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Game; The Herding Problem 

 

Samy A Shedied 

 

(ABSTRACT) 

 
In this dissertation we introduce a new class of pursuit-evasion games; the herding 

problem. Unlike regular pursuit evasion games where the pursuer aims to hunt the evader 

the objective of the pursuer in this game is to drive the evader to a certain location on the 

x-y grid. The dissertation deals with this problem using two different methodologies. In 

the first, the problem is introduced in the continuous-time, continuous-space domain. The 

continuous time model of the problem is proposed, analyzed and we came up with an 

optimal control law for the pursuer is obtained so that the evader is driven to the desired 

destination position in the x-y grid following the local shortest path in the Euler Lagrange 

sense. Then, a non-holonomic realization of the two agents is proposed. In this and we 

show that the optimal control policy is in the form of a feedback control law that enables 

the pursuer to achieve the same objective using the shortest path. 

 

The second methodology deals with the discrete model representation of the problem. In 

this formulation, the system is represented by a finite di-graph. In this di-graph, each state 

of the system is represented by a node in the graph. Applying dynamic programming 

technique and shortest path algorithms over the finite graph representing the system, we 

come up with the optimal control policy that the pursuer should follow to achieve the 

desired goal. To study the robustness, we formulate the problem in a stochastic setting 

also. We analyze the stochastic model and derive an optimal control law in this setting. 



Finally, the case with active evader is considered, the optimal control law for this case is 

obtained through the application of dynamic programming technique.   
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Chapter 1 

Pursuit Evasion: Objectives and Technique 

 

1.1. Introduction 

Contests of pursuit and evasion are among the most widespread, challenging, and 

important optimization problems that confront mobile agents, and represent some of the 

most important potential applications for robots and other artificial autonomous agents. In 

a typical contest of this sort, a predator chases a prey animal around until the prey is 

captured. Although pursuit-evasion games have been relatively neglected in research on 

the simulation of adaptive behavior, they have some major features that render them 

interesting and relevant [1]. 

 

Pursuit and evasion contests are difficult, because dynamic, stochastic, continuous-space, 

continuous-time or discrete-time discrete-space games are usually difficult to handle. 

Agents that pursue or evade must maintain complex sensory-motor coordination with 

respect to both a physical environment and a hostile opponent. Pursuit-evasion contests 

also require continuous, real-time, dynamical control, in the face of an opponent that will 

ruthlessly exploit any delay, uncertainty, or error. Natural or artificial behavior-control 

systems that are slow, brittle, or easily confused do not survive long in pursuit-evasion 

scenarios. For these reasons, traditional artificial intelligence methods may prove 

particularly poor as techniques for dealing with pursuit-evasion games. 

 

Pursuit and evasion are scientifically interesting, because the agents evolve against one 

another in a continuing, open-ended, frequency-dependent way. In addition, since some 

of the pursuit-evasion scenarios may be so simple, their investigation may illuminate 

behavioral arms races in more general cases [2]. Further, because effective pursuit may 

often require prediction and “mind-reading”, while effective evasion may require the use 

of unpredictable or deceptive tactics [3], such contests raise issues of signaling, 

communication, and tactical deception [4], [5]. 
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Pursuit-evasion contests have recently received serious attention from at least three 

scientific disciplines: behavioral biology, neuroethology, and game theory. Animal 

behavior studies have revealed the ubiquity and importance of pursuit-evasion tactics, 

anti-predator behaviors, and fighting skills [6]. The central part of such behaviors is 

revealed by the fact that pursuit-evasion games are the most common form of animal play 

behavior [7]; such play facilitates learning sensory-motor coordination through 

“developmental arms races" between play-mates. Neuroethology [8] has spent much 

effort understanding neural systems for pursuit (approach) and evasion (avoidance), 

including: explorations of specific circuits for rapid startle and escape behaviors [9], [10]. 

Game theorists have also studied some classes of pursuit-evasion contests intensely for 

several decades, because of their importance in tactical air combat (e.g. telling pilots how 

to evade guided missiles) and other military applications [11]. “Differential game theory" 

[12] has developed a vocabulary for analyzing the structure and complexity of pursuit-

evasion games, and a number of formal results concerning optimal strategies for 

particular pursuit-evasion games. 

 

The study of pursuit-evasion behaviors has many scientific implications and practical 

applications. A better understanding of the cognitive dynamics of pursuit-evasion 

contests would have many applications in robotics, video games, virtual environments, 

and any other technology where real or simulated mobile agents come into behavioral 

conflict with other agents. 

 

Finally, understanding pursuit evasion games may open a new area of investigation for 

simulation of adaptive behavior, and will explore the evolution of pursuit and evasion in 

a variety of games under various conditions. Also, such work can be extended to 

investigate: 

1. Whether co-evolution between simulated robots engaged in pursuit-evasion contests 

can lead to more complex pursuit and evasion tactics over generations. 

2. Whether the use of continuous recurrent neural networks as control systems allows 

the emergence of more interesting and dynamic perceptual, predictive, pursuit and 

evasion abilities. 
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3. Whether the incorporation of random-activation units in the control system allows the 

evolution of adaptively unpredictable tactics. 

4. Whether changes in the relative physical speed and neural processing speed of 

pursuers and evaders influences the pursuit and evasion tactics that evolve. 

 

According to Isaacs [12] (Isaacs, 1975), control theory can be viewed largely as the 

solution of one-player differential games; differential game theory addresses the more 

complex multi-player cases. Considering the above mentioned factors, the most 

commonly used techniques adapted to deal with pursuit evasion games are:  

1. Classical calculus of Variations and Optimal Control Technique: This technique 

provides a very strong tool of analysis and design to the researcher especially when 

the practical issues of robot dynamics are to be considered in addition to obtaining 

optimal control policy. The main advantage of this technique is its ability to give a 

real time solution, if it exists, since the system and the constraints are represented by 

a set of differential equations. Despite the previously mentioned advantages, this 

technique has not been widely used in pursuit evasion games due to the complications 

that arise as the number of players increase. The basic foundations and principal tools 

using in this techniques will be covered at the beginning of chapter 2. 

2. Dynamic Programming: A very efficient technique that mainly deals with discrete 

systems with a value function that needs to be optimized. The basic types and 

principles of dynamic programming will be covered at the beginning of chapter 4. 

3. Reinforced Machine Learning: Reinforcement learning [13] is a technique of learning 

how to map situations to actions---so as to maximize a numerical reward value 

function. The learner is not told which actions to take, but instead he must discover 

which actions yield the most reward by trying them. In the most interesting and 

challenging cases, actions may affect not only the immediate reward, but also the next 

state and, through that, all subsequent rewards. These two characteristics, trial-and-

error search and delayed reward, are the two most important distinguishing features 

of reinforcement learning. Reinforcement learning is defined not by characterizing 

learning algorithms, but by characterizing a learning problem. The basic idea is 

simply to capture the most important aspects of the real problem facing a learning 
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agent interacting with its environment to achieve a goal [13]. This goal is related to 

the state of the environment. The formulation is intended to include just these three 

aspects---sensation, action, and goal---in the simplest possible form without 

trivializing any of them.  

 

In addition to the agent and the environment, one can identify four main elements to a 

reinforcement learning system: a policy, a reward function, a value function, and, 

optionally, a model of the environment.  

 

A policy defines the learning agent's way of behaving at a given time. Roughly 

speaking, a policy is a mapping from perceived states of the environment to actions to 

be taken when in those states. The policy is the core of a reinforcement learning agent 

in the sense that it alone is sufficient to determine behavior.  

 

A reward function defines the goal in a reinforcement learning problem. It maps the 

states (or state-action pairs) of the environment to a single number, a reward value, 

indicating the essential desirability of the state. A reinforcement-learning agent's 

objective is to maximize the total reward it receives in the long run.  

 

A value function specifies what is good in the long run. Roughly speaking, the value 

of a state is the total amount of reward an agent can expect to accumulate over the 

future starting from that state.  

 

4. Games Theory: This field took prominence in late 40’s. It provides the researchers 

with tools that enable them to analyze and design optimal control policies for more 

complicated games. Again, the basic foundation of game theory will be covered later 

in this chapter. 

1.2.  Typical pursuit and evasion behaviors 

Observing and understanding the animals’ behavior in pursuit evasion represents the first 

step in designing an optimal control policy for any pursuit evasion games. Pursuit is 
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fairly simple: animals are usually observed to move towards the remembered, observed, 

or predicted location of the target. Evasion is more complex. For example, animal escape 

behavior in asymmetric pursuit-evasion contests generally breaks down into three phases:  

- Directional fleeing if a pursuer is threatening but still distant. 

- Erratic zig-zagging if the predator begins catching up. 

- Convulsive “death-throes” if caught.  

 

Along with directional fleeing, adjustable escape behaviors are probably the most 

widespread and successful of all behavioral anti-predator tactics, being used by virtually 

all mobile animals on land, under water, and in the air [3]. (e.g. because predators' use of 

search images penalizes common appearances). Indeed, apostatic selection may be a 

general feature of pursuit-evasion arms races: novel and unexpected tactics may be 

favored at a variety of levels. 

 

 In our study, the first phase of the evasion motion is the key characteristic in our class of 

pursuit evasion games; The Herding problem. 

 

1.3.  Foundations of the Game Theory 

Game theory [14] is concerned with the formal analysis of situations called “games" 

where players can choose different strategies that determine their actions under particular 

conditions. Conditions and outcomes unfold through the interactions of the players' 

strategies. Players have preferences among outcomes. In other words a “value function” 

be present [15].  

 

Briefly, players can be represented by agents that can make choices, employ strategies, 

and receive payoffs. Traditional game theory has focused on games with discrete moves 

(e.g. chess), but in the 1950s, Isaacs (1951, 1965) tried to utilize game theory in modeling 

and analyzing pursuit-evasion situations such as aerial combat, where moves unfold 

continuously over time, and control systems can vary continuously in the strategies they 

implement. Isaacs had two basic insights. First, pursuit-evasion contests do require game 
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theory rather than simple optimality theory. However, we show in chapter 2 how to 

utilize optimality theory in solving for optimal control policy for the herding pursuit 

evasion game. Second, the continuous nature of pursuit-evasion contests can be modeled 

using differential equations that specify how state conditions (such as player positions 

and velocities) change incrementally as a function of players' strategies and previous state 

conditions: pursuit and evasion moves become continuous trajectories through a state-

space. Isaacs (1951, 1965) developed the “Tenet of Transition" which specifies that 

players must optimize (find the minimax solution for) the transitions between states 

leading towards a goal-state, which can be represented as optimizing the temporal 

derivatives of the relevant state variables. Applying the tenet of transition, pursuers at 

each moment in time should try to maximize the rate of their instantaneous approach 

towards the capture-state, and evaders should try to minimize it. If a solvable set of 

differential equations can be written that identify the continuous effect of strategies on 

state-conditions, then the optimal pursuit and evasion strategies can be found by applying 

the tenet of transition. 

 

Aside from differential game theory, there are also large and relevant literatures on using 

control theory [16], to deal with some classes of pursuit evasion games such as;  missile 

guidance, aircraft control, aerial tactics, and sports tactics. 

 

Differential pursuit-evasion games are defined by a set of controls (what each player can 

do), a set of dynamics (that can be considered as a mapping from the control variables 

onto the state variables of the game, and from state variables at one moment in time to the 

next moment), and a set of termination conditions (state conditions that determine when 

successful capture or evasion happens). For example, in a classic case analyzed by 

Berkovitz [17], a pursuer and an evader move with equal and constant speed in a plane, 

and control the direction of their velocity vector (which thus becomes their control 

variable). These two velocity vectors give rise to a system of first-order differential state 

equations that determine how the players move over time. The pursuer wants to minimize 

time to capture the evader and the evader wants to maximize time until capture, with 

capture defined as proximity within some small distance. Both players know the present 
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state of the game (e.g. both of their positions and velocity vectors) but at each time-point 

they make separate and simultaneous decisions about what to do next. The available 

strategies are therefore functions that map from current states of the game (i.e. the 

positions and velocity vectors of both players) onto velocity-vector decisions about what 

direction to move next. In all differential games, strategies determine trajectories through 

the relevant state-space; in pursuit-evasion games, strategies determine trajectories 

through physical space.  

 

1.4.  The optimality of mixed strategies 

The key to formal analysis in game theory is for games to be reduced from descriptive 

form (e.g. rules and heuristics) or “extensive form” (i.e. decision-tree form) to “normal 

form" (i.e. a joint payoff matrix that lists game outcomes given all possible strategies for 

all players). Some games in normal form have “minimax  solutions" (a.k.a. “saddle 

points") that minimize each player's expected payoff “value function” apart from what 

the opponent does to maximize their expected gain.Minimax solutions, if they exist, are 

jointly optimal for both players. In games of perfect information, players are accurately 

and continuously aware of all moves made by other players, so that deception, confusion, 

and uncertainty are impossible. All games of perfect information have one or more saddle 

points corresponding to “pure” deterministic optimal strategies.  

 

However, games of imperfect information (e.g. games where deception is possible) may 

have multiple saddle points or no saddle points. In such cases, “mixed strategies” 

(probability distributions across pure strategies) may be optimal. Perhaps the most 

important and interesting result from von Neumann and Morgenstern (1944) was that 

every two-player, zero-sum game of incomplete information with multiple saddle points 

has an optimal strategy that is mixed rather than pure: 

 

“One important consideration for a player in such a game is to protect himself against 

having his intentions found out by his opponent. Playing several different strategies at 

random, so that only their probabilities are determined, is an effective way to achieve a 
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degree of such protection. By this device the opponent cannot possibly find out what the 

player's strategy is going to be, since the player does not know it himself. Ignorance is 

obviously a good safeguard against disclosing information directly or indirectly.” [14]. 

  

The logic of mixed strategies is simple [18]. If a player's choice sometimes remains 

unknown to others after the move is made, the game is one of imperfect information. This 

can result from the move being unknown, or the other players' sensors being insufficient 

to detect all moves with complete accuracy. Typically, games lose their saddle points 

when they are no longer games of perfect information, such that the first player's 

minimax solution does not correspond to the second player's minimax solution. In 

general, mixed strategies randomize moves to confuse opponents and keep them 

guessing. (But the task of determining the optimal mixed strategy is usually very difficult 

for games with many pure strategies and complex interactions.) 

 

Because many pursuit-evasion games are ones of incomplete information with multiple 

saddle points, mixed strategies have often proven useful in such games. Mixed strategies 

are optimal for a pursuit-evasion game with rectilinear movement on a planar grid [19]. 

Such game-theoretic results support the assumption of Driver and Humphries (1988) that 

erratic zig-zagging by animals is truly stochastic behavior that derives its utility from its 

unpredictability. We might expect then that in any pursuit-evasion game with incomplete 

information and complex dynamics, unpredictable pursuit and evasion strategies will 

evolve. 

 

Dynamic programming methods [20] may prove more useful in analyzing pursuit-evasion 

contests, since they can optimize stochastic dynamic strategies, even in two-player games 

[21].  

 

1.5.  Reasons to simulate pursuit-evasion games 

Generally speaking, games are characterized by various dimensions of complexity: 
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1. The number of players, ranging from one-player cases to classic two-player cases to 

more difficult multi-player cases. 

2. The number of moves, ranging from “static’ games of one discrete move per player 

(e.g. Rock, Paper, Scissors) to games with multiple discrete moves per player (e.g. 

chess), to differential games with continuous moves (e.g. air combat). 

3. The continuity of the strategy space, with discrete spaces being simpler than 

continuous spaces. 

4. The payoff “value function” structure, with zero-sum games usually being simpler 

than non-zero-sum games. 

5. The information structure, with games of complete information being much simpler 

than games of incomplete information. Generally, anything that complicates the 

differential state equations complicates the game analysis.  

6. Finally, Solving for optimal strategy “policy” requires the complete specification of a 

strategy space. Such a complete specification may not be possible if the strategies are 

evolving properties of human heuristics, animal brains, or advanced robot control 

systems, and if the emergent strategies can vary continuously along a number of 

dimensions. 

 

These problems propose that differential pursuit-evasion games are complicated to 

analyze even under the best circumstances, and that the introduction of realistic 

complexity makes most of them formally inflexible. 

 

To avoid these complexities, differential game theory usually assumes that the pursuit-

evasion game is one of perfect information between two players with fixed and pre-

determined roles (one “pursuer” and one “evader”), deterministic dynamics and constant 

speeds, and a zero-sum payoff structure. Mathematically proficient researchers can relax 

one or two of these assumptions at a time to obtain results for special and simplified 

cases, but relaxing all the assumptions at once makes the game hopelessly complex. Yet 

even with bounded uncertainties in dynamics, the classical game-theoretic concepts of 

optimality, value, and saddle point may be inappropriate (Galperin & Skowronski, 1987). 
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Pursuit-evasion games that cannot be reduced to differential state-space equations can not 

be analyzed using the traditional methods of differential game theory. A recent 

complexity-theoretic analysis of differential pursuit-evasion games by (Reif&Tate,1993) 

illustrates the difficulties of designing a control systems for robots and autonomous 

vehicles playing such games. 

 

Another important assumption, rarely mentioned in game theory “meanwhile it can be 

considered in control theory”, is that strategies can be implemented instantaneously, 

without time-lags. That is, decision dynamics are assumed to be much faster than system 

dynamics. For robots, this assumption is far from being realistic. 

 

In recognition of these problems, some game theorists have recently shifted to numerical 

and simulation methods to derive near-optimal strategies for more complex pursuit-

evasion games. For example, Rodin et al. (1987) [22] used artificial intelligence (AI) 

methods to simulate players in an air combat maneuvering scenario. Each player derives 

tactical maneuvers using a world-model based on sensor inputs, an inference engine 

linked to a database (containing player parameters and capabilities and an environment 

model), and a knowledge base (containing a basic set of pursuit-evasion algorithms). The 

inference engine updates tactical plans every time an opponent's actual trajectory deviates 

from its expected trajectory. Clearly, unexpected behavior increases problem complexity 

and processing time. But such AI methods for controlling autonomous agents tend to 

become desperately slow as the dynamics of agents and environments become more 

complex and noisy. We need simulation methods that yield reactive, robust, dynamic 

pursuit-evasion strategies, rather than slow, brittle, hand-designed AI systems. 

 

Although differential game theory provides a framework for describing the important 

features of pursuit-evasion contests, and a set of normative results concerning optimal 

strategies in simple cases, it cannot generally provide optimal strategies for practically 

pursuit-evasion problems, nor can it show how strategies can be implemented in a real 

control system subject to limited sensory capacities, sensory and motor noise, component 

failure, and constraints on processing speed and accuracy. 
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1.6. Review of Some Previous Simulation and Robotics Work 

Pursuit-evasion is embedded in much of the recent work in artificial life and simulation 

of adaptive behavior. Classic problems of obstacle avoidance and navigation can be 

viewed as relaxed special cases of evasion and pursuit, respectively, with the “opponents” 

represented by, non-moving obstacles, or a trajectory “path” to follow.  In addition to the 

work introduced above on pursuit evasion, the following paragraph we’ll give a brief 

description of some recent works made on pursuit evasion game in the recent years.  

1. In [23] Joao et al, introduced a probabilistic framework of pursuit evasion game 

simulation where a swarm of autonomous pursuers are chasing an evader, and the 

objective is to come up with a policy that will maximize the probability of finding the 

evader in finite time. 

2. In [24] a model for an active evader chased by several pursuers in a non-precisely 

mapped region is presented. Instead of solving the problem in two phases, region- 

mapping estimation and then solving a deterministic pursuit-evasion game over the 

estimated region map assuming that the map is determined accurately, the inaccuracy 

of the map information is merged with the players movements in one stochastic 

partial information Markov game. 

3. The work presented in [25] discusses the optimal escape policy of an aircraft from an 

optimally guided missile.  The solution is obtained by decomposing the minimax 

value function into two separate parts. One part for the maxmizer and the second for 

the minimizer. The two parts are iteratively solved alternatively. Solution for both 

sub-problems is obtained by appropriate application of discretization and non-linear 

programming techniques.  

4. Boris Stilman [26] introduced a heuristic search algorithm based on discretizing time 

appropriately to produce a finite game tree of finite number of states. This tree of all 

possible states of the game is searched for the optimal trajectory. 
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1.7. Summary and Dissertation Overview 

The main features of the pursuit evasion games obtained form the literature search 

presented above can be summarized in the following points: 

1. Pursuit evasion games vary in complexity ranging from avoiding (evading) stationary 

targets (obstacle avoidance) and navigating, or following moving target, to the 

cooperative effort of a group of pursuers to catch a single evader.  

2. Pursuit evasion games studies so far concentrated on hunting the evader rather than 

directing it to a certain predetermined position in the coordinate grid.  

3. The games always begin with one initial state and ends with one final state 

(capturing). 

4. Despite the fact that differential game theory provide the framework for describing 

the important features of pursuit evasion contests, it can not generally provide 

realizable optimal strategies nor can it illustrate how to implement these strategies in 

real control system subjected to constrained dynamics. 

5. Implementing and applying optimal strategies on real robots taking into consideration 

their constrained dynamics was rarely considered in pursuit-evasion games. 

 

In this dissertation, we try to cover some of the points that have not been represented in 

research so far as mentioned above. A moderately complex model consisting of two 

players in a dynamic game is considered. The objective of the pursuer is to drive the 

evader to certain predetermined location rather than intercepting or hunting it. This 

modified objective results in an additional difficulty of having multiple final states 

instead of having one terminal state. Moreover, practical considerations of robotic 

realization of the pursuer’s optimal policy  are taken into consideration while designing 

the optimal control law . 

 

The dissertation can be divided into 2 main parts. The first part includes chapters 2 and 3 

where a continuous time, continuous space model of the problem is introduced. In 

chapter 2, the continuous time continuous space model is introduced as an optimization 

problem where the pursuer objective is to drive the evader to the pen, without loss of 

generality in the neighborhood of the origin, through shortest path possible. The system 
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equations with the detailed derivation of the optimal trajectory are given the some 

supporting sample results of the model simulation 

 

In chapter 3, a rarely considered realization of the pursuit evasion game is introduced. In 

this realization both the evader and the pursuer are represented by wheeled mobile robot. 

Although this adds some more constraints on the system dynamics, it enables the 

researcher to convert the optimal control policy obtained analytically to be practically 

implementable. The chapter begins by introducing the basic definitions and concepts of 

the non-holonomic constrained systems with the basic theories used to study and analyze 

their properties. After that, the non-holonomic constrains are added to the system model 

introduced in chapter 2. Taking into consideration the non-holonomic constraints, the 

optimal control law is derived and some supporting simulation results are given at the end 

of the chapter. 

 

Part two of the dissertation deals with different frameworks of the discrete-time discrete 

space model. Due to this discrete nature of the model, dynamic programming is used as 

the optimization technique in this case due to its simplicity and applicability to problems 

of this kind. Part two begins with introducing the basic foundation and principles of 

dynamic programming. Then, a basic deterministic model with passive evader is 

presented.  Due to the finite number of states of the system of the discrete model, our 

system can always be represented by a finite graph. The objective of the pursuer is to 

search this finite graph for the shortest path beginning from any initial state to the final 

destination state. As a result of the new objective of the pursuer, our model has multiple 

final destination states which motivated us to modify some of the most commonly used 

algorithms used to solve for shortest path problem in finite graphs. We introduced three 

ways to solve for the shortest path in the finite graph representation model. The first 

solution approach uses dynamic programming technique directly while the other two 

techniques depend on modifying the famous Dijkstra’s algorithm for shortest path over 

finite graphs. The simulation results of all the three techniques used for solving for the 

shortest path are given at the end of the chapter. 

 



 18

In chapter 5, a degree of uncertainty is added to the system model. The uncertainty 

introduced is in the state transition, rather than in the link costs as usually considered. 

This introduced uncertainty adds more difficulty to the calculations of the state cost value 

and hence to the evaluation of the optimal control policy. The state cost values are 

calculated by three techniques; which are admissible policy search technique, the value 

iteration technique, and the policy iteration technique. At the end of the chapter, the 

supporting simulation results are presented. 

 

In chapter 6 we consider the deterministic case of an active evader, where the evader in 

this model is not only trying to avoid the pursuer, but also is to maximizing the value of 

its state cost.. Similar to the deterministic passive evader model, solution for the shortest 

path over the finite graph representing the problem is provided using the same techniques 

given in chapter 4. 

 

Finally, a conclusion of the work covered, contributions made in the dissertation, future 

directions for work and some possible applications are given.  
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Chapter 2 

Optimal Trajectory for a Class of Pursuit Evasion Games: The 

Continuous Time Herding Problem 

 

2.1. Introduction 

Pursuit evasion problems have been studied and solved using various optimization 

techniques such as dynamic programming [27-29], calculus of variations, optimal control 

[30-31], and reinforced machine learning [32].  In most of the pursuit evasion models 

considered so far, if not all of them as shown previously in chapter 1, the pursuer's aim is 

to hunt, or intercept the evader.  Unlike these previously introduced models, the work 

presented in this chapter uses a different view. The aim of the pursuer in our case is to 

drive the evader to a certain location in the x-y grid. 

 

This chapter begins with introducing the basic concepts and theories of calculus of 

variations that we are going to utilize in developing our optimal trajectory. Then, the 

model of the problem is introduced in section 2.2. The solution for the optimal trajectory 

for the pursuer is derived and it is illustrated in section 2.3 how it satisfies the necessary 

and sufficient conditions for a minimizing curve. Finally, simulation results for the 

system are given for different initial condition.  

 

2.2. Basic Principles and Theories of Calculus of Variations 

Calculus of variations is the science used to study optimization of an objective functional 

subjected to a set of constraints. The basic definitions, concepts, and theories that we are 

going to use in solving for our optimal trajectory, are briefly covered briefly in this 

section. The definitions are adapted from U. Berchtken-Manderscheid “Introduction to 

the Calculus of variations” [33]. 
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2.2.1. Definitions and Concepts 

Functional:  is defined as a function of functions. 

Thus, given a functional of an integral form; 

∫
•

=
)(

)( 0

))(),(,(
ftx

tx

dttxtxtLJ         (2.1) 

we would like to find the function, )(* tx , from the set of all admissible functions, )(tx , 

that will optimize (maximize or minimize) the value of J subjected to certain end point 

constraints. 

 

By the set of admissible functions here we mean the set of all smooth functions that 

satisfy the end points constraints. 

 

The integrand, ))(),(,( txtxtL
•

, of equation 2.1 is assumed to satisfy the following 

conditions; 

-L is defined for all points 2),0[))(),(,( Rtxtxt ×∞∈
•

. 

-L is at least twice continuously differentiable, i.e. L is continuos and has continuous 

partial derivatives with respect to its variables. 

 

2.2.2. Existence of Solutions 

Prior to going into the details of the necessary and sufficient conditions that a function, 

)(* tx , should satisfy  to minimize ( maximize) the value of the objective functional J , it 

is important to first check for the existence of the solution itself. According to the 

Weierstras theorem; “Every continuos function f that is defined on a closed and bounded 

domain M⊂Rn has a minimum and a maximum”. This means that the existence of a 

solution for any optimization problem is related to the domain of operation. Therefore, 

the domain of operation has to be appropriately selected or modified such that the 

objective functional J is guaranteed to have an optimizer.  
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2.2.3. Necessary Conditions 

Before introducing the first necessary condition that an optimizing function )(* tx  has to 

satisfy, we introduce first the definition of a “weak” and “strong” solution. 

 

Definition 2.1: the function )(* tx is said to provide a strong solution of the variational 

problem given in 2.1 if there is an ε>0 such that J( )(* tx )≤J(x(t)) for all admissible 

functions x(t) with: 

ε<−=
∈

)()(max))(),(( *)](),([*0
0

txtxtxtxd
ftxtxx

 

 

Definition 2.2: the function )(* tx is said to provide a week solution of the variational 

problem given by 2.1 if there is an ε>0 such that J( )(* tx )≤J(x(t)) for all admissible 

functions x(t) with: 

ε<−+−=
∈

))(')(')()((sup))(),(( **
)](),([

*1
0

txtxtxtxtxtxd
ftxtxx

 

 

Now, we are ready to state the first necessary condition that any admissible optimizing 

function )(* tx  has to satisfy; 

 

Euler’s Necessary Condition: If the function )(* tx , which has continuous first, second 

and third order derivative, is a candidate minimizer (maximizer) “strong or weak” for 

the variational problem given in (1), then it has to satisfy Euler’s Differential Equation 

given by: 

0))('),(,())('),(,( **'** =− txtxtL
dt
dtxtxtL xx       (2.2) 

 

Therefore, Euler’s necessary condition provides a primary means that can be used to 

solve for the set of extremals of the variational problem given in (2.1) regardless of this 

extremal being weak or strong one. 
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In addition to Euler’s necessary condition, Legendre condition gives a simpler and yet 

easier necessary condition that )(* tx has to satisfy. 

 

Legendre Necessary Condition: If )(* tx  is a smooth function that provides a weak 

solution of the variational problem given by equation (2.1) then, ∀ x(t)∈[x(t0), x(tf)]; 

0))('),(,( **'' ≥txtxtL xx         (2.3) 

 

In addition to the above-mentioned necessary conditions, a more powerful necessary 

condition is given by Weirstrass. The difference between Euler’s, Legendre and 

Weirstrass’s necessary conditions is that Euler’s can’t differentiate between week or 

strong minmizers (maximizers), Legendre’s is used for weak extremals, while 

Weirstrass’s necessary condition provides a tool to check if the minimizer (maximizer) is 

a strong one. 

 

Weierstrass’s necessary conditions: The function )(* tx provides a strong solution to the 

variational problem given in (2.1) if at any point x(t)∈[x(t0), x(tf)] and ∀q∈R, the 

Weierstrass Excess function E, 

E(t, )(* tx , )('* tx ,q)≥0 

Where; 

E(t, )(* tx , )('* tx ,q) ))('),(,())('())('),(,()),(,( **'**** *
txtxtLtxqtxtxtLqtxtL x−−−=    (2.4) 

 

2.2.4. Sufficient Condition 

So far, the previously mentioned necessary conditions give no way to check if any 

member of the set of extremals resulting form solving Euler’s differential equation is a 

solution of the variational problem given by (2.1) or not. In this section we bring in a 

theorem that can deal with a special class of variational problems of the form given by 

equation (2.1), but the integrand L is convex. 

 

First, we have to define what is meant by convex function then we’ll present the theorem 

afterwards. 
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Definition 2.3: A function f defined on a convex set is said to be convex M if ∀ u1, u2∈M 

and all q∈(0,1), it holds that; 

)()1()())1(( 1212 ufquqfuqquf −+≤−+  

 

Another easy way to check for the convexity of a function f is given by the following 

theorem. 

Theorem 2.1: Let function f: M⊂R2→R that have continuos first and second partial 

derivatives, then f is convex if the entire Hessian matrix is positive semi-definite. 

 

Finally, we can state the theorem about the sufficient condition for the solution of 

problem 1 to exist. 

Theorem 2.2: If the integrand L of the variational problem (2.1) is convex ∀t and with 

respect to the variables (x(t), x’(t)), then a smooth function )(* tx  that satisfies Euler’s 

differential equation is a solution of this problem. 

 

Using the previous theorems and following the same order, we introduce our system 

model and make use of them to come up with the optimal trajectory of our game.  Then, 

we will show that the obtained trajectory satisfies the necessary conditions required for a 

minimizing curve. 

 

2.3. System Model 

Figure 2.1 gives a quick summary representation 

of our model. As shown in the figure, the intial 

position of the pursuer is (xp0,yp0) and that of  the 

evader is (xe0,ye0).  Beginning at these initial 

positions, the pursuer is supposed to drive the 

evader to the (0,0) position in the x-y grid through 

the shortest path.  The associated dynamics of the 

Evader Pursuer

x

r0 

y

θ 
(xe0,ye0) 

(xp0,yp0) 

Fig. 2.1.  System Model 

α0 



 

 

 
 

24

problem are given below: 

θtanee xy
••

=            (2.5) 

1
22

=+
••

ee yx                               (2.6) 

θ

θ

sin

cos

0

0

ryy

rxx

ep

ep

+=

+=
                            (2.7) 

∫

∫

−=

−=

•

•

f

f

t

eoe

t

eoe

ydty

xdtx

0

0            (2.8) 

 

Based on the above dynamic equations of the system, the evader moves away from the 

pursuer according to equations (2.8) and (2.6), that show that the direction of the motion 

of the evader is in the straight line joining the pursuer and the evader.  We have chosen 

the normalized velocity of the evader to be 1 unit.  Notice that the distance between the 

two agents is always the same and equals r0. The goal of the pursuer is to drive the evader 

form the given initial position to the final one, following the above constraint, such that a 

norm characterizing distance traveled by both the pursuer and the evader is minimized.  

The previous statement can be represented by the following objective function to be 

minimized: 

dtyxyxJ
ft

ppee∫
••••

+++=
0

2222

min         (2.9) 

Thus, equations (2.5), (2.6), (2.7), (2.8), and (2.9) give a complete representation of the 

problem at hand with the constraints that should be satisfied ∀t∈[t0,tf]. 

2.4. Solving for Optimal Trajectory 

Examining figure 1, with the given system equations, shows that the main control 

variable that the pursuer can use to achieve the objective is its relative position angleθ.  

This, in turn can be directly controlled via its rate of change.  Therefore, the first step in 

obtaining the optimal trajectory is to express the objective function as well as the system 

constraints as functions of θ. By substituting (2.8) in (2.6), we get 
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1tan 2
22

=+
••

θee xx          (2.10) 

 

Manipulating and simplifying equation (2.10) results in: 

θ

θ

2
2

2
2

sin

cos

=

=
•

•

e

e

y

x
          (2.11) 

 

Differentiating equation (2.7) and using (2.11) gives: 

θθ

θθ

cos

sin

0

0
•••

•••

+=

−=

ryy

rxx

ep

ep          (2.12) 

 

By using equations (2.11) and (2.12), and substituting in equation (2.9) of the objective 

function, the integrand, L, becomes 
2222

ppee yxyxL
••••

+++=  

)]sincos(cossin[2)(11

)cos()sin(1

0
2

0

2
0

2
0

θθθθθθ

θθθθ

±−±+++=

++−+=
••

••••

rr

ryrxL ee  

2
2

02
•

+= θrL          (2.13) 

 

Therefore, the original model of the problem can be transformed into the following 

equivalent one. 

dtrJ
ft

∫
•

+=
0

2
2

02min θ          (2.14) 

Subjected to the following constraints 

θ(0)= θ0   θ(tf)= θf 

where 










−

−
= −

)(
)(

tan
00

001
0

ep

ep

xx
yy

θ  
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and θ(tf)= θf  is free.  The vertical and horizontal components of the evader’s velocity 

have to satisfy; 

0
0

0
0

sin

cos

e

t

e

t

ydt

xdt

f

f

=±

=±

∫

∫

θ

θ
         (2.15) 

 

Clearly, the Lagrangian of equation (2.14) satisfies all the requirements of theorem 2.2 

since we have; 

02 2
0 ≥=•• rL

θθ
 

Therefore, the solution of the Euler’s differential equation provides a solution of (2.14). 

Combining the constraints given by (2.15), the problem model becomes an isoperimetric 

model whose Lagrangian is given by; 

θλθλθ cossin)(2 21
2

0 +++=
•

rL        (2.16)  

Assuming that θ* is the optimizer of the equation (2.16), it has to satisfy the following 

Euler-Lagrange differential equation [33]. 

0=
∂
∂

− •

θθ L
t

L          (2.17) 

Therefore, 

*1*2*
2

0 cossin2 θλθλθ +−=
••

r        (2.18)  

Where, *θ  is the optimal angle of the pursuer with respect to the evader position at any 

time t.  Since the final angle of arrival, θf, is free, the transversality condition has to be 

satisfied at the final time [34]; i.e. 

ftatL 0=•
θ

 

Since, the control variable θ&  is completely state dependent and has no explicit 

dependence on time, we can use 

 
θ

θθ
d
dvvv =⇒=

•••
         (2.19) 

and therefore, 



 

 

 
 

27

0)(0)( ** =⇒=
•••

ff tt θθ         (2.20)  

From equation (2.18) and (2.19), we get; 

f

f

ff

θ
θ

λ
λ

θλθλ

cos
sin

cossin

1

2

21

=

=

         (2.21)  

Substituting equation (2.21) into equation (2.18) and after some trigonometric 

manipulations we get; 

)sin(
2
1

*2
0

* fr
θθθ −=

••

         (2.22)  

Using (2.19) in (2.22) gives 

C
r f +−−=

•

)cos(1
*2

0

2

* θθθ         (2.23) 

By equation (2.19), we can easily see that; 

2
0

1
r

C =  

which gives us 

)
2

(sin2 *2
2

0

2

*
f

r
θθ

θ
−

=
•

        (2.24)  

Solution of the differential equation (2.24) gives the family of all extremal curves. Hence, 

checking for Legendre necessary condition, we find that; 

02 2
0 >=•• rL

θθ
 

This means that the solution obtained by solving Euler’s differential equation provides a 

weak minimum of the objective function J. 

 

According to the Weiestrass condition [35], in order for that extremal θ* to give a strong 

minimum of the objective function J, it is sufficient that 

θ* is a member of a field of extremals “which is satisfied from equation (2.24)”. 

E(t, θ,
•

θ , p)≥0 

where,  

E(t, θ,
•

θ , p)=L(t, θ,
•

θ )-L(t, θ, p)- (θ -
•

θ )∂ L(t, θ,p)/∂p. 
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To satisfy the Weiestrass condition we notice that 

0
)(

)(2)(

22)(2)(2

)2)(()(2)(2),,,(

2
00

2
0

2
0

2
0

22
0

2
0

2
0

2
0

2
0

2
0

2
0

≥
−=

+−=

+−−−+=

−−−−+=

•

••

••

•••

prr

prprr

prprprr

prpprrptE

θ

θθ

θθ

θθθθ

 

 

Therefore, *θ  provides a strong minimum for our objective function J.  Based on this 

analysis we obtain the nonlinear feedback control law for the pursuit-evasion problem as: 

)
2

sin(2

0

f

r
θθ

θ
−

−=&          (2.25) 

 

2.5. Simulation Results 

Solving for *θ involves several difficulties such as the non-linear nature of the differential 

equation given in (2.25), the unknown final angles, fθ , and the final time tf. To overcome 

such problems, the optimal value for the minimizing *θ  is obtained by numerically 

solving equation (2.25) with iterative guessed values of θf, and tf. Due the discretization 

process of both time and fθ , we put a threshold around the origin , such that, once the 

evader is within this threshold, the simulation ends. 

 

Figures 2.2.a, 2.2.b, 2.2.c, and 2.2.d illustrate the optimal trajectory for the pursuer and 

the corresponding trajectory of the evader based on different initial conditions.  In the 

figures, S refers to the evader and D refers to the pursuer. 
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Fig.2.2 Optimal trajectory for the pursuer (dashed line) and the evader (solid line) from 

different initial positions 
 

Inspection of the simulation results shows not only, a clear symmetry of θf about the line 

connecting the initial position of the evader to the origin, but also that there is a 

relationship between the θf , θ0  and the slope of the symmetry line (angle α0). This is 

illustrated in figures 2.2.a and 2.2.b.  
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Fig.2.3. Dependence of (θf - θ0) on (α0-θ0) 

 

Trying to estimate this dependence of θf, on θ0 and α0, we plot (θf - θ0) versus (α0-θ0) and 

come up with the results shown in figure 2.3 where the plots are drawn for different 

values of α0.  Based on the plots, we consider a linear approximation of the dependence 

of (θf - θ0) on (α0-θ0) given as: 

)( 000 θαθθ −=− kf           (2.26) 

where, 
0

0
0 arctan

e

e
x
y

=α  and a value of approximately 1.35 was obtained for K using the 

plots.  Since the value of θf is same for all the intermediate values of θ0 and α0 on the 

system integral curves, we replace (2.26) by 

θθαθ +−= )(kf           (2.27) 

 

Therefore, the feedback control law is given in (2.25) with θf given by (2.27).  Notice 

from (2.23) that when α = θ then θf = θ, and from (2.25) we can see that 0=θ& .  This 

means that when the pursuer and the evader are on the straight line joining the evader 

with the origin, then the final angle is reached, and after that instant, the pursuer and the 

evader travel on the same straight line till the evader reaches the origin. 

 

We can show that the optimal feedback control law (2.25) is in fact also a stabilizing 

control law.  In order to show that, let us define a candidate Lyapunov function as 

θ f
-θ

0 

α0--θ0

=α0
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2ev =            (2.28) 

where e= θ -θf .  Differentiating (2.28) with respect to time along the integral curves of 

(2.25) we get 

0

)
2

sin(4
2

2
0

≤

−=

=
e

r
e

eev &&

         (2.29)  

 

For π<≤ e0 the largest invariant subset of the set { }0: == veV &  is given by e = 0.  

Therefore, from the application of LaSalle’s theorem [10] [36], 0)( =
∞→

teLt
t

.  This 

implies that the pursuer drives the evader to the origin (θ →θf). 

 

2.5.1. Impulsive versus smooth solution 
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Fig. 2.4  Impulsive versus smooth solutions for θ 
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One important issue has to be addressed before we conclude this chapter. It can be 

observed from the optimal trajectory solution and the simulation results that the pursuer 

tries to align its position on the line connecting the origin to the location of the evader. As 

shown in figure 2.4, as the pursuer angle θ  approaches θf, the evader would move in a 

linear motion till it hits the origin.  

 

 
Fig. 2.5  Impulsive versus smooth trajectories 

 

So, if the pursuer is able to get from the θ0 to θf in an impulsive motion, the evader’s 

tangential motion will be negligible due to the restriction of its velocity to be 1 and it will 

move linearly in the radial direction. This situation is illustrated in  figure 2.5 where the 

smooth path represent the optimal trajectory from Euler Lagrange sense, while the 

impulsive  one represents the trajectory resulting from the instantaneous motion of the 

pursuer from θ0 to θf . The cost value of the impulsive path will be the sum of the two line 
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segments representing the motion of the radial motion of the evader plus that of the 

pursuer once it gets behind the evader in addition to the arc length representing the 

motion of the pursuer from the initial location till it gets behind the evader. Unlike the 

smooth solution, the value of the cost function for the impulsive motion trajectory is 

dependent on the radius r0. Most likely, the cost value for the impulsive motion will be 

less than that of the smooth motion for small values of r0, as demonstrated in figure 2.5. 

However, for large values of r0 the smooth trajectory is quite likely to have a lower cost 

value than that of the impulsive motion trajectory. More detailed study of the dependence 

of the cost function value on the radius r0 is needed to find the domain of r0 that can 

result in lower cost value.  

 

However, the following issues have to be taken in consideration while designing the 

trajectory; 

• The capability to achieve the required infinite rate of change inθ. 

• For the final implementation by wheeled mobile robots, we are interested more in 

a smooth trajectory so the paths are follow-able as it will be discussed in the 

coming chapter.  

 

2.6. Conclusion 

In this chapter, we have provided a quick review of the basic theory of calculus of 

variations and optimal control that we used to give derivation of the optimal trajectory for 

one special case of the pursuit evasion game. The optimal control policy was proven to be 

dependent only on the space variables and therefore was a feedback control law.  Finally, 

a sample result simulation that supports our conclusion was give at the end of the chapter. 
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Chapter 3 

Feedback Control for the Optimal Pursuit-Evasion Trajectory 

 

3.1. Introduction 

In the previous chapter, a feedback control law was obtained so that the pursuer, when 

applying it, will drive the evader to the pen using the shortest path. In obtaining this 

trajectory, both pursuer and evader were assumed to be points with omni-directional 

motion capabilities. In real world, robots are usually wheeled mobile robots (WMR). 

Practical wheeled mobile robots have some additional constraints on their dynamics. The 

details of different types of WMRs considered in research so far can be found in [37]. 

Some of these constraints may be on position, while the other may be on velocity. 

Therefore, these additional constraints have to be taken car of when the agents are to be 

represented by WMR. 

 

In this chapter, we will begin by introducing the basic concepts, definitions and principles 

of non-holonomically constrained systems. Then, we’ll add these additional constrains to 

the dynamical constraints of the system introduced in chapter 1 such that the WMRs 

representing the pursuer and the evader move from any initial position to in the x-y grid 

to the pen located in the neighborhood of the origin. Finally, a sample of the simulation 

results will be given. 

 

3.2. Basic Principles of Non-holonomic Motion Planning 

In addition to the differential equations describing the dynamics of any system, the 

motion of this system can be subjected to additional set of kinematics constraints in the 

form; 

kiqqaT
i ....2,10),( ==

•

        3.1 

where q is generalized n-dimensional coordinate vector (q1, q1,….., qn)T. 
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If the set of constraints given in 3.1 can be written in the linear form 

kiqqaT
i ....2,10)( ==

•

        3.2 

They are called Pfiffian constraints [38]. 

 

This set of Pfiffian constrains is said to be holonomic if it is integrable (in this case, the 

constraints represent a geometric limitation). Meanwhile, if these constraints are not 

integrable, they are called non-holonomic constrains (in this case, they represent a set of 

kinematic limitation). 

 

Therefore, the addition of holonomic/non-holonomic constraints to any dynamical system 

gives rise to an important question; given any 2 points qi, qj∈ the configuration space Q ; 

when does a trajectory q(t) connecting the 2 points exist such that is satisfies the 

kinematic constraints? This question represents another form of studying the 

controllability of dynamical systems with holonomic/non-holonomic constraints. 

 

3.2.1 Controllability of Non-holonomic Systems 

Consider a non-linear control system of the form 

∑
=

∗

+=
n

j
jj uqgqfq

1
)()(         3.3 

with the states q∈Q ≈Rn and the control inputs u∈U⊆ Rm 

• The system given in 3.3 is said to be a drift-less system if f(q)=0, which means any 

configuration q =(q1, q1,….., qn)T is at equilibrium with zero input controls  uj. 

•  The system described by equation 3.3 is controllable if ∀q1, q2∈ Q , ∃T<∞, and 

u:[0,T] u∈U  such that q(0,T,q1,u)=q2. 

• The control system given by equation 3.3 is said to be Locally Accessible (LA) form 

point q0 if for any neighborhood V of q0 and T>0, there exist a non-empty set Ω such 

that; 

)0(xRV
T⊂Ω  
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Where )0(xRV
T  is the set of all reachable states from q0 within time interval [0,T], 

given by; 

VuqTqTtquqTqQqxRV
T ∈∈∀=∈= ),,,0(],,0[,),,,0(|{)0( 00  

• System 3.3 is Globally Accessible if it is locally accessible ∀ q∈Q. 

 

For drift-less control systems, controllability and local time accessibility are equivalent. 

A useful theorem that allows testing the controllability of drift-less nonlinear systems is 

Chow Theorem, which gives a similar tool to the controllability rank condition of linear 

time invariant systems. This test is based on Lie Algebra rank condition [39].  

 

Chow’s Theorem: A non-linear, drift-less control system, is locally accessible 

“controllable” if and only if the rank of the accessibility matrix equals n i.e.; 

ngggggggRank =..])]]........,[,[];,[;;([ 2112121  

Where )](,[ 21 qgg  the Lie Bracket of the two vector fields g1, and g2 is given by; 

q
gg

q
ggqgg

∂
∂

−
∂
∂

= 1
2

2
121 )](,[         3.4 

3.3. Feedback Control Design for the Optimal Pursuit-Evasion Trajectory 

With these illustrated basic tools and concepts in mind, our objective now is to design a 

feedback control law for our pursuer, as a function of the evaders states such that both the 

evader and the pursuer will follow the optimal trajectory obtained in chapter 2.  

 

 

φ

θ

P

E 

Fig. 3.1. WMR representation of pursuer and evader 
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Assuming that both the pursuer and the evader are represented by a two wheeled mobile 

robot as shown in figure 3.1. In addition to the system dynamics given in equations 1.5-

1.8, both the evader and pursuer have to satisfy the non-holonomic constraints imposed 

on both robots. 

 

Non-holonomic constraint on the evader is given by; 

0cossin =−
••

eeee yx ϕϕ         3.5 

Similarly, the pursuer non-holonomic constraint is given by; 

0cossin =−
••

pppp yx φφ         3.6 

 

Alternatively, the above constraints given by 3.5 and 3.6 can be represented in terms of 

the two control variables, named the driving velocity v and the steering velocity ω as 

follows; 

ee

eee

eee

vy

vx

ωϕ

ϕ

ϕ

=

=

=

•

•

•

sin

cos

         3.7 

pp

pee

ppp

vy

vx

ωϕ

ϕ

ϕ

=

=

=

•

•

•

sin

cos

         3.8 

 

Equation 3.7 and 3.8 can be put in a form of a drift-less system as shown below; 

QqandUuqguq
m

i
ii ∈∈= ∑

=

•

,)(
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      3.9 

With  
















=
















=

1
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,
0
sin
cos
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ϕ

        3.8 
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and; 
















−=
0

cos
sin

],[ 21 ϕ
ϕ

gg          3.9 

 

Therefore, the accessibility matrix is given by; 
















−=
010

cos0sin
sin0cos

ϕϕ
ϕϕ

C        3.10 

 

With rank(C) =3, this means each of the robots is completely controllable. Therefore any 

configuration in the working space is accessible.  

 

Now, we need to come up with the driving velocity and the driving speed of each robot to 

satisfy both the non-holonomic constraints and the optimality constraints imposed on the 

angle θ*  

 

Using equations 2.11, and 2.25 with 3.5, we get 

*

*

**

0)sin(
0sincoscossin

θϕ
θϕ

θϕθϕ

=
⇒=−

=−

e

e

eee

       3.11 

 

Therefore, the optimal steering speed of the evader robot is; 

)
2

sin(2

0

*

f

e

r
θθ

θω
−

=

=
•

         3.12 

The driving speed of the evader robot is given by; 

1

22
2

=
+=

••

eee yxv
   …..      3.13 

Similarly, using 2.12, and 3.12 with 3.6 we get; 
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0)coscossin(sinsincoscossin
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With some mathematical manipulations, we get; 

e

p
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r

r

r

ω

θθϕ
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0

*0*
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•

•

      3.15 

 

Differentiating equation 3.15, the pursuer optimal steering speed is given by; 

22
0

2
0

2

*
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0
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1
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         3.16 

 

Using form 2.22 in 3.16 we get; 

)1(2
)sin(

22
0 e

f
ep r ω

θθ
ωω

+

−
+=         3.19 

 

Similarly, the driving speed of the pursuer robot can be obtained as shown below 
22

2
ppp yxv

••

+=          3.20 

From 2.11, and 2.12 in 3.20 we get; 

•
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Thus,  
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Therefore, equations 3.19 with equations 3.22 give the applicable feedback control law 

for the pursuer WMR.  

 

One important point to notice is as that; for the point pursuer-evader representation given 

in chapter 2, the initial conditions of the pursuer could be any point on the circumference 

of a circle of radius r0. From this initial position, the pursuer was able, optimally, to drive 

the evader to the pen. Unlike this, addition of the non-holonomic constraints on the 

pursuer and the evader restricts the initial position of the pursuer to a single location on 

the evader’s circle of detection. This initial position of the pursuer is given by the initial 

orientation of the WMR given by 
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Using 2.11 and 2.12 here gives us 
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3.4. Simulation Results 

Figure 3.2 (a) gives a sample of the simulation results with different initial conditions for 

the pursuer. The simulation begins with the pursuer detecting the evader’s initial position 

and orientation. Then, based on the initial orientation of the evader, the pursuer evaluates 

the optimal initial angle of approach. Once the pursuer is on the circumference of the 

circle of detection of the evader, the evader begins its avoidance motion following the 

dynamics of equation 3.7.  
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Similar to the point representation of the pursuer and evader, the optimal control law is 

dependent on both the final time and the final orientation angle which are unknowns. So, 

we incremented the time in small steps and searched the final orientation angle that 

satisfies the optimal control law. The search time can be highly reduced in a similar way 

to that given in chapter 2 by estimating a similar dependence of the final orientation angle 

on the initial conditions. 

 

Another interesting issue came up if the velocity of both the pursuer and the evader 

robots was restricted to forward motion only rather than being restricted to forward or 

backward motion. Addition of such constraint doesn’t affect the objective function and 

agents’ trajectories still satisfy the non-holonomic constraints. Despite the failure of the 

controllability of the modified system from Lie bracket accessibility sense  (because the 

motion is restricted to one direction only rather than two) the system is still controllable 

because any configuration is reachable. In addition, it follows the optimal constraints 

derived for θ*. Figure 3.2 (b) illustrates a sample of the simulation results for this 

modified system. 

 

3.5.     Conclusion 

In this chapter, we considered a realization of the pursuit evasion games that is different 

from the standard form covered by researchers in previous work. We have provided a 

detailed derivation of an optimal trajectory for the pursuit evasion game realization using 

WMRs. The optimal control law was proven to be dependent only on the space variables 

and therefore was a feedback control law.  This design realization was supported by the 

simulation results illustrated in section 3.4. 
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(a) Non-restricted velocity direction 
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(b) Forward velocity direction only 

Fig 3.2 Simulation results 
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Chapter 4 

The Discrete Deterministic Model 

 

4.1. Introduction 

In this chapter we present the dynamics and control design of discrete-time, discrete-

space representation of the herding problem. The motivation behind studying such model 

is based on the following; 

 The design of cooperative multi-agent systems is dependent on understanding the 

dynamic behavior of smaller systems. 

 The design of high-level systems beginning from low level ones allows the designer 

to devise a top down methods, by which low-level systems may be obtained from the 

high level ones through specifying some constraints on the high-level systems. 

 Studying and developing this model, introduces an evaluation method of the 

effectiveness of any machine learning technique dealing with similar problems. 

 

The work presented in this chapter represents a primary step in building reinforcement 

learning model to deal with such situations, as it will be explained.  Based on this 

objective, and relaying on the definition of reinforcement learning as an approach to 

machine intelligence that combines dynamic programming and supervised learning 

disciplines to successfully solve problems that neither discipline can address individually 

[40-41], dynamic programming appears to be the candidate approach to come up with the 

most advantageous control technique. Moreover, dynamic programming has proven to be 

an efficient technique due to its simplicity and applicability to wide range of problems. 

For these reasons, we’ll begin this chapter by giving a brief introduction on dynamic 

programming principles. 

 

Then, the problem model is introduced for a simple, deterministic, and passive-evader.  

After that, the proposed solution algorithms are illustrated with complete analysis and 
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proofs of the validation of each proposed algorithm. Finally, the simulation results of 

each of the proposed solution technique is given at the end of the chapter  

 

4.2. Dynamic Programming Principles 

Dynamic Programming is a particular approach to optimization. By optimization we 

mean finding the best solution to some problem from a set of alternatives. So, a definition 

of the basic components of a mathematical optimization model should be given at the 

beginning. These components are: 

1. Variables: include decision variables, state variables, or independent variables. These 

variables represent the factors to manipulate to achieve the desired objective. 

2. Objective function: which represents the measure of effectiveness or the value of 

utility associated with some particular combination of variables. 

3. Constraints (feasibility conditions): usually represented by a set of algebraic or 

differential equations or even inequalities that the variables have to satisfy. 

 

 The principal idea of dynamic programming is based on the Principle of Optimality 

introduced by Bellman [42] which states:- 

“An optimal policy has the property that, whatever the initial state and initial decision 

are, the remaining decisions must constitute an optimal policy with respect to the state 

which results from the initial decisions”. Simply, an optimal policy should consist of 

optimal sub-policies. 

 

4.2.1. Dynamic Programming Basic Theory and Functional Equations 

Problems to which dynamic programming can be applied, are usually called, Sequential 

Decision Processes [43]. The sequential decision processes represent a class of systems 

that progress through a sequence of consecutive stages. At each stage, the system can be 

described by a relatively small set of parameters called, state variables or state vector. At 

each stage, one or more decisions must be made. These decisions may depend on either 

the stage and/or the state of the system. 
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A basic characteristic of the systems that dynamic programming deals with is that the 

past states of the system have no effect on the current state. This means that the decisions 

are made based only on the current state of the system. When a decision is made, the 

system undergoes a transition from one state to another and a cost is associated with each 

transition. This cost is determined by a single-valued function of the input state variables. 

Meanwhile, the inter-state transition results from a single-valued function of the decision 

variables and the current state. 

 

Thus, and based on the above introduction, dynamic programming involves some 

conceptual terms; state, stage, transition, decision (policy), and cost that have to be 

defined clearly before going in more details. 

• State: The state space is a non-empty set X whose elements x∈X are state 

variables that describe the condition of the system or process under study. 

Obviously, the state space consists of all the possible states the system can be in. 

• Stage: This concept is introduced such that the decisions can be ordered. 

Therefore, the stage variable is usually discrete. Also, it should be noted that 

dynamic programming is considered to be discrete or continuous based on the 

nature of the stage variables not the state variables. Usually, in discrete dynamic 

programming, states and stages are the same. 

• Decision: Based on each state variable x∈X, there is a corresponding non-empty 

set Ux called the decision set for x, such that every element (decision variable) 

u(x)∈ Ux represents one of the choices the controller can make when the system is 

in state x∈X. 

• Transitions: Assuming that the process under study is in state x1∈X, and a 

decision u(x1)∈ Ux1 is made, then the process will be transformed to another state 

x2∈T(x1,u(x1)) where, T(x,u(x))  is the set of all possible states the process can 

move from state x∈X using decision u(x)∈ Ux.This transition operator T(x,u(x)) is 

of two different types; deterministic, and stochastic. 

• Policy: It is defined as the set of all decision sets Ux corresponding to all state 

variables x∈X. 
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• Cost: The cost is a single-valued function, cu(x), defined on the current state variable 

and the corresponding decision variable as the return that would be obtained if the 

process is at state x∈X and a decision u(x)∈ Ux is made. 

 

Therefore, the basic problem can be mathematically formulated as: 

 

),....,,,(minmax/ 321 nxxxxfV =      4.1 

subjected to  mixxxxh ni ,....2,10),.....,,,( 321 ==      

 

Applicability of dynamic programming to certain class of problems requires two main 

requirements in order that the principle of optimality to be invoked. These 2 conditions 

are: 

1. Separability of the Objective Function: which means that, ∀k, the effect of the final k 

stages of an n-stage process on the objective function only depends on state xn-k and 

the final k decisions. 

2. State Separation Property: by this we mean that, ∀k, transition from state xk to state 

xk+1 only depends on state xk and decision uk+1(xk) but not on any previous states. This 

property is also known as Markovian state property and systems having these type of 

properties are called, memory-less systems. 

 

These two requirements basically represent the necessary and sufficient conditions for the 

principle of optimality to be applied for the model to which dynamic programming 

technique is to be applied [44-45]. 

 

4.2.2. Deterministic Dynamic Programming Algorithm 

Before introducing the dynamic programming algorithm, we’ll give some more detailed 

mathematical interpretation of the main components of the basic problem formulation 

[46]; 
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• A discrete system whose state transition is governed by; 

),(1 kkk uxfx =+  

• A control constraints xkk Uxu ∈)(  

• An additive cost function of the form; 

),()(
1

1
k

N

k
kkNN uxcxcV ∑

−

=

+=  

where ck is some function that gives the interstate transition cost, and cN is the cost 

associated with the final state. 

• Optimization over polices which means the rules applied, uk(xk), for each possible 

state at time instant k to optimize the cost function V. 

 

Thus, the dynamic programming algorithm can be stated as following [46]; 

Denoting V*(x0) to be the optimal value of the cost function V(x), then; 

V*(x0)= V0(x0) 

where, the value function V0(x0) is given by the last step of the following algorithm, which 

proceeds backward in time from time instant N-1 to instant 0; 

VN(xN)= cN(xN) 

1,...,2,1,0)]},,([),({min)( 1 −=+= +∈
NkuxfVuxcxV kkkkkkUukk

k

 

Moreover,  

)}(minarg{)( **
kk

Uukk xVxu
k∈

=  

is the optimal control policy. 

 

After this brief introduction about dynamic programming foundation, we are ready to 

present a dynamic programming based solution to the pursuer evader herding problem, 

where the pursuer and the evader are playing a non-cooperative deterministic game. We 

present the dynamics of the problem and then provide the dynamic programming solution 

to the problem. The solution is proven to be correct and then simulations are performed to 

illustrate some example runs. 
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4.3. A NxN Grid Pursuer-Evader Problem 

We consider the pursuit-evasion herding problem in a N×N grid as shown in Figure 4.1.  

The pursuer can occupy one of the N×N positions and so can the evader.  Therefore, there 

are N2 states in the system.  The aim of the pursuer is to make the evader go to the pen, 

which is the (0,0) state for the evader. The following shows the nomenclature used in this 

paper. 

 

)(kxp  x coordinate of the pursuer position at time instance k. 

)(kyp  y coordinate of the pursuer position at time instance k. 

)(kxe  x coordinate of the evader position at time instance k. 

)(kye  y coordinate of the evader position at time instance k. 

x(k) state vector given by )]()()()([)( kykxkykxk ppee=x  at time instance k. 

 

For the NxN pursuer evader problem, we have },...,2,1,0{)( Nkxk p ∈∀ , 

},....,2,1,0{)( Nky p ∈ , },...,2,1,0{)( Nkxe ∈  and },....,2,1,0{)( Nkye ∈ . However, the 

pursuer and the evader can not have the same location on the grid as their initial 

positions. It can be proven that if they have different initial positions, then based on the 

allowable actions of both (as described later), they can never end up on the same location.  

There is a cost of one unit for each step (horizontal or vertical or diagonal) of a pursuer as 

well as of a evader.  The aim of the pursuer is to move the evader to the pen i.e. to the 

(0,0) coordinate, with the least cost. Figure 4.1 below shows the 3x3 grid for the pursuer-evader 

problem. 
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Fig. 4.1  A 3x3 example of Pursuer-evader Problem Grid 

 

Definition1: Equilibrium state of the evader: The evader is in an equilibrium state when 

given a time instant T the following condition is satisfied: 

Tk ≥∀  

if 

)()( Txkx pp =  and 

)()( Tyky pp =  

then 

)()( Txkx ee =  and 

)()( Tyky ee =  

 

Definition 2: Final equilibrium state of the evader: The evader is in the final equilibrium 

state when given a time instant T the following condition is satisfied: 

Tk ≥∀  

if 

)()( Txkx pp =  and 

)()( Tyky pp =  

then 

0)( =kxe  and 

0)( =kye  

P

E
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Definition 3: Positive successor function: Positive successor function is a function given 

by 

},...,2,1{},...,2,1,0{:(.) NYNXPS =→= i.e., 

NxifN
NxifxxPSy

XxYy

==
≠+==

∈∈∀
1)(

,,
 

Definition 4: Negative successor function: Negative successor function is a function 

given by 

}1,,.........2,1,0{},.....,2,1,0{:(.) −=→= NZNXNS i.e., 

NxifN
NxifxxNSz

XxZz

==
≠−==

∈∈∀
1)(

,,
 

 

The following rules generate the dynamics of the evader and pursuer movements: 

1. },....2,1,0{)( Nkxk p ∈∀ , },...,2,1,0{)( Nky p ∈ , },...2,1,0{)( Nkxe ∈  and 

},...2,1,0{)( Nkye ∈  

2. The pursuer can only move when evader is in an equilibrium state 

3. The pursuer can only move one step in one time instant.  That step can be in 

horizontal, vertical or diagonal direction.  The evader can also only move one step in 

horizontal, vertical or diagonal direction. 

4. The evader moves based on the following rules: 

a) Far condition: 

If  

))(()( kxNSkx pe <  or ))(()( kxPSkx pe >  or ))(()( kyNSky pe <  or 

))(()( kyNSky pe <  

then 

)()1( kxkx ee =+  and )()1( kyky ee =+  
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Fig 4.2 Example of a far condition 

b) Left top corner pursuer right condition: 

If  

0)( =kxe  and ))(()( kxPSkx ep =  and Nkyky pe == )()(  

then 

)()1( kxkx ee =+  and ))(()1( kyNSky ee =+  
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Fig 4.3 Example of the left top corner pursuer right condition 

 

c) Left top corner pursuer down condition: 

If  

0)()( == kxkx pe  and 2)( =kye  and ))(()( kyNSky ep =  

then 

))(()1( kxPSkx ee =+  and )()1( kyky ee =+  

P P
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E
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Fig. 4.4.  Example of the left top corner pursuer down condition 

 

d) Right top corner pursuer left condition: 

If  

2)( =kxe  and ))(()( kxNSkx ep =  and 2)()( == kyky pe  

then 

)()1( kxkx ee =+  and ))(()1( kyNSky ee =+  
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Fig. 4.5 Example of the right top corner pursuer left condition 

 

e) Right top corner pursuer down condition: 

If  

2)()( == kxkx pe  and 2)( =kye  and ))(()( kyNSky ep =  

then 

))(()1( kxNSkx ee =+  and )()1( kyky ee =+  

E E

PP

E

E

P P



 53

0 
 0 

 
1 
 

2 
 

2 
 
1 
 

D 
 

S 
 

Before 

0 
 0 

 
1 
 

2 
 

2 
 
1 
 

D 
 

S 
 

After 

 
Fig. 4.6 Example of the right top corner pursuer down condition 

 

f) Left bottom corner pursuer right condition: 

If  

0)( =kxe  and ))(()( kxPSkx ep =  and 0)()( == kyky pe  

then 

)()1( kxkx ee =+  and ))(()1( kyPSky ee =+  
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Fig. 4.7  Example of the left bottom corner pursuer right condition 

 

g) Left bottom corner pursuer up condition: 

If  

0)()( == kxkx pe  and 0)( =kye  and ))(()( kyPSky ep =  

then 

))(()1( kxPSkx ee =+  and )()1( kyky ee =+  
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Fig.4.8  Example of the left bottom corner pursuer up condition 

 

h) Right bottom corner pursuer left condition: 

If  

2)( =kxs  and ))(()( kxNSkx sd =  and 0)()( == kyky ds  

then 

)()1( kxkx ss =+  and ))(()1( kyPSky ss =+  
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Fig. 4.9 Example of the right bottom corner pursuer left condition 

 

i) Right bottom corner pursuer up condition: 

If  

2)()( == kxkx pe  and 0)( =kye  and ))(()( kyPSky ep =  

then 

))(()1( kxNSkx ee =+  and )()1( kyky ee =+  

P PE

E

P P

E E



 55

0 
 0 

 
1 
 

2 
 

2 
 
1 
 

D 
 
S 
 

Before 

0 
 0 

 
1 
 

2 
 

2 
 
1 
 

D 
 

S 
 

After 

 
Fig. 4.10 Example of the right bottom corner pursuer up condition 

 

j) Other conditions: 

If (a) to (i) are not satisfied and 

))(()( kxNSkx pe =  

then 

))(()1( kxNSkx ee =+  

 

If (a) to (i) are not satisfied and 

))(()( kxPSkx pe =  

then 

))(()1( kxPSkx ee =+  

 

If (a) to (i) are not satisfied and 

))(()( kyNSky pe =  

then 

))(()1( kyNSky ee =+  

If (a) to (i) are not satisfied and 

))(()( kyPSky pe =  

then 

))(()1( kyPSky ee =+  

P

E

P

E
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Fig. 4.11 Some examples of other conditions 

 

Theorem 1: There are N×N-3 final equilibrium states of the NxN pursuer-evader problem. 

Proof: Figure 4.12 shows an example of the six final equilibrium states in case of N=3.  

The figure implies that the pursuer can be in any of the six positions to obtain a final 

equilibrium state.  We can prove that the state when the pursuer is in (1,1) position is a 

final equilibrium state because of the 4(j) rule of the dynamics.  For the other ones we can 

prove the same by using 4(a) rule. 
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Fig. 4. 12 The six final equilibrium states for 3×3 grid. 

 

For each given equilibrium-state the pursuer is free to choose its next move based on a 

finite set of possible actions.  This finite set is a function of the state x.  If the state is a 

non-equilibrium state then the pursuer is not allowed to move in that time instant.  The 
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evader will move from the non-equilibrium-state to another state that could be (in 

general) another non-equilibrium-state or an equilibrium-state. 

 

Theorem 2: If for any positive integer k, xe(k) ≠ xp (k), and  ye (k) ≠ yp(k),  then for any k t 

≥ k, the following two statements can not be simultaneously false: xe (t) ≠ xp (t) ,and ye (t) 

≠ yp(t). 

Proof: This can be easily proven by noting that in order for both statements to be false at 

time t, the system would have to be in equilibrium condition, and then the pursuer would 

have to move to acquire the same coordinates as those of the evader. However, due to the 

constraint on the motion of the pursuer, that the pursuer can only move when the system 

is in a non-equilibrium state, the theorem is proven. 

 

Let U  be the discrete set of actions available to the pursuer when the system is in the 

state x.  The pursuer defines a policy U→x:µ  that is a function from the state to 

actions.  This defines a feedback control policy.  We also define a value function )(xµV , 

which is the sum of all future instantaneous costs given that the initial state of the system 

is x and the system follows the policy µ .  We define instantaneous cost as: 

}1,)1()()1()()1()()1()(min{)( −−+−−+−−+−−= kykykxkxkykykxkxuc eeeeppppx

 

Notice that given any state x(k), we can find out the next state if the control action u is 

known.  The value function )(xµV  is given by 

iwherekciV
k

k == ∑
∞

=

)0()))((()(
0

)( xxx µµ  

 

Problem Statement: Find the optimal policy that minimizes the value function: 

)(min)(* iViV µµ
=  

This gives us the optimal value function.  In general, optimal value function is unique but 

an optimal policy might not be. 
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4.4. Properties of the Digraph Associated with the Pursuer-evader Problem 

We can represent the pursuer-evader problem described above as a digraph G = (V, E) 

that consists of a finite set V of vertices or nodes representing the states of the system, 

and a finite set E of edges.  V consists of all the possible values of the state x.  The 

cardinality of V denoted by N(V) is (N×N)2.  There exists an edge e from a state-value 

(node) v to w if for some k, v = x(k) and w = x(k+1) following the dynamics generated by 

the rules in section 2.  The digraph is a directed network or a weighted-digraph since we 

associate a cost with each edge using the instantaneous cost formula from section 2.  The 

digraph is also simple, since there are no loops or multiple edges. The adjacency matrix 

of the digraph is an )()( VNVN ×  matrix whose diagonal elements are all zeros. 

 

Theorem 2: The instantaneous cost associated with each edge in the digraph of the 

pursuer-evader problem is 1. 

Proof:  

The proof of the theory comes directly from calculating the cost for the notion of the 

pursuer and the evader, according to their dynamics as given in section 2. 

a) Far condition; 

In this case, and by definition 1, the evader is at equilibrium state, so, only the pursuer 

is allowed to move; 

)()1(&)()1( kykykxkx eeee =+=+  

Since only the pursuer is allowed to move, and for only one step. Then, the minimum 

distance the pursuer can move, will result from moving it one step in either the x 

direction or the y direction; 

1)()1(1)()1( =−+=−+ kykyorkxkx pppp  

Substitute with these in the cost equation⇒ 

)1|,)()1(||)()1(|

|)()1(||)()1(min(|)(

kykykxkx

kykykxkxc

eeee

ppppx

−++−+

+−++−+=µ
 

Thus; 

1)1,0010min()(1)1,0001min()( =+++==+++= µµ xx corc  
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b) Left tope corner, pursuer right 

In this case, the evader is not in an equilibrium state and therefore, only the evader is 

moving while not the pursuer; 

Nkykyandkxkx

NkyandPSkxPSkx
NNNSkyNSkyandkx

Nkyandkx

pppp

pep

eee

ee

==+==+

====
−===+=+

==

)()1(1)()1(

)(1)0())(()(
1)())(()1(0)1(

)(0)(

 

Thus, 

1)1,1000min()( =+++=∴ µxc  

c) Left top corner, pursuer down condition  

1)()1(0)()1(
)()1(1))(()1(

1)()(0)(
)(0)(
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==
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Thus, 

1)1,0100min()( =+++=∴ µxc  

d) Right top corner, pursuer left condition 
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Thus, 

1)1,0100min()( =+++=∴ µxc  

e) Right top corner, pursuer down condition 

1)()1()()1(
)()1(1))(()1(

1))(()()()(
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Thus, 

1)1,0100min()( =+++=∴ µxc  
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f) Left bottom corner, pursuer right condition 

0)()1(1)()1(
1))(()1(0)()1(

0)(1))(()(
0)(0)(
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Thus, 

1)1,1000min()( =+++=∴ µxc  

g) Left bottom corner, pursuer up condition 
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Thus, 

1)1,0100min()( =+++=∴ µxc  

h) Right bottom corner, pursuer left condition 
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Thus, 

1)1,1000min()( =+++=∴ µxc  

i) Right bottom corner, pursuer up condition 
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Thus, 

1)1,0100min()( =+++=∴ µxc  

j) Other conditions: 

For all the cases mentioned in section 2 to j, the evader takes only one step at a time 

away from the pursuer which is not allowed to move since the evader in not in an 
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equilibrium state, as illustrated in figure 4.11. Therefore, in all cases we have; 

0)()1(1)()1( =−+=−+ kykyorkxkx eeee ⇒ 

1)1,0100min()( =+++=∴ µxc  

or 1)()1(0)()1( =−+=−+ kykyorkxkx eeee ⇒ 

1)1,1100min()( =+++=∴ µxc  

or 1)()1(1)()1( =−+=−+ kykyorkxkx eeee ⇒ 

1)1,1100min()( =+++=∴ µxc  

 

Theorem 3: The digraph of the pursuer-evader problem is not a strongly connected 

digraph, but is weakly connected.  Moreover, it is not a unilaterally connected digraph. 

Proof: It can be shown that starting from any allowable (all states except the ones with 

co-incident positions for pursuer and evader) state, one of the final equilibrium states can 

be reached. All the final equilibrium states have paths connecting them together. To see 

this, consider a final equilibrium state, and then move the pursuer back (to increase he 

distance between the pursuer and the evader). This action will not result in any evader 

movement. Then we can move the pursuer in positions that have distance more than one 

from the evader (at the pen). Then the pursuer can be moved to a different position 

corresponding to another final equilibrium position. This shows that starting from any 

initial allowable state, there is a path to all the final equilibrium states. This proves that 

the underlying graph of the digraph is connected. It is also a unilaterally connected 

digraph for the same reason. To show that it is not strongly connected, consider any final 

equilibrium state. From these states, there is no pursuer action that can take the evader 

from the boundary of the two dimensional space into the interior. 

 

Some additional properties of the pursuer-evader digraph are given below: 

1. The number of nodes that are adjacent from a node representing an equilibrium state 

depends on the location of the pursuer position in the grid.  There are the following 

three possibilities on the number of adjacent states. 
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a) There are eight states adjacent from the equilibrium state node if the pursuer 

position is in the interior. Only seven out of the eight are allowed since pursuer and 

evader are not allowed to have the same location. 
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Fig. 4.13 Adjacent states for pursuer in the interior 

 

b) There are five states adjacent from the equilibrium state node if the pursuer 

position is in the side but not in a corner. 
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Fig. 4.14 Adjacent states for pursuer in the side (not corner) 

 

c) There are three states adjacent from the equilibrium state node if the pursuer 

position is in the corner. 

P

P
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Fig. 4.15 Adjacent states for pursuer in the corner 

 

2. The number of nodes adjacent to a node representing a non-equilibrium state is one.  

The state adjacent from the non-equilibrium node can be another non-equilibrium 

node or an equilibrium node. 
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Fig. 4.16 Adjacent states for non-equilibrium initial state 

 

 

4.5. Proposed Techniques of Solution to the NxN Grid Pursuer-Evader 

Problem 

The dynamic programming solution is based on Bellman's equation, which for our 

problem would look like the following: 
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))}1(()({min))(( *

)(

* ++=
∈

kVuckV iu
xx

xµ
 

This equation indicates how the feedback controller can make decisions once the value 

function is available.  This equation can also be used to find the value function using the 

boundary conditions from the problem. 

 

We provide the solution to the problem using two different algorithms directions. In the 

first direction and based on the fact that finite state systems can always be represented by 

an acyclic graph with finite number of nodes, then the deterministic systems problem 

becomes equivalent to finding the shortest path from an initial node x0 to a terminal node 

xN. Unfortunately, since non of the most common shortest path techniques, like label 

correcting techniques [47], and auction algorithms [48], deals with cases like ours, where 

we have a multiple terminal states whose number depends on the grid size. Therefore, we 

modified one of the most popular shortest path algorithms to fit our case. Two modified 

versions of Dijkstra’s shortest path algorithm are considered to deal with the case of 

multi-terminal state case in our problem. The first algorithm uses Dijkstra's algorithm for 

each final equilibrium state and then uses minimization over all final equilibrium states to 

obtain the value function. It is so obvious that such an algorithm will increase the 

complexity of the original Dijkstra’s by the number of the final equilibrium states, as will 

be illustrated later, which is impractical specially when dealing with large grid size. This 

gave us a motive to introduce another modification of Dijkstra’s algorithm to suit our 

case. The basic idea of that one is to introduce a new definition of the distance of a node 

from a set of nodes, as it will be explained in the following section. Finally, the last 

algorithm directly uses dynamic programming to sequentially obtain the value function.  

The three algorithms are described after we define some terminology and some sub-

algorithms that will be used by the three main algorithms. 

 

The following terminology is adapted from [49].  For the digraph G=(V,E), weight 

function maps edges to weights as 1: →Ew .  If a node v is adjacent from node u, we 

show that as vu → .  If there exists a path between a node u and node v possibly through 
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other nodes, it is shown as vu p→ .  Weight of a path ),...,,( 10 kvvvp =  is the sum of 

all the included edge weights, given as: 

∑
=

−=
k

i
ii vvwpw

1
1 ),()(  

 

The shortest path weight from a node u to node v is ),( vuδ  defined by: 

If a path from u to v exists, then 

):)((min),( vupwvu p

p
→=δ  

else 

∞=),( vuδ  

Any path p from node u to node v in G(V,E) with weight ),()( vupw δ= is the shortest 

path from u to v. 

 

Algorithm 1: INITIALIZE (G,s) 

Given a source node ][GVs ∈  

][GVv ∈∀  

do ∞=:][vd  

      0:][ =sd  

Here =:  is the assignment operator. 

 

Algorithm 2: RELAX(u,v) 

if ),(][][ vuwudvd +>  

then ),(][:][ vuwudvd +=  

 

Algorithm 3: DIJKSTRA(G,s) 

Note: )},(][:{, vsvdvSVS δ==⊂  

INITIALIZE (G,s) 

S := ∅ 

Q : = V[G] 
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while Q ≠ ∅ 

do u := EXTRACT-MIN(Q) 

S := S ∪ {u} 

for each vertex v ∈ Adj[u] 

do RELAX(u,v) 

In this algorithm, u ∈ V – S is the vertex with the shortest path estimate in Q that contains 

all vertices in V – S sorted by their d values. 

 

4.5.1. Algorithm based on Dijkstra's Shortest Path Solution 

For convenience, we label the nodes of the digraph as follows.  Notice that the state value 

are given as )]()()()([)( kykxkykxk ppee=x  where we have },....2,1,0{)( Nkxk p ∈∀ , 

},.....,2,1,0{)( Nkyp ∈ , },.....,2,1,0{)( Nkxe ∈  and },.....,2,1,0{)( Nkye ∈ .  We can consider 

the state to be a N-digit ternary number with the least significant digit being )(kyp , first 

being )(kxp , second being )(kye , and the most significant one being )(kxe .  The label 

for the node is simply the decimal value of the ternary number.  That is, if we use the 

variable n for the node label with state given by ][ ppee yxyx=x , then the following is 

true. 
0123 .... NyNxNyNxn ppee +++=  

4.5.1.1. Modified Dijkstra’s 1 

Assuming that the number of the final equilibrium states is m, and the overall number of 

states is n, another way of utilizing Dijkstra’s algorithm to solve the problem in hand may 

be introduced. This technique is based on calculating the shortest path between any state 

vi∈V-S ∀ i=1,2,…n-m, and all the final equilibrium states sj∈S ∀ j=1,2,…,m, then taking 

from the M calculated distances, the one with minimum path. In other words, the 

algorithm is repeated m times for each final equilibrium state and the path with least 

weight is assigned to that state vi and the corresponding final equilibrium state mj.  

Let },...,6,5,3:)1,({ miisS == …i.e. the set of all the final equilibrium states. 
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Then, 

},.....2,1],[.{min][ misvdvd ijj =∀=  

Like Dijkstra’s algorithm, this algorithm produces a set of vertices X whose final shortest 

path distances from the source set S is determined. That is, for all vI∈X, we have 

d[vj]=δ(S, vj). The algorithm repeatedly selects the vertex vi∈V-S with minimum shortest 

path estimate, inserts vj into X and relaxes all the edges leaving vj. At the end, we’ll have 

a queue Q that contains all the vertices in V-S with their corresponding distance value 

from the source set S. 

 

 Algorithm 

Initialize source set d[si]=0 ∀ i=1,2,…..,m; 

For i=1:m 

Initialize the weights of the V-S=∞. 

Set Q=V-S 

While Q≠ φ 

If  d[v,si]≤d[si]+d[v, si], 

   then X=Xuv 

    d[v]=d[v,S] 

for each vertex u∈ ADJ(v) 

Relax (u,v,d) 

End 

End 

For i=1:n-m 

 dmin=min.d[vI,sk] ∀ k=1,,2,….m 

d[vi,sk]=dmin 

End 
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4.5.1.2. Modified Dijkstra’s 2 

Since Dijkstra’s algorithm solves the single source shortest paths problem on a weighted 

directed graph G=(V,E) for non-negative weights case. A modified version of this 

algorithm can be used to deal with our problem after introducing the definition of a 

vertex “state” from a set of vertices “states”. 

Let },...,6,5,3:)1,({ NNiisS ×== …i.e. the set of all the final equilibrium states. 

 

Definition: The distance of a vertex vI  from a set of vertices S is defined as: 

},],[.{min],[ SSVS ∈−∈∀= jijii svsvdvd  

Like Dijkstra’s algorithm, this algorithm produces a set of vertices X whose final shortest 

path distances from the source set S is determined. That is, for all vi∈X, we have 

d[vj,S]=δ(S, vj). The algorithm repeatedly selects the vertex vi∈V-S with minimum 

shortest path estimate, inserts vi into X and relaxes all the edges leaving vj. At the end, 

we’ll have a queue Q that contains all the vertices in V-S with their corresponding 

distance value from the source set S. 

 

 Algorithm 

Initialize source set d[S]=0; 

Initialize the weights of the V-S=∞. 

Set Q=V-S 

While Q≠ φ 

If  d[v,S]≤d[S]+d[v,S], 

   then X=Xuv 

    d[v]=d[v,S] 

for each vertex u∈ ADJ(v) 

Relax (u,v,d) 

END 
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4.5.2. Direct Dynamic Programming Solution 

This approach utilizes the dynamic programming tool directly to evaluate the minimum 

cost-to-go value function from any of the non-equilibrium states to the final equilibrium 

(terminal) states over the set of admissible control actions. Assume 

cij(xi,uj) to be the cost for transition from state xi  to state xj by applying control uj. 

c(xN) to be the v-value of the final equilibrium states, (zero in our case). 

Then, working backward form the final equilibrium states to all the other states, and 

applying the following dynamic programming algorithm at each state, we can evaluate 

the minimum value or minimum cost to go value function of any state to the terminal 

ones. 

 

V(xi)=c(xN) 

)3(,......,2,1)}(),({min)
)(

−−×=∀+=
∈

NNNixVuxcV(x jijiij
xUu

i
iij

  

where xj…represent the set of all adjacent states to xi with the application of control uij. 

 

4.6. Simulation Results 

Simulating our system begins by computing the value of the cost function of each state 

using one of the solution techniques mentioned above. Table 4.1, shows the values of the 

cost function for a 3×3-grid using modified Dijkstra’s 2, Vdj, and direct dynamic 

programming techniques Vdp. As shown from the results that both techniques gives 

exactly the same cost function value. The state number corresponds to every possible 

combination of the x and y coordinates of the pursuer and evader positions. The evader 

movements are controlled by the dynamics defined in section 2. Meanwhile, the pursuer 

makes its transitions based on the cost function value of the adjacent states to the current 

state of the system. The pursuer moves to the state of the lowest cost of all adjacent 

states, then it checks whether the system is at equilibrium or not to make its next move. 

This process continues till the system reaches one of the final equilibrium states defined 

in section 2. 
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A graphical user interface is used to simulate the system where the user is to choose the 

grid size, N,  from a drop box. The intial position of the pursuer and the evader is 

supplied to the simulation programm using an edit box. Then, the technique used to 

calculate the cost to go (value) function of each state is choosen using a check box. 

Finally, simulation starts by pressing the START button.  

  
S Vdj Vdp S Vdj Vdp S Vdj Vdp S Vdj Vdp S Vdj Vdp S Vdj Vdp S Vdj Vdp 

1 
Inf Inf 

13 
5 5 

25 
4 4 

37 
0 0 

49 
2 2 

61 
Inf Inf 

73 
0 0 

2 5 5 14 6 6 26 5 5 38 2 2 50 3 3 62 7 7 74 2 2 

3 4 4 15 7 7 27 6 6 39 3 3 51 Inf Inf 63 6 6 75 3 3 

4 5 5 16 4 4 28 6 6 40 2 2 52 3 3 64 0 0 76 2 2 

5 8 8 17 5 5 29 5 5 41 Inf Inf 53 4 4 65 2 2 77 1 1 

6 6 6 18 6 6 30 4 4 42 5 5 54 5 5 66 3 3 78 4 4 

7 4 4 19 0 0 31 Inf Inf 43 3 3 55 0 0 67 1 1 79 3 3 

8 6 6 20 1 1 32 6 6 44 5 5 56 3 3 68 3 3 80 4 4 

9 7 7 21 Inf Inf 33 5 5 45 6 6 57 4 4 69 4 4 81 Inf Inf 

10 6 6 22 3 3 34 8 8 46 0 0 58 1 1 70 2 2    

11 Inf Inf 23 5 5 35 7 7 47 1 1 59 5 5 71 Inf Inf    

12 8 8 24 7 7 36 6 6 48 2 2 60 5 5 72 5 5    

 

Table 4.1 The cost function values for a 3×3 grid, using modified Dijkstra’s 2,  Vdj, and 

dynamic programming technique, Vdp. 

 

Figures 4.17 (a) and (b), along with Figure 4.18 (a) and (b) show the used graphical user 

interface provided to simulate the system where Figure 4.17 (a), and (b) shows a single 

run with intial position of the pursuer is at (1,1) and the intial position of the evader is at 

(3,4) where the cost values is calculated using  modified Dijkestra 2 and dynamic 

programming techinques recpectively. Meanwhile, Figure 4.18 (a), and (b) illustrates 

different same intial positions for the pursuer and the evader, and again the cost value is 

calculated this time using modified Dijkestra 2 and dynamic programming techinques 

recpectively. 
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(a)     (b) 

Fig 4.17 GUI for simulating the system with value function calculated using modified 

Dijkstra’s 2 in (a) and dynamic programming in (b) 

 

 

  
 

Fig 4.18 GUI for simulating the system with value function calculated using modified 

Dijkstra’s 2 in (a) and dynamic programming in (b) for different initial positions 

 

4.7. Summary 

In this chapter we introduced the main building block of the research, in its simplest 

form, single evader and passive single pursuer in a completely deterministic system.  
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Also, after mathematically formulating the problem, the proposed solution techniques are 

introduced and finally some simulation results that support the theoretical solution 

techniques are shown. 
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Chapter (5) 

Pursuit Evasion: The Stochastic Model 

 
 

5.1. Introduction 

This chapter is a continuation to the previous one concentrating on studying the pursuit 

evasion problem. The modified problem we study in this chapter involves a “pursuer” 

agent herding an “evader” agent -moving stochastically- in order to drive it to a pen. The 

problem is stated in terms of allowable sequential actions of the two agents. The solution 

is obtained by applying the principles of stochastic dynamic programming. Three 

algorithms for solution are presented with their accompanying results. 

 

Other techniques have been considered by researchers, for some similar problems. For 

instance, the hamstrung squad car game and the homicidal chauffeur game where the 

reduced space technique was used to evaluate the value of the cost function have been 

studied in [50]. The reduced space technique proved to create an increase in complexity 

not only with the increase of the number of players, but with the increase of systems 

dynamics complexity also [50]. 

 

This chapter provides a brief introduction to the principles of stochastic dynamic 

programming since it is the candidate optimization technique that is going to be used. 

Then we introduce the system dynamics of the problem. After that, properties of the di-

graph representing the problem model are explained. Later, the problem statement is 

specified. Finally, the proposed solution techniques are introduced with the supporting 

simulation results. 
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5.2. Principles of Stochastic Dynamic Programming 

Stochastic dynamic programming principles are introduced in analogy with those of 

deterministic dynamic programming to illustrate the variations between both algorithms. 

These differences come from the stochastic nature of transitions between states. In 

deterministic dynamic programming, application of any control ui∈U results in transition 

from one state, say xi to state xj such that xi & xj ∈ X. Meanwhile, in stochastic model 

application of any control ui∈U results in transition from xj to a set si⊂ X with a pre-

determined probability distribution P. Therefore, the cost of each state is dependent not 

only on the set of adjacent states but also on the transition probabilities. This can be 

illustrated by figures 5.1 (a ) and (b). 

 

 

 

 

 

 

 

 

 

(a) Deterministic   (b) Stochastic 

Fig. 5.1. Deterministic and Stochastic transitions 

 

The stochastic version of dynamic programming can be obtained from the deterministic 

one by introducing a stochastic variable wk into the transition operator as follows; 

• A discrete system  whose state transition is given by; 

),,(1 kkkk wuxfx =+  

• An independent random disturbance parameter wk with given probability 

distribution. 

• A control constraint ui∈U. 
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• An additive cost function of the form; 

}),,()({
1

1
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where 
~

kc  is a function that gives the stochastic inter-state transition cost and cN is 

the cost associated with the terminal state. 

 

Thus, the stochastic dynamic programming algorithm may be stated as follows; 

Denoting the optimal cost value by )( 0
* xV , then 

)()( 000
* xVxV =  

whereas, the value of the cost function )( 00 xV  is given by the last step of the following 

algorithm which proceeds backward in time form instant N-1 to 0; 
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Moreover,  
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is the optimal control policy. 

 

The sequential interpretation of the algorithm can be illustrated by the figure 5.2 

 

 

 

 

 

 

 

 

Fig. 5.2 Stochastic dynamic programming block representation 
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5.3. A N×N Stochastic Pursuer-Evader problem 

We consider the pursuer-evader problem in an N×N to introduce the dynamics 

assumptions based on them the solution is attained. The pursuer can occupy one of the N 

positions and so may the evader with probabilities that depend on the pursuer location, 

such that both of them are not allowed to be in the same position at the same time. The 

ultimate objective of the pursuer is to drive the evader to the pen, (0,0) position, in 

minimum expected time. Therefore, the state vector at time k, x(k), is determined by the 

position of the evader and the pursuer, i.e 

x (k)=[xe(k)  ye(k) xp(k) yp(k) ] 

where, 

xe(k) …. The x coordinate of the evader at time k. 

ye(k) …. The y coordinate of the evader at time k. 

xp(k) …. The x coordinate of the pursuer at time k. 

yp(k) …. The y coordinate of the pursuer at time k. 

 

So, at any time k, we have xp∈{0,1,2….N}, yp∈{0,1,2…N}, xe∈{0,1,2,…..N},and  

ye∈{0,1,2,………N}. However, based on the dynamics and as it will be illustrated later, 

with the pursuer and the evader not being in the same initial state, they never can be in 

the same location. A cost of one unit is assigned for each step (horizontal, vertical, or 

diagonal) for the pursuer as well as the evader. Fig. 5.3 below illustrates the N×N spatial 

grid of the pursuer-evader problem. 

 

 

 

 

 

 

 

Fig. 5.3. The N ×N pursuer-evader problem grid. 
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Definition 1;Positive successor function: Positive successor function is given by: 
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where, 

x(k) is the x or y coordinate of either the pursuer or the evader. 

Thus, PS(.): X={0,1,2,….N}→Y={1,2,….N} 

 

Definition 2; Negative successor function: Negative successor function is given by: 
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x(k) is the x or y coordinate of either the pursuer or the evader. 

Thus, NS(.): X={0,1,2,….N}→Y={0,1,2,….N-1} 

 

Definition 3; Equilibrium state of the evader: The evader is in equilibrium state when 

given a time instant T, if one of the following conditions is satisfied; 

a. Far condition: xp(T)-xe(k) and/or yp(T)-ye(k)>1. 

b. Left boundary condition: xe(k)=0 ,  0<ye(k)<N with yp(k)= ys(k) , and 

xp(k)=PS(xe(k)). 

c. Right boundary condition: xe(k)=2 ,  0<ye(k)<N with yp(k)= ye(k) , and 

xp(k)=NS(xe(k)). 

d. Low boundary condition: ye(k)=0 ,  0<xe(k)<N with xp(k)= xe(k) , and 

yp(k)=PS(ye(k)). 

e. Upper boundary condition: ye(k)=N ,  0<xe(k)<N with xp(k)= xe(k) , and 

yp(k)=NS(ye(k)). 

f. Upper left corner condition: (xe(k), ye(k))=(0,N), and xp(k)=PS(xe(k)) , and 

yp(k)=NS(ye(k)). 

g. Upper right corner condition (xe(k), ye(k))=(N,N), and xp(k)=NS(xe(k)) , and 

yp(k)=NS(ye(k)). 

h. Low right corner condition (xe(k), ye(k))=(N,0), and xp(k)=NS(xe(k)) , and 

yp(k)=PS(ye(k)). 
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Definition 4; Final equilibrium state of the evader: The evader is in final equilibrium 

state at time instant T, when the following condition is satisfied: 

xp(k)=xd(T) and yp(k)=yp(T), then xe(k)=0 and ye(k)=0. ∀k>T. 

 

The following rules generate the pursuer-controlling movements and assign probabilities 

to the evader transitions based on its relative location with respect to the pursuer: 

d. ∀k xp(k), yp(k), xe(k), and ye(k) ∈{0,1,2,…….N}. 

e. The pursuer moves when the evader is at an equilibrium state only. 

f. The pursuer can move one step at a time, depending on its position in the grid, 

and its relative location with respect to evader position as illustrated in figures 5.4 

and  5.5 below: 

 

 

 

 

 

 

 

 

 

Fig. 5.4. Pursuer movements with distance      Fig.5.5. Pursuer movements with evader at  

                    between pursuer and evader>2.      equilibrium state. 

 

The evader transition probabilities depend on its relative position to the pursuer as 

following: 

a. Far Condition: If xe(k)<NS(xp(k)) or xe(k)>PS(xp(k)) or ye(k)<NS(yp(k)) or 

ye(k)>PS(yp(k)), then xe(k+1)=xp(k) and ye(k+1)=yp(k). 

b. Left top corner pursuer right condition : If xe(k)=0 and xp(k)=PS(xe(k)) and 

ye(k)=yp(k)=N then ; 
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P{xe(k+1)=xe(k) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=p. 

P{xe(k+1)=PS(xe(k)) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p). 

c. Left top corner pursuer down condition: If xe(k)= xp(k)=0 and yp(k)=NS(ye(k)) and 

ye(k)= N then ; 

P{xe(k+1)=PS(xe(k)) and ye(k+1)= ye(k) | xp(k)and yp(k)}=p. 

P{xe(k+1)=NS(xe(k)) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p). 

d. Right top corner pursuer left condition: If xe(k)=N and xp(k)=NS(xe(k)) and 

ye(k)=yp(k)=N then ; 

P{xe(k+1)=xe(k) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=p. 

P{xe(k+1)=NS(xe(k)) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p). 

e. Right top corner pursuer down condition: If xe(k)= xp(k)=N and yp(k)=NS(ye(k)) then ; 

P{xe(k+1)=NS(xe(k)) and ye(k+1)= ye(k) | xp(k)and yp(k)}=p. 

P{xe(k+1)=NS(xe(k)) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p). 

f. Left bottom corner pursuer right condition: If xe(k)= 0 and xp(k)=PS(xe(k) ) and  

yp(k)=ye(k)=0 then ; 

P{xe(k+1)=xe(k) and ye(k+1)= PS(ye(k)) | xp(k)and yp(k)}=p. 

P{xe(k+1)=PS(xe(k)) and ye(k+1)=PS(ye(k))| xp(k)and yp(k)}=(1-p) 

g. Left bottom corner pursuer up condition: If xe(k)= xp(k)= 0 and yp(k)=PS(ye(k) ) then ; 

P{xe(k+1)=PS(xe(k)) and ye(k+1)= ye(k) | xp(k)and yp(k)}=p. 

P{xe(k+1)=PS(xe(k)) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p) 

h. Right bottom corner pursuer left condition: If xe(k)= N and xp(k)=NS(xe(k)) and yp(k)= 

ye(k)=0 then ; 

P{xe(k+1)= xe(k) and ye(k+1)=PS( ye(k)) | xp(k)and yp(k)}=p. 

P{xe(k+1)=NS(xe(k)) and ye(k+1)=PS(ye(k))| xp(k)and yp(k)}=(1-p). 

i. Right bottom corner pursuer up condition: If xe(k)= xp(k)= N and ye(k)=0 and 

yp(k)=PS(ye(k)) then ; 
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P{xe(k+1)= NS(xe(k)) and ye(k+1)= ye(k) | xp(k)and yp(k)}=p. 

P{xe(k+1)=NS(xe(k)) and ye(k+1)=PS(ye(k))| xp(k)and yp(k)}=(1-p). 

j. Other conditions: If (a) to (k) are not satisfied and; 

i. xp(k)= NS(xe(k)) & yp(k)=PS(ye(k)) then; 

P{xe(k+1)= PS(xe(k)) and ye(k+1)=NS( ye(k) | xp(k)and yp(k)}=p. 

P{xe(k+1)= xe(k) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p)/2. 

P{xe(k+1)=PS( xe(k)) and ye(k+1)=ye(k)| xp(k)and yp(k)}=(1-p)/2. 

ii. xp(k)= xe(k) & yp(k)=PS(ye(k)) then; 

P{xe(k+1)= xe(k) and ye(k+1)=NS( ye(k) | xp(k)and yp(k)}=p. 

P{xe(k+1)= NS(xe(k)) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p)/2. 

P{xe(k+1)=PS( xe(k)) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p)/2. 

iii. xp(k)= PS(xe(k)) & yp(k)=PS(ye(k)) then; 

P{xe(k+1)= NS(xe(k)) and ye(k+1)=NS( ye(k) | xp(k)and yp(k)}=p. 

P{xe(k+1)= xe(k) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p)/2. 

P{xe(k+1)=NS( xe(k)) and ye(k+1)=ye(k)| xp(k)and yp(k)}=(1-p)/2. 

iv. xp(k)= PS(xe(k)) & yp(k)=ye(k) then; 

P{xe(k+1)= NS(xe(k)) and ye(k+1)= ye(k) | xp(k)and yp(k)}=p. 

P{xe(k+1)=NS( xe(k)) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p)/2. 

P{xe(k+1)=NS( xe(k)) and ye(k+1)=PS(ye(k))| xp(k)and yp(k)}=(1-p)/2. 

v. xp(k)= PS(xe(k)) & yp(k)=NS(ye(k)) then; 

P{xe(k+1)= NS(xe(k)) and ye(k+1)=PS( ye(k) | xp(k)and yp(k)}=p. 

P{xe(k+1)= xe(k) and ye(k+1)=PS(ye(k))| xp(k)and yp(k)}=(1-p)/2. 

P{xe(k+1)=NS( xe(k)) and ye(k+1)=ye(k)| xp(k)and yp(k)}=(1-p)/2. 

vi. xp(k)= xe(k) & yp(k)=NS(ye(k)) then; 

P{xe(k+1)= xe(k)) and ye(k+1)=PS( ye(k) | xp(k)and yp(k)}=p. 

P{xe(k+1)= NS(xe(k)) and ye(k+1)=PS(ye(k))| xp(k)and yp(k)}=(1-p)/2. 

P{xe(k+1)=PS( xe(k)) and ye(k+1)=PS(ye(k))| xp(k)and yp(k)}=(1-p)/2. 

vii. xp(k)= NS(xe(k)) & yp(k)=NS(ye(k)) then; 

P{xe(k+1)= PS(xe(k)) and ye(k+1)=PS( ye(k) | xp(k)and yp(k)}=p. 
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P{xe(k+1)= xe(k) and ye(k+1)=PS(ye(k))| xp(k)and yp(k)}=(1-p)/2. 

P{xe(k+1)=PS( xe(k)) and ye(k+1)=ye(k)| xp(k)and yp(k)}=(1-p)/2. 

viii. xp(k)= xe(k) & yp(k)=NS(ye(k)) then; 

P{xe(k+1)= PS(xe(k)) and ye(k+1)= ye(k) | xp(k)and yp(k)}=p. 

P{xe(k+1)= PS(xe(k)) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p)/2. 

P{xe(k+1)=PS( xe(k)) and ye(k+1)=PS(ye(k))| xp(k)and yp(k)}=(1-p)/2. 

 

5.3. Properties of The Stochastic Digraph Associated with the Pursuer-Evader 

Problem: 

After inspecting our model representation of the problem, it was found that it has the 

following characterizing properties; 

a. The number of states of the system is finite. 

b. The system is stationary, which means the probability distribution of transition 

between states, the instantaneous cost, and the system dynamics are independent of 

the states. 

c. There are (N-3) final equilibrium states of the N×N stochastic pursuer-evader 

problem. 

d. The cost value of the final equilibrium states is zero. 

e. At any time instance t, (xe, ye)≠ (xp, yp). 

f. The di-graph representing the stochastic pursuer-evader model is pseupo-stochastic, 

which means the transition between states is stochastic when the evader is to move. 

Meanwhile, when the pursuer is to move, the transition between states is 

deterministic since the pursuer is allowed to go to certain locations based on the 

dynamics i.e. the probability of pursuer transitions is always 1. 

g. The estimated cost associated with each edge is the pseudo-stochastic pursuer-

evader di-graph is 1. 

 

 

 

5.4. Problem Statement 
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Based on the previous investigations of the mathematical model of the problem at hand, 

its characterizing properties, and the proposed solution technique, we can formulate the 

problem as following: 

Given a finite state space S={1,2…N,t} with transition probability between states: 

pij(u)=P(sk+1=j| sk=i, uk=u) 

Where uk=u∈U(i), the control set ,is finite at each  state i. 

• The instantaneous cost c(i,u) of a state is incurred-when the control u∈U(i) is selected- 

as the expected cost/stage as: 

 ∑
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where, g~(i,u,j) is the estimated cost to move from state i using control u to go to state j. 

Then, the cost value of each state is given by: 
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Our objective is to find the set of optimal control policy U* that gives minimum 

expected cost value for the pursuer to drive the evader to the pen, i.e., 

nijJupuigEiJ
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5.5. Methods of Solution 

Solving the problem outlined above mainly depends on calculating the cost function 

values. Although it may look like solving a set of (N×N)2 ∗linear algebraic equations, it 

became obvious that this is not the case since the policy based on which the cost function 

values yet to be determined first. Once this policy is determined, then the problem may 

be considered as solving a system of linear equations and even with order less that 

                                                 
∗ 2 here because the number of players is 2, otherwise the power should be replaced by the number of 

players. 
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(N×N)2. Bearing this in mind, solving for the cost value function while searching for the 

optimum control policy involves 3 techniques. These techniques are: 

a. Apmissible Policy Search Technique 

Solving for J* mainly depends on the characteristics of the probability state 

transition matrix (PSTM) P. Close examination of the PSTM showed that if the 

transition between states results from pursuer movements, the entities of the 

corresponding row for the current state are either 0, where there is no path to go to 

the corresponding state, or 1, which corresponds to the next state, the pursuer can 

derive the system to. Meanwhile, if the transition results from evader’s movement, 

the entities of the PSTM is either 0, or the probability of the system to go the 

corresponding state due to evader movement. Therefore, the minimization process in 

equation (5) has one argument when carried to calculate the corresponding cost of 

evader movement and results in picking one of the states that results in minimum 

cost when the pursuer moves. In other words we can put equation 5 in the matrix 

form as: 

SC)P(IJ 1
~

* −−=                      (6) 

where; 

S… is the N×N state transition matrix. 

C… is the N×1 instantaneous cost matrix. 
~

P …is the N×N modified probability state transition matrix, obtained from P by 

picking the only 1 that corresponds to the state that results in the minimum cost 

value and replacing all the other 1’s by zeros. So the problem now is how to find 
~

P ? 

This can be accomplished by searching all the possible combinations of 1’s in the 

PSTM till we get the pattern that results in the minimum value of J.  

 

Despite its accuracy in calculating the values of the cost function, this technique has 

proven to be very time consuming since it searches all the space of admissible 

control policies.  
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b. Value Iteration Technique 

Assuming that there is an integer number of stages, m, represent the maximum 

number of stages till the final equilibrium state is reached, then there is a positive 

probability that the final equilibrium state will be reached in less than m stages [16].  

Based on this assumption, an iterative technique can be used to calculate the cost 

value of each state beginning form any initial values J0(1)……… J0(n). So, 

applying the DP algorithm; 
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The sequence Jk+1 (i) will converge to the optimal cost, J*
k+1(i) given by Bellman’s 

equation, after finite number of iterations. 

 

c. Policy Iteration Technique 

This technique depends on searching the admissible policy subspace in a steepest 

decent way, beginning form any admissible policy. It has three phases: 

i. Initialization step: Start with one of the admissible policies, u0. 

ii. Policy evaluation step: Solve the linear system of equations given by eq. (6) to 

get the cost values for this policy, niiJ
u

,...2,1),(0 = . 

iii. Policy improvement step: in  which we compute a new policy uk+1 which 

minimizes the expected cost calculated in step (ii), i.e. 
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iv. If niiJiJ kk uu
,...2,1),()(1 ==+ , terminates or set )()( 01 iJiJ

uuk =+  and go to 

step (i). 
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5.6. Simulation Results 

Simulating our system begins by computing the value of the cost function of each state 

using one of the techniques mentioned above. Table 1, shows the values of the cost 

function for a 3×3 grid, and interstate transition probability of 0.8 using value iteration, 

Vv, and policy iteration, Vp, techniques. As shown from the results that both techniques 

converge to exactly the same cost function value. The state number corresponds to every 

possible combination of the x and y coordinates of the pursuer and evader positions. The 

evader movements are controlled by a random number generator where it can move 

randomly according to the dynamics defined in part II. The pursuer makes its transitions 

based on the cost function value of the adjacent states to the current state of the system. 

The pursuer moves to the state of the lowest cost of all adjacent states, then it checks 

whether the system is at equilibrium or not to make its next move. This process continues 

till the system reaches one of the final equilibrium states defined in part II. 

 

A graphical user interface is used to simulate the system where the user is to choose the 

grid size, N,  from a drop box. The intial position of the pursuer and the is supplied to the 

simulation programm using an edit box. The probability, p, of transition is set using a 

slider. Finally, the technique used to calculate the cost of each state is choosen using a 

check box, then simulation starts by pressing the START button.  

Figures 5.6, and 5.7 shows the used graphical user interface provided to simulate the 

system where figure 5.6 shows a single run with intial position of the pursuer is at (1,1) 

and the intial position of the evader is at (4,4) and the probability of transition is 0.8 

where the cost values is calculated using value iteration technique. Meanwhile, figure 5.7 

illustrates the same the same intial condition and the same probability of transition 

system , but the cost value is calculated this time using policy iteration technique. It 

should be noticed that the differences between the two systems, although having the same 

intial states, comes from the stochastic motion of the evader. Also, it can be noticed that 

the pursuer’s movements are the same from the intial state till the state where the evader 

makes its first move. This is due to the determinstic nature of the pursuer’s motion. 

 

 



 87

 

 

 

 

 

 

 

S Vv Vp S Vv Vp S Vv Vp S Vv Vp S Vv Vp S Vv Vp S Vv Vp 

1 9.00 9.00 13 6.02 6.02 25 4.88 4.88 37 0.00 0.00 49 2.50 2.50 61 9.00 9.00 73 0.00 0.00 

2 6.22 6.22 14 6.61 6.61 26 5.60 5.60 38 2.50 2.50 50 3.39 3.39 62 7.21 7.21 74 2.50 2.50 

3 4.88 4.88 15 7.21 7.21 27 6.36 6.36 39 3.88 3.88 51 9.00 9.00 63 6.36 6.36 75 3.88 3.88 

4 6.22 6.22 16 4.88 4.88 28 7.14 7.14 40 2.50 2.50 52 3.88 3.88 64 0.00 0.00 76 2.50 2.50 

5 8.21 8.21 17 5.60 5.60 29 6.02 6.02 41 9.00 9.00 53 4.60 4.60 65 2.50 2.50 77 1.50 1.50 

6 6.60 6.60 18 6.36 6.36 30 4.88 4.88 42 5.60 5.60 54 5.36 5.36 66 3.88 3.88 78 4.60 4.60 

7 4.88 4.88 19 0.00 0.00 31 9.00 9.00 43 3.88 3.88 55 0.00 0.00 67 1.50 1.50 79 3.88 3.88 

8 6.60 6.60 20 1.70 1.70 32 6.61 6.61 44 5.60 5.60 56 3.50 3.50 68 3.39 3.39 80 4.60 4.60 

9 7.36 7.36 21 9.00 9.00 33 5.60 5.60 45 6.36 6.36 57 4.88 4.88 69 4.60 4.60 81 9.00 9.00 

10 7.14 7.14 22 3.50 3.50 34 8.09 8.09 46 0.00 0.00 58 1.70 1.70 70 2.88 2.88    

11 9.00 9.00 23 5.81 5.81 35 7.21 7.21 47 1.50 1.50 59 5.81 5.81 71 9.00 9.00    

12 8.09 8.09 24 7.21 7.21 36 6.36 6.36 48 2.88 2.88 60 5.60 5.60 72 5.36 5.36    

 

Table 1. The cost function values for a 3×3 grid, and interstate transition probabilty 0.8, 

using value iteration technique, Vvitr, and policy iteration technique, Vpitr. 
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Fig. 5.6 Graphical user interface model for the herding problem with intial position of the 

evader =(4,4), p=0.8, and cost values calculated by value iteration technique 

. 

 
 

Fig. 5.7. Graphical user interface model for the herding problem with intial position of 

the evader =(4,4), p=0.8, and cost values calculated by policy iteration technique 
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5.7. Summary  

In this chapter we provided a stochastic model of the herding problem in the context of 

the stochastic dynamic programming. The stochastic dynamics of the model were 

introduced in the beginning of the chapter. Then, analysis of the pseudo-stochastic di-

graph representing the system is given. After that, three solution algorithms are 

introduced and analyzed. Finally, samples of the simulation results for the proposed 

solution algorithms are introduced to conclude the chapter. 
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Chapter (6) 
 

Pursuit Evasion: The Herding Non-cooperative Dynamic Game 
 

6.1. Introduction 

In this final chapter we present a dynamic programming based solution to the pursuer 

evader herding problem, where the pursuer and the evader are playing a non-cooperative 

deterministic game The evader here is not assumed to be a passive evader, rather it is an 

active evader so that it tries to maximize the cost value of the current state. As followed 

in the previous chapters, we present the dynamics of the problem then provide the 

dynamic programming solution to the problem.  The solution is proven to be correct and 

then simulations are performed to illustrate some example runs. 

 

6.2.  A N×N Grid Pursuer-Evader Herding Problem 

We consider the pursuer-evader problem in a N×N grid as shown in figure 6.1.  The 

pursuer can occupy one of the N×N positions and so can the evader.  Therefore, there are 

N2 states in the system.  The aim of the pursuer is to make the evader go to the pen that is 

the (0,0) position for the evader. The following shows the nomenclature used in this 

paper. 

 

)(kxp  x coordinate of the pursuer position at time instance k 

)(ky p  y coordinate of the pursuer position at time instance k 

)(kxe  x coordinate of the evader position at time instance k 

)(kye  y coordinate of the evader position at time instance k 

x(k) state vector given by )]()()()([)( kykxkykxk ppee=x  at time instance k 

 

For the NxN pursuer evader problem, we have },....,2,1,0{)( Nkxk p ∈∀ , 

Nkyp }....,2,1,0{)( ∈ , },....,2,1,0{)( Nkxk e ∈∀  and Nkye }....,2,1,0{)( ∈ .  However, the 
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pursuer and the evader can not have the same location on the grid as their initial 

positions.  It can be proven that if they have different initial positions, then based on the 

allowable actions of both (as described later), they can never end up on the same 

location.  There is a cost of one unit for each step (horizontal or vertical or diagonal) of a 

pursuer as well as of a evader.  The aim of the pursuer is to move the evader to the pen 

i.e. to the (0,0) coordinate, with the least cost.  Fig. 6.1 below shows the N×N grid for the 

pursuer-evader problem. 

 

 

 

 

 

 

 

Fig. 6.1. The N×N pursuer-evader problem grid 

 

Definition 1;Positive successor function: Positive successor function is given by: 





≤≤+
=

=
NkXifkX

NkXifkX
kXPS

)(01)(
)()(

))((                       (6.1) 

where, 
x(k) is the x or y coordinate of either the pursuer or the evader. 
Thus, PS(.): X={0,1,2,….N}→Y={1,2,….N} 
 
Definition 2; Negative successor function: Negative successor function is given by: 





≤≤−
=

=
NkXifkX

kXifkX
kXNS

)(01)(
0)()(

))((                     

(6.2) 
x(k) is the x or y coordinate of either the pursuer or the evader. 
Thus, NS(.): X={0,1,2,….N}→Y={0,1,2,….N-1} 
 
Definition 3; Equilibrium state of the evader: The evader is in equilibrium state when 
given a time instant T, if one of the following conditions is satisfied; 

a. Far condition: xp(T)-xe(k) and/or yp(T)-ye(k)>1. 

b. Left boundary condition: xe(k)=0 ,  0<ye(k)<N with yp(k)= ye(k) , and 

xp(k)=PS(xe(k)). 
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c. Right boundary condition: xe(k)=N ,  0<ye(k)<N with yp(k)= ye(k) , and 

xp(k)=NS(xe(k)). 

d. Low boundary condition: ye(k)=0 ,  0<xe(k)<N with xp(k)= xe(k) , and 

yp(k)=PS(ye(k)). 

e. Upper boundary condition: ye(k)=N ,  0<xe(k)<N with xp(k)= xe(k) , and 

yp(k)=NS(ye(k)). 

f. Upper left corner condition: (xe(k), ye(k))=(0,N), and xp(k)=PS(xe(k)) , and 

yp(k)=NS(ye(k)). 

g. Upper right corner condition (xe(k), ye(k))=(N,N), and xp(k)=NS(xe(k)) , and 

yp(k)=NS(ye(k)). 

h. Low right corner condition (xe(k), ye(k))=(N,0), and xp(k)=NS(xe(k)) , and 

yp(k)=PS(ye(k)). 

 
Definition 4; Final equilibrium state of the evader: The evader is in final equilibrium 
state at time instant T, when the following condition is satisfied: 

xp(k)=xp(T) and yp(k)=yp(T), then xe(k)=0 and ye(k)=0. ∀k>T. 
 
The following rules generate the pursuer-controlling movements and assign probabilities 
to the evader transitions based on its relative location with respect to the pursuer: 

a. ∀k xp(k), yp(k), xe(k), and ye(k) ∈{0,1,2,…….N}. 

b. The pursuer moves when the evader is at an equilibrium state only. 

c. The pursuer can move one step at a time, depending on its position in the grid, 

and its relative location with respect to evader position as illustrated in Fig.6.2 

and 6.3 below: 

 
 

 
 
 
 
 
 

 
 
 

Fig. 6.2. Pursuer movements with distance      Fig.6.3. Pursuer movements with evader at  
                    between pursuer and evader>2.      equilibrium state. 
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The evader transition depends on its relative position to the pursuer as following: 
a. Far Condition: If xe(k)<NS(xp(k)) or xe(k)>PS(xp(k)) or ye(k)<NS(yp(k)) or 

ye(k)>PS(yp(k)), then xe(k+1)=xp(k) and ye(k+1)=yp(k). 

b. Left top corner pursuer right condition : If xe(k)=0 and xp(k)=PS(xe(k)) and 

ye(k)=yp(k)=N then ; 

(xe(k+1) , ye(k+1)) |( xp(k), yp(k)) =
jVv∈

maxarg {( xe(k), NS(ye(k))), (PS(xe(k)), NS(ye(k)))} 

c. Left top corner pursuer down condition: If xe(k)= xp(k)=0 and yp(k)=NS(ye(k)) and 

ye(k)= N then ; 

(xe(k+1) , ye(k+1)) |( xp(k), yp(k)) =
jVv∈

maxarg {(PS( xe(k)),ye(k)), (NS(xe(k)), NS(ye(k)))} 

d. Right top corner pursuer left condition: If xe(k)=N and xp(k)=NS(xe(k)) and 

ye(k)=yp(k)=N then ; 

(xe(k+1) , ye(k+1)) |( xp(k), yp(k)) =
jVv∈

maxarg {( xe(k), NS(ye(k))), (NS(xe(k)), NS(ye(k)))} 

e. Right top corner pursuer down condition: If xe(k)= xp(k)=N and yp(k)=NS(ye(k)) then ; 

(xe(k+1) , ye(k+1)) |( xp(k), yp(k)) =
jVv∈

maxarg {(NS( xe(k)), (ye(k))), NS(xe(k)), 

NS(ye(k)))} 

f. Left bottom corner pursuer right condition: If xe(k)= 0 and xp(k)=PS(xe(k) ) and  

yp(k)=ye(k)=0 then ; 

(xe(k+1) , ye(k+1)) |( xp(k), yp(k)) =
jVv∈

maxarg {( xe(k), PS(ye(k))), (PS(xe(k)), PS(ye(k)))} 

g. Left bottom corner pursuer up condition: If xe(k)= xp(k)= 0 and yp(k)=PS(ye(k) ) then ; 

(xe(k+1) , ye(k+1)) |( xp(k), yp(k)) =
jVv∈

maxarg {(PS( xe(k)), ye(k)), (PS(xe(k)), NS(ye(k)))} 

h. Right bottom corner pursuer left condition: If xe(k)= N and xp(k)=NS(xe(k)) and yp(k)= 

ye(k)=0 then ; 
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(xe(k+1) , ye(k+1)) |( xp(k), yp(k)) =
jVv∈

maxarg {( xe(k), PS(ye(k))), (NS(xe(k)), PS(ye(k)))} 

 

i. Right bottom corner pursuer up condition: If xe(k)= xp(k)= N and ye(k)=0 and 

yp(k)=PS(ye(k)) then ; 

(xe(k+1) , ye(k+1)) |( xp(k), yp(k)) =
jVv∈

maxarg {( NS(xe(k)), ye(k)), (NS(xe(k)), PS(ye(k)))} 

j. Other conditions: If (a) to (i) are not satisfied and; 

i. xp(k)= NS(xe(k)) & yp(k)=PS(ye(k)) then; 

(xe(k+1) , ye(k+1)) |( xp(k), yp(k)) =
jVv∈

maxarg {(PS( xe(k), NS(ye(k))), 

(xe(k),NS(ye(k)), (PS( xe(k)), ye(k))} 

ii. xd(k)= xs(k) & yd(k)=PS(ys(k)) then; 

(xs(k+1) , ys(k+1)) |(xd(k), yd(k))  =
jVv∈

maxarg {(PS( xe(k), NS(ye(k))), 

(xe(k),NS(ye(k)), (PS( xe(k)), ye(k))} 

iii. xp(k)= PS(xe(k)) & yp(k)=PS(ye(k)) then; 

(xs(k+1) , ys(k+1)) |(xd(k), yd(k))  =
jVv∈

maxarg {(NS( xe(k), NS(ye(k))), 

(xe(k),NS(ye(k)), (NS( xe(k)), ye(k))} 

iv. xp(k)= PS(xe(k)) & yp(k)=ye(k) then; 

(xs(k+1) , ys(k+1)) |(xd(k), yd(k))  =
jVv∈

maxarg {(NS( xe(k),(ye(k)), 

(NS(xe(k)),NS(ye(k)), (NS( xe(k)), (PSye(k)))} 

v. xp(k)= PS(xe(k)) & yp(k)=NS(ye(k)) then; 

(xs(k+1) , ys(k+1)) |(xd(k), yd(k))  =
jVv∈

maxarg {(NS( xe(k), PS(ye(k))), 

(xe(k),(PS(ye(k))), (NS( xe(k)), ye(k))} 

vi. xp(k)= xe(k) & yp(k)=NS(ye(k)) then; 

(xs(k+1) , ys(k+1)) |(xd(k), yd(k))  =
jVv∈

maxarg {( xe(k), PS(ye(k))), 

(NS(xe(k)),PS(ye(k)), (PS( xe(k)), (PS(ye(k))} 
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vii. xp(k)= NS(xe(k)) & yp(k)=NS(ye(k)) then; 

(xs(k+1) , ys(k+1)) |(xd(k), yd(k))  =
jVv∈

maxarg {(PS( xe(k), PS(ye(k))), 

(xe(k),PS(ye(k)), (PS( xe(k)), ye(k))} 

viii. xp(k)= xe(k) & yp(k)=NS(ye(k)) then; 

(xs(k+1) , ys(k+1)) |(xd(k), yd(k))  =
jVv∈

maxarg {(PS( xe(k), (ye(k)), 

(PS(xe(k)),NS(ye(k)), (PS( xe(k)), PS( ye(k))} 

 

Theorem 1: There are (N×N-3) final equilibrium states of the N×N pursuer-evader 

problem. 

Proof: Figure 6.4 shows the six final equilibrium states of a 3×3 grid.  The figure implies 

that the pursuer can be in any of the six positions to obtain a final equilibrium state.  We 

can prove that the state when the pursuer is in (1,1) position is a final equilibrium state 

because of the 4(j) rule of the dynamics.  For the other ones we can prove the same by 

using 4(a) rule. 
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Fig. 6.4 The six final equilibrium states for a 3×3 grid. 

 

For each given equilibrium-state, the pursuer is free to choose its next move based on a 

finite set of possible actions.  This finite set is a function of the state x.  If the state is a 

non-equilibrium state then the pursuer is not allowed to move in that time instant.  The 

evader will move from the non-equilibrium-state to another state that could be (in 

general) another non-equilibrium-state or an equilibrium-state. 
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By induction, the same result can be proved for any N×N grid. 

 

Theorem 2: If for any positive integer k, )()( kxkx pe ≠  and )()( kyky pe ≠ then for any 

kt ≥ , the following two statements can not be simultaneously false: )()( txtx pe ≠  and 

)()( tyty pe ≠ . 

Proof: This can be easily proven by noting that in order for both statements to be false at 

time t, the system would have to be in equilibrium condition, and then the pursuer would 

have to move to acquire the same coordinates as those of the evader.  However, due to 

the constraint on the motion of the pursuer, that the pursuer can only move when the 

system is in a non-equilibrium state, the theorem is proven. 

 

Let U be the discrete set of actions available to the pursuer (pursuer) when the system is 

in the state x.  The pursuer (pursuer) defines a policy U→x:µ  that is a function from 

the state to pursuer actions.  This defines a feedback control policy for the pursuer.  Let 

W be the discrete set of actions available to the evader (evader) when the system is in the 

state x.  The evader (evader) defines a policy W→x:ω  that is a function from the state 

to evader actions.  This defines a feedback control policy for the evader.  We also define 

a value function )(xµωV , which is the sum of all future instantaneous costs given that the 

initial state of the system is x and the system follows the policies µ  and ω .  We define 

instantaneous cost as: 

)1,)1()()1()(

)1()()1()(min(),(

−−+−−

+−−+−−=

kykykxkx

kykykxkxwuc

ssss

ddddx  

The value function )(xµωV  is given by 

iwherekciV
k

k == ∑
∞

=

)0()))((()(
0

)( xxx µµω  

Problem Statement 1: 
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(a) Find the policies  *µ  and *ω . that produce the following lower value function: 

)(maxmin)(* iViV µωωµ
=  

(b) Find the policies  *µ  and *ω . that produce the following upper value function: 

)(minmax)(* iViV µωµω
=  

 

6.3. Properties of the Diagraph Associated with the Pursuer-Evader, Herding 

Problem 

 

We can represent the pursuer-evader problem described above as a digraph G = (V, E) 

that consists of a finite set V of vertices or nodes representing the states of the system, 

and a finite set E of edges.  V consists of all the possible values of the state x.  The 

cardinality of V denoted by N(V) is N×N.  There exists an edge e from a state-value 

(node) v to w if for some k, v = x(k) and w = x(k+1), following the dynamics generated 

by the rules in section 2.  The digraph is a directed network or a weighted-digraph since 

we associate a cost with each edge using the instantaneous cost formula from section 2.  

The digraph is also simple, since there are no loops or multiple edges. The adjacency 

matrix of the digraph is an )()( VNVN ×  matrix whose diagonal elements are all zeros.  

The reader is referred to [51] for background reference. 

 

Theorem 3: The instantaneous cost associated with each edge in the digraph of the 

pursuer-evader problem is 1. 

Proof:  The proof of the theorem comes directly from calculating the cost for the motion 

of the pursuer and the evader, according to their dynamics as given in section 2. 

a) Far condition; 

In this case, and by definition 1, the evader is at equilibrium state, so, only the 

pursuer is allowed to move; 

)()1(&)()1( kykykxkx eeee =+=+  
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Since only the pursuer is allowed to move, and for only one step. Then, the minimum 

distance the pursuer can move, will result from moving it one step in either the x 

direction or the y direction; 

1)()1(1)()1( =−+=−+ kykyorkxkx pppp  

Substitute with these in the cost equation⇒ 

)1|,)()1(||)()1(|

|)()1(||)()1(min(|)(

kykykxkx

kykykxkxc

eeee

ppppx

−++−+

+−++−+=µ
 

1)1,0010min()(1)1,0001min()( =+++==+++= µµ xx corc  

b) Left top corner, pursuer right 

In this case, the evader is not in an equilibrium state and therefore, only the evader is 

moving while not the pursuer; 

Nkykyandkxkx

NkyandPSkxPSkx
NNNSkyNSkyandkxNkyandkx

pppp

pep

eeeee

==+==+

====
−===+=+==

)()1(1)()1(

)(1)0())(()(
1)())(()1(0)1(;)(0)(

 

1)1,1000min()( =+++=∴ µxc  

c) Left top corner, pursuer down condition  

1)()1(0)()1(
)()1(1))(()1(

1)()(0)(;)(0)(

−==+==+
==+==+

−=====

Nkykyandkxkx
NkykyandkxPSkx

NNNSkyandkxNkyandkx

pppp

eeee

ppee

 

1)1,0100min()( =+++=∴ µxc  

d) Right top corner, pursuer left condition 

2)()1(1)()1(
1))(()1(2)()1(

2)(1))(()(;2)(2)(

==+==+
==+==+

=====

kykyandkxkx
kyNSkyandkxkx

kyandkxNSkxkyandkx

pppp

eeee

pepee

 

1)1,0100min()( =+++=∴ µxc  
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e) Right top corner, pursuer down condition 

1)()1()()1(
)()1(1))(()1(

1))(()()()(;)()(

−==+==+
==+−==+

−======

NkykyandNkxkx
NkykyandNkxNSkx
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1)1,0100min()( =+++=∴ µxc  

f) Left bottom corner, pursuer right condition 

0)()1(1)()1(
1))(()1(0)()1(

0)(1))(()(;0)(0)(
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1)1,1000min()( =+++=∴ µxc  

g) Left bottom corner, pursuer up condition 

1)()1(0)()1(
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1)1,0100min()( =+++=∴ µxc  

h) Right bottom corner, pursuer left condition 
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1)1,1000min()( =+++=∴ µxc  

i) Right bottom corner, pursuer up condition 

1)()1()()1(
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1)1,0100min()( =+++=∴ µxc  

Other conditions: 

For all the cases mentioned in rule 4-j, the evader takes only one step at a time away 

from the pursuer which is not allowed to move since the evader in not in an equilibrium 

state. Therefore, in all cases we have; 

0)()1(1)()1( =−+=−+ kykyorkxkx eeee ⇒ 



 100

1)1,0100min()( =+++=∴ µxc  

or 1)()1(0)()1( =−+=−+ kykyorkxkx eeee ⇒ 

1)1,1000min()( =+++=∴ µxc  

or 1)()1(1)()1( =−+=−+ kykyorkxkx eeee ⇒ 

1)1,1100min()( =+++=∴ µxc  

 

Theorem 4: The digraph of the pursuer-evader problem is not a strongly connected, but 

is weakly connected. 

Proof: It can be shown that starting from any allowable (all states except the ones with 

co-incident positions for pursuer and evader) state, one of the final equilibrium states can 

be reached.  All the final equilibrium states have paths connecting them together.  To see 

this, consider a final equilibrium state, and then move the pursuer back (to increase he 

distance between the pursuer and the evader).  This action will not result in any evader 

movement.  Then we can move the pursuer in positions that have distance more than one 

from the evader (at the pen).  Then the pursuer can be moved to a different position 

corresponding to another final equilibrium position.  This shows that starting from any 

initial allowable state, there is a path to all the final equilibrium states.  This proves that 

the underlying graph of the digraph is connected.  To show that it is not strongly 

connected, consider any final equilibrium state.  From these states, there is no pursuer 

action that can take the evader from the boundary of the two dimensional space into the 

interior. 

 

Some additional properties of the pursuer-evader digraph are given below: 

1. The number of nodes that are adjacent from a node representing an equilibrium state 

depends on the location of the pursuer position in the grid.  There are the following 

three possibilities on the number of adjacent states. 

a) There are eight states adjacent from the equilibrium state node if the pursuer 

position is in the interior.  Only seven out of the eight are allowed since pursuer 

and evader are not allowed to have the same location. 
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b) There are five states adjacent from the equilibrium state node if the pursuer 

position is in the side but not in a corner. This can become four if one of the five 

is taken by the evader. 

c) There are three states adjacent from the equilibrium state node if the pursuer 

position is in the corner.  This can become two if one of the five is taken by the 

evader. 

2. The number of nodes that are adjacent from a node representing a non-equilibrium 

state is either one or two.  The state adjacent from the non-equilibrium node can be 

another non-equilibrium node or an equilibrium node.  An example is shown in 

Fig.6.5. 
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Fig. 6.5 Adjacent states for non-equilibrium initial state 

 

Theorem 5 (Necessary and sufficient condition for existence of value):  The necessary 

and sufficient condition for the existence of the value of the pursuit-evasion game 

(starting at any state) as described above is that there should be no cycles completable by 

the maximizing player (evader) in the digraph of the game. 

Proof: If a cycle is completable by the pursuer, obviously, it will not complete the cycle 

during a game, since going into a cycle would increase the cost. On the other hand, if the 

evader can complete a cycle, it definitely will, since that will increase the cost and in fact 

make the cost to go to infinity.  The reason for this is that, the control actions (of the 

pursuer as well as the evader) are constrained to be functions of the current state alone.  

Therefore, whatever action is taken by the evader at the state, where the cycle can be 

P 

E 

E
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completed, that action will be repeated every time that same state is reached.  Following 

the same logic, the states that were visited during the first traversal of the cycle will be 

repeated infinitely many times.  Therefore, the total cost in that case will be infinite, and 

therefore, no value will exist for the game for all the states.  It is a necessary condition, 

because since if cycles are present there are states for which there are no values.  It is also 

a sufficient condition, because the total number of states in the system is infinite. 

 

Theorem 6:  The lower and upper values of the game are the same. 

Proof: This is true because the set of all the states can be decoupled into two subsets, one 

subset containing the states that can be followed by pursuer action, and the other subset 

containing the states that can be followed by evader action.  Therefore, for any initial 

state, the sequence of the pursuer and the evader actions is fixed.  Therefore, the lower 

and upper values are the same, since changing the min operation before max or vice versa 

does not affect the value. 

 

6.4.  Topology of the Game and the Associated Properties 

Let X be the set of all the states of the system.  We define a real-valued function d on 

XX ×  for all the ordered pairs of X [52].  The function d is an anti-symmetric metric or a 

distance function and satisfies the following axioms.  For every Xcba ∈,,  

axiom 1) 0),( ≥bad  and d(a,a)=0 

axiom 2) ),(),(),( cbdbadcad +=  

 

For the pursuer-evader game we are studying, we define a cost distance function 

),( baδ to be the cost that takes the game to evolve from state a to state b where the cost 

has been minimized by the pursuer and maximized by the evader.  Let the set 0 be the 

subset of X containing all the final equilibrium states.   

 

Definition 5 : The cost distance between a point Xx∈  and a subset A of X is given by 

}:),(inf{),( AaaxAx ∈= δδ  
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We define d(a,b) as 

),(),(),( 00 babad δδ −=  

 

 

Definition 6 : The anti-symmetric distance between a point Xx∈  and a subset A of X is 

given by 

}:),(inf{),( AaaxdAxd ∈=  

 

 

Fig. 6.6 Representation of the points of the set on a real line based on d(x,0) 

 

Fig. 6.6 shows how the points of the set X can be represented on a real line based on the 

distances from the final equilibrium set 0.  Notice that on the real line, the sets occupy the 

positions of non-negative integers only.  Notice also that there can be multiple points on 

the same location.  Notice that the function d(a,b) as we defined satisfies the two axioms 

of a distance. 

 

We can define an open sphere in order to develop a topology for the problem.  For any 

point Xx∈  and any real number r>0, we define an open ball as: 

}),(:{),( rxydyrxB <=  

 

Lemma 1: Let B be an open ball with center a and radius r.  For every point ,Bb∈ there 

exists an open ball C centered at b, so that C is contained in the ball B. 

Proof: There can be various different possibilities for the ball.  In one case the ball might 

contain no points of the set X, or it may contain one or more points.  We will proceed 

with the proof analyzing the various possibilities as follows: 

1. Ball containing no points of X:  

0 1 2
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Fig. 6.7 Ball containing no points of the set X. 

 

For this case, the lemma is satisfied in a trivial manner, since the ball contains 

no points of the set X. 

2. Ball containing only one positive integer when represented on a real line: 

 

Fig. 6.8 Ball containing only one positive integer when represented on a real line. 

 

In this case, the ball might contain multiple points, but all the points are 

located at the same location on the real number line.  Therefore, it is very easy 

to find a ball centered at these points that is contained in the ball B. 

3. Ball containing multiple positive integers when represented on a real line: 

This case can also be represented on the real line.  In this case we can again 

easily construct balls around each of the integer locations contained in the ball 

B, so that those balls are also contained in B. 

 

Lemma 2: Let 1B and 2B  be two open balls and x be a point belonging to both, such that 

21 BBx ∩∈ .  Then, there exists an open ball xB  centered at x, such that 

21 BBBx x ∩⊂∈ . 

B 

B 

0 1 2

0 1 2
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Proof: To obtain the proof, let us consider the real line representation as shown in Fig. 

6.9. 

 

 

 

 

 

 

Fig. 6.9 A point belonging to two balls. 

 

Let 1B and 2B  be two open balls and x be a point belonging to both, such that 

21 BBx ∩∈  as shown in Fig. 6.9.  Since 1Bx∈ , according to Lemma 1, there exists a 

ball B*1 centered at x that is contained in B1.  Similarly, since 2Bx∈ , according to 

Lemma 1, there exists a ball B*2 centered at x that is contained in B2.  Now, we have two 

concentric balls, B*1 and B*2 .  Therefore, one should be contained in the other.  In this 

example, we take B*2 contained in B*1.  Therefore, we have obtained B*2 as xB  centered 

at x, such that 21 BBBx x ∩⊂∈ . 

 

Theorem 7:  The class of open balls in set X of all the states of the game with the 

function d is a base for a topology on X. 

Proof: Lemma 1 and Lemma 2 combined applied to Theorem 6.1 in [52] proves this 

theorem. 

 

We define a norm in a slightly different way than the standard norm definitions to deal 

with different structure of the problem. 

 

Definition 7 (Norm): Norm on X is a function that assigns to each member x of X a real 

value x  and follows the following axiom. 

 

B1 

0 1 2

B2 
B*2 
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axiom 3: 0≥x  and 0=x  iff x is a final equilibrium state 

 

Theorem 8:  The function d(x,0) is a norm function.  From now on we denote this 

function as d(x).  Note that this function is the same as the value function )(xµωV  when 

the policies µ  and ω  have been applied. 

Proof: Axiom 3 is satisfied by using the function definition in axiom 1. 

 

Theorem 9(Lyapunov-like Theorem):  When the policies µ  and ω  have been applied to 

the pursuit evasion game, and starting from any initial state x(0) if 

0))(())1(( <−+ kxdkxd  if 0)( ≠kx  

then 0∈∃ )(.., TxtsT  

Proof: Since there are only finite number of states, the system will keep traversing 

through different states (via the available links) in order to reduce d(x(k).  In finite 

number of steps, the system will reach the 0 set. 

 

Theorem 10(Boundedness Theorem):  When the policies µ  and ω  have been applied to 

the pursuit evasion game, and starting from any initial state x(0) if 

0))(())1(( ≤−+ kxdkxd  if 0)( ≠kx  

then; 

))0(())((, xdkxdk ≤∀  

 

Dynamic programming solution to obtaining the pursuer and the evader policies can be 

presented as the solution of the following problem: 

 

Problem Statement 2: Find the policies *µ  and *ω . that produce the following function: 

))](())1((2[maxmin))((* kxdkxdkxd −+=
ωµ

 

This problem statement is same as the problem statement 1.  This will be restated in the 

standard dynamic programming terminology in the next section of this paper. 
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6.5. Dynamic Programming Solution to the NxN Grid Pursuer-Evader Herding 

Problem 

The dynamic programming solution is based on Bellman's equation, which for our 

problem would look like the following: 

))}1((),({maxmin))(( *

)()(

* ++=
∈∈

kVwuckV ixwu
xx

x ωµ
 

 

This equation indicates how the feedback pursuer and evader can make decisions once 

the value function is available.  The pursuer and the evader use the same function.  This 

equation can also be used to find the value function using the boundary conditions from 

the problem.  Small-scale problems can be solved by hand, but for large scale ones, a 

computer program can be written to apply the dynamic programming algorithm.  The 

algorithm is applied similar to the problem of Fig 1.4 in [27]. 

 

6.6. Simulation Software 

We have developed a Multiple Document Interface (MDI) windows application using 

Visual Basic for performing experiments.  This software is available by sending an email 

to the first author of the paper.  This program allows us to run many simulations at the 

same time, in different modes.  The three different modes are (a) automatic, (b) user-

assisted, and (c) manual. 

 

In the automatic mode, the simulation runs by itself once started. We just observe the 

behavior of the pursuer and the evader. The simulation stops when the evader has 

reached its final position.  In the user-assisted mode, the user needs to click “Next 

button” to make the evader or the pursuer move one step. This option allows more time to 

the user to - for example - think about the problem between consecutive moves.  Finally 

in the manual mode, the user is controlling the pursuer and the evader movements using 

drag and drop.  
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The software produces a printable text history of the evader and pursuer moves as shown 

in Fig. 6.10. 
Automatic Mode running ... 

 

1) Evader (2, 2) --> (2, 2) 

2) Pursuer (1, 1) --> (1, 2) 

3) Evader (2, 2) --> (2, 1) 

4) Pursuer (1, 2) --> (1, 2) 

5) Evader (2, 1) --> (2, 0) 

6) Pursuer (1, 2) --> (2, 1) 

7) Evader (2, 0) --> (1, 0) 

8) Pursuer (2, 1) --> (2, 1) 

9) Evader (1, 0) --> (0, 0) 

 

Evader has reached the home (0,0) 

Simulation Ends ... 

 

Fig. 6.10 Text Description of a Simulation Run 

 

This simulation run can be graphically represented as shown in Fig. 6.11. 

 

0 
 0 

 
1 
 

2 
 

2 
 

1 
 

D 
 

S 
 
D 
 

S 
 

 
Fig. 6.11 Representation of a simulation run 
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6.7. Conclusion 

In this chapter we studied a class of pursuit evasion problems that is different than the 

traditional problems in that the aim of the pursuer is to force the evader into a pen.  We 

studied the properties of the problem and formulated the dynamic programming solution 

for the problem.  We also presented a software package that has been developed to 

experiment with the problem. 
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