
Chapter 2

Governing Equations

As it can be seen in Figure 1.3, the diaphragm has a variable thickness, but small compared

with the other dimensions. This suggests that shell theory might be suitable to formulate

the problem. However, since the problem is complex, and we have made already some

assumptions in Chapter 1, and because the thickness of the diaphragm is variable, we will use,

as basis for analyzing the diaphragm deformation, Continuum Mechanics three-dimensional

geometrically exact theory. In this chapter we will review some basic relations solid mechanics

and we will define in terms of equations the diaphragm problem. A few constitutive models

for rubber will also be discussed.

2.1 Deformation, strain and stress measures

Following [40] we consider a continuum body S. The initial or reference configuration of the

body is defined by the map

ΠR : S −→ ΩR ⊂ <
3, (2.1)
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which associates a physical point in S with a point X = (X1, X2, X3) in ΩR. Similarly, the

deformed or present configuration of the body is defined by the map

Π : S −→ Ω ⊂ <3, (2.2)

which associates to any material point in S a point in Ω. The domain ΩR can be viewed

as the domain occupied by the body in the reference configuration, and the domain Ω the

domain occupied by the body in present configuration. Usually, in applications, by reference

configuration it is understood ΩR, and by present configuration Ω. We will use this notation.

Also

ΣR = ∂ΩR = ΠR(∂S), Σ = ∂Ω = Π(∂S),

where ∂S, ∂ΩR, ∂Ω define the boundary of the body, the boundary of ΩR, and the boundary

of Ω respectively. Using the definitions (2.1) and (2.2), the deformation of the body is defined

by the one-to-one mapping

χ = Π ◦ Π−1
R , χ : ΩR −→ Ω, χ (X) = x.

The inverse map χ−1 is defined

χ−1 = ΠR ◦ Π
−1, χ−1 : Ω −→ ΩR, χ−1 (x) =X.

The tangent of χ is denoted by F and is called the deformation gradient [40]

FiA =
∂χi(X)

∂XA

=
∂xi
∂XA

, J = detF , (2.3)

and J , the determinant of F is called the jacobian of the transformation. Because the

deformation χ can be determined up to a rigid body motion, it can be written

χ =X +U ,

where U represents the displacement field. Associated with the deformation gradient, two

important tensors are defined [40]:

• right Cauchy-Green tensor
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C = F TF , CAB = FiAFiB, (2.4)

• left Cauchy-Green tensor

B = FF T , Bij = FiAFjA. (2.5)

For the right Cauchy-Green tensor, the principal invariants are defined

I1 = trC, I2 =
1

2

[

(trC)2 − trC2
]

, I3 = det[C] = J2, (2.6)

I1 = CAA, I2 =
1

2
(CAACBB − CABCAB) , I3 = εABCCA1CB2CC3,

where εABC is the permutation tensor

εABC =



























+1 for even permutation of A,B,C

−1 for odd permutation of A,B,C

0 forA = B,B = C,A = C

Corresponding to each tensor (2.4) and (2.5), the following measures for strain can be defined:

• Green-Lagrange tensor

E =
1

2
(C − I) , EAB =

1

2
(CAB − δAB) , (2.7)

• Almansi tensor

ε =
1

2

(

I −B−1
)

, εij =
1

2

(

δij −B−1
ij

)

. (2.8)

Between the Green-Lagrange strains and the Almansi strains the following relation exists

E = F TεF , EAB = FiAεijFjB. (2.9)

The concept of stress in the body is introduced through the Cauchy’s postulate [40]. We

denote by σ the Cauchy stress tensor, which is the true stress in the body. Additional stress

measures can be defined.
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• The first Piola-Kirchhoff stress tensor P

P = Jσ
(

F−1
)

T

, PiA = JσijF
−1
Aj . (2.10)

• The second Piola-Kirchhoff stress tensor S

S = F−1P , SAB = F−1
Ai PiB. (2.11)

While, the first Piola-Kirchhoff stress tensor is unsymmetric, the Cauchy stress and the

second Piola-Kirchhoff stress are symmetric

σ = σT , σij = σji, (2.12)

S = ST , SAB = SBA. (2.13)

The relation between the first Piola-Kirchhoff stress tensor and the second Piola-Kirchhoff

stress tensor is given by

σ =
1

J
FSF T , σij =

1

J
FiASABFjB. (2.14)

For a given problem different strains and stress measures can be used. However, it is natural

to consider the stresses and the strains as conjugate quantities in the sense that their product

gives mechanical work [5]. It follows that the Cauchy stress works with the Almansi strain,

and the Green-Lagrange strain works with the second Piola-Kirchhoff stress tensor. Indeed,

if we consider the deformation energy

∫

Ω
σ : ε dΩ =

∫

ΩR

J
1

J
F TSF : ε dΩR =

∫

ΩR

S : F TεF dΩR =
∫

ΩR

S : E dΩR,

the above assertions become clear.

2.2 Hyperelastic materials

The relation between stress and strain is given by a constitutive equation. Several types of

constitutive equations can be formulated [40]. Since the problem addressed by this thesis
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involves a body made from rubber, we will focus on the category of hyperelastic materials,

which are usually used to model rubber. A material is called elastic if the first Piola-

Kirchhoff stress tensor (2.10) at a point in the body can be expressed as a function of only

the deformation gradient at that point [40]. A material is called hyperelastic if there is a

stored energy function W depending on X,F with J = det[F ] > 0 such that

P =
∂W

∂F
. (2.15)

The function W must satisfy the principle of frame indifference or objectivity

QW (X,F )QT = W (X,QF ) ,

where Q is an orthogonal rotation matrix. Using the orthogonality condition QQT = I

where I is the 3× 3 identity matrix

W (X,QF ) = W (X,F ) . (2.16)

The condition (2.16) means that, if we rotate the reference configuration system, then the

stress must transform by the same rotation. The frame indifference principle implies also

the symmetry of the stress tensor. Using the polar decomposition theorem it can be shown

that the principle of frame indifference principle also implies that the W depends implicit of

F through C [40]. Hence the relation (2.15) can be written in the different form

S = 2
∂W

∂C
=
∂W

∂E
, SAB = 2

∂W

∂CAB

=
∂W

∂EAB

. (2.17)

An elastic material is isotropic if

P (X,FQ) = P (X,F ) .

In the case of hyperelastic materials the isotropy condition is equivalent to

W (X,FQ) = W (X,F ) .

By combining the frame indifference principle with isotropy it can be shown that a hypere-

lastic material is frame indifferent, homogenous and isotropic if and only if [40]

W (X,F ) = Φ (λ1, λ2, λ3) , (2.18)
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where Φ is a symmetric function of the principal stretches λ1, λ2, λ3. The equivalent condition

of (2.18) is that W = W (I1, I2, I3) where I1, I2, I3 are the principal invariants of C. The

second Piola-Kirchhoff stress tensor then can be written

S = 2

(

∂W

∂I1

∂I1
∂C

+
∂W

∂I2

∂I2
∂C

+
∂W

∂I3

∂I3
∂C

)

,

and using the relations [56]

∂I1
∂C

= 1,
∂I2
∂C

= I11−C,
∂I3
∂C

= I21− I1C +C2 = I3C
−1,

where 1 is the second order unit tensor, (1)AB = δAB, δAB = 1 for A = B and δAB = 0 for

A 6= B we obtain

S = 2

[(

∂W

∂I1
+ I1

∂W

∂I2
+ I2

∂W

∂I3

)

1−

(

∂W

∂I2
+ I1

∂W

∂I3

)

C +
∂W

∂I3
C2

]

.

Having S, the Cauchy stress can be determined using (2.14). In addition, another important

tensor defined here is the forth order material tensor C. By definition [40]

C =
∂S

∂C
, CABCD =

∂SAB

∂CCD

, (2.19)

and using the stored energy function

C = 2
∂2W

∂C∂C
=

∂2W

∂E∂E
, CABCD = 2

∂2W

∂CAB∂CCD

=
∂2W

∂EAB∂ECD

. (2.20)

From the definition (2.19) and based on the symmetry of S and C, it follows that

CABCD = CBACD = CABDC = CCDAB. (2.21)

The expresion of the material tensor C in present configuration c is given by

cijkl =
1

J
FiAFjBFkCFlDCABCD. (2.22)

2.3 Equations of motion

Using the balance of momentum, the equations of motion in the reference configuration are

DIVP = ρRÜ , PiA,A = ρRÜA, in ΩR, (2.23)
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where ρR is the material density in the reference configuration and Ü the acceleration. In

the present configuration the equation of motions are given by [40]

divσ = ρÜ , σij,j = ρÜi, in Ω, (2.24)

where ρ is the material density in the present configuration. In (2.23), by UA we understand

the displacements expressed in reference configuration and in (2.24) by Ui the same displace-

ments but expressed in the present configuration. The balance of moment of momentum

yields to the symmetry of the stress tensor

FP T = PF T , FiAPjA = PiAFjA,

in reference configuration, and

σ = σT , σij = σji

The conservation of mass gives the relation between ρR and ρ

ρR = Jρ. (2.25)

The boundary conditions in the reference configuration are

U = U , on ΣRU , P ·N = T , on ΣRT , (2.26)

and the same boundary conditions written in the present configurations are

U = U , on ΣU , σ · n = T , on ΣT , (2.27)

where

ΣR = ΣRU ∪ ΣRT , Σ = ΣU ∪ ΣT

define the surface of the body in reference and present configurations respectively, and N ,

n are the normals to the boundary ΣR, and respectively Σ. U abd T , are the prescribed

displacements and prescribed tractions respectively. The initial conditions for the equation

(2.23) or (2.24) are

U |t=0 = U 0, U̇
∣

∣

∣

t=0
= V 0,
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where U 0, V 0 are the initial displacements and velocities. The equations of motion together

with the boundary conditions and the initial conditions, at which we add a set of geometrical

equations defining the strain, (2.7) or (2.8), and a constitutive equation (2.17), form a

system of nonlinear equations. Solving this system directly is very difficult. In practice the

procedure is to linearize the equations of motion and the boundary conditions, and to solve

the linearized system. This leads to an incremental approach.

2.3.1 Linearization

Applying the linearization procedure as described in section 3.6 at the configuration
◦

χ to

the equation of motion (2.23) yields [40]

DIV

[

◦

P +

(

◦

S ⊗1 + 2
◦

F
◦

C
◦

F
T
)

·GRADu

]

= ρR

(

◦

A +ü
)

, (2.28)

where
◦

A is the acceleration at the configuration
◦

χ, and u represents the increment of dis-

placements which has to be determined and GRADu is the gradient of u in the reference

configuration, see section 3.6.

GRADu = (5u ◦ χ)F = 5u · F , (5u)ij =
∂ui
∂xj

.

The corresponding form of (2.28) in the present configuration

div
[

◦

σ +
(

◦

σ ⊗1+
◦

c
)

· 5u
]

= ρ
(

◦

A +ü
)

. (2.29)

In (2.28) and (2.29) 1 defines the second order unit tensor, and ⊗ is the symbol for the

direct product, i.e. (a ⊗ b)ijkl = aijbkl. C and c represents the material tensor written in

the reference and present configuration respectively related by (2.22). The application of the

linearization process to the boundary conditions (2.26) respectively (2.27) yields

u = U−
◦

U , on ΣRU ,

[(

◦

S ⊗1 + 2
◦

F
◦

C
◦

F
T
)

·GRADu

]

·N = T−
◦

P ·N , on ΣRT ,
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in the reference configuration, and

u = U−
◦

U , on ΣU ,

[(

◦

σ ⊗1+
◦

c
)

· 5u
]

· n = T−
◦

σ ·n, on ΣT ,

in the present configuration. If the configuration
◦

χ is a natural (stress free) state, then the

first linearization gives the equations of linear elasticity. The linearized equations (2.28) or

(2.29) can be solved using the methods of linear elasticity. The total applied load can be

divided in a number of steps, and the solution can be obtained step-by-step, the new solution

being determined from the previous one. In Chapter 3 we will review the linearization process

in details but for a weak formulation of the problem.

2.4 Additive and multiplicative deformation decompo-

sition

An essential part in the finite element model, which will be presented in Chapter 3, is

related to decomposition of the deformation energy into volumetric deformation energy and

deviatoric deformation energy. To clarify this idea, let us consider the case of linear elasticity.

In this case it is known that the strain tensor can be written as a sum between its spherical

and deviatoric part

ε = ε̃+
1

3
Θ1, ε̃ = ε−

1

3
Θ1, Θ = tr ε, tr ε̃ = 0, (2.30)

where

ε = 5s u, 5s u =
1

2

[

5u+ (5u)T
]

, trε = εkk. (2.31)

Further let suppose the isotropic case. The deformation energy can be written in this case

W = Gε̃ : ε̃+KΘ2, G =
E

2(1 + ν)
, K =

E

3(1− 2ν)
, (2.32)
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where E is the Young’s modulus, G the shear modulus, ν the Poisson’s coefficient, and K

the bulk modulus. It can be seen that the energy can be split in two parts: a part which is

due to the change in shape, and a part which is due to the change in the volume of element

of the body. In other words the energy can be decomposed, in a deviatoric and volumetric

part

W (ε) = U(Θ) + W̃ (ε̃), U(Θ) = KΘ2, W̃ (ε̃) = Gε̃ : ε̃. (2.33)

Generalizing this concept of strain splitting and energy decoupling in nonlinear elasticity,

Simo, Taylor and Pister [49] and Simo and Taylor [50] introduce the following decomposition

of the deformation gradient

F = F volF̃ , F vol = J1/31, F̃ = J−1/3F , C = J2/3C̃, C̃ = F̃
T
F̃ . (2.34)

From the construction (2.34), it is clear that

det[F vol] = J, det[F̃ ] = 1.

We note here the difference between (2.30), where there is an additive decomposition, and

(2.34), where there is a multiplicative split. The corresponding expression (2.33) can be

written in this case

W (X,C) = U(J) + W̃ (X, C̃). (2.35)

Equation (2.35) will be used in the finite element formulation in Chapter 3.

2.5 Rubber models

In section 2.3 we have presented the equation of motion assuming that the material is

hyperelastic. A class of materials widely associated with the hyperelastic behavior is the

class of rubber materials. Based on thermodynamic considerations it can be shown [55] that

for rubbers there is a stored energy function such that the equations (2.17) hold. Therefore

the rubber materials are considered belonging to the class of hyperelastic materials. In this
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thesis we will consider only the case of homogenous, isotropic hyperelastic materials and we

will use these models to describe the material response of the diaphragm. The behaviour

of rubber materials is characterized by the fact that the volume deformation is negligible

compared to shear deformation. This leads to the third invariant of the right Cauchy Green

tensor (2.6) I3 = det[C] → 1 and Poisson’s ratio ν → 0.5. The case det[C] = 1, ν = 0.5

corresponds to fully incompressible material. There are many forms of the stored energy

function proposed in the literature [55]. We can divide these functions into two categories.

• Fully incompressible models

I3 = det[C] = 1, and ν = 0.5. (2.36)

• Quasi incompressible models

I3 = det[C]→ 1, and ν → 0.5. (2.37)

2.5.1 Fully incompressible models

In this case I3 = 1 and consequently the stored energy function W = W (I1, I2). A widely

used expression for W is the polynomial form [55]

W =
∞
∑

i=0,j=0

Cij(I1 − 3)i(I2 − 3)j,

where Cij are constants determined from experiments. For different values of i, j different

models can be obtained [55]. We mention here two models

Neo-Hookeean model In this case j = 0, i = 1.

W = C10(I1 − 3).
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Mooney-Rivlin model In this case j = 1, i = 1.

W = C10(I1 − 3) + C01(I2 − 3). (2.38)

An important point in establishing the form of W has been made by Ogden [43], who

proposed for W a series expansion in the principal stretches

Ogden model

W =
∑

n

µn

αn

(λαn

1 + λαn

2 + λαn

3 − 3) ,

in which λi are the principal stretches, αn may have any values, positive or negative not

necessary integers and µn are constants.

2.5.2 Quasi incompressible models

These models are obtained from the fully incompressible models by relaxing the conditions

(2.36) to the conditions (2.37). This leads to slight compressibility but makes the model more

suitable for numerical calculations. The condition (2.37) becomes an internal constraint and

can be introduced by the Lagrange multiplier, penalty method or augmented lagrangean

method [12]. In Chapter 3 we will describe the introduction of (2.37) in the finite element

analysis, and therefore we present below some models implemented in the finite element

programs used for our analysis.

Mooney-Rivlin (DYNA3D) In DYNA3D the model is based on the work of Whirley,

Engelman and Maker cited from [2]. The strain energy density function in DYNA3D is

defined as

W = A(I1 − 3) +B(I2 − 3) + C

(

1

I23
− 3

)

+D(I3 − 1)2,

where A and B are empirical coefficients determined from experiments,

C =
1

2
A+B, D =

A(5ν − 2) +B(11ν − 5)

2(1− 2ν)
,
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and ν is Poisson’s ratio. I1 and I2 are the invariants of the right Cauchy-Green tensor C

(2.6). For small strains the shear modulus of linear elasticity is given by

G = 2(A+B).

The recommendation for this material model is to be used for problems involving moderate

to large strains keeping the Poisson’s ratio 0.48 ≤ ν < 0.5.

Mooney-Rivlin (NIKE3D) This model is based on the work of Simo and Taylor and

uses the decomposition (2.35) for the stored energy function

W = A(Ĩ1 − 3) +B(Ĩ2 − 3) +
1

2
K [ln(Θ)]2 , K =

4(A+B)(1 + ν)

3(1− 2ν)
, (NIKE3D), (2.39)

where Ĩ1, Ĩ2 are the invariants of C̃ (2.34), Θ the relative volume or the volumetric deforma-

tion and K is the bulk modulus. By choosing ν → 0.5 the bulk modulus becomes a penalty

parameter, see Chapter 3. As Θ→ 1 the standard Moony-Rivlin is recovered.

Blatz-Ko model The stored energy function is defined [14]

W =
Gf

2

{

J1 − 3 +
1− 2ν

ν

[

J
−2ν/(1−2ν)
3 − 1

]

}

+

+
G(1− f)

2

{

J2 − 1− 3 +
1− 2ν

ν

[

J
2ν/(1−2ν)
3 − 1

]

}

, (2.40)

where f is an experimental parameter, and

J1 = I1, J2 = I2/I3, J3 =
√

I3.

Experimental data indicate f = 1, ν = 0.463 as a good approximation for continuum rubbers

[14]. It can be shown that for f = 1, the second Piola-Kirchhoff stress tensor is

S = G
(

1

Θ
C −Θ−1/(1−2ν)1

)

.

The Cauchy stress tensor can be calculated with (2.14).
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Figure 2.1: The diaphragm domain.

2.6 The diaphragm problem

Based on the physical observations from Chapter 1 and using the continuum equations

described in this chapter, we can formulate the diaphragm problem. The diaphragm is made

from polyurethane, which belongs to the rubber materials class, and consequently we expect

an elastic response which may be in the range of large strains. Therefore we will use the full

nonlinear theory as described in the section 2.1.

With reference to Figure 2.1, the equations (2.23) for the diaphragm problem in the reference

configuration are

DIVP = ρRÜ , PiA,A = ρRÜA, in ΩR, (2.41)

with the following boundary conditions

U = 0, on ΣU , (2.42)
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P ·N = ∆pN , ∆p = pN2
− ph on Σh. (2.43)

Admitting that the diaphragm start from zero, the initial conditions are

U |t=0 = 0, U̇
∣

∣

∣

t=0
= 0. (2.44)

To the equations (2.41), we will add the geometric equation (2.7), a constitutive law given by

(2.17) with the stored energy function of the type described in section 2.5 and an evolution

law for the nitrogen gas. We assume that the diaphragm is moving sufficiently slowly such

that at each state, the gas is able to establish its thermal equilibrium, corresponding to every

instantaneous position of the diaphragm i.e. a reversible evolution. This is true in our case

because the speed of the diaphragm is of order of mm/msec and the sound speed is of order

of mm/µsec. Also we consider that the movement of the diaphragm is sufficiently fast such

that the nitrogen is not able to exchange heat with the external medium (the diaphragm

and the walls of the accumulator) i.e. an adiabatic evolution. Therefore we can say that the

nitrogen has an isentropic evolution [36].

pV κ
N2

= constant, κ =
cp
cV
, (2.45)

where VN2
is the enclosed nitrogen volume and cp, cV are the specific heat at constant pressure

and volume respectively [36]. The link between (2.41) and (2.45) is given by the enclosed

volume of nitrogen inside the accumulator, under the diaphragm

VN2
=
∫

VN2
(u)

dV.

In conclusion the diaphragm problem is to find the solution of (2.41) with the boundary

conditions (2.42), (2.43), the initial conditions (2.44) and the evolution law (2.45). Due to

complexity of the geometry of the diaphragm and also to the equations involved we will seek

a numerical solution for this problem using the Finite Element Method.


