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ABSTRACT 
 
Performing social network analysis (SNA) requires a set of powerful techniques 

to analyze structural information contained in interactions between social entities. 

Many SNA technologies and methodologies have been developed and have 

successfully provided significant insights for small-scale interactions. However, 

these techniques are not suitable for analyzing large social networks, which are 

very popular and important in various fields and have special structural properties 

that cannot be obtained from small networks or their analyses. There are a 

number of issues that need to be further studied in the design of current SNA 

techniques. A number of key issues can be embodied in three fundamental and 

critical challenges: long processing time, large computational resource 

requirements, and network dynamism.  

 

In order to address these challenges, we discuss an anytime-anywhere 

methodology based on a parallel/distributed computational framework to 

effectively and efficiently analyze large and dynamic social networks. In our 

methodology, large social networks are decomposed into intra-related smaller 

parts. A coarse-level of network analysis is built based on comprehensively 

analyzing each part. The partial analysis results are incrementally refined over 

time. Also, during the analyses process, network dynamic changes are effectively 

and efficiently adapted based on the obtained results. In order to evaluate and 

validate our methodology, we implement our methodology for a set of SNA 

metrics which are significant for SNA applications and cover a wide range of 

difficulties. Through rigorous theoretical and experimental analyses, we 



 

 iii

demonstrate that our anytime-anywhere methodology is an effective and efficient 

approach for large and dynamic social network analysis.   
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1. Introduction 

Understanding the nature of relationships and connections between entities is 

key towards understanding a variety of phenomena throughout multiple 

disciplines. The concepts of how a disease is spread, or how people are 

influenced by information are all examples of the need to understand and 

analyze interactions and relationships. 

 

These concepts are the building block in the field of Social Network Analysis. 

Social Networks (SN) are graphs employed to represent the structure of 

interactions/relationships among people, or any types of entities. Social Network 

Analysis (SNA) has been studied by researchers for more than a century. As the 

broad application of electronic data, numerous large social networks emerge 

from various fields.  

 

While there have been a multitude of results and analysis techniques that have 

been used in SNA, as we will discussed, current-day approaches are not able to 

effectively deal with social networks that are large-in-scale and dynamic. As such, 

this will be the primary focus of this dissertation. Large network analysis is a non-

trivial task. It introduces new challenges due to long processing time, large 

computational resource requirement, and graph dynamism. In order to effectively 

and efficiently analyze large and dynamic social networks, new techniques and 

methodologies need to be developed. In this dissertation, we describe an 

anytime-anywhere methodology based on a parallel/distributed computational 

environment for large social network analysis. In our methodology, large social 

networks are decomposed into small parts and a coarsen-level analysis (partial 

results) of the network is generated based on analyzing each part. These partial 

results are incrementally refined over time. Also, during the analysis process, 

network dynamic changes will be effectively and efficiently adapted.  
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In what follows, we first provide a brief introduction of social network and social 

network analysis. Then, we will specifically discuss about popularity, importance, 

and special properties of large social networks. According to the challenges of 

large social network analysis, we present the design of our anytime-anywhere 

methodology. Next, we provide both theoretical and experimental evaluation and 

validation by implementing our methodology on a selected set of SNA metrics. 

Finally, we present our conclusion and discuss future work. Part of the work and 

figures presented in this dissertation have already been published in 

[SantosPAXP’06, SantosPAP’06]. Discussion and results can also be found in 

[SantosPA’07] 

 

Before we discuss specific research and design issues for large and dynamic 

social networks, we will first provide important background information and 

introduction of fundamental concepts of social networks and social network 

analysis (SNA).  

1.1 Social Network 

In this section, we will present key definitions in the field of social networks, types 

of social networks, and ways in which social network data are gathered.      

a) Background Definitions 

Social networks have typically been defined as graphs representing social 

relationships between people or organizations. Each node, also called an actor 

or vertex, in a graph represents an individual person or a group of persons. An 

edge connecting two nodes, also called a tie, represents relationship between 

the objects represented by these two nodes. Using graphs to represent social 

data enables social analysts to completely and rigorously describe, manipulate, 

and analyze the structural information embedded in social relationships. Also, 
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graph-theoretic concepts grant researchers a mathematical and systematic 

framework that can extend researchers’ methodologies to other fields. In a 

general point of view, social networks can be used to represent, identify, and 

measure any type of correlations between any kind of entities, such as words, 

web pages, people, organizations, animals, cells, computers, and other 

information or knowledge processing entities [Krebs’06]. Thus, Social Networks 

have broad and successful applications in sociology, epidemiology, biology, 

criminology, and economics [Kadushin’05]. 

b) Examples of Social Networks 

Throughout physics, biology, social sciences and engineering, an abundant 

number of systems take the form and structure of networks. In order to facilitate a 

clear understanding of social networks, we present one example below. This 

example is just a simple graph which is used to help readers to understand basic 

concepts in social networks. This graph is a network of friendships between 

students in a small class.  

 

First assume that we have already obtained data about friendships among 

students which are shown in Table 1-1. Details about ways for gathering such 

social data will be discussed in a later section. In this table, the diagonal 

elements are all blanks. This is due to the fact that in friendship analysis, we do 

not need to consider if a person is a friend of himself/herself. The other elements 

in the table are binary. This means that data in the table only represents that two 

people are either friends or not. Based on the data contained in Table 1-1, we 

can build the network of friendships between students in the small class. The 

network is shown in Figure 1-1.  

 

 

 

 

 



 

 4

Table 1-1. The social data about friendships between students in a small class.  
 John Susan Tom Jack Alice Jeff Mike Tiger Jane

John -- 0 1 1 0 0 0 0 0 

Susan 0 -- 0 0 0 0 0 0 0 

Tom 1 1 -- 1 0 0 0 0 0 

Jack 1 0 1 -- 0 1 1 1 0 

Alice 0 0 0 0 -- 1 0 0 0 

Jeff 0 0 0 1 1 -- 1 1 0 

Mike 0 0 0 1 0 1 -- 1 0 

Tiger 0 0 0 1 0 1 1 -- 0 

Jane 0 0 0 0 0 0 0 0 -- 

 

In this network, each node represents a student in the class. Two nodes are 

connected with an edge if they are friends. In this example, two students are 

friends if the value of the corresponding element in the table 1-1 is 1. If the value 

is 0, these two nodes are not friends and not directly connected.  

 

   
Figure 1-1. A friendship network of a small class. 
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c) Social Network Data Gathering 

In the previous section, we presented several examples of social networks of 

different kinds of entities and interactions. We also provided a simple example to 

show how to build social networks based on the obtained social data. However, 

before building social networks, there is a very important problem researchers 

have to face: how to acquire elementary data elements for building social 

networks? In order to give a complete and accurate description of interactions 

between individuals, researchers have done a lot of work on social data 

gathering techniques focusing on how to identify the population, how to measure 

relationships, etc. Since this is not our research focus, rather than going into 

specific details about this topic, we will instead provide a brief overview of 

popular social network data collection methods in the following part of this 

section. For interested readers who want further details on this topic, please refer 

to the second chapter of the textbook [CarringtonSW’05], or the first chapter of 

the online textbook [HannemanR’05]. 

 

Currently, there are mainly two kinds of approaches for social network data 

gathering: elicitation and registration [NooyMB’05]. Elicitation acquires interaction 

information via the questionnaire/survey. Registration acquires interactions 

through extracting from registered information, such as membership lists, email 

records, author records of scientific articles, etc.  

 

In the early SNA research, questionnaire/survey was the method primarily used. 

In this method, questions about interactions are proposed and respondents are 

required to report their answers. Data gathered by this kind of method may be 

quite inaccurate and subjective [AlberB’02, CarringtonSW’05, Newman’03a, 

NooyMB’05]. It is hard to obtain complete set of data by survey/questionnaire. 

Also, the gathered data are affected by subjective biases of respondents. For 

example, people will have different definitions of friendships and different 

perceptions on friendship strength. A social network of people’s friendship built 

based on data gathered by this type of method will seriously skewed due to 
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different definitions/perceptions of friendship. A comprehensive review of this 

topic can be found in [Marsden’90]. Moreover, survey/questionnaire method has 

high-labor cost. It will take social scientists and network researchers a myriad of 

efforts to gather data for a network of even middle size (several thousands of 

nodes). This intensive labor cost considerably limits the size of networks to be 

studied. 

 

Through fast developments of computer technologies and universal applications 

of computers, automated data acquisition are found in most, if not all, fields. 

Interactions between objects can be stored as or implicated by electronic data. 

For example, co-authorship of research articles can represent the collaboration 

between research scientists. If two authors appear on the same paper, there will 

be a collaboration connection between them. Through rapid growth of network 

size and data-sharing techniques, huge databases of social interactions have 

emerged in various fields. For instance, there are many large databases that 

maintain records of article authors in publications of miscellaneous research 

fields [BarabasiJNRSV’02, Newman’01]. MEDLINE for example, the database 

that covers published papers on biomedical research, has about 2 million records 

from 1995 to 1999 [Newman’01]. Electrical registered information can provide 

even larger amount of data. Using electronic data, we can have more objective 

definitions of interactions. For example, the cooperation between scientists can 

be measures as the number of publications they published together. However, 

for some cases, how to interpret the physical meaning of the interaction data 

gathered by this mechanism and how to mapping them to system behavior needs 

more consideration.             

d) Types of Social Networks 

According to broad applications of SNA, there are many types of social networks. 

Social networks can be classified based on the combination of attributes and 

measurements of nodes and ties. In social networks, there could be different 

kinds of nodes or the same kind of nodes with various weights. For instance, 
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affiliation networks [WassermanF’94] contain two kinds of nodes: events (such as 

corporations/organizations) and actors. Ties between events and actors usually 

represent relationships of membership/participation [CarringtonSW’05]. Nodes in 

a social network can have various weights that can indicate, for example, their 

importance.  

 

Similarly, a social network could contain multiple types of ties or the same type of 

ties with different weights. A network with multiple relations are called multi-

relational network. A multi-relational network, for example, may contain 

relationships as friendship, collaboration, and co-membership. These 

relationships could have different importance or strength which is represented as 

the edge weight in a graph. Taking a friendship network as an example, people 

may use a number from 0 to 5 to indicate the strength of friendships between 

them. Also, relationships between objects may be non-symmetric. Still discussing 

friendship networks, person A taking person B as a friend does not necessary 

requires that B takes A as a friend too. Thus, ties may have directions. 

Symmetric ties can also be taken as directed ties on both directions.  

 

We summarize the types of social networks in Figure 1-2. A real social network 

can be a combinatory of network types shown in this figure. The examples 

provided are simple and fundamental social networks. Clearly, there are various 

types of social networks. A comprehensive review can be found in 

[CarringtonSW’05, NooyMB’05, WassermanF’94]. In our research, we mainly 

focus on the most popular and fundamental type of social networks: graphs 

which have only one type of actors with the same weight and only one type of 

ties but with various weights. Without specific declaration, networks analyzed in 

this document are this type of graphs.  
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Figure 1-2. Examples of different types of social networks: (a) a social network with single type of 
nodes and undirected ties, (b) a social network with directed and undirected ties, (c) a social 
network with various types and weights of ties, (d) a social network whose nodes have different 
types and weights 
 

1.2  Social Network Analysis 

In previous sections, we have introduced definitions and types of social networks. 

Also, we discussed different ways to gather social data and build networks. 

However, knowing how to build networks does not imply understanding the 

contents contained in networks. How to “dig up” embedded structural information 

from social networks falls into the field of Social Network Analysis.  
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a) What Are Analyzed in Social Network Analysis? 

Researchers define SNA as (a) “the mapping and measuring of relationships and 

flows between people” [Krebs’06], (b) the techniques “focusing on uncovered 

patterns of people’s interaction” [Freeman’02], (c) a set of methods for the 

investigation of relational aspects of social structures [Scott’92]. Essentially, 

these definitions are equivalent. They all emphasize that social network analysis 

is focused on the study of structural information contained interactions between 

entities.  

 

The study of SNA is primarily focused on interactions between entities instead of 

entities themselves. In other words, measurements and analysis of social 

networks are mainly based on ties/edges between actors/nodes other than just 

attributes of actors. This does not indicate that attributes of actors are useless. In 

many cases, actors’ attributes will help researchers to verify hypothesis of social 

behaviors and analyze specific social phenomena. For example, in a friendship 

social network of students in colleges, researchers may find a universal social 

phenomenon and draw the conclusion that ethnicity has considerable effects on 

friendships between people.     

 

However, the study of SNA is mainly from aspects of structural properties and 

patterns of entities’ interactions. Patterns of people’s interactions are important 

features of lives of individuals who display them [Freeman’02]. Most SNA 

researchers, if not all, have the same assumption that structure implicates and 

affects functions. What SNA measures/analyzes are structural properties of 

individuals or groups of individuals in a network. These measurements includes 

how individuals are connected with others, how individuals will affect connections 

between others, how groups of individuals are connected in a network. Also, from 

a global point of view, SNA researchers are usually interested in such questions 

as Is the whole network connected?; Is the network densely connected?; Can the 

network be decomposed into blocks based on the individuals connections?; etc.  
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b) Social Network Analysis Broad Applications 

As we discussed, social network analysis techniques can be applied to study 

structures of any types of interactions/relationships between any kinds of entities. 

From late 1970s, SNA techniques have gained massive attentions, considerable 

developments, and successful applications in broad fields [CarringtonSW’05]. 

 

For example, SNA techniques are used in organization management. In current 

companies and government agents, there is more and more cooperation and 

information sharing between workers. Using SNA tools on collaboration and/or 

information-sharing networks, managers can easily find the “important to go 

people”, and build appropriate management strategies to improve efficiency.  

 

Combating terrorism is another field where SNA techniques have important and 

successful applications. Terrorist organizations have special structures on 

recruitment, evolution, and radical ideas diffusion [Ressler’06]. SNA tools can be 

used to identify these unique organization structures and provide critical 

information for terrorist detection and terrorism prediction. 

 

Social Network Analysis techniques also have been successfully applied in 

epidemiology. A lot of researchers try to analyze the spread of diseases based 

on the interactions between people. 

 

A SNA researcher, Valdis Krebs, listed a number of recent successful 

applications of SNA in [Krebs’06]. A selected set of applications are listed below: 

• “Examine a network of farm animals to analyze how disease spreads from 

one cow to another  

• Discover emergent communities of interest amongst faculty at various 

universities 

• Reveal cross-border knowledge flows based on research publications  

• Determine influential journalists and analysts in the IT industry  

• Unmask the spread of HIV in a prison system  
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• Map executive's personal network based on email flows  

• Discover the network of Innovators in a regional economy”    

1.3 Current Social Network Analysis Software 

Modern social network analysis has been studied for more than seventy years 

and many researchers and commercial companies have put huge amounts of 

efforts on developing computer software tools for social network analysis. 

Currently, numerous commercial/free SNA software tools are available. These 

tools can perform comprehensive analysis on small social networks and provide 

significant insights for fine-grain interactions or small domain spaces.  

a) Popular Social Network Analysis tools 

Currently, there are many comprehensive tools developed for SNA, such as 

UCINET [BorgattiEF’02], Pajek [BatageljM’04], Agna [Benta’04], NetDraw 

[Borgatti’02], NetMiner [Cyram’04], MultiNet [RichardsS’03], StOCNET 

[BoerNHSSZ’04], etc. A brief review of these software tools can be found in 

[CarringtonSW’05]. 

 

From functionality, SNA software tools can be primarily classified into two types. 

One type, including NetDraw, NetMiner, and Pajek, focuses on the visualization 

of networks. Developers of these tools believe that human eyes are powerful 

network analytic tools. Visualizing networks will help analysts easily understand 

structure information contained in them. The other type of tools is based on text 

reports of SNA measurements and analysis. UCINET, Agna, and MultiNet all 

belong to this type. These two types of tools are usually employed jointly to 

facilitate a more comprehensive analysis of social networks. 

 

There is a special type of tools, such as StOCNET, which provides statistical 

analysis of networks. This type of tools is built based on statistical models of 
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social networks and can provide a global-scale analysis of networks based on a 

set of statistics, such as degree variance, index of heterogeneity, dyad and triad 

census, etc [CarringtonSW’05].   

b) Issues in Current Social Network Analysis Software 

Although various types of SNA software tools have gained a lot of success in 

extensive research fields, their development is still maturing. There are still 

considerable problems in these tools. One of the most critical problems is that 

current SNA software tools lack scalability and cannot be used to analyze large-

scale and dynamic interactions. 

 

Currently, most SNA software tools are designed for analyzing small social 

networks. This is due to the history of social network applications. Modern social 

network analysis theory originated in the 1930’s [BarabasiJNRSV’02]. As we 

mentioned, at that time, survey/questionnaire was the primary method used. This 

labor-intensive method substantially limited the size of networks obtained. The 

social networks analyzed at that time were usually in sizes of tens, at most 

several hundreds, of nodes. SNA software packages are primarily designed 

according to requirements of these classical small networks. Most approaches 

used in current SNA tools are built based on serial algorithms. Moreover, 

usability of software tools for visual exploration/analysis of social networks will 

seriously degrade, even become useless, as the size of networks increases. 

When a network is large and complex, using human eyes to identify/extract 

structural information is not only quite burdensome but also near-impossible to 

achieve a complete and accurate analysis. What is even worse is that a lot of 

elementary SNA measurements cannot be obtained in current SNA tools due to 

the large size of networks. For example, few of current SNA tools can measure 

centrality (defined in later chapters), one of the most used SNA metrics, when a 

network is large. As we show in [SantosPAXP’06, SantosPAP’06, SantosPA’07], 

using a computer with 512MB of memory, the maximum size of a network for 

UCINET to load and perform closeness centrality measurement is about 15,000 
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actors. For Pajek, the maximum allowable network size is about 5,000 actors. 

However, there are many social networks with size larger than 15,000. For 

example, a large citation network presented in [Redner’98] has 783,339 nodes.  

 

Moreover, current SNA software and algorithms are “all-or-none” approaches.  

That is, there is no means to stop algorithms in midway to obtain a meaningful 

partial result. In fact, it is not simply the means to stop but the fact that these 

approaches typically would provide non-meaningful results except for the final 

results.  For time-critical applications, providing a coarse-level useful analysis of 

the network within a short time may be quite helpful for analysts.   

 

Furthermore, current SNA tools cannot adapt dynamic behaviors of large 

networks. To the best of our knowledge, no current SNA software tools have the 

ability to incorporate dynamic changes in networks into on-going processing of 

network analysis. If a network whose connection structure has been changed 

during processing, the only way to get a meaningful analysis of the current 

network is to stop, re-load, and re-analyze it from scratch. For small networks, 

this approach seems to be feasible since it only takes a short time for re-

analyzing. However, this kind of approach will have significant costs in large 

networks analysis. We will discuss details of this problem in Chapter 2.      

1.4 Summary 

In this chapter, we discussed general definitions and broad applications of social 

networks and social network analysis. We also introduced available SNA 

software tools. Currently, SNA computer tools have the ability to provide 

significant insights for studying small-scale interactions between objects. 

However, they have critical issues for analyzing large and dynamic social 

networks.   
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2. Large Social Network Analysis 

Social network analysis has been applied in a broad range of research fields. 

Due to the wide usage of computerized data acquisition and rapid developments 

of networked information-sharing techniques, numerous types of large social 

networks have emerged in a wide range of research fields. These large networks 

play critical roles in studying structural properties, understanding social 

phenomena, and predicting system behaviors from the point of view of large-

scale interactions. However, analyzing large and complex social networks 

introduces specific crucial and fundamental problems which have not been 

considered nor addressed in current SNA tools.  

2.1 Large Social Networks 

There are many large social networks that have emerged from various fields. 

These include networks of acquaintance/communication [Compbell’04, 

NowellNKRT’05, LiveJournal, MySpace, FaceBook], phone calls [AielloCL’00], 

collaboration [Newman’01, BarabasiJNRSV’02], sexual contact [LiljerosEASA’01], 

paper citation [Redner’98], metabolic networks [GuimeraA’05], World-Wide Web 

(WWW) pages networks [Adamic’99, BroderKMRRSTW’02], the Internet 

networks [GovindanT’00], food webs [WinemillerL’03], linguistic networks 

[CanchoS’01], etc. In following paragraphs, we will briefly introduce several 

popular large networks obtained based on real-world databases.  

a) Networks of Acquaintance/Communication 

Currently, there are various social utilities on the Internet, such as LiveJournal 

(LJ) (www.livejournal.com), MySpace (www.myspace.com), FaceBook 

(www.facebook.com) etc. These tools provide a platform for social 
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communication and a mechanism for people to connect with their friends and 

build their communities. Social networks, which are built on registered data of 

these social utilities, can help social analysts to study large-scale interactions 

between people in the aspect of acquaintance/friendship. Usually, the size of 

these social networks can be very large and the data are inherently changing and 

evolving. For example, by Oct 9th, 2006, LJ has a total of 11,322,901 users out of 

whom 1,889,233 users are active. There are approximately 50,000 updates 

within every 24 hours.  

b) Networks of World-Wide Web Pages 

Researchers recently began to build and study large networks of World-Wide 

Web pages [Adamic’99, BroderKMRRSTW’02] in order to a) understand the 

sociology of content creation of the Web, b) analyze the behavior of and provide 

valuable insights into Web algorithms for gathering, searching and discovering 

information, c) and predict the evolution of Web structures. For example, a Web 

page network studied in [BroderKMRRSTW’02] has over 200 millions pages and 

1.5 billion links. In this network, nodes are web pages (documents). Edges are 

hyperlinks (URL’s) pointing from one document to another [AlberB’02]. A simple 

example network of World-Wide Web pages is shown in Figure 2-1.  
 

 

Home
Page

  
Figure 2-1. World-Wide Web page network 
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c) Collaboration Networks: Co-Authorship Networks and Movie Actor 
Networks 

Studying human collaboration is always an important topic in sociology. Currently, 

there are two popular types of networks employed by researchers to analyze 

large-scale interactions between people based on their collaborations. They are 

movie actor collaboration networks and science co-authorship collaboration 

networks.  

 

Most movie actor networks are built based on the Internet Movie Database 

(www.imdb.com) which contains all movies and their casts since the 1890s. In 

these networks, nodes represent actors and ties between nodes represent that 

the connected actors acted in the same movie at least once. Obviously, this 

network is dynamic since new movies and actors keep joining the database. For 

example, in 1998, the movie actor network contained 225,226 nodes [WattsS’98]. 

In 2000, the size of network increased to 449,913 [Newman’00].   

 

Studying the co-authorship of scientific papers is an effective way to investigate 

the collaboration between scientists. In co-authorship networks, nodes are 

authors and two nodes are connected by an edge if the corresponding two 

authors write at least one paper together. Two examples of large co-authorship 

networks can be found in [Newman’01, Barabasi01]. The size (number of nodes) 

of the co-authorship network based on the database MEDLINE (biomedical 

research) is 1,520,251 [Newman’01]. The size of co-authorship network for 

neuron-science is 209,293 [Barabasi01]. 

d) Citation Networks 

Usually, citation networks are based on databases of scientific publications. 

These networks are employed to study scholar communication, as well as 

popularity and evolution of technologies. In this network, nodes are scientific 

papers. One node will be connected with another by a directed edge if its 

corresponding paper cites the paper represented by the other node. An example 
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of large citation network can be found in [Redner’98]. In this example, the 

network has the size of 783,339. 

e) Linguistic Networks 

Linguistic networks are special networks employed to study language 

organization and generation based on word interactions. These networks are 

built based on words co-occurrences. In a linguistic network, nodes are words. 

Two words are connected by an edge if they appear next to or one word apart 

from each other. Details of linguistic networks can be found in [CanchoS’01]. The 

size of the word network presented in [CanchoS’01] is 460,902.  

 

Currently, there are numerous other large networks being studied in various 

research fields. Due to the space limitation, we cannot introduce all of them. For 

interested readers who want further details of this topic, please refer to 

comprehensive reviews of large and complex networks in [AlberB’02, 

Newman’03a]. 

2.2 State-of-Art in Large Network Analysis     

Large and complex social networks have already attracted considerable 

attentions from SNA researchers. There are many papers discussing special 

structural properties obtained from large networks. Most of these researches are 

done in a statistical fashion. A good review of this topic can be found in 

[AlberB’02, Newman’03a]. Here, we will only briefly discuss the contributions that 

have been made and the potential pitfalls in their approaches.   

a) Special Structural Properties of Large Social Networks 

To the best of our knowledge, most, if not all, current researches on large and 

complex networks are dealing with using some form of statistical parameters to 

describe and analyze structural characteristics of large networks. Based on their 
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results, researchers found that the graph model which can be used to generate 

real-world’s large networks is quite different from the classical random-graph 

model, the Erdös-Renyi model [Erdös59], which is proposed in 1959 and used to 

analyze small networks. Recently, various theories and graph models have been 

proposed for large and complex social networks [AlberB’02, Newman’03a]. All 

these models and theories are mainly built based on three observed special 

structural properties of large networks. These properties are listed below. 

• Small-world effect [Milgram’67, Adamic’99, WattsS’98]: most pairs of 

nodes are connected by short paths through networks. In other words, the 

distance between any pair of actors is much smaller than the graph size. 

Usually, the average value of shortest paths is increased as a logarithm of 

network size. 

• Degree scale-free distribution [Price’65, DorogovtsevM’01, Strogatz’01]: 

node degree is defined as the number of edges that connect this node 

with others. The distribution of node degree in a network follows the 

power-law. More precisely, 
α−∝ kpk  

where pk is the probability that a node has a degree as k, and α is a 

constant and usually α is a value between 1.6 and 3.0 [Newman’03a]. This 

means that in a large network, we have a great amount of nodes with 

small degrees and a small tail of nodes with large degrees.  

• High clustering coefficient [AlberB’02, FronczakHJS’02, Newman’03a]: in 

[Newman’03a] the cluster coefficient is defined as:  

verticesoftriplesconnectedofnumber
networktheintrianglesofnumberC ×

=
3  

This property is also called as high transitivity. Real-world large networks 

have much higher transitivity than networks generated by the random 

graph model presented in [ErdosR’59].   

 

These three properties are detected by statistical analysis from a great amount of 

real-world’s large social networks. It seems that they are common properties for 



 

 19

real-world large social networks. These properties have shown differences 

between large-scale interactions and small-scale interactions, and highlighted the 

necessity and importance of large social network analysis.  

b) Pitfalls in Current Large Network Analysis Approaches 

Although the achievements of current SNA research on large social networks are 

exciting, they are far from satisfactory. First, all results/theories presented in the 

previous subsection are only based on a few basic and simple structural 

measurements of large social networks, such as node degree, network density, 

connectivity, and diameter, etc. Many complicated but more crucial structural 

explorations including centrality measurements, cohesive subgroup detection, 

roles and positions detection, and blockmodeling, which are frequently used in 

classical SNA on small-scale interactions, have not been studied yet. This is not 

because such investigations are not important. Rather, the reality is that current 

SNA software tools have poor ability to handle large networks. 

 

Second, most of these analyses of large networks are done in the aspect of 

statistics, which means that networks are explored from the global-scale. Usually, 

researchers use some statistics, such as clustering coefficient, degree 

distribution, to represent the structure of the whole network. Besides the problem 

for choosing appropriate statistics for large networks, details of individuals inside 

a network are omitted. However, local-scale analysis is indispensable in social 

network analysis. No matter how large the network size is, detecting and 

analyzing actors or groups of actors with different structural characteristics is 

always one of the essential tasks for SNA.  

 

Lastly, the common method used to achieve statistics of these large networks is 

sampling. Based on some strategies, SNA researchers sample a large network, 

and statistics of the whole network is generated from the analysis of these 

samples. New questions are introduced by this kind of approaches such as How 

to sample the network to get the best analysis results?; How many samples are 
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enough to obtain reliable results?; And how accurate is the analysis obtained by 

these samples? In order to answer all these questions, quantitative tools for 

social network analysis is required. 

2.3 Challenges of Large Social Networks Analysis 

Analyzing large social networks is not a trivial task. Large social network analysis 

introduces a multitude of new research issues. Before discussing its challenges, 

let us first explain why we should bother with analyzing large social networks. 

a) Why Should We Analyze Large Social Networks? 

First of all, large social networks have their own special structural properties. 

These properties cannot be obtained by simply scaling up small networks. It has 

been shown that large social networks have graph models which differ from 

those of small networks [AielloCL’00, AlberB’02, Newman’03a]. The structural 

properties of large networks and corresponding decisions-making strategies 

based on large social network analyses cannot be directly borrowed from what 

we achieved from the analysis of small networks.  

 

While some researchers may argue that their interests are only focused on a 

small number of nodes and ties so that large social network analysis seems 

unimportant to them. In some cases, researchers can use some priori-knowledge 

of the problem to designate the nodes/ties they want to analyze. However, in 

many cases, researchers usually have no clear idea about which nodes/ties are 

relevant to their study. Moreover, most, if not all, small social networks are 

contained in and/or extracted from large-scale interactions. Individuals or groups 

of individuals are nested in large networks and relevant/useful objects are always 

coupled within their contexts. Without elaborative analysis of every element in 

networks, it is near-impossible to achieve an accurate and complete data set for 

small-scale analysis.  
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As we discussed in chapter 1, SNA tools can successfully handle small networks. 

However, they are not suitable for analyzing large-scale interactions. This is 

because that due to historical reasons, these tools are originally designed for 

analyzing small networks. Comparing with small social networks, large and 

complex social networks introduce new challenges, which are not addressed in 

current SNA tools. After carefully studying problems of large and complex social 

network analysis, we found that there are mainly three fundamental challenges 

needed to be addressed if an approach wants to effectively and efficiently 

analyze large social networks. These challenges are: long processing time, large 

computational resource requirement, and graph’s dynamism. In the following 

paragraphs, we will briefly discuss these challenges.     

b) Long Processing Time 

An obvious characteristic of large networks introduced in chapter 2.1 is the huge 

network size (number of nodes contained in a network). Sizes of most of these 

large networks are easily at least several tens of thousands. The size of the 

friendship/acquaintance network based on the LiveJournal database is even 

more than 10 million. Moreover, these networks keep expanding. Through rapid 

developments and broad applications of electronic monitoring techniques, more 

and more large social networks will arise and current social networks will become 

larger and larger. As network size increases, the time for analyzing networks 

grows rapidly. Usually this growth is not linear. The growth of work load for 

comprehensively analyzing a large network can easily go to the second or third 

order of graph size. Consider the problem of measuring how far away each actor 

is from each other (all-pairs shortest distances). The computational work 

increases approximately at the speed of n3 where n is network size. Although 

computer power has been grown fast, handling large networks will take a great 

amount of time even if we use the fastest single processor available. However, in 

many applications, time is vital. For some time-critical applications such as 

criminal/terrorist detection and disease spread mitigation, it may be too late to 
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prevent disasters from happening by the time analysis results are returned from 

SNA tools. 

c) Large Computational Resource Requirement 

Processing large social networks will require a great amount of computational 

resources, such as memories in computers. Every social network analysis 

package runs on a single computer making it bottlenecked both by processor 

speed and memory size. A 32 bit processor cannot address more than 232 bytes 

of memory limiting the total system memory to approximately 4GB.  Computing 

the shortest paths for all pairs of actors requires n2 memory where n is the 

number of actors.  If we allow 4 bytes per actor then the maximum number of 

actors allowable in an all in memory serial SNA is 000,164
232 ≈ actors. Thus, we 

can see that it is infeasible to employ a single processor to perform analysis on 

large social networks.  

d) Graph Dynamism 

Almost all networks are dynamic. Communities in friendship/acquaintance 

networks keep evolving as people join new groups or quit old ones. There are 

always new papers or collaborative work inserted in citation or co-authorship 

networks. Physical connecting backbones of the Internet keep changing as new 

routers are added and current ones fail. At any minute, there are new web-

pages/information put onto the Internet and outdated ones vanished. In fact, 

almost all networks keep changing at various rates. The dynamism does not 

seem to be quite troublesome for analyzing small networks. This is because that 

when a network is small, it usually only takes a very short period of time for 

analyzing it. During the analyses process, dynamic changes may have little 

chance to happen. Also, if the some dynamic change happens, users can take 

this changed network as a new input and generate a new set of results within 

very short time. However, dynamism is vital for large network analysis process. 

As we discussed, analyzing large networks will take a very long time. In some 

cases, the whole network’s structure may have already changed by the time 
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analysis results are returned from SNA tools. Thus, what we obtained from SNA 

tools may not be valid anymore. In some cases, after dynamic changes, the 

structure is altered only in a small part (or parts) of the large network. However, 

current tools cannot provide the information about which part of results and how 

they are affected by the dynamic change. In order to obtain a useful analysis of 

the network, current software tools have to take the changed network as a new 

input and perform the analysis from scratch. Clearly, this will introduce a 

formidable overhead especially when the graph size is large. In order to achieve 

effective and efficient analysis of dynamic large networks, how to effectively 

adapt the dynamic behavior of networks must be considered in methodology 

design.  

2.4 Summary 

Recently, numerous large and complex networks have emerged and been 

studied in various research fields. Significant insights of large-scale interactions 

are obtained only by primitively analyzing them on simple SNA metrics. We have 

confidence to believe that, under large social networks, there is much more 

important information waiting to be investigated. Analyzing large and complex 

networks is an important and promising task. However, the poor ability of current 

SNA software tools prevents further successes of current large social network 

analysis. In order to achieve a comprehensive and profound understanding of 

large-scale interactions, it is vital to develop key researches and design 

appropriate methodologies for analyzing large social networks.  
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3. Methodology Design 

The special structure information (introduced in chapter 2) contained in large-

scale interactions and the poor ability of current SNA software tools on handling 

large networks spotlight the need for reconsidering SNA methodology design. 

New techniques need to be specially developed for analyzing large social 

network. In order to design an effective and efficient methodology for analyzing 

large social networks, we should consider and combine approaches from 

following different fields: 

• graph theory 

• optimization 

• parallel/distributed computation 

• algorithm design 

• networking/communication 

 

In this chapter, we will first introduce fundamental and significant concerns for 

designing methodologies for large social network analysis. Then, according to 

these concerns, we will propose our methodology, an anytime-anywhere 

methodology based on a parallel/distributed computational framework. Following 

this, detailed discussions about the architecture of our methodology and design 

and function of each component in our methodology are presented.   

3.1 Parallel/Distributed Framework 

Serial algorithms are not suitable for analyzing large networks. Long processing 

time and large computational resource consumption are apparently two of main 

challenges which must be addressed if we want to effectively analyze large 

social networks. Some large social networks, such as friendship/acquaintance 
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networks based on the LiveJournal database (www.livejournal.com), even cannot 

be loaded into the memory of a single machine. Many basic SNA metrics, such 

as all-pair shortest paths, require O(n2) (or higher order) storage space and 

processing time. Also, some complicated but useful analyses processes, such as 

the maximum clique detection, node role assignment, and checking automorphic 

equivalence [BrandesE’05], are NP-hard or NP-Complete. Obviously, due to the 

lack of scalability, serial algorithms are typically ineffective towards handling 

large social networks.  

 

An alternative to serial approaches is parallel/distributed processing. We find that 

using multiple processors for large social network analysis is an important 

endeavor. This is because, for one, employing connected computers/processing-

units to analyze large social networks will relieve the limit on computational 

resources. Moreover, parallel/distributed computation can accelerate the analysis 

process. Thus, we believe that utilizing a parallel/distributed computational 

framework is a more effective means to provide large social network analysis. 

3.2 Anytime-Anywhere Properties 

Even using multiple processors, building comprehensive analysis for large social 

networks inevitably requires large periods of time. “All-or-none” mechanisms will 

become infeasible for large social network analysis. Here, the term “all-or-none” 

represents the idea that an algorithm cannot be stopped in the midway to provide 

useful partial results. Users are either waiting for the complete solution or 

receiving the complete/final solution for the whole network. By and large, current 

SNA tools work in this way. “All-or-none” approaches seem to be fine when 

network size is small. This is due to the reason that the processing time for a 

small network is very short. However, these approaches have vital pitfalls when 

dealing with large social networks, especially for time-critical cases. For example, 

assume that a group of epidemiologists are studying a communication/interaction 

network of people in a big city, such as Beijing China, to prevent the spreading of 
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a serious infectious disease, such as SARS. This network may contain tens of 

millions nodes. Even if we have the ability to handle this large network, analyzing 

this large graph (predicting the spread of the disease, detecting important 

persons for effectively and efficiently blocking the spreading of the disease, and 

helping analysts to making proper decisions) will take a huge amount of time 

which can be several months. After such a long time, due to the late response, 

the spread of the disease may be so broad that it cannot be controlled. 

Furthermore, the network is not static. Individuals may be infected or recovered 

during this long time. The analyses returned will be too “old” to represent the 

current status of the disease spread in the city and cannot help relevant health 

agencies to take proper reactions.   

 

In order to effectively solve these problems, methodologies for large social 

network analysis should have at least two properties. First, they should be able to 

be interrupted midway in order to provide useful partial or coarse-level results for 

quick response. Also, the quality of these partial results can be refined and finally 

the exact (or a good approximate) analysis results of the whole network can be 

obtained. Second, they should have the ability to easily incorporate new 

information in networks during their analysis process. 

 

These two properties are not new to the field of algorithm design and analysis. In 

fact, these concepts have been studied and have been given the terms anytime 

and anywhere properties [SantosSW’99]. Anytime-property was proposed to 

balance execution time with solution quality [DeanB’88]. Four characteristics of 

anytime-algorithms differentiate them from traditional algorithms: quality 

measurement, predictability, interruptability, and monotonicity. Quality 

measurement means that partial results’ quality can be estimated. Predictability 

is used to refer the ability that the time cost for obtain partial results at some 

stage can be estimated or bounded. Interruptability represents that programs can 

be interrupted and present obtained partial results to users. Monotonicity is used 

to constrain the quality of partial results. It requires the partial results quality can 



 

 27

be only non-decreasing. By having an anytime-property, algorithms can provide 

users partial solutions with the good quality that can be achieved within the given 

time. As time evolves, the partial solutions will be refined step by step. 

  

Anywhere-property originally was used to refer to the idea of information 

sharing for problem-solving [SantosSW’99, Santos’01]. It represents that 

algorithms have the ability to accept complete or partial solutions generated 

elsewhere and incorporate external solutions into its own processing. It is 

necessary for a parallel/distributed framework of large social network analysis. 

As we mentioned, when a social network is large, due to the limit of 

computational resources, it is typically infeasible for a single processor to handle 

the whole network. In parallel/distributed computational environments, it is 

necessary for each processor to handle only a part of the graph. For some SNA 

metrics, in order to achieve complete analysis results on each processor, the 

program may need partial/complete results obtained on other processors. In this 

dissertation, the term “anywhere” is employed to emphasize another idea. That is 

no matter where and when changes happen, they should be first incorporated in 

the analysis locally and the new information/solution will be propagated through 

the whole network as time evolves. In other words, an anywhere property refers 

to the ability of algorithms to adapt the new information in the network during the 

algorithm processing. 

3.3 Our Methodology 

Based on the important issues discussed in the previous sections, it is clear that 

there must be a focus on designing an anytime-anywhere methodology on a 

parallel/distributed computational framework for large social network analysis. 

Using a parallel/distributed framework will to enlarge computational resources 

and accelerate processing process. When the problem to be solved requires 

large computational work, usually we can decompose it into smaller sub-

problems and use a set of processors to solve it in the way that each processor 
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only handles a single sub-problem. Although based on local sub-problems each 

processor can only obtain partial solutions, these partial results will provide 

significant insights for the original problem if it is carefully decomposed. Thus, 

these results can be used as an initial approximation of the solution for the 

original large problem. In order to obtain the exact or an accurate enough 

solution, the partial results need to be refined. For complex problems, this 

refinement usually takes a long period of time. In order to provide users with 

various levels analyses (from coarse to fine), the refinement is incrementally 

achieved stage by stage. By each stage, the obtained partial results can be 

presented to the user with an estimated quality. Also, during the processing, 

problem’s dynamic information needs to be adapted. When problem’s inputs 

change, we do not recalculate solutions from scratch. In order to effectively and 

efficiently handle problem’s dynamism, the dynamic change adoption is 

accomplished by refining affected results based on the obtained partial solution. 

 

Thus, in our methodology, we will decompose a large social network into small 

parts, build a coarse-level of network analysis based on the analysis of separated 

parts of the network, and incrementally refine these partial results stage by stage. 

A graph’s dynamic changes will be adopted during the analysis process based 

on the obtained partial results. 

a) Methodology Architecture 

According to working processes, our methodology mainly consists of three 

phases, Domain Decomposition (DD) phase, Initial Approximation (IA) phase, 

and Recombination (RC) phase. The architecture of our methodology is shown in 

Figure 3-1. 
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Figure 3-1. Our anytime-anywhere methodology’s architecture. 
 

Our methodology works as follows. The DD phase is the first phase used in 

handling large networks. The DD phase takes the charge of breaking a large 

graph into small-ones. According to general criterion and specific requirements 

posed by users and SNA applications, the original large network will be cut into 

several parts in the DD phase within a relative small amount of time. After graph 

partitioning, sub-graphs are distributed to a set of SNA agents which can be one 

or a group of processors. At each agent, current SNA technologies or specially 

designed approaches are applied and the analyses of the sub-graphs are 

generated. We take these analyses as an initial approximation of the original 

network. Thus, this phase is called Initial Approximation phase. The function of 

RC phase is to incrementally build the exact (or a good approximate) solution of 

the whole network. In this phase, each agent may iteratively communicates with 

each other, refine local solutions with the results obtained on its own or at other 
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agents, incorporates graph’s dynamic information during processing. The 

anytime-anywhere property of our methodology is mainly embodied in functions 

of this phase.  

 

One of our main goals is to build a framework for large social network analysis 

which can be used in a broad range of applications. Thus, our system is 

designed based on modular architecture since it provides good flexibility. In our 

system, there is one module corresponding to a single phase and each module is 

a plug-and-play component. Algorithms and mechanisms employed in each 

component may change. However, by the plug-and-play design, the framework 

of the system does not change. In the following paragraphs, we will provide 

details of each component design.  

b) Domain Decomposition Phase 

As we mentioned, it is not feasible for each processor to handle the whole 

network. We need to partition the large graph into small parts. The Domain 

Decomposition phase takes the charge of partitioning a large graph into 

computationally tractable intra-related balanced sub-graphs. 

 

The Domain Decomposition phase is important for our methodology. From the 

methodology architecture, which is shown in Figure 3-1, we can see that how 

well a graph is decomposed will affect the quality of the initial approximation of 

the whole graph and the work load remaining in the recombination phase.  

 

Arbitrary/random graph partition is not suitable for the DD phase. The Domain 

Decomposition phase has its own requirements on graph partitioning. First, sizes 

of sub-graphs generated by the DD phase should be small enough to meet the 

limits of SNA agents/processors. Second, all these sub-graphs should have 

balanced sizes. Dividing a big problem into balanced small parts will help us to 

improve the system’s efficiency. Third, generated sub-graphs should be 

“isolated” from each other. Since we want to use the results from each sub-graph 
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to initially approximate the solution of the whole graph, the more isolated sub-

graphs, the more accurate approximation we will get and the less work remained 

in the RC phase. 

 

During the design of the domain decomposition, it is vital to consider the balance 

of the work in dividing and combination. Putting all the work on dividing, such as 

quick sort algorithm [BaaseG’00], or leaving all the work to combining, such as 

merge sort algorithm [BaaseG’00] are both unsuitable for our methodology. 

Putting a lot of efforts on dividing, we can obtain initial approximation with very 

good quality. However, this will break the ability for making quick response. 

Putting main efforts on combination, we can get the decomposition done within a 

very shot time. Nevertheless, the obtained quick analysis should be useful. We 

cannot afford to miss a lot of important information in the graph in the initial 

approximation. Thus, it is necessary to design a specific algorithm for 

decomposing a large graph into intra-related small parts within a relatively short 

period of time.  

 

Obviously, in the DD phase, we can check the connectivity of a graph and put 

each connected component onto a single processor. Checking graph’s 

connectivity does not cost long time. However, for a large network, its biggest 

connected component may be also large. Usually, for a large graph, we have to 

partition it with discarding some connections in the graph.  

 

In order to improve the quality of initial approximation of a network and balance 

the work between dividing and combining, there are many metrics that may be 

considered for guiding the process of graph decomposition. The number of cut-

edges is one of the most fundamental factors for graph partitioning. Cut-edges 

are defined as those edges whose endpoints belong to different sub-graphs. The 

sum of cut-edges’ weights is defined as graph cut-size. When we partition a 

graph, we will remove cut-edges and convert the graph into several disconnected 

components/sub-graphs. The more edges cut, the more information we will lose. 
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In order to alleviate the work in combination and achieve more accurate initial 

approximation, cut-size should be optimized. Actor degree is another significant 

factor we may need to consider during graph partitioning. For many cases, nodes 

with high degrees are centers of communities. It is not good to place nodes with 

high degree on or close to the boundary of sub-graphs. Here, a sub-graph’s 

boundary is defined as the set of nodes with which cut-edges are incident. In 

some cases, we should also consider the similarity between actors during 

partitioning a graph. Putting similar actors into the same part will provide non-

trivial insights for social network analysis. According to various types of social 

networks and applications, there are many other factors which may be 

considered in the domain decomposition, such as the importance of each node, 

the connectivity property of each node and the sub-graph we generated, etc. 

When to use them and how to use them will be determined by the specific social 

network and its application. 

 

Essentially, the DD phase can be treated as a multi-objective optimization 

process. The objective function will be determined by general criteria for graph 

decomposition and specific concerns required by applications or users. The task 

of the DD phase is to find an optimized graph partition within a relatively small 

time. 

c) Initial Approximation Phase 

After the DD phase, a large network is partitioned into small sub-networks. These 

small graphs can be easily analyzed by current SNA techniques or specially 

designed approaches. Comparing with analyzing the whole large graph, analysis 

results for sub-graphs can be obtained within a much smaller period of time. 

These results can be used as a preliminary approximation of the original network. 

These initial approximation results can help SNA users to establish the 

fundamental feeling, recognize the basic structure, and identify primary important 

components and properties of the network. In the IA phase, tools employed at 

each SNA agent can be current commercial SNA software packages or some 
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specially designed algorithms. 

d) Recombination Phase 

The function of the RC phase is to adopt graph’s dynamic change and 

incrementally refine partial results over time, based on results obtained locally 

and/or externally, so as to achieve the exact (or a good approximate) analysis of 

the original network. The anytime-anywhere property of our methodology is 

mainly demonstrated in this phase.  

 

From the methodology architecture (Figure 3-1) we can see that SNA agents/ 

processors are connected to communicate with each other through physical 

networks. The analyses of the local sub-graph are generated at each SNA agent 

in IA phase. Then, each agent refines its local solutions based on local 

information and solutions obtained elsewhere (if needed), and propagates its 

new solutions through the whole network stage by stage.  

 

Since networks are dynamic, there will be changes happening in large networks 

during analyses processes. In the RC phase, no matter where and when these 

changes happen, they will be adapted locally by each SNA agent. Then, if 

needed, the relevant information will be transmitted to other agents and the 

effects of these changes will be incrementally propagated through the whole 

network. 

 

For both anytime and anywhere approaches in the RC phase, there are two 

significant concerns which should be considered. First, we should have the ability 

to predict or check the convergence of algorithms. In other words, we should 

know when the obtained results are exact or accurate enough. Second, it is 

necessary for us to measure or predict for users the accuracy of partial solutions 

obtained in the RC phase.  
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3.4 Focuses of Our Methodology 

Currently, in the field of SNA, social networks are analyzed based on numerous 

types of SNA metrics which have different requirements and properties. 

Unsurprisingly, such variations imply diverse SNA methodological constructs. In 

our anytime-anywhere methodology design presented in this dissertation, we 

focus our attention on a broad group of on SNA metrics that have certain 

structure or criteria.  

 

In particular, we consider, SNA metrics which can be recursively defined. In other 

words, the metric value on the next stage can be calculated from partial results 

obtained at current stage and/or previous stages. This requirement is easy to 

understand. If a metric cannot be recursively defined, then after obtaining partial 

results on each stage, we need to do the recalculation from scratch for the next 

stage. Comparing with methods which directly calculate the exact results, this will 

introduce a great amount of overhead.  

 

In order to effectively and efficiently handle a graph’s dynamic information during 

analysis process, we determine elements in partial or accurate results which are 

affected (or non-affected) by the dynamic change. Without this ability, we may 

have to work on all elements in the obtained results. It is similar as recalculating 

whole results from scratch. If we can identify the affected elements, we can focus 

our efforts on making proper changes for these affected elements. Also, in order 

to achieve better efficiency, the effects of dynamic changes should be able to be 

calculated either based on obtained results or from only a portion of original 

problem inputs.  
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3.5 Summary 

In this chapter, we proposed an anytime-anywhere methodology for effectively 

and efficiently analyzing large and dynamic social networks. According to 

working processes, our methodology can be decomposed into three main phases: 

Domain Decomposition, Initial Approximation, and Recombination. The anytime-

anywhere property of our methodology is mainly implemented and expressed in 

functional design of the Recombination phase. Our methodology is designed 

based on a modular architecture. Each phase can be taken as a plug-and-play 

component. The specific implementation or employed algorithms of each phase 

can be modified according to different requirements of various SNA metrics and 

real applications. The modularity design endues our methodology with great 

flexibility.  
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4. Methodology Analyses and Validation 

In Chapter 3, we present details about the design of our anytime-anywhere 

methodology for analyzing large and dynamic social networks. The proposed 

methodology is designed on a modular architecture and it can be applied on a 

broad range of social network metrics and social network analysis techniques.  

Based on common knowledge of system design, intuitively we believe that our 

methodology can provide significant advantages for large social network analysis, 

such as accelerating the analyses process, providing various levels of analysis 

results, effectively handling graph’s dynamism, etc. In order to evaluate and 

validate our methodology, we decide to study our methodology’s performance, 

both theoretically and experimentally, on a set of SNA problems which cover a 

broad range of difficulties. According to application importance and 

computational costs, we decide to choose the following three SNA metrics:  

• ego-betweenness centrality, 

• closeness centrality, 

• and maximal clique enumeration.  

 

In this chapter, we will first introduce a number of basic and fundamental 

terminologies frequently used in SNA, which are of particular interest in our 

discussion. Then, we will provide definitions, and corresponding popular/common 

algorithms employed in current SNA tools and their computational complexities 

respectively.   

4.1 Fundamental Definitions and Terminologies 

As we mentioned before, social networks essentially are graphs. A graph can be 

presented as G(V,E) where V is the set of elements called vertices/nodes/actors 
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and E is the set of unordered pairs of nodes called edges/links/ties. |V| and |E| 

are the cardinality of set V and E respectively and usually are denoted as n and 

m. |V| is also called as graph size.  

 

We say a vertex u is adjacent to (or has a direct neighbor of) v if {u,v} is an edge 

included in the set E. This edge is denoted as e(u,v). We call vertices u and v as 

endpoints of e(u,v), and we say that the edge e(u,v) is incident with vertices u 

and v. Edges in networks can have directions. We use ),( vuer  to represent the 

directed edge connecting u and v, and pointing from u to v. If edges have 

directions, a graph is called directed graph or digraph. Otherwise, it is called 

undirected graph. All edges in an undirected graph are symmetric. More 

precisely, this can be formed as 

( ) ( )uvevue ,, ⇔ . 

Also, an undirected graph can be treated as a directed graph by adding both 

directions onto each edge. This is mathematically represented as 

( ) ( ) ( )uvevuevue ,&,, rr
⇔ . 

 

Degree of a vertex v is defined as the number of edges incident with v. Usually, 

we use deg(v) to denote the degree of the vertex v. The maximum degree of 

graph G is the largest degree over all vertices. Usually, we use Δ(G) or simply by 

Δ, if no ambiguity exists. In a directed graph, nodes may have two types of 

degrees, in-degree and out-degree. In-degree, which is represented as deg(v+), 

is the number of edges pointing to node v. Out-degree, denoted as deg(v-), is the 

number of edges leaving from the node v.  

 

Each e(u,v) can be assigned some value w(u,v), which are variously referred to 

as weight, cost, or length. If all edges in a graph have uniform weights, this graph 

is called an unweighted graph. Otherwise, it is called a weighted graph and is 

represented as G(V, E, W) where W is the set of edge weights. A path 

connecting nodes u and v is defined as an alternating sequence of vertices and 

edges, 



 

 38

),(,),,(),,( 11322211 kkk vvevvevve −−L , 

where v1=u and vk=v. All the vertices and edges in the sequence are distinct 

(exception v1 and vk). In this document, we use puv to represent a path 

connecting u and v. Path length/cost/distance is the sum of all the weights of the 

edges belonging to this path and is represented as dp(u,v). The geodesic path 

between two nodes u and v is the path with the shortest distance, and this 

distance is called geodesic distance and denoted as d(u,v). 

 

A graph G`(V`,E`) is called a sub-graph of G(V,E) if its vertex set V` and edge set 

E` are subsets of V and E respectively. This sub-graph is called an induced sub-

graph of G if for every pair of vertex u and v of G`, e(u,v) exists in G` if and only if 

there is an edge e(u,v) in G. In a sub-graph, a boundary node is defined as a 

node which has connections with nodes belonging to other sub-graphs. The 

boundary size of a sub-graph Gi is defined as the number of its boundary nodes 

contained, and is denoted as |Bi|. An edge is called as cut-edge if its endpoints 

belong to two different sub-graphs. The set of cut-edges of sub-graph Gi is 

denoted as Ci. Cut-size is defined as the number of cut-edges and represented 

by |Ci|.  

 

In this dissertation, our study is mainly focused on weighted digraphs with real 

(positive or negative) edge weights. 

4.2 Centrality Measurements in SNA 

Centrality is one of the most important and frequently used measurements in 

SNA [CarringtonSW’05]. It is a descriptive characteristic for actors or groups of 

actors with various structural properties and a crucial parameter for 

understanding and analyzing actor roles in social networks [Newman’05]. Usually, 

centrality is used to identify powerful, influential or critical actors.  
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Centrality has diverse definitions because of different understandings of social 

power and various SNA applications [CarringtonSW’05, HannemanR’05]. The 

most widely accepted definitions of centrality are proposed in by Freeman in 

[Freeman’79] in the late 1970s. In these definitions, centrality measurement is 

measured mainly based on three aspects, degree, closeness, and betweenness.  

a) Degree Centrality 

Degree centrality is defined as the number of ties which are incident with a given 

node. This measurement usually reflects the popularity and relational activity of 

an actor [Marsden’02, Frank’02, Newman’05]. For example, in a friendship 

network, we can find the most popular persons by identifying the actors which 

have the largest degree centrality. If we have a graph with n vertices, degree 

centrality is mathematically defined as formula 4.1.  

∑ =
=

n

k kiiD vvavC
1

),()(     (4.1) 

where a(u,v)=0 if u and v are not connected by an edge, otherwise, a(u,v)=1.  

b) Closeness Centrality 

Closeness centrality measurement is based on geodesic distances. It measures 

how far away a node is from all other nodes. It indicates the actor’s availability, 

safety, and security [Frank’02]. More precisely, closeness centrality is defined as  

∑ =
− =

n

k kiiC vvdvC
1

1 ),()(     (4.2) 

Many social researchers argue that for large networks, closeness centrality 

measurement defined in formula (4.2) is not attracting. This is because in a large 

social network, usually an actor is only close to a limited set of other actors. The 

closeness centrality measurement for most actors in large social networks will be 

very small. Typically not many insights are contained in the closeness centrality 

measurement. The reason for this problem is that summing all the geodesic 

distances will lose a lot of information. However, the distribution of geodesic 

distances from a source node to all other nodes contains non-trivial information. 

For example, when we analyze spreading of diseases, we need to use these 
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distances to estimate the propagation of the disease in a network. Thus, in large 

social network analysis, the closeness centrality for node vi is represented by two 

kinds of parameters. One is the closeness value which is defined in formula (4.2). 

The other one is a distance vector which stores the geodesic distances from this 

node vi to all other nodes.     

c) Betweenness Centrality 

Betweenness centrality of a vertex v is defined to be the fraction of shortest paths 

that go through v. This measurement represents the actor’s capability to 

influence or control interaction between actors it links [Marsden’02, Frank’02, 

Newman’05]. Mathematically, it is defined as the following formula: 

∑ ∑=

−

=
=

n

j

j

k jkijkiB gvgvC
1

1

1
/)()(    (4.3) 

where gjk is the total number of geodesic paths (shortest paths) linking vj and vk, 

and gjk(vi) is the number of geodesic paths that pass through vi.  

 

From the definition, we can see that in order to measure betweenness centrality 

for all nodes, we have to find and store all geodesic distances for all pairs of 

actors. There may be multiple shortest paths between a pair of nodes. Algorithms 

for betweenness centrality are quite complicated and require a great amount of 

memories, which can be O(n3). Calculating betweenness centrality for each node 

in a large network seems to be impractical due to this giant storage space 

requirement and expensive computational cost. Therefore, many SNA 

researchers try to employ other metrics to approximate and substitute 

betweenness centrality. Ego-betweenness centrality has been verified to have 

high correlation with the original betweenness centrality and can be used as a 

good approximation for it [Marsden’02, Newman’05].  

d) Ego-Betweenness Centrality 

Ego-betweenness centrality is defined based on ego-centric networks or simply 

ego-networks, which are also called first-order neighborhood networks. This kind 
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of networks consists of a single vertex, called ego, together with its direct 

neighbors, denoted as alters, and all the interactions between the ego and alters 

and among alters [Marsden’02]. In other words, an ego-centric network is an 

induced sub-graph of the original network on a set of vertices which consists of 

an ego and its direct neighbors. We use the following example to explain the 

definition of ego-centric networks. Assume we have a network as shown in 

Figure 4.1. 

 

 
Figure 4-1. An example social network. 

 

We can pickup any node as an ego. Assume that we randomly pickup a node v 

and set its color as yellow. Then, we can find all its direct neighbors and set their 

color as blue. This is shown Figure 4-2. In this figure, the yellow node is the ego, 

and blue nodes are ego’s alters 
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Figure 4-2. The selected ego v and its alters. 

 

The ego-centric network is the sub-graph induced on the ego and its alters, 

which is shown in Figure 4-3. This ego-centric network is also called as the ego-

network of node v. 

 

v

 
Figure 4-3. The ego-network of node v. 
 

In the definition discussed before, we can see that the ego-networks we 

discussed only focus on the first-order zone of the ego. In other words, all the 

vertices in an ego-centric network are within distance 1 to the ego. More 

generally, an ego-network can be constructed with alters which lie within a given 

distance K to the ego and links among them. This type of ego-networks are 
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called Kth order/step neighborhood network [HannemanR’05]. In current SNA 

applications and researches, first-order neighborhood networks are employed the 

most frequently. Thus, in this document, we focus our study on this type of ego-

networks. 

 

Ego-betweenness centrality, as its name shows, is focused on ego-networks. 

The ego-betweenness centrality for a vertex v is measured similar as formula 

(4.3), except that instead of using the whole network, ego-betweenness centrality 

is measured on the ego-network of v. Researchers’ experimental results have 

shown that ego-betweenness is highly correlated with and could be a reliable 

substitute for the Freeman’s betweenness measurement [Marsden’02, 

Newman’05].  

4.3 Maximal Cliques 

A clique is a completely connected graph. In other words, a clique is a set of 

vertices within which there is an edge between any pair of vertices. Each vertex 

contained in a clique is called as clique member. In this chapter, we use clique 

member set, S, to represent a clique. Usually, cliques are defined on undirected 

graphs. We do not consider edge directions during processing cliques. From 

clique’s definition, we can also see that during handling cliques, we do not care 

about weights of edges. Instead, we only concern if all vertices in a clique are 

directly connected. Thus, when studying cliques, we only consider dichotomized 

undirected graphs. For weighted graphs, usually we can transform it to a 

dichotomized graph by setting a threshold. If an edge weight is larger than the 

threshold, we set the new edge weight as1. Otherwise, we set it as 0.  

 

A clique S is contained in a clique S’ if and only if: 

'SS ⊂  

A maximal clique is defined as a clique that cannot be contained in other cliques. 

Clique size is defined as the number of vertices contained in the clique, which is 
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represented as |S|. The maximal clique with the largest size is called as 

maximum clique, and is represented as S*.  

 

Essentially, cliques are special type of structure and implicate significant insights 

in a social network. Due to inside highly intensive interactions, cliques usually are 

the most fundamental and key elements in communities (cohesive groups of 

actors) in a social network. A community is defined as a set of actors which has 

more interactions within the set and has less interactions inter sets. Community 

is one of the most important structural information contained in social networks. 

Identifying and analyzing communities in a social network is critical for studying 

how organizations are formed, how organizations interact with each other, how 

actors operate differently within an organization and inter organizations, etc.   

4.4 Algorithms for Measuring Closeness Centralities 

In order to analyze how the metrics introduced above are measured by computer 

techniques, in the following sections, we will discuss existing popular algorithms 

which are commonly employed in current SNA software tools or SNA 

researchers. In this section, we will focus on algorithms for measuring closeness 

centralities. Closeness centrality measurement is based on calculating all-to-all 

geodesic distances. There are many algorithms developed for this problem. In 

this document, we focus on two of the most widely used algorithms: Dijkstra’s 

algorithm [Dijkstra’59] and Floyd’s algorithm [Floyd’62].  

a) Dijkstra’s algorithm 

Dijkstra’s algorithm [Dijkstra’59] is one of the most popular graph algorithms. This 

algorithm is a type of greedy approach. It has been proved that Dijkstra’s 

algorithm can find the shortest paths (and their geodesic distances) between a 

source vertex and all other vertices for a graph with positive real edge weights. 

The proof can be found in [BaaseG’00]. The pseudo-code of Dijkstra’s algorithm 
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is shown in Figure 4-4. In this figure, s represents the source vertex. This 

algorithm calculates the shortest distances between the source vertex to all other 

vertices in the graph. 

 

 
Figure 4-4. Pseudo-code of Dijkstra’s algorithm. 
 

From the pseudo-code we can see that in each loop, most work done in 

Dijkstra’s algorithm is finding the element with smallest distance to the source 

vertex in the queue Q. To our best knowledge, using Fibonacci heaps, Dijkstra’s 

algorithm can obtain the optimum computational time as O(m+nlogn) 

[BaaseG’00], where n is the graph size and m is the number of edges contained 

in the graph. Running Dijkstra’s algorithm, we can solve the single-source 

shortest paths problem. In order to obtain the closeness centrality measurements 

for all vertices we need to run Dijkstra’s algorithm on every vertex in the graph. 

1. initialization:  

a): for each node v: set dv as infinity;  

b): set all nodes status as unseen;  

c): initialize a set of nodes, Q, as {s}; 

d): set ds as 0;    

2. while Q is not empty  

3.      find the node v in Q which has the smallest distance to s, remove it 

from Q;  

4.        for each node u which is not finished and adjacent to v   

5.      get D = dv+w(v,u); 

6.   if u’s status is seen 

7.       if D<du 

8.                  du =D ; 

9.              update u’s information in Q; 

10.  if u’s status is unseen 

11.    du =D, set u’s status as seen ; 

12.   put node u into Q; 

13.      set v’s status as finished 
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Thus, the cost for using Dijkstra’s algorithm to measure closeness centralities for 

all vertices is O(nm+n2logn).  

 

Dijkstra’s algorithm is a decent algorithm for closeness centrality measurement. 

However, it is not suitable for handling large social networks. As we mentioned, 

when a social network size is large, it is infeasible to put the whole graph on a 

single processor. The graph needs to be decomposed into smaller parts and 

each processor will only focus on one part of the graph. However, in order to use 

Dijkstra’s algorithm, it requires the processor to have information of the whole 

network. Moreover, Dijkstra’s algorithm only works for graphs with positive real 

edge weights. In some applications, edge weights in social networks can be 

negative.  Thus, in order to be able to handle a general graph, we decide to 

employ other algorithms in our methodology for closeness centrality 

measurement.  

b) Floyd’s Algorithm 

Floyd’s algorithm [McHugh’90] is a fundamental and popular algorithm for solving 

the all-pairs shortest paths problem. Using Floyd’s algorithm, we can find 

geodesic paths (and geodesic distances) between all pairs of vertices. Floyd’s 

algorithm is an iterative method. It tries to incrementally update the distance 

matrix D by each vertex’s connection information. Here, D is an n by n matrix and 

each element Dij stores the obtained shortest distance for paths connecting from i 

to j. The recurrence of distance matrix updating is formed in [McHugh’90] as: 
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where wi,j is the weight of the edge connecting from vertex i to vertex j.  If there is 

no edge connecting these two vertices, the weight is set as positive infinity. 

Define internal vertices for a path as vertices on the path except the source and 

the target. By induction, it is not hard to see that at stage k, the obtained paths 

have the shortest distances among all paths whose internal vertices are chosen 
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from 1, 2 … k. When k=|V|, we can obtain the shortest paths between all pairs of 

vertices. The pseudo-code of Floyd’s algorithm is shown in Figure 4-5: 

 

 
Figure 4-5. Pseudo-code of Floyd’s algorithm. 
  

By running Floyd’s algorithm, we can obtain the shortest paths for all-pairs of 

vertices for a broader range of graphs which can have negative real edge 

weights but without negative cycles. The proof of the correctness of Floyd’s 

algorithm can be found in [McHugh’90]. The computational cost of this algorithm 

is the same as matrix multiplication, which is O(n3).  

 

Comparing with Dijkstra’s algorithm, we can see that Floyd’s algorithm is slower 

which makes Dijkstra’s algorithm seem to be better. However, Floyd’s algorithm 

has its own significant advantages. First, Floyd’s algorithm can work on graphs 

with negative edge weights. Moreover, Floyd’s algorithm is more suitable for a 

parallel/distributed computational framework.  For example, Distance Vector 

Routing (DVR) algorithm [KuroseR’01] is a modified version of Floyd’s algorithm 

on a distributed framework. This algorithm is one of the most frequently used 

algorithms in the network routing problem which is similar as the one-too-all 

shortest path problem if we take each router as a vertex in a graph. On each 

router, DVR algorithm only focuses on the connections of local router to its 

neighbor routers. Each router iteratively tries to update its shortest distances to 

all other routers based on the distance information of its neighbors. DVR 

algorithm also can effectively handle the graph dynamism. When a change of 

network connection happens, it will be adopted by the routers which are incident 

1. initialization:  

copy adjacent matrix A into D 

2. for(k=0; k<n; k++) 

3.      for(i=0; i<n; i++)  

4.         for(j=0; j<n; j++) 

5.    Di,j = min(Di,j, Di,k+Dk,j) 
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on this edge. Then, the effects of the dynamic change will propagate through the 

whole network as a ripple-effect. Thus, we can see that DVR algorithm seems to 

be more suitable for our methodology. However, DVR algorithm cannot be 

directly applied in our anytime-anywhere methodology. This is because, in the 

DVR algorithm, each processor only contains a single vertex. As we mentioned 

that large social networks have a great amount of vertices, it is impractical for us 

to employ so many processors in our parallel/distributed computational 

framework. Moreover, DVR algorithm is an asynchronous algorithm which means 

that it will be very hard to tell when this algorithm converges and estimate the 

quality of partial results generated by DVR algorithm. In order to address these 

problems, in our anytime-anywhere methodology, we implement a modified DVR 

algorithm for measuring closeness centralities. In later chapters, we will provide 

details about the design, implementation, performance analysis, and anytime 

property for our modified DVR algorithm.    

4.5 Algorithms for Measuring Ego-Betweenness Centralities 

In this section, we will briefly introduce two typical algorithms which are 

commonly used in current SNA researches for measuring ego-betweenness 

centralities. They are Everett’s algorithm [EverettB’05] and a modified Dijkstra’s 

algorithm. In following paragraphs, we will discuss the workflow, the 

computational cost, and pros & cons for each algorithm.  

a) Everett’s Algorithm: A Straightforward Approach 

A simple and fast algorithm for measuring the ego-betweenness is proposed in 

[EverettB’05]. This algorithm is based on manipulation of the network adjacent 

matrix. In an ego-network generated from an unweighted graph, the geodesic 

distance between any pair of vertices is either 1 or 2. Adjacent alters do not 

contribute to the betweenness of the ego. The ego-betweenness is determined 

by the paths of length 2 for non-adjacent pairs of alters. This information can be 
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obtained in the square of the adjacent matrix A. To avoid counting the adjacent 

alters, we can generate a new matrix B where  

Bi,j = A2
i,j·(1-Ai,j), 

where Ai,j is the element on the ith row and jth column of A. A2 is the square of 

the adjacent matrix. The ego-betweenness is the sum of the reciprocal of all non 

zero elements in the matrix B. 

  

From the algorithm design we can see that most of the work is done in matrix 

multiplication (calculating the square of adjacent matrix). The dimension of 

adjacent matrix is deg(ego) by deg(ego). Based on the common knowledge of 

matrix multiplication, the computational time of Everett’s algorithm is the 

O(deg3(ego)). For the whole large network, the algorithm’s work load is bounded 

by O(nΔ3) where Δ is the maximum degree, and n is the graph size.  

 

This algorithm is easy to understand and simple to implement. It was employed 

in the initial implementation of our methodology [SantosPAP’06]. However, this 

algorithm is designed for unweighted graphs. It has vital problems on handling 

weighted graphs. When edges have different weights, elements in the square of 

the adjacent matrix do not represent the number of paths with 2 hops anymore. 

Also, the distance of the path with 2 hops may be equal to any real positive value, 

instead of 2. Moreover, the shortest path connecting two actors may contain 

more than 2 hops. Thus, Everett’s algorithm is not employed in our methodology 

in this dissertation.  

b) Modified Dijkstra’s Algorithm 

Another popular algorithm for measuring ego-betweenness centrality is a 

modified version of Dijkstra’s algorithm [BrandesE’05]. We have already 

introduced the original Dijkstra’s algorithm in the previous section. We know that 

using Dijkstra’s algorithm we can obtain the shortest paths (and their distances) 

which connect from the source vertex to all other vertices in a graph with real 

positive edge weights.  There may be multiple shortest paths for a pair of vertices. 
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According to the definition of ego-betweenness, we can see that in order to 

calculate ego-betweenness centrality we need the information about all shortest 

paths in the ego-network. We can employ Dijkstra’s algorithm to achieve these 

information by modifying it in the ways as shown in [BrandesE’05]. The 

modification of Dijkstra’s algorithm is the addition of a mechanism to record the 

number of all the shortest paths between each pair of vertices (u,v), and the 

number of those shortest paths which connect (u,v) and go through the ego, o. 

The pseudo-code of the modified Dijkstra’s algorithm is shown in Figure 4-6. In 

this algorithm, we maintains three elements for each vertex v:  

1. The distance dv to the source vertex s. 

2. The number of shortest paths connecting s to v. We use gv to represent 

this number. 

3. The number of shortest paths connecting s to v and going through the ego 

o. We denote it as gv(o). 
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Figure 4-6. Pseudo-code of modified Dijkstra’s algorithm for ego-betweenness measurement 
 

Running our modified Dijkstra’s algorithm for a specific source vertex s, we can 

obtain two vectors 

μ=(g1, g2, …, gk), 

and 

μ’=(g1(o), g2(o), …, gk(o)), 

where k is size of the ego-network. Each element μi is the number of shortest 

paths connecting source vertex s and vertex i. Each element μ’i represents the 

1. initialization:  

a): for each node v: set dv as infinity and set gv & gv(o) as 0;  

b): set all nodes status as unseen;  

c): initialize Q, a set of nodes, as {s}; 

d): set ds as 0, set gs as 1;    

2. while Q is not empty  

3.      find the node v in Q which has the smallest distance to s, remove it 

from Q;  

4.      if v=o, set gv(o)=gv;   

5.        for each node u which is not finished and adjacent to v   

6.      D = dv+w(v,u); 

7.   if u’s status is seen 

8.       if D<du 

9.                  gu=gv; gu(o)=gv(o); du =D  

10.              update u’s information in Q 

11.          else if D=du 

12.                gu=gu+gv; gu(o)=gu(o)+gv(o) 

13.    update u’s information in Q 

14.  if u’s status is unseen 

15.    gu=gv; gu(o)=gv(o); du =D; set u’s status as seen 

16.   put node u into Q  

17.      set v’s status as finished 
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number of shortest paths connecting source vertex s and vertex i and go through 

the ego vertex o. The contribution of vertex s to the ego’s ego-betweenness 

value is: 

∑
= ′

′
=

k

i i

i
se

1 μ
μ . 

According to formula (4.3), taking every vertex as a source and add up all their 

contributions, we can obtain the exact ego-betweenness value. This is 

formulated as 

∑
=

=
k
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iiB evC
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1)(  

 

An ego-network’s size is the value of the degree of the ego, deg(o). The modified 

Dijkstra’s algorithm has the same computational cost as the original Dijkstra’s 

algorithm. Assume an ego-network Z has |Ez| edges. From the previous section, 

we know that the work load for the modified Dijkstra’s algorithm is bounded by 

O(|Ez|+deg(o)log(deg(o))). In order to calculate ego-betweenness centrality value, 

we need to run the modified Dijkstra’s algorithm on all vertices in the ego-network. 

Thus, the work load for calculate ego-betweenness for vertex o is 

O(deg(o)|Ez|+deg2(o)log(deg(o))). For measuring ego-betweenness centralities 

for all vertices in a network with size n, the work load is bounded by 

O(nΔ|E*
z|+nΔ2logΔ) where Δ is the maximum degree, E*

z is the maximum edge 

set among all ego-networks in the network. Since the modified Dijkstra’s 

algorithm can effectively handle weighted graph and has decent computational 

cost, we implemented this algorithm in our methodology for measuring ego-

betweenness centralities for large and dynamic social networks.  

4.6 Algorithms for Maximal Clique Enumeration 

One of the most significant tasks for SNA is finding cohesive groups of actors 

contained in a social network. Usually, cliques are fundamental elements for 

forming and identifying these groups. Finding all cliques also has significant 
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applications in many other fields, such as biology, electronic circuit design, etc. 

There are numerous algorithms developed for the problem of maximal clique 

enumeration. Due the space limitation, in this section, we will introduce the most 

frequently referred algorithm and the newly proposed algorithm. 

 a) BK Algorithm 

One of the most fundamental and frequently referred algorithm for finding all 

maximal cliques contained in a graph is BK algorithm [BronK’73] which is 

published in 1973. This algorithm employs a recursive branching strategy to 

traverse all cliques on a search tree based on three dynamically changing sets: 

• compsub: a global set containing the clique which is being processed; 

• candidates: a local set consisting of all vertices which will eventually be 

added to current compsub; 

• not: a local set holding vertices that have already been added to current 

compsub. In other words, any extension of compsub containing any 

vertex in not has already been generated.  

The essential idea of BK algorithm is recursively extending compsub based on 

candidates so as to generate its all extensions which do not contain any vertex in 

not. The basic mechanism of BK algorithm can be found in [BronK’73]. Based on 

the specific strategies for selecting different types of elements in candidates to 

expand compsub, there are several improved versions [BronK’73, Jonston’76] of 

the BK algorithm. The worst case for BK algorithm has been proven to be O(3n/3) 

[TomitaTT’04].  

 

Finding all maximal cliques is a very hard task. In fact, maximal clique 

enumeration is an NP-harp problem. In the worst case, the computational cost is 

in an exponential order of the graph size. For some extreme graphs, even when 

their sizes are not so large, it still takes formidable long time to find all maximal 

cliques. Thus, we can see that for this type of problems a methodology with 

anytime-anywhere property becomes more desirable. BK algorithm can be 

interrupted during processing and generate some partial results. However, BK 
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algorithm tends to traverse all maximal cliques with a pseudo-random order. It is 

hard to estimate the quality of the obtained partial results. It seriously degrades 

the usefulness of the partial results. Thus, we say that BK algorithm has a poor 

anytime property. 

b) Zhang’s Algorithm 

Recently, there is a new type of approaches [ZhangABCLS’05, KoseWLF’01] 

developed for maximal clique enumeration. This type of approaches is designed 

based on the fact that every clique with size k (or k-clique) is generated from 

cliques with size k-1 (or (k-1)-cliques). One of the most representative and 

efficient algorithm based on this type of approaches is Zhang’s algorithm 

[ZhangABCLS’05]. In the following paragraphs, we will briefly introduce Zhang’s 

algorithm.  

 

In Zhang’s algorithm, cliques are generated in an increasing order of the clique 

size. Define a clique with size k which can be expanded to be a candidate k-

clique. A candidate k-clique contains two parts, a k-clique and its common 

neighbors. Taking the nodes which are connected by an edge as cliques with 

size 2, the algorithm first identifies the set of all maximal cliques with size 2. Then, 

it puts expandable cliques with size 2 into a list of candidate 2-cliques. Next, it 

tries to expand each candidate 2-clique to generate cliques with size 3. Repeat 

this process on k-cliques until there are no candidate cliques. In order to avoiding 

exploring the same clique multiple times, Zhang’s algorithm keeps all k-cliques 

and candidate k-cliques in non-repeating canonical order. Taking the graph 

shown in Figure 4-7 as an example, let us show how Zhang’s works.  
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Figure 4-7. An example graph of maximal clique enumeration problem 
  

Based on this graph’s connection information, we can get maximal 2-cliques and 

candidate 2-cliques as: 

 
where the crossed elements in candidate cliques are the cliques which cannot be 

expanded according to canonical order. Expanding candidate 2-cliques, we can 

find that there are no maximal 3-cliques and candidate 3-cliques are: 

 
Finally, expanding candidate 3-cliques we can obtain the maximum clique 

{1,4,5,6} and stop the program since there are no candidate 4-cliques.  

 

The cost of Zhang’s algorithm is still an exponential order of the graph size. As 

we mentioned that maximal clique numeration is an NP-hard problem, large 

computational cost cannot be avoid. However, from the design and the example 

we can see that Zhang’s algorithm has the ability to provide useful partial results 

during the processing. Zhang’s algorithm generates cliques in an increasing 

order of size in stages. At the end of stage k, partial results which consist of all 

cliques within size k are returned to the user. From this point of view, Zhang’s 

algorithm is a kind of anytime approaches. However, this algorithm cannot be 
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directly employed in our methodology since it does not have the ability to handle 

graph’s dynamic changes. In later chapters, we will present details how we 

modify Zhang’s algorithm in order to fit in our anytime-anywhere methodology. 

4.7 Comparisons and Summarizations of Selected SNA Metrics 

We have discussed three SNA metrics: ego-betweenness centrality, closeness 

centrality, and maximal cliques. For each metric, we introduced its corresponding 

algorithms which are broadly employed in current SNA software tools or by SNA 

researchers. In order to analyze how well current approaches are suitable for 

handling large social network, we need to study them from at least the following 4 

aspects: 

• required information for calculation 

• computational cost 

• anytime property 

• anywhere property 

 

First, required information for calculate is important for large social network 

analysis. When social networks are large, it is infeasible to put the whole network 

on a single processor. In a parallel/distributed framework, each processor will 

only focus on a part of the large network. Second, algorithm’s computational cost 

is a significant factor which should always be considered. Usually, we not only 

want to comprehensively analyze large networks but also want to obtain the 

analysis results as soon as possible. Furthermore, according to the challenges of 

long processing time and graph’s dynamism, anytime and anywhere properties 

are critical concerns for algorithms to effectively handle large social networks. 

a) Required Information 

From definitions of ego-betweenness centrality and maximal clique we can see 

that these two metrics are focused on the first-order zone graphs. Ego-
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betweenness centrality is measured on ego-networks which only consider the 

interactions between the ego and its alters and among alters. Maximal cliques 

also focus on direct connections between vertices. Taking a sub-graph as an ego 

(called as super-ego), we can build a super-ego-graph which contains the 

interactions within the super-ego, and interactions between super-ego and its 

alters and among its alters. A super-ego-graph is just one step farther away from 

the sub-graph generated in the Domain Decomposition Phase. Ego-betweenness 

centrality and maximal clique can both be measured based on a super-ego-graph. 

Thus, we say that measuring these two metrics only requires local graph 

information. 

 

Measuring closeness centrality is different. From the definition of closeness 

centrality we can see that it is measured based on the geodesic paths between 

pairs of vertices. Finding the shortest paths between a pair of vertices may use 

connection information of all vertices. Some types of approaches, such as 

Dijkstra’s algorithm, require the knowledge of the whole network’s connection 

information. Other types of algorithms, such as DVR algorithm (a distributed 

version of Floyd’s algorithm), can focus on local sub-graph information and 

incrementally refine it local solution by the results obtained from other sub-graphs.  

b) Computational cost 

Computational cost is an important parameter to indicate the bound of time cost 

for an algorithm to solve a specific problem. We have already presented them for 

each algorithm in previous sub-sections. Some algorithm’s computational cost 

depends on the maximum degree or number of graph edges, such as Dijkstra’s 

algorithm and Everett’s algorithm. In the worst case (when every vertex has 

connections to all other vertices), these two parameters can be n-1 and n(n-1) 

respectively. For the worst cases, the algorithms for these metrics are ranged in 

an increasing order of computational cost as: closeness centrality, ego-

betweenness centrality, maximal clique enumeration.  
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In the worst case, the algorithms for ego-betweenness centrality will cost longer 

period of time than closeness centrality algorithms. This is not surprising since 

that under this case each ego-network is the whole network. We repeatedly 

process the whole network n time. However for large social networks, due to 

limitations on social power, it is almost-impossible for a vertex to have 

connections as a linear order of the graph size. From the discovered special 

properties (discussed in section 2.2) we can see that it seems that vertex’s 

degree distribution for real-world large social networks follows a power-law. 

Normally, the degree of most vertices or the number of edges in a large social 

network is usually on the logarithm order of the network size, O(logn). The work 

load of using Dijkstra’s algorithm to measure closeness centralities for normal 

large social networks is O(n2logn). Everett’s algorithm and modified Dijkstra’s 

algorithm for ego-betweenness will both have computational cost as O(nlog3n) 

for processing normal large social networks.  

 

Computational cost for the maximal clique enumeration problem can also have 

upper bound on large social networks with power-law distribution. It has been 

presented in [DuWXWP’06] that the work load of BK algorithms on real-world 

large social networks is:  

)( 2TriMO C ⋅⋅Δ  

where Mc is the maximum clique’s size. Limiting the maximum degree as O(logn), 

we can get the bound of BK algorithm’s computational cost as 

)(log 2TriMnO C ⋅⋅  

By similar analyses in [DuWXWP’06] we can get that Zhang’s algorithm has the 

same computational work load bound as BK algorithm.  

c) Anytime and Anywhere Properties 

Anytime and anywhere properties are important for effectively analyzing large 

and dynamic social networks. In common approaches for SNA, usually there is 

no consideration of the anywhere property. As we mentioned, current software 
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tools handle graph dynamism in a quite naive way that when a network is 

changed, they just discard the obtained results and re-analyze the whole network 

from scratch.  

 

Not all approaches for SNA metrics have the anytime property. Some specific 

SNA metrics are very simple, such as ego-betweenness centrality and degree 

centrality. These metrics are defined only on a small part of the graph and can be 

obtained with very low computational cost for normal social networks. Analyzing 

them do not requires the anytime property. However, for most SNA metrics, the 

anytime property is critical. Although some of algorithms for these metrics can be 

interrupted and present some partial results, it is vital to check if there is a 

mechanism to estimate the quality of the returned results. 

d) Summarization  

Based on the discussion of selected SNA metrics we can see that ego-

betweenness centrality seems to be the easiest one to measure. In the definition, 

ego-betweenness centrality is only focused on the first-order zone of an ego 

vertex. From the computational work load, normally measuring ego-betweenness 

centralities will relatively take a very short period of time. In fact, ego-

betweenness centrality is chosen as a fundamental test case to primarily check if 

there is any flaw in our design which will degrade our methodology’s 

performance. Closeness centrality is a representative problem with middle 

difficulty. The time cost for this metric is about the third order of graph size. We 

chose maximal clique enumeration problem as our test case for the hardest 

problems because in the worst case, finding all maximal cliques will take 

exponential costs on both time and memory. 

 

Properties of selected SNA metrics and their corresponding algorithms are 

summarized in Table 4-1.  
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Table 4-1 Summary of selected SNA metrics. 
Ego-betweenness Closeness  Maximal Clique 

Algorithm 
Properties Everett’s 

algorithm 

Modified 
Dijkstra’s 
algorithm  

Dijkstra’s 
algorithm 

Flody’s (or 
DVR) 

algorithm 

BK 
algorithm  

Zhang’s 
algorithm 

Required 
information Local Local global Local*  Local Local 

Time cost in 
worst case O(nΔ3) O(nΔ|E*

z| + 
nΔ2logΔ) 

O(nm +  
n2logn). O(n3) NP-hard NP-hard 

Time cost 
for NLSNs O(nlog3n) O(nlog3n) O(n2logn). O(n3) O(Mclogn 

Tri2) 
O(Mclogn 

Tri2) 
Anytime 
property N N N Y* N Y 

Anywhere 
property N N N N N N 

Note: NLSN stands for Normal Large Social Network. The local* in Floyd’s algorithm represents 
that the algorithm can work on local information. However, in order to achieve correct results, it 
needs to information shared from other processors. The Y* in Floyd’s algorithm represents that 
the algorithm does not have anytime property for local sub-network. But, it can be modified to 
have anytime property for generating closeness centrality for the whole network.  

4.8 Summary 

In order to validate the effectiveness and evaluate the performance of our 

anytime-anywhere methodology, we decide to implement and study our 

methodology on three selected SNA metrics, ego-betweenness, closeness 

centrality, and maximal cliques. In this chapter we briefly introduce definitions, 

significances and popular algorithms for these SNA metrics. The selected metrics 

not only are indispensable for general SNA applications but also cover a broad 

range of difficulties, according to both computational complexities and different 

types of required graph information. We believe that evaluating our approaches 

on these selected SNA metrics can provide comprehensive study and strong 

validation for the effectiveness of our methodology. In what follows, we will 

provide details about our design, implementation, and theoretical performance 

analyses of the approaches designed based on our methodology for these three 

selected SNA metrics. 
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5. Domain Decomposition & Initial Approximation 
Phases Implementation 

As we mentioned in Chapter 3, our anytime-anywhere methodology are 

consisted of three main phases (modules), Domain Decomposition (DD) phase, 

Initial Approximation (IA) phase, and Recombination (RC) phase. The anytime 

and anywhere properties of our methodology are mainly manifested in the 

Recombination phase. Thus, we use a separate chapter to discuss our design 

and implementation of the Recombination phase. In this chapter, we will focus on 

the implementation of our Domain Decomposition phase and Initial 

Approximation phase. 

5.1 Domain Decomposition Phase Implementation 

The DD phase in our methodology is proposed for partitioning a large social 

network into smaller parts which fit for being handled on single processors. This 

phase is very important and has significant influences on our methodology’s 

performance. The results obtained from small sub-networks, which are generated 

in the DD phase, will be taken as an initial approximation of the analysis of the 

whole network. How well the network is decomposed in the DD phase will directly 

affects the quality of the initial approximation. Also, in the RC phase, in order to 

achieve the exact or accurate enough results of some SNA metrics, such as 

closeness centrality, each processor may need to communicate with others and 

refine its local results based on the results obtained elsewhere. The work 

remaining in RC phase is also affected by how networks are decomposed.   

 

Reiterate that in a general point of view, the DD phase essentially is a 

constrained multi-objective optimization process. The multiple objectives are 
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related to the quality of initial approximation and the work load remained in the 

recombination. The constraints are generated by the specific requirements of real 

applications and users. The task of the DD phase is using relatively small time to 

finding a solution which has optimal, or at least optimized, objectives and 

satisfies all constraints. The DD phase’s architecture is shown in Figure 5-1.  

 

 
Figure 5-1. The architecture of the Domain Decomposition phase.  
 

As we discussed in section 3.3, according to various SNA metrics and 

applications, there are many factors which may affects the quality of graph 

domain decomposition. How to generate proper objectives and constraints for 

graph decomposition is a big research topic which will take a long time to study. 

In this dissertation, my interest is to primarily design and validate our 

methodology for large social network analysis. Thus, in the initial implementation, 

we only focus on the most fundamental factors. Since each phase in our 

methodology can be taken as a plug-and-play module, we can easily adjust the 

currently employed objectives and constraints, even the architecture of the whole 

DD phase.  

 

As defined in Chapter 4, cut-size is the sum of edges whose endpoints belong to 

different sub-graphs. Cut-size is one of the most fundamental and universal 
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factors affecting DD phase’s quality. This is because that for most, if not all, 

cases the less information corrupted in the graph decomposition, the more 

accurate the results obtained in the IA phase and the less work remained in the 

RC phase. In our initial work, we use the cut-size to direct graph domain 

decomposition. In order to achieve better efficiency in a parallel/distributed 

computational framework, sub-graphs obtained in DD phase should have similar 

size. The task of DD phase is to partition a large graph into balanced small sub-

graphs with optimized cut-size.  

a) Graph Domain Decomposition Architecture 

Generally, graph partitioning (decomposition) is a NP-Complete problem. It is not 

practical to partition large graphs with a global optimal cut-size. In fact, 

researchers usually employ some heuristics to achieve optimized cut-size. 

Multilevel graph partitioning algorithm together with heuristic refinements on each 

level is a popular and effective method [Hendrickson93, BarnardS’94, 

KarypisK’99, KayehR’00, SoperWC’04]. The essential idea of this approach is 

collapsing nodes with strong connections to coarsen the large graph into a 

smaller one level by level, then generating good initial partition on the smallest 

graph according to the objective function, finally mapping and refining the graph 

partition back to the original graph level by level. The brief procedures of this 

approach are shown in Figure 5-2. 
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Figure 5-2. The structure of graph domain decomposition approach 
 

Usually, this kind of approach consists of three phases: Coarsening, Initial 

Partition, and Un-coarsening & Refinement. Taking cut-size as the optimization 

objective, our graph partitioning algorithm is designed based on the multilevel 

graph partitioning algorithm proposed in [Karypis98, KarypisK’99]. According to 

SNA applications, we made some modifications of this algorithm.  

b) Coarsening Phase 

We can first coarsen the graph step by step down to a graph with a few hundred 

nodes by generating a sequence of smaller graphs G(i). For each coarsening 

step, we choose the nodes that are highly related to each other to collapse into a 

super-node. This process can be formally defined in terms of matching. Since the 

goal of collapsing nodes is to decrease the graph size, a maximal matching is 

desired. In our SNA application, the network uses edge weights to indicate the 

strength of the connection between nodes. In most cases two nodes with strong 

connection may be highly related or similar. Thus, we would like the matching to 

have heavy edge weight. In our coarsening phase, we use a heavy-edge 

matching algorithm [KarypisK’99] to build the maximal matching for each step in 
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the coarsening phase. The idea behind the algorithm is the following: randomly 

choose an un-collapsed node a in G(i), check its neighbor, collapse it with the 

neighbor b who is un-collapsed and has the strongest connection with this node, 

and use a super-node x in G(i+1) to represent the combination of these two 

nodes. The edges between a and b will disappear and edges connecting a and b 

to other nodes will be merged together. This process is repeated until the graph 

has been reduced to a manageable size, as defined by the user. 

c) Partition Phase 

After coarsening the graph, we get a small graph, G(s), with a few hundred 

nodes. We can generate a good graph cut for this small graph within a short 

amount of time. Here we need to do k-way graph partitioning.  The parameter k is 

determined the by structural characteristics of graph. However, these features 

are just what the SNA tools used to measure or analyze,. Before cutting the 

graph, we usually do not know what the proper value of k is. Thus, in our 

implementation, we ask the user to specify a threshold for cut-size.  Within this 

cut-size, we cut via bisection recursively, trying to partition the initial graph into as 

many parts as possible until the threshold is reached. In partition phase, we use 

a simple breadth-first growing algorithm to increase the size of a partition which 

originates from a single seed of high degree. We chose this approach to 

minimize the chance that vertices of high degree will end up near the edge of a 

partition. 

d) Un-coarsening Phase 

Each vertex v in graph G(i+1) contains a distinct subset of vertices in graph G(i). 

When we project the graph back from G(i+1) to G(i), we will have more degrees 

of freedom. It is very likely to be able to find a smaller cut-size for G(i) than 

G(i+1). This means after finding the graph partition P(i+1) which is minimized on 

G(i+1), we should perform some refinement on partition P(i) to get the minimized 

cut-size for G(i).  
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Fiduccia and Mattheyses (FM) algorithm [FiducciaM’82] is a good candidate 

algorithm for this refinement. It is an improvement of the Kernighan-Lin (KL) 

algorithm [KernighanL’70]. It has low computation cost and good performance in 

practice. However, the original FM algorithm cannot be directly applied to more 

than two partitions. There are several variants of the KL algorithm for k-way 

partition refinement, such as Generalized KL, Greedy Refinement (GR) and 

Global Kernighan-Lin Refinement (GKLR) [KarypisK’98]. These algorithms try to 

achieve minimized cut-size while maintaining balanced partition size—making 

them ideal for distributing data among processors. GKLR approach seems to 

have good performance [KarypisK’98]. We employed GKLR in our graph 

decomposition algorithm. 

5.2 Initial Approximation Phase Implementation 

The task of the IA phase is to comprehensively analyze the sub-graph stored 

locally at each processor and use the analysis results as an initial approximation 

of the whole network. It is apparently helpful to employ current SNA techniques in 

the IA phase. However, we implemented our own approaches for the IA phase. 

The reasons we do so are as follows. First, our parallel methodology is built on a 

cluster of processors with Linux system. Many SNA software tools do not support 

Linux operation system right now. Second, most SNA software tools do not 

provide API interfaces. It is difficult to encapsulate them into our system. Finally, 

few of current commercial SNA software provide the function to measure ego-

centric betweenness centrality for every node. Usually, they only perform ego-

centric analysis on specified actors. We believe that, as commercial SNA 

software evolves, there is the potential that they can be utilized in our IA phase.  

 

Currently, in the IA phase, we employed modified Dijkstra’s algorithm introduce in 

section 4.5 for measuring ego-betweenness centrality. For closeness centrality, 

we use Floyd’s algorithm [McHugh’90]. Maximal clique enumeration problem is 

an NP-hard problem. In some extreme cases, even when sub-graphs are 
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relatively small (several thousands nodes), it may cost a very long time to 

generate the complete results. Thus, on each processor, we run Zhang’s 

algorithm [ZhangABCLS’05] on the locally stored sub-graph and present all 

cliques with size 2 (maximal 2-cliques and candidate 2-cliques) as the initial 

approximation of the whole network. 

5.3 Summary 

In this chapter, we provided the realization of the DD phase and the IA phase for 

the SNA metrics chosen for our methodology’s validation. All the work we 

presented in this chapter is an initial implementation of these two phases. In our 

current work, especially for the DD phase, we only focus on the most 

fundamental and universal concerns which we believe to be sufficient for our 

methodology’s primary validation. There is, of course, much space for the 

refinement and improvement on the design. Fortunately, our methodology for 

large social network analysis is designed on a modular framework in which each 

phase is a plug-and-play module. Without changing our methodology’s 

framework, we can further study and refine our phase design in the future.   
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6. Recombination Phase Implementation 

In the DD phase and IA phase, within a relatively small time, the original large 

social network is decomposed into smaller parts and each part is distributed to 

and analyzed at a single processor. These results are not accurate or complete 

because that they only focus on the separated sub-graphs (i.e. for closeness 

centrality) or a small portion of the original problem (i.e. for maximal cliques). In 

order to achieve complete results, we should either further analyze the locally 

stored sub-graph (i.e. for maximal cliques) or refine local results by the results 

obtained in other processors (i.e. for closeness centrality). This is one of the main 

tasks for the RC phase. Another main task for the RC phase is handling the 

graph’s dynamism. As we mentioned, most, if not all, social networks are 

dynamic. There will be edge/vertex changes during the analyses process. These 

dynamic changes will be effectively handled in the RC phase. 

 

In this document, according to different requirements of SNA metrics, we 

designed and implemented various recombination algorithms for them. In this 

chapter, we will first introduce the general analyses of anytime-anywhere 

approaches for large social network analysis. Then, we will present details about 

recombination algorithms for each selected SNA metrics respectively.  

6.1 General Anytime Recombination Algorithm’s Design 

In this document, anytime algorithms are defined as those approaches which can 

partially and incrementally process SNA metrics and present useful partial results 

to the user during the processing. In order to effectively and efficiently generate 

partial results, the SNA metric should have the property that it can be recursively 
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defined or can be calculated by dynamic programming algorithms. This means 

that the results for next stage can be generated from obtained partial results.  

 

There are mainly four characteristics which make anytime algorithms different 

from normal approaches. These characteristics are: quality measurements, 

predictability, interruptability, and monotonicity. In order to obtain an effective 

anytime algorithm, all these characteristics should be considered. During the 

analysis process, an anytime algorithm can be interrupted in middle and can 

present obtained partial results. Also, in order to make better use of obtained 

partial results, there should be a mechanism to measure the quality of these 

results. Partial results’ quality must be non-decreasing over time. Moreover, we 

should have the ability to estimate or bound the time cost for achieving partial 

results.    

 

According to characteristics of anytime approaches, in the initial implementation 

of our methodology, the anytime recombination algorithm takes the form of 
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where f(Xi) is the collection of results returned at the ith stage, X0 is the set of 

initial inputs, Ψ(X0) is the correct results, and Qualityi is the quality of the results 

returned at ith stage. In our initial implementation, the partial results for next stage 

are generated from the obtained results on the current stage. According to the 

characteristics of anytime approaches, the Quality function is monotonically non-

decreasing. The results finally returned to users are either correct results or good 

approximation.  

6.2 General Anywhere Recombination Algorithm’s Design 

Social networks are dynamic. There may be different types of changes on a 

social network. Vertices or edges can be added or removed. Edge weights can 
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be increased or decreased. However, all these changes can be generalized as 

changes on edge weights. Adding an edge can be treated as decreasing this 

edge’s weight from infinity to a real value. Removing an edge can be taken as 

increasing the edge weight to infinity. Adding/removing a vertex, in fact, is a set 

of edge addition/removal. Therefore, in our methodology validation, we only 

focus on dynamic graphs with edge weight changes. 

 

Anywhere recombination algorithms are focused on those approaches which can 

effectively handle graph dynamic changes during the processing. Handling 

dynamic graphs is a very hard task. The simplest and most straightforward way 

to deal with dynamic graphs is discarding obtained results and re-analyzing the 

graph from scratch. However, as we mentioned, this type of approaches has a 

formidable overhead and are not suitable for handling large social networks.  

 

In order to effectively and efficiently adopt graph’s dynamic changes during 

analysis process, anywhere algorithms should at least have the following abilities: 

1. Identifying the range of dynamic changes’ effects. Usually, when a 

dynamic change happens, not all obtained results will be affected. There 

will be a lot of elements which are still correct in the result set. 

Recalculating these valid results will be a horrible waste. Also, in order to 

achieve good efficiency, it is better to calculate the affected elements’ 

values based on the results we have already obtained. Thus, it is critical to 

identify the range of the effects of dynamic changes. Anywhere algorithms 

should have the ability of identifying either un-changed elements or 

potentially affected elements in the obtained result set. 

2. Identifying the way that dynamic changes affect on the result set. We 

know that dynamic changes in graphs will affect obtained results. However, 

according to different SNA metrics, the ways in which these dynamic 

changes affect are different. For some metrics, such as ego-betweenness 

centrality and closeness centrality, the affected elements will still be 

contained in the final results but with new values. For other metrics (i.e. 
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maximal cliques), elements which are affected by graph’s dynamic 

changes may become invalid anymore and will be removed from the result 

set. In order to incorporate dynamic changes, the anywhere approach 

should be able to find in which way dynamic information affects the 

obtained results. 

3. Recalculation based on obtained results (or partial results). In dynamic 

graph processing, usually we have already obtained some partial results 

(or the final results) when some graph changes happen. With the ability of 

identifying effect range of dynamic changes, we can process the affected 

(or potentially affected) elements in two ways: recalculate from scratch but 

only focusing on affected elements, or refine the affected elements based 

on the obtained unaffected results. Usually, using obtained results we can 

avoid redundant work and finish the dynamic change adoption faster. 

 

In following sections of this chapter, we will present how we design our anywhere 

approaches for each selected SNA metric. 

6.3 Ego-Betweenness Centrality Recombination Approach 

Among the three selected SNA metrics for our methodology validation, ego-

betweenness centrality seems to be the easiest one to handle. The definition of 

the ego-betweenness centrality shows that this metric only focuses on the first-

order zone of a vertex. From this point of view, in the process of measuring the 

ego-betweenness centrality, the large social network is automatically 

decomposed into small parts and the direct results can be achieved with a small 

time and memory cost. We implemented the approach for ego-betweenness 

centrality in our methodology as a sanity test to check if there is any flow in the 

design which will degrade our methodology’s performance on large social 

network analysis. In this chapter, we will present details about how ego-

betweenness centrality is incorporated in our anytime-anywhere methodology.  
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As we mentioned in section 4.7, not all SNA metrics require the anytime property. 

Some SNA metrics, such as degree centrality, ego-betweenness centrality, etc, 

are so simple that they can be directly measured within a very short period of 

time. There are no needs for partial and incremental processing of these types of 

SNA metrics. Ego-betweenness centrality is directly measured in the IA phase by 

the modified Dijkstra’s algorithm introduced in section 4.5. In the RC phase, we 

only implement an anywhere approach for ego-betweenness centrality 

measurement. 

a) The Anywhere Approach for Ego-Betweenness Centrality 

In this section, we will present details about how we design the anywhere 

algorithm for ego-betweenness centrality measurement according the concerns 

of general anywhere approaches discussed in section 6.2. 

 

Effect Range: When an edge’s weight is increased or decreased, not all vertices’ 

ego-betweenness values will be changed accordingly. An edge change only 

affects those vertices whose ego-networks contain this edge. According to the 

definition of ego-network, these vertices consist of the dynamic edge’s endpoints 

and their common neighbors.  This is shown in Figure 6-1. 

 

 
Figure 6-1. An example of the ego-betweenness dynamic change’s effect range 
 

In this figure, the red edge e(1,6) represents the dynamic edge in the graph. The 

vertices whose ego-networks contain this edge are the blue vertices,. Only these 
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vertices’ ego-betweenness centrality values may be affected. Ego-betweenness 

centrality values of vertices 2 and 3 will keep unchanged. 

 

Effect Way: As we mentioned, in the initial implementation of our methodology, 

we only focus on edge weight changes in anywhere approach design. For ego-

betweenness centrality, after an edge’s weight changes, we still need to present 

ego-betweenness centrality value for each vertex. The affected elements in the 

results set will be replaced by new values.  

 

Recalculation: Ego-betweenness centrality is a simple SNA metric which can be 

directly measured within a very short period of time. In our anywhere approach 

for ego-betweenness centrality, we just recalculate the affected vertices based 

on their new ego-networks. 

 

The Approach: Combining these concerns together, the pseudo-code of our 

anywhere approach for ego-betweenness centrality measurement is shown in 

Figure 6-2. It is easy to get that the work load of this algorithm is bounded by 

O(Δ2|E*z|+Δ3logΔ). For normal large social networks, the work load is O(log4n). 

 

 
Figure 6-2 Algorithm I: the anywhere recombination approach for ego-betweenness centrality 
measurement  
 

1. initialization:  

a): get the new edge weight w’(a,b);  

b): initialize Q, a set of vertices, as {a,b}; 

2. get all common neighbors of a & b into Q; 

3. while Q is not empty  

4.      pick the first vertex v contained in Q;   

5.        generate the new ego-network of vertex v;   

6.     calculate v’s ego-betweenness value; 

7.     remove v from Q; 
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6.4 Closeness Centrality Recombination Algorithm I – The 

Anytime Approach 

Closeness centrality measurement requires the knowledge of All-Pair Shortest 

Paths (APSP) distances. Solving the APSP problem for large graphs will cost a 

long period of time and great amount of computational resources, such as 

memory. Researchers have already tried to develop parallel algorithms for the 

APSP problem, such as the parallel version of Floyd’s algorithm [Quinn’03] and 

the specific algorithm presented in [HanPR’97]. These algorithms can more-or-

less improve the processing speed of APSP problem. However, they do not fit for 

analyzing large social networks due to the absent of anytime property. They can 

not provide usable partial results. Moreover, these approaches are designed for 

static graphs and cannot adopt dynamic changes of networks during processing.  

 

In this section, we will introduce our anytime approach for the closeness 

centrality measurement. Our approach is designed based on the Distance Vector 

Routing (DVR) algorithm [KuroseR’01], which is a distributed version of Flody’s 

Algorithm and has been frequently used in network routing. This algorithm works 

based on the fact represented by the following formula presented in [KuroseR’01]: 

{ }),(min),(),( wYDZXcZYD z
w

x +=  
where Dx(Y,Z) is the shortest path distance from X to Y via X’s direct neighbor Z, 

c(X,Z) is the distance between X and Z, and minw term is taken over all of Z’s 

direct neighbors. In our approach, we use a vector to store the geodesic distance 

information of a node vi, which is denoted as DV(vi). In DV(vi), the element DVj(vi) 

represents the obtained geodesic distance from node vi to vj. Recall that our 

anytime approach will provide usable partial results for analyst during processing. 

The elements contained in DVs may be immediate results, in stead of the exact 

geodesic distance which can be obtained by complete analysis of the whole 

graph. These immediate results will be refined step by step.  
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The main idea of DVR algorithm is updating local optimal route by the information 

obtained from neighbors. In this algorithm, each router/computer is a node. Each 

node maintains a distance table which contains its neighbors’ shortest distances 

to all other nodes. A node tries to identify its most efficient route to the target by 

checking its neighbors’ distances to the target. Our RC phase’s task is similar to 

this network routing situation. In our system, after the DD phase, the large graph 

is decomposed into interrelated sub-graphs/parts. Taking each sub-graph as a 

super-node, we can build a super-graph accordingly, as shown in Figure 6-3. In 

this figure, the original graph is decomposed into 6 parts which are represented 

by dashed circles. Red nodes stand for boundary nodes. Unlike the Distance 

Vector Routing problem in which each node only represents one router/computer, 

in our combination problem, each “node” is in fact a super-node which contains a 

group of nodes and their connections.  

 

 
Figure 6-3. An example of super-graph based on decomposition of original graph 
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a) The Approach 

Each processor only handles a part of the original network. We call the set of 

nodes which are contained in the locally stored sub-graph as local nodes and the 

set of nodes belonging to other sub-graphs as outside nodes. Define global 

nodes as the combination of these two sets. Each processor Pi stores a distance 

matrix Di whose elements are the obtained shortest distances from local nodes to 

global nodes. In the DD phase, each sub-graph is assigned to a separate SNA 

processor. After the IA phase, each agent obtains the shortest distances from 

their local nodes to all other nodes through paths which consist of only the edges 

contained in the local sub-graph. In other words, the shortest paths obtained in 

the IA phase at each processor are generated from an edge pool which only 

contains edges in the agent’s local sub-graph.  

 

From Figure 6-3, we can see that boundary nodes are bridges connecting local 

connections with connections contained in other processors. Only through 

boundary nodes outside processors’ information can affect local results. Thus, in 

our recombination approach, each agent maintains a table of distance 

information of boundary nodes’ outside neighbors. This table is denoted as 

outside distance table.  

 

In order to easily estimate the quality of partial results obtained at each agent, 

synchronous algorithms are employed. In each stage, each processor will first 

gather all related information from its neighbor processors into its outside 

distance table. For a processor, the neighbor processors are those whose local 

graphs have ties connecting with its boundary nodes. Then, each processor 

refines its boundary nodes’ DVs based on the new information contained in the 

outside distance table. After this, all local nodes’ DVs are updated. The update is 

accomplished in the similar way as Floyd’s algorithm. The only difference is that, 

in stead of using all local nodes’ information, the update is only based on the new 

information contained in boundary nodes. Finally, each processor will send its 

new results to its neighbors. The working procedures of our anytime approach for 
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closeness centrality measurement are shown in Figure 6-4. In this figure, p 

represents the number of sub-graphs which the original graph is decomposed 

into, Pi is the ith processor which handles the sub-graph Gi, Ci is the set of cut-

edges of Gi, and Di
j is the distance matrix in processor Pj at stage i. 

 

 
Figure 6-4. Algorithm II: the anytime recombination algorithm for closeness centrality 
measurement. 
 

b) Validity of the Approach 

The proof for our anytime algorithm’s correctness is similar to the one for 

Distance Vector Algorithm [GoodrichT’02]. Here, we use an example to 

demonstrate the validity of our algorithm. Assume after the DD phase, the 

original graph is partitioned as shown in Figure 6-3. If we treat each sub-graph as 

1. Initialize the RC phase: set combination step index ind as 1; treat the 

distances from local nodes to external nodes as infinity and generate D0
i 

based on the local all-pair geodesic distance information obtained in the IA 

phase; set each local boundary node’s DV as new DV.  

2. Propagate new information: go through local boundary nodes, prepare 

and send new DVs to all direct neighbors Pj.  

3. Gather new information, update outside distance table and local boundary 

nodes: receive new DVs from all direct neighbors, update local boundary 

nodes DVs based on Ci and the new DVs received from other processors. 

4. Update local information: calculate Dind
i based on new local boundary 

nodes DVs, and inform new results to SNA users 

5. Checking convergence of the algorithm: if ind = p-1, then terminate the 

combination. Otherwise, go to next step. 

6. Identify new information: set all local boundary nodes DVs which have 

been changed in step 4 as new DVs. 

7. Synchronization: wait until all processors finish step 6, then go back to 

step 2. 
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a super-node, the original graph can be transformed into a super-graph shown in 

Figure 6-5.  

 

 

Figure 6-5. The super-graph obtained based on partitioning of the example graph. 
 

Taking P1 as the root in our example, the edge pool for shortest paths at P1 after 

each stage is shown in Figure 6-6. Initially, after the IA phase, the pool on P1 

includes all edges contained in G1. After the first stage, the pool on P1 consists of 

the edges contained in G1, G2, G3, C1,2, and C1,3, where Ci,j is the connection 

between sub-graphs Gi and Gj. After the second iteration, the pool contains 

edges in G1, G2, G3, C1,2, C1,3, G4, G5, G6, C2,4, C2,5 and C3,6. Generally, taking Pi 

as the root and building a breadth first search tree, the shortest paths at Pi after 

the xth iteration are generated from a pool which contains edges in the super-

nodes whose distance to Pi is less or equal to x and connections between these 

super-nodes except connections between super-nodes on level x. If the depth of 

the breadth first tree is d, the processor will achieve the correct shortest paths 

from local nodes to all nodes in the original graph after d+1 iterations. In this 

example, after the third iteration, the pool on P1 will contain all edges in the 

original graph. Thus, we can see that the convergence of our combination 

algorithm depends on the depth of the breadth first trees. The worst case is that 

the super graph is a line. The algorithm will converge within p-1 iterations when 

the super-graph contains p super-nodes.  
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Figure 6-6. Edge pool for shortest paths at P1  
 

c) Anytime Property of the Approach 

Boundary nodes are bridges connecting local nodes to external nodes. For each 

processor, the edge pool for generating shortest path can be expanded only 

through boundary nodes. At the beginning of each stage (step 2 in Algorithm II), 

boundary nodes connection information is updated by results obtained from 

neighbor processors. This means that the local edge pool is expanded by edges 

contained in the neighbor processors’ pools. Thus, we can see that information is 

propagated through a ripple-effect. In each stage, shortest paths are generated 

from a larger edge pool which covers edges contained in farther away 

processors. Closeness centrality measurements become more and more 

accurate since the quality of partial solutions is determined by how many edges 

are contained in the edge pool. By the synchronous scheme, the pool size can 

be easily estimated from the structure of the super-graph. The algorithm will stop 

when the pool covers all edges in the original large network. The number of 

stages for our algorithm to converge is limited by the diameter of the super-graph. 
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d) Approach’s Performance 

In the performance analysis, we mainly focus on the computation load. Omitting 

the communication cost, most work done in Algorithm II is at steps 3 and 4. 

Assume the value of graph size |V| is n. For processor i, updating boundary 

nodes’ DVs costs O(n·|Ci|·γi) where γi is the maximum number of cut-edges 

connecting to a boundary node in sub-graph i. Calculating Dind takes O(n·|Vi|·|Ci|). 

Since we separate the original graph into p sub-graphs with balanced size, we 

can approximate |Vi| by n/p. Thus, after the synchronization step of each stage, 

the computation cost is:  

( ) ( )pCnCnOCVnCnO iiiiiii /|||||||||| 2 ⋅+⋅⋅=⋅⋅+⋅⋅ γγ     (6.3) 

 

In the worst case, the algorithm will converge after p-1 stages (the diameter of 

the super-graph cannot larger than p-1). Thus, the running time for the whole 

algorithm is: 

( )||22
ii CnnO ⋅+⋅γ  

Values of |C| and γ, in fact, depend on how well the graph is decomposed. Thus 

we can see that the performance of our anytime recombination algorithm for 

closeness centrality measurement is affected by how well the DD phase is 

designed. Researches of large networks [Newman’03, AlbertB’02] have shown 

that the distribution of node degree in a real-world large network follows a power-

law. A quantity follows power law can be represented as p(x)=cx-α where p(x) is 

the fraction of a quantity with value of x, c and α are positive constants. In real 

world large networks, α usually lies in the range from 1.6 to 3.0. For a network 

with large size, i.e. more than 105, it is reasonable to limit γi, the maximum 

number of cut-edges connecting to a boundary node in sub-graph i, as  

nni log/≤γ . 

Also, |Ci|, the number of boundary nodes in a sub-graph, is limited by the sub-

graph size  

pnCi /|| ≤ . 

Therefore, the running time can be formed as  
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As we mentioned, each SNA processor updates its local information based on 

Floyd’s algorithm. Therefore, our anytime approach is able to handle real weights 

(positive or negative), although our dissertation is only focused on graphs with 

positive real weights. To the best of our knowledge, the running time for the 

fastest serial algorithm for APSP problem with real edge weights is 

)log/loglog( 3 nnnO  [Zwick’04]. Thus, we can see that when O(logn) processors 

are employed, our parallel anytime approach can outperform the serial one, even 

when the original large graph is not decomposed well.  

6.5 Closeness Centrality Recombination Algorithm II – The 

Anywhere Approach 

Graphs are dynamic. All graph dynamic changes can be generalized as edge 

weights’ changes. There are two types for partial dynamism: decrease only and 

increase only. A fully dynamic APSP algorithm is designed to handle both types 

of partial dynamisms. The main objective of dynamic APSP algorithms is to 

calculate the shortest distances faster than beginning from scratch when a 

dynamic change happens. Solving Dynamic All-Paris Shortest Paths (DAPSP) 

problem is a hard task. There has been a lot of researches done on this problem. 

Many researchers developed DAPSP algorithms for special graphs with 

constraints to achieve better performance. Some algorithms are designed for 

analyzing planar graphs [HenzingerKRS’97, FakchareompholR’01]. Some 

approaches are focused on graphs with integer or limited number of different 

weight values [AusielloIMN’91, King’99]. In [King’99], an algorithm with 

O(n2.5(Slogn)) worst case running time is proposed where S is the number of 

different edge weight values that appear in the calculation. A remarkable 

breakthrough was made by Demetrescu and Italiano [Demetrescu I’03] who 
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proposed a fully dynamic algorithm to solve a general digraph with non-negative 

real edge weight. The worst case running time of this algorithm is O(n2log3n). To 

our best knowledge, this is the fastest algorithm to solve the fully dynamic APSP 

problem. However, the design of the algorithm is focused on an assumption that 

all shortest paths are unique in the graph, which is un-realistic in the real world. 

In order to break multiple shortest paths, the algorithm requires additional 

storage in memory, which can be O(n3). It significantly limits its applicability on 

analyzing large networks. Thus, in order to handle general graphs, we developed 

our own anywhere approach for closeness centrality measurement.  

a) The Anywhere Approach for Decreased Edge Weights 

When an edge weight is decreased or increased, our approaches for adopting 

them in the graph analysis are different. In this section, we first focus on the 

decreased edge weights. Our anywhere approach for handling increased edge 

weights will be discussed in next section. Assume the weight of an edge e(a,b) 

(directing from a to b) is decreased from w(a,b) to w’(a,b). 

 

Effects Range: When an edge’s weight is decreased, there is no way to directly 

know which shortest distances will change. We need to check all elements in the 

distance matrix D to see if they are affected by the new edge weight. For an 

element d(u,v), it is affected by the new edge weight if there is a shortest path 

going through the edge e(a,b). In other words, the new shortest path connecting 

from u to v will be a concatenation of the shortest path connecting from u to a, 

the edge e(a,b), and the shortest path connecting from b to v. The changed 

elements can be identified by checking if they satisfy the following condition 

),(),(),(),( vbdbawaudvud +′+<     (6.5) 

 

Effect Ways: For closeness centrality, after an edge’s weight is decreased, we 

still need to present closeness centrality value for each vertex. Affected elements 

in the results set will be replaced by new values.  
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Recalculation: It is straightforward to obtain the new values of affected nodes’ 

closeness centralities. We only need to replace the distance of old shortest path 

with the new smaller one.   

( )),(),(),(),,(min),( vbdbawaudvudvud +′+=     (6.6) 

 

The Approach :\When the weight of an edge e(a,b) (directing from a to b) is 

decreased, from w(a,b) to w’(a,b),  the algorithm for closeness centrality measure 

is shown in Figure 6-7.  

 

 
Figure 6-7. Algorithm III: the anywhere recombination algorithm for closeness centrality 
measurement when edge weight is decreased. 
 

b) The Anywhere Approach for Increased Edge Weights 

When an edge’s weight is increased, the anywhere algorithm is more 

complicated. In this section, we will discuss details about the design of our 

anywhere recombination algorithm for increased edge weights.  

 

Effect Range :If the weight of an edge e(a,b) (directing from a to b) is increased, 

from w(a,b) to w'(a,b), the geodesic distance between a pair of node may be 

affected only if this edge stays on one of the shortest paths connecting this pair 

of nodes. Identifying whether edge e(a,b) is on the shortest path connecting 

nodes u and v can be achieved by check if the following condition is satisfied: 

),(),(),(),( vbdbawaudvud ++=     (6.7) 

where d(u,v) is the geodesic distance between nodes u and v. We refer the pair 

of nodes which satisfy this condition as a potentially affected pair (PAP) of the 

dynamic edge e(a,b). For each PAP of e(a,b), there is at least one shortest path 

which connecting PAP and goes through this edge. Here, we use the term 

1. for(i=0; i<n; i++) 

2.      for(i=0; i<n/p; i++)  

3.         Di,j = min(Di,j, Di,a+w’a,b+Db,j) 
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“potentially affected” because that there may be multiple shortest paths which do 

not go through edge e(a,b) but have the same distance as the shortest path 

containing e(a,b). For these pairs, the geodesic distance will not change with the 

new edge weight.  

 

Effect Ways :The same as decreased edge weights, after an edge’s weight is 

increased, we still need to present closeness centrality value for each vertex. The 

affected element in the results set will be replaced by a new value.  

 

Recalculation: When an edge weight is increased, the dynamic adoption is 

relatively complicated. It is nearly-impossible to directly find the new true 

geodesic distances of PAPs. This is because that PAPs may have alternative 

shortest paths which do not go through this dynamic edge. However, the new 

geodesic distances for PAPs can be upper-bounded as 

( ) ( )),(),(),(),( bawbawvudvudUpper −′+=   (6.8) 

This upper bound can be taken as an over-estimation of the geodesic distances 

of PAPs. Then, we will refine these over-estimated values by obtained 

unchanged results stage by stage.  

 

The recalculation is designed based on two phases: overestimation and 

correction. At the beginning, all processors gather the information of dynamic 

changes, identify all PAPs and overestimate their geodesic distances as the 

upper bound shown in formula (6.8). In order to obtain the accurate results, each 

processor will first try to correct the overestimation based on the local graph 

connection and results previously obtained at other processors. The corrections 

are done by Floyd’s algorithm on geodesic distance information contained in 

local nodes’ DVs and the outside distance table. Then, similar to our anytime 

approach, each processor will update their new information (corrections) to its 

neighbor processors and corrections will propagate through the whole graph in a 

ripple-effect. In the worst case, it will require p-1 steps to obtain the final correct 

answer, where p is the number of sub-graphs. In our methodology, our anytime 
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approach works as an iterative algorithm. Only after each stage, the partial 

results with a clearly defined quality are provided to the analysts. Thus, we 

gather all dynamic changes during each stage, and handle all gathered dynamic 

changes together at the end of each stage to avoid frequently interrupting the 

program and decrease the additional cost for processing each individual change.  

c) The Fully Dynamic Anywhere Approach 

Combining the anywhere approaches for decreased and increased edge weights 

together, the procedures of our fully dynamic anywhere recombination algorithm 

for closeness centrality measurement are shown in Figure 6-8.  

 

 
Figure 6-8. Algorithm IV: the fully dynamic anywhere recombination algorithm for closeness 
centrality measurement 
 

1. Identify and propagate new information: set all local boundary nodes DVs 

which have elements with changed value as new DVs, and send them to the 

relative neighbor agents  

2. Gather all related external information, update local outside distance table 

and boundary nodes DVs 

3. Update local information: update un-converged PAPs’ geodesic distances 

by the external information 

4. Gather all dynamic edges’ information: DVs of both end points of the 

dynamic edge  

5. Dynamic change local adoption: for each dynamic edge: if edge weight is 

decreased, update each geodesic distance by Algorithm III; if edge weight is 

increased, identify the PAPs and do the overestimation 

6. Overestimation local correction: recalculate the PAPs’ geodesic distances 

obtained in step 5 based on local nodes’ DVs 

7. Check convergence of the algorithm: if converged, then terminate. 

Otherwise, go to next step. 

8. Synchronization: wait until all processors finish step 7, then go back to 

step 1. 
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d) Validity of the Approach:  

There are two types of edge weight dynamisms: decreased weights and 

increased weights. When an edge weight is decreased, the new shortest paths 

must go through this edge and have smaller length than the old ones. The 

smallest length of paths which go through edge e(a, b) can be identified by: 

),(),(),(),(, vbdbawaudvud ba +′+=  

Therefore, we update the geodesic distance between each pair of node by: 
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where da,b(u,v) is calculated based on the new edge weight of e(a,b). Essentially, 

this formula is the same as (6.6). 

 

When an edge weight is increased, only potentially affected pair’s (PAP) 

geodesic distance may change. Recall that for a specific dynamic edge e(a,b), its 

PAPs are pairs of nodes which have at least one shortest path going through this 

edge. If after e(a,b)’s weight is increased a new shortest path has a smaller 

length value than that obtained in the overestimation, it means this new shortest 

path does not go through e(a,b). We use p to present this path. For a potentially 

affected pair of nodes (u,v), the set of its shortest paths which go through the 

dynamic edge e(a,b) is denoted as Pe(a,b). The new shortest path p must either be 

an edge connecting u and v or contain some nodes which vary from the nodes 

contained in Pe(a,b). For the first case, based on the local graph connection 

information (if u and v are in the same sub-graph) or outside distance table (if u 

and v belong to different sub-graphs), the correct geodesic distance can be found 

at the step 6 (if u and v are in the same sub-graph) or step 3 (if u and v belong to 

different sub-graphs) in Algorithm IV. For the second case, assume node z is one 

of the nodes which lie on the new path p and is not contained in Pe(a,b). Denote a 

shortest path connecting node pair (u, z) as p(u,z). Then, we can get that p(u,z) 

does not go through edge e(a,b). Otherwise, node z will be contained in Pe(a,b). It 

is the same for p(z,v), a shortest path connecting node pair (z,v). This means that 
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the node pairs (u,z) and (z,v) are not PAPs of the dynamic edge e(a,b). During 

the dynamic change adoption, the lengths of p(u,z) and p(z,v) keeps unchanged. 

When z is in the same sub-graph as u, this new shortest path can be found at the 

overestimation local correction step in Algorithm IV. If z and u are not in the same 

sub-graph, the geodesic distance information of node z will arrive to the 

processor which contains u at some stage and the shortest path can be identified 

at the step 3 in Algorithm IV in that stage. 

  

As we mentioned in part b, several dynamic changes may be grouped together to 

be handled. This will not affect the validity of our dynamic adoption approach. 

During dynamic change adoption, geodesic distances between pairs of nodes 

may be overestimated. However, the graph connection information is kept 

consistent with the true graph. Even with overlapped overestimations, the 

overestimated values can be corrected based on graph connection information. 

e) Anywhere Property of the Approach 

In this manuscript, the term “anywhere” mainly represents the idea of graph’s 

dynamic information adoption. When an edge weight is decreased, each 

processor can update their local information by formula (6.6) to directly adopt this 

change. When an edge weight is increased, the upper bounds of the new 

geodesic distances are first calculated by the overestimation (6.8). Then, each 

processor tries to refine these overestimations by local and external information 

and propagate the refinements through the whole network as a ripple-effect. Our 

program can effectively adopt both types of dynamic change based on obtained 

results during its analysis process. Thus, we say that our closeness centrality 

recombination algorithm is an anywhere approach. 

f) Approach’s Performance:  

In the following paragraphs, we will analyze the time cost for our anywhere 

recombination algorithm for closeness centrality measurement to adopt edge 

weight changes. When an edge weight is decreased, the program will update all 
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elements in local nodes’ DVs by formula (6.6). The cost for this is O(n·max|Vi|). 

Since |Vi|≈n/p (as we discussed in the analysis of anytime approach), this bound 

can be formed as: O(n2/p) where p is the number of processors used in our 

system.  

 

When the weight of an edge, e(a,b), is increased, a simple lower bound of the 

work required to adopt this change will be the number of shortest paths affected 

by this edge. We define the edge betweenness as the number of pairs of nodes 

which have at least one shortest path going through this edge, and we use bt to 

represent this value. In other words, bt represents the number of PAPs of e(a,b). 

Most work for adopting a dynamic edge with an increased weight is done in steps 

2, 3, 5, and 6 of Algorithm IV. The work can be classified into two types. Steps 5 

and 6 are performed only at the first time when a change happens. For step 5, 

the work is bounded by identifying PAPs, which requires O(n·|Vi|). In step 6, we 

will try to refine every overestimated distance by local information. The work load 

is O(bti ·|Vi|). Thus, the bound of work load in step 5 and 6 is  

|)|||( iii VnVbtO ⋅+⋅  

Steps 2 and 3 are another type of work and used for updating local results and 

propagating new information. They are performed at each stage until the 

overestimated geodesic distances are converged. For step 2, as we discussed in 

anytime approach, its work load is O(n·|Ci|·γi). In step 3, we will check every 

overestimated PAP to see if there any improvement based on the new 

information. The work load for this step is O(bti·|Ci|). The number of stages 

required for the fully correction of overestimated distances is the diameter of the 

super-graph obtained in the DD phase, which is less or equal to p-1. The total 

work load for steps 2 and 3 is 

|)|||( iii CbtpCnpO ⋅⋅+⋅⋅⋅ γ  

 

Thus, the total work for adopting an edge with increased weight is 

|)|||||||( iiiiii VnVbtCbtpCnpO ⋅+⋅+⋅⋅+⋅⋅⋅ γ  
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This formula shows that the work for dynamic edge adoption is determined by 

how well the graph is decomposed and the betweenness value of this edge. As 

|Ci| is bounded by n/p (discussed in anytime approach), the work load can be 

transformed into: 

)/( 22 pnnbtnO i +⋅+⋅γ     (6.9) 

 

Recall that in the anytime approach analysis we have shown that γi can be 

bounded as n/logn in real-world large social networks. Also, we know that, except 

outside distance table, there are at most n·|Vi| distances are maintained in each 

processor which means that knbti /2≤ . Therefore, from formula (6.9), we can 

see that when the edge betweenness is low and graph is not well decomposed, 

the work load is mainly determined by the graph domain decomposition. When 

this dynamic edge affects a lot of shortest paths, the work load it affected by this 

edge’s betweenness value. When the graph is well decomposed and the 

dynamic edge only stays on a few shortest paths, the most work is done in 

identifying the PAPs of this edge (which is represented by the last term in formula 

(6.9)). For the worst case, the work load can be 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

n
n

p
nO

log

33

 

which is the same as calculating the geodesic distances for all pairs from scratch. 

In this case, the graph is badly composed and the dynamic edge affects shortest 

paths between all pairs of nodes. However, for average case, it will only require 

relatively short period of time for our approach to adopt the dynamic information. 

In order to accelerate the dynamic adoption for the worst case, we need to store 

all shortest paths. This will require a formidable amount of memory which is O(n3) 

and seems to be impractical when social networks are large. 
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6.6 The Anytime Anywhere Recombination Approach for 

Closeness Centrality 

In both the anytime approach and the dynamic adoption (anywhere) approach for 

closeness centrality recombination, the new information obtained at each 

processor is propagated through the whole network by a ripple-effect. The 

number of stages required for fully adopting one dynamic change is the limited by 

the diameter of the super-graph obtained after the DD phase. We can keep track 

of dynamic changes in a queue. Old changes, which have been fully adopted, will 

be removed from the queue and new changes, which come in the current stage, 

will be added. When the queue is empty, the final true results for the graph with 

all dynamic changes are obtained.   

 

From the design of Algorithm IV, we can see that the dynamic adoption approach 

couples with the anytime approach tightly. They both work based on updating 

local results by external information and propagate local new results as a ripple-

effect. In fact, dynamic change adoption can be easily incorporated into the 

anytime approach paradigm. Combining these two algorithms together, the 

flowchart of our anytime anywhere recombination algorithm for closeness 

centrality measurement is shown in Figure 6-9. 
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Figure 6-9. Algorithm V: the anytime anywhere recombination algorithm for closeness centrality 
measurement 
 

In our anytime-anywhere approach for closeness centrality measurement, the 

nearly-seamless coupling of partial results calculation and dynamic information 

adoption imbues the program with the ability to adapt dynamic edge changes 

with obtained partial results. This will potentially decrease the work load for 

adopting graph’s dynamism.  

1. Initialize the RC phase.  

2. Check the convergence of the anytime anywhere algorithm: if converged, 

then terminate the program. Otherwise, go to next step. 

3. Identify and propagate new information 

4. Gather all related external new information & update outside distance 

table and boundary nodes DVs. 

5. If the anytime approach is converged, go to step 7. Otherwise, go to next 

step 

6. Update local Information I: update geodesic distances for all local nodes 

based on the new information contained in the outside distance table. Then, 

go to step 8 

7. Update local Information II: update un-converged PAPs’ geodesic 

distances based on the new information contained in the outside distance 

table.  

8. Gather all dynamic edges’ information 

9. Dynamic change local adoption 

10. Overestimation local correction 

11. Synchronization: wait until all processors finish step 10, then go back to 

step 2. 
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6.7 Maximal Clique Enumeration Recombination Algorithm I – 

The Anytime Approach  

Enumerating all maximal cliques contained in a graph is an NP-hard problem. All 

known algorithms for solving this problem have both computation and storage 

costs on an exponential order of the graph size. Our anytime approach for 

maximal clique enumeration is the similar as Zhang’s algorithm introduced in 

section 4.6. Here, we include the pseudo-code of this algorithm in Figure 6-10. In 

this algorithm, all elements in a clique (both maximal clique and candidate clique) 

are stored in canonical order. The anytime property of this approach is 

demonstrated by the fact that the algorithm provides maximal cliques in an 

increasing order of clique size. The validity of this algorithm can be found in 

[ZhangABCLS’05].   
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Figure 6-10. Algorithm VI: the anytime recombination algorithm for maximal clique enumeration.  
 

6.8 Maximal Clique Enumeration Recombination Algorithm II – 

The Anywhere Approach  

For maximal clique enumeration problem, there are two types graph dynamisms: 

edge addition and edge removal. Although the essential ideas for handling these 

two types of dynamic changes are the same, there are some differences 

between the anywhere algorithms for added edges and removed edges. In 

following paragraphs, we will introduce them respectively.  

1. Initialization:  

obtain all 2-cliques 

generate maximal 2-cliques, and candidate 2-cliques 

set clique size k=2 

2. while the set of candidate k-cliques is not empty 

3.  while the set of candidate k-cliques is not empty 

4.   pickup a candidate k-clique Ci   

5.    while common neighbor of Ci is not empty 

6.  get Ci common neighbor a, where a is larger than 

the last element in Ci 

7.  expand Ci with a: { Ci , a}, get all its common 

neighbor A 

8.     if A is empty 

9.      put { Ci ,a} into maximal (k+1)-cliques.  

10.     else if there is one element of A is larger than a  

11.  put { Ci ,a} together with A into candidate 

(k+1)-cliques 

12.     remove a from Ci common neighbor set 

13.   remove Ci  

14. k++  
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a) The Anywhere Approach for Edge Addition 

Assume after we obtain all k-cliques (both maximal k-cliques and candidate k-

cliques) there is an edge e(u,v) added in the graph. 

 

Effect Range: It is easy to see that if a clique (either a maximal clique or a 

candidate clique) includes neither u nor v, it is not affected by this edge change. 

Only those cliques which contain either u or v may be affected by this edge 

addition. There is no cliques contains both u and v since there is no edge 

between them in the original graph.  

 

Effect Ways: If a maximal clique contains u (or v) and v (or u) is a common 

neighbor of this clique after the edge addition, this clique will not be maximal 

anymore. It should be deleted from the maximal clique set. If a candidate clique 

contains u (or v) and v becomes its common neighbor after the edge addition, 

this clique is still a candidate clique. However, its common neighbor should be 

updated.  

 

Recalculation: When an edge e(u,v) is inserted, there may be new cliques (both 

maximal and candidate) that contain both u and v. Some of these cliques may be 

generated by an expansion of obtained cliques, but not all of them can be 

handled in this way. We use Figure 6-11 as an example to demonstrate why this 

happens.  
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Figure 6-11. Example for finding maximal cliques with edge addition 
 

In this example, after running the maximal clique enumeration algorithm, we will 

obtain 2 maximal 3-cliques, {u, a, c} and {a, b, v}. When the edge e(u,v) is added, 

there is a new maximal 3-clique {u, a, v}. However, this maximal clique cannot be 

generated from the obtained results. This is because that neither {a, v} nor {u, a} 

is a maximal clique. These two cliques belong to candidate 2-cliques. However, 

since we only maintain the candidate cliques with the largest clique size, these 

two candidate cliques are eliminated in the iteration for finding 3-cliques.  

 

In order to incorporate an added edge e(u,v) at the kth iteration in Algorithm VI, 

we need to re-enumerate all cliques which contain both u and v, up to size k. The 

recalculation for maximal clique enumeration should perform the following three 

tasks: 

1. update the common neighbor set of those candidate k-cliques which 

contain node u or v 

2. generate all maximal cliques containing both u and v up to size k 

3. generate all candidate k-cliques whose clique sets contain both u and v 

 

The Approach: When a new edge e(u,v) is added, the anywhere approach for 

adopting this change for maximal clique enumeration is shown in Figure 6-12. In 
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this figure, k represents the largest size of obtained cliques and cn(A) is the set 

of common neighbors of clique A.  

 

 
Figure 6-12. Algorithm VII: the anywhere recombination algorithm for added edge for maximal 
clique enumeration. 
 

Maximal clique enumeration is an NP-hard problem. In the worst case, the 

number of maximal cliques in a graph is an exponential order of the graph size. It 

is infeasible to store all maximal cliques in memory. We must either store them in 

files or in a database. Storing cliques in files will make it hard to find related 

cliques in graph dynamic change adoption. In order to easily index cliques, we 

use the MySQL database to maintain all maximal cliques and the candidate 

cliques with the largest clique size. 

1. Initialization:  

Assume u>v, add edge e(u,v) 

get all maximal cliques which contain either u or v into a queue Qm 

get all candidate k-cliques which contain either u or v into a queue Qc 

2. for every element M in Qm 

3.  if u is not contained in M but is a common neighbor of M  

4.   remove M from the maximal clique set  

5.  if u>max(M) & size(M)=k 

6.   put {M|u} into candidate k-clique set  

7.  if v is not contained in M but is a common neighbor of M 

8.     remove M from the maximal clique set  

9. for every element C in Qc 

10.  if u is contained in C and v is a common neighbor of C  

11.   add v into C’s common neighbor set  

12.  if v is contained in C and u is a common neighbor of C 

13.     add u into C’s common neighbor set 

14. build a candidate 2-clique E as {u, v | cn({u, v})} 

15. enumerate all cliques expanded from E up to size k, put maximal cliques 

and candidate k-cliques into corresponding sets.    
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b) The Anywhere Approach for Edge Removal 

Adopting a removed edge can be handled in a similar way as the edge addition 

case. Assume after we obtain all k-cliques (both maximal k-cliques and candidate 

k-cliques) there is an edge e(u,v) removed from the graph. For maximal cliques, 

if it does not contain u or v, it will not be affected. In other words, those maximal 

cliques which contains both u and v will become invalid if we remove edge e(u,v). 

Assume a maximal clique M is one of this type’s cliques. If we remove u from M, 

it will form a new clique, {M/u}. This clique is not certainly maximal. We need to 

check if it has any common neighbor. If it has, this clique has already been 

contained in other maximal cliques or candidate cliques. We do not need to do 

anything. If not, this is a new maximal clique and needs to be added in the 

corresponding maximal clique set. It is the same way to handle the clique {M/v}.  

 

For candidate k-cliques, the process is different. According to the removed edge 

e(u,v), there are three types of candidate k-cliques, type I: containing neither u 

nor v; type II: containing either u or v but not both; and type III: containing both u 

and v. After the edge removal, u’s and v’s connections to other vertices except v 

or u are unchanged. For type I candidate k-cliques, they are not affected. If a 

candidate k-clique contains only one of vertices u and v, say u, it may be affected 

if its common neighbor set contains the other one, say v. For this type of 

candidate k-clique, we need to update its common neighbor set by removing 

vertex v. After the updating, the candidate clique may become a new maximal 

clique (empty common neighbor set), a new candidate clique, or invalid (common 

neighbor set is not empty but the clique cannot be expanded according to 

canonical order). For type III candidate cliques, we first remove one endpoints of 

the removed edge, say u, from the clique set, getting {M/u}. Then, we generate 

this new clique’s common neighbor set cn({M/u}). Expanding {M/u} with its 

common neighbor, we can obtain either a new maximal k-clique or candidate k-

clique. For obtained new maximal cliques, we put them into the maximal k-clique 

set. For generated new candidate k-cliques, we just discard them since they 

have already been generated in the process for type II candidate cliques.  
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The pseudo-code of the anywhere recombination approach for adopting removed 

edges for maximal clique enumeration is shown in Figure 6-13. In this figure, k 

represents the largest size of obtained cliques and cn(A) is the set of common 

neighbors of clique A. 

 

 
Figure 6-13. Algorithm VIII: the anywhere recombination algorithm for added edge for maximal 
clique enumeration. 
 

c) The Fully Dynamic Anywhere Approach 

Combining the two approaches discussed before, our anywhere recombination 

approach for both edge addition and removal for maximal clique enumeration is 

shown in Figure 6-14.  

 

1. Initialization:  

Assume u>v, remove edge e(u,v) 

get all maximal cliques which contain both u and v into a queue Qm 

get all candidate k-cliques which contain either u or v into a queue Qc 

2. for every element M in Qm 

3.  remove M from maximal clique set  

4.  if {M/u} (or {M/v}) is maximal 

5.  put {M/u} (or {M/v}) into the corresponding maximal clique set  

6. for every element C in Qc  

7.  if C contains u but not v (or contains v but not u) 

8.     update C’s common neighbor set 

9.  if C contains both u and v 

10.   get cn({C/u}), and cn({C/v})   

11.   expand {C/u} and {C/v} by one common neighbor respectively 

12.    put obtained maximal cliques into maximal k-clique set.  
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Figure 6-14. Algorithm IX: the fully dynamic anywhere algorithm for maximal clique enumeration.  
 

d) Approach Performance:  

For edge addition, we use Algorithm VII to adopt graph’s dynamic changes. 

Assume edge e(u,v) is inserted in the graph when our algorithm obtains all 

cliques up to size k. The work for adopting this edge is mainly done in updating 

obtained cliques containing either u or v (steps 2 to 13 in Algorithm VII) and 

enumerating cliques including both u and v (steps 14 and 15).  

 

Use Mx(y) to represent the number of maximal cliques with size y and containing 

vertex x, and Φx(y) to represent the number of candidate cliques with size y and 

containing vertex x. Define 
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Checking if a clique has a common neighbor of vertex i will cost O(Δ), where Δ is 

the maximum degree. Updating obtained cliques will cost 

( )Δ⋅Φ++Φ+ ))()(( kMkMO v
k
vu

k
u  

The work load to enumerate all cliques (up to clique size k) including both u and 

v will have time cost as  

1. Initialization:  

get all edge changes into a queue E 

get all maximal cliques up to size k 

get all candidate k-cliques 

2. while E is not empty 

3.  get the first element e(u,v) from E  

4.  if e(u,v) is edge addition 

5.  call Algorithm VII  

6.  else if e(u,v) is edge removal  

7.   call Algorithm VIII 

8.        remove e(u,v) from E.  
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Thus, the total work for adopting added edge e(u,v) is  
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When an edge is removed, we will employ Algorithm VIII to handle it. Assume 

edge e(u,v) is deleted at the time our algorithm obtains all cliques up to size k. 

The main work is done in updating obtained maximal cliques (steps 2 to 5) and 

candidate k-cliques (steps 6 to 12). Updating maximal cliques will have time cost 

as:  

( )Δ⋅⋅ kMO k
vu ,  

Updating candidate cliques will have time cost as: 

( )2))()(( Δ⋅Φ+Φ kkO vu  

Thus, the total time for adopting a removed edge is: 

( )2
, ))()(( Δ⋅Φ+Φ+Δ⋅⋅ kkkMO vu

k
vu  

 

In the worst case, the anywhere approach will have the time cost as an 

exponential order of the graph size. However for average case, usually we only 

need to handle a small sub-part of the original problem. It will take relatively small 

amount of time for our approach to adopt the dynamic information. 

6.9 The Anytime Anywhere Recombination Approach for 

Maximal Clique Enumeration 

From the design of our algorithms we can see that the anytime approach and the 

anywhere approach for maximal clique enumeration can seamlessly corporate 

together. Within the anytime processing of finding maximal cliques, we can 

naturally adopt graph’s dynamic changes by our anywhere approach based on 

the obtained partial results. The anytime anywhere approach for maximal clique 

enumeration is shown in Figure 6-15. 
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Figure 6-15. Algorithm X: the anytime anywhere recombination algorithm for maximal clique 
enumeration 
 

6.10 Summary  

In this chapter, we provide detailed discussion about the design and 

implementation of the Recombination phase for the three SNA metrics chosen for 

evaluating and validating our methodology. Among these three SNA metrics, 

Ego-betweenness centrality is the simplest. It can be directly measured within a 

short period of time. Thus, there is no need for the anytime approach for its 

measurement. We only design and implement an anywhere approach for this 

metric to effectively handle graph’s dynamic changes. For closeness centrality 

and maximal clique enumeration, we present the design and theoretical 

performance analyses for their anytime and anywhere recombination algorithms. 

For these two metrics, solutions are partially and incrementally built. During the 

1. Initialization:  

obtain all 2-cliques 

generate maximal 2-cliques, and candidate 2-cliques 

set clique size k=2 

2. while the set of candidate k-cliques is not empty 

3.  while the set of candidate k-cliques is not empty 

4.   expand each element Ci according to Algorithm VI 

5.   remove Ci  

6.  gather all happened dynamic edge changes into queue E 

7.  for each edge change e(u,v) in E, call Algorithm IX 

8.   empty E 

9. k++  

10. gather all happened dynamic edge changes into queue E 

11. for each edge change e(u,v) in E, call Algorithm IX 
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analysis process, if some dynamic changes happen, our algorithm can effectively 

and efficiently incorporate these changes into the analysis process based on the 

obtained results. Both the anytime and the anywhere properties of our 

methodology are well demonstrated in recombination algorithms of these two 

metrics. 
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7. Experimental Results and Analysis 

In previous chapters, we present details about the design, implementation, and 

theoretical performance analyses of our anytime-anywhere methodology for large 

and dynamic social network analysis. In order to further evaluate and validate our 

methodology for SNA applications, we decide to test our methodology through a 

set of experiments on the selected SNA metrics, ego-betweenness centrality, 

closeness centrality, and maximal clique enumeration.  

7.1 Experiments Setup 

Our anytime anywhere methodology is implemented on a cluster of processors 

running a version of the Linux operating system. Each machine has 512MB of 

memory and an Intel Pentium 2.66GHz processor. The machines are connected 

by a gigabit network backbone.  

 

We used Pajek [BatageljM’04] to generate a series of connected random graphs 

of size from 5,000 to 30,000 in increasing size with increments of about 5000. 

For each size, we generate graphs with 3 different types of density: 

• Density I: average degree = 4 

• Density II: average degree = 8 

• Density III: average degree = 16 

For each graph, we use our methodology to measure ego-betweenness centrality 

and closeness centrality and enumerate all maximal cliques by employing 4, 6, 

and 8 processors respectively. In order to further validate our methodology, we 

generate another set of random graphs with Density II and test our system on 

these graphs. In other words, we test the implementation of our methodology on 
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one set of random graphs with Density I and III respectively, and two sets of 

random graphs with Density II.   

 

In order to study our methodology’s performance on processing dynamic graphs, 

we generate a set of synthetic random edge changes for each graph and test our 

system’s ability of handling random dynamic changes. As we all know that a 

system’s performance on adopting dynamic changes is affected not only by how 

many changes happen and when they happen, but also by where (on what types 

of nodes) they happen. Node degree is an important parameter that should be 

considered in dynamic change adoption due to two main reasons. First, normally, 

the more edges a node has the higher chance that a dynamic edge change 

happens on this node. Second, in many cases, node degree may affect the work 

load for handling dynamic changes. In order to comprehensively analyze our 

methodology, we generate and test our system by another set of edge changes 

which happen on vertices with highest degrees.   

7.2 Experiments on Ego-Betweenness Centrality Measurement 

As we mentioned, measuring ego-betweenness centrality is simple and fast. We 

choose it as a sanity test case for primarily checking if there is any flaw in the 

design. To validate our methodology, we want to fairly compare the performance 

of our approach with the performance of current SNA software tools. Most, if not 

all, current SNA software tools generate ego-betweenness centrality only for 

unweighted graphs. However our approach focuses on more general graphs 

which have positive real edge weights. Therefore, we implement a serial 

algorithm (modified Dijkstra’s Algorithm which is introduced in chapter 4.5) which 

can handle weighted graphs and has similar performance as the algorithm 

employed in current SNA tools. In our experiments, we try to evaluate our 

approach by comparing with this serial algorithm.  
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a) Serial Algorithm vs. Our Parallel Approach 

In this experiment, we study our approach’s ability for measuring ego-

betweenness centrality for static graphs. In our methodology, we decomposed 

the graph into 4, 6, and 8 parts respectively. After the decomposition, each part is 

sent to a single processor and the ego-betweenness centrality is measured 

locally at each processor. The comparison of our system and serial algorithm 

based on the running time is shown in Figure 7-1. 
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Ego-Betweenness for Graphs with Density II

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

5000 10000 15000 20000 25000 30000

graph size

pr
oc

es
si

ng
 ti

m
e 

(m
s)

serial
P=4
P=6
P=8

 



 

 106

Ego-Betweenness for Graphs with Density III
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Figure 7-1. Ego-betweenness centrality measurement: serial vs. parallel1. 
  

Figure 7-1 shows that our system can obtain a good speed-up for the ego-

betweenness centrality measurement for graphs with all three types of densities. 

The speed-up of using 4 processors is slightly larger than 4. This is because that 

in our system, each processor only focuses on a small problem (the local sub-

graph). However, the serial algorithm deals the original large network. It 

introduces additional overheads such as reading discontinuous memories.  

 

In Figure 7-1, we do not include the cost for graph decomposition. Due to the 

simplicity of ego-betweenness centrality, the overhead of partitioning graph takes 

even longer time than serially measuring all ego-betweenness centralities. It 

seems that the DD phase of our methodology is not useful if we only calculate 

ego-betweenness centralities. However, our methodology is proposed for 

comprehensively analyzing large social networks with a broad range of 

applications. For many complicated but significant SNA metrics, such as 

closeness centrality, in order to effectively and efficiently analyze them, an 

effective graph decomposition mechanism is necessary. This will be shown in our 

experimental results and analyses of closeness centrality measurement.  

                                                 
1 Notes: in this section, n represent the graph size and P represents the number of processors 
used in our system to perform network analysis 
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b) Anywhere Property - Dynamic Changes Adoption 

We reiterate that there is no need for implementing an anytime approach for ego-

betweenness centrality measurement. In our experiment, we study the 

performance of our anywhere approach for ego-betweenness centrality. Our 

approach’s performance on dynamic change adoption is shown in Figure 7-2, 7-3, 

and 7-4. 

 

Figure 7-2 shows the time costs of our system to incorporate 64 random changes 

on edge weights. Intuitively, as graph size increases, the processing time for 

adopting these dynamic changes will increase. As graph density increases, 

directly connected nodes may have more common neighbors. Thus, the cost for 

adopting dynamic changes may also increase. From Figure 7-2, we can see that 

our system performs exactly the same as what we hypothesized.  
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Ego-Betweenness Random Dynamic Change Adoption (P=6)
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Ego-Betweenness Random Dynamic Change Adoption (P=8) 
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Figure 7-2. Time cost for adopting 64 random edge changes for ego-betweenness centrality 
measurement.  
 

As we mentioned, in order to further study our system’s ability of handling 

graph’s dynamism, we also generate a set of dynamic edge changes on nodes 

with highest degrees. We call this set of dynamic changes as max degree 

changes. The comparison of our system’s performance of adopting random 

dynamic changes vs. performance of adopting max degree changes is shown in 

Figure 7-3. In this figure, we only present the time costs for our system with 4 

processors. The corresponding comparison for 6 (and 8) processors is similar as 

Figure 7-3. Thus, it is not presented here. 
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Ego-Betweenness Dynamic Change Adoption for Graphs with 
Desnity I - random vs. degree (P=4)
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Ego-Betweenness Dynamic Change Adoption for Graphs with 
Desnity II - random vs. degree (P=4)
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Ego-Betweenness Dynamic Change Adoption for Graphs with 
Density III - random vs max degree (P=4)
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Figure 7-3. Performance comparison between handling random changes and handling max 
degree changes for ego-betweenness centrality measurement. 
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Figure 7-3 shows that for graphs with Density I and II, our approach performs 

similarly for random changes and max degree changes. For graphs with Density 

III, it takes more time for our approach to adopt max degree changes than 

random changes. In the theoretical analysis of anywhere approach for ego-

betweenness centrality measurement we obtained that the work load for adopting 

an edge change is not determined by the degree of this edge’s endpoints, rather 

depending on the number of their common neighbors. Basically, the higher 

endpoints node degrees the more potential to obtain large common neighbor 

sets. This is well demonstrated in the system performance comparison on graphs 

with Density III. For graphs with Density I & II, the time cost for adopting max 

degree changes is slightly larger than the cost for adopting random changes. 

This is because that these two types of graphs have low densities. Even dynamic 

change happens on endpoints with high degree, there is still little chance for 

these dynamic edge’s endpoint to have large number of common neighbors.  

 

The absolute value of time cost for dynamic edge change adoption is an 

important factor to evaluate the system performance. However, as shown in 

Figure 7-2, graph size and density affect time cost. For many cases, it is more 

useful to how our approach performs relatively to graph size and density. 

Relative costs for dynamic change adoption for all graphs are shown in Figure 7-

4. Each relative cost is calculated as: 

Ccr /),max(=μ  

where μ is the relative cost, r is the time cost for adopting random changes, c is 

the time cost for adopting max degree changes, C is the time cost for calculating 

each node’s ego-betweenness centrality for static graphs by using the serial 

algorithm. In Figure 7-4 we can see that for types of graph densities although the 

absolute time cost for adopting dynamic changes grows as graph size increases, 

the relative cost is decreasing. This means that when the graph size becomes 

larger and larger, the portion of affected obtained results becomes smaller and 

smaller. The maximum relative cost for adopting one edge change is about 
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0.055%. Thus, we can tell that our methodology for ego-betweenness centrality 

measurement can efficiently handle graph’s dynamism. 

Ego-Betweenness Dynamic Change Adoption - relative cost
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Figure 7-4. Relative cost for adopting 64 edge changes for ego-betweenness centrality 
measurement 
 

7.3 Experiments on Closeness Centrality Measurement 

Closeness centrality is measured based on all-pairs shortest paths. Usually, 

algorithms for this problem require about O(n3) running time and O(n2) storage 

space. Currently software tools cannot provide closeness centrality analysis for 

large social networks [SantosPAXP’06]. Moreover, these SNA tools work like 

black-boxes. We do not know how algorithms are implemented in them. There is 

no way for us to directly compare our approach with the one employed in current 

SNA tools. Thus, we implement our serial algorithm (Dijkstra’s algorithm 

introduced in chapter 4.4) to compare with. We first study how our serial 

algorithm performs relatively to popular current SNA tools’ performance. Based 

on this study, the comparison of our anytime anywhere approach to current SNA 

tools can be inferred from the comparison between our methodology and our 

serial algorithm.  
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a) Comparison between Current SNA Tools and Our Serial Algorithm 

UCINet [BorgattiEF’02] is one of the most popular SNA software tools which can 

provide comprehensive analysis on small-scale interactions. In this experiment, 

we compare our serial approach with UCINet.by testing them on a set of random 

graphs with sizes from 500 to 12000 since UCINet program crashes on graphs 

larger than 13000 nodes [SantosPAXP’06]. We run our serial algorithm and 

UCINet program respectively to measure the closeness centralities for all nodes 

contained in the graph. The running time comparison of our serial algorithm to 

UCINet’s algorithm is shown in Figure 7-5. This figure shows that though UCINet 

outperforms our algorithm, asymptotically they both appear to have the same 

complexity, and nearly the same runtime. For large social networks, we believe 

our serial algorithm performs similar as the algorithm employed in UCINet. 

 

 

Figure 7-5. Running time comparison of UCINet and our serial algorithm for closeness centrality 
measurement  
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b) Serial Algorithm vs. Our Parallel Approach 

In this experiment, all networks are static. We run our serial closeness centrality 

measurement algorithm on a set of static graphs from size 5,000 to 30,000 with 3 

types of densities. We also run our parallel anytime approach on the same set of 

graphs with 4, 6, and 8 processors respectively. The running time of our parallel 

anytime approach and serial algorithm is shown in Figure 7-6. 
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Closeness Centrality Measurement for Graphs with 
Density III
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Figure 7-6. Closeness centrality measurement: serial vs. parallel. 
 

From Figure 7-6, we can see that, for all graphs (all types of sizes and densities), 

our parallel approach can achieve the final results faster than the serial algorithm. 

The speed up of our approach does not close to P (the number of processors 

used in our system) especially when P=4. The reason is that the serial algorithm 

we used here is Dijkstra’s algorithm, whose computation complexity is O(|E||V|). 

Whereas, our anytime approach for closeness measurement has the 

computational complexity of about O(|V|3/k).  

 

Figure 7-6 also shows that when graphs are partitioned into more parts, our 

system will achieve better performance. However, one thing should be noticed 

here is that we cannot cut the original graphs into sub-graphs as small as we 

want. This is due to two reasons. First, the communication overhead will increase 

as the number of sub-graphs increases. Second, the analysis results obtained in 

the IA phase may not be able to approximate the original graph when the sub-

graph is tiny. From our experimental experience, keeping the sub-graph size in 

the range 2000 to 4000 will give good performance.  

c) Anytime Property 

Our approach for closeness centrality measurement is an anytime approach. 

Here, “anytime” is used to represent the idea of partially and incrementally 
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building solution and presenting useful partial results between the time the 

analysis process begins to the time it ends. The anytime property of our 

approach is shown in Figure 7-7. 

 

 
Figure 7-7. The anytime property of our approach.  
 

In this figure, each curve represents a graph with a specific size. At each step, 

there are useful partial results presented to users. Step 1 represents the graph’s 

initial approximation obtained by analyzing local sub-graphs. Step i, where i>1 

represents the (i-1)th recombination stage in the RC phase. The vertical axis 

represents the time when partial results are obtained at step i. Figure 7-7 shows 

that our approach can provide an initial approximation of the network within a 

very short time, refine its partial solution step by step over time, and finally obtain 

the correct solutions. Thus, we say that our approach for closeness centrality 

measurement is an anytime algorithm.  
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d) Anywhere Property – Dynamic Change Adoption 

There are two types of dynamic changes simulated in our experiments, increased 

edge weights and decreased edge weights. Our anywhere recombination 

approach for closeness centrality measurement processes quite differently for 

these two types of changes. In following paragraphs, we will provide our 

experimental results for each type of dynamic changes.  

 

Increased Edge Weights: When an edge weight is increased, the time for our 

system to adopt this change is shown in Figure 7-8. In this experiment, we 

generate a set of 4 edge changes on random nodes. We measure the time cost 

for our system to adopt each dynamic edge change. In Figure 7-8 figure, the time 

cost (processing time) is the average value of time costs of these 4 dynamic 

changes’ adoption. 
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Closeness Centrality Increased Edge Weight Adoption for 
Graphs with Density II
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Closeness Centrality Increased Edge Weight Adoption for 
Graphs with Density III
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Figure 7-8. The time cost of our system to incorporate an edge with decreased weight.  
 

From Figure 7-8 we can see that as graph size grows, the time cost for our 

system to adopt an increased edge weight increases. For graphs with the same 

size, when its density increases, the time cost also increases. In order to further 

study our system’s ability of handling graph’s dynamism, we generate a set of 

max degree changes. We record and compare the time costs for adopting 

random dynamic changes with the costs for handling max degree changes. The 

comparison for our system with 4 processors is shown in Figure 7-9. The 

corresponding comparisons for 6 and 8 processors are similar as this figure, thus 

they are not presented here. 
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Closeness Centrality Increased Edge Weight Adoption for 
Graphs with Density I - random vs. degree ( P=4)
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Closeness Centrality Increased Edge Weight Adoption for 
Graphs with Density II - random vs. degree (P=4)
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Closeness Centrality Increased Edge Weight Adoption for 
Graphs with Density III - random vs. degree ( P=4)
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Figure 7-9. Performance comparison between handling random increased edge weights and 
handling max degree increased edge weights for closeness centrality measurement. 
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Figure 7-9 shows that the time cost for adopting random changes is quite similar 

to the cost for handling max degree changes. This is because that, as we 

discussed in the performance theoretical analysis of the anywhere approach for 

closeness centrality measurement, the work load for adopting an increased edge 

weight is affected by the edge betweenness value rather than the endpoints node 

degrees. Our anywhere approach for closeness centrality when an increased 

edge weight is not affected by the degree of this edge’s endpoint.  

 

When graph conditions (graph size and density) change, the time cost for our 

anywhere approach’s performance also change. Only presenting the value of 

time cost does not provide enough information. We need to study the relative 

cost for handling dynamic changes. This relative cost is calculated as what we do 

in the experiment for ego-betweenness centrality dynamic adoption and is shown 

in Figure 7-10. 
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Closeness Centrality Increased Edge Weight Adoption for 
Graphs with Density II - relative cost
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Closeness Centrality Increased Edge Weight Adoption for 
Graphs with Density III - relative cost
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Figure 7-10. The relative cost for adopting an increased edge weight for closeness centrality 
measurement. 
 

From this figure, we can obtain several key points. For all graphs, an increased 

edge weight can be adopted with a maximum relative cost as 15%. When we use 

more processors in our system, the relative cost decreases. This is because that, 

as we show in the system theoretical analysis, the work load for adopting 

increased edge weights is also affected how well the graph is decomposed. 

Decomposing graphs into 4 sub-graphs may not fit the real community structure 

contained in the original graphs. When P is 6 or 8, our system has very low 

relative costs whose maximum value is about 6%.  
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Decreased Edge Weights: In this experiment, we generate a set of 4 edge 

changes with decreased weights on random nodes. We measure the time cost 

for our system to adopt each dynamic edge change. The average time costs for 

our system to adopt these changes are shown in Figure 7-11.  
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Closeness Centrality Decreased Edge Weight Adoption for 
Graphs with Density II 
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Closeness Centrality Decreased Edge Weight Adoption for 
Graphs with Density III
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Figure 7-11. The time cost of our system to incorporate an edge with decreased weight. 
 

Comparing Figure 7-11 with Figure 7-8 we can see that our system performs 

similarly on handling decreased weights and increased weights, except that the 

decreased edge weights require much less time. Similar as what we do for 

increased edge weights, in this experiment, we also test our system on a set of 

edge changes which happen on nodes with highest degrees. The comparison of 

random change adoption with max degree change adoption when P=4 is shown 

in Figure 7-12. 
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Closeness Centrality Decreased Edge Weight Adoption for 
Graphs with Density II - random vs. degree ( P=4)
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Closeness Centrality Decreased Edge Weight Adoption for 
Graphs with Density III - random vs. degree ( P=4)
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Figure 7-12. Relative costs for adopting a decreased edge weight for closeness centrality 
measurement. 
 

We have similar comparison results for P=6 and 8. We will not present them in 

this document. From Figure 7-12 we obtain the conclusion that when an edge 

weight is decreased our anywhere approach for closeness centrality is not 

affected by the degree of this edge’s endpoint.  

 

The relative cost for adopting a decreased edge weight is shown in Figure 7-13. 

The relative time cost is calculated as what we do for increased edge weights. 

Figure 7-13 shows that for all graphs the maximum relative cost for handling a 

decreased edge weight is less than 4%. Similar as handling increased edge 
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weights, when we use more processors in our system, the relative cost for 

adopting decreased edge weights decreases. When P is larger than 4, our 

system has very low relative costs whose maximum value is about 2%. 
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Closeness Centrality Decreased Edge Weight Adoption for 
Graphs with Density II - relative cost
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Closeness Centrality Decreased Edge Weight Adoption for 
Graphs with Density III - relative cost
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Figure 7-13. The relative cost for adopting a decreased weight for closeness centrality 
measurement. 
 

Based on the experimental results of dynamic change adoption for closeness 

centrality measurement, we can obtain the following key points. Our approach 

can effectively handle both increased and decreased edge weights. For both 

types of dynamic edge changes, there is no evidence that the adoption is 

affected by the degrees of dynamic edge endpoints. When we use more 

processors, the relative cost for dynamic change adoption decreases. When an 

edge’s weight is increased, the maximum relative cost for handle this change is 

about 15%. For decreased edge weight, the maximum relative cost is 4%. 

7.4 Experiments on Maximal Clique Enumeration 

Maximal cliques are defined for unweighted and undirected graphs. Thus, in our 

experiments for maximal clique enumeration, all the graphs we use are 

undirected. Also, we dichotomize graphs by the following formula: 

⎩
⎨
⎧ >

=′
otherwise

vuwwhen
vuw

0
0),(1

),(  

where w’ is the new edge weight after the dichotomization.   
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a) Serial Algorithm vs. Our Parallel Approach 

In order to evaluate our methodology’s performance on the problem of maximal 

clique enumeration, we implement a typical serial algorithm (Zhang’s Algorithm 

introduced in chapter 4.6) to compare with. By running the serial algorithm, we 

obtain the number of maximal cliques contained in each graph. The number of 

maximal cliques for each graph is shown in Table 7-1. For all the graphs from 

size 5000 to 30000 and from Density I to Density III, there is no maximal cliques 

with size larger than 3. 

 
Table 7-1 Maximal cliques contained in each graph 

graph size Density I Density II Density III 
5000 9975 / 11 19738 / 86 38332 / 559 
10000 19970 / 6 39705 / 96 77941 / 684 
15000 29972 / 5 59739 / 66 103656 / 443 
20000 40955 / 7 80746 / 82 171706 / 595 
25000 51964 / 6 104735 / 86 202898 / 690 
30000 62941 / 11 121737 / 85 241944 / 677 

 

In this table, the value before “/” is the number of maximal 2-cliques contained in 

the graph. The value after this symbol is the number of maximal 3-cliques. As 

shown in Table 7-1, graphs with Density I have very small number of maximal 3-

cliques because of the low density.  

 

The time costs for finding all maximal cliques contained in each graph by the 

serial algorithm and our parallel approach are shown in Figure 7-14.  
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Maximal Clique Enumeration for Graphs with Density I
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Maximal Clique Enumeration for Graphs with Density II
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Maximal Clique Enumeration for Graphs with Density III
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Figure 7-14. Time costs for finding all maximal cliques contained in graphs. 
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This figure shows that as graph size increases, the time for finding all maximal 

cliques will increase accordingly. For all types of graphs, our parallel approach 

can solve the maximal clique enumeration problem faster than the typical serial 

algorithm (Zhang’s algorithm). As the number of processors used in our system 

increases, the time cost for solving the problem decreases.  

b) Anytime Property 

Similar to the typical serial algorithm (Zhang’s algorithm) for maximal clique 

enumeration, our parallel approach generates maximal cliques with increasing 

size. The anytime property of our approach is demonstrated as that all maximal 

2-cliques are first generated. Then maximal cliques with larger and larger size 

are obtained stage by stage. The anytime property of our approach is shown in 

Figure 7-15. In this figure, we present the time for generating maximal 2-cliques 

and maximal 3-cliques for graphs with Density II and III. We do not study the 

anytime property of graphs with Density I since these graphs have very few (less 

than 10) maximal cliques with size larger than 2. Almost all the work for Density I 

graphs is done in finding maximal 2-cliques.  
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Maximal Clique Enumeration for Graphs with Density 
III - anytime property
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Figure 7-15. The anytime property of our approach for maximal clique enumeration 
 

In this figure “Cx, P=y” represents the time cost for our system to find all maximal 

cliques with sizes no larger than x by using y processors. As shown in Figure 7-

15, our approach first finds all maximal 2-cliques. As time evolves, our approach 

obtains all maximal 3-cliques. The time difference for obtaining all maximal 2-

cliques and all maximal cliques whose size is no larger than 3 is not significant. 

This is because that the number of maximal 3-cliques is much smaller than the 

number of maximal 2-cliques. When graph density increases, the anytime 

property will become more preeminent.  

 

In order to further study the anytime property of our approach for maximal clique 

enumeration, we decide to test our system on highly dense graphs. As we 

mentioned, dense graphs cannot be large. However, it is quite possible that a 

small portion of a large social network may have intensive inside connections. 

Thus, we decide to test our anytime approach on dense but “small” graphs. In 

this experiment, we generate a set of graphs with high densities and graph size 

from 400 to 800 in increasing size with increments of about 100. For each graph 

size, we generate graphs with three types of densities, 10%, 15%, and 20%.  
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By running the serial algorithm (Zhang’s Algorithm), we obtain the information of 

maximal cliques for each graph. This is shown in Tables 7-2, 7-3, and 7-4 where 

n and M represent graph size and maximal clique size respectively. 

 
 Table 7-2. Maximal cliques contained in graphs with density as 10% 

n \ M 2 3 4 5 6 
400 186 6604 943 7 0 
500 154 11377 2364 30 0 
600 86 18091 4479 40 1 
700 46 26342 8838 123 0 
800 45 36056 13118 215 2 

 
Table 7-3. Maximal cliques contained in graphs with density as 15% 

n \ M 2 3 4 5 6 
400 5 9348 7465 322 1 
500 4 14075 16563 854 9 
600 0 17662 34032 2235 11 
700 0 21566 59500 4783 46 
800 0 25033 95314 8348 88 

 
Table 7-4. Maximal cliques contained in graphs with density as 20% 

n \ M 2 3 4 5 6 7 
400 0 5538 25039 3692 67 0 
500 0 5944 54132 10622 240 0 
600 0 5677 100269 26182 678 2 
700 0 5229 164267 50644 1400 4 
800 0 4229 151391 101710 3513 15 

 

From these tables we can see that the maximal cliques with middle size are the 

major part. For graphs with density as 10% and 15%, the middle clique size is 3 

and 4. For graphs with density as 20%, the middle clique size is 4 and 5. Our 

anytime approach is expected to put relatively small time to handle all 2-cliques. 

Then, it will expend a lot of time to expand candidate cliques to generate all 

middle size cliques. When clique size is large (exceeding middle range), the 

number of cliques falls down exponentially. Our anytime approach will handle 

these large cliques within a short period of time. The time costs for our anytime 

approach to find cliques for all dense graphs are show in Figure 7-16. 
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Maximal Clique Enumeration for Graphs with Density as 10%
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Maximal Clique Enumeration for Graphs with Density as 20%
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Figure 7-16. The performance of our maximal clique enumeration anytime approach for dense 
graphs. 
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From this figure we can see that our approach first provides quick analysis 

results with maximal cliques which have small sizes, and it generates larger and 

larger maximal cliques stage by stage. Thus we can see that our approach for 

maximal clique enumeration demonstrates the anytime property well when a 

social network is dense or there is a part with dense connections in a large social 

network. 

c) Anywhere Property – Dynamic Change Adoption  

In this experiment, we test our anywhere approach for maximal clique 

enumeration on two sets of 8 dynamic edge changes: random edge changes and 

max degree edge changes. We measure the time cost of our system to handle 

each edge change. For each set, we take the average value as the time cost for 

adopting one dynamic change. We find that there is no obvious evidence that the 

time costs for adopting these two types of changes for maximal clique 

enumeration are different. The time costs and relative costs for adopting a 

random edge change are shown in Figure 7-17 and Figure 7-18 respectively. 
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Figure 7-17. Time costs for adopting one random dynamic change for maximal clique 
enumeration.  
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Maximal Clique Enumeration Dynamic Change Adoption - 
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Figure 7-18. Relative cost for adopting one dynamic edge change for maximal clique 
enumeration.  
 

These two figures show that our anywhere approach for maximal clique 

enumeration can effectively handle dynamic graphs. The relative cost for 

adopting a random edge change is less than 3.5%. 

7.5 Summary 

In this chapter, we present experimental results of our anytime-anywhere 

approaches for the measurement of ego-betweenness centrality, closeness 

centrality, and all maximal cliques for large and dynamic social networks. For all 

these three SNA metrics, our anytime anywhere approaches can obtain the final 

solution faster than the typical serial algorithms used in current SNA tools. For 

closeness centrality and maximal clique enumeration, experimental results 

demonstrate our approach’s ability to provide useful partial results and refine 

obtained partial results stage by stage. For all three SNA metrics, experimental 

results demonstrate and validate the effectiveness and efficiency of our approach 

on handling graph’s dynamism. 
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8. Conclusion & Future Work 

Social Network Analysis is an important research topic and has been 

successfully applied in a broad range of fields, with many SNA techniques and 

methodologies developed. However, they are designed for small networks and 

are not suitable for analyzing large networks. Recently, there are numerous large 

networks with considerable significance and special structural properties that 

have emerged from extensive research fields. Effectively and efficiently analyzing 

large social networks is an emergent task which introduces new challenges. The 

most fundamental and critical challenges are long processing time, large 

computational resource requirement, and graph dynamism.   

 

In this dissertation, in order to address these challenges, we described an 

anytime-anywhere methodology for large social network analysis based on a 

parallel/distributed environment. Our methodology consists of three phases: (1) 

domain decomposition, (2) initial approximation, (3) recombination. The domain 

decomposition phase takes the charge of partitioning a large network into smaller 

ones. A fast and initial approximation of the network analysis is achieved by 

analyzing these small sub-networks in the initial approximation phase. The 

approximation will be refined and a set of partial solutions with increasing quality 

will be provided to analysts as time evolves in the recombination phase. Finally, 

after the convergence of recombination, the exact or good approximate solution 

will be obtained. During the analyses process, graph’s dynamic change will be 

naturally adopted based on the obtained partial results.  

 

In order to evaluate and validate our methodology, we design and implement our 

system for three SNA metrics: ego-betweenness centrality, closeness centrality, 

and maximal clique enumeration. Based on theoretical performance analysis, we 

show the advantages of our approaches for analyzing large social networks. We 
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also test our system on a set of random graphs with various sizes and densities 

are generated. Experimental results demonstrate that our system overcomes the 

scalability issues of popular industry SNA tools and effectively handles graph’s 

dynamism. By our experiments, we validate that our methodology is an anytime-

anywhere approach with the ability to effectively and efficiently analyze large and 

dynamic graphs with various densities. 

 

The work discussed in this document presents a fundamental design and 

validation of our anytime-anywhere methodology for large and dynamic social 

networks analysis. There are still some topics needing more work. In future, we 

will further evaluate and validate our methodology by including more SNA metrics 

in our system. Also, we would like to study in depth the domain decomposition 

phase to analyze, identify and validate general metrics which are critical for 

analyzing normal social networks and special metrics which are important for 

particular networks or SNA applications. Another area for more work is in 

determining and improving on the accuracy of the initial approximation. We would 

like to be able to find an upper bound on the how inaccurate an initial 

approximation can be from the known result. Measuring this empirically can give 

some insight as to which metrics for domain decomposition allow for the best 

initial approximation. 
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