,>40) is shrinking and growing in time tions for perturbations at all: The first is for the pressure
(Fig. 14. This results in the blowup instability later. Weak perturbation, the second is for the density perturbation, and
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t=0.09714

FIG. 14. Nonresonant singular focusing of ultrasound
and sound in a bubbly fluid%=30; k=1.4; ©=0).

t=0.15931

the remainingN—1 equations are for the perturbations in wave resonance and the nonresonant one-dimensional dy-
bubble radii. Anyway, the equations have the same form, andamics is governed by the nonlinear Salinger equatiort®
hence the above results should be valid for polydisperse bub- The main problem is to “catch” the degeneracy fre-
bly fluids. For example, there exists the long-wave—shortquency. To do this the following ideas can be exploited. Usu-
ally, if we create ultrasound and sound in bubbly fluids si-
. : multaneously, so that resonance conditidg) is satisfied,
T s these waves will interact according to the Zakharov equa-
---- =036 tions with damping24). The result of this interaction is the
g formation and the subsequent decay of the ultrasound enve-
lope and the appearance of an additional s¢lung-wave
component proportional to a square of the ultrasound enve-
8 lope modulus. Since weak damping leads to decreasing the
25 ultrasound amplitude, the additional long-wave component
will be also damped out butot so fast as in the degenerate
case Under degeneracy conditiof29), ultrasound will not
0 o S influence the long wave essentially. This gives us a chance to
5.0 -25 0.0 25 ¢ verify the degeneracy phenomenon experimentally. The ex-

FIG. 15. Spatial distribution of the ultrasound enveldi@ at different perimental setup can be designed on a basis of the

instants of time in the case of resonant singular focusing. Bgre20; «  difference-frequency spund generation technitftié.
=1.4, u=0. Second, the dromion property to travel on the tracks,

50
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defined by the evolution of sound wave, can be drawn on to +8L[ — |_!173]_ (A1)
control ultrasonic action processes in bubbly fluids. If the
ultrasonic disturbance is created in a liquid with gas bubblesBec"’ms'e the short-wave envelope is complex-valugd (
the parameters of which satisfy the existence of the dromion, Sr+iSi), Eq. (280 breaks down into the following dis-
there is then a possibility to focus the disturbance at Somgrete equations:

point of space and “remotely” control its motion by sound n+1 no1  MAt N

(on significant distance from the focus pgint St =S - GTL [St}.,—8Sr;+8Sr_;

Third, singular focusing of ultrasound is possibly a very At
dangerous phenomenon, especially in the case of long- n n n
wave—short-wave resonance. It may result in explosions, ~Sh2]- BAX axSLL 278l TBLI,
violent cavitation in a liquid with microbubbles, for example, N " o -
in human tissue, blood, and ocean water. Currently, the wide ~Li 2]+ 2yAtSiL(SH) "+ (Sij)7]
range of potential medical applications of high intensity fo-

cused ultrasound(HIFU), such as lithotripsy? cancer pAL 2[S|]+2 165l,+1+ 3OS| 1GS|]‘_1
therapy’® and gene therap,is being developed. It should 6(A )
be noted that HIFU must be exploited in tissue in circum-
stances where the blowup instability condition is not satis-
fied. P y Sif,]+ 4(A )3[Srj+3 8SI1, ,+13Sr, 4

The above-listed applications of the results invite further N N N
theoretical and experimental investigations. Our following — 1381, +8Sr_,—Sr_3] (A2)
efforts will be aimed at the elucidation of more complex gand
theoretical models and the performance of required experi- LAt
ments. Si =S = o LJ[Si.,—8Si,, +8Si]_,
ACKNOWLEDGMENTS . vAt

—SI?_Z] 6AX ——Si! [LJ+2 8L}‘+1+8L}‘_1

This material is based upon work supported by the Eu-
ropean Commission under INCO-Copernicus program No. —L}‘,Z]—ZyAtSrj”[(Sr]”)2+(Si}‘)2]
ERBIC15CT980141 and the North Atlantic Treaty Organiza- _
tion under Grant No. 0000779. Any opinions, findings, con- B BAt no_ n n_ n
clusions or recommendations expressed in this publication 6(Ax)2[8r1+2 1651}, +30Sr — 1651,
are those of the authors and do not necessarily reflect the
view of NATO. n nAt

+Sr_ ]+ 2(Ax )3[S|]+3 8Si', ,+13Si,

APPENDIX: NUMERICAL METHOD FOR SOLVING —13Si?_1+88i?_2—8i?_3]. (A3)

DEGENERATE EQUATIONS

Th i ¢ td te int Here subscripts and superscripts denote spatial and temporal
d 35 c;qua |Ens or Iresgnan ege”nerae n e;ﬁdmﬁ)ll locations,At and Ax are the time and spatial stepssts;
and ( ave been solved numerically using a three-layer_ x=£, L'=L(x; 1), S"=Sr(x; ,ty), SI'=Si(x; t,)

explicit scheme with a fourth order of approximation with " A —nA dB=ale. The indexes and
respect to the spatial coordinafein the appendix, the finite- J_(J_ JAX, 1, =nAt, and=p/e. The indexeg andn
take the values from 1 and 0 thandN, respectively.

difference approximation of only Eq&28) is presented. The The bound giti iodi
discrete equations of the second model are too cumbersome e boundary conditions are periodic

to be given here. According to the scheme, the equation for  L5**=L}*"* L5f1=L0%, L)Fi=L5"t,
the long-wave profild. looks as follows: LT% L”“
+
oAt
Ln+1 Ln l+ _L [LJ+2 8L?+1+8L?71_L?72] Srn+1 Srn+1’ Sr‘?i:{. Srn+l,
LAl siii=sn™t, sSiii=sip't, (A4)
- S(AX)ZSi?[Sr}‘“—168rl-”+1+308r]-” S|n+1 S|n+l’ S'gi% S|n+1,
siffi=sib*t, siffi=sigth
—1esr] 1+Sr, oAt 3(Ax)2 Sr [S J+2 The stability analysis for the numerical scheme has been
performed using the Neumann methi8dAccording to this
—16Si, ; +30Si— 16Si_; + Si_,] method, we assume that
XA L]p—lzL/eaHikx, Srn 1_ =Sy’ eat+|kx

[ i+3 8L?+2+ 13L]+1 13'—?,1 Sinflzsi!eat+ikx

4(A i
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