Dynamics of photoexcited carriers and spins in InAsP ternary alloys

Citation: Applied Physics Letters 102, 222102 (2013); doi: 10.1063/1.4808346
View online: http://dx.doi.org/10.1063/1.4808346
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/102/22?ver=pdfcov
Published by the AIP Publishing
Dynamics of photoexcited carriers and spins in InAsP ternary alloys

M. A. Meeker,1,a) B. A. Magill,1,a) T. R. Merritt,1 M. Bhowmick,1 K. McCutcheon,1 G. A. Khodaparast,1,b) J. G. Tischler,2 S. McGill,3 S. G. Choi,4 and C. J. Palmström5

1Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
2Naval Research Laboratory, Washington, DC 20375, USA
3National High Magnetic Field Laboratory Florida, Tallahassee, Florida 32310, USA
4National Renewable Energy Laboratory, Golden, Colorado 80401, USA
5Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, USA

(Received 30 April 2013; accepted 14 May 2013; published online 4 June 2013)

The recent rapid progress in the field of spintronics involves extensive measurements of carrier and spin relaxation dynamics in III-V semiconductors. In addition, as the switching rates in devices are pushed to higher frequencies, it is important to understand carrier dynamic phenomena in semiconductors on femtosecond time-scales. In this work, we employed time and spin resolved differential transmission measurements; to probe carrier and spin relaxation times in several InAsP ternary alloys. Our results demonstrate the sensitivity of the spin and carrier dynamics in this material system to the excitation wavelengths, the As concentrations, and temperature. © 2013 AIP Publishing LLC.

Recently, g-factor engineering1 has attracted much attention for potential applications in spintronics and in the case of InAsP ternary alloys, a wide range of g-factors, including g = 0, can be achieved. The recent rapid progress in the field of spintronics involves extensive measurements of carrier and spin relaxation dynamics in III-V semiconductors. In addition to spintronics applications, this material system is important for high-speed electronic as well as optoelectronic devices. Therefore, as the switching rates in devices are pushed to higher frequencies, it is important to understand carrier dynamic phenomena in semiconductors on femtosecond time-scales. In this work, we employed time and polarization-resolved differential transmission measurements to probe carrier and spin relaxation times in several InAsP ternary alloys.

InAsP is a ternary compound with characteristics between that of InAs and InP. The observed spin relaxation time in InP demonstrated tunability as a function of the carrier density, frequency, and intensity.2–4 and can be on the order of tens of picoseconds at room temperature (RT)2,3 in bulk InP, or hundreds of microseconds in charged quantum dots.5 Several groups probed the spin life time in InAs using pump/probe spectroscopy, finding a spin life time of 24 ± 2 ps for nearly degenerate epitaxial layers of n-type InAs5 and ~19±4 ps for intrinsic material.7 Hall et al.8 studied spin relaxation in (110) and (001) InAs/GaSb heterostructures and a spin lifetime of 18 ps was reported for (110) superlattices, much longer than that of the (001) structure with a life time of 700 fs. The large enhancement has been explained by the suppression of decay associated with asymmetry in interface bonding and bulk inversion asymmetry (BIA) contributions to the spin decay process in (110) superlattices. Litvinenko et al. measured spin lifetime in three undoped InAs films of different thicknesses (0.15, 0.27, and 1 µm) and for temperatures ranging from 77 K to 290 K.9 Spin lifetimes of 1 and 20 ps were observed for 0.15 µm and 1 µm thick films, respectively, with the samples at 77 K. The measured spin relaxation time, using the magneto-optical Kerr effect spectroscopy in n-type InAs, demonstrated a strong dependence on the laser fluence with the time scale of the relaxation ranging from 1 to 5 ps.10 Our results demonstrate sensitivity of the spin and carrier dynamics in InAsP, P1−x alloys to excitation wavelengths, As concentrations, and temperature.

In this work, InAsP alloys with the compositions ranging from x = 0.4 to 0.75, grown on Fe-doped semi-insulating InP(001) by chemical beam epitaxy, were studied. The thicknesses of the InAsP, P1−x alloys vary from 4.3 to 5.5 µm, which is larger than the critical thickness for strain relaxation.11 Details of the growth and structural properties are described in Ref. 11. In this study, we employed degenerate Time Resolved Differential Transmission (TRDT) pump/probe measurements where the laser source was an Optical Parametric Amplifier (OPA). The OPA itself was pumped by an amplified Ti:sapphire oscillator with a repetition rate of 1 KHz. The pump/probe pulses were tuned in the vicinity of the band gap and ranged from 1280 to 1350 nm. The pulses had a duration of ~100 fs defining the resolution of the measurements with the ratio of the pump:probe of 1000:1. Both beams were focused onto the sample with a spot size of around 150–200 µm for probe and slightly larger for the pump. The differential transmissivity, as a function of the time delay between the pump and probe pulses using an InGaAs detector, was measured.

As a result of selection rules for interband transitions, spin-polarized carriers can be created using circularly polarized pump beams. By monitoring the transmission of a weaker, delayed probe pulse that has the same circular polarization (SCP) or opposite circular polarization (OCP) as the pump pulse, the optical polarization P = (SCP − OCP)/(SCP + OCP) can be extracted. The optical polarization P decays exponentially.

a)M. A. Meeker and B. A. Magill contributed equally to this work.
b)Author to whom correspondence should be addressed. Electronic mail: khoda@vt.edu.
with a decay constant related to the spin lifetime as following: \(P = P_0 \exp(-t/\tau_s) \), where \(P_0 \) is a constant. Examples of our TRDT and Spin Polarized Differential Transmission (SPDT) are presented here, providing information on the carrier and spin relaxation time scale in this material system.

Figure 1(a) shows TRDT for InAs\(_{0.75}\)P\(_{0.25}\) with the pump and probe \(\lambda = 1280–1350 \) nm, with an estimated photo-excited carrier density on the order of \(1 \times 10^{19} \) cm\(^{-3}\). The TRDT shows several features, including a sharp change in transmission lasting for \(<1 \) ps, which can be attributed to a coherent artifact, commonly observed in a degenerate pump and probe scheme. The sharp increase is followed by a slower component which is dominated by photo-induced bleaching. Due to the Pauli exclusion principle, a large density of photo-excited electrons in the conduction band can reduce the amplitude of the interband optical absorption transitions via band and state filling. This leads to a decrease in the absorption, and a corresponding increase in the transmission, which is referred as photo-induced bleaching. The differential transmission can be written as: \(\Delta T/T = e^{-(x_0^2-x^2)L} - 1 \), where \(T \) is the transmission, \(x_0 \) is the pre-excitation absorption coefficient, and \(L \) is the thickness of the sample.\(^{12}\)

In a thick optical medium, a small change in the absorption coefficient can accumulate to a large change in the transmission. The large photo-bleaching observed here can be expected since the sample thicknesses range from 4.3 to 5.5 \(\mu \)m. The relaxations of the photo-induced carriers in our samples can be modeled by two time constants, \(\tau_1 \) and \(\tau_2 \), where \(\tau_1 \) is attributed to the initial carrier cooling and \(\tau_2 \) to the relaxation time of hot electrons toward the bottom of the conduction band. The recombination time scales depend strongly on the As concentration, temperature, and the excitation wavelengths. In our carrier relaxation, the initial component of the temporal evolution can be attributed to the relaxation of the hot electrons. When a hot electron gas is created at room temperature, the carrier relaxation slows down since as the electron gas cools to the lattice, the lattice temperature rises, and subsequently, the number of equilibrium LO-phonons increase. In the regime of high electron densities, due to screening effects and hot phonons, the hot electrons experience a significant reduction in their energy loss rate through the emissions of LO phonons. Thus, we identify \(\tau_1 \) as the thermalization time of the hot carriers which can be on the order of \(~2–5\) ps (as shown in the inset of Fig. 1(a) for \(x = 0.75 \) at 1330 nm), and \(\tau_2 \) to the carrier relaxation time toward the bottom of conduction band, where the recombination time occurs on longer time scales depending on the As concentration and the excitation wavelength. Comparing the measurements presented in the inset of Fig. 1(a) at 1330 nm, for InAs\(_{0.75}\)P\(_{0.25}\), to the measurements at the shorter wavelengths, we observed longer time scales for \(\tau_1 \) with increasing excitation energy, where the increasing contribution of LO-phonons reduces the energy loss rate. The excitation energy dependence of \(\tau_1 \) is more pronounced for the sample with a higher As concentrations where the excitation wavelengths for the pump and probe are deeper in the conduction band, compared to the measurements in Fig. 1(b) for InAs\(_{0.4}\)P\(_{0.6}\).

In addition, as shown in Fig. 1(b), the carrier recombination time scale of InAs\(_{0.4}\)P\(_{0.6}\) is much longer than the sample with \(x = 0.75 \). Time-resolved photoluminescence (TRPL) measurements allowed us to determine the carrier recombination time of InAs\(_{0.4}\)P\(_{0.6}\), where photo-generated carrier lifetimes can be obtained by monitoring the transient PL signal after laser pulsed excitations. An example of the PL and the TRPL using a streak camera, for InAs\(_{0.4}\)P\(_{0.6}\), are shown in Fig. 2. The excitation wavelength was fixed at 800 nm with a pulse duration of 100 fs and repetition rate of 1 KHz. The TRPL below 100 K in this sample demonstrated a recombination time on the order of \(~1.0\) ns with a weak temperature dependence.

Figure 3 shows the time scale of the carrier relaxations \(\tau_2 \), at 296 K, for the samples with different As concentrations of \(x = 0.4, 0.6, 0.7, \) and 0.75, at different excitation wavelengths. We observed that the relaxation times for the sample with \(x = 0.4 \) are considerably different, ranging from 40 to 130 ps compared to \(~2–6\) ps for the samples with the higher

Figure 1. Differential transmission of (a) InAs\(_{0.75}\)P\(_{0.25}\), (b) InAs\(_{0.4}\)P\(_{0.6}\) for different pump and probe wavelengths; the traces are offset for clarity. The inset shows an example of the initial temporal evolution \(\tau_1 \), which can be attributed to the relaxation of the hot electrons through emission of LO-phonons. The time scale, denoted by \(\tau_1 \), increases by increasing the excitation, and this increase is more pronounced for the sample with \(x = 0.75 \) than \(x = 0.4 \), where the excitation wavelengths for pump and probe are deeper in the conduction band.
As concentrations. The long relaxation times for the sample with $x = 0.4$ are comparable to the carrier relaxation times previously observed in bulk InP. The faster relaxation time in the sample with higher As concentrations could be related to higher defects states as well as increasing band mixing expected in the narrow gap band structures.

In order to probe the relaxation of photo-excited spin polarized carriers, two identical quarter wave plates were used to extract the SPDPT for different pump/probe wavelengths. Figure 4 shows an example of the SPDPT for InAs$_{0.75}$P$_{0.25}$, where the differential transmission for the pump and probe being SCP or OCP, were employed to calculate the spin relaxation time. As shown in the inset, by an exponential fit to the difference (SCP-OCP), the spin relaxation time can be extracted. The observed spin relaxation times for our sample structures are summarized in Fig. 5, where the longest spin relaxation was observed in the sample with $x = 0.4$, ranging from 20 to 60 ps. The observed spin relaxation times in the samples with the As concentration larger than 0.4 are comparable to the observations in InAs where the Elliot-Yaffet (EY) mechanism can contribute to the relaxation process. In the EY picture, the strong mixing of the valence band states and conduction bands can result in non-zero transition rates even for spin-conserving scattering process.

In an undoped alloy structure, where equal number of holes and electrons are created after photo-excitation, several scattering mechanisms contribute to the spin relaxation, such as carrier-carrier, carrier-LO phonon and carrier-impurity scattering. The spin-lattice relaxation mechanism due to optical phonons does not work if phonon energy is much higher than the sample’s temperature. When hot photo-excited electrons are created initially at low temperatures, there are no equilibrium optical phonons that can contribute to decrease
of the relaxation rate. As shown in Figs. 6(a) and 6(b), for the SPDTraces at RT and 77 K, we can observe much faster dynamics at 77 K. (c) Carrier relaxation times at RT and 77 K. The faster spin relaxations at 77 K are in concert with a faster relaxation of the photo-excited carriers. As shown in the inset, the initial component of carrier cooling is more important at RT.

The summary of the carrier and spin relaxation times in our samples at 77 K, are presented in Fig. 7. Compared to the measurements at RT, the relaxations are faster by a factor of 2^2. For the sample with $x = 0.4$ at 77 K, due to the increase in the band gap, only the pulses tuned at 1270 nm could have been employed and the carrier and spin relaxation times of ~ 29.0 ps and ~ 19.0 ps were extracted, respectively.

In summary, we have probed the dynamics of the photo-excited carriers and spins in InAs$_x$P$_{1-x}$ with different alloy compositions. Our results demonstrate the tunability of the time scales as a function of different external parameters. We observe several carrier relaxation components where the cooling of the photo-excited carriers, via the generation of LO phonons, play an important role and can contribute to the observed time scales of the carrier and spin relaxations in our sample structures.

This work was supported by NSF-Career Award No. DMR-0846834 and by the National High Magnetic Field Laboratory through a UCGP. G. A. Khodaparast thanks the inputs from Professor Tigran Shahbazyan and the funding from the Institute of Critical Technology and Applied
Sciences (ICTAS) at Virginia Tech. The samples studied in this work were grown and characterized as part of S. G. Choi’s Ph.D. work at the University of Minnesota.