
Optimal Control for a Two Player Dynamic Pursuit Evasion

Game; The Herding Problem

Samy A Shedied

Dissertation submitted to the faculty of Virginia Polytechnique Institute and

State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

In

Electrical Engineering

Pushkin Kachroo, Chair

Hugh VanLandingham

William T. Baumann

Charles F. Reinholtz

Lamine Mili

Jan 21st, 2002

Blacksburg, Virginia

Keywords; Pursuit Evasion, Shortest Path, Dynamic Programming, Non-

holonomic Systems

Copyrights, 2002, Samy A Shedied

Optimal Control for a Two Player Dynamic Pursuit Evasion

Game; The Herding Problem

Samy A Shedied

(ABSTRACT)

In this dissertation we introduce a new class of pursuit-evasion games; the herding

problem. Unlike regular pursuit evasion games where the pursuer aims to hunt the evader

the objective of the pursuer in this game is to drive the evader to a certain location on the

x-y grid. The dissertation deals with this problem using two different methodologies. In

the first, the problem is introduced in the continuous-time, continuous-space domain. The

continuous time model of the problem is proposed, analyzed and we came up with an

optimal control law for the pursuer is obtained so that the evader is driven to the desired

destination position in the x-y grid following the local shortest path in the Euler Lagrange

sense. Then, a non-holonomic realization of the two agents is proposed. In this and we

show that the optimal control policy is in the form of a feedback control law that enables

the pursuer to achieve the same objective using the shortest path.

The second methodology deals with the discrete model representation of the problem. In

this formulation, the system is represented by a finite di-graph. In this di-graph, each state

of the system is represented by a node in the graph. Applying dynamic programming

technique and shortest path algorithms over the finite graph representing the system, we

come up with the optimal control policy that the pursuer should follow to achieve the

desired goal. To study the robustness, we formulate the problem in a stochastic setting

also. We analyze the stochastic model and derive an optimal control law in this setting.

Finally, the case with active evader is considered, the optimal control law for this case is

obtained through the application of dynamic programming technique.

 1

Table of Contents

Chapter 1,

Pursuit Evasion: Objectives and Technique

1.1 Introduction 5

1.2 Typical pursuit and evasion behaviors 8

1.3 Foundations of the Game Theory 9

1.4 The optimality of mixed strategies 11

1.5 Reasons to simulate pursuit-evasion games 12

1.6 Review of Some Previous Simulation and Robotics Work 15

1.7 Summary and Dissertation Overview 16

Chapter 2,

Optimal Trajectory for a Class of Pursuit Evasion Games: The Continuous

Time Herding Problem

2.1. Introduction 19

2.2. Basic Principles and Theories of Calculus of Variations 19

2.2.1. Definitions and Concepts 20

2.2.2. Existence of Solutions 20

2.2.3. Necessary Conditions 21

2.2.4. Sufficient Condition 22

2.3. System Model 23

2.4. Solving for Optimal Trajectory 24

2.5. Simulation Results 28

 2

2.5.1. Impulsive versus Smooth Solution 31

2.6. Conclusion 33

Chapter 3,

Feedback Control for the Optimal Pursuit-Evasion Trajectory

3.1. Introduction 34

3.2. Basic Principles of Non-holonomic Motion Planning 34

3.2.1.Controllability of Non-holonomic Systems 35

3.3. Feedback Control Design for the Optimal Pursuit-Evasion

Trajectory 36

3.4. Simulation Results 40

3.5. Conclusion 41

Chapter 4,

The Discrete Deterministic Model

4.1. Introduction 43

4.2. Dynamic Programming Principles 44

4.2.1. Dynamic Programming Basic Theory and Functional Equations 44

4.2.2. Deterministic Dynamic Programming Algorithm 46

4.3. A NxN Grid Pursuer-Evader Problem 48

4.4. Properties of the Digraph Associated with

the Pursuer-evader Problem 59

4.5. Proposed Techniques of Solution to the NxN Grid

Pursuer-Evader Problem 64

 3

4.5.1. Algorithm based on Dijkstra's Shortest Path Solution 67

4.5.1.1.Modified Dijkestra 1 67

4.5.1.2.Modified Dijkestra 2 69

4.5.2. Direct Dynamic Programming Solution 70

4.6. Simulation Results 70

4.7. Summary 72

Chapter 5,

Pursuit Evasion: The Stochastic Model

5.1. Introduction 74

5.2. Principles of Stochastic Dynamic Programming 75

5.3. A N×N Stochastic Pursuer-Evader problem 77

5.4. Properties of The Stochastic Digraph Associated with the

Pursuer-Evader Problem 82

5.5. Problem Statement 83

5.6. Methods of Solution 83

5.7. Simulation Results 86

5.8. Summary 89

Chapter 6,

Pursuit Evasion: The Herding Non-cooperative Dynamic Game

6.1. Introduction 90

6.2. A NxN Grid Pursuer-Evader Herding Problem 91

 4

6.3. Properties of the Diagraph Associated with

the Pursuer-Evader, Herding Problem 97

6.4. Topology of the Game and the Associated Properties 102

6.5. Dynamic Programming Solution to the NxN Grid

Pursuer-Evader Herding Problem 107

6.6. Simulation Software 107

6.7. Conclusions 109

References 110

 5

Chapter 1

Pursuit Evasion: Objectives and Technique

1.1. Introduction

Contests of pursuit and evasion are among the most widespread, challenging, and

important optimization problems that confront mobile agents, and represent some of the

most important potential applications for robots and other artificial autonomous agents. In

a typical contest of this sort, a predator chases a prey animal around until the prey is

captured. Although pursuit-evasion games have been relatively neglected in research on

the simulation of adaptive behavior, they have some major features that render them

interesting and relevant [1].

Pursuit and evasion contests are difficult, because dynamic, stochastic, continuous-space,

continuous-time or discrete-time discrete-space games are usually difficult to handle.

Agents that pursue or evade must maintain complex sensory-motor coordination with

respect to both a physical environment and a hostile opponent. Pursuit-evasion contests

also require continuous, real-time, dynamical control, in the face of an opponent that will

ruthlessly exploit any delay, uncertainty, or error. Natural or artificial behavior-control

systems that are slow, brittle, or easily confused do not survive long in pursuit-evasion

scenarios. For these reasons, traditional artificial intelligence methods may prove

particularly poor as techniques for dealing with pursuit-evasion games.

Pursuit and evasion are scientifically interesting, because the agents evolve against one

another in a continuing, open-ended, frequency-dependent way. In addition, since some

of the pursuit-evasion scenarios may be so simple, their investigation may illuminate

behavioral arms races in more general cases [2]. Further, because effective pursuit may

often require prediction and “mind-reading”, while effective evasion may require the use

of unpredictable or deceptive tactics [3], such contests raise issues of signaling,

communication, and tactical deception [4], [5].

 6

Pursuit-evasion contests have recently received serious attention from at least three

scientific disciplines: behavioral biology, neuroethology, and game theory. Animal

behavior studies have revealed the ubiquity and importance of pursuit-evasion tactics,

anti-predator behaviors, and fighting skills [6]. The central part of such behaviors is

revealed by the fact that pursuit-evasion games are the most common form of animal play

behavior [7]; such play facilitates learning sensory-motor coordination through

“developmental arms races" between play-mates. Neuroethology [8] has spent much

effort understanding neural systems for pursuit (approach) and evasion (avoidance),

including: explorations of specific circuits for rapid startle and escape behaviors [9], [10].

Game theorists have also studied some classes of pursuit-evasion contests intensely for

several decades, because of their importance in tactical air combat (e.g. telling pilots how

to evade guided missiles) and other military applications [11]. “Differential game theory"

[12] has developed a vocabulary for analyzing the structure and complexity of pursuit-

evasion games, and a number of formal results concerning optimal strategies for

particular pursuit-evasion games.

The study of pursuit-evasion behaviors has many scientific implications and practical

applications. A better understanding of the cognitive dynamics of pursuit-evasion

contests would have many applications in robotics, video games, virtual environments,

and any other technology where real or simulated mobile agents come into behavioral

conflict with other agents.

Finally, understanding pursuit evasion games may open a new area of investigation for

simulation of adaptive behavior, and will explore the evolution of pursuit and evasion in

a variety of games under various conditions. Also, such work can be extended to

investigate:

1. Whether co-evolution between simulated robots engaged in pursuit-evasion contests

can lead to more complex pursuit and evasion tactics over generations.

2. Whether the use of continuous recurrent neural networks as control systems allows

the emergence of more interesting and dynamic perceptual, predictive, pursuit and

evasion abilities.

 7

3. Whether the incorporation of random-activation units in the control system allows the

evolution of adaptively unpredictable tactics.

4. Whether changes in the relative physical speed and neural processing speed of

pursuers and evaders influences the pursuit and evasion tactics that evolve.

According to Isaacs [12] (Isaacs, 1975), control theory can be viewed largely as the

solution of one-player differential games; differential game theory addresses the more

complex multi-player cases. Considering the above mentioned factors, the most

commonly used techniques adapted to deal with pursuit evasion games are:

1. Classical calculus of Variations and Optimal Control Technique: This technique

provides a very strong tool of analysis and design to the researcher especially when

the practical issues of robot dynamics are to be considered in addition to obtaining

optimal control policy. The main advantage of this technique is its ability to give a

real time solution, if it exists, since the system and the constraints are represented by

a set of differential equations. Despite the previously mentioned advantages, this

technique has not been widely used in pursuit evasion games due to the complications

that arise as the number of players increase. The basic foundations and principal tools

using in this techniques will be covered at the beginning of chapter 2.

2. Dynamic Programming: A very efficient technique that mainly deals with discrete

systems with a value function that needs to be optimized. The basic types and

principles of dynamic programming will be covered at the beginning of chapter 4.

3. Reinforced Machine Learning: Reinforcement learning [13] is a technique of learning

how to map situations to actions---so as to maximize a numerical reward value

function. The learner is not told which actions to take, but instead he must discover

which actions yield the most reward by trying them. In the most interesting and

challenging cases, actions may affect not only the immediate reward, but also the next

state and, through that, all subsequent rewards. These two characteristics, trial-and-

error search and delayed reward, are the two most important distinguishing features

of reinforcement learning. Reinforcement learning is defined not by characterizing

learning algorithms, but by characterizing a learning problem. The basic idea is

simply to capture the most important aspects of the real problem facing a learning

 8

agent interacting with its environment to achieve a goal [13]. This goal is related to

the state of the environment. The formulation is intended to include just these three

aspects---sensation, action, and goal---in the simplest possible form without

trivializing any of them.

In addition to the agent and the environment, one can identify four main elements to a

reinforcement learning system: a policy, a reward function, a value function, and,

optionally, a model of the environment.

A policy defines the learning agent's way of behaving at a given time. Roughly

speaking, a policy is a mapping from perceived states of the environment to actions to

be taken when in those states. The policy is the core of a reinforcement learning agent

in the sense that it alone is sufficient to determine behavior.

A reward function defines the goal in a reinforcement learning problem. It maps the

states (or state-action pairs) of the environment to a single number, a reward value,

indicating the essential desirability of the state. A reinforcement-learning agent's

objective is to maximize the total reward it receives in the long run.

A value function specifies what is good in the long run. Roughly speaking, the value

of a state is the total amount of reward an agent can expect to accumulate over the

future starting from that state.

4. Games Theory: This field took prominence in late 40’s. It provides the researchers

with tools that enable them to analyze and design optimal control policies for more

complicated games. Again, the basic foundation of game theory will be covered later

in this chapter.

1.2. Typical pursuit and evasion behaviors

Observing and understanding the animals’ behavior in pursuit evasion represents the first

step in designing an optimal control policy for any pursuit evasion games. Pursuit is

 9

fairly simple: animals are usually observed to move towards the remembered, observed,

or predicted location of the target. Evasion is more complex. For example, animal escape

behavior in asymmetric pursuit-evasion contests generally breaks down into three phases:

- Directional fleeing if a pursuer is threatening but still distant.

- Erratic zig-zagging if the predator begins catching up.

- Convulsive “death-throes” if caught.

Along with directional fleeing, adjustable escape behaviors are probably the most

widespread and successful of all behavioral anti-predator tactics, being used by virtually

all mobile animals on land, under water, and in the air [3]. (e.g. because predators' use of

search images penalizes common appearances). Indeed, apostatic selection may be a

general feature of pursuit-evasion arms races: novel and unexpected tactics may be

favored at a variety of levels.

 In our study, the first phase of the evasion motion is the key characteristic in our class of

pursuit evasion games; The Herding problem.

1.3. Foundations of the Game Theory

Game theory [14] is concerned with the formal analysis of situations called “games"

where players can choose different strategies that determine their actions under particular

conditions. Conditions and outcomes unfold through the interactions of the players'

strategies. Players have preferences among outcomes. In other words a “value function”

be present [15].

Briefly, players can be represented by agents that can make choices, employ strategies,

and receive payoffs. Traditional game theory has focused on games with discrete moves

(e.g. chess), but in the 1950s, Isaacs (1951, 1965) tried to utilize game theory in modeling

and analyzing pursuit-evasion situations such as aerial combat, where moves unfold

continuously over time, and control systems can vary continuously in the strategies they

implement. Isaacs had two basic insights. First, pursuit-evasion contests do require game

 10

theory rather than simple optimality theory. However, we show in chapter 2 how to

utilize optimality theory in solving for optimal control policy for the herding pursuit

evasion game. Second, the continuous nature of pursuit-evasion contests can be modeled

using differential equations that specify how state conditions (such as player positions

and velocities) change incrementally as a function of players' strategies and previous state

conditions: pursuit and evasion moves become continuous trajectories through a state-

space. Isaacs (1951, 1965) developed the “Tenet of Transition" which specifies that

players must optimize (find the minimax solution for) the transitions between states

leading towards a goal-state, which can be represented as optimizing the temporal

derivatives of the relevant state variables. Applying the tenet of transition, pursuers at

each moment in time should try to maximize the rate of their instantaneous approach

towards the capture-state, and evaders should try to minimize it. If a solvable set of

differential equations can be written that identify the continuous effect of strategies on

state-conditions, then the optimal pursuit and evasion strategies can be found by applying

the tenet of transition.

Aside from differential game theory, there are also large and relevant literatures on using

control theory [16], to deal with some classes of pursuit evasion games such as; missile

guidance, aircraft control, aerial tactics, and sports tactics.

Differential pursuit-evasion games are defined by a set of controls (what each player can

do), a set of dynamics (that can be considered as a mapping from the control variables

onto the state variables of the game, and from state variables at one moment in time to the

next moment), and a set of termination conditions (state conditions that determine when

successful capture or evasion happens). For example, in a classic case analyzed by

Berkovitz [17], a pursuer and an evader move with equal and constant speed in a plane,

and control the direction of their velocity vector (which thus becomes their control

variable). These two velocity vectors give rise to a system of first-order differential state

equations that determine how the players move over time. The pursuer wants to minimize

time to capture the evader and the evader wants to maximize time until capture, with

capture defined as proximity within some small distance. Both players know the present

 11

state of the game (e.g. both of their positions and velocity vectors) but at each time-point

they make separate and simultaneous decisions about what to do next. The available

strategies are therefore functions that map from current states of the game (i.e. the

positions and velocity vectors of both players) onto velocity-vector decisions about what

direction to move next. In all differential games, strategies determine trajectories through

the relevant state-space; in pursuit-evasion games, strategies determine trajectories

through physical space.

1.4. The optimality of mixed strategies

The key to formal analysis in game theory is for games to be reduced from descriptive

form (e.g. rules and heuristics) or “extensive form” (i.e. decision-tree form) to “normal

form" (i.e. a joint payoff matrix that lists game outcomes given all possible strategies for

all players). Some games in normal form have “minimax solutions" (a.k.a. “saddle

points") that minimize each player's expected payoff “value function” apart from what

the opponent does to maximize their expected gain.Minimax solutions, if they exist, are

jointly optimal for both players. In games of perfect information, players are accurately

and continuously aware of all moves made by other players, so that deception, confusion,

and uncertainty are impossible. All games of perfect information have one or more saddle

points corresponding to “pure” deterministic optimal strategies.

However, games of imperfect information (e.g. games where deception is possible) may

have multiple saddle points or no saddle points. In such cases, “mixed strategies”

(probability distributions across pure strategies) may be optimal. Perhaps the most

important and interesting result from von Neumann and Morgenstern (1944) was that

every two-player, zero-sum game of incomplete information with multiple saddle points

has an optimal strategy that is mixed rather than pure:

“One important consideration for a player in such a game is to protect himself against

having his intentions found out by his opponent. Playing several different strategies at

random, so that only their probabilities are determined, is an effective way to achieve a

 12

degree of such protection. By this device the opponent cannot possibly find out what the

player's strategy is going to be, since the player does not know it himself. Ignorance is

obviously a good safeguard against disclosing information directly or indirectly.” [14].

The logic of mixed strategies is simple [18]. If a player's choice sometimes remains

unknown to others after the move is made, the game is one of imperfect information. This

can result from the move being unknown, or the other players' sensors being insufficient

to detect all moves with complete accuracy. Typically, games lose their saddle points

when they are no longer games of perfect information, such that the first player's

minimax solution does not correspond to the second player's minimax solution. In

general, mixed strategies randomize moves to confuse opponents and keep them

guessing. (But the task of determining the optimal mixed strategy is usually very difficult

for games with many pure strategies and complex interactions.)

Because many pursuit-evasion games are ones of incomplete information with multiple

saddle points, mixed strategies have often proven useful in such games. Mixed strategies

are optimal for a pursuit-evasion game with rectilinear movement on a planar grid [19].

Such game-theoretic results support the assumption of Driver and Humphries (1988) that

erratic zig-zagging by animals is truly stochastic behavior that derives its utility from its

unpredictability. We might expect then that in any pursuit-evasion game with incomplete

information and complex dynamics, unpredictable pursuit and evasion strategies will

evolve.

Dynamic programming methods [20] may prove more useful in analyzing pursuit-evasion

contests, since they can optimize stochastic dynamic strategies, even in two-player games

[21].

1.5. Reasons to simulate pursuit-evasion games

Generally speaking, games are characterized by various dimensions of complexity:

 13

1. The number of players, ranging from one-player cases to classic two-player cases to

more difficult multi-player cases.

2. The number of moves, ranging from “static’ games of one discrete move per player

(e.g. Rock, Paper, Scissors) to games with multiple discrete moves per player (e.g.

chess), to differential games with continuous moves (e.g. air combat).

3. The continuity of the strategy space, with discrete spaces being simpler than

continuous spaces.

4. The payoff “value function” structure, with zero-sum games usually being simpler

than non-zero-sum games.

5. The information structure, with games of complete information being much simpler

than games of incomplete information. Generally, anything that complicates the

differential state equations complicates the game analysis.

6. Finally, Solving for optimal strategy “policy” requires the complete specification of a

strategy space. Such a complete specification may not be possible if the strategies are

evolving properties of human heuristics, animal brains, or advanced robot control

systems, and if the emergent strategies can vary continuously along a number of

dimensions.

These problems propose that differential pursuit-evasion games are complicated to

analyze even under the best circumstances, and that the introduction of realistic

complexity makes most of them formally inflexible.

To avoid these complexities, differential game theory usually assumes that the pursuit-

evasion game is one of perfect information between two players with fixed and pre-

determined roles (one “pursuer” and one “evader”), deterministic dynamics and constant

speeds, and a zero-sum payoff structure. Mathematically proficient researchers can relax

one or two of these assumptions at a time to obtain results for special and simplified

cases, but relaxing all the assumptions at once makes the game hopelessly complex. Yet

even with bounded uncertainties in dynamics, the classical game-theoretic concepts of

optimality, value, and saddle point may be inappropriate (Galperin & Skowronski, 1987).

 14

Pursuit-evasion games that cannot be reduced to differential state-space equations can not

be analyzed using the traditional methods of differential game theory. A recent

complexity-theoretic analysis of differential pursuit-evasion games by (Reif&Tate,1993)

illustrates the difficulties of designing a control systems for robots and autonomous

vehicles playing such games.

Another important assumption, rarely mentioned in game theory “meanwhile it can be

considered in control theory”, is that strategies can be implemented instantaneously,

without time-lags. That is, decision dynamics are assumed to be much faster than system

dynamics. For robots, this assumption is far from being realistic.

In recognition of these problems, some game theorists have recently shifted to numerical

and simulation methods to derive near-optimal strategies for more complex pursuit-

evasion games. For example, Rodin et al. (1987) [22] used artificial intelligence (AI)

methods to simulate players in an air combat maneuvering scenario. Each player derives

tactical maneuvers using a world-model based on sensor inputs, an inference engine

linked to a database (containing player parameters and capabilities and an environment

model), and a knowledge base (containing a basic set of pursuit-evasion algorithms). The

inference engine updates tactical plans every time an opponent's actual trajectory deviates

from its expected trajectory. Clearly, unexpected behavior increases problem complexity

and processing time. But such AI methods for controlling autonomous agents tend to

become desperately slow as the dynamics of agents and environments become more

complex and noisy. We need simulation methods that yield reactive, robust, dynamic

pursuit-evasion strategies, rather than slow, brittle, hand-designed AI systems.

Although differential game theory provides a framework for describing the important

features of pursuit-evasion contests, and a set of normative results concerning optimal

strategies in simple cases, it cannot generally provide optimal strategies for practically

pursuit-evasion problems, nor can it show how strategies can be implemented in a real

control system subject to limited sensory capacities, sensory and motor noise, component

failure, and constraints on processing speed and accuracy.

 15

1.6. Review of Some Previous Simulation and Robotics Work

Pursuit-evasion is embedded in much of the recent work in artificial life and simulation

of adaptive behavior. Classic problems of obstacle avoidance and navigation can be

viewed as relaxed special cases of evasion and pursuit, respectively, with the “opponents”

represented by, non-moving obstacles, or a trajectory “path” to follow. In addition to the

work introduced above on pursuit evasion, the following paragraph we’ll give a brief

description of some recent works made on pursuit evasion game in the recent years.

1. In [23] Joao et al, introduced a probabilistic framework of pursuit evasion game

simulation where a swarm of autonomous pursuers are chasing an evader, and the

objective is to come up with a policy that will maximize the probability of finding the

evader in finite time.

2. In [24] a model for an active evader chased by several pursuers in a non-precisely

mapped region is presented. Instead of solving the problem in two phases, region-

mapping estimation and then solving a deterministic pursuit-evasion game over the

estimated region map assuming that the map is determined accurately, the inaccuracy

of the map information is merged with the players movements in one stochastic

partial information Markov game.

3. The work presented in [25] discusses the optimal escape policy of an aircraft from an

optimally guided missile. The solution is obtained by decomposing the minimax

value function into two separate parts. One part for the maxmizer and the second for

the minimizer. The two parts are iteratively solved alternatively. Solution for both

sub-problems is obtained by appropriate application of discretization and non-linear

programming techniques.

4. Boris Stilman [26] introduced a heuristic search algorithm based on discretizing time

appropriately to produce a finite game tree of finite number of states. This tree of all

possible states of the game is searched for the optimal trajectory.

 16

1.7. Summary and Dissertation Overview

The main features of the pursuit evasion games obtained form the literature search

presented above can be summarized in the following points:

1. Pursuit evasion games vary in complexity ranging from avoiding (evading) stationary

targets (obstacle avoidance) and navigating, or following moving target, to the

cooperative effort of a group of pursuers to catch a single evader.

2. Pursuit evasion games studies so far concentrated on hunting the evader rather than

directing it to a certain predetermined position in the coordinate grid.

3. The games always begin with one initial state and ends with one final state

(capturing).

4. Despite the fact that differential game theory provide the framework for describing

the important features of pursuit evasion contests, it can not generally provide

realizable optimal strategies nor can it illustrate how to implement these strategies in

real control system subjected to constrained dynamics.

5. Implementing and applying optimal strategies on real robots taking into consideration

their constrained dynamics was rarely considered in pursuit-evasion games.

In this dissertation, we try to cover some of the points that have not been represented in

research so far as mentioned above. A moderately complex model consisting of two

players in a dynamic game is considered. The objective of the pursuer is to drive the

evader to certain predetermined location rather than intercepting or hunting it. This

modified objective results in an additional difficulty of having multiple final states

instead of having one terminal state. Moreover, practical considerations of robotic

realization of the pursuer’s optimal policy are taken into consideration while designing

the optimal control law .

The dissertation can be divided into 2 main parts. The first part includes chapters 2 and 3

where a continuous time, continuous space model of the problem is introduced. In

chapter 2, the continuous time continuous space model is introduced as an optimization

problem where the pursuer objective is to drive the evader to the pen, without loss of

generality in the neighborhood of the origin, through shortest path possible. The system

 17

equations with the detailed derivation of the optimal trajectory are given the some

supporting sample results of the model simulation

In chapter 3, a rarely considered realization of the pursuit evasion game is introduced. In

this realization both the evader and the pursuer are represented by wheeled mobile robot.

Although this adds some more constraints on the system dynamics, it enables the

researcher to convert the optimal control policy obtained analytically to be practically

implementable. The chapter begins by introducing the basic definitions and concepts of

the non-holonomic constrained systems with the basic theories used to study and analyze

their properties. After that, the non-holonomic constrains are added to the system model

introduced in chapter 2. Taking into consideration the non-holonomic constraints, the

optimal control law is derived and some supporting simulation results are given at the end

of the chapter.

Part two of the dissertation deals with different frameworks of the discrete-time discrete

space model. Due to this discrete nature of the model, dynamic programming is used as

the optimization technique in this case due to its simplicity and applicability to problems

of this kind. Part two begins with introducing the basic foundation and principles of

dynamic programming. Then, a basic deterministic model with passive evader is

presented. Due to the finite number of states of the system of the discrete model, our

system can always be represented by a finite graph. The objective of the pursuer is to

search this finite graph for the shortest path beginning from any initial state to the final

destination state. As a result of the new objective of the pursuer, our model has multiple

final destination states which motivated us to modify some of the most commonly used

algorithms used to solve for shortest path problem in finite graphs. We introduced three

ways to solve for the shortest path in the finite graph representation model. The first

solution approach uses dynamic programming technique directly while the other two

techniques depend on modifying the famous Dijkstra’s algorithm for shortest path over

finite graphs. The simulation results of all the three techniques used for solving for the

shortest path are given at the end of the chapter.

 18

In chapter 5, a degree of uncertainty is added to the system model. The uncertainty

introduced is in the state transition, rather than in the link costs as usually considered.

This introduced uncertainty adds more difficulty to the calculations of the state cost value

and hence to the evaluation of the optimal control policy. The state cost values are

calculated by three techniques; which are admissible policy search technique, the value

iteration technique, and the policy iteration technique. At the end of the chapter, the

supporting simulation results are presented.

In chapter 6 we consider the deterministic case of an active evader, where the evader in

this model is not only trying to avoid the pursuer, but also is to maximizing the value of

its state cost.. Similar to the deterministic passive evader model, solution for the shortest

path over the finite graph representing the problem is provided using the same techniques

given in chapter 4.

Finally, a conclusion of the work covered, contributions made in the dissertation, future

directions for work and some possible applications are given.

19

Chapter 2

Optimal Trajectory for a Class of Pursuit Evasion Games: The

Continuous Time Herding Problem

2.1. Introduction

Pursuit evasion problems have been studied and solved using various optimization

techniques such as dynamic programming [27-29], calculus of variations, optimal control

[30-31], and reinforced machine learning [32]. In most of the pursuit evasion models

considered so far, if not all of them as shown previously in chapter 1, the pursuer's aim is

to hunt, or intercept the evader. Unlike these previously introduced models, the work

presented in this chapter uses a different view. The aim of the pursuer in our case is to

drive the evader to a certain location in the x-y grid.

This chapter begins with introducing the basic concepts and theories of calculus of

variations that we are going to utilize in developing our optimal trajectory. Then, the

model of the problem is introduced in section 2.2. The solution for the optimal trajectory

for the pursuer is derived and it is illustrated in section 2.3 how it satisfies the necessary

and sufficient conditions for a minimizing curve. Finally, simulation results for the

system are given for different initial condition.

2.2. Basic Principles and Theories of Calculus of Variations

Calculus of variations is the science used to study optimization of an objective functional

subjected to a set of constraints. The basic definitions, concepts, and theories that we are

going to use in solving for our optimal trajectory, are briefly covered briefly in this

section. The definitions are adapted from U. Berchtken-Manderscheid “Introduction to

the Calculus of variations” [33].

20

2.2.1. Definitions and Concepts

Functional: is defined as a function of functions.

Thus, given a functional of an integral form;

∫
•

=
)(

)(0

))(),(,(
ftx

tx

dttxtxtLJ (2.1)

we would like to find the function,)(* tx , from the set of all admissible functions,)(tx ,

that will optimize (maximize or minimize) the value of J subjected to certain end point

constraints.

By the set of admissible functions here we mean the set of all smooth functions that

satisfy the end points constraints.

The integrand,))(),(,(txtxtL
•

, of equation 2.1 is assumed to satisfy the following

conditions;

-L is defined for all points 2),0[))(),(,(Rtxtxt ×∞∈
•

.

-L is at least twice continuously differentiable, i.e. L is continuos and has continuous

partial derivatives with respect to its variables.

2.2.2. Existence of Solutions

Prior to going into the details of the necessary and sufficient conditions that a function,

)(* tx , should satisfy to minimize (maximize) the value of the objective functional J , it

is important to first check for the existence of the solution itself. According to the

Weierstras theorem; “Every continuos function f that is defined on a closed and bounded

domain M⊂Rn has a minimum and a maximum”. This means that the existence of a

solution for any optimization problem is related to the domain of operation. Therefore,

the domain of operation has to be appropriately selected or modified such that the

objective functional J is guaranteed to have an optimizer.

21

2.2.3. Necessary Conditions

Before introducing the first necessary condition that an optimizing function)(* tx has to

satisfy, we introduce first the definition of a “weak” and “strong” solution.

Definition 2.1: the function)(* tx is said to provide a strong solution of the variational

problem given in 2.1 if there is an ε>0 such that J()(* tx)≤J(x(t)) for all admissible

functions x(t) with:

ε<−=
∈

)()(max))(),((*)](),([*0
0

txtxtxtxd
ftxtxx

Definition 2.2: the function)(* tx is said to provide a week solution of the variational

problem given by 2.1 if there is an ε>0 such that J()(* tx)≤J(x(t)) for all admissible

functions x(t) with:

ε<−+−=
∈

))(')(')()((sup))(),((**
)](),([

*1
0

txtxtxtxtxtxd
ftxtxx

Now, we are ready to state the first necessary condition that any admissible optimizing

function)(* tx has to satisfy;

Euler’s Necessary Condition: If the function)(* tx , which has continuous first, second

and third order derivative, is a candidate minimizer (maximizer) “strong or weak” for

the variational problem given in (1), then it has to satisfy Euler’s Differential Equation

given by:

0))('),(,())('),(,(**'** =− txtxtL
dt
dtxtxtL xx (2.2)

Therefore, Euler’s necessary condition provides a primary means that can be used to

solve for the set of extremals of the variational problem given in (2.1) regardless of this

extremal being weak or strong one.

22

In addition to Euler’s necessary condition, Legendre condition gives a simpler and yet

easier necessary condition that)(* tx has to satisfy.

Legendre Necessary Condition: If)(* tx is a smooth function that provides a weak

solution of the variational problem given by equation (2.1) then, ∀ x(t)∈[x(t0), x(tf)];

0))('),(,(**'' ≥txtxtL xx (2.3)

In addition to the above-mentioned necessary conditions, a more powerful necessary

condition is given by Weirstrass. The difference between Euler’s, Legendre and

Weirstrass’s necessary conditions is that Euler’s can’t differentiate between week or

strong minmizers (maximizers), Legendre’s is used for weak extremals, while

Weirstrass’s necessary condition provides a tool to check if the minimizer (maximizer) is

a strong one.

Weierstrass’s necessary conditions: The function)(* tx provides a strong solution to the

variational problem given in (2.1) if at any point x(t)∈[x(t0), x(tf)] and ∀q∈R, the

Weierstrass Excess function E,

E(t,)(* tx ,)('* tx ,q)≥0

Where;

E(t,)(* tx ,)('* tx ,q)))('),(,())('())('),(,()),(,(**'**** *
txtxtLtxqtxtxtLqtxtL x−−−= (2.4)

2.2.4. Sufficient Condition

So far, the previously mentioned necessary conditions give no way to check if any

member of the set of extremals resulting form solving Euler’s differential equation is a

solution of the variational problem given by (2.1) or not. In this section we bring in a

theorem that can deal with a special class of variational problems of the form given by

equation (2.1), but the integrand L is convex.

First, we have to define what is meant by convex function then we’ll present the theorem

afterwards.

23

Definition 2.3: A function f defined on a convex set is said to be convex M if ∀ u1, u2∈M

and all q∈(0,1), it holds that;

)()1()())1((1212 ufquqfuqquf −+≤−+

Another easy way to check for the convexity of a function f is given by the following

theorem.

Theorem 2.1: Let function f: M⊂R2→R that have continuos first and second partial

derivatives, then f is convex if the entire Hessian matrix is positive semi-definite.

Finally, we can state the theorem about the sufficient condition for the solution of

problem 1 to exist.

Theorem 2.2: If the integrand L of the variational problem (2.1) is convex ∀t and with

respect to the variables (x(t), x’(t)), then a smooth function)(* tx that satisfies Euler’s

differential equation is a solution of this problem.

Using the previous theorems and following the same order, we introduce our system

model and make use of them to come up with the optimal trajectory of our game. Then,

we will show that the obtained trajectory satisfies the necessary conditions required for a

minimizing curve.

2.3. System Model

Figure 2.1 gives a quick summary representation

of our model. As shown in the figure, the intial

position of the pursuer is (xp0,yp0) and that of the

evader is (xe0,ye0). Beginning at these initial

positions, the pursuer is supposed to drive the

evader to the (0,0) position in the x-y grid through

the shortest path. The associated dynamics of the

Evader Pursuer

x

r0

y

θ
(xe0,ye0)

(xp0,yp0)

Fig. 2.1. System Model

α0

24

problem are given below:

θtanee xy
••

= (2.5)

1
22

=+
••

ee yx (2.6)

θ

θ

sin

cos

0

0

ryy

rxx

ep

ep

+=

+=
 (2.7)

∫

∫

−=

−=

•

•

f

f

t

eoe

t

eoe

ydty

xdtx

0

0 (2.8)

Based on the above dynamic equations of the system, the evader moves away from the

pursuer according to equations (2.8) and (2.6), that show that the direction of the motion

of the evader is in the straight line joining the pursuer and the evader. We have chosen

the normalized velocity of the evader to be 1 unit. Notice that the distance between the

two agents is always the same and equals r0. The goal of the pursuer is to drive the evader

form the given initial position to the final one, following the above constraint, such that a

norm characterizing distance traveled by both the pursuer and the evader is minimized.

The previous statement can be represented by the following objective function to be

minimized:

dtyxyxJ
ft

ppee∫
••••

+++=
0

2222

min (2.9)

Thus, equations (2.5), (2.6), (2.7), (2.8), and (2.9) give a complete representation of the

problem at hand with the constraints that should be satisfied ∀t∈[t0,tf].

2.4. Solving for Optimal Trajectory

Examining figure 1, with the given system equations, shows that the main control

variable that the pursuer can use to achieve the objective is its relative position angleθ.

This, in turn can be directly controlled via its rate of change. Therefore, the first step in

obtaining the optimal trajectory is to express the objective function as well as the system

constraints as functions of θ. By substituting (2.8) in (2.6), we get

25

1tan 2
22

=+
••

θee xx (2.10)

Manipulating and simplifying equation (2.10) results in:

θ

θ

2
2

2
2

sin

cos

=

=
•

•

e

e

y

x
 (2.11)

Differentiating equation (2.7) and using (2.11) gives:

θθ

θθ

cos

sin

0

0
•••

•••

+=

−=

ryy

rxx

ep

ep (2.12)

By using equations (2.11) and (2.12), and substituting in equation (2.9) of the objective

function, the integrand, L, becomes
2222

ppee yxyxL
••••

+++=

)]sincos(cossin[2)(11

)cos()sin(1

0
2

0

2
0

2
0

θθθθθθ

θθθθ

±−±+++=

++−+=
••

••••

rr

ryrxL ee

2
2

02
•

+= θrL (2.13)

Therefore, the original model of the problem can be transformed into the following

equivalent one.

dtrJ
ft

∫
•

+=
0

2
2

02min θ (2.14)

Subjected to the following constraints

θ(0)= θ0 θ(tf)= θf

where

−

−
= −

)(
)(

tan
00

001
0

ep

ep

xx
yy

θ

26

and θ(tf)= θf is free. The vertical and horizontal components of the evader’s velocity

have to satisfy;

0
0

0
0

sin

cos

e

t

e

t

ydt

xdt

f

f

=±

=±

∫

∫

θ

θ
 (2.15)

Clearly, the Lagrangian of equation (2.14) satisfies all the requirements of theorem 2.2

since we have;

02 2
0 ≥=•• rL

θθ

Therefore, the solution of the Euler’s differential equation provides a solution of (2.14).

Combining the constraints given by (2.15), the problem model becomes an isoperimetric

model whose Lagrangian is given by;

θλθλθ cossin)(2 21
2

0 +++=
•

rL (2.16)

Assuming that θ* is the optimizer of the equation (2.16), it has to satisfy the following

Euler-Lagrange differential equation [33].

0=
∂
∂

− •

θθ L
t

L (2.17)

Therefore,

*1*2*
2

0 cossin2 θλθλθ +−=
••

r (2.18)

Where, *θ is the optimal angle of the pursuer with respect to the evader position at any

time t. Since the final angle of arrival, θf, is free, the transversality condition has to be

satisfied at the final time [34]; i.e.

ftatL 0=•
θ

Since, the control variable θ& is completely state dependent and has no explicit

dependence on time, we can use

θ

θθ
d
dvvv =⇒=

•••
 (2.19)

and therefore,

27

0)(0)(** =⇒=
•••

ff tt θθ (2.20)

From equation (2.18) and (2.19), we get;

f

f

ff

θ
θ

λ
λ

θλθλ

cos
sin

cossin

1

2

21

=

=

 (2.21)

Substituting equation (2.21) into equation (2.18) and after some trigonometric

manipulations we get;

)sin(
2
1

*2
0

* fr
θθθ −=

••

 (2.22)

Using (2.19) in (2.22) gives

C
r f +−−=

•

)cos(1
*2

0

2

* θθθ (2.23)

By equation (2.19), we can easily see that;

2
0

1
r

C =

which gives us

)
2

(sin2 *2
2

0

2

*
f

r
θθ

θ
−

=
•

 (2.24)

Solution of the differential equation (2.24) gives the family of all extremal curves. Hence,

checking for Legendre necessary condition, we find that;

02 2
0 >=•• rL

θθ

This means that the solution obtained by solving Euler’s differential equation provides a

weak minimum of the objective function J.

According to the Weiestrass condition [35], in order for that extremal θ* to give a strong

minimum of the objective function J, it is sufficient that

θ* is a member of a field of extremals “which is satisfied from equation (2.24)”.

E(t, θ,
•

θ , p)≥0

where,

E(t, θ,
•

θ , p)=L(t, θ,
•

θ)-L(t, θ, p)- (θ -
•

θ)∂ L(t, θ,p)/∂p.

28

To satisfy the Weiestrass condition we notice that

0
)(

)(2)(

22)(2)(2

)2)(()(2)(2),,,(

2
00

2
0

2
0

2
0

22
0

2
0

2
0

2
0

2
0

2
0

2
0

≥
−=

+−=

+−−−+=

−−−−+=

•

••

••

•••

prr

prprr

prprprr

prpprrptE

θ

θθ

θθ

θθθθ

Therefore, *θ provides a strong minimum for our objective function J. Based on this

analysis we obtain the nonlinear feedback control law for the pursuit-evasion problem as:

)
2

sin(2

0

f

r
θθ

θ
−

−=& (2.25)

2.5. Simulation Results

Solving for *θ involves several difficulties such as the non-linear nature of the differential

equation given in (2.25), the unknown final angles, fθ , and the final time tf. To overcome

such problems, the optimal value for the minimizing *θ is obtained by numerically

solving equation (2.25) with iterative guessed values of θf, and tf. Due the discretization

process of both time and fθ , we put a threshold around the origin , such that, once the

evader is within this threshold, the simulation ends.

Figures 2.2.a, 2.2.b, 2.2.c, and 2.2.d illustrate the optimal trajectory for the pursuer and

the corresponding trajectory of the evader based on different initial conditions. In the

figures, S refers to the evader and D refers to the pursuer.

29

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

S0
D0
S
D

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

S0
D0
S
D

(a)

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

x

y

S0
D0
S
D

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

S0
D0
S
D

(b)

Fig.2.2 Optimal trajectory for the pursuer (dashed line) and the evader (solid line) from

different initial positions

Inspection of the simulation results shows not only, a clear symmetry of θf about the line

connecting the initial position of the evader to the origin, but also that there is a

relationship between the θf , θ0 and the slope of the symmetry line (angle α0). This is

illustrated in figures 2.2.a and 2.2.b.

α0 α0

30

-250

-200

-150

-100

-50

0

50

100

150

200

250

-200 -150 -100 -50 0 50 100 150 200

Alpha-O0

O
f-O

0

10
30
50
70
80

Fig.2.3. Dependence of (θf - θ0) on (α0-θ0)

Trying to estimate this dependence of θf, on θ0 and α0, we plot (θf - θ0) versus (α0-θ0) and

come up with the results shown in figure 2.3 where the plots are drawn for different

values of α0. Based on the plots, we consider a linear approximation of the dependence

of (θf - θ0) on (α0-θ0) given as:

)(000 θαθθ −=− kf (2.26)

where,
0

0
0 arctan

e

e
x
y

=α and a value of approximately 1.35 was obtained for K using the

plots. Since the value of θf is same for all the intermediate values of θ0 and α0 on the

system integral curves, we replace (2.26) by

θθαθ +−=)(kf (2.27)

Therefore, the feedback control law is given in (2.25) with θf given by (2.27). Notice

from (2.23) that when α = θ then θf = θ, and from (2.25) we can see that 0=θ& . This

means that when the pursuer and the evader are on the straight line joining the evader

with the origin, then the final angle is reached, and after that instant, the pursuer and the

evader travel on the same straight line till the evader reaches the origin.

We can show that the optimal feedback control law (2.25) is in fact also a stabilizing

control law. In order to show that, let us define a candidate Lyapunov function as

θ f
-θ

0

α0--θ0

=α0

31

2ev = (2.28)

where e= θ -θf . Differentiating (2.28) with respect to time along the integral curves of

(2.25) we get

0

)
2

sin(4
2

2
0

≤

−=

=
e

r
e

eev &&

 (2.29)

For π<≤ e0 the largest invariant subset of the set { }0: == veV & is given by e = 0.

Therefore, from the application of LaSalle’s theorem [10] [36], 0)(=
∞→

teLt
t

. This

implies that the pursuer drives the evader to the origin (θ →θf).

2.5.1. Impulsive versus smooth solution

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

1.5

2

Time

Th
et

a

Of

Fig. 2.4 Impulsive versus smooth solutions for θ

 θ

θ f

32

One important issue has to be addressed before we conclude this chapter. It can be

observed from the optimal trajectory solution and the simulation results that the pursuer

tries to align its position on the line connecting the origin to the location of the evader. As

shown in figure 2.4, as the pursuer angle θ approaches θf, the evader would move in a

linear motion till it hits the origin.

Fig. 2.5 Impulsive versus smooth trajectories

So, if the pursuer is able to get from the θ0 to θf in an impulsive motion, the evader’s

tangential motion will be negligible due to the restriction of its velocity to be 1 and it will

move linearly in the radial direction. This situation is illustrated in figure 2.5 where the

smooth path represent the optimal trajectory from Euler Lagrange sense, while the

impulsive one represents the trajectory resulting from the instantaneous motion of the

pursuer from θ0 to θf . The cost value of the impulsive path will be the sum of the two line

-1 0 1 2 3 4 5 6
-1

0

1

2

3

4

5 S0
D0
S
D

Impulsive
pursuer
trajectory

Smooth
pursuer
trajectory

Impulsive
evader
trajectory

Smooth
evader
trajectory

r0

33

segments representing the motion of the radial motion of the evader plus that of the

pursuer once it gets behind the evader in addition to the arc length representing the

motion of the pursuer from the initial location till it gets behind the evader. Unlike the

smooth solution, the value of the cost function for the impulsive motion trajectory is

dependent on the radius r0. Most likely, the cost value for the impulsive motion will be

less than that of the smooth motion for small values of r0, as demonstrated in figure 2.5.

However, for large values of r0 the smooth trajectory is quite likely to have a lower cost

value than that of the impulsive motion trajectory. More detailed study of the dependence

of the cost function value on the radius r0 is needed to find the domain of r0 that can

result in lower cost value.

However, the following issues have to be taken in consideration while designing the

trajectory;

• The capability to achieve the required infinite rate of change inθ.

• For the final implementation by wheeled mobile robots, we are interested more in

a smooth trajectory so the paths are follow-able as it will be discussed in the

coming chapter.

2.6. Conclusion

In this chapter, we have provided a quick review of the basic theory of calculus of

variations and optimal control that we used to give derivation of the optimal trajectory for

one special case of the pursuit evasion game. The optimal control policy was proven to be

dependent only on the space variables and therefore was a feedback control law. Finally,

a sample result simulation that supports our conclusion was give at the end of the chapter.

 34

Chapter 3

Feedback Control for the Optimal Pursuit-Evasion Trajectory

3.1. Introduction

In the previous chapter, a feedback control law was obtained so that the pursuer, when

applying it, will drive the evader to the pen using the shortest path. In obtaining this

trajectory, both pursuer and evader were assumed to be points with omni-directional

motion capabilities. In real world, robots are usually wheeled mobile robots (WMR).

Practical wheeled mobile robots have some additional constraints on their dynamics. The

details of different types of WMRs considered in research so far can be found in [37].

Some of these constraints may be on position, while the other may be on velocity.

Therefore, these additional constraints have to be taken car of when the agents are to be

represented by WMR.

In this chapter, we will begin by introducing the basic concepts, definitions and principles

of non-holonomically constrained systems. Then, we’ll add these additional constrains to

the dynamical constraints of the system introduced in chapter 1 such that the WMRs

representing the pursuer and the evader move from any initial position to in the x-y grid

to the pen located in the neighborhood of the origin. Finally, a sample of the simulation

results will be given.

3.2. Basic Principles of Non-holonomic Motion Planning

In addition to the differential equations describing the dynamics of any system, the

motion of this system can be subjected to additional set of kinematics constraints in the

form;

kiqqaT
i2,10),(==

•

 3.1

where q is generalized n-dimensional coordinate vector (q1, q1,….., qn)T.

 35

If the set of constraints given in 3.1 can be written in the linear form

kiqqaT
i2,10)(==

•

 3.2

They are called Pfiffian constraints [38].

This set of Pfiffian constrains is said to be holonomic if it is integrable (in this case, the

constraints represent a geometric limitation). Meanwhile, if these constraints are not

integrable, they are called non-holonomic constrains (in this case, they represent a set of

kinematic limitation).

Therefore, the addition of holonomic/non-holonomic constraints to any dynamical system

gives rise to an important question; given any 2 points qi, qj∈ the configuration space Q ;

when does a trajectory q(t) connecting the 2 points exist such that is satisfies the

kinematic constraints? This question represents another form of studying the

controllability of dynamical systems with holonomic/non-holonomic constraints.

3.2.1 Controllability of Non-holonomic Systems

Consider a non-linear control system of the form

∑
=

∗

+=
n

j
jj uqgqfq

1
)()(3.3

with the states q∈Q ≈Rn and the control inputs u∈U⊆ Rm

• The system given in 3.3 is said to be a drift-less system if f(q)=0, which means any

configuration q =(q1, q1,….., qn)T is at equilibrium with zero input controls uj.

• The system described by equation 3.3 is controllable if ∀q1, q2∈ Q , ∃T<∞, and

u:[0,T] u∈U such that q(0,T,q1,u)=q2.

• The control system given by equation 3.3 is said to be Locally Accessible (LA) form

point q0 if for any neighborhood V of q0 and T>0, there exist a non-empty set Ω such

that;

)0(xRV
T⊂Ω

 36

Where)0(xRV
T is the set of all reachable states from q0 within time interval [0,T],

given by;

VuqTqTtquqTqQqxRV
T ∈∈∀=∈=),,,0(],,0[,),,,0(|{)0(00

• System 3.3 is Globally Accessible if it is locally accessible ∀ q∈Q.

For drift-less control systems, controllability and local time accessibility are equivalent.

A useful theorem that allows testing the controllability of drift-less nonlinear systems is

Chow Theorem, which gives a similar tool to the controllability rank condition of linear

time invariant systems. This test is based on Lie Algebra rank condition [39].

Chow’s Theorem: A non-linear, drift-less control system, is locally accessible

“controllable” if and only if the rank of the accessibility matrix equals n i.e.;

ngggggggRank =..])]]........,[,[];,[;;([2112121

Where)](,[21 qgg the Lie Bracket of the two vector fields g1, and g2 is given by;

q
gg

q
ggqgg

∂
∂

−
∂
∂

= 1
2

2
121)](,[3.4

3.3. Feedback Control Design for the Optimal Pursuit-Evasion Trajectory

With these illustrated basic tools and concepts in mind, our objective now is to design a

feedback control law for our pursuer, as a function of the evaders states such that both the

evader and the pursuer will follow the optimal trajectory obtained in chapter 2.

φ

θ

P

E

Fig. 3.1. WMR representation of pursuer and evader

 37

Assuming that both the pursuer and the evader are represented by a two wheeled mobile

robot as shown in figure 3.1. In addition to the system dynamics given in equations 1.5-

1.8, both the evader and pursuer have to satisfy the non-holonomic constraints imposed

on both robots.

Non-holonomic constraint on the evader is given by;

0cossin =−
••

eeee yx ϕϕ 3.5

Similarly, the pursuer non-holonomic constraint is given by;

0cossin =−
••

pppp yx φφ 3.6

Alternatively, the above constraints given by 3.5 and 3.6 can be represented in terms of

the two control variables, named the driving velocity v and the steering velocity ω as

follows;

ee

eee

eee

vy

vx

ωϕ

ϕ

ϕ

=

=

=

•

•

•

sin

cos

 3.7

pp

pee

ppp

vy

vx

ωϕ

ϕ

ϕ

=

=

=

•

•

•

sin

cos

 3.8

Equation 3.7 and 3.8 can be put in a form of a drift-less system as shown below;

QqandUuqguq
m

i
ii ∈∈= ∑

=

•

,)(
1

 3.9

With

=

=

1
0
0

,
0
sin
cos

21 gg ϕ
ϕ

 3.8

 38

and;

−=
0

cos
sin

],[21 ϕ
ϕ

gg 3.9

Therefore, the accessibility matrix is given by;

−=
010

cos0sin
sin0cos

ϕϕ
ϕϕ

C 3.10

With rank(C) =3, this means each of the robots is completely controllable. Therefore any

configuration in the working space is accessible.

Now, we need to come up with the driving velocity and the driving speed of each robot to

satisfy both the non-holonomic constraints and the optimality constraints imposed on the

angle θ*

Using equations 2.11, and 2.25 with 3.5, we get

*

*

**

0)sin(
0sincoscossin

θϕ
θϕ

θϕθϕ

=
⇒=−

=−

e

e

eee

 3.11

Therefore, the optimal steering speed of the evader robot is;

)
2

sin(2

0

*

f

e

r
θθ

θω
−

=

=
•

 3.12

The driving speed of the evader robot is given by;

1

22
2

=
+=

••

eee yxv
 ….. 3.13

Similarly, using 2.12, and 3.12 with 3.6 we get;

 39

0)coscossin(sinsincoscossin

0)cos(sincos)sin(cossin

***0**

0*0*

=−−−

=−−−
•

••

θϕθϕθθϕθϕ

θθθϕθθθϕ

pppp

pp

r

rr
 3.14

With some mathematical manipulations, we get;

e

p

pp

r

r

r

ω

θθϕ

ϕθθθϕ

0

0

**0*

)tan(

0)cos()sin(

=

=−

=−+−
•

•

 3.15

Differentiating equation 3.15, the pursuer optimal steering speed is given by;

22
0

2
0

2

*
2

0

*
2

0
*

1

1

e

e
e

p

r
r

r

r

ω
ωω

θ

θθω

+
+=

+
+=

•

•

••
•

 3.16

Using form 2.22 in 3.16 we get;

)1(2
)sin(

22
0 e

f
ep r ω

θθ
ωω

+

−
+= 3.19

Similarly, the driving speed of the pursuer robot can be obtained as shown below
22

2
ppp yxv

••

+= 3.20

From 2.11, and 2.12 in 3.20 we get;

•

•••

••••

+=

++=

++−=

2
*

2
0

2
*0

22

2
**0

2
**0

2

1

)(

)cos()sin(

θ

θ

θθθθ

r

ryx

ryrxv

ee

eep

 3.21

Thus,

 40

22
0

2
2

0

2
2

0

1

1

1

e

e

p

r

r

rv

ω

ϕ

θ

+±=

+±=

+±=

•

•

 3.22

Therefore, equations 3.19 with equations 3.22 give the applicable feedback control law

for the pursuer WMR.

One important point to notice is as that; for the point pursuer-evader representation given

in chapter 2, the initial conditions of the pursuer could be any point on the circumference

of a circle of radius r0. From this initial position, the pursuer was able, optimally, to drive

the evader to the pen. Unlike this, addition of the non-holonomic constraints on the

pursuer and the evader restricts the initial position of the pursuer to a single location on

the evader’s circle of detection. This initial position of the pursuer is given by the initial

orientation of the WMR given by

= −

)0(
)0(

tan)0(1

p

p
p x

y
&

&
ϕ 3.23

Using 2.11 and 2.12 here gives us

−
+

= −

)0(sin)0()0(cos
)0(cos)0()0(sintan)0(

**0*

**0*1

θθθ
θθθϕ &

&

r
r

p 3.24

3.4. Simulation Results

Figure 3.2 (a) gives a sample of the simulation results with different initial conditions for

the pursuer. The simulation begins with the pursuer detecting the evader’s initial position

and orientation. Then, based on the initial orientation of the evader, the pursuer evaluates

the optimal initial angle of approach. Once the pursuer is on the circumference of the

circle of detection of the evader, the evader begins its avoidance motion following the

dynamics of equation 3.7.

 41

Similar to the point representation of the pursuer and evader, the optimal control law is

dependent on both the final time and the final orientation angle which are unknowns. So,

we incremented the time in small steps and searched the final orientation angle that

satisfies the optimal control law. The search time can be highly reduced in a similar way

to that given in chapter 2 by estimating a similar dependence of the final orientation angle

on the initial conditions.

Another interesting issue came up if the velocity of both the pursuer and the evader

robots was restricted to forward motion only rather than being restricted to forward or

backward motion. Addition of such constraint doesn’t affect the objective function and

agents’ trajectories still satisfy the non-holonomic constraints. Despite the failure of the

controllability of the modified system from Lie bracket accessibility sense (because the

motion is restricted to one direction only rather than two) the system is still controllable

because any configuration is reachable. In addition, it follows the optimal constraints

derived for θ*. Figure 3.2 (b) illustrates a sample of the simulation results for this

modified system.

3.5. Conclusion

In this chapter, we considered a realization of the pursuit evasion games that is different

from the standard form covered by researchers in previous work. We have provided a

detailed derivation of an optimal trajectory for the pursuit evasion game realization using

WMRs. The optimal control law was proven to be dependent only on the space variables

and therefore was a feedback control law. This design realization was supported by the

simulation results illustrated in section 3.4.

 42

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

X

Y

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

X

Y

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

X

Y

(a) Non-restricted velocity direction

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

X

Y

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

X

Y

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

X

Y

(b) Forward velocity direction only

Fig 3.2 Simulation results

…Evader

__Pursuer
…Evader

__Pursuer
…Evader

__Pursuer

…Evader

__Pursuer
…Evader

__Pursuer
…Evader

__Pursuer

 43

Chapter 4

The Discrete Deterministic Model

4.1. Introduction

In this chapter we present the dynamics and control design of discrete-time, discrete-

space representation of the herding problem. The motivation behind studying such model

is based on the following;

 The design of cooperative multi-agent systems is dependent on understanding the

dynamic behavior of smaller systems.

 The design of high-level systems beginning from low level ones allows the designer

to devise a top down methods, by which low-level systems may be obtained from the

high level ones through specifying some constraints on the high-level systems.

 Studying and developing this model, introduces an evaluation method of the

effectiveness of any machine learning technique dealing with similar problems.

The work presented in this chapter represents a primary step in building reinforcement

learning model to deal with such situations, as it will be explained. Based on this

objective, and relaying on the definition of reinforcement learning as an approach to

machine intelligence that combines dynamic programming and supervised learning

disciplines to successfully solve problems that neither discipline can address individually

[40-41], dynamic programming appears to be the candidate approach to come up with the

most advantageous control technique. Moreover, dynamic programming has proven to be

an efficient technique due to its simplicity and applicability to wide range of problems.

For these reasons, we’ll begin this chapter by giving a brief introduction on dynamic

programming principles.

Then, the problem model is introduced for a simple, deterministic, and passive-evader.

After that, the proposed solution algorithms are illustrated with complete analysis and

 44

proofs of the validation of each proposed algorithm. Finally, the simulation results of

each of the proposed solution technique is given at the end of the chapter

4.2. Dynamic Programming Principles

Dynamic Programming is a particular approach to optimization. By optimization we

mean finding the best solution to some problem from a set of alternatives. So, a definition

of the basic components of a mathematical optimization model should be given at the

beginning. These components are:

1. Variables: include decision variables, state variables, or independent variables. These

variables represent the factors to manipulate to achieve the desired objective.

2. Objective function: which represents the measure of effectiveness or the value of

utility associated with some particular combination of variables.

3. Constraints (feasibility conditions): usually represented by a set of algebraic or

differential equations or even inequalities that the variables have to satisfy.

 The principal idea of dynamic programming is based on the Principle of Optimality

introduced by Bellman [42] which states:-

“An optimal policy has the property that, whatever the initial state and initial decision

are, the remaining decisions must constitute an optimal policy with respect to the state

which results from the initial decisions”. Simply, an optimal policy should consist of

optimal sub-policies.

4.2.1. Dynamic Programming Basic Theory and Functional Equations

Problems to which dynamic programming can be applied, are usually called, Sequential

Decision Processes [43]. The sequential decision processes represent a class of systems

that progress through a sequence of consecutive stages. At each stage, the system can be

described by a relatively small set of parameters called, state variables or state vector. At

each stage, one or more decisions must be made. These decisions may depend on either

the stage and/or the state of the system.

 45

A basic characteristic of the systems that dynamic programming deals with is that the

past states of the system have no effect on the current state. This means that the decisions

are made based only on the current state of the system. When a decision is made, the

system undergoes a transition from one state to another and a cost is associated with each

transition. This cost is determined by a single-valued function of the input state variables.

Meanwhile, the inter-state transition results from a single-valued function of the decision

variables and the current state.

Thus, and based on the above introduction, dynamic programming involves some

conceptual terms; state, stage, transition, decision (policy), and cost that have to be

defined clearly before going in more details.

• State: The state space is a non-empty set X whose elements x∈X are state

variables that describe the condition of the system or process under study.

Obviously, the state space consists of all the possible states the system can be in.

• Stage: This concept is introduced such that the decisions can be ordered.

Therefore, the stage variable is usually discrete. Also, it should be noted that

dynamic programming is considered to be discrete or continuous based on the

nature of the stage variables not the state variables. Usually, in discrete dynamic

programming, states and stages are the same.

• Decision: Based on each state variable x∈X, there is a corresponding non-empty

set Ux called the decision set for x, such that every element (decision variable)

u(x)∈ Ux represents one of the choices the controller can make when the system is

in state x∈X.

• Transitions: Assuming that the process under study is in state x1∈X, and a

decision u(x1)∈ Ux1 is made, then the process will be transformed to another state

x2∈T(x1,u(x1)) where, T(x,u(x)) is the set of all possible states the process can

move from state x∈X using decision u(x)∈ Ux.This transition operator T(x,u(x)) is

of two different types; deterministic, and stochastic.

• Policy: It is defined as the set of all decision sets Ux corresponding to all state

variables x∈X.

 46

• Cost: The cost is a single-valued function, cu(x), defined on the current state variable

and the corresponding decision variable as the return that would be obtained if the

process is at state x∈X and a decision u(x)∈ Ux is made.

Therefore, the basic problem can be mathematically formulated as:

),....,,,(minmax/ 321 nxxxxfV = 4.1

subjected to mixxxxh ni ,....2,10),.....,,,(321 ==

Applicability of dynamic programming to certain class of problems requires two main

requirements in order that the principle of optimality to be invoked. These 2 conditions

are:

1. Separability of the Objective Function: which means that, ∀k, the effect of the final k

stages of an n-stage process on the objective function only depends on state xn-k and

the final k decisions.

2. State Separation Property: by this we mean that, ∀k, transition from state xk to state

xk+1 only depends on state xk and decision uk+1(xk) but not on any previous states. This

property is also known as Markovian state property and systems having these type of

properties are called, memory-less systems.

These two requirements basically represent the necessary and sufficient conditions for the

principle of optimality to be applied for the model to which dynamic programming

technique is to be applied [44-45].

4.2.2. Deterministic Dynamic Programming Algorithm

Before introducing the dynamic programming algorithm, we’ll give some more detailed

mathematical interpretation of the main components of the basic problem formulation

[46];

 47

• A discrete system whose state transition is governed by;

),(1 kkk uxfx =+

• A control constraints xkk Uxu ∈)(

• An additive cost function of the form;

),()(
1

1
k

N

k
kkNN uxcxcV ∑

−

=

+=

where ck is some function that gives the interstate transition cost, and cN is the cost

associated with the final state.

• Optimization over polices which means the rules applied, uk(xk), for each possible

state at time instant k to optimize the cost function V.

Thus, the dynamic programming algorithm can be stated as following [46];

Denoting V*(x0) to be the optimal value of the cost function V(x), then;

V*(x0)= V0(x0)

where, the value function V0(x0) is given by the last step of the following algorithm, which

proceeds backward in time from time instant N-1 to instant 0;

VN(xN)= cN(xN)

1,...,2,1,0)]},,([),({min)(1 −=+= +∈
NkuxfVuxcxV kkkkkkUukk

k

Moreover,

)}(minarg{)(**
kk

Uukk xVxu
k∈

=

is the optimal control policy.

After this brief introduction about dynamic programming foundation, we are ready to

present a dynamic programming based solution to the pursuer evader herding problem,

where the pursuer and the evader are playing a non-cooperative deterministic game. We

present the dynamics of the problem and then provide the dynamic programming solution

to the problem. The solution is proven to be correct and then simulations are performed to

illustrate some example runs.

 48

4.3. A NxN Grid Pursuer-Evader Problem

We consider the pursuit-evasion herding problem in a N×N grid as shown in Figure 4.1.

The pursuer can occupy one of the N×N positions and so can the evader. Therefore, there

are N2 states in the system. The aim of the pursuer is to make the evader go to the pen,

which is the (0,0) state for the evader. The following shows the nomenclature used in this

paper.

)(kxp x coordinate of the pursuer position at time instance k.

)(kyp y coordinate of the pursuer position at time instance k.

)(kxe x coordinate of the evader position at time instance k.

)(kye y coordinate of the evader position at time instance k.

x(k) state vector given by)]()()()([)(kykxkykxk ppee=x at time instance k.

For the NxN pursuer evader problem, we have },...,2,1,0{)(Nkxk p ∈∀ ,

},....,2,1,0{)(Nky p ∈ , },...,2,1,0{)(Nkxe ∈ and },....,2,1,0{)(Nkye ∈ . However, the

pursuer and the evader can not have the same location on the grid as their initial

positions. It can be proven that if they have different initial positions, then based on the

allowable actions of both (as described later), they can never end up on the same location.

There is a cost of one unit for each step (horizontal or vertical or diagonal) of a pursuer as

well as of a evader. The aim of the pursuer is to move the evader to the pen i.e. to the

(0,0) coordinate, with the least cost. Figure 4.1 below shows the 3x3 grid for the pursuer-evader

problem.

 49

0
 0

1

2

2

1

D

S

Fig. 4.1 A 3x3 example of Pursuer-evader Problem Grid

Definition1: Equilibrium state of the evader: The evader is in an equilibrium state when

given a time instant T the following condition is satisfied:

Tk ≥∀

if

)()(Txkx pp = and

)()(Tyky pp =

then

)()(Txkx ee = and

)()(Tyky ee =

Definition 2: Final equilibrium state of the evader: The evader is in the final equilibrium

state when given a time instant T the following condition is satisfied:

Tk ≥∀

if

)()(Txkx pp = and

)()(Tyky pp =

then

0)(=kxe and

0)(=kye

P

E

 50

Definition 3: Positive successor function: Positive successor function is a function given

by

},...,2,1{},...,2,1,0{:(.) NYNXPS =→= i.e.,

NxifN
NxifxxPSy

XxYy

==
≠+==

∈∈∀
1)(

,,

Definition 4: Negative successor function: Negative successor function is a function

given by

}1,,.........2,1,0{},.....,2,1,0{:(.) −=→= NZNXNS i.e.,

NxifN
NxifxxNSz

XxZz

==
≠−==

∈∈∀
1)(

,,

The following rules generate the dynamics of the evader and pursuer movements:

1. },....2,1,0{)(Nkxk p ∈∀ , },...,2,1,0{)(Nky p ∈ , },...2,1,0{)(Nkxe ∈ and

},...2,1,0{)(Nkye ∈

2. The pursuer can only move when evader is in an equilibrium state

3. The pursuer can only move one step in one time instant. That step can be in

horizontal, vertical or diagonal direction. The evader can also only move one step in

horizontal, vertical or diagonal direction.

4. The evader moves based on the following rules:

a) Far condition:

If

))(()(kxNSkx pe < or))(()(kxPSkx pe > or))(()(kyNSky pe < or

))(()(kyNSky pe <

then

)()1(kxkx ee =+ and)()1(kyky ee =+

 51

0
 0

1

2

2

1

D

S

Before

0
 0

1

2

2

1

D

S

After

Fig 4.2 Example of a far condition

b) Left top corner pursuer right condition:

If

0)(=kxe and))(()(kxPSkx ep = and Nkyky pe ==)()(

then

)()1(kxkx ee =+ and))(()1(kyNSky ee =+

0
 0

1

2

2

1

D

S

Before

0
 0

1

2

2

1

D

S

After

Fig 4.3 Example of the left top corner pursuer right condition

c) Left top corner pursuer down condition:

If

0)()(== kxkx pe and 2)(=kye and))(()(kyNSky ep =

then

))(()1(kxPSkx ee =+ and)()1(kyky ee =+

P P

PP

EE

E

E

 52

0
 0

1

2

2

1

D

S

Before

0
 0

1

2

2

1

D

S

After

Fig. 4.4. Example of the left top corner pursuer down condition

d) Right top corner pursuer left condition:

If

2)(=kxe and))(()(kxNSkx ep = and 2)()(== kyky pe

then

)()1(kxkx ee =+ and))(()1(kyNSky ee =+

0
 0

1

2

2

1

D

S

Before

0
 0

1

2

2

1

D

S

After

Fig. 4.5 Example of the right top corner pursuer left condition

e) Right top corner pursuer down condition:

If

2)()(== kxkx pe and 2)(=kye and))(()(kyNSky ep =

then

))(()1(kxNSkx ee =+ and)()1(kyky ee =+

E E

PP

E

E

P P

 53

0
 0

1

2

2

1

D

S

Before

0
 0

1

2

2

1

D

S

After

Fig. 4.6 Example of the right top corner pursuer down condition

f) Left bottom corner pursuer right condition:

If

0)(=kxe and))(()(kxPSkx ep = and 0)()(== kyky pe

then

)()1(kxkx ee =+ and))(()1(kyPSky ee =+

0
 0

1

2

2

1

D

S

Before

0
 0

1

2

2

1

D

S

After

Fig. 4.7 Example of the left bottom corner pursuer right condition

g) Left bottom corner pursuer up condition:

If

0)()(== kxkx pe and 0)(=kye and))(()(kyPSky ep =

then

))(()1(kxPSkx ee =+ and)()1(kyky ee =+

PP

EE

E

E

P P

 54

0
 0

1

2

2

1

D

S

Before

0
 0

1

2

2

1

D

S

After

Fig.4.8 Example of the left bottom corner pursuer up condition

h) Right bottom corner pursuer left condition:

If

2)(=kxs and))(()(kxNSkx sd = and 0)()(== kyky ds

then

)()1(kxkx ss =+ and))(()1(kyPSky ss =+

0
 0

1

2

2

1

D

S

Before

0
 0

1

2

2

1

D

S

After

Fig. 4.9 Example of the right bottom corner pursuer left condition

i) Right bottom corner pursuer up condition:

If

2)()(== kxkx pe and 0)(=kye and))(()(kyPSky ep =

then

))(()1(kxNSkx ee =+ and)()1(kyky ee =+

P PE

E

P P

E E

 55

0
 0

1

2

2

1

D

S

Before

0
 0

1

2

2

1

D

S

After

Fig. 4.10 Example of the right bottom corner pursuer up condition

j) Other conditions:

If (a) to (i) are not satisfied and

))(()(kxNSkx pe =

then

))(()1(kxNSkx ee =+

If (a) to (i) are not satisfied and

))(()(kxPSkx pe =

then

))(()1(kxPSkx ee =+

If (a) to (i) are not satisfied and

))(()(kyNSky pe =

then

))(()1(kyNSky ee =+

If (a) to (i) are not satisfied and

))(()(kyPSky pe =

then

))(()1(kyPSky ee =+

P

E

P

E

 56

0
 0

1

2

2

1

D

S

Before

0
 0

1

2

2

1

D

S

After

0
 0

1

2

2

1

D

S

Before

0
 0

1

2

2

1

D

S

After

0
 0

1

2

2

1

D

S

Before

0
 0

1

2

2

1

D

S

After

PPE E

EE

PP

E

E

P P

 57

0
 0

1

2

2

1

D

S

Before

0
 0

1

2

2

1

D

S

After

Fig. 4.11 Some examples of other conditions

Theorem 1: There are N×N-3 final equilibrium states of the NxN pursuer-evader problem.

Proof: Figure 4.12 shows an example of the six final equilibrium states in case of N=3.

The figure implies that the pursuer can be in any of the six positions to obtain a final

equilibrium state. We can prove that the state when the pursuer is in (1,1) position is a

final equilibrium state because of the 4(j) rule of the dynamics. For the other ones we can

prove the same by using 4(a) rule.

0
 0

1

2

2

1

D

S

D

D

D

D

D

Fig. 4. 12 The six final equilibrium states for 3×3 grid.

For each given equilibrium-state the pursuer is free to choose its next move based on a

finite set of possible actions. This finite set is a function of the state x. If the state is a

non-equilibrium state then the pursuer is not allowed to move in that time instant. The

E E

PP

E

P

P P P

P

P

 58

evader will move from the non-equilibrium-state to another state that could be (in

general) another non-equilibrium-state or an equilibrium-state.

Theorem 2: If for any positive integer k, xe(k) ≠ xp (k), and ye (k) ≠ yp(k), then for any k t

≥ k, the following two statements can not be simultaneously false: xe (t) ≠ xp (t) ,and ye (t)

≠ yp(t).

Proof: This can be easily proven by noting that in order for both statements to be false at

time t, the system would have to be in equilibrium condition, and then the pursuer would

have to move to acquire the same coordinates as those of the evader. However, due to the

constraint on the motion of the pursuer, that the pursuer can only move when the system

is in a non-equilibrium state, the theorem is proven.

Let U be the discrete set of actions available to the pursuer when the system is in the

state x. The pursuer defines a policy U→x:µ that is a function from the state to

actions. This defines a feedback control policy. We also define a value function)(xµV ,

which is the sum of all future instantaneous costs given that the initial state of the system

is x and the system follows the policy µ . We define instantaneous cost as:

}1,)1()()1()()1()()1()(min{)(−−+−−+−−+−−= kykykxkxkykykxkxuc eeeeppppx

Notice that given any state x(k), we can find out the next state if the control action u is

known. The value function)(xµV is given by

iwherekciV
k

k == ∑
∞

=

)0()))((()(
0

)(xxx µµ

Problem Statement: Find the optimal policy that minimizes the value function:

)(min)(* iViV µµ
=

This gives us the optimal value function. In general, optimal value function is unique but

an optimal policy might not be.

 59

4.4. Properties of the Digraph Associated with the Pursuer-evader Problem

We can represent the pursuer-evader problem described above as a digraph G = (V, E)

that consists of a finite set V of vertices or nodes representing the states of the system,

and a finite set E of edges. V consists of all the possible values of the state x. The

cardinality of V denoted by N(V) is (N×N)2. There exists an edge e from a state-value

(node) v to w if for some k, v = x(k) and w = x(k+1) following the dynamics generated by

the rules in section 2. The digraph is a directed network or a weighted-digraph since we

associate a cost with each edge using the instantaneous cost formula from section 2. The

digraph is also simple, since there are no loops or multiple edges. The adjacency matrix

of the digraph is an)()(VNVN × matrix whose diagonal elements are all zeros.

Theorem 2: The instantaneous cost associated with each edge in the digraph of the

pursuer-evader problem is 1.

Proof:

The proof of the theory comes directly from calculating the cost for the notion of the

pursuer and the evader, according to their dynamics as given in section 2.

a) Far condition;

In this case, and by definition 1, the evader is at equilibrium state, so, only the pursuer

is allowed to move;

)()1(&)()1(kykykxkx eeee =+=+

Since only the pursuer is allowed to move, and for only one step. Then, the minimum

distance the pursuer can move, will result from moving it one step in either the x

direction or the y direction;

1)()1(1)()1(=−+=−+ kykyorkxkx pppp

Substitute with these in the cost equation⇒

)1|,)()1(||)()1(|

|)()1(||)()1(min(|)(

kykykxkx

kykykxkxc

eeee

ppppx

−++−+

+−++−+=µ

Thus;

1)1,0010min()(1)1,0001min()(=+++==+++= µµ xx corc

 60

b) Left tope corner, pursuer right

In this case, the evader is not in an equilibrium state and therefore, only the evader is

moving while not the pursuer;

Nkykyandkxkx

NkyandPSkxPSkx
NNNSkyNSkyandkx

Nkyandkx

pppp

pep

eee

ee

==+==+

====
−===+=+

==

)()1(1)()1(

)(1)0())(()(
1)())(()1(0)1(

)(0)(

Thus,

1)1,1000min()(=+++=∴ µxc

c) Left top corner, pursuer down condition

1)()1(0)()1(
)()1(1))(()1(

1)()(0)(
)(0)(

−==+==+
==+==+

−===
==

Nkykyandkxkx
NkykyandkxPSkx

NNNSkyandkx
Nkyandkx

pppp

eeee

pp

ee

Thus,

1)1,0100min()(=+++=∴ µxc

d) Right top corner, pursuer left condition

NkykyandNkxkx
NkyNSkyandNkxkx

NkyandNkxNSkx
NkyandNkx

pppp

eeee

pep

ee

==+−==+
−==+==+

=−==
==

)()1(1)()1(
1))(()1()()1(

)(1))(()(
)()(

Thus,

1)1,0100min()(=+++=∴ µxc

e) Right top corner, pursuer down condition

1)()1()()1(
)()1(1))(()1(

1))(()()()(
)()(

−==+==+
==+−==+

−====
==

NkykyandNkxkx
NkykyandNkxNSkx

NkyNSkyandNkxkx
NkyandNkx

pppp

eeee

epep

ee

Thus,

1)1,0100min()(=+++=∴ µxc

 61

f) Left bottom corner, pursuer right condition

0)()1(1)()1(
1))(()1(0)()1(

0)(1))(()(
0)(0)(

==+==+
==+==+

===
==

kykyandkxkx
kyPSkyandkxkx

kyandkxPSkx
kyandkx

pppp

eeee

pep

ee

Thus,

1)1,1000min()(=+++=∴ µxc

g) Left bottom corner, pursuer up condition

1)()1(0)()1(
0)()1(1))(()1(

1))(()(0)()(
0)(0)(

==+==+
==+==+

====
==

kykyandkxkx
kykyandkxPSkx

kyPSkyandkxkx
kyandkx

dddd

ssss

sdsd

ss

Thus,

1)1,0100min()(=+++=∴ µxc

h) Right bottom corner, pursuer left condition

0)()1(1)()1(
1))(()1()()1(

0)(1))(()(
0)()(

==+−==+
==+==+

=−==
==

kykyandNkxkx
kyPSkyandNkxkx

kyandNkxNSkx
kyandNkx

pppp

eeee

pep

ee

Thus,

1)1,1000min()(=+++=∴ µxc

i) Right bottom corner, pursuer up condition

1)()1()()1(
0)()1(1))(()1(

1))(()()()(
0)()(

==+==+
==+−==+

====
==

kykyandNkxkx
kykyandNkxNSkx

kyPSkyandNkxkx
kyandNkx

pppp

eeee

epep

ee

Thus,

1)1,0100min()(=+++=∴ µxc

j) Other conditions:

For all the cases mentioned in section 2 to j, the evader takes only one step at a time

away from the pursuer which is not allowed to move since the evader in not in an

 62

equilibrium state, as illustrated in figure 4.11. Therefore, in all cases we have;

0)()1(1)()1(=−+=−+ kykyorkxkx eeee ⇒

1)1,0100min()(=+++=∴ µxc

or 1)()1(0)()1(=−+=−+ kykyorkxkx eeee ⇒

1)1,1100min()(=+++=∴ µxc

or 1)()1(1)()1(=−+=−+ kykyorkxkx eeee ⇒

1)1,1100min()(=+++=∴ µxc

Theorem 3: The digraph of the pursuer-evader problem is not a strongly connected

digraph, but is weakly connected. Moreover, it is not a unilaterally connected digraph.

Proof: It can be shown that starting from any allowable (all states except the ones with

co-incident positions for pursuer and evader) state, one of the final equilibrium states can

be reached. All the final equilibrium states have paths connecting them together. To see

this, consider a final equilibrium state, and then move the pursuer back (to increase he

distance between the pursuer and the evader). This action will not result in any evader

movement. Then we can move the pursuer in positions that have distance more than one

from the evader (at the pen). Then the pursuer can be moved to a different position

corresponding to another final equilibrium position. This shows that starting from any

initial allowable state, there is a path to all the final equilibrium states. This proves that

the underlying graph of the digraph is connected. It is also a unilaterally connected

digraph for the same reason. To show that it is not strongly connected, consider any final

equilibrium state. From these states, there is no pursuer action that can take the evader

from the boundary of the two dimensional space into the interior.

Some additional properties of the pursuer-evader digraph are given below:

1. The number of nodes that are adjacent from a node representing an equilibrium state

depends on the location of the pursuer position in the grid. There are the following

three possibilities on the number of adjacent states.

 63

a) There are eight states adjacent from the equilibrium state node if the pursuer

position is in the interior. Only seven out of the eight are allowed since pursuer and

evader are not allowed to have the same location.

0
 0

1

2

2

1

D

Fig. 4.13 Adjacent states for pursuer in the interior

b) There are five states adjacent from the equilibrium state node if the pursuer

position is in the side but not in a corner.

0
 0

1

2

2

1

D

Fig. 4.14 Adjacent states for pursuer in the side (not corner)

c) There are three states adjacent from the equilibrium state node if the pursuer

position is in the corner.

P

P

 64

0
 0

1

2

2

1

D

Fig. 4.15 Adjacent states for pursuer in the corner

2. The number of nodes adjacent to a node representing a non-equilibrium state is one.

The state adjacent from the non-equilibrium node can be another non-equilibrium

node or an equilibrium node.

0
 0

1

2

2

1

D

S

Before

0
 0

1

2

2

1

D

S

After

Fig. 4.16 Adjacent states for non-equilibrium initial state

4.5. Proposed Techniques of Solution to the NxN Grid Pursuer-Evader

Problem

The dynamic programming solution is based on Bellman's equation, which for our

problem would look like the following:

P

P

E

P P

 65

))}1(()({min))((*

)(

* ++=
∈

kVuckV iu
xx

xµ

This equation indicates how the feedback controller can make decisions once the value

function is available. This equation can also be used to find the value function using the

boundary conditions from the problem.

We provide the solution to the problem using two different algorithms directions. In the

first direction and based on the fact that finite state systems can always be represented by

an acyclic graph with finite number of nodes, then the deterministic systems problem

becomes equivalent to finding the shortest path from an initial node x0 to a terminal node

xN. Unfortunately, since non of the most common shortest path techniques, like label

correcting techniques [47], and auction algorithms [48], deals with cases like ours, where

we have a multiple terminal states whose number depends on the grid size. Therefore, we

modified one of the most popular shortest path algorithms to fit our case. Two modified

versions of Dijkstra’s shortest path algorithm are considered to deal with the case of

multi-terminal state case in our problem. The first algorithm uses Dijkstra's algorithm for

each final equilibrium state and then uses minimization over all final equilibrium states to

obtain the value function. It is so obvious that such an algorithm will increase the

complexity of the original Dijkstra’s by the number of the final equilibrium states, as will

be illustrated later, which is impractical specially when dealing with large grid size. This

gave us a motive to introduce another modification of Dijkstra’s algorithm to suit our

case. The basic idea of that one is to introduce a new definition of the distance of a node

from a set of nodes, as it will be explained in the following section. Finally, the last

algorithm directly uses dynamic programming to sequentially obtain the value function.

The three algorithms are described after we define some terminology and some sub-

algorithms that will be used by the three main algorithms.

The following terminology is adapted from [49]. For the digraph G=(V,E), weight

function maps edges to weights as 1: →Ew . If a node v is adjacent from node u, we

show that as vu → . If there exists a path between a node u and node v possibly through

 66

other nodes, it is shown as vu p→ . Weight of a path),...,,(10 kvvvp = is the sum of

all the included edge weights, given as:

∑
=

−=
k

i
ii vvwpw

1
1),()(

The shortest path weight from a node u to node v is),(vuδ defined by:

If a path from u to v exists, then

):)((min),(vupwvu p

p
→=δ

else

∞=),(vuδ

Any path p from node u to node v in G(V,E) with weight),()(vupw δ= is the shortest

path from u to v.

Algorithm 1: INITIALIZE (G,s)

Given a source node][GVs ∈

][GVv ∈∀

do ∞=:][vd

 0:][=sd

Here =: is the assignment operator.

Algorithm 2: RELAX(u,v)

if),(][][vuwudvd +>

then),(][:][vuwudvd +=

Algorithm 3: DIJKSTRA(G,s)

Note:)},(][:{, vsvdvSVS δ==⊂

INITIALIZE (G,s)

S := ∅

Q : = V[G]

 67

while Q ≠ ∅

do u := EXTRACT-MIN(Q)

S := S ∪ {u}

for each vertex v ∈ Adj[u]

do RELAX(u,v)

In this algorithm, u ∈ V – S is the vertex with the shortest path estimate in Q that contains

all vertices in V – S sorted by their d values.

4.5.1. Algorithm based on Dijkstra's Shortest Path Solution

For convenience, we label the nodes of the digraph as follows. Notice that the state value

are given as)]()()()([)(kykxkykxk ppee=x where we have },....2,1,0{)(Nkxk p ∈∀ ,

},.....,2,1,0{)(Nkyp ∈ , },.....,2,1,0{)(Nkxe ∈ and },.....,2,1,0{)(Nkye ∈ . We can consider

the state to be a N-digit ternary number with the least significant digit being)(kyp , first

being)(kxp , second being)(kye , and the most significant one being)(kxe . The label

for the node is simply the decimal value of the ternary number. That is, if we use the

variable n for the node label with state given by][ppee yxyx=x , then the following is

true.
0123 NyNxNyNxn ppee +++=

4.5.1.1. Modified Dijkstra’s 1

Assuming that the number of the final equilibrium states is m, and the overall number of

states is n, another way of utilizing Dijkstra’s algorithm to solve the problem in hand may

be introduced. This technique is based on calculating the shortest path between any state

vi∈V-S ∀ i=1,2,…n-m, and all the final equilibrium states sj∈S ∀ j=1,2,…,m, then taking

from the M calculated distances, the one with minimum path. In other words, the

algorithm is repeated m times for each final equilibrium state and the path with least

weight is assigned to that state vi and the corresponding final equilibrium state mj.

Let },...,6,5,3:)1,({ miisS == …i.e. the set of all the final equilibrium states.

 68

Then,

},.....2,1],[.{min][misvdvd ijj =∀=

Like Dijkstra’s algorithm, this algorithm produces a set of vertices X whose final shortest

path distances from the source set S is determined. That is, for all vI∈X, we have

d[vj]=δ(S, vj). The algorithm repeatedly selects the vertex vi∈V-S with minimum shortest

path estimate, inserts vj into X and relaxes all the edges leaving vj. At the end, we’ll have

a queue Q that contains all the vertices in V-S with their corresponding distance value

from the source set S.

 Algorithm

Initialize source set d[si]=0 ∀ i=1,2,…..,m;

For i=1:m

Initialize the weights of the V-S=∞.

Set Q=V-S

While Q≠ φ

If d[v,si]≤d[si]+d[v, si],

 then X=Xuv

 d[v]=d[v,S]

for each vertex u∈ ADJ(v)

Relax (u,v,d)

End

End

For i=1:n-m

 dmin=min.d[vI,sk] ∀ k=1,,2,….m

d[vi,sk]=dmin

End

 69

4.5.1.2. Modified Dijkstra’s 2

Since Dijkstra’s algorithm solves the single source shortest paths problem on a weighted

directed graph G=(V,E) for non-negative weights case. A modified version of this

algorithm can be used to deal with our problem after introducing the definition of a

vertex “state” from a set of vertices “states”.

Let },...,6,5,3:)1,({ NNiisS ×== …i.e. the set of all the final equilibrium states.

Definition: The distance of a vertex vI from a set of vertices S is defined as:

},],[.{min],[SSVS ∈−∈∀= jijii svsvdvd

Like Dijkstra’s algorithm, this algorithm produces a set of vertices X whose final shortest

path distances from the source set S is determined. That is, for all vi∈X, we have

d[vj,S]=δ(S, vj). The algorithm repeatedly selects the vertex vi∈V-S with minimum

shortest path estimate, inserts vi into X and relaxes all the edges leaving vj. At the end,

we’ll have a queue Q that contains all the vertices in V-S with their corresponding

distance value from the source set S.

 Algorithm

Initialize source set d[S]=0;

Initialize the weights of the V-S=∞.

Set Q=V-S

While Q≠ φ

If d[v,S]≤d[S]+d[v,S],

 then X=Xuv

 d[v]=d[v,S]

for each vertex u∈ ADJ(v)

Relax (u,v,d)

END

 70

4.5.2. Direct Dynamic Programming Solution

This approach utilizes the dynamic programming tool directly to evaluate the minimum

cost-to-go value function from any of the non-equilibrium states to the final equilibrium

(terminal) states over the set of admissible control actions. Assume

cij(xi,uj) to be the cost for transition from state xi to state xj by applying control uj.

c(xN) to be the v-value of the final equilibrium states, (zero in our case).

Then, working backward form the final equilibrium states to all the other states, and

applying the following dynamic programming algorithm at each state, we can evaluate

the minimum value or minimum cost to go value function of any state to the terminal

ones.

V(xi)=c(xN)

)3(,......,2,1)}(),({min)
)(

−−×=∀+=
∈

NNNixVuxcV(x jijiij
xUu

i
iij

where xj…represent the set of all adjacent states to xi with the application of control uij.

4.6. Simulation Results

Simulating our system begins by computing the value of the cost function of each state

using one of the solution techniques mentioned above. Table 4.1, shows the values of the

cost function for a 3×3-grid using modified Dijkstra’s 2, Vdj, and direct dynamic

programming techniques Vdp. As shown from the results that both techniques gives

exactly the same cost function value. The state number corresponds to every possible

combination of the x and y coordinates of the pursuer and evader positions. The evader

movements are controlled by the dynamics defined in section 2. Meanwhile, the pursuer

makes its transitions based on the cost function value of the adjacent states to the current

state of the system. The pursuer moves to the state of the lowest cost of all adjacent

states, then it checks whether the system is at equilibrium or not to make its next move.

This process continues till the system reaches one of the final equilibrium states defined

in section 2.

 71

A graphical user interface is used to simulate the system where the user is to choose the

grid size, N, from a drop box. The intial position of the pursuer and the evader is

supplied to the simulation programm using an edit box. Then, the technique used to

calculate the cost to go (value) function of each state is choosen using a check box.

Finally, simulation starts by pressing the START button.

S Vdj Vdp S Vdj Vdp S Vdj Vdp S Vdj Vdp S Vdj Vdp S Vdj Vdp S Vdj Vdp

1
Inf Inf

13
5 5

25
4 4

37
0 0

49
2 2

61
Inf Inf

73
0 0

2 5 5 14 6 6 26 5 5 38 2 2 50 3 3 62 7 7 74 2 2

3 4 4 15 7 7 27 6 6 39 3 3 51 Inf Inf 63 6 6 75 3 3

4 5 5 16 4 4 28 6 6 40 2 2 52 3 3 64 0 0 76 2 2

5 8 8 17 5 5 29 5 5 41 Inf Inf 53 4 4 65 2 2 77 1 1

6 6 6 18 6 6 30 4 4 42 5 5 54 5 5 66 3 3 78 4 4

7 4 4 19 0 0 31 Inf Inf 43 3 3 55 0 0 67 1 1 79 3 3

8 6 6 20 1 1 32 6 6 44 5 5 56 3 3 68 3 3 80 4 4

9 7 7 21 Inf Inf 33 5 5 45 6 6 57 4 4 69 4 4 81 Inf Inf

10 6 6 22 3 3 34 8 8 46 0 0 58 1 1 70 2 2

11 Inf Inf 23 5 5 35 7 7 47 1 1 59 5 5 71 Inf Inf

12 8 8 24 7 7 36 6 6 48 2 2 60 5 5 72 5 5

Table 4.1 The cost function values for a 3×3 grid, using modified Dijkstra’s 2, Vdj, and

dynamic programming technique, Vdp.

Figures 4.17 (a) and (b), along with Figure 4.18 (a) and (b) show the used graphical user

interface provided to simulate the system where Figure 4.17 (a), and (b) shows a single

run with intial position of the pursuer is at (1,1) and the intial position of the evader is at

(3,4) where the cost values is calculated using modified Dijkestra 2 and dynamic

programming techinques recpectively. Meanwhile, Figure 4.18 (a), and (b) illustrates

different same intial positions for the pursuer and the evader, and again the cost value is

calculated this time using modified Dijkestra 2 and dynamic programming techinques

recpectively.

 72

(a) (b)

Fig 4.17 GUI for simulating the system with value function calculated using modified

Dijkstra’s 2 in (a) and dynamic programming in (b)

Fig 4.18 GUI for simulating the system with value function calculated using modified

Dijkstra’s 2 in (a) and dynamic programming in (b) for different initial positions

4.7. Summary

In this chapter we introduced the main building block of the research, in its simplest

form, single evader and passive single pursuer in a completely deterministic system.

 73

Also, after mathematically formulating the problem, the proposed solution techniques are

introduced and finally some simulation results that support the theoretical solution

techniques are shown.

 74

Chapter (5)

Pursuit Evasion: The Stochastic Model

5.1. Introduction

This chapter is a continuation to the previous one concentrating on studying the pursuit

evasion problem. The modified problem we study in this chapter involves a “pursuer”

agent herding an “evader” agent -moving stochastically- in order to drive it to a pen. The

problem is stated in terms of allowable sequential actions of the two agents. The solution

is obtained by applying the principles of stochastic dynamic programming. Three

algorithms for solution are presented with their accompanying results.

Other techniques have been considered by researchers, for some similar problems. For

instance, the hamstrung squad car game and the homicidal chauffeur game where the

reduced space technique was used to evaluate the value of the cost function have been

studied in [50]. The reduced space technique proved to create an increase in complexity

not only with the increase of the number of players, but with the increase of systems

dynamics complexity also [50].

This chapter provides a brief introduction to the principles of stochastic dynamic

programming since it is the candidate optimization technique that is going to be used.

Then we introduce the system dynamics of the problem. After that, properties of the di-

graph representing the problem model are explained. Later, the problem statement is

specified. Finally, the proposed solution techniques are introduced with the supporting

simulation results.

 75

5.2. Principles of Stochastic Dynamic Programming

Stochastic dynamic programming principles are introduced in analogy with those of

deterministic dynamic programming to illustrate the variations between both algorithms.

These differences come from the stochastic nature of transitions between states. In

deterministic dynamic programming, application of any control ui∈U results in transition

from one state, say xi to state xj such that xi & xj ∈ X. Meanwhile, in stochastic model

application of any control ui∈U results in transition from xj to a set si⊂ X with a pre-

determined probability distribution P. Therefore, the cost of each state is dependent not

only on the set of adjacent states but also on the transition probabilities. This can be

illustrated by figures 5.1 (a) and (b).

(a) Deterministic (b) Stochastic

Fig. 5.1. Deterministic and Stochastic transitions

The stochastic version of dynamic programming can be obtained from the deterministic

one by introducing a stochastic variable wk into the transition operator as follows;

• A discrete system whose state transition is given by;

),,(1 kkkk wuxfx =+

• An independent random disturbance parameter wk with given probability

distribution.

• A control constraint ui∈U.

Xi

Xi1

Xi2

Xi3

Xik

u1

u3

u3

uk

Xi

Xi1

Xi2

Xik

Xik

p1 /u1

uk

p2 /u1

pk /u1

 76

• An additive cost function of the form;

}),,()({
1

1

~

∑
−

=

+=
N

k
kkkkNN wuxcxcEV

where
~

kc is a function that gives the stochastic inter-state transition cost and cN is

the cost associated with the terminal state.

Thus, the stochastic dynamic programming algorithm may be stated as follows;

Denoting the optimal cost value by)(0
* xV , then

)()(000
* xVxV =

whereas, the value of the cost function)(00 xV is given by the last step of the following

algorithm which proceeds backward in time form instant N-1 to 0;

+=

=

∑
−

=
∈

1

1
)),,((),,(min)(

)()(
N

j
kkkjkjkkkxwUukk

NNNN

wuxfVpwuxcExV

xcxV

kk

, k=0,1,2,…, N-1

Moreover,

)}(minarg{)(**
kk

Uukk xVxu
k∈

=

is the optimal control policy.

The sequential interpretation of the algorithm can be illustrated by the figure 5.2

Fig. 5.2 Stochastic dynamic programming block representation

System
),,(1 kkkk wuxfx =+

Control

Uk

 77

5.3. A N×N Stochastic Pursuer-Evader problem

We consider the pursuer-evader problem in an N×N to introduce the dynamics

assumptions based on them the solution is attained. The pursuer can occupy one of the N

positions and so may the evader with probabilities that depend on the pursuer location,

such that both of them are not allowed to be in the same position at the same time. The

ultimate objective of the pursuer is to drive the evader to the pen, (0,0) position, in

minimum expected time. Therefore, the state vector at time k, x(k), is determined by the

position of the evader and the pursuer, i.e

x (k)=[xe(k) ye(k) xp(k) yp(k)]

where,

xe(k) …. The x coordinate of the evader at time k.

ye(k) …. The y coordinate of the evader at time k.

xp(k) …. The x coordinate of the pursuer at time k.

yp(k) …. The y coordinate of the pursuer at time k.

So, at any time k, we have xp∈{0,1,2….N}, yp∈{0,1,2…N}, xe∈{0,1,2,…..N},and

ye∈{0,1,2,………N}. However, based on the dynamics and as it will be illustrated later,

with the pursuer and the evader not being in the same initial state, they never can be in

the same location. A cost of one unit is assigned for each step (horizontal, vertical, or

diagonal) for the pursuer as well as the evader. Fig. 5.3 below illustrates the N×N spatial

grid of the pursuer-evader problem.

Fig. 5.3. The N ×N pursuer-evader problem grid.

x

y

0 1 N
0

1

N

E

P

 78

Definition 1;Positive successor function: Positive successor function is given by:

≤≤+
=

=
NkXifkX

NkXifkX
kXPS

)(01)(
)()(

))(((1)

where,

x(k) is the x or y coordinate of either the pursuer or the evader.

Thus, PS(.): X={0,1,2,….N}→Y={1,2,….N}

Definition 2; Negative successor function: Negative successor function is given by:

≤≤−
=

=
NkXifkX

kXifkX
kXNS

)(01)(
0)()(

))(((2)

x(k) is the x or y coordinate of either the pursuer or the evader.

Thus, NS(.): X={0,1,2,….N}→Y={0,1,2,….N-1}

Definition 3; Equilibrium state of the evader: The evader is in equilibrium state when

given a time instant T, if one of the following conditions is satisfied;

a. Far condition: xp(T)-xe(k) and/or yp(T)-ye(k)>1.

b. Left boundary condition: xe(k)=0 , 0<ye(k)<N with yp(k)= ys(k) , and

xp(k)=PS(xe(k)).

c. Right boundary condition: xe(k)=2 , 0<ye(k)<N with yp(k)= ye(k) , and

xp(k)=NS(xe(k)).

d. Low boundary condition: ye(k)=0 , 0<xe(k)<N with xp(k)= xe(k) , and

yp(k)=PS(ye(k)).

e. Upper boundary condition: ye(k)=N , 0<xe(k)<N with xp(k)= xe(k) , and

yp(k)=NS(ye(k)).

f. Upper left corner condition: (xe(k), ye(k))=(0,N), and xp(k)=PS(xe(k)) , and

yp(k)=NS(ye(k)).

g. Upper right corner condition (xe(k), ye(k))=(N,N), and xp(k)=NS(xe(k)) , and

yp(k)=NS(ye(k)).

h. Low right corner condition (xe(k), ye(k))=(N,0), and xp(k)=NS(xe(k)) , and

yp(k)=PS(ye(k)).

 79

Definition 4; Final equilibrium state of the evader: The evader is in final equilibrium

state at time instant T, when the following condition is satisfied:

xp(k)=xd(T) and yp(k)=yp(T), then xe(k)=0 and ye(k)=0. ∀k>T.

The following rules generate the pursuer-controlling movements and assign probabilities

to the evader transitions based on its relative location with respect to the pursuer:

d. ∀k xp(k), yp(k), xe(k), and ye(k) ∈{0,1,2,…….N}.

e. The pursuer moves when the evader is at an equilibrium state only.

f. The pursuer can move one step at a time, depending on its position in the grid,

and its relative location with respect to evader position as illustrated in figures 5.4

and 5.5 below:

Fig. 5.4. Pursuer movements with distance Fig.5.5. Pursuer movements with evader at

 between pursuer and evader>2. equilibrium state.

The evader transition probabilities depend on its relative position to the pursuer as

following:

a. Far Condition: If xe(k)<NS(xp(k)) or xe(k)>PS(xp(k)) or ye(k)<NS(yp(k)) or

ye(k)>PS(yp(k)), then xe(k+1)=xp(k) and ye(k+1)=yp(k).

b. Left top corner pursuer right condition : If xe(k)=0 and xp(k)=PS(xe(k)) and

ye(k)=yp(k)=N then ;

P

P

P P

P

D

P D

P
x

P P

P P
E E E

E E

E E

P

P P
x

y
y

 80

P{xe(k+1)=xe(k) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=p.

P{xe(k+1)=PS(xe(k)) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p).

c. Left top corner pursuer down condition: If xe(k)= xp(k)=0 and yp(k)=NS(ye(k)) and

ye(k)= N then ;

P{xe(k+1)=PS(xe(k)) and ye(k+1)= ye(k) | xp(k)and yp(k)}=p.

P{xe(k+1)=NS(xe(k)) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p).

d. Right top corner pursuer left condition: If xe(k)=N and xp(k)=NS(xe(k)) and

ye(k)=yp(k)=N then ;

P{xe(k+1)=xe(k) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=p.

P{xe(k+1)=NS(xe(k)) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p).

e. Right top corner pursuer down condition: If xe(k)= xp(k)=N and yp(k)=NS(ye(k)) then ;

P{xe(k+1)=NS(xe(k)) and ye(k+1)= ye(k) | xp(k)and yp(k)}=p.

P{xe(k+1)=NS(xe(k)) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p).

f. Left bottom corner pursuer right condition: If xe(k)= 0 and xp(k)=PS(xe(k)) and

yp(k)=ye(k)=0 then ;

P{xe(k+1)=xe(k) and ye(k+1)= PS(ye(k)) | xp(k)and yp(k)}=p.

P{xe(k+1)=PS(xe(k)) and ye(k+1)=PS(ye(k))| xp(k)and yp(k)}=(1-p)

g. Left bottom corner pursuer up condition: If xe(k)= xp(k)= 0 and yp(k)=PS(ye(k)) then ;

P{xe(k+1)=PS(xe(k)) and ye(k+1)= ye(k) | xp(k)and yp(k)}=p.

P{xe(k+1)=PS(xe(k)) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p)

h. Right bottom corner pursuer left condition: If xe(k)= N and xp(k)=NS(xe(k)) and yp(k)=

ye(k)=0 then ;

P{xe(k+1)= xe(k) and ye(k+1)=PS(ye(k)) | xp(k)and yp(k)}=p.

P{xe(k+1)=NS(xe(k)) and ye(k+1)=PS(ye(k))| xp(k)and yp(k)}=(1-p).

i. Right bottom corner pursuer up condition: If xe(k)= xp(k)= N and ye(k)=0 and

yp(k)=PS(ye(k)) then ;

 81

P{xe(k+1)= NS(xe(k)) and ye(k+1)= ye(k) | xp(k)and yp(k)}=p.

P{xe(k+1)=NS(xe(k)) and ye(k+1)=PS(ye(k))| xp(k)and yp(k)}=(1-p).

j. Other conditions: If (a) to (k) are not satisfied and;

i. xp(k)= NS(xe(k)) & yp(k)=PS(ye(k)) then;

P{xe(k+1)= PS(xe(k)) and ye(k+1)=NS(ye(k) | xp(k)and yp(k)}=p.

P{xe(k+1)= xe(k) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p)/2.

P{xe(k+1)=PS(xe(k)) and ye(k+1)=ye(k)| xp(k)and yp(k)}=(1-p)/2.

ii. xp(k)= xe(k) & yp(k)=PS(ye(k)) then;

P{xe(k+1)= xe(k) and ye(k+1)=NS(ye(k) | xp(k)and yp(k)}=p.

P{xe(k+1)= NS(xe(k)) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p)/2.

P{xe(k+1)=PS(xe(k)) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p)/2.

iii. xp(k)= PS(xe(k)) & yp(k)=PS(ye(k)) then;

P{xe(k+1)= NS(xe(k)) and ye(k+1)=NS(ye(k) | xp(k)and yp(k)}=p.

P{xe(k+1)= xe(k) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p)/2.

P{xe(k+1)=NS(xe(k)) and ye(k+1)=ye(k)| xp(k)and yp(k)}=(1-p)/2.

iv. xp(k)= PS(xe(k)) & yp(k)=ye(k) then;

P{xe(k+1)= NS(xe(k)) and ye(k+1)= ye(k) | xp(k)and yp(k)}=p.

P{xe(k+1)=NS(xe(k)) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p)/2.

P{xe(k+1)=NS(xe(k)) and ye(k+1)=PS(ye(k))| xp(k)and yp(k)}=(1-p)/2.

v. xp(k)= PS(xe(k)) & yp(k)=NS(ye(k)) then;

P{xe(k+1)= NS(xe(k)) and ye(k+1)=PS(ye(k) | xp(k)and yp(k)}=p.

P{xe(k+1)= xe(k) and ye(k+1)=PS(ye(k))| xp(k)and yp(k)}=(1-p)/2.

P{xe(k+1)=NS(xe(k)) and ye(k+1)=ye(k)| xp(k)and yp(k)}=(1-p)/2.

vi. xp(k)= xe(k) & yp(k)=NS(ye(k)) then;

P{xe(k+1)= xe(k)) and ye(k+1)=PS(ye(k) | xp(k)and yp(k)}=p.

P{xe(k+1)= NS(xe(k)) and ye(k+1)=PS(ye(k))| xp(k)and yp(k)}=(1-p)/2.

P{xe(k+1)=PS(xe(k)) and ye(k+1)=PS(ye(k))| xp(k)and yp(k)}=(1-p)/2.

vii. xp(k)= NS(xe(k)) & yp(k)=NS(ye(k)) then;

P{xe(k+1)= PS(xe(k)) and ye(k+1)=PS(ye(k) | xp(k)and yp(k)}=p.

 82

P{xe(k+1)= xe(k) and ye(k+1)=PS(ye(k))| xp(k)and yp(k)}=(1-p)/2.

P{xe(k+1)=PS(xe(k)) and ye(k+1)=ye(k)| xp(k)and yp(k)}=(1-p)/2.

viii. xp(k)= xe(k) & yp(k)=NS(ye(k)) then;

P{xe(k+1)= PS(xe(k)) and ye(k+1)= ye(k) | xp(k)and yp(k)}=p.

P{xe(k+1)= PS(xe(k)) and ye(k+1)=NS(ye(k))| xp(k)and yp(k)}=(1-p)/2.

P{xe(k+1)=PS(xe(k)) and ye(k+1)=PS(ye(k))| xp(k)and yp(k)}=(1-p)/2.

5.3. Properties of The Stochastic Digraph Associated with the Pursuer-Evader

Problem:

After inspecting our model representation of the problem, it was found that it has the

following characterizing properties;

a. The number of states of the system is finite.

b. The system is stationary, which means the probability distribution of transition

between states, the instantaneous cost, and the system dynamics are independent of

the states.

c. There are (N-3) final equilibrium states of the N×N stochastic pursuer-evader

problem.

d. The cost value of the final equilibrium states is zero.

e. At any time instance t, (xe, ye)≠ (xp, yp).

f. The di-graph representing the stochastic pursuer-evader model is pseupo-stochastic,

which means the transition between states is stochastic when the evader is to move.

Meanwhile, when the pursuer is to move, the transition between states is

deterministic since the pursuer is allowed to go to certain locations based on the

dynamics i.e. the probability of pursuer transitions is always 1.

g. The estimated cost associated with each edge is the pseudo-stochastic pursuer-

evader di-graph is 1.

5.4. Problem Statement

 83

Based on the previous investigations of the mathematical model of the problem at hand,

its characterizing properties, and the proposed solution technique, we can formulate the

problem as following:

Given a finite state space S={1,2…N,t} with transition probability between states:

pij(u)=P(sk+1=j| sk=i, uk=u)

Where uk=u∈U(i), the control set ,is finite at each state i.

• The instantaneous cost c(i,u) of a state is incurred-when the control u∈U(i) is selected-

as the expected cost/stage as:

 ∑
=

=
n

j
ij juigupuic

1

~

),,()(),((3)

where, g~(i,u,j) is the estimated cost to move from state i using control u to go to state j.

Then, the cost value of each state is given by:

nijJupuiciJ
n

j
ij ,.....,2,1])()(),([)(

1
=+= ∑

=
 (4)

Our objective is to find the set of optimal control policy U* that gives minimum

expected cost value for the pursuer to drive the evader to the pen, i.e.,

nijJupuigEiJ
n

j
ijUu ,......,2,1})()(),({min)(

1

* =+= ∑
=

∈ (5)

5.5. Methods of Solution

Solving the problem outlined above mainly depends on calculating the cost function

values. Although it may look like solving a set of (N×N)2 ∗linear algebraic equations, it

became obvious that this is not the case since the policy based on which the cost function

values yet to be determined first. Once this policy is determined, then the problem may

be considered as solving a system of linear equations and even with order less that

∗ 2 here because the number of players is 2, otherwise the power should be replaced by the number of

players.

 84

(N×N)2. Bearing this in mind, solving for the cost value function while searching for the

optimum control policy involves 3 techniques. These techniques are:

a. Apmissible Policy Search Technique

Solving for J* mainly depends on the characteristics of the probability state

transition matrix (PSTM) P. Close examination of the PSTM showed that if the

transition between states results from pursuer movements, the entities of the

corresponding row for the current state are either 0, where there is no path to go to

the corresponding state, or 1, which corresponds to the next state, the pursuer can

derive the system to. Meanwhile, if the transition results from evader’s movement,

the entities of the PSTM is either 0, or the probability of the system to go the

corresponding state due to evader movement. Therefore, the minimization process in

equation (5) has one argument when carried to calculate the corresponding cost of

evader movement and results in picking one of the states that results in minimum

cost when the pursuer moves. In other words we can put equation 5 in the matrix

form as:

SC)P(IJ 1
~

* −−= (6)

where;

S… is the N×N state transition matrix.

C… is the N×1 instantaneous cost matrix.
~

P …is the N×N modified probability state transition matrix, obtained from P by

picking the only 1 that corresponds to the state that results in the minimum cost

value and replacing all the other 1’s by zeros. So the problem now is how to find
~

P ?

This can be accomplished by searching all the possible combinations of 1’s in the

PSTM till we get the pattern that results in the minimum value of J.

Despite its accuracy in calculating the values of the cost function, this technique has

proven to be very time consuming since it searches all the space of admissible

control policies.

 85

b. Value Iteration Technique

Assuming that there is an integer number of stages, m, represent the maximum

number of stages till the final equilibrium state is reached, then there is a positive

probability that the final equilibrium state will be reached in less than m stages [16].

Based on this assumption, an iterative technique can be used to calculate the cost

value of each state beginning form any initial values J0(1)……… J0(n). So,

applying the DP algorithm;

nijJupuiciJ
n

j
kijiUuk ,......2,1)()(),(min)(

1)(1 =

 += ∑

=∈+ (7)

The sequence Jk+1 (i) will converge to the optimal cost, J*
k+1(i) given by Bellman’s

equation, after finite number of iterations.

c. Policy Iteration Technique

This technique depends on searching the admissible policy subspace in a steepest

decent way, beginning form any admissible policy. It has three phases:

i. Initialization step: Start with one of the admissible policies, u0.

ii. Policy evaluation step: Solve the linear system of equations given by eq. (6) to

get the cost values for this policy, niiJ
u

,...2,1),(0 = .

iii. Policy improvement step: in which we compute a new policy uk+1 which

minimizes the expected cost calculated in step (ii), i.e.

nijJupuiciu
n

j
uijiUu

k
k ,...2,1,)()(),(minarg)(

1)(

1 =

 += ∑

=∈

+ (8)

iv. If niiJiJ kk uu
,...2,1),()(1 ==+ , terminates or set)()(01 iJiJ

uuk =+ and go to

step (i).

 86

5.6. Simulation Results

Simulating our system begins by computing the value of the cost function of each state

using one of the techniques mentioned above. Table 1, shows the values of the cost

function for a 3×3 grid, and interstate transition probability of 0.8 using value iteration,

Vv, and policy iteration, Vp, techniques. As shown from the results that both techniques

converge to exactly the same cost function value. The state number corresponds to every

possible combination of the x and y coordinates of the pursuer and evader positions. The

evader movements are controlled by a random number generator where it can move

randomly according to the dynamics defined in part II. The pursuer makes its transitions

based on the cost function value of the adjacent states to the current state of the system.

The pursuer moves to the state of the lowest cost of all adjacent states, then it checks

whether the system is at equilibrium or not to make its next move. This process continues

till the system reaches one of the final equilibrium states defined in part II.

A graphical user interface is used to simulate the system where the user is to choose the

grid size, N, from a drop box. The intial position of the pursuer and the is supplied to the

simulation programm using an edit box. The probability, p, of transition is set using a

slider. Finally, the technique used to calculate the cost of each state is choosen using a

check box, then simulation starts by pressing the START button.

Figures 5.6, and 5.7 shows the used graphical user interface provided to simulate the

system where figure 5.6 shows a single run with intial position of the pursuer is at (1,1)

and the intial position of the evader is at (4,4) and the probability of transition is 0.8

where the cost values is calculated using value iteration technique. Meanwhile, figure 5.7

illustrates the same the same intial condition and the same probability of transition

system , but the cost value is calculated this time using policy iteration technique. It

should be noticed that the differences between the two systems, although having the same

intial states, comes from the stochastic motion of the evader. Also, it can be noticed that

the pursuer’s movements are the same from the intial state till the state where the evader

makes its first move. This is due to the determinstic nature of the pursuer’s motion.

 87

S Vv Vp S Vv Vp S Vv Vp S Vv Vp S Vv Vp S Vv Vp S Vv Vp

1 9.00 9.00 13 6.02 6.02 25 4.88 4.88 37 0.00 0.00 49 2.50 2.50 61 9.00 9.00 73 0.00 0.00

2 6.22 6.22 14 6.61 6.61 26 5.60 5.60 38 2.50 2.50 50 3.39 3.39 62 7.21 7.21 74 2.50 2.50

3 4.88 4.88 15 7.21 7.21 27 6.36 6.36 39 3.88 3.88 51 9.00 9.00 63 6.36 6.36 75 3.88 3.88

4 6.22 6.22 16 4.88 4.88 28 7.14 7.14 40 2.50 2.50 52 3.88 3.88 64 0.00 0.00 76 2.50 2.50

5 8.21 8.21 17 5.60 5.60 29 6.02 6.02 41 9.00 9.00 53 4.60 4.60 65 2.50 2.50 77 1.50 1.50

6 6.60 6.60 18 6.36 6.36 30 4.88 4.88 42 5.60 5.60 54 5.36 5.36 66 3.88 3.88 78 4.60 4.60

7 4.88 4.88 19 0.00 0.00 31 9.00 9.00 43 3.88 3.88 55 0.00 0.00 67 1.50 1.50 79 3.88 3.88

8 6.60 6.60 20 1.70 1.70 32 6.61 6.61 44 5.60 5.60 56 3.50 3.50 68 3.39 3.39 80 4.60 4.60

9 7.36 7.36 21 9.00 9.00 33 5.60 5.60 45 6.36 6.36 57 4.88 4.88 69 4.60 4.60 81 9.00 9.00

10 7.14 7.14 22 3.50 3.50 34 8.09 8.09 46 0.00 0.00 58 1.70 1.70 70 2.88 2.88

11 9.00 9.00 23 5.81 5.81 35 7.21 7.21 47 1.50 1.50 59 5.81 5.81 71 9.00 9.00

12 8.09 8.09 24 7.21 7.21 36 6.36 6.36 48 2.88 2.88 60 5.60 5.60 72 5.36 5.36

Table 1. The cost function values for a 3×3 grid, and interstate transition probabilty 0.8,

using value iteration technique, Vvitr, and policy iteration technique, Vpitr.

 88

Fig. 5.6 Graphical user interface model for the herding problem with intial position of the

evader =(4,4), p=0.8, and cost values calculated by value iteration technique

.

Fig. 5.7. Graphical user interface model for the herding problem with intial position of

the evader =(4,4), p=0.8, and cost values calculated by policy iteration technique

(Xd0,Yd0)

(Xs0,Ys0)

(Xd0,Yd0)

(Xs0,Ys0)

 89

5.7. Summary

In this chapter we provided a stochastic model of the herding problem in the context of

the stochastic dynamic programming. The stochastic dynamics of the model were

introduced in the beginning of the chapter. Then, analysis of the pseudo-stochastic di-

graph representing the system is given. After that, three solution algorithms are

introduced and analyzed. Finally, samples of the simulation results for the proposed

solution algorithms are introduced to conclude the chapter.

 90

Chapter (6)

Pursuit Evasion: The Herding Non-cooperative Dynamic Game

6.1. Introduction

In this final chapter we present a dynamic programming based solution to the pursuer

evader herding problem, where the pursuer and the evader are playing a non-cooperative

deterministic game The evader here is not assumed to be a passive evader, rather it is an

active evader so that it tries to maximize the cost value of the current state. As followed

in the previous chapters, we present the dynamics of the problem then provide the

dynamic programming solution to the problem. The solution is proven to be correct and

then simulations are performed to illustrate some example runs.

6.2. A N×N Grid Pursuer-Evader Herding Problem

We consider the pursuer-evader problem in a N×N grid as shown in figure 6.1. The

pursuer can occupy one of the N×N positions and so can the evader. Therefore, there are

N2 states in the system. The aim of the pursuer is to make the evader go to the pen that is

the (0,0) position for the evader. The following shows the nomenclature used in this

paper.

)(kxp x coordinate of the pursuer position at time instance k

)(ky p y coordinate of the pursuer position at time instance k

)(kxe x coordinate of the evader position at time instance k

)(kye y coordinate of the evader position at time instance k

x(k) state vector given by)]()()()([)(kykxkykxk ppee=x at time instance k

For the NxN pursuer evader problem, we have },....,2,1,0{)(Nkxk p ∈∀ ,

Nkyp }....,2,1,0{)(∈ , },....,2,1,0{)(Nkxk e ∈∀ and Nkye }....,2,1,0{)(∈ . However, the

 91

pursuer and the evader can not have the same location on the grid as their initial

positions. It can be proven that if they have different initial positions, then based on the

allowable actions of both (as described later), they can never end up on the same

location. There is a cost of one unit for each step (horizontal or vertical or diagonal) of a

pursuer as well as of a evader. The aim of the pursuer is to move the evader to the pen

i.e. to the (0,0) coordinate, with the least cost. Fig. 6.1 below shows the N×N grid for the

pursuer-evader problem.

Fig. 6.1. The N×N pursuer-evader problem grid

Definition 1;Positive successor function: Positive successor function is given by:

≤≤+
=

=
NkXifkX

NkXifkX
kXPS

)(01)(
)()(

))(((6.1)

where,
x(k) is the x or y coordinate of either the pursuer or the evader.
Thus, PS(.): X={0,1,2,….N}→Y={1,2,….N}

Definition 2; Negative successor function: Negative successor function is given by:

≤≤−
=

=
NkXifkX

kXifkX
kXNS

)(01)(
0)()(

))((

(6.2)
x(k) is the x or y coordinate of either the pursuer or the evader.
Thus, NS(.): X={0,1,2,….N}→Y={0,1,2,….N-1}

Definition 3; Equilibrium state of the evader: The evader is in equilibrium state when
given a time instant T, if one of the following conditions is satisfied;

a. Far condition: xp(T)-xe(k) and/or yp(T)-ye(k)>1.

b. Left boundary condition: xe(k)=0 , 0<ye(k)<N with yp(k)= ye(k) , and

xp(k)=PS(xe(k)).

x

y

0 1 N
0

1

N

E

P

 92

c. Right boundary condition: xe(k)=N , 0<ye(k)<N with yp(k)= ye(k) , and

xp(k)=NS(xe(k)).

d. Low boundary condition: ye(k)=0 , 0<xe(k)<N with xp(k)= xe(k) , and

yp(k)=PS(ye(k)).

e. Upper boundary condition: ye(k)=N , 0<xe(k)<N with xp(k)= xe(k) , and

yp(k)=NS(ye(k)).

f. Upper left corner condition: (xe(k), ye(k))=(0,N), and xp(k)=PS(xe(k)) , and

yp(k)=NS(ye(k)).

g. Upper right corner condition (xe(k), ye(k))=(N,N), and xp(k)=NS(xe(k)) , and

yp(k)=NS(ye(k)).

h. Low right corner condition (xe(k), ye(k))=(N,0), and xp(k)=NS(xe(k)) , and

yp(k)=PS(ye(k)).

Definition 4; Final equilibrium state of the evader: The evader is in final equilibrium
state at time instant T, when the following condition is satisfied:

xp(k)=xp(T) and yp(k)=yp(T), then xe(k)=0 and ye(k)=0. ∀k>T.

The following rules generate the pursuer-controlling movements and assign probabilities
to the evader transitions based on its relative location with respect to the pursuer:

a. ∀k xp(k), yp(k), xe(k), and ye(k) ∈{0,1,2,…….N}.

b. The pursuer moves when the evader is at an equilibrium state only.

c. The pursuer can move one step at a time, depending on its position in the grid,

and its relative location with respect to evader position as illustrated in Fig.6.2

and 6.3 below:

Fig. 6.2. Pursuer movements with distance Fig.6.3. Pursuer movements with evader at
 between pursuer and evader>2. equilibrium state.

x

y

P

P

P P

P

P

P P

P

P P

P P
E E E

E E

E E

P

P P
x

y

 93

The evader transition depends on its relative position to the pursuer as following:
a. Far Condition: If xe(k)<NS(xp(k)) or xe(k)>PS(xp(k)) or ye(k)<NS(yp(k)) or

ye(k)>PS(yp(k)), then xe(k+1)=xp(k) and ye(k+1)=yp(k).

b. Left top corner pursuer right condition : If xe(k)=0 and xp(k)=PS(xe(k)) and

ye(k)=yp(k)=N then ;

(xe(k+1) , ye(k+1)) |(xp(k), yp(k)) =
jVv∈

maxarg {(xe(k), NS(ye(k))), (PS(xe(k)), NS(ye(k)))}

c. Left top corner pursuer down condition: If xe(k)= xp(k)=0 and yp(k)=NS(ye(k)) and

ye(k)= N then ;

(xe(k+1) , ye(k+1)) |(xp(k), yp(k)) =
jVv∈

maxarg {(PS(xe(k)),ye(k)), (NS(xe(k)), NS(ye(k)))}

d. Right top corner pursuer left condition: If xe(k)=N and xp(k)=NS(xe(k)) and

ye(k)=yp(k)=N then ;

(xe(k+1) , ye(k+1)) |(xp(k), yp(k)) =
jVv∈

maxarg {(xe(k), NS(ye(k))), (NS(xe(k)), NS(ye(k)))}

e. Right top corner pursuer down condition: If xe(k)= xp(k)=N and yp(k)=NS(ye(k)) then ;

(xe(k+1) , ye(k+1)) |(xp(k), yp(k)) =
jVv∈

maxarg {(NS(xe(k)), (ye(k))), NS(xe(k)),

NS(ye(k)))}

f. Left bottom corner pursuer right condition: If xe(k)= 0 and xp(k)=PS(xe(k)) and

yp(k)=ye(k)=0 then ;

(xe(k+1) , ye(k+1)) |(xp(k), yp(k)) =
jVv∈

maxarg {(xe(k), PS(ye(k))), (PS(xe(k)), PS(ye(k)))}

g. Left bottom corner pursuer up condition: If xe(k)= xp(k)= 0 and yp(k)=PS(ye(k)) then ;

(xe(k+1) , ye(k+1)) |(xp(k), yp(k)) =
jVv∈

maxarg {(PS(xe(k)), ye(k)), (PS(xe(k)), NS(ye(k)))}

h. Right bottom corner pursuer left condition: If xe(k)= N and xp(k)=NS(xe(k)) and yp(k)=

ye(k)=0 then ;

 94

(xe(k+1) , ye(k+1)) |(xp(k), yp(k)) =
jVv∈

maxarg {(xe(k), PS(ye(k))), (NS(xe(k)), PS(ye(k)))}

i. Right bottom corner pursuer up condition: If xe(k)= xp(k)= N and ye(k)=0 and

yp(k)=PS(ye(k)) then ;

(xe(k+1) , ye(k+1)) |(xp(k), yp(k)) =
jVv∈

maxarg {(NS(xe(k)), ye(k)), (NS(xe(k)), PS(ye(k)))}

j. Other conditions: If (a) to (i) are not satisfied and;

i. xp(k)= NS(xe(k)) & yp(k)=PS(ye(k)) then;

(xe(k+1) , ye(k+1)) |(xp(k), yp(k)) =
jVv∈

maxarg {(PS(xe(k), NS(ye(k))),

(xe(k),NS(ye(k)), (PS(xe(k)), ye(k))}

ii. xd(k)= xs(k) & yd(k)=PS(ys(k)) then;

(xs(k+1) , ys(k+1)) |(xd(k), yd(k)) =
jVv∈

maxarg {(PS(xe(k), NS(ye(k))),

(xe(k),NS(ye(k)), (PS(xe(k)), ye(k))}

iii. xp(k)= PS(xe(k)) & yp(k)=PS(ye(k)) then;

(xs(k+1) , ys(k+1)) |(xd(k), yd(k)) =
jVv∈

maxarg {(NS(xe(k), NS(ye(k))),

(xe(k),NS(ye(k)), (NS(xe(k)), ye(k))}

iv. xp(k)= PS(xe(k)) & yp(k)=ye(k) then;

(xs(k+1) , ys(k+1)) |(xd(k), yd(k)) =
jVv∈

maxarg {(NS(xe(k),(ye(k)),

(NS(xe(k)),NS(ye(k)), (NS(xe(k)), (PSye(k)))}

v. xp(k)= PS(xe(k)) & yp(k)=NS(ye(k)) then;

(xs(k+1) , ys(k+1)) |(xd(k), yd(k)) =
jVv∈

maxarg {(NS(xe(k), PS(ye(k))),

(xe(k),(PS(ye(k))), (NS(xe(k)), ye(k))}

vi. xp(k)= xe(k) & yp(k)=NS(ye(k)) then;

(xs(k+1) , ys(k+1)) |(xd(k), yd(k)) =
jVv∈

maxarg {(xe(k), PS(ye(k))),

(NS(xe(k)),PS(ye(k)), (PS(xe(k)), (PS(ye(k))}

 95

vii. xp(k)= NS(xe(k)) & yp(k)=NS(ye(k)) then;

(xs(k+1) , ys(k+1)) |(xd(k), yd(k)) =
jVv∈

maxarg {(PS(xe(k), PS(ye(k))),

(xe(k),PS(ye(k)), (PS(xe(k)), ye(k))}

viii. xp(k)= xe(k) & yp(k)=NS(ye(k)) then;

(xs(k+1) , ys(k+1)) |(xd(k), yd(k)) =
jVv∈

maxarg {(PS(xe(k), (ye(k)),

(PS(xe(k)),NS(ye(k)), (PS(xe(k)), PS(ye(k))}

Theorem 1: There are (N×N-3) final equilibrium states of the N×N pursuer-evader

problem.

Proof: Figure 6.4 shows the six final equilibrium states of a 3×3 grid. The figure implies

that the pursuer can be in any of the six positions to obtain a final equilibrium state. We

can prove that the state when the pursuer is in (1,1) position is a final equilibrium state

because of the 4(j) rule of the dynamics. For the other ones we can prove the same by

using 4(a) rule.

0
 0

1

2

2

1

D

S

D

D

D

D

D

Fig. 6.4 The six final equilibrium states for a 3×3 grid.

For each given equilibrium-state, the pursuer is free to choose its next move based on a

finite set of possible actions. This finite set is a function of the state x. If the state is a

non-equilibrium state then the pursuer is not allowed to move in that time instant. The

evader will move from the non-equilibrium-state to another state that could be (in

general) another non-equilibrium-state or an equilibrium-state.

P

P

P

P

P

P

E

 96

By induction, the same result can be proved for any N×N grid.

Theorem 2: If for any positive integer k,)()(kxkx pe ≠ and)()(kyky pe ≠ then for any

kt ≥ , the following two statements can not be simultaneously false:)()(txtx pe ≠ and

)()(tyty pe ≠ .

Proof: This can be easily proven by noting that in order for both statements to be false at

time t, the system would have to be in equilibrium condition, and then the pursuer would

have to move to acquire the same coordinates as those of the evader. However, due to

the constraint on the motion of the pursuer, that the pursuer can only move when the

system is in a non-equilibrium state, the theorem is proven.

Let U be the discrete set of actions available to the pursuer (pursuer) when the system is

in the state x. The pursuer (pursuer) defines a policy U→x:µ that is a function from

the state to pursuer actions. This defines a feedback control policy for the pursuer. Let

W be the discrete set of actions available to the evader (evader) when the system is in the

state x. The evader (evader) defines a policy W→x:ω that is a function from the state

to evader actions. This defines a feedback control policy for the evader. We also define

a value function)(xµωV , which is the sum of all future instantaneous costs given that the

initial state of the system is x and the system follows the policies µ and ω . We define

instantaneous cost as:

)1,)1()()1()(

)1()()1()(min(),(

−−+−−

+−−+−−=

kykykxkx

kykykxkxwuc

ssss

ddddx

The value function)(xµωV is given by

iwherekciV
k

k == ∑
∞

=

)0()))((()(
0

)(xxx µµω

Problem Statement 1:

 97

(a) Find the policies *µ and *ω . that produce the following lower value function:

)(maxmin)(* iViV µωωµ
=

(b) Find the policies *µ and *ω . that produce the following upper value function:

)(minmax)(* iViV µωµω
=

6.3. Properties of the Diagraph Associated with the Pursuer-Evader, Herding

Problem

We can represent the pursuer-evader problem described above as a digraph G = (V, E)

that consists of a finite set V of vertices or nodes representing the states of the system,

and a finite set E of edges. V consists of all the possible values of the state x. The

cardinality of V denoted by N(V) is N×N. There exists an edge e from a state-value

(node) v to w if for some k, v = x(k) and w = x(k+1), following the dynamics generated

by the rules in section 2. The digraph is a directed network or a weighted-digraph since

we associate a cost with each edge using the instantaneous cost formula from section 2.

The digraph is also simple, since there are no loops or multiple edges. The adjacency

matrix of the digraph is an)()(VNVN × matrix whose diagonal elements are all zeros.

The reader is referred to [51] for background reference.

Theorem 3: The instantaneous cost associated with each edge in the digraph of the

pursuer-evader problem is 1.

Proof: The proof of the theorem comes directly from calculating the cost for the motion

of the pursuer and the evader, according to their dynamics as given in section 2.

a) Far condition;

In this case, and by definition 1, the evader is at equilibrium state, so, only the

pursuer is allowed to move;

)()1(&)()1(kykykxkx eeee =+=+

 98

Since only the pursuer is allowed to move, and for only one step. Then, the minimum

distance the pursuer can move, will result from moving it one step in either the x

direction or the y direction;

1)()1(1)()1(=−+=−+ kykyorkxkx pppp

Substitute with these in the cost equation⇒

)1|,)()1(||)()1(|

|)()1(||)()1(min(|)(

kykykxkx

kykykxkxc

eeee

ppppx

−++−+

+−++−+=µ

1)1,0010min()(1)1,0001min()(=+++==+++= µµ xx corc

b) Left top corner, pursuer right

In this case, the evader is not in an equilibrium state and therefore, only the evader is

moving while not the pursuer;

Nkykyandkxkx

NkyandPSkxPSkx
NNNSkyNSkyandkxNkyandkx

pppp

pep

eeeee

==+==+

====
−===+=+==

)()1(1)()1(

)(1)0())(()(
1)())(()1(0)1(;)(0)(

1)1,1000min()(=+++=∴ µxc

c) Left top corner, pursuer down condition

1)()1(0)()1(
)()1(1))(()1(

1)()(0)(;)(0)(

−==+==+
==+==+

−=====

Nkykyandkxkx
NkykyandkxPSkx

NNNSkyandkxNkyandkx

pppp

eeee

ppee

1)1,0100min()(=+++=∴ µxc

d) Right top corner, pursuer left condition

2)()1(1)()1(
1))(()1(2)()1(

2)(1))(()(;2)(2)(

==+==+
==+==+

=====

kykyandkxkx
kyNSkyandkxkx

kyandkxNSkxkyandkx

pppp

eeee

pepee

1)1,0100min()(=+++=∴ µxc

 99

e) Right top corner, pursuer down condition

1)()1()()1(
)()1(1))(()1(

1))(()()()(;)()(

−==+==+
==+−==+

−======

NkykyandNkxkx
NkykyandNkxNSkx

NkyNSkyandNkxkxNkyandNkx

pppp

eeee

epepee

1)1,0100min()(=+++=∴ µxc

f) Left bottom corner, pursuer right condition

0)()1(1)()1(
1))(()1(0)()1(

0)(1))(()(;0)(0)(

==+==+
==+==+

=====

kykyandkxkx
kyPSkyandkxkx

kyandkxPSkxkyandkx

pppp

eeee

pepee

1)1,1000min()(=+++=∴ µxc

g) Left bottom corner, pursuer up condition

1)()1(0)()1(
0)()1(1))(()1(

1))(()(0)()(;0)(0)(

==+==+
==+==+

======

kykyandkxkx
kykyandkxPSkx

kyPSkyandkxkxkyandkx

pppp

eeee

epepee

1)1,0100min()(=+++=∴ µxc

h) Right bottom corner, pursuer left condition

0)()1(1)()1(
1))(()1()()1(

0)(1))(()(;0)()(

==+−==+
==+==+

=−====

kykyandNkxkx
kyPSkyandNkxkx

kyandNkxNSkxkyandNkx

pppp

eeee

pepee

1)1,1000min()(=+++=∴ µxc

i) Right bottom corner, pursuer up condition

1)()1()()1(
0)()1(1))(()1(

1))(()()()(;0)()(

==+==+
==+−==+

======

kykyandNkxkx
kykyandNkxNSkx

kyPSkyandNkxkxkyandNkx

pppp

eeee

epepee

1)1,0100min()(=+++=∴ µxc

Other conditions:

For all the cases mentioned in rule 4-j, the evader takes only one step at a time away

from the pursuer which is not allowed to move since the evader in not in an equilibrium

state. Therefore, in all cases we have;

0)()1(1)()1(=−+=−+ kykyorkxkx eeee ⇒

 100

1)1,0100min()(=+++=∴ µxc

or 1)()1(0)()1(=−+=−+ kykyorkxkx eeee ⇒

1)1,1000min()(=+++=∴ µxc

or 1)()1(1)()1(=−+=−+ kykyorkxkx eeee ⇒

1)1,1100min()(=+++=∴ µxc

Theorem 4: The digraph of the pursuer-evader problem is not a strongly connected, but

is weakly connected.

Proof: It can be shown that starting from any allowable (all states except the ones with

co-incident positions for pursuer and evader) state, one of the final equilibrium states can

be reached. All the final equilibrium states have paths connecting them together. To see

this, consider a final equilibrium state, and then move the pursuer back (to increase he

distance between the pursuer and the evader). This action will not result in any evader

movement. Then we can move the pursuer in positions that have distance more than one

from the evader (at the pen). Then the pursuer can be moved to a different position

corresponding to another final equilibrium position. This shows that starting from any

initial allowable state, there is a path to all the final equilibrium states. This proves that

the underlying graph of the digraph is connected. To show that it is not strongly

connected, consider any final equilibrium state. From these states, there is no pursuer

action that can take the evader from the boundary of the two dimensional space into the

interior.

Some additional properties of the pursuer-evader digraph are given below:

1. The number of nodes that are adjacent from a node representing an equilibrium state

depends on the location of the pursuer position in the grid. There are the following

three possibilities on the number of adjacent states.

a) There are eight states adjacent from the equilibrium state node if the pursuer

position is in the interior. Only seven out of the eight are allowed since pursuer

and evader are not allowed to have the same location.

 101

b) There are five states adjacent from the equilibrium state node if the pursuer

position is in the side but not in a corner. This can become four if one of the five

is taken by the evader.

c) There are three states adjacent from the equilibrium state node if the pursuer

position is in the corner. This can become two if one of the five is taken by the

evader.

2. The number of nodes that are adjacent from a node representing a non-equilibrium

state is either one or two. The state adjacent from the non-equilibrium node can be

another non-equilibrium node or an equilibrium node. An example is shown in

Fig.6.5.

0
 0

1

2

2

1

D

S

Before

0
 0

1

2

2

1

D

S

After

Fig. 6.5 Adjacent states for non-equilibrium initial state

Theorem 5 (Necessary and sufficient condition for existence of value): The necessary

and sufficient condition for the existence of the value of the pursuit-evasion game

(starting at any state) as described above is that there should be no cycles completable by

the maximizing player (evader) in the digraph of the game.

Proof: If a cycle is completable by the pursuer, obviously, it will not complete the cycle

during a game, since going into a cycle would increase the cost. On the other hand, if the

evader can complete a cycle, it definitely will, since that will increase the cost and in fact

make the cost to go to infinity. The reason for this is that, the control actions (of the

pursuer as well as the evader) are constrained to be functions of the current state alone.

Therefore, whatever action is taken by the evader at the state, where the cycle can be

P

E

E

P

 102

completed, that action will be repeated every time that same state is reached. Following

the same logic, the states that were visited during the first traversal of the cycle will be

repeated infinitely many times. Therefore, the total cost in that case will be infinite, and

therefore, no value will exist for the game for all the states. It is a necessary condition,

because since if cycles are present there are states for which there are no values. It is also

a sufficient condition, because the total number of states in the system is infinite.

Theorem 6: The lower and upper values of the game are the same.

Proof: This is true because the set of all the states can be decoupled into two subsets, one

subset containing the states that can be followed by pursuer action, and the other subset

containing the states that can be followed by evader action. Therefore, for any initial

state, the sequence of the pursuer and the evader actions is fixed. Therefore, the lower

and upper values are the same, since changing the min operation before max or vice versa

does not affect the value.

6.4. Topology of the Game and the Associated Properties

Let X be the set of all the states of the system. We define a real-valued function d on

XX × for all the ordered pairs of X [52]. The function d is an anti-symmetric metric or a

distance function and satisfies the following axioms. For every Xcba ∈,,

axiom 1) 0),(≥bad and d(a,a)=0

axiom 2)),(),(),(cbdbadcad +=

For the pursuer-evader game we are studying, we define a cost distance function

),(baδ to be the cost that takes the game to evolve from state a to state b where the cost

has been minimized by the pursuer and maximized by the evader. Let the set 0 be the

subset of X containing all the final equilibrium states.

Definition 5 : The cost distance between a point Xx∈ and a subset A of X is given by

}:),(inf{),(AaaxAx ∈= δδ

 103

We define d(a,b) as

),(),(),(00 babad δδ −=

Definition 6 : The anti-symmetric distance between a point Xx∈ and a subset A of X is

given by

}:),(inf{),(AaaxdAxd ∈=

Fig. 6.6 Representation of the points of the set on a real line based on d(x,0)

Fig. 6.6 shows how the points of the set X can be represented on a real line based on the

distances from the final equilibrium set 0. Notice that on the real line, the sets occupy the

positions of non-negative integers only. Notice also that there can be multiple points on

the same location. Notice that the function d(a,b) as we defined satisfies the two axioms

of a distance.

We can define an open sphere in order to develop a topology for the problem. For any

point Xx∈ and any real number r>0, we define an open ball as:

}),(:{),(rxydyrxB <=

Lemma 1: Let B be an open ball with center a and radius r. For every point ,Bb∈ there

exists an open ball C centered at b, so that C is contained in the ball B.

Proof: There can be various different possibilities for the ball. In one case the ball might

contain no points of the set X, or it may contain one or more points. We will proceed

with the proof analyzing the various possibilities as follows:

1. Ball containing no points of X:

0 1 2

 104

Fig. 6.7 Ball containing no points of the set X.

For this case, the lemma is satisfied in a trivial manner, since the ball contains

no points of the set X.

2. Ball containing only one positive integer when represented on a real line:

Fig. 6.8 Ball containing only one positive integer when represented on a real line.

In this case, the ball might contain multiple points, but all the points are

located at the same location on the real number line. Therefore, it is very easy

to find a ball centered at these points that is contained in the ball B.

3. Ball containing multiple positive integers when represented on a real line:

This case can also be represented on the real line. In this case we can again

easily construct balls around each of the integer locations contained in the ball

B, so that those balls are also contained in B.

Lemma 2: Let 1B and 2B be two open balls and x be a point belonging to both, such that

21 BBx ∩∈ . Then, there exists an open ball xB centered at x, such that

21 BBBx x ∩⊂∈ .

B

B

0 1 2

0 1 2

 105

Proof: To obtain the proof, let us consider the real line representation as shown in Fig.

6.9.

Fig. 6.9 A point belonging to two balls.

Let 1B and 2B be two open balls and x be a point belonging to both, such that

21 BBx ∩∈ as shown in Fig. 6.9. Since 1Bx∈ , according to Lemma 1, there exists a

ball B*1 centered at x that is contained in B1. Similarly, since 2Bx∈ , according to

Lemma 1, there exists a ball B*2 centered at x that is contained in B2. Now, we have two

concentric balls, B*1 and B*2 . Therefore, one should be contained in the other. In this

example, we take B*2 contained in B*1. Therefore, we have obtained B*2 as xB centered

at x, such that 21 BBBx x ∩⊂∈ .

Theorem 7: The class of open balls in set X of all the states of the game with the

function d is a base for a topology on X.

Proof: Lemma 1 and Lemma 2 combined applied to Theorem 6.1 in [52] proves this

theorem.

We define a norm in a slightly different way than the standard norm definitions to deal

with different structure of the problem.

Definition 7 (Norm): Norm on X is a function that assigns to each member x of X a real

value x and follows the following axiom.

B1

0 1 2

B2
B*2

 106

axiom 3: 0≥x and 0=x iff x is a final equilibrium state

Theorem 8: The function d(x,0) is a norm function. From now on we denote this

function as d(x). Note that this function is the same as the value function)(xµωV when

the policies µ and ω have been applied.

Proof: Axiom 3 is satisfied by using the function definition in axiom 1.

Theorem 9(Lyapunov-like Theorem): When the policies µ and ω have been applied to

the pursuit evasion game, and starting from any initial state x(0) if

0))(())1((<−+ kxdkxd if 0)(≠kx

then 0∈∃)(.., TxtsT

Proof: Since there are only finite number of states, the system will keep traversing

through different states (via the available links) in order to reduce d(x(k). In finite

number of steps, the system will reach the 0 set.

Theorem 10(Boundedness Theorem): When the policies µ and ω have been applied to

the pursuit evasion game, and starting from any initial state x(0) if

0))(())1((≤−+ kxdkxd if 0)(≠kx

then;

))0(())((, xdkxdk ≤∀

Dynamic programming solution to obtaining the pursuer and the evader policies can be

presented as the solution of the following problem:

Problem Statement 2: Find the policies *µ and *ω . that produce the following function:

))](())1((2[maxmin))((* kxdkxdkxd −+=
ωµ

This problem statement is same as the problem statement 1. This will be restated in the

standard dynamic programming terminology in the next section of this paper.

 107

6.5. Dynamic Programming Solution to the NxN Grid Pursuer-Evader Herding

Problem

The dynamic programming solution is based on Bellman's equation, which for our

problem would look like the following:

))}1((),({maxmin))((*

)()(

* ++=
∈∈

kVwuckV ixwu
xx

x ωµ

This equation indicates how the feedback pursuer and evader can make decisions once

the value function is available. The pursuer and the evader use the same function. This

equation can also be used to find the value function using the boundary conditions from

the problem. Small-scale problems can be solved by hand, but for large scale ones, a

computer program can be written to apply the dynamic programming algorithm. The

algorithm is applied similar to the problem of Fig 1.4 in [27].

6.6. Simulation Software

We have developed a Multiple Document Interface (MDI) windows application using

Visual Basic for performing experiments. This software is available by sending an email

to the first author of the paper. This program allows us to run many simulations at the

same time, in different modes. The three different modes are (a) automatic, (b) user-

assisted, and (c) manual.

In the automatic mode, the simulation runs by itself once started. We just observe the

behavior of the pursuer and the evader. The simulation stops when the evader has

reached its final position. In the user-assisted mode, the user needs to click “Next

button” to make the evader or the pursuer move one step. This option allows more time to

the user to - for example - think about the problem between consecutive moves. Finally

in the manual mode, the user is controlling the pursuer and the evader movements using

drag and drop.

 108

The software produces a printable text history of the evader and pursuer moves as shown

in Fig. 6.10.
Automatic Mode running ...

1) Evader (2, 2) --> (2, 2)

2) Pursuer (1, 1) --> (1, 2)

3) Evader (2, 2) --> (2, 1)

4) Pursuer (1, 2) --> (1, 2)

5) Evader (2, 1) --> (2, 0)

6) Pursuer (1, 2) --> (2, 1)

7) Evader (2, 0) --> (1, 0)

8) Pursuer (2, 1) --> (2, 1)

9) Evader (1, 0) --> (0, 0)

Evader has reached the home (0,0)

Simulation Ends ...

Fig. 6.10 Text Description of a Simulation Run

This simulation run can be graphically represented as shown in Fig. 6.11.

0
 0

1

2

2

1

D

S

D

S

Fig. 6.11 Representation of a simulation run

 109

6.7. Conclusion

In this chapter we studied a class of pursuit evasion problems that is different than the

traditional problems in that the aim of the pursuer is to force the evader into a pen. We

studied the properties of the problem and formulated the dynamic programming solution

for the problem. We also presented a software package that has been developed to

experiment with the problem.

 101

References

1. Geoffrey F. Miller and Dave Cliff, “Technical Report” CSRP311, Aug. 1994.

2. Futuyama_ D. J. & Slatkin M. (Eds), ” Co-evolution” Sinauer, Sunderland,

Massachusetts,1983.

3. Driver P., & Humphries N. “ Protean behavior; The biology of unpredictability”

Oxford University Press, , 1988.

4. Dawkins R. &Krebs J.R., “Animal Signals; Information or Manipulation!”, In Krebs

J. R.& Davies N. B. (Eds) “Behavioral ecology; An evolutionary approach”, pp: 282-

309, Blackwell Scientific Oxford, 1984.

5. Harper D. “Communication”. In Krebs J. R. Davies N. B. (Eds) “Behavioral ecology;

An evolutionary approach” third edition, Blackwell Scientific Press, Oxford, 1993.

6. Endler J. “Interactions between predators and prey” In Krebs J. R. Davies N. B. (Eds)

, “Behavioral ecology; An evolutionary approach” 3rd Ed, pp 169-196., Blackwell

Scientific, 1991.

7. Fagen R. , “Animal play behavior” Oxford U Press, 1981.

8. Hoyle G. “The scope of Neuroethology; Behavioral and Brain Sciences” 7, 367-412,

1984.

9. (e.g. Camhi, 1988; Krasne & Wine, 1987; Eaton, 1984) Camhi_ J. M. & Levy A.

“Organization of a complex movement Fixed and variable components of the

cockroach escape behavior”, Journal of Comparative Physiology; A Sensory Neural

and Behavioral Physiology, 163 (3), 317-328.

10. Krasne F. &Wine J., “ Evasion responses of the crayfish” In Guthrie D. M.(Ed) Aims

and Methods in Neuroethology, Manchester Univ. Press, 1987.

11. Yavin Y. & Pachter M. (Eds.) “Pursuit Evasion Differential Games”, Pergamon

Press, 1987.

12. Isaacs R. The past and some bits of the future In Grote J.(Ed), “The Theory and

Application of Differential Games”, pp 1-11, D. Reidel, 1975.

13. Richard S. Sutton and Andrew G. Barto, “Reinforcement Learning:An Introduction”

MIT Press, Cambridge, MA, 1998,A Bradford Book.

 102

14. von Neumann J. Morgenstern “Theory of Games and Economic Behavior”, Princeton

University Press, 1944.

15. Fudenberg D. & Tirole J., “Game Theory”, MIT Press, 1991.

16. Brogan W. L., “Modern Control Theory”, Prentice Hall, 1991.

17. Berkovitz L. D., “Two Person Zero Sum Differential Games; An overview”, In Grote

J. D. (Ed) “The theory and Application of Differential Games”, pp:12-22, D. Reidel,

1975.

18. Rapoport A. “Two Person Game Theory”, University of Michigan Press, 1966.

19. Ermolov A., Kryakovskii B. and Maslov E., “ Differential Game with mixed

strategies”, Automatika i Telemekhanika, 47 (10), pp:1336-1349, 1986.

20. Houston A. and McNamara J. “Singing to attract a mate; A stochastic dynamic

game”, J. Theoretical Biology, 129, 57-68.

21. Clark C. W. and Ydenberg. R. C., “The risk of parenthood” I. general theory and

applications. Evolutionary Ecology, 4 (1), pp:21-34, 1990.

22. Rodin E. Y., Lirov Y., Mittnik, S., McElhaney B. G., and Wilbur L., “ Artificial

intelligence in air combat games”. In Yavin Y. and Pachter M. (Eds) “Pursuit

evasion differential games”, pp: 261-274 , Pergamon Press, 1987.

23. Joao P. Hespanha, Hyoun Jin Kim, and Shankar Sastray, “Multiple Agent

Probabilistic Pursuit Evasion Games” Proceeding of the IEEE 38th conference on

design and control, Phoenix, Arizona, USA, 1999.

24. Joao P. Hespanha, Maria Prandini, and Shankar Sastray, “Probabilistic Pursuit

Evasion Games; A One Step Nash Approach” Proceeding of the IEEE 39th

conference on design and control, Sydney, Australia, 2000.

25. Tuoxas Raivio, and Harri Ehtamo, “Applying Non-linear programming to a Complex

Pursuit Evasion Problem”, IEEE transaction on Automatic Control, 1997.

26. Boris Stilman, “Heuristic Networks for Concurrent Pursuit Evasion Systems”, IEEE,

1995.

27. Pushkin Kachroo, SamyA. Shedied, J. S. Bay, and Hugh Vanlandingham, "Dynamic

Programming Solution for a Class of Pursuit Evasion Problems: The Herding

Problem," IEEE Trans. Systems, Man and Cybernetics, Part C, Feb., 2001.

 103

28. Pushkin Kachroo, Samy A. Shedied, and Hugh Vanlandingham “Pursuit Evasion:

The Herding Non-cooperative Dynamic Game,” Transactions of SDPS, (to be

published).

29. Pushkin Kachroo, Samy A. Shedied, and Hugh Vanlandingham “Pursuit Evasion:

The Herding Non-cooperative Dynamic Game: The Stochastic Model,” IEEE Trans.

Systems, Man and Cybernetics, Part C (to be published).

30. Rufus Isaacs, “Differential Games: A Mathematical Theory with Application to

Warfare and Pursuit Control and Optimization”, Dover Publications Inc., NY, , 1965.

31. Berkovitz, L. D. and W. H. Flemming, “A Variational Approach to Differential

Games,” Annals of Mathematics Study 39, Princeton University Press, Princeton, N.

J. 1957.

32. Sutton, Richard S., and Barto, Andrew G, "Reinforcement Learning: An

Introduction," M.I.T. Press, 1999.

33. George M. Ewing, Calculus of Variations with Applications, Dover Publication Inc,

1969

34. Frank L, Lewis, Vassilis L. Syrmos, Optimal Control, New York : J. Wiley, c1995.

35. George Leitmann., The calculus of variations and optimal control : an introduction,

New York : Plenum Press, c1981.

36. J. J. E. Slotine and Weiping Li, Applied Nonlinear Control, Prentice Hall, 1990.

37. Jean-Paul Laumond, Robot Motion Planning and Control, Springer, 1998.

38. A. Bellaiche, J.P. Laumond, and J. Jacobes, “Controllability of Car Like Robots and

Complexity of Motion Planning Problem”, International Symposium on intelligent

Robotics, 322-337, Banagalore, India, 1991.

39. W. L Chow “Uber Systeme von Linearen Partiellen Differentialgleichungen erster

Ordnung,” Math Ann., 117, 98-115,1940.

40. Leslie Pack Kaelbling Michael L. Littman , “Reinforcement Learning: A Survey”,

1996

41. Mance E. Harmon, Stephanie S. Harmon, “Reinforcement Learning: A Tutorial”,

Wright State University, 1999.

42. R. E Bellman, “Dynamic Programming”, Princeton University Press, Princeton 1969.

 104

43. Leon Cooper, and Marry W Cooper, “Introduction to Dynamic Programming”, 1981,

Pregamon Press Ltd.

44. S.E. Dreyfus, and L.G. Mitten, “Elements of Sequential Decision Process”, Journal of

Industrial Engineering, 18, 106-112, 1965.

45. R.M. Karp, and M. Held, “Finite State Process and Dynamic Programming’, SIAM

Journal of Applied Mathematics, 15, 693-718, 1967.

46. Dimitri P. Bertesekas, “Dynamic Programming and Optimal Control”, Vol 1Athena

scientific , Belmont, Massachusetts, 1995.

47. Dimitri P. Bertesekas,” Linear Network Optimization; Algorithms and Codes”, MIT

press, MA, 1991.

48. Dimitri P. Bertesekas,” The Auction Algorithms for Shortest paths”, SIAM journal on

optimization, Vol. 1, pp 425-447.

49. T. H. Cormen, C. E. Lieserson, and R. L. Rivest, “Introduction to Algorithms”, MIT

press, 1998.

50. Basar Tamer, and Olsder Greet Jan, “Dynamic non-cooperative Game Theory”, 2nd

Ed., Academic Press, 1987.

51. A. Kaufmann, Graphs, Dynamic Programming, and Finite Games, Academic Press,

New York, 1967.

52. V. K. Balakrishnan, Introductory Discrete Mathematics, Dover Publications, Inc.,

New York, 1991.

53. Lipschutz, Seymour, General Topology, McGraw Hill, 1965.

VITA

Samy A Shedied was born in El-Bagour Menofia, Egypt on

the 4th of September 1968. He received a Bachelor of

Science degree in electrical engineering from MTC in

Cairo, Egypt in 1990. After graduation, he joined the

teaching staff of the MTC and was employed as a lecturer

assistant while working toward his master degree. Mr.

Shedied received his Master of Science degree in 1996. He

was awarded a scholarship to continue his academic career and joined Virginia

Polytechnic Institute and State University (Virginia Tech) in August 1998 to get the PhD

in Electrical Engineering. Since August 1998, Mr. Shedied has been a member of the

Multi-Agent Biological Learning (MABL) group in the Bradley Department of Electrical

and Computer Engineering in VA Tech. On his track to get the PhD degree, he received a

Master of Science degree in Mathematics form Virginia Tech in Aug. 2001. As a member

of the MABL group, Mr. Shedied was involved in the design and development of optimal

control policies for dynamic systems and pursuit evasion games.

His research interests include speech recognition and enhancement, robotics, systems and

control, and digital signal processing.

	Title
	Abstract
	Table of Contents
	Chapter 1, Pursuit Evasion: Objectives and Technique
	1.1. Introduction
	1.2. Typical pursuit and evasion behaviors
	1.3. Foundations of the Game Theory
	1.4. The optimality of mixed strategies
	1.5. Reasons to simulate pursuit-evasion games
	1.6. Review of Some Previous Simulation and Robotics Work
	1.7. Summary and Dissertation Overview

	Chapter 2,Optimal Trajectory for a Class of Pursuit Evasion Games: The Continuous Time Herding Problem
	2.1. Introduction
	2.2. Basic Principles and Theories of Calculus of Variations
	2.2.1. Definitions and Concepts
	2.2.2. Existence of Solutions
	2.2.3. Necessary Conditions
	2.2.4. Sufficient Condition

	2.3. System Model
	2.4. Solving for Optimal Trajectory
	2.5. Simulation Results
	2.5.1. Impulsive versus smooth solution

	2.6. Conclusion

	Chapter 3,Feedback Control for the Optimal Pursuit-Evasion Trajectory
	3.1. Introduction
	3.2. Basic Principles of Non-holonomic Motion Planning
	3.2.1 Controllability of Non-holonomic Systems

	3.3. Feedback Control Design for the Optimal Pursuit-Evasion Trajectory
	3.4. Simulation Results
	3.5. Conclusion

	Chapter 4, The Discrete Deterministic Model
	4.1. Introduction
	4.2. Dynamic Programming Principles
	4.2.1. Dynamic Programming Basic Theory and Functional Equations
	4.2.2. Deterministic Dynamic Programming Algorithm

	4.3. A NxN Grid Pursuer-Evader Problem
	4.4. Properties of the Digraph Associated with the Pursuer-evader Problem
	4.5. Proposed Techniques of Solution to the NxN Grid Pursuer-Evader Problem
	4.5.1. Algorithm based on Dijkstra's Shortest Path Solution
	4.5.1.1. Modified Dijkstra’s 1
	4.5.1.2. Modified Dijkstra’s 2

	4.5.2. Direct Dynamic Programming Solution

	4.6. Simulation Results
	4.7. Summary

	Chapter 5, Pursuit Evasion: The Stochastic Model
	5.1. Introduction
	5.2. Principles of Stochastic Dynamic Programming
	5.3. An NxN Stochastic Pursuit Evasion Problem
	5.3. Properties of The Stochastic Digraph Associated with the Pursuer-Evader Problem
	5.4. Problem Statement
	5.5. Methods of Solution
	5.6. Simulation Results
	5.7. Summary

	Chapter 6, Pursuit Evasion: The Herding Non-cooperative Dynamic Game
	6.1. Introduction
	6.2. A N× N Grid Pursuer-Evader Herding Problem
	6.3. Properties of the Diagraph Associated with the Pursuer-Evader, Herding Problem
	6.4. Topology of the Game and the Associated Properties
	6.5. Dynamic Programming Solution to the NxN Grid Pursuer-Evader Herding Problem
	6.6. Simulation Software
	6.7. Conclusion

	References

