Evaluation of Household Water Quality in Buckingham, Cumberland, and Nelson Counties, Virginia

1999
Household Water Quality Series 39
Department of Biological Systems Engineering
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061-0303

Virginia Cooperative Extension

Publication 442-929
October 1999
EVALUATION OF
HOUSEHOLD WATER QUALITY
IN BUCKINGHAM, CUMBERLAND
AND NELSON COUNTIES, VIRGINIA

B. B. Ross¹
E. A. Austin²
E. A. Hanes³
M. W. Lachance⁴
K. R. Parrott⁵
A. C. Bourne⁶

Virginia Polytechnic Institute and State University
Department of Biological Systems Engineering
Household Water Quality Series 39
October 1999

¹ Professor, Dept. of Biological Systems Engineering, VPI&SU, Blacksburg, Virginia.
² Extension Agent, Buckingham County, Buckingham, Virginia.
³ Extension Agent, Cumberland County, Cumberland, Virginia.
⁴ Extension Agent, Nelson County, Lovingston, Virginia.
⁵ Associate Professor, Dept. of Near Environments, VPI&SU, Blacksburg, Virginia.
⁶ Undergraduate Student Assistant, Dept. of Biological Systems Engineering, VPI&SU, Blacksburg, Virginia.
Evaluation of Household Water Quality in Buckingham, Cumberland, and Nelson Counties, Virginia

ABSTRACT

During Fall 1998 in Buckingham, Cumberland, and Nelson Counties, Virginia, programs of household water quality education, which included water sampling, testing, and diagnosis, were conducted. Participation in the water quality programs was made available to any resident of these three counties who utilized a private, individual water supply. During the course of the projects, 238 households submitted water samples which were analyzed for iron, manganese, hardness, sulfate, chloride, fluoride, total dissolved solids, pH, saturation index, copper, sodium, nitrate, and total coliform and E. coli bacteria. These analyses identified the major household water quality problems in these three counties as iron/manganese, corrosivity, and bacteria. Additionally, a number of samples were determined to have concentrations of nitrate high enough to possibly lead to health complications for at-risk segments of the population.

Following completion of the programs, a survey was mailed to the 238 participants. Ninety-one participants returned survey forms on which they identified their reason(s) for participating in such a program; the primary reason was concern about safety of their water supply. Returned survey forms also provided insight into measures participants had already taken, or planned to take, to improve the quality of their water supply. More than four-fifths of the households who reported having at least one water quality problem had taken, or planned to take, at least one measure to improve the quality of their water supply. Ten percent or more of all participants had taken, or planned to take, one or more of the following actions: purchase or rent water treatment equipment, contact a state agency for assistance or additional information, and shock chlorinate the water system.
ACKNOWLEDGMENTS

Many thanks are due the residents of Buckingham, Cumberland, and Nelson Counties who participated in the educational program. Without their enthusiasm and cooperation, the program could not have succeeded. Special thanks are extended to local media, agency personnel, volunteers, and others who provided support in terms of publicity, encouragement, and interest, thus contributing to the success of the household water quality educational program. The Virginia Department of Health personnel, who spoke at the public meetings, are appreciated for their contributions.

The Boards of Supervisors of both Buckingham and Cumberland Counties are especially acknowledged for their financial support of the program. Additionally, the Southeast Rural Community Assistance Project, Inc. of Roanoke, Virginia provided funding enabling free testing to be offered to a number of limited income families. CSREES/USDA Water Quality Program Support 3-d funds were also made available for this program.

The Water Quality Laboratory of the Department of Biological Systems Engineering at Virginia Tech was responsible for the majority of the water quality analyses, as well as coordination among the various labs and for much of the data management. Julie Jordan, Laboratory Supervisor, and her staff are especially acknowledged for their efforts. Assisting with the general water chemistry analysis was the Soils Testing Laboratory of the Department of Crop and Soil Environmental Sciences at Virginia Tech.

Additional support from Virginia Tech should also be noted. Judy Poff, of the Virginia Water Resources Research Center, was instrumental in providing educational publications for participants at the public meetings. Joe Gray, of the Virginia Cooperative Extension Distribution Center, is appreciated for his assistance in preparing and mailing the evaluation survey packets to participants. Appreciation is due Diane Mahaffey for her efforts in preparing project forms and in typing this manuscript, and to Liz Epley for her assistance in data management. In addition, Bev Brinlee and Tim Fisher-Poff are acknowledged for their editorial and design contributions.
TABLE OF CONTENTS

- **ABSTRACT** .. II
- **ACKNOWLEDGMENTS** ... III
- **LIST OF FIGURES AND TABLES** ... V
- **INTRODUCTION** ... 1
- **OBJECTIVES** .. 2
- **METHODS** .. 2
- **FINDINGS AND RESULTS** ... 3
 - Profile of Participant Households .. 4
 - Profile of Household Water Supplies .. 4
 - Participants’ Perceptions of Household Water Quality .. 6
 - Household Water Quality Analysis ... 7
 - General Water Chemistry Analysis .. 7
 - Bacteriological Analysis .. 16
 - Post-Program Survey ... 18
 - Household Water Testing History .. 18
 - Reasons for Program Participation ... 18
 - Follow-up Activities Taken or Planned ... 19
- **CONCLUSIONS** ... 19
- **REFERENCES** ... 20
- **APPENDIX** .. 21
LIST OF FIGURES AND TABLES

Figure 1. Educational Level Achieved by Participants .. 5
Figure 2. Family Income of Participants .. 5
Figure 3. Housing Environ of Participants .. 6
Figure 4. Household Water Treatment Devices Installed .. 9
Figure 5. Unpleasant Tastes Reported by Participants ... 9
Figure 6. Objectionable Odors Reported by Participants .. 10
Figure 7. Unnatural Appearance Reported by Participants. ... 10
Figure 8. Particles in Water Reported by Participants. ... 11
Figure 9. Staining Problems Reported by Participants ... 11
Table 1. Average and Range of Concentration of Contaminants Comprising General Water Chemistry Analysis ... 14
Table 2. Percent of Concentrations Exceeding Established Standards for Contaminants Comprising General Water Chemistry and Bacteriological Analysis ... 15
Table 3. Measures Taken or Planned by Participants, Since Water Quality Analysis, to Improve Water Supply .. 17
INTRODUCTION

The water supply and wastewater disposal requirements of the vast majority of rural homes and farms throughout Virginia are met by individual water supply and wastewater disposal systems. In Buckingham, Cumberland, and Nelson Counties, for example, more than four-fifths of all housing units (82%) are served by individual water systems (Koebel et al., 1993). Virtually all of these homes depend on groundwater sources.

Throughout these three counties, most wells were drilled only for farm or domestic water supply. George and Gray (1988) have estimated that more than three-fourths of the drilled wells are inadequately constructed, while more than four-fifths of all dug/bored wells are inadequate. Nearly one in five households were also estimated to have failing or inadequate waste disposal systems.

Buckingham, Cumberland, and Nelson Counties have a combined land area of 1352 square miles. With the exception of the western border area of Nelson County, which is located in the Blue Ridge physiographic province, all three counties lie within the Piedmont physiographic province. The three-county region is part of a largely rural area bounded by the city triad of Charlottesville, Lynchburg, and Richmond. All of Buckingham, Cumberland, and Nelson Counties drain into the James River. This river, along with one of its major tributaries, the Appomattox River, form much of the borders of the three counties.

The population of the three-county area increased by slightly more than 5% during the period 1980-90. Some new home sites are rural-based without public water and sewage services. As rural home sites encroach on agricultural land, the water supply becomes suspect to residents. Of equal importance is the potential failure of septic systems, since many home sites are on land less than ideal for a properly functioning septic system.

In addressing similar concerns, Ross et al. (1991) initiated a pilot program of household water quality education in Warren County, Virginia, which included water sampling, testing, and diagnosis. Based on requests and support from local interests, subsequent programs have been conducted in 48 additional counties. During the course of these projects, more than 7,250 households submitted water samples through local Virginia Cooperative Extension Offices to be analyzed for the following: iron, manganese, hardness, sulfate, chloride, fluoride, total dissolved solids, pH, saturation index, copper, sodium, nitrate, and total coliform and fecal coliform/E. coli bacteria.

Major household water quality problems identified, as a result of these previous analyses, were determined to be iron/manganese, hardness, fluoride, and total dissolved solids, and because of their potential health significance, corrosivity, bacteria, and to a lesser extent, sodium and nitrate, although the occurrence and extent of these problems varied across counties. In most county programs, a limited number of additional samples from “high-risk” households were tested for over two dozen pesticides and other chemical compounds. Most of these compounds have been detected in measurable quantities in one or more samples, with several values exceeding a corresponding U.S. Environmental Protection Agency Health Advisory Level (HAL) or Maximum Contaminant Level (MCL). It was the need to assess the current state of rural household water supplies in Buckingham, Cumberland, and Nelson

1
Counties, in addressing the above water quality issues, that led to the implementation of the Household Water Quality Education Program in the three counties.

OBJECTIVES

The primary goal of this project was to conduct educational programs on household water quality to include water testing/diagnosis in Buckingham, Cumberland, and Nelson Counties, Virginia. The general program objectives were to: (1) improve the quality of life of rural homeowners by increasing awareness and understanding of water quality problems, protection strategies, and treatment alternatives; and (2) create a groundwater quality data inventory to assist local governments in land use and groundwater management planning.

METHODS

Household water quality educational programs were offered through the local Virginia Cooperative Extension Offices in Buckingham, Cumberland, and Nelson Counties during Fall 1998. Any household resident of these counties who utilized a private, individual water supply was eligible to participate. The programs were patterned after the model developed under the pilot educational program completed in 1989 in Warren County (Ross et al., 1991). Local news media and agency newsletters publicized the program in each county, and program fact sheets were prepared (see Appendix).

The programs were launched through local meetings held in Buckingham, Cumberland, and Lovingston in late September and early October. Attendees of these initial meetings were presented with information on local hydrogeologic characteristics in relation to groundwater pollution, likely sources of, and activities contributing to, groundwater contamination, the nature of household water quality problems (both nuisance and health-related), and specifics of the water testing program to follow. At these meetings, individuals were invited to sign up to participate in the testing program at a basic cost of $30 in Nelson County and $20 in the other two counties, per household water sample submitted.

Provisions were made to analyze up to 100 household water samples per county. Water sampling kits, for use by the participants themselves, were made available at the meetings and at the county Cooperative Extension offices after the meetings for late registrants. Two types of water sampling kits were distributed: (1) general water chemistry analysis for iron, manganese, hardness, sulfate, chloride, fluoride, total dissolved solids, pH, saturation index (Langlier), copper, sodium, and nitrate; and (2) bacteriological analysis (total coliform and E. coli).

The sampling kits included a 250 ml plastic bottle for general water chemistry samples and a sample identification form (see Appendix). The form included sampling instructions and a questionnaire on which participants were asked to describe the characteristics of their water supply. Also included in the kits was a 125 ml sterilized plastic bottle for bacteriological samples. Instructions called for sampling from a drinking water tap and for flushing water systems prior to sampling to minimize contaminants contrib-
uted by the plumbing system. Persons who already had a water treatment device, such as a water softener, were requested to provide information about the type of equipment so that effective evaluation of their water quality and proper interpretation of results could be obtained, as further explained below.

Water samples were collected on October 13 and 27 at the Extension offices in Buckingham, Cumberland, and Nelson Counties. At the close of each collection day, all samples were packed in ice and immediately delivered to Virginia Tech in Blacksburg for analysis.

The general water chemistry and bacteriological analysis was coordinated by the Department of Biological Systems Engineering Water Quality Laboratory at Virginia Tech. The Soils Testing Laboratory of the Department of Crop and Soil Environmental Sciences at Virginia Tech was subcontracted to analyze samples for several of the constituents. Water quality analyses were performed using standard analytical procedures (USEPA, 1979).

After the analysis had been completed for each county, participants were reminded by mail to attend subsequent meetings in either Buckingham, Cumberland, and Lovingston to obtain and discuss the test results and management practices to reduce or prevent water contamination. Complete test results were ultimately mailed to those participants who could not attend any of the meetings. A sample report form and accompanying report interpretation are shown in the Appendix.

At the conclusion of the programs, an evaluation survey was mailed to participants (see Appendix). The objectives of the survey were to determine (1) the reasons for participation in the educational programs and for having household water tested, and (2) the actions to correct water quality problems the participants had taken, or planned to take, as a result of participation in the programs. Limited socio-economic information was also requested to obtain a profile of the total audience reached by the programs.

In addressing overall project objective 2, local government and public officials were kept apprised of water quality test results, during the course of the programs and at their completion. While the project was designed to involve voluntary participation, and quality control in sampling was not assured, the information gathered was nevertheless deemed useful for water quality assessment and planning at county and regional levels.

FINDINGS AND RESULTS

During the course of the projects, 238 individual household water samples were returned for general water chemistry and bacteriological analysis from all areas of the three counties. Two surveys were distributed to all water testing participants: One, the questionnaire with the water sampling kit, to be completed and returned by all participants with the sample submitted for analysis; and the other, an evaluation of the completed programs (see Appendix). For the latter, of the 238 forms mailed, 91 were returned (a 38% response rate). Both surveys provided insight into the characteristics of the households and their water supplies.
Profile of Participant Households

The average length of the respondents’ residence in Buckingham, Cumberland, and Nelson Counties was 17 years. The length of residence reported ranged from 1 to 70 years. Thirty-two percent of those responding had lived in their present county for 5 years or less. The size of the respondents’ households ranged from one to seven members; average household size was 2.32. It can, therefore, be estimated that more than 550 residents of the three counties were directly impacted by the water analysis/diagnosis aspect of the programs.

More than one-half (54%) of the respondents were college graduates and 96% had at least a complete high school education (see Figure 1); facts that are not surprising, since it is likely that such individuals would have a greater awareness and understanding of water quality issues and be more likely to participate in such a program.

Participation in the program was on the high end of income distribution. Figure 2, which shows the family income (before taxes) of the respondents, indicates that a majority of the respondents exceeded the median family income ($27,377 averaged for the three counties and according to the 1990 Census) (Koebel et al., 1993). Nine percent of respondents declined to indicate family income.

Profile of Household Water Supplies

The initial survey answers, provided by all 238 participants in the water testing programs, helped to characterize their water supplies (see Appendix). One set of questions dealt with the proximity of the household water supply to potential sources of groundwater contamination. One such question sought to define housing density, which may have an impact primarily from the standpoint of contamination from septic systems and related water quality problems. Participants were asked to classify their household environs as one of the following four categories, ranging from low to high density: (1) on a farm, (2) on a remote, rural lot, (3) in a rural community, and (4) in a housing subdivision. As shown in Figure 3, rural community was the most common at 42%, while subdivision (3%) was the least common.

Participants were also asked to identify potential contamination sources within 100 feet of their water supply. The major sources identified were home heating oil storage tanks and septic system drainfields, noted by 21% and 18%, respectively, of all households. Indications of proximity (within one-half mile) to larger activities which could potentially contribute to groundwater pollution were also sought. Agricultural activities were the most commonly identified; 35% of the participants indicated that their water supply was located within one-half mile of a major farm animal operation and 22% within one-half mile of field crop production.

Information was also obtained regarding characteristics of the participants’ water supply systems. Regarding the type of water source supplying the household, the majority (95%) of participants reported that they rely on a well, with the remaining 5% using springs, all but two of which were located in Nelson County. Participants using a well were asked to provide an estimate of the well depth, if known. Of those participants indicating well depths, 81% reported depths of more than 50 feet, while 19% reported less than or equal to 50 feet. The maximum well depth reported was 400 feet; the average well depth was 143 feet. Twenty-six percent of the wells were constructed in or prior to 1970. The earliest reported well construction date was 1800.
Figure 1. Educational Level Achieved by Participants

Highest Level of Education Achieved

- Grade Sch.: 2.2%
- Some H.S.: 2.2%
- H.S. Grad.: 14.3%
- Post H.S.: 27.5%
- College Grad.: 53.8%
- No Answer: 0.0%

Figure 2. Family Income of Participants

Income (Thousands Dollars per Year)

- <10: 0.0%
- 10-15: 5.5%
- 15-20: 9.9%
- 20-25: 8.8%
- 25-35: 14.3%
- 35-50: 14.3%
- >50: 38.5%
- No Answer: 8.8%
Household water systems were further identified with respect to the type of material used in the piping network for water distribution throughout the dwellings. The most widely used material was plastic (58%), while copper was reported by 28% of the participants. Eight percent of participants reported, “Don’t know.”

To properly evaluate the quality of water supplies in relation to the point of sampling, participants were asked if their household water systems had water treatment devices currently installed, and if so, the type of device. The results of the inquiry are presented in Figure 4. Twenty-two percent of the participants reported at least one treatment device installed, with the most common type of treatment device in use being a sediment filter (79%). Four percent of those with treatment device(s) indicated "other."

Participants' Perceptions of Household Water Quality

Participants were also asked about problems they were experiencing in their household water systems (see Appendix). They were asked initially whether or not they experienced one or more of the following conditions: (1) corrosion of pipes or plumbing fixtures; (2) unpleasant taste; (3) objectionable odor; (4) unnatural color or appearance; (5) floating, suspended, or settled particles in the water; and (6) staining of plumbing fixtures, cooking appliances/utensils or laundry. With the exception of (1) above, with which 18% of the participants identified, participants were given several more specific descriptions from which to choose if answering positively.
Fifteen percent of the participants responded that their water had an unpleasant taste. For these participants, the identification of tastes is presented in Figure 5. “Metallic” taste was the most common problem (47%), followed by “bitter,” identified by 28% of those who reported taste problems. Twenty-two percent of these reported “other” tastes, such as earthy.

An objectionable odor was reported by 11% of the participants. Of these, the description of odors selected is shown in Figure 6. The most prevalent odor described was “rotten egg,” or sulfur, identified by 70% of those reporting odor problems. Fifteen percent provided other odors, such as fishy.

Eleven percent of the participants affirmed their water had an unnatural color or appearance. “Yellow” was identified by 44% of those who reported appearance problems (Figure 7), followed by 30% indicating “muddy.” Fifteen percent offered their own descriptions by selecting “other” to include greasy.

A related question sought to identify the presence of solid particles in participants’ water supplies. Sixteen percent described such a condition; more than one-third of these (35%) reported that they noticed “brown sediment” in their water, followed closely by “white flakes” and “black specks” at 32% and 30%, respectively (Figure 8). Eleven percent indicated “other,” such as yellow slime.

Staining problems on plumbing fixtures, cooking appliances/utensils, and/or laundry were reported by 45% of the participants. As presented in Figure 9, the major problem was that of “blue-green” identified by 48% of those with staining problems, followed closely by “rusty” stains, reported by 45%.

Household Water Quality Analysis

Ultimately, two sample groups resulted: the “tap water” and “raw water” samples. The “tap water” group consisted of the 238 individual household water supplies analyzed to represent the actual water quality at the drinking water tap (including treated water). The “raw water” group consisted of samples from untreated systems only - a total of 186 samples.

The raw water sample results presented below may not be entirely indicative of the status of raw groundwater quality in Buckingham, Cumberland, and Nelson Counties. This may be particularly true for many of the nuisance contaminants for which treatment systems have been installed, since many of the already treated supplies likely represented the worst cases for specific contaminants correctable by treatment devices. Therefore, the inclusion of actual raw water (before treatment) analyses, if they had been available from those households with treatment devices installed, would likely have tended to worsen the overall assessment of raw water quality in the three counties.

General Water Chemistry Analysis

The tests included in the general water chemistry analysis are listed in Table 1, along with the detection limits, where appropriate, for each test as determined by laboratory equipment and testing procedure constraints. Also presented are the averages and ranges for each sample group defined for all three counties combined. Table 2 provides, for both sample groups and each county, as well as all three counties combined, the percentage of constituent values exceeding a given water quality standard or guideline. The results and importance of each test for both of the sample groups are individually discussed below.
Iron. Iron in water does not usually present a health risk. It can, however, be very objectionable if present in amounts greater than 0.3 mg/L. Excessive iron can leave brown-orange stains on plumbing fixtures and laundry. It may give water and/or beverages a bitter metallic taste and may also discolor beverages.

Overall, 7% of samples in the tap water and 6% of samples in the raw water sample groups had iron concentrations exceeding the U.S. Environmental Protection Agency (EPA) Secondary Maximum Contaminant Level (SMCL) of 0.3 mg/L. The presence of iron was not surprising in view of the generally accepted notion that excessive iron is prevalent in rural water supplies throughout much of Virginia. While only 3% of the participants reported the installation of an iron removal filter, the results of the sample questionnaire (see Appendix) revealed that 45% of the 106 who reported staining problems, or 20% of all participants, classified the color of those stains as “rusty” (red/orange/brown). Stains of this color on plumbing fixtures, cooking appliances/utensils, and/or laundry are usually attributed to excessive iron concentrations.

It should be noted that the SMCL for iron is likely based more on taste considerations than long-term staining tendencies, particularly on plumbing fixtures. It has been suggested that concentrations below 0.1 mg/L are preferred, when stain prevention is of concern. When a value of 0.1 mg/L was used as the threshold concentration, an additional 12% and 13% of samples in the tap water and raw water sample groups, respectively, of all three counties exceeded this limit.

Manganese. Manganese does not present a health risk. However, if present in amounts greater than 0.05 mg/L, it may give water a bitter taste and produce black stains on laundry, cooking utensils, and plumbing fixtures.

The results of these analyses indicated that the extent of manganese problems in the three counties was markedly greater than that of iron, and that Cumberland County had more samples with excessive concentrations of both (Table 2). While manganese stains are generally dark and only 4% of all participants indicated “black” stains, 12% of both the tap water and raw water samples exceeded the SMCL for manganese of 0.05 mg/L. The “particles in water” description of “black specks,” reported by 5% of all participants, may also provide evidence of excessive manganese concentrations.

Hardness. Hardness is a measure of calcium and magnesium in water. Hard water does not present a health risk. However, it keeps soap from lathering, decreases the cleaning action of soaps and detergents, and leaves soap “scum” on plumbing fixtures, and scale deposits in water pipes and hot water heaters. Softening treatment is highly recommended for very hard water (above 180 mg/L). Water with a hardness of about 60 mg/L or less does not need softening.

Hardness is an additional “natural” parameter usually linked to karst terrain and limestone formations that are not prevalent in this region of Virginia. Extensive use of water softeners is not warranted, and only two participants had installed a water softener (Figure 4), however, a number of samples (6% of the tap water and 5% of the raw samples), nearly all of which were from Cumberland County, exceeded the maximum recommended hardness level of 180 mg/L.

Hardness tolerance, like that of many nuisance contaminants, is somewhat relative to individual preferences. For example, water with total hardness between 60 mg/L and 180 mg/L may warrant the installation of a commercial water softener in the view of some household water users while others are satisfied with untreated water. Twenty-three percent of the tap water and 20% of the raw water samples of all three counties were in the range of 60 mg/L to 180 mg/L total.
Figure 4. Household Water Treatment Devices Installed

Figure 5. Unpleasant Tastes Reported by Participants
Figure 6. Objectionable Odors Reported by Participants

Figure 7. Unnatural Appearance Reported by Participants
Figure 8. Particles in Water Reported by Participants

![Bar chart showing the percentage of households reporting different types of water particles: White Flakes (32.4%), Black specks (29.7%), Red Slime (8.1%), Brown Sediment (35.1%), and Other (10.8%).]

Figure 9. Staining Problems Reported by Participants

![Bar chart showing the percentage of households reporting different types of water stains: Blue/Green (48.1%), Rusty (45.3%), Black/Gray (9.4%), White/Chalk (11.3%), and Other (3.8%).]
hardness, indicating that more than one-fourth of all samples could be classified as “moderately hard” or “harder.”

Sulfate. High sulfate concentrations may result in adverse taste or may cause a laxative effect. The SMCL for sulfate is 250 mg/L. Sulfates are generally naturally present in groundwater and may be associated with other sulfur-related problems, such as hydrogen sulfide gas. This gas may be caused by the action of sulfate-reducing bacteria, as well as by other types of bacteria (possibly disease-causing bacteria) on decaying organic matter. While it is difficult to test for the presence of this gas in water, it can be easily detected by its characteristic “rotten egg” odor, which may be more noticeable in hot water. Water containing this gas may also corrode iron and other metals in the water system and may stain plumbing fixtures and cooking utensils.

Sulfate concentrations were relatively low for both the raw water and tap water sample groups. Only one (from Cumberland County) of the tap water and none of the raw water samples exceeded 250 mg/L. The complaints of a “rotten egg/sulfur” odor by more than two-thirds of those reporting odor problems indicate that hydrogen sulfide gas may be a somewhat widespread problem in household water systems in the three counties; a conclusion that cannot be confirmed by the presence of sulfate.

Chloride. Chloride in drinking water is not a health risk. Natural levels of chloride are generally low, and high levels in drinking water usually indicate contamination from a septic system, road salts, fertilizers, industry, or animal wastes. High levels of chloride may speed corrosion rates of metal pipes and cause pitting and darkening of stainless steel. The EPA has set an SMCL for chloride of 250 mg/L. One of the tap water and raw water samples from Buckingham County exceeded the SMCL for chloride.

Fluoride. Fluoride is of concern primarily from the standpoint of its effect on teeth and gums. Small concentrations of fluoride are considered to be beneficial in preventing tooth decay, whereas moderate amounts can cause brownish discoloration of teeth, and high fluoride concentrations can lead to tooth and bone damage. For these reasons, the EPA has set both a SMCL of 2 mg/L and a Maximum Contaminant Level (MCL) of 4 mg/L. None of the tap water or raw water samples exceeded the SMCL.

Total Dissolved Solids (TDS). High concentrations of dissolved solids may cause adverse taste effects and may also deteriorate household plumbing and appliances. The EPA SMCL is 500 mg/L total dissolved solids. Average TDS concentrations were 96 mg/L and 101 mg/L for the raw water and tap water sample groups, respectively. Two of the samples in the tap water and one in the raw water sample group (from Cumberland County) exceeded the standard. The maximum TDS concentration among the raw water samples was 506 mg/L and the tap water samples was 681 mg/L.

pH. The pH indicates whether water is acidic or alkaline. Acidic water can cause corrosion in pipes and may cause toxic metals from the plumbing system to be dissolved in drinking water. The life of plumbing systems may be shortened due to corrosion, requiring expensive repair and replacement of water pipes and plumbing fixtures. Treatment is generally recommended for water with a pH below 6.5. Alkaline water with a pH above 8.5 is seldom found naturally and may indicate contamination by alkaline industrial wastes. The EPA has set a suggested range of between 6.5 and 8.5 on the pH scale for drinking water.

The average pH reading was 6.6 for both the tap water and raw water sample groups. None of the samples in either sample group exceeded a pH of 8.5. For the tap water and raw
water sample groups, 41% and 43%, respectively were less than 6.5 and incidence of excessive acidity varied somewhat across the three counties (Table 2). While the remaining samples had a pH above 6.5, slightly acidic water with a pH between 6.5 and 7.0 can lead to less immediate staining and corrosion problems. An additional 31% of the tap water and 33% of the raw water samples of all three counties fell into this category.

Saturation Index. The saturation index (Langlier) is used, in addition to pH, to evaluate the extent of potential corrosion of metal pipes, plumbing fixtures, etc. It is a calculated value based on the calcium concentration, total dissolved solids concentration, measured pH, and alkalinity. A saturation index greater than zero indicates that protective calcium carbonate deposits may readily form on pipe walls. A saturation index less than zero indicates that the water does not have scale-forming properties and pipes may be subject to corrosion. Saturation index values between -1 and +1 are considered acceptable for household water supplies.

No saturation index values were determined to be above +1 in either sample group. Values of less than -1, however, were determined for 92% of the tap water and 94% of the raw water samples. Average saturation index values were -2.77 for the tap water and -2.86 for the raw water sample groups with minimum values of -5.93 in both groups.

Copper. The EPA health standard for copper in public drinking water supplies is 1.3 mg/L, the maximum level recommended to protect people from acute gastrointestinal illness. Even lower levels of dissolved copper may give water a bitter or metallic taste and produce blue-green stains on plumbing fixtures. Consequently, EPA has established an SMCL for copper of 1.0 mg/L in household water.

Four samples in both the tap and raw water groups exceeded the recommended health level of 1.3 mg/L as well as the SMCL of 1.0 mg/L. The maximum copper concentration measured was 3.3 mg/L. Since natural levels of copper in groundwater are low, and the primary contributor of copper in drinking water is corrosion of copper water pipes and fittings, low copper levels were expected, even in the case of tap water samples, assuming that water lines were flushed properly prior to sampling.

Sodium. Sodium may be a health hazard to people suffering from high blood pressure or cardiovascular or kidney diseases. For those on low-sodium diets, 20 mg/L is suggested as a maximum level for sodium in drinking water, although a physician should be consulted in individual cases. Average sodium concentrations were 8.5 mg/L for both the tap water and raw water sample groups, while the maximum concentration was 59 mg/L in both cases. For both the tap water and raw water sample groups, 7% exceeded 20 mg/L with a considerable majority of these samples from Cumberland and Nelson Counties (Table 2).

It should be reemphasized, however, that the suggested threshold of 20 mg/L for sodium is relatively low and applicable only to individuals suffering from health problems, such as heart disease or high blood pressure. To evaluate the presence of high sodium levels in the context of an otherwise healthy individual, a threshold value of 100 mg/L sodium has been suggested. Considering the maximum sodium concentration presented above, none of the samples exceeded this 100 mg/L threshold.

Nitrate. High levels of nitrate may cause methemoglobinemia or “blue-baby” disease in infants. Though the EPA has set a MCL for nitrate (as N) of 10 mg/L, it suggests that water with greater than 1 mg/L not be used for feeding infants. Levels of 3 mg/L or higher may indicate
Table 1. Average and range of concentration of contaminants comprising general water chemistry analysis for Buckingham, Cumberland, and Nelson Counties.

<table>
<thead>
<tr>
<th>Test</th>
<th>Detection Limit</th>
<th>Measured Concentrations</th>
<th>Raw Water (n=186)</th>
<th>Tap Water (n=238)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron (mg/L)</td>
<td>0.005</td>
<td>0.093</td>
<td>DL²</td>
<td>2.060</td>
</tr>
<tr>
<td>Manganese (mg/L)</td>
<td>0.001</td>
<td>0.020</td>
<td>DL</td>
<td>0.282</td>
</tr>
<tr>
<td>Hardness (mg/L)</td>
<td>0.3</td>
<td>49.3</td>
<td>DL</td>
<td>393.0</td>
</tr>
<tr>
<td>Sulfate (mg/L)</td>
<td>0.3</td>
<td>2.7</td>
<td>DL</td>
<td>31.6</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>40.0</td>
<td>46.0</td>
<td>DL</td>
<td>430.0</td>
</tr>
<tr>
<td>Fluoride (mg/L)</td>
<td>0.5</td>
<td>DL</td>
<td>DL</td>
<td>DL</td>
</tr>
<tr>
<td>TDS (mg/L)</td>
<td>1.0</td>
<td>96.0</td>
<td>20.0</td>
<td>506.0</td>
</tr>
<tr>
<td>pH</td>
<td>-</td>
<td>6.59</td>
<td>5.46</td>
<td>7.93</td>
</tr>
<tr>
<td>Saturation Index</td>
<td>-</td>
<td>-2.86</td>
<td>-5.93</td>
<td>-0.29</td>
</tr>
<tr>
<td>Copper (mg/L)</td>
<td>0.002</td>
<td>0.154</td>
<td>DL</td>
<td>3.261</td>
</tr>
<tr>
<td>Sodium (mg/L)</td>
<td>0.01</td>
<td>8.54</td>
<td>0.66</td>
<td>58.68</td>
</tr>
<tr>
<td>Nitrate (mg/L)</td>
<td>0.005</td>
<td>2.209</td>
<td>DL</td>
<td>13.247</td>
</tr>
</tbody>
</table>

¹Averages calculated on the basis of below detection limit (DL) values set equal to the DL.

²Sample concentration non-detectable, i.e., below the detection limit for the given contaminant.
Table 2. Percent of concentrations exceeding established standards for contaminants comprising general water chemistry and bacteriological analysis for Buckingham, Cumberland, and Nelson Counties.

<table>
<thead>
<tr>
<th>Test</th>
<th>Standard</th>
<th>Raw Water</th>
<th></th>
<th></th>
<th></th>
<th>Tap Water</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total n=186</td>
<td>Buck. n=80</td>
<td>Cumb. n=66</td>
<td>Nelson n=40</td>
<td>Total n=238</td>
<td>Buck. n=93</td>
<td>Cumb. n=78</td>
<td>Nelson n=67</td>
</tr>
<tr>
<td>Iron (mg/L)</td>
<td>0.3</td>
<td>5.9</td>
<td>6.3</td>
<td>6.0</td>
<td>5.0</td>
<td>6.7</td>
<td>6.5</td>
<td>7.7</td>
<td>6.0</td>
</tr>
<tr>
<td>Manganese (mg/L)</td>
<td>0.05</td>
<td>11.8</td>
<td>10.0</td>
<td>15.2</td>
<td>10.0</td>
<td>12.2</td>
<td>10.8</td>
<td>18.0</td>
<td>7.5</td>
</tr>
<tr>
<td>Hardness (mg/L)</td>
<td>180.0</td>
<td>4.8</td>
<td>2.5</td>
<td>10.6</td>
<td>0</td>
<td>5.5</td>
<td>2.2</td>
<td>14.1</td>
<td>0</td>
</tr>
<tr>
<td>Sulfate (mg/L)</td>
<td>250.0</td>
<td>0.5</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>1.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>250.0</td>
<td>0.5</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fluoride (mg/L)</td>
<td>$\frac{2}{4}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TDS (mg/L)</td>
<td>500.0</td>
<td>0.5</td>
<td>0</td>
<td>1.5</td>
<td>0</td>
<td>0.8</td>
<td>0</td>
<td>2.6</td>
<td>0</td>
</tr>
<tr>
<td>pH - Low</td>
<td>6.5</td>
<td>43.0</td>
<td>51.2</td>
<td>36.4</td>
<td>37.5</td>
<td>40.8</td>
<td>49.5</td>
<td>30.8</td>
<td>40.3</td>
</tr>
<tr>
<td>pH - High</td>
<td>8.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Saturation Index - Low</td>
<td>-1.0</td>
<td>93.5</td>
<td>100.0</td>
<td>83.3</td>
<td>97.5</td>
<td>92.0</td>
<td>100.0</td>
<td>78.2</td>
<td>97.0</td>
</tr>
<tr>
<td>Saturation Index - High</td>
<td>+1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Copper (mg/L)</td>
<td>$\frac{1.0}{1.3}$</td>
<td>2.2</td>
<td>3.7</td>
<td>1.5</td>
<td>0</td>
<td>$\frac{1.7}{1.7}$</td>
<td>$\frac{3.2}{3.2}$</td>
<td>$\frac{1.3}{1.3}$</td>
<td>0</td>
</tr>
<tr>
<td>Sodium (mg/L)</td>
<td>20.0</td>
<td>7.0</td>
<td>2.5</td>
<td>10.6</td>
<td>10.0</td>
<td>7.1</td>
<td>3.2</td>
<td>11.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Nitrate (mg/L)</td>
<td>10.0</td>
<td>1.6</td>
<td>0</td>
<td>4.5</td>
<td>0</td>
<td>1.3</td>
<td>0</td>
<td>3.8</td>
<td>0</td>
</tr>
<tr>
<td>Total Coliform</td>
<td>ABSENT</td>
<td>44.1</td>
<td>42.5</td>
<td>53.0</td>
<td>32.5</td>
<td>41.6</td>
<td>39.8</td>
<td>50.0</td>
<td>34.3</td>
</tr>
<tr>
<td>E. coli</td>
<td>ABSENT</td>
<td>12.4</td>
<td>11.3</td>
<td>10.6</td>
<td>17.5</td>
<td>12.2</td>
<td>9.7</td>
<td>10.3</td>
<td>17.9</td>
</tr>
</tbody>
</table>
excessive contamination of the water supply by commercial fertilizers and/or organic wastes from septic systems or farm animal operations, which may be subject to seasonal and climatic influences.

The maximum concentration of nitrate obtained was 13.2 mg/L for both the tap water and raw water sample groups. Only three samples (all from Cumberland County) in each sample group exceeded the MCL of 10 mg/L. Thus, serious nitrate contamination does not appear to be a widespread problem in either county. When a 1 mg/L threshold value was selected, however, a much higher occurrence of nitrate was determined. In this case, 86% of both the tap water and raw water samples, exceeded the level of potential concern to infant health. Furthermore, 10% of both the tap water and raw water samples had nitrate concentrations exceeding 3 mg/L, indicating that health-impacting levels would likely be approached in a number of cases in the three counties. In the former non-standard threshold case, similar occurrences of excessive nitrate were noted for all three counties, however, Cumberland County had substantially more samples exceeding 3 mg/L.

Bacteriological Analysis

A common hazard of private household water supplies is contamination by potentially harmful bacteria and other microorganisms. Microbiological contamination of drinking water can cause short-term gastrointestinal disorders, such as cramps and diarrhea, that may be mild to very severe. Of the non-gastrointestinal disorders, one particularly important disease transmissible through drinking water is Viral Hepatitis A. Other diseases include salmonella infections, dysentery, typhoid fever, and cholera.

Coliform bacterial detection is simply an indication of the possible presence of pathogenic, or disease-causing organisms. Detection of coliform bacteria is confirmed by a total coliform analysis result above zero. Coliforms are always present in the digestive systems of all warm-blooded animals and can be found in their wastes. Coliforms are also present in the soil and in plant material. While a water sample with total coliform bacteria present may have been inadvertently contaminated during sampling, other possibilities include surface water contamination due to poor well construction, contamination of the household plumbing system, or water table contamination. To determine whether or not the bacteria were from human and/or animal waste, positive total coliform tests were followed up by an analysis for E. coli bacteria.

Of the 238 household water samples from the three counties analyzed for total coliform bacteria, 99 (42%) tested positive (present). Subsequent E. coli analysis for these total coliform positive samples resulted in 29, or 29%, positive results, or 12% of all household water samples undergoing bacteriological analysis. The percentages of positive total coliform and E. coli results for the raw water sample group were 44 and 12, respectively. It is interesting to note that the incidence of total coliform was lowest in Nelson County water samples, while that county had appreciably more positive E. coli results than the other counties.

The susceptibility of household water supplies to bacteriological contamination has often been associated with the type of water source. For example, it is generally accepted that the likelihood of bacteriological contamination of springs is greater than that of well water supplies, which usually offer better protection from surface, or near surface, contaminants. Similarly, deep drilled wells are better protected than shallow dug and bored wells. This contention is clearly borne out by the results of this program, which indicated that the incidence of total coliform and E. coli contamination of dug/bored wells was 65% and 13%, respectively, while for drilled wells, positive total coliform and E. coli results were obtained for only 25% and 9% of the samples. For springs, 92% tested positive for total coliform and 54% for E. coli bacteria.
Table 3. Measures taken or planned by respondents, since water quality analysis, to improve water supply (Buckingham, Cumberland, and Nelson Counties)

<table>
<thead>
<tr>
<th>Measure</th>
<th>Percent of All Respondents (n=91)</th>
<th>Percent of Respondents who Reported the Following Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Health Only (n=24)</td>
<td>Nuisance Only (n=19)</td>
</tr>
<tr>
<td>Contact an Agency, such as the Health Department</td>
<td>14.3</td>
<td>29.2</td>
</tr>
<tr>
<td>Seek Additional Water Testing from Another Lab</td>
<td>6.6</td>
<td>8.3</td>
</tr>
<tr>
<td>Determine Source of Undesirable Condition</td>
<td>8.8</td>
<td>20.8</td>
</tr>
<tr>
<td>Pump Out Septic System</td>
<td>3.3</td>
<td>0</td>
</tr>
<tr>
<td>Improve Physical Condition of Water Source</td>
<td>9.9</td>
<td>8.3</td>
</tr>
<tr>
<td>Shock-Chlorinate Water System</td>
<td>13.2</td>
<td>20.8</td>
</tr>
<tr>
<td>Obtain New Water Source</td>
<td>2.2</td>
<td>0</td>
</tr>
<tr>
<td>Use Bottled Water for Drinking/Cooking</td>
<td>9.9</td>
<td>12.5</td>
</tr>
<tr>
<td>Temporary Disinfection, such as Boiling Water</td>
<td>3.3</td>
<td>8.3</td>
</tr>
<tr>
<td>Purchase or Rent Water Treatment Equipment</td>
<td>18.7</td>
<td>16.7</td>
</tr>
<tr>
<td>Improve Existing Water Treatment Equipment</td>
<td>5.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Take Other Measures to Eliminate/Reduce Contaminant(s)</td>
<td>5.5</td>
<td>0</td>
</tr>
<tr>
<td>Have Not Done Anything</td>
<td>39.6</td>
<td>16.7</td>
</tr>
</tbody>
</table>
The age of a water source/system is an additional factor which may have an influence on contamination susceptibility. With respect to wells in particular, deterioration of the well structure over time, cumulative damage caused by equipment traffic, etc., and prolonged exposure of the wellhead area to potentially harmful pollutants may all contribute to the eventual contamination of the well. A major age-related impact could relate to the development of, and conformance with, well construction standards through the years. Major legislation in Virginia to address such issues has been enacted in recent years, most notably in the early 1970's and early 1990's. Therefore, for the purpose of examining the occurrence of bacteriological contamination with well age, the sample results were evaluated for the following three construction date categories: (1) pre-1970, (2) 1970-1989, and (3) 1990 to date. With respect to total coliform bacteria, for each of the above categories, the percentages of well water samples determined to be positive were as follows: (1) 44, (2) 44, and (3) 22. For E. coli bacteria, the corresponding percentages were: (1) 17, (2) 10, and (3) 4. Perhaps not surprisingly, a substantial reduction in positive bacteria cases overall was not noted until the latter time period, likely influenced not only by the newness of the wells, but also the substantiality of the most recent legislation, requiring stricter well standards, licensing of well drillers, and post-construction inspections.

Fecal bacteria in household water supplies may have originated from animal waste generation and/or human waste from septic systems. Although, positive results should be viewed with concern, they are not a cause for panic. Individuals have probably been drinking this water for some time with no ill effects and could possibly continue to do so. Nevertheless, such problems should be further investigated and remedied, if possible. Program participants whose water tested positive were given information regarding emergency disinfection, well improvements, septic system maintenance and other steps to correct the source of contamination. After taking initial corrective measures, they were advised to have the water retested for total coliform, followed by E. coli tests, if warranted.

Post-Program Survey

Following the completion of the basic educational program, a survey form (see Appendix) was mailed to the 238 households whose water supply had been tested. The objectives of the survey were to determine: 1) reasons for program participation and for having water tested, and 2) what the respondents had done to correct water quality problems as a result of participation in the educational program. Ninety-one (38%) had returned the survey forms by the deadline.

Household Water Testing History

Participants were asked to indicate their previous experience with water testing and, specifically, if and when they had last had a laboratory analysis of their present household water supply. Forty-three percent of the respondents indicated that they had previously obtained water test results. Of those reporting a prior testing date, 54% had done so within the past five years and 37% within the past two years.

Reasons for Program Participation

People participated in the water quality program for one or more reasons. Seventy-four percent of the respondents were prompted to participate by concern about the safety of their
water supply. Twenty-eight percent of the respondents were prompted by nuisance problems, such as staining, objectionable taste and odor, etc. Twelve percent wanted to follow up on previous tests of their household water. Fifteen percent cited other reasons, such as general curiosity and low-cost opportunity.

Follow-up Activities Taken or Planned

Participants were asked to indicate the measures they planned to take, or had already taken, to improve the quality of their water supply, since receiving the results of their water quality analysis. Table 3 presents the results of this inquiry, with the greatest number of households indicating that they had already, or planned to, purchase or rent water treatment equipment.

Participants were asked if the water analysis showed that their water was unsatisfactory for one or more of the following: bacteria, nitrate, sodium, iron, manganese, hardness, and pH. Responses were grouped in four categories: 1) households with potential health problems (positive bacteria test results and/or unsatisfactory levels of nitrate or sodium in their water samples), 2) households with unsatisfactory levels of nuisance contaminants (one or more of the following: iron, manganese, hardness, and pH), 3) households with potential health problems and unsatisfactory levels of nuisance contaminants, and 4) households with neither potential health problems nor unsatisfactory levels of nuisance contaminants.

The measures planned or already taken to improve household water as follow-up to the water quality analysis were generally in agreement with the water quality problems identified by the testing. Of the households with potential health problems only, and those with health problems in combination with unsatisfactory levels of nuisance contaminants, 84% had taken, or planned to take, at least one measure to improve their water supply. The measures taken by the greatest number of households in these two categories were: contact a state agency for assistance or additional information and shock chlorinate the water system.

Respondents were similarly likely to address health-related problems as nuisance problems. Of the households with unsatisfactory levels of one or more nuisance contaminants only and those with nuisance problems in combination with potential health problems, 88% had taken, or planned to take, at least one measure to improve their water supply. Only 20% of the households with neither potential health problems nor unsatisfactory levels of nuisance contaminants reported taking follow-up measures.

CONCLUSIONS

The Household Water Quality Educational Programs conducted in Buckingham, Cumberland, and Nelson Counties were considered to be successful. The opportunity to participate in the programs was well-received by those residents who chose to do so. Individuals participated in the programs primarily because of concern about the safety of their water supply. Despite being voluntary programs, a geographically distributed sample representing diverse household and water supply characteristics was obtained. While the project was designed for voluntary participation and quality control in sampling was not assured, the type of information gathered and summarized was, nevertheless, deemed useful for water quality assessment at county and regional levels.
Water quality analysis, for many nuisance constituents, generally supported the participants' descriptions of their water supplies regarding such problems as staining, taste and odor, and appearance. The severity of these symptoms is confirmed by the high incidence of water treatment devices installed - 22% of all households participating had one or more water treatment devices installed.

Considering the results for both the raw and tap water sample groups, and the influence of the few water treatment devices in use, the major remaining household water quality problems in Buckingham, Cumberland, and Nelson Counties, existing from a nuisance standpoint, were iron/manganese and corrosivity. The major health-related concerns were corrosivity (because of the potential to raise dissolved copper and lead levels in household water) and bacteria. Furthermore, elevated nitrate concentrations may present a health risk to infants, in a number of cases. Forty-two percent of the samples tested positive for total coliform and 12% were positive for E. coli bacteria. In these positive cases, participants were advised of ways to improve water supply conditions and were encouraged to pursue retesting for coliform bacteria.

Eighty-six percent of the households that reported having at least one water quality problem had taken, or planned to take, at least one measure to improve the quality of their water supply. Ten percent or more of all respondents had taken, or planned to take, one or more of the following actions: purchase or rent water treatment equipment, contact a state agency for assistance on additional information, and shock chlorinate the water system.

REFERENCES

APPENDIX*

(1) Program Fact Sheet
(2) Sample Identification and Questionnaire Form
(3) Sample Water Quality Analysis Report
(4) Report Interpretation
(5) Post-Program Survey

* The following examples represent forms, reports, etc. used in the Cumberland County Program only. Paperwork for Buckingham and Nelson Counties only was similar, except for the information that was county-specific.
Virginia Cooperative Extension

Knowledge for the CommonWealth

CUMBERLAND COUNTY
HOUSEHOLD WATER TESTING

Purpose:
To conduct an educational and water testing program that will describe to participants the quality of their drinking water.

Whose water will be tested?
➢ Private household water supplies from wells, springs or cisterns.
➢ 100 supplies across the county. First come, first served.

Water will be tested for?

<table>
<thead>
<tr>
<th>Iron</th>
<th>pH</th>
<th>Total Dissolved Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese</td>
<td>Flask</td>
<td>Saturation Index (Corrosion)</td>
</tr>
<tr>
<td>Hardness</td>
<td>Sodium</td>
<td>Coliform Bacteria</td>
</tr>
<tr>
<td>Sulfate</td>
<td>Copper</td>
<td>(Present/Absent)</td>
</tr>
<tr>
<td>Chloride</td>
<td>Nitrate</td>
<td>E-Coli Bacteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Present/Absent)</td>
</tr>
</tbody>
</table>

Cost: $20.00

Persons in a Social Service program may be eligible for financial assistance. Usual cost of these tests is about $200.00.

Funding for this project:
USDA Extension Water Quality Initiative
Cumberland County Board of Supervisors
Virginia Cooperative Extension

Virginia Cooperative Extension programs and employment are open to all regardless of race, color, religion, sex, age, veteran status, national origin, disability, or political affiliation. An equal opportunity-affirmative action employer.
RETURN WATER SAMPLES:

Tuesday, October 13, 1998 – 7:00 a.m. to 1:00 p.m.

Or

Tuesday, October 27, 1998 – 7:00 a.m. to 1:00 p.m.

TO THE CUMBERLAND EXTENSION OFFICE

ATTEND MEETING TO GET FINAL RESULTS:

Monday, November 16, 1998

2:00 P.M. OR 7:30 P.M.

CUMBERLAND EXTENSION OFFICE
SAMPLE IDENTIFICATION (Please print clearly and provide complete information on both sides of form.)

Sample No.: ______________ Date collected: __________________

Sample submitted by:

Name: __
Mailing address: __________________________________

Telephone: _______________________________________

Household water supply source drawn for sample (check one):

___ well ___ spring ___ cistern ___ other (Specify: __________________________)

If well is checked above:

(a) is it a ___ dug or bored well, ___ drilled well, ___ don't know: ___ __
(b) what is its approximate depth, if known? __________________ feet
(c) what year was well constructed, if known? ______________

Do other households share the same water supply? ___ yes ___ no ___ If yes, approximately how many? __________

Water treatment devices currently installed and affecting cold water only drawn at faucet for sample (check all that apply):

___ none ___ acid water neutralizer
___ water softener (conditioner) ___ sediment filter (screen or sand type)
___ iron removal filter ___ activated carbon (charcoal) filter
___ automatic chlorinator ___ other (specify: ____________________________)

SAMPLING INSTRUCTIONS: You must take your water samples only on the collection day you have been assigned. For the general water analysis sample, use the larger plastic bottle as described below. A separate, smaller bottle is provided for bacteriological samples which should be taken last. If you have any questions about sampling procedures, call the Extension Office at 492-4390.

1. Do not remove caps from sample bottles until you are ready to take each sample. Do not touch inside of cap or mouth of either bottle.

2. Turn on the cold water faucet in the kitchen or bathroom (select a stationary, non-swivel faucet, if possible) and allow the water to run until it becomes as cold as it will get, then let it run for one more minute.

3. Slowly and carefully fill the larger bottle to avoid splashing or overflowing. Pour out this rinse water and then refill bottle completely. Tighten cap on bottle securely.

4. Let the water run for an additional two or three minutes. Reduce flow to prevent splashing and carefully fill the smaller bottle only once to the shoulder (just below the threaded top). DO NOT RINSE BOTTLE. Replace cap tightly.

5. Do not write anything on the bottle labels. If samples are not to be delivered immediately, store in refrigerator or on ice until ready to deliver later that day.

6. Fill out this Sample Identification Form and Questionnaire (on reverse side) completely and bring it, along with both water sample bottles to the designated collection site on your assigned collection day.

FOR OFFICE USE ONLY

Map Grid No. __________________________
Lab Sample No. __________________________
Sample Identification and Questionnaire Form (cont.)

QUESTIONNAIRE (Please answer the following questions as completely as possible, considering how you view the present condition of the water sampled, including improvements due to any treatment devices identified on other side of form.)

1. Describe the location of your home. (Check one)
 - on a farm
 - on a remote, rural lot
 - in a rural community
 - in a housing subdivision

2. What pipe material is primarily used throughout your house for water distribution? (Check one)
 - copper
 - lead
 - galvanized steel
 - plastic (PVC, PE, etc.)
 - other (specify: ____________________________)
 - don't know

3. Do you have problems with corrosion or pitting of pipes or plumbing fixtures? ___ yes ___ no

4. Does your water have an unpleasant taste? ___ yes ___ no

5. If yes, how would you describe the taste? (Check all that apply)
 - bitter
 - sulfur
 - salty
 - metallic
 - oily
 - soapy
 - other (specify: ____________________________)

6. Does your water have an objectionable odor? ___ yes ___ no

7. If yes, how would you describe the odor? (Check all that apply)
 - "rotten egg" or sulfur
 - kerosene
 - musty
 - chemical
 - other (specify: ____________________________)

8. Does your water have an unnatural color or appearance? ___ yes ___ no

9. If yes, how would you describe the color or appearance? (Check all that apply)
 - muddy
 - milky
 - black/grey tint
 - yellow tint
 - oily film
 - other (specify: ____________________________)

10. Do you have problems with staining of plumbing fixtures, cooking appliances/utensils, or laundry? ___ yes ___ no

11. If yes, how would you describe the color of stains? (Check all that apply)
 - blue-green
 - rusty (red/orange/brown)
 - black or grey
 - white or chalk
 - other (specify: ____________________________)

12. In a standing glass of water, do you notice floating, suspended, or settled particles? ___ yes ___ no

13. If yes, how would you describe this material? (Check all that apply)
 - white flakes
 - black specks
 - reddish-orange slime
 - brown sediment
 - other (specify: ____________________________)

14. If your water supply is located 100 feet or less from any of the following, please indicate. (Check all that apply)
 - septic system
 - drain field
 - home heating oil storage tank (above or below ground)
 - pit privy or outhouse
 - stream, pond, or lake
 - cemetery
 - compost/trash pile

15. If your water supply is located 1/2 mile or closer to any of the following, please indicate. (Check all that apply)
 - landfill
 - illegal dump
 - field crop/plant production
 - active quarry
 - abandoned quarry, industry, etc.
 - manufacturing/processing operation (specify: ____________________________)
 - commercial underground storage tank or supply lines (gasoline service station, heating oil supplier, etc.)

This material is based upon work supported by the U.S. Department of Agriculture, Extension Service.
Cumberland County
Household Water Quality Program

RR3 Box
Cumberland, VA 23040
(804) 492-

Source: Dug/Bored Well
Treatment: None

Water Quality Results
Date of Sample: 10/27/98

<table>
<thead>
<tr>
<th>Test</th>
<th>Household Water Sample</th>
<th>Maximum Recommended Level or Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron (mg/l)</td>
<td>0.7729**</td>
<td>0.3</td>
</tr>
<tr>
<td>Manganese (mg/l)</td>
<td>< 0.001</td>
<td>0.05</td>
</tr>
<tr>
<td>Hardness (mg/l)</td>
<td>93</td>
<td>180</td>
</tr>
<tr>
<td>Sulfate (mg/l)</td>
<td>6.888</td>
<td>250</td>
</tr>
<tr>
<td>Chloride (mg/l)</td>
<td>55</td>
<td>250</td>
</tr>
<tr>
<td>Fluoride (mg/l)</td>
<td>< 0.5</td>
<td>2</td>
</tr>
<tr>
<td>Total Dissolved Solids (mg/l)</td>
<td>153</td>
<td>500</td>
</tr>
<tr>
<td>pH</td>
<td>6.7</td>
<td>6.5 to 8.5</td>
</tr>
<tr>
<td>Saturation Index</td>
<td>-1.85**</td>
<td>-1 to 1</td>
</tr>
<tr>
<td>Copper (mg/l)</td>
<td>0.005</td>
<td>1.0</td>
</tr>
<tr>
<td>Sodium (mg/l)</td>
<td>18.68</td>
<td>20</td>
</tr>
<tr>
<td>Nitrate-N (mg/l)</td>
<td>2.009</td>
<td>10</td>
</tr>
<tr>
<td>Total Coliform Bacteria</td>
<td>PRESENT**</td>
<td>ABSENT</td>
</tr>
<tr>
<td>E Coli Bacteria</td>
<td>ABSENT</td>
<td>ABSENT</td>
</tr>
</tbody>
</table>

** Measured Value exceeds recommendation for household water.

Analysis coordinated by Water Quality Laboratory, Dept. of Biological Systems Engineering, Virginia Tech, Blacksburg, VA.
The information provided is for the exclusive use of the homeowner and should not be used as official documentation of water quality. The material is based upon work supported by the U.S. Department of Agriculture, Extension Service.
Cumberland County Household Water Quality Program

INTERPRETING YOUR HOUSEHOLD WATER QUALITY ANALYSIS REPORT

IRON
Iron in water does not usually present a health risk. However, it can be very objectional if present in amounts greater than 0.3 mg/l. Excessive iron can leave red-orange-brown stains on plumbing fixtures and laundry. It may give water and/or beverages a bitter, metallic taste and discolor beverages.

MANGANESE
Manganese does not present a health risk. However, if present in amounts greater than 0.05 mg/l it may give water a bitter taste and produce black stains on laundry, cooking utensils, and plumbing fixtures.

HARDNESS
Hardness is a measure of calcium and magnesium in water. Hard water does not present a health risk. However, it keeps soap from lathering, decreases cleaning action of soaps and detergents, leaves soap "scum" on plumbing fixtures, and leaves scale deposits on water pipes and hot water heaters. Softening treatment is highly recommended for very hard water (above 180 mg/l). Water with a hardness of about 50 mg/l or less does not need softening. Water hardness may also be reported in units of grains per gallon, or gpg (1 gpg = 17.1 mg/l hardness). In all but extremely hard water situations, it may be desirable to soften only the hot water.

SULFATE
High sulfate concentrations may result in adverse taste as well as cause a laxative effect. The Secondary Maximum Contaminant Level for sulfate is 250 mg/l. Sulfates are generally naturally present in groundwater and be linked to other sulfur-related problems, such as hydrogen sulfide gas. This gas may be caused by the action of sulfate reducing bacteria as well as other types of bacteria on decaying organic matter. While it is difficult to test for the presence of hydrogen sulfide gas in water, it can be easily detected by its characteristic "rotten egg" odor which may be more noticeable in hot water. Water containing this gas may also corrode iron and other metals in the water system as well as stain plumbing fixtures and cooking utensils.

CHLORIDE
Chloride in drinking water is not a health risk. Natural levels of chlorides are low; high levels in drinking water usually indicate contamination from a septic system, road salts, fertilizers, industry, or animal wastes. High levels of chloride may speed corrosion rates of metal pipes, and causing pitting and darkening of stainless steel. The EPA has set a Secondary Maximum Contaminant Level for chloride of 250 mg/l.

FLUORIDE
Fluoride is of concern primarily from the standpoint of its effect on teeth and gums. Small concentrations of fluoride are considered to be beneficial in preventing tooth decay while moderate amounts can cause brownish discoloration of teeth and high fluoride concentrations can lead to tooth and bone damage. For these reasons, the EPA has set both a Secondary Maximum Contaminant Level and a Maximum Contaminant Level of 2 and 4 mg/l, respectively.

TOTAL DISSOLVED SOLIDS (TDS)
High concentrations of dissolved solids may cause adverse taste effects and may also lead to increased deterioration of household plumbing and appliances. The EPA Secondary Maximum Contaminant Level is 500 mg/l total dissolved solids.

pH
The pH of water indicates whether it is acidic (below 7.0) or alkaline (above 7.0). Acidic water can cause corrosion in pipes, and may cause toxic metals from plumbing systems, such as copper and lead, to be dissolved in drinking water. Dissolved copper may give water a bitter or metallic taste, and produce blue-green stains on plumbing fixtures. The life of plumbing systems may be shortened due to corrosion requiring expensive repair and replacement of water pipes and plumbing fixtures. The use of plastic pipes throughout the water distribution system should lessen these concerns. Water with a pH below 6.5 is considered to be acidic enough to require treatment. Alkaline water with a pH above 8.5 is seldom found naturally, and may indicate contamination by alkaline industrial wastes. The EPA has set a suggested range of between 6.5 and 8.5 on the pH scale for drinking water.
SA T U R A TI O N I N D E X

The saturation (Langlier) index, in addition to pH, is used to evaluate the extent of potential corrosion of metal pipes, plumbing fixtures, etc. It is a calculated value based on the calcium concentration, total dissolved solids concentration, measured pH, and alkalinity, and is a measure of the scale formation potential of the water. A saturation index greater than zero indicates that protective calcium carbonate deposits may readily form on pipe walls. A saturation index less than zero indicates that the water does not have scale-forming properties and pipes may be subject to corrosion. Saturation index values between -1 and +1 are considered acceptable for household water supplies.

NOTE: Values of less than -1 need not be of concern if the water is not acidic (indicated by a pH of 7.0 or above). Water softener owners may note a saturation index reading lower than desired. While these treatment devices correct hardness, they may enhance the corrosion potential of the water. Concerns about resulting drinking water quality may be lessened by softening only the hot water or bypassing drinking water lines.

CO P P E R

The EPA drinking water standard for copper is 1.3 mg/l, based on concerns about acute gastrointestinal illness. Since dissolved copper also leaves blue-green stains on plumbing fixtures, a Secondary Maximum Contaminant Level of 1.0 mg/l is also provided for copper. While copper in household water most often comes from the corrosion of brass and copper plumbing materials, this type of contamination is not likely to be detected under the sampling procedure followed in this program which called for flushing the water lines. Therefore, any excessive amounts of copper from the water source itself may indicate contamination from industrial wastes or dumps/landfills.

SO D I U M

Excessive sodium has been linked to problems with high blood pressure, and heart and kidney diseases. Moderate quantities of sodium in drinking water are not considered harmful since an individual normally receives most (over 90%) of his/her sodium intake from food. For those on low-sodium diets, both the American Heart Association and EPA suggest 10 mg/l as a maximum level for sodium in drinking water; a physician should be consulted in individual cases. Water softening by ion-exchange will increase sodium levels in water. To reduce sodium in drinking water requiring such treatment, soften only the hot water or bypass drinking water lines.

N I T R A T E

High levels of nitrate may cause methemoglobinemia or “blue-baby” disease in infants. Though the EPA has set a Maximum Contaminant Level for nitrate-nitrogen of 10 mg/l, they suggest that water with greater than 1 mg/l be used with caution for feeding infants. Levels of higher than 3 mg/l may indicate excessive contamination of water supply by commercial fertilizers as well as organic wastes from septic systems or farm animal operations.

T O T A L C O L I F O R M B A C T E R I A

Microbiological contamination of drinking water can cause short term gastrointestinal disorders, resulting in cramps and diarrhea that may be mild to very severe. Other diseases of concern are Viral Hepatitis A, salmonella infections, dysentery, typhoid fever, and cholera. While coliform bacteria do not cause disease, they serve as indicators of the possible presence of disease bacteria. Coliform bacteria are always present in the digestive systems of humans and animals and could also come from natural sources such as soil or decaying vegetation. Analysis for total coliform bacteria is the EPA standard test for microbiological contamination of a water supply. A positive test result reported as “present” indicates the presence of coliform bacteria and is followed by a test for fecal coliform bacteria.

E. COLI

A test for fecal coliform bacteria is necessary to determine whether or not any coliform bacteria present are from human and/or animal waste. A positive E. coli test result reported as “present” indicates that waste from a septic system or nearby animals is likely contaminating the water supply.

Glossary

EPA - U. S. Environmental Protection Agency
mg/l - Concentration unit of milligrams per liter in water, equivalent to one part per million (ppm).

Maximum Contaminant Level (MCL) - Legally enforceable national standard set by the EPA to protect the public from exposure to water hazards. Standards only apply to public drinking water systems. but they also serve as a goal for individual water supplies.

Secondary Maximum Contaminant Level (SMCL) - Concentration limits for nuisance contaminants and physical problems. These standards are not enforced by government. However, they are useful guidelines for individual water supplies.

Compiled by Blake Ross, Extension Agricultural Engineer, and Kathy Parrott, Extension Specialist, Housing, Virginia Tech, Blacksburg, VA
November 1998

This material is based upon work supported by the U. S. Department of Agriculture Extension Service.
Post-Program Survey

Cumberland County

HOUSEHOLD WATER QUALITY PROGRAM EVALUATION SURVEY

Please answer each question below as instructed in reference to your household water supply only. Your answers are completely confidential and cannot be identified with any individual participant.

1. Have you had a laboratory test of your water supply before this Household Water Quality Education Program? Yes _____ No _____

 If Yes, about what year was your last test? __________

2. What prompted you to participate in this program? (Check all that apply.)

 _____ Concern about safety of my water supply
 _____ Nuisance problems such as staining, objectionable taste or odor, corrosion, etc.
 _____ Follow-up to previous test of my water supply
 _____ Other (explain)

3. Did your household water analysis in this program show that your water was unsatisfactory for any of the following tests? (Check one response for each test.)

 Nitrate Yes _____ No _____
 Sodium Yes _____ No _____
 Iron Yes _____ No _____
 Manganese Yes _____ No _____
 Hardness Yes _____ No _____
 pH Yes _____ No _____

4. What were the results of the tests for the following? (Check one response for each test.)

 Total coliform bacteria Present _____ Absent _____
 E. coli bacteria Present _____ Absent _____

5. Since receiving the results of your water quality analysis, which of the following measures do you plan to take, or have already taken, to improve the quality of your water supply? (Check all that apply.)

 _____ Contact a state agency such as the Health Dept., Dept. of Environmental Quality, etc. for assistance or additional information
 _____ Seek additional water testing from a laboratory
 _____ Determine source of undesirable condition
 _____ Pump out septic system
 _____ Improve physical condition of water source (well, spring, or cistern)
 _____ Shock chlorinate water system
 _____ Obtain new water source
 _____ Use bottled water for drinking/cooking
 _____ Temporary disinfection, such as boiling water
 _____ Purchase or rent water treatment equipment
 _____ Improve functioning of existing water treatment equipment
 _____ Take other measures to eliminate or reduce contaminant(s) in your water (explain)

 Haven't done anything because __________________________

Virginia Cooperative Extension programs and employment are open to all, regardless of race, color, religion, sex, age, veteran status, national origin, disability, or political affiliation. An equal opportunity/affirmative action employer. Issued in furtherance of Cooperative Extension work, Virginia Polytechnic Institute and State University, Virginia State University, and the U.S. Department of Agriculture cooperating. Clark Jones, Director, Virginia Cooperative Extension, Virginia Tech, Blacksburg; Lorenzo W. Lyons, Administrator, 1890 Extension Program, Virginia State, Petersburg.
The following questions are designed to provide us with a profile of the total audience we've reached with this program. Be assured that answers cannot be identified with individual participants.

6. How many years have you lived at your present location? _____

7. Number of persons in your household. _____

8. What is the highest grade in school you've completed? (Check one.)
 — Grade school
 — Some high school
 — High school graduate
 — Some education after high school
 — College graduate

9. What is your family income before taxes? (Check one.)
 — Less than $10,000
 — $10,000 to $14,999
 — $15,000 to $19,999
 — $20,000 to $24,999
 — $25,000 to $34,999
 — $35,000 to $49,000
 — $50,000 or more

10. Other comments about the Household Water Quality Education Program:

 __

 __

11. Are there other educational programs that you would like to see offered by the Cumberland County Extension Office?

 __

12. How did you hear about this Household Water Quality Education Program? (Check all that apply.)
 — Newspaper
 — Radio
 — Television
 — Extension Newsletter
 — Flyer from child’s school
 — Friend or Neighbor
 — Other (explain)

Thank you for your participation. Please return this survey form by February 1, 1999. A postage-paid envelope has been provided for your use in returning this form to:

Edward Hanes, Cumberland County
Virginia Cooperative Extension
Extension Distribution Center
112 Landsdowne Street
Blacksburg, VA 24060-9984