
 

 
 
 
 
 

Chapter 2 
Literature Review 

 
 
 We address a complex airspace planning and collaborative decision making 

model (APCDM) in this dissertation.  The problem requires evaluating several aircraft 

flight plans, each of which are proposed along with several alternatives.  These flights 

must be scheduled in such a way that we maximize the use of a limited airspace without 

compromising established safety requirements, while accounting for restrictions induced 

by Special Use Airspaces (SUA) and weather-related airspace closures.  The selected 

flights must be distributed in time and space sufficiently so that the resulting traffic 

density does not exceed air traffic controllers’ capacity to safety monitor and deconflict.  

Since the demand for flights can approach or exceed NAS capacity, particularly during 

peak periods, some aircraft flights must be delayed or be assigned sub-optimal flight 

trajectories.  The proposed model will distribute the resulting fuel, delay, and other such 

costs between the airline participants in an equitable manner. 

 Accordingly, in Section 2.1 we discuss several air traffic management issues, 

and in Section 2.2 we outline techniques used to mitigate such issues as airspace 

congestion and flight delays.  In Section 2.3 we review a success example from the 

FAA-sponsored Collaborative Decision Making initiative, and we provide in Section 2.4 

the theoretical framework subsequently used in Chapter 5 to implement a CDM-based 

equity approach to the ASP.  We examine the impact to the NAS from weather-related 

airspace closures as well as from space launch activities in Section 2.5.  We conclude 

our literature review with an overview of previous models that have laid the groundwork 

for the model proposed in this dissertation. 
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2.1. National Airspace Traffic Density Issues 
 The Federal Aviation Administration (FAA) is in the midst of a 10-year sustained 

effort to modernize the National Airspace (NAS) to increase capacity by 30 percent.  

Currently, air traffic density is such that a single severe weather system can cause 

takeoff and landing delays that cascade throughout the entire NAS.  During 2000, the 

top 55 airports conducted more than 20.8 million such operations, with 425,000 of them 

subject to delays [13]. 

 Willemain [52] developed a simulation model to explore the impact of various 

parameters on blind collision risk in en route sectors.  He concluded that the most 

important factors contributing to collision risk are the timing and quantity of aircraft 

entering a sector.  Hence, a strategic optimization approach to schedule aircraft flights 

will have the greatest effect to increase air traffic density without exceeding Air Traffic 

Control capacity.  This conclusion provides a foundational framework for the APCDM 

model we develop in this dissertation. 

 

2.1.1. Ground Delay Program 
 The FAA executes a Ground Delay Program (GDP) when inbound traffic to an 

airport is predicted to exceed the airport’s capacity.  GDP delays flights at their 

respective origins to reduce the arrival rate at the constrained airport.  Weather 

conditions are the primary cause for reductions in an airport’s capacity, but airport 

capacity may also be exceeded when shifting flight schedules cause a surge in inbound 

traffic.  GDPs are used as a lower-cost, and safer, alternative than holding aircraft in a 

traffic pattern over the destination airport.  Nonetheless, GDPs are costly to enact, 

particularly if they are used inefficiently.  The Air Transport Association estimates that 

each minute of delay costs an airline $29 [10]. 

 

2.1.2. High Density Airports and Slot Lotteries 
 The High Density Traffic Airports Rule (HDR) was created in 1968 to address 

capacity constraints at the nation’s five busiest airports.  HDR was initially applied to the 

following airports: John F. Kennedy International Airport, LaGuardia Airport, O’Hare 
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International Airport, Ronald Reagan National Airport, and Newark International Airport.  

HDR restrictions for Newark were discontinued in the early 1970s.   

 HDR limits air traffic at an airport by rationing allowable takeoffs and landings via 

a slot assignment system.  A specified number of slots are created for each hourly or 

half-hourly time increment, and these slots are allocated by lottery to airlines that use 

the airport.  Slot assignments effectively restrict the traffic demand in and around the 

airport to be within normal operating limits.  Ownership of a slot gives an airline the 

exclusive right for one of its aircraft to land at or depart from the airport during the 

specified time interval.  Slot lotteries are designed to ensure an equitable distribution of 

landing and takeoff rights among the various airlines. 

 In April 2000, the US Congress passed the “Wendall H. Ford Aviation Investment 

and Reform Act of the 21st Century” (AIR-21).  This legislation modified Title 49, the 

United States Code (USC) from which the FAA derives its authority to regulate and 

control the NAS.  AIR-21 provided slot restriction exemptions at small-hub and non-hub 

airports for new entrant airlines to establish service and thereby enhance market 

competition. 

 The impact of AIR-21 was swift and particularly burdensome to LaGuardia 

Airport.  LaGuardia’s prime location, just seven miles from midtown Manhattan, made 

the airport very attractive to airlines establishing new services.  In the six months 

following the legislation’s passage, more than 300 exemptions were granted resulting in 

severe congestion and air traffic delays.  During September 2000, more than 9000 

delays were reported at LaGuardia, an increase of 238% from six months earlier, that 

accounted for nearly one fourth of delays in the NAS [53].  Delays originating at 

LaGuardia propagated, causing additional traffic bottlenecks throughout the country. 

 In December 2000, the FAA acted to reduce the congestion at LaGuardia.  

Operations were limited to 75 per hour effective January 31, 2001.  Given the existing 

slot assignments, the new restrictions limited the number of allowable AIR-21 

exemptions to 159, versus the 300+ already in use.  The FAA acknowledged that the 

dramatic reduction of slot exemptions would require termination of service to many 

small communities and would severely impair the ability of new entrants to compete with 

established carriers.  However, the FAA also recognized that the airspace surrounding 
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LaGuardia is finite and capable of only limited short-term growth.  On December 4, 

2000, the FAA conducted a slot lottery to allocate the 159 slot exemptions. 

 Slot lottery procedures are published in Title 14, the Code of Federal Regulations 

(CFR).  First, qualifying carriers are entered in a random drawing to determine the 

selection order.  In the first round, new entrant and limited incumbent carriers make slot 

selections four at a time (two for arrivals and two for departures).  Carriers serving 

small-hub and non-hub airports make two selections at a time during the second and 

third rounds.  All carriers participate in the fourth and subsequent rounds until all 

available slots are allocated. 

 The auction of slot exemption operations was intended as a stopgap measure 

with the allocations effective only through September 15, 2001.  During this period, the 

FAA was tasked to develop a more permanent solution to the congestion at LaGuardia.  

However, such a solution has so far been elusive and the FAA has extended the slot 

exemption restrictions and the current allocation through October 26, 2002 [21].  In 

addition, a supplemental auction was held in August 2001 to allocate some 21 residual 

slots. 

 As an aside, we noted that Midway Airlines was awarded 15 slots at the 

December 2000 auction.  The airline filed for bankruptcy protection in early 2001, but 

was able to continue operations.  However, in the aftermath of the terrorist attacks 

against the United States on September 11, 2001, Midway terminated operations 

permanently in anticipation of insufficient passenger demand to sustain the firm in the 

mid- to long-term future.  Hence, Midway’s 15 slots at LaGuardia Airport are currently 

unused and could be reallocated to other airlines, once full-capacity operations resume. 

 

2.1.3. Hubbing 

 Airline route networks and schedules use a concept called hubbing, whereby 

origin-destination flights are routed through connecting terminals as opposed to 

adopting non-stop direct routes.  Hubbing allows aircraft to be filled nearer to capacity 

than would be possible via direct routing.  For example, passengers from different 

origins, but with the same fixed destination, can depart airports and subsequently 

connect to a common flight at a hub that will take them to their final destination.  
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Hubbing is an efficient scheduling technique, but it is extremely sensitive to schedule 

disruptions such as those caused by inclement weather. 

 To effectively utilize the capacity of an aircraft departing a hub, the various 

incoming flights (from which passengers will transfer to the outgoing flight) are 

scheduled to arrive at the hub within a short time interval, a process called banking.  

When airport capacity is constrained or when flights are delayed or cancelled, the airline 

must decide whether to delay inbound flights (“spreading the bank”) and whether any 

flights must be separated from their respective bank.  Separating a flight is a relatively 

costly decision, as a late incoming flight may cause passengers to miss connecting 

flights and generate a cascading effect on downstream flights. 

 Milner (1995) authored the first decision-support model to handle schedule 

disruptions that included consideration of hubbing.  Later, Carlson [8] made a number of 

practical improvements to Milner’s formulation.  First, he included flights that were 

independent, that is, not part of a bank.  Next, the model was designed to prohibit 

certain flights from being separated from their respective bank.  Finally, he incorporated 

delay costs, a consideration that was previously absent. 

 Carlson [8] also presented multiple alternative formulations.  The first was 

essentially that of Milner, with step-function variables, while the second formulation 

replaced these with the more traditional binary form.  In his third model, the set of 

cancellation variables was removed.  This approach is interesting, as it allows the 

problem to be viewed from a different angle.  The first two models begin with flights 

arriving as scheduled, and then the solution algorithm cancels or delays flights as 

necessary to achieve a prescribed solution.  The third model algorithm begins with all 

flights as cancelled and then assigns flights, subject to the capacity constraints, as close 

as possible to the scheduled arrival times.  This approach reveals that we may be able 

to find more efficient solution methodologies by changing the “paradigm” of our problem 

formulation. 

 

2.1.4. International Terrorism 
 Any discussion of the NAS would unfortunately be incomplete without mention of 

international terrorism following the events of September 11, 2001.  Four commercial 
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airliners were hijacked with three being purposefully collided with the World Trade 

Center towers and the Pentagon.  This unprecedented act of terrorism sent shockwaves 

throughout the United States and particularly through the airline industry. 

 Following the terrorist attacks, consumer confidence in flight safety plummeted.  

Travel during the Thanksgiving 2001 holidays on the major airlines suffered a 25 to 30 

percent [5] decline relative to the previous year, despite considerable incentives offered 

by the airlines in the form of reduced fares. 

 Increased security measures were implemented in the months following the 

attacks.  In February 2002, the U.S. Government implemented a 100 percent Positive 

Passenger Bag Match (PPBM) policy, wherein each piece of checked baggage must be 

positively matched against a confirmed boarded passenger.  In addition, the federal 

government assumed full responsibility for airport security, with federal workers 

assuming duties previously held by private contractors. 

 While the increased security may well enhance passenger safety, there is a 

significant cost to passenger convenience.  There is, for example, ample anecdotal 

evidence of the indignities suffered by passengers at security checkpoints.  Moreover, 

to have sufficient time to proceed through the various security checks, passengers are 

now required to arrive at airports more than two hours in advance of the scheduled flight 

take-off time.  As a result, much of the time advantage previously gained by flying rather 

than by taking ground transportation is forfeited, particularly for shorter regional flights. 

 There exists minimal precedence to gauge the long-term impact of this event and 

the ensuing policies on air travel.  Barnett [5] observes that the three downed airliners 

resulted in more deaths (passengers and ground casualties) than all previous domestic 

crashes combined.  For now, air traffic density across the NAS is significantly reduced.  

However, while the recovery timeline [4], depicted in Figure 2-1, is uncertain, it is likely 

that customer demand will, within the next few years, return to normal levels, and then 

resume its historical growth pattern. 
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Figure 2-1: Attack Recovery Timeline 
 

2.2. Collision Detection 
2.2.1. Separation Standards 

 Reich [43] defined a set of necessary considerations for safe, practical, and 

least-cost aircraft separation standards.  Aircraft separation standards are used to 

safeguard against the uncertainties in aircraft position in the along-track, cross-track, 

and vertical axes.  Reich identified an economic optimum separation standard as one 

that minimizes the costs to airlines from route deviations required by the standards and 

the costs of collisions.  Today, FAA standards require that aircraft maintain a 5 nautical 

mile horizontal separation and a vertical separation of 2,000 feet for aircraft above 

29,000 feet and 1,000 feet below this altitude [41]. 

 Reich modeled the separation restrictions by using a geometric box, called a 

proximity shell, aligned with the aircraft velocity vector, and described about the 

instantaneous position of each focal aircraft.  The air traffic controller’s task is then to 

ensure that no intruder aircraft’s position ever lies within this box.  The box is defined 

such that when other aircraft remain outside the box, the risk of collision is negligible.  

Collision risk is defined as the expected number of collisions in a given interval of time.  

Reich’s analysis requires two probability distributions to describe the variations about 

the intended trajectory: the error magnitudes and the rates of change of error 

magnitudes (i.e. wavelengths and oscillations about intended position).  Observe that 

we can simplify the calculations by treating the focal aircraft as a deterministic point and 

then assigning the aggregate uncertainties and proximity shells to the intruder aircraft.  
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 Reich [43] stresses the importance of the geometry of intrusions into the 

proximity shell of the focal aircraft.   That is, the risk of collision and the period the 

aircraft are exposed to this risk is a function of the relative aircraft vectors.   For 

example, a head-on encounter differs greatly from aircraft near-paralleling each other. 

 

2.2.2. Miles-in-trail Spacing 
 Air traffic controllers use miles-in-trail (MIT) spacing restrictions between aircraft 

to distribute incoming traffic at busy terminal destinations.  MIT spacing may also be 

used to alleviate airspace congestion.  The re-routings required to implement MIT 

spacing affect an estimated 540,000 flights annually with a fuel penalty cost of nearly 

$45 million [23]. 

 There is an inherent ATC workload imposed to establish MIT streams.  These 

streams in turn concentrate air traffic in specific sectors with a corresponding further 

increase in workload.  Furthermore, an optimized set of aircraft flight plans may still be 

subject to re-routing to establish traffic streams that enforce MIT spacing.  Hence we 

might desire an enhanced solution that also minimizes the need for MIT spacing.   

 One approach is to increase the length (in the in-trail axis) of the proximity shell 

around each focal aircraft for the purpose of an optimization model.  However, this will 

prove to be overly restrictive.  For example, the increased shell size would apply 

regardless of the flight’s destination, which may not be appropriate for destinations 

having a low traffic density.  More importantly, the enlarged shells would generate false 

conflicts, causing the model to reject acceptable flight plans. 

A superior approach is to assess a terminal area workload penalty similar to that 

used for en route sector workloads and then to accordingly impose a penalty for 

excessive terminal area densities. 

 

2.2.3. Conflict Prediction 

 Paielli and Erzberger [41] noted that during flight, the prediction of aircraft 

trajectories is not an exact science.  For example, wind modeling is still quite imprecise, 

aircraft navigation and control equipment are not error-free, and finally, there’s the 

human element—the pilot.  The pilot makes inexact course corrections based on 
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instrumentation and his or her own perception, which yields additional variance from the 

planned or predicted course. 

 We can examine error prediction in four dimensions:  cross-track (latitudinal), 

along-track (longitudinal), vertical, and time.  Paielli and Erzberger [41] found that errors 

in the cross-track axis were relatively constant at 0.5 to 1.0 nautical miles (nm) in a 30-

minute period, as they are routinely corrected by the pilot or the aircraft’s flight 

management system.  The along-track errors are significantly more variable, being 

created primarily by headwinds and tailwinds, which are not well predicted nor easily 

corrected for during flight.  The accumulated errors over time were found to grow 

linearly at a rate of 0.25 nm per minute.  While vertical errors were generally found to be 

more prevalent during climb, descent, and turning, the errors occurring in level flight 

were typically confined to less than 400 feet.  Due to the computational difficulties of 

estimating the vertical errors, Paielli and Erzberger [41] confined their study to level 

flights, noting that, in this case, the vertical conflict probability, for practical purposes, 

was zero for predicted separations of more than 2,600 feet and unity when less than 

1,400 feet. 

 Observe that the passage of time increases uncertainly with respect to an aircraft 

trajectory.  That is, the longer in advance a trajectory is to be predicted the more likely a 

larger prediction error occurs.  Paielli and Erzberger [41] empirically showed this 

through their study at the Fort Worth Air Route Traffic Control Center (ARTCC).  

Moreover, they demonstrated that the flight path prediction errors in the horizontal plane 

could be approximated by a Normal distribution.  An analytical solution was then derived 

to predict conflicts between aircraft pairs in the horizontal plane. 

 Paielli and Erzberger [41] astutely observed that the decision for when to initiate 

a conflict resolution maneuver (where at least one of the aircraft changes trajectory to 

avoid the potential conflict) involves a tradeoff between an efficient maneuver versus 

the certainty that a conflict will occur.  A maneuver initiated too early may have been 

unnecessary because the conflict prediction becomes increasingly coarse the further in 

advance it is calculated.  However, waiting until the conflict is near certain would require 

a more severe maneuver resulting in wastage of fuel and lost time. 
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 Paielli and Erzberger [42] subsequently extended their model to include non-level 

flights.  While their methodology did not produce an exact analytical solution, they 

developed a close approximation that was found to yield satisfactory results.  In their 

discussion, they listed some “caveats” regarding the limitations and assumptions 

required for the updated model.  The approach assumes constant velocities for both 

aircraft during the time of predicted conflict, which may not always be the case.  In 

cases where the two aircraft have small relative velocities, predictions are susceptible to 

wind-errors.  Lastly, ARTCC computers process aircraft altitudes that are within 200 feet 

of cleared altitudes as being at the cleared altitude.  For a pair of aircraft, this can yield 

conflict predictions based on relative altitudes that are as much as 400 feet in error. 

 Bakker, Kremer, and Blom [3] experimented with both geometric and probabilistic 

approaches to conflict prediction.  In contrast to previous work, they examined trajectory 

errors in three dimensions simultaneously, rather than assigning independent error 

distributions for each axis.  They concluded, as previous researchers have, that a 

probabilistic approach is a necessary part of modeling collision prediction. 

 

2.2.4. Center-Tracon Automation System 
 Conflict prediction algorithms are run as a routine, called a “Conflict Probe,” and 

are incorporated into the software of the Center-TRACON Automation System 

(CTAS) [16].  CTAS is not only used to predict conflicts, but is also used to calculate the 

flight corrections necessary to bring the probability of a separation violation below a 

programmed threshold.  CTAS is designed to be a real-time tool to aid air traffic 

management and has been installed for testing at two ARTCCs for testing and 

validation [42]. 

 McNally, Bach, and Chan [28] reported the results of field testing at the Denver 

ARTCC, where a Conflict Prediction and Trial Planning (CPTP) tool was incorporated 

into the CTAS.  The enhanced tool includes an improved conflict prediction algorithm 

and uses conflict probability estimation.  Conflict predictions are updated every 6 

seconds. 

The user interface allows real-time “what-if” trials for flight plans to resolve 

conflicts.  If the proposed plan resolves the conflict and creates no new conflicts, the air 



  19 

traffic controller can accept the plan and issue a clearance to the affected aircraft.  

Controllers noted that this capability was especially useful.  The trial-planning tool 

allowed the controller to look ahead on a more strategic basis, verify a conflict-free 

clearance, and issue this clearance to the pilots prior to the conflict becoming a tactical 

issue. 

 Using the CPTP, controllers were able to issue a direct clearance more than 

twice as often versus issuing a vectoring clearance to resolve a conflict.  The vector 

approach requires a second clearance to return to a post-conflict flight trajectory, while 

the direct clearance, having been verified as conflict-free, requires no follow-up action.  

In addition, direct-route conflict resolution could potentially provide a 12.1 nm flight 

length savings per aircraft.  During the Denver experiment, an actual average savings of 

3.4 nm was realized [28].  The difference was attributed to compliance with real-world 

constraints plus navigation and track errors.  Nevertheless, the savings is substantial. 

 

2.2.5. Direct-to Tools 

 Erzberger, McNally & Foster [15] developed a Direct-to Tool for use by en route 

Air Traffic Controllers to identify real-time direct-to routings for aircraft.  A direct-to 

routing specifies a straight-line trajectory from the aircraft’s current location to a 

navigation fix or waypoint.  This routing may bypass intermediate waypoints laid out in 

the original flight plan.  Depending on the spatial wind field in the region, the direct-to 

route may decrease or increase the time to fly to the destination.  The authors noted 

that flight time, as opposed to flight distance, was the appropriate measure of efficiency. 
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Figure 2-2: Direct-to Routing Example 
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 Consider the scenario diagrammed in Figure 2-2.  Each flight plan  and A B  is 

shown having three waypoints.  The second waypoint of each respective aircraft is such 

that there is a conflict between these two flight plans.  The conflict can be avoided by 

constructing a new flight plan that includes a direct-to routing for aircraft B  from node 

1B  to 3B  via segment 13B .  Depending on a number of factors, the new flight plan may 

not necessarily be as efficient as the original one, but is feasible in that there is no 

longer a conflict between the pair of flight plans  and A B .  To implement this 

methodology, a model would need to examine segments where conflicts occur, identify 

the waypoints that are adjacent to the spatial conflict region, generate a surrogate flight 

plan that omits the conflicting segment by using a direct routing between the adjacent 

waypoints, and finally evaluate the new flight plan for feasibility, desirability, and 

optimality. 

 

2.3. Collaborative Decision Making (CDM) 
 CDM is essentially a business practice that advocates decentralized cooperative 

decision making between the various participants in a common endeavor.  CDM takes 

advantage of many of the “Total Quality Management” precepts [50] that were 

advanced and popularized by W. Edwards Deming in Japan during the 1970s and 

1980s, and later in the United States during the early 1990s.  Revolutionary 

improvements in air traffic control are needed due to a continuing 1.5 - 3 percent annual 

growth rate in the number of flights in the NAS.  The advent of the “Free-Flight” 

paradigm further complicates air traffic control in an increasingly crowded airspace [48].  

The FAA is sponsoring a comprehensive CDM effort to improve air traffic management, 

increase capacity, and to reduce costs.   

 

2.3.1. Ground Delay Program Enhancement 
 The implementation of the Ground Delay Program Enhancement (GDPE), the 

first major thrust of CDM [29], is an impressive example of CDM success.  The GDPE 

effort implements three central tenets of CDM.  First, GDPE creates a common 

situational awareness between the FAA and the 24 currently participating airlines [18].  

Next, a distributed planning environment is designed where the roles and 
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responsibilities of the players are agreed upon and well-understood, limited resources 

are rationed equitably, and all participants have a voice in the decision process.  Finally, 

a performance measurement and feedback process is supported to facilitate system 

improvements. 

 Chang et al. [10] reported a number of difficulties with previous GDP processes.  

Most importantly, command centers had sparse information concerning updates to flight 

schedules made by airlines, while airlines did not have information concerning changes 

to airport arrival demands and capacities.  The GDPE team developed databases, 

communications architecture, and update mechanisms to allow real-time information 

sharing between all concerned parties.  For example, users now have access to the 

Enhanced Traffic Management System (ETMS), and can obtain complete FAA 

information for updating their portion of the overall data through a standardized 

interface. 

 GDP procedures were modified to eliminate disincentives for airlines to report 

flight schedule changes, particularly delays and cancellations.   Previously, GDP 

delayed flights based on arrival time.  Hence if an airline reported a delay, GDP would 

delay the flight even further, called a “double penalty.”  Today, GDP flight delays are 

instead based on the originally scheduled flight time.  Prior to the GDPE effort, airlines 

would lose the respective arrival slot upon reporting a flight cancellation, which 

prevented the airline from substituting a new flight for the cancelled one.  Today, when 

an airline cancels a flight, it has first priority to utilize the freed arrival slot by utilizing a 

compression algorithm. 

 When a slot is opened as the result of a cancellation or delay, the compression 

algorithm looks first for another flight belonging to the same carrier to move into this 

slot.  The carrier uses its own prioritization scheme to determine availability.  If the 

carrier does not have an available flight, the algorithm selects the next available flight, 

giving preferences to carriers participating in CDM.  Chang et al. [10] report that this 

algorithm is a “win-win” situation for the carriers, in that compression reduces delays 

while, at worst, preserving the status quo for a given carrier.  The implementation of 

compression concepts has made it advantageous for the airlines to report schedule 
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changes as they occur.  This provides FAA command centers the ability to plan GDP 

decisions using substantially more accurate information. 

 The result is a distributed decision structure, rather than a hierarchal one, that 

has dramatically reduced airline delay costs.  For example, over a two-year period, the 

compression algorithm alone reduced delays by 4.5 million minutes versus the previous 

GDP procedures [10]. 

 

2.3.2. NAS Performance Measurements 
 Hansen et al. [24] used a statistical cost estimation methodology to investigate 

the relationship between improvements in NAS performance and airline costs.  They 

began with seven commonly accepted performance metrics:  average arrival delay, 

average departure delay, average >15 minute arrival delay, arrival delay variance, 

departure delay variance, unreliability (percentage of flights arriving more than 15 

minutes late), and the cancellation rate.  These metrics were determined to be highly 

inter-correlated, hence, the authors used several techniques to generate alternative 

two-factor (delay and irregularity) and three-factor (delay, variability, and disruption) 

representations, where these factors were reasonably independent.  Both cost models 

were compared against historical NAS quarterly performance data to statistically 

estimate an airline cost function.  They observed that changes in NAS performance did 

not appreciably affect flight delays.  In contrast, the schedule disruption metric emerged 

as the most significant measure of NAS efficiency.  Of the original seven factors, the 

flight cancellation rate correlated best with this metric.  One conclusion drawn from this 

is that an airline operations strategy that avoids flight cancellations, even when delayed 

significantly, might be more efficient than strategies that seek to minimize average 

delays.  Hanson et al. recommend making NAS investments that improve the 

robustness of NAS operations (i.e., reliability and predictability), rather than those that 

yield incremental improvements in delay times. 

 

2.4. Utility Theory 
 Utility theory owes much of its origin as a means to explain economic behavior.  

There is a great deal of literature dating back to the 18th and 19th centuries, with 
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particular growth in utility theory during the last half-century.  Contributions have 

emerged from the fields of economics, statistics, mathematics, psychology, and 

management science [20]. 

 Utility models are broadly used to explain consumer behavior and values in a 

free-market economy.  The classical supply and demand curves are examples.  In such 

a model, a utility function is drawn in the ( , )x y  space, where x  is the consumption of a 

particular commodity, and  is a second commodity against which the first is traded.  

The -axis can alternatively depict the unit price of 

y

y x .  The function hence drawn is 

called an indifference curve.  The individual derives equal benefit (or utility) from any  

( , )x y  pair along the curve.  A series of parallel curves can be drawn to show different 

levels of utility.  Figure 2-3 displays examples of common utility function forms used in 

economics [34].  Note that intersecting curves would indicate inconsistent preferences. 

 

 

Figure 2-3: Common Utility Function Forms 
 

 Particularly during the latter half of the 20th century, utility theory has been used, 

with increasing sophistication, to model the perceived value of decision alternatives.  

Using mathematical models to explain human behavior is full of challenges, but given 

an appropriate set of assumptions, utility models are quite useful to both describe and 

prescribe decisions [25]. 

 We use utility theory concepts to derive mathematical functions to describe a 

preference structure over a set of alternatives.  Clemen [11] has provided a set of 
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axioms, presented in Table 2-1, from which it can be shown in general that people are 

able to rank order all possible situations from the most desirable to the least.  Utility 

functions can also be used to mathematically express an intensity of preference 

between two or more alternatives. 

 
Completeness:  If A and B are any two alternatives, a decision maker (DM) can specify exactly one of the 
following three possibilities, and the ordering is transitive: 
 a.  “A is preferred to B”  (A > B) 
 b.  “B is preferred to A”  (B > A) 
 c.  “DM is indifferent between A and B”  (A ~ B) 
 
Reduction of Compound Uncertain Events:  A DM is indifferent between a compound uncertain event and 
a simple uncertain event as determined by reduction using standard probability manipulation. 
 
Continuity:  A DM is indifferent between an outcome A and some uncertain event involving only two basic 
outcomes A1 and A2, where A1 > A > A2.  In other words, for each event, a reference gamble can be 
formulated with probability p, for which the DM will be indifferent between the reference gamble and A.   
 
Substitutability:  A DM is indifferent between any original uncertain event that includes A and one formed 
by substituting for A an uncertain event that is deemed equivalent to A. 
 
Monotonicity:  Given two reference gambles with the same possible outcomes, a DM prefers the one with 
higher probabilities of winning the preferred outcome. 
   
Invariance:  All that is needed to determine a DM’s preferences among uncertain events are the payoffs 
for outcomes and the associated probabilities. 
 
Boundedness:  No outcomes are considered infinitely good or infinitely bad. 
 

Table 2-1: Utility Theory Axioms 
 

 Decision makers typically exhibit risk-prone, risk-averse, or risk-neutral behavior.  

Figure 2-4 shows the general shape of utility curves for each type of risk behavior. 

 

 

Figure 2-4: Risk Behavior 
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 We can estimate a univariate utility function by asking the DM a series of lottery 

(reference gamble) questions and use the answers to determine certainty equivalents.  

A lottery question is constructed as depicted in Figure 2-5.  A person is given the choice 

between a sure outcome  and a lottery between outcomes  and C A B  such that the 

probability that  occurs is A p , and the probability that B  occurs is (1 )p− , where 

 (where “ ” denotes “is preferred to”). A C B

 

 

Figure 2-5: Reference Gamble 
 

 Fractile and bracketing methods, which use this approach, can be quite 

cumbersome in real-world applications.  For example, there are at least four 

methodologies used to set up the series of reference lottery questions required to elicit 

DM preferences.  A large volume of research has been dedicated to showing that the 

methodology chosen can bias an individual’s responses.  Furthermore, when we 

compare the utility functions constructed using different response methods, we often 

find contradictory preferences [20]. 

 Kirkwood [27] proves that if the DM exhibits a constant risk tolerance across the 

range of the attribute under consideration, then the resulting utility function will take 

either a linear or exponential form.  If preferences are monotonically increasing (more of 

x  is preferred) over min maxx x x≤ ≤ , then, 
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and if preferences are monotonically decreasing (less of x  is preferred) over 

min maxx x x≤ ≤ , then, 
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where ρ  is called the risk tolerance.  (Note that the second case, for both of (2.1) and 

(2.2), is simply the limiting value of the first case as ρ → ∞ .)  After we elicit from the DM 

the value of *x  such that U x , we can calculate ( ) 0.5= ρ  as the numerical solution to 

the equation, 
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when U x  is a monotonically increasing utility function and ( )
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when U x  is a monotonically decreasing utility function.  Observe that for both 

increasing and decreasing utility functions, 

( )

 

 * max minwhen
2

x xxρ +
= ∞ = , (2.5) 

 

and the resulting function is linear.  Empirical results have shown this to be a very 

satisfactory method to estimate preferences [49]. 

 Most decision problems are not based on a single criterion.  There are often 

multiple, sometimes competing, objectives for which the DM wishes to maximize utility.  

We can use Multi-attribute Utility Theory (MAUT) techniques to aggregate individual 

utility functions into a single multi-criterion utility function.  Construction of a multi-

criterion utility function can be a complex task.  Most importantly, the process requires 

that the attributes be independent of each other.  Zeleny [54] outlines three necessary 

forms of independence as described in Table 2-2. 

 
Preferential Independence:  Concerned with ordinal preferences.  A pair of attributes, X and Y, are 
preferentially independent of a third, Z, if the value trade-off between X and Y is not dependent upon the 
value of Z. 
 
Utility Independence:  Concerned with cardinal preferences.  If lottery preferences of attribute X do not 
depend on the value of Y, then X is utility independent of Y.  In general, X being utility independent of Y 
does not imply the reverse.  When the reverse holds, X and Y are said to be mutually utility independent, 
a necessary condition for a multiplicative utility function. 
 
Additive Independence:  The strongest form of independence.  Lottery preferences of X do not depend on 
changes in lotteries for Y.  That is, uncertain outcomes for multiple attributes can be evaluated one 
attribute at a time.  This is a necessary condition for an additive utility function that rarely holds in real 
situations. 

Table 2-2: Utility Independence 
 

 The additive multi-criteria utility function takes the form, 
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 1 2 1 1 1 2 2 2( , ,..., ) ( ) ( ) ... ( ) where 1n n n n
i

U x x x w U x w U x w U x w= ⋅ + ⋅ + + ⋅ =i∑ , (2.6) 

 

and where  is a calibrated weighting factor assigned to the iiw
th univariate utility 

function.  This form is computationally convenient, but as we noted in Table 2-2, 

additive independence is difficult to justify for most decision problems. 

 Clemen [11] has offered an interesting insight for the criteria weights.  If the 

weights of a set of criteria sum to less than unity, they are said to be substitutes for 

each other.  Conversely, if they sum to more than unity, they are called compliments to 

each other.  In both of these cases, the multiplicative form of the multi-attribute utility 

function is appropriately used, and is given by, 
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 Observe that (2.7) includes nonlinear terms.  The normalizing factor  is 

calculated by setting each attribute to its maximum value to yield U X  and then 

solving for .  For example, when the multiplicative utility function is composed of two 

attributes,  is given by, 

κ

( ) 1=

κ

κ

 

 1

1 2

1 w w
w w

κ − −
= 2 .  (2.8) 

 

2.5. Applications Background 
2.5.1. Space Launches 

 Commercial space launch is a growth industry in the United States.  There is a 

burgeoning demand for space-based technologies, including multimedia 

communications, navigation, meteorology, reconnaissance, scientific research, and 

environmental monitoring.  Hence there is a pressing need for space transportation to 

provide routine access to space, particularly for earth-orbiting satellites. 
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 Space access from the United States has historically been provided by launch 

sites owned by the federal government at the Kennedy Space Center and Cape 

Canaveral Air Force Station in Florida, and Vandenberg Air Force Base, California.  

Recently, commercial spaceports were established in Florida and California (adjacent to 

the federal sites) and in Alaska and Virginia.  As of 2002, there are 12 additional 

commercial sites being proposed.  The proliferation of space launch sites (many at 

inland versus coastal locations) and the corresponding increase in launch rates is 

expected to make a dramatic impact on the NAS. 

 

 

Figure 2-6: US Spaceport Locations [40] 
 

 Commercial space transportation is regulated by Title 49, United States Code, 

Section IX.  This statute delegates responsibility for space launch activities to the Office 

of the Associate Administrator for Commercial Space Transportation (AST), which is a 

part of the FAA.  AST publishes guidance for planning, licensing, and executing space 

launch activities.  In addition, AST is beginning to develop guidance for future 

commercial re-entry operations. 

 One of AST’s biggest long-term projects is to develop and refine an integrated 

Space and Air Traffic Management System [38].  AST has published a Concept of 

Operations (CONOPS) that describes future commercial space launch and re-entry 

operations, particularly as these vehicles traverse through the NAS. 
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 The CONOPS defines two new airspace structures for the NAS that will replace 

the current SUAs.  First, Space Transition Corridors (STCs) are dynamically reserved 

and released airspace regions that are designed to be more flexible than SUAs, and are 

to be used for space vehicles transitioning in and out of the NAS.  Second, Flexible 

Spaceways will be defined in a manner similar to current jet routes.  Also flexible by 

design, these will be used for activities such as transitions to airborne refueling and 

launch points [38]. 
 The primary impact to the NAS from current space launch activities arises from 

SUAs.  Large portions of the NAS are closed to air traffic to accommodate the launch 

and recovery of space vehicles as they transition through the NAS.  During the mission-

planning process, an Overflight Exclusion Zone is calculated based on the type of 

launch vehicle and the specific mission requirements.   

 

 

Figure 2-7: Overflight Exclusion Zone [39] 
 

 In Figure 2-7,  is defined as the debris dispersion radius, which is based on 

the size of the launch vehicle as measured by its lift capacity to low-earth orbit 

(100 nm).  For example, the Delta II is classified as a medium class expendable launch 

vehicle (ELV) with =1.53 nm.  The variable  is defined as the overflight 

exclusion zone downrange distance and is calculated using the mission-specific launch 

azimuth as well as the vehicle class.  In the case of a Delta II ELV,  will have a 

length of 3.47 nm.  Overflight Exclusion Zones are initiated during the launch vehicle 

maxD

maxD OEZD

OEZD
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terminal countdown prior to the opening of the launch window and are maintained until 

either the launch window closes, or following liftoff and transition through the NAS by 

the launch vehicle. 

 The CONOPS takes advantage of CDM concepts.  For example, the CONOPS 

proposes information systems to enhance the “shared situational awareness” of the 

various NAS participants, to include advanced digital communications and enhanced 

real-time weather data.  In addition, the NAS Wide Information System will provide a 

common exchange medium for static NAS information (maps, charts, NOTAMs, etc) as 

well as dynamic information such as STC status, space launch updates, weather 

forecasts, and air and space traffic monitoring [38]. 

 

2.5.2. Weather Systems 
 Weather phenomena provide a formidable challenge to air traffic control.  In 

contrast to space launch SUAs, restricted airspace requirements arising from severe 

weather is exceptionally dynamic.  Closed airspace regions are irregular shaped, move 

with respect to time, and change shape throughout a storm’s cycle of development and 

subsequent dissipation.  The duration and timing of severe weather is often difficult to 

predict.  For example, thunderstorm cells can form unexpectedly and require airspace 

closures with little more than 30 minutes advance warning. 

 Nilim et al. [35] developed a dynamic trajectory-based routing strategy to 

investigate the impact on en route aircraft from probabilistic weather events.  They 

compared a traditional routing strategy, which selects aircraft routes to avoid bad 

weather zones entirely, with a dynamic approach that risks costlier delays as a tradeoff 

against decreased expected weather-related delays.  The stochastic dynamic 

programming algorithm’s complexity is exponential with respect to the number of storm 

systems being considered. 

 

2.5.3. Time-dependent Traffic Modeling 

 Vehicle streams can be represented in a three-dimensional diagram where the 

time domain is placed on the horizontal axis, the one-dimensional position is placed on 

the vertical axis, and the third axis shows the cumulative traffic density.  With 
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appropriate transformations, these diagrams can be used to detect active bottlenecks in 

traffic flow.  One such transformation is to use a reference vehicle’s instantaneous 

position as the origin.  This “moving time coordinate system” horizontally moves the 

cumulative count curves such that neighboring curves show vehicle delays and vehicle 

accumulations. 

 Cassidy [9] gives an interesting example showing how event location propagates 

through a free flowing traffic state as a shock.  For example, the lead reference vehicle 

first travels at a nominal velocity for a period of time, slows and maintains a slower 

velocity for a period, then stops for a period, and finally accelerates to a new velocity for 

the final period.  Subsequent vehicles, by model assumption, maintain a constant 

separation from the preceding vehicle.  The result is that the transition points (slowing, 

stopping, accelerating) move backwards in time and position.  For those that have 

observed a traffic jam, the model is especially revealing.  Even after the cause of a 

traffic delay (e.g. an accident) is removed, traffic congestion persists and is located 

significantly upstream of the accident site.  The peak congestion point continues to 

move upstream as it gradually dissipates.  This is a non-intuitive result to the vehicle 

driver who is delayed at one location, and then sees evidence of the cause of the delay 

several miles downstream, where traffic is currently moving smoothly. 

 

2.6. Relationships Between the Present and Previous Research 
2.6.1. Airspace Occupancy Model 
 The Airspace Sector Occupancy Model (AOM) developed by Sherali et al. [48] is 

used to determine the occupancies by aircraft in the modules and sectors that comprise 

the NAS.  The model examines a given set of flight plans and mathematically describes 

their flight trajectories over a defined region of airspace to determine sector crossings 

and occupancies as a function of time. This model is used to calculate information that 

is subsequently used in the Aircraft Encounter Model (AEM). 

 The AOM begins with a pre-processing routine to create a mathematical 

representation of the NAS.  The entire airspace over the United States is divided into 

twenty-one centers, each regulated by an ARTCC.  Each of these centers is divided into 

sectors.  Sectors are well-defined airspace regions specified by the FAA for regulating 
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air traffic, and are classified into three groups: low, high, and super-high, depending 

upon their floor and ceiling boundaries.  Low sectors lie below 24,000 feet (flight level 

(FL) 240).  High sectors extend between FL 240 and FL 350.  The super-high sectors lie 

above FL 350. 

 Each sector is comprised of Fixed Point Airspace (FPA) units and each of these 

FPAs is composed of modules.  A module is an airspace region having a generally non-

convex polygonal cross-section, and is defined by its vertices and its floor and ceiling 

altitudes.  Included with the set of vertices that are input to AOM are pseudo-vertices.  A 

pseudo-vertex is defined as a vertex for some other module that is present on a vertical 

face of the given module, but is not an original defining vertex of its floor and ceiling.  

The points formed by the two dimensional projection of either vertical edges or pseudo-

vertices of a module onto its floor or ceiling are called nodes, and are used to define the 

floor and ceiling geometry of a sector module.  Modules are stacked one over another to 

form an FPA, and several such adjacent FPAs form a sector.  Figure 2-8 depicts a pair 

of adjacent sector modules. 

 

 

Figure 2-8: Sector Module Geometry [48] 
 

 Having created a mathematical representation of the NAS, AOM’s pre-

processing routine determines the set of adjacent sectors for each sector.  Adjacency is 

defined such that for each sector , sector  is adjacent if any module that is part of is js
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sector s  shares a common geometric face, edge, or vertex with a module that is part of 

sector s . 

j

i

 In the main routine, AOM considers each flight path that is comprised of linear 

discretized flight segments and having break-points represented in terms of the 

coordinates  that it traverses.  The 1 2, ,..., nwp wp wp

iwp d

i th such linear segment trajectory is 

then defined as λ+  for 0 1λ≤ ≤ , where 1id wp wp+ i= − .  The algorithm looks for the 

point (and the associated time) where the trajectory intersects a vertex, edge, or face of 

the currently occupied module.  At such a point, the algorithm determines whether the 

aircraft trajectory continues within the same module (sector) or transitions to an 

adjacent module (sector).  Figure 2-9 shows an example where a flight transitions from 

some sector  to the adjacent sector s 1s +  as it traverses its i th piecewise linear 

trajectory.  Observe in the example that the AOM routine distinguishes between the 

trajectory intersection with module vertex  (which is glanced with the aircraft 

continuing to occupy sector ) and the trajectory intersection with a vertical face at 

A

s B  

(at which the aircraft leaves sector  and enters sector s 1s + ). 

 

 

Figure 2-9: Sector Occupancy Calculation Example [48] 
 

2.6.2. Aircraft Encounter Model 
 Sherali et al. [48] have also developed the Aircraft Encounter Model (AEM).  This 

model is deterministic with respect to aircraft position.  The model accepts as inputs a 

set of flight plans, each expressed as a series of waypoint information in 4-dimensional 
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space ( , and the sector occupancy information produced by the AOM 

model. 

)1 2 3, , , timex x x

 A conflict occurs when any intruder aircraft passes within the proximity shell 

constructed around a focal aircraft as depicted in Figure 2-10.  To examine possible 

intruder conflicts with the focal aircraft, a transformation matrix Q  is used to convert 

Cartesian coordinates of the aircraft pair into a system that is aligned with the focal 

aircraft’s positive in-trail axis, denoted .  This transformation is described in more 

detail in Chapter 3.  Note that a different Q  transformation must be used for each 

piecewise linear trajectory segment of the focal aircraft. 

Ad

 

 

Figure 2-10:  Aircraft Separation Box 

 

 Figure 2-11 depicts a conflict (in two dimensions).  Note that when aircraft B  

conflicts with aircraft , the reverse is not necessarily implied.  Hence the AEM 

algorithm looks for potential conflicts between aircraft pairs with each aircraft treated 

alternatively as the focal aircraft.    

A

 

 

Figure 2-11:  Aircraft Conflict 
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 During a scaled time interval 0 1λ≤ ≤  (where time has also been shifted to the 

origin), the aircraft  traverses the linear trajectory between some adjacent waypoints.   

As shown in Sherali et al. [48], aircraft 

A

B  conflicts with  when (2.9) is satisfied.  This 

relation decomposes to six inequalities, with two in each spatial dimension.   

A

 

 ( ) ( )t B A t B AQ x x Q d dδ λ− ≤ − + ⋅ − ≤ δ . (2.9) 

 

 This calculation is repeated for all potential intruder aircraft as the focal aircraft 

moves along its trajectory between successive pairs of adjacent waypoints.  The model 

generates time intervals for which conflicts with different intruder aircraft are identified.  

Figure 2-12 provides an example of a conflict Gantt Chart created for a single focal 

aircraft. 

 

 

Figure 2-12:  Conflict Gantt Chart for Aircraft A Between Two Waypoints 

 

 The AEM model outputs these deterministic conflicts to an Airspace Planning 

Model (APM) that is described next, where they are used to create the conflict 

constraint set. 

 

2.6.3. Preliminary Airspace Planning Model (APM) 
 The APM of Sherali et al. [47] selects optimal flight plans from among a set of 

alternative flight plans called surrogates.  The model addresses safety, workload, and 

equity concerns.  It examines collision risk (using the outputs of AOM and AEM) 

between flights and eliminates conflicting flight pairs that exceed the ability of Air Traffic 

Controllers to safely redirect.  Next, the model constrains traffic flow through sectors of 

the NAS based on their respective capacities.  In addition, APM makes provisions for 

temporary reductions in sector capacity, such as those caused by weather conditions or 
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though the creation of SUAs.  Finally, the model seeks a solution that does not unfairly 

burden participating airlines by equitably distributing the delay and fuel costs arising 

from the collective solution that trades off between the conflicting priorities of the various 

airlines. 

 A brief overview of the formulation and notation of the APM [47] is given below. 

 

 Model APM: 
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   binary, 0, 0,e e
l ux y x x ν≥ ≥ ≤  (2.10i) 

 

 There are F  flights being considered with one flight plan p  to be selected from 

among the  surrogates for each fPp∈ 1,...,f F= .  The binary decision variable  

equals one if flight plan 

fpx

fp P∈  is selected for flight f , and zero otherwise, and has the 

cost  associated with it. fpc

 The second term in (2.10a) addresses sector workloads and is formulated as a 

penalty function.  At most sn  flights can simultaneously occupy the sector  (belonging 

to the set of  sectors being examined) including flights occupying adjacent sectors that 

s

S
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are in conflict with flights in .  The binary variable  equals one when there is a 

maximum of 

s sny

sn  flights in  during a specified time horizon and s snµ  is the corresponding 

assigned penalty. 

≡
(

p

e
ux

sn

s

 The last two terms of the objective function consider equity.  The “utility-based 

measure of effectiveness” is defined in the APM as 

 

 , (2.11) ∑
∈ α

α
Apf

fpfp xuxU
),

)(

 

where  is the excess cost incurred by airline fpu α  (from the set of α  participating 

airlines) when flight plan  is selected for flight .  This excess cost is the expense 

incurred by the airline that is in addition to the cost had the airline been able to select 

the minimal cost flight plan (based on the airline’s own prioritization scheme).  The 

penalty 

f

eµ  is assigned for the variation in these excess costs, ( - ), where  

and 

e
lx 0e

lx ≥

exu eν≤ , for some limiting tolerance eν .  The effect of this penalty is to minimize the 

spread (i.e. inequity) of costs associated with the collaborative decision made between 

the airlines.  Finally, the penalty  is assigned for the maximum measure of excess 

cost incurred. 

e
uµ

 The APM includes three types of restrictions on the selection of flight plans via 

the constraint formulation.  First, decision equity is considered.  The measure of 

effectiveness, defined in (2.11), is bounded between a minimum and maximum, and is 

given by (2.10f) and (2.10i). 

 Next, the air traffic management workload for each of the sectors is considered.  

Sector workload is defined as the number of aircraft present in that sector’s airspace 

region as a function of time.  Recall that sector occupancy information is provided by the 

AOM output.  The variable  is defined as the maximum number of flights 

simultaneously occupying sector , and is bounded on the interval s [ ]1, sn .  The APM 

determines the value of n  by examining maximal overlapping sets of conflicts occurring 

in sector  throughout the time horizon, using an algorithm developed by Sherali and s
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Brown [45].  We discuss this aspect of workload constraint formulation in more detail in 

Chapter 4.  For sector s , 1,..., si = M  indexes the collection of maximal overlapping sets 

and  

th  maximp i= ∈,f

snµ

 

 { }( , ) : ( ) al overlapping set for sector , 1,..., ,si sC f p s i M∀ = . (2.12) s∀

 

 The penalty function  is assumed to be increasing nonlinearly for 

increasing sn .  Accordingly, the constraints (2.10c-e) are included in the APM. 

 Sherali et al. [47] show that the binary restrictions on sny

s

 hold automatically at 

optimality along with the integer and bounding restrictions on ,n s∀ .  Hence, the 

continuous relaxation for these variables are used in the formulation. 

 Finally, the APM considers conflict resolution restrictions.  The model prohibits 

fatal conflicts via (2.10g), defined as when an aircraft penetrates the inviolable airspace 

surrounding another aircraft.  Non-fatal conflicts are restricted by (2.10h) to be no more 

than a specified maximum number occurring in sector  during any time interval .  The 

methodology for restricting non-fatal conflicts is discussed in detail in Chapter 3.   

s t

 

2.6.4. Proposed Airspace Planning and Collaborative Decision Making Model 
          (APCDM) 
 The APCDM proposed herein builds upon the foundation made by the 

preliminary APM.  This model will utilize an inner-outer iterative structure.  Figure 2-13 

depicts the APCDM structure. 
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Figure 2-13: APCDM Structure 
 

 The inputs to the APCDM are the set of proposed flight plans (including a 

number of alterative surrogate plans corresponding to each flight) and the sector 

geometries.  We shall also consider reductions in sector capacities due to SUAs and 

weather-related closures.  In addition to the deterministic analysis previously performed 

in APM, we shall examine stochastic time-dependant restrictions that may ultimately 

prohibit the selection of some subset of these flight plan alternatives. 

 The inner loop begins with the AOM model (which is used without significant 

change from [48]).  The Probabilistic Aircraft Encounter Model (PAEM), introduced in 

Chapter 3, is the next module of the inner loop, where we employ a stochastic approach 

with respect to aircraft position (versus the deterministic approach of the AEM model) to 

better reflect the uncertainties with respect to flight plan execution.  We shall experiment 

with several probability distributions and conflict probability thresholds to examine their 

respective influence on the overall APCDM model and its results. 

 We use the PAEM output (in a similar manner as AEM was used) to provide the 

necessary information for developing the sector workload constraints.  We shall 

experiment with several classes of valid inequalities (discussed in Chapter 4) for the 

constraint set in an effort to improve the solvability of larger models. 
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 In Chapter 5 we will discuss the next module that addresses equity 

considerations for selecting flight plans, using a utility-based approach.  We will look at 

several factors that may influence participant decisions in a CDM environment. 

 The final module of the APCDM inner loop is the mixed-integer optimization 

model itself.  We will use CPLEX-MIP 7.0 [12] to solve the enhanced model 

representation. 

 In the outer loop, we shall examine the results of the optimization model, and 

explore a strategy for generating new flight plans via column generation techniques, as 

well as possibly modify suitable model parameters.  These new surrogates will be 

generated from the viewpoint of time-dependent SUAs or weather-related airspace 

closures, direct-to routings, conflict avoidance, and equitable cost distributions. 


	Chapter 2

