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Analysis of composites using peridynamics

Corrado Degl’Incerti Tocci

(ABSTRACT)

Since the last century a lot of effort has been spent trying to analyze damage and crack evolution in solids.

This field is of interest because of the many applications that require the study of the behavior of materials

at the micro- or nanoscale, i.e. modeling of composites and advanced aerospace applications. Peridynamics

is a recently developed theory that substitutes the differential equations that constitute classical continuum

mechanics with integral equations. Since integral equations are valid at discontinuities and cracks, peri-

dynamics is able to model fracture and damage in a more natural way, without having to work around

mathematical singularities present in the classical continuum mechanics theory. The objective of the present

work is to show how peridynamics can be implemented in finite element analysis (FEA) using a mesh of

one-dimensional truss elements instead of 2-D surface elements. The truss elements can be taken as a rep-

resentation of the bonds between molecules or particles in the body and their strength is found according

to the physical properties of the material. The possibility implementing peridynamics in a finite element

framework, the most used method for structural analysis, is critical for expanding the range of problems that

can be analyzed, simplifying the verification of the code and for making fracture analysis computationally

cheaper. The creation of an in-house code allows for easier modifications, customization and enrichment if

more complex cases (such as multiscale modeling of composites or piezoresistive materials) are to be ana-

lyzed. The problems discussed in the present thesis involve plates with holes and inclusions subjected to

tension. Displacement boundary conditions are applied in all cases. The results show good agreement with

theory as well as with empirical observation. Stress concentrations reflect the behavior of materials in real

life, cracks spontaneously initiate and debonding naturally happens at the right locations. Several examples

clearly show this behavior and prove that peridynamics is a promising tool for stress and fracture analysis.
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Chapter 1

Introduction

The last two decades have seen a dramatic improvement in computational power, which led to much higher

accuracy in computer simulations. The fields of mechanics and material science have become increasingly

interested in exploiting this power by building simulations that have the duty to anticipate and predict

the behavior of different materials under various types of loading and boundary conditions [7]. Accurate

simulations require very specific tools, both computational and experimental, as well as a deep understanding

of the chemistry and physics at the atomic, molecular and supramolecular levels [1].

The design of objects and vehicles with a very low factor of safety is another push towards increasing accuracy

of computer simulations; the challenges in modeling of these vehicles are related to the improvement of the

performance of aircrafts and spacecraft by increasing: size per mass, strength per mass, function per mass

and power, and intelligence per mass and power [1]. To achieve these goals, composite materials are used

more extensively in space and high-technology applications, because they can be designed and manufactured

to have specific characteristics and to meet specific requirements [1]. Because the mechanical and electrical

properties of composite materials tend to be very difficult to obtain [8], computational methods are being

researched to study the behavior of these materials at smaller length scales, which can be the key to a

1
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deeper understanding of the interaction between the different phases. A particular case is represented by

nanocomposites, which have shown to behave often in unpredictable ways. Different methods are employed

to find their effective mechanical and electrical properties [9] and there is a lot of research focused on

how to predict the behavior of carbon nanotubes, or carbon fiber, composites. Because of the increasing

computational power of today’s computers, the modeling problem is dealt with using computational methods

paired with testing and direct observation [7]. Still, computational power is not yet great enough to model

every single atom or molecule for macroscopic systems [5]. The problem that this lack of power poses can be

reduced by techniques that force us to make assumptions and reduce the accuracy of the model, but making

it realizable on the other hand. One of these techniques is called multiscale modeling: it means analyzing a

given problem at different lengh scales, using different methods which are consistent with each other, as shown

in Figure 1.1. This approach is fundamental in micromechanics and allows us to reduce computational power

in many applications, because we do not need as much accuracy in analyzing phenomena with negligible

microscale effects. Nonetheless, multiscale modeling poses some questions with no easy answer: how is the

information passed from one layer to the next? How do we precisely circumscribe the area of interest (or size

of interest)? What is lost in accuracy when applying less expensive methods at greater length scales? These

are all questions that need to be asked in order to understand the importance of a well-posed problem.

The goal of this work is to validate and study the applications of a nonlocal continuum theory called Peridy-

namics (PD), proposed by Silling from Sandia National Laboratories in 2000 [10]. The validation is performed

by implementing peridynamics in a finite elements framework, which is supposed to reduce computational

power and simplify the model, making is suitable to a wider range of applications. An implementation of

peridynamics can be found in [11], where three problems are solved implementing peridynamics in ABAQUS;

this approach, although easier and more direct, is more subject to restrictions and allows for a limited range

of applications. The aim of the present work is to create a coding platform in Matlab, which is highly cus-

tomizable and can be later modified and enhanced to be applied in a greater range of problems like multiscale

modeling of composites and piezoresistive materials. All the plots in this paper are done in TecPlot, which is
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the only other piece of software used. Finally, the last objective of the present work is to apply peridynamics

to the analysis of composite materials made of one or multiple fiber inclusions; this is not been done yet and

this work can be seen as an introduction, a preliminary study of this kind of applications.

Figure 1.1: Hierarchy of multiscale modeling (from Ref [1]: Gates and Odegard and Frankland and Clancy,

”Computational materials: Multi-scale modeling and simulation of nanostructured materials”, Composites

Science and Technology, 2005. Used with permission of Elsevier).

1.1 Brief History of Nonlocal Theories

The problem of crack propagation in solids has been studied for decades now. Because of its gradient

formulation classical mechanics is not defined at discontinuities such as cracks [10]. At very small scales

bodies do not behave as continua, but as a conglomerate of particles or atoms, hence a more ’atomistic’

description of the material is needed. Cracks happen because of a rupture at the micro- or nanoscale and

cannot be completely understood and studied within the boundaries of a continuum formulation, which

does not take into consideration the microstructure of the material. Also, classical continuum mechanics is

unable to find the stress concentration at the cracktip because of a mathematical singularity; high strain

gradients near the crack make it impossible to have accurate results at this location and these factors make
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propagation impossible to model in a classical continuum mechanics framework. In the last century scientists

have started to take care of this lack of information by adding details to the classical theory of continuum

mechanics [12]. These formulations are called nonlocal theories and it will be shown how the peridynamics

theory belongs to this category. Three main families of nonlocal theories have been proposed through history

to differentiate the way information is added to the classical model: augmentation of the displacement field

(ADF), augmentation of the gradient of the displacement field (AGDF) and the use of an integral operator

(IO) [13]. As it will be shown later, the difference between these families lies mostly in the type of nonlocality

they employ.

The first effective formulation of the ADF kind was proposed by Cosserat and Cosserat in 1909 [14]. In their

formulation the infinitesimal particle is enriched with three rotational degrees of freedom, hence improving the

classical theory by adding complexity to it. In this formulation, the continuum mechanics solution becomes a

special case of the Cosserats’ theory. Their originally nonlinear development was largely forgotten for decades

only to be rediscovered in a restricted linearized setting in the early sixties [15], first with Mindlin [16], then

especially with Kunin [17], Kröner [18] and Edelen [19]. All these generalized Cosserat theories characterize

the motion of a solid body by adding more fields that are independent of the displacement field and provide

supplementary information on the small-scale kinematics [12]. The biggest contribution in the field arrives

from Eringen [20, 21, 22, 23, 13] who also tried to unify and categorize these theories under the name of

micropolar, where degrees of freedom are added and the particles behave as rigid bodies with rotational

displacements as well. Eringen will also later define the terms microstretch and micromorphic: the former

adds a ”breathing mode” to the Cosserats rotations, a deformation in one direction only through which the

infinitesimal body can expand and contract [24, 25]; the latter adds the remaining deformations in the other

directions, bringing the total count of degrees of freedom to nine (three translations from the classical model,

three Cosserats rotations, three deformations) [26]. It becomes obvious at this point that the micropolar

and the microstretch cases are special cases of the most general micromorphic theory, respectively with

zero deformation and with one non-zero deformation. Worth of a note is also Eringen’s work in redefinfing
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the concepts of locality and nonlocality; the meaning of these terms in the field of micromechanics will be

explained in Section 1.2 and will be mostly based on Eringen’s work [27, 28, 29].

The second family of generalized continua employs AGDF and comprises those formulations in which the

displacement field is the only independent kinematic field (no enrichment in degrees of freedom of the

infinitesimal element), while the resolution is improved by incorporating the gradients of strain (second

gradients of displacement) into the constitutive equations [12]. Contributions in this field were given by

Aero and Kuvshinskii [30], Grioli [31] and Rajagopal [32]. The work of these scientists consisted mostly

in taking into account the curvature components of the strain gradient, i.e. the gradients of rotations.

Decomposing the macroscopic deformation gradient allows us to obtain a rotation tensor for each material

particle; hence, this theory is equivalent to Cosserat’s, in which the rotations associated with each material

particle are not independent [12]. Later, other extensions of the gradient theory were formulated. These

include the effects of the stretch gradients (Toupin [33]), second strain gradients (Mindlin [34]) and gradients

of all orders (Green and Rivlin [35]). Krumhansl [36] discussed the need for higher-order displacement

gradients when approximating discrete lattices in a continuum mechanics framework [12]. As it can be easily

shown, ADF and AGDF theories still do not offer a complete solution for the dynamic fracture case, since

discontinuities cannot be throughly analyzed using a gradient (or differential) formulation.

The last family of generalized continua is the one of most interest for the present paper, since peridynamcs

belongs to this category. It is represented by those micromechanics theories that implement an integral

operator (IO) to perform weighted averaging over a spatial neighborhood to replace a certain variable by

its nonlocal counterpart [37]. If f(x) is some ’local’ field in a domain V , the corresponding nonlocal field is

defined by

f̄(x) =

∫
V

α′(x, ξ)f(ξ) dξ, (1.1.1)

where α′(x, ξ) is a given nonlocal weight function [37].

The family of theories that can be written in the form of Eqn 1.1.1 are all strongly nonlocal (a discussion

on nonlocality is given in Section 1.2). Nonlocal elasticity was analyzed and refined in many of the papers
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mentioned in the last two paragraphs, namely Eringen [13], Eringen and Edelen [38] and Kröner [18].

Additional work includes Rogula [39] (who first proposed a nonlocal form of the constitutive law for elastic

materials), Kröner [40, 41], Kröner and Datta [42], Kunin [43, 44], Edelen and Laws [45]. These early studies

had the goal to create a better theory that would describe phenomena taking place on an atomic or molecular

scale. It was shown that nonlocality adds information to the continuum model approximating the dispersion

of short elastic waves, hence improving the description of the interactions inside and between crystals [12].

Since the 80s Bazant has been contributing to this field [46, 47], clarified some incongruences in the distinction

between the generalized continua [12] and performed studies on nonlocal finite elements codes [48], which

are a fundamental basis for the work presented in this thesis. In the last two decades Polizzotto expanded

and gave additional bases to the strongly nonlocal theory with [49] and [50], in which he proposes a unified

theory for the nonlocal/gradient continuum theories and establishes the framework in which this will take

place. In chapter 2 it will be shown how peridynamics belongs to this last family of generalized continua and

how its formulation differs from the ones analyzed so far; in fact, while in the integral formulations analyzed

so far generally the strains are averaged over a certain domain, in peridynamics the force between each pair

of particle is averaged, leading to a theory free of derivatives of displacement.

During the last 50 years it has become increasingly clear that distributed damage cannot be adequately

described by local constitutive relations. So far only the analytical approach was described, which is limited

by complicated geometries. For this reason computational models have been developed to fix this lack of

potential applications. Classical finite element methods generally need remeshing, since cracks are disconti-

nuities and no mesh can be applied inside such areas. Evolutions of the finite element method for fracture

mechanics applications, such as XFEM or the Cohesive Zone Method, still employ differential equations in

their formulation. Furthermore, additional information is generally needed to be able to model fracture, i.e.

fracture initiation parameters, crack nucleation criteria, traction-displacement laws. Meshless methods have

been developed as well, but incur in the same issues because they too are based on a differential formulation.

Particle-based methods like Molecular Dynamics need to model individual atoms and molecules and are just
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not applicable to macroscale problems because of the computational power needed.

1.2 Nonlocality

The concept of nonlocality marks the separation from the idea of continuum defined in classical continuum

mechanics, for the state of the material at one point depends on the state of that material at the points not

only in the immediate vicinity, but also at a certain distance from the point itself. Figure 1.2 graphically

shows the difference between the local and nonlocal models: in (a) the exterior of the cube imparts force to

the interior via the surface only, while in (b) the exterior of the cube imparts force to the interior not just

at the surface, but also at a finite distance from the surface. A gradient-type nonlocal model, like AGDF

(a) Local model (b) Nonlocal model

Figure 1.2: Graphical representation of local and nonlocal models (from Ref [2]: Lehoucq, ”Peridynamics for

multiscale materials modeling”, Sandia National Labs, Power Point Presentation, 2008. Used with permission

of R. Lehoucq).

described in Section 1.1, adheres to this principle mathematically, by enriching the local constitutive relations

with higher order gradients of some state variables. Gradient-types model exploit the concept of nonlocality

in a broad sense, meaning that they employ a length scale, the meaning of which is explained in the next

paragraph. To the narrow definition of nonlocal theories belongs the integral type model (IO), where the

constitutive laws at a point involve weighted averages of a state variable over a certain neighborhood, which
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can be discretionary large. Hence, strictly nonlocal theories are the ones described by integrodifferential

equations, while strictly local theories are described by differential equations [12]. A mathematical definition

of nonlocality has been formulated by Rogula in [51] and is given here. The fundamental equations of any

physical theory can be written as

Au = f, (1.2.1)

where A is the operator characterizing the system, u is the unknown response and f is the given excitation.

Typically, u and f are functions or distributions defined over a certain spatial domain V . Operator A is

called local if it has the following property: if two functions u and v are identical in an open set O, then

their images Au and Av are also identical in O, which means that whenever u(x) = v(x) for all x in a

neighborhood of point x0, then Au(x0) = Av(x0). Since derivatives do not change if the differentiated

function changes only outside a small neighborhood of the point at which derivatives are taken, we can

see that differential operators satisfy this condition. If, on the other hand, we add an integral operator to

consider the weighted average of a state variable, we obtain the following equation [51]:∫ ∞
−∞

A(x)u(x) dx = f(x); (1.2.2)

due to the presence of the spatial integral, the locality condition is violated.

Another important aspect regarding the definition of nonlocality is the presence of a length scale. From the

mathematical point of view, the presence of a length scale shows that the scaling of spatial coordinates has

an effect on the fundamental equations [51]. Hence, in local theories, where a length scale is not present, the

fundamental relations are invariant with respect to scaling of the spatial coordinates. Theories invariant with

respect to spatial scaling are called strictly local, while theories not invariant with respect to spatial scaling

are called weakly non local. Weakly nonlocal theories are usually described by differential equations, where

the coefficients multiplying the terms of different orders have different physical dimensions which make it

possible to deduce a length scale from the ratio [12]. In [5] this concept is explained clearly: consider the

classical wave equation

∂2y

∂t2
= a

∂2y

∂x2
, (1.2.3)
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which does not possess a length scale. Its solution is defined as scale-invariant by Barenblatt in [52]. Now

consider the higher-order wave equation [5]

∂2y

∂t2
= a

∂2y

∂x2
− b∂

4y

∂x4
(1.2.4)

where a and b are constant coefficients. Dimensional consistency of the terms in Eqn 1.2.4 ensures that the

equation has a length scale, which is just L =
√
b/a. This simply means that we can make either the first or

the second term on the right-hand side of Eqn 1.2.4 dominant, basically changing the balance of the equation

towards the dimensions of the first or the second term. We refer to Eqn 1.2.4 as a multiscale equation. The

length scale has been object of experimentation as well as theoretical analysis. In [53] the length scale is

determined by comparing the response of two types of specimens, one in which the tensile softening damage

remains distributed and one in which it localizes. In this scenario, the length scale is the ratio of the fracture

energy, i.e. the energy dissipated per unit area to the energy dissipated per unit volume [53]. In the present

paper, the length scale will be analyzed and identified with a fundamental parameter of peridynamics, called

the horizon.



Chapter 2

Description of the computational

model

The computational model used in the present work is based on peridynamics, a nonlocal theory in which

integral equations replace differential equations. The peridynamics theory is explained in Section 2.1, while

in Section 2.2 the implementation of peridynamics in a one-dimensional finite element framework is discussed.

2.1 Peridynamics

Peridynamics was introduced by Silling in 2000 [10] and draws its name from the Greek roots for near and

force. Peridynamics was proposed as a framework for the basic equations of continuum mechanics useful

when modeling discontinuities in materials, since the classical framework is not valid in such situations. The

claim of the peridynamics theory is to be able to deal with discontinuities in a more direct and aesthetically

pleasing way by employing integral equations and defining particles which can interact with each other in a

strongly nonlocal model [10]. The underlying equations of peridynamics are going to be given in the present

10
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section.

Suppose a body occupies a reference configuration in a region R. It is assumed that each pair of particles

interacts through a vector-valued function f such that L, the force per unit reference volume due to interaction

with the other particles, is a functional of the displacement field u. At any time t and at any point x in the

reference configuration, the value of L is given by [10]

Lu(x, t) =

∫
R
f(u(x′, t)− u(x, t),x′ − x) dVx′ ∀x ∈ R, t ≥ 0, (2.1.1)

which, if we avoid to write u as a function x′, x and t, can be written more concisely as [10]

Lu(x) =

∫
R
f(u′ − u,x′ − x) dV ′ on R. (2.1.2)

The peridynamic equation of motion is given by [10]

ρü = Lu + b on R, t ≥ 0 (2.1.3)

and the peridynamic equilibrium equation is given by [10]

Lu + b = 0 on R, (2.1.4)

where b is the loading force intensity, i.e. the the external force per unit volume. In peridynamics the function

f is called pairwise force function and it represents the backbone of the peridynamic theory. As mentioned

in 1, no spatial derivatives appear in Eqn 2.1.2. It is important to note that in Eqn 2.1.2 the function f does

not contain any history-dependent variable as argument, which means that the material described by this

function does not have memory of its deformation history. Such a material is called peridynamic material

without memory [10] and the terminology associated with it will become important in this paper because

of its implementation in a quasi-static finite element code. The following notation is used throughout the

paper for relative displacement vectors and relative position vectors in the reference configuration [10]:

η = u′ − u ξ = x′ − x. (2.1.5)

Note that ξ + η is the relative position of the particles in the deformed configuration. The direct physical

interaction between the particles x and x’ is called bond in peridynamics [10].
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Fundamental in the peridynamic theory is the concept of horizon. The horizon δ is a positive number such

that [10]

|ξ| > δ ⇒ f(η, ξ) = 0 ∀η. (2.1.6)

For the remainder of this discussion, Hx will denote the spherical neighborhood of x in R with radius δ.

Each point x in the body interacts directly with all the other points in the sphere Hx through bonds and

does not connect with points outside his horizon, as it is shown in Figure 2.1. The horizon is, therefore, a way

to control the nonlocality of the model by choosing how many particles, or at what distance, we want these

particles to interact [54] with each other. The peridynamic horizon can be viewed as an ’effective interaction

distance’ or an ’effective length scale’ [54]. It will be explained later in the present work what values of δ

were chosen to run the simulations, what values the literature suggests and how these values are chosen.

There are theoretical ways one can go about to guess the value of the horizon: to treat is as a physical

quantity, with a meaning in real life, and assign it a fixed length depending on the properties of the material

being analyzed; or treat it as a computational quantity, with no meaning in real life, and assign it a value

based on computational efficiency. In this last case the value, rather than being a fixed length, will most

likely become a multiple of ∆x, where ∆x is the minimum distance between any two particles in the body.

The physical meaning of the horizon can be searched in chemistry, where we know that atoms and molecules

interact with each other over short distances, which though extend beyond the atom’s nearest neighbours,

especially in solid matter. In dynamic fracture, a way for particles to interact over a finite distance greater

than the distance from the nearest neighbor is called long range interaction and was suggested by Ramulu

et al [55, 56] and Streit and Finnie [57]. This criterion involves a ’characteristic distance ro’ that depends

on the dynamic state of stress near the crack tip [54]. In [55] it is guessed that crack branching occurs when

r0 ≥ rc, where rc is a material property related to the distance between microvoids and the crack tip. Hence,

the concept of a length scale is not new, although its use in dynamic fracture was mostly related to branching

and applied only near the crack tip. As it will be shown next, the horizon plays a role in the convergence of

peridynamics towards classical mechanics or molecular dynamics.
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Figure 2.1: Graphical representation of the meaning of the horizon in a peridynamic body (from Ref [3]:

Silling and Askari, ”A meshfree method based on the peridynamic model of solid mechanics”, Computers

and Structures, 2005. Used with permission of Elsevier).

In [58] it is shown how the peridynamic model for an elastic material reproduces the classical model as δ

goes to zero and m fixed, where m is the number of particles inside the horizon. This convergence is called

δ-convergence. This is proven by collapsing the peridynamic stress tensor into the Piola-Kirchhoff stress

tensor, given that the motion, constitutive model and any nonhomogeneities are sufficiently smooth. The

Piola-Kirchhoff stress tensor is a function of the local deformation gradient tensor only, it is differentiable and

its divergence represents the force density due to internal forces. Hence, the peridynamic model converges

to the classical model if the horizon becomes infinitely small. A second type of convergence is called (δm)-

convergence: δ decreases and m increases faster than δ decreases. In this case the numerical peridynamic

approximation converges to the analytical peridynamic solution and converges uniformly to the local classical

solution almost everywhere [59]. The last type of convergence in peridynamics is called m-convergence and is

related to the number of particles taken into consideration inside a fixed horizon. As the number of particles

is increased, in fact, peridynamics tends to the more complex and computationally expensive molecular

dynamics, in which individual atoms are modeled and the potentials need to be known. As there is a huge
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quantity of atoms and molecules to be analyzed even in the smallest piece of material, molecular dynamics

can be seen as a downscaling of peridynamics, in which more information needs to be known and small

defects and voids cannot be neglected. Figure 2.2 shows graphically what is meant by δ-convergence and

m-convergence. At the end of the present section the similarities and the differences between peridynamics

and molecular dynamics will be discussed, amongst other conclusions about peridynamics. In peridynamics,

(a) m-convergence (b) δ-convergence

Figure 2.2: Schematic description of m-convergence and δ-convergence (from Ref [4]: Hu and Ha and Bobaru,

”Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites”, Comput. Methods

Appl. Mech. Engrg, 2012. Used with permission of Elsevier).

because the body is not a continuum and is made of particles and voids, the concept of cross-sectional

area is hard to define. Hence, the concept of traction as well is not directly understandable as it is in the

conventional theory and needs to be redefined [10]. Suppose a plane P divides the body into two subregions

R+ and R−. Then R+ exerts some forces on R−. This force is applied not just on the surface of R−, but

through ’action of distance’ (because of the nonlocality of the model) to particles below the surface as well.

If this force is divided by the area of P ∩R, we have a notion of force per unit area. Defining τ (x,n) as the

areal force density and skipping the mathematical derivation for summary purposes, we obtain [10]:

τ (x,n) =

∫
L

∫
R+

f(u′ − û,x′ − x̂) dVx′ dl̂, (2.1.7)

where the hat (ˆ) makes the different sets of points collinear and dl̂ represents the differential path over the

length L. As mentioned, the quantity defined in Eqn 2.1.7 is the closest thing to traction one can obtain in

the peridynamic framework.
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The boundary conditions in peridynamics need now to be discussed. In continuum mechanics, boundary

conditions must be supplied to make the partial differential equations yield specific solutions in equilibrium

problems. This happens because the differential equations model forces between particles that are in direct

contact with each other; this creates a complete definition of how particles interact with each other inside the

body; on boundaries, on the other hand, particles are not surrounded by other particles and need additional

conditions that provide a complete description of their behavior. When the governing equations are derived

from the potential energy functional, the condition of reaching a stationary state must be satisfied and the

’natural boundary conditions’ (which define the force (or traction) of the particles at the boundary under

consideration) appear automatically [10]. In the peridynamic theory, when deriving the governing equations,

no natural boundary conditions emerge. Also, as discussed previously, no traction vector exists that has

a natural function in the mechanics of the problem (the concept of areal force density was introduced as

a way to compare the conventional theory to peridynamics). Hence, the concept of traction boundary

condition does not apply to the present approach, where external forces must be supplied through the

loading force density b. These forces can be made nonzero depending on the loading mode that has to be

analyzed, and are called force loading conditions. This approach resembles the finite element application

of continuum problems, where loading boundary conditions are applied at some nodes, not on a volume

(surface or line, depending on the dimensions of the problem). This characteristic of peridynamics simplifies

its finite element implementation, because the loading force density b is very similar to the loading vector

used in the finite element method. Displacement boundary conditions in continuum mechanics do have an

analogue in peridynamics. Because there is no defined ’boundary’ in peridynamics the analogue condition is

called displacement loading condition and is defined as follows: we let R be the region in which Eqns 2.1.3

and 2.1.4 hold. We assume that in the complement of R there is another set of points R∗, which are the

particles in which the displacement is specified. In this scenario, the displacement field u∗ is a vector field

defined on R∗. Now, points in R interact with points in R∗ through the pairwise force function f. Then, if
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displacement loading conditions are present, the functional L in Eqn 2.1.2 becomes [10]

Lu(x) =

∫
R
f(u′ − u,x′ − x) dV ′ +

∫
R
f(u∗ − u,x∗ − x) dV ∗, (2.1.8)

where u∗ = u∗(x∗), dV ∗ = dVx was used and L is called displacement load. In peridynamics, the solution

(displacement field) is satisfied automatically as the loading conditions are incorporated into the equations

of equilibrium and motion. Because the loading conditions do not need to be applied separately, there is no

need to talk about a displacement field that needs to satisfy the equilibrium equations and the boundary

conditions [10]. Again, this way of defining the displacement loading conditions is very similar to what is used

in the finite element method and Eqn 2.1.8 resembles a section of the weak formulation of a two-dimensional

problem where the area integrals representing the body and the line integrals representing the boundaries

where the displacements are known are separated and moved to opposite sides of the equation.

In [10] the stress tensor is found by comparing the result obtained using Eqn 2.1.7 to the deformation in the

conventional theory of elasticity. It is shown that Poisson’s ratio ν obtained for homogeneous deformations

of linear isotropic materials can only assume the value of 1/4, which corresponds to what follows from the

Cauchy relation for a solid composed of a lattice of points that interact only through a central force potential.

There are ways to get around this limitation, such as adding an energy term that will take into account the

movement of the electrons (especially in metals) in the derivation of the governing equation. Also, in [60]

in 2007, a new formulation of the peridynamic theory, called peridynamic states, was introduced. In this

new formulation some issues with the original theory are addressed: Poisson’s ratio of 1/4; the fact that

recasting a material model in terms of a pairwise force function becomes a practical barrier when using the

peridynamic approach, because of the stress tensor description of the constitutive behavior in continuum

mechanics; finally, plasticity cannot be adequately modeled because it results in permanent deformation of a

material undergoing a volumetric strain (without shear), which is inconsistent with plastic incompressibility

in metals. The peridynamic states formulation is not used in the present work but it is worth noting its

importance in modeling a great range of materials. On the other side, as it will be discussed later, for a

finite element application using one-dimensional bonds the fact that particles can only interact through a
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central force potential is of help, since it makes the finite element formulation easy to obtain and converge

to the well known case of a system of truss.

In peridynamics, a configuration is said to be unstressed if [10]

τ (x,n) = 0 ∀x ∈ R, ∀n. (2.1.9)

The unstressed configuration for a given body can be obtained in two different ways: in the restrictive way

the pairwise force between any two particles vanishes; in the second way, the pairwise force between any

two particles is nonzero and actually significant. This second way to define an unstressed body is consistent

with real materials, where the interatomic forces are always nonzero. Eqn 2.1.9 implies that the distribution

of forces between particles, if it is nonzero, be repulsive (positive) for some values of interparticle distance

and attractive (negative) for others. In the present work, because one-dimensional bar are used to represent

the bonds between particles in the finite element implementation, the terms ’repulsion’ and ’attraction’ are

substituted by ’tension’ and ’compression’. To obtain a body in unstressed configuration the average of

the forces on all the bonds needs to be zero, therefore a reference length of the bonds needs to be set such

that if the reference length is greater than the distance between two particles, the force between them is

attractive; on the other hand, if the reference length is smaller than the distance between two particles, the

force between them is repulsive.

Finally, worth noting are the similarities between peridynamics and molecular dynamics. As previously

said, when the number of particles inside a fixed horizon is increased the peridynamic method converges to

molecular dynamics. LAMMPS, a molecular dynamics code, can be used to implement peridynamics just

by making changes to the input file, as carefully explained in [61]. In [5] it is shown how peridynamics

can be derived as an upscaling of molecular dynamics by the use of Higher-Order Gradient Models (HOG),

as in both methods the force on a particle is computed by summing the forces from surrounding particles;

basically, a PD model is an upscaling of an MD model if both produce the same HOG model [5]. A graphical

representation of this concept is given in Figure 2.3. The solutions of MD simulations can most of the times

be recovered by peridynamics. Along with these results, the paper also presents an analytical comparison of
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Figure 2.3: Connection between a molecular dynamics (MD) and a peridynamics (PD) model through

a higher-order gradient (HOG) model (from Ref [5]: Seleson and Parks and Gunzburger and Lehoucq,

”Peridynamic as an upscaling of molecular dynamics”, Multiscale Modeling Simulations, 2009. Copyright

c©2009 Society for Industrial and Applied Mathematics. Reprinted with permission. All rights reserved).

the equations of motion and dispersion relations for MD and PD to support the thesis of the authors. In [10]

the PD model is referred to as a continuum formulation of MD, but in the same paper some important

differences between the two theories are also stated: peridynamics is a continuum theory, in which the

individual atoms need not be modeled and a physically correct interatomic potential need not be known [10];

second, in MD the interaction between particles is analogous to the structureless interactions described in

the same paper (which describes peridynamic materials, in which the pairwise force function f depends only

on the current position of the two particles), because particles (or atoms) have no memory of their position

in any reference configuration, while peridynamics is able to handle materials not structurelss as well [10].

2.2 Finite Elements Implementation

In the present section the implementation of peridynamics in a finite element framework using one-dimensional

bars to represent the bonds between particles is described. For consistency, the peridynamics particles will

be called nodes and the bonds will be called bars, as that is what they represent. It is worth noting that

the concept of a bond extending over a finite distance is a fundamental difference between the peridynamic

theory and the classical theory, in which contact forces are the only way for two adjacent particles to commu-

nicate [11]. Because of this fundamental difference, the solutions found using the peridynamic truss model
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in finite elements will lie on the length that connects two nodes, i.e. the bar; depending on the density of

the nodes in the two-dimensional mesh, the solution will show voids or superposition of different bonds. The

presence of voids and multiple bonds is due to the fact that a two-dimensional body is being approximated

by a collection of massless particles connected by one-dimensional bonds. In Figure 2.4 a sample mesh made

of 2274 nodes and 8686 truss elements is shown to give an example of how a 2-D plate is built using one

dimensional truss elements.

Figure 2.4: 2-D plate built using one dimensional trusses and detail.

We recall that, as developed in [3], the pairwise force for the basic theory can be written as

f(η, ξ) =
ξ + η

|ξ + η|
f(y(t), ξ, t) ∀ξ,η, (2.2.1)

where f is the scalar bond force and [3]

y = |η + ξ|. (2.2.2)

We define the scalar bond stretch s as [3]

s =
|ξ + η| − |ξ|

|ξ
=
y − |ξ|

ξ
, (2.2.3)

which is identical to the engineering strain in the trusses. The micromodulus c corresponding to the classical

continuum mechanics bulk modulus k is found simply by equating the strain energy under isotropic extension

from continuum mechanics to the energy density within the horizon in the peridynamic theory for the same
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deformation. Thus, from [3]:

c =
18k

πδ4
(2.2.4)

while the critical stretch for band failure s0 is related to the energy release rate G0 by requiring the work to

break all the bonds per unit area to equal the energy release rate [11], yielding

s0 =

√
10G0

πcδ5
=

√
5G0

9kδ
. (2.2.5)

The materials analyzed in this paper are brittle with a yield/ultimate stretch sy as it is shown in Figure 2.5.

However, at the macroscopic level the material strain hardens because all bonds do not yield at the same time

Figure 2.5: Bond force as a function of bond stretch in the present finite element model (from Ref [3]:

Silling and Askari, ”A meshfree method based on the peridynamic model of solid mechanics” Computers and

Structures, 2005. Used with permission of Elsevier).

or deformation level [11]. Bond properties need to be related to the macroscopic properties of the material,

so that real materials can be modeled following set relations. The ultimate stress σult of the material can

be related to the bond ultimate stretch by noting that all bonds have failed when the material reaches its

ultimate strength. Other quantities will need to be analyzed and given physical sense in order to be able to

understand the relations between macroscale properties and the properties of the individual bonds; among
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these we have the horizon δ and the reference length of the bonds L0.

The finite element implementation requires a mesh made of truss elements with the appropriate stiffness

properties to represent the peridynamic bonds. Combining Eqn 2.1.2 and Eqn 2.1.4, discretizing the equation

obtained and substituting the integral by a finite sum we obtain [11]:

0 =
∑
p

f(un
p − un

i ,x
n
p − xn

i )Vp + bn
i , (2.2.6)

where f is given in Eqn 2.2.1, n is the time step number and the subscripts denote the node number, so

that [11]

un
i = u(xi, t

n). (2.2.7)

Now, if we multiply Eqn 2.2.6 by Vi we obtain an equation of motion identical in form to that of FEA [11]:

0 =
∑
p

f(un
p − un

i ,x
n
p − xn

i )VpVi + bn
i Vi, (2.2.8)

which can be solved for the displacements.

Let’s now just briefly recall the theory behind the analysis of truss structures in finite elements. Truss

elements are ’two force members’, loaded by two equal and opposite collinear forces which act along the

line through the two connection points of the member. Truss members do not support bending moment,

therefore can only stretch and compress axially. Cross sectional dimensions and elastic properties of each

member are constant along its length, which is assumed to be much larger than its cross-section. Also,

the force is constant along a truss member. Truss members can interconnect in space forming 1-D, 2-D or

3-D configuration, although the member itself only possesses one dimension [6], as it is shown in Figure 2.6

Their characteristics are very important in structural analysis since calculations can be greatly simplified

by the use of truss members instead of, for example, beam members, which deform transversally and carry

a rotation. Finally, a truss member is mechanical equivalent to a spring, since it has no stiffness against

applied loads except those acting along the axis of the member [11]; the only difference, in this case, is the

presence of a cross-sectional area, which has no meaning in a spring. This issue will be discussed later,

as bonds between particles do not have a cross-sectional area as well since they have no volume. In this
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Figure 2.6: Complex trusses

work the terms ’truss member’, ’truss’ and ’bar’ will be used interchangeably and will have the same exact

meaning. The derivation of the finite element formulation starting from the equation of motion is skipped

here and only the final result is given below. Eqn 2.2.9 shows [11]

0 =
∑
p

f(un
p − un

i ,x
n
p − xn

i )VpVi + bn
i Vi, (2.2.9)

which is in the classical form used by FEA. The governing equation of a bar can be obtained from equilibrium

and its matrix formulation element-wise is

Keue = Fe, (2.2.10)

where the superscript e means that the matrices are written for a single truss element. Expanding in two

dimensions we obtain

Ke =
EeAe

Le



c2 cs −c2 −cs

cs s2 −cs −s2

−c2 −cs c2 cs

−cs −s2 cs s2


, (2.2.11)
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where c and s stand for cosine and sine of the angle of the bar. The vectors

ue =



u1x

u1y

u2x

u2y


(2.2.12)

and

Fe =



F1x

F1y

F2x

F2y


, (2.2.13)

are also defined, where the subscripts 1 and 2 stand respectively for node 1 and node 2, while the subscripts x

and y represent the degree of freedom of the nodes, respectively in the horizontal and in the vertical direction.

In Eqn 2.2.10 we can solve for the displacement vector ue to find the deformation in the horizontal and vertical

directions.

In peridynamics the parameter for bond failure is displacement: when a particle falls out of the horizon of

another particle, the strength of the bond between them goes to zero. In our case, the stiffness of the bar

goes to zero, making the truss member between two particles disappear. In the present work the stretch of

the truss member between two particles is taken a second parameter for failure, such that the stiffness of

the member goes to zero as the strain along it overcomes a maximum value, which needs to be chosen either

computationally or analytically. The procedure of finding the ultimate stretch will now be explained. Once

Eqn 2.2.10 is solved for the horizontal and vertical displacements of each node, we need to find the actual

elongation each bar has gone through, which requires the knowledge of the geometry of the problem. The
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actual elongation of each bar uen is found by

uen =

[
−c −s c s

]


u1x

u1y

u2x

u2y


. (2.2.14)

Once the value of uen is obtained we need to account for the reference length L0 of the bar. L0 is the original

(unstretched) length of the bar, such that, at time t = 0, some bars will be in tension and others will be in

compression. This is fundamental for the average of the stress on all the bars will need to be equal to zero

for the body as a whole to be initially unstressed, while the individual bars will be stretched and compressed,

depending on the distance between any two particles. The quatity L0 also carries a physical meaning with

it, because the bonds between molecules and atoms do have reference lengths that allow them to stay in

equilibrium in an ’unstretched’ macroscale reference configuration. In the present work the value of L0 is

chosen computationally by looping the initial part of the code until the average stress of all the bars in the

body is as close as possible to zero in the reference state. This is shown in Figure 2.7. Furthermore, L0 is

Figure 2.7: Scheme representing the meaning of the reference length in the reference configuration.

found to depend on the number of nodes and the value of the horizon δ. Once the reference length of the
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bars is decided, we need to find the new elongation by

uen,new = Le − L0 + uen,old. (2.2.15)

From now on, we will just use uen,new and we will omit the new subscript. Finally, the constitutive relations

needed to find the stress along a bar are given below:

εe =
uen
Le
, (2.2.16)

where εe is the strain, uen is the displacement of the nodes of the bar and Le is the length of each bar.

Because σ = εE, the constant stress on a bar is found by

σe =
Ee

Le
uen. (2.2.17)

The mesh generated in the present work is a uniform rectangular mesh, which simplifies the expressions for the

cross sectional area and the Young’s modulus of the truss bar. The definition of cross-section and material

properties for the peridynamic trusses is a straightforward application of the theory. Because Eqn 2.2.9

indicates that only the forces from the trusses connected to a given node are required, the definition of

the cross-sectional area A and elastic modulus E for the trusses is somehow non-unique [11]. A convenient

separation, which preserves the conventional units of these properties, is [11]

A = ∆x2, E = c∆x4. (2.2.18)

where ∆x is the minimum distance between any two nodes in the mesh. Also, as shown in Eqn 2.2.3, the

bond stretch s is identical to the engineering strain in the trusses, therefore the fracture strain of the trusses

is [11]

εf = sult. (2.2.19)

For elastic-plastic materials, Eqn 2.2.9 with the inherent Poisson’s ratio of 1/4 indicates that the strain sult

at which the bonds or trusses fail is related to Youngs modulus E and the engineering ultimate stress in

tension σult by [11]

sult ≈
σult
2E

(2.2.20)
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For FEA implementation, we set the truss element yield strain to εf = sult as determined by Eqn 2.2.20 [11].

The horizon of length δ = 3∆x is shown to work well for macroscale modeling, as much smaller values result

in crack growth along the rows or columns of the grid, while bigger values result in excessive wave dispersion

and become too computationally expensive [11].

The simulations run and depicted in the present work are quasistatic. Quasistatic integration schemes are

typically employed to alleviate the stringent time step restrictions imposed by explicit time integration

schemes [62]. However, this simplification carries with it the downside of not being able to account for stress

waves, which are often important in fracture problems since they have affect the stress distribution in the

body. Despite this issue, quasistatic simulation are very consistently employed in damage analysis and the

effects of stress waves is often ignored in order to focus on other computational issues that do come up in

this kind of simulations. In the present work, we will assume that strain is applied to the material very

slowly, so slowly that the body is always in equilibrium and reaches stationary state at every time step.

This assumption usually comes in handy when taking the process as isotropic, meaning that no energy is

dissipated and that the process is reversible; this is only the case as long as fracture is not achieved; once

fracture happens the body is not supposed to come back together as it was before, meaning that the process

is not reversible. With fracture, it is implicity assumed that energy is dissipated in some other ways, such

as heat.



Chapter 3

Results and Discussion

In the present chapter some results obtained implementing peridynamics in finite element will be compared

to the same cases in regular bond-based peridynamics from literature, subsequently, two rectangular plates

will be analyzed, with a hole and with a fiber inclusion, will be analyzed and their stress distributions will be

discussed and compared to the analytical solution. Under different boundary conditions these samples will

be brought to fracture and the damage will be analyzed and compared to the solution of a finite element code

with cohesive zone. The samples are classical RVEs (Representative Volume Elements) with width/height

=
√

3/2; finally, a qualitative study on three hexagonal RVEs undergoing fracture will be presented to show

how peridyamics can be applied to this category of problems.

3.1 Comparison with a 2D computational peridynamics imple-

mentation

In the present section the results for a plate with a hole in tension obatined using the implementation of

peridynamics with truss elements will be compared to the results obtained using bond-based peridynamics

27
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as applied using a different 2D numerical implementation. The results are from a 2011 paper by Bobaru and

Ha [63]. The plate considered is a square with a side of 6 cm and a hole in the center of 5 mm in radius;

a traction of 10 MPa is applied to the right and left sides. The material has a Young’s modulus of 1 GPa.

The horizon was set at 4 mm, which corresponds to about 4∆x, while the micromodulus used in [63] is

conical. Figure 3.1 shows good agreement between the numerical solutions. The behavior is similar, stress

concentrates in the right areas and the magnitude of the displacements is close in most of the surface.

(a) ux in truss peridynamics (m). (b) ux in 2D peridynamics (m) (from Ref [63]:

reprinted from International Journal for Multiscale

Computational Engineering, Vol. 9, Bobaru and Ha,

”Adaptive refinement and multiscale modeling in 2D

peridynamics”, pp.635-660, Copyright c©2011, with

permission from Begell House, Inc.).

Figure 3.1: Truss-implemented peridynamics and 2D peridynamics solution for ux.

The results for uy shown in Figure 3.2. Unlike Figure 3.1, the result obtained using truss-based peridynamics

are not in perfect agreement with the ones obtained in [63] using a 2D implementation. The behavior of

the solution, especially as we go further away from the center hole, diverges from the 2D peridynamics

solution. Despite this incongruence, Figure 3.1 and 3.2 show promising results since it seems that truss-

based peridynamics can be a further method to translate the peridynamic theory into computation, adding
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tools for the modeling of solids undergoing stress or frature, hence giving different ways to compare the

results obtained.

(a) uy in truss peridynamics (m). (b) uy in 2D peridynamics (m) (from Ref [63]:

reprinted from International Journal for Multiscale

Computational Engineering, Vol. 9, Bobaru and Ha,

”Adaptive refinement and multiscale modeling in 2D

peridynamics”, pp.635-660, Copyright c©2011, with

permission from Begell House, Inc.).

Figure 3.2: Truss-implemented peridynamics and 2D peridynamics solution for uy.

3.2 Plate with a hole in the center

3.2.1 Stress analysis

The first case discussed is an aluminum plate (E = 70 GPa) with a hole in the center. The analytical solution

was found using Airy stress function as described in [64] for an infinite plate in tension with a traction of 10

GPa applied at the top and bottom sides. As described in Section 2.2, the finite element implementation of

peridynamics in this paper allows only one elastic constant, the micromodulus c given in Eqn 2.2.4, whereas

isotropic linear elastic materials in the classical theory (such as aluminum) are characterized by two such
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constants [11]. This difference occurs because an elastic solid that involves only two-particle interactions

(called ”Cauchy crystal”) always has a Poisson ratio of 1/4. Hence, in finding the analytical solution a

Poisson ratio of 1/4 (instead of 0.35) is used to be consistent with the results found using peridynamics. For

consistency, the displacement functions are obtained using Airy stress function for an infinite plate in tension

and are applied to the boundaries of the RVE in the peridynamic code, to make sure the same the same

loading case is being analyzed. The results obtained for uy, ux, σyy and σxx (where x and y are respectively

in the horizontal and vertical directions) are compared to the analytical solution and good agreement is found

in both magnitude of displacements and stresses, as well as general behavior of the plate under tension. The

mesh used in this simulation is a regular grid of 5784 equally spaced nodes, with a a horizon of 3∆x, which

bring the total number of truss elements to 77384. ∆x is about 1.2% of the height of the sample and the

reference length L0 is found by iteration to be about 0.61δ. Cross sectional area and Young’s modulus of the

trusses are calculated following Eqn 2.2.18. The results are shown in Figure 3.3, 3.4, 3.5 and 3.6. In Figure 3.3

there is good agreement between the analytical solution and the result obtained using peridynamics, whereas

in Figure 3.4 the displacements in the x-direction obtained using peridynamics are smaller in magnitude than

in the analytical solution. To resolve this issue, different material properties were tried, as well as different

Poisson ratios and horizons lengths: none of these patches had success in solving this issue, which then

seems not to be dependent on the nonlocality of the model. An increase in the density of the mesh did not

increase the accuracy of the model noticeably, while increasing computational time exponentially. A possible

explanation, which will be given when discussing Figure 3.5 and 3.6, is the absence of a normalization factor

for the elastic modulus of the trusses near the boundaries [11].

The need of a more refined mesh becomes obvious when looking at Figure 3.5, where the dimensions of each

node are observable and the plot is not as smooth as desired. Unfortunately more refined meshes increased

the computational time to several hours or caused the computer to crash, hence could not be performed

for the present work. The machine used has a single CPU at 2.40GHz and 6GB of RAM. Although the

implementation of peridynamics in a finite element code performed in the present work seems to be able
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Figure 3.3: Peridynamics and analytical solution for uy.
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Figure 3.4: Peridynamics and analytical solution for ux.
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to give qualitatively good results, a much greater number of nodes, leading to an exponentially greater

number of trusses, should be modeled to obtain smooth and more accurate results. This is particularly

true near the hole at the center of the plate, where a regular rectangular grid is not sufficient if all the

geometrical properties need to be modeled with great accuracy. As it is discussed in [11], peridynamics in

finite elements is still much computationally cheaper than molecular dynamics or other meshless methods

when comparable results are obtained. Nonetheless, the result for σyy shown in Figure 3.5a is in good

agreement with the analytical solution given in Figure 3.5b both qualitatively and quantitatively, excluding

the external boundaries of the sample and the free surface at the hole in the center. In these locations a

normalization factor for the elasticity modulus should be used to account for the fact that nodes close to a

free surface have a smaller connectivity than the internal ones, meaning that the stress calculated from the

contribution of the trusses inside the sample is not balanced. This normalization factor needs to be calculated

for every single truss element belonging inside the horizon of all the nodes close to a free surface and this

made it too computationally expensive to implement; hence the stiffness of the plate near the boundary is

higher than it should be and this can have affected both the displacements and the stresses. Figure 3.6a and

Figure 3.6b show discrepancy near the boundaries due to the lack of a normalization factor, which makes

the stress near the top and bottom free surfaces too high compared to the analytical solution. In future

works this inaccuracy of the present simulations can be fixed by enriching the model with the normalization

factor, although a more powerful machine is needed to run this simulations.

3.2.2 Fracture analysis

Now the efficacy of the peridynamics theory when modeling fracture is discussed. For this simulation the

mesh is kept as a regular grid with 725 nodes and 2669 truss elements, with a maximum spacing between

nodes ∆x of 3% of the height of the sample. The horizon is δ = 3∆x and L0 = 0.6δ, while the total number

of trusses is 1870. The maximum stretch of the bonds is found using Eqn 2.2.20, with σult = 24 MPa. The

bond stretch failure criterion is used in addition to the horizon criterion in determining whether a bond must
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Figure 3.5: Peridynamics and analytical solution for σyy.
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Figure 3.6: Peridynamics and analytical solution for σxx.
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be deleted: if the strain on an element becomes higher than the critical bond stretch or a node falls outside

of the horizon of another node, that bond will be deleted and will not have further use in the simulation. The

radius is increased to 0.2 times the height of the sample and tension is applied to both the top and bottom

sides of the sample. Because this is a quasi-static simulation, the concept of time step is not relevant. The

evolution of the crack is obtained by applying an incremental ε of 0.0005 at each step until complete fracture

is achieved. In the simulation shown in Figure 3.7 145 steps are performed until an applied strain of 7.25%

is reached at each end. The crack seems to form in the right location, starting from the hollow section and

spreading to the sides of the sample, which agrees with observation and experimental results. Being the

mesh so regular there is no changing direction of the crack which behaves in a very predictable way; to be

able to increase the strain gradually and perform many steps in the calculations the number of nodes had to

be reduced not to become too computationally expensive. The low density of nodes makes the simulation

somehow mesh-dependent: the fact that some nodes detach from the main body can be due to this issue. In

this simulation peridynamics seems to be able to predict the formation of a crack which happens naturally,

without knowledge of its behavior in advance and without having to adjusting the mesh accordingly. Because

of the discrete formulation and the interaction of the nodes through bonds the stresses and the energy are

transfered effortlessly through the mesh and crack happens as a consequence of this process.

In Figure 3.8 the average stress in the bonds is plotted against the applied stress at the top and bottom

sides for the fracture case descripted above. The plot starts negative because the reference length of the

bonds is slightly too large, making most bonds be in compression at time zero. Because of the high stress

present in the plate it is very computationally expensive to find a reference length which will make the plate

be at exactly zero stress in the reference configuration; hence, the value found here was as close as possible

to zero for this problem. The plot shows a linear elastic behavior of the stress-strain plot, which is expected;

also, once fracture starts happening, the stress curve starts decreasing and pointing downwards, since many

bonds are broken and not able to withstand load.
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(a) ε = 0% (b) ε = 5%

(c) ε = 7% (d) ε = 7.25%

Figure 3.7: Damage propagation in hollow RVE using peridynamics.
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Figure 3.8: Average stress of the bonds against applied strain at the sides.

3.3 Plate with a fiber inclusion

3.3.1 Stress analysis

The second case discussed is a composite plate made of two phases. The mechanical properties of the

materials are taken from [9]. The matrix is made of EPON 862 (E = 3.07 GPa) while the inclusion is made

of a very stiff carbon fiber (E = 898 GPa). For simplicity, the materials are assumed to be isotropic even

though this is not true for the carbon nanotube, which has a much lower transverse stiffness; also, Poisson

ratio for both materials is still assumed to be 0.25. The analytical solution was found using Airy stress

function for a plate in tension with a traction of 100 MPa applied to the top and bottom sides and the

displacement functions at the boundaries were obtained and applied to the peridynamics code to link the

infinite plate and finite plate cases. Again, the mesh is a regular grid made of 4402 nodes with a maximum

spacing between nodes of about 1.5% of the height of the sample, δ = 3∆x and L0 = 0.61δ, which gave

the lowest possible average stress in the reference state. In total, 59252 truss elements are used. The main

issue with this simulation is the presence of more than one material in the RVE, which calls for a different

definition of the bonds that extend from one phase of the composite material to the other. A graphical

representation is given in Figure 3.9. Furthermore, the elastic moduli of the matrix and the inclusion differ
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by two orders of magnitude, which means that what happens at the interface is critical but also difficult to

model because more subject to great variation. Finally, since we are considering the mechanical properties of

a carbon nanotube which has a radius of the order of a few nanometers, the problem involves the analysis of

a nanocomposite, issue that is currently subject to a great amount of research and that requires very specific

tools. In the present work, the stiffness of the bonds between particles both in the matrix or both in the

inclusion were calculated following Eqn 2.2.18, while the Young’s modulus of the bonds that connect a node

in the matrix to a node in the inclusion was chosen to be an average of the two, 500 GPa. Other values for

the interface elements were tried to simulate a weak (3.07 GPa), a strong (900 GPa) and a very strong (4000

GPa) interface, to attempt to replicate the perfect bonding case given in the analytical solution: the solutions

obtained had more error and were farther away from the analytical solution than the case considered here,

the ’medium strength’ interface; hence, the simulations carried out in this thesis use a value of 500 GPa for

the interface elements, i.e. those bonds that extend across the two different phases of the RVE.

Figure 3.9: Graphical representation of interface truss elements.

As in Section 3.2, the displacements and the stresses are plotted. The displacements, shown in Figure 3.10

and 3.11, are in good agreement at the boundaries (which is expected since displacement boundary conditions

are applied) but start diverging as we move closer to the inclusion. This can be due to the stiffness chosen for

the interface elements or to the elastic modulus of the elements near the boundaries, too high because of the

lack of a normalization factor. Refining the mesh had little to small success in improving the quality of the
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Figure 3.10: Peridynamics and analytical solution for uy.
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Figure 3.11: Peridynamics and analytical solution for ux.

solution, therefore the number of nodes was kept at 4402 to make sure the simulation would run smoothly

on the computer.

The calculation of the stresses appears to be off compared to the analytical solution. A disturbance of the
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Figure 3.12: Peridynamics and analytical solution for σyy.
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Figure 3.13: Peridynamics and analytical solution for σxx.

form of a high-frequency oscillation is present in both σyy and σxx and can be seen in Figure 3.12 and

3.13. The cause of this disturbance is unknown. The magnitude of the stresses is for the most part in

good agreement with the analytical solution if we exclude the areas near the left and right sides in σyy and

the areas near the top and bottom sides in σxx, still due to the lack of a normalization factor. A different
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argument must be made for Figure 3.13a, which reports a strangely high horizontal stress inside the inclusion.

The causes of this discrepancy are hard to find and can be searched in the not very dense mesh, especially

near the inclusion where more accuracy is needed, in the disturbance represented by two vertical lines, not

symmetric, present in the RVE, or in the definition of the bonds and the nonlocality of the theory when

dealing with different materials. In fact, the nodes (or particles) in the plate are interacting with each other

inside the horizon even if the horizon extends outside the phase of the reference node and the stiffness of

the elements is arbitrarily chosen to be the average of the moduli of the matrix and the inclusion. The same

horizon was used for both materials, which is not said to be necessarily true. For future works a different

definition of nonlocality might be implemented, in which nodes inside the inclusion interact with nodes inside

the matrix following a different law or different computational restrictions.

3.3.2 Fracture analysis

Now propagation of fracture will be studied in the composite plate under tension. The mesh is kept as a

regular grid with 837 nodes and a maximum spacing between nodes ∆x of 3% of the height of the sample.

The horizon is δ = 3∆x and L0 = 0.62δ, while the total number of trusses is 3176. The maximum stretch of

the bonds is found using Eqn 2.2.20, where σult for the EPON matrix is 100 MPa, while σult for the CNT

inclusion is taken to be 100 GPa [9]. The radius is 0.15 times the height and tension is applied to both

the top and bottom sides of the sample. The evolution of the crack is obtained by applying a ε of 0.001 at

each step until fracture is spread. In the simulation shown in Figure 3.14 119 steps are performed until an

applied strain of 11.9% is reached at each end. Figure 3.14 shows the behavior of the composite material

under these loading conditions. Because the yield strength of the CNT inclusion is three orders of magnitude

higher than the yield strength of the matrix, the stress concentrates at the interface, more specifically at the

lower and upper sides of the interface between the two materials. This happens because the particles in the

matrix displace much more while high the elastic modulus of the trusses in the CNT keeps them almost fixed.

Furthermore, this displacement means that the truss element yield strain is exceeded, causing the deletion
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(a) PD finite element with ε = 0% (b) PD finite element with ε = 9%

(c) PD finite element with ε = 11% (d) PD finite element with ε = 11.9%

Figure 3.14: Damage propagation in RVE with inclusion using PD
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of the trusses. This fracture mode is called debonding and, once it develops between the inclusion and the

matrix it starts spreading horizontally until it eventually reaches the sides of the RVE being analyzed. This

behavior is expected and is confirmed by observation and by a cohesive zone finite element (CZFE) code

run for this particular case, as shown in Figure 3.15a and 3.15b. The solution obtained using the cohesive

zone method shows that debonding happens as predicted and in a similar fashion to what obtained using

peridynamics. The mesh of the CZFE code is denser, which makes the solution more accurate. Peridynamics

seems to be able to predict crack evolution and the correct fracture mode naturally, without inputs on how

or where cracks should form, which is opposite to the cohesive zone model, where spring elements are placed

between 2-D mesh elements in the strategic points where it is thought crack is going to form and propagate.

This happens in peridynamics spontaneously and it is a very encouraging fact the pushes us towards a deeper

study of this theory.

(a) Cohesive zone finite element with ε = 0% (b) Cohesive zone finite element with ε = 7.5%

Figure 3.15: Damage propagation in RVE with inclusion using CZFE
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3.4 Hexagonal RVE

3.4.1 Fracture analysis

In this section the qualitative behavior of RVEs with different volume fractions and different interface ele-

ments stiffness will be studied when the sample is put under a tensile load. The material properties are the

same used in Section 3.3. The mesh is made of 2707 randomly arranged nodes, which end up connecting

about 30,000 elements within a horizon δ = 3∆x, where ∆x = 2%. The reference length L0 is about 0.58δ.

The first case studied is a hexagonal RVE with a volume fraction Vf = 10% and an interface elements stiffnes

of 500 GPa. The ultimate toughness of the interface elements is 100 GPa, the same as the one used for the

fiber inclusion. The plate is in tension, with and applied ε = 0.001 at the top and bottom sides until a final

strain of 5.3% is reached. Figure 3.16b shows how damage happens spontaneously in the form of debonding

between three fibers and the matrix, while a crack initiates in the middle of the RVE on the right side. In

Figure 3.16c and 3.16d the fractures propagate naturally until they almost join each other and the sample is

about to break. Crack initiation, debonding and propagation happen naturally, with no need for additional

parameters or preliminary information on how the sample is going to break. Damage happens as expected, as

there should be debonding between the fiber and the matrix because of the great difference in their stiffness

modulus. Complete breakage of the sample does not happen because of the limitations of the finite element

code, in which the stiffness matrix becomes singular as soon as a particle, or node, detaches from the rest of

the body and is not constrained any longer. There are ways to control this behavior up to a certain point:

reduce the applied strain at each step, so that fracture happens slowly and particles tend to stay attached to

the main body longer (this method was used in the present work); make the code a dynamic code, with time

as a variable, which should prevent the stiffness matrix to become singular; change the behavior of the truss

elements from completely brittle to plastic, or add an unloading curve so that the bonds do not break too

suddenly; never actually delete elements, but bring their stiffness very close to zero once damage happens.

The second case analyzed is a hexagonal RVE with a volume fraction Vf = 15% and an interface elements
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(a) ε = 0% (b) ε = 4%

(c) ε = 4.8% (d) ε = 5.3%

Figure 3.16: Hexagonal RVE, Vf = 10%, Eint = 500 GPa
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stiffnes of 500 GPa and it is shown in Figure 3.17. The ultimate toughness of the interface elements is kept at

100 GPa. The plate is in tension, with and applied ε = 0.001 at the top and bottom sides until a final strain

of 4.2% is reached. In this case as well debonding happens between three fibers and the matrix, as can be

seen in Figure 3.17b. As the plate is being pulled further the fractures propagate until they eventually join

each other and shown in Figure 3.17d. Contrarily to what happened in the previous case (Vf = 10%), there

is no damage initiation except for debonding, because the high volume fracture does not leave enough room

for the matrix to initiate crack in the middle of the sample. The behavior shown is expected and agrees with

experience for this type of problem and the result is obtained without providing additional information to

the analysis, such as crack nucleation criterion or a softening model.

The last case studied in the present thesis is a hexagonal RVE with a volume fraction Vf = 10% and an

interface elements stiffnes of 5000 GPa. The stiff interface is used to try to simulate a plate with perfect

bonding between the fiber and the matrix. The ultimate toughness of the interface elements is kept at 100

GPa. The plate is in tension, with and applied ε = 0.0005 at the top and bottom sides until a final strain

of 8.25% is reached. The result is shown in Figure 3.18. In 3.18b crack initiates at the center of the plates

on the two sides, while debonding starts happening at the middle fiber. Contrarily to what happens in

Figure 3.16b there is no debonding between the matrix and the fibers on the sides, due to the high stiffness

of the interface elements. The fractures in the plate propagate naturally until they eventually join each

other at ε = 8.25% and the plate is completely broken. The goal of this analysis was to check whether

peridynamics could predict the behavior of a fiber composite plate undergoing fracture; it was shown that

peridynamics seems to be able to naturally model the behavior of a plate in tension undergoing fracture,

in this case until complete breakage. Although a lot more testing and research is needed for the analysis of

this type of material, the present work shows that peridynamics is a promising method with the potential

to become a complete toold for stress and fracture analysis in composite materials.
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(a) ε = 0% (b) ε = 2.8%

(c) ε = 3.5% (d) ε = 4.2%

Figure 3.17: Hexagonal RVE, Vf = 15%, Eint = 500 GPa
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(a) ε = 0% (b) ε = 4%

(c) ε = 6.5% (d) ε = 8.25%

Figure 3.18: Hexagonal RVE, Vf = 10%, Eint = 5000 GPa



Chapter 4

Conclusions

A nonlocal continuum theory called peridynamics is analyzed and implemented in a finite element framework.

The pairwise force function that acts along the line between particles in the original peridynamics theory

is substituted by one-dimensional truss elements, the mechanical properties of which are related to the

macroscale properties of the material being analyzed through energy relations. The nonlocality of the model

is given by a quantity called horizon, which sets a limit for the interaction of particle laying within a finite

distance δ. The fact that peridynamics can be implemented in a finite element frame allows to simplify

the coding process and the verification of the code itself because of the known analytical solutions to truss

problems; furthermore, it is discussed how the finite element implementation reduces computational time

compared to other meshless codes.

It is shown that peridynamics can approximate the stress distribution in a 2-D hollow aluminum plate in

tension both qualitatively and quantitatively with good accuracy. The displacement in the vertical direction

is also in good agreement with the analytical solution, while the displacement in the horizontal direction

appears not to be very accurate. The reasons for such inaccuracies can be sought in the sparse mesh

(especially near the hollow part in the center of the sample) and in the lack of a normalization factor in the
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truss elements close to the boundaries. Fracture on a hollow plate in tension is analyzed using peridynamics

to study how cracks form and propagate in the sample. It is shown that fracture naturally happens as a

consequences of the strain in the truss members as well as the fall of particles outside other particles’ horizon.

There is no need for extra information about the location of the crack and the propagation of damage does

not seem to be mesh dependent, although this is hard to see when using a small regular mesh as the one

employed in this work. The crack seems to be forming in the right location and propagate horizontally until

complete breakage of the sample is reached, which is expected from experience.

A composite plate with an inclusion, too, is studied using peridynamics implemented in a finite element

framework. The matrix of the plate is made of the polymer EPON 862, while the circular inclusion is

made of a dual-layer carbon nanotube (CNT). The plate is in tension and the results are compared to the

analytical solution for an infinite plate with no interface, meaning that there is perfect bonding between

the two phases of the composite plate. The stiffness modulus for interface truss elements is taken as an

average of the elastic modulus of the matrix and inclusion elements. The displacements obtained are in not

very good agreement with the analytical solution, especially as we get closer to the inclusion at the center

of the plate. The stress distribution obtained computationally seems to suffer from instability (oscillations

are present in the solution) and poor mesh refinement, which leads to a solution that is not accurate and

does not compare well to the analytical solution. Apart from the sparse mesh (especially near the inclusion),

the causes for the poor accuracy of the model can be sought in the lack of a normalization factor near the

boundaries, the arbitrary choice of the stiffness of the interface elements, as well as inherent properties of

the peridynamics model when this type of composite problem is approached: the horizon might vary from

material to material, the nonlocality between two different phases might be defined in a different way and

some more information about the interface might be needed to obtain a better and a more credible solution.

Fracture on the composite plate is also analyzed by gradually putting the plate in tension on the top and

bottom sides. As expected, debonding between the two phases happens, dictated by the greatly different

material properties and yield stretch of the truss elements of the two materials. Damage happens naturally in



Corrado Degl’Incerti Tocci Chapter 4. Conclusions 50

the right locations and extends horizontally until it reaches the sides of the plate, causing complete breakage

of the sample. This is confirmed by a finite element code employing the cohesive zone methodvand proves

that peridynamics is a natural and consistent method for predicting and modeling fracture analysis in solids.

The last case studied is a hexagonal RVE with different volume fractions and different stiffness of the interface

elements. This qualitative study showed that peridynamics can predict debonding and fracture propagation

with good accuracy, with no need for additional parameters. It is shown that fracture happens naturally and

that the different damage modes join each other until complete breakage of the samples is achieved. Again,

peridynamics seems to be a promising tool for the analysis of this type of problems and can be employed to

predict damage propagation in solids.



Chapter 5

Future Challenges

The implementation of peridynamics in a finite element framework, although less computationally expensive

than its meshless counterpart, requires a fine mesh to catch all the material behaviors under different types

of loading, especially during fracture. The fine mesh, since every node is connected to many other nodes that

lie inside its horizon, requires high computational power or better efficiency of the code. In the future the

code written for this work should be translated to a better performing language such as FORTRAN or C,

should be run on more powerful machines and could employ parallel computing to exploit all of its potential.

Instead of regular rectangular meshes, a random arrangement of the particles (nodes) should be employed,

which is a better representation of the randomness in the physical world.

Another improvement to the code will be making it able to handle three-dimensional problems, to be able

to analyze a greater range of cases and address many challenges of fracture dynamics, including impact

problems and high-rate fracture problems. By making the code able to handle dynamic problems with time

as a variable one will be able to account for stress waves and their effect on the propagation of damage in

solids, as well as finding and modeling crack propagation velocity and branching.

As stated in the goals of the present work, the fact that this code is built from scratch allows for great
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personalization. This means that composite materials can be analyzed throughly and their implementation

in peridynamics can be studied to make it as consistent as possible. This requires theoretical work as well as

computational validation and can be obtained through a deeper analysis of the peridynamic model for this

particular class of problems. The same thing can be said for piezoresistive materials, which can eventually

be modeled using peridynamic theory by adding electrical properties to the single bonds or truss elements.

The development of the peridynamic theory and its application to the most diverse fields look exciting and

very promising.
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