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Application of Augmented Reality to Dimensional and Geometric inspection 

Kyung H. Chung 
 

ABSTRACT 
 

Ensuring inspection performance is not a trivial design problem, because 

inspection is a complex and difficult task that tends to be error-prone, whether performed 

by human or by automated machines.  Due to economical or technological reasons, 

human inspectors are responsible for inspection functions in many cases.  Humans, 

however, are rarely perfect. A system of manual inspection was found to be 

approximately 80-90% effective, thus allowing non-confirming parts to be processed 

(Harris & Chaney, 1969; Drury, 1975).  As the attributes of interest or the variety of 

products increases, the complexity of an inspection task increases.  The inspection system 

becomes less effective because of the sensory and cognitive limitations of human 

inspectors.  Any means that can support or aid the human inspectors is necessary to 

compensate for inspection difficulty.    

Augmented reality offers a new approach in designing an inspection system as a 

means to augment the cognitive capability of inspectors.  To realize the potential benefits 

of AR, however the design of AR-aided inspection requires a through understanding of 

the inspection process as well as AR technology.  The cognitive demands of inspection 

and the capabilities of AR to aid inspectors need to be evaluated to decide when and how 

to use AR for a dimensional inspection.   

The objectives of this study are to improve the performance of a dimensional 

inspection task by using AR and to develop guidelines in designing an AR-aided 

inspection system.  The performance of four inspection methods (i.e., manual, 2D-aided, 

3D-aided, and AR-aided inspections) was compared in terms of inspection time and 

measurement accuracy.  The results suggest that AR might be an effective tool that 

reduces inspection time.  However, the measuring accuracy was basically the same across 

all inspection methods.  The questionnaire results showed that the AR and 3D-aided 

inspection conditions are preferred over the manual and 2D-aided inspection.  Based on 

the results, four design guidelines were formed in using AR technology for a dimensional 

inspection. 



 iii

 
 
 
 
 
 
 
 

Dedicated to my wife, Young Sun



 iv

ACKNOWLEDGMENTS 
 
 

I would like to thank my committee members for their help and advice through 

the process of completing this dissertation.  Without them, especially Dr. Williges and 

Dr. Shewchuk who encouraged me to work for several publications and shared valuable 

experiences in research with me, this study could not have been successful.  I wish to 

thank Kelcie Bower and Jeff Snider of the Industrial and Systems Engineering 

Department of Virginia Tech for manufacturing the parts used in this experiment.  I also 

wish to thank Brian Walters and Chuck Perala who helped me with the proof reading of 

this dissertation.  Finally, I owe a debt of gratitude to my wife Young, who always has 

believed in me more than I have.  Without her, my research career would not have been 

possible.    

  

  

 
 



 v

TABLE OF CONTENTS 
 
 
CHAPTER 1.   INTRODUCTION ..................................................................................... 1 

OUTLINE OF RESEARCH--------------------------------------------------------------------- 3 
 

CHAPTER 2.   BACKGROUND LITERATURE.............................................................. 6 

VISUAL INSPECTION ------------------------------------------------------------------------- 6 
Performance Measures ............................................................................................... 8 
Taxonomy of Visual Inspection ................................................................................... 9 
Visual Inspection Model............................................................................................ 10 

DIMENSIONAL AND GEOMETRIC INSPECTION------------------------------------- 21 
Taxonomy of Dimensional and Geometric Inspection .............................................. 27 
Automated Inspection................................................................................................ 31 
Intervention Techniques ............................................................................................ 34 

VIRTUAL ENVIRONMENTS FOR MANUFACTURING TASKS-------------------- 35 
Taxonomy for Virtual Environments ......................................................................... 36 
Virtual Environment Methods ................................................................................... 38 
Potential Benefits of AR ............................................................................................ 41 
Limitation of AR Technology..................................................................................... 43 

 

CHAPTER 3.   DEVELOPMENT OF AN AUGMENTED REALITY-AIDED 

DIMENSIONAL INSPECTION....................................................................................... 46 

SYSTEM GOAL--------------------------------------------------------------------------------- 46 
TASK ANALYSIS ------------------------------------------------------------------------------ 47 
FUNCTION ALLOCATION ------------------------------------------------------------------ 50 
RESEARCH OBJECTIVES-------------------------------------------------------------------- 53 

 

CHAPTER 4.    EXPERIMENTAL METHOD................................................................ 54 

SUBJECTS---------------------------------------------------------------------------------------- 54 
EXPERIMENTAL DESIGN ------------------------------------------------------------------- 55 

Independent Variables............................................................................................... 55 
Dependent Variables ................................................................................................. 56 

EQUIPMENT ------------------------------------------------------------------------------------ 57 
Augmented Reality Equipment .................................................................................. 57 
Inspection parts ......................................................................................................... 58 
Measuring Instruments.............................................................................................. 61 

EXPERIMENTAL PROCEDURE ------------------------------------------------------------ 62 
Manual Inspection..................................................................................................... 63 
2D-aided and 3D-aided Inspections ......................................................................... 65 
AR-aided Inspection .................................................................................................. 69 

 



 vi

CHAPTER 5.   RESULTS ................................................................................................ 72 

INSPECTION TIME ---------------------------------------------------------------------------- 72 
MEASUREMENT ACCURACY ------------------------------------------------------------- 78 
INSPECTION STRATEGY DIFFERENCES BETWEEN GROUPS ------------------- 81 
ANALYSIS OF THE QUESTIONNAIRE--------------------------------------------------- 84 

Body Part Discomfort................................................................................................ 84 
Mental Workload....................................................................................................... 86 

 

CHAPTER 6.    DISCUSSION AND FUTURE RESEARCH......................................... 89 

CHAPTER 7.   CONCLUSIONS...................................................................................... 99 

REFERENCES................................................................................................................ 102 

APPENDIX A:  INFORMED CONSENT FORM ......................................................... 113 

APPENDIX B:  INSTRUCTION KIT ............................................................................ 117 

APPENDIX C:  QUESTIONNAIRES............................................................................ 134 

APPENDIX D:  INSPECTION REPORT & ENGINEERING DRAWINGS................ 141 

 

 
 

 

 



 vii

 

LIST OF FIGURES 
 

 

Figure 1.  First-fault inspection model ............................................................................... 7 

Figure 2.  Search time distribution ................................................................................... 15 

Figure 3.  Dimensional and geometric inspection model.................................................. 23 

Figure 4.  Inspection parts used in this experiment........................................................... 59 

Figure 5.  Manual inspection process................................................................................ 64 

Figure 6.  2D-aided and 3D-aided inspection processes. .................................................. 66 

Figure 7.  2D perspective of parts: 2D-aided inspections. ................................................ 67 

Figure 8.  Isometric perspective of parts: 3D-aided and AR-aided inspections................ 68 

Figure 9.  AR-aided inspection scenes .............................................................................. 70 

Figure 10.  AR-aided inspection processes. ...................................................................... 71 

Figure 11.  Average inspection time of each inspection method. ..................................... 74 

Figure 12.  Average inspection time of each part shape. .................................................. 76 

Figure 13.  Average inspection measurement deviation. .................................................. 79 

Figure 14.  Trade-off between inspection time and measuring accuracy.......................... 83 

 



 viii

LIST OF TABLES 
 
 

 

TABLE 1.  Taxonomies of Visual Inspection Tasks. ......................................................... 9 

TABLE 2.  Inspection Function and Required Human Skills........................................... 10 

TABLE 3.  Three Levels of Cognitive Skills for Inspection Functions............................ 11 

TABLE 4.  Inspection Functions and Common Errors .................................................... 12 

TABLE 5.  Attributes and Probability of Inspection Outcomes ...................................... 18 

TABLE 6. Relationship Between Automated and Human Functions............................... 27 

TABLE 7.  Functions, Required Skills and Logical Errors of Dimensional Inspection. .. 29 

TABLE 8.  Suggested Taxonomies for Virtual Environments. ........................................ 37 

TABLE 9.  VE Methods for Manufacturing Tasks .......................................................... 40 

TABLE 10.  Criteria to Decide the Applicability of VE to Manufacturing Task ............ 43 

TABLE 11.  Dimensional and Geometric Attributes and Required Information Form.... 48 

TABLE 12.  Part Shape and Typical Dimensional Attributes. ......................................... 49 

TABLE 13. Treatment Conditions for the Mixed-factors Design. ................................... 55 

TABLE 14.  Head-Mounted Display (i-glasses) Specifications. ...................................... 57 

TABLE 15.  Inspection Parts and Dimensional Attributes of Interest.............................. 60 

TABLE 16.  Measuring Devices and Attributes. .............................................................. 61 

TABLE 17.  ANOVA Summary Table of Inspection Time. ............................................ 72 

TABLE 18.  Paired Comparisons of Inspection Methods................................................. 73 

TABLE 19.  Paired Comparisons of Attributes ............................................................... 73 

TABLE 20.  Unconfounded Comparisons of Two-Way Interaction: Method × Attribute.

................................................................................................................................... 75 

TABLE 21.  Unconfounded Comparisons of Two-Way Interactions: Part × Attribute. .. 77 

TABLE 22.  ANOVA Summary Table of Measurement Accuracy. ................................ 78 

TABLE 23.  Paired Comparisons of Attributes. ............................................................... 79 

TABLE 24.  Unconfounded Comparisons of Two-Way Interactions: Part × Attribute. .. 80 

TABLE 25.  Body Part Physical Stress Difference Among Inspection Methods. ............ 84 

TABLE 26.  Individual Differences of Body Part Discomforts........................................ 85 

TABLE 27.  Mental Workloads Difference Among Inspection Methods. ....................... 87 



 ix

TABLE 28.  Paired Comparisons of Preference ............................................................... 88 

TABLE 29.  Individual Difference of Mental Workloads. ............................................... 88 

TABLE 30.  Difference of Required Skills and Capability among Inspection Methods.. 90 

TABLE 31.  The Observed Inspection Error Types.......................................................... 92 

TABLE 32.  The Average Inspection Time for Prismatic and Rotation Parts ................. 94 



 1

 
 

CHAPTER 1.   INTRODUCTION 
 

 

The dimensional and geometric inspection designates the processes to measure 

the linear, angular magnitudes, or geometric characteristics of parts.  The purpose of 

these measurements is to confirm and determine the compliance of parts with the design 

specifications.  Examples of such attributes include length, height, depth, angle, flatness, 

roundness, etc.  Dimensional and geometric inspection, particularly in the metalworking 

industry, constitutes a dominant portion of total inspection work (Farago & Curtis, 1994).   

Traditional manual methods for information acquisition are often time-consuming 

and error-prone.  The inspection tasks consist of a set of operations: studying part 

drawings, marking, measurements, recording values, decision, and disposition.  Each 

operation needs different information to accomplish the inspection task.  Such 

information can include setup instructions, tool and equipment lists, inspection 

procedures, measurement locations and sequence, quality standards, and disposition 

instructions.  

Augmented reality offers a new approach to design an inspection system in which 

AR is used as a supplementary means or aid to support inspectors: a means to augment 

the cognitive capability of inspectors, a means to improve the time-shared performance, 

and a means to direct inspectors’ attention.  The spatial proximity, or closeness in space, 

should facilitate parallel processing between different channels (i.e., inspection parts, 

engineering drawings, routing sheets, etc.).   It provides the potential of an effective 

inspection method for inspectors who conduct visual inspection to measure the 

dimensional properties of products.  Inspectors could determine the measuring points 

without referring to the engineering drawings, since AR overlays the drawing onto the 

product to be inspected.  An additional advantage is that AR allows a higher possibility of 

acceptance from workers, since it can be used to support workers rather than to replace 

them.  The inspectors are able to have a freedom in using AR as a supplementary means 

or aid at any point in an inspection.  Inspectors perform the integral part of the inspection 

task and AR is only used to aid the inspectors when cognitive demand is high.   
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Augmented Reality (AR) is a growing area in virtual environment (VE) research.   

A visible difference from an immersive virtual reality (VR) is that AR augments the real 

world scene, necessitating a user to maintain a sense of presence in the environment.  

Therefore, AR supplements reality, rather than completely replacing it.  This 

characteristic of AR provides users with new possibilities unlike those of immersive VR.  

Because AR can help users interact with a real world environment, it has a great potential 

to support a wider range of tasks in manufacturing processes that transform the physical 

forms and properties of raw materials to value added products.  Despite the potential of 

AR technology, little research has been performed to investigate the use of AR in 

manufacturing and/or inspection.  The potential of AR will not be realized until several 

technical challenges are overcome (Azuma, 1997).  Early work with AR focused on 

military applications.  For many years, AR technology has been used for head-up 

displays (HUDs) and helmet mounted sights (HMS) in military aircraft and helicopters to 

superimpose vector graphics over the pilot’s view of the real world.  Recently, AR has 

been recognized as a promising technology for information transfer in many fields and 

subsequently, several frontier applications are currently being investigated.  Medical, 

manufacturing, entertainment, and military industries have been the most popular 

application areas of AR technology.  Bajura et al. (1992) used AR technology to 

superimpose an ultrasound image on the image of the patient.  Physicians could apply AR 

for visualization and surgical training.  Feiner et al. (1993) built a laser printer 

maintenance application, where the application was designed to show a repairman how to 

open the cover and remove the paper tray.  In the manufacturing arena, the European 

Computer-Industry Research Center (ECRC) developed a visual model of an automobile 

engine to annotate its parts.   

However, most AR research has focused on the potential applications of AR.  

Few studies have attempted to determine the actual performance gains possible via the 

use of AR technology.  One AR project that investigated performance issues was 

Boeing’s “wiring jet set” (Sims, 1994).  Using a crude AR prototype, workers were able 

to complete a wiring task in significantly less time than with previous methods.  This 

resulted primarily from the fact that they no longer had to look at parts lists.  Despite the 

encouraging results, the researchers noted that the project was exploratory in nature and 
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that it has not yet been determined how the results could translate into overall cost 

savings on jetliner construction.  

The possibility of an AR-aided inspection was investigated by Chung, Shewchuk, 

& Williges (1999).  They developed the AR-aided inspection that conveys measurement 

location and sequence data to inspectors performing thickness inspection using height 

measurements.  The AR was used to show the inspector exactly what and where 

measurements must be taken on a part.  The AR-aided inspection was compared with the 

manual inspection and the computer-aided inspections based upon two performance 

criteria: inspection speed and accuracy.  It was found that the AR-aided inspection could 

reduce inspection time about 45-65 % with the same accuracy.  The greatest time savings 

were achieved by the elimination of marking and cleaning functions.  Though an AR-aid 

showed a very promising result, the potential benefits of AR to the dimensional 

inspection has not yet been fully explored.  The selected task for the case study was a 

specific case of a thickness inspection task not requiring the manipulation of the part 

orientation, since all measurement points were placed on a single surface of the part to be 

inspected.  A typical dimensional inspection task that includes multiple geometric and 

dimensional attributes needs to be explored to evaluate the benefits of AR technology.   

 

 

OUTLINE OF RESEARCH 

 

The design of any system should be systematic in order to optimize the 

performance.  The benefit of the systematic approach is that it can help system designers 

understand what steps and functions are required to achieve the target system or goals.  

Practicing with this tool greatly increases the probability that the final application 

provides the acceptable level of quality (Drury, 1992).   

The systematic design procedure consists of task analysis, function allocation, and 

the evaluation of system performance.  The dimensional inspection task can be divided 

into component functions (i.e., operations) with the task analysis of visual inspection 

found in the literature.  Information needed to support each function can then be 
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analyzed.  The possible design change of the inspection system can be evaluated by 

considering the cognitive demands of each function and the capability of humans.   

In order to assess the effectiveness of AR technology for a dimensional and 

geometric inspection task, the performance differences between the manual, 2D-aided, 

3D-aided, and AR-aided inspection were compared.  The results obtained from these 

comparisons provided a discussion on which dimensional attributes are beneficial from 

AR as well as the overall performance change of the inspection system.    

 

Work areas conducted to meet the research goals were as follows: 

 

Background Literature  [Chapter 2] 

•  The visual inspection studies were reviewed to identify the genetic functions and 

design problems of inspection systems.  The models and theories related to the search 

and decision functions that decide the performance of inspection were reviewed in 

detail.   

•  The functional elements of dimensional and geometric inspection were identified 

based on the visual inspection studies.  Task analysis was performed to determine 

task demands and the typical errors of each function. 

 

Development of an AR-Aided Dimensional Inspection System  [Chapter 3] 

•  An AR-aided inspection system was designed by using the systematic design 

procedure.  Possible changes to support each inspection function were examined by 

considering when and where AR would be effective.   

•  Augmented reality was used as a supplementary means to aid inspectors rather than 

as a replacement of any function.  It was expected that an AR-aided inspection would 

improve the reliability of the inspection function and reduce inspection time.     
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Experimental Method  [Chapter 4] 

•  A 4×2×4 mixed factors design was used to evaluate the effectiveness of AR 

technology for dimensional and geometric inspection.  Inspection Method (manual, 

2D, 3D, and AR-aided inspections) was the between-subject factor, while Part Shape 

(prismatic and rotational parts) and Measuring Attribute (point, exact point, line, 

surface) were within-subjects factors.  

 

Results and Discussion  [Chapter 5 and 6]  

•  The overall performance differences among the manual, 2D, 3D, AR-aided 

inspections were compared to validate the viability of AR technology with ANOVA.  

Then, the differential affects of AR for part shapes and dimensional attribute were 

discussed.  It was also discussed how AR affected the inspection functions and 

reduced inspection time.   

•  The trade-off between time and measurement accuracy was analyzed to understand 

the inspection strategy of the four inspection conditions.  The individual differences 

within the same inspection conditions as well as the group differences between the 

different inspection methods were discussed.    

•  In addition, the body part discomfort and mental workload of the four inspection 

methods were analyzed with questionnaires.  Users’ preference of the inspection 

method was discussed based on the questionnaire results.   

 

Conclusion  [Chapter 7] 

•  Four design guidelines to design an effective AR-aided inspection system were 

developed based on the experiment results.  It was intended to provide the system 

designers with the design guidelines of when AR is an appropriate tool to improve the 

performance of a dimensional and geometric inspection. 
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CHAPTER 2.   BACKGROUND LITERATURE 
 

 

 

Inspection can be classified into attribute and variable inspection according to the 

nature of the information that can be gathered by the inspectors. The attributes inspection 

is a measurement on nominal and ordinal scales of whether the inspected products 

possess the attributes or not, for example, a missing capacitor of PCB or a classification 

of apples according to their grades (Sinclair, 1979).  Variable inspection is a 

measurement on interval or ratio scales where values correspond to the magnitude of 

measurements, for example, a length in millimeters as in dimensional inspection.    

In the context of inspection, most research was done with the attribute inspection 

commonly called visual inspection.  Studies of variable inspection appear less often in the 

literature. Many studies assumed that variable inspection is an obvious candidate for 

automation, since machines can take complex measurements and calculate the values of 

interest rapidly with higher accuracy (Drury, 1992).   

With the present lack of research related to variable inspection, the visual 

inspection studies were reviewed to identify the generic functions of an inspection 

system.  Though there is a basic difference in the type of information of interest between 

the attribute and variable inspections, visual inspection studies are useful to understand 

the design problems of the dimensional and geometric inspection, since the nature of the 

task is the same.     

 

 

VISUAL INSPECTION  

 

Visual inspection is the process by which an inspector examines parts to 

determine whether or not the parts possess the attributes of interest.  The magnitudes of 

flaws on the parts are measured and judged cognitively by inspectors.  Parts which pass 

inspection can move on to subsequent operations, while parts that fail inspection must be 
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reworked, scrapped, or dealt with accordingly.  A binary classification of attributes is 

useful for most cases of visual inspection.  Items arriving at the inspection system have 

two outcomes, either they are conforming or nonconforming.  Different industries use 

different names for these outcomes such as accept/reject, fitness/unfitness, good/faults, 

effective/defective, etc. 

 

 

Part

Inspector

Fixate Area

Reject Accept

Physical

Organizational

Personnel

Flaw

Reject Flaw? Time Left?

No Flaw

Yes

No

No

Yes

 

 

 

Figure 1.  First-fault inspection model (Drury, 1992). 

 

The most common type of visual inspection in manufacturing is ‘first fault 

inspection’.  Figure 1 shows a block diagram of the first fault inspection model.  The first 

fault inspection is the process where an inspector detects any nonconformity of parts that 

are prevented from further processing.  Only accepted parts are processed, while defected 
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parts are scrapped or reworked.  After a part is presented to the inspectors, it is searched 

for flaws.  If a flaw is found, the part is rejected if it is judged to be outside specifications.  

Parts are accepted if the inspectors do not find any flaws within a certain time.     

 
 
Performance Measures 

 

Performance measurement is one of the fundamental elements of any inspection 

system.  The ability to make sound decisions in designing an inspection system is directly 

related to the availability of adequate measures to determine the effectiveness of various 

alternatives.     

Drury (1992) suggested that the inspection function must fulfill four essential 

characteristics: accuracy, speed, flexibility, and stability.  Accuracy and speed are two 

essential criteria to determine the effectiveness of the inspection system.  In many 

studies, the primary goals are the minimization of inspection time and inspection errors.  

Flexibility and stability are rarely used to evaluate the performance of an inspection 

system because they deal with the qualitative aspects of the system.  However, they are 

also important criteria in determining the effectiveness of an inspection system.  An 

inspection function should be flexible in detecting multiple defect types, since there 

might be more than a single nonconforming condition and the defect types of current 

interest can be changed.  Finally, the inspection system should be stable and must not be 

changed with time.  The inspection device should not require frequent recalibration and 

humans who are inside the inspection system should not be subjected to stress.  These 

criteria are useful to assess the effectiveness of alternative inspection systems.     
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Taxonomy of Visual Inspection 

 
Functions or activities of the inspection can be defined by considering the task 

demands in the system.  The generic functions in the inspection task found in the 

literature are shown in Table 1.   

 

TABLE 1.  Taxonomies of the Visual Inspection Task. 

Harris & Chaney 
(1969) 

Drury (1992) Hou, Lin, & Drury 
(1993) 

Drury & Prabhu 
(1994) 

Monitoring 

Scanning 

Measurement 

Present 

Search 

Decision 

Action 

Present 

Search 

Decision 

Action 

Recording 

Setup 

Present 

Search 

Decision 

Response 

 
 

Drury (1992) suggested four distinctive functions for a generic visual inspection.  

Those four functions are present, search, decision, and action.  Each function can be 

assigned to either a human or an automated machine, since each component can be 

designed independently of each other.  The central elements of the four functions are 

search and decision-making.  Search and decision functions are subject to errors with 

either human or automatic inspection devices (Drury, 1992).  The remaining functions are 

largely mechanical in nature and are highly reliable.  As seen in Table 1, other authors 

have similar lists or equivalent components that contain the same central element: search 

and decision.    

Sinclair (1984) and Wang & Drury (1989) developed an expanded functional list 

with the human skills required for inspection as shown in Table 2.  Their functional list is 

useful to relate these generic functions to the given inspection problem.  Different skills 

and cognitive abilities are related to different inspection functions.  For instance, search 
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and decision functions depend mainly on the mental abilities of inspectors, but other 

functions depend on manual skills.         

 

TABLE 2.  Inspection Function and Required Human Skills (from Wang & Drury, 1989).  

Function  Major Type of Skill Mental Attributes Required 

Orient the item Manual  

Search the item Perceptual Attention, perception, memory 

Detect a flaw Perceptual Detection, recognition, memory 

Recognize/classify Perceptual Recognition, classification, 
memory 

Describe status of the item Perceptual Judgment, classification, memory 

Dispatch item Manual  

Record of information 
about the item 

Manual and perceptual Memory 

 

 

 
Visual Inspection Model 

 

Drury and Prabhu (1994) conceptualized the inspection system as a sequential 

progression of inspection functions along with skill/rule/knowledge-based behaviors.  

The inspection model suggests a linear sequence of inspection functions, though there 

might be some branches or re-entries in practice.   

As shown in Table 3, an inspector functions as low-level and high-level cognitive 

components in the inspection system.   Skill-based behavior represents a psychomotor 

behavior that consists of an automated routine without conscious control.  Information for 

skill-based behavior is the signal that may activate the automated behavior routines of 

humans (Rasmussen, 1983).  Rule-based behavior represents a conscious goal-oriented 

behavior guided by rules and procedures for action.  The information for rule-based 
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behaviors is a sign that depicts situations or environments.  Knowledge-based behavior 

represents goal-oriented, problem-solving behavior in unfamiliar situations.  It requires a 

functional understanding of the system, analysis of the current state, and advance 

reasoning while using feedback control for error correction.  During knowledge-based 

behavior, the human perceives information as a symbol that can be used for reasoning.   

 

TABLE 3.  Three Levels of Cognitive Skills for Inspection Functions (modified from 
Drury & Prabhu, 1994). 

 
Setup Present Search

Present to inspector

Change setup rules for
device

Rule
Level

Decision Response

Follow routine procedureSkill
Level

Know-
ledge
Level

Adjust to setup to
current conditions

Successively fixate
areas

Decide on search plan

Optimize search plan

Immediate decision

Follow rules on
measurement and

classification

Optimize rule for current
situation

Take action on item and
process

 
 

 

Reason (1990) identifies errors associated with these behaviors as skill-based 

slips, rule-based mistakes, and knowledge-based mistakes.  Slips are the failure to 

implement the intended action correctly, while mistakes are the failure to form correct 

intentions.  Table 4 shows common errors that could occur at each function.  Reducing 

inspection errors at each function by using human factors’ techniques has been the 

primary objective of many studies.   
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TABLE 4.  Inspection Functions and Common Errors (from Drury and Prabhu, 1994).  

Function Functional Goal Errors Types 

Setup Calibrate inspection system  Incorrect equipment 

Non-working equipment 

Incorrect calibration 

Incorrect system knowledge 

Present Present item to inspection 
system 

Wrong item presented 

Item miss-presented 

Item damaged by presentation 

Search Detect and locate all possible 
non conformities  

Indication missed 

False indication detected 

Indication miss-located  

Indication forgotten before decision 

Decision Measure and classify all 
indications located by search 

Indication incorrectly measured 

Indication incorrectly classified 

Wrong outcome decision 

Indication not processed 

Respond Act correctly specified by 
decision 

Non-conforming action taken on 
conforming item 

Conforming action taken on non-
conforming item 

 

 
 

The inspection model suggested by Drury and Prabhu (1994) provides a useful 

framework in understanding the required cognitive skills and logical errors of the five 

inspection functions. 
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Setup 

During setup, the measurement devices, decision aids, and recording devices are 

prepared, checked, and calibrated.  At the skill-based level, a sequence of psychomotor 

skills is used to check the inspection system according to a predetermined procedure.  

Possible errors at the skill-based level are repetition, reverse, and omission (Hollnagel, 

1989).  Checklists are useful as job aids to prevent errors at the skill-based level.  

Rule-based behavior is a change of setup according to different products or 

process conditions.  The setup of the inspection system is adjusted to accommodate the 

current situation.  Errors occur when an inspector misapplies rules within multiple 

conditions.    

Knowledge-based reasoning is rarely required at a setup.  However, it can occur if 

new products are introduced, the current inspection system is changed, or a diagnosis of 

the inspection device is required.  Errors occur if an inspector fails to understand the new 

inspection product, process, or device.  This type of error is common in the process 

control (Moray, Lootseen, & Pajak, 1986).    

 

Present 

Though the present is typically a machine function, it can be manually given to 

the inspector if automation is not practical.  It requires psychomotor skills for picking up, 

orientation, placing, and disposing.  The reliability of this function is high, with errors 

due to either misperception of the orientation, or slips in the manual-handling (Holding, 

1981).  A standardization of inspection tasks and training in manual skills can improve 

the reliability of this function (Salvendy & Seymore, 1973; Kleiner & Drury, 1993).   

 

Search  

Visual search is a cognitive behavior driven by the selective attentions with which 

humans seek information and search targets (Wickens & Hollands, 1999).  Visual search 

is a sequential process that proceeds as a series of fixations linked by eye movements, 

terminating upon successful detection of a target in the visual field (Drury, 1992).  In the 

inspectors’ field of view, a target is only visible within a small region of the visual field, 

which perceives the detail.   
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The amount of information that can be extracted over time is determined by a 

useful field of view (UFOV) and a dwell time.  A UFOV is the circular area around the 

fixation point from which information is extracted (Mackworth, 1976).  Dwell time is 

how long the eye is fixated on the location.  The difficulty of information extraction 

affects the dwell time.  Dwell time increases while reading unfamiliar words or a more 

difficult context (McConkie, 1983).  Displays that are less legible or contain denser 

information require a longer dwell time (Mackworth, 1976).  Harris & Christhif (1980) 

found that pilots fixated longer on critical instruments than subsidiary instruments.  In a 

target search task, Kundel & Nodine (1978) found that an inspector used a shorter survey 

dwell to locate targets, and a longer examination dwell for a detailed examination of 

targets.   

One of the main interests of many studies was to develop a visual search model 

that determines the time to detect targets and the probability of detecting targets in a 

given period of time.  Drury (1992) investigated the visual search model that assumes a 

random search to predict the time it takes to detect a flaw in the sheet metal inspection.   

According to the model, the probability of detection (pt) is the function of mean 

inspection time, as shown in the following equation:    
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Where  t : Mean search time 

             t0: Average time for one fixation 

             A: Area of object searched     

             a: Area of the UFOV 

 p: Probability that the target is detected if it is fixated 

 n: Number of targets on the part  
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Figure 2.  Search time distribution (Drury & Prabhu, 1994). 
 

 

The relationship between the probability of detection and time can be seen in 

Figure 2.  The model predicts that the probability of locating targets increases with more 

search time.  The probability of locating targets increases at a diminishing rate because a 

target may be fixated upon more than once without being detected, and search strategies 

do not cover the whole field even though enough time is given.  The model implies that 

the inspection time can be determined by the cost of the time and the cost of misses.  

With the search model, Drury (1992) could determine the optimal inspection time with 

the given probability of fault ratio and desired overall accuracy.  Industrial applications of 

the model showed that search time varies according to the difficulty of the search.  The 

average search time varied from 0.7 to 2.5 sec. for easy flaws, and 1.5 to 8.5 sec for 

difficult flaws (Drury, 1992).  This result implies that search time can be shortened if the 

conspicuity of a target is increased against the background.  Conspicuity is defined as the 

amount of parts searched in a unit time.     

A search pattern is assumed by either a fixed systematic process or a random 

process (Morawski, Drury, & Karwan, 1980).  A target search is described as a free field 

search in which an inspector locates a target randomly.  On the other hand, a systematic 
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search in which an inspector scans the whole inspection area in a systematic manner 

could reduce inspection time, as shown in Figure 2.  Each fixation is only placed in 

unsearched areas in a systematic search.  The eye movement study showed that the search 

pattern depends on tasks.  For example, a random search is used for the circuit board 

inspection, while the combination of a systematic search and a random search is used for 

the knitwear inspection (Megaw, 1979).   

To a large extent, a visual search is a skill-based behavior.  Experienced 

inspectors perform a visual search automatically without any cognitive effort (Drury 

Prabhu, 1994).  Errors at the skill-based level are failures to detect a target or detection of 

a non-target as a target.  As shown in the search model, the size of UFOV influences both 

the probability of detection and the search time.  It was found that several factors have 

influences on the UFOV: lighting conditions (Blackwell, 1970), conspicuity of the target 

against the background (Chaney & Teel, 1967), the size of the flaw, the distance between 

the flaw and the eyes of the inspector (Overington, 1973), aging (Ball, Beard, Roenker, 

Miller, & Griggs, 1988; Scialfa, Kline, & Lyman, 1987), training (Ball et al., 1988), and 

task demand in the fovea region (Williams, 1989).  Often the simple positioning of lights 

or the changing of viewing angles can enhance the detectibility of a particular flaw.  

Colored lights have proven to be helpful in the color matching inspection (Kantowitz & 

Sorkin, 1983).  The elderly take smaller UFOV from the scene and scan samples slower 

than the young, but training can enlarge UFOV and all age groups can benefit from 

training.  Also, adequate time breaks or rest time prevents the decrease of the sensitivity 

of the system.   

Errors at the rule-based level occur if an inspector uses a search plan that does not 

lead to the target.  Knowledge-based behavior is related to the search strategy which 

determines the search plan and search time (Schoonhard, Gould, & Miller, 1973).  Errors 

at this level consist of: neglecting target areas and stopping a search too early.  Humans 

do not search an entire area in exhaustive fashion and can miss targets within the UFOV 

(Abernethy, 1988; Kundel & Nodine, 1978).  A target search is driven by the expectancy 

of where a target is likely to be found (Wickens & Hollands, 1999).  For instance, an 

inspector often searches a certain location first based on prior experience concerning the 

likelihood of a target being there.  This cognitive characteristic of visual scanning 
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behaviors has been used to account for differences between novices and experts.  The 

expert examines first and more closely those areas where targets are likely to appear, 

while the novice tends to search whole area evenly (Kundel & Lafollette, 1972).     

 

Decision 

The decision component of various inspection tasks was examined by many 

studies (Adam, 1975; Craig & Colquhoun, 1975; Drury, 1975; Drury & Prabhu, 1994; 

Hou et al., 1993).  These studies modeled the decision function, which has four outcomes 

associated with probabilities.  Correct decisions are correct accept (accept a conforming 

item) and hit (reject a nonconforming item), while errors are miss (accept a 

nonconforming item) and false alarm (reject a conforming item).  These two errors are 

often called type II and type I errors, respectively.  The probability of these four 

outcomes are defined as follows: 

 

 

p1: Probability of accepting a conforming item 

p2: Probability of rejecting a nonconforming item  

1-p1: Probability of accepting a nonconforming item (Type II error) 

1-p2: Probability of rejecting a conforming item (Type I error) 

p′: Actual defect rate of an item 

 

Average values of p1 are around 0.90 to 0.99, while average values of p2 are 

around 0.80 to 0.90 depending on industries (Sinclair, 1984).  A useful measure to 

evaluate the inspection performance is the effective fraction nonconforming ( ep′ ) that is 

the probability of total rejected parts.  If the inspection system is perfect, ep′  is equal to 

the actual defect rate of the item ( p′ ).   

 

)1()1( 211 pppppe −−′−−=′  
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These measures can be used to evaluate and diagnose the inspection system.  

Also, they can be used to evaluate the system design process to ensure that a new design 

fulfills its objectives.  

 

TABLE 5.  Attributes and Probability of Inspection Outcomes (from Drury, 1992).   

True State of Item Inspection Decision 

Conforming Nonconforming 

Total 

Accept Correct accept 

p1(1-p′) 
a 

Miss  

(1-p2)p′ 
-b 

 

p1+p′(1-p1-p2)′ 

Reject False alarm  

(1-p1)(1-p′) 
-c 

Hit 

p2p′ 
d 

 

(1-p1)-p′(1-p1-p2) 

Total 1-p′ p′ 1 
 

 

As the four outcomes can be associated with the probabilities, these outcomes can 

also be associated with costs (–b, -c) and rewards (a, d).  Table 5 includes a payoff matrix 

which shows the cost and reward structure of inspection.    

Signal detection theory (SDT) is useful in understanding the decision process and 

optimization of the expected payoff.  In SDT, inspectors may be described in terms of 

their response bias.  Risky responders detect most nonconforming items (i.e., hits) but 

produce many false alarms, while conservative responders make few false alarms but 

miss many of the non-conforming items.  Signal detection theory is able to prescribe how 

to determine the optimal response bias in a given condition as related to the probability 

and payoff matrix of the four outcomes (Green & Swets, 1988; Swets & Pickett, 1982).  

The decision can be optimized by controlling p1 and p2 which an inspector adjusts 

according to the payoff matrix.  

The signal detection theory explains that p1 and p2 vary in two ways.  If the 

inspector and the task are kept constant, the inspector shifts the response bias so that the 

probability of accepting a conforming item (p1) increases while the probability of 
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rejecting a nonconforming item (p2) decreases.  The balance between p1 and p2 depends 

on payoffs and a nonconforming rate (p′ ).  The changes to the inspectors or tasks 

increase both p1 and p2 by influencing the inspectors’ discriminability between 

conforming and nonconforming items (Drury & Prabhu, 1994).     

Signal detection theory explains that inspectors’ perception of the costs of making 

an error is important in adjusting the decision criterion to an appropriate level.  The actual 

value of the decision criterion (β) can be computed from the probabilities of hits and false 

alarms.  Laboratory  (Chi, 1990) and field studies (Drury & Addison, 1973) showed that 

inspectors modified their decision criterion toward the optimal level.  However, another 

laboratory study suggested that the adjustment of a decision criterion is less than the 

optimal level (Wickens & Hollands, 1999).  The sluggish beta (β) is more pronounced 

when beta is manipulated by probabilities than by payoffs (Green & Swets, 1988).  The 

sluggish beta phenomenon has been demonstrated clearly in the laboratory, where precise 

probabilities and the payoff matrix can be specified to inspectors.  The sluggish beta 

phenomenon in the field study was reported by Harris & Chaney (1969).  They reported 

that inspectors failed to lower beta when the defect rate fell below 5% in a Kodak plant.  

This sluggishness is explained by the humans’ misperception of probability.  People tend 

to overestimate the probability of very rare events, while underestimating the probability 

of very frequent events (Sheridan & Ferrell, 1974). 

Several studies tried to apply incentive schemes to inspection, because early 

studies found that the reward structure was a determining factor of the balance between 

type I and type II errors.  In laboratory experiments, the reward structure based on type I 

and II errors changed the performance as expected.  However, there is little evidence 

from industry that incentives based on the type I and II errors are effective (Drury, 1992).   

Incentive schemes provide rewards for inspectors as well as feedback on performance.  It 

was found that the rapid feedback of inspectors’ performance reduced type I and type II 

errors (Drury & Addison, 1973; Wiener, 1984; Micalizzi & Goldburg, 1989).  These 

studies suggest that the feedback may be the most effective way to control inspection 

performance.   

Feedforward information, detailed information about incoming material minute-

by-minute, can influence the response bias.  In the laboratory experiment, inspectors 
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could control p1 and p2 according to the true defect rates (Wiener, 1984).  Feedforward 

information was also effective for a multi-defects inspection task (Drury, 1990).   

Signal detection theory makes a conceptual distinction between the response bias 

and the inspectors’ sensitivity, the resolution of the detection mechanism.  For most 

situations, sensitivity varies between 0.5 and 2.0 (Swets, 1964).  A departure from the 

optimal level results from the inspector’s forgetfulness of the precise characteristics of 

the target.  When memory aids are provided to remind the inspector what the targets are, 

sensitivity approaches optimal level (Wickens & Hollands, 1999).  Decision errors can be 

reduced by providing standards for inspectors in complex inspection tasks.  Given the 

limit standards, the decision task can be changed from absolute judgment to a more 

accurate comparative judgment.  Photographs of typical defects can reduce inconsistency 

between inspectors and prevent a drift of decision criteria over time.  Limit standards 

could act as memory aids which remind the inspector of what the defects are (Harris & 

Chaney, 1969; Kelley, 1955).   

The decision function can be an automatic process in the case of severity or the 

absence of any defects, because the decision becomes trivial and skill based.  For 

instance, missing components in assembly will automatically trigger a rejection response.  

Errors for rule-based behaviors are slip errors, since misses and false alarms are failures 

to implement the intended action correctly.  In general, however, a decision is mainly 

rule-based behavior.  Inspectors make a decision based on rules which are passed on by 

job experience from senior inspectors or written documents.  Errors can be due to 

misapplying the rules.  Drury & Sinclair (1983) provided a typical example in roller 

bearing inspection tasks where inspectors misapplied rules because of the confusion of 

defect names.  Rule-based decisions can be improved by training and job aids for 

complex rules (Kleiner & Drury, 1993). 

Knowledge-based decisions can be improved if inspectors have accurate 

information about the costs of false alarms and misses.  Inspectors can form an optimal 

strategy that maximizes the expected values across the decision outcomes (McNichol, 

1990).  Knowledge about defect types and their probable occurrence rate (Sheehan and 

Drury, 1973) and performance feedback (Drury and Addison, 1973) can improve the 

reliability of decision.   
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Respond 

When a defective item is removed from the production system, the inspector 

needs to record the data related to the action taken.  Only skill-level behaviors are 

required for response, and errors are slips rather than mistakes.  To improve the reliability 

of the respond function, human factors principles can be applied to workplace design.  

Within the three-dimensional envelope of a workplace, specific design decisions need to 

be made by considering the inspection task.  The horizontal work surface areas to be used 

by seated or sit-stand inspectors should provide for manual activities to be within a 

convenient arm’s reach (Barnes, 1963).  Enough space should be left for rejected items to 

be stored, so as not to discourage a rejection response because of a tiring action.  Data 

recordings might be more reliable if the automated data capture is achieved.   

 

 

DIMENSIONAL AND GEOMETRIC INSPECTION 

 
Dimensional and geometric inspection is closely related to visual inspection.  The 

nature of the task and the function in the manufacturing system are almost identical.  

However, the dimensional and geometric inspection can be differentiated from the visual 

inspection in three aspects. 

First, dimensional and geometric inspection is interested in the variable, the real 

number representing the measurement.  Since the dimensional and geometric inspection 

uses quantitative data, the decision function becomes highly reliable with a computer. In 

terms of function allocation, the decision function is an obvious candidate for automation.  

Second, the existence and location of targets (i.e. flaws) are not known in visual 

inspection, while the existence and location of targets (i.e., measuring dimensions) are 

known in the dimensional and geometric inspection.   

Third, dimensional and geometric inspection has no time limit.  Inspection is 

continued until all the dimensions of interest are measured.  Inspection time is the 

criterion that determines the performance level of the inspection system rather than 

constraints.  On the other hand, Drury’s first-fault model (1992) includes time 
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constraints.  If a critical flaw is not found in the given time, it is assumed the part is 

conforming.   

The inspection process of a generic dimensional and geometric inspection can be 

depicted as shown in Figure 3.   Though the inspection process is different from visual 

inspection to determine defects, the inspection process can be conceptualized from a first-

fault model where any nonconformity (e.g., out of tolerance) of a part prevents that part 

from being processed further.  The part is removed from the inspection system as soon as 

any nonconformity is found without any more effort to find another nonconformity.  If 

any attribute is out of tolerance, the parts will be scraped or sent back for rework.  This 

diagram model will be used as the basis to design an AR-aided dimensional inspection 

system.  

In the case of variable inspection, measurement variation often becomes one of 

the most important criteria in determining the performance of the inspection system along 

with inspection time.  It was known that distributions of measurement variation are often 

approximated by normal distribution.  The true distribution can be compromised by bias 

and imprecision (Mei, Case, & Schmidt, 1975).  If the inspection error is independent of 

the value of the product measurement, the average measurement variation is determined 

by the average bias and average imprecision.  The measurement of bias and imprecision 

is rarely reported in the inspection literature because the results depend on the 

characteristics of products measured and the measuring instrument (Drury, 1982).  With 

the improvement of precision in the measuring instrument, the reliability of the 

measurement function can be improved.      
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Figure 3.  Dimensional and geometric inspection model. 

 
 

 

 



 24

Structured Search 

There are two different types of visual sampling behaviors in the literature: visual 

sampling of unknown targets and of known targets. The visual sampling behavior of 

unknown targets has been studied in the context of the visual inspection of flaws, such as 

a flaw on a piece of sheet metal.  Inspectors scan the intended areas or objects to detect 

the target of which the existence and location are unknown.  The search is driven by 

cognitive factors related to the expectancy of where a target is, and the visual search 

pattern becomes less structured than that of known targets.  The visual search model of 

unknown targets proposed by Drury (1975) is often called free field search or visual 

search.   

The search model of known targets in which the visual sampling is guided by the 

expected events among different channels is called structured search (Wickens & 

Hollands, 1999).  The search pattern of the dimensional inspection is very similar to the 

structured search, where inspectors determine the measuring dimensions according to 

engineering drawings in the dimensional and geometric inspection.  Unfortunately, 

however, research on the search model of dimensional and geometric inspection  (i.e., 

study drawing: selecting a dimension of interest on engineering drawings by referring to 

inspection reports) is not found in the literature. 

The visual sampling behavior of known targets has been studied in supervisory 

control.  The operator scans the various displays and allocates attention to them through 

the structured visual sampling.  The probability of missing an event is directly related to 

event frequency and uncertainty.  Frequent events are more likely to be missed, as they 

are not sampled, or the timing of events is uncertain.  According to Wickens & Hollands 

(1999), humans use a mental model of the statistic properties of the events (how 

frequently and when the event will occur) to guide a visual sampling.  However, the 

sampling rate is not adjusted enough for frequent and rare events as much as it should be 

as seen in the sluggish beta phenomenon.  This imperfect sampling is explained by 

imperfect memory: humans tend to oversample the rare events because of forgetfulness.  

The general findings of the visual sampling studies are well summarized by Moray 

(1986).   
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Structured visual sampling behaviors have also been applied to the design of 

computer-based menu systems (Somberg, 1987).  The basic concept is to structure the 

menu in such a way that the target can be found in the minimum time.  The linear visual 

search model (Neisser, 1963) was used to determine the search time.  These studies could 

provide a useful understanding of the structured search, though they could not succeed in  

developing a model that can predict the exact search time.    

Since information or cueing can be used to guide in the structured search, it is 

possible to direct an inspector’s attention to appropriate areas.  It appears that cues can 

direct the spotlight of attentions and the correct cueing reduces errors.  Cueing increases 

the sensitivity to a target location and results in fewer errors (Kinchla, 1992; Downing, 

1988).   

Augmented reality can influence the structured visual sampling behaviors via 

directing attention and spatial proximity.  The effectiveness of intelligent cueing which 

directs the users’ attention to a certain target in the see-through HMDs is investigated by 

Yeh, Wickens, & Seagull (1998).  The finding was that cueing reduces target detection 

time for expected targets, but increases detection time and the number of errors for 

unexpected targets.  When the cue was unreliable, it directed attention to unwanted 

objects (Downing, 1988).  These results imply that intelligent cueing can be effective for 

various tasks, but that humans might depend too heavily on the cues.  

The benefits of spatial proximity have also been proven in driving and aviation 

applications using head-up displays (HUDs).  Goesch (1990) found that an automobile 

HUD could facilitate the parallel processing between two channels by superimposing a 

view of a speedometer on a view of a road.  Sojourner & Antin (1990) compared driver 

performance between HUDs and head-down displays to find that HUDs have an 

advantage for detecting cues presented in the road sign.  In aviation applications, a HUD 

could improve the control of positioning during landing when the view and runway were 

obscured by clouds (Wickens & Long, 1995).  Martin-Emerson & Wickens (1977) also 

reported that the alignment of the display object to the real object helped the human 

divide attention and reduce the tracking error.  However, some experimental data 

suggests that spatial proximity will not always guarantee parallel processing (Becklen & 

Cervone, 1983; Neisser & Becklen, 1975).  Neisser & Becklen (1975) conducted 



 26

experiments on whether or not subjects can detect the critical events on the two games in 

which one is superimposed over the other.  They found that subjects had difficulty when 

detecting events in the two games at once, and failed to see unusual events in one game 

while monitoring the other game.  Similar results were observed in aviation (Goesch, 

1990; Steenblik, 1989).  When a HUD was used to facilitate the simultaneous processing 

of inside and outside information in the cockpit, a pilot might treat the two distances as 

different attention channels.  The pilot’s cognition became occupied in processing 

information on the HUD while ignoring critical cues from outside the aircraft.  Also, 

Wickens & Long (1995) reported that an unexpected obstacle was more poorly detected 

with the HUD than without it.  The HUD facilitates the parallel processing of scenes and 

symbology when the pilot expects the stimulus.   

Another factor affecting the spatial proximity is the conformal nature of 

symbology, the correspondence between objects and the position of the objects as related 

to the real world (Wickens & Long, 1995).  It was found that the alignment of the display 

object to the real object helped the pilot divide attention between the display and the 

scene of the world, and thus reduce tracking error (Martin-Emerson & Wickens, 1977).  

In AR studies, this is often called a registration problem of virtual objects.   

Although spatial proximity may allow parallel processing, it also imposes the 

potential for confusion between the scenes momentarily wanted and those momentarily 

unwanted.  Several studies have found that subjects failed to focus attention because of 

this confusion (Wickens & Andre, 1990; Holahan, Culler, & Wilcox, 1978).  The critical 

variable in predicting performance is the degree of spatial separation of irrelevant items 

in the field of view.  Separation might be defined by not only the difference of the visual 

location, but also by the nature of the perceived activity.  If two perceptual channels are 

close together, they will both be processed, even if only one is desired.   If the implication 

for action is incompatible, intrusion/distraction would increase.  On the other hand, if 

both have common implications for action, perceptual competition would be minimized 

between the two channels.  Many failures occur when divided attention is mandatory 

rather than optional.  Parallel processing will help a task performance only if the task 

requires parallel processing.   
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Taxonomy of Dimensional and Geometric Inspection 

 

In the context of dimensional and geometric inspection, the taxonomy of 

inspection has not been differentiated from that of visual inspection in the literature.  

However, a useful list of dimensional inspection functions is found in a coordinate 

measuring machine (CMM) and an automated visual inspection system (AVIS).  The 

functions of the automated inspection system provide useful insight in identifying the 

functional list of dimensional and geometric inspection, since automated inspection must 

logically fulfill all of the inspection functions (Farago & Curtis, 1994).  Though the 

functions do not represent the natural breakdown for dimensional inspection, a 

compatible functional list of CMM, AVIS, and visual inspection are useful in identifying 

the functions of dimensional inspections, as seen in Table 6.   

 

TABLE 6. Relationship Between Automated and Human Functions. 

CMM AVIS Visual Inspection Dimensional 
Inspection 

Object Handling Object Handling Present Present 

Probing Scanning Search Study Drawing 

Signal Processing Measurement 

Calculation 

Computer 

Computer 

Decision 

Decision 

Object Handling Object Handling Response Response 
 

 

Human functions found in the inspection literature are still valid for the automated 

inspection (Harlow, Henderson, Rayfield, Johnston, & Dwyer, 1975) and the dimensional 

and geometric inspection.  However, there are basic differences between visual 

inspection and dimensional inspection in search and decision functions.   

For dimensional and geometric inspection, search corresponds to study drawing, 

while decision function needs to be classified into measurement, calculation and decision 
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since each one requires different cognitive and motor skills in order to complete the 

inspection task.  In the flaw inspection, the magnitude of flaws is measured and judged 

cognitively by inspectors, and the cognitive measurement is included in the part of 

decision function.  On the other hand, dimensional inspection requires an actual 

measurement of the magnitude with measuring devices.  After the measurements, an 

average value of the measured dimensions needs to be calculated to decide the 

disposition of parts.  Measurement and calculation become distinctive components of 

decision in dimensional inspection.  Marking and cleaning are supportive functions for 

measurement.  Not every dimensional inspection necessarily includes all of these 

functions.  Marking and cleaning functions are not required when the exact measuring 

point is not critical in the measurements of the attribute.   

As a result, eight functions can be identified, as shown in Table 7.  The eight 

functions include present, study drawing, marking, measurement, recording, decision, 

cleaning, and disposition.  It is necessary that the designers should understand how AR 

influences the performances of various inspection functions to realize the potential of 

AR.  The usefulness of AR can be determined by considering if AR is an effective tool to 

support the cognitive demands for each function.  Table 7 shows required physical skills 

and cognitive resources to perform each function.  The list of logical errors is also very 

useful, since system designers determine which errors occur and when they occur.  

Reducing inspection errors at each function should be one of the primary objectives of 

this study through the systematic design process.  The compensation of the inspection 

error results in a redesign of the inspection system by considering the capability of human 

inspectors and the required cognitive abilities of each function.     
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TABLE 7.  Functions, Required Skills and Logical Errors of Dimensional Inspection. 

Function Required Resources Logical Errors  AR Aids 

Present Manual Wrong item presented  

Item miss-presented  

Item damaged by presentation  

 

Perception 

Attention  

Confusion on measuring attributes  

Miss attributes of interest 
× 

× 

Study 
Drawing 

Memory Forget measuring attributes 

Forget measuring locations 
× 

× 

Manual Incorrect marking  × 

Attention  Miss marking  × 

Marking 

Memory  Forget marking locations × 

Manual Incorrect measurement   

Attention Wrong read out instruments   

Measurement 

Memory Forget the measured values 

Incorrect instrument knowledge  

 

× 

Manual Incorrect recording   Recording 

Memory Incorrect calculation × 

Decision  Attention Select wrong values  × 

 Memory Fail to recall the recorded values 

Decision not processed  
× 
 

Cleaning Manual  Forget to clean marked spots  × 

Disposition Manual Wrong action for disposition   

 

 

Present, recording, and disposition are mechanical functions.  Psychomotor skills, 

such as, setting up measuring devices, placing an item, and writing the measured value, 

determine the performance of these functions.  Since these functions depend mainly on 

manual skills, AR does not support these functions.   

The search pattern follows a structured or focused search (Wickens & Hollands, 

1999) in which inspectors search the known target (i.e., measuring dimension) from 
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engineering drawings.  Then the inspectors locate the measuring points on the parts by 

referring to temporarily stored information, and measure the dimension of interest.  The 

performance of study drawing depends largely on selective attention.  For proper 

dimensioning, inspectors refer to engineering drawings and select only the relevant 

information for the current measures.  Errors can be caused because of a discrepancy 

between the three-dimensional real parts and two-dimensional representation of the real 

parts.  Another logical error is that inspectors might miss or become confused by the 

current measuring variable due to multiple measurements on various dimensions.  AR 

can be used to highlight or direct inspector attention in determining the measuring 

variable.  It is useful in reducing inspection time and slip errors.    

Decision function performs the same role as in visual inspections for flaws.  The 

disposition value is compared with design specifications to see if it is acceptable or not.  

Decision performance depends mainly on attention and memory.  Errors occur when 

inspectors forget what the measured value was, or make mistakes in calculation.  The 

reliability of a decision can be improved with AR aids since errors are mainly caused by 

forgetfulness.  By providing the spatial proximity between the measured and the 

compared value, errors can be reduced.  However, the decision is made with ratio scale 

data (e.g., cm, mm) rather than with nominal scale data.  The decision is relatively easier 

than the decision-making with the nominal scale data, since it uses quantitative data.  The 

decision functions can benefit from automation, since the decision-making algorithm can 

be highly reliable with the quantitative data.  Since a computer is a component of the AR 

system, it can support data storing and mathematical calculation though those capabilities 

are rarely used for AR applications.    

Note that marking and cleaning are not needed anymore in the AR-aided 

inspection system.  By superimposing the measuring information over the real parts, 

these functions can be eliminated from the inspection task.  The pilot study (Chung et al, 

1999) showed that the greatest time saving was achieved by the elimination of these two 

operations.   
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Automated Inspection  

With advances in sensors and computers, automated inspections are one of the 

logical solutions to improve the performance of inspection systems.  Even in a fully 

automated system, humans are still required for supervisory control and monitoring in an 

outer loop.  Inspectors are responsible for setup, calibration, and supervisory control, 

while machines are responsible for complex measurements and calculations in an 

automated inspection.    

The performance of an automated inspection system can be measured with the 

same criteria that are used for the manual inspection.   Accuracy and speed are important 

measures to compare the effectiveness, though the cost must be included to compare the 

cost-benefits of the two methods (Drury & Prabhu, 1994).  Accuracy can be measured by 

the probability of accepting a conforming item and the probability of rejecting a 

nonconforming item.  In the case of variable inspection, the measurement accuracy is 

often used to measure the performance of an inspection system.  Often studies evaluate 

the accuracy of the inspection system by its capability to detect small defects (Hara, 

Okamoto, Hamada, & Akyama, 1980) 

There is a scattered body of literature on AVIS.  Automated visual inspection 

systems typically use sensors to capture images of the inspection components, image 

processing systems to take measurements, and objects handling systems to transport 

parts.  However, many AVIS has failed because of the stability of environments.  Several 

factors such as illumination levels, types of illumination, reflectivity, and contrast affect 

the performance of the inspection system.  For instance, cloth brightness can be changed 

due to ambient illumination (Takatoo, Takagi, & Mori, 1989).  Lighting intensity should 

be sufficient to nullify the interference from ambient sources.  

Currently, the automated inspection of flaw detection has not provided fruitful 

results.  The performance difference between experienced inspectors and an optical 

inspection device was compared with high-precision metal parts (Drury & Sinclair, 

1983).  Both the humans and the machines conducted search and decision on four 

different types of faults.  It was found that human inspection was better than automated 

inspection in terms of false alarm and hit rates.  The main finding was that the automated 

system was better at locating the defect (i.e., search), while the human was better at 
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decision making.  With these findings, they concluded that there is a good possibility of 

using machines for the searching function, while leaving the decision function to the 

human.  In automated inspection, the relation between detection effectiveness and false 

alarm is not well understood.  An automated inspection system can detect very small 

defects by increasing gain that reduces a detection threshold, but most detection devices 

and algorithms of the automated visual inspection system suffer from high false alarm 

rates (West, 1984).  Defects on simple visual fields are relatively easy to detect.  Difficult 

products to inspect are those that contain complex visual patterns such as a printed wiring 

board and photomasks for integrated circuits and hybrid circuits (Drury & Prabhu, 1994).  

Because the finding of the automated inspection studies show that neither the human nor 

the automated system achieved satisfactory results, inspection studies in the literature 

tried to optimize inspection performance by allocating inspection functions properly 

between humans and machines.  The ground rule was to assign tasks to the human that 

humans excel at and assign tasks to the machine that machines excel at by considering 

the capabilities and limitations of each subsystem.  Hou et al. (1993) designed five 

different inspection systems for an automotive electronic company: human inspection, 

computer-search human-decision, human-computer decision-sharing, and automated 

inspection.  They designed two different hybrid inspection systems by changing the 

degree of function allocation between humans and machines.  In a computer-search 

human-decision, if the computer detects defects, it shows the defects to inspectors who 

decide about the status of the defects.  In a human-computer decision sharing, the 

computer performs both search and decision, but the inspector takes over the decision if 

the confidence level is low.  The false alarm rates and hit rates were used to compare the 

overall system performance among these inspection systems.  The result showed that the 

two hybrid inspection systems have a better performance than the automated inspection.  

The human inspection was also significantly better than the automated inspection, a result 

consistent with the finding of Drury & Sinclair (1983).  There was no significant 

performance difference between the human inspection and the hybrid inspection.  

However, the computer-search human-decision system (0.9460) had the marginally 

higher sensitivity value than the human inspection (0.9457) and the human-computer 

decision-sharing system (0.9071).     



 33

On the other hand, an automation of variable inspection such as dimensional 

inspection achieved visible progresses.  Two types of automated inspections have been 

explored in the literature of variable inspection.  Bosch (1987) suggested the advantage of 

the CMM and electro-optic technologies in the dimensional inspection system, though the 

performance of these systems was not reported.  One of the common industrial 3D 

geometric inspection methods involves tactile sensing, using CMM.  The part is initially 

fixed in a given position in the CMM, and the location of certain points is measured.  The 

CMM can provide a high degree of measuring accuracy.  However, the CMM are slow in 

operation because a single touch probe is used to take many individual readings from the 

surface of the inspected object and inspectors have to guide the tactile probe to these 

measuring points.  Such a machine requires detailed programming for each of the 

different objects. Thus, especially when small quantities of certain parts need to be 

inspected, the CMM becomes very time consuming and inefficient.   

Some AVIS applications found in the literature are a 3D machine vision for the 

inspection of the surface form of cylindrical parts (Reid & Rixon, 1985) and a visual 

gauging system for the inspection of the dimensional location of automobile parts 

(Mahdvieh, 1987).  Skaggs & Meyer (1985) developed an optical metrology system 

which can inspect various dimensions of parts, such as length, hole diameter, width, and 

the angle of two lines.  They reported that the average inspection time for each dimension 

was 0.8-3.6 seconds and the measurement variation was less than 0.0003 inch.  Lim, 

Swaminathan, Woo, Chan, & Wonh (1997) developed the automated inspection and 

dimensional measurement for optoelectronic components.  They reported that the system 

was capable of measuring the dimension with an accuracy of 30 µm by using CCD 

cameras.  However, most of AVIS can solve the limited class of dimensional inspections.  

Most successful applications are found in measurements that can be measured with 2D 

perspectives, for instance PCB, and sheet metal inspections. Because of technological 

limitations, many 3D vision systems often suffer from measurement accuracy (Martin, 

1992).  Another disadvantage of AVISs is that AVISs only can check visible features.  

Any feature that cannot be seen by the cameras cannot be measured.   
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In cases where automation is not economically viable or desirable, measurements 

must be done manually.  In custom job shops, a manufacturing system needs high 

flexibility under the condition in which there are various products with a small amount of 

quantity.  Workstations are arranged without emphasis on any particular routings, making 

them equally able to handle various products with different routings.  With the rapidly 

changing characteristics of orders, highly skilled workers perform machine setup, 

fabrication, assembly, material handling maintenance, and inspection tasks.  Between 

these tasks and/or during the last step, inspections are conducted to check if all 

dimensional and geometric attributes of the products conform to design specification.  

Accordingly, an inspection system needs a high degree of flexibility to deal with various 

products, and automation does not become a practical solution.  An inspection is 

conducted with generic types of inspection instruments (e.g., vernier caliper) rather than 

with automated instruments for specific products.   

 
 

Intervention Techniques 

Various intervention techniques are found in the literature.  Though the 

effectiveness of the intervention techniques was mainly tested in visual inspection, these 

techniques are also applicable for the dimensional inspection.   

Drury (1992) suggested that the three possible design changes to improve the 

inspection performance are product, process, and person.  Process change means the 

redesign of the inspection process, work place, job, etc.  Procedure changes include 

lighting (Faulkner & Murphy, 1975), standards (Kleiner & Drury, 1993), visual or 

ergonomic aids (Kleiner, 1983), search strategy (Bloomfield, 1975), feedback (Drury & 

Addison, 1973), speed (Drury, 1979), and job enrichment (Maher, Overbach, Plamer, & 

Piersol, 1970).    

Inspector changes are done to make the inspector fit well to the inspection system 

by training (Czaja & Drury, 1981; Gramophdhye, Bhagwar, Kimbler, & Greenstein, 

1998) and selection (Tiffin & Roger, 1941).   Training is effective and necessary, while 

selection is not.  A major problem related to selection is that it has been difficult to devise 

selection or placement procedures for inspections.  Several inspection tests were 
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suggested, but the validity of these tests was not determined (Wiener, 1975).  On the 

other hand, good standard training has proven very effective to bring novices to an 

experienced work standard.  Studies showed that not only can a visual search be 

improved with the controlled practice, but also decision making and discriminability can 

be trained (Embrey, 1979).  Kleiner & Drury (1993) showed that training could provide a 

performance improvement for experienced inspectors, too.  Inspectors who had a job 

experience for 2 to 14 years could achieve a better performance with a two day training 

program which contains seven sections: naming of parts, naming of flaws, handling, 

standards, search, decision-making, and process interface.    

Product change means the change of the inspected items.  However, no study was 

found in the visual inspection literature, though examples are available in other 

manufacturing tasks.    

The most commonly used intervention approaches were training, lighting, and 

visual/ergonomic aids and these approaches were very successful in various inspections.  

Some studies applied several intervention approaches together (Chaney & Teel, 1967; 

Kleiner & Drury, 1993), and their results were usually better than using any single one.   

All of these intervention techniques are useful for the dimensional and geometric 

inspection, but the selection of intervention techniques is decided by considering 

application domains, tasks, parts inspected, etc. 

 

 

VIRTUAL ENVIRONMENTS FOR MANUFACTURING TASKS 

 

Virtual environment (VE) technology has been recognized as having a potential 

that has a wide range of applications, and there are increasing discussions of its feasibility 

in industrial applications.  Many pioneering studies have focused on the development of 

brand new applications to prove the technological possibility of VE.  Applications of VE 

technology in manufacturing are just beginning to emerge.  The manufacturing industry 

has assessed VEs as an affordable technology that has a potentially wide range of 

applications (Wilson, Brown, Cobb, D'cruz, & Eastgate, 1995).  Several studies showed 

that VE technology is a powerful means of information provision for a wide variety of 
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manufacturing tasks (Dai, 1998; Wilson et al., 1995; Wilson, Cobb, D'Cruz, & Eastgate, 

1996).  These applications are directed toward using VE technology as a means of 

improving performance for a wide variety of manufacturing tasks involving inspection.  

Although relatively few manufacturing applications of VE and even fewer empirical 

studies that evaluate these applications exist, the potential for using VE in manufacturing 

is greatly based on current VE demonstrations.    

  

 
Taxonomy for Virtual Environments  

To discuss VEs in manufacturing in an organized manner, some type of taxonomy 

is required to classify the VEs.  Various classification schemes of VEs have been 

suggested in the literature as shown in Table 8.   These authors classified the taxonomy of 

VE according to the fidelity (Zeltzer, 1992), presence (Sheridan, 1992), and experience 

(Naimark, 1992; Robinett, 1992) associated with VEs.  Even though they suggested quite 

different dimensions to classify VEs from each other, all of them tried to quantify the 

degree of users’ perception and experience in VEs.      

Zeltzer (1992) proposed the taxonomy of VEs, based on three components: 

autonomy, interaction, and presence.  He suggested that the AIP cube can be used as a 

useful tool to contrast VEs, as well as graphic simulation systems.  Similarly, Sheridan 

(1992) proposed three principle determinants of a sense of presence which are an extent 

of sensory information, a control of the relation of sensors environments, and the ability 

to modify the physical environment.  He suggested that these dimensions can be 

represented as three orthogonal axes to determine the perceived presence in VEs.   

Zeltzer (1992) and Sheridan (1992) tried to classify the VEs according to the users’ 

perception, while Naimark (1992) and Robinett (1992) tried to classify the VEs according 

to the physical properties of the system. 
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TABLE 8.  Suggested Taxonomies for Virtual Environments. 

Investigator Dimension of Taxonomy Viewpoint 

Zeltzer (1992) Autonomy 

Interaction 

Presence 

Measure of fidelity 

Sheridan (1992) Extent of sensory information 

Control of relation of sensors 
environments 

Ability to modify physical 
environment  

Operational measure of  
presence 

Naimark (1991) Monoscopic imaging 

Stereoscopic imaging  

Panoramics 

Surrogate travel 

Real-time imaging 

Recording and reproducing 
visual experience  

Robinett (1992) Causality 

Model source 

Time 

Space 

Superposition 

Display type 

Sensor type 

Action measurement type 

Actuator type 

Synthetic experience 
associated with HMD based 
systems 

 

 

 

 

Milgram and Drascic (1997) suggested a taxonomy for VE representations, in 

which the degree of reality and virtuality is described on a reality-virtuality continuum.   

The four major components of this continuum include reality, augmented-reality, 

augmented-virtuality, and virtuality.  Reality defines the environment as consisting solely 

of real objects observed via a video display such as telepresence using video cameras.  

Augmented reality is an augmented environment where computer-generated images are 

added to the real environment.  Most augmented-reality systems are coupled with see-
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through head-mounted displays (HMDs) and head trackers.  Task-related or analog 

information is provided from the computer to support the operators who are executing 

tasks in the real environment.  The success of AR applications depends mainly on the 

way information is transmitted to the operators rather than the immersive feeling or 

fidelity in the VE.  This class of applications can support tasks requiring the physical 

manipulation of real objects.  The concept of augmented virtuality is almost the same as 

augmented-reality except the primary virtual environment is enhanced through some 

additional real world image.  Augmented virtuality provides a partially immersive 

environment where real physical objects interact in a virtual world.  An example of 

augmented virtuality is where a user reaches forward in the virtual world and grasps a 

virtual object on a VE workbench that provides a large projection screen, or in a Cave 

Automated Virtual Environment (CAVE) that provides a VE room.  Virtuality is a 

completely immersed environment and is commonly referred to as virtual reality.  Many 

applications are implemented using a HMD to provide complete immersion.  The main 

uses of virtuality are training and applications requiring simulation that do not allow the 

operator to interact with real objects.  The success of these applications depends on the 

level of immersive feeling and the degree of fidelity of the VE.   

These taxonomies provide a qualitative tool for contrasting VEs, but there is no 

agreed classification scheme among them.  The problem with using the current 

taxonomies is that these taxonomies are independent of one another and are very difficult 

to apply to the manufacturing domain.   

 

Virtual Environment Methods 

Chung, Shewchuk, & Williges (submitted) classified four VE methods for 

manufacturing by considering the way of information provision.  The four VE methods 

are visualization, simulation, information provision, and telerobotics.   

Visualization occurs when users navigate in a VE.  Although visualization 

requires a 3D representation of objects in the VE, the difference between visualization 

and traditional 3D computer-aided design (CAD) is that visualization concentrates on the 

high degree of perception rather than on the pure quality of the graphic (Wilson et al., 
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1996).  Visualization can be employed for almost all types of manufacturing tasks but is 

particularly well-suited for the design of manufacturing facilities and the product as well 

as for the planning.  The process of designing and validating products via a real-time 

graphics system that allows the user to be immersed in and to interact with the product, is 

known as virtual prototyping (Dai & Göbel, 1994; Flaig & Thrainsson, 1996).   

Simulation is applicable when users need to control the virtual objects and change 

their state in the same way as they do in the real world.  Virtual objects act like real 

objects in response to unscripted user actions.  The critical component of the VE 

simulation is the interaction between users and virtual objects.  It requires more than 

realistic visualization; it also requires realistic physical behavior on the part of the virtual 

objects.  Therefore, most VE simulations employ multi-modal displays to support 

realistic interaction between users and the VE.  Simulation holds particular promise for 

training operators to execute manufacturing activities and to evaluate the design of 

equipment, systems, and tasks that either do not exist in the real world or for which actual 

usage would be impractical or cost-prohibitive. 

Virtual environments can be used to guide and support users to complete their 

work more efficiently by means of information provision.  Task-related information, such 

as instructions and data, can be conveyed to the users both when and where needed via 

VEs.  Augmented reality is a useful tool for providing information for the execution of 

real-world tasks, because it provides the composite view of virtual and real scenes.  

Information-provision is particularly well-suited for aiding in controlling & monitoring.  

The performance enhancement can be achieved by reducing operators’ workload and 

facilitating parallel processing. 

Telerobotics is used when the user interacts with virtual or real objects in an 

unscripted manner.  The remote environment is reconstructed by using VE to provide a 

sense of telepresence for operators.  Virtual environment supports operators to conduct 

real tasks via a robot or some other electromechanical device.  It is typically useful in 

helping to remove an operator from a hazardous environment.  Telerobotics is employed 

for the physical processing in manufacturing. 

 The choice among different VE methods for a given task depends on the 

information requirements of the task.  The manufacturing process consists of various 
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tasks that are determined by the nature of the products to be made.  Every manufacturing 

process, however, is comprised of planning, physical process, and control and 

monitoring.  Six major manufacturing tasks can be identified based on functional and 

implementation views over the life cycle of a manufacturing process (Shewchuk, Chung, 

& Williges, 2002).  These six major tasks are design of manufacturing tasks, design of 

manufacturing facilities, training, control and monitoring, planning, and physical 

processing activities.   Since each of the six types has different information requirements, 

the suitable VE method for each will also differ.   

 Chung et al. (2002) grouped the various VE applications found in the literature 

according to the manufacturing task and VE methods, as shown in Table 9.  This 

classification is useful in deciding whether a certain method is appropriate or not for a 

certain task in the systematic manner.  Table 9 shows that there is a certain relationship 

between manufacturing tasks and VE methods: a certain VE method might be superior 

over other methods for a certain task.  For example, visualization is a useful method for 

all types of manufacturing tasks except the physical processing task. On the other hand, 

information provision and telerobotics are useful for the physical processing tasks which 

require physical interaction with real objects.   

 

TABLE 9.  VE Methods for Manufacturing Tasks (from Chung et al., 2002).   

VE Methods  

Manufacturing Tasks Visualization Simulation Information 
Provision 

Telerobotics

Design of Manufacturing Tasks 4    

Design of Manufacturing Facilities 2    

Training for Manufacturing Tasks 2 4   

Planning  19 4   

Control and Monitoring  3  2  

Physical Processing   10 8 

Total 30 8 12 8 
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 Based on this framework, it was found that the information provision method is 

suitable for an inspection task which is included in control and monitoring tasks.   Virtual 

environment, especially AR, is an effective means to transfer the task information for 

inspectors, because it allows inspectors to see both virtual and real objects together.  It 

can help reduce operator workload and facilitate multitasking.   

Chung et al. (1999) found that AR technology could enhance a visual inspection 

performance via directing attention and spatial proximity. They developed an AR-aided 

height inspection system that could provide spatial proximity between real parts and 

engineering drawing.  Since the measuring information was superimposed on parts with 

AR, all the measurements can be taken without marking.  The AR-aided inspection took 

significantly less time than the manual or computer-aided inspection in the case of a 

height inspection task.  They compared the inspection times for three different parts 

which are flat, convex, and stepped parts, and found that the flat part took significantly 

less time than the convex or stepped parts, whereas inspection times for the convex and 

stepped parts were not significantly different from each other.  An interesting find was 

that the AR-aided inspection was not influenced by the part shapes: inspection times were 

nearly identical over all part shapes.  On the other hand, inspection times with manual 

and computer-aided inspections were significantly increased as part shapes become more 

complex.  With these observations, they concluded that AR was very promising for 

inspection tasks, where tasks are more involved and parts much more complex.   

The potential of AR has not been fully proven yet.  The previous test showed the 

possibility only for a specific case of thickness inspection not requiring the manipulation 

of the part.  The typical inspection task, which includes multiple dimensional attributes, 

should be evaluated to determine the benefits of AR.   

 

 
Potential Benefits of AR 

 

In the context of inspection, some special methods of improving search efficiency 

include overlays and blinking inspection.  Overlays are special patterns with which the 

difference between the pattern and parts is enhanced by projecting the overlays over the 
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part.  Overlays were very effective for the printed circuit board (PCB) inspection task 

(Teel, Springer, & Sadler, 1968).  Blinking inspection uses a similar method, but the 

difference appears to flash on and off by the rapid alternation of a perfect part and a part 

to be inspected.  Blink inspection uses a temporal alternating of an item with a known 

perfect item, both items being registered on the same visual field.  A difference between 

the two items will appear to blink, while the rest remains steady (Liuzzo & Drury, 1980).  

They reported a 30% reduction in error and a 60% increase in throughput using video 

blinking, but also negative effects such as stress and eyestrain among inspectors.  These 

applications could achieve the performance improvement by increasing the conspicuity of 

targets against the background.  The inspectors’ sensitivity, the resolution of the 

detection, could be improved with a separation between the noise and the signal.    

The concept of using AR is somewhat different from that of the blinking 

inspection and overlays.  Augmented reality offers a new perspective, a supplementary 

aiding, in designing a visual inspection system.  Three distinctive characteristics of AR 

are useful to improve the performance of the manufacturing and inspection systems.   
First, AR can be used to augment the senses and cognitive abilities of operators.  

In many manufacturing applications, AR can be used as an intelligence amplification 

(Brooks, 1996) to make a task easier to perform.  Augmented reality is presented to 

enhance users’ perception by transferring information that the users cannot directly detect 

with their own senses. 

Second, AR can improve the time-shared performance of two concurrent tasks by 

providing a spatial proximity of two information channels.  For instance, AR is 

applicable when an inspector has to pay attention to the engineering drawings and the 

inspection part simultaneously.  The same scenario can easily be applicable to the 

assembly, monitoring, and supervisory control tasks. 

Finally, AR can be used to direct inspectors’ attentions.  It can guide the 

inspectors during the inspection task by providing task information according to the task 

sequence.  For instance, studying a drawing requires the selective attention which decides 

the appropriate cues among various aspects of the parts’ information.  Because AR can 

provide the information that is only related to the current subtask, inspectors can focus on 

the useful cues easily without being distracted by inappropriate cues that stand out.  
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When inspectors need to refer to an inspection manual, tolerances, or standards, AR can 

provide the required information.  Through the use of AR, operators can acquire task 

specific information in a more efficient, timely, and accurate manner.  

 
 
Limitation of AR Technology   

The usefulness of AR technology depends on the nature of the tasks and the 

required information.  As seen in Table 10, the criteria that can be used in deciding the 

applicability of VE to manufacturing tasks were suggested by Chung et al. (submitted).   

If the task demands attention for two spatially separated channels, AR has a high 

potential for the task.  On the other hand, skilled-based tasks with which users need little 

task information gain no great benefits from AR.  The task requiring fine work might not 

be a good candidate for an AR application.  The visual pixel resolution of the-state-of-

the-art HMDs is about 3.75-5 minutes of arc per pixel with 120°×60° field-of-view 

(FOV) (Ellis, 1995), while the human eye can perceive 1 min of arc (Kroemer, Kroemer, 

& Kroemer-Elbert, 1994) with wider FOV.  Since commercially available HMDs have 

far less resolution with a narrow FOV, tasks requiring a high degree of visual accuracy 

are not appropriate.   

 

TABLE 10.  Criteria to Decide the Applicability of VE to Manufacturing Tasks (from 
Chung et al., 2002). 

Attributes Criteria Consideration 

Type of skill The degree of requiring a high level of skill (mental ability 
vs. physical skill) 

Fineness of task The degree accuracy (e.g., resolution) required to perform 
a task  

Interaction The degree of requiring interaction with real objects 

Task 

 

 

Task interference Possibility of task interference caused by VE systems 

Modality Type of human sensory domains employed such as visual, 
auditory, haptic senses, or a combination of these 

Information Type Analog, prepositional, or distributed representation  

Information 

 

 

 Volume  Amount of information associated with the VE application 
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The benefits of interactivity to performance are often reported in the literature, but 

the conclusions are not yet decisive (Burdea & Coiiffet, 1994; Kalawsky, 1993; Stanney , 

Ronald, & Kenny, 1998).  While many researchers assumed the benefits of interactivity, 

interactivity has a differential effect depending on the task workload.  Interactivity 

improves users’ navigation performance under normal workload conditions, while it 

affects negatively under high workload conditions (Williams, Wickens, & Huchinson, 

1994).  Since interactivity increases the workload demands, user performances could 

suffer from a very high interactive system.  The interactivity is beneficial to the extent 

that it is maintained within human information processing limitations (Card, Moran, & 

Newell, 1983).  The types and levels of interactivity should be matched to the given task 

profiles.  Virtual environment applications, which have achieved successful results until 

now, can be characterized by a low degree of interaction between users and the system.  

Much of the fruitful results were achieved in the architectural walkthrough, or 

information visualization which requires a low degree of interaction.  Some of those 

examples are virtual wind tunnel (Bryson, 1997), virtual data visualization (Robertson, 

Card, & Mackinlay, 1993; Risch, May, Thomas, & Dowson, 1996), scientific exploration 

(Dede, Salzman, & Loftin, 1996) and virtual prototyping (Finger et al., 1997; Flaig & 

Thrainsson, 1996).  Research using a high degree of interaction is underway, but these 

more complex applications have not yet shown great results (Bowman & Hodge, 1998).  

Many interactively complex applications of immersive VEs have suffered from the 

usability problems.  Only some visible success has been achieved in less immersive VE 

applications such as desk-top VEs (Wilson, Brown, Cobb, D'cruz, & Eastgate, 1995; 

Wilson, Cobb, D'Cruz, & Eastgate, 1996).  Chung et al. (1999) demonstrated an AR-

aided inspection in which subjects use a keyboard to interact with the VE.  The users 

need to memorize several command keys to manipulate the virtual objects and number 

keys to input the data.  Even though they used a typical keyboard, they could develop a 

very useful and usable application with a small number of wisely selected commands and 

functions.       

A dominant element of VEs is visual displays.  Though auditory and haptic 

displays are often used, they are used as a supplementary means to a visual sense.  

Therefore, the tasks associated mainly with visual and spatial senses (e.g., layout, 
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maintenance) have a higher feasibility than the tasks associated with psychomotor skills 

or haptic sense (e.g., fabrication).  Among different types of visual information, analog 

(e.g., graphic) information has generally more promising results than alphanumeric data 

or texts.  The efficacy of the AR representations depends on the type of information they 

are intended to provide. Preece et al. (1994) discriminated three types of representation to 

represent knowledge: analogical representation, prepositional representation, and 

distributed representation.  Analog representations are picture-like images or 3D graphic 

images.  Prepositional representations are abstract and language like statements that make 

assertions.  Distributed representations are networks of nodes where knowledge is 

implicit in the connections between nodes.  Augmented reality could be beneficial for the 

system that requires the analog information, but less useful for the system that requires 

prepositional and distributed information. 

The volume of information is also critical, because it is one of the main factors of 

feedback lag.  Human operators will suffer control difficulty if time lag is greater than 

250 ms (Ellis, 1995).  Rendering time, tracking and other computation like collision 

detection are major factors for the feedback lag of VE applications (Zachmann, 1998).   

The technological limitations of AR should be reviewed carefully, since they 

confine the ways of presenting information.  Even with the state of the art technology, it 

is not possible to build a fully implemented VE system (Furness & Barfield, 1995).  The 

proper alignment and registration of virtual objects to the real world is difficult to satisfy 

with existing equipment.  Since even tiny errors in registration are easily detectable by 

the human visual system, most applications assume a static viewpoint (Azuma, 1997).  

Also, AR equipment, such as HMDs, wires, etc., can interfere with users’ tasks. With the 

development of non-intrusive equipment, however, these problems will be minimized.  

Any application using AR technology should avoid these technological limitations to 

design an effective inspection system.  The number of the AR or VE elements needs to be 

reduced and, then the remaining elements need to be optimized for the task at hand with a 

systematic design approach.      
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CHAPTER 3.   DEVELOPMENT OF AN AUGMENTED REALITY-
AIDED DIMENSIONAL INSPECTION 

 
 

 

The typical approach to analyze the inspection is to view the inspection as a 

system.  Drury (1992) suggested using the system design concept for the design of any 

system in order to avoid sub-optimization of the system.  The steps for a systems 

approach are: system goals are written, the logical system functions to achieve the goals 

are deduced, each function is allocated to a human or machine and each function is 

designed in detail, and then, the system is tested and evaluated before manufacturing and 

delivery.   

 
 
SYSTEM GOAL 

 
The system goal is the overall performance (i.e., speed and measurement 

accuracy) improvement of a dimensional inspection task.  It is intended to reduce the 

cognitive demands of the task and to support inspectors with AR aids.   

To determine the geometric dimensioning of a part, inspectors should know what 

needs to be measured and where the measures are to be taken.  Since two channels, real 

and virtual scenes, provide supplementary information to complete the task, the AR will 

be used to facilitate a parallel processing.  Parallel processing will improve the inspection 

performance in high demand environments, but it also causes the failure of focused 

attention.  The need to maintain a spatial proximity of the two channels might interfere 

with the inspection performance.  Design challenge is how to minimize the confusion 

between two channels and the cognitive demands to perform the task.  
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TASK ANALYSIS 

 

The dimensional attribute defines the linear and angular magnitudes of the parts, 

while the geometric property defines the forms or features of the parts.  Table 11 shows 

that these attributes can commonly be found in any dimensional and geometric 

measurements (Farago and Curtis, 1994).   

The geometric shape of parts can be classified into prismatic and rotational 

shapes.  Commonly, the prismatic shape has two bases, and three or more lateral 

polygons (Giesecke, Mitchell, Spencer, Hill, & Dygdon, 1986).  The rotational shape 

includes cylinders, cones, and spheres.  The typical dimensional attributes of each 

geometric shape are useful to understand the difference between two part shapes in  

inspection.  The geometric and dimensional properties of prismatic parts include length, 

height, thickness, angle, flatness, squareness, parallelism, etc.  On the other hand, the 

geometric and dimensional properties of rotational parts include length, thickness, 

diameter, contour, roundness, etc.  The same attributes can appear in both the prismatic 

and rotational parts.  Often, a part can have both geometric and dimensional properties of 

the prismatic and rotational shapes, if it consists of the combination of two shapes.   
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TABLE 11.  Dimensional and Geometric Attributes and Required Information Form. 

Property Dimension Related Dimension Measuring Instrument 

Dimension Length Width 

Height 

Rules, Tapes 

Vernier caliper  

Micrometer  

Go-no go gage 

 Thickness Height Vernier caliper 

Height gage 

Ultrasonic thickness gage 

 Depth Length Vernier depth gage 

Depth micrometer 

 Diameter  Vernier caliper  

Go-no go gage 

 Angle  Universal bevel protractor 

Geometric 
Form 

Flatness Straightness Dial indicator with base 

 Perpendicularity Squareness Height gage stand with guideways 

Steel squares 

 Profile Contour Dial indicator with base 

Contour gage 

Optical comparator 

 Parallelism  Dial bench gage  

 Roundness Circularity 

Concentricity 

Coaxiality 

Form regularity 

Dial indicator, V-blocks, mandrel 

 

   Location Coordinate 
location 

 Vernier caliper 

Coordinate measuring machine 
(CMM) 
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As seen in Table 12, every attribute can be measured by any of four types of 

measurements: point, exact point, line, and surface measurements.     

Point measurement is used to measure the length, width, diameter, etc., since they 

are measurements of the shortest distance between two corresponding surfaces on the 

part.  When the measured part has a flat bottom, often height, depth, and thickness can be 

measured at a point.   

 

TABLE 12.  Part Shape and Typical Dimensional Attributes. 

Part Shape Property Dimensional Attribute 

Point Length, Width, Height, Depth, Thickness, etc.  

Exact point Height, Thickness  

Line Angle  

Prismatic  

Surface Flatness, Parallelism, Squareness, Straightness, 
Perpendicularity, etc. 

Point Length, Height, Wall thickness, Diameter, etc. 

Exact point Height, Thickness 

Line Angle 

Rotational 

Surface Roundness, Circularity, Concentricity, Coaxiality, 
Form regularity, Straightness, Parallelism, etc.  

 

 

Exact point measurement is the special case of the point measurement.  There are 

two methods in placing measuring instruments: proximal and exact device placing.  In 

proximal device placing, the measurement can be taken at any two points on the surfaces.  

For example, length is not sensitive to the measuring location, as long as two surfaces are 

parallel.   In exact device placing, a measuring device should be placed on the specific 

point.  Note that the marking function is needed for only the exact placing of the 

measuring device.   

The angle is a line measurement that is formed by two intersecting lines.  Surface 

measurement is used for the geometric property which defines the geometric forms and 

interrelationships of surfaces defined by such concepts as straightness, perpendicularity, 
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parallelism, roundness, etc.  The surface measurement requires the movement or the 

rotation of the measuring devices or the measured parts to determine values.     

 

 
FUNCTION ALLOCATION 

 
The functions of dimensional inspection were identified by the task analysis.  An 

inspection system must perform all of these inspection functions, whether performed by 

humans or machines, or by the combination of these two.  In the system design sense, 

each function can be assigned to either human or machine components.   

Fitts list was the first analytical attempt used to allocate functions between 

humans and machines.  The rule for functional allocation was that functions in which 

humans perform better were assigned to humans and functions that favored machines 

were assigned to machines.  He viewed humans and machines as two competitive 

subsystems to perform various functions within the system.  However, the Fitts list had 

little impact on the engineering design practice, because of a lack of good allocation 

algorithms.   

An alternative technique is to allocate as many functions as possible to machines 

(Chapanis, 1970).  This approach could improve the overall system performance, but 

leftover functions became an unreasonable set of tasks or an underload task set for 

humans.  The operators fail to build an appropriate mental model, when the functions left 

over for the humans do not form a coherent set of tasks.  A designing strategy assigning 

the maximum number of functions to machines is likely to produce an underload for 

humans.  Stress is created when task demands do not match human capabilities.   

Bailey (1982) suggested a balanced approach in which allocation can be classified 

into categories because of the practical design situation: allocation to machines by 

management, allocation to humans and machines by requirements, allocation by 

systematic procedure, and an inability to allocate.  A balanced approach captures a favor 

of designers at work, but does not offer any quantitative guidelines to allocate functions.     

Many visual inspection studies tried to improve the performance of an inspection 

system through the Fitts approach (i.e., hybrid inspection) or Chapanis’s approach (i.e., 

automated inspection).  However, the automated inspection and hybrid inspections have 
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not provided fully satisfied results, though the hybrid inspection showed a possibility of 

performance improvement, as seen in the literature.   

A more promising design approach for an inspection system might be a 

complementary approach.  Jordan (1963) set forth the premise that humans and machines 

should be considered not comparable, but rather complementary.  Activities to perform a 

function should be shared by a man and machine without separation.  Function allocation 

should be determined on how to provide affective and cognitive supports for the human 

in the system (Sanders & McCormick, 1993).  Affective support refers to the emotional 

part of humans, such as job satisfaction and motivation.  Cognitive support refers to 

design considerations that promote the development of an adequate mental model, and 

that ensure an appropriate level of involvement in the task.    

Augmented reality technology can be used for augmenting or assisting functions 

when inspectors show cognitive limitations.  Using AR technology is intended not as a 

replacement of a certain function but as an aid to support the function necessary to 

complete an inspection task.  The inspectors perform the integral part of inspection tasks, 

and AR technology can support the functions when cognitive demand is high.  With the 

supplementary approach, AR can allow a dynamic function allocation in which the 

system can be designed to allow workers to make allocation decisions at any given point 

in time during the system performance (Kantowitz & Sorkin, 1983).  Augmented reality 

can provide the freedom for inspectors whether they deploy AR or not.  Since AR can be 

used as a supplementary means, an inspector can override an AR system anytime, if it is 

desirable.  This property might make AR more attractive and acceptable to workers.     

Another advantage of AR is flexibility.  The flexibility of an inspection system is 

also one of the important performance criteria, even it is rarely measured because of the 

lack of appropriate measures.  It is rare that an inspection system has a single 

nonconforming condition.  More often, an inspection system deals with multiple defect 

types, and changes the strategy to detect particular defect types of interest.  Since AR is a 

very flexible medium to modify the information by reprogramming, the inspection 

system can accommodate any change (e.g., change in products, defects types) easily.     

One of the foreseeable drawbacks of AR is the wearing of HMDs for a long 

period of time, yet no one reported any discomfort during the pretest experiment.  
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However, the effects of prolonged exposure to AR need to be identified for real 

applications in the work place.  The subjects experienced only about 30 to 45 minutes in 

the pretest experiment; this short one-shot experience for users might not be enough to 

judge the negative effects of AR.  To prevent this problem, AR aids need to be designed 

in a less intrusive way so that the weight of HMDs is supported by a stand.  The similar 

examples are a watch repairman using a magnifier to repair a watch, or an inspector 

inspecting a small cylinder with a magnifier (Kleiner, 1983).      

Possible changes to support each inspection function were reviewed by 

considering the cognitive demands of each function and the capabilities of AR to support 

these demands.  Four inspection methods that were designed by the systematic design 

were manual, 2D-aided, 3D-aided, and AR-aided inspections.  The manual inspection 

uses the typical dimensional inspection method that includes engineering drawings and 

inspection reports.  The 2D-aided inspection uses a computer to transfer the inspection 

information rather than engineering drawings.  The graphic information on the computer 

screen was the same as that of the engineering drawing, but measuring attributes 

appeared one-by-one according to the inspection sequences.  Inspectors could conduct 

inspection without spending time for a search with this sequential delivery of measuring 

information.  Also, the calculation for mean value and the decision processes were 

automated with the computer.  The 3D-aided inspection was the same as the 2D-aided 

inspection except for the graphic representation of parts.  All the parts and measuring 

information were drawn with isometric perspectives.   The AR-aided inspection used the 

same graphic representation of the 3D-aided for parts.  However, all the information was 

delivered to inspectors using HMDs.  The composite view of the parts and measuring 

attributes should enable parallel processing between the two channels.      

It was expected that the AR-aided inspection would improve inspection 

performance by increasing the reliabilities of the search and decision functions and by 

eliminating the marking and cleaning functions.  The AR-aided inspection helps reduce 

inspection time and errors.  To test the suggested hypotheses, the experiment was 

designed to assess the performance differences of these four inspection methods.    
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RESEARCH OBJECTIVES 

 

The main objective of this study is to improve the performance of dimensional 

inspection that includes various dimensional and geometric attributes by using AR aids.  

The secondary objective is the development of guidelines in designing an AR-aided 

inspection system.  These design guidelines can help the system designers understand 

ways in which information is presented with AR.  It is expected that the design guidelines 

can be applicable for various manufacturing tasks, though the scope of this study is 

limited to the dimensional inspection.  

To achieve these objectives, the performance data of the AR-aided inspection and 

other comparable technological alternatives need to be obtained with regard to their 

effects on inspection time, measurement accuracy, and the user’s preference.   

 

Research Hypotheses 
 

Research hypotheses that can be used to evaluated the validity of the AR-aided 

inspection and to form design guidelines were established.  The research hypotheses 

being tested by this study are:  

 

Hypothesis 1:  AR-aided inspection improves inspection performance.  Augmented reality 

helps decrease inspection time and improve measurement accuracy.    

Hypothesis 2: The benefit of AR is dependent on part shapes.  The performance 

improvement of prismatic parts with AR is different from that of rotational 

parts.    

Hypothesis 3: The benefit of AR is dependent on measurement attributes. The 

performance improvement of point measurement with AR is different from 

that of exact point, line, or surface measurement.   

Hypothesis 4: The subjects who use the AR-aided inspection have a higher preference to 

their inspection method than the subjects who use the manual inspection. 
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CHAPTER 4.    EXPERIMENTAL METHOD 
 
 
 
SUBJECTS 

 

All subjects were recruited from the students who have taken or are taking the 

Manufacturing Processes Laboratory (ISE 2214) course of Industrial and Systems 

Engineering Department at Virginia Polytechnic and State University in the Fall of 2001. 

Twenty-four subjects with 20/20 visual acuity and normal color vision were selected by 

using a vision tester (BAUSH & LOMB).   

Then, since the inspection task requires a visual search and cognitive ability to 

understand how the 2D figures turn into 3D objects, cognitive capability tests were given 

to all subjects before the experiment.  The visualization test was given to measure the 

ability to manipulate or transform the image of spatial patterns into other forms.  The 

visualization scores ranged from 10 to 20 with an average of 15.4.  According to the 

related study (Ekstrom, French, & Harmon, 1976), no subject had a serious problem in 

visualization capability.   

To minimize the variation of inspection skills among subjects, the experiment was 

performed after each subject completed the inspection of a pulley and a base plate in the 

class.  Inspection practice consisted of inspecting various dimensional and geometric 

attributes with measuring instruments, recording the required information on a part 

inspection report, and determining the acceptance of the attribute.  Also, prior to 

performing the experiment, each subject was given about an hour of instruction and 

practice, under controlled conditions.  Since all subjects have enough knowledge to 

understand the complex engineering drawings and dimensional inspection processes, the 

training time could be minimized.  
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EXPERIMENTAL DESIGN 

 
A 4×2×4 mixed factors design was used to evaluate the effectiveness of AR aids 

for dimensional inspection tasks  

 

Independent Variables 

 
Inspection Method with four levels (manual, 2D-aided, 3D-aided, and AR-aided 

inspections) was the between-subjects factor, while Part Shape with two levels (prismatic 

and rotational parts) and Property with four levels (point, exact point, line, and surface 

measurements) were the within-subjects factors.  As shown in Table 13, twenty-four 

subjects were randomly assigned into four different inspection methods: six subjects for 

each of the manual, 2D-aided, 3D-aided, and AR-aided inspection methods.   

 

TABLE 13. Treatment Conditions for the Mixed-factors Design. 

Inspection Method Part Shape Property 

Manual 2D 3D AR 

Point  S1-S6 S7-S12 S13-S18 S19-S24 

Exact Point  S1-S6 S7-S12 S13-S18 S19-S24 

Line  S1-S6 S7-S12 S13-S18 S19-S24 

Prismatic  

Surface  S1-S6 S7-S12 S13-S18 S19-S24 

Point  S1-S6 S7-S12 S13-S18 S19-S24 

Exact Point  S1-S6 S7-S12 S13-S18 S19-S24 

Line  S1-S6 S7-S12 S13-S18 S19-S24 

Rotational  

Surface  S1-S6 S7-S12 S13-S18 S19-S24 
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Dependent Variables 

The two dependent variables are average inspection time and measurement 

accuracy.  Also, a subjective questionnaire was used to evaluate the physical stress and 

user satisfaction of the four inspection methods.  Inspection time is the average time to 

complete the inspection of each dimensional property.  The measurement accuracy is 

defined as the deviation from the true dimensional value.  The subjects were instructed to 

measure each attribute one by one: to measure the next attribute, they must complete all 

the required processes of the current attribute.  This experiment condition gave a 

conservative result in terms of the inspection time.  Often, inspectors can take measures 

in a more efficient way in the real inspection situation for all four inspection methods.  

They can determine multiple measuring points together or take multiple measures 

together regardless of the attributes.  Since the subjects measure attributes in turn, the 

given task might include some additional manipulations of parts: the different attributes 

which appear on the same surface could not be measured at once.        

The physical and mental workloads of the four inspection methods were measured 

with Likert-type scaled subjective questionnaires at the end of the experiment.  The body 

part discomfort diagram (Wilson, 1998) was used to measure the physical workloads, 

while the modified NASA task loading index (TLX) was used for the mental workload.  

The NASA TLX (Hart & Staveland, 1988) and Subjective Workload Assessment 

Technique (SWAT) (Reid & Nygren, 1988) permit the operator to rate the task on the 

basis of multiple dimensions.  The subscale of NASA TLX are mental demand, physical 

demand, temporal demand, performance, effort, and frustration level, while the subscale 

of SWAT are time load, mental effort load, and psychological stress load.  The original 

TLX takes into account the individual differences of these subscales by asking each 

subject to indicate the subscale which affects the workload the most.  The weighted 

average of each subscale is obtained by a pair-wise comparison of subscales.  The SWAT 

uses a similar process to determine the relative effects by rating subscales with a three-

points scale.  However, (Nygren, 1991) reported that there was no psychometric basis for 

calculating the weighted average for TLX.  Also, other studies suggested that either the 

weighted average or the derived SWAT score is not superior to the average of subscales 

(Christ et al., 1993) 
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EQUIPMENT 

 

The augmented reality equipment, inspection parts, and measuring instruments 

that were used in this experiment are as follows:  

 

Augmented Reality Equipment 

 

The HMD employed was Virtual i-glasses (Virtual i.O, Inc.), a binocular HMD 

system equipped with a head tracker.  The unit employs a liquid-crystal display (LCD) 

with 640x480 VGA resolution, a 60 HZ refresh rate, and a 30° field-of-view (FOV) for 

each eye.  A complete set of technical specifications for the unit was presented in Table 

14.  

 

TABLE 14.  Head-Mounted Display (i-glasses) Specifications. 

Parameter Performance 

Field of view 30° horiz.×22.5°vert. with full overlap 

Resolution VGA (640×480) 

Convergence 25 feet from viewer 

Focal distance 12 feet from viewer 

Maximum brightness 10 foot-lamberts 

Maximum contrast ration 100:1 

Vertical scan rate 60 or 70 Hz 

Weight 8 Ounces 
 

 

For this experiment, however, the unit was used in a monocular mode and the 

head tracker was not employed.  The pilot study showed that binocular vision made the 

computer images appear to “float” in front of, rather than merge with, real objects.  This 

made it difficult to use the images to “mark” the part surfaces, as required by the 

inspection task.  To avoid this problem, the non-dominant eye was blocked by a filter in 

the eyepiece, resulting in monocular vision.  With both eyes open, subjects were asked to 
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make an alignment between a 1-foot-long black vertical line about 10 feet away and their 

thumb.  Then, each eye was blocked individually to check when the alignment was 

broken.  For example, if the alignment was broken when the right one was blocked, the 

right eye was dominant.  

The head tracking capability of the unit was found to be inadequate for the precise 

alignment requirements of this study, and thus was not used.  Instead, the inspectors 

simply control the position of the AR display as necessary to align the image with the real 

object.  The default eye-to-part distance of a computer-generated wire-frame is about 

35.5 cm, which corresponds to a normal reading distance.  To ensure that the image had 

the same orientation as the real object with respect to the viewer, the ability to rotate the 

image via keyboards was incorporated into the application program.  The application 

program was developed using WorldToolKit by Sense8 and executed on an Intergraph 

TDZ-310 workstation.   

 

Inspection parts 

 
A total of six parts, three prismatic parts and three rotational parts, were used in 

this experiment, as seen in Figure 4.  The dimension of all parts ranges less than 5×5×5 

inches.  Six parts which include the dimensional properties and attributes of interest were 

selected from various machining tools.  The three prismatic parts were the safety key, the 

finger guide, and the tool holders, while the three rotational parts were the step pulley, the 

holder, and the roller stud (Giesecke et al., 1986).  These parts included the various 

measuring attributes that are typical for the prismatic and rotational part of interests.  The 

dimensional and geometric attributes, and the tolerances of each part are shown in the 

engineering drawings (see Appendix D).     

Since the properties are embedded in the parts, the measurable properties depend 

on the part.  Each part includes little difference in measuring attributes, as seen in Table 

15.  For example, length, width, and height appear more often on the prismatic parts, 

while diameter, roundness, and concentricity appear more often on the rotational parts.   
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Prismatic Part (P) Rotational Part (R) 

  
P-1. Safety Key R-1. Step Pulley 

 

  
P-2. Finger Guide R-2. Holder 

  
P-3. Tool Holder R-3. Roller Stud 

 

Figure 4.  Inspection parts used in this experiment.  
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TABLE 15.  Inspection Parts and Dimensional Attributes of Interest. 

Part Shape Parts Property Attributes 

Point Length, Width, Diameter, Depth 

Exact Point Height 

Line  Angle 

Safety key 

Surface Flatness 

Point Length, Width 

Exact Point Thickness 

Line  Angle 

Finger guide 

Surface Parallelism 

Point Length, Width, Diameter 

Exact Point Height 

Line  Angle 

Prismatic   

Tool holder 

Surface Flatness 

Point Length, Width, Diameter 

Exact Point Not available 

Line Not available 

Step Pulley 

Surface Flatness, Roundness  

Point Length, Width, Diameter 

Exact Point Height 

Line Angle 

Holder 

Surface Roundness  

Point Length, Width, Diameter 

Exact Point Not available 

Line Not available 

Rotational  

Roller Stud 

Surface Concentricity  
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Measuring Instruments 

 

The selection of measuring instruments depends on the inspected parts’ shape, 

size, volume, the tolerance rate, etc.  Table 16 shows the measuring devices for the 

dimensional attributes that were used for this experiment.  The general types of devices 

which are commonly used to measure each dimensional attribute were used for the 

experiment.  

TABLE 16.  Measuring Devices and Attributes. 

Device Model Attribute 

Dial caliper  Mitutoyo 505-644-50 Length, Width, Height, and Diameter, 
Hole Diameter, Depth  

Height gage Mitutoyo 509-313 Thickness and Height  

Bevel protractor Mahr 106 Angle 

Dial gage with base 
and surface plate 

Peacock SPI 20-3333 Flatness, Parallelism, Roundness, and 
Concentricity 

 

The attributes that share common properties can often be measured with the same 

measuring instruments, though the effectiveness of the instruments for each attribute 

might be different according to the measuring situations.  A vernier caliper is commonly 

used for all kinds of point measurements.  Often, however, each attribute can be 

measured with a certain measuring instrument which is designated to measure a certain 

attribute depending on the parts.  A height gage is useful for surface plate work as a 

layout tool, for marking off vertical distances and for measuring height differences 

between various steps.  Sometimes, specialized devices, for example a go no-go gage, 

can be used for a certain case if only the nominal scale (e.g., go no-go) is of interest 

rather than the ration scale (e.g., inch, or mm).    

The selection of measuring devices was decided by considering how each 

attribute is measured in a real situation.  A dial caliper was used for the measurement of 

length, width, and inner/outer diameter.  A height gage was used to measure the 

height/thickness in the center of the part.  A depth gage was used to measure the depth.  

The universal protractor was useful for an angle, and the dial gage was useful for other 

surface measurements (e.g., flatness, roundness, etc.).  
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EXPERIMENTAL PROCEDURE 

 

In the training session, the experimenter explained and demonstrated how to use 

different measuring devices.  The training session continued until their performance 

satisfied the standard values (inspection time:15 min., inspection error: 0).  If any 

inspection error was found, subjects were asked to measure that attribute again at the end 

of the practice.    

Normally, a complete counterbalancing or Balanced Latin Square is used to order 

experimental conditions. Unfortunately, the order of property cannot be controlled by the 

experimenter, because the property is embedded on the part.  Six parts were randomly 

presented one-by-one to subjects to eliminate the order effect of within-subject factors.   

At the beginning of the experiment, subjects were instructed to conduct the 

inspection task accurately and quickly with the standardized operation (see Appendix B).  

Each attribute was measured one to six times at different measurement points on the part 

with the corresponding measuring instruments.  The measuring resolution of all 

instruments was 0.001 inches except the universal bevel protractor (5 min.).  The 

acceptable bounds of each attribute are called tolerances.  The two types of tolerances, 

dimensional and geometric tolerances (Shewchuk, 2001), are related to these attributes.  

Dimensional tolerances are used to specify the bounds on the nominal dimension. 

Thickness, depth, diameter, and length belong to this category.  The bilateral tolerance 

that includes the magnitude along with an upper and lower bound was used for this 

experiment.  Geometric tolerances are used to specify the bounds on the geometric 

features of a part.  Two types of geometric tolerances are form tolerance and location 

tolerance.  Form tolerances bound on geometric attributes, while location tolerances 

bound on the position of features.  The limit dimensions that define only the bounds were 

used for the tolerance of the surface measurement.    

At the end of the experiment, the subject was asked to fill out the subjective 

questionnaire.  The total experiment time, including instruction, inspection, and 

answering the questionnaire, took about 3 hrs.    

The four inspection methods that were used in this experiment are as follows: 
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Manual Inspection 

 

The engineering drawings and the inspection report forms (see Appendix D) 

along with test parts were given to a subject.  The inspection for each part consisted of a 

set of steps, which were the study of drawing, marking, measurement, decision for 

conformation, and data recording, as shown in Figure 5.  The subjects measured all 

attributes on the part exhaustively, and recorded the readings on the inspection reports, 

along with any required calculations.  The average value of each attribute was calculated.  

Then, the subjects compared their disposition values to the engineering drawing to decide 

whether the attribute was acceptable or not.       

 

The inspection sequence of the manual inspection is as follows: 

1. Place the current part on the inspection station and set up the measuring devices.  

2. Study the engineering drawings and the part inspection reports to decide the 

measuring attributes on the part. 

3. Decide if the marking is required to measure the current dimensional or geometric 

attribute of interest: only the exact point measurement (e.g., height measurement 

in this experiment) needs marking.  Then, mark measurement points on the part 

surface with a pencil according to the engineering drawings.  

4. Measure the attribute of interest, record the value, and calculate the average 

values.   

5. Compare the disposition value with the given geometric dimensioning tolerance 

on the engineering drawing.  Then, record the rejection or acceptance of the 

current attribute on the inspection report form. 

6. Repeat steps 4 to 5, until all measurements have been taken and recorded. 

7. Remove all markings from the part surface, if the part was marked. 

8. Place the next part and repeat steps 1 to 7.  

 

. 
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Attribute

Study Drawing

Marking

Measurement

Within tolerance?

Yes

Need marking?

Yes

No

Another marking?

No

Another attribute?

Yes

No

Yes

Cleaning

No

No

Record (Reject)Record (Accept)

Termination

Data Recording

Calculation

Repeat
measurement?

Yes

No

Part

Yes

Another part?

 
 

Figure 5.  Manual inspection process. 
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2D-aided and 3D-aided Inspections 

The contents of information were the same as that of the manual inspection, but 

only the selected information which was directly related to the measurement of interest 

was provided by a computer.  The subjects measured attributes on the part according to 

the information on the screen and keyed readings. Then, the computer decided the 

disposition of the part by comparing the calculated average value with the specification.  

The study of drawing and calculation among the inspection processes were no longer 

needed for the 2D-aided and 3D-aided inspection conditions, since the computer provides 

the measuring information one-by-one with average values for the decision as shown in 

Figure 6.   

The 2D-aided and 3D-aided inspections were basically identical.  The only 

difference was the way in which information is presented.  The 2D-aided inspection used 

2D perspective figures (e.g.. engineering drawing) as seen in Figure 7, while the 3D-

aided inspection used isometric perspectives as seen in Figure 8.   For the 2D-aided 

inspection, the function that could be used to change the projection of parts was included.  

Each part could be viewed in at least two of three views: top, front, and side.  In the case 

of the 3D-aided inspection, the wire-frame model of a part could be rotated around two 

mutually orthogonal axes so that subjects changed the viewpoint of the part according to 

their needs.   

As a result, the performance difference between the 2D and 3D-aided inspections 

should be caused by the difference in understanding the 2D and 3D figures mentally.   

The inspection sequence of the 2D and 3D-aided inspections is as follows: 

1. Place the current part on the inspection station and set up the measuring devices.  

2. Select (2D) or rotate (3D) the viewpoint of the part as needed.  

3. Decide if the marking is required to measure the current dimensional or geometric 

attribute of interest: only the exact point measurement (e.g., height measurement 

in this experiment) needs marking.  Then, mark measurement points on the part 

surface according to the information on the computer screen. 

4. Measure the attribute of interest.  Then enter the reading via the keyboard. 

5. Repeat steps 3 to 4 until all the attributes have been taken and recorded. 

6. Remove all markings from the part surface, if the part was marked. 
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7. Place the next part and repeat steps 1 to 5. 

Attribute

Study Drawing

Marking

Measurement

Within tolerance?

Yes

Need marking?

Yes

No

Another marking?

No

Another attribute?

Yes

No

Yes

Cleaning

No

No

Record (Reject)Record (Accept)

Termination

Data Recording

Calculation

Repeat
measurement?

Yes

No

Part

Yes

Another part?

Eliminated processes from manual inspection are colored in gray
 

Figure 6.  2D-aided and 3D-aided inspection processes. 
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Prismatic Part (P) Rotational Part (R) 

  
P-1. Safety Key R-1. Step Pulley 

  
P-2. Finger Guide R-2. Holder 

  
P-3. Tool Holder R-3. Roller Stud 

 

Figure 7.  2D perspective of parts: 2D-aided inspections. 
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Prismatic Part (P) Rotational Part (R)  

  
P-1. Safety Key R-1. Step Pulley 

  
P-2. Finger Guide R-2. Holder 

  
P-3. Tool Holder R-3. Roller Stud 

 

Figure 8.  Isometric perspective of parts: 3D-aided and AR-aided inspections. 
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AR-aided Inspection 

 
The AR-aided inspection used the same graphics as the 3D-aided inspection.  The 

contents and formats of information were identical to the 3D-aided inspection. 

The only difference from the 3D-aided inspection was that the subject used a see-

through head-mounted display (HMD), which integrates two information channels 

together: the computer screen and the part as seen in Figure 9.  The wire-frame model 

was superimposed over the actual part along with the measuring information.  This 

allowed the subject to see the measurement locations on the part directly, as if the part 

itself had measuring information.  The view of a part along with its’ measuring attributes 

could be rotated with keys so that subjects can make an alignment between a part and the 

wire-frame model, or examine the parts according to their needs.  

The subjects measured attributes on the part and recorded the readings by using a 

keyboard.  Then, the computer decided the disposition of the part by comparing the 

calculated average value with the specification.   The processes of the AR-aided 

inspection can be seen in Figure 10.  Some steps that were required for the other 

inspection methods such as study drawing, marking, calculation, and cleaning are no 

longer needed for the AR-aided inspection condition.    

 

The inspection sequence of the AR-aided inspection is as follows: 

1. Place the current part on the inspection station and set up the measuring devices.  

2. Rotate (3D) the viewpoint of the part as needed. 

3. Control the HMD as required to ensure that the wire-frame image of the part is 

correctly superimposed over the edge of the part. 

4. Measure the current attribute according to the information on the screen.  Then 

enter the reading via the keyboard. 

5. Repeat steps 3 to 4 until all the attributes have been taken and recorded. 

6. Place the next part and repeat steps 1 to 5. 
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(a) An inspector performs an inspection with AR displays 

 

 
(b) Scene through the AR display  

 

Figure 9.  AR-aided inspection scenes  
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Figure 10.  AR-aided inspection processes. 
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CHAPTER 5.   RESULTS 
 

 

An analysis of variance (ANOVA) was conducted on each of the two 

performance measures: inspection time and measurement accuracy.  The inspection time 

was the average time (i.e. seconds) spent inspecting the dimensional attribute of interest, 

while the measurement accuracy was the measurement deviation that was defined as the 

ratio (i.e., percent) between the deviation and the specification value.   

 

INSPECTION TIME 

 

The ANOVA results show that the Inspection Method significantly affects the 

inspection time as shown in Table 17 

 

TABLE 17.  ANOVA Summary Table of Inspection Time. 

Source df SS MS F p-value 

Between Subject      

   Method (M)  3 136647.1   45549.0      13.36  0.000* 

   Subjects (S/M) 20    68182.1     3409.1   

Within Subject      

   Part Shape  (P)   1      441.0         441.0          1.86  0.1880 

   M×P   3       538.6      179.5       0.76  0.5317   

   P×S/M 20     4748.2      237.4   

   Attribute (A)   3 456272.0 152090.1   149.80     0.000* 

   M×A   9   86367.2     9596.4      9.45 0.000* 

   A×S/M 60   60916.5     1015.3    

   P×A    3     2265.5         755.2      3.58   0.0189* 

   M×P×A   9     2051.8       228.0      1.08 0.3901 

   M×P×A×S/M 60   12655.4       210.9   

   Total 191 907403.5    
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The Bonferroni t-test shows that the AR-aided inspection takes significantly less 

time than the 3D and manual inspections (p < 0.05), as seen in Table 18.  The 2D-aided 

inspection takes significantly less time than the manual inspection.  However, there are 

no significant differences between the AR-aided and 2D-aided inspections, between the 

2D-aided and 3D-aided inspections, and between the 3D-aided and manual inspections. 

 

TABLE 18.  Paired Comparisons of Inspection Methods  (CDB=34.886, p < 0.05). 

Inspection Method 

Means 

AR 

92.000 

2D 

117.417 

3D 

131.875 

Manual 

165.813 

AR 

2D 

3D 

Manual 

- 25.417 

- 

  39.875* 

14.458 

- 

  73.813* 

  48.396* 

33.938 

- 
 

 

The effect of the Part Shape on inspection time is not significant.  There is no 

significant difference between the mean inspection times of the prismatic part (mean: 

125.260 sec.) and that of the rotation part (mean: 129.295 sec.).   

The effect of the Attribute on inspection time is significant.  The inspection time 

of each attribute is significantly different from each other except between the line and 

surface measurements, as seen in Table 19.  The point measurement takes the shortest 

time whereas the exact point measurement takes the longest time.   

 

TABLE 19.  Paired Comparisons of Attributes  (CDB= 17.747, p < 0.05). 

Inspection Method 

Means (Seconds) 

Point 

63.833 

Surface 

113.875 

Line 

129.333 

Exact Point 

200.063 

Point 

Surface 

Line 

Exact Point 

- 50.042* 

- 

65.500* 

    15.458 

- 

136.230* 

 86.188* 

 70.730* 

- 
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The ANOVA results show that the two-way interaction of Method and Attribute 

is significant.  Figure 11 shows that the AR-aided inspection is always fastest regardless 

of the measuring attributes.  The adjusted Bonferroni t-test indicates that for the point and 

surface measurements, the Inspection Method has no significant effect on the inspection 

time, as seen in Table 20.  However, for the exact point measurement, Inspection Method 

has a significant effect on the inspection time.  The manual inspection takes longer than 

the 2D-aided and 3D-aided inspections, and the 2D-aided and 3D-aided inspections take 

longer than the AR-aided inspection.  For the line measurement, the manual inspection 

method takes longer than the other three inspection methods.  The inspection time of the 

three methods for line measurement is not significantly different from each other.  

 

Two-Way Interaction: Method x Attribute
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Figure 11.  Average inspection time of each inspection method. 
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TABLE 20.  Unconfounded Comparisons of Two-Way Interaction: Method × Attribute. 

Method Point (A1) Exact Point (A2) Line (A3) Surface (A4) 

Manual (M1) 929 3272 2150 1608 

2D-aided (M2) 768 2353 1295 1220 

3D-aided (M3) 736 2664 1499 1431 

AR-aided (M4)  631 1314 1264 1207 
 

(M1A1)-(M1A2) 
(M1A1)-(M1A3)      
(M1A1)-(M1A4)   
(M1A2)-(M1A3)  
(M1A2)-(M1A4)      
(M1A3)-(M1A4)      
(M2A1)-(M2A2)      
(M2A1)-(M2A3)      
(M2A1)-(M2A4) 
(M2A2)-(M2A3) 
(M2A2)-(M2A4) 
(M2A3)-(M2A4) 
(M3A1)-(M3A2) 
(M3A1)-(M3A3) 
(M3A1)-(M3A4) 
(M3A2)-(M3A3) 
(M3A2)-(M3A4) 
(M3A3)-(M3A4) 
(M4A1)-(M4A2) 
(M4A1)-(M4A3) 
(M4A1)-(M4A4) 
(M4A2)-(M4A3) 
(M4A2)-(M4A4) 
(M4A3)-(M4A4) 

   2343* 
   1221* 
    679* 
   1122* 
   1664* 
   542 

   1585* 
   527 
   452 

   1058* 
   1133* 
     75 

   1928* 
     763* 
     695* 
   1165* 
   1233*  
     68 

     683* 
     633* 
     576* 
     50 
   107 
     57 

(M1A1)-(M2A1) 
(M1A1)-(M3A1) 
(M1A1)-(M4A1)   
(M2A1)-(M3A1) 
(M2A1)-(M4A1)    
(M3A1)-(M4A1)      
(M1A2)-(M2A2) 
(M1A2)-(M3A2) 
(M1A2)-(M4A2) 
(M2A2)-(M3A2) 
(M2A2)-(M4A2) 
(M3A2)-(M4A2) 
(M1A3)-(M2A3) 
(M1A3)-(M3A3) 
(M1A3)-(M4A3) 
(M2A3)-(M3A3) 
(M2A3)-(M4A3) 
(M3A3)-(M4A3) 
(M1A4)-(M2A4) 
(M1A4)-(M3A4) 
(M1A4)-(M4A4) 
(M2A4)-(M3A4) 
(M2A4)-(M4A4) 
(M3A4)-(M4A4) 

  161 
  193 
  298 
    32 
  137 
  105 

    919* 
    608* 
  1958* 
   311 

   1039* 
   1350* 
     855* 
     651* 
     886* 
   204 
     31 
   235 
   388 
   177 
   401 
   211 
     13 
   224 

 

( )[ ] ( )[ ] ( )[ ][ ] 94.54427.1015*12*260,482, =′=′= tMSndfctCD errorerrorB  
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The Part Shape × Attribute interaction is shown in Figure 12.   The adjusted 

Bonferroni t-test indicates that the Part Shape has no effect on the inspection time for the 

point, exact point, and line measurements, as shown in Table 21.   Regardless of the part 

shapes, the inspection time of the same attribute is the same.  On the other hand, for the 

surface measurement, the rotational parts take a longer inspection time than the prismatic 

parts.       
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Figure 12.  Average inspection time of each part shape.
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TABLE 21.  Unconfounded Comparisons of Two-Way Interactions: Part × Attribute. 

Part Shape Point (A1) Exact Point (A2) Line (A3) Surface (A4) 

Prismatic (P1) 

Rotational (P2) 

1560 

1494 

4804 

4798 

3106 

3102 

2554 

2910 
 

(P1A1)-(P1A2) 

(P1A1)-(P1A3)        

(P1A1)-(P1A4)   

(P1A2)-(P1A3)  

(P1A2)-(P1A4)        

(P1A3)-(P1A4)        

(P2A1)-(P2A2)        

(P2A1)-(P2A3)        

(P2A1)-(P2A4) 

(P2A2)-(P2A3) 

(P2A2)-(P2A4) 

(P2A3)-(P2A4) 

3244* 

1546* 

  994* 

1698* 

2250* 

  552* 

3304* 

1608* 

1416* 

1696* 

 1888* 

 192               

(P1A1)-(P2A1)        

(P1A2)-(P2A2) 

(P1A3)-(P2A3) 

 (P1A4)-(P2A4) 

 

  66 

    6 

    4 

  356* 

 

( )[ ] ( )[ ] ( )[ ][ ] 57.31792.210*24*260,162, =′=′= tMSndfctCD errorerrorB  
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MEASUREMENT ACCURACY 

 

The ANOVA results of Table 22 show that the Inspection Method does not affect 

the measurement accuracy.  Measurement accuracy is equal across all four inspection 

methods (p < 0.05).  Conversely, two other main effects, Part shape and Attribute, 

significantly affect measurement accuracy.  The prismatic parts (0.39%) include higher 

measurement variations than the rotational parts (0.30%).  The Bonferroni t-test results 

show that the measurement accuracy of the point and surface measurements is higher 

than that of the exact point and line measurements (Table 23).  The point and surface 

measurements show less measurement deviation than the exact point and line 

measurements.   

 

TABLE 22.  ANOVA Summary Table of Measurement Accuracy. 

Source df SS MS F p-value 

Between Subject      

   Method (M) 3 0.055559 0.018519  0.32   0.812 

   Subjects (S/M) 20  1.165477 0.058273   

Within Subject      

   Part Shape (P) 1 0.364854 0.364854     9.36    0.006* 

   M×P 3 0.019979 0.006659  0.17  0.915    

   P×S/M 20 0.779359 0.038967   

   Attribute (A) 3 3.441051 1.147017     34.22        0.000* 

   M×A 9 0.610134 0.067793   2.02  0.051 

   A×S/M 60 2.011062 0.033517   

   P×A 3 1.837534 0.612511     29.79        0.000*  

   M×P×A 9 0.929223 0.103247   5.02      0.000* 

   M×P×A×S/M 60 1.233732 0.020562   

Total 191 12.34797    
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TABLE 23.  Paired Comparisons of Attributes  (CDB= 0.10197, p < 0.05). 

Inspection Method 

Means Variation (%) 

Surface 

0.19767 

Point 

0.22569 

Exact Point  

0.47379 

Line 

0.48343 

Surface 

Point 

Exact Point 

Line 

- 0.02802 

- 

  0.27612* 

  0.24810* 

- 

  0.28576* 

  0.25774* 

0.00964 

- 
 

 

Figure 13 shows the two-way interaction of the Part Shape and Attribute.  The 

adjusted Bonferroni-t test indicates that for the point and surface measurements, the 

rotation parts include less deviation, as shown in Table 24.  For the exact point and line 

measurements, the prismatic parts include less deviation.   
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Figure 13.  Average inspection measurement deviation. 
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TABLE 24.  Unconfounded Comparisons of Two-Way Interactions: Part × Attribute. 

Part Shape Point (A1) Exact Point (A2) Line (A3) Surface (A4) 

Prismatic (P1) 

Rotational (P2) 

5.1360 

1.9248 

14.8200 

17.4744 

14.4432 

19.9992 

8.7984 

1.7760 
 

(P1A1)-(P1A2) 

(P1A1)-(P1A3)        

(P1A1)-(P1A4)   

(P1A2)-(P1A3)  

(P1A2)-(P1A4)        

(P1A3)-(P1A4)        

(P2A1)-(P2A2)        

(P2A1)-(P2A3)        

(P2A1)-(P2A4) 

(P2A2)-(P2A3) 

(P2A2)-(P2A4) 

(P2A3)-(P2A4) 

   9.6840* 

   9.3072* 

   3.6624* 

 0.3768 

   6.0216* 

   5.6448* 

 15.5496* 

 18.0744* 

0.1488 

2.5248 

15.6984* 

18.2232*           

(P1A1)-(P2A1)        

(P1A2)-(P2A2) 

(P1A3)-(P2A3) 

(P1A4)-(P2A4) 

 

  3.2112* 

 2.6554 

   5.5560* 

   7.0224* 

 

( )[ ] ( )[ ] ( )[ ][ ] 1355.30201562.0*24*260,162, =′=′= tMSndfctCD errorerrorB  
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INSPECTION STRATEGY DIFFERENCES BETWEEN GROUPS 

 

To understand the inspection strategy of the four inspection methods, the trade-off 

between time and measurement accuracy was analyzed.  Each subject’s inspection time 

and measurement deviation from the real value is plotted in Figure 14.  The dashed lines 

represent the mean values of these two dependent variables.  The more observations of 

the method that appear on the lower left area, the better the performance of that method 

becomes evident.  

Figure 14 shows the inspection strategy difference among the four inspection 

conditions. A visible difference is that the observations of the exact point and surface 

measurements are scattered along with x and y-axes.  It means that there is a big 

difference in the individual inspection strategy within the same inspection condition as 

well as among the four inspection conditions for the exact point and surface 

measurement.  On the other hand, there is no big different for the point and surface 

measurement.  Subjects used a similar inspection strategy for point and surface 

measurements.  

In the case of point measurement, the AR-aided and 3D-aided inspection methods 

show a small amount of differences within the group.  The 2D-aided inspection also 

shows a distribution similar to the AR-aided inspection except for one subject who spent 

almost twice as much time.  The manual inspection often appears at the top right part.  It 

implies that subjects spent more time with a large measurement deviation in the manual 

inspection condition.  Subjects need to study engineering drawings to find the current 

attribute of interest and calculate the disposition value in the manual inspection condition.    

In the case of exact point measurement, the inspection time difference among 

inspection methods is eminent.  The AR-aided inspection is plotted on the left hand side, 

the 2D and 3D-aided inspections are plotted in the middle, and then the manual 

inspection condition is plotted on the right hand side.  Subjects spent less time in the AR-

aided inspection condition.  Undoubtedly, the major sources of the difference between the 

AR-aided inspection and the 2D and 3D-aided inspection are the marking and cleaning 

processes that are required for the exact point measurement.  Since AR could eliminate 

these two steps in the inspection processes, subjects could spend less time in the AR-
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aided inspection condition.  On the other hand, the differences between the 2D and 3D-

aided inspections and the manual inspection are the automated calculation and decision 

functions.  An interesting finding is that there is a great amount of individual difference 

regardless of inspection methods.  Even in the same inspection condition, each subject 

uses a quite different inspection strategy.  Observed data are scattered in the wide range 

along with x and y-axes.   

In the case of line measurement, the plotted data show that each subject uses a 

different strategy within the same inspection condition.  However, there is a difference 

between the manual inspection and the other inspection methods.  The manual inspection 

is plotted at the lower right hand part.  It means that subjects spent more time with a 

small amount of deviation in the manual inspection condition, while less time was spent 

with a large measurement deviation in the other inspection conditions.   

In the case of surface measurement, all subjects except one spent the same amount 

of time with the same amount of deviation regardless of the inspection methods.  No 

individual difference is found within and between the four inspection methods.  

  

    

   
 

 



 83

Point Measurement

0

0 .2

0 .4

0 .6

0 .8

1

0 50 10 0 150 2 00 250 3 00 350 4 00
T ime (sec.)

D
ev

ia
tio

n 
(%

)

Manual
2D-Aided
3D-Aided
AR-Aided

 

Exact Point Measurement

0

0 .2

0 .4

0 .6

0 .8

1

0 5 0 1 00 15 0 200 2 50 30 0 350 4 00

T ime (sec.)

D
ev

ia
tio

n 
(%

)

Manual
2D-Aided
3D-Aided
AR-Aided

 

Line Measurement

0

0 .2

0 .4

0 .6

0 .8

1

0 50 100 150 20 0 250 3 00 35 0 400
T ime (sec.)

D
ev

ia
tio

n 
(%

)

Manual
2 D-Aided
3 D-Aided
AR-Aided

 

Surface Measurement

0

0 .2

0 .4

0 .6

0 .8

1

0 5 0 100 15 0 200 250 3 00 350 400

T ime (sec.)

D
ev

ia
tio

n 
(%

)

Manual
2 D-Aided
3 D-Aided
AR-Aided

 

Figure 14.  Trade-off between inspection time and measuring accuracy.
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ANALYSIS OF THE QUESTIONNAIRE 

 

The analysis results of the questionnaire which consisted of body part discomfort 

and mental workload are as follows; 

 

Body Part Discomfort  

 
The MANOVA shows that there is no difference among the four inspection 

methods for questions relating to physical stress, as shown in Table 25.  The 

questionnaire is anchored from 1 to 9; a small value represents a high agreement with the 

given statement.   

The average values of all four inspection conditions are lower than 5.0 (neutral) 

with the exception of three mean values higher than 5.0.  These results suggest that there 

is no discomfort related to any of the four inspection methods.       

TABLE 25.  Body Part Physical Stress Difference Among Inspection Methods. 

Mean Question 

M 2D 3D AR 

p 

I have experienced no discomfort at all during and  

after the experiment 

1. Head 

2. Eye 

3. Neck 

4. Shoulder 

5. Upper Arm 

6. Elbows 

7. Lower Arm and Hands 

8. Upper Back 

9. Lower Back 

10. Hip and Thigh 

11. Knees 

12. Ankles/Feet 

          

 

3.67 

4.33 

3.83 

3.33 

3.17 

3.50 

3.17 

3.50 

4.83 

3.50 

3.50 

3.50 

 

 

3.00 

2.50 

4.50 

3.33 

3.50 

4.67 

4.00 

5.50 

4.17 

3.00 

2.83 

3.50 

 

 

1.67 

3.42 

3.08 

3.58 

2.08 

1.25 

3.08 

5.08 

5.75 

1.58 

1.08 

1.08 

 

 

2.50 

3.00 

3.83 

2.83 

2.17 

2.17 

2.83 

4.67 

4.50 

2.00 

2.33 

1.08 

 

 

0.38 

0.60 

0.82 

0.95 

0.43 

0.06 

0.86 

0.63 

0.79 

0.37 

0.19 

0.10 
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To identify the individual differences, the number of subjects who had 

experienced any discomfort (more than 7 in Likert Scale) was counted with the 

questionnaire, as seen in Table 26.  The upper and lower back discomforts were most 

frequently reported regardless of the inspection methods.  On the average, no discomfort 

was found, though nine subjects did report physical discomforts.  Among inspection 

conditions, subjects who used the AR-aided inspection reported the minimum number of 

physical discomfort.  On the other hand, subjects who used the 2D-aided inspection 

reported the highest number of physical discomfort.  

 

TABLE 26.  Individual Differences of Body Part Discomforts. 

Mean Question 

M 2D 3D AR 

Total

I have experienced no discomfort at all during and  

after the experiment 

1. Head 

2. Eye 

3. Neck 

4. Shoulder 

5. Upper Arm 

6. Elbows 
7. Lower Arm and Hands 

8. Upper Back 

9. Lower Back 

10. Hip and Thigh 

11. Knees 

12. Ankles/Feet 

 

 

 

1 

1 

1 

 

1 
 

1 

2 

1 

1 

1 

 

 

1 

 

2 

1 

1 

2 
2 

3 

2 

 

1 

1 

 

 

 

1 

 

1 

 

 
1 

3 

3 

 

 

 

 

1 

 

 

 
 

2 

2 

 

 

1 

2 

4 

3 

1 

3 
3 

9 

9 

1 

2 

2 

Total 10 16 9 5 40 
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Mental Workload 

 

The MANOVA results of Table 27 indicate that there is no difference among the 

four inspection methods for questions relating to mental workload except for their 

inspection method preference.   The mean values for the mental workload across each 

group are less than or equal to 5.0.  The results suggest that all four groups not only were 

satisfied with their performance but also perceived that the mental workloads of the given 

inspection were not high.   

A significant difference among the groups is found for the user preference of the 

inspection method.  The Bonferroni t-test shows that the subjects who used AR-aided and 

3D-aided inspection methods show a higher preference for their inspection method than 

subjects who used the manual and 2D-aided inspection methods.  However, there is no 

significant difference between the users who used manual inspection and those who used 

2D-aided inspection, and between the users who used the 3D-aided inspection and those 

who used the AR-aided inspection. 
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TABLE 27.  Mental Workloads Difference Among Inspection Methods. 

Mean Question 

M 2D 3D AR 

p 

Mental Demand: how much mental activity (e.g., 
thinking, remembering, calculation, and decision) 
was required?  

1. The inspection task was easy to perform 
mentally.   

 
Physical Demand: How much physical activity 
(e.g., manipulating, controlling, and handling, 
etc.) was required? 

1. The task was easy to perform physically. 
 

Temporal Demand:  
How much time pressure did you feel due to the 
pace at which the task or task elements occur? 

2. The work pace was slow and leisurely.  
 

Performance: How successful do you think you 
were in accomplishing the task set by the 
experimenter?   

3. I was satisfied with my performance in 
accomplishing the task.  

 
Effort: How hard did you have to work (mentally 
and physically) to accomplish your level of 
performance? 

4. I could finish the inspection task with a 
minimum level of effort.  

 
Frustration Level: How insecure, discouraged, 
limited, stressed and annoyed did you feel during 
the task?    

5. I felt secure and interested while 
performing the inspection tasks. 

 
User Acceptance: How did you feel about the 
inspection method that you did?   

6. I prefer the inspection method that I used 
in this experiment to what I did in class. 

 
 
 
3.50 
 
 
 
 
 
2.67 
 
 
 
 
4.17 
 
 
 
 
3.17 
 
 
 
 
 
4.17 
 
 
 
 
 
 
3.33 
 
 
 
5.00 
 

 
 
 
3.17 
 
 
 
 
 
3.17 
 
 
 
 
3.83 
 
 
 
 
2.67 
 
 
 
 
 
2.50 
 
 
 
 
 
 
3.67 
 
 
 
4.67 
 

 
 
 
2.92 
 
 
 
 
 
3.42 
 
 
 
 
4.08 
 
 
 
 
2.58 
 
 
 
 
 
3.58 
 
 
 
 
 
 
3.08 
 
 
 
1.33 
 

 
 
 
2.50 
 
 
 
 
 
2.50 
 
 
 
 
3.83 
 
 
 
 
2.83 
 
 
 
 
 
3.00 
 
 
 
 
 
 
3.17 
 
 
 
2.33 

 
 
 
0.704 
 
 
 
 
 
0.727 
 
 
 
 
0.990 
 
 
 
 
0.691 
 
 
 
 
 
0.112 
 
 
 
 
 
 
0.922 
 
 
 
0.001* 
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TABLE 28.  Paired Comparisons of Preference  (CDB= 1.7725, p < 0.05). 

Inspection Method 

Error Means 

Manual 

5.00 

2D-aided 

4.67 

AR-aided  

2.33 

3D-aided 

1.33 

Manual 

2D-aided 

AR-aided 

3D-aided 

- 0.33 

- 

  2.67* 

  2.34* 

- 

  3.67* 

  3.34* 

1.00 

- 
 

To identify the individual differences in mental workloads, the number of subjects 

who had experienced higher mental workloads (i.e., more than 7 in Likert Scale) was 

counted with the questionnaire, as seen in Table 28.  Though two subjects reported high 

workloads for mental and temporal demands, most subjects reported that the mental 

workloads were not high. Among inspection conditions, four subjects who used the 

manual or 2D-aided inspections reported that mental or temporal demands were high.   

 

TABLE 29.  Individual Difference of Mental Workloads. 

Mean Question 

M 2D 3D AR 

Total 

1. Mental Demand 

2. Physical Demand 

3. Temporal Demand:  

4. Performance 

5. Effort 

6. Frustration Level 

1 

 

1 

 

 

1 

 

1 

  2 

 

2 

Total 2 2   4 
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CHAPTER 6.   DISCUSSION AND FUTURE RESEARCH 
 

 

In this study, the effectiveness of AR for a dimensional inspection task was 

explored.  The inspection task consisted of measuring various dimensional attributes of 

rotational and prismatic parts with four different types of inspection aids: manual, 2D, 

3D, and AR.  The results of this experiment strongly suggest that inspection performance 

can be improved by using AR technology in the design of a dimensional inspection 

system.   

 

Hypothesis 1:  AR-aided inspection improves inspection performance.  Augmented reality 

helps decrease inspection time and improve measurement accuracy.    

 

Hypothesis 1 was partly supported.  Hypothesis 1 addresses the overall 

performance differences among the four inspection methods.  Inspection time and 

measurement accuracy are two performance criteria in determining the effectiveness of 

the inspection methods.   

The ANOVA results support that the AR-aided inspection provides the best 

performance among the four inspection methods by having the shortest inspection time.  

The 2D-aided inspection was faster than the 3D-aided inspection, and manual inspection 

was the slowest.  The AR-aided inspection showed a great advantage for the exact point 

measurement, since the AR-aided inspection does not require marking and cleaning for 

exact point measurement as shown in the thickness inspection study (Chung et al. 1999).  

The advantages of the AR-aided inspection for the other dimensional measurements were 

also shown by the results, though the difference was not as large as for the exact point 

measurement.   

The difference of required skills, capability, and inspection functions for the four 

inspection methods are summarized in Table 30.  Table 30 highlights a different set of 
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functions in the whole inspection task, since the other functions are identical, regardless 

of the inspection methods.   

 

TABLE 30.  Difference of Required Skills and Capability among Inspection Methods. 

Function Skill Type Manual 2D 3D AR 

Study Drawing  Perception ×    

Divided attention Perception × × ×  

Visualization   Cognition × ×   

Marking Motor × × ×  

Superimposing Perception and 
Manual 

   × 

Recording Motor × × × × 
Calculation Cognition ×    

Decision Cognition ×    

Cleaning Motor × × ×  
 

 

In the manual inspection, the visual search pattern of the dimensional inspection 

follows a focused search.  Subjects determine the dimension of interest among the cluster 

of multiple attributes on engineering drawings.  In contrast to the manual inspection, the 

other inspection methods do not require this search process, because a computer provides 

information for the measuring attribute one-by-one.  Manual, 2D, and 3D inspections 

require divided attention, since the subjects must attend two different channels for either 

parts and engineering drawings, or for parts and the computer screen.  It was observed 

that subjects moved their head from the engineering drawings to the inspection part or 

from the computer screen to the parts to decide the measuring method and location.  

However, the AR-aided inspection can provide spatial proximity between the two 

channels by superimposing a view of the computer screen over the real part.  

Visualization is the ability to reconstruct the figures mentally into components for 

manipulation while the figure is manipulated in spatial orientation (Ekstrom et al., 1979).  

Since the manual and 2D-aided inspection use 2D figures, subjects need to reconstruct 
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2D perspective figures into 3D objects mentally.  Marking, cleaning, and superimposing 

are necessary only for the exact point measurement.  Marking is always coupled with 

cleaning, and cleaning is required only if marking is done.  The manual, 2D-aided, and 

3D-aided inspections require marking and cleaning for the exact point measurement, 

while the AR-aided inspection uses superimposing to determine the measuring point.  All 

four inspection methods require some type of data keeping; writing, or keying.  

Calculation and decision are additional processes for the manual inspection, and are 

included in the automated routine in the other inspection methods.  

Table 30 provides a basis for interpretations of the difference among inspection 

methods.  It is useful to understand the components of inspection time and the sources of 

inspection errors for each inspection method.  The performance differences among the 

four inspection methods could be caused by the combination of these components.  If the 

processes are performed in series, each with some possibility of an inspection error, 

fewer processes will take less time with fewer errors.  The experimental results support 

these implications. The manual inspection includes most of these processes and takes 

longer than the other inspection methods.  According to the observed data, subjects spent 

about 10-30 sec for searching and an additional 10-30 sec for recoding, calculation and 

the decision process.  On the other hand, the AR-aided inspection that only includes the 

superimposing process and recording, has the shortest inspection times.  The advantage 

of 3D perspective in representing dimensional attributes is not supported in terms of 

inspection time.  According to Table 30, the 3D-aided inspection should take a shorter 

time than the 2D-aided inspection, but the results of the experiment were opposite from 

the expectation.  A possible explanation is that the part features are relatively simple to 

understand so that no additional time was required to visualize 2D information into 3D 

objects.  All these processes are not necessarily sequential, and a parallel processing 

might be possible between some of these processes.  An interesting finding is that 

subjects preferred the 3D representation to 2D representations for the inspection part 

according to the analysis of the questionnaire results though the 3D-aided inspection 

takes longer than the 2D-aided inspection.   

Six types of inspection errors were identified based on the inspection reports and 

the experimenter’s observation, as seen in Table 31.  Among the six categories, the 
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reading, measurement, and typing errors were included in the same type, because they 

could not be discriminated from each other.  Since each subject inspected only six parts, 

not enough errors were observed for a statistical analysis.  However, the observation 

results provide an insightful understanding of the differences of inspection errors between 

the four inspection methods.   

 

TABLE 31.  The Observed Inspection Error Types. 

Error Types Manual 2D 3D AR 

Taking Wrong Dimensions  

Omission of Measurement 

Omission of Cleaning 

Wrong Equipment  

Reading/Measurement/Typing Error 

Calculation/Decision Error  

6 

1 

- 

1 

4 

4 

2 

1 

2 

- 

4 

- 

2 

- 

2 

- 

3 

- 

1 

- 

- 

- 

4 

- 

Total 16 9 7 5 
 

 

 

Inspection errors increase as the number of processes of inspection methods 

increases.  The manual inspection includes most of these processes, and provided the 

highest number of inspection errors.  The AR-aided inspection showed the least number 

of total errors, since it includes the least number of processes.  Table 31 shows that 

inspectors take a wrong dimension more often with the manual and 2D-aided inspections.  

The higher rate of taking wrong dimensions during the manual inspection suggests that 

subjects were more often confused by attributes of interest because of the clustered 

information.  Some marginal amount of errors might be caused by the misperception of 

2D figures.  Since these two methods use 2D figures, subjects might fail to translate that 

information into 3D objects correctly.   

The number of reading, measurement, and typing errors was almost the same 

across the four inspection methods.   It means that the reliability of the data recoding 

function (i.e., writing) of the manual inspection is almost the same as that of the other 



 93

inspection methods (i.e., data keying).  The calculation and decision errors were only 

found in the manual inspection.  The results suggest that the reliability of decision 

function can be improved by the automation, since the difference between manual and 

other inspections comes from mainly the automated routine of calculation and decision 

functions with a computer.  

The measuring accuracy was basically the same across all inspection methods.  

Since all inspection methods use the same measuring instruments, the sources of 

measuring errors (e.g., deviation between real value and measured value) should be the 

same.  The difference of the source of measurement deviation among the inspection 

methods exists in the exact point measurement.  Some portion of the deviation in the AR-

aided inspection was undoubtedly introduced by superimposing, while the marking 

caused the deviation in the other methods.  However, the degree of deviation caused by 

either process is indifferent according to the experimental results.  

 

 

Hypothesis 2: The benefit of AR is dependent on part shapes.  The performance 

improvement of prismatic parts with AR is different from that of rotational 

parts.    

 

Hypothesis 2 is not supported.  Hypothesis 2 addresses the relative advantage of 

AR between prismatic and rotational parts.  The ANOVA results of the inspection time 

support that the benefit of AR is the same between the prismatic and rotational parts, as 

shown in Table 32.  The AR-aided inspection provided the best performance.  The 2D-

aided inspection was faster than the 3D-aided inspection, and manual inspection was the 

slowest regardless of the part shape.  The ANOVA results of measurement accuracy 

suggest that the affect of AR is indifferent between the prismatic and the rotational parts.  

These findings suggest that AR aids provide a great advantage in reducing the inspection 

time regardless of the part shape. 
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TABLE 32.  The Average Inspection Time for Prismatic and Rotation Parts (unit: sec.). 

Part Shape Manual 2D-aided 3D-aided AR-aided 

Prismatic 162.8 114.4 133.0 90.8 

Rotational 168.8 120.4 130.8 93.2 
 

 

The probable explanation of this result is that the characteristic dimensional and 

geometric inspection depends on the dimensional attribute rather than the part shape.  The 

same attribute is always measured the same way with the same measuring instruments 

regardless of the part shape.     

 

 

Hypothesis 3: The benefit of AR is dependent on measurement attributes. The 

performance improvement of point measurement with AR is different from 

that of exact point, line, or surface measurement.   

 

Hypothesis 3 was supported.  Hypothesis 3 addresses the relative advantage of 

AR among the four types of dimensional attributes.  The ANOVA results of the 

inspection time suggest that the benefit of AR is different among the dimensional 

attributes.  Augmented reality provided the greatest advantage for the exact point 

measurement, whereas the benefit of AR was not significantly different from those of the 

2D and 3D-aided inspections for the other dimensional attributes.   

For the exact point measurement, the major difference between the AR-aided 

inspection and the 2D and 3D-aided inspection are that the AR-aided inspection does not 

need marking and cleaning processes.  Since the AR-aided inspection could eliminate the 

most time-consuming processes in the dimensional and geometric inspection, AR could 

provide a great advantage.   

For line measurement, the AR-aided inspections could reduce the significant 

amount of inspection time with automated calculation and decision processes. Another 

advantage of AR might be that AR was very useful for subjects to understand which 
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attributes need to be measured.  By superimposing the measuring attribute over the real 

part, subjects could determine the measuring attribute quickly.    

For point and line measurements, the AR-aided inspection could not provide a 

significant amount of time saving, though AR might be helpful to reduce the average 

inspection time with the automated calculation and decision processes.  A possible 

explanation might be that the calculation of an average value and the decision processes 

might be relatively easy.     

The ANOVA results of measurement accuracy suggest that the affect of AR is 

indifferent among the four dimensional attributes.        

These findings support that AR aids are a good solution to reduce the inspection 

time, especially for the dimensional attributes which require the marking function, though 

they may not be a solution for improving measurement accuracy.  In addition to this, AR 

can be useful to eliminate certain types of inspection errors (see Table 30): for instance, 

taking measures on wrong dimensions, omission, and applying wrong instruments.        

 

 

Hypothesis 4: The subjects who use the AR-aided inspection have a higher preference to 

their inspection method than the subjects who use the manual inspection. 

 

Hypothesis 4 was supported.   One of the big concerns in designing the AR-aided 

inspection system for this study was the user’s acceptance of the AR-aided inspection.  

Though the overall inspection performance is the most important criterion in deciding the 

effectiveness of the designed system, the user’s preference of AR-aided inspection cannot 

be ignored.   

The results of the questionnaire suggest that there was no physical stress on any 

body part across all the inspection methods.  All the average values were lower than 5.0 

(i.e. neutral) except the upper and lower backs for the 2D, and 3D-aided inspections.   

Even though there were no indications of body part discomforts in the overall 

level (average is lower than 5), nine subjects reported upper and lower back discomforts.  

Since subjects spent about 2-3 hours in a bent posture, they should experience some 

discomforts on their back.  This result suggests that considerations for individual 
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inspectors are required for all four inspection conditions.  Any possible discomfort can be 

minimized with ergonomic design considerations such as using a height-adjustable 

inspection table. 

An unexpected finding was that subjects who used the AR-aided inspections 

reported the minimum number of body part discomforts.  Since the AR-aided inspection 

uses AR displays, it was expected that subjects in the AR-aided condition would report 

the highest number of body part discomforts, especially eye and head discomforts.  

Surprisingly, no subject who used the AR-aided method reported eye or head 

discomforts.  Three factors might be related to the result.  First, since subjects in the AR-

aid inspection condition could finish the tasks quickly, they had less chance of 

experiencing body part discomforts.  The subjects spent about 22-43% less time in the 

AR-aided inspection condition.  Second, subjects could minimize the head movements 

from the parts to the computer screens or to the engineering drawings with AR displays.  

Third, because the AR displays were supported by a stand, the physical burden of 

wearing AR displays might be minimized (Figure 9).  These positive aspects of AR might 

outweigh the negative aspects of using AR displays.   

The questionnaire related to mental workload suggests that the mental workload is 

not high for the four inspection methods.  Apparently, using an AR technology does not 

increase the mental workload of users.  The subjects using the 3D perspective, however, 

show a higher preference to their inspection method than those using the 2D perspective.  

The possible explanation of this result is that subjects prefer the 3D representation for 

real objects.  Since the parts are 3D, inspection methods that preserve that characteristic 

are easier to understand than a 2D representation.  With the manual and computer-aided 

inspection, subjects need to project the measuring locations onto 3D parts from 2D 

drawings.  A similar kind of display-cognitive compatibility could be explained in part by 

the proximal compatibility principle (Wickens & Carswell, 1995).   

On the other hand, subjects do not show preferences for the one-by-one 

information of the computer screen to the clustered information of the engineering 

drawing.  Subjects show indifference in their preference between the manual inspection 

and the 2D-aided computer inspection.  
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Based on these results, it can be inferred that all groups are satisfied with the 

given inspection method.  Though the physical body stress and mental workloads caused 

by the four inspection methods are indifferent, the AR-aided and 3D-aided inspections 

are preferred over the manual and 2D-aided inspections.   

 
 
Future Research Implication 

 
Though this research showed very promising results with AR in designing a 

dimensional inspection system, several research issues need to be studied.   

Further research to evaluate the effects of AR on inspection errors is necessary.  

In this study, the performance criteria to evaluate the designed system were inspection 

time and measurement accuracy (e.g., measurement deviation from the real value).  Not 

enough inspector errors were collected for the statistical analysis because of the limited 

number of subjects and parts.  Though the observed samples agree with the intuitive 

expectation that AR aids can eliminate the errors related to certain functions and reduce 

the total amount of inspection errors with the minimum number of functions to complete 

the inspection task, a larger sample size is needed to support the assumption.      

An AR technology can offer an innovative technological solution to the 

manufacturing processes.  To realize such an innovation, however, AR technology should 

be further developed.  Some of the key technological improvements necessary include a 

faster rendering of 3D graphics, a wider FOV with high resolution, an effective 

stereoscopic vision system, and an accurate registration with low expense.  To avoid the 

current technological constraints, the registration task was performed by the subjects 

rather than using head trackers in this experiment.  The AR-aided inspection task should 

have been designed more efficiently, if the current technological limitations were to be 

resolved.   

Finally, it should be noted that all of the findings reported in this research may 

apply only to a relatively short span of time with students.  The cumulative effects of day 

work need to be considered for a real application in the workplace with real inspectors.   

Since the level of experiences and skills of real inspectors should be different from those 

of students who only spent several hours in the class, research investigating the prolonged 
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effects of using AR over 8 hr. for a day of work needs to be conducted with real 

inspectors.   
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CHAPTER 7.   CONCLUSIONS 
 

 

The experimental result supports that the AR-aided inspection achieved 22-43% 

more time saving than the other inspection methods.  The advantage of AR was eminent 

for an inspection task that includes exact measurements.  Since this type of measurement 

was the most time consuming during the whole inspection task, the benefits of AR 

increased as the portion of the exact measurement increased.  On the other hand, AR aids 

could not help improve the measurement accuracy.  The measurement accuracy was the 

same regardless of the inspection methods used.  Another most encouraging finding was 

that users favored the AR-aided inspection according to the results of the questionnaire.  

The user’s satisfaction of AR aids should provide a positive environment in adopting AR 

in the workplace.       

In this study, experiments were performed to evaluate the effectiveness of AR for 

a dimensional inspection task.  The inspection tasks were typical types of dimensional 

inspection tasks that include various dimensional attributes.  Despite the limitations of the 

laboratory study with a limited number of subjects, the findings of this research are 

beneficial in designing a dimensional inspection system using AR technology. 

 

Design Guidelines 
 

With regard to the research hypotheses tested in this experiment, four design 

guidelines can be formed: 

 

1. Use AR aids when a design objective is to reduce the inspection time and when the 

current measurement accuracy of the inspection system is acceptable.   

 
The results of the experiment strongly suggest that AR aids are an effective tool to 

reduce the inspection time, while AR may not provide any performance improvement 

for measurement accuracy.  Since AR aids do not affect the measurement instrument 

or the measurement method, there was no change in the measurement function.  As a 
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result, the measurement accuracy remains the same in the inspection system.  If the 

critical issue in the design of a dimensional inspection system is measurement 

accuracy rather than inspection time, another approach which can change the 

measurement function needs to be used.     

 

2. Use AR aids when the portion of exact measurements is high in total measurement.  

 
The AR aids show a great amount of time saving in this experiment, but the degree of 

benefits from AR varied among attributes.  Undoubtedly, the great portion of time 

saving was because of the exact measurement.  The relative advantage of AR aids for 

the other measuring attributes was not eminent, though the AR-aided inspection 

showed some marginal benefits over the 2D-aided and 3D-aided inspections for the 

point, line, and surface measurements.  Because of its associated costs, AR might not 

be an economical solution with such a small difference in marginal benefits.   If the 

exact measurement is not required, the 2D-aided or 3D-aided inspections can be an 

economical solution rather than the AR-aided inspection.      

 

3. Provide the measuring information of interest one-by-one.   

 

The questionnaire results showed that the subjects are indifferent in their preference 

between manual (clustered information) and the 2D-aided inspection (one-by-one).  

However, the experimental results showed a higher rate of taking a wrong dimension 

in the manual inspection.  When too much information appears together, there is a 

possibility of choosing an inappropriate segment of information, or of a longer search 

time.  By providing the selected information which is only related to the current 

interest, the inspectors attention can be directed to the immediate action with fewer 

errors.   
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4. Automate the decision function by using a computer.  

 

Because the dimensional and geometric inspection is a measurement of quantitative 

variables, the decision function can be highly reliable with a computer.   

In the context of flaw detection, the automated inspection system could not provide a 

satisfactory result because of the lack of a reliable decision algorithm (Drury 1992).  

However, for the dimensional and geometric inspection, the decision with 

quantitative value is an obvious candidate for automation.  As seen in Table 31, the 

automation decision process might be useful to eliminate decision errors.  In addition, 

it might reduce the workloads of human inspectors.         
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VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY 
Informed Consent for Participants 

in Research Projects Involving Human Subjects 
 

 

 

Title of Project  Application of Augmented Reality to Dimensional Inspection Task   
 
Investigator(s) Kyung Ho Chung, Robert C. Williges (Chair)                                    .                                        

 
 
I. Purpose of this Research/Project 
 
Augmented reality (AR) technology is expected to provide enhancements for the 
manufacturing process.  Specifically, AR technology offers great promise over 
conventional technology for product design, development, manufacturing, assembly, and 
quality control.  The purpose of this experiment is to evaluate the usefulness of AR 
technology to improve the performance of a dimensional inspection task by providing 
task specific information. 
 
 
II. Procedures 
 
In this study you will be asked to conduct an inspection task to determine the conformity 
of six metal parts.  Your task is to take measures of various dimensional attributes to 
determine their quality with five measuring devices.  Four different experimental 
conditions will be used to compare the performance differences as a function of 
information transmission modes including manual, 2D-aided, 3D-aided and AR-aided 
inspections. You will take measures of dimensional attributes by using only one of the 
three inspection methods.  The task completion time and measurement accuracy are 
recorded to evaluate performance differences among the three modes.  This experiment 
will take approximately three hours including an hour of practice. 
 
 
III. Risks 
 
There are no risks associated with this study outside of those encountered from using a 
computer or a see-through display.  However, it is known that some people can be 
susceptible to motion sickness during virtual reality simulation.  At anytime, you can 
withdraw from the participation of this research without penalty, if you feel any 
discomfort or don’t want to continue.   
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IV. Benefits of the Project 
 
No direct benefits accrue to the participant.  However, the results of this research are 
expected to provide a great knowledge to understand the potential of AR and its 
applicability to various manufacturing process tasks.  No promise or guarantee of benefits 
has been made to encourage you to participate.   
 
 
V. Extent of Anonymity and Confidentiality 
 
The data gathered in this experiment will be treated with confidentiality.  Your name will 
not appear on any of the data collected.  A random number will replace your name on all 
documents.  You have the right to see your data and withdraw from the study if you so 
desire.  The data will be stored and locked within the Human-Computer Interaction 
Laboratory (530C Whittemore) and be disposed of after analysis in approximately two 
months. 
 
 
VI. Compensation 
 
You will be paid eight dollars per hour for the time actually spent in the experiment. If 
you do not work in whole hour increments, you will be given an additional two dollars 
for every fifteen minutes.  
 
 
VII. Freedom to Withdraw 
 
You are free to withdraw from participation in this research program without penalty.  No 
one will try to make you continue if you do not want to continue, and you will be paid in 
full for the amount of time you participated. 
 
 
VIII. Approval of Research  
 
This research project has been approved, as required, by the Institutional Review Board 
for Research Involving Human Subjects at Virginia Polytechnic Institute and State 
University, and by the Department of Industrial and Systems Engineering. 
 
_____________________________      _____________________________ 
IRB Approval Date    Approval Expiration Date 
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IX. Subject's Responsibilities 
 
I voluntarily agree to participate in this study. I have the following responsibilities: 
 
I should not volunteer for participation, if I now know I will not be able to complete this 
experiment. 
 
After completion of this study, I will not discuss my experiences with any other 
individual for a period of two months.  This will ensure that everyone will begin the 
study with the same level of knowledge and expectations. 

 
 

X. Subject's Permission 
 
I have read and understand the Informed Consent and conditions of this project. I have 
had all my questions answered. I hereby acknowledge the above and give my voluntary 
consent for participation in this project.  If I participate, I may withdraw at any time 
without penalty. I agree to abide by the rules of this project. 
 
 
____________________________________ __________________________ 
Signature      Date 
 
 
Should I have any pertinent questions about this research or its conduct, and research 
subjects' rights, and whom to contact in the event of a research-related injury to the 
subject, I may contact: 
 
 Kyung H. Chung_______________________ _231-3193/ kychung@vt.edu     
      Investigator(s)       Telephone/e-mail 
 
 Robert C. Williges______________________ _231-6270/williges@vt.edu_     
 Faculty Advisor                    Telephone/e-mail 
 
_Robert, J. Beaton_______________________ _231-5931/bobb@vt.edu___ 
     Departmental Reviewer/Department Head           Telephone/e-mail 
 

David M. Moore    540-231-4991/moored@vt.edu  
     Chair, IRB      Telephone/e-mail 

Office of Research Compliance   
            Research & Graduate Studies   
   
 
This Informed Consent is valid from ________ to ________. 
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INSTRUCTIONS 
 
 

This instruction kit includes the inspection task that you are going to perform 

along with measuring devices, and practice material.  You must follow the standardized 

sequence and measuring methods that are provided by this instruction.  At anytime during 

this session, feel free to ask questions if something is not clear. 

 

 
TASK DESCRIPTION  

 

This study looks at dimensional inspection performance differences by using three 

different ways of presenting information.  You will conduct dimensional inspection tasks 

by using one of the three following inspection methods: manual, computer-aided, or AR-

aided inspections.  Your task is to measure the dimensional properties on six metal parts 

with five measuring devices: dial caliper, height gage, depth gage, protractor, and dial 

indicator. You should try to finish your task as soon as possible without sacrificing the 

correctness of your measurement.   

 

 

MEASURING ATTRIBUTES AND DEVICES 

 

Each device is designated to measure certain dimensional attributes.  The dial 

caliper is used to measure length, width, and diameter.  The height gage is used for height 

and thickness.  The depth gage is used for the depth of holes or the bottom of features. 

The protractor is used to measure the angular dimensions.  Finally, the dial indicator is 

used to determine flatness or roundness.  A certain dimensional attribute can often be 

measured by more than one device.  For instance, when the bottom of a part is flat, it can 

be measured either with the dial caliper, or with the height gage.  However, you must to 

use the predetermined device that is designated for a certain dimensional attribute of 

interest by the instructor.  Each attribute is coded to match a particular measuring device.  

The following codes are used for this experiment: 
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TABLE 1.  Dimensional Attribute and Matching Measuring Devices 

Code Attribute Description of Attribute Devices 

L Length Horizontal distance between two points 

W Width Lateral distance between two points  

D Diameter Inside/outside diameter of circle  

Dial 
Caliper 

H Height Vertical distance between two points Height 
Gage 

DT Depth Depth of features or holes Depth 
Gage 

A Angle Angular magnitude resulting from intersection of two 
straight lines 

Protractor 

F Flatness Flatness of surface related to a perfect plane 

P Parallelism Parallelism between two surfaces 

R Roundness Uniformity, or deviation from the ideal form  

Dial 
Indicator 

 
 

Suppose the code of measuring dimension is D1, it is the measurement of the first 

diameter on a part.  It is supposed to be measured with a “Dial Caliper” as shown in 

Table 1.   

 

 
 
MEASUREMENT  

 

You must measure each dimension 3 times.  The average value of your 

measurements will be used to decide the conformity of the dimensions of interest 

according to the given tolerance bounds.  Be sure to take three readings with equally 

paced distances: for instance, one at the center, one about 0.25 in from each end.   Rotate 

the part about 60 degrees, when you measure the attributes of the rotational parts.  You 

must conduct measurements until all attributes of interest are exhausted, even if any 

nonconformity is found.   
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DATA RECORDING 

 

The general measuring sensitivity of all devices except the protractor is 0.001 

inch with plain reference marks.  The measuring sensitivity of a protractor is 5 min (e.g., 

1/12°). 

All dimensional values should be written in the standardized way.  All readings 

and the averages need to be written in 4 digit numbers, for example 0.340, 1.345, etc.  

Angular dimensions should be written 45.05, 90.15, etc. 

 

 

DIMENSIONAL AND GEOMETRIC TOLERANCES 

 

Dimensional tolerances are used to specify bounds on nominal dimensions such 

as length, width, height, diameter, and angle.  All nominal dimensions will be given 

along with an upper and lower bound.  If the deviation of any dimension is within ± 

0.015, the dimension of a part is within acceptable bounds.  The tolerance bound of an 

angle is ± 1 min (0.05 degree).   

Geometric tolerance is used to specify the bounds on the geometry of a part’s 

feature.  Four geometric features, flatness, parallelism, roundness and concentricity, will 

be measured in this experiment.  The deviation of a surface must be at the correct height 

(nominal dimension + tolerance).  The tolerance for geometric tolerance is 0.010.          
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MANUAL INSPECTION 
 

You will use a pencil, ruler, eraser, calculator and six engineering drawings that 

show the dimensional attributes of parts along with five measuring devices.  You must 

take readings, record values, calculate averages, and mark on an inspection report 

whether the dimensional attribute is acceptable or not according to the given tolerance 

limits.   

 

Inspection Sequence 

 

The following is the standardized inspection sequence for the manual inspection; 

 

1. Place a part on the inspection station and set up the measuring devices. 

2. Determine the current measuring dimension according to the inspection report and the 

engineering drawing.    

3. Be sure to determine the measuring locations before taking a reading.  Use a pencil to 

determine the exact points of measurement if it is necessary.  All attributes except 

height can be measured without markings.   

4. Use the matching measuring device for each dimension according to the code of the 

dimension of interest.   

5. Record the three readings and calculate the average value to decide whether the 

dimension is within the tolerance limit.   

6. Repeat steps 1 through 4 until all dimensions of interest are exhausted.   

7. Erase all marks on the part. 

8. Tell the experimenter that you have finished your inspection of the part. 
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COMPUTER-AIDED INSPECTION 
 

You will use a pencil, ruler, and eraser along with five measuring devices.  A 

computer will show the information related to each dimension on the screen during an 

inspection task.  The computer shows which device is to be used, measuring sequence, 

tolerance limit, and other information related to the inspection task.    

 

Inspection Sequence 

 

The following is the standardized inspection sequence for the computer-aided 

inspection; 

 

1. Place a part on the inspection station and set up the measuring devices. 

2. The current measuring dimension will appear one by one on the computer screen.  

Use the measuring device that is highlighted in white.    

3. Be sure to determine the measuring locations before taking a reading.  Use a pencil to 

determine the exact points of measurement if it is necessary.  All attributes except 

height can be measured without markings.   

4. Take a reading of the current measure and enter the data by using the keyboard. 

•  Enter the value in 4 digits and hit the “space bar”.  Please locate the measuring 

device as suggested on the screen.  

•  All dimensions should be measured 3 times.  Then the target will go to the next 

measurement dimension 

•  If you want to change the previous input data, press “p” key and repeat the 

previous step. 

5. Repeat steps 2 through 4 for all dimensional attributes of interest.   

6. When all dimensional attributes are measured, there will be no more “red marks” 

which represent the measuring locations.     

7. Erase all marks on the part, if you made any. 

8. Tell the experimenter that you have finished your inspection of the part. 
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AR-AIDED INSPECTION 
 
 

You will use a see-through display so that you can see computer-generated 

images and a real part superimposed together.  When you superimpose the green wire-

frame exactly over the part, the red target shows the position of the current measurement.  

However, you do not need to locate the device on the same measuring location that 

appeared on the display, if the placement of the device does not affect the accuracy of the 

measurement.  The only placement sensitive measurement in this experiment is the height 

measurement.  You must make an alignment between the part and the wire-frame model 

that represents the physical part.        

 

 

How to use the see-through display 

When you use the see-through display, you can see both the computer-generated 

image and the real image simultaneously through the goggles.  The green wire image on 

the screen is the replicate of the physical part.  

 

Tips for Superimposing: 

•  Make the length of the virtual image and the real object the same by controlling 

the position of the display. 

•  If the width of the two objects is not identical, rotate the virtual image by using 

“up” key or “down” key on the keyboard.  

•  Remember only the height measurement needs the good alignment to take a 

reading.  Other measurements can be taken without perfect alignment.      
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Inspection Sequence 

 

The following is the standardized inspection sequence for the AR-aided inspection; 

 

1. Place a part on the inspection station and set up the measuring devices.  

2. The current measuring dimension will appear one by one on the screen.  Select the 

measuring device that is highlighted in white.    

3. Make an alignment of the wire-frame over the physical part for height measurement.  

4. Take a reading of the current measurement and enter the data by using the keyboard. 

•  Enter the value in 4 digits and hit the “space bar”.  Please locate the measuring 

device as suggested on the screen.  

•  All dimensions should be measured 3 times.  The target will then go to the next 

measurement dimension 

•  If you want to change the previous input data, press “p” and repeat the previous 

step. 

5. Repeat steps 2 through 4 for all dimensional attributes of interest.   

6. When all dimensional attributes are measured, there will be no more “red marks” 

which represent the measuring locations.     

7. Tell the experimenter that you have finished your inspection of the part 
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MESURING DEVICES 
 
 
Note: The instruction materials were made from the Handbook of Dimensional 
Measurement (Fargo & Curtis, 1995), Technical Drawing (Geisecke et al, 1986), and ISE 
2214 Lab. manual (Shewchuk, 2001).   
 

Dial Caliper 

A dial caliper consists of a scale and two jaws, one movable and one fixed.  The 

part to be measured is placed inside the jaws, the jaws are tightened, and the 

measurement is taken.  The measurement is established by reading the scale (each 

division = 0.1 inch) and adding on the value read in the dial (each division = 0.001 inch).   

A dial caliper can be used to measure internal and external features.  Dial calipers are 

very commonly used for measuring length and diameter.  They can also be used for 

measuring the size and depth of internal features, such as holes and pockets.   

 

 
Figure 1. Dial caliper components (from Shewchuk, 2001)  

 

 

Height Gage 

The basic design of the height gage is same as that of the dial caliper.  The 

primary use of height gages in the surface plate work is as a layout tool for marking off 

vertical distances and for measuring height and thickness difference between steps at 

various levels.  Height gages differ from dial calipers in that they have a single jaw.  The 

height gages are made with wide bases, with bars of cross section, and with dials. 
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Figure 2. Dial height gage (from www.mitutoyo.com) 

 

 

 

Dial Indicator 

Dial indicators are simple mechanical devices which convert linear movement to 

rotation of an indicator needle on a circular dial.  The indicator is first zeroed (i.e., the 

indicator needle is made to point to zero on the scale) with respect to some reference 

surface, then the part is brought into contact with the contact point.  The measurement is 

read directly from the circular dial.  Dial indicators are used with various holding fixtures 

for measuring thickness, height, straightness, parallelism, roundness, flatness, and runout.  

The fixture must be located on a solid, flat surface for such measurements to be taken.      
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Figure 3.  Dial indicator component (from Farago & Curtis, 1994) 
 

 

 

Depth Micrometer 

A depth micrometer consists of a threaded spindle inside a T-shaped frame.  A 

graduated thimble and sleeve are located at the end of the spindle: rotating the thimble 

causes the spindle to move down and protrude from the bottom of the frame.  The 

micrometer base is placed over the feature to be measured, and the spindle turned until it 

contacts the bottom of the feature.  

 
Figure 4. Depth micrometer and rods (from www.mitutoyo.com) 

 



 128

Bevel Protractor 

Universal bevel protractors are equipped with a full circular scale graduated into 

360 degrees and complemented by a vernier scale applied to a segment.  The segment has 

12 graduation lines with special spacing in either directing to permit the subdivision of 

each one degree interval on the main scale into 12 equal parts corresponding to 1/12th part 

of a degree; that is, 5 minutes.   Figure 5 shows how to use the bevel protractor to 

measure parts which have different shapes.   

(a) 

  

 
                       (b)                                                               (c) 

 
          Figure 5. Bevel protractor and its usage (from Farago & Curtis, 1994) 
          (a) Universal bevel protractor with thumb nut for fine adjustment 
          (b) The measurement of a part having a acute angle 
          (c) The angle being measured is related to that common reference plate 



 129

PRACTICE: PULLEY INSPECTION 

 
1. Overall Length (L1) 
 
 Equipment: Dial Caliper 
 

a.   Take three equally-spaced readings of the pulley length: rotate pulley about  
      60° after each measurement 
b. Record each measurement, and calculate and record the average (as disposition 

value), on the part inspection report.   
 

2. Pulley Length (L2) 
 
 Equipment: Dial Caliper 
 

a.   Take three equally-spaced readings of the pulley length: rotate pulley about  
      60° after each measurement 
b. Record each measurement, and calculate and record the average (as disposition 

value), on the part inspection report.   
 
3. Concentricity (C1) and Roundness (R1, R2) 
 
 Equipment: Dial Indicator, 2 V-blocks, tapered mandrel 
 

a.   Place the pulley on a mandrel 
b. Place the mandrel on V-blocks as shown in below: 

 
 

c. Raise the dial indicator contact point above the part height, then locate the contact 
point at point ‘a’ on the hub. Zero the indicator, using the bezel. 

d. Rotate the mandrel with the pulley and note the range of the dial indicator 
movement. This is known as T.I.R. (Total Indicator Reading).  Record this value 
(R1) on the inspection report.  

e. Repeat steps c-d using point ‘b’ on the boss.  Record this value (R2) on the 
inspection report.  

f. Calculate the concentricity of boss with hub, C, as follows:    
 

2
|......| 21 RR RITRITC −

=  
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4. Hole Diameter (D1) 
 
    Equipment: Dial Caliper (Inside Measuring) 
 

a.   Take three equally-spaced readings of the pulley length: rotate pulley about  
      60° after each measurement 
b. Record each measurement, and calculate and record the average (as disposition 

value), on the part inspection report.   
 
 
5. Hub Diameter: Outside Diameter (D2)  
 
    Equipment: Dial Caliper (Outside Measuring) 
 

a.   Take three equally-spaced readings of the pulley length: rotate pulley about  
      60° after each measurement 
b. Record each measurement, and calculate and record the average (as disposition 

value), on the part inspection report.   
 
   
6. Height (H1)  
 
    Equipment: Height Gage 
 

a. Determine the measuring location by referring to the coordinates on the drawing.  
Mark the measuring point to decide the correct placement of the height gage.   

b. Record each measurement, and calculate and record the average (as disposition 
value) on the part inspection report.   

 
 
7. Angle (A1)  
 
    Equipment: Universal Bevel Protractor 
 

a. Embrace two bounding elements of the angle with a protractor.    
b. Record each measurement, and calculate and record the average (as disposition 

value) on the part inspection report.   
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8. Parallelism (P1), or Flatness (F1) 
 
    Equipment: Dial Indicator 
 

a. Place the pulley top face up on the table.    
b. Position the dial indicator contact point so that it is about 1/8 inch above the part 

surface, then move it to a position about ¼ inch from the right end of the pulley.     
c. Move the dial down, by moving the arm, until the contact point just touches the 

pulley, then move down about 1/16 inch more. 
d. Zero the dial by turning the bezel. 
e. Slide the pulley longitudinally until the contact point is at the opposite end.  

Watch the indicator while moving the pulley and note T.I.R.  Record the value on 
the form. 

f. Rotate the pulley about 60° and repeat step a through e three times 
g. Record the average value of the three readings as the disposition value on the 

inspection report. 
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Part Inspection Report 
 
 
 
 
Part Type: Training Part    
Item No: Training  Part Name: Pulley 

Inspector #:  Date:   
 
 
 

Results Attribute 

1st 2nd 3rd 

Mean Accept Reject 

1. Overall length (L1)       

2. Length of pulley (L2)       

3. Roundness (R1)        

4. Angle (A1)       

5. Hole Diameter (D1)       

6. Outside Diameter (D2)       

7. Height (H1)       

8. Angle (A1)       

9. Flatness (F1)        
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APPENDIX C:  QUESTIONNAIRES 
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Subjective Questionnaires 

 
This questionnaire consists of two parts: subjective judgment of body part discomfort and mental 
workloads related to the inspection task.  Please answer every question by marking an appropriate scale by 
considering how you personally feel about you work experience with the task.   
 
 
Part1: Body Part Discomfort 
 
Please use the following picture to map the approximate position of the part of the body referred to in the 
questionnaire.    
 

 
 
 
 
1. Head: I have experienced no discomfort at all during and after the experiment 

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8

 
 
2. Eye:  

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8
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3. Neck:  

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8

 
 
4. Shoulder: 

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8

 
 
5. Upper Arm: 

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8

 
 
6. Elbows: 

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8

 
 
7. Lower Arm and Hands: 

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8

 
 
8. Upper Back: 

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8

 
 
9. Lower Back: 

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8

 
 
10. Hip and Thigh 

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8

 
 
11. Knees: 

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8

 
 
12. Ankles/Feet: 

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8
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Part 2: Mental workloads 
 

Please indicate how you personally feel about your work experience with the task by 

marking how much you agree with each statement.   

 
Mental Demand: How much mental activity (e.g., thinking, remembering, calculation, and decision) was 

required?  

2.1 The inspection task was easy to perform mentally.   

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8

 
 

Physical Demand: How much physical activity (e.g., manipulating, controlling, and handling, etc.) was 

required? 

2.2 The task was easy to perform physically. 

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8

 
 

Temporal Demand: How much time pressure did you feel due to the pace at which the task or task elements 

occur? 

2.3 The work pace was slow and leisurely.  

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8

 
 

Performance: How successful do you think you were in accomplishing the task set by the experimenter?   

2.4 I was satisfied with my performance in accomplishing the task.  

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8

 
 

 

Effort: How hard did you have to work (mentally and physically) to accomplish your level of performance? 

2.5 I could finish the inspection task with a minimum level of efforts.  

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8
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Frustration Level: How insecure, discouraged, limited, stressed and annoyed did you feel during the task?    

2.6 I felt secure and interested while performing the inspection tasks. 

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8

 
 

User Acceptance: How did you feel about the inspection method that you did?   

2.7 I prefer the inspection method that I used in this experiment to what I did in class. 

1
Strongly Agree

3
Agree

5
Neutral

7
Disagree

9
Strongly Disagree

2 4 6 8

 
 

2.8 I recognized that I have seen the virtual image with one eye during the inspection task (Answer only if 

you conducted the AR-aided inspection). 

Yes/No 

 

 

 

Please tell us if you have suggestions or comment related to this experiment.  
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Questionnaire Results 

 
 
1.  Body Part Discomfort Rating 
 

Subject Method Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q12 P12 
1 1 2 6 5 3 3 3 4 3 6 1 4 4 
2 1 6 6 7 7 6 3 5 7 7 6 3 3 
3 1 6 8 2 4 4 9 4 3 8 8 8 8 
4 1 5 3 6 3 3 3 3 3 5 3 3 3 
5 1 2 2 2 2 2 2 2 4 2 2 2 2 
6 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 2 7 4 3 4 6 7 7 3 4 6 8 8 
2 2 1 3 6 3 1 6 1 6 3 1 1 1 
3 2 5 3 9 8 7 8 9 9 9 6 3 5 
4 2 3 3 7 3 5 5 5 7 7 3 3 5 
5 2 1 1 1 1 1 1 1 1 1 1 1 1 
6 2 1 1 1 1 1 1 1 7 1 1 1 1 
1 3 3 3.5 3.5 1.5 2.5 1.5 1.5 3.5 2.5 1.5 1.5 1.5 
2 3 2 1 2 6 3 2 3 8 5 1 1 1 
3 3 1 1 3 4 3 1 1 4 7 4 1 1 
4 3 1 9 6 7 1 1 5 7 8 1 1 1 
5 3 2 5 2 2 2 1 7 7 5 1 1 1 
6 3 1 1 2 1 1 1 1 1 7 1 1 1 
1 4 1 6 7 6 2 2 3 5 2 1 3 1 
2 4 6 3 1 3 3 3 3 9 9 3 3 1 
3 4 3 4 6 3 3 3 6 5 7 3 3 3 
4 4 1 1 1 1 1 1 1 1 1 1 1 1 
5 4 3 3 5 3 3 3 3 7 3 3 3 3 
6 4 1 1 3 1 1 1 1 1 5 1 1 1 
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2.  Mental Workloads Rating 
 
Subject Method Q1 Q2 Q3 Q4 Q5 Q6 Q7 

1 1 3 1 6 3 4 4 5 
2 1 3 2 5 3 5 3 5 
3 1 4 4 4 4 4 4 5 
4 1 7 5 7 5 6 5 5 
5 1 2 1 2 2 2 2 5 
6 1 2 3 1 2 4 2 5 
1 2 2 2 8 4 3 5 4 
2 2 3 4 3 3 3 4 5 
3 2 7 6 5 2 4 6 4 
4 2 3 5 5 3 3 5 3 
5 2 3 1 1 3 1 1 5 
6 2 1 1 1 1 1 1 7 
1 3 3.5 4.5 6.5 2.5 3.5 3.5 2 
2 3 2 3 1 2 4 2 1 
3 3 3 3 2 2 3 1 2 
4 3 4 3 3 3 4 6 1 
5 3 3 4 6 3 4 3 1 
6 3 2 3 6 3 3 3 1 
1 4 3 2 4 2 2 3 3 
2 4 1 5 3 2 1 3 1 
3 4 3 3 3 4 3 2 2 
4 4 3 1 5 3 5 3 2 
5 4 3 3 3 3 3 3 5 
6 4 2 1 5 3 4 5 1 
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APPENDIX D:  INSPECTION REPORT & ENGINEERING DRAWINGS  
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Part Inspection Report 
 
 
 
 
Part Type: Prismatic    
Item No: P-1  Part Name: Safety Key 

Inspector #:  Date:   
 
 
 

Results Attribute 

1st 2nd 3rd 

Mean Accept Reject 

1. Overall length (L1)       

2. Width of middle (W1)       

3. Length of left (L2)         

4. Hole diameter (D1)       

5. Left inside length (L3)       

6. Overall height (H1)       

7. Height of middle (H2)       

8. Angle (A1)       

9. Flatness (F1)        

10. Overall width (W2)        

11. Width of right (W3)        

12. Top right width (W4)        

13. Inner width (W5)        

14. Top inside width (W6)        

15. Depth (DT1)       
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Part Inspection Report 
 
 
 
 
 
Part Type: Prismatic    
Item No: P-2  Part Name: Finger Guide 

Inspector #:  Date:   
 
 
 

Results Attribute 

1st 2nd 3rd 

Mean Accept Reject 

1. Overall length (L1)       

2. Length of left end (L2)         

3. Length of center (L3)         

4. Inside width (W1)       

5. Overall height (H1)       

6. Height of middle (H2)       

7. Flatness (F1)       

8. Overall width (W2)       

9. Rear inside width (W3)       

10. Right slop angle (A1)        

11. Left slop angle (A2)        
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Part Inspection Report 

 
 
 
 
 
Part Type: Prismatic    
Item No: P-3  Part Name: Tool Holder 

Inspector #:  Date:   
 
 
 

Results Attribute 

1st 2nd 3rd 

Mean Accept Reject 

1. Overall length (L1)       

2. Length of middle leg (L2)         

3. Length of left leg (L3)         

4. Inside length (L4)       

5. Overall height (H1)       

6. Height of middle (H2)       

7. Angle (A1)       

8. Flatness (F1)       

9. Right end width (W1)       

10. Hole diameter (D1)        

11. Left slop angle (A2)        
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Part Inspection Report 

 
 
 
 
 
Part Type: Rotational    
Item No: R-1  Part Name: Step Pulley 

Inspector #:  Date:   
 
 
 

Results Attribute 

1st 2nd 3rd 

Mean Accept Reject 

1. Overall length (L1)       

2. Length to 2nd step (L2)       

3. Length of 1st step (L3)       

4. Diameter of right (D1)       

5. Diameter of middle (D2)       

6. Diameter of left (D3)       

7. Roundness of right (R1)       

8. Roundness of middle 
(R2) 

      

9. Roundness of left (R3)       

10. Hole diameter (D4)        
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Part Inspection Report 

 
 
 
 
 
Part Type: Rotational    
Item No: R-2  Part Name: Holder 

Inspector #:  Date:   
 
 
 

Results Attribute 

1st 2nd 3rd 

Mean Accept Reject 

1. Overall length (L1)       

2. Length to shoulder (L2)       

3. Shoulder length (L3)       

4. Base diameter (D1)       

5. Top diameter (D2)       

6. Angle (A1)       

7. Shoulder diameter (D3)       

8. Right hole diameter (D4)       

9. Left hole diameter (D5)       

10. Shoulder height (H1)        
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Part Inspection Report 

 
 
 
 
 
Part Type: Rotational    
Item No: R-3  Part Name: Roller Stud 

Inspector #:  Date:   
 
 
 

Results Attribute 

1st 2nd 3rd 

Mean Accept Reject 

1. Overall length (L1)       

2. Length to upper cut (L2)         

3. Length to lower cut (L3)         

4. Length to 2nd step (L4)       

5. Length to 1st step (L5)       

6. Diameter of right (D1)       

7. Diameter of left (D2)       

8. Hole diameter (D3)       

9. Width of middle (W1)       

Concentricity  

10. Roundness of right (R1)       

11. Roundness of left (R1)        

Difference 10 and 11       
 















 154

 
 

VITA 
 

 
Kyung H. Chung 

 
 
 
Education 
 
M.S.  
 
 
B.S.  

1985 
 
 
1983 

 Seoul National University, Seoul, Korea 
Major: Industrial Engineering/Human Factors  
 
Hanyang University, Seoul, Korea 
Major: Industrial Engineering 
 
 
 

Academic and Professional Experience 
 
1996 - Present 
 
 
1994 - 1996 
 
 
 
 
1992 - 1994 
 
 
 
 
1986 - 1992 

  
Enrolled as a graduate students at Virginia Polytechnic and 
State University, Blacksburg, Virginia Tech 
 
Project Manager 
Department of Techno-Economic Analysis  
Electronics and Telecommunication Research Institute (ETRI) 
Taejon, Korea 
 
Senior Researcher 
Department of Techno-Economic Analysis  
Electronics and Telecommunication Research Institute (ETRI) 
Taejon, Korea 
 
Researcher 
Department of Techno-Economic Analysis  
Electronics and Telecommunication Research Institute (ETRI) 
Taejon, Korea 

 
 
 


