
ADML: Aircraft Design Markup Language for
Multidisciplinary Aircraft Design and Analysis

Shubhangi Deshpandea, Layne T. Watsona,b,c, Nathan J. Lovec,
Robert A. Canfieldc, and Raymond M. Kolonayd

aDepartment of Computer Science, Virginia Polytechnic Institute & State University, Blacksburg, VA
bDepartment of Mathematics, Virginia Polytechnic Institute & State University, Blacksburg, VA

cDepartment of Aerospace & Ocean Engineering, Virginia Polytechnic Institute & State University, Blacksburg, VA
dAFRL/RQVC, 2210 8th Street, Bldg 146, Room 218, WPAFB, OH 45433

Abstract The process of conceptual aircraft design has advanced tremendously in the past few
decades due to rapidly developing computer technology. Today’s modern aerospace systems exhibit
strong, interdisciplinary coupling and require a multidisciplinary, collaborative approach. Efficient
transfer, sharing, and manipulation of aircraft design and analysis data in such a collaborative
environment demands a formal structured representation of data. XML, a W3C recommendation,
is one such standard concomitant with a number of powerful capabilities that alleviate interoperability
issues in a collaborative environment. A compact, generic, and comprehensive XML schema for an
aircraft design markup language (ADML) is proposed here to represent aircraft conceptual design
and analysis data. The purpose of this unified data format is to provide a common language for data
communication, and to improve efficiency and productivity within a multidisciplinary, collaborative
aricraft design environment. An important feature of the proposed schema is the very expressive
and efficient low level schemata (raw data, mathematical objects, and basic geometry). As a proof
of concept the schema is used to encode an entire Convair B58. As the complexity of models and
number of disciplines increases, the reduction in effort to exchange data models and analysis results
in ADML also increases.

Keywords: XML schema; markup language; interoperability; multidisciplinary design; unified data
format; conceptual aircraft design.

1. Introduction

Aircraft design by nature is a multidisciplinary process where several different disciplines (see Fig-
ure 1) such as geometry, structures, aerodynamics, controls, propulsion, flight mechanics, and so on
contribute to achieving an optimal design adhering to all the design constraints for all the disciplines
involved. The first step in the design process, the conceptual design, is characterized by a large
number of design alternatives and trade-off studies, and a continuous, evolutionary change to the
aircraft concepts under consideration [22]. Conceptual design is primarily a search process that re-
quires an extensive exploration of the design space in order to gain insight into the relations between
the design variables and the aircraft performance. It formulates a set of design variable quantities,
which, according to appropriate modeling principles and design constraints, defines a vehicle that
fulfills a set of minimum requirements determined by the vehicle mission. Traditional conceptual
design was conducted as isolated disciplines with low fidelity interdisciplinary coupling and mostly
linear interactions between disciplines. However, due to rapidly developing computer technology
and algorithmic improvements, conceptual design methods have advanced tremendously in the past
few decades. Today’s modern aerospace systems exhibit strong interdisciplinary coupling and re-
quire a multidisciplinary, collaborative approach [24]. Aircraft design has become a collaborative
endeavor that involves many individuals from diverse groups around the world working together
in an extended enterprise environment to achieve a common goal. Advances in computer capacity
and speed, along with increasing demands on the efficiency of the aircraft design process, have in-
tensified the use of simulation based design and analysis tools to explore design alternatives both
at the component and system levels. Analysis methods that were once considered feasible only for
advanced and detailed design are now available and even practical at the conceptual design stage.
Rapid analysis methods also allow multidisciplinary design optimization methods to be implemented
in conceptual design. This changing philosophy of conducting the conceptual aircraft design and
analysis poses additional challenges beyond those encountered in a low fidelity design and analysis

1



Aircraft Design 
& Analysis

Weights

Cost

Geometry

Loads
Structures &

Propulsion

Materials

Mission 

Performance

Stability & 
Controls

Aerodynamics

Figure 1. Disciplines involved in an aircraft design process.

of aircraft. Although the use of sophisticated design and analysis tools has become prevalent in
the aerospace community, the field of interdisciplinary communication still remains in a primitive
state. Aircraft design systems are not yet equipped with the state-of-the-art in data representation
and communication that are prevalent in several other domains. An objective of this paper is to
propose a unified data approach for bridging the gap in data communication methods and making
the aircraft design process more agile.

Aircraft design and analysis involves manipulation of a large amount of interdisciplinary data
including, but not limited to, inputs and outputs. Efficient transfer, sharing, and manipulation of
aircraft design and analysis data across different platforms, applications, and users demands a formal
structured representation of data in a well organized data sharing and validation environment. In
general, due to the lack of a uniform representation, the same information is duplicated several times,
each time in a different format specific to the underlying implementation. In order to exchange this
information between different disciplines/applications/users, a translator needs to be designed that
converts one format to/from another at every facility and for each format. Thus, the lack of a
standard, uniform representation results in redundancy in codes and duplication of information and
efforts incurring a lot of maintenance overhead. Another common problem with this kind of data
exchange is data inconsistency. All these factors inhibit sharing and exchanging of interdisciplinary
data and greatly hinder the conceptual design process making it less efficient. To alleviate this
burden, a unified system is sought that provides certain capabilities for modeling the massive amount
of multidisciplinary data, such as portability, maintainability, reusability, platform independence,
integrity, (syntactic) correctness, and system recovery. With a platform and language independent
data exchange standard like XML (extensible markup language), information can flow seamlessly
in a heterogeneous environment with diverse computing platforms, programming languages, and
hardware systems. This paper proposes some first steps for the conceptual aircraft design and
analysis community to move in this same direction.

2. Background

2.1. Motivation

The former multidisciplinary optimization branch (MDOB) at the NASA Langley research center
(LaRC) [16] identified frameworks for multidisciplinary analysis and optimization research, and
promoted a multidisciplinary, collaborative approach and sharing of information among disciplines
for aircraft design and analysis systems. The advanced engineering environments (AEE) study
committee sponsored by NASA has investigated a number of technical, managerial, cultural, and

2



1

3

4

...

n2

ADML

1

3

4

...

n2

Figure 2. n2 interfaces (left) without a standard data format vs. n interfaces using ADML (right).

educational barriers that need to be overcome in order to realize a multidisciplinary, collaborative
approach [24]. Several design requirements related to information management and integration of
tools, systems, and data need to be addressed first in order to realize a unified system. Based on the
knowledge gained from the frameworks proposed by the MDOB ([14] and [25]), this section outlines
several desirable features related to data management pertinent to multidisciplinary aircraft design,
analysis, and optimization.
• Use of standards: Use of standard data formats facilitates maintainability of codes and elimi-

nates duplication of information and effort.
• Data sharing: Intra- and interdisciplinary data sharing in a multidisciplinary, collaborative envi-

ronment is a crucial feature for solving interoperability issues and automating design processes.
• Extensibility: Advances in aircraft conceptual design processes entail a flexible and extensible

data format for supporting different design variants as well as new configurations.
• Platform independence: A platform, language, and vendor neutral format is sought for seamless

data communication across different platforms, applications, and users in a multidisciplinary
environment.

• Object oriented programming: The data format should support object oriented design principles
that facilitate aircraft design processes with several useful capabilities such as data binding and
integration, object encapsulation, extensibility through inheritance, flexibility through polymor-
phism, and so on.
The implementation of a data standard adhering to all these requirements is a major challenge.

A platform and language independent format to represent aircraft design and analysis data is a
desirable way to meet all these requirements and support a multidisciplinary system distributed
across a network of heterogeneous computing environments. This is the motivation behind proposing
an XML based data format as a first step towards meeting that challenge.

A multidisciplinary collaborative design environment enables engineers to cooperate by means
of structured and mostly autonomous exchange of information. This exchange is mostly conducted
through input/output interfaces between design and analysis modules. Hence, the number of inter-
faces is a critical factor for an efficient exchange of data and a central information model is a key
feature. As indicated in Figure 2 (left) the number of interfaces required without a standard data

format grows quadratically (O(n2)) with the number n of disciplines, application codes, or users.
However, using a unified data format such as XML, the number of interfaces grows linearly in n
resulting in (O(n)) interfaces.

2.2. Existing data formats, standards for representing product data

Several data modeling languages and technologies have emerged over the past two decades or so for
representation and exchange of product manufacturing information. IGES ([13], [18]) is a language
neutral data format that allows exchange of product data among computer aided design (CAD)

3



systems. A vendor neutral system CAPRIS is described in [10] for accessing a variety of CAD systems
though a unified and simple programming interface. CAPRIS maintains a boundary representation
(BRep) data structure common to all participating CAD systems. CAPRIS uses SOAP (simple
object access protocol) for exchanging structured information and relies on XML for messaging.
However, the geometry schema for CAPRIS is not publicly available. A successor of IGES, STEP
(standard for exchange of product model data), is a family of standards defining a robust and
time-tested methodology for describing product data throughout the lifecycle of a product. STEP
is a comprehensive ISO standard (ISO 10303) ([20], [21]) that describes a mechanism to represent
and exchange product data and has been widely used in the aerospace, automobile, electrical,
electronic, and other industries [5]. As discussed in [19], STEP has a proven record of success in
modeling aircraft geometry. The part STEP AP209 (application protocol: composite and metallic
structural analysis and related design — ISO 10303-209:2001) of STEP has been developed to
address data exchange in a design/analysis/manufacturing process. The second edition of AP209
has recently been renamed as “multidisciplinary analysis and design”, and is in the final stage of
development as of June 2013 [1]. STEP uses a data modeling language called EXPRESS ([20], [27])
to describe and exchange product data between CAD, CAM (computer aided manufacturing), CAE
(computer aided engineering), and other CA* systems. EXPRESS combines ideas from the entity-
attribute-relationship family of modeling languages with object modeling concepts. However, unlike
XML, EXPRESS is not easily extensible and is not supported by many widely used software tools.
Although EXPRESS provides rich facilities for data modeling at the semantic level, unfamiliarity
of today’s application programmers with the traditional STEP based data modeling techniques
impedes its widespread usage. Furthermore, XML has become a de facto standard for representing
and exchanging digital data for several domains, including domains that are within the scope of
STEP. Since STEP can semantically model the high fidelity information required by many XML
applications, the STEP data modeling standard and XML are complementary technologies. It is a
logical next step to merge the traditional STEP technology within XML. With the integration of
the two, the best of both worlds can be achieved.

2.3. Rationale for using XML

XML, a W3C (World-Wide Web Consortium) recommendation [29], is a standard concomitant with
a number of powerful capabilities (extensibility, flexibility, reusability, maintainability, and so on)
and a generic, robust syntax for developing specialized markup languages. Unlike HTML (hypertext
markup language), XML by itself specifies neither preconceived semantics nor a predefined tag set;
it instead provides a means for defining content and semantics of XML documents. One of the
major requirements in a multidisciplinary collaborative environment is the data sharing ability to
overcome disciplinary isolation. The platform, language, and vendor independent format of XML
makes it well-suited to the task of satisfying multidisciplinary aircraft data requirements.

XML is a profile of an existing ISO standard, ISO 8879, known as SGML (standard generalized
markup language) [12], and is an acceptable candidate within other ISO standards without further
standardization ([16]). The simple ASCII text format of XML allows aircraft applications running
on heterogeneous systems with diverse platforms to readily communicate with each other. Aircraft
design application written in any programming language can process the same XML document
without any modification, thus eliminating redundancy and offering reusability. In addition, the
inherent hierarchical nature of XML provides a way to define structural relationships that exist in
the data and facilitates application of object oriented principles to conceptual aircraft design data.
Name, attributes, and content of an XML element are closely related to class name, properties,
and composition associations in an object oriented aircraft design. Thus, with the use of an XML
based markup language, it is possible to faithfully model aircraft design and analysis data as well
as structural and functional relationships among different data elements.

A variety of XML parsers for almost all high level programming (and scripting) languages
are abundantly available for automatic generation and parsing of XML content. XML itself is a
metalanguage—a language that is used to define an unlimited number of special purpose markup
languages. XML data semantics (grammar) can be specified using either a document type definition
(DTD) [29] or an XML schema [28]. An added benefit of using DTD or XML schema is that they
provide support for data validation. A data file encoded in XML is considered valid if it complies
with the corresponding DTD or XML schema. Without using a schema for an XML document, a

4



separate validation tool needs to be implemented. An XML schema provides additional significant
advantages over a DTD, such as more advanced data types and a very elaborate content model.
The aircraft design markup language proposed here is based on XML schema.

2.4. XML based markup languages pertinent to multidisciplinary aircraft design

There are several XML based languages developed for various application domains. There are
compelling examples of success from various disciplines, e.g., a systems biology markup language
(SBML) [11] developed for systems biology models and data; MathML [26], an XML based language
developed for mathematical notations; Office Open XML, a Microsoft file format (commercial ap-
plication) for storage of electronic data, and many more.

Although the aerospace industry is no exception for developing XML based standards for ex-
changing aircraft data and models, there are only a handful of successful examples. The JSBSim
flight dynamics model software library [4] is a batch simulation application aimed at modeling flight
dynamics and control for aircraft. JSBSim is an XML based model description specification where
input files are supplied in XML format. These XML files contain descriptions of aerospace vehi-
cles, engines, scripts, etc. DAVE-ML is an XML based markup language for a draft AIAA flight
dynamic model exchange standard [2], inspired by JSBSim, for the interchange of flight dynamics
modeling data between facilities. Both JSBSim and DAVE-ML are intended to provide a platform
and language neutral format for exchanging flight dynamics modeling, verification, and documen-
tation data where the major XML elements are mathematical objects. However, JSBSim provides
its own XML tags for representing mathematical constructs (e.g., product, sum, quotient, etc.),
whereas DAVE-ML uses the verbose MathML format for representing mathematical constructs.

An XML based markup language, MatML [3], developed in coordination with the National Insti-
tute of Standards and Technology (NIST) targets multiple industries for facilitating the exchange of
a wide variety of material properties. The latest version of MatML (MatML3.0 and beyond) ported
the language specification from DTD to XML Schema, and has many refinements over previous
versions.

The finite element modeling markup language (femML) [7] was proposed to address the data
interpretation and application interoperability in the finite element modeling domain. The project
was initiated by members of the composite materials and structures group at the Naval Research
Laboratory and the International Science and Technology Outreach Society. femML uses MatML
as a namespace in its specification.

All these XML based markup languages discussed heretofore target a single or a subset of
disciplines involved in a multidisciplinary environment. A recent development effort at the Ger-
man aerospace center DLR involves a new data exchange format CPACS (common parametric
aircraft configuration schema) for representing all the necessary data required for conceptual and
preliminary aircraft design and analysis. After evaluating how well the proposed ADML effort fits
within the context of CPACS, it was found that the goals of the collaborative exercise at DLR are
closely aligned with ADML objectives; however, the fundamental difference is that the ADML effort
started bottom-up with powerful constructs for functions and abstract mathematical objects, and
with unconventional aircraft configurations in mind, whereas the current version of CPACS started
top-down from entire aircraft to single data objects (point lists), and can only currently handle
traditional aircraft designs.

3. Aircraft Design Markup Language (ADML)

The ADML project started with an intention to address the data communication needs of the
recently founded (2009) Collaborative Center for Multidisciplinary Sciences (CCMS) for the devel-
opment of future aerospace vehicles, involving Virginia Tech, Wright State University, and Air Force
Research Laboratory at Wright Patterson Air Force Base (WPAFB), Ohio. The collaborative center
specifically investigates multidisciplinary analysis and design of several futuristic aircraft such as the
joined-wing SensorCraft, flapping micro air vehicles, and efficient supersonic air vehicles. A flexible,
extensible, and comprehensive XML based format ADML is proposed to handle these futuristic
aircraft designs.

ADML is based on XML technologies making it human readable and computer processable. It
is designed to accommodate data for numerous disciplines involved in the conceptual design phase

5



Figure 3. ADML development approach.

and can be extended to high fidelity analysis. ADML includes capabilities for a model to be self-
validating and self-documenting, with the provenance of a model’s components included within the
model and transferred with it (see Section 3.3.2(B) for a detailed description).

A specialized grammar of ADML, the ADML schema, provides a format for the exchange of the
aircraft design and analysis data, therefore each discipline is required to design import/export tools
that comply with the schema one time only. In this data-centric setup the number of interfaces
is minimal and effective communication can be established, resulting in substantially reduced cost
and time required to exchange aircraft data. Use cases (presented in Section 3.4) have indicated
significant reduction in effort to exchange simple models when utilizing this format. Even greater
benefits could be attained for large complicated models or more disciplines.

Although an XML based markup language is well-suited for addressing interoperability issues
involved in a multidisciplinary, collaborative environment, the actual development is not as easy
as it first appears. Developing a generic, comprehensive, and compact XML schema for each and
every discipline involved in the aircraft conceptual design phase is a very challenging task. Every
discipline has its own set of modeling requirements and constraints that adds up to the overall
complexity of the final design. Accommodating new aircraft configurations for futuristic air vehicles
is even more challenging, and demands a comprehensive and extensible data format. The inherent
hierarchical nature and extensibility of an XML schema plays a significant role in structuring various
components of conceptual aircraft design. Figure 3 presents a simplified version of the bottom up
development approach of the ADML schema. The specification for the ADML schema would need
to include the capability to define aircraft data specific to each and every discipline and component
or subsystem of the aircraft involved in the conceptual design phase. An overview of the ADML
schema modules (data, functions, basic geometry, and high level aircraft design constructs) and the
existing and the future modeling capabilities of the proposed XML schema follow.

3.1. Low level schemata: common components

3.1.1. Data schema

At a very high level, everything is data. However, the rationale for dividing the XML schema in
different sections (data, functions, geometry, etc.) is to exploit the functional and logical distinction
among different aircraft model objects and to maintain their inherent hierarchy. The data schema
is at the lowest level of the hierarchy in a top down view, representing the simplest form of data.
Elements of the data schema are used as the building blocks for all other higher level elements.

6



Most of the elements in ADML require a name, a description, and a unit associated with
them. Therefore, a complex type XML element nd is defined to encapsulate these elements. All the
elements in the data schema, as well as in other ADML modules, that require any or all of these
descriptive identifiers (name, description, and/or unit), can be derived from the nd element as a
base.

The major element of the data schema is the variable element. Variables are used to define
inputs and/or outputs to/from a design or an analysis. A variable element has a human readable
name, a description, a unit, a value, a min, a max, some flags, and other scalar parameters associated
with it, and a machine readable variable identifier, vid. A variable defined in an ADML document
can be referenced at a later point in a mathematical expression. The value of a variable element
consists of a scalar (an atomic value) or a tensor (a multidimensional array). A tensor is an ADML
element defined recursively to represent an array of arbitrary dimensions. A higher rank tensor is
defined in terms of a lower rank tensor. A vector (vtype element) is a rank 1 tensor and a matrix is
a rank 2 tensor. In general, a k-dimensional array can be defined as a rank k tensor, e.g., a 2×3×4
tensor is defined as a sequence of two 3×4 matrices that are defined in terms of three 4-dimensional
vectors each. A typical use of a tensor element could be to define relational data (function tables).
An example of a 2 × 3 × 4 tensor follows, omitting the schemata defining the tags.

<variable>

<name>tvar1</name>

<description>2x3x4 tensor example</description>

<value>

<t>

<t>

<v>1 2 3 4</v>

<v>1 2 3 4</v>

<v>1 2 3 4</v>

</t>

<t>

<v>5 6 7 8</v>

<v>5 6 7 8</v>

<v>5 6 7 8</v>

</t>

</t>

</value>

</variable>

3.1.2. Representing mathematics

A significant part of aircraft design and analysis data comprises mathematical objects such as
functions, expressions, arbitrary dimensional lists, and operators. Therefore, communicating math-
ematical objects among different entities (applications, users, and/or platforms) plays a crucial role
in exchanging data in a multidisciplinary, collaborative conceptual aircraft design and analysis envi-
ronment. Careful thought has been given to a format for representing mathematical constructs while
developing the proposed ADML schema. Three possible candidates are the XML based markup lan-
guage MathML and two widely used computational software tools, Mathematica and Matlab. The
most significant advantage of using a MathML format to represent mathematics is that MathML
itself is an XML based markup language and can be parsed and validated easily using available XML
parsers; however, MathML is an extremely verbose and unreadable format. Editing mathematical
expressions in MathML requires a special editor because the markup is very complex. This makes
it impractical to edit by hand. Furthermore, the conceptual aircraft design and analysis community
is more interested in communicating content rather than representing mathematical objects. More-
over, Matlab and Mathematica are among the most popular tools used to evaluate mathematical
expressions in the aerospace community. Therefore, this paper proposes the use of Mathematica
or Matlab syntax over the verbose MathML format for representing mathematics. However, if an
application needs to parse the mathematical data being exchanged at the other end, then parsing
subroutines need to be written specific to the underlying implementation. The supported format
is more useful when the mathematical objects being exchanged are meant to be passed to either
Matlab or Mathematica tools for evaluation. For sharing mathematical data (mathematical lists or

7



arrays) that are meant to be parsed, an application should make use of the more relevant and easy
to parse XML element, tensor, defined in the data schema.

The major schema elements for representing mathematical objects include operator, relation,
mlist, and expression. These elements can be represented in either Mathematica or Matlab format
using the format attribute associated with them.

An operator is a generalization of the familiar notion of a function. Typically, an operator is
used to represent the operations performed on functions to produce other functions. An example
of an operator on functions, composition with a Bessel function, represented in the Mathematica
format follows, omitting the schemata defining the tags.

<operator format="Mathematica">

<name> f </name>

<description>

Composition with Bessel function of the first kind, order 0

</description>

<domain> AnalyticFunctions </domain>

<range> AnalyticFunctions </range>

<arguments> z </arguments>

<definition>

f[z ][x ] := BesselJ[0,z[x]]

</definition>

</operator>

Another type of element is the relation element. A relation might be defined by an expression
that involves logical or relational operations. A relation can also be viewed as a subset of the
Cartesian product of k sets. Thus, the first k − 1 values in a k-tuple correspond to the arguments
or inputs to the relation, and the kth value corresponds to the output. The corresponding relation
table can be defined using the mlist element. Although an mlist element somewhat resembles a
tensor element from the data schema, its intended usage is quite different. A tensor element is
primarily used to transfer a multidimensional array across different systems (platforms or users)
and not for manipulating the array. However, the intended use of an mlist element is to define and
manipulate an arbitrary list structure (where every list element can have a different cardinality).
A tensor, being a recursive XML element, facilitates an easy parsing process at the other end,
whereas an mlist element has the advantage of a compact representation using either Matlab or
Mathematica format. The rationale for having two different elements (expression and relation)
to represent mathematical relations is that a relation is a special type of an expression involving
only relational operations. The intended use of an expression element is to represent intermediate
computations or evaluations in an analysis or a design process.

The schema definition for an expression element and an example of an expression that estimates
the drag divergence Mach number (Mdd) as a function of an airfoil technology factor (K), the
thickness-to-chord ratio (t/c), the lift coefficient (cl), and the sweep angle (L) follow, again omitting
some of the schemata.

<xs:element name="expression">

<xs:complexType>

<xs:complexContent>

<xs:extension base="nd">

<xs:sequence>

<xs:element ref="variables" />

<xs:element ref="definition" />

<xs:element name="patternStr" type="xs:string" minOccurs="0"/>

</xs:sequence>

<xs:attribute ref="format"/>

<xs:attribute name="eid" type="xs:ID"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:element>

<expression format=Mathematica>

<name>M dd</name>

<description>

estimation of drag divergence Mach number

</description>

8



<variables>K, L, t, c, c l</variables>

<definition>

M dd=K/Cos[L]-(t/c)/Cos^2[L]-c l/10*Cos^3[L]

</definition>

</expression>

A simple example of an mlist (generalization of tensor), omitting some of the schemata, is

<xs:complexType name="mlist">

<xs:complexContent>

<xs:extension base="nd">

<xs:sequence>

<xs:element ref="variables"/>

<xs:element ref="definition"/>

</xs:sequence>

<xs:attribute name="lid" type="xs:ID"/>

<xs:attribute ref="format"/>

<xs:attribute ref="structure"/>

<xs:attribute name="dimension" type="xs:string"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<mlist format="Mathematica" structure="general">

<name>L</name>

<description>an arbitrary list structure</description>

<definition>

{ { 0,0.1 },{ { 18,-0.1 },{ 19,-0.09 } },

{ { 20,-0.08 },{ 22,-0.05 },{ 23,-0.05 } },

{ { 25,-0.07 },{ 27,-0.15 },{ 90,-0.6 } } }

</definition>

</mlist>

3.1.3. Basic Geometry

The ADML schema for aircraft geometry starts with low level, common geometry elements such
as point, pointList, line, plane, nurbs, and frame, and builds up more complex components of an
aircraft such as airfoils, wings, fuselages, etc. A point is defined as a list of real values (coordinates);
a line is defined using two points; and a plane is defined using a point and a normal.

Another fundamental geometry element is nurbs. The geometry schema presented in this paper
supports NURBS (nonuniform rational B-spline) based geometry model to represent curves and
surfaces. Each nurbs element is defined in terms of a set of control points (the controlPoints element),
a knot vector (the knotVector element), a weight vector (the weightVector element), and the NURBS
order (the order element). The XML schema definition for a NURBS element and an example of a
NURBS curve of order three with five control points associated with five weights and eight knots
follow.

<xs:simpleType name="nurbsType">

<xs:restriction base="xs:string">

<xs:enumeration value="curve"/>

<xs:enumeration value="surface"/>

<xs:enumeration value="BezierCurve"/>

<xs:enumeration value="BezierSurface"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="nurbs">

<xs:complexContent>

<xs:extension base="nd">

<xs:sequence>

<xs:element name="controlPoints" type="mlist"/>

<xs:element name="knotVector" type="mlist"/>

<xs:element name="weightVector" type="mlist"/>

<xs:element name="order" type="xs:integer"/>

</xs:sequence>

<xs:attribute name="ntype" type="nurbsType" />

<xs:attribute name="ncp" type="xs:integer" />

9



<xs:attribute name="nurbsID" type="xs:ID"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<nurbs ntype="curve" nurbsID="NC1">

<name>ncurve1</name>

<description> NURBS curve of order 3 </description>

<controlPoints format="Mathematica" structure="array">

<definition>

{ { 0,0,0.5 }, { 0,-0.5,0.5 }, { 0,-0.5,0 }, { 0,-0.5,-0.5 }, { 0,0,-0.5 } }

</definition>

</controlPoints>

<knotVector format="Mathematica">

<definition> { 0,0,0,0.5,0.5,1,1,1 } </definition>

</knotVector>

<weightVector format="Mathematica">

<definition> { 1,0.707107,1,0.707107,1 } </definition>

</weightVector>

<order>3</order>

</nurb>

3.2. High level aircraft design constructs

3.2.1. Modeling aircraft geometry

Rapid development of computer technology over the past decade has changed the conduct of con-
ceptual aircraft design. Aircraft analysis methods that were considered feasible only for advanced
and detailed designs are now available and even practical at an early stage of the aircraft design
process. To fully exploit the available computing resources and analysis methods, the geometric
model of aircraft must be generated rapidly and easily so as not to inhibit the conceptual aircraft
design process. However, aircraft geometry is one of the most complex constructs among various
conceptual aircraft design components, and likewise the representation of the geometry model is
complex.

In the development of any new aircraft, the outer mold line (OML) is key to designers in
almost every discipline. Core differences in the utilization of the aircraft geometry often lead to the
development of multiple aircraft representations, that cater to different design disciplines, only later
to be merged into one final aircraft design. Not only is this process inefficient, it is also difficult to
implement in an MDO framework that executes autonomously. Multidisciplinary analysis and design
requires a single parametric geometry representation for a configuration that is shared amongst the
various disciplines involved. The software behind most commonly used CAD systems is extensive
and tailored to serve its community of mechanical engineers. In contrast, computational design
optimization is an extension of conceptual design merged with high fidelity computational models;
the geometric requirements are significantly specialized compared to general industrial CAD systems.
Taking this requirement into consideration, a geometry model supported in ADML is the practical
implementation VT-CST ([17]) of class shape transformation (CST, [15]) developed at Virginia
Tech. VT-CST is capable of rendering tailless supersonic configurations with embedded engines as
well as conventional and joined-wing configurations. In addition, ADML can handle other types of
parametric geometries such as boundary representation (BRep) constructs using NURBS curves.

3.2.2. Representing an entire aircraft

As mentioned previously, ADML development follows a bottom-up approach where all the basic
common components are defined first, and other more complex high level constructs are built using
the low level schemata as and when required. The root elements for the low level schemata are data,
functions, and geometry, and that for the high level aircraft design and analysis is aircraft. Each
aircraft element consists of one or more instances of model and analyses elements. An aircraft design
is described using a model element, which consists of wings, fuselages, landingGears, and propulsion
as subelements along with some catalog elements such as materials, performance, mission, and global.
Figure 4 shows the hierarchy for the first few levels of the ADML schema. Owing to the complexity

10



STRUCTURAL

DATA

FUNCTIONS

AIRCRAFT

MODEL

ANALYSES

WINGS

LANDING
GEARS

PROPULSION

ELEMENTS

ADML

POINT
MASSES

FUSELAGES

AIRFOILS

MATERIALS

MISSIONS

PERFORMANCE

GLOBAL

GEOMETRY

Figure 4. ADML taxonomy.

of the ADML schema and the large number of XML elements needed to represent aircraft design
components, it is not feasible to list and discuss each and every element in this paper. Instead a
brief discussion of the high level elements follows with the full ADML schema in Appendix A.

< airfoils >

The airfoils element consists of a sequence of airfoil elements. Each airfoil element is defined,
using the choice data structure available in the XML Schema, as a choice among a parametric
definition, a NURBS based cross section, a VT-CST based geometry definition, or a string reference
to an external definition (for example a NACA airfoil definition). An airfoil defined in such a way
can be referenced in a wing definition using the associated uID attribute.

< pointMasses >

A primary goal in airplane conceptual design is to determine an estimate of the mass and the
moment of inertia tensor of the airplane. There are many internal components of an airplane that
are difficult and/or unnecessary to precisely define until a later stage in the design cycle. However,
the mass and the moment of inertia tensor of these objects must still be accounted for in the
conceptual airplane design as they have a nonnegligible mass thus directly impacting the structural
design and performance of the airplane. Therefore, instead of creating a separate definition for each

11



individual type of object, only a simple description of the location of the component, its mass, and
its moment of inertia tensor are required. Usually the mass and the moment of inertia tensor of
such components are estimated using empirically based methods and a simple Cartesian location is
used to place the object in or on the airplane. In the ADML schema, a pointMasses element has
been created to account for any component of the airplane which could be described in this way.
Each pointMasses element is defined as a sequence of pointMass elements. A pointMass is defined
using four elements: mass, inertiaTensor, location, and provenance.

< structuralElements >

The primary members that make up an aircraft structure are beams and plates. However,
in structural analysis using the finite element method, beams can be and are often modeled as
plates depending on their shape. In modern aircraft design, one may wish to evaluate a structure
made up of multiple different materials including both metals and laminated fiber composites. For
example, one design may utilize laminated fiber composite spars whereas another uses traditional
aluminum spars. In order to handle this variation in material properties (and thus the number
of design variables necessary), two descriptions of the properties of a plate were developed, one
for isotropic materials (metals) and one for laminated composites (fiber composites and sandwich
panels). This definition is generic enough that it can be used to define the properties of all of the
primary structural members of a wing: the spars, the ribs, and the skin panels.

The structuralElements element consists of a sequence of two elements, structElementIsotropic
and structElementComposite, corresponding to plates made up of isotropic and composite elements,
respectively. A section of a wing can have vectors of references (using the associated uID attribute)
to these elements. This in effect divorces the material properties and the thicknesses of the structural
members from the structural layout allowing for a designer to easily switch material properties and
thicknesses by simply changing the reference numbers to the properties.

< wings >

The wings element consists of a sequence of wing elements that define instances of wings and/or
tails of an aircraft. Each wing element is defined as a sequence of planform, structure, and controlEf-
fectors elements, and a set of attributes. The airfoil geometry can be in VT-CST format or NURBS
based. In ADML, a wing structure is defined as a set of sections; each section is defined in terms
of ribs and spars (using number of, thickness, materials, etc.). This simplification is assumed to be
sufficient for a wing definition in the conceptual design phase. Each section can have a different
number (thickness and material) of spars and ribs, that way adding flexibility to accommodate a
myriad of wing configurations.

< fuselages >

A fuselages element consists of one or more fuselage elements that follows VT-CST’s parametric
geometry definition from [17] drawn from a cross section class function (in the Y -Z plane) defined
along a distribution class function (in the X-Z plane), both of which are scaled with the length and
width of the desired fuselage.

< landingGears >

A landingGears element is comprised of a sequence of one or more landingGear elements chosen
from three different configurations, tricycle, quadricycle, and multibogey, each defined using a set of
design parameters (mass, lowered and raised coordinate combinations in X , Y , Z, etc.). A tricycle
or a multibogey configuration has one nose gear centered on the aircraft body whereas a quadricycle
configuration has two nose gears.

< propulsion >

Each propulsion element consists of four subelements, engines, cowls, ramps, and EEWSs
(EEWS stands for engine exhaust washed structures), and follows VT-CST’s parametric definition.
As mentioned earlier, VT-CST was developed to design tailless supersonic aircrafts with embedded
engines. An engines element is defined as a sequence of one or more engine elements that are defined

12



as a set of design parameters. Likewise each of these cowls, ramps, and EEWSs elements is defined
as a sequence of one or more cowl, ramp, and EEWS elements, respectively.

< materials >

The data defined for the materials element is classified as a reusable dataset, and a reference
to material IDs is provided in other elements to encode their material properties. Two types of
materials—isotropic and orthotropic—are defined in a materials element.

< missions >

Here, a list of missions can be specified. The missions are built up from mission segments,
which allow for simple conceptual design definitions. An aircraft uses a reference to one or more of
these missions as its design missions. A mission segment is a specific maneuver that the airplane
is designed to perform. For example, a mission segment for the aircraft to cruise would contain
the desired cruising altitude, cruising Mach number, and a specified distance or flight time. The
missions are typically used in a flight performance analysis and optimization. The missions element
is again classified as a catalog element, and is defined outside the aircraft model element.

< performance >

The performance element is utilized to encapsulate some high level information regarding the
behavior or limitations of the aircraft design. Often these parameters will be the result of an analysis
such as flight performance, structural analysis, or aerodynamics. However, these parameters may
also be used as constraints on the design in an analysis depending upon the users desire. An example
of some data that would be stored under the performance element are the maximum cruise Mach
number, maximum altitude (service ceiling), maximum range for certain fuel and payload levels, or
dive speeds at certain altitudes.

All these high level constructs constitute the third level in the ADML taxonomy as shown in
Figure 4.

3.3. Features of ADML

3.3.1. Modular development

Modular schema development facilitates logical decomposition of XML elements into subsets where
each individual subset focuses on specific functional capabilities thereby enabling reusability. Each
small subset or module that results from this exercise can work as a building block for other more
complex modules thereby enabling extensibility. The inherent modular or hierarchical structure
of multidisciplinary aircraft design elicits modular schema development. The top level modules in
the XML taxonomy, data and mathematical objects, serve as the foundation for developing more
complex aricraft design constructs that appear at a lower level in the inheritance hierarchy. Every
discipline involved in an aircraft design phase can be viewed as a separate module in the XML
schema development process and can be used either as a single, isolated entity or as a part of a
hierarchical structure built by combining several disciplines together.

3.3.2. Object oriented approach

A W3C XML schema, with a hierarchical type system, closely resembles an object oriented pro-
gramming paradigm. Amongst the significant features of an XML schema are extensions (and
restrictions), element references, and an object like behavior of an element (that carries attributes
and other elements). The modular schema development of the proposed schema, as discussed in the
previous subsection, facilitates reusability and extensibility. All the high level elements (correspond-
ing to high level constructs in an aircraft design) in ADML follow an object oriented programming
approach. The aircraft design applications such as VT-CST (written in C++) that use object ori-
ented technologies can greatly benefit from this by converting the ADML schema to the classes of
the high level language, and then accessing the schema elements as objects of those classes.

13



Figure 5. Integration of geometry schema with DOC project.

Figure 6. Airfoil geometry.

3.3.3. Provenance capability

A provenance capability is provided for all the high level constructs to describe the origin or history
of the associated data, and is defined as an XML string describing author, date, etc.

4. Use Cases

4.1. Airfoil shape optimization

A C++ project, design optimization in C++ (DOC) [6], that computes design sensitivities for
conceptual aircraft design applications is used as a pilot project to demonstrate an application of
the proposed ADML schema. An open source, cross platform W3C schema to C++ data binding
compiler, Codesynthesis XSD, is used to convert the XML schema to C++ classes. Once the C++
classes are generated from the XML schema, the data stored in XML instance documents can be
accessed through the C++ objects (member variables and functions) rather than dealing with the
intricacies of reading and writing XML. The software architecture of the application in Figure 5
depicts the geometry integration and related tools/packages. The XSD software uses Xerces-C++
as the underlying XML parser. Xerces-C++ is a validating XML parser written in a portable subset
of C++ and is available under the Apache Software License.

The geometry schema presented in this paper supports a NURBS (nonuniform rational B-spline)
based geometry model to represent curves and surfaces, as for the airfoil shown in Figure 6. Below
is the XML schema definition corresponding to the C++ code for a NURBS structure. Each nurbs
element is defined in terms of a set of control points (the controlPoints element), a knot vector (the
knotVector element), a weight vector (the weightVector element), and the NURBS order (the order
element).

14



A sample code listing for the ADML schema definition for a NURBS based airfoil object follows.

<xs:element name="airfoilType">

<xs:complexType>

<xs:sequence>

<xs:choice>

<xs:sequence>

<xs:element name="configParam" type="variable"/>

<xs:element name="analysisResult" type="variable" minOccurs="0"/>

</xs:sequence>

<xs:sequence>

<xs:choice>

<xs:element name="coordinateList" type="mlist"/>

<xs:element name="pointList" type="plist"/>

</xs:choice>

</xs:sequence>

<xs:sequence>

<xs:element name="curveTop" type="nurbs"/>

<xs:element name="curveBot" type="nurbs"/>

</xs:sequence>

<xs:element name="shape" type="xs:string"/>

</xs:choice>

<xs:element name="provenance" type="provenanceType"/>

</xs:sequence>

<xs:attribute name="uID" type="xs:integer"/>

</xs:complexType>

</xs:element>

The geometry model for the airfoil shown in Figure 6, defined by two NURBS curves (top and
bottom) with four control points associated with four weights each, follows.

<airfoilType>

<curveTop ncp="4">

<controlPoints format="Mathematica">

<definition> { { 0,0,0 }, { 0,0.020,0 }, { 0.25,0.12,0 }, { 1,0,0 } } </definition>

</controlPoints>

<knotVector format="Mathematica">

<definition> { 0,0,0,0,1,1,1,1 } </definition>

</knotVector>

<weightVector format="Mathematica">

<definition> { 1,1,1,1} </definition>

</weightVector>

<order>4</order>

</curveTop>

<curveBot ncp="4">

<controlPoints format="Mathematica">

<definition> { { 0,0,0 }, { 0,-0.005,0 }, { 0.25,-0.04,0 }, { 1,0,0 } } </definition>

</controlPoints>

<knotVector format="Mathematica">

<definition> { 0,0,0,0,1,1,1,1 } </definition>

</knotVector>

<weightVector format="Mathematica">

<definition> { 1,1,1,1 } </definition>>

</weightVector>

<order>4</order>

</curveBot>

</airfoilBase>

4.2. Encoding Convair B58

The Convair B58 Hustler is used as a proof of concept for encoding an entire aircraft in ADML.
The reason for using the B58 as the testbed is that most of the data for the B58 is public domain.
Also the ADML schema development is in direct response to CCMS needs and the B58 aircraft has
been used as a benchmark for design projects in CCMS. The Convair B58 has a delta wing and a
vertical tail with four General Electric J79 engines in pods under the wing. The ADML encoding
for the B58 is about 700 lines (about 22KB), and uses 111 elements from the total number of 412
ADML elements. Table 3 lists the number of occurrences for those 111 elements that are used for

15



Table 1
B58 Element Statistics

Element Name Count

ADML, aircraft, model, airfoils, airfoil, shape, wings, fuselages, fuselage, 1
length, width, hTop, hBot, X0, kLoc, kMag, kWidth, propulsion, engine, weight,
global, machNumber, altitude, desiredMeshSize, cowl, N1, N2, topWidth,
botWidth, height, length, x0, y0, Nx, Ny, LEAmplifier, thicknessAmplifier,
TEAmplifier, ramp, length, width, topHeight, botHeight, x0, y0, kLoc, kMag,
materials

wing, planform, structure, sections, numRibs, numSpars, semiB, cRoot, cTip, 2
controlEffectors, controlEffector, IBEta, OBEta, chord, Nx, Ny, N1, N2,
TEBreak, LEBreak, lambdaLE, lambdaTE, Bu, Bl, shear1, shear2, twist0,
twist1, twist2, theta, beta, flapin, flapout, flapchord, inflapdef, outflapdef,
orthoTropicMaterial, E1, E2, NU12, G12, RHO, Xt, Xc, Yt, Yc, S, LMType,
LThicklb, LThickub

provenance 3

t 4

section, crossSection, sparElementIDs, ribElementID, trueRibIDs, ghostRibIDs, 18
airfoilID

name 22

v 34

sval 77

description 108

encoding the B58. Owing to the complexity of the ADML schema and the large number of ADML
elements required to represent the entire B58 aircraft, it is not feasible to list and discuss each and
every element in this paper. Instead, a detailed description of just one element, the wing element
for the B58, follows (the full ADML encoding of the B58 is in the supporting files for this paper).

The wing geometry for the B58 is in VT-CST format. Each wing element consists of four subele-
ments, planform, structure, controlEffectors, and compositeWingBoxes. The planform is defined by
the root chord (cRoot ), the tip chord (cTip ), the half span of the wing (semiB), standard vectors
of leading edge and trailing edge sweep angles (LESweep and TESweep), and vectors of the nondi-
mensional leading edge and trailing edge break locations (LEBreak and TEBreak). In addition to
these parameters, a planform also consists of definitions for the lower and upper surface amplifiers
(discussed in great detail in [17]) and a set of corresponding design variables (e.g., Nx and Ny defin-

ing the order of the Bernstein polynomials in x and y, respectively, etc.). By storing the leading
and trailing edge sweep angles and break locations in a vector, planforms ranging from very simple
delta wings to complex wings with multiple breaks and sweeps can be defined. All of the vectors
are defined using the vtype element from the data schema, and all of the tensors are defined using
the tensor element from the data schema.

The airfoil cross section for the B58 aircraft, NACA 0003.46-64.069 for the root and NACA
0004.08-63 for the tip chord, is defined as a reference to the airfoilType defined outside the wing
element. The wing structure is defined as a set of wing sections. Each section consists of a unique
identifier uID, a name, a description, a reference to a crossSections, and definitions for materials
and thicknesses for ribs, spars, and skins of a wing.

The controlEffectors are defined using VT-CST geometry for control surfaces, a set of parameters
for describing a hinge, and the provenance element. The compositeWingBoxes element defines one
or more compositeWingBoxes, each defined using a set of parameters describing the orientations
and the core and layer thicknesses for the ribs, spars, and skins.

A snippet (a subset of the parameters in planform, one of the nine sections of the main wing of
the B58, and the controlEffectors) of the ADML wing encoding for the B58 aircraft follows, omitting
the schemata defining the tags.

16



<wings>

<wing uID="1" type1="main" type2="horizontal">

<planform>

<semiB>

<description>(semi span, double)</description>

<sval>28.4</sval>

</semiB>

<cRoot>

<description>(root chord, double)</description>

<sval>54.3</sval>

</cRoot>

<cTip>

<description>(tip chord, double)</description>

<sval>0.01</sval>

</cTip>

...

<TEBreak>

<description>(span TE break locations, vector double)</description>

<sval>n</sval>

</TEBreak>

...

<Bu>

<description>(upper surface amp, vector of vector of double)</description>

<t>

<v> 1.0 0.0599672208644 0.0504355463712 0.0577872061211 0.0454111489566 1.0 1.0 </v>

<v> 1.0 0.0680553345373 0.0462947699499 0.0353887592720 0.0562369691330 1.0 1.0 </v>

<v> 1.0 0.0700420166919 0.00664473683005 0.0507840408258 0.0554809619909 1.0 1.0 </v>

<v> 1.0 0.0745163222007 0.0245454256447 0.0628921947699 0.0792447631647 1.0 1.0 </v>

<v> 1.0 0.075914436711 0.0193230458869 0.0591386907617 0.0455063767249 1.0 1.0 </v>

<v> 1.0 1.0 1.0 1.0 1.0 1.0 1.0 </v>

</t>

</Bu>

...

</planform>

<structure>

<numRibs>9</numRibs>

<numSpars>9</numSpars>

<sections>

<section uID="1">

<name>sec1 main wing</name>

<description>section 1 of main wing</description>

<crossSection uID="1">

<airfoilID>1</airfoilID>

</crossSection>

<sparElementIDs>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1</sparElementIDs>

<ribElementID>2</ribElementID>

<trueRibIDs>1 4</trueRibIDs>

<ghostRibIDs>2 3</trueRibIDs>

</section>

...

</sections>

</structure>

<controlEffectors>

<controlEffector>

<IBEta>0.1656</IBEta>

<OBEta>0.6933</OBEta>

<chord>6.971</chord>

</controlEffector>

</controlEffectors>

</wing>

<wings>

4.3. Comparison with CPACS

A careful review of CPACS XML schema suggests that the CPACS schema development follows a
top-down approach with the most detail at a high level of aircraft design constructs (see Figure 7).

17



CPACS

HEADER

VEHICLES

MISSIONS

AIRPORTS

FLEETS

TOOL
SPECIFIC

AIRCRAFT

ROTORCRAFT

ENGINES

PROFILES

STRUCTURAL
ELEMENTS

MATERIALS

FUELS

FUSELAGES

WINGS

ENGINES

ENGINE
PYLONS

LANDING
GEAR

SYSTEMS

GLOBAL

MODEL

ANALYSES

Figure 7. CPACS taxonomy.

On the other hand, ADML follows a bottom-up approach whereby emphasis is given to low level
components (raw data, mathematical functions, and basic geometry) that makes it very efficient
and expressive. CPACS does not yet support certain detailed geometry, e.g., parametric or NURBS
based airfoil design, and the CPACS development team is planning to address those in the next
version. In order to support the CST ([15]) based parametric geometry in CPACS, the generated
geometry associated with the set of design variables is converted to CPACS format by a special
initializer routine. ADML, on the other hand, can directly represent the CST input (in VT-CST
format) in XML format.

ADML has a very sophisticated way of encoding these constructs, using its low level elements
(e.g., ADML has an element called “nurbs”, and can directly encode arbitrary parametric functions),
and the current version of ADML enables a complete representation of an aircraft. The idea behind
having detailed low level schemata for ADML is that once a strong foundation is in place with all
common, generic, reusable elements at a low level, one can easily build upon those all other high
level aircraft design components with the flexibility to accommodate several different configurations.
Careful thought has been given to a format for representing mathematical objects while developing
the proposed ADML schema. A major difference between CPACS and ADML, as mentioned earlier,
is the representation of low level data elements. CPACS does not have any provision in the current
version for representing a mathematical function in analytical form. All the profile elements (e.g.,
fuselage and wing cross sections) in CPACS are defined as pointLists. Earlier versions of CPACS
defined each pointList as a sequence of three XML elements defining three coordinate axes. This
verbose definition of a list data type incurs significant overhead in terms of the storage of the XML
documents. The pointList definition has been modified in the current version of CPACS so that a
list of points along a coordinate axis is represented as a vector. Another peculiarity of CPACS is
that both the vector and the array data types are defined as XML strings (an array is a flattened
list), and there is no data structure in CPACS to handle multidimensional arrays. Reshaping a
matrix from a string significantly increases the cost for parsing the CPACS data.

CPACS has been adopted as a data standard for exchanging aircraft design and analysis data in
several DLR projects and integrated environments, and a number of tools (e.g., TXL—a geometry
engine) have been developed for automating the multidisciplinary aircraft design process. ADML
is still in an early stage of development, and has to evolve further to accommodate a wide variety
of aircraft configurations (CPACS has about two thousand five hundred elements whereas ADML
has about four hundred elements) The immediate goal is the adoption of ADML within the CCMS,

18



and ultimately within a large segment of the aircraft design community. Another possibility is to
merge CPACS and ADML to achieve the benefits of both. This could be achieved by using the
existing import facility available in the XML Schema definition. The XML Schema import element
facilitates adding multiple schemata with different target namespaces to an existing schema. That
way CPACS schema could be imported into the ADML schema, and all the elements in CPACS
could be accessed through ADML without any difficulty.

5. Conclusion and Future Work

An XML schema based generic, comprehensive, and compact aircraft design markup language
(ADML) is proposed to represent aircraft design models (geometry, structures, propulsion, etc.)
and analysis data (raw data and mathematical objects). ADML addresses data exchange and
interoperability issues involved in a multidisciplinary, collaborative, conceptual aircraft design en-
vironment by providing a common language for data communication. The XML schema discussed
in this paper follows a modular schema development and takes a bottom up approach by start-
ing the schema development from the simplest form of data and building on that more complex
constructs in a conceptual aircraft design process. Thus, the XML elements from the data and
function schema serve as the building blocks for other more complex elements. An airfoil geome-
try example presented in Section 4 illustrates the modeling capabilities of the proposed geometry
schema, and the aircraft model represented using the Convair B58 shows the scope of the proposed
schema. ADML supports both the VT-CST geometry as well as NURBS based BRep constructs.
The ADML schema supports several disciplines (geometry, structures, configuration layout, propul-
sion, mission, performance, payload, and materials) involved in a multidisciplinary, collaborative
conceptual aircraft design and analysis process where all disciplines can natively understand the
ADML standard and can communicate with each other through a common language and platform
neutral data format. The schema described in this paper is organized for the design and analysis
of fixed wing aircraft, but it is readily extensible to flapping wing MAVs (micro air vehicles) and
morphing vehicles, whose shapes change in time. ADML is still in an early stage of development,
and has to evolve further to accommodate a wide variety of aircraft configurations, though ADML
is complete enough to represent an entire B58 used as a conceptual design benchmark by CCMS
and others.

References
[1] Aerospace and Defence Industries Associations Europe, “Standard for the Exchange of Product model

data (STEP - ISO 10303) Application Protocol 209: Multidisciplinary analysis and design,” 2013

[2] American Institute of Aeronautics and Astronautics: Flight dynamics model exchange standard (draft),

“BSR/AIAA S-119-201X,” AIAA, 2010

[3] Begley E. F. and Sturrock C. P., “MatML: XML for Material Property Data,” in ASM Internationals Ad-

vanced Materials and Processes, available online at http:// xml.coverpages.org / begley-ampmatml.pdf,

2000

[4] Berndt J. S., “JSBSim, an open source platform independent flight dynamics model in C++,” JSB-

Sim Reference Manual v1.0., available online at http://jsbsim.sourceforge.net/ JSBSimReferenceMan-

ual.pdf, 2011

[5] Bhandarkar M. P. and Nagi R., “STEP-based feature extraction from STEP geometry for Agile Man-

ufacturing,” in Computers in Industry, vol. 41, pp. 3-24, 2000

[6] Blair M., “Air Vehicle Environment in C++: A Computational Design Environment for Conceptual

Innovations,” in Journal of Aerospace Computing, Information, and Communication, Vol. 7, 85-117,

2010

[7] Composite Materials and Structures Group, “FemML for Data Exchange between FEA Codes,”

in ANSYS Users group conference, Univ. of Maryland, College Park, available online at http: //

femml.sourceforge.net /, Oct. 2001

[8] Deshpande S. G., Watson L. T., Canfield R.. A., Blair M., and Beran P. S. , “XML Schema for Air-

craft Conceptual Model Representation,” in International Conference on Information and Knowledge

Engineering, Las Vegas, Nevada, 2011

[9] Gopalsamy S. and Yu T., “A Geometry Engine for CAD/GRID Integration,” in AIAA 2003-800, 41st

Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 2003

19



[10] Haimes R. and Dannenhoffer J. F., “Control of Boundary Representation Topology in Multidisciplinary

Analysis and Design,” in AIAA 2010-1504, 48th AIAA Aerospace Sciences Meeting, Orlando, Florida,

Jan. 2010

[11] Hucka M. et al., “The systems biology markup language (SBML): A medium for representation and

exchange of biochemical network models,” Bioinformatics

Vol. 19 (4), pp. 524–531, 2003
[12] Information Processing – Text and Office Systems, Standard Generalized Markup Language (SGML),

ISO 8879:1986

[13] Initial Graphics Exchange Specifications, “A Century of Excellence in Measurements, Standards, and

Technology—A Chronicle of Selected NBS/NIST Publications, 1901 - 2000, David L. Lide, Editor,”

NIST Special Publication 958, Jan. 2001

[14] Krishnan R., “Evaluation of Frameworks for HSCT Design and Optimization ,” NASA/CR-1998-208731,

Oct. 1998

[15] Kulfan, B. M., “Universal Parametric Geometry Representation Method,” in Journal of Aircraft, Vol.

45, No. 1, pp. 142158, Jan-Feb 2008

[16] Lin R. and Afjeh A., “An extensible, interchangeable, and sharable database model for improving

multidisciplinary aircraft design,” in AIAA 2002-5613, Atlanta, GA, 2002

[17] Morris C. C., Allison D. L., Schetz J. A., and Kapania R. K., “Parametric geometry model for mul-

tidisciplinary design optimization of tailless supersonic aircraft,” in in proc. of AIAA Modeling and

Simulation Technologies Conference, Minneapolis, Minnesota, Aug. 2012

[18] Nagel R. N., Braithwaite W. W., and Kennicott P. R., “Initial Graphics Exchange Specification IGES,

Version 1.0,” Washington DC: National Bureau of Standards, NBSIR 80-1978, 1980

[19] Peak R., Lubell J., Srinivasan V., and Waterbury S. C., “STEP, XML, and UML: Complementary

Technologies,” in ASME, Design Engineering Technical Conferences and Computers and Information

in Engineering Conference, Salt Lake City, USA,2004

[20] Pratt M., “Extension of ISO 10303: The Step Standard, for the Exchange of Procedural Shape Models,”

in Proc. Int’l Conf Shape Modeling and Applications (SMI) , 2004

[21] Rappoport A., “An Architecture for Universal CAD Data Exchange,” in Proceedings, Solid Modeling

03, Seattle, WA, SCM Press, Jun 2003

[22] Raymer D. P., Aircraft Design: A Conceptual Approach, AIAA Education Series, New York, NY, 2006

[23] Rizzi A., Oppelstrup J., Zhang M., and Tomac M., “Coupling Parametric Aircraft Lofting to CFD

and CSM Grid Generation for Conceptual Design,” in AIAA 2011-160, 49th AIAA Aerospace Sciences

Meeting, Orlando, Florida, Jan 2011

[24] Roth G. L., Livingston J. W., Blair M., and Kolonay R., “CREATE-AV DaVinci: Computationally

based engineering for conceptual design,” in AIAA 2010-1232, Orlando, FL, Jan 2010

[25] Salas, A. O., and Townsend, J. C., “Framework Requirements for MDO Application Development,” in

7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA

Paper 98-4740, Sept. 1998

[26] Sandhu R., The MathML Handbook, Charles River Media, Edition 1, 2002

[27] Schenck D. and Wilson P., Information Modeling the EXPRESS Way, Oxford University Press,1994

[28] World Wide Web Consortium, XML Schema Part 0: Primer, online at http://www.w3.org/ TR /

xmlschema-0, , May 2001

[29] World Wide Web Consortium, Extensible Markup Language (XML) 1.0, 3rd ed., available online at

http://www.w3.org/TR/2004/REC-xml-20040204/, Feb. 2004

20



Appendix A: ADML Schema

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="ADML">

<xs:complexType><xs:sequence>

<xs:element ref="data"/>

<xs:element ref="functions"/>

<xs:element ref="geometry"/>

<xs:element ref="aircraft"/>

</xs:sequence></xs:complexType>

</xs:element>

<xs:element name="data">

<xs:complexType><xs:sequence>

<xs:element ref="variable"/>

<xs:element ref="flag"/>

<xs:element ref="scalar"/>

<xs:element ref="tensor"/>

</xs:sequence></xs:complexType>

</xs:element>

<xs:complexType name="nd"><xs:sequence>

<xs:element name="name" type="xs:string" minOccurs="0"/>

<xs:element name="description" type="xs:string" minOccurs="0"/>

<xs:element name="unit" type="xs:string" minOccurs="0"/>

</xs:sequence></xs:complexType>

<xs:simpleType name="scalarType">

<xs:union memberTypes="xs:integer xs:double xs:string xs:boolean"/>

</xs:simpleType>

<xs:element name="min" type="scalarType"/>

<xs:element name="max" type="scalarType"/>

<xs:simpleType name="flagType">

<xs:union memberTypes="xs:integer xs:boolean"/>

</xs:simpleType>

<xs:element name="flag">

<xs:complexType><xs:complexContent>

<xs:extension base="nd"><xs:sequence>

<xs:element name="flagval" type="flagType"/>

</xs:sequence></xs:extension>

</xs:complexContent></xs:complexType>

</xs:element>

<xs:simpleType name="vtype">

<xs:list itemType="scalarType"/>

</xs:simpleType>

<xs:complexType name="tensorType"><xs:choice>

<xs:sequence minOccurs="2" maxOccurs="unbounded">

<xs:element name="t" type="tensorType"/>

</xs:sequence>

<xs:sequence minOccurs="2" maxOccurs="unbounded">

<xs:element name="v" type="vtype"/>

</xs:sequence></xs:choice>

</xs:complexType>

<xs:element name="value" type="valueType"/>

<xs:complexType name="valueType">

<xs:choice>

<xs:element ref="scalar"/>

<xs:element ref="tensor"/>

</xs:choice></xs:complexType>

<xs:element name="scalar">

<xs:complexType><xs:complexContent>

<xs:extension base="nd"><xs:sequence>

<xs:element name="sval" type="scalarType"/>

</xs:sequence></xs:extension>

</xs:complexContent></xs:complexType>

</xs:element>

<xs:element name="tensor">

<xs:complexType><xs:complexContent>

<xs:extension base="nd">

<xs:sequence>

<xs:element name="t" type="tensorType"/>

</xs:sequence>

</xs:extension></xs:complexContent>

</xs:complexType></xs:element>

<xs:element name="variable">

<xs:complexType><xs:complexContent>

<xs:extension base="nd">

<xs:sequence>

<xs:element ref="value"/>

<xs:element ref="min" minOccurs="0"/>

<xs:element ref="max" minOccurs="0"/>

<xs:element ref="flag" minOccurs="0"/>

<xs:element ref="scalar" minOccurs="0"/>

</xs:sequence>

<xs:attribute name="vid" type="xs:ID"/>

</xs:extension></xs:complexContent>

</xs:complexType></xs:element>

<xs:element name="functions">

21



<xs:complexType><xs:sequence>

<xs:element ref="operator"/>

<xs:element ref="expression"/>

<xs:element ref="relation"/>

</xs:sequence></xs:complexType>

</xs:element>

<xs:element name="arguments" type="xs:string"/>

<xs:element name="variables" type="xs:string"/>

<xs:element name="listRef" type="xs:IDREF"/>

<xs:element name="expressionRef" type="xs:IDREF"/>

<xs:element name="definition" type="xs:string"/>

<xs:simpleType name="formatType">

<xs:restriction base="xs:string">

<xs:enumeration value="Matlab"/>

<xs:enumeration value="Mathematica"/>

</xs:restriction></xs:simpleType>

<xs:attribute name="format" type="formatType"/>

<xs:attribute name="structure" type="structureType"/>

<xs:simpleType name="structuretype">

<xs:restriction base="xs:string">

<xs:enumeration value="array"/>

<xs:enumeration value="general"/>

</xs:restriction></xs:simpleType>

<xs:element name="operator">

<xs:complexType><xs:complexContent>

<xs:extension base="nd"><xs:sequence>

<xs:element name="domain" type="xs:string"/>

<xs:element name="range" type="xs:string"/>

<xs:element ref="arguments"/>

<xs:element ref="definition"/>

</xs:sequence>

<xs:attribute ref="format"/>

<xs:attribute name="opid" type="xs:ID"/>

</xs:extension></xs:complexContent>

</xs:complexType></xs:element>

<xs:element name="expression">

<xs:complexType><xs:complexContent>

<xs:extension base="nd"><xs:sequence>

<xs:element ref="variables"/>

<xs:element ref="definition"/>

<xs:element name="patternStr" type="xs:string" minOccurs="0"/>

</xs:sequence>

<xs:attribute ref="format"/>

<xs:attribute name="eid" type="xs:ID"/>

</xs:extension></xs:complexContent>

</xs:complexType></xs:element>

<xs:complexType name="mlist">

<xs:complexContent>

<xs:extension base="nd">

<xs:sequence>

<xs:element ref="variables"/>

<xs:element ref="definition"/>

</xs:sequence>

<xs:attribute name="lid" type="xs:ID"/>

<xs:attribute ref="format"/>

<xs:attribute ref="structure"/>

<xs:attribute name="dimension" type="xs:string"/>

</xs:extension></xs:complexContent>

</xs:complexType>

<xs:element name="relation">

<xs:complexType><xs:complexContent>

<xs:extension base="nd">

<xs:sequence><xs:choice>

<xs:element ref="expressionRef"/>

<xs:element ref="listRef"/>

</xs:choice></xs:sequence>

<xs:attribute ref="format"/>

</xs:extension></xs:complexContent>

</xs:complexType></xs:element>

<xs:complexType name="geometry">

<xs:complexContent>

<xs:extension base="complexBaseType">

<xs:sequence>

<xs:element name="point" type="point"/>

<xs:element name="plist" type="pList"/>

<xs:element name="line" type="line"/>

<xs:element name="plane" type="plane"/>

<xs:element name="nurbs" type="nurbs"/>

</xs:sequence></xs:extension>

</xs:complexContent></xs:complexType>

<xs:simpleType name="point">

<xs:list itemType="xs:double"/>

</xs:simpleType>

<xs:element name="pList">

<xs:complexType>

<xs:sequence maxOccurs="unbounded">

22



<xs:element name="p" type="point"/>

</xs:sequence></xs:complexType>

</xs:element>

<xs:complexType name="line">

<xs:sequence>

<xs:element name="point1" type="point"/>

<xs:element name="point2" type="point"/>

</xs:sequence></xs:complexType>

<xs:complexType name="plane">

<xs:sequence>

<xs:element name="P0" type="point"/>

<xs:element name="normal" type="point"/>

</xs:sequence></xs:complexType>

<xs:element name="frame">

<xs:complexType>

<xs:sequence>

<xs:element name="origin" type="point"/>

<xs:element name="angles" type="xs:string"/>

</xs:sequence>

<xs:attribute name="frameID" type="xs:ID"/>

<xs:attribute name="parentID" type="xs:IDREF"/>

</xs:complexType></xs:element>

<xs:simpleType name="nurbsType">

<xs:restriction base="xs:string">

<xs:enumeration value="curve"/>

<xs:enumeration value="surface"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="nurbs">

<xs:complexContent>

<xs:extension base="nd">

<xs:sequence>

<xs:element name="controlPoints" type="mlist"/>

<xs:element name="knotVector" type="mlist"/>

<xs:element name="weightVector" type="mlist"/>

<xs:element name="order" type="xs:integer"/>

</xs:sequence>

<xs:attribute name="nurbsID" type="xs:ID"/>

<xs:attribute name="ntype" type="nurbsType" minOccurs="0"/>

<xs:attribute name="ncp" type="xs:integer" minOccurs="0"/>

</xs:extension></xs:complexContent>

</xs:complexType>

</xs:schema>

23


	jaisPR
	jaisPRapp

