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This article presents an empirical approach that demonstrates a
theoretical connection between (information theoretic) entropy
measures and the finite-time performance of the simulated an-
nealing algorithm. The methodology developed leads to several
computational approaches for creating problem instances use-
ful in testing and demonstrating the entropy/performance con-
nection: use of generic configuration spaces, polynomial trans-
formations between NP-hard problems, and modification of
penalty parameters. In particular, the computational results
show that higher entropy measures are associated with supe-
rior finite-time performance of the simulated annealing algo-
rithm.

I n recent years, several articles have appeared describing
the problems and issues associated with the propriety of
empirical methods, their limitations, and the appropriate man-
ner for demonstrating empirical results.[2, 10, 11, 15, 17, 18, 20, 23]

Often, these issues concern comparisons between different
algorithms given a problem instance. The competitive testing of
algorithms[11] naturally arises in these contexts. Although
much can be learned from such testing and comparisons,
similar issues and benefits can also be derived from com-
parisons based on the application of different problem in-
stances to a given algorithm. This reverse approach can be used
to discern theoretical relationships between the performance
of an algorithm and the characteristics of problem instances so
as to gain an understanding of the inner workings of an
algorithm that are not otherwise apparent. In particular, this
article presents a methodology, together with computational
results that demonstrate a theoretical relationship between
entropy measures and the finite-time performance of the
simulated annealing (SA) algorithm.

The SA algorithm has been a valuable tool for tackling
NP-hard combinatorial optimization problems (COPs). SA
has been studied extensively to understand its behavior on
real-world problems and to identify methods to improve its
performance. Johnson et al.[13] observe that it is desirable to
have smooth configuration spaces that permit easy escape
from local minima. On the other hand, Goldstein and Wa-
terman[9] suggest that too many neighbors may actually
hinder SAs performance, as too many neighbors tend to
smooth out the configuration space by reducing the number
of local optima, thereby allowing easy escape from the

global optima. This suggests two conflicting points of view,
hence motivates a search for properties of configuration
spaces linked to the finite-time performance of SA. Ideally, a
single measure on a configuration space that captures the
entire topology is desired (e.g., all of its smoothness, hilli-
ness; see [21, p. 154] for a measure denoted as “space con-
ductance”).

Fleischer and Jacobson[5] and Fleischer[4] describe such a
measure on a configuration space that is associated with SAs
finite-time performance—the entropy of the Markov chain
embodying SA. This connection is rooted in information
theory and derives from modeling SA as an information
source. They show theoretically that for a given instance of a
COP, the higher this entropy measure, the better the ex-
pected objective function value upon termination of the
algorithm. The theory, however, does not quantify the de-
gree to which this relationship holds.

This article therefore serves three purposes. One purpose
is to develop practical results and guidelines to improve SAs
performance; e.g., to identify ways to increase the entropy
measure. The second purpose is to present the development
of a methodology and empirical approach designed to ex-
plore a particular theoretical relationship. The third purpose
is to highlight the connection between thermodynamic/sta-
tistical mechanics entropy and information theoretic en-
tropy. The SA algorithm is well-suited for exploring this
connection because SAs foundation lies in thermodynamics,
and SAs implementation can be modeled as a Markov in-
formation source.

The article is organized as follows. Section 1 provides a
brief overview of the theoretical results presented in [5].
Section 2 describes the experimental methodology and im-
plementation issues associated with SA. Section 3 presents
computational results that illustrate the relationships de-
scribed in Section 1. Section 4 provides a summary and
conclusion of the research presented.

1. Theoretical Foundations
Fleischer and Jacobson[5] present the theoretical foundations
of the empirical approach discussed in Section 2. These
foundations are based on modeling the SA algorithm as an
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inhomogeneous Markov information source. Such sources
can be modeled as an inhomogeneous Markov chain, hence
allow certain information theoretic concepts, such as the
Asymptotic Equipartition Property (AEP) for ergodic infor-
mation sources [8, p. 44] to be associated with SA.

The AEP describes the statistical characteristics of a
Markov information source. In the context of SA, this pro-
vides insights into the asymptotic convergence (in probabil-
ity) to global optima. This suggests the following question:
What are the features of SA when viewed as an information
source that cause it to converge faster and, consequently,
yield better solutions in fewer iterations? To this end, the
essential elements of the AEP must be addressed.

1.1 The Asymptotic Equipartition Property
The AEP, as applied to ergodic homogeneous Markov infor-
mation sources (mathematically modeled as a homogeneous
Markov chain; see [8]), asserts that finite sequences of sym-
bols (states) generated by such sources can be partitioned
into two mutually exclusive and exhaustive sets: a typical set,
and an atypical set. This partitioning is such that the total
probability of the typical sequences can be made arbitrarily
close to one as the length of these sequences increases. The
AEP further states that the size of the typical set (the number
of sequences in it) is dependent on the entropy of the
Markov information source that generates it—the higher the
entropy, the larger the size of the typical set. The AEP therefore
associates the size of the typical set and the total probability
of the typical sequences with a scalar quantity, the entropy
of the Markov chain [8, p. 68].

Ergodic information sources are modeled using aperiodic,
irreducible, homogeneous Markov chains, and thus provide
the framework of the AEP. Such information sources gener-
ate sequences of symbols (or states) where the relative fre-
quencies of symbols within a sequence are the same as the
relative frequencies among the typical sequences. Thus, with
enough symbols generated, “for every pattern of output the
source can produce, it will do so, with asymptotically the
right frequency. The effect of the initial conditions dies out,
in a strong sense” [8, p. 68] (see also [14, p. 16]). This means
that in a typical sequence, the relative frequency of a partic-
ular state will be approximately the same as the proportion
of typical sequences with that particular state as its final
state.

This consequence of ergodicity provides a clue on how
entropy can be connected to the finite-time performance of
SA. Afterall, SA experiments can be described as strongly
ergodic, inhomogeneous Markov information sources.[5]

When SA converges (in probability), SA experiments gener-
ate a sequence of states (solutions) i.e., a “pattern of output”
such that the frequency of visits to globally optimal states
increase. Therefore, when SA is run for a sufficiently large
number of iterations, the likelihood that the final state is a
global optimum increases. Thus, sequences with high num-
bers of optimal states (solutions) at the end of the sequence can be
considered typical. When an SA experiment visits states in
an unusual manner, such as when it never visits optimal
states, such a sequence of states has a low probability of

occurrence, hence it can be considered atypical. This dichot-
omy suggests the possibility of extending the AEP to SA
experiments, thereby relating typical sequences to the num-
ber and probability of such sequences and the entropy of the
associated Markov chain.[5]

1.2 Expressing the AEP
The analogy between the SA algorithm and Markov infor-
mation sources requires that the SA algorithm be applied to
discrete problems such as intractable COPs. All COPs have
a finite number s of states (solutions) that comprise the state
(solution) space. Each state i [ {1, 2, . . . , s} has an objective
function value fi and a set of neighboring states, N(i), that
defines the neighborhood structure. The state space, together
with the objective function values and neighborhood struc-
ture, constitutes the configuration space for the COP. The
configuration space, together with the cooling schedule for
SA, {tk}, (described in [19]) defines an inhomogeneous
Markov chain that models the execution of the SA algorithm
on a COP.

The following definitions are needed to present the re-
sults. For candidate solutions (see [5, 19] for a full exposition
of the SA algorithm) generated uniformly over all neighbor-
ing solutions, the transition probabilities that an SA experi-
ment moves from state i to state j at time index k [ Z1

(hence at temperature tk) is given by

pij
@k# ; pij~tk! 5 5

1
uN~i! ue

2Dfji
1/tk j [ N~i! , j Þ i

1 2 O
l51
lÞi

s

pil~tk! j 5 i

0 otherwise

(1)

where

tk 5
g

log~c 1 k!
(2)

ensures convergence in probability of SA[19] and Dfji
1 [

max{0, fj 2 fi}. Note, that the time index k is dropped when
the transition probabilities are constant, i.e., in a homoge-
neous Markov chain. The following definitions are also
needed:

vi
[k], the probability that an SA experiment is in state i at time
index k.

pi(t), the stationary probability of state i at fixed temperature
t. The temperature t is dropped when the transition prob-
abilities are constant, i.e., in a homogeneous Markov
chain.

zk, a state at time index k.
Zn [ z0z1 . . . , zn21, a random sequence of n states from time

index 0 to n 2 1.
Pr{Zn} [ vz0

[0]p[0]
z0z1

p[1]
z1z2

. . . p[n22]
zn22zn21

.
mij, the number of times the state pair ij occurs in a sequence

of states.
H [ 2l (i51

s (j51
s pipij ln pij, the entropy of a homogeneous

Markov chain.
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H(k) [ 2l (i51
s (j51

s vi
[k]pij

[k] ln pij
[k], the entropy of an inho-

mogeneous Markov chain at time index k.
H(m, n 2 2) [ (k5m

n–2 H(k), the sum of the entropies of an
inhomogeneous Markov chain from time index m to n 2 2.

There are two methods of stating the AEP for ergodic,
homogeneous Markov information sources (see [8]).

Method 1.
The frequency of state pairs asymptotically approaches their
expected values, i.e., mij/nO¡

a.s.
pipij as n 3 1`.

Method 2.
A function of the probability of a sequence asymptotically
approaches the entropy of the ergodic, homogeneous
Markov information source i.e.,

2ln Pr$Zn%/n O¡
L2

H as n 3 1`.

Both methods can be used to define typical and atypical
(finite) sequences (described in detail in [5]). For finite, er-
godic, homogeneous Markov information sources these
methods are mathematically equivalent, i.e., one implies the
other (see e.g., [8, 14]). For finite, ergodic, inhomogeneous
Markov information sources, such as those in SA, this equiv-
alence does not hold (it holds asymptotically,[5] hence the
emphasis above on the word finite) because the probability
measure of a typical sequence is affected by the time indices
of the states.[5] Consequently, differences exist between how
the two methods define typical sequences.

These differences raise methodological problems for as-
sociating the finite-time performance of SA with entropy.
The finite-time performance of SA can be measured by the
difference between the final state vector and the optimal
state vector. This difference can be estimated by the number
of sequences that end in an optimal state, implying that
Method 1 must be used to determine typical status. On the
other hand, relating this value to entropy involves the prob-
ability of the typical sequences (Method 2). Unfortunately,
the probability of two distinct typical sequences with iden-
tical frequencies of states will be different due to the depen-
dence on the time indices of the states. Thus, performance
can be related, directly, only to entropy-like measures different
for each typical sequence (as opposed to a single entropy
measure as in the homogeneous case). Note that these en-
tropy-like measures are more difficult to compute than the
entropy of the underlying Markov chain.[5, 10]

To address these computational difficulties, Fleischer and
Jacobson[5] developed order-of-magnitude estimates of how
the expected objective function value is related to the en-
tropy of the Markov chain. The following empirical meth-
odology was developed that illustrates this relationship.

2. Empirical Methodology
This section describes the foundation of the empirical ap-
proach and its implementation through the use of generic
configuration spaces (GCSs), transformation algorithms, and
penalty parameters. The basis for this methodology is af-
fected by several empirical constraints. These constraints are

imposed by the goal of showing an entropy/performance
connection and certain attributes of information sources.

2.1 Empirical Constraints
The AEP provides the empirical constraints by virtue of
three aspects of information sources, namely

• sequences of states of finite length,
• the entropy of the associated inhomogeneous Markov

chain, and
• the characterization of the sequences, i.e., whether the

sequences are typical or atypical.

The first empirical constraint is suggested by the first
item, namely, that to assess the relative performance of SA
on two (or more) distinct problem instances, SA experiments
should use the same number of iterations. This empirical
constraint provides the algorithm with a “level playing
field.”

The second and third items concern more complex aspects
of SA as an information source. One useful approach in
exploring whether and what type of changes in performance
are associated with changes in entropy is to apply SA to
different problem instances. In this way, the relative change
in performance between two problem instances can be com-
pared to the relative change in entropy measures. For this
approach to be effective, however, these measures must be
directly attributable to the problem instances themselves
and not to the particular implementation of the SA algo-
rithm on any one problem instance.

Recall that the application of the SA algorithm to a given
problem instance gives rise to transition probabilities (Eq. 1)
and state probabilities vi

[k] that define the entropy of the
inhomogeneous Markov chain.[5] Thus, the entropy depends
on these probabilities as does the performance of SA (it is the
transition probabilities that cause SA to converge in proba-
bility to the global optima). These in turn depend on various
elements associated with problem instances (the neighbor-
hood structure and the objective function values) and also
on SA implementations, i.e., the cooling schedule. All these
factors weigh in to affect the entropy and performance mea-
sures. Thus, to limit the effects on entropy and performance
measures in these comparisons to the attributes of the problem
instance themselves requires that the cooling schedule be com-
mon to all SA implementations. Finally, to make perfor-
mance differences among different problems readily appar-
ent, the globally optimal objective function values in the
different problem instances must be the same.

Putting all these considerations together leads to the fol-
lowing three principles for the experimental methodology
used here.

I. SA must be run on various problem instances using the
same cooling schedule.

II. Problem instances must have the same globally optimal
objective function value.

III. Problem instances must be different from each other
(except for Principle II) so that there are differences in
entropy and performance. These differences can be es-
tablished in two fundamentally different ways:
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i. configuration spaces can be different yet functionally
related, or

ii. they can be completely unrelated, i.e., distinct and
have no functional relationship.

A functional relationship between two configuration spaces
means there exists a mechanism by which one configuration
space can be completely determined from another configu-
ration space. If no functional relationship exists, then it is
impossible to determine one configuration space from an-
other.

The possibility exists that any association between en-
tropy and performance depends on some explicit or hidden
relationship between two configuration spaces. Attributes
associated with one configuration space, e.g., the neighbor-
hood size and objective function values, can impact such
values in a functionally related configuration space. Thus,
the ways in which configuration spaces can be different from
one another needs to be explored; the concepts of distinct
and functionally related configuration spaces provides one
mechanism by which to study these differences.

These three principles form the core of the empirical
methodology and are incorporated into three different
methods for creating and comparing problem instances. The
first method uses generic configuration spaces (GCSs).

2.2 Generic Configuration Spaces
To implement the three principles, SA must be applied to
various problem instances. To this end, it is useful to de-
velop a general configuration space. One convenient device
for accomplishing this is through the use of GCSs.

The term generic is used because GCSs do not depend on
a particular COP. GCSs are sufficiently general to model any
COP, i.e., the solution space, the objective function values
and the neighborhood structure. Given these elements, any
arbitrary COP instance can be modeled as a particular GCS
instance to which SA is applied.

In GCSs, the solution space is created by randomly gen-
erating a list of objective function values and superimposing
(on these values) a neighborhood structure. Note that spec-
ifying all possible objective function values is an inefficient
method of encoding a COP and is, in some sense, computa-
tionally equivalent to exhaustive search (making SA unnec-
essary). So why use GCSs?

Specifying the objective function values and neighbor-
hood structure provides total flexibility in setting the size
and topology of the configuration space. For instance, GCSs
can be made bumpy (by setting wide differences between
neighboring objective function values) or smooth (by setting
narrow differences between neighboring objective function
values), and the neighborhood sizes can easily be changed.
How efficiently a configuration space has been encoded is
not a concern—the goal here is to explore the entropy/
performance connection in SA and GCSs offer a very broad
domain in which to explore this connection.

2.2.1 Families of Generic Configuration Spaces
To create GCSs that conform to Principle III, two distinct
solution spaces must be created so that each yields different

entropy and performance measures. A simple way to
achieve this is to use different ranges of objective function
values. Consequently, two solution spaces are created using
two distinct uniform distributions. This can have a signifi-
cant effect on the entropy measure as Figure 1 illustrates.

Figure 1a depicts an optimal solution connected to two
high-cost neighbors, while Figure 1b depicts the optimal
solution connected to two low-cost neighbors. The row en-
tropy measure (the entropy of the state corresponding to a
row in the Markov transition matrix) for the optimal solu-
tion is low in Figure 1a and high in Figure 1b. Deep pits in
the configuration space are associated with low row entropy
values because there is less uncertainty about the next
state—it is more likely that the current state will be the next
state because of the depth of these pits. A smoother topog-
raphy on the other hand is associated with higher entropy
measures as there is greater uncertainty regarding the next
state.[4]

Each distinct solution space gives rise to a family of
configuration spaces that are all functionally related. This
functional relationship exists by virtue of the underlying
solution space as described in the next section.

2.2.2 Functionally Related Generic Configuration Spaces
To create functionally related GCSs, different neighborhood
sizes are used on a given solution space. Let fi be the ith

objective function value associated with solution Si in solu-
tion space S [ {S1, S2, . . . , Ss}. Define N(i), the set of
neighbors of Si by

N~i! ; H Sj;S i 2
N
2 Dmod s # j # S i 1

N
2 D mod s , j Þ iJ

(3)

where N is the neighborhood size. To illustrate, for N 5 2,
the neighbors of Si are Si11 and Si21. Note that the modulus
allows the neighbors of solutions 1 and s to wrap around
such that Ss and S1 are adjacent in the solution space. Thus,
the neighbors of Ss are S1 and Ss21, while the neighbors of S1

are Ss, and S2. Also, Eq. 3 creates neighborhood sizes that are
multiples of two. This avoids the complications associated
with odd neighborhood sizes and simplifies the computa-
tion of the entropy and performance measures (by giving a
structure to the Markov transition matrices in SA; see Sec-
tion 3).

Figure 1. The effect of topology on entropy.
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Equation 3 is sufficient to define numerous GCSs based
on a single solution space. Consequently, such GCSs are
functionally related by Eq. 3. In addition, Eq. 3 makes it easy
to change the neighborhood size without changing the globally
optimal value (Principle II). GCSs with different neighbor-
hood sizes can have significant topological differences (not-
withstanding their common solution space), hence directly
affect the structure of the Markov transition matrices, the
values of the transition probabilities, the entropy measures,
and the performance of SA.[4]

The approach of using two distinct solution spaces is an
efficient and flexible method for creating test-bed problems
that conform to the three principles defining the empirical
methodology. This approach establishes two distinct families
of configuration spaces. Any GCSs based on the same solu-
tion space are therefore functionally related. To adhere to
Principle II, the globally optimal values in each solution
space are set to zero. This implements all three principles,
which are now applied to actual COPs.

2.3 COPs and Transformation Algorithms
The second approach that implements the three principles is
based on polynomial transformations of NP-hard COPs.
This approach creates changes in the configuration space by
transforming (reducing) one COP into another, different
COP. By virtue of the transformation algorithm, functionally
related configuration spaces can be created that adhere to
Principle III by altering the entire configuration space (the
solution space, the objective function values, and the neigh-
borhood structure). Yet, the transformed problem has the
same globally optimal objective function value, thereby ad-
hering to Principle II. Note that the results of the experi-
ments involving polynomial transformations must be stud-
ied separately from the experiments using GCSs as the
optimal solutions for these sets of experiments are not guar-
anteed to be the same. To illustrate these ideas, SA algo-
rithms were developed for optimization versions of the
clique and the 3SAT problems (see [7, p. 46–47]) because of
the simplicity of the algorithm that transforms a 3SAT prob-
lem instance into a clique problem instance. As in the case of
GCSs, two distinct families of 3SAT-Clique problem in-
stances were developed. These problem instances are dis-
cussed in more detail in the following sections.

2.3.1 The 3SAT Problem
In the optimization version of the 3SAT problem, the objec-
tive is to determine the truth assignment for a set of Boolean
variables that maximizes the number of Boolean clauses that
are true, where each clause has exactly three variables (see
[7, p. 259]). Thus, given a truth assignment U 5 {u1, u2, . . . ,
un} over a set of clauses C, define the objective function

f3SAT~U , C! 5 O
c[C

uCu

c

where the truth value of clauses c [ C are determined by the
truth assignment U. The size of the configuration space for
n 5 uUu Boolean variables is 2n. As in the clique problem,

each solution can be perturbed by flipping or inverting the
truth value of one Boolean variable. Consequently, each
solution also has n neighbors.

2.3.2 The Maximum Clique Problem
Given a graph G 5 (V, E), with a set of vertices V and a set
of edges E with V9 # V, define

E(V9), the number of edges not connecting nodes in set V9.
i.e., @u, v [ V9, u, v [y E,

v9 5 uV9u, the number of nodes in V9.

Define the objective function as described in [1, p. 81]:

fclique~V9 , G! 5 v9 2 aE~V9! (4)

where V9 is the set of nodes corresponding to the current
solution, a is a penalty parameter, and E(V9) is the number
of missing edges in V9 that violate the constraints of the
clique problem.

Note that because this is a maximization problem, the
penalty term is subtracted from the number of nodes. A
consequence of using penalty parameters is that all combi-
nations of nodes become feasible solutions in the solution
space. Candidate solutions can therefore be generated sim-
ply by adding or subtracting (flipping) any node from a
current solution. Moreover, every solution has the same
neighborhood size. Note that this yields a solution space of
size 2n, where n is the number of nodes in the graph. For
additional details on this problem, see [3, 7].

2.3.3 Transformation Algorithms
The theory of NP-completeness indicates that all NP-hard
COPs can be related by polynomial transformation algo-
rithms. Thus, an algorithm exists that transforms a 3SAT
problem instance into a clique problem instance in which the
optimal solutions for both problems are the same. By taking
advantage of this principle, the configuration space can be
altered, adhering to Principle III, without changing the op-
timal objective function value, adhering to Principle II. The
transformation from a 3SAT problem instance to a clique
problem instance therefore constitutes a way of functionally
relating two problems instances. For details of this transfor-
mation see [16, p. 352]). Figure 2 illustrates this transforma-
tion. The rectangular boxes correspond to clauses, each with

Figure 2. The 3SAT-Clique transformation.
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three Boolean variables from a set of two Boolean variables
({x, y}) represented by circles. The circles correspond to
nodes in a graph and the lines correspond to the arcs in the
graph based on the transformation. The shaded nodes cor-
respond to Boolean variables that are true. Thus, x 5 y# 5 1
and the three clauses are satisfied, hence the objective func-
tion value for this 3SAT problem is three. Notice that for the
Boolean variables that are set to 1, the lines connecting the
corresponding nodes are bolded. These bolded lines consti-
tute cliques, each of which is the same size as the number of
clauses with truth value 1; four cliques of size three are
apparent.

This transformation yields a configuration space for the
clique problem significantly different from the original 3SAT
problem. In particular, for n Boolean variables in a 3SAT
problem instance with uCu clauses, there are 2n solutions.
Transformation to clique changes the number of solutions
from 2n to 23uCu and the neighborhood size from n to 3uCu. If
uCu . n/3, then the neighborhood size and the solution space
of the clique problem instance both increase relative to the
3SAT problem instance.

2.4 Penalty Parameterization: Another Functional Relationship
Another approach for creating functionally related configu-
ration spaces is to change the penalty parameter a in Eq. 4.
Changing the value of a changes the objective function
values associated with a given combination of nodes. This,
in turn, changes the transition probabilities of the Markov
transition matrices and leads to changes in both entropy and
performance. Just as Eq. 3 establishes functionally related
GCSs with a common solution space, Eq. 4 establishes func-
tionally related configuration spaces for clique problems
with a common graph.

2.5 Summary of the Methodology
The three principles are implemented in several ways: by
using two distinct solution spaces, two distinct families of
GCSs are created. Changing the neighborhood size associ-
ated with each solution space produces two sets of function-
ally related GCSs all adhering to the principles. The theory
of NP-completeness and polynomial transformation algo-
rithms also provide a way for creating functionally related
configuration spaces. Transformation algorithms are applied
to two distinct 3SAT problem instances to create two fami-
lies of functionally related clique problems. Different values
of the penalty parameter in the objective function for the
clique problem establishes many functionally related config-
uration spaces. Using these three qualitatively different ap-
proaches for producing configuration spaces therefore per-
mit a large number of comparisons to be made between
entropy and performance. Computational results using
these methods are presented in the next section.

3. Computational Results
This section presents computational results using the empir-
ical methodology described in Section 2. Before describing
these results, it is important to note that the computation of
the entropy and performance measures is based on vector-

matrix multiplications and are thus analytically computed,
not estimated by a series of simulation experiments. The
software used was written in the C programming language
and executed on Sun Sparc Workstations and PowerMac
computers.

3.1 Generic Experiments
Two families of GCSs were created using two distinct solu-
tion spaces each with 5000 solutions with integer objective
function values in the following ranges:

GCS A $0 to 500% ,
GCS B $0 to 100% .

Computations for GCSs are based on 100 iterations of SA
with cooling schedule (Eq. 2), an initial temperature of
10,000, and a final temperature of 0.1 (see [5] for a descrip-
tion of how a fixed-point theorem was used to establish
parameters in the cooling schedule). The initial temperature
value was chosen such that at the first iteration the proba-
bility of accepting the worst-case uphill jump is at least a 0.5.
For example, for a jump from 0 to 500, an initial temperature
of 10,000 yields an acceptance probability of 0.606.

The computational results are presented in Figure 3. The
x-axis shows the entropy of the Markov chain. The y-axis
shows the logarithm of the expected objective function value
based on the final state vector. Points correspond to a given
neighborhood size. These neighborhood sizes increase in
increments of 2 and range from 2 to 50 for a total of 25 GCSs
for each family (points associated with each family of GCSs
are connected) yielding a total of 50 GCSs. Each GCS is
therefore functionally related to 24 other GCSs and provide
for 625 comparisons of entropy and performance measures!

The most significant feature of Figure 3 is that for each
such family of GCSs an increase in entropy measure is
associated with a decrease in expected objective function
value, i.e., an improvement in performance. Moreover, this

Figure 3. Log of expected objective function value versus
entropy for GCSs.
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association is monotonic with respect to neighborhood size.
Note, that the log scale and the clustering of points toward
the lower y-axis values reflects that increases in neighbor-
hood size lead to diminishing improvements in performance
and to diminishing increases in entropy measures. Intu-
itively, GCS A should (and does) have higher expected ob-
jective function values (due to the higher objective function
values) compared to GCS B, hence a greater likelihood of
having a larger number of deep pits (see Figure 1).

These two curves also suggest that the entropy/perfor-
mance relationship is not absolute with respect to each family
of GCSs. The monotonic nature of both curves and the fact
that they are nearly straight lines suggests that the expected
objective function value is an exponential function of en-
tropy (see [4, 5]). Moreover, these lines are nearly parallel,
further suggesting that the entropy/performance relation-
ship for these distinct families of GCSs are related by a
scaling factor.

The conclusion to be drawn from these results is that for
functionally related GCSs, higher entropy Markov chains are
associated with superior SA performance. Moreover, an effective
way to increase the entropy is to increase the neighborhood
size. Further research may shed more light on whether
distinct families of configuration spaces can, indeed, be re-
lated by a scaling factor.

3.2 Combinatorial Optimization Problem Experiments
This section describes the results obtained from applying SA
to a 3SAT problem instance and its functionally related
clique problem instance. To discern entropy/performance
differences, the number of iterations for these problems was
kept small to avoid convergence to the globally optimal
values. To do otherwise would produce nearly the same
solutions in both problems, thereby masking finite-time dif-
ferences in convergence rates (see [6] for a description of this
methodological issue).

3.2.1 The 3SAT/Clique Problems
Conforming to the methodology used for the GCS experi-
ments, two distinct 3SAT problem instances were created,
denoted as 3SAT-A and 3SAT-B, using 11 and 12 Boolean
variables, respectively.[12] Each was comprised of five ran-
domly generated clauses in which the optimal solutions for
both were the same (Principle II), i.e., 5. The configuration
space for 3SAT-A has 211 5 2048 solutions each with 11
neighbors; 3SAT-B has 212 5 4096 solutions each with 12
neighbors. Both 3SAT problem instances were transformed
to ten clique problem instances (Clique A, Clique B) each
comprised of 15 vertices corresponding to a solution space
size of 215 5 32768 each with 15 neighbors.

The SA algorithm was applied to these problem instances
in the analytical fashion noted earlier, namely, a series of
vector-matrix multiplications using identical cooling sched-
ules. The initial temperature was 400. The cooling schedule
is such that the temperature at iteration 50 is 0.1, although
only 10 iterations were computed. Figure 4 shows the ex-
pected objective function and entropy measures associated
with both 3SAT problems (the marker 3 for 3SAT-A, the

marker 1 for 3SAT-B), and their functionally related clique
problems are described in greater detail below. The effect on
entropy and performance of the transformation algorithm is
indicated with the dashed lines. Notice that the transforma-
tions yield points that are shifted to the left (lower entropy)
and down (worse performance; both instances are maximi-
zation problems).

3.2.2 Changes in the Penalty Parameter
To illustrate the entropy/performance connection using
changes to the penalty parameter in the clique, two families
of clique problem instances were derived from the 3SAT
problem instances. For each clique problem, ten configura-
tion spaces were created using ten values of the penalty
parameter a. Increases in a exaggerate the peaks and valleys
in the configuration space. The basic structure of the config-
uration space stays the same but with different relief. Con-
sequently, all of these configuration spaces are functionally
related by Eq. 4. The ‚ and { markers in Figure 4 show the
entropy/performance points for Clique A and B, respec-
tively. Functionally related clique problem instances are
connected by a line.

Figure 4 depicts a similar relationship between entropy
and expected objective function values as implied in Figure
3 with diminishing improvements in expected objective
function values for the larger entropy values. Note that the
entropy and the expected objective function values are both
monotonic with respect to the penalty parameter a (each
point going from left to right varies from 2.9 to 1.1 in
increments of 0.2). As the parameter decreases, both the
entropy measures and the expected objective function value
increase. One other interesting aspect is that the points cor-
responding to each value of a in Clique B have higher
expected objective function values than the corresponding
points in Clique A, reflecting the effects of a larger neigh-
borhood size of its parent 3SAT problem (12 versus 11).

The relationship between the two families cannot be as

Figure 4. Expected objective function versus entropy for
3SAT-Clique.
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clearly depicted as in Figure 3 as it was necessary to use
fewer iterations. Nonetheless, it is worth noting that for both
families, the entropy/performance relationship is very sim-
ilar.

4. Summary and Conclusions
A connection, based on information theory, between the
entropy of an inhomogeneous Markov chain and the con-
vergence of that Markov chain (as measured by the finite-
time performance of SA) was articulated. Three principles
for applying an empirical methodology were established to
explore this connection, and three methods were developed
that incorporate these three principles.

The first method was based on the concept of GCSs. Two
families of functionally related GCSs showed that increases
in neighborhood size increased the entropy values and im-
proved the finite-time performance of SA. Moreover, a pos-
itive relationship between entropy values and performance
was demonstrated. Comparisons between distinct families
of GCSs suggest that the entropy/performance connection
can be related by a scaling factor.

A second method based on COPs and transformation
algorithms confirms the results obtained with the function-
ally related GCSs. Two distinct 3SAT problem instances
were transformed to clique problem instances using a poly-
nomial transformation algorithm, thereby creating two func-
tionally related configuration spaces. The transformed 3SAT
problems, i.e., the clique problems, both showed decreases
in entropy values and decreases in performance.

Finally, a third method, based on penalty parameteriza-
tion of the clique problems, was used to create two families
of functionally related configuration spaces. Again, changes
in entropy values matched changes in performance.

All these data support the theory that the expected value
of the final state in an SA experiment is related to the
entropy of the Markov chain and that this entropy value
determines how well SA performs. For both minimization
problems (the GCS experiments) and maximization prob-
lems (the COP experiments), higher entropy values were
associated with improved expected objective function val-
ues.

The theories and experimental methodologies developed
not only answer questions regarding the performance of SA,
but also provoke other questions. For example, the experi-
ments show that increases in entropy can generally be
achieved by increasing the neighborhood size (as suggested
by the GCS experiments), and/or smoothing out the topol-
ogy of the configuration space (to the extent it does, in fact,
increase the entropy) as suggested by the penalty parameter
experiments. Consequently, researchers can explore compu-
tationally efficient ways to increase the neighborhood size or
develop ways to smooth out a configuration space.

The experiments also indicate that there is some aspect
regarding functional relationships between problem in-
stances that constrains both the performance and entropy in
similar ways. This may also be worth further exploration.
Answers to such questions may provide information on the
“optimal” way to modify a problem so as to improve the

effectiveness of SA. Is it possible that there is such a thing as
an optimal problem instance? At a minimum, future research
may make it possible to define a certain class of problems or
transformation algorithms that tend to be associated with
high entropy values. Conceivably, this can save practitioners
time by enabling them to decide a priori whether SA is an
appropriate method to use.

Of greater significance is the fact that COPs can all be
viewed from an information theoretic and thermodynamic
perspective using a common and consistent framework from
which comparisons can be made—the SA algorithm. In this
way, COP instances can be assigned an information mea-
sure. For instance, one COP may be informationally strong
(high entropy measure) and another, informationally weak
(low entropy measure). Ways to assess just how “hard” an
NP-hard problem is may also be illuminated. At present, the
theory of NP-hardness classifies COPs using the fact that one
problem is at least as hard as some other COP.[7] This classi-
fication is based on worst-case analysis, and polynomial
complexity, hence, can be indiscriminate insofar as qualify-
ing specific COPs. But the notion of average-case analysis,
an alternative approach seen by some as a more realistic
classification scheme, suffers from many methodological
problems, not the least of which is defining an appropriate
sample space (see [10]). The information theoretic approach
in the context of SA avoids some of these difficulties. This may
provide a basis for measuring the information content associ-
ated with COPs and, further, provide a new way of classifying
them and measuring the difficulty for solving them.

The paradigm of viewing COPs as information-measur-
able entities provides a new avenue that can be exploited by
future researchers. The idea that a connection exists between
the information produced by an algorithm (information-
theoretic entropy), the information content of a problem
(statistical-mechanics entropy), and an algorithm founded
on thermodynamic principles (SA) is a compelling one. In
other contexts, this connection has been described using
Maxwell’s Demon, the imaginary creature who persistently
attempts to violate the second law of thermodynamics by
obtaining information about a system without paying the
necessary price in terms of energy. As Pierce notes: “One
pays a price for information which leads to a reduction of
the statistical-mechanical entropy of a system. This price is
proportional to the communication-theory entropy of the
message source which produces the information” [22, p.
206]. SA simulates the reduction of the energy level of a
thermodynamic system. The more information produced by
an SA experiment, the greater is this reduction in “energy,”
hence, the closer the simulation will be to the “ground
state,” i.e., the optimal solution to a COP.
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