Transition Metal Complexes Anchored on Europium Oxide Nanoparticles

Joan Marie D. Zapiter

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Master of Science
in
Chemistry

Brian M. Tissue, Chair
Karen J. Brewer
James M. Tanko

November 8, 2013
Blacksburg, Virginia

Keywords: lanthanide, spectroscopy, photochemistry, energy transfer, luminescence, inert-gas condensation, ruthenium, rhodium, iridium, bipyridine
Polypyridyl transition metal complexes containing ruthenium, rhodium and iridium centers are mainly studied due to their light absorbing and emitting properties. Lanthanide oxides such as europium oxide absorb light as well and exhibit strong luminescence and long lifetimes. The optical properties of these materials were significant especially in solar energy utilization schemes and optical applications. Energy transfer across a surface is important in several applications including phosphors and biomedical applications. Excited states of metal complexes with a carboxylate-containing ligand such as deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate were studied on nanoparticle surfaces. In this work, [Rh(deeb)\(_2\)Cl\(_2\)](PF\(_6\)), [Ir(deeb)\(_2\)Cl\(_2\)](PF\(_6\)) and [Ir(deeb)\(_2\)(dpp)](PF\(_6\))\(_3\) were synthesized using the building block approach. The metal complexes were characterized using \(^1\)H NMR spectroscopy, mass spectrometry, electronic absorption spectroscopy and electrochemistry. The \(^1\)H NMR spectra of the complexes were consistent with those of their ruthenium analogs. Mass spectra contain fragmentation patterns of the (M-PF\(_6\))^+ molecular ion for [Rh(deeb)\(_2\)Cl\(_2\)](PF\(_6\)) and [Ir(deeb)\(_2\)Cl\(_2\)](PF\(_6\)), and (M-3PF\(_6\))\(^{3+}\) molecular ions for [Ir(deeb)\(_2\)(dpp)](PF\(_6\))\(_3\). The electronic absorption spectrum of [Rh(deeb)\(_2\)Cl\(_2\)](PF\(_6\)) shows a maximum at 328 nm, which is assigned as \(^1\)π→π* transition. The electronic absorption spectrum of [Ir(deeb)\(_2\)Cl\(_2\)](PF\(_6\)) shows maxima at 308 nm and 402 nm, which are assigned as \(^1\)π→π* and metal-to-ligand charge transfer transitions, respectively. The [Ir(deeb)\(_2\)(dpp)](PF\(_6\))\(_3\) complex exhibits peaks due to \(^1\)π→π* transitions at 322 nm and 334 nm. [Rh(deeb)\(_2\)Cl\(_2\)](PF\(_6\)) has emission maxima from the \(^3\)LF state at 680 nm and 704 nm for the solid and glassy solutions at
77 K, respectively. [Ir(deeb)$_2$Cl$_2$](PF$_6$)$_2$ has emission maxima from the 3MLCT state at 538 nm in acetonitrile and 567 nm in the solid state at room temperature, with lifetimes of 1.71 μs and 0.35 μs, respectively. [Ir(deeb)$_2$Cl$_2$](PF$_6$)$_2$ has an unusually higher quantum yield than analogous compounds. [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$ has emission maxima from the 3IL state at 540 nm in acetonitrile and 599 nm in the solid state at room temperature, with lifetimes of 1.23 μs and 0.14 μs, respectively. Cyclic voltammetry of [Ir(deeb)$_2$Cl$_2$](PF$_6$)$_2$ and [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$ yield reversible and quasi-reversible couples corresponding to deeb ligand and Ir$^{3+/+}$ reductions, respectively. Attachment of the complexes were conducted by equilibration of complex solutions in acetonitrile with europium oxide nanoparticles. Europium oxide nanoparticles, which were synthesized by gas-phase condensation, have 11-nm diameters and exhibit sharp f-based luminescence in the visible and near IR regions. EDX, TEM, IR and reflectance spectroscopy measurements indicate substantial coating through various modes of attachment of the nanoparticle surface by the metal complexes while retaining the excited state properties of the metal complexes. Surface adsorption studies indicate monolayer coverage of the nanoparticle surface by the metal complexes, consistent with limiting surface coverages of previously reported analogous systems. Eu$_2$O$_3$ nanoparticles modified with [Rh(deeb)$_2$Cl$_2$]$^+$ exhibit minimal to no energy transfer from emission spectra, and a reduction in the lifetime at 77K could be due to the rhodium complex preventing the excitation of Eu$^{3+}$. Upon attachment of the Ir complexes [Ir(deeb)$_2$Cl$_2$]$^+$ and [Ir(deeb)$_2$(dpp)]$^{3+}$ on as-prepared nanoparticles, Eu$^{3+}$ luminescence was observed for nanoparticles modified with iridium complexes at room temperature, which could be due to energy transfer among other possibilities. Efficiencies of 68% and 50%, and energy transfer rate constants of 1.1×10^{-5} and 1.0×10^{-5} were calculated from lifetime data for [Ir(deeb)$_2$Cl$_2$]$^+$ and [Ir(deeb)$_2$(dpp)]$^{3+}$ on Eu$_2$O$_3$ nanoparticles, respectively. Since iridium
complexes are used as components of light-emitting diodes, europium oxide nanoparticles modified with iridium complexes have potential in optical applications which make studies of these compounds interesting.
Acknowledgement

I wish to extend my sincerest gratitude to the following for their generous help in this work:

Profs. Karen Brewer and Brian Tissue for all the knowledge they have imparted and their invaluable help, guidance, patience and understanding.

Prof. Paul Deck, for his incredible concern and support for the graduate students in the Chemistry Department.

Profs. James Tanko, Gordon Yee and Diego Troya, for their useful comments and feedback.

Past and present members of the Brewer and Tissue groups, especially Shamindri Arachchige, Avijita Jain, Ran Miao, Mark Elvington, David Zigler, Sheng Zhao, Jared Brown, Matt Mongelli, Travis White, Sam Hopkins, Jessica Knoll, Jing Wang, Elise Naughton, Rongwei Zhou, Roberto Padilla, Gerry Manbeck and Wes Gordon, for all their help in the lab.

Prof. John Morris, Steve Burrow and the Morris group, for the IR measurements under vacuum.

David Hobart and Frank Cromer, for the EDX and XPS measurements.

Prof. Robert Moore, Gilles Divoux, Prof. Sarah Stoll and Michele Pablico-Lansigan, for the X-ray diffraction measurements.

Steve McCartney, for the SEM and TEM measurements.

John Burleson, Geno Iannacone, Hugo Azurmendi, Tom Glass, Tom Wertalik, Bill Bebout and Larry Jackson for their assistance in NMR, IR, MS, glassware and electronics trouble.

The Chemistry Dept. administrative staff, for always being wonderful in assisting students on everything.

Profs. Joe Merola, Alan Esker and T. Daniel Crawford, for their recommendations and faith in my abilities in teaching.

Jessica Lu, Paula Weiss, Hiro Motegi, for their friendship and moral support.

The Filipino community in Blacksburg/Christiansburg, especially Rob Rebodos, Jess Calata, Alan Batongbacal, Melanie Victoria, Jason Maupin, Jessie Luo, Roy Tan, Allan Sioson, Richard Yao, Lynn Rallos, Noah Badayos, Cathy Aregon, Jen Colcol, and the Folledo, Ozaraga, Buyhoff and Ballweg families, for being my home away from home.

And to my family: Mummy, Janice, Karla and Cholo, for always being there for me as I am for them.
Table of contents

Acknowledgement.. v
Table of Contents... vi
List of Figures... viii
List of Tables.. xii
List of Abbreviations.. xiii
Chapter 1 - Introduction and Motivation.. 1
1.1 Thesis Statement.. 1
1.2 Europium Oxide Nanoparticles... 1
1.3 Light-Absorbing Transition Metal Complexes... 4
1.4 Metal Complexes on Metal Oxide Nanoparticles.. 6
1.5 Energy Transfer.. 8
1.6 Summary of Thesis... 19
Chapter 2- Experimental Methods.. 20
2.1 Molecular Synthesis.. 20
2.2 Nanoparticle Synthesis... 22
2.3 1H NMR Spectroscopy... 23
2.4 Mass Spectrometry... 23
2.5 Electronic Absorption Spectroscopy.. 24
2.6 Electron Microscopy... 24
2.7 X-ray Powder Diffraction... 24
2.8 Preparation of Metal Complexes Anchored on Metal Oxides.. 24
2.9 Reflection Spectroscopy.. 25
2.10 ATR FT-IR Spectroscopy.. 25
2.11 Quantitative Adsorption Studies.. 26
2.12 Energy Dispersive X-ray (EDX) Analysis.. 26
2.13 Emission Spectroscopy.. 26
2.14 Lifetime Measurements... 27
2.15 Electrochemistry... 28
Chapter 3. Characterization of Ruthenium, Rhodium and Iridium Monometallic Complexes and Europium Oxide Nanoparticles... 29
3.1 Characterization of Monometallic Complexes.. 29
3.1.1 Ruthenium Complexes... 29
3.1.2 Rhodium Complex... 31
3.1.3 Iridium complexes.. 35
3.2 Characterization of Europium Oxide Nanoparticles.. 44
Chapter 4. Ruthenium, Rhodium and Iridium Monometallic Complexes on Europium Oxide Nanoparticles... 50
4.1 Attachment of Metal Complexes on Nanoparticles.. 50
4.1.1 Mode of Binding of Complexes on Nanoparticles... 50
4.1.2 Quantitative Surface Binding Studies.. 54
4.1.3 Energy Dispersive X-ray (EDX) Analysis... 55
4.2 Photophysical Properties of Metal Complexes on Nanoparticles.................................. 57
4.2.1 Reflection Spectroscopy of Metal Complexes on Nanoparticles............................... 58
4.2.2 Emission Spectroscopy...61
4.2.3 Lifetime Studies..66
Chapter 5. Conclusions and Future Work..70
Appendices..72
Appendix A – 2D 1H NMR Spectra of [Rh(deeb)$_2$Cl$_2$](PF$_6$), [Ir(deeb)$_2$Cl$_2$](PF$_6$) and [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$..72
Appendix B – Mass Spectra of [Rh(deeb)$_2$Cl$_2$](PF$_6$), [Ir(deeb)$_2$Cl$_2$](PF$_6$) and [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$..74
Appendix C – EDX Spectra of Metal Complexes on Eu$_2$O$_3$ and Y$_2$O$_3$ Nanoparticles..79
References...85
List of Figures

Figure 1.1. Dieke energy diagram of trivalent lanthanide ions............................. 2
Figure 1.2. Attachment of a ruthenium complex to a TiO₂ surface............................ 7
Figure 1.3. Schematic of formation and decay of charge-transfer excited states............. 8
Figure 1.4. Structure of (A) an Ir-Eu-Ir system that demonstrates Ir³⁺→Eu³⁺ energy transfer for emitting white light, and (B) an iridium complex adsorbed on [Eu(W₅O₁₈)]⁰ Langmuir-Blodgett films.. 14
Figure 1.5. (A) Schematic of cyanine 5 attached to the Eu³⁺:YVO₄ nanoparticle surface; (B) Emission spectrum of Eu³⁺:YVO₄ nanoparticle (inset shows absorption spectrum), and absorption and emission spectra of cyanine 5... 15
Figure 1.6. Structure of (A) [Eu(DBM)₃(DB-bpy)]³⁺, and (B) [Eu(TBP)]³⁺ complex................ 16
Figure 1.7. (A) Schematic of CdSe/ZnS quantum dot-biotin (Biotin-QD) combined with [Tb(6-CO₂bpy)₂]³⁺-streptavidin (TbL-Strep) complex; (B) Normalized emission spectrum of TbL (--), and emission (…) and absorption spectra of Biotin-QD (-----)... 18
Figure 2.1. Schematic of the synthesis chamber for inert-gas condensation of nanoparticles... 23
Figure 3.1. (A) Structures and chemical shift assignments of [Ru(deeb)₂Cl] and deeb, where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate; 1D ¹H NMR of (B) [Ru(deeb)₂Cl] and (C) deeb in CD₂Cl₂ (* and ** indicate solvent peak and water, respectively); aromatic region of (D) COSY and (E) NOESY ¹H NMR spectra of [Ru(deeb)₂Cl] in CDCl₃... 30
Figure 3.2. (A) Electronic absorption spectrum and (B) cyclic voltammogram of [Ru(deeb)₂dpp](PF₆)₂ at room temperature in CH₃CN (deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate, dpp = 2,3-bis(2-pyridyl)pyrazine)... 31
Figure 3.3. (A) Structure and chemical shift assignment of [Rh(deeb)₂Cl₂](PF₆), where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate; (B) 1D ¹H NMR of [Rh(deeb)₂Cl₂](PF₆) in CD₂Cl₂ (* indicates solvent peak); aromatic region of (D) COSY and (E) NOESY ¹H NMR spectra of [Rh(deeb)₂Cl₂](PF₆) in CD₂Cl₂.. 32
Figure 3.4. Mass Spectrum of [Rh(deeb)₂Cl₂](PF₆).. 33
Figure 3.5. (A) Electronic absorption spectra of bpy (-----), deeb (⋯⋯⋯), [Rh(bpy)₂Cl₂](PF₆) (-----) and [Rh(deeb)₂Cl₂](PF₆) (-----) at room temperature in CH₃CN (deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate; bpy = 2,2'-bipyridine); (B) Emission spectra at 77 K of
[Rh(deeb)$_2$Cl$_2$](PF$_6$)$_2$ solid (solid line) and in 4:1 MeOH:EtOH glass (dotted line)..34

Figure 3.6. Energy diagram for Eu$_2$O$_3$ and [Rh(deeb)$_2$Cl$_2$](PF$_6$)$_2$, where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate. ..34

Figure 3.7. (A) Structures and chemical shift assignments, (B) 1D 1H NMR spectra and (C) 1H-1H COSY NMR spectra of aromatic regions of [Ir(deeb)$_2$Cl$_2$](PF$_6$)$_2$ and [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$ in (CD$_3$)$_2$CO, where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate, dpp = 2,3-bis(2-pyridyl)pyrazine (* and ** indicate solvent and water, respectively)..36

Figure 3.8. Experimental and theoretical mass spectral data for [Ir(deeb)$_2$Cl$_2$](PF$_6$)$_2$ and [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$, where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate, dpp = 2,3-bis(2-pyridyl)pyrazine. ..37

Figure 3.9. Cyclic voltammograms of (A) [Ir(deeb)$_2$Cl$_2$](PF$_6$)$_2$ and (B) [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$ using 0.1 M TBAH in CH$_3$CN as supporting electrolyte at room temperature (deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate, dpp = 2,3-bis(2-pyridyl)pyrazine)..39

Figure 3.10. Electronic absorption and normalized emission spectra at room temperature of (A) [Ir(deeb)$_2$Cl$_2$](PF$_6$)$_2$ and (B) [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$ in CH$_3$CN and as solid (deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate, dpp = 2,3-bis(2-pyridyl)pyrazine)..41

Figure 3.11. Lifetime decay curves and residual plots of (A) [Ir(deeb)$_2$Cl$_2$](PF$_6$)$_2$ and (B) [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$ in CH$_3$CN and as solid at room temperature (deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate, dpp = 2,3-bis(2-pyridyl)pyrazine)..42

Figure 3.12. Energy diagram for Eu$_2$O$_3$, [Ir(deeb)$_2$Cl$_2$](PF$_6$)$_2$, and [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$, where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate and dpp = 2,3-bis(2-pyridyl)pyrazine..44

Figure 3.13. SEM image and particle size distribution of as-prepared Eu$_2$O$_3$ nanoparticles synthesized at 100 Torr N$_2$..45

Figure 3.14. (A) X-ray diffraction pattern of as-prepared Eu$_2$O$_3$ nanoparticles synthesized at 100 Torr N$_2$, and standard patterns for monoclinic and cubic Eu$_2$O$_3$; (B) the Scherrer equation. ..45

Figure 3.15. ATR-FTIR spectra of Eu$_2$O$_3$ nanoparticles under vacuum with gradual heating..48

Figure 3.16. Solid reflection spectra of modified Eu$_2$O$_3$ nanoparticles, where $F(R)$ is the Kubelka–Munk coefficient, $F(R) = (1-R)^2/2R$, where $R = J/J_{ref}$ and J is the reflected intensity of the sample. ..48
Figure 3.17. Spectroscopic data for as-prepared Europium (III) oxide nanoparticles synthesized at 100 Torr N₂. (A) Emission spectrum at 77K (λex = 395 nm); (B) excitation spectrum at 77 K (λem = 615 nm); lifetime decay at RT (λex = 395 nm, λem = 615 nm) with gate widths of (C) 1 ms and (D) 100 μs.......

Figure 4.1. ATR-FTIR spectra of Eu₂O₃, [Ru(deeb)²Cl₂], Eu₂O₃ modified with [Ru(deeb)²Cl₂], [Rh(deeb)²Cl₂](PF₆³), and Eu₂O₃ modified with [Rh(deeb)²Cl₂](PF₆³) at ambient conditions, where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate.............

Figure 4.2. Various modes of attachment of carboxylate-containing ligands on metal oxides..52

Figure 4.3. ATR-FTIR spectra of (a) Eu₂O₃, (b) Eu₂O₃ modified with [Ir(deeb)²Cl₂]⁺, (c) Eu₂O₃ modified with [Ir(deeb)²Cl₂]⁺ minus Eu₂O₃, and d) solid [Ir(deeb)²Cl₂](PF₆³), where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate.................53

Figure 4.4. Langmuir isotherm plots of [Ru(deeb)²(dpp)]²⁺ on 12-nm Eu₂O₃ nanoparticles, where Γ = amount of complex adsorbed, Ceq = solution concentration at equilibrium.55

Figure 4.5. Energy diagram of Eu₂O₃, [Rh(deeb)²Cl₂](PF₆³), [Ir(deeb)²Cl₂](PF₆³) and [Ir(deeb)²(dpp)](PF₆³)...58

Figure 4.6. Solid reflection spectrum of a) [Ru(deeb)²Cl₂] and Eu₂O₃ modified with [Ru(deeb)²Cl₂], and b) [Ru(deeb)²(dpp)](PF₆³) and Eu₂O₃ modified with [Ru(deeb)²(dpp)](PF₆³), where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate. F(R) is the Kubelka-Munk coefficient, F(R) = (1-R)²/2R, where R = J/Jref and J is the reflected intensity of the sample.¹¹² The dotted line is the absorption spectrum in CH₂Cl₂ and CH₂CN solution (scale on right y-axis)..........................59

Figure 4.7. a) Solution absorption of [Ir(deeb)²Cl₂]⁺ and solid reflection spectra of modified Y₂O₃ and Eu₂O₃ nanoparticles; b) Solution absorption of [Ir(deeb)²(dpp)]²⁺ and solid reflection spectra of modified Y₂O₃ and Eu₂O₃ nanoparticles, where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate and dpp = 2,3-bis(2-pyridyl)pyrazine. F(R) is the Kubelka-Munk coefficient, F(R) = (1-R)²/2R, where R = J/Jref and J is the reflected intensity of the sample.¹⁴⁰60

Figure 4.8. Excitation spectra (λem = 615 nm) and emission spectra (λex = 394 nm) at room temperature of Eu₂O₃ and Eu₂O₃ modified with deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate...61

Figure 4.9. Emission spectra exciting at a) λex = 288 nm and b) λex = 394 nm at 77 K of Eu₂O₃ and Eu₂O₃ modified with [Rh(deeb)²Cl₂]⁺, where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate. ...63

Figure 4.10. Excitation spectra emitting at a) λem = 615 nm, and b) λem = 395 nm at 77 K of Eu₂O₃ and Eu₂O₃ modified with [Rh(deeb)²Cl₂]⁺, where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate. ...63
Figure 4.11. Excitation ($\lambda_{\text{ex}} = 440$ nm) and emission spectra ($\lambda_{\text{em}} = 615$ nm) at room temperature of a) Eu$_2$O$_3$, Y$_2$O$_3$ modified with [Ir(deeb)$_2$Cl$_2$]$^+$ and Eu$_2$O$_3$ modified with [Ir(deeb)$_2$Cl$_2$]$^+$; b) Eu$_2$O$_3$, Y$_2$O$_3$ modified with [Ir(deeb)$_2$(dpp)]$^{3+}$ and Eu$_2$O$_3$ modified with [Ir(deeb)$_2$(dpp)]$^{3+}$, where deeb = diethyl-2,2′-bipyridine-4,4′-dicarboxylate and dpp = 2,3-bis(2-pyridyl)pyrazine.

Figure 4.12. Lifetime decay profile of (a) as-prepared Eu$_2$O$_3$ nanoparticles synthesized at 100 Torr N$_2$ and (b) Eu$_2$O$_3$ nanoparticles modified with [Rh(deeb)$_2$Cl$_2$]$^+$ ($\lambda_{\text{ex}} = 395$ nm, $\lambda_{\text{em}} = 615$ nm) at 77 K with a gate width of 0.1 ms, where deeb = diethyl-2,2′-bipyridine-4,4′-dicarboxylate and dpp = 2,3-bis(2-pyridyl)pyrazine.

Figure 4.13. Lifetime decay profiles of (a) [Ir(deeb)$_2$Cl$_2$]$^+$ anchored on nanocrystalline Y$_2$O$_3$ and Eu$_2$O$_3$ ($\lambda_{\text{ex}} = 396$ nm, $\lambda_{\text{em}} = 555$ nm); and (b) [Ir(deeb)$_2$(dpp)]$^{3+}$ anchored on nanocrystalline Y$_2$O$_3$ and Eu$_2$O$_3$ ($\lambda_{\text{ex}} = 396$ nm, $\lambda_{\text{em}} = 565$ nm) at RT, where deeb = diethyl-2,2′-bipyridine-4,4′-dicarboxylate and dpp = 2,3-bis(2-pyridyl)pyrazine.
List of Tables

Table 3.1. Electrochemical data for [Ir(deeb)2Cl2](PF6), [Ir(bpy)2Cl2](PF6), [Ir(dpp)2Cl2](PF6) and [Ir(deeb)2(dpp)](PF6)3 using 0.1 M TBAH in CH3CN as supporting electrolyte at room temperature...38

Table 3.2. Electronic spectral data for [Ir(deeb)2Cl2](PF6), [Ir(bpy)2Cl2]+ and [Ir(deeb)2(dpp)](PF6)3 at room temperature...43

Table 3.3. Infrared peaks of Eu2O3 nanoparticles under vacuum..47

Table 4.1. Infrared peaks of Eu2O3 nanoparticles, Eu2O3 modified with [Ir(deeb)2Cl2]+ and [Ir(deeb)2Cl2](PF6)..54

Table 4.2. EDX analysis of [Ir(deeb)2Cl2]+, [Ir(deeb)2(dpp)]3+ and [Ru(deeb)2(dpp)]2+ on Eu2O3 nanoparticles...57

Table 4.3. EDX analysis of [Ir(deeb)2Cl2]+, [Ir(deeb)2(dpp)]3+ and [Ru(deeb)2(dpp)]2+ on Y2O3 nanoparticles...57

Table 4.4. Kinetic parameters for energy transfer of [Ir(deeb)2Cl2]+ and [Ir(deeb)2(dpp)]3+ on Y2O3 and Eu2O3...68
List of Abbreviations

1D One-dimensional
2D Two-dimensional
5,6-Mephen 5,6-dimethyl-1,10-phenanthroline
A acceptor
ATR-FTIR Attenuated Total Reflectance-Fourier Transform Infrared
COSY Correlation Spectroscopy
CT Charge Transfer
bpy 2,2′-bipyridine
Cy5 Cyanine 5
D donor
dcb 2,2′-bipyridine-4,4′-dicarboxylic acid
deeb diethyl-2,2′-bipyridine-4,4′-dicarboxylate
DMF dimethylformamide
dpp 2,3-bis(2-pyridyl)pyrazine
DSSC Dye-Sensitized Solar Cell
ET Energy Transfer
FAB-MS Fast Atom Bombardment-Mass Spectrometry
HOMO Highest Occupied Molecular Orbital
IL Internal Ligand
IR Infrared
LB Langmuir-Blodgett
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>LMCT</td>
<td>Ligand-to-Metal Charge Transfer</td>
</tr>
<tr>
<td>MLCT</td>
<td>Metal-to-Ligand Charge Transfer</td>
</tr>
<tr>
<td>LF</td>
<td>Ligand Field</td>
</tr>
<tr>
<td>mcbb</td>
<td>4-methyl-2,2$'$-bipyridine-4$'$-carboxylic acid</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>NOESY</td>
<td>Nuclear Overhauser Effect Spectroscopy</td>
</tr>
<tr>
<td>NP</td>
<td>Nanoparticle</td>
</tr>
<tr>
<td>phen</td>
<td>1,10-phenanthroline</td>
</tr>
<tr>
<td>ppy</td>
<td>2-phenylpyridine</td>
</tr>
<tr>
<td>QD</td>
<td>Quantum Dot</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>TBP</td>
<td>Trisbipyridin</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>EDX</td>
<td>Electron Dispersive X-ray</td>
</tr>
</tbody>
</table>
Chapter 1 - Introduction and Motivation

1.1 Thesis Statement

Light absorbing and emitting ruthenium, rhodium and iridium polypyridyl complexes anchored onto luminescent europium oxide nanoparticles through carboxylate groups were prepared and studied to determine if energy transfer could occur between metal complexes and nanoparticles, and if so, determine how the energetics of excited states involved and other factors would affect the extent of energy transfer.

1.2 Europium Oxide Nanoparticles

Lanthanide oxides such as Eu₂O₃ are used in optical, electronic, and catalytic applications because of their optical properties. For instance, Eu³⁺ doped in Y₂O₃, being the red phosphor coating for early tricolored fluorescent lamps and cathode ray tubes, is vital in the development of this type of materials. This is due to the fact that Eu³⁺ and other lanthanide ions exhibit strong and sharp emission bands in the visible and near IR regions with long lifetimes because of Laporte- and spin-forbidden transitions from the 4f orbitals. Dieke summarized the different energy states of Eu³⁺ and other trivalent lanthanide ions, as shown in Figure 1.1. Energy states are designated using term symbols \(^{2S + 1}L_J \) where \(S \) = total spin quantum number, \(L \) = atomic term symbol for the total orbital quantum number and \(J \) = multiplet energy level that can be split up to \(2J + 1 \) sublevels. Excited state energies of the 4f orbitals are only slightly changed with coordination environment because of shielding from the outer 5s and 5p electrons, a factor which reduces complications in employing lanthanides in energy transfer schemes. The spectrum of Eu₂O₃ has bands due to relaxation of the \(^7D_J \) states upon excitation from the \(^7F_0 \) ground state, as observed in free Eu³⁺, as well as a ligand-to-metal charge transfer
(LMCT) band that is formed from exciting an electron from an O2- 2p orbital to a 4f Eu3+ orbital.7,8 Unlike the sharp 4f transitions, the CT state is broad and its energy is highly dependent on the coordination environment. In the emission spectrum, the transition at $^{5}\text{D}_0\rightarrow^{7}\text{F}_2$ at around 615 nm is most intense, although the $^{5}\text{D}_0\rightarrow^{7}\text{F}_1$ and $^{5}\text{D}_0\rightarrow^{7}\text{F}_3$ are also observable. Also, due to the forbidden nature of the 4f transitions, emission lifetimes are in the order of microseconds to milliseconds.

Lanthanide ions in phosphors are mostly incorporated in a solid matrix because higher luminescence quantum efficiencies are achieved in ionic solids than in solutions due to lower vibrational frequencies and consequently lower nonradiative loss in solids.6 In this work, Eu\textsubscript{2}O\textsubscript{3} is chosen as a model system due to the inherent thermodynamic stability of lanthanide oxides17 and to avoid inhomogeneous dopant distribution despite the reduced luminescence.18
Nanomaterials have gained increasing interest due to technological advances and their enhanced optical, electronic and magnetic properties due to size, confinement, and surface and interfacial effects.19,20 Although Eu$_2$O$_3$ nanoparticles have decreased luminescence quantum efficiency and lifetimes compared to bulk material due to surface defects,21-24 coupling of vibrational states and emission wavelengths are not critically dependent on size compared to other nanometer-sized particles, such as quantum dots.25 Nanoparticles also provide high surface-to-volume ratios for efficient addition of surface functionality.

Luminescence from lanthanide ions are rarely obtained by direct excitation due to the weak oscillator strength of 4f-4f transitions.26 Hence, sensitizers are usually employed for light absorption which consequently affords lanthanide luminescence by energy transfer (ET). Lanthanides can be sensitized via ET because they have large Stokes shifts and narrow emission bands which prevent donor emission from leaking into the acceptor emission band.27,28 d-block transition metal complexes are known to sensitize lanthanide luminescence in hybrid systems29 mainly due to their broad metal-to-ligand (MLCT) and internal ligand (IL) absorption bands with high molar absorptivities in the UV and visible regions.29,30 Inorganic metal complexes can be attached on the surface of lanthanide oxides in a similar manner to the metal oxides commonly used in DSSCs. The study of energy transfer between europium oxide nanoparticles and metal complexes would be useful for phosphor applications, sensing or in DSSCs where metal oxide-metal complex interactions are prevalent.

\textbf{1.3 Light-Absorbing Transition Metal Complexes}

Transition metal complexes containing polypyridyl ligands such as 2,2'-bipyridine (bpy) have been studied extensively due to their ability to absorb light and form excited states that are crucial for several applications including photovoltaics and catalysis. The use of metal
complexes in photochemical reactions is prevalent due to several advantages.24,25 One is that they have large molar absorptivities and quantum yields throughout the UV and visible regions of the electromagnetic spectrum, a property that is important for efficient use of solar energy. Another is that changing the metal center in the complex not only varies the absorption and emission maxima but the type of excited states that form and hence the deactivation pathways that they go through. Ruthenium complexes, for instance, form metal-to-ligand charge transfer (MLCT) states that are useful for electron transfer reactions. Photophysical and chemical properties can also be easily tuned by slight variations in the ligands while maintaining the metal complex structure and type of excited states involved.19,31

Ruthenium complexes are among the most studied of these systems because they absorb and emit light in the visible region due to MLCT transitions. This type of excited state occurs when the metal complex absorbs light and promotes an electron from its highest occupied molecular orbital (HOMO) that has primarily metal character (designated as a metal(dπ) orbital) to its lowest unoccupied molecular orbital (LUMO) that is mostly ligand in character (usually designated as a π* orbital). For ruthenium complexes like [Ru(bpy)\textsubscript{3}]2+, absorption of light yields a 1MLCT excited state which consequently undergoes intersystem crossing to form an emissive 3MLCT state.32,33 This excited state deactivates via electron or energy transfer quenching, and/or radiative or nonradiative decay to the ground state. The electron transfer pathway makes ruthenium complexes to be predominantly used in solar energy conversion schemes, \textit{e.g.} in dye-sensitized solar cells (DSSCs).32 In most of these systems, a ruthenium complex acts as a sensitizer which absorbs light and transfers electrons to a semiconductor nanoparticle such as TiO\textsubscript{2}. The metal complex is usually covalently attached to the oxide surface \textit{via} ligands that contain carboxylate groups, such as the deeb ligand (where deeb = 4,4’-(COOCH\textsubscript{2}CH\textsubscript{3})\textsubscript{2}-bpy).
Because most of the information on metal complexes attached on metal oxide surfaces are regarding DSSCs, deeb-containing ruthenium complexes \([\text{Ru}(\text{deeb})_2\text{Cl}_2]\) and \([\text{Ru}(\text{deeb})_2\text{dpp})(\text{PF}_6)_2\) used in this work serve as starting points and references to compare properties of metal complexes on \(\text{Eu}_2\text{O}_3\) nanoparticles with those on other known metal oxide surfaces.

Rhodium complexes, on the other hand, form internal ligand (IL) and ligand field (LF) excited states upon absorption of light. An IL state forms by promoting an electron from a ligand \(\pi\) orbital to a ligand \(\pi^*\) orbital while a LF state forms by excitation from a metal \(d\pi\) orbital to a metal \(d\sigma^*\) orbital. Because excitation to LF states is symmetry-forbidden, their peaks are weak and have low extinction coefficients in the absorption spectrum. They also undergo fast nonradiative decay at room temperature but display broad emission bands at low temperatures. Rhodium compounds are ideal in energy transfer studies due to the absence of MLCT states that usually lead to electron transfer. Since upon excitation the electron is promoted to a \(d\sigma^*\) LUMO in a LF state, which is lower in energy compared to the ligand \(\pi^*\) LUMO in an MLCT state, rhodium compounds are usually but not exclusively used as electron or energy acceptors and shuttles.\(^{34-36}\) In this work, the rhodium complex \([\text{Rh}(\text{deeb})_2\text{Cl}_2]\)(\text{PF}_6), was prepared to determine if energy transfer from \(\text{Eu}_2\text{O}_3\) to the metal complex could occur.

Iridium complexes are less studied than their ruthenium and rhodium counterparts due to synthetic difficulties.\(^{37,38}\) They are similar in parts to both ruthenium and rhodium complexes in that absorption of a photon leads to formation of a MLCT or an IL excited state, depending on the electron density around the metal. If the ligands were anionic, in the case of halide or cyclometallating ligands, the emissive state tends to be a MLCT state because there is sufficient charge density on the metal; otherwise, emission is due to an IL excited state.\(^{33}\) The
[Ir(bpy)$_2$Cl$_2$](PF$_6$) complex for instance has an emissive 3MLCT state at 510 nm. Regardless, iridium complexes produce these long-lived excited states that exhibit strong blue and green emissions harnessed for LEDs, light-emitting electrochemical cells (LECs), bioimaging and photocatalysis. In spite of the possibility of forming MLCT states that are usually involved in electron transfer schemes, some Ir complexes have been reported to undergo energy transfer instead. Several supramolecular systems containing Ru(II) and Ir(III) moieties were reported to undergo energy transfer from the iridium to the ruthenium unit. More importantly, a number of accounts of energy transfer from an Ir(III) to a Eu(III) unit were reported for systems used for white light emitting diode (LED) applications. These systems will be discussed in more detail in section 1.5.

1.4 Metal Complexes on Metal Oxide Nanoparticles

An active area of research involving nanomaterials is the study of inorganic complexes bound to nanoparticles to form “heterosupramolecular” assemblies, which have applications in solar energy conversion and biological and chemical sensing. These systems exploit the light absorbing properties of coordination complexes and the high surface-to-volume ratios of nanoparticles for efficient addition of surface functionality. Dye-sensitized solar cells use the large surface area of metal-oxide nanofilms for efficient electron transfer from photoexcited transition-metal polypyridyl complexes. In DSSCs, ligands with carboxylic acid- and carboxylate ester- and phosphonate-based groups are known to covalently attach metal complexes onto the surface of metal oxide nanomaterials. Carboxylic acid-based ligands are the most common in anchoring ruthenium complexes to metal oxides such as TiO$_2$ because they are used in the DSSC pioneer studies, yield the best light energy-to-electrical energy conversion efficiencies to date, and have strong surface adsorption to the metal-
A few of these ligands include 2,2’-bipyridine-4,4’-dicarboxylic acid (dcb) and ina, which use hydroxyl groups on the metal oxide surface in attaching themselves on the oxide, as in Figure 1.2. G. Meyer and co-workers have exploited the ester analog of dcb, i.e. deeb (4,4’-(COOCH₂CH₃)₂-bpy), as well as other ester-based ligands such as deebq (4,4’-diethylester-2,2’-biquinoline) and eina (4-ethyl ester pyridine), for preparing complexes for surface attachment on TiO₂. The ester groups in these ligands are known to be hydrolyzed into its carboxylate form in solution and in the presence of surface hydroxyl groups on the metal oxide nanoparticle. Using deeb instead of dcb affords less complications in synthesis as the pH of the reaction need not be considered in isolating the ligand and its complexes. The ester group also serves as a spectroscopic probe for easier structure elucidation. In this work, metal complexes containing the deeb ligand were prepared and anchored on europium oxide nanoparticles.

Figure 1.2. Attachment of a ruthenium complex to a TiO₂ surface.

1.5 Energy Transfer

When a molecule absorbs light, it forms an excited state (eq. 1) which could be deactivated back to the ground state via several mechanisms. One pathway for excited-state decay is energy transfer, wherein the excited molecule transfers energy by acting as a donor (D) that excites an acceptor (A) molecule which quenches the excited state of D (eq. 2).

\[
\begin{align*}
D + \text{hv} & \rightarrow D^* \\
D^* + A & \rightarrow D + A^*
\end{align*}
\]
The study of energy transfer is important because it can be used to quench the luminescence or reactivity of the donor excited state and induce luminescence of the acceptor species as its excited state deactivates to a lower energy state. ET is used in bioanalysis, sensing and imaging16 and in optoelectronic devices such as light emitting diodes (LEDs) and phosphors,67-71 most of which integrate lanthanide ions as key components in the ET process. ET can be detected by observing: (a) the absorption bands of the donor D in the excitation spectrum of the acceptor A’s emission; (b) the emission of the A upon selective excitation of D; or (c) a decrease in the lifetime of the emission of D, among others.72-74

Energy transfer occurs through either the Förster6,70 or the Dexter75 mechanisms. The Förster mechanism occurs as a simultaneous electrostatic coupling of the transition dipoles of the donor and acceptor states, while the Dexter mechanism occurs as a simultaneous excited electron exchange from the donor and acceptor states (Figure 1.3).76

![Diagram of energy transfer mechanisms]

Figure 1.3. Schematic of formation and decay of charge-transfer excited states.77
The Förster mechanism of ET involves donor and acceptor excited-state dipole interactions that are quantified through the rate constant expression, $k_{\text{Förster}}$ (eq. 3):

$$k_{\text{Förster}} = \frac{9000 \ln 10}{128 \pi^6 N} \frac{\kappa^2}{n^4 \tau_D R^6} \int_0^{\infty} E_D(\nu) \varepsilon(\nu) \frac{d\nu}{\nu}$$ \hspace{1cm} (3)

where N is Avogadro’s number, κ is the dipole orientation factor, n is the refractive index of the solvent, τ_D is the intrinsic or radiative lifetime of the excited donor, R is the donor-acceptor distance, and the integral is an estimate of the donor-acceptor excited-state spectral overlap. In the integral expression, ν is the wavenumber of the donor emission and acceptor absorption overlap, $E_D(\nu)$ is the normalized emission spectrum of the donor and $\varepsilon(\nu)$ is the normalized absorption spectrum of the acceptor.77 The Dexter mechanism of electronic exchange, on the other hand, is quantified through the rate constant expression, k_{Dexter} (eq. 4):

$$k_{\text{Dexter}} = \frac{2\pi}{\hbar} J_0 e^{-R/L} \int_0^{\infty} E_D(\nu) \varepsilon(\nu) d\nu$$ \hspace{1cm} (4)

where the quantity $J_0 e^{-R/L}$ is the transfer matrix element and the integral is a similar overlap integral expression as in equation (3). J_0 is the diagonal exchange approximation between D and A in nearest-neighbor positions, R is the donor-acceptor distance, and L is a constant termed as the “effective average Bohr radius”.75,78 From these mechanisms, it can be seen that the extent of donor-acceptor spectral overlap, which is a measure of how the D and A energies match up, plays an important part in ET.

The easiest measure of ET is the quantum yield efficiency, E, which can be obtained from: a) the decrease in donor quantum yield, b) the donor intensity decay curve, c) the excitation spectrum monitoring acceptor emission, and d) the increase in intensity of acceptor emission.76,79,80 The quantum yield represents the efficiency of a photochemical reaction based
on the number of molecules undergoing a change per photon absorbed.77,78,81,82 In a) for instance, the efficiency E (eq. 5) can be defined from the ratio of the quantum yields of the donor with and without the presence of transfer, ϕ_{DA} (eq. 6) and ϕ_D (eq. 7), respectively:

\[
E = 1 - \frac{\phi_{DA}}{\phi_D} \quad (5)
\]

\[
\phi_{DA} = \frac{k_D}{k_D + k_{D_i} + k_T} \quad (6)
\]

\[
\phi_D = \frac{k_D}{k_D + k_{D_i}} \quad (7)
\]

where k_D is the radiative (fluorescence or phosphorescence) decay rate constant of the donor without the presence of the acceptor, k_{D_i} is the sum of the non-radiative (internal conversion and/or intersystem crossing) rate constants of the donor without the presence of the acceptor, and k_T is the non-radiative ET rate constant.77,82

\[
k_T = (k_D + k_{D_i}) \left(\frac{R_0}{R} \right)^6 \quad (8)
\]

In equation (8), R_0 is the Förster distance, \textit{i.e.} the distance at which the rate (or probability) of transfer equals the sum of all other rates (or probabilities) for deactivation of the donor excited-state or the distance at which $k_T = k_D + k_{D_i}$.78 Experimentally, quantum yields are determined by comparison of the wavelength integrated intensity of the emitting species to that of a standard.78

\[
\phi = \phi_r \frac{I}{I_r} \frac{A_r}{A} n_r^2
\]

where ϕ is the quantum yield, I is the integrated emission intensity, A is the absorbance at the excitation wavelength, n is the refractive index of the solvent and the subscript r refers to the reference fluorophore of known quantum yield.77 This comparison technique, also known as chemical actinometry, allows the determination of photon flux absorbed by a system of specific geometry and in a well-defined spectral domain.77
ET efficiency can also be determined through the donor emission intensity decay in the time or frequency domains (option b) on p. 9,77,83 which leads to determination of the excited-state lifetime, \(\tau\). The lifetime of a species is the time needed for its concentration to decay to \(1/e\) of its original value:78

\[
\ln \left(\frac{I}{I_0} \right) = -\frac{1}{\tau} t
\]

where the \(I_0\) is the emission intensity at time = 0 and \(I_t\) is the emission intensity at time \(t\). It is related to the radiative and non-radiative decay rate constants as given in the lifetime expressions for the donor with (eqn. 11) and without (eqn. 12) the presence of an acceptor:

\[
\tau_{DA} = \frac{1}{k_D + k_{nD} + k_F} \quad (11) \quad \tau_D = \frac{1}{k_D + k_{nD}} \quad (12)
\]

Thus, energy transfer corresponds to a shortening of the donor's lifetime and the efficiency may be expressed as:

\[
E = 1 - \frac{\tau_{DA}}{\tau_D} \quad (13)
\]

Although both quantum yield and lifetime determinations give the best information, efficiencies obtained from lifetimes are usually preferred over those from quantum yields because they can be obtained with greater accuracy and there is no need to correct for trivial reabsorption or secondary fluorescence.77 Trivial reabsorption occurs when the excited donor indirectly transfers energy to the acceptor by emitting another photon that excites the acceptor. Secondary fluorescence, on the other hand, is fluorescence emitted by another species that is not involved in the ET process, \textit{e.g.} fluorescence from the solvent.78

Following the excitation instead of the emission spectrum of may also be used to measure ET, as stated in option c) (p. 9). This could be done because phosphorescence is much easier
observed than absorption, and it is easier to measure a very low light intensity than to measure a very small change in a high light intensity due to very weak light absorption. The excitation spectrum provides information on which excited states lead to a particular emissive state, and if energy transfer occurs, donor excitation leading to acceptor emission could be observed in the excitation spectrum. If the emission is too weak on the other hand, transient absorption spectroscopy allows measurements of the absorption spectra of excited states by continually replenishing excited state populations using an intense laser pulse.

An increase in acceptor emission intensity (option d), p. 9) and a decrease in donor emission intensity are the most common albeit inconclusive signs for energy transfer because the acceptor tends to be excited at the donor excitation wavelength and emits on its own, without energy transfer. ET efficiency calculations using emission intensities can be done with eq. 14:

\[
E = \frac{e_A(\lambda_{ex}^D)}{e_D(\lambda_{ex}^D)} \left(\frac{F_{DA}(\lambda_{em}^A)}{F_A(\lambda_{em}^A)} - 1 \right) \left(\frac{1}{f_D} \right)
\]

where \(e_A(\lambda_{ex}^D) \) and \(e_D(\lambda_{ex}^D) \) are the extinction coefficients of the acceptor and donor at the donor excitation wavelength \((\lambda_{ex}^D) \), \(F_{DA}(\lambda_{em}^A) \) and \(F_A(\lambda_{em}^A) \) are the acceptor emission intensity with and without the donor at the acceptor emission wavelength \((\lambda_{em}^A) \), respectively, and \(f_D \) is the fractional labeling with the donor. Calculating efficiencies using this method relies on how emission intensities are obtained. Acceptor concentrations must be precisely the same for the samples with and without the donor; otherwise, the donor emission profile must be subtracted from the emission of the D-A pair.

Lanthanides are used in energy transfer schemes because they have large Stokes shifts and narrow emission bands which prevent donor emission from leaking into the acceptor emission band. Energy transfer studies involving Eu\(^{3+}\) in non-molecular solids are usually
conducted to improve phosphor properties for fluorescent lighting, lasers and displays. Higher luminescence quantum efficiencies are achieved in ionic solids than in solutions because of lower vibrational frequencies and consequently lower nonradiative loss.85 Luminescence from Eu3+ is rarely obtained by direct excitation due to the weak oscillator strength of 4f-4f transitions.41-45,86 Hence, sensitizers are usually employed for light absorption which consequently affords lanthanide luminescence by energy transfer. Other lanthanide ions such as Tb3+ are known to sensitize Eu3+ emission in glasses,17 thin films,87 polymer matrices,88 and crystalline Y\textsubscript{2}O\textsubscript{3}.89 In all cases, quenching of the Tb3+ emission and enhancement of Eu3+ emission were observed and attributed to energy transfer. In some works, the matrices themselves such as YVO\textsubscript{4},90,91 ZnO,92 and Ga\textsubscript{2}O\textsubscript{3}93 transfer energy to Eu3+ and effect the Eu3+ emission.

In solution, a number of ligands, including polyaminocarboxylates, macrocyclic receptors, β-diketonates and acyclic Schiff base derivatives, have been used to form chelates of Eu3+ to yield emission for biochemical and sensing applications.94 Other systems employ d-block metal chelates such as Cr3+, Ru2+, Os2+ and Ir3+ polypyridinecarboxylate complexes as sensitizers to take advantage of longer-lived excited states. One system, shown in Figure 1.4A, involves iridium fluorinated polypyridyl complexes connected to a Eu3+ chelate via carboxylate groups.95 The iridium monometallic unit absorbs in the UV region to undergo π-π\textsuperscript* transitions and emits blue light with maxima at 460 and 490 nm. Quantum yield of the iridium unit increases by 10% when the carboxylate moiety is present in the ligand. The terpyridine-capped europium unit emits red light centered at 615 nm, which is typical for such complex. When the system is excited at 400 nm, where only the iridium complexes have appreciable absorption, white light emission is observed that results from a combination of the blue and red emission from the
iridium and europium moieties, respectively, and thus the system can be used as a component of white LEDs. Reduction in the iridium unit lifetime from 1400 ns in solution to 480 ns in the trimetallic complex is attributed to energy transfer \((E = 38\%)\) from iridium to europium. Other similar systems that use phen,
\(^{41}\) non-fluorinated ppy and \(\pi\)-extended bridging ligands\(^{42,44}\) on the Ir unit have also been. Another study reports an increase in Eu\(^{3+}\) emission intensity when an iridium complex is adsorbed on Eu\(^{3+}\)-containing Langmuir-Blodgett films.\(^{43}\)

Some systems, on the other hand, take advantage of both molecules and ionic solid surfaces. An iridium complex whose structure is shown in Figure 1.4B was adsorbed on decatungstoeuropate \([\text{Eu}(\text{W}_{5}\text{O}_{18})_{2}]^{9-}\) Langmuir-Blodgett (LB) films.\(^{43}\) A five-fold decrease in iridium emission intensity was observed. Europium emission was not observed for films with 1:1 ratio of Eu\(^{3+}\) and Ir\(^{3+}\), but could be observed when the iridium complex concentration was diluted on the LB film surface with dimethyldioctadecylammonium bromide. Energy transfer, however, was not confirmed because excitation spectra monitoring at the europium and iridium emission only show contribution from the individual species.\(^{40}\)

Figure 1.4. Structure of (A) an Ir-Eu-Ir system that demonstrates Ir\(^{3+}\)→Eu\(^{3+}\) energy transfer for emitting white light,\(^{41}\) and (B) an iridium complex adsorbed on \([\text{Eu}(\text{W}_{5}\text{O}_{18})_{2}]^{9-}\) Langmuir-Blodgett films.\(^{43}\)
One noteworthy study that employs Eu$^{3+}$ in the donor nanoparticle and a single organic chromophore instead of a metal complex as acceptor is one that has Eu$^{3+}$ doped in yttrium vanadate nanoparticles with cyanine 5 (Cy5) on the surface. Cy5 is attached to the surface of the nanoparticle through carboxylate groups, as shown in Figure 1.5A, by equilibrating aqueous solutions of the nanoparticle with a solution of the dye for 45 minutes. The donor-acceptor spectral overlap is shown in Figure 1.5B. Fluorescence intensity and lifetime measurements yield ET efficiencies of 59% and 21% respectively, the discrepancy of which the authors account to the difference in the distances of the surface and core Eu$^{3+}$ ions from Cy5. This factor can be circumvented if the nanoparticles have uniform particle sizes, and this can be well-achieved using methods that promote slow growth of the nanoparticles, such as gas phase condensation methods, instead of solution-based methods.

Energy transfer involving Eu$^{3+}$ complexes on surfaces have also been reported. One system involves a europium complex with dibenzoylmethane (DBM) and 4,4'-di-tert-2,2'-
bipyridine (DB-bpy) ligands (Figure 1.6A) combined with arachidic acid for forming and controlling the surface layers of TiO$_2$ Langmuir-Blodgett films. A decrease in the intensity ratio of the $^5D_0 \rightarrow ^7F_2$/$^5D_0 \rightarrow ^7F_1$ transitions of the Eu$^{3+}$ complex in the LB films compared to the complex in solution was attributed to ET from TiO$_2$ to the Eu$^{3+}$ complex. The authors explained the emission intensity difference in terms of a change in chemical environment, $^5D_0 \rightarrow ^7F_2$ being an electric dipole transition dependent of the chemical environment while $^5D_0 \rightarrow ^7F_1$ being a magnetic dipole transition independent of the chemical environment. Another system wherein the authors claim ET from fluorescence intensity changes is [Eu(phen)$_4$](NO$_3$)$_3$ on (CH$_3$)$_3$Si-MCM-41 nanostructured molecular sieve, wherein the europium complex is treated as a guest molecule encapsulated in the molecular sieve channels. For the Eu complex-molecular sieve system, an increase in the $^5L_0 \rightarrow ^5D_0$ Eu$^{3+}$ emission intensity at 349 nm relative to the unoccupied molecular sieve is observed which is attributed to ET from the molecular sieve to the complex. No direct comparison, however, between the Eu complex emission intensities in solution and in the molecular sieve is shown to confirm that the increase in emission intensity was due to the ET from the molecular sieve.

Figure 1.6. Structure of (A) [Eu(DBM)$_3$(DB-bpy)]$^{3+}$ and (B) [Eu(TBP)]$^{3+}$ complex.
Quantum dot (QD) semiconductor nanoparticles have been used as ET acceptors with europium complexes in biological studies. Hildebrandt and co-workers have studied $[\text{Eu(TBP)}]^3+$ and $[\text{Ln}(6\text{-CO}_2\text{bpy})_2]^3+$ (Ln=Tb, Eu) complexes on CdSe quantum dots used in time-resolved fluoro-immunoassays. The $[\text{Eu(TBP)}]^3+$-QD system consists of a trisbipyridin (TBP) europium cryptate (Figure 1.6B) labeled by streptavidin for the donor and biotin-QD as acceptor. The QD is protected with a ZnS shell (for narrowing emission bands) and subsequently coated with a polymer-biotin complex (biotin-QD). Förster resonance ET experiments yield 62% ET efficiency and a Förster distance of 83 Å. In the $[\text{Ln}(6\text{-CO}_2\text{bpy})_2]^3+$-QD systems, the terbium or europium complex, which contains two 6-carboxybiopyridyl ligands and a hydroxysulfosuccinimide-functionalized glutamate molecule as exemplified through the Tb complex in Figure 1.7A, are used as labels for streptavidin (LnL-Strep). The streptavidin-biotin binding process serves as a model for all biological recognition processes. Extensive overlap of the donor emission spectrum, as exemplified by $[\text{Tb}(6\text{-CO}_2\text{bpy})_2]^3+$, with the QD acceptor absorbance spectrum is shown in Figure 1.7B. The use of lanthanide-containing systems takes advantage of the strong and narrow luminescence that prevents the Tb complex emission from leaking into the QD emission. A strong increase in the emission intensity ratio at the Biotin-QD and LnL-Strep maxima is observed when Biotin-QD concentration is increased resulting from ET to the quantum dots from the Ln complexes. Luminescence decay lifetime measurements of the donor-acceptor assembly yield an ET efficiency of at most 67% along a Förster distance of 87 Å for TbL-strep/biotin-QD, and 52% and 95 Å for EuL-strep/biotin-QD. The relatively large effective Förster radii in these systems are indicative of the extensive overlap of the lanthanide donors and QD acceptors.
Ruthenium complexes have also been used with CdSe QDs to study emission quenching. Mattoussi and others demonstrated that comparable donor and acceptor radiative lifetimes aside from a substantial spectral overlap are needed for ET to take place.55-58 No decrease in both donor emission intensity and lifetime, and therefore no ET, was observed in each of three different organic fluorophore-CdSe/ZnS QD pairs even if substantial spectral overlap is evident. The authors attribute this to the fast radiative decay rate of the dye donors compared to the slow ET decay rate in the presence of the acceptor. To prove this hypothesis, \([\text{Ru}(\text{bpy})_2(\text{ITC})](\text{PF}_6)_2\) (ITC = isothiocyanatophenanthroline), a donor that has a longer lifetime (~350 ns) than the organic dyes, is used with the QD. A significant decrease in the lifetime of the ruthenium complex from 419 ± 15 ns to 160 ± 12 ns was observed which indicates ET. However, steady-state fluorescence shows a strong emission due to direct excitation of the QD acceptor which renders the lifetime measurements inconclusive.101,102 Quenching of CdSe quantum dot emission upon attachment of \([\text{Ru}(\text{mcb})_2(\text{bpy})]^{2+}\) is also observed from emission intensity and transient absorption electron dynamics experiments by Sykora \textit{et al.}102 In spite of this, there is a small
spectral overlap between the QD and the metal complex, and thus they account the emission intensity changes to electron transfer.103

1.6 Summary of Thesis

The goal of this work is to develop transition metal complexes that could be attached on the surface of Eu\textsubscript{2}O\textsubscript{3} nanoparticles to study energy transfer between the metal complexes and the nanoparticles. Energy transfer is an important phenomenon observed on lanthanide-containing materials for various purposes, including phosphors, sensors and materials for solar energy conversion. Polypyridyl metal complexes containing ruthenium, iridium and rhodium are known as good light absorbers and emitters, which are essential properties for energy transfer studies. The ruthenium complexes containing the deeb ligand used in this work serve as standards for comparative studies of the metal complexes on Eu\textsubscript{2}O\textsubscript{3} nanoparticles. The rhodium and iridium complexes were used to study energy transfer from and to the nanoparticles, respectively. Chapter 2 contains procedures on the synthesis and characterization of the materials used in this study. In Chapter 3, results on the synthesis, structure elucidation and photophysical characterization of the individual metal complexes and nanoparticles are presented. The metal centers and nature of the complexes were carefully chosen to achieve energies and properties that are optimal for energy transfer. Chapter 4 includes characterization of the metal complexes anchored on Eu\textsubscript{2}O\textsubscript{3} nanoparticles. Qualitative and quantitative descriptions of how the metal complexes behave on Eu\textsubscript{2}O\textsubscript{3} nanoparticles were made and compared with other metal oxides previously studied with similar complexes. More importantly, the nanoparticle-metal complex systems were characterized spectroscopically to determine if energy transfer occurs. Steady-state and time-resolved emission spectroscopy are primarily used to achieve that purpose.
Chapter 2 - Experimental Methods

2.1 Molecular Synthesis

Ruthenium(III) chloride hydrate (Alfa Aesar, Premion 99.99%), rhodium(III) chloride hydrate (Alfa Aesar, Premion 99.99%), iridium(III) chloride hydrate (Alfa Aesar, Premion 99.99%), 2,2'-bipyridine-4,4'-dicarboxylic acid (Strem), hydroquinone (Aldrich), lithium chloride (EM Science), potassium hexafluorophosphate (KPF$_6$, Fluka), spectral grade acetonitrile (Burdick and Jackson), ACS grade concentrated sulfuric acid (Fisher), HPLC grade solvents such as dichloromethane (Fisher), diethyl ether (Fisher), ethyl acetate (Fisher), methanol (Fisher) and ethanol (AAPER) were all used as received.

The ligand deeb13 and the ruthenium complexes [Ru(deeb)$_2$Cl$_2$]104 and [Ru(deeb)$_2$dp$_2$](PF$_6$)$_2$14 were prepared as previously reported.

\textit{cis-Dichlorobis(diethyl-2,2'-bipyridine-4,4'-dicarboxylate)rhodium(III)}

hexafluorophosphate, [Rh(deeb)$_2$Cl$_2$](PF$_6$). [Rh(deeb)$_2$Cl$_2$](PF$_6$) synthesis was based on the synthesis of [Rh(dp)$_2$Br$_2$](PF$_6$).105,106 The complex was prepared by heating to reflux 0.13 g (0.59 mmol) of RhCl$_3$•xH$_2$O and 0.35 g (1.2 mmol) of deeb in 30 mL of 2:1 EtOH/H$_2$O for 40 minutes. The solution was filtered hot and the filtrate was added to the KPF$_6$ solution prepared by diluting 20 mL of a saturated aqueous KPF$_6$ solution with 50 mL H$_2$O. The resulting pale yellow precipitate was separated from the solution by vacuum filtration, washed with several portions of diethyl ether, then redissolved in minimal dichloromethane and flash precipitated in diethyl ether with a yield of 78%.107 δ (ppm), CD$_2$Cl$_2$: 10.06 (2H, d, $J = 6$ Hz), 9.05 (2H, s), 8.94 (2H, s), 8.48 (2H, d, $J = 6$ Hz), 8.02 (2H, d, $J = 4$ Hz), 7.84 (2H, d, $J = 4$ Hz), 4.61 (4H, q, $J_1 = J_2 = J_3 = 7$
cis-Dichlorobis(diethyl-2,2'-bipyridine-4,4'-dicarboxylate)iridium(III) hexafluorophosphate, [Ir(deeb)$_2$Cl$_2$](PF$_6$)$_3$. The synthetic procedure for the iridium dichloride complex was patterned after its rhodium analog as discussed above. It was prepared by reacting 0.64 g (1.8 mmol) of IrCl$_3$:xH$_2$O and 1.41 g (4.7 mmol) of deeb in 230 mL of 2:1 EtOH:H$_2$O, previously deoxygenated with argon for at least 15 minutes. The mixture was heated at reflux for 66 hours, filtered hot and the ethanol evaporated from the filtrate. The filtrate was then diluted with 10 mL H$_2$O and 30 mL of a saturated aqueous KPF$_6$ solution was added dropwise. The resulting precipitate was filtered, washed with cold water and diethyl ether and dried in vacuum. The solid was then dissolved in small amounts of acetone and flash precipitated in ether. Purification was done by recrystallizing twice in hot 4:1 methanol:ethyl acetate to isolate the bright yellow solid as product. Typical yield is ~33% (0.60 g, 0.59 mmol).1H NMR (400 MHz, (CD$_3$)$_2$CO): δ (ppm) 10.08 (d, 2H, $J = 6$ Hz), 9.45 (s, 2H), 9.34 (s, 2H), 8.62 (d, 2H, $J = 6$ Hz), 8.36 (d, 2H, $J = 6$ Hz), 7.90 (d, 2H, $J = 6$ Hz), 4.60 (q, 4H, $J_1 = J_2 = J_3 = 7$ Hz), 4.44 (q, 4H, $J_1 = J_2 = J_3 = 7$ Hz), 1.49 (t, 6H, $J_1 = J_2 = 7$ Hz), 1.35 (t, 6H, $J_1 = J_2 = 7$ Hz). ESI-MS (m/z): 863 found and calc. [M-PF$_6$]$.^+$.

Bis(diethyl-2,2'-bipyridine-4,4'-dicarboxylate)-2,3-bis(2-pyridyl)pyrazineiridium(III) hexafluorophosphate, [Ir(deeb)$_2$dpp](PF$_6$)$_3$. The complex was prepared by reacting [Ir(deeb)$_2$Cl$_2$](PF$_6$) (0.11 g, 0.1 mmol) with 20 times excess of both dpp (0.49 g, 2 mmol) and Tl(I)PF$_6$ (0.76 g, 2 mmol) in 5 mL CH$_3$CN. The mixture was heated to reflux for 18 hours and cooled to room temperature. 50 mL of water was added, after which 10 mL of saturated aqueous KPF$_6$ was added dropwise. The off-white to light tan solids were recovered by vacuum filtration and
purified by elution through an LH-20 column with 3:1 CH₃CN:EtOH as solvent. The first fraction was collected, the solvent evaporated and the solids flash precipitated in diethyl ether using minimal amounts of acetonitrile. Yield was ~20% (0.29 g, 0.20 mmol).¹¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) 9.57 (s, 1H), 9.54 (s, 3H), 8.90 (d, 1H, J = 3 Hz), 8.79 (d, 1H, J = 6 Hz), 8.71 (d, 1H, J = 4 Hz), 8.61 (d, 1H, J = 6 Hz), 8.55 (d, 1H, J = 6 Hz), 8.51 (d, 1H, J = 7 Hz), 8.48 (d, 1H, J = 6 Hz), 8.43 (d, 1H, J = 3 Hz), 8.33 (d, 1H, J = 5 Hz), 8.19 (m, 6H), 7.72 (m, 1H), 7.67 (d, 1H, J = 9 Hz), 4.49 (m, 8H), 1.37 (m, 12H). ESI-MS (m/z): 342 found and calc. [M-3PF₆]^{3+}.

2.2 Nanoparticle Synthesis

Nanoparticles were prepared by the inert gas-phase condensation method.¹⁰⁸ Approximately 1 g of metal oxide powder (Alfa Aesar, 99.99% REACTON) was sintered at 800°C for 4 hours and cold-pressed to produce ca. 13 mm diameter pellet which was then sintered overnight at 800-900°C. The pellet rested on a rotating platform in a stainless steel vacuum chamber maintained at 1-400 Torr N₂, with the pressure held constant depending on the size of nanoparticles desired. Vaporization was done with a cw-CO₂ laser beam (Synrad, Duo-Lase 30-40W) that was focused onto the target with a ZnSe lens (Figure 2.1). Nanoparticles were collected on a stainless steel sheet ~6 cm above the target. An average of 30 mg Eu₂O₃ and 15 mg Y₂O₃ nanoparticles can be obtained per hour of vaporization at 100 Torr N₂.
2.3 1H NMR Spectroscopy

1H NMR spectra were recorded at room temperature using a 400 MHz Spectrometer (Varian Inova). Sample solutions of the ligand and metal complexes were prepared by dissolving ~20 mg of compound in 0.5 mL of deuterated solvent that is sonicated and syringe-filtered prior to analysis.

2.4 Mass Spectrometry

Positive ion electrospray and fast-atom bombardment high-resolution mass spectral analysis of the ruthenium and rhodium complexes were performed by M-Scan Incorporated, West Chester, Pennsylvania, on a quadrupole/time of flight mass spectrometer (Micromass Q-TOF API US hybrid) using acetonitrile/water/formic acid (50:50:1) as a matrix. ESI mass spectra of the iridium complexes were obtained using an LC-ESI-TOF spectrometer (Agilent) at the Analytical Services Laboratory, Department of Chemistry at Virginia Tech.

Electro-Spray Ionization mass spectra were obtained using an LC-ESI-TOF spectrometer (Agilent) at room temperature. Calculated mass spectra were obtained from the Scientific Instrument Services website (Sisweb.com).
2.5 **Electronic Absorption Spectroscopy**

Electronic absorption spectra in solution were recorded at room temperature using a diode-array spectrophotometer (Hewlett-Packard 8452A) with a 2-nm resolution. All measurements used Burdick and Jackson UV-grade acetonitrile or CH$_2$Cl$_2$ solvent in 1-cm quartz cuvettes.

2.6 **Electron Microscopy**

Nanoparticle diameters were estimated from SEM images at 200k magnification obtained from a Field Emission SEM (LEO 1550). Particle size distributions were constructed using Scion Image (Scion Corporation).

2.7 **X-ray Powder Diffraction**

Nanoparticle phase and size were determined using X-ray powder diffraction patterns obtained using a high resolution x-ray diffractometer (Rigaku RAPID Curved IP) with an image plate detector and Cu K$_\alpha$ radiation (1.54 nm) as source. Phase analysis was done using the Match! Software (Crystal Impact).

2.8 **Preparation of Metal Complexes Anchored on Metal Oxides**

Metal complexes were attached to metal oxide nanoparticles by literature methods for attachment of deeb complexes to TiO$_2$. Metal oxide samples were vacuum-dried and shaken with 1-5 mM solutions of metal complex in acetonitrile or dichloromethane for ca. 24 hours. The stained oxides were collected by centrifugation (13000 rpm, 10 min), washed several times with solvent to remove unbound metal complex and vacuum-dried.
2.9 Reflection Spectroscopy

Reflection spectra were recorded from solid samples at room temperature using a deuterium tungsten halogen light source (Ocean Optics DH-2000), optical fiber bundle reflection probe (Ocean Optics R600-7-SR-125F), and a CCD array spectrophotometer (Ocean Optics USB2000). The probe was positioned at 90° and 3-5 mm from the powdered samples for all measurements. To obtain the spectra of as-prepared and complex-modified europium oxide and yttrium oxide nanoparticles, the samples were diluted by mixing with BaSO$_4$ (Alfa-Aesar) in ~1:4 ratio. The samples were then moistened with spectroscopic grade acetonitrile (Burdick and Jackson) prior to recording the spectra using moist BaSO$_4$ as reference.

2.10 ATR FT-IR Spectroscopy

Infrared spectra of solid samples at ambient conditions were recorded on an ATR FT-IR spectrometer (Midac M2004) with a diamond prism with air as reference. Infrared spectroscopy of plain Eu$_2$O$_3$ nanoparticles and Eu$_2$O$_3$ nanoparticles modified with [Ir(deeb)$_2$Cl$_2$]$^+$ under vacuum was performed as described in previous work.11,16 Samples were mounted as 0.7-cm diameter spots on a tungsten mesh using a hydraulic press. The mesh was placed in a high vacuum stainless steel chamber with a base pressure of 10$^{-6}$ Torr connected to a stainless steel back-chamber with a pressure of 5.4 x 10$^{-8}$ mBar. Spectra were recorded using a Mattson Research Series I FTIR spectrometer contained in a vacuum cell with the samples positioned at 45° with respect to the spectrometer. Temperature control was done by ohmic heating using a K type thermocouple welded to the top of the mesh. Each spectrum is an average of 256 scans at 4 cm$^{-1}$ resolution with the tungsten mesh as reference.
2.11 Quantitative Adsorption Studies

Solutions of [Ru(deeb)\textsubscript{2}dpp](PF\textsubscript{6})\textsubscript{2} in acetonitrile (1 mL) at different concentrations were prepared and shaken with as-prepared and vacuum-dried europium oxide nanoparticles (15 mg) synthesized at 100 Torr for 24 hours. After reaction, the mixtures were centrifuged (1x104 rpm, 10 min) to separate the supernatant used for determining equilibrium concentrations c\textsubscript{eq}, and the complex-modified particles. The solids were washed with several portions of acetonitrile, vacuum-dried and then reacted with 1 x 10-3 M NaOH in 1:1 CH\textsubscript{3}CN:H\textsubscript{2}O to desorb the metal complexes from the nanoparticles. After centrifugation of this mixture the supernatant is used to determine the concentration of adsorbed metal complexes, \Gamma. Actual concentrations of all metal complex solutions were determined from absorbance measurements and using the molar absorptivity of the complex at 464 nm.

2.12 Energy Dispersive X-ray (EDX) Analysis

Energy Dispersive X-ray (EDX) analysis was performed using a scanning electron microscope (ISI-SX-40) set at 20.0 keV with an X-ray detector (Thermo Electron Corp. 5515E-ISUS-SN) and an interface controller (IXRF Systems Inc. Model 500). Eu\textsubscript{2}O\textsubscript{3} nanoparticles modified with [Ir(deeb)\textsubscript{2}Cl\textsubscript{2}](PF\textsubscript{6}) and [Ir(deeb)\textsubscript{2}(dpp)](PF\textsubscript{6})\textsubscript{3} were dispersed with hexanes on aluminum mounts and allowed to dry. Samples of Y\textsubscript{2}O\textsubscript{3} nanoparticles modified with [Ir(deeb)\textsubscript{2}Cl\textsubscript{2}](PF\textsubscript{6}) and [Ir(deeb)\textsubscript{2}(dpp)](PF\textsubscript{6})\textsubscript{3} were thickly pressed on carbon tape to ensure full coverage.

2.13 Emission Spectroscopy

Emission spectra were recorded from solid and solution samples at room temperature and 77 K using a Quantamaster spectrofluorometer (Photon Technologies International QM-40). The
system contains a high intensity continuous xenon excitation source and a red-sensitive photomultiplier tube collecting at a right angle and operating in photon counting mode with 4-nm resolution. For solid room temperature measurements, samples were packed on a black fiberglass block with a 3 mm diameter and 2 mm deep depression. Measurements of solutions at room temperature were carried out in 1-cm path length cuvettes. At 77 K, solid samples were packed to a 3 mm height at the bottom of quartz NMR tubes and cooled in a finger dewar with liquid nitrogen. Glass samples were prepared in NMR tubes by dissolving compounds in a 4:1 ethanol:methanol matrix, sonicating the solutions and placing the tubes in a finger dewar cooled with liquid nitrogen. Emission spectra were shifted to a common baseline. Emission spectra were corrected for PMT response and normalized. Excitation spectra of solids were corrected for PMT response after subtraction of background scattering using solid Y$_2$O$_3$ nanoparticles.

2.14 Lifetime Measurements

Lifetimes were measured using a pulsed nitrogen-pumped dye laser (Photon Technologies International) as excitation source. Direct excitation from the laser was done for 337 nm excitation while dyes PBBO and Coumarin-460 (Exciton) were used to excite at 395 nm and 460 nm, respectively. The laser beam was focused at a 45° angle to the sample using a 60-mm focal length lens. Sample preparation is the same as used for emission measurements. Emission was collected through a 75-mm lens focused through a cut-off or bandpass filter onto a photomultiplier tube (Photon Technologies International R928) and recorded by averaging 300 or more laser pulses using a 300 MHz oscilloscope (LeCroy 9361). Lifetime values were approximated by exponential curve fitting using Origin (OriginLab Corp.) after subtracting a reference signal due to laser scatter from the sample holder.
2.15 Electrochemistry

Cyclic voltammograms were recorded using a potentiostat (Bioanalytical Systems) with a platinum wire auxiliary electrode, a 1.9 mm diameter glassy carbon disk working electrode and a Ag/AgCl reference electrode (0.29 V vs. NHE). Metal complex solutions were prepared using 0.1 M tetrabutylammonium hydroxide in Burdick and Jackson UV grade acetonitrile as supporting electrolyte.
Chapter 3 - Characterization of Ruthenium, Rhodium and Iridium Complexes and Europium Oxide Nanoparticles

3.1 Characterization of Metal Complexes

3.1.1 Ruthenium Complexes

The ruthenium complexes used in this work were synthesized to compare properties of these complexes on Eu₂O₃ nanoparticles with those on other known metal oxide surfaces. Characterization of [Ru(deeb)₂Cl₂] was done using ¹H NMR spectroscopy. The structures and 1D NMR spectra of the ruthenium complex and the deeb ligand are shown in Figure 3.1 A-C. Chemical shift assignments for solvent and residual water were based on a published collection of values. The presence of methyl (t, 12H) and methylene (q, 8H) protons in [Ru(deeb)₂Cl₂] at 1.40 and 4.47 ppm, respectively, indicate retention of the ester moieties of the deeb ligand upon formation of the complex. COSY and NOESY 2D NMR spectra of the complex in CDCl₃ at the aromatic region are shown in Figure 3.1 D-E. The chemical shift at 8.18 ppm is assigned to be due to the proton in the 5 position of the bipyridine unit because of its correlation with the most downfield proton in the 6 position while those at 7.71 and 7.50 ppm are assigned to be due to the 5’ and 6’ protons because of their correlation with each other as seen in the COSY spectra.

[Ru(deeb)₂Cl₂] was used as starting material for synthesizing [Ru(deeb)₂dpp]PF₆₂ according to literature procedures. The dpp complex was characterized using mass spectrometry, electronic absorption spectroscopy and electrochemistry. The mass spectrum (FAB-MS) of [Ru(deeb)₂dpp]PF₆₂ show peaks at 1081 and 936 m/z consistent with the (M-PF₆)⁺ and (M-2PF₆)²⁺ ions, respectively. The electronic absorption spectrum of the complex in acetonitrile as shown in Figure 3.2A displays ¹π→π* ligand transitions in the UV region and
Figure 3.1. (A) Structures and chemical shift assignments of [Ru(deeb)₂Cl₂] and deeb, where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate; 1D ¹H NMR of (B) [Ru(deeb)₂Cl₂] and (C) deeb in CD₂Cl₂ (* and ** indicate solvent peak and water, respectively); aromatic region of (D) COSY and (E) NOESY ¹H NMR spectra of [Ru(deeb)₂Cl₂] in CDCl₃.
1MLCT transitions (Ru(dπ)→dpp(π*) at 464 nm and Ru(dπ)→deeb(π*) at 432 nm) in the visible region. The molar absorptivity of the complex at 464 nm (2.12 x 10^4 M\(^{-1}\) cm\(^{-1}\)) is consistent with that reported by Meyer et al.\(^{105}\) The cyclic voltammogram of [Ru(deeb)_2dpp](PF_6)_2 in 0.1 M TBAH in acetonitrile as shown in Figure 3.2B displays a Ru\(^{2+}/3^+\) oxidative couple at 1.63 V and 3 ligand reductive couples at -0.87 V, -1.17 V and -1.30 V, which is also consistent with the formation of the complex.

![Figure 3.2](image)

Figure 3.2. (A) Electronic absorption spectrum and (B) cyclic voltammogram of [Ru(deeb)_2dpp](PF_6)_2 at room temperature in CH\(_3\)CN (deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate, dpp = 2,3-bis(2-pyridyl)pyrazine).

3.1.2 Rhodium Complex

The rhodium complex [Rh(deeb)_2Cl_2](PF_6) was characterized by \(^1\)H NMR spectroscopy (Figure 3.3). The chemical shifts in the 1D spectrum of this new complex shown in Figure 3.3B are the following: δ (ppm), CD_2Cl_2: 10.06 (2H, d, J = 6 Hz), 9.05 (2H, s), 8.94 (2H, s), 8.48 (2H, d, J = 6 Hz), 8.02 (2H, d, J = 4 Hz), 7.84 (2H, d, J = 4 Hz), 4.61 (4H, q, J\(_J1 = J2 = J3 = 7\) Hz), 4.48 (4H, q, J\(_J1 = J2 = J3 = 7\) Hz), 1.53 (6H, t, J\(_J1 = J2 = J3 = 7\) Hz), 1.41 (6H, t, J\(_J1 = J2 = J3 = 7\) Hz). The distribution of protons in the 1D and 2D COSY and NOESY (Figure 3.3C-D) \(^1\)H NMR spectra of the rhodium complex is similar to that in the ruthenium analog, which suggests a similar assignment of protons and the formation of the complex. The rhodium compound was also
analyzed with ESI mass spectrometry and gave a fragmentation pattern consistent with the proposed molecular structure: ESI-MS m/z: 773 (M-PF$_6$)$^+$, calculated 773 (Figure 3.4).

![Diagram of the molecule](image)

Figure 3.3. (A) Structure and chemical shift assignment of [Rh(deeb)$_2$Cl$_2$](PF$_6$)$_2$, where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate; (B) 1D 1H NMR of [Rh(deeb)$_2$Cl$_2$](PF$_6$) in CD$_2$Cl$_2$ (* indicates solvent peak); aromatic region of (D) COSY and (E) NOESY 1H NMR spectra of [Rh(deeb)$_2$Cl$_2$](PF$_6$) in CD$_2$Cl$_2$.
Electronic absorption spectra of [Rh(deeb)$_2$Cl$_2$](PF$_6$), deeb and their bpy analogs (Figure 3.5A) show a maximum at 328 nm ($\varepsilon = 2.60 \times 10^4$ M$^{-1}$ cm$^{-1}$) which is assigned to be deeb $^1\pi \rightarrow \pi^*$ transition. Compared to that of the bpy complex, this peak is slightly red-shifted due to the electron-withdrawing effect of the ester group that lowers the energy of the π^* orbital of deeb.

No emission was observed at RT due to fast nonradiative decay. Emission from the 3LF state of [Rh(deeb)$_2$Cl$_2$](PF$_6$) is evident at 680 nm and 704 nm for the solid and glassy solutions at 77 K, respectively (Figure 3.4B). The presence of this emissive state was crucial in choosing the rhodium dichloride complex for attaching on Eu$_2$O$_3$ because it lies close and slightly lower in energy relative to the 5D_0 state of Eu$_2$O$_3$ as shown in Figure 3.6. This state along with the 1IL state at 328 nm, which lies close and slightly lower in energy relative to the Eu-O charge transfer state, make [Rh(deeb)$_2$Cl$_2$](PF$_6$) ideal for investigating energy transfer from the nanoparticles to the complex.
Figure 3.5. (A) Electronic absorption spectra of bpy (-----), deeb (· · · ·) , [Rh(bpy)₂Cl₂](PF₆) (-----) and [Rh(deeb)₂Cl₂](PF₆) (· · · ·) at room temperature in CH₃CN (deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate; bpy = 2,2'-bipyridine); (B) Emission spectra at 77 K of [Rh(deeb)₂Cl₂](PF₆) solid (solid line) and in 4:1 MeOH:EtOH glass (dotted line).

Figure 3.6. Energy diagram for Eu₂O₃ and [Rh(deeb)₂Cl₂](PF₆), where deeb = diethyl-2,2’-bipyridine-4,4’-dicarboxylate.
3.1.3 Iridium complexes

The iridium complexes were prepared to investigate the possibility of energy transfer from the complexes to Eu₂O₃. [Ir(deeb)_2Cl_2](PF₆) serves as a starting point for synthetic and photophysical experiments. [Ir(deeb)_2(dpp)](PF₆)_3 was synthesized because the chloride ligands in the first complex are expected to be labile enough to allow the iridium center to coordinate with oxygen atoms on the metal oxide surface. Replacing the chloride ligands with the dpp ligand will allow a more uniform mode of attachment of the complexes on the oxide surface as well as a bridging ligand for adding more metal complex structures on the nanoparticles.

[Ir(deeb)_2Cl_2](PF₆) was synthesized using a similar procedure for its rhodium analog and Figure 3.7 shows the ^1H NMR spectral data for the newly prepared [Ir(deeb)_2Cl_2](PF₆). Chemical shift assignments for solvent and residual water were based on a published collection of values. The presence of methyl protons at 1.49 ppm (t, 6H) and 1.35 ppm (t, 6H), and methylene protons at 4.60 ppm (q, 4H) and 4.44 ppm (q, 4H) in [Ir(deeb)_2Cl_2](PF₆) indicate retention of the ester moieties of the deeb ligand upon formation of the complex. ^1H^-^1H COSY NMR spectrum of the complex at the aromatic region is shown in Figure 1C. The chemical shift at 8.62 ppm is assigned to the proton in the 5 position of the bipyridine unit because of its correlation with the most downfield proton in the 6 position. The peaks at 7.90 and 8.36 ppm are assigned to the 5′ and 6′ protons because of their correlation with each other as seen in the ^1H^-^1H COSY spectra. These assignments are made to correct previous assignments for the ruthenium and rhodium analogs. The 1-D and 2-D spectra show multiplets and integration that are consistent with those reported for [Ir(bpy)_2Cl_2](PF₆) sans the 4 and 4′ protons. The ESI-MS spectrum in Figure 2A is consistent with the (M-PF₆)^+ ion (863, found and calc.).
Figure 3.7. (A) Structures and chemical shift assignments, (B) 1D 1H NMR spectra and (C) 1H-1H COSY NMR spectra of aromatic regions of [Ir(deeb)$_2$Cl$_2$](PF$_6$)$_3$ and [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$ in (CD$_3$)$_2$CO, where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate, dpp = 2,3-bis(2-pyridyl)pyrazine (* and ** indicate solvent and water, respectively).

The 1H NMR spectrum and assignments of [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$, which are consistent with those of [Ru(deeb)$_2$(dpp)](PF$_6$)$_3$, are also shown in Figure 3.7. The ESI-MS spectrum in Figure 3.8 displays a fragmentation pattern for (M-3PF$_6$)$_{3+}$ (342, found and calc.).
Figure 3.8. Experimental and theoretical mass spectral data for [Ir(deeb)\(_2\)Cl\(_2\)](PF\(_6\)) and [Ir(deeb)\(_2\)(dpp)](PF\(_6\))\(_3\), where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate, dpp = 2,3-bis(2-pyridyl)pyrazine.

Table 3.1 and Figure 3.9 give electrochemical data for [Ir(deeb)\(_2\)Cl\(_2\)](PF\(_6\)) with those for analogous compounds [Ir(bpy)\(_2\)Cl\(_2\)](PF\(_6\)) and [Ir(dpp)\(_2\)Cl\(_2\)](PF\(_6\)) previously reported by our group.\(^{115}\) Two reversible reductive couples at -0.72 V and -0.87 V, which are assigned to be deeb ligand reductions, followed by a two-electron, quasi-reversible iridium reduction at -1.48 V were observed for [Ir(deeb)\(_2\)Cl\(_2\)](PF\(_6\)), consistent with previous reports on the bpy and dpp analogs. The shoulder at -1.07 V may be attributed to reduction of a [Ir(deeb)\(_2\)Cl]\(^+\) species,
which could have formed from reducing the starting material and could clearly be defined at lower scan rates.46

Table 3.1. Electrochemical data for [Ir(deeb)\textsubscript{2}Cl\textsubscript{2}](PF\textsubscript{6}), [Ir(bpy)\textsubscript{2}Cl\textsubscript{2}](PF\textsubscript{6}),46,116,117 [Ir(dpp)\textsubscript{2}Cl\textsubscript{2}](PF\textsubscript{6})46 and [Ir(deeb)\textsubscript{2}(dpp)](PF\textsubscript{6})\textsubscript{3} using 0.1 M TBAH in CH\textsubscript{3}CN as supporting electrolyte at room temperature.

<table>
<thead>
<tr>
<th>Complex</th>
<th>E\textsubscript{p} a (V)</th>
<th>E\textsubscript{p} c (V)</th>
<th>E\textsubscript{1/2} (V)</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ir(deeb)\textsubscript{2}Cl\textsubscript{2}</td>
<td>-0.67</td>
<td>-0.78</td>
<td>-0.72</td>
<td>deeb0/-</td>
</tr>
<tr>
<td></td>
<td>-0.87</td>
<td>-0.93</td>
<td>-0.87</td>
<td>deeb0/-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.48</td>
<td></td>
<td>Ir3+/+</td>
</tr>
<tr>
<td>Ir(bpy)\textsubscript{2}Cl\textsubscript{2}</td>
<td>-1.10</td>
<td>-1.25</td>
<td>-1.18</td>
<td>bpy0/-</td>
</tr>
<tr>
<td></td>
<td>-1.30</td>
<td>-1.47</td>
<td>-1.39</td>
<td>bpy0/-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.12</td>
<td></td>
<td>Ir3+/+</td>
</tr>
<tr>
<td>Ir(dpp)\textsubscript{2}Cl\textsubscript{2}</td>
<td>-0.80</td>
<td>-0.86</td>
<td>-0.83</td>
<td>dpp0/-</td>
</tr>
<tr>
<td></td>
<td>-1.03</td>
<td>-1.09</td>
<td>-1.06</td>
<td>dpp0/-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.79</td>
<td></td>
<td>Ir3+/+</td>
</tr>
<tr>
<td>Ir(deeb)\textsubscript{2}(dpp)\textsubscript{3}</td>
<td>-0.34</td>
<td>-0.42</td>
<td>-0.38</td>
<td>deeb0/-</td>
</tr>
<tr>
<td></td>
<td>-0.49</td>
<td>-0.58</td>
<td>-0.54</td>
<td>deeb0/-</td>
</tr>
<tr>
<td></td>
<td>-0.67</td>
<td>-0.76</td>
<td>-0.71</td>
<td>dpp0/-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.33</td>
<td></td>
<td>Ir3+/+</td>
</tr>
</tbody>
</table>

Less negative reduction values for deeb compared to bpy and dpp as seen in the electrochemical data for the dichloride complexes imply that the deeb ligand is easier to reduce than the other two ligands. Hence, the first three reductions for [Ir(deeb)\textsubscript{2}(dpp)](PF\textsubscript{6})\textsubscript{3} at -0.38 V, -0.54 V and -0.71 V are assigned to be deeb0/-, deeb0/- and dpp0/- reductions, respectively. Differences in the deeb reduction potentials for [Ir(deeb)\textsubscript{2}Cl\textsubscript{2}](PF\textsubscript{6}) and [Ir(deeb)\textsubscript{2}(dpp)](PF\textsubscript{6})\textsubscript{3} could be due to the differences in the nature of their excited states which modulate their abilities for electron transfer. In addition, the chloride ligands in [Ir(deeb)\textsubscript{2}Cl\textsubscript{2}](PF\textsubscript{6}) are strongly electron-donating.
ligands which destabilize the iridium metal orbitals making it easier to be reduced in [Ir(deeb)$_2$Cl$_2$](PF$_6$). A shoulder similar to that in [Ir(deeb)$_2$Cl$_2$](PF$_6$) occurs at -0.78 V, which could be attributed to one part of the deeb ligand detaching from the metal ion to form a [Ir(deeb)$_2$(dpp)]$^{2+}$ species. Another shoulder at -1.49 V appears for [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$, a reductive couple similarly observed for trischelate iridium complexes like [Ir(bpy)$_3$]$_{3+}$ and could be assigned as reduction of a [Ir(deeb)$_2$(dpp)]$^{1-}$ species.46

Figure 3.9. Cyclic voltammograms of (A) [Ir(deeb)$_2$Cl$_2$](PF$_6$) and (B) [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$ using 0.1 M TBAH in CH$_3$CN as supporting electrolyte at room temperature (deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate, dpp = 2,3-bis(2-pyridyl)pyrazine).

The electronic absorption spectrum of [Ir(deeb)$_2$Cl$_2$](PF$_6$) (Figure 3.10A) displays a deeb transition at 308 nm and a small peak at 402 nm assigned to be a 1MLCT, Ir(dπ)\rightarrowdeeb(π^*), transition. Table 3.2 compares the spectral properties of [Ir(deeb)$_2$Cl$_2$](PF$_6$) with its bpy analog.105 The absorption maxima are slightly red-shifted due to the electron-withdrawing effect of the ester group, which lowers the deeb π^* orbital. Excited iridium complexes form metal-to-ligand charge transfer (MLCT) or internal ligand (IL) emissive excited states, depending on the electron density around the metal. If the ligands are anionic, in the case of halide or cyclometallating ligands, the emissive state tends to be a MLCT state because there is sufficient
charge density on the metal; otherwise, emission is due to an IL excited state. The [Ir(bpy)\(\text{Cl}_2\)](PF\(_6\)) complex for instance has an emissive \(^3\text{MLCT}\) state at 510 nm.\(^{33,39}\) Emission spectra of [Ir(deeb)\(\text{Cl}_2\)](PF\(_6\)) in Figure 3.11A reveal a broad peak with a maximum at 538 nm and a tail that extends beyond 700 nm. The complex in powder form shows a similar spectrum that is red-shifted with a peak at 567 nm. Other iridium complexes used for organic light-emitting diodes (OLEDs) and light-emitting electrochemical cells (LECs) show similar shifts.\(^{46}\)

As shown in Figure 3.12A, the room-temperature excited-state lifetime of [Ir(deeb)\(\text{Cl}_2\)](PF\(_6\)) in acetonitrile is 1.71 ± 0.17 \(\mu s\), which is longer compared to those of similar compounds in DMF at room temperature: [Ir(bpy)\(\text{Cl}_2\)]\(^+\), 0.333 \(\mu s\); [Ir(phen)\(\text{Cl}_2\)]\(^+\), 0.324 \(\mu s\); and [Ir(5,6-Mephen)\(\text{Cl}_2\)]\(^+\), 0.840 \(\mu s\).\(^{118,119}\) A high quantum yield of emission for [Ir(deeb)\(\text{Cl}_2\)](PF\(_6\)) (\(\Phi = 0.33\)) was also observed. For [Ir(bpy)\(\text{Cl}_2\)]\(^+\), the quantum yield is 0.0066 in acetonitrile at room temperature.\(^{116,120}\) Both a lower nonradiative rate and a higher radiative rate for [Ir(deeb)\(\text{Cl}_2\)](PF\(_6\)) compared to the other compounds lead to a higher quantum yield. The lifetime for the solid at room temperature displays a single exponential decay profile giving \(\tau = 0.35 ± 0.02 \mu s\). Reduction of the lifetime in the solid state may be attributed to concentration quenching or energy transfer to quenching defects.

Figure 3.10B shows the electronic absorption and emission spectra of [Ir(deeb)\(2\text{dpp}\)](PF\(_6\)). The absorption spectrum contains peaks in the UV region that are similar to those in the spectrum of [Ir(bpy)\(3\)]\(^{3+}\) which were assigned as \(^1\pi\rightarrow\pi^*\) transitions from the ligands.\(^{117}\) The emission spectrum at room temperature contains a broad band centered at 540 nm, which is red shifted to 599 nm in the solid state. Luminescence is assigned to be relaxation of the \(^3\pi\rightarrow\pi^*\) excited state, as in [Ir(bpy)\(3\)]\(^{3+}\) which provides for a lower energy excited state that is closer to the Eu\(^{3+} 5\text{D}_0\) state.\(^{121}\) The assignment of the emissive state of [Ir(deeb)\(2\text{dpp}\)](PF\(_6\)).
was patterned after [Ir(bpy)_3]^{3+} and other tris-chelated iridium compounds which were found to be primarily $^3\pi\rightarrow\pi^*$ in nature with some $^3\text{MLCT}$ character according to the work of Demas et al.121 and those included in the review of Flamigni et al.115,121. The electron-donating chloride ligands destabilize the Ir orbitals providing for the MLCT nature of the lowest lying state. The decay curve of [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$ is shown in Figure 4B and the lifetime was found to be 1.23 ± 0.03 µs and 0.14 ± 0.02 µs in acetonitrile solution and in the solid state, respectively, which is comparable to that of [Ir(bpy)$_3$]$^{3+}$ (2.4 µs in methanol33) at room temperature.

Figure 3.10. Electronic absorption and normalized emission spectra at room temperature of (A) [Ir(deeb)$_2$Cl$_2$](PF$_6$) and (B) [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$ in CH$_3$CN and as solid (deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate, dpp = 2,3-bis(2-pyridyl)pyrazine). For the emission spectra, a 340-nm bandpass filter and a 500 nm cut-off filter are used in the excitation and emission monochromators, respectively.

[Ir(deeb)$_2$Cl$_2$](PF$_6$) was used in this work because it has the $^3\text{MLCT}$ state that lies slightly higher in energy compared to the $^5\text{D}_0$ state of Eu$_2$O$_3$, as shown in the energy diagram below (Figure 3.12). Interestingly, one of the ^1IL states of the iridium complex is also slightly higher in energy compared to the Eu-O charge transfer band. It is noted that the [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$ ^1IL excited state lies also at a slightly higher energy compared to the $^5\text{D}_0$ state of Eu$_2$O$_3$ (Figure 3.11)
as in \([\text{Ir(deeb)}_2\text{Cl}_2](\text{PF}_6)\), which makes studies in comparing energy transfer using these two iridium complexes interesting.

\((A)\) \([\text{Ir(deeb)}_2\text{Cl}_2](\text{PF}_6)\)

\((B)\) \([\text{Ir(deeb)}_2(\text{dpp})](\text{PF}_6)_3\)

Figure 3.11. Lifetime decay curves and residual plots of \((A)\) \([\text{Ir(deeb)}_2\text{Cl}_2](\text{PF}_6)\) and \((B)\) \([\text{Ir(deeb)}_2(\text{dpp})](\text{PF}_6)_3\) in CH$_3$CN and as solid at room temperature (deeb = diethyl-2,2’-bipyridine-4,4’-dicarboxylate, dpp = 2,3-bis(2-pyridyl)pyrazine). 560-nm and 600-nm bandpass filters in the emission monochromator are used for \([\text{Ir(deeb)}_2\text{Cl}_2](\text{PF}_6)\) and \([\text{Ir(deeb)}_2(\text{dpp})](\text{PF}_6)_3\), respectively.
Table 3.2. Electronic spectral data for [Ir(deeb)$_2$Cl$_2$](PF$_6$), [Ir(bpy)$_2$Cl$_2$]$^+$ and [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$ at room temperature.

<table>
<thead>
<tr>
<th>Complex</th>
<th>Absorption</th>
<th>Emission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>λ_{max} (nm)</td>
<td>$\varepsilon \times 10^3$ (M$^{-1}$ cm$^{-1}$)</td>
</tr>
<tr>
<td>Ir(deeb)$_2$Cl$_2$</td>
<td>308</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>402</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>442</td>
<td>2.2</td>
</tr>
<tr>
<td>[Ir(bpy)$_2$Cl$_2$]$^+$</td>
<td>290</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>385</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>430</td>
<td>1.1</td>
</tr>
<tr>
<td>Ir(deeb)$_2$(dpp)$_3$</td>
<td>322</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>334</td>
<td>32</td>
</tr>
</tbody>
</table>
Figure 3.12. Energy diagram for Eu$_2$O$_3$, [Ir(deeb)$_2$Cl$_2$](PF$_6$)$_3$, and [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$, where deeb = diethyl-2,2′-bipyridine-4,4′-dicarboxylate and dpp = 2,3-bis(2-pyridyl)pyrazine.

3.2 Characterization of Europium Oxide Nanoparticles

Scanning electron micrographs were obtained to determine the average particle diameter and size distribution of the synthesized nanoparticles. Typical SEM image and particle size distribution of as-prepared Eu$_2$O$_3$ nanoparticles synthesized at 100 Torr N$_2$ are shown in Figure 3.13. The average particle diameter is 11.0 ± 2.3 nm, consistent with that reported previously for synthesis of Eu$_2$O$_3$ nanoparticles at 100 Torr. The size distribution obtained is relatively small, which is a known advantage of gas-condensation synthesis. X-ray diffraction patterns (Figure 3.14) were also obtained for phase and particle size analyses. A composition of 84.7% monoclinic and 15.3% cubic phases were obtained, which is typical for Eu$_2$O$_3$ nanoparticles synthesized in the same conditions. Using the Scherrer equation (Figure 3.13B), an average particle diameter of 12.0 ± 2.3 nm was obtained, which is consistent with the SEM measurements and previous reports.
Figure 3.13. SEM image and particle size distribution of as-prepared Eu$_2$O$_3$ nanoparticles synthesized at 100 Torr N$_2$.

Figure 3.14. (A) X-ray diffraction pattern of as-prepared Eu$_2$O$_3$ nanoparticles synthesized at 100 Torr N$_2$, and standard patterns for monoclinic and cubic Eu$_2$O$_3$; (B) the Scherrer equation.

\[
B(2\theta) = \frac{0.94 \lambda}{L \cos(\theta)}
\]

where $B(2\theta)$ = linewidth
\(\lambda\) = wavelength of radiation
\(\theta\) = peak position
\(L\) = average particle diameter

The Y$_2$O$_3$ nanoparticles were predominantly monoclinic and have an average of 10 ± 1 nm in diameter, consistent previous reports on Y$_2$O$_3$ nanoparticles synthesized via gas phase condensation.
Table 3.3 and Figure 3.15 show results from the ATR-FTIR spectroscopy of europium oxide nanoparticles obtained under vacuum. A broad peak centered at ~3500 cm\(^{-1}\) due to hydrogen-bonded hydroxyl groups\(^{110,125}\) and a very weak absorption peak at 3685 cm\(^{-1}\) due to free surface hydroxyl groups\(^{110,126}\) were observed for Eu\(_2\)O\(_3\) nanoparticles at room temperature. Gradual heating of the Eu\(_2\)O\(_3\) nanoparticles from 25°C to 200°C and back to 25°C was performed to destroy the surface hydrogen bonds which caused a decrease in the intensity of the broad peak at 3500 cm\(^{-1}\) and revealed the free -OH more clearly (Figure 3.15). The surface -OH groups in the unmodified Eu\(_2\)O\(_3\) nanoparticles could be responsible for hydrolyzing one or more of the ester groups on the deeb ligand to attach the iridium complex on the oxide. The infrared spectra of Eu\(_2\)O\(_3\) also feature strong and broad peaks from 1550-850 cm\(^{-1}\) due to adsorbed CO\(_2\) or carbonate species on europium oxide due to exposure to air.\(^{127-133}\)

Spectral characterization of Eu\(_2\)O\(_3\) nanoparticles was performed using solid state reflection, emission and excitation spectroscopy. In Figure 3.16, the resulting spectrum after the reflection spectrum of Eu\(_2\)O\(_3\) nanoparticles is transformed to the Kubelka-Munk function can be seen, which partly shows a trace of the intense Eu\(^{3+}\)-O\(^{2-}\) charge transfer band at 250 nm and weak 4f transition bands at 394 and 460 nm consistent with previous reflection spectrum of Eu\(_2\)O\(_3\).\(^{134}\) When excited at 395 nm, the emission spectrum at 77K (Figure 3.17A) shows sharp relaxation bands from the \(^5\)D\(_0\) to several \(^7\)F\(_J\) states, the most intense of which is the \(^5\)D\(_0\) \(\rightarrow\) \(^7\)F\(_2\) transition at 610-630 nm that is characteristic of Eu\(^{3+}\) luminescence. Only two of the possible five \(J\) sublevels, centered at 615 nm and 625 nm, were visible in the emission spectrum due to limited resolution. Monitoring the most intense band at 615 nm yields the \(^7\)F\(_0\) \(\rightarrow\) \(^5\)D\(_3\) band at 395 nm as the most intense f-f transition in the excitation spectrum, along with the Eu\(^{3+}\)-O\(^{2-}\) charge transfer band. The CT band is broad because it is an electronic transition between two species and hence between
two potential energy curves with a larger internuclear distance compared to that for f-f
transitions. It is also relatively more intense because there is no selection rule that forbids the transition.135 Luminescence lifetime decay curves obtained after excitation of the $^7\text{F}_0 \rightarrow ^5\text{D}_3$ band at 395 nm and monitoring the $^5\text{D}_0 \rightarrow ^7\text{F}_2$ transition at 615 nm at room temperature are shown in Figure 3.17C-D. A biexponential fit of the decay at gate width = 1 ms (Figure 3.17C) show lifetimes at around 30 μs and 120 μs. Figure 3.17D is a monoexponential fit to more accurately determine the shorter decay time. The lifetime component at 30 μs corresponds to luminescence from site C (label in accordance with that used in refs.6) in monoclinic Eu$_2$O$_3$ nanoparticles, which was reported to be 36 μs for 14 nm particles at low temperature.136,137 The longer lived component, on the other hand, could be attributed to emission from site C of the cubic phase present in as-prepared nanocrystalline Eu$_2$O$_3$, which was reported 183 μs at 12 K.138

Table 3.3. Infrared peaks of Eu$_2$O$_3$ nanoparticles under vacuum.

<table>
<thead>
<tr>
<th>Absorption Peaks</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3685</td>
<td>Free surface O–H stretch110,126,139</td>
</tr>
<tr>
<td>~3500</td>
<td>Hydrogen-bonded O–H stretchT10,125</td>
</tr>
<tr>
<td>1543, 1431</td>
<td>asymmetric and symmetric O–C–O stretch of carbonate127-133</td>
</tr>
<tr>
<td>1076</td>
<td>symmetric C–O stretch of CO$_2$132</td>
</tr>
<tr>
<td>849</td>
<td>out of plane bending of CO$_2$128,133</td>
</tr>
</tbody>
</table>
Figure 3.15. ATR-FTIR spectra of Eu$_2$O$_3$ nanoparticles under vacuum with gradual heating.

Figure 3.16. Solid reflection spectra of modified Eu$_2$O$_3$ nanoparticles, where $F(R)$ is the Kubelka–Munk coefficient, $F(R) = (1-R)^2/2R$, where $R = J/J_{ref}$ and J is the reflected intensity of the sample.140
Figure 3.17. Spectroscopic data for as-prepared Eu$_2$O$_3$ nanoparticles synthesized at 100 Torr N$_2$. (A) Emission spectrum at 77K ($\lambda_{\text{exc}} = 395$ nm); (B) excitation spectrum at 77 K ($\lambda_{\text{em}} = 615$ nm); lifetime decay at RT ($\lambda_{\text{exc}} = 395$ nm, $\lambda_{\text{em}} = 615$ nm) with gate widths of (C) 1 ms and (D) 100 μs.
Chapter 4 - Ruthenium, Rhodium and Iridium Monometallic Complexes on Europium Oxide Nanoparticles

4.1 Attachment of Metal Complexes on Nanoparticles

4.1.1 Mode of Binding of Complexes on Nanoparticles

ATR-FTIR spectroscopy was used to determine the modes of binding of the metal complexes because of characteristic IR vibrations found in carboxyl-containing compounds. The spectra of Eu$_2$O$_3$ nanoparticles and the complexes in pure solid form and on the nanoparticles at ambient conditions are shown in Figure 4.1. Spectra of the stained particles contain characteristic stretching vibrations of both the Eu$_2$O$_3$ nanoparticles and the metal complexes. The ν(C-O) asymmetric and symmetric stretch in Eu$_2$O$_3$ (1385 cm$^{-1}$ and 1500 cm$^{-1}$, respectively) due to carbonate species on the metal-oxide surface were unshifted in the modified particles. The ν(C=O) stretch in [Ru(deeb)$_2$Cl$_2$] (1712 cm$^{-1}$) was also present, although shifted to 1724 cm$^{-1}$ for the Eu$_2$O$_3$ nanoparticles modified with [Ru(deeb)$_2$Cl$_2$]. The same trend was observed for Eu$_2$O$_3$ with [Rh(deeb)$_2$Cl$_2$](PF$_6$) with the ν(C=O) stretch shifting from 1722 to 1732 cm$^{-1}$ when anchored on the metal oxide. The persistence of the carbonyl stretch in the complexes upon attachment indicates a monocovalent, ester-type linkage of the complexes to Eu$_2$O$_3$, as shown in structure A in Figure 4.1, similar to those observed on TiO$_2$ and SnO$_2$ for dicarboxylic acid bpy analogs, or incomplete hydrolysis. A carboxylate, chelating mode of binding (structure B, C or D) determined from a strong band at \sim1600 cm$^{-1}$ was previously reported for deeb-containing complexes on TiO$_2$ upon complete ester hydrolysis, which is absent or only weakly observed for the complexes on Eu$_2$O$_3$. Peaks at \sim1730 cm$^{-1}$ have been interpreted previously as monoester linkage or incomplete hydrolysis of the deeb ester moieties. Other characteristic ester stretching vibrations such as ν(C-(C=O)-O) at \sim1260 cm$^{-1}$ and ν(O-C-C) at \sim1120 cm$^{-1}$ of the
complexes in this study seem to be unshifted when attached to the oxide. This may also suggest that there is a significant percentage of ester moieties that remain unhydrolyzed when anchored to the oxide surface. Hydrolysis of all four ester groups in the metal complexes is not necessary to achieve metal oxide surface saturation with the deeb complexes.

Figure 4.1. ATR-FTIR spectra of Eu₂O₃, [Ru(deeb)₂Cl₂], Eu₂O₃ modified with [Ru(deeb)₂Cl₂], [Rh(deeb)₂Cl₂](PF₆), and Eu₂O₃ modified with [Rh(deeb)₂Cl₂](PF₆) at ambient conditions, where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate. Spectra do not have the same transmittance range.
Figure 4.2. Various modes of attachment of carboxylate-containing ligands on metal oxides.

To determine if hydroxyl groups on the surface of Eu$_2$O$_3$ reacted with the ester group of the deeb ligand and attach[Ir(deeb)$_2$Cl$_2$]$^+$ to Eu$_2$O$_3$, the ATR-FTIR spectrum of the modified nanoparticles were obtained under vacuum to remove surface water. Table 4.1 and Figure 4.3 show ATR-FTIR spectra of europium oxide nanoparticles, the nanoparticles modified with [Ir(deeb)$_2$Cl$_2$]$^+$, and solid [Ir(deeb)$_2$Cl$_2$](PF$_6$) under vacuum. The IR spectrum of the Eu$_2$O$_3$ nanoparticles modified with [Ir(deeb)$_2$Cl$_2$]$^+$ (Figure 4.3b), shows a decrease in intensity of the free -OH signal which could be due to reaction with deeb. A very faint trace of the hydroxyl groups may suggest that the modified oxide surface is not completely covered by the iridium complex or that deeb reacting with the hydroxyl groups was not the absolute mode of attachment of the iridium complex to Eu$_2$O$_3$. Direct coordination or electrostatic interaction between the metal ion in the oxide and the carboxyl group of the metal complex are other mechanisms for attachment.110,126 It is, however, difficult to draw conclusions based on the spectrum. The infrared spectra of the modified and unmodified Eu$_2$O$_3$ also feature strong and broad peaks from 1550-850 cm$^{-1}$ due to adsorbed CO$_2$ or carbonate species on europium oxide due to exposure to air.141

From Figures 4.3b and c (the resultant spectrum after subtracting the Eu$_2$O$_3$ spectrum from the modified Eu$_2$O$_3$ spectrum), two peaks at 1754 and 1649 cm$^{-1}$ can be seen at the carbonyl region for the iridium complex species on Eu$_2$O$_3$, consistent with carboxylato ligands on metal
oxides. The higher energy ν(C=O) stretch at 1754 cm$^{-1}$ suggests that the complex is attached via a monoester-type linkage (A) due to the significant shift from 1718 cm$^{-1}$ in the pure complex (Figure 4.3d). However, the signal at 1649 cm$^{-1}$ indicates that carboxylate modes B, C and D among others mentioned by Meyer et al. may also occur alongside on Eu$_2$O$_3$.

Figure 4.3. ATR-FTIR spectra of (a) Eu$_2$O$_3$, (b) Eu$_2$O$_3$ modified with [Ir(deeb)$_2$Cl$_2$]$^+$, (c) Eu$_2$O$_3$ modified with [Ir(deeb)$_2$Cl$_2$]$^+$ minus Eu$_2$O$_3$, and d) solid [Ir(deeb)$_2$Cl$_2$](PF$_6$), where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate.
Table 4.1. Infrared peaks of Eu$_2$O$_3$ nanoparticles, Eu$_2$O$_3$ modified with [Ir(deeb)$_2$Cl$_2$]$^+$ and [Ir(deeb)$_2$Cl$_2$](PF$_6$).

<table>
<thead>
<tr>
<th>Eu$_2$O$_3$</th>
<th>Eu$_2$O$_3$ modified with [Ir(deeb)$_2$Cl$_2$]$^+$</th>
<th>Ir(deeb)$_2$Cl$_2$</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3685</td>
<td>3743</td>
<td></td>
<td>Free surface O–H stretch on Eu$_2$O$_3$ 143</td>
</tr>
<tr>
<td>~3500</td>
<td>~3500</td>
<td></td>
<td>Hydrogen-bonded O–H stretch on Eu$_2$O$_3$ 110,126,139</td>
</tr>
<tr>
<td>1754</td>
<td>1718</td>
<td></td>
<td>asymmetric C=O stretch of deeb 41,50,51</td>
</tr>
<tr>
<td>1649</td>
<td></td>
<td></td>
<td>asymmetric O–C–O stretch of hydrolyzed deeb 110,125</td>
</tr>
<tr>
<td>1543, 1431</td>
<td>1535, 1425</td>
<td></td>
<td>asymmetric and symmetric O–C–O stretch of carbonate on Eu$_2$O$_3$ 14,142,143</td>
</tr>
<tr>
<td>1234</td>
<td>1255, 1232</td>
<td></td>
<td>asymmetric and symmetric C–O stretch of deeb 127,133</td>
</tr>
<tr>
<td>1076</td>
<td>1078</td>
<td></td>
<td>symmetric C–O stretch of CO$_2$ on Eu$_2$O$_3$ 139,144,145</td>
</tr>
<tr>
<td>849</td>
<td>850</td>
<td></td>
<td>out of plane bending of CO$_2$ on Eu$_2$O$_3$ 128,132,133</td>
</tr>
</tbody>
</table>

4.1.2 Quantitative Surface Binding Studies

Ruthenium complexes are known to form monolayers on metal oxides and surface coverage can be determined by equilibrating various concentrations of the complexes in solution and measuring the adsorbed complex spectroscopically. Figures 4.4a shows the Langmuir isotherm of [Ru(deeb)$_2$(dpp)]$^{2+}$ on 12-nm Eu$_2$O$_3$ nanoparticles which follows equation 15, where $\Gamma = \text{amount of complex adsorbed}$, $C_{eq} = \text{solution concentration at equilibrium}$, $\Gamma_0 = \text{maximum coverage amount}$ and $\theta = \text{coverage}$. Saturation surface coverage, Γ_0, and surface adduct formation constant, K_{ad}, values of 3.0×10^{-8} mol/cm2 and 1.5×10^5 M$^{-1}$ were determined from the slopes and intercepts of Figure 4.4b.

$$\frac{\Gamma}{\Gamma_0} = \theta = \frac{C_{eq}K_{ad}}{1 + C_{eq}K_{ad}} \quad (15)$$
The surface coverage of \([\text{Ru(Deeb)}_2\text{dpp}]^{2+}\) is comparable to similar compounds on TiO\(_2\) and SnO\(_2\).\(^{146}\)

Figure 4.4. Langmuir isotherm plots of \([\text{Ru(Deeb)}_2\text{dpp}]^{2+}\) on 12-nm Eu\(_2\)O\(_3\) nanoparticles, where \(\Gamma\) = amount of complex adsorbed, Ceq = solution concentration at equilibrium.

4.1.3 Energy Dispersive X-ray (EDX) Analysis

Energy Dispersive X-ray (EDX) analysis was performed to quantitatively evaluate the amount of iridium complex adsorbed on Eu\(_2\)O\(_3\) and Y\(_2\)O\(_3\) nanoparticles. Table 4.3 shows the elemental composition of metal oxide nanoparticles modified with \([\text{Ir(Deeb)}_2\text{Cl}_2]^{+}\) and \([\text{Ir(Deeb)}_2\text{dpp}]^{3+}\). The relative amount of complex species attached on the metal oxide can be determined from the atomic ratio of the metal M (M= Eu or Y) to Ir. A comparable M/Ir ratio was observed for the \([\text{Ir(Deeb)}_2\text{Cl}_2]^{+}\) species on Eu\(_2\)O\(_3\) and Y\(_2\)O\(_3\) (a difference of 3%), which suggests that \([\text{Ir(Deeb)}_2\text{Cl}_2]^{+}\) on Y\(_2\)O\(_3\) is a suitable model for the \([\text{Ir(Deeb)}_2\text{Cl}_2]^{+}\) complex species after ester hydrolysis and attachment to the metal oxide surface. For \([\text{Ir(Deeb)}_2\text{dpp}]^{3+}\), on the other hand, there is a larger discrepancy (11%) between the amount of bound material on Eu\(_2\)O\(_3\) and Y\(_2\)O\(_3\). There are no percent nitrogen reported because of the low weight percent of N atoms in the samples and the overlap of the N atom with the O atom signal in the EDX spectra. A considerably higher percentage of carbon was observed for all modified metal oxides which could be due to adsorbed carbonate species from exposure to air. In addition, a low percentage of oxygen on the modified oxides was seen most likely due to oxygen vacancies known to occur in
nanocrystalline Eu$_2$O$_3$. There is also a noticeable loss of Cl ions from [Ir(deeb)$_2$Cl$_2$]$^+$ upon binding to Eu$_2$O$_3$ and Y$_2$O$_3$, which could mean that the Ir$^{3+}$ ions are capable of binding themselves directly to the oxide and possibly carbonate species on the nanoparticles and that the metal complex species could have different orientations on the metal oxide surface upon binding. Surface adsorption, Γ, of both iridium complexes on Eu$_2$O$_3$ and Y$_2$O$_3$ were also calculated using the M/Ir ratio and nanoparticle diameters. Γ values obtained for both iridium complexes on Eu$_2$O$_3$ and Y$_2$O$_3$ nanoparticles correspond to limiting surface coverages calculated for ruthenium analogs on 16-24-nm TiO$_2$ nanofilms, but are one to two orders of magnitude lower than experimental coverages. They are however consistent with adsorption values on In$_2$O$_3$. Higher surface coverage of [Ir(deeb)$_2$Cl$_2$]$^+$ compared to [Ir(deeb)$_2$(dpp)]$^{3+}$ on Eu$_2$O$_3$ and Y$_2$O$_3$ is consistent with the larger size of the dpp ligand that prevents more [Ir(deeb)$_2$(dpp)]$^{3+}$ from anchoring on the nanoparticle surface. The lability of Cl$^-$ and consequently direct binding of Ir$^{3+}$ in [Ir(deeb)$_2$Cl$_2$]$^+$ also provide additional mode of attachment of this complex to the oxides. Another comparison noted is the lower surface coverages on Y$_2$O$_3$ compared to Eu$_2$O$_3$, which is unexpected with the smaller particle size and surface area of the former. In previous ester hydrolysis studies, the nature of the metal ion in the oxide affects the mode of binding and surface coverage of the metal complex to the oxide surface. One factor to consider is the higher ionic polarizability of Eu$^{3+}$ compared to Y$^{3+}$ (4.53 vs. 3.81 Å^3) which provides for greater electrostatic interaction and potential to coordination between Eu$^{3+}$ and the carboxylate moieties in the hydrolyzed form of deeb.
Table 4.2. EDX analysis of [Ir(deeb)$_2$Cl$_2$]$^+$, [Ir(deeb)$_2$(dpp)]$^{3+}$ and [Ru(deeb)$_2$(dpp)]$^{2+}$ on Eu$_2$O$_3$ nanoparticles.

<table>
<thead>
<tr>
<th></th>
<th>Eu$_2$O$_3$ modified with [Ir(deeb)$_2$Cl$_2$]$^+$</th>
<th>Eu$_2$O$_3$ modified with [Ir(deeb)$_2$(dpp)]$^{3+}$</th>
<th>Eu$_2$O$_3$ modified with [Ru(deeb)$_2$(dpp)]$^{2+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>50.396</td>
<td>49.917</td>
<td>48.638</td>
</tr>
<tr>
<td>N</td>
<td>0</td>
<td>0</td>
<td>3.995</td>
</tr>
<tr>
<td>O</td>
<td>24.679</td>
<td>14.159</td>
<td>19.194</td>
</tr>
<tr>
<td>Cl</td>
<td>0.169</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eu</td>
<td>23.991</td>
<td>35.153</td>
<td>27.941</td>
</tr>
<tr>
<td>Ir or Ru</td>
<td>0.765</td>
<td>0.771</td>
<td>0.232</td>
</tr>
<tr>
<td>Eu/M ratio (M = Ir, Ru)</td>
<td>31.4</td>
<td>45.6</td>
<td>120.4</td>
</tr>
<tr>
<td>Γ (mol/cm2)</td>
<td>2.88 x 10$^{-10}$</td>
<td>1.98 x 10$^{-10}$</td>
<td>7.50 x 10$^{-11}$</td>
</tr>
</tbody>
</table>

Table 4.3. EDX analysis of [Ir(deeb)$_2$Cl$_2$]$^+$, [Ir(deeb)$_2$(dpp)]$^{3+}$ and [Ru(deeb)$_2$(dpp)]$^{2+}$ on Y$_2$O$_3$ nanoparticles.

<table>
<thead>
<tr>
<th></th>
<th>Y$_2$O$_3$ modified with [Ir(deeb)$_2$Cl$_2$]$^+$</th>
<th>Y$_2$O$_3$ modified with [Ir(deeb)$_2$(dpp)]$^{3+}$</th>
<th>Y$_2$O$_3$ modified with [Ru(deeb)$_2$(dpp)]$^{2+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>43.216</td>
<td>35.763</td>
<td>52.407</td>
</tr>
<tr>
<td>N</td>
<td>0</td>
<td>0</td>
<td>0.413</td>
</tr>
<tr>
<td>O</td>
<td>32.618</td>
<td>33.635</td>
<td>24.22</td>
</tr>
<tr>
<td>Cl</td>
<td>0.196</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y</td>
<td>23.251</td>
<td>29.867</td>
<td>22.841</td>
</tr>
<tr>
<td>Ir or Ru</td>
<td>0.720</td>
<td>0.735</td>
<td>0.119</td>
</tr>
<tr>
<td>Y/M ratio (M = Ir, Ru)</td>
<td>32.3</td>
<td>40.6</td>
<td>191.4</td>
</tr>
<tr>
<td>Γ (mol/cm2)</td>
<td>1.04 x 10$^{-10}$</td>
<td>8.26 x 10$^{-11}$</td>
<td>1.75 x 10$^{-11}$</td>
</tr>
</tbody>
</table>

4.2 Photophysical Properties of Metal Complexes on Nanoparticles

Reflection spectra of ruthenium, rhodium and iridium complexes on Eu$_2$O$_3$ nanoparticles were obtained to determine if the photophysical properties of the complexes are retained when attached on Eu$_2$O$_3$ nanoparticles. As summarized in Figure 4.5, [Rh(deeb)$_2$Cl$_2$](PF$_6$) has the 3I$_L$
state below the 5D_0 state of Eu$_2$O$_3$, which makes [Rh(deeb)$_2$Cl$_2$](PF$_6$)$_2$ a potential energy acceptor from Eu$_2$O$_3$ while [Ir(deeb)$_2$Cl$_2$](PF$_6$)$_2$ and [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$ are potential energy donors to Eu$_2$O$_3$ nanoparticles.

4.2.1 Reflection Spectroscopy of Metal Complexes on Nanoparticles

The reflection spectrum of Eu$_2$O$_3$ nanoparticles with [Ru(deeb)$_2$Cl$_2$] is shown in Figure 4.6a. Compared to the solution spectrum of [Ru(deeb)$_2$Cl$_2$], the higher energy MLCT band at ~432 nm remains unshifted and the lower energy MLCT band is blue-shifted from 591 to 554 nm. The blue shift is consistent with previous reports for deeb-containing complexes upon hydrolysis of the ester moiety8,137,151 and for dicarboxylic acid analogs upon deprotonation14,105 when anchored to metal-oxide surfaces. The reflection spectrum of [Ru(deeb)$_2$(dpp)](PF$_6$)$_2$ on Eu$_2$O$_3$ in Figure 4.6b shows the $\pi\rightarrow\pi^*$ and Ru(dπ)\rightarrowdpp(π^*) as seen in the absorption spectrum of the complex.

Figure 4.5. Energy diagram of Eu$_2$O$_3$, [Rh(deeb)$_2$Cl$_2$](PF$_6$)$_2$, [Ir(deeb)$_2$Cl$_2$](PF$_6$)$_2$ and [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$.

58
Figure 4.6. Solid reflection spectrum of a) [Ru(deeb)$_2$Cl$_2$] and Eu$_2$O$_3$ modified with [Ru(deeb)$_2$Cl$_2$], and b) [Ru(deeb)$_2$(dpp)](PF$_6$)$_2$ and Eu$_2$O$_3$ modified with [Ru(deeb)$_2$(dpp)](PF$_6$)$_2$, where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate. F(R) is the Kubelka-Munk coefficient, $F(R) = (1-R^2)/2R$, where $R = J/J_{ref}$ and J is the reflected intensity of the sample.112 The dotted line is the absorption spectrum in CH$_2$Cl$_2$ and CH$_3$CN solution (scale on right y-axis).

in solution. There were no significant shifts to the MLCT peak at 460 nm because there were no structural changes in the dpp ligand upon binding to the oxide. A spectrum for [Rh(deeb)$_2$Cl$_2$](PF$_6$) is not shown due to instrumental limitations for peaks < 300 nm.

Figure 4.7a compares the electronic absorption spectrum of [Ir(deeb)$_2$Cl$_2$]$^+$ in CH$_3$CN and the reflection spectra of the complex attached on Y$_2$O$_3$ and Eu$_2$O$_3$. Both $\pi \rightarrow \pi^*$ and metal-to-ligand charge transfer (MLCT) transitions at 308 nm and 402 nm that are seen in the absorption spectrum of [Ir(deeb)$_2$Cl$_2$]$^+$ in CH$_3$CN are also discernible in the solid reflection spectrum of Y$_2$O$_3$ and Eu$_2$O$_3$ modified with [Ir(deeb)$_2$Cl$_2$]$^+$, with slight shifts as expected due to the conversion to the carboxylate upon covalent attachment. Figure 4.7b shows the electronic absorption and reflection spectra of [Ir(deeb)$_2$(dpp)]$^{3+}$ in CH$_3$CN and attached on Y$_2$O$_3$ and Eu$_2$O$_3$. The reflection spectra of [Ir(deeb)$_2$(dpp)]$^{3+}$ on the modified nanoparticles exhibit the internal ligand transition at ~ 330 nm also found in the absorption spectrum of the complex in solution, although not as shifted compared to the nanoparticles modified with [Ir(deeb)$_2$Cl$_2$]$^+$.

59
This could be due to the overlap of the deeb and bridging ligand (e.g. dpp) $\pi \rightarrow \pi^*$ transitions at 300-320 nm as seen in ruthenium complexes with both ligands. The reflection spectra of the Eu$_2$O$_3$ nanoparticles modified with the two complexes also feature absorption from 350-440 nm that may include absorption due to Eu$_2$O$_3$.

Figure 4.7. a) Solution absorption of [Ir(deeb)$_2$Cl$_2$]$^+$ and solid reflection spectra of modified Y$_2$O$_3$ and Eu$_2$O$_3$ nanoparticles; b) Solution absorption of [Ir(deeb)$_2$(dpp)]$_3^+$ and solid reflection spectra of modified Y$_2$O$_3$ and Eu$_2$O$_3$ nanoparticles, where deeb = diethyl-2,2$'$-bipyridine-4,4$'$-dicarboxylate and dpp = 2,3-bis(2-pyridyl)pyrazine. $F(R)$ is the Kubelka–Munk coefficient, $F(R) = (1-R)^2/2R$, where $R = J/J_{ref}$ and J is the reflected intensity of the sample.
4.2.2 Emission Spectroscopy

Figure 4.8. Excitation spectra ($\lambda_{em} = 615$ nm) and emission spectra ($\lambda_{ex} = 394$ nm) at room temperature of Eu$_2$O$_3$ and Eu$_2$O$_3$ modified with deeb = diethyl-2,2$'$-bipyridine-4,4$'$-dicarboxylate.

Even though the energy of the CT band is highly dependent on the coordination environment, there is no observable shift in the CT maximum for Eu$_2$O$_3$ modified with deeb shown in Figure 4.8. The intensity of the CT band is diminished for Eu$_2$O$_3$ modified with deeb probably due to a decrease in electron density on the oxide when deeb was adsorbed thereby reducing the chance for charge transfer to occur.

The solid-state emission spectra of [Rh(deeb)$_2$Cl$_2$]$^+$ on Eu$_2$O$_3$ nanoparticles were investigated at 77 K. Figure 4.9a and b show the emission spectra of unstained and stained Eu$_2$O$_3$ with [Rh(deeb)$_2$Cl$_2$]$^+$ exciting the 7F$_0 \rightarrow ^5$D$_3$ (288 nm, a) and the 7F$_0 \rightarrow ^5$D$_2$ (395 nm, b) transitions of Eu$^{3+}$. The data shows that it is possible to excite the nanoparticles through the coated surface to obtain the characteristic emission for a Eu$_2$O$_3$ nanoparticle. The emission of the rhodium complex at 680 nm was not observed upon excitation of Eu$_2$O$_3$ which suggests that energy
transfer did not occur for the modified nanoparticles. The ^3IL acceptor state of the rhodium complex albeit lower in energy compared to the $^3\text{D}_0$ state of Eu$^{3+}$ may not be close enough to act as an acceptor state. When monitoring the characteristic Eu$^{3+}$ emission at 615 nm in the excitation spectra in Figure 4.10a, a decrease in the relative intensity of Eu-O CT band at 288 nm compared to the $^7\text{F}_0 \rightarrow ^5\text{D}_3$ of Eu$^{3+}$ at 395 nm for Eu$_2$O$_3$ modified with [Rh(deeb)$_2$Cl$_2$]$^+$ was observed due to anchoring of the rhodium complex on the europium oxide surface. This is consistent with the partial removal of the electron density from the oxide ions in Eu$_2$O$_3$ when deeb was adsorbed thereby reducing the chance for charge transfer to occur. On the other hand, the theory of minimal to no energy transfer occurring is also supported by the excitation spectra in Figure 4.10b. When monitoring at the emission of [Rh(deeb)$_2$Cl$_2$]$^+$ at 680 nm, both the spectra of unstained and stained Eu$_2$O$_3$ nanoparticles show contribution from both the rhodium and europium species. However, after subtracting the contribution due to direct excitation of europium, the spectrum of the modified nanoparticles show mostly direct excitation of the rhodium species at 330 nm (^1IL state). Only a minimal contribution of the europium species excited at 400 nm was observed for the emission of the rhodium complex.

Figure 4.11a shows excitation spectra monitoring at 615 nm of Eu$_2$O$_3$ and [Ir(deeb)$_2$Cl$_2$]$^+$ on Y$_2$O$_3$ and Eu$_2$O$_3$. It is evident from the reflection spectra in Figure 4.7c and the Eu$_2$O$_3$ excitation spectrum in Figure 3.17b that the iridium complex absorbs at 440 nm while Eu$_2$O$_3$ does not. In the emission spectra in Figure 4.11a, [Ir(deeb)$_2$Cl$_2$]$^+$ on Y$_2$O$_3$ exhibits emission from the $^3\text{MLCT}$ state centered at 567 nm when excited with 440 nm light as expected of the iridium complex, while no Eu$_2$O$_3$ emission is observed. However, Eu$_2$O$_3$ modified with [Ir(deeb)$_2$Cl$_2$]$^+$ shows emission characteristic of both the iridium complex and Eu$^{3+}$ upon 440 nm excitation, a wavelength that excites only the iridium complex. This observation is consistent with energy
Figure 4.9. Emission spectra exciting at a) $\lambda_{ex} = 288$ nm and b) $\lambda_{ex} = 394$ nm at 77 K of Eu$_2$O$_3$ and Eu$_2$O$_3$ modified with [Rh(deeb)$_2$Cl$_2$]$^+$, where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate.

Figure 4.10. Excitation spectra emitting at a) $\lambda_{em} = 615$ nm, and b) $\lambda_{ex} = 395$ nm at 77 K of Eu$_2$O$_3$ and Eu$_2$O$_3$ modified with [Rh(deeb)$_2$Cl$_2$]$^+$, where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate.
transfer from the iridium complex to Eu$_2$O$_3$ across the surface interface made possible by the very close energies of the 3MLCT state of the Ir complex and the 5D$_0$ state of Eu$^{3+}$ as shown in Figure 4.5. The excitation spectrum of Eu$_2$O$_3$ modified with [Ir(deeb)$_2$Cl$_2$]$^+$ monitoring the 615 nm Eu$^{3+}$ emission shows an spectrum similar to [Ir(deeb)$_2$Cl$_2$]$^+$ on Y$_2$O$_3$ (maximum at 330 nm) that has a broad peak with a maximum at 338 nm and some faint trace of direct excitation of Eu$^{3+}$ at 394 and 466 nm. This suggests that the Eu$^{3+}$ emission from the modified Eu$_2$O$_3$ at 615 nm is mostly due to ET from [Ir(deeb)$_2$Cl$_2$]$^+$ and not mainly due to Eu$_2$O$_3$.

Figure 4.11b shows the excitation spectra monitoring at 615 nm and emission spectra exciting at 340 nm of Eu$_2$O$_3$ and [Ir(deeb)$_2$(dpp)]$^{3+}$ on Y$_2$O$_3$ and Eu$_2$O$_3$. The emission spectra of both Y$_2$O$_3$ and Eu$_2$O$_3$ modified with [Ir(deeb)$_2$(dpp)]$^{3+}$ when excited at 340 nm show a broad emission band centered at 610 nm due to the iridium species. Aside from the broad band, the emission spectrum of Eu$_2$O$_3$ modified with [Ir(deeb)$_2$(dpp)]$^{3+}$ also contains the sharp emission bands at 613 and 622 nm characteristic of Eu$_2$O$_3$. The excitation spectrum of Eu$_2$O$_3$ modified with [Ir(deeb)$_2$(dpp)]$^{3+}$ monitoring at 615 nm includes both a broad band centered at 330 nm characteristic of [Ir(deeb)$_2$(dpp)]$^{3+}$ as well as sharp bands at 394 and 466 nm characteristic of Eu$_2$O$_3$, but has more contribution from Eu$_2$O$_3$ compared to what is seen in [Ir(deeb)$_2$Cl$_2$]$^+$ on Eu$_2$O$_3$ (Figure 4.9a). This suggests that emission of Eu$_2$O$_3$ modified with [Ir(deeb)$_2$(dpp)]$^{3+}$ at 615 nm is due to a combination of direct excitation of Eu$^{3+}$ and ET from [Ir(deeb)$_2$(dpp)]$^{3+}$. The lower surface coverage of [Ir(deeb)$_2$(dpp)]$^{3+}$ on Eu$_2$O$_3$ compared to that of [Ir(deeb)$_2$Cl$_2$]$^+$ from the EDX experiments could be one reason for the larger contribution of Eu$_2$O$_3$ in the 615 nm emission of Eu$_2$O$_3$ modified with [Ir(deeb)$_2$(dpp)]$^{3+}$.

64
Figure 4.11. Excitation ($\lambda_{ex} = 615$ nm) and emission spectra ($\lambda_{em} = 440$ nm) at room temperature of a) Eu_2O_3, Y_2O_3 modified with $[\text{Ir}\text{(deeb)}_2\text{Cl}_2]^+$ and Eu_2O_3 modified with $[\text{Ir}\text{(deeb)}_2\text{Cl}_2]^+$; b) Eu_2O_3, Y_2O_3 modified with $[\text{Ir}\text{(deeb)}_2\text{(dpp)}]^{3+}$ and Eu_2O_3 modified with $[\text{Ir}\text{(deeb)}_2\text{(dpp)}]^{3+}$, where deeb = diethyl-2,2’-bipyridine-4,4’-dicarboxylate and dpp = 2,3-bis(2-pyridyl)pyrazine. A 340-nm bandpass filter and a 500 nm cut-off filter are used in the excitation and emission monochromators, respectively.
4.2.3 Lifetime Studies

The solid state lifetimes decay curves shown in Figure 4.12 were of Eu$_2$O$_3$ and Eu$_2$O$_3$ modified with [Rh(deeb)$_2$Cl$_2$]$^+$ at 77 K. The lifetime obtained for Eu$_2$O$_3$ at 77 K is higher compared to that at RT as shown in Figure 3.17 as expected. A decrease in the Eu$_2$O$_3$ cubic phase lifetime from 327 µs to 152 µs was observed which could either be due to energy transfer or quenching of the Eu$_2$O$_3$ lifetime due to surface adsorption of the rhodium complex. The rhodium complex may have been preventing the excitation of Eu$_2$O$_3$ by blocking the surface and block Eu$^{3+}$ ions on the nanoparticle. Because this factor competes with establishing the energy transfer phenomenon, an opposite system where Eu$^{3+}$ acts as the acceptor, as in the Eu$^{3+}$-Ir$^{3+}$ systems, was investigated instead.

![Figure 4.12. Lifetime decay profile of (a) as-prepared Eu$_2$O$_3$ nanoparticles synthesized at 100 Torr N$_2$ and (b) Eu$_2$O$_3$ nanoparticles modified with [Rh(deeb)$_2$Cl$_2$]$^+$ ($\lambda_{ex} = 395$ nm, $\lambda_{em} = 615$ nm) at 77 K with a gate width of 0.1 ms, where deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate and dpp = 2,3-bis(2-pyridyl)pyrazine.](image)

In the time-resolved phosphorescence spectroscopy of Eu$_2$O$_3$ and the [Ir(deeb)$_2$Cl$_2$]$^+$ complex on Y$_2$O$_3$ and Eu$_2$O$_3$, the characteristic emission light of the emitting species were
visually observed as the N₂ dye laser beam excites the solid samples. The unmodified Eu₂O₃ nanoparticles emit red light, [Ir(deeb)₂Cl₂]⁺ on Y₂O₃ emits green light, and [Ir(deeb)₂Cl₂]⁺ on Eu₂O₃ emits white light, similar to that observed by Coppo et. al. for their Ir-Eu-Ir trimetallic complex.⁴¹ Luminescence lifetime decay curves obtained after excitation at 396 nm and monitoring at the emission wavelengths of the iridium complexes on Y₂O₃ and Eu₂O₃ are shown in Figure 4.13. A large decrease in emission lifetime from 0.28 to 0.09 µs at 555 nm, where [Ir(deeb)₂Cl₂]⁺ emits, is observed in Figure 4.13a for [Ir(deeb)₂Cl₂]⁺ attached on Eu₂O₃. This is consistent with energy transfer (68% efficiency as calculated using eq. 13) from the ³MLCT state of the iridium complex to the ⁵D₀ state of Eu₂O₃. The calculated ET rate constant, k₄, for [Ir(deeb)₂Cl₂]⁺ attached on Eu₂O₃ using eqs. (11) and (12) is 1.1 x 10⁻⁵ s⁻¹ as shown on Table 4.4. Assuming the quantum yield of [Ir(deeb)₂(dpp)]³⁺ in solution remains the same when anchored on Y₂O₃, the radiative decay rate constant k₀ and non-radiative decay rate constant k Di of [Ir(deeb)₂Cl₂]⁺ were calculated to be 1.2 x 10⁻⁶ and 2.4 x 10⁻⁶ s⁻¹, respectively, using eqs. (5), (6) and (7). Note that the above rate constants are very small quantities because the processes involved are in the solid state. Consequently, the quantum yield of [Ir(deeb)₂Cl₂]⁺ on (ϕ₃) Eu₂O₃ and the ratio of the Forster distance R₀ to the donor-acceptor distance R were found to be 0.080 and 1.2, respectively.

The lifetime decay curves of [Ir(deeb)₂(dpp)]³⁺ on Y₂O₃ and Eu₂O₃ shown in Figure 4.13b are measured at 565 nm instead of the emission maximum of [Ir(deeb)₂(dpp)]³⁺ on Y₂O₃ at 610 nm so that the Eu₂O₃ emission would not overlap. When excited at 396 nm the lifetime of [Ir(deeb)₂(dpp)]³⁺ is reduced from 0.20 to 0.10 µs when attached to Eu₂O₃ also consistent with ET (50% efficiency) of [Ir(deeb)₂(dpp)]³⁺ to Eu₂O₃. The lower ET efficiency observed in the [Ir(deeb)₂(dpp)]³⁺ system compared to that in [Ir(deeb)₂Cl₂]⁺ is consistent with the excitation
spectra of the modified Eu$_2$O$_3$ nanoparticles and is again attributed to a lower surface coverage of [Ir(deeb)$_2$(dpp)]$^{3+}$ than [Ir(deeb)$_2$Cl$_2$]$^+$ on Eu$_2$O$_3$. Kinetic parameters were also calculated for [Ir(deeb)$_2$(dpp)]$^+$ on Eu$_2$O$_3$ as shown in Table 4.4, again assuming that the quantum yield for [Ir(deeb)$_2$(dpp)]$^+$ on Y$_2$O$_3$ is the same for [Ir(deeb)$_2$(dpp)]$^+$ in solution. The energy transfer rate constant for [Ir(deeb)$_2$(dpp)]$^+$ on Eu$_2$O$_3$ was very similar to that for [Ir(deeb)$_2$Cl$_2$]$^+$ on Eu$_2$O$_3$ which suggests a similar change in the quantum yields of both systems in solution and after anchoring on Eu$_2$O$_3$, and hence a similar manner of coordination for the two complexes on Eu$_2$O$_3$.

It must be noted that aside from energy transfer, quenching of the Ir$^{3+}$ emissions may also occur because no risetime in the lifetime transients were observed. Also, as mentioned before, excitation of both the complexes and europium occur to cause emission from both species.

Table 4.4. Kinetic parameters for energy transfer of [Ir(deeb)$_2$Cl$_2$]$^+$ and [Ir(deeb)$_2$(dpp)]$^{3+}$ on Y$_2$O$_3$ and Eu$_2$O$_3$.

<table>
<thead>
<tr>
<th></th>
<th>[Ir(deeb)$_2$Cl$_2$]$^+$ on Y$_2$O$_3$</th>
<th>[Ir(deeb)$_2$Cl$_2$]$^+$ on Eu$_2$O$_3$</th>
<th>[Ir(deeb)$_2$(dpp)]$^{3+}$ on Y$_2$O$_3$</th>
<th>[Ir(deeb)$_2$(dpp)]$^{3+}$ on Eu$_2$O$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_{ex} (nm)</td>
<td>396</td>
<td>555</td>
<td>396</td>
<td>565</td>
</tr>
<tr>
<td>λ_{em} (nm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ (us)</td>
<td>0.28</td>
<td>0.09</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.33 (solution)</td>
<td>0.080</td>
<td>0.013 (solution)</td>
<td>0.0043</td>
</tr>
<tr>
<td>E</td>
<td>0.68</td>
<td></td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>k_T (s$^{-1}$)</td>
<td>1.1 x 10$^{-5}$</td>
<td></td>
<td>1.0 x 10$^{-5}$</td>
<td></td>
</tr>
<tr>
<td>k_D (s$^{-1}$)</td>
<td>1.2 x 10$^{-6}$</td>
<td>6.5 x 10$^{-8}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_{Di} (s$^{-1}$)</td>
<td>2.4 x 10$^{-6}$</td>
<td>4.9 x 10$^{-6}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_0/R</td>
<td>1.2</td>
<td></td>
<td>1.1</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.13. Lifetime decay profiles of (a) $[\text{Ir}(\text{deeb})_2\text{Cl}_2]^+$ anchored on nanocrystalline Y_2O_3 and Eu_2O_3 ($\lambda_{ex} = 396 \text{ nm}, \lambda_{em} = 555 \text{ nm}$); and (b) $[\text{Ir}(\text{deeb})_2(\text{dpp})]^3+$ anchored on nanocrystalline Y_2O_3 and Eu_2O_3 ($\lambda_{ex} = 396 \text{ nm}, \lambda_{em} = 565 \text{ nm}$) at RT, where deeb = diethyl-2,2′-bipyridine-4,4′-dicarboxylate and dpp = 2,3-bis(2-pyridyl)pyrazine. 560-nm and 600-nm bandpass filters in the emission monochromator are used for $[\text{Ir}(\text{deeb})_2\text{Cl}_2](\text{PF}_6)$ and $[\text{Ir}(\text{deeb})_2(\text{dpp})](\text{PF}_6)_3$, respectively.
Chapter 5 - Conclusions and Future Work

Ruthenium complexes [Ru(deeb)₂Cl₂] and [Ru(deeb)₂(dpp)](PF₆)₂, the rhodium complex [Rh(deeb)₂Cl₂](PF₆) and iridium complexes [Ir(deeb)₂Cl₂](PF₆) and [Ir(deeb)₂(dpp)](PF₆)₃ which contain the deeb ligand were synthesized and characterized by ¹H NMR and mass spectrosopies. Europium oxide nanoparticles are synthesized by gas phase condensation and characterized by SEM and X-ray diffraction. The surface of europium oxide nanoparticles can be modified with metal complexes by equilibrating solutions of metal complexes with the nanoparticles. Metal complexes bind to europium oxide by forming a monolayer of metal complexes through a mixture of different modes of binding. Reflection spectra of modified nanoparticles are consistent with electronic absorption spectra of the complexes in solution which suggests retention of the metal complex excited states upon binding. Emission and excitation spectra of Eu₂O₃ modified with [Rh(deeb)₂Cl₂]⁺ only show characteristics from Eu₂O₃ without evidence of energy transfer to the rhodium complex. The emission spectrum of Eu₂O₃ modified with [Ir(deeb)₂Cl₂]⁺ show maxima for both the iridium complex and Eu₂O₃ upon excitation of only the iridium complex. Excitation spectra of Eu₂O₃ modified with [Ir(deeb)₂Cl₂]⁺ monitoring the Eu³⁺ emission show excitation mainly due to [Ir(deeb)₂Cl₂]⁺. The emission spectrum of Eu₂O₃ modified with [Ir(deeb)₂(dpp)]³⁺ also shows characteristic bands of Eu₂O₃ and [Ir(deeb)₂(dpp)]³⁺, and the excitation spectrum of the modified nanoparticles show contribution from both Eu₂O₃ and [Ir(deeb)₂(dpp)]³⁺ to induce emission from Eu³⁺. Reduction in the lifetimes of both [Ir(deeb)₂Cl₂]⁺ and [Ir(deeb)₂(dpp)]³⁺ was observed upon binding to Eu₂O₃. Both steady-state and time-resolved luminescence experiments indicate energy transfer of the iridium complexes to to Eu₂O₃ nanoparticles.
To further investigate the possibility of energy transfer from Eu$_2$O$_3$ to a rhodium complex, a control complex that would produce a similar extent of coverage on Eu$_2$O$_3$ but would not act as an energy acceptor from Eu$_2$O$_3$ could be employed to determine the decrease in intensity steady-state measurements and reduction in lifetime in time-resolved. To improve surface coverage of the metal complexes on nanoparticles, ligands with single carboxylate groups could be used. Also, addition of other metal complex moieties via bridging ligands on the nanoparticle surface to increase functionality and luminescence can be conducted for future work. Removal of the adsorbed carbonates by annealing and varying properties of the metal oxide by doping are also expected to produce greater luminescence intensity to these materials.
Appendices

Appendix A – 2D 1H NMR Spectra of [Rh(deeb)$_2$Cl$_2$](PF$_6$), [Ir(deeb)$_2$Cl$_2$](PF$_6$) and [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$

COSY 1H NMR Spectrum of [Rh(deeb)$_2$Cl$_2$](PF$_6$):

NOESY 1H NMR Spectrum of [Rh(deeb)$_2$Cl$_2$](PF$_6$):
COSY 1H NMR Spectrum of [Ir(deeb)$_2$Cl$_2$](PF$_6$):

![COSY spectrum of [Ir(deeb)$_2$Cl$_2$](PF$_6$)](image)

COSY 1H NMR Spectrum of [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$:

![COSY spectrum of [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$](image)
Appendix B – Mass Spectra of [Rh(deeb)$_2$Cl$_2$](PF$_6$), [Ir(deeb)$_2$Cl$_2$](PF$_6$) and [Ir(deeb)$_2$(dpp)](PF$_6$)$_3$
Qualitative Compound Report

Data File: pt_rabo_esi.mzML
Sample Name: pt_rabo
Sample Type: Sample
Instrument Name: ILM xs_unified
DA Method: masssep

In MS Spectrum:
- Cpd 1: C32 H32 N4 O8 C22
- Mass 863.1222
- Counts vs. Mass-to-Charge (m/z)

In Compound Table:
- Cpd 1: C32 H32 N4 O8 C22 [1831]
- RT 0.256
- Mass 863.1267
- Abund 1988.98
- Formula C32 H32 N4 O8 C22 [1831]
- TG Mass 863.1236
- ERR (ppm) 2.19

In Compound Label:
- Cpd 1: C32 H32 N4 O8 C22 [1831]
- RT 0.256
- Algorithm: Found By Formula
- Mass 863.1267
Qualitative Compound Report

MS Zoomed Spectrum

Cmp 1: C32 H32 N4 O8 C2 [183m]: -ESI Scan (0.180-0.758 min, 37 scans) Frac=75.6V je_riبدل_e...

MS Spectrum Peak List

<table>
<thead>
<tr>
<th>Ret (min)</th>
<th>El(I/O)</th>
<th>El (ppm)</th>
<th>z</th>
<th>Abund</th>
<th>Formula</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.61</td>
<td>1.12</td>
<td>1.2</td>
<td>30</td>
<td>0.63</td>
<td>120</td>
<td>1.00</td>
</tr>
<tr>
<td>0.62</td>
<td>1.13</td>
<td>1.2</td>
<td>30</td>
<td>0.63</td>
<td>121</td>
<td>1.00</td>
</tr>
<tr>
<td>0.66</td>
<td>1.07</td>
<td>1.2</td>
<td>30</td>
<td>0.63</td>
<td>122</td>
<td>1.00</td>
</tr>
<tr>
<td>0.67</td>
<td>1.05</td>
<td>1.2</td>
<td>30</td>
<td>0.63</td>
<td>123</td>
<td>1.00</td>
</tr>
<tr>
<td>0.99</td>
<td>1.21</td>
<td>1.2</td>
<td>30</td>
<td>0.63</td>
<td>124</td>
<td>1.00</td>
</tr>
<tr>
<td>3.87</td>
<td>1.25</td>
<td>1.2</td>
<td>30</td>
<td>0.63</td>
<td>125</td>
<td>1.00</td>
</tr>
</tbody>
</table>

End of Report
Qualitative Compound Report

<table>
<thead>
<tr>
<th>Data File</th>
<th>indee12_dsp_enl_2a.d</th>
<th>Sample Name</th>
<th>indee12_dsp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Type</td>
<td>Sample</td>
<td>Position</td>
<td>PI-29</td>
</tr>
<tr>
<td>Instrument Name</td>
<td>Instrument 1</td>
<td>User Name</td>
<td></td>
</tr>
<tr>
<td>Ana Method</td>
<td>mswes_unicorn</td>
<td>IRR Calibration Status</td>
<td>in-line-based</td>
</tr>
<tr>
<td>DA Method</td>
<td>mass spec ion</td>
<td>Comments</td>
<td></td>
</tr>
</tbody>
</table>

Compound Table

<table>
<thead>
<tr>
<th>Compound Label</th>
<th>RT (min)</th>
<th>Mass (m/z)</th>
<th>Abund</th>
<th>Formula</th>
<th>Tg1 Mass</th>
<th>Dev (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cpd 1: C46 H42 N8 O8</td>
<td>0.465</td>
<td>302.2784</td>
<td>421993</td>
<td>C46 H42 N8 O8</td>
<td>302.2792</td>
<td>-0.68</td>
</tr>
</tbody>
</table>

Compound Label

<table>
<thead>
<tr>
<th>Compound Label</th>
<th>RT (min)</th>
<th>Algorithm</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cpd 1: C46 H42 N8 O8</td>
<td>0.465</td>
<td>Find by Formula</td>
<td>302.2784</td>
</tr>
</tbody>
</table>

MS Spectrum

- Cpd 1: C46 H42 N8 O8: *ESI* Scan (1.668-1.467 min, 82 scans) Frag=75.0V. (42.668) (342.8220) M+K+3
Qualitative Compound Report

MS Zoomed Spectrum

MS Spectrum Peak List

<table>
<thead>
<tr>
<th>m/z</th>
<th>C18 n/z</th>
<th>(ppm)</th>
<th>Abund</th>
<th>Formula</th>
<th>Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>207.7960</td>
<td>0.14</td>
<td>421.29</td>
<td>C16 H12 N8 O6</td>
<td>18+3</td>
<td></td>
</tr>
<tr>
<td>341.7520</td>
<td>241.7340</td>
<td>-6.9</td>
<td>220.22</td>
<td>C16 H12 N8 O6</td>
<td>24+3</td>
</tr>
<tr>
<td>342.0880</td>
<td>242.0710</td>
<td>-8.7</td>
<td>220.22</td>
<td>C16 H12 N8 O6</td>
<td>24+3</td>
</tr>
<tr>
<td>342.6220</td>
<td>242.6040</td>
<td>-7.9</td>
<td>420.00</td>
<td>C16 H12 N8 O6</td>
<td>24+3</td>
</tr>
<tr>
<td>342.5860</td>
<td>242.5690</td>
<td>-10.9</td>
<td>420.00</td>
<td>C16 H12 N8 O6</td>
<td>24+3</td>
</tr>
<tr>
<td>342.7050</td>
<td>242.6880</td>
<td>-9.8</td>
<td>420.00</td>
<td>C16 H12 N8 O6</td>
<td>24+3</td>
</tr>
<tr>
<td>342.9240</td>
<td>242.9070</td>
<td>-7.6</td>
<td>420.00</td>
<td>C16 H12 N8 O6</td>
<td>24+3</td>
</tr>
<tr>
<td>343.0960</td>
<td>243.0790</td>
<td>-9.8</td>
<td>420.00</td>
<td>C16 H12 N8 O6</td>
<td>24+3</td>
</tr>
<tr>
<td>343.4340</td>
<td>243.4170</td>
<td>-7.6</td>
<td>420.00</td>
<td>C16 H12 N8 O6</td>
<td>24+3</td>
</tr>
</tbody>
</table>

--- End of Report ---
Appendix C – EDX Spectra of Metal Complexes on Eu₂O₃ and Y₂O₃ Nanoparticles
83
References

(4) Bell, A. T. Science (Washington, DC, United States) 2003, 299, 1688.
(19) Balzani, V.; Bergamini, G.; Ceroni, P. Coordination Chemistry Reviews 2008, 252, 2456.
(24) Zhang, L. Z.; Sun, W.; Cheng, P. Molecules 2003, 8, 207.
(107) Elemental analysis showed C, 39.7%, H, 3.2%, N, 5.8% (calculated C, 41.8%, H, 3.5%, N, 6.1%).

