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ABSTRACT 
 

 We develop and evaluate two significant modeling concepts within the context of a large-

scale Airspace Planning and Collaborative Decision-Making Model (APCDM) and, thereby, 

enhance its current functionality in support of both strategic and tactical level flight assessments.  

The first major concept is a new severe weather-modeling paradigm that can be used to assess 

existing tactical en route flight plan strategies such as the Flight Management System (FMS) as 

well as to provide rerouting strategies.  The second major concept concerns modeling the 

mediated bartering of slot exchanges involving airline trade offers for arrival/departure slots at 

an arrival airport that is affected by the Ground Delay Program (GDP), while simultaneously 

considering issues related to sector workloads, airspace conflicts, as well as overall equity 

concerns among the airlines.  This research effort is part of an $11.5B, 10-year, Federal Aviation 

Administration (FAA)-sponsored program to increase the U.S. National Airspace (NAS) 

capacity by 30 percent by the year 2010.     

Our innovative contributions of this research with respect to the severe weather rerouting 

include (a) the concept of “Probability-Nets” and the development of discretized representations 

of various weather phenomena that affect aviation operations; (b) the integration of readily 

accessible severe weather probabilities from existing weather forecast data provided by the 

National Weather Service (NWS); (c) the generation of flight plans that circumvent severe 

weather phenomena with specified probability levels, and (d) a probabilistic delay assessment 

methodology for evaluating planned flight routes that might encounter potentially disruptive 

weather along its trajectory.  Given a fixed set of reporting stations from the CONUS Model 

Output Statistics (MOS), we begin by constructing weather-specific probability-nets that are 

dynamic with respect to time and space.  Essential to the construction of the probability-nets are 

the point-by-point forecast probabilities associated with MOS reporting sites throughout the 

United States.  Connections between the MOS reporting sites form the strands within the 

probability-nets, and are constructed based upon a user-defined adjacency threshold, which is 

defined as the maximum allowable great circle distance between any such pair of sites.  When a 



   

flight plan traverses through a probability-net, we extract probability data corresponding to the 

points where the flight plan and the probability-net strand(s) intersect.  The ability to quickly 

extract this trajectory-related probability data is critical to our weather-based rerouting concepts 

and the derived expected delay and related cost computations in support of the decision-making 

process.     

Next, we consider the superimposition of a flight-trajectory-grid network upon the 

probability-nets.  Using the U.S. Navigational Aids (Navaids) as the network nodes, we develop 

an approach to generate flight plans that can circumvent severe weather phenomena with 

specified probability levels based on determining restricted, time-dependent shortest paths 

between the origin and destination airports.  By generating alternative flight plans pertaining to 

specified threshold strand probabilities, we prescribe a methodology for computing appropriate 

expected weather delays and related disruption factors for inclusion within the APCDM model.            

We conclude our severe weather-modeling research by conducting an economic benefit 

analysis using a k-means clustering mechanism in concert with our delay assessment 

methodology in order to evaluate delay costs and system disruptions associated with variations in 

probability-net refinement-based information.  As a flight passes through the probability-net(s), 

we can generate a probability-footprint that acts as a record of the strand intersections and the 

associated probabilities from origin to destination.  A flight plan’s probability-footprint will 

differ for each level of data refinement, from whence we construct route-dependent scenarios and, 

subsequently, compute expected weather delay costs for each scenario for comparative purposes.             

Our second major contribution is the development of a novel slot-exchange modeling 

concept within the APCDM model that incorporates various practical issues pertaining to the 

Ground Delay Program (GDP), a principal feature in the FAA’s adoption of the Collaborative 

Decision-Making (CDM) paradigm.  The key ideas introduced here include innovative model 

formulations and several new equity concepts that examine the impact of “at-least, at-most” trade 

offers on the entire mix of resulting flight plans from respective origins to destinations, while 

focusing on achieving defined measures of “fairness” with respect to the selected slot exchanges.  

The idea is to permit airlines to barter assigned slots at airports affected by the Ground Delay 

Program to their mutual advantage, with the FAA acting as a mediator, while being cognizant of 

the overall effect of the resulting mix of flight plans on air traffic control sector workloads, 

collision risk and safety, and equity considerations. 
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We start by developing two separate slot-exchange approaches.  The first consists of an 

external approach in which we formulate a model for generating a set of package-deals, where 

each package-deal represents a potential slot-exchange solution. These package-deals are then 

embedded within the APCDM model.  We further tighten the model representation using 

maximal clique cover-based cuts that relate to the joint compatibility among the individual 

package-deals.  The second approach significantly improves the overall model efficiency by 

automatically generating package-deals as required within the APCDM model itself.  The model 

output prescribes a set of equitable flight plans based on admissible trades and exchanges of 

assigned slots, which are in addition conformant with sector workload capabilities and conflict 

risk restrictions.  The net reduction in passenger-minutes of delay for each airline is the primary 

metric used to assess and compare model solutions.  Appropriate constraints are included in the 

model to ensure that the generated slot exchanges induce nonnegative values of this realized net 

reduction for each airline. 

In keeping with the spirit of the FAA’s CDM initiative, we next propose four alternative 

equity methods that are predicated on different specified performance ratios and related 

efficiency functions.  These four methods respectively address equity with respect to slot-

exchange-related measures such as total average delay, net delay savings, proportion of 

acceptable moves, and suitable value function realizations. 

For our computational experiments, we constructed several scenarios using real data 

obtained from the FAA based on the Enhanced Traffic Management System (ETMS) flight 

information pertaining to the Miami and Jacksonville Air Route Traffic Control Centers 

(ARTCC).  Through our experimentation, we provide insights into the effect of the different 

proposed modeling concepts and study the sensitivity with respect to certain key parameters.  In 

particular, we compare the alternative proposed equity formulations by evaluating their 

corresponding slot-exchange solutions with respect to the net reduction in passenger-minutes of 

delay for each airline.  Additionally, we evaluate and compare the computational-effort 

performance, under both time limits and optimality thresholds, for each equity method in order to 

assess the efficiency of the model.  The four slot-exchange-based equity formulations, in 

conjunction with the internal slot-exchange mechanisms, demonstrate significant net savings in 

computational effort ranging from 25% to 86% over the original APCDM model equity 

formulation.                                  
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The model has been implemented using Microsoft Visual C++ and evaluated using a C++ 

interface with CPLEX 9.0.  The overall results indicate that the proposed modeling concepts 

offer viable tools that can be used by the FAA in a timely fashion for both tactical purposes, as 

well as for exploring various strategic issues such as air traffic control policy evaluations; 

dynamic airspace resectorization strategies as a function of severe weather probabilities; and 

flight plan generation in response to various disruption scenarios. 
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Chapter 1 

Introduction 
 

1.1. Motivation 

The Associated Press (AP) published an article describing the delays in air travel during 

the summer of 2004 as potentially the worst since the summer of 2000, in which nearly one of 

every four planes was late.  As the number of passengers returned to their pre-September 11, 

2001 levels, the largest contributing factor to flight delay was the presence of severe weather 

disrupting normal operations within the most congested airspace sectors.  Severe weather can 

have a significant impact on the origin and destination airports as well as the planned flight 

routes.  When an airport’s arrival capacity is reduced due to severe weather and is incapable of 

slotting the scheduled number of arriving aircraft, the Federal Aviation Administration (FAA) 

implements a Ground Delay Program (GDP).  Upon the execution of a GDP, specific flights are 

delayed at their respective departure airports in an effort to thin out the arrival rate at the 

destination airport.  While the consequences of a GDP are undesirable for the airlines, the FAA 

Command Center prefers this technique to the riskier alternative involving in-flight delays.  In 

instances where the severe weather intersects only the submitted flight route, the flight is 

rerouted as long as the proposed route is admissible.  Otherwise, the flight is subject to a ground 

delay.  The AP article was released only a few months after the present work commenced on an 

FAA sponsored research project regarding Collaborative Decision-Making and Air Traffic Flow 

Management under uncertainties due to weather, demand, and capacities.  Providing 

methodologies to improve flight plan generation at both the strategic and tactical level under 

severe weather uncertainties and the subsequent reduction in associated delay costs is the 

primary motivation for this research effort.         

The Federal Aviation Administration is sponsoring an overall 10-year, $11.5B, effort to 

increase the National Airspace (NAS) capacity by 30 percent by the year 2010 (Crawley, 2001).  

Given this expected increase in air and space transportation, it is of vital interest for the United 

States to remain involved with the development of techniques and methodologies to reduce the 

impending burden on the NAS.  Richard P. Hallion (2004), a senior advisor to the U.S. Air Force 

for air and space issues, recently presented an argument referencing the lack of American 

academic contributions in the air and space fields.  In addition, he emphasized that this issue is 

1 
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not new when retracing American contributions throughout the history of the air and space 

industry.  The present research effort pertains to addressing both of these issues.   

According to Hallion (2004), America began its first major decline with respect to the 

growth of aviation shortly after the Wright Brothers’ introduction of the airplane in 1903, as it 

fell behind other European countries in both aviation development and production and would not 

emerge from this position until 1938.  Even during WWI, American pilots flew aircraft designed 

and built in France, Great Britain, and Italy.  The resurgence of American ingenuity and 

predominance resulted from visits and migration of Europe’s leading aviation technologists 

coupled with American designers’ new willingness to adopt and exploit Europe’s “structural and 

aerodynamic practices”.  The prominent European figures who contributed significantly to 

America’s rebirth were Max Munk, Theodore von Karman, Anthony Fokker, and Igor Sikorsky. 

America’s development of commercial air transport was jump-started after certain key 

federal legislations (Kelly Act 1925 and Air Commerce Act 1926) were enacted.  In the late 

1930s, American commercial air transports were comparable to Europe’s top transports and 

Europe began purchasing American Commercial Airliners.  America’s dominance in aircraft 

production during WWII is evident when comparing the number of platforms produced in 

America to those produced by the combined Axis Powers.  America emerged from WWII 

producing the best bombers, fighters, and other aircraft types.  The development and production 

capabilities of the United States at the time was a reflection on “American genius for building a 

system of systems approach….The knack for refinement, industrial organization, and output 

could be considered the great strength of American aviation” (Hallion, 2004, p. 7).  Hallion 

expresses a concern that this is a pattern that America continues to repeat and gives examples 

referencing the radar, ballistic missiles, satellites, and other various improvements such as liquid 

fuel rockets.  Because America has the raw materials necessary for development, it is relatively 

easy for us to catch up and eventually surpass other countries that are constrained by resources.  

This, however, is not the best way to do business.  Hallion is even more concerned with the 

decline since the late 1980s in the industrial employment percentage and the number of 

American students studying air and space subjects at the universities.  America has also lost its 

dominance in the airline industry and U.S. commercial space exports.    

The greatest challenge, according to Hallion, is not motivated strictly towards economic 

or military dominance.  Rather, the greatest challenge is to inspire the American youth to become 
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re-engaged with the air and space field.  “We must excite our young people with new concepts 

that take us beyond the tired solutions of the past.  We must be willing to shatter existing 

paradigms and patterns” (Hallion, 2004, p. 9).  Many individuals from the past started with a 

concept and developed a product, which some said there was no need for, and now, they cannot 

live without.  For America to be referred to as an Aerospace Nation, it must be involved in future 

advances and developments within the air and space field.  Otherwise, it will be left behind again 

and will have to rely on playing catch-up. 

The recent inaugural flight of the Airbus A380 in April 2005 is just another reminder of 

how Europe has taken the lead in aeronautical advances related to the expected increase in the 

NAS capacity.  Boeing is scrambling to regain the lead over Airbus by introducing the Boeing 

777-200LR with a planned extended range of 11,000 miles.  While aircraft design is one 

approach taken to address the expected capacity increase, the efficient use of airspace in the 

presence of severe weather can significantly reduce costs that are typically associated with 

weather delays.  Therefore, given existing weather forecasting tools and products, we choose not 

to play catch-up and recommend innovative methodologies within this dissertation for inclusion 

in the FAA’s decision-making support system.           

 

1.2. Scope of Research 

In this dissertation, we propose and evaluate significant modeling concepts within the 

context of the Airspace Planning and Collaborative Decision-Making Model (APCDM) 

developed by Sherali et al. (2003 and 2006).  The APCDM is a large-scale mixed-integer 

programming model designed to enhance the management of the National Airspace (NAS).   

Given a set of potential trajectories (referred to as surrogates) for each flight, the objective of the 

APCDM is to select an optimal set of flights subject to workload, safety, and equity 

considerations.  This research is in support of the FAA’s Collaborative Decision-Making (CDM) 

initiative.   

The scope of research at the strategic level focuses on flight plan generation while 

incorporating probabilistic weather conditions that may have an impact along the existing flight 

network.  The weather-modeling concept integrates severe weather information from a readily 

accessible forecast data source known as Model Output Statistics (MOS).  The severe weather 
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probability data is used to compute an additional weather delay cost for a given flight for 

inclusion in the APCDM model’s objective function.     

At the tactical level, we include a slot-exchange mechanism within the APCDM model 

(designated SE-APCDM) and, thereby, focus on providing viable methodologies to incorporate 

various practical issues pertaining to the Ground Delay Program (GDP).  Following the 

execution of the current Ration-by-Schedule (RBS) and Compression procedures of the GDP, 

airlines are allocated slots based on flight arrival times listed in the Official Airline Guide (OAG).  

As a byproduct related to the notion of airline “slot-ownership” (Vossen and Ball, 2004), an 

airline may relinquish an earlier slot in return for acquiring an improved slot for a later flight 

through a mediated bartering process.  We explore both internal and external slot-exchange 

formulations and include various proposed equity formulations related specifically to slot 

exchanges.  The resulting SE-APCDM solutions will instinctively decrease the overall passenger 

delay when compared to the passenger delay generated by the imposed GDP without slot 

exchanges.       

The proposed modeling concepts are tested using the FAA’s traffic demand scenario 

flight data, the Enhanced Traffic Management System (ETMS) database.  The test sets consist of 

flight plans characterized by a set of four-dimensional coordinates (latitude, longitude, altitude, 

and time).  An additional input for evaluating the SE-APCDM model is the trade offer data that 

is submitted by participating airlines.  Different model variations are evaluated and various 

sensitivity analyses are performed to provide insights into model implementation issues.       

   

1.3. Summary of Contributions 

This dissertation makes the following specific contributions in support of the FAA’s 

Collaborative Decision-Making initiative. 

We integrate within the APCDM model a significant severe weather-modeling paradigm 

that can be used to assess existing tactical en route flight plan strategies such as the Flight 

Management System (FMS) as well as to provide rerouting strategies.  A discretized 

representation of various weather phenomena that affect aviation operations is developed using 

the data provided by the National Centers for Environmental Prediction (NCEP).  The discretized 

representations are structured in the form of probability-nets that are dynamic with respect to 

time and space.  We incorporate point-by-point forecast data from the CONUS Model Output 
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Statistics (MOS) reporting stations to serve as the primary data sources for probabilistic weather.  

As a flight plan traverses through a probability-net, we extract probability data corresponding to 

the points where the flight plan and probability-net strand(s) intersect.  The ability to quickly 

extract this trajectory-related probability data is essential to our severe weather rerouting 

concepts and delay cost calculations.  We also consider the superimposition of a flight-trajectory-

grid network upon the probability-nets and develop a time-dependent, shortest path approach for 

generating flight plans in order to circumvent severe weather phenomena with specified 

probability levels.  By constructing alternative flight plans pertaining to specified threshold 

strand probabilities, we prescribe a methodology for computing expected weather delay values 

and, subsequently, appropriate weather delay or disruption factors for inclusion within the 

APCDM model.  Additionally, we include an economic benefit analysis using a k-means 

clustering mechanism in concert with our delay assessment methodology in order to evaluate 

delay costs and system disruptions associated with different levels of probability-net refinement-

based information.      

Next, we develop a modeling construct that concerns the mediated bartering of slot 

exchanges involving airline trade offers for arrival/departure slots at an arrival airport that is 

affected by the Ground Delay Program (GDP), while simultaneously considering issues related 

to sector workloads, airspace conflicts, as well as overall equity concerns among the airlines.  

The proposed slot-exchange mechanism provides a unique perspective for addressing slot 

ownership in the prescription of surrogates for each flight in support of tactical level flight 

planning.  The slot trading concepts introduced by Vossen and Ball (2004) focus only on the 

delay costs associated with potential slot trades.  However, it is important to also examine such 

slot trades on the entire mix of the resulting flight paths from the respective origins to 

destinations.  Therefore, we incorporate certain “at-least, at-most” type trade offers and augment 

the APCDM model to accommodate specific types of slot exchanges.  We first develop an 

external Package-Deal Generation model in order to identify a number of acceptable trades that 

conform with stated trade restrictions, and propose a Package-Deal Based Selection model for 

including these sets of trades within the current framework of the APCDM model.  Accordingly, 

the model then prescribes a set of flight plans corresponding to selected trade package-deals.  We 

further tighten the model representation using maximal clique cover-based cuts that relate to the 

joint compatibility among the individual package-deals.  We then develop a more efficient 
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approach that generates feasible package-deals as necessary within the framework of the 

APCDM model, in contrast to the first approach that utilizes a restricted, prescribed set of 

proposed acceptable trades.  In addition to the APCDM model’s current equity representation, 

we propose new concepts for equity, which focus primarily on achieving perceived “fairness” 

with respect to the selected slot exchanges.  These alternative equity formulations are embedded 

within the APCDM model by specifying suitable performance ratios and related efficiency 

functions.  The proposed alternative equity methods, as well as the original APCDM equity 

formulation, are evaluated using real data to provide insights into the nature of their 

corresponding slot-exchange solutions produced with respect to the resulting equity achieved 

while attaining a net reduction in passenger-minutes of delay for each airline.  Furthermore, we 

evaluate and compare the computational-effort performance, under both time limits and 

optimality thresholds, for each equity method in order to glean insights regarding the efficiency 

of the model under realistic implementation scenarios.                

A detailed experimentation of the proposed weather-modeling paradigm and slot-

exchange mechanisms is conducted and evaluated using test sets constructed from real flight data 

obtained from the FAA, which pertains to the Miami-Jacksonville Air Route Traffic Control 

Centers (ARTCC), as derived from the FAA’s Enhanced Traffic Management System (ETMS). 

The flight data information used relates.  Computationally, our proposed modeling constructs 

provide effective decision-making support to the FAA that can be implemented in a timely 

fashion at both the strategic and tactical levels.           

 

1.4. Organization of the Dissertation 

The remainder of this dissertation is organized as follows.  In Chapter 2, we review the 

relevant literature, beginning with weather forecasting tools and products related to flight 

operations.  We provide an overview of the regional forecasting models and highlight the 

methodologies used to provide high-resolution local forecasts.  We discuss several approaches 

that attempt to incorporate weather uncertainty in generating flight trajectories along with the 

optimization models that address hub closures and aircraft rerouting problems.  Additionally, we 

review the fundamental components of the enhancements to the Ground Delay Program followed 

by a discussion on the slot-trading concepts proposed by Vossen and Ball (2004).   Chapter 2 

concludes with a brief overview on the composition and formulation of the Airspace Planning 
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and Collaborative Decision-Making model used to provide quantifiable results in support of this 

research. 

Chapter 3 presents the severe weather-modeling paradigm.  We begin by addressing the 

suitability of current weather data sources available to the aviation community.  Next, we 

describe the probabilistic weather data available through the National Weather Service’s 

Meteorological Development Lab (MDL) and extract the relevant information from the Model 

Output Statistics (MOS) to construct the probability-nets that we superimpose on a flight 

network.  These probability-nets are then utilized to design various approaches that govern the 

generation and evaluation of flight plans.  Finally, we develop an additional cost term associated 

with weather uncertainty for inclusion in the objective function and discuss measures to evaluate 

the accuracy of the probability-nets. 

Chapter 4 provides the computational results related to the severe weather rerouting 

procedures and evaluates the accuracy of our weather-based approach using cluster analysis.  We 

further develop and demonstrate our time-dependent flight-plan-generation tool using an 

ellipsoidal region technique proposed by Sherali, Hobeika, and Kangwalklai (2003).     

The slot-exchange mechanism is developed in Chapter 5.  We begin with an illustrative 

trade offer example from which we develop the framework of a slot offer network.  An external 

slot-exchange approach is described in order to generate a set of feasible exchanges that serve as 

inputs to the APCDM model.  We then propose an internal slot-exchange formulation within the 

constructs of the APCDM model itself.  In addition to the equity terms and constraints developed 

by Sherali et al. (2006), we propose four additional equity concepts specific to the characteristics 

of trade offers. 

Computational results are reported for the recommended internal slot-exchange approach 

in Chapter 6.  We describe several ETMS scenarios that include slot trade offers from 

participating airlines.  Each scenario is evaluated using the five aforementioned equity methods.  

In addition, we conduct sensitivity analyses on the equity related cost terms.   

In Chapter 7, we discuss the effectiveness of the proposed modeling concepts within the 

context of the APCDM model and summarize their respective contributions to the FAA’s CDM 

initiative.  We conclude by recommending future research opportunities that will continue to 

improve NAS operations and strive to motivate future American graduate students to become re-

engaged with the sciences related to air and space operations. 

 



 

 Chapter 2 

Literature Review 
 

One of the major expenses in the airline industry is the cost associated with flight delays.  

Most of the delays are weather induced and the cost of these delays amounts to billions of US 

dollars per year.  In an attempt to minimize the cost associated with weather related delays, the 

Federal Aviation Administration currently adjusts flight routes in accordance with the guidelines 

specified in the National Playbook, which is a collection of Severe Weather Avoidance Plans 

(SWAPs) (FAA, 2005).  As an alternative to the FAA’s current approach, we address a complex 

idea that involves the incorporation of severe weather on flight plan generation in this 

dissertation.  Our approach focuses on two separate modeling concepts within the context of the 

Airspace Planning and Collaborative Decision-Making Model (APCDM).  The first is a strategic 

level concept designed to select flight plans relative to local severe weather probabilities.  The 

second is a tactical level concept designed to generate slot exchanges at an airport that is affected 

by a Ground-Delay Program (GDP), following the submission of slot trade offers from the 

participating airlines.  Both of these modeling constructs require evaluating several aircraft flight 

plans, each of which are proposed along with several alternatives, under existing and forecasted 

severe weather conditions.         

Accordingly, in Section 2.1, we provide a review of weather forecasting tools and 

methodologies used to generate severe weather forecast products for the aviation community.  

This review includes a discussion on the levels of resolution required for forecast accuracy and 

the attempts made to improve the accuracy of local forecasts.  We extract key probability data 

from existing weather forecasting products to develop our proposed application of weather 

uncertainty on flight path generation in Chapter 3.  Section 2.2 reviews previous methodologies 

used to incorporate weather related uncertainties and affects in Air Traffic Management (ATM).  

In Section 2.3, the enhancements to the Ground-Delay Program are described and in Section 2.4, 

we review the concepts from Vossen and Ball regarding slot-trading opportunities utilizing a 

mediated bartering process.  We conclude in Section 2.5 by providing a review of the original 

Airspace Planning and Collaborative Decision-Making Model developed by Sherali, Staats, and 

Trani (2003 and 2006) that serves as the mechanism used to generate slot exchanges and to 

quantify the impact of weather on flight paths.     

8 
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2.1. Weather Forecasting Tools and Methodologies 

Given the costly downstream effects that severe weather has on Air Traffic Management, 

a great deal of time and effort has been expended on the development and continuous 

improvement of various atmospheric circulation and numerical weather forecasting models.  

With a focus on tactical level weather decisions, Evans (2001) proposed a system in which routes 

are frequently revised in light of automatically generated weather predictions.  He pointed out, in 

particular, that new routes must be tied to air traffic conflict decision support systems, a feature 

we adopt in our approach presented herein.  Aviation weather forecasts used in conjunction with 

aviation weather advisories play a critical role in the optimization of aircraft trajectories and 

airspace operations.  The ability to maximize the utilization of existing airspace is strongly 

dependent on the accuracy of hourly forecasts.  An accurate forecast that provides credible 

details on the movement of convective weather can theoretically permit the prescription of an 

optimized trajectory that circumvents the severe weather system as shown in Figure 2-1, while 

ensuring that such a flight plan can be closely realized in practice.  On the other hand, poor 

forecasting models could result in the elimination of a beneficial flight path from consideration 

based on an erroneous prediction that its trajectory would intersect the convective weather 

system.     

 

Figure 2- 1:  Flight Trajectory Transiting Through a Severe Weather System. 

 

2.1.1. Evolution of Weather Forecasting 

The European Centre for Medium-Range Weather Forecasts (ECMWF) (ECMWF, 2002) 

traces the beginning of Numerical Weather Prediction (NWP) to 1904, when Norwegian 

hydrodynamist, V. Bjerknes, suggested the use of hydrodynamic and thermodynamic equations 
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to quantitatively predict atmospheric states; just one year after the Wright brothers sustained the 

first flight at Kitty Hawk.  However, he lacked the means to successfully develop and implement 

such equations and thus, settled on a simplified qualitative approach known as the “Bergen 

School”.  Advances in numerical prediction methods remained relatively dormant until the 

introduction of the first electronic computer and the development of hemispheric network of 

upper air stations after World War II.  The availability of atmospheric conditions at various 

altitudes above specified surface locations is critical to weather forecasting (Britannica, 2004).  

Additionally, the introduction of the radar (and satellite imagery in later years) for tracking storm 

movements allowed meteorologists to better understand the characteristics and behavior of 

certain weather phenomena.  Jule Charney was the first to successfully derive a mathematical 

weather model in 1948.  However, the limitations on computing power prevented any large-scale 

applications of his models.  In 1950, a simplified version of Charney’s models was used to 

successfully create a 24-hour forecast of atmospheric flow over North America.   

 Improvements in NWP models continued as countries strove to incorporate the effects 

from the vertical motion of weather and the influence from frontal boundaries (Baroclinic).  In 

1962, the United States introduced the first operational NWP model to account for vertical 

motion, followed by Great Britain in 1965.  These improvements were, however, perceived as 

unrealistic and the search for more realistic weather models began with the development of the 

Primitive Equations (PEs) that govern fluid motion in thermodynamics.  The Primitive Equations 

allowed for the interaction between winds and geopotential (height) fields that were constrained 

under the baroclinic models.  The first global PE model, with a 300-kilometer grid and a six-

layer vertical resolution, began operation in 1966 (ECMWF, 2002).  Improvements in the field of 

PE models continued in the 1970s as countries developed models to handle a wide range of 

forecasting requirements from the global level down to high-resolution models for local forecasts. 

The next significant advancement in NWP models came with the introduction and 

application of mesoscale models in the 1980s.  Previous forecasting models lacked the ability to 

forecast weather phenomena at the level between a cyclone storm and individual clouds.  The 

development of the mesoscale model addressed this shortfall and is capable of predicting critical 

atmospheric conditions such as thunderstorms, hurricane bands, and the location of jet streams 

(Britannica, 2004).  Eta and the Rapid Update Cycle (RUC) models are two mesoscale models in 

use today.  The most recent development in numerical weather forecasting is the Ensemble 
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Prediction System (EPS), and is currently used by many forecasting agencies to include the 

National Centers for Environmental Prediction (NCEP) in the United States and the ECMWF in 

Europe.  A description of the EPS is presented later in this chapter following an overview of 

regional weather advisories and forecasting approaches that are in current use today.   

 

2.1.2. Weather Advisories 

In addition to numerical weather forecasts, numerous reports and advisories are generated 

in order to provide pilots and air traffic managers with a clear weather picture prior to aircraft 

departure as well as updates while the aircraft is en route.  These advisories and reports are 

provided by both voice, through aircraft telecommunication systems, and via internet on the 

Aviation Digital Data Service (ADDS) web site.  The ADDS is funded and directed by the FAA 

under the Aviation Weather Research Program (AWRP).  The five weather advisories used by 

pilots as supplements to the weather forecasts are the: Airman’s Meteorological Information 

(AIRMETs); Significant Meteorological Information (SIGMETs); Convective SIGMETs; Center 

Weather Advisories (CWAs); and Severe Weather Forecast Alerts, more commonly referred to 

as Alert Weather Watches (AWW).   

These advisories are used to provide information on hazardous weather situations and are 

typically widespread, requiring coverage of at least 3,000 square miles before inclusion as an 

advisory.  Therefore, even though an advisory may not exist for a particular airspace sector, one 

cannot exclude the potential for localized severe weather within the airspace (FAA, 2004).  A 

reporting format, PIREP, also exists where the pilot can report observed hazardous weather 

conditions.  Figure 2-2 is an example of Convective SIGMETs from the ADDS.  The Convective 

SIGMETs are shown in red and the yellow region represents potential thunderstorm activity.  

The information is provided in both a graphical format as well as raw report data.  The 

Convective SIGMETs and Alert Weather Watches are used to inform pilots of existing 

thunderstorms or thunderstorm related phenomena.  Dependent upon the characteristic of a 

particular flight, the information from the SIGMETs can be used as initial conditions when 

determining the probabilistic path of a storm in relation to the planned flight route.  In Chapter 3, 

we address the apparent shortfalls associated with the Convective SIGMETS in relation to flight 

plan generation and, in turn, introduce forecast data sources that provide a greater degree of 

resolution.    
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Figure 2-2:  Convective SIGMETs from ADDS (AWC, 2005). 

2.1.3. Weather Forecasts 

 Currently, two categories of weather forecasts are used by the Aviation Weather Center 

(AWC).  They are the Area Forecast and the Aerodrome (or Terminal) Forecast (TAF).  The 

Area Forecast is a twelve-hour forecast plus a six-hour estimate of Visual Flight Rules (VFR) for 

clouds and weather over a large area that may cover one or more airspace sectors.  Table 2-1 lists 

the various Area Forecast categorical terms in reference to ceiling and visibility (FAA, 2004).  

The Area Forecasts are insufficient by themselves and must be supplemented with the 

information found in the AIRMETs.  More specifically, the Area Forecasts must be 

supplemented by the AIRMETs SIERRA, TANGO, and ZULU, which contain advisories for 

IFR and mountain obscuration, turbulence, and icing and freezing, respectively (FAA, 2004 and 

AWC, 2003).  Area Forecasts are issued three times a day from the National Weather Center in 

Kansas City, Missouri, for the six regions that cover the 48 states located on the mainland of the 

United States.  Forecast amendments and/or corrections are submitted when necessary.  Figure 2-

3 illustrates a segment of an Area Forecast in both raw data form and its translated version for an 

area within Virginia.        

Categorical Outlook Ceiling and/or Visibility
Low Instrument Flight Rules (LIFR) < 500 feet < 1 statute mile
Instrument Flight Rules (IFR) < 1000 feet between 1 and 3 statute miles
Marginal Visual Flight Rules (MVFR) < 3000 feet between 3 and 5 statute miles
Visual Flight Rules (VFR) >3000 feet > 5 statute miles  

Table 2-1:  Categorical Outlook Terms from Area Forecasts. 
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Example of an Area Forecast: 
 

VA MD DC DE 
SWRN VA...BKN040-050. TOPS 120-140. WDLY SCT TSRA DVLPG. 

     ...CB TOPS FL370.  TSRA ENDG OR BECMG ISOL 00Z-03Z...BECMG 
    SCT050 SCT-BKN120-140. TOPS 160. OTLK...MVFR BR. 
 
Translation:  Area Forecast for Virginia, Maryland, District of Columbia, and Delaware 
Southwest Region of Virginia…Ceiling 4000 to 5000 feet broken AGL, tops 12000 to 14000 feet 
AGL.  Widely scattered Thunderstorms and Rain Developing.   
… Cumulonimbus Cloud tops Flight Level of 37000 feet.  Thunderstorms ending or becoming 
isolated between Midnight and 0300 Coordinated Universal Time (UTC)… Becoming scattered 
at 5000 feet AGL and scattered and broken at 12000 to 14000 feet AGL, tops 16000 feet AGL.  
Outlook… Marginal VFR due to Mist.    

Figure 2-3:  Example of an Area Forecast with Translation. 

 Aerodrome or Terminal Area Forecasts (TAF) are forecasts for specific airports and 

cover a region spanning five statute miles from the center of the runway complex.  The TAF is 

valid for a 24-hour period and is amended or corrected when required.  The information 

contained with the TAF relates specifically to weather, visibility, surface winds, and cloud 

coverage for the specified terminal (FAA, 2004).  For terminals that do not have existing TAFs, 

Area Forecasts and AIRMETs are used to interpolate the conditions at the terminal.  Figure 2-4 

provides an example of a TAF for Boston in both forecast format and the translated version.  The 

accuracy of the TAFs is extremely important given that poor conditions at a terminal dictate 

FAA’s implementation of a GDP rather than flight re-routes.  Improving the accuracy of TAFs 

can lead to substantial cost savings according to a study conducted by the National Weather 

Service in 2000 (Riordan and Hansen, 2002).  TAFs are revisited in this chapter during the 

discussion on local forecasting models.       
Example of an Aerodrome Forecast:  

TAF 
KBOS 0411452 1212 34015G25KT 5SM SHSN- SCTO10 
BKN018 TEMPO 1215 1/2SM SHSN VV008 BECMG 15-17 
33012G22KT P6SM BKNO5O  

Translation: Boston Aerodrome Forecast for the 4th day of the month, valid time 122-122. 
Surface wind from 340" at 15 knots with peak gusts to 25 knots; visibility 5 statute miles; light 
snow showers; scattered clouds at 1,000 feet AGL; ceiling 1,800 feet broken AGL; occasionally, 
visibility one-half mile in moderate snow showers; indefinite ceiling 800 feet (an indefinite 
ceiling represents a surface- based phenomena obscuring the whole sky). Becoming between 15Z 
and 172 surface wind from 330" at 12 knots with gusts to 22 knots; visibility greater than 6 
miles; ceiling 5,000 feet broken AGL. 

 

Figure 2-4:  Example of a Terminal Area Forecast with Translation. 
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2.1.4. Weather Forecasting Errors 

   When it comes to forecasting models, unless the system is in a constant state, the model 

will always have an associated degree of uncertainty within the results.  This uncertainty 

becomes even more prevalent when creating numerical models for forecasting weather 

phenomena and can potentially lead to significant forecasting errors.  Peter Manousos, at the 

National Oceanic and Atmospheric Administration (NOAA), provides four primary reasons why 

deterministic weather forecasting models are plagued with errors (NCEP, 2004).  Manousos 

refers to weather forecasting models that take initial conditions, run a simulation, and provide a 

single output as deterministic.  The first reason identified relates to the number of processes 

captured within the model’s equations.  A majority of the models focus on wind, temperature, 

and moisture as the primary processes.  Other atmospheric conditions exist that contribute to 

weather phenomena as it transitions from one state to the next.  However, Manousos argues that 

inclusion of these additional conditions would only complicate the already highly nonlinear 

equations and drive the required computational effort beyond that suitable for operational use.  

Therefore, most models address these additional conditions through parametric means, which 

introduces errors into the model results.   

 The second reason is based on the model’s inability to resolve atmospheric processes 

within a given threshold.  Take for example the 10-kilometer Eta forecasting model.  In this 

model, the region of interest is divided into grid squares 10 kilometers in width.  While this is 

considered as high resolution in the forecasting world, any influential conditions that exist within 

a region smaller than 10 kilometers wide are omitted from the model and propagate through the 

model as a forecasting error.  The third and fourth reasons respectively focus on the availability 

and the accuracy of the initial conditions.  Without a meteorological observation available at 

every point within the region of interest, initial conditions for some points must be interpolated.  

Additionally, the initial conditions from one or more locations that are obtained using an 

observation device are occasionally rejected.  As far as the accuracy of the initial conditions is 

concerned, Manousos argues that the current technology does not permit measurements at the 

level of precision required to make the forecast perfect.  While there exist other reasons for 

supporting deterministic weather forecasting models, the aforementioned reasons motivate the 

choice of the current models selected by the National Centers for Environmental Prediction 
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(NCEP), which provides numerical weather information for the National Weather Service and 

the Aviation Weather Center. 

 

2.1.5. Regional Forecasting Models and Systems 

 The National Centers for Environmental Prediction uses mesoscale models for providing 

regional forecasts.  The five regional atmospheric models used by NCEP (EMC, 2004) are the 

Eta coordinate models, Global Forecast System (GFS), Watch Wave III, Rapid Update Cycle 

(RUC) model, and the Nested Grid Model (NGM).  One significant point of differentiation 

between each of these models is their respective levels of resolution.  Variations of resolution 

also occur within each model separately.  For example, the Eta model, named after the ETA 

coordinate system, has versions with horizontal resolutions of 29, 32, and 48 kilometers.  The 

level of resolution refers to the subdivision of the region into grid squares of a specified length 

and width (in kilometers).  The smaller the grid square, the higher the resolution of the 

forecasting model.  Figure 2-5, modified from UCAR (1998), represents the difference in 

resolution between two Eta models.  The scale to the right of each terrain box represents 

elevation classifications.  An immediately apparent concern associated with increasing the level 

of resolution (number of grid squares used to define the terrain) is the increased computational 

complexity of the mathematical model.  In addition to variations in horizontal resolution, these 

models also differ in vertical resolution and are differentiated by the number of layers.  Model 

developers use the horizontal and vertical resolutions together to classify a specific model.  For 

example, the Meso-Eta model is a 50-layer model with a 29-kilometer resolution.  

The NWP models are used to provide both short-range and medium-range forecasts.  The 

short-range forecasts cover a period up to 48 hours (72 hours in some models), while the 

medium-range forecasts extend from 48 hours out to 240 hours using the Medium-Range 

Forecasting (MRF) model.  Given that our concern is air traffic management, the medium-range 

forecasts beyond 72 hours have no added value and will not be discussed further.  The remainder 

of the review on regional forecasting methods will focus on how the NCEP and ECMWF apply 

their prediction models.  
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Figure 2-5:  Variations in Terrain Resolution. 

As stated earlier, there is a degree of uncertainty associated with each forecast, given the 

chaotic nature of weather.  Therefore, using the mesoscale NWP models, how is this uncertainty 

accounted for?  This is accomplished by the introduction and implementation of the Ensemble 

Prediction System (EPS).  A single run of an Eta model has no uncertainty associated with the 

output.  Using initial atmospheric conditions, the model accounts for the effects of terrain and 

variations between the vertical levels and produces a forecast for a given period.  The Short- 

Range Ensemble Forecasting (SREF) system currently in use by NCEP is one example of a 

successful implementation of the EPS.  The ECMWF uses the ensemble system for medium- 

range forecasting.     

SREF was designed to provide probabilistic multi-regional forecasts out to 72 hours 

(McQueen et al, 2004).  Manousos (NCEP, 2004) provides an online training manual for 

Ensemble Prediction Systems (EPS).  An ensemble is a collection of two or more forecasts for a 

specific region and period of time.  The premise behind EPS is to generate a probabilistic 

forecast from a collection of member forecasts, where a member is defined as a single forecast.  

The current SREF used by NCEP contains 15 members.  The ECMWF EPS contains 50 

members as of February 2002.  A member can be either a forecast from the same mesoscale 

model, using a perturbation concept, or a forecast from a different mesoscale model.  The role 

perturbations play in ensemble forecasting is that of attempting to capture atmospheric 

uncertainties within the model input for each member.  The initial conditions are perturbed from 
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a control member to generate another member and are controlled to ensure that the initial 

conditions for a member remain within reason.  An example of a perturbation is to increase the 

surface temperature at a given location by 0.1o C (NCEP, 2004).  Once the members are 

generated, variations within the forecast from the different members allow for the generation of a 

probability distribution function. 

The three primary outputs from the SREF are: the Mean and Spread plots, the Spaghetti 

plots, and the Precipitation Probability plots.  As of June 2004, NCEP provides SREF plots 

online at: http://wwwt.emc.ncep.noaa.gov/mmb/SREF/SREF.html.  Figure 2-6 depicts an 

example of a Precipitation Probability plot from a 15 member SREF for 12 hours, starting from 

the commencement of the plot generation.  The online site allows looping of SREF plots from 12 

to 63 hours.  Similar online sources exist for the retrieval of RUC, RSM, and NGM forecasts.  In 

addition to plots, the raw data for the SREF is available.  While satisfied with their current 

prediction capabilities, NCEP strives to improve SREF results in research projects by varying the 

number and classification of members.         

 

Figure 2-6:  SREF Precipitation Probability Plot (SREF, 2004). 

Our review so far has focused on the regional forecasting models.  Given that the desire 

for accurate weather forecasting has grown significantly over the past two decades,  

organizations such as the NCEP will continue to strive for improvements to existing forecasting 
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models and techniques.  The extent of forecast information, prediction sources, and products 

available today is so abundant that one can become overwhelmed.  Even so, unfortunately, the 

available data appears to be at a resolution that remains below what is desired for local forecasts.  

Is there a local model out there that can forecast the path of a storm as it moves from City A to 

City B located 20 kilometers apart?  And if so, is the model accurate enough to predict the 

storm’s departure prior to the aircraft’s arrival in the specific area?  Given the desired level of 

accuracy as prompted by these questions, we shift our focus to the branch of local forecasting 

models.  

 

2.1.6. Local Forecasting Models 

The NWP models focus their primary attention on global and regional forecasts that 

typically lack the resolution to accurately provide local forecasts.  Figure 2-7 demonstrates one 

example of incomplete resolution for the Denver area.  The NWP models divide the region of 

interest into grid squares of predetermined length and width.  A condition may exist, as shown in 

Figure 2-7, in which dramatic changes in terrain can occur within a given grid square.  The NWP 

models uniformly classify the terrain within the box and do not account for extreme changes 

within the box that can significantly influence local weather.  Therefore, additional forecasting 

methods are necessary to address conditions within the grid square.     

 

Figure 2-7:  Grid Square Covering a Portion of Denver. 

During the literature search on local weather forecasting models, numerous modeling 

techniques surfaced that either had potential but were later discarded, or are still in existence 

today.  This overview will focus on: the Bayesian or Bayesian Network models, Neural Network 
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models, and Fuzzy Logic in Case-Based Reasoning (CBR) models.  While other modeling 

techniques not listed here may exist, the intent of this overview is to address alternative methods 

to local forecasting that may be relevant to our future work on the impact of weather 

uncertainties with respect to Air Traffic Management.     

 Abramson et al. (1996) developed a Bayesian system, known as Hailfinder, to forecast 

severe weather in Northern Colorado.  The development of the model was in response to a series 

of competitions established by the NOAA in 1989 and 1991, known as Shootouts.  Hailfinder is 

considered to be the first such system that uses Bayesian techniques in the area of meteorology in 

which meteorological data is combined with a Bayesian model structure along with subjective 

inputs from experts.  Pole et al. (1994) suggested that Bayesian forecasting methods work 

extremely well in dealing with “non-routine” events.  Given that weather phenomena is anything 

but routine, it is the additional subjective inputs from the modeler that may reduce the model 

error.  For example, experts on Northern Colorado weather trends devised ten scenarios within 

Hailfinder that accounted for over eighty percent of the potential weather conditions during the 

months of interest.  An eleventh scenario accounted for all others.  The premise behind the 

Hailfinder model is the development of the initial state probabilities (priors) with respect to each 

scenario.  Then, using one-step-ahead forecasting techniques, the most recent observation is used 

to update the prior probabilities for the next step.  These are known as the posterior probabilities, 

which are proportional to the priors and are calculated using a likelihood function (Pole et al. 

1994).  A Belief-Network (BN) was the selected framework for Hailfinder in which the states of 

each of the variables were represented by the nodes in a directed graph.  An arc between a pair of 

nodes was constructed in this network if there was a direct influence from one corresponding 

variable to the other.     

The complete Hailfinder network consisted of 56 nodes and 68 arcs.  The development of 

Hailfinder demonstrated a necessity for the infusion of models and trained meteorologists in the 

construction of such models.  Unfortunately, the last Shootout occurred prior to the completion 

of Abramson et al.’s Bayesian Forecasting Model.  Therefore, Hailfinder did not have an 

opportunity to be compared against other existing forecasting methods at that time, using a 

baseline meteorological data set from the Shootout sponsors.  Even when Abramson et al. finally 

published their article on their Bayesian model, the amount of meteorological data for Northern 

Colorado required to test the effectiveness of Hailfinder remained insufficient.  Therefore, the 
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article only addresses the structure of Hailfinder.  The ensuing literature is devoid of any further 

testing of the Hailfinder model.  This, however, did not mark the end of Bayesian attempts at 

weather forecasting.   

At the European Conference on Artificial Intelligence (ECAI-2002) in 2002, Cofino et al. 

presented a paper on weather predictions using Bayesian Networks.  Their intent was to provide 

a forecasting model for local areas that are not covered by the numerical Atmospheric 

Circulation Models (ACMs) as described earlier in the section on regional models.   Their 

current ACMs provide a resolution of between 50 and 100 kilometers, which becomes a 

significant limitation when attempting to provide a local forecast inside of 50 kilometers. The 

particular point of interest in this work was to provide rainfall forecasts for the northern section 

of the Iberian Peninsula.  Cofino et al. developed a Bayesian Network based on dependencies 

between various weather reporting stations.  The dependency between weather stations was 

captured through a directed acyclic graph where a directed arc between stations A and B is used 

to represent a causal effect on Station A from Station B.   

The difficulty with the Bayesian Network structure is the calculation of the conditional 

probability of each node, given that of its parent nodes.  This occurs due to either the lack of 

information of the local topography or lack of supporting historical data.  Cofino et al. referenced 

two techniques for establishing the conditional probabilities through either quality measures or 

search algorithms.  Once the conditional probabilities of the Bayesian Network are developed, 

the remaining steps of this forecasting method follow standard Bayesian techniques.  A Brier 

Skill Score (BSS) method was used to validate their numerical forecasting technique using the 

winter months in 1999.  The actual model described above was developed using only historical 

data.  Cofino et al. also introduced a technique to combine the historical data with forecasts 

provided by the ACMs.  A major benefit of this hybrid technique is the linkage between the 

operational model and the daily weather forecast products (Cofino et al., 2002).  This forecasting 

technique remains relevant today as the authors continue to make model improvements. 

The method of Neural Networks has also surfaced as a useful modeling technique for 

local weather forecasting. “The utility of Neural Networks is most present in disciplines where 

intrinsic nonlinearities in the dynamics preclude the development of exactly-solvable models 

(Marzban and Stumpf, 1996),” as is the case with weather.  Neural Networks are an artificial 

intelligence tool used for pattern recognition (McCann, 1992). The primary use of Neural 
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Networks for weather forecasting within the literature appears to focus on rainfall level 

predictions (Hall et al., 1997) with relatively fewer models focusing on tornados (Marzban and 

Stumpf, 1996) and severe weather.  The Severe Weather Forecast Center (SWFC) uses Neural 

Network models to forecast the frequency and intensity of storms and provides current severe 

weather watches (SWFC, 2000).  In 1992, McCann from the National Severe Storms Forecast 

Center developed a Neural Network tool to forecast thunderstorm activity with a prediction 

period between three and seven hours.   

The premise behind the use of Neural Networks is one in which the forecasting model 

learns and establishes weather patterns through the use of historical data and training sets.  Once 

these patterns are defined, the model takes initial weather conditions as the input layer, and 

transforms the initial conditions into model outputs by means of a “hidden layer” (Figure 2-8, 

derived from Hsieh and Tang (1998)).  While Neural Networks have been successfully applied to 

a wide variety of other forecasting problems (stock market and other financial entities), initial 

attempts to apply this technique to large-scale weather prediction revealed little promise of 

success.  Hsieh and Tang (1998) addressed the difficulties inherent to Neural Networks with 

respect to weather forecasting and provide solutions based on recent computational advances.  Of 

primary concern was the difficulty associated with the inherent nonlinearity of the forecasting 

problem.  Advances in ensemble forecasting approaches have allowed the modelers to address 

this nonlinearity.  Neural Networks continue to play an important role in local weather 

forecasting today.                                                        

Input layer Output layer

Hidden layer

Input layer Output layer

Hidden layer  

Figure 2-8:  Diagram of a Neural Network. 

 The application of Fuzzy Logic within a Case-Based Reasoning (CBR) methodology to 

weather forecasting is another artificial intelligence approach to addressing weather uncertainties.  
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Riordan and Hansen (2002) argue that the small-scale utilization of Numerical Weather 

Prediction models for local weather may be difficult to apply in real-time given the characteristic 

lack of complete data sets for a specified region.  They have successfully developed two Fuzzy 

Logic weather prediction models, with one focusing on ceiling and visibility and the other on 

marine forecasts.   

 The premise behind Fuzzy Logic is that the inputs into the system are oftentimes defined 

in imprecise terms.  It is the grouping of these inputs into common sets that provide structure and 

manageability of available data (Sowell, 1998).  Manner and Joyce (1997) provided three 

reasons why Fuzzy Logic is suitable for weather forecasting.  The first and primary reason is that 

the terminology and characterization of weather forecasting (partly cloudy, occasional rain, etc.) 

fits well into the definition of fuzzy sets.  Second, existing work such as that of Riordan and 

Hansen (2002) supports the use of fuzzy logic in weather prediction models.  Third, the domain 

of weather meets the general conditions for fuzzy solutions.     

Riordan and Hansen’s project, WIND (Weather Is Not Discrete), focused on predicting 

horizontal visibility and cloud ceilings over airport terminals as a replacement for the current 

TAFs.  They targeted the TAFs for improvement given that in 2001, the National Weather 

Service estimated a savings between $500 million and $875 million from reduced weather 

related delays associated with accurate visibility and ceiling forecasts with less than 30 minutes 

lead-time.  As presented earlier, TAFs cover a 24-hour period and are updated as necessary.  

Given that routine aviation weather observations (METARs) are generated every hour for all 

major airports, sufficient historical data existed for the development of the WIND project.  

Riordan and Hansen used 315,576 hourly observations from 1961 to 1996 for the Halifax 

International Airport.  Results from project WIND indicated a significant improvement in 

terminal forecasts over existing forecasting methods used to produce the TAFs.  “The main 

contribution of Fuzzy Logic to CBR is that it enables us to use common words to directly acquire 

domain knowledge” (Riordan and Hansen, 2002, p. 139).  The Harris Corporation has also 

achieved success using Fuzzy Logic weather systems to provide information on short-term 

ceilings and visibility to the FAA using a verification period of two years (Hicks et al., 2004).  

 Success of these three methodologies: Bayesian, Neural Networks, and Fuzzy Logic, for 

local forecasting rests on the existence of complete and accurate historical data in order for the 

individual learning mechanisms to be effective.  Incomplete or incorrect data sets can lead to 
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faulty pattern recognition, resulting in poor forecasts from the overall model.  In addition to 

complete historical data sets, the inclusion of information from local weather experts can only 

serve to enhance the accuracy of the local weather forecast.  As the desired level of resolution 

required for local forecasts increases, so will the requirement for increased computational power.  

Timeliness of the model output will continue to dictate the model’s feasibility for future 

application.                     

     It is interesting to note that just one year after the Wright Brothers succeeded at Kitty 

Hawk, the ideas for numerical weather forecasting were conceived.  Today, these two modern 

concepts remain inextricably linked.  Norwegian hydrodynamist, V. Bjerknes, suggested the idea 

of using mathematical models to predict the weather one-hundred years ago.  Even though he 

was unable to develop functional models, his revolutionary ideas serve as the foundation of 

today’s successful weather forecasting models.  Advances in mesoscale models, along with the 

application of an Ensemble Prediction System, allow NCEP and ECMWF to provide accurate 

regional and global forecasts for both short-range and medium-range periods.  Where the 

mesoscale model fails is forecasting at the local level due to limitations inherent within the 

model’s resolution based on its grid-square terrain classification.  Given this shortfall, attempts 

have been made to provide accurate local forecasts using Bayesian, Neural Network, and Fuzzy 

Logic techniques. 

  

2.2. Incorporating Weather Effects in Air Traffic Management  

2.2.1. Europe’s Air Traffic Flow Management Problem (TFMP)          

Alonso et al. (2000) presented a stochastic approach for Europe’s Air Traffic Flow 

Management Problem (TFMP) under uncertainty due to weather conditions.  By 2000, it was 

predicted that 16 of Europe’s airports and 100 airspace sectors would exceed capacity.  Given the 

nature of the problem, the capacities on the ground and in the air are not constant and must be 

addressed probabilistically.  Therefore, the three aspects of uncertainty that the authors addressed 

were related to the capacities of the arrival and departure airports and the relevant segment of the 

airspace.  The majority of the air traffic management models up to this point focused on the 

short-term solution that included ground-holding policies.  This modeling objective was clearly 

driven by the fact that ground-holding costs were significantly lesser than air-holding costs.  Two 
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models found in the literature that address ground-holding costs are the Single-Airport Ground 

Holding Problem (SAGHP) and the Multi-Airport Ground-Holding problem (MAGHP).        

The Air Traffic Flow Management Problem (TFMP), introduced by Bertsimas and Stock 

(1994), not only considers the MAGHP but also addresses the airspace capacity issue.  The work 

of Bertsimas and Stock (1994), Matos et al. (1996), and Alonso (1997), along with others in the 

literature, adopt a deterministic modeling approach.  This simplifying assumption reduces the 

computational effort required to find a solution, but fails to address the variability associated 

with air traffic.   

Alonso et al. (2000) proposed a stochastic approach to the Air Traffic Management 

problem using two different policies.  The first policy was one of simple recourse to “anticipate 

any decisions at the beginning of the time horizon.”  The second policy was one of full recourse 

to “anticipate decisions for only the first stage by taking into account all scenarios but without 

subordinating to any of them.”  The authors modified the 0-1 deterministic model of Bertsimas 

and Stock to account for weather related uncertainties.  The objective function of the Bertsimas 

and Stock 0-1 deterministic model is to minimize the total cost of ground and air delays 

constrained by departure and arrival airport capacities and airspace capacity for each air sector.  

The problem is also bounded above by a maximum allowable ground and air delay for each 

flight.  The 0-1 deterministic nature of the model stems from the usage of binary variables 

representing whether or not an aircraft arrives at a required sector by a specified time. 

Rather than pursue a stochastic approach utilizing probability distributions, Alonso et al. 

selected the scenario analysis technique, which they felt was more appropriate for addressing 

uncertainty in situations involving limited historical data, as is the case with most weather related 

behavior.  Each scenario, which they represented graphically using tree diagrams, represents one 

realization of uncertainty.  The first scenario method proposed was to average the capacities over 

all the scenarios and to use these averages as additional constraints in the Bertsimas and Stock 

TFMP deterministic model.  Their computations revealed that the optimal solution thus found 

was infeasible to almost every scenario.  As a result, they concluded that the average scenario 

method is an inappropriate approach to modeling the minimization of flight delays.  The authors 

also considered determining an optimal solution for each scenario.  Fortunately, they soon 

realized that this approach could generate a “good” flight selection for one scenario that could 

have “disastrous consequences” if an alternate scenario is realized.  Alonso et al. settled, 
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therefore, on the scenario analysis scheme of Dembo (1991), which selects flights that best track 

the different scenarios by minimizing the weighted difference between a recommended solution 

and the optimal solution obtained for each scenario. 

The first stochastic model Alonso et al. (2000) presented determines a best track using a 

simple recourse policy.  This policy, however, introduces non-linearity into the objective 

function that motivates the authors to recommend two alternative model formulations, each one 

removing the non-linearity of the base model.  The linearity requirement becomes very important, 

in relation to the model run-time, as the dimensions of the problem size increase with the 

introduction of stochastic input.  The second stochastic model presented determines a best track 

using a full recourse policy, which focuses only on future uncertainty when looking for a better 

solution at a particular stage.  While using the full recourse policy, the authors implemented the 

non-anticipatory principle, Rockafellar and Wets (1991), which implies that if two stages are 

identical up to a certain time t, then the decisions variables up to that time t are the same for both 

scenarios.  This principle removes the solution dependency on information that has yet to be 

obtained.   

In both the simple and full recourse policy models for a realistic problem size, the 

number of required computations could potentially result in an optimal solution too late for 

implementation.  Therefore, the authors proposed a Fix-and-Relax heuristic to reduce the run 

time, thus improving the usefulness of the model solution.  This heuristic considers the 

integrality of the 0-1 variables successively rather than all at once.  A computational comparison 

between this heuristic and the relaxation of the 0-1 variables resulted in very little to no 

integrality gap for a majority of the scenarios.  The remainder of the paper presented by Alonso 

et al. (2000) provides computational comparisons between the deterministic model and the two 

recourse policy models discussed above using seven test cases.  The largest test case consisted of 

160 flights using four airports and five airspace sectors.             

While Alonso et al. (2000) addressed the stochastic nature of the Air Traffic Flow 

Management problem; their approach using scenarios for each realization of weather uncertainty 

requires detailed scenario structures for each area of interest.  Their implementation of a heuristic 

that is guaranteed to find a near-optimal solution in reasonable time is necessary for air traffic 

management. 
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2.2.2. Trajectory-based Air Traffic Management under Weather Uncertainty          

Given the potential disruption of a planned flight trajectory for an aircraft due to severe 

weather conditions, the current strategic air traffic management strategy adopted by the FAA is 

predicated on weather avoidance through the implementation of either Ground Delay Programs 

(GDPs) or re-routes under the Severe Weather Avoidance Plan (SWAP) as part of the National 

Playbook (FAA, 2005).  Nilim et al. (2001) pointed out that this current approach for handling 

inclement weather in the Airspace-Based Air Traffic Management System is too conservative.  

As an alternative, they developed a Trajectory-Based Air Traffic Management (TB-ATM) 

system, in which “only one controller is responsible for each aircraft from gate-to-gate”.  

Accordingly, they addressed the problem of routing a single aircraft using Markov chains and a 

dynamic programming algorithm.  The single aircraft problem is the first of three major phases 

introduced by the authors to support the transition to a Trajectory-Based ATM.  The authors also 

emphasized the requirement for an automated system that “explicitly deals with the dynamics 

and the stochasticity of the storms and provides solutions that reduce the expected delay in the 

air traffic control system” (Nilim et al., 2001).   

The current Air Traffic Management system is based on the division of airspace into a 

number of sectors.  The size of a sector is dependent upon the expected number of aircraft within 

the sector.  The capacity of a sector is around 40 aircraft at any given time with each sector 

managed by two controllers: Planning Controller and Executing Controller, who are responsible 

for each aircraft as it moves through the sector.  The Planning Controller is responsible for 

minimizing the number of conflicts at the strategic level, while the Executive Controller ensures 

that no conflicts exist at the tactical level.  As the number of aircraft increase in a small region, 

the size of the sector becomes relatively smaller.   

While constructing an optimal two-dimensional flight plan for a single aircraft, there 

exist obstacles that must be avoided as the aircraft moves from point A to point B.  These 

obstacles are either deterministic or stochastic in nature.  The deterministic obstacles are 

invariant with known dimension and duration such as military operations areas or other Special 

Use Airspaces (SUAs).  Storms and related weather conditions fall into the stochastic obstacle 

classification in which variations exist in time, location, and size.  Weather teams are available 

that provide associated storm locations and time probabilities that are updated approximately 

every 15 minutes.  The current method used to account for these stochastic obstacles is to 
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consider them unstable and treat them as deterministic constraints within the optimization 

problem.  Thus, this approach to flight plan generation is conservative and under-utilizes the 

existing airspace since the storm departs the area after a predictable period of time.   

Using a simple example, the authors discuss a potential flight plan for one segment in 

which the aircraft proceeds on a path until it is at some predetermined distance from the storm.  

At this point, a decision is made, based upon the storm characteristics, as to whether the aircraft 

can proceed directly to its destination or if re-routing is required to move around the storm.  A 

probability p is associated with the storm characteristics and the authors minimize the flight 

length of that particular segment.  Unfortunately, this simplistic viewpoint must be expanded to 

account for multiple flight segments and the probabilities associated with the storm durations and 

their changing intensities.     

Nilim et al. (2001) presented an extension to account for weather probabilities.  They 

discretized the time into 15-minute intervals within their Markov chain, assuming known 

probabilities associated with the existence of a storm or no storm in the region within each 

subsequent 15-minute interval.  A transition matrix for the Markov chain was then developed 

using a transition model for each storm 1,…,m moving from its current state to the next state.  

The total number of stages is calculated based upon the worst-case flight time T and the total 

number of states is 2m.  For a demonstration of their methodology, Nilim et al. develop the 

transition matrix for two storms.  A significant assumption made is that there is no storm 

movement and that sectors without storms will remain storm free throughout the flight time.   

Similar to the method used to discretize time, the authors used a rectangular airspace 

region with grids to construct flight paths using fixed waypoints.  Grid points are considered 

attainable if they can be reached within 15 minutes.  After describing their method for reducing 

the search space by looking at only a limited number of shortest paths from the aircraft’s current 

position, Nilim et al. developed the recursive equations for formulating a stochastic dynamic 

programming routine for routing aircraft under weather uncertainties. 

The Markov Decision Process algorithm is an eight-step process in which the authors are 

mainly concerned with the portion of the flight in which the velocity remains relatively constant.  

By focusing on this portion only, minimizing the expected delay is the same as minimizing the 

distance traveled.  In their algorithm, the distance for which the pilot knows precisely the 

information on the storm is 15*V where V is the aircraft velocity (miles per minute), and where 
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the multiplier 15 represents the 15 minutes for which perfect information is achieved.  The 

algorithm assigns a high cost for those flight paths that encounter storms.  Flight paths that do 

not encounter storms are assigned a cost equal to the Euclidean distance for that flight segment.   

Nilim et al. (2001) implemented their algorithm in MATLAB for two test scenarios.  The 

dynamic routing of each scenario was then compared to two Traditional Strategies (TS1 and 

TS2) using a “performance metric referred to as the Improvement Measure (IM)”.  TS1 was a 

flight path that completely avoided the storm region.  TS2 was a flight path that initially traveled 

along the nominal path until it reached a potential storm zone.  If the storm was present, it 

circumvented the storm.  If there was no storm, the aircraft continued on the nominal path until 

reaching its destination.  In summary, the dynamic routing algorithm using updated information 

on the weather provided a higher IM value in comparison with the traditional strategies. 

 

2.2.3. Hub Closures and Schedule Recovery          

The presence of severe weather at an airport can either reduce the airport’s capacity 

(defined by the number of arriving and departing aircraft per hour) or in the worst-case, force an 

airport to close for a period of time until flight operations can safely resume.  When the arrival 

rate is reduced, the FAA imposes a GDP in order to thin out the arrival process.  For the case of 

an airport closure, aircraft may need to be rerouted depending upon the duration of the closure.  

Thengvall et al. (2003) presented an approach for a more specific situation in which the airport is 

a hub for a particular airline.  For example, the Hartsfield-Jackson Atlanta International Airport 

is a hub for Delta Airlines.  As a central point for multiple flights, the closure of a hub can cause 

major disruptions that ripple through published flight schedules.  Following such a closure, the 

problem becomes one in which the affected airline(s) must reroute aircraft in order to minimize 

the impact on the passengers.  This problem within the literature is referred to as the aircraft 

schedule recovery problem.  Thengvall et al. (2003) proposed the application of a bundle 

algorithm to solve the aircraft schedule recovery problem, after transforming it into a multi-

commodity network flow model.     

 Rosenberger et al. (2003) also addressed the aircraft schedule recovery problem for 

situations when a planned flight route is no longer feasible due to weather conditions or due to 

unscheduled maintenance problems.  They formulated a set-packing model for this problem and 
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developed an optimization routine for aircraft recovery following either a flight route disruption 

or an airport disruption. 

While we do not address hub closures or the aircraft schedule recovery problem in this 

dissertation, we emphasize that the rerouting of flights remain subject to sector workload, 

conflict risk, and equity considerations and, therefore, should be evaluated in concert with these 

related, impacted features.  We address this aspect in our approach via the APCDM model.          

 

2.3. Enhancements to the Ground Delay Program 

The enhancements to the Ground Delay Program (GDP) were the first major steps in the 

Federal Aviation Administration’s (FAA) adoption of the Collaborative Decision-Making 

(CDM) paradigm.  In addition to the improvements in situational awareness, the two key 

concepts developed under the enhancements were the Ration-by-Schedule (RBS) and 

Compression procedures.  The Ration-By-Schedule and compression procedures, developed by 

Metron Inc. and Volpe National Transportation Systems Center, were designed to provide 

incentives for the airlines to report flight delays and cancellations under the CDM initiatives 

(Chang et al. (2001), and Vossen and Ball, (2001)).  This was accomplished by means of a 

significant paradigm shift in the way that FAA allocated arrival slots.  Under the original GDP 

process, the FAA allocated slots based solely upon the latest reported arrival estimates from the 

airlines. “Flights were then assigned to slots by a first-come-first-served algorithm, affectionately 

known as Grover Jack” (Vossen and Ball, 2001, p. 4).  The defining characteristic of RBS is the 

philosophical change with respect to slot allocations.  Rather than using the latest reported arrival 

estimates, RBS prioritizes flights based on their original scheduled arrival times found in the 

Official Airline Guide (OAG).  Thus, airlines that report delays or cancellations no longer forfeit 

their originally scheduled arrival slots, but rather, they retain ownership of those slots, giving 

them the freedom to either use these slots for their own flights or to exchange them according to 

their best interests.  Airlines manage their arrival slot allocations (i.e., canceling and substituting 

flights) through the use of the Enhanced Substitution Module (ESM), developed by Metron 

Aviation Inc.  The ESM, an optional add-on to the Flight Schedule Monitor (FSM), is an 

automated flight substitution decision support tool used to evaluate scenarios relating to potential 

flight swaps (Metron, 2004).     
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When the delay or cancellation of a flight results in a slot vacancy, efficient methods are 

required for slot reassignment to ensure that a slot does not go unused (Chang et al., 2001).  The 

compression algorithm was designed specifically to address the reassignment issue while 

providing the incentive for airlines to report flight cancellations.  Compression begins internally 

with the specific carrier that owns the vacant slot.  The algorithm searches for other flights 

pertaining to this same carrier that can be assigned to that slot.  For example, if the cancellation 

of some Flight 1 from carrier A creates a vacancy in a slot having an arrival time of 0900, the 

algorithm will find the first available flight, say, Flight 2, from carrier A that has been delayed to 

arrive at a later slot time, and will reassign this flight to the time of the vacated slot, creating 

another vacant slot originally belonging to Flight 2.  One key stipulation is that a flight cannot be 

assigned to the vacant slot if its published (OAG) scheduled arrival time is later than the time 

associated with the vacant slot.  The algorithm repeats this process until carrier A can no longer 

fill the remnant vacant slot, and then considers the assignment of this slot to some other airline B, 

say, whose vacant slot is accordingly thereby reassigned to airline A.  This is where the incentive 

for airlines to report delays and cancellations becomes truly evident.  Vossen and Ball (2004) 

imply that, in this situation, airline A is being “paid back” for its released slot.   The compression 

algorithm will then determine if carrier A can utilize its newly allotted slot and, if not, repeat the 

process looking for flights from other airlines.  While equity is a primary consideration within 

the compression algorithm, priority is given to airlines that participate in CDM (Chang et al., 

2001).  An example of the compression algorithm is shown in Figure 2-9 (derived from Vossen 

and Ball, 2004) involving airlines AAL, DAL, and COA in which flight AAL2 is cancelled. The 

compression algorithm potentially allows an airline to cancel a flight, and as a result of the 

creation of the vacant slot, to reduce the GDP-imposed delays of other flights.  Ball et al. (2002) 

present a layout of the RBS and compression algorithms.  Following the implementation of RBS 

and compression procedures in January 1998, the compression algorithm alone resulted in 

savings of approximately $39 million from January 20, 1998 to July 15, 1999 (Ball et al., 2000). 
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Figure 2-9:  Compression Example. 

 

2.4. Slot Trading Opportunities 

When Vossen and Ball (2001) first introduced the concept of inter-airline slot exchanges, 

it was based on the principle that given a fixed set of allocated slots under a GDP, each airline 

would be willing to trade its assigned slot(s) if and only if the trade would be beneficial with 

respect to the cumulative delay induced from the GDP.  Offers presented by airlines in this 

context fall into two types.  The first type, referred to as default offers, occurs when an airline 

proposes to relinquish its allocated slot in exchange for an earlier slot that pertains to a time no 

earlier than the earliest time of its arrivals listed in the OAG.  The second type occurs when an 

airline considers either canceling or delaying a flight (downward-move) in return for a reduction 

in the delay (upward-move) of a subsequent flight.  In essence, the default offers are of the form: 

Airline  is willing to give up a slot Aa∈ aSs∈  in return for a slot earlier than s, where A is the 

set of airlines and  is the set of slots allocated to airline aS Aa∈ .    The second offer type is of 

the form: Airline  is willing to cancel or delay the flight in slot Aa∈ aSs ∈1 , in return for a slot 

earlier than  , saSs ∈2 2 > s1, where s2 is the slot allocated to a subsequent flight of airline a .  A 

directed network can be used to represent potential slot-exchange offers.  Each node of the 

network represents an available slot that is currently assigned to a specific flight and its 

associated airline, while the arcs represent the offers.  Figure 2-10 illustrates a directed network 

involving seven slots under a GDP.  The number at the top of each box is the flight number.  The 

bottom number is the time of the allocated slot for the respective flight.  An example of a default 
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offer from flight US1620 is depicted in the directed network by any one of the three arcs to slot 

times 0806, 0808, and 0810.  Arcs from US1620 to slots earlier than 0806 do not exist given that 

the earliest flight arrival time for US1620 listed in the OAG is 0806.  The arc from UA635 to slot 

time 0812 depicts an offer of the second type in which United Airlines is willing to delay flight 

635 in return for moving flight UA647 to an earlier slot.  The problem then becomes one in 

which the FAA, acting as the mediator, selects a feasible set of slot exchanges from all offers 

provided by the airlines, where any feasible set of slot exchanges corresponds to a set of directed 

cycles in this graph and can be generated by an optimization problem formulated as an 

assignment problem (Vossen and Ball, 2001).  One critical stipulation in this approach is the 

insurance that if an offer from an airline is not accepted, it retains its current slot.  The offer of a 

flight cancellation or delay initiates the requirement for slot exchanges in order to ensure 

efficiencies in slot utilization.  If United Airlines removed the offer associated with flight 635 

(see Figure 2-10), no slot exchanges would occur (i.e., no directed cycles would exist in the 

resulting network).  Furthermore, the model ensures that no flight specific to any airline is 

delayed without reducing the delay of some other flight for that airline.   
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Figure 2-10:  Directed Network of Potential Slot Offers. 

 As stated previously, the mediated slot exchange problem can be modeled as an 

assignment problem.  Vossen and Ball (2001) started from a mediated bartering model for goods 

between various agents.  The set of agents, A, own one or more goods, and each agent, Aa∈ , 

submits potential offers for the exchange of goods between agents.  The objective of the 

assignment problem is to minimize the cost of the allowable trades.  The constraints within the 

bartering model formulation contain provisions for trades that are not accepted.  Vossen and Ball 

then modified this model to account for the above two types of offers, and adopted a bi-level 
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programming approach, giving priority within the objective function to the second type of offers.  

A general form of their bartering model is shown below (Vossen and Ball 2001).          

∑ ∑∈ ∈Ns Tt stst
s

xcMinimize                       (2.1)  

∑∈
∈∀=+

sTt sst Nsyx  ,1subject to          (2.2) 

∑ ∈
∈∀=+

tTst sts Nsyx
:

 ,1          (2.3) 

{ } NsEtsyx sst ∈∈∀∈  and ),( ,1,0, .       (2.4) 

Offers are of the form ( )  where s is the slot offered by airline a , and T,,, sTtts ∈ s is the set of 

slots that the airline is willing to accept in return for the exchange.  The set E is the set of arcs in 

the directed network representing all possible exchanges.  The binary variable  is equal to 1 if 

the trade between slot s in exchange for slot 

tsx ,

sTt∈  is accepted, and is 0 otherwise.  The set N is 

the collection of all slots assigned under the GDP.  The variable ys is equal to 1 when an offer is 

rejected and is 0 otherwise.  In essence,  activates a self-loop at node s.  The first constraint 

ensures that slot s is traded only once, which includes a trade to itself (i.e. the airline maintains 

slot s).  Likewise, the second constraint ensures that if an airline accepts a trade for slot s, it 

receives another slot in return.  Optimal solutions to the model above are represented in the 

network by directed cycles.  We omit the development of the cost parameters in the objective 

function and refer the reader to Vossen and Ball (2001).  Note that these authors later abandoned 

this model formulation in favor of a more restricted approach with regard to offer types. 

sy

From this initial work, Vossen and Ball (2004) suggested several possible extensions.  

One of these deals with conditional exchanges in which the airlines can “test-the-water” by 

offering a conditional cancellation in return for a reduction in the delay of a subsequent flight.  

This extension has been implemented and is more commonly referred to as Slot Credit 

Substitution (SCS).  Another important extension, which is central to our works involves more 

complex slot-exchange offers.  In this instance, airlines are able to offer multiple slots in 

exchange for multiple slots in return.  This extension is the foundation for their slot trading 

opportunities proposed in 2004, where Vossen and Ball introduced the idea of airlines submitting 

“at-least, at-most” type offers.  The premise behind such offers is that it may be beneficial for an 

airline to exchange an earlier slot for a later slot for some flight, in return for moving up a 

subsequent flight.  For example, an airline may submit an offer to extend the delay of a flight 
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serving only a few passengers in return for reducing the delay of a flight that serves several more 

passengers.  Vossen and Ball provide an example using delay costs as the metric to show how 

such offers can mutually benefit a pair of airlines involved in such a trade.  The authors 

formulated a set partitioning model to select among such offers as well as default offers so as to 

maximize the number of trades.  

Vossen and Ball (2004) also proposed an alternative formulation that assigns flights to 

classes based on the submitted offers, where a class represents the direction of change in the 

amount of delay (i.e. an increase or decrease).  Given the range of the offer, flights can be 

assigned to more than one class.  The model also assigns the classes to slots, guaranteeing that 

each slot is assigned exactly once, and that the slot exchanges are valid with respect to the 

submitted offers.  For example, slot exchanges that reduce the delay time of two flights from the 

same airline violate the restriction that requires one flight to move down in time when another is 

selected to move up in time.  The objective function is selected to maximize the number of 

downward trades, thus reducing the delay for as many flights as possible that are designated for 

upward trades.  Vossen and Ball also presented empirical results to support their conjecture that 

extended slot-trading mechanisms can improve airline efficiencies. 

On November 15, 2000, the FAA, at the request of the Port Authority of New York and 

New Jersey (PANYNJ), announced a temporary capacity restriction on the number of hourly 

arrival and departure operations at LaGuardia Airport (LGA) in order to reduce the increasing 

number of air traffic-related delays.  The operational cap, which was imposed on January 31, 

2001, reduced the number of High-traffic Density Rules (HDR) slots and exemption slots (as 

prescribed by the Wendell H. Ford Aviation Investment and Reform Act for the 21st Century) 

from 104 to 81 per hour.  To facilitate the distribution of the limited number of available 

exemption slots among the existing and new entrant carriers, the FAA conducted a lottery on 

December 4, 2000.  Following the implementation of the operational cap, the delays at LGA 

decreased by 71% as determined using the FAA’s Air Traffic Operations Network Database.  

The initial FAA-imposed capacity restriction, however, was scheduled to expire on September 

15, 2001.  As such, the FAA proposed a two-phased approach to implement further demand 

management solutions at LGA.  The first phase extended the December 4, 2000 lottery results 

and included a second lottery to allocate the unused slots from the initial lottery, which provided 

an opening for new entrant carriers.  The focus of the second phase was on finding a long-term 
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solution in order to establish an equilibrium between demand and capacity at LGA.  Since LGA 

is unable to expand its airfield capacity due to land restrictions, the FAA considered two market-

based options.  The first option proposed the implementation of a congestion price for arrivals 

and departures set by PANYNJ.  The second option considered the auctioning of a percentage of 

the HDR/exemption slots each year, where the FAA determined the number of slots available.  

Possible extensions proposed by the FAA included the assessing of auction fees, which could be 

adjusted to accommodate new entrant carriers (Federal Register, 2001). 

 

2.5. The Airspace Planning and Collaborative Decision-Making Model  

In response to the Federal Aviation Administration’s sponsored effort to enhance the 

management of the U.S. National Airspace System (NAS), Sherali et al. (2003) developed the 

Airspace Planning and Collaborative Decision-Making Model (APCDM).  The overall intent in 

this model is to select a set of flight plans from among alternatives, called surrogates, subject to 

flight safety, air traffic control workload, and airline equity.  Each flight plan is required to meet 

the feasibility requirements specified by the system constraints and as a result of this research 

will be generated to avoid dynamically moving weather.   

The model consists of five separate subroutines that range from the Air Occupancy 

Model (AOM), developed by Sherali et al. (2000), to the Flight Plan Selection subroutine, 

developed by Sherali et al. (2003).  Figure 2-11 illustrates the essential framework for the 

APCDM.    Inputs into the APCDM consist of sector geometries, flight plans, special use 

airspaces (SUAs), and weather closures.  The sector geometries represent the division of the 

available airspace into polygonal cross-sections defined by boundaries, and floor and ceiling 

altitudes.  The size and geometry of the airspace sectors is often determined by the potential 

number of aircraft that can exist within a region at any given time (Nilim et al., 2001).  These 

airspace sectors remain static and presently maintained by the FAA for regulating air traffic.  The 

flight plans, grouped into surrogates, are provided for each aircraft.  Currently, flight plan inputs 

for the APCDM are generated devoid of information from existing weather systems.  

The AOM subroutine determines the airspace sectors traversed by each surrogate flight 

plan.  The information extracted from this subroutine includes the time intervals each flight 

spends in a corresponding airspace sector.  In addition, the AOM subroutine contains a workload 
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function used to generate a cost associated with monitoring the number of flights that can 

potentially coexist within each given airspace sector. 

The second subroutine is the Probabilistic Aircraft Encounter Model (PAEM), which 

conducts conflict analyses based on probabilistic trajectory realizations that are induced by wind 

effects or by random errors around a planned flight trajectory.  This subroutine identifies 

durations for which conflicts at various severity levels can occur within each sector with 

specified conflict threshold probabilities.  The outputs from these first two subroutines are 

utilized in a third subroutine to generate the workload constraints per sector, based on the 

sector’s capacity to monitor air traffic and to resolve co-existing conflicts.     

The fourth subroutine addresses the issue of achieving equity amongst the various airlines 

with respect to absorbing the costs associated with delays and cancellations.  The equity in this 

context is measured with respect to the relative collaboration efficiencies attained by the 

different airlines based on the fuel and delay costs incurred for the solution generated by the 

APCDM model in comparison with the individually optimized costs.  The final subroutine 

integrates the workload constraints and the equity constraints into a mixed-integer programming 

formulation for determining an optimal mix of flight plans.             

Sector 
Occupancies

AOM
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Generate New Flight Plans
Column Generation

Adjust Parameters
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Figure 2-11:  Operational Framework for the APCDM (Sherali et al., 2003 and 2006). 

We present a review of the mathematical formulation of the APCDM model that is 

developed in Sherali et al. (2003, 2006).  We will be integrating our modeling concepts into this 

model in Chapters 3, 4, and 5 to include the impacts of weather uncertainty and to consider slot-

exchange mechanisms, respectively.  Therefore, we provide a summary of this model here for 

the sake of completeness.  Below we first list the sets of indices, variables, parameters, and 

coefficients, and then state the model formulation.   
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(a) Index Sets:  

1,...,s = S : Sectors involved in the model analysis. 

1,...,α α= : Airlines involved in the model analysis. 

1,...,f F= : Flights to be scheduled. 

fp P∈ : Alternative flight plans or surrogates for flight f. 

{ }0 0f fP P= U , with p=0 representing the flight cancellation surrogate, if offered by the 

particular airline as a possible option, and being ascribed an inordinately high penalty otherwise 

(including the case of airborne flights). 

(b) Decision Variables: 

(i) Principal Decision Variables:  

xfp : Binary variable, which equals one if flight plan p∈Pf0 is selected for flight f, and zero 

otherwise, for f=1,…,F.  (These are sometimes denoted by xP or xQ (etc.) where each of P and Q 

(etc.) represent some actual flight plan combination (f, p) for p∈Pf, f∈{1,…,F}.) 

 

(ii) Auxiliary Decision Variables: 

ns : Peak occupancy level (number of flights) for sector s. 

ws : Average occupancy level (number of flights) for sector s. 

ysn∈[0,1] , n=0,…, sn : Convex combination weights attached to the breakpoints of a piecewise 

linear increasing convex penalty function, which represents the penalty ascribed to the difference 

between the peak and the average workload in sector s.   

zPQ : Binary variable, which equals one whenever conflicting flight plans P and Q are selected.  

(It is assumed in the model description that zPQ ≡ zQP.) 

( )E xα : Collaboration efficiency for airline α. 

( )eE xα : Collaboration equity for airline α. 

( )
1

e ex E x
α

α α
α

ω
=

≡ ∑ : (ω-) Mean collaboration inequity. 

αν : Variable used to represent the term ( )eE xα  for airline α. 

(c) Model Parameters and Coefficients: 
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ωα : The weight factor ascribed to each airline α (prescribed in proportion to the number of 

flights or passengers handled). 

cfp : The cost to execute flight plan p∈Pf0 for flight f (prescribed as fp fpc F D= + fp , ∀p∈Pf, 

f=1,…,F, where Ffp and Dfp are respectively the associated fuel and delay costs as derived in 

Sherali et al. (2006)). 
*
fc = Minimum {cfp: p∈Pf}, for each flight f. 

H : The length of the time horizon under consideration (in minutes). 

γs : The airspace monitoring cost factor for sector s, per unit average occupancy level workload 

(prescribed as $0.361H).   

μsn : The (penalty) cost assessed when the peak monitoring workload in sector s exceeds the 

average workload by n (prescribed as 2

5
ns ⎟
⎠
⎞

⎜
⎝
⎛ γ , which yields a convex increasing rate penalty 

function). 

ϕPQ : The (penalty) cost ascribed to resolve an en-route conflict between flight plans P and Q 

(ordinarily prescribed as $0.301, but could depend on the conflict geometry). 

μD : The (penalty) cost factor associated with the total weighted collaboration inefficiency 

attained (designated as ).  ∑
=

F

f
fc

1

*1.0

μe : The (penalty) cost factor associated with the level of total weighted collaboration inequity 

attained (designated as  ). ∑
=

F

f
fc

1

*1.0

eEmax :  Bounding constant (designated as α/07.0 ) imposed on each weighted inequity.  

s
fpt : The length of time (in minutes) that flight plan p∈Pf of flight f occupies sector s. 

Ωs : The set of flight plans that occupy sector s during some subset of the time horizon. 

sn : The maximum allowable peak monitoring workload (simultaneous flight occupancies) in 

sector s. 

rs : The maximum number of simultaneous conflict resolutions permitted to exist in sector s. 

Dmax : The maximum allowable ratio for any airline of the cost for the selected surrogates to that 

for the individually optimized surrogates (prescribed as 1.2). 
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Aα : The set of flights belonging to airline α. 

Wf : Relative priority weight attached to flight f∈Aα by airline α, where 1f
f A

W
α∈

=∑ , Wf≥0, ∀f∈Aα. 

νe : The maximal limit imposed on xe, the ω-mean collaboration inequity. 

Csi, ∀i=1,…,Is : The maximal overlapping sets of occupying flight plans for sector s. 

Msk, ∀k=1,…,Ks : The maximal overlapping sets of conflicting pairs of flight plans for sector s. 

Gsk(Nsk,Msk) : The conflict subgraph of conflicting flight plans represented by Msk, where the 

node set Nsk represents the respective flight plans (labeled as P, Q, R, etc.) that are involved 

within the edge set Msk. 

Jsk(P) : The set of flight plans Q that are adjacent to P within the graph Gsk. 

FC : The set of fatally conflicting pairs of flight plans (P,Q). 

A : The entire set of resolvable conflicting pairs of flight plans (P,Q). 

APCDM:   

 Minimize 

[ ] ∑∑∑∑∑ ∑ ∑
∈= === ∈ =

++++−+
AQP

PQPQ

S

s

n

n
snsn

S

s
ss

ee
F

f Pp

D
fpfp zywxxExc

f ),(1 011 10

)(1 ϕμγμωμ
α

α
αα  (2.5a) 

 subject to: 
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∈
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=
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0

1, 1,...,
sn

sn
n

y s
=

= ∀ =∑ S  (2.5f) 

 ( )1, ,P Qx x P Q+ ≤ ∀ ∈FC

S

 (2.5g) 

  (2.5h) 
( , )

, 1,..., , 1,...,
sk

PQ s s
P Q M

z r k K s
∈

≤ ∀ = =∑

 1, ( , )P Q PQx x z P Q A+ − ≤ ∀ ∈  (2.5i) 
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( ) ( ) ( ) , 1,...,eE x E x E x
α

α α α α
α

ω α
=
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⎝ ⎠
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 ( ), ( ), 1,...,e eE x E xα α α αν ν α≥ − ≥ ∀ = α  (2.5m) 

 
1

ex
α

α α
α

ω ν
=

=∑   (2.5n) 

0, ( , ) ,  binaryPQ fpz P Q A x≥ ∀ ∈ , 0 , 1,...,fp P f F∀ y∈ ∀ = , 0, 1,..., , 1,...,sn sn n s S≥ ∀ = = , 

( ) 0, 1,...,E xα α α≥ ∀ = , , 1,...,s sn n s S≤ ∀ = , e ex ν≤ , .,...,1,max ααω αα =∀≤ eEv   (2.5o) 

 The first objective term is the summation of the fuel, delay, and cancellation costs for the 

selected flight plans.  The next two terms impose penalties on the attained levels of the ω-mean 

collaboration inefficiency and the ω-mean collaboration inequity, respectively.  Note that 

although the cost factors fp fpc x  appear in both the first two terms in (2.5a), the first term 

represents the total system cost, whereas the second term is dimensionless and includes 

weighting priority factors among airlines, as well as weighting priorities for flights pertaining to 

each individual airline.  Moreover, the second term is weighted with a factor Dμ , which provides 

the flexibility of running the model with different degrees of relative importance attached to this 

term.  Sherali et al. (2006) prescribe values for Dμ  and eμ  that, in extreme cases of the ω-mean 

collaboration inefficiency and inequity, would yield a penalty of some 0 %μ  of *

1

F

f
f

c
=
∑  via the 

second and third terms.  Sherali et al. (2006) also provide a sensitivity analysis with respect to 

0μ .  Additionally, note that the priority weights ,fW f Aα∈ , attached to the flights for an 

individual airline essentially affect its defined efficiency, which then governs the selection of 

flight plans via the three equity-based terms.  Since the entire objective function (2.5a) represents 

a systems perspective, the influence of these equity terms is naturally offset by the remaining 

cost terms, depending on the value of 0μ  or that of the parameter vector   The fourth ).,( eD μμ
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term in the objective function (2.5a) ascribes a penalty to the average sector workloads, the fifth 

term penalizes the differential between the peak and the average sector workloads according to a 

piecewise linear increasing convex function, and the final term penalizes the resolvable conflicts 

that will need to be addressed by the air traffic controllers (ATC). 

 Constraint (2.5b) requires exactly one flight plan to be selected from among the set of 

available surrogates.  The next four constraints are associated with sector occupancies, where 

(2.5c) limits the maximum simultaneous occupancy for each sector s, (2.5d) evaluates the 

average sector workloads, (2.5e) computes the peak-average workload differential, and (2.5f) 

requires the convex combination weights ascribed to the breakpoints of the peak-average 

workload differential penalty function to sum to one.  All fatal conflicts are prohibited via (2.5g). 

The conflict constraint formulation, described in detail in Sherali et al. (2003), is expressed via 

(2.5h) through (2.5j), where (2.5h) and (2.5i) jointly ensure that no more than rs resolvable 

conflicts coexist within sector s at any point in time, and (2.5j) further tightens this 

representation via a set of star-subgraph convex hull based valid inequalities.  The airline 

collaboration efficiencies and collaboration equities are determined by (2.5k) and (2.5l), 

respectively.  Constraints (2.5m) and (2.5n) provide a linear function for computing the ω-mean 

collaboration inequity.  Finally, (2.5o) imposes the necessary logical and bounding conditions.  

As expounded in Sherali et al. (2003), in case a model run indicates infeasibility, additional 

sensitivity analysis runs can be made by relaxing ( ) 0 and eE x xα
eν≥ ≤  from these latter 

bounding constraints. 

 



 

Chapter 3 

Modeling Weather-related Phenomena 
 

In order to incorporate weather uncertainty within the APCDM model, certain tradeoffs 

between model fidelity and model tractability need to be considered when selecting a suitable 

weather forecasting approach from Chapter 2.  Given that the primary goal of the APCDM 

model is to generate an optimal set of flight plans in support of FAA’s Collaborative Decision 

Making (CDM) initiative, we cannot afford to expand the constructs of the APCDM model to the 

extent that the weather-related component would inhibit the execution of the APCDM model 

beyond the bounds of the decision-making cycle.  In essence, we need to input weather forecast 

data from a “trusted” source, then preprocess this data appropriately for incorporating the 

relevant weather effects into the APCDM model, and finally ascertain its impact on the selection 

of an optimal set of flight plans, all while meeting the timelines for either a strategic or a tactical 

level decision-making process. 

 

3.1. Selection of Weather Data Source   

Given that a great deal of emphasis is given towards accounting for weather effects in 

most aspects of our daily lives, there is an abundance of daily forecasting data produced in 

multiple formats from a variety of weather prediction models.  Our search for reliable weather 

forecasting probability data began with the National Weather Service (NWS), a sub-division of 

the National Oceanic and Atmospheric Administration (NOAA).  A critical component of the 

NWS is the National Center for Environmental Prediction (NCEP), which is the primary U.S. 

source for nearly all weather forecast products (NWS, 2003).  NCEP consists of nine centers that 

are responsible for the generation of both national and international weather products for the 

NWS, government offices, and other meteorological agencies.  The Aviation Weather Center 

(AWC) is just one of the nine centers, and “provides aviation warnings and forecasts of 

hazardous flight conditions at all levels within domestic and international airspace” (NWS, 2003).     

NCEP provides two categories of forecasting models: numerical models and statistical 

models.  As described in Chapter 2, the suite of numerical models consists of five separate 

models (Eta, Global Forecast System (GFS), Wave Watch III, Nested Grid Model (NGM), and 

Rapid Update Cycle).  The information from these numerical models is converted to static and 
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looping graphical representations, which are provided to the various users on the NCEP website.  

Figure 3-1 illustrates a static six-hour precipitation forecast from the Global Forecast System 

(GFS) model.  While this type of forecast is available across the United States for precipitation, 

temperature, and wind data, it is very difficult to extract the associated probabilities for 

convective weather.                                

 

Figure 3-1: Static Six-hour Forecast from GFS (NWS, 2003). 

The data from the numerical models is used by the Aviation Weather Center (AWC), to 

provide weather warnings to the aviation community in the form of both graphical 

representations and raw data format.  The most common tool for accomplishing this is the 

Collaborative Convective Forecast Product (CCFP), which identifies possible convective regions 

for a specified time interval.  Figure 3-2 depicts a CCFP product issued for February 7, 2005 

until 2155Z.  According to the AWC’s CCFP Product Description Document (2005), convection 

is defined as a polygon of at least 3,000 square miles that attains: 

• A coverage of at least 25% of the region with echoes of at least 40 dBZ composite 

reflectivity; 

• a coverage of at least 25% of the region with echo tops of FL250, or greater, and 

• a confidence level of at least 25%. 
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Unfortunately, because of its coarse features, the CCFP does not provide the level of detail 

required for our weather analysis.   

 

Figure 3-2:  Convective SIGMETS from AWC (AWC, 2005). 

A more detailed forecast information suite, which is available to the aviation community 

through the AWC, is the Aviation Digital Data Service (ADDS) website.  Recall from Chapter 

two that there are five weather advisories used by pilots as supplements to the weather forecasts 

are the: Airman’s Meteorological Information (AIRMETs); Significant Meteorological 

Information (SIGMETs); Convective SIGMETs; Center Weather Advisories (CWAs); and 

Severe Weather Forecast Alerts, more commonly referred to as Alert Weather Watches (AWW).  

These advisories are used to provide information on hazardous weather situations and are 

typically widespread, again, requiring coverage of at least 3,000 square miles before inclusion as 

an advisory, similar to the case of the CCFP.  Therefore, even though an advisory may not exist 

for a particular airspace sector, we cannot exclude the potential for localized severe weather 

within the airspace (FAA, 2004).   

The AWC also provides a suite of Java Tools that allows the aviation community to plot 

flight routes using real-time information pertaining to temperature, wind, convection, icing, and 

turbulence.  Figure 3-3 depicts the real-time convection information for February 7, 2005, 

generated by the National Convective Weather Forecast (NCWF) Java Tool.  This tool produces 
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an overlay containing the current convective hazard regions as well as a one-hour forecast hazard 

region when available.  By remaining consistent with our temporal framework of February 7, 

2005, we compared the real-time information from the NCWF Java Tool and the Convective 

SIGMET from CCFP, as depicted in Figure 3-2.  By superimposing the large CCFP polygon 

region on top of the real-time information, we concluded that the information from the numerical 

model lacks adequate detail, and that one-hour convective forecasts are insufficient.  Therefore, 

we shifted our attention to the available statistical models, which will be covered in the next 

section.       

 

Figure 3-3: NCWF Java Tool. 

 

3.2. Availability of Probabilistic Data 

Given that weather uncertainties can wreak havoc on Air Traffic Management, we can no 

longer ignore problematic weather when selecting an optimal set of flight plans.  The difficulty 

associated with capturing weather uncertainties in any model lies in the generation and 

application of forecast probabilities.   Additionally, one must consider the continuous nature of 

weather when developing a probability map to describe the weather forecasts.  The amount of 

data required to provide a continuous weather representation within the APCDM model would, 

however, quickly overburden the model and drastically reduce the model’s efficiency.  In order 

to maintain the model’s tractability, we propose the development of a discretized representation 

of various weather phenomena that affect aviation operations using the data provided by the 

NCEP’s statistical forecast models.  These representations will be structured in the form of 

probability-nets as defined in the sequel, which are essentially lattices that are specific to the 
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spatial intensity of the weather.  For example, using the probabilities associated with convective 

weather over a specified region, we will create a convective probability-net to monitor the 

probabilities of encountering severe weather throughout a given flight’s trajectory.  We will then 

appropriately penalize these trajectories within the objective function of the APCDM model.    

What follows is a detailed description of the data from the statistical forecast models, the 

development of the probability-nets for a given weather observation, and our proposed 

methodology for capturing weather uncertainty within the APCDM model.     

The fundamental requirement for the development of the probability-nets is the existence 

of reliable site-specific forecast data over the area of interest.  Of primary concern is the 

availability of probability data relating weather of aviation interest such as convection, snow, and 

visibility.  The National Weather Service’s Meteorological Development Lab (MDL), whose 

mission is “to develop and implement scientific techniques into National Weather Service 

Operations” (NWS, 2005), produces the necessary information in three-hour time intervals using 

a statistical modeling method known as Model Output Statistics (MOS).  The pertinent aviation 

MOS text forecasts are available in short-range GFS (6-84 hours), Eta (6-72 hours), and 

extended-range GFS (12-192 hours) formats.  MOS forecasts are also available in graphical form, 

which will be discussed later.       

MOS is a technique that introduces objectivity into weather forecasting by interpreting 

the data produced from the aforementioned numerical models, and provides specific probability 

results for numerous sites throughout the United States.  The primary predictors that serve as 

inputs into MOS include the forecasts from the Numerical Weather Prediction (NWP) model, 

prior surface weather observations, and other geo-climatic information.  A multiple linear 

regression technique is then used to generate the required probabilities.  Two significant 

advantages of the MOS technique are the removal of systemic biases inherent within the 

numerical models and the availability of weather specific probabilities (i.e., convection, ceiling, 

temperature, etc.) at every location in the MOS site structure (Antolik, 2003).  Currently, there 

are over 1,500 reporting sites throughout the United States and Puerto Rico.  Figure 3-4 depicts 

the locations of these reporting sites by region for the short-range GFS and Eta MOS forecast 

products.  The exact latitude and longitude of each reporting site is available through the MOS 

website in text format.                           
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Figure 3-4: Short-range GFS and Eta MOS Stations (MDL, 2004).  

The MOS graphics website allows the user to select the pertinent forecast products and 

displays the requested information superimposed on a map of the United States, using different 

colors to indicate the probability levels of a thunderstorm occurring over a 40-kilometer grid box 

(depending on the resolution of the numerical forecasting model used to produce the forecast) 

during a specified six-hour interval (see Figure 3-5).  While the graphical displays provide a 

sufficient overview of the weather probabilities, they lack the necessary details our modeling 

purposes.  In addition to the graphical representation, there is a supporting text message for each 

site.  Figure 3-6 displays the text message for Casa Grande, Arizona, during the same time 

interval as depicted in the graphical forecast in Figure 3-5.  The row highlighted in red represents 

the six-hour thunderstorm probability with an ending time corresponding to the hour listed in line 

four of the text message.  For example, there is a 32% chance of thunderstorm activity in Casa 

Grande from 1800Z, February 11, 2005, until 0000Z, February 12, 2005 (all times are measured 

from Coordinated Universal Time).  Each text message from each MOS site contains a 

significant amount of probabilistic weather data for various types of weather phenomena.  For 

instance, we can extract information with regard to snow, ceiling, temperature, precipitation, etc.      
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Figure 3-5:  Eta MOS Graphics:  Six-hour Probability of a Thunderstorm (NWS, 2005).   

 

KCGZ ETA MOS  
DT /FEB  11/ FEB  12   / FEB 13 / FEB 14
HR 18 21 00 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21 00 06 12
N/X 52 64 45 67
TMP 58 62 61 59 57 55 54 52 58 63 62 56 52 49 47 48 60 65 65 53 48
DPT 54 55 56 56 55 54 51 49 49 47 45 46 42 41 40 43 47 45 43 48 46
CLD OV OV OV OV OV OV OV OV OV OV OV OV OV OV OV OV OV BK BK BK BK
WDR 9 12 6 4 2 10 17 23 21 23 29 28 1 4 2 0 8 30 32 2 2
WSP 10 7 5 4 2 3 2 4 7 6 6 1 1 1 1 0 3 3 4 1 1
P06 83 83 73 38 41 21 4 5 1 1
P12 84 65 22 5 1
Q06 3 4 3 1 1 0 0 0 0 0
Q12 4 2 0 0 0
T06  32/0  38/0  24/0  16/0  15/0  10/0  2/0  0/0  2/1 999/99
T12  46/0  39/0  18/0  2/0 999/99
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CIG 6 5 6 6 6 6 7 6 6 6 6 6 6 6 5 6 7 7 8 8 8
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Figure 3-6:  Example of an Eta MOS Text File. 

We will revisit the information contained in the site-specific MOS text messages 

throughout the development of our modeling approach.  Note that the data provided is based on 

discrete time intervals of three or six hours, depending upon the forecast product.  This fact lends 

itself to the development of our discrete time probability-nets, which will maintain the 

tractability of the weather-based formulations within the APCDM model.  We will then examine 
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the flight trajectories in 4-D (specified by latitude, longitude, altitude, and time), in light of the 

dynamically varying probability-nets.              

 

3.3. Modeling Approach 

Consider the analogy of a salmon swimming upstream, assuming that it instinctively 

selects a route that minimizes the travel distance in the stream, while being also aware of the 

scattered number of fishing nets present in the stream.  Therefore, as the salmon proceeds, the 

probability of being caught in a fishing net increases with the number of nets that are in close 

proximity to the salmon.  In addition, the catch-probability increases proportionately to the net 

size and its relative location with respect to the net.  We now translate this analogy to that of 

flight trajectories.  When generating flight surrogates under perfect weather conditions, the 

airlines are free to focus on optimized trajectories between the origin and destination airports and 

the related arrival times.  Under conditions of weather uncertainty, there exists a range of 

probabilities with which the flight plans might be “caught” in a specific weather phenomenon, 

thereby resulting in a delay.  The number of weather systems is analogous to the number of nets 

in the stream, whereas the intensity and coverage of the weather system are analogous to the size 

of the nets. 

We will illustrate the construction of a convective probability-net with an example using 

data taken from February 7, 2005.  Figure 3-7 is the graphical representation of an Eta MOS six-

hour thunderstorm probability, which depicts the location probabilities associated with two 

convective weather systems covering the interval from 1800Z until 0000Z.  This representation 

clearly provides more detail when compared with the results from the CCFP in Figure 3-2.  Note 

that the probabilities range from zero to thirty percent with probability contour intervals of ten 

percent (i.e., a reading of 37% would be represented within the blue color interval).  Relating this 

situation back to the salmon analogy, the stream has two nets varying in both size and intensity.      

 To capture the probability data associated with the convective weather vicinity over 

Louisiana, Mississippi, Arkansas, and Eastern Texas, we imported the relative text data from 82 

MOS reporting stations.  The 82 stations included all of the available reporting sites in Louisiana, 

Mississippi, and Arkansas.  A key characteristic of the MOS text data is the availability of 

specific severe weather probabilities, in contrast to the ten percent contour intervals found in the 
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graphical representation.  An important step was to compare the text data with the visual 

information displayed in the map (see Figure 3-7).  This step is critical in order to construct the 

suitable convective probability-nets using the reporting sites.  Figure 3-8 depicts the location and 

the thunderstorm probability forecast for each station.  Notice that when visually compared with 

the graphical representation of Figure 3-7, the probabilities specified at the reporting sites are 

equivalent and provide point-by-point probability readings, which we will use as the building 

blocks of the probability-net for this region. 

 

Figure 3-7:  Eta MOS Six-hour Thunderstorm Probability for February 7, 2005. 
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Figure 3-8:  MOS Reporting Station Thunderstorm Probabilities. 
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The probability-nets are constructed by specifying an adjacency threshold that creates the 

strands that link the reporting site locations.  Figure 3-9 illustrates an example of a probability-

net constructed from the region shown in Figure 3-8.  Every pair of reporting sites is linked by an 

edge, or a strand, as long as the great circle distance between the pair does not exceed the 

specified adjacency threshold.  Naturally, we must be careful that the adjacency threshold is not 

too small so as to inadvertently create a “hole in the net” for an area in which there exists a 

significant weather probability, or too large making the probability-net unnecessarily dense.  

Additionally, reporting sites with a probability forecast of less than 5% are not linked to any 

other site, assuming that there would exist other reporting stations having a more significant 

convective weather probability in the relative vicinity of the most severe weather area(s).  This 

will greatly reduce the number of computations required during the analysis of each flight plan.   

 
Figure 3-9:  Graphical Representation of a Probability-Net. 

While the reporting sites remain fixed, the data from the MOS text messages contain 

changing probabilities over time in six-hour increments for convective weather.  Therefore, we 

must update the links within a probability-net every six hours to ensure that we account for the 

appropriate probabilities for the flight plans in question.  Using the additional data from the text 

message, we are able to construct other weather-related probability-nets that influence airspace 

operations to include snow and visibility if required. 

Before we continue with the application of our probability-net concept, we need to 

address two limitations regarding our modeling approach.  The first limitation stems from the 

existing inaccuracies associated with the NWS current ceiling forecasts.  NOAA (2005) recently 

reported that the ability to provide an accurate ceiling forecast remains a critical issue given that 

the current accuracy of aviation ceiling forecasts remains at 46% (unchanged from 2002).  

NOAA asserts that improvements to ceiling forecasts can result in an estimated $250 million 
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reduction in fuel costs for the airline industry.  Given these known inaccuracies, the ceiling data 

(“CIG” in Figure 3-6) provided by the MOS reporting stations is categorized into altitude 

intervals as shown in Table 3-1.  Therefore, while aircraft continuously traverse three-

dimensional space, the categorical ceiling data will inherently reduce the efficiency of the flight 

trajectories, which are generated assuming that the weather ceiling extends to the upper limit of 

the interval.  The second limitation stems from the location and spread of the MOS reporting 

stations.  Apparent in Figure 3-8 is the clustering of MOS sites in some locations such as major 

cities, while other areas have relatively fewer reporting stations covering a larger area.   The 

minimum distance from any station to the other stations varies from 2.2 km (two separate 

reporting sites in Olathe, KS) to 168.9 km (Havre to Great Falls, MT). Therefore, we will be 

required to interpolate probabilities between adjacent reporting stations that vary dramatically in 

their respective reporting values.     

Table 3-1:  Ceiling Height Categories. 

Category Ceiling
1 < 200 feet
2 200 - 400 feet
3 500 - 900 feet
4 1,000 - 1,900 feet
5 2,000 - 3,000 feet
6 3,100 - 6,500 feet
7 6,600 - 12,000 feet
8 > 12,000 feet or unlimited  

 

3.4. Model Application 

Once the respective probability-nets have been constructed, the weather uncertainty 

analysis is conducted by evaluating each surrogate flight plan as it potentially passes through the 

probability-net structures.  Flight plans that avoid the existing probability-nets are not subject to 

a weather delay penalty and can be removed from this portion of the analysis using 

preprocessing methods.  A flight plan that enters only one probability-net will be assigned an exit 

probability (EP) based upon the highest probability strand it encounters while being “caught” in 

the net.  Flight plans that encounter more than one probability-net will be assigned a probability 

based upon an accumulated probability rating across all nets.   

We begin with the evaluation of multiple flight plans through a single probability-net as 

depicted in Figure 3-10.  The figure is a simple illustration that represents two alternative flight 
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plans (#1 and #2) for a single flight as they traverse through a single probability-net.  The 

triangles are the MOS reporting sites and the line segments A through D are the strands that link 

the reporting sites as a function of the adjacency threshold.  For this example, the displayed 

values at each reporting station are the six-hour thunderstorm probabilities.  As previously stated, 

the overall probability used to determine the delay penalty is based on the highest probability 

strand that the flight plan intersects, which we call the exit probability, EP.  In this example, 

flight plan #1 intersects only strand A while flight plan #2 intersects both strands B and C. 

0.32

0.37

0.22

0.45

#1

#2

A

B C

D

EP1 = 0.29

EP2 = 0.38

 

Figure 3-10:  Example of Single Probability-Net Evaluation. 

The discrete representation of the probability data lends itself to a subjective assignment 

of probability values at the point of intersection between the flight plan and the strand of interest, 

referred to as the strand intersection probability value (SIPV) approach throughout the 

remainder of the dissertation.  We consider three SIPV approaches.  The first approach calculates 

the probability through a linear interpolation between the two reporting stations’ probabilities, as 

done in Figure 3-10.  For example, suppose that flight plan #1 is 1 kilometer from the reporting 

station having a probability value of 0.32 and 3 kilometers from the station having a probability 

value of 0.22.  The overall probability assigned to the strand at the point of intersection, using a 

standard linear interpolation equation, is 295.01 =EP .  The second approach provides an upper 

bound on the probability assignment by using the larger probability of the two reporting stations 

at which the intersected strand is incident.  Likewise, the third approach provides a lower bound 

on the probability assignment by using the smaller probability of the two reporting stations.  The 

second and third SIPV approaches provide worst-case and best-case scenarios, respectively, in 
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our weather uncertainty analysis.  In Chapter 4, we will discuss how the exit probability is used 

to calculate the weather delay factor for integration within the APCDM model objective function.      

A condition may also exist in which a flight plan encounters multiple probability-nets.  

Figure 3-11 is a simple illustration of this event in which two probability-nets, separated by at 

least 300 kilometers (figure not to scale), are encountered by the submitted flight plan.  Again, 

our goal is to calculate the exit probability as the flight exits the second (final) system.  We start 

by calculating the exit probabilities for each net as described above.  Using the individual exit 

probabilities, we then calculate the total probability of traversing both systems without 

experiencing a weather delay assuming independence between the two systems.  The final exit 

probability is the compliment of the total probability of not experiencing a delay.  For example, 

suppose that the exit probabilities for the probability-nets are 0.45 and 0.26, respectively, using 

the upper bound SIPV approach.  The exit probability, EP, for the combined system is then 

computed as 593.0)26.01(*)45.01(1 =−−−=EP .  In general, the exit probability for a single 

flight plan encountering  probability net(s) is computed as follows: 1≥n

             (3.1) ( ,11
1
∏
=

−−=
n

i

SIPV
iEPEP )

where  is the exit probability for probability-net i using the specified SIPV approach.    SIPV
iEP

 

 

Figure 3-11:  Example of Multiple Probability-Nets.  

During the construction of the probability-nets, the specification of the adjacency 

threshold may generate a strand that, on the surface, appears to skew the probabilistic 
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representation based on the positional relationship between reporting sites.  For example, Figure 

3-12 depicts the situation where strands A, B, and C are generated between three reporting sites 

within the adjacency threshold from one site to the other.  Using an upper bound SIPV approach, 

the flight trajectory for Plan #1 would incur a probability penalty associated with the reporting 

site value of 0.48.  If the angle θ  between strands B and C is relatively small, a more appropriate 

probability penalty might be that associated with the reporting site value of 0.32.  In this instance, 

one might consider omitting strand C during the construction of the probability-net.  However, 

given our intent to include a linear interpolation SIPV approach, we demonstrate, as illustrated 

by Plan #2 in Figure 3-12, how the omission of strand C can produce an inaccurate exit 

probability with respect to two separate flight paths for a given flight.  Assuming strands A, B, 

and, C have lengths of 50, 31, and 80 kilometers, respectively, and determining the intercept 

point on strands A and C as the distance from the point of intercept on the respective strands to 

the reporting station having the probability value of 0.22, the exit probabilities for each plan can 

be determined as shown in Figure 3-12.  Notice that the omission of strand C would result in the 

same exit probability for both plans, which might be misleading.  This example also underscores 

the efficacy of relying on the linear interpolation SIPV approach.   
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Figure 3-12:  Exit Probability of Multiple Plans. 

Once we have established the exit probability for each flight plan p belonging to some set 

 of alternative plans for each flight fP ,,...,1 Ff =  the final step of our modeling approach is to 

generate an appropriate weather delay factor for inclusion within the APCDM model that will 
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influence the cost of the specific flight plan .  The original APCDM cost function is as 

follows (Sherali et al., 2006): 

fpc

 cfp = Ffp + Dfp , ∀p∈Pf, f=1,…,F,  (3.2) 

where Ffp and Dfp are, respectively, the associated fuel and delay costs.  We will focus primarily 

on a proposed modification to the delay cost.  The original APCDM delay cost is as follows 

(Sherali et al., 2006): 

  ( )( )( )d c
fp fp f fD t d l δ= ,  (3.3) 

where  is the arrival delay time,  is a connection delay cost factor associated with the 

arrival airport,  is the load factor for the particular aircraft type, and δ is the average delay cost 

per passenger-minute.  We will penalize the arrival delay time  by an additive (or 

multiplicative) weather delay factor   to be determined in the following chapter.  The weather 

delay factor must adequately reflect the effect of the probability of encountering severe weather 

or delay. 

d
fpt c
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3.5. Flight Plan Generation Tool 

In this section, we discuss the superimposition of a flight-trajectory-grid network onto the 

probability-nets in order to facilitate generating flight plans that are within a specified threshold 

of circumventing severe weather.  The ADDS website (2005) contains a flight path generation 

java tool that allows the user to plot a flight path using point-and-click waypoint and altitude 

selections from origin to destination.  The flight path is superimposed upon user-selected 

backgrounds that provide three-dimensional weather data in terms of icing likelihood, 

temperature, wind speed, relative humidity, and the potential for turbulence.  While suitable for 

tactical level flight planning, its three-hour time horizon renders this tool irrelevant when 

addressing the impact of weather uncertainty beyond three hours, which is the typical time 

horizon for a strategic level analysis.   

Using our probability-nets, we ascribe a threshold strand probability σ  and impose the 

constraint that the trajectory generated should not intersect any strand at a probability level 

exceeding σ .  Using the linear interpolation SIPV approach and a specified threshold strand 

probability, we can identify which portion of a strand will exclude links in the network for flight 
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plan generation.  For example, given 2.0=σ  and the strand with its associated probabilities as 

depicted in Figure 3-13, links that intersect within the dotted area are admissible for 

consideration in the network, whereas those links that intersect the strand within the brick area 

are excluded from the network.  Flight plans that are generated using this tool satisfy a specified 

minimal threshold safety level and, as prescribed earlier, are then assigned a weather delay factor 

based upon their expected delay times, which are in turn applied within the APCDM. 
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Figure 3-13:  Example of the Admissible Portion of a Probability Strand. 
For illustrative purposes, Figure 3-14 shows an en route air chart for the Salt Lake City 

area.  Superimposed on the air chart are the six MOS reporting sites (linked by an adjacency 

threshold) that are near Salt Lake City.  Given an instance when the probability on strand A 

exceeds σ  (using the linear interpolation SIPV approach), the two flight routes that intersect 

strand A would be restricted from inclusion in a flight plan.  With respect to APCDM, if all the 

flight plans submitted for flight f contain a trajectory link that intersects a strand exceeding σ , 

the only remaining flight plan within the surrogate that would be selected is the cancellation plan 

if offered by the airline. 

 

Figure 3-14:  Air Chart with Corresponding MOS Reporting Sites. 
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3.6. Probability-Net Refinement 

Two critical components within the construction of the probability-nets are the selection 

of the adjacency threshold and relative strand probabilities.  Each will have an impact on the 

resulting weather delay factor, which is a function of the flight plan exit probability.  The 

accuracy of the probability-nets is also dependent upon the number of reporting sites used as the 

linkage points.  Inclusion of all MOS reporting stations will generate the most refined 

probability-nets possible.  A reduction in the number of reporting stations used will undoubtedly 

decrease the computational effort required, but at a price in terms of accuracy.  We inherit 

another problem when reducing the number of reporting stations in that we cannot afford to 

indiscriminately select the reporting sites to remove.  The haphazard removal of reporting sites 

could denigrate the model’s effectiveness, potentially allowing the selection of poor flight plans 

that have a higher likelihood of experiencing severe weather.  Therefore, given the latitude and 

longitude of each MOS reporting site, we propose the application of a k-means cluster algorithm 

to reduce the number of sites, as depicted in Figure 3-15 for Florida where we reduced the 

number of links from 59 to 15.  The centroid of each cluster becomes a reporting faux-site.  The 

probability associated with the faux-site is determined by either averaging the probabilities of 

each reporting site located within the cluster or by assigning the highest probability within the 

cluster to the faux-site.  By specifying the number of clusters, we can create various levels of 

refinement.  We will illustrate the economic benefits associated with various probability-net 

refinement levels, from a very coarse representation to the maximum refined level (inclusion of 

all MOS reporting sites), using cluster analysis.  The next chapter provides details for flight 

generation, delay estimation, and economic impact analysis, along with computational results 

using the different weather-related modeling constructs proposed herein.   

 
Figure 3-15:  Example of Reporting Site Clusters (k = 15).

 



 

Chapter 4 

Flight Generation, Probabilistic Delay Estimation, and Economic Impact 

Using the Proposed Weather-Based Models  
 

In this chapter, we perform experiments to evaluate our probability-net concept and its 

application in support of the weather-induced decision-making process.  We start by evaluating 

the retrieval of the essential probability data along with the characteristics of various probability-

nets by altering adjacency thresholds and applying our three SIPV approaches.  Second, we 

examine the utilization of our probability-nets as a flight-plan-generation tool.  Third, we provide 

a probabilistic analysis to derive weather delay factors for inclusion within the APCDM model 

and its sub-modules.  We conclude with an assessment of the economic impact of various 

probability-net refinements using a k-means cluster analysis approach.  Additionally, we provide 

an alternative economic impact assessment using decision theory techniques.  The test cases for 

our computational experiments were constructed using real data based on the Enhanced Traffic 

Management System (ETMS) flight data information.  Our weather scenarios were derived from 

the Model Output Statistics (MOS) forecast data provided by the National Weather Service.  All 

reported computations have been performed on a Dell Inspiron 8500 laptop computer equipped 

with a 2.0 GHz Pentium 4 processor and 256 Mb Random Access Memory, and running the 

Microsoft Windows XP operating system. 

 With our focus on the Continental United States (CONUS), we used probabilistic weather 

data from 1,395 MOS reporting sites and excluded those sites located in Hawaii, Alaska, the 

Western Pacific Islands (Guam, Saipan, etc.) , and the Mid Atlantic (Cuba, Puerto Rico, and the 

Virgin Islands).  Using an initial adjacency threshold of 50 kilometers, the computational time 

required to extract the essential weather data (inclusive of time intervals and ceiling data) from 

all reporting sites, along with the time required to determine adjacency relationships between all 

reporting site pairs, was a mere 8.271 cpu seconds.  Of the 1,395 reporting sites, 73% have at 

least one adjacent site within 50 km, whereas 97% have a least one adjacent site within 100 km.  

An increase in the adjacency threshold would obviously generate a denser probability-net, which 

in turn would increase the number of computations required as a flight traverses the airspace.  

Figure 4-1 depicts two separate probability-nets with adjacency thresholds of (a) 100-km and (b) 

150-km, respectively.  By increasing the threshold by only 50 kilometers, we greatly increase the 
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number of strands along with the required number of computations.  For illustrative purposes, we 

constructed the probability-nets in Figure 4-1 using all the CONUS reporting stations.  During 

our analysis of the flight plans, the probability-nets will contain only those reporting stations 

having an associated probability value exceeding 0.05. 

 
Figure 4-1:  Probability-Nets with 100-km and 150-km Adjacency Thresholds. 

4.1. Extracting Exit Probabilities for Test Sets 1 and 2  

To gain a perspective on the probabilistic weather impact, we used the first two test sets 

in Table 4-1 from Sherali et al. (2006).  Using the first test set, comprised of 180 flight plans (six 

flight plans each for 30 flights), we evaluated the efficiency of our algorithm by varying both the 

adjacency threshold and the three SIPV approaches defined in Chapter 3.  We selected a 

particular MOS data set guaranteeing that a portion of the flight plans in Test Sets 1 and 2 would 

intersect the constructed probability-nets.  Table 4-2 presents the detailed computational results 

for Test Set 1.  In addition to the computational effort required to extract the exit probabilities, 

Table 4-2 provides the results for the maximum exit probability computed over all the flight 

plans for each SIPV approach and the number of flights that have an exit probability greater than 

0.50. 

Notice that the maximum probabilities associated with the 50 km adjacency threshold are 

significantly higher than the maximum probabilities for the other adjacency thresholds.  This is a 

result of the density of the probability-net.  As mentioned earlier, only 73% of all MOS reporting 

stations have at least one adjacent site within 50 km.  Consequently, a particular region of the 50-

km probability-net became strand-free, and a flight traversing this region perceived the weather 

situation as one represented by multiple probability-nets instead of a single one.  Hence, the 

algorithm generated a correspondingly higher exit probability for all three SIPV approaches.  
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This particular probability-net phenomenon was not encountered using adjacency thresholds of 

100 km or more.  Therefore, all future probability-nets will have an adjacency threshold of at 

least 100 km. 

Table 4-1: Test Data Sets for Evaluating Convective Probability-Nets. 
 

Number of Flights 30 80
Surrogates per Flight 6 6
Centers ZMA/ZJX ZMA/ZJX
Number of Airlines 5 5

AAL: 10 AAL: 18
ABX/ACA/AMT: 5 ABX/ACA/AMT: 5
CAA: 7 CAA: 7
COA: 3 COA: 25
DAL: 5 DAL: 25

Test Set 1 Test Set 2

Airlines: Flights per Airline

 
Table 4-2:  Adjacency Threshold and SIPV Approach Results for Test Set 1. 

SIPV Approach
Adjacency Threshold Measures Lower Bound Upper Bound Linear Interpolation Time (cpu seconds)

50 km Max Prob: 0.657 0.668 0.657
# Plans > 0.5: 20 20 20

100 km Max Prob: 0.495 0.584 0.517
# Plans > 0.5: 0 18 14

150 km Max Prob: 0.428 0.577 0.509
# Plans > 0.5: 0 17 6

200 km Max Prob: 0.428 0.606 0.509
# Plans > 0.5: 0 30 6

250 km Max Prob: 0.428 0.606 0.509
# Plans > 0.5: 0 42 6

300 km Max Prob: 0.428 0.635 0.509
# Plans > 0.5: 0 102 6

186.18

192.22

173.14

174.76

177.42

181.71

 

As we increased the adjacency threshold beyond 150 km for Test Set 1, the maximum 

probability values for the lower bound and linear interpolation SIPV approaches level off, 

whereas those for the upper bound method increased as indicated in Table 4-2.  This increase is a 

function of the strand length.  By increasing the adjacency threshold, we may include a 

probability-net strand that has a large probability associated with one of the endpoints (MOS 

reporting site) and, consequently, incur exit probabilities that exceed previously realized 

probabilities for smaller threshold distances.  However, if the reporting site having the large 

probability value is relatively far from the flight trajectory, it should in reality have a minimal 

impact on the exit probability (see Figure 3-12).  Therefore, we conclude that, while the upper 

and lower bound results provide added information, the linear interpolation method provides the 

most appropriate results for determining exit probabilities.  The computational effort required for 

Test Set 2 (see Table 4-3) indicates that our proposed algorithm can generate probability-nets 
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and flight related exit probabilities in a sufficiently timely fashion to support strategic level flight 

planning. 

Table 4-3:  Computational Effort for Test Set 2. 

Adjacency Threshold Time (cpu seconds)
100 km 435.79
150 km 441.42
200 km 452.7
250 km 461.27
300 km 469.2  

 

4.2. Superimposition of a Flight-trajectory-grid Network 

 As detailed in Section 3.5, we can generate flight plans that are within a specified 

threshold of circumventing severe weather by superimposing a flight-trajectory-grid network 

onto the probability-nets.  We constructed our initial flight-trajectory-grid network using the U.S. 

Navigational Aids (Navaids) consisting of 2710 points as the network nodes.  To reduce the 

computational effort required to generate the time-dependent shortest path between a pair of 

origin (O) and destination (D) airports, we then curtailed the size of the network under 

construction based on the Ellipsoidal Region Technique developed by Sherali, Hobeika, and 

Kangwalklai (2003).  Unlike their technique, which involves multiple ellipsoidal regions for 

assessing various elements of ground transportation, we need to consider only one ellipsoidal 

region that represents a natural widening of the airspace as the aircraft departs from O followed 

by a natural decrease of the airspace as the aircraft approaches D (see Figure 4-2).  The length of 

the major axis of our ellipsoidal region is taken as ODγ , where 1>γ  and OD  is the great 

circle distance from O to D.  The curtailed network nodes would then consist of all Navaids (NA) 

within the closed ellipsoidal region.  The arcs between the nodes represent feasible flight 

segments and are labeled with the distances between the Navaids using the great circle distance 
*formula since each Navaid point is identified by its longitude and latitude.  Temporary flight 

                                                 
* Let ),(and),( 2211 λφλφ  be the (latitude, longitude) vectors for two locations, respectively.  If r is the great-
circle radius of the sphere, then the great circle distance is θr , where θ  is calculated by (see Wikipedia, 2006, for 
example): 
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restrictions such as Special Use Airspaces (SUA) and over-water flights can be accommodated 

by removing the arcs in our curtailed network that intersect the boundaries of the restricted areas. 

O

D

NA

O

D

O

D

O

D

NA

NA

Included in the
reduced network

Excluded from the 
reduced network

O

D

NA

O

D

O

D

O

D

NA

NA

Included in the
reduced network

Excluded from the 
reduced network

 
Figure 4-2:  Ellipsoidal Region. 

To illustrate the generation of a flight plan in the presence of multiple probability-nets, 

we selected a flight from Seattle to Miami departing at 0800 hours on April 17, 2005.  We 

constructed a flight-trajectory-grid network using an ellipsoidal region specified by 25.1=γ  (as 

prescribed by Sherali et al. (2003) based on their extensive experiments).  Using the MOS data 

corresponding to the flight departure date and time, we then constructed two severe weather 

probability-nets that are intersected by the weather-independent shortest path from Seattle to 

Miami (4,378 km).  As indicated in Figure 4-3, when specifying a threshold strand probability of 

15.0=σ , the shortest path from Seattle to Miami increases (to 4,427 km) as the flight route 

circumvents the strands having intersection probabilities exceeding σ .  As expected, the shortest 

path continues to increase in distance as we further reduce σ .  Note that the time-dependent 

shortest path algorithm considers the fact that both the location and structure of the probability-

nets are time-varying.  For example, if the Seattle to Miami flight departed twelve hours later, 

the time-dependent shortest path would coincide with the weather-independent shortest path as 

the predicted severe weather veers to the northeast. 

Probability-Net
Shortest Path (SP)
SP Threshold = 0.15
SP Threshold = 0.12
SP Threshold = 0.10

 
Figure 4-3:  Flight Trajectories Relative to Strand Thresholds. 
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4.3. Incorporating Weather Delay Factors within APCDM  

In order to demonstrate the potential benefits of our probability-net concept, we need to 

generate suitable delays as a function of (a) the exit probability, , for plan p of flight f and/or 

(b) the threshold strand probability 

fpEP

σ .  The most significant challenge in generating appropriate 

weather delay factors for inclusion within the APCDM model is in determining a relationship 

between forecasted probabilities and the actual airport delays resulting from realized severe 

weather.  While no historical data exists that relates probabilistic severe-weather encounters to 

actual airport delays, the FAA does maintain historical weather delay data records within the 

Aviation Service Quality Performance (ASQP) and the Aviation System Performance Metrics-

Complete  (ASPM-Complete) databases for 75 major airports, extending as far back as January 1, 

2000 (FAA, 2006).  From this data, we can extract daily, monthly, and yearly average delays 

(minutes) for arriving aircraft as a function of the impact from en-route thunderstorm activity, 

where ASQP and ASPM-Complete define impact as a categorical variable specified by ∈impact  

(None, Minor, Moderate, Severe).  This categorical value is related to the number and intensity 

of the storm(s) encountered throughout the flight trajectory as reported by up to five Air 

Transportation Oversight System (ATOS) stations (FAA, 2006). 

Initially, we considered a rather simple approach in which we could partition the range of 

exit probabilities to match the four categorical impact values.  Using six years of historical data 

for the destination airport, this would enable us to compute the average delay in minutes for each 

impact value.  Given any flight plan, we could then determine the exit probability and, 

subsequently, output the average delay in minutes as a function of the impact value associated 

with the exit probability.  This approach, however, has two significant drawbacks.  First, note 

that the delay data acquired from the ASQP and the ASPM-Complete databases is not likely to 

be purely weather-based, in that it involves other airline-related factors such as equipment, crew, 

and departure slot availabilities.  Second, this approach maintains the status quo in terms of 

historical average delay in minutes based on a wide impact category specification and, thus, 

would mask the relevant detailed information available via our probability-net concept.  

Accordingly, we propose a more in-depth procedure that accommodates the concepts developed 

above regarding exit probabilities and flight plan generation using the ellipsoidal region 

technique, based on a specified threshold strand probability σ . 
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To motivate this procedure, we generated four flight plans as a function of different 

threshold strand probabilities σ  for a single flight from Albany (ALB) to Las Vegas (LAS)  

scheduled to depart at 1930Z (1530 EDT) on April 18, 2005.  The aircraft type for this example 

is a B737-700 with an economical cruising speed of 850 km/h (Boeing, 2006).  Figures 4-4(a) 

and 4-4(b) respectively depict the probability-nets for convective weather at various probability 

intervals, and the four resulting flight routes using different threshold probabilities.  In the 

absence of severe weather, the arrival time associated with the shortest path (3591.5 km) is 

estimated at 0001Z on April 19 (1701 PDT, April 18) using the ASPM-Complete historical data, 

which also corresponds to the departure and arrival times listed in the OAG.  When we 

superimposed the flight-trajectory-grid network onto our probability-nets and generated a flight 

plan based upon a small value for the threshold strand probability ),( εσ =  where 01.0=ε  for 

this example, the resulting time-dependent shortest path increased the total distance to 4106.3 km 

(an increase of 514.8 km).  Historical records for the past month indicate that the average ground 

speed for this route (east-west route) is approximately 650 km/h due to atmospheric effects 

(FlightAware, 2006).   Therefore, using this average ground speed as opposed to the economical 

cruising speed, the ε -threshold delay is computed as 47.52 minutes.  We will address the other 

time-dependent shortest paths that are displayed in Figure 4-4(b) for 20.0=σ  and 30.0=σ  

later in this section. 

ALB

LAS

[0.00, 0.20) [0.20, 0.30) [0.30, 0.40] >0.40 Shortest Path σ=0.01 σ=0.20 σ=0.30

(a)                                                                           (b) 

Figure 4-4:  Albany to Las Vegas Example. 
 

As illustrated in the previous example, when generating flight plans using a threshold 

strand probability σ , we are capturing delays and trajectory times in a probabilistic sense.   For 
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instances in which a GDP is executed, there is an arrival slot for a particular flight plan and the 

associated departure time is determined by tracing the trajectories back to the corresponding 

origin.  So, while the delay is based on that slot time, its value holds with a probability of )1( σ− , 

which is the probability with which severe weather is circumvented.  For non-GDP (non-slot-

based) flights, our approach in APCDM considers different alternative departure and arrival 

times, and for each case, it generates a path through the probability-nets as above to obtain a 

delay having an estimated probability of )1( σ− .   

Suppose that for some flight f, we have delays d1 and d2 (resulting from increased flight 

plan distances) using threshold probabilities of σ  andε , respectively, as depicted in Figure 4-5.   

O D
delay d1 (using σ threshold)

delay d2 (using threshold of zero (or ε))

O D
delay d1 (using σ threshold)

delay d2 (using threshold of zero (or ε))

 
Figure 4-5:  Illustration of Delay as a Function of σ. 

Hence, we can estimate that the delay for the planned flight trajectory p will be d1 with 

probability )1( σ− , and the delay will be greater than d1 with probability σ .  Assuming in the 

latter case that the delay is uniformly distributed between d1 and d2, given that d2 is generated 

with a near-zero threshold probability, we obtain a delay distribution function as depicted in 

Figure 4-6. 

 

1d 2d

σ=Area

)1(yProbabilit σ−=

1d 2d

σ=Area

)1(yProbabilit σ−=

 
Figure 4-6:  Delay Distribution. 

We can then determine the expected weather delay, , for plan p of flight f as a function of dEWD
fpt 1 

and d2 as defined by: 

 



Michael V. McCrea  Chapter 4. Flight Generation, Probabilistic Delay Estimation, and  67 
                                                   Economic Impact Using the Proposed Weather-Based Models 

( ) ,
22

1
2

1 21
21

1 dddddt EWD
fp

σσσσ +⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ +

+−=           (4.1) 

and include this expected weather delay within the delay cost Dfp in the original APCDM model, 

as explained in the sequel.   

We could refine this computation somewhat further by considering an intermediate 

threshold value σ ′ , where σσε <′< , and determining the corresponding delay  with respect 

to 

d ′

σ ′ .  In this case, we can then approximate the delay distribution by a two-step function as 

depicted in Figure 4-7.  Note that )1()delay( σ ′−=′≤ dP , and as before, we have that  

 and that the probability value 1)delay( 2 =≤ dP )1()delay( 1 σ−=≤ dP  is assumed 

concentrated on . 1d

 

1d d ′ 2d

)(Area σσ ′−=
σ′=Area

)1(yProbabilit σ−=

1d d ′ 2d

)(Area σσ ′−=
σ′=Area

)1(yProbabilit σ−=

 
Figure 4-7:  Two-step Distribution Function. 

 

Accordingly, the expected weather delay can be computed as: 

 ,
2

)(
2

)()()1( 21
1

dddddt EWD
fp

+′′+
′+′−+−= σσσσ             (4.2) 

which can then be incorporated within the delay cost Dfp of APCDM as discussed below.  Note 

that when either σσ =′  (whence 1dd =′ ) or 0=′σ  (whence 2dd =′ ), Equation (4.2) coincides 

with Equation (4.1), as it should.   

 Returning to the ALB-LAS example, flight plans generated using threshold strand 

probabilities of 30.0=σ  and 20.0=′σ  increased the total flight distance by 51.2 km and 103.4 

km, respectively, when compared to the weather-independent shortest path.  Using the average 

ground speed of the aircraft, the associated trajectory delays are approximately 4.73 and 9.54 

minutes, respectively.  Letting ,73.41 =d  ,54.9=′d  and 52.472 =d  minutes, the one-step 
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approximation yields  via (4.1), whereas the two-step approximation results in 

 minutes via (4.2).  Note that by selecting 

14.11=EWD
fpt

73.9=EWD
fpt σ ′  appropriately, one can better account 

for the long-tailed effect of the distribution, in contrast with the one-step approximation. 

With increased computational effort, we could further refine our approximation of the 

delay distribution by utilizing a three-step function based on selecting another intermediate 

threshold value σ ′′ , where σσσε <′<′′< , and determining the corresponding delay d ′′  with 

respect to σ ′′  (see Figure 4-8).  Similar to the two-step approximation, note that for the present 

case we have ),1()delay( σ ′−=′≤ dP  ),1()delay( σ ′′−=′′≤ dP  ,1)delay( 2 =≤ dP  and 

≡= )delay( 1dP ).1()delay( 1 σ−=≤ dP  
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Figure 4-8:  Three-step Distribution Function. 

 

Likewise, the expected weather delay to be included within the delay cost Dfp of APCDM can be 

computed as: 

 .
2

)(
2

)()(
2

)()()1( 21
1

dddddddt EWD
fp

+′′′′+
′′+′′′−′+

′+′−+−= σσσσσσ          (4.3) 

Continuing with our example, the delay for the threshold value 15.0=′′σ  is , which 

results in  minutes using the three-step approximation.  (Note that for this instance, 

the three-step approximation is not monotone decreasing as depicted generically in Figure 4-8, 

and provides a more reliable delay estimation based on recognizing this feature of the underlying 

distribution.)  

39.27=′′d

56.10=EWD
fpt

Once we have obtained the expected weather delay, we can determine a weather delay 

factor for the given flight plan.  The original APCDM model delay cost  in (3.3) contains an fpD
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arrival delay time expressed as { }*,0max ffp
d
fpt ττ −= , where  is the originally scheduled 

arrival time of a given flight f, and 

*
fτ

fpτ  is the arrival time for a particular flight plan p of the flight 

f.  Now let  be the trajectory delay pertaining to a particular flight plan p of f based on the 

threshold strand probability 

σ
fpd

σ .  This trajectory delay, as previously stated, is determined by 

calculating the time required to travel the additional distance in order to circumvent the severe 

weather.  From our ALB-LAS example,  for 1dd fp =
σ 30.0=σ .  Since  is the delay 

associated strictly from the flight trajectory, it is already included in the arrival delay time  

based on the structure of our flight data sets.  Therefore, to prevent from double counting the 

delay generated solely by the flight trajectory, we define the weather delay factor or disruption 

factor, , as follows:  

σ
fpd

d
fpt

w
fpt

σ
fp

EWD
fp

w
fp dtt −= .             (4.4) 

Note that we cannot just replace  with , because  may contain other delays associated 

with equipment, crews, etc.  This weather related delay factor is then added to the arrival delay 

time  in the delay cost in the original APCDM model yielding: 

d
fpt EWD

fpt d
fpt

d
fpt fpD

( )( )( )( )δf
c
f

w
fp

d
fpfp ldttD += .            (4.5) 

By generating flight plans based upon a given threshold strand probability σ , the two-

step approximation ensures that we are using purely weather-related information in the 

derivation of the weather delay factor.  Figure 4-9 presents a flow-chart that summarizes the 

entire procedure for incorporating weather effects within the APCDM model.  Once we obtain 

the flight surrogates from the participating airlines, we check if the flight plans within the 

surrogate were created using our proposed flight plan generation tool.  If an alternative tool is 

used to generate the flight plans, the associated threshold probability pσ  can be determined for 

each such surrogate plan p using the corresponding exit probability defined earlier.  This step is 

critical in order to compute the value for  in (4.4).  We can then use the two-step approach 

(or the three-step approach if the time and the relevant delay and threshold information are 

available) in order to generate the relevant weather delay factors for inclusion within the 

modified delay cost in (4.5).  Furthermore, observe that given 

EWD
fpt

σ , we could additionally restrict 

the admissible arcs in the overlaid grid network to generate alternative surrogates that 
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circumvent the weather system with the specified probability σ−1  from different sides of this 

system (refer to Figure 4-10 for an illustration), in order to promote the ultimate generation of a 

desirable mix of flight plans via the APCDM model from the viewpoint of collision risk and 

sector workload contributions.            

Collect flight surrogates from the 
participating airlines.  For each 
surrogate, perform the following.

Was the surrogate 
created using the proposed

flight plan generation
tool?

Determine the associated
value for σ using the exit-
probability approach with 
respect to the intersected 
strands.   

No

Yes

Calculate        and adjust 
the overall delay cost 
within the APCDM model.

w
fpt

fpD

Execute APCDM to select an 
optimal set of flight plans 
subject to workload, safety, and 
equity considerations. 

Collect flight surrogates from the 
participating airlines.  For each 
surrogate, perform the following.

Was the surrogate 
created using the proposed

flight plan generation
tool?

Was the surrogate 
created using the proposed

flight plan generation
tool?

Determine the associated
value for σ using the exit-
probability approach with 
respect to the intersected 
strands.   

No

Yes

Calculate        and adjust 
the overall delay cost 
within the APCDM model.

w
fpt

fpD
Calculate        and adjust 
the overall delay cost 
within the APCDM model.

w
fpt

fpD

Execute APCDM to select an 
optimal set of flight plans 
subject to workload, safety, and 
equity considerations.  

Figure 4-9:  Weather Delay Factor Flow-chart. 
   

By requiring airlines to generate flight plans that conform with the threshold strand 

probability σ , a situation could develop, as illustrated in Figure 4-10, where the flight plans 

increase the potential number of routes traversing a given sector.  This weather-related 

development underscores the importance of using the APCDM model to select an optimal set of 

flight plans.  For example, assume that flight plan #1 for each flight A and B is considerably 

longer in distance than the two alternative plans for each flight that intersect the sector depicted 

in Figure 4-10.  While both flights would prefer a shorter route, if the sector capacity is violated 

as a result of including the shorter routes for each flight in addition to the other flight plans (not 

shown) traversing this sector, the APCDM model might exclude either one or both of the routes.  

Additionally, there is the potential for fatal airspace conflicts as a result of the planned routes, 

which is also prohibited by the APCDM model.  Note that by applying our probability-net 

concept to strategic level flight planning, we could dynamically adjust sector capacities if the 

situation dictates such a requirement.       
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Figure 4-10:  Potential Increase in Sector Count. 
 

4.4. Evaluation of Economic Benefits Using k-means Cluster Analysis 

We begin our economic benefit analysis by generating various probability-net refinement 

levels and comparing the results against the most refined probability-net consisting of all MOS 

reporting sites having a probability greater than 0.05.  Using a k-means clustering heuristic, 

Figure 4-11 depicts two levels of refinement (k=200 and k=50).  The most refined probability-net 

(strands omitted for picture clarity) consists of 809 MOS reporting stations using MOS data for 

March 23, 2005.  The solid line represents a single flight plan from Chicago to Miami departing 

at 0523Z.  We will use this individual flight plan to assess the related economic advantages of 

having a more detailed MOS representation.  The departure and flight plan details are important 

since the probability-nets are dynamic with respect to time and space.  As the flight passes 

through the probability-net(s), we can generate a probability-footprint that acts as a record of the 

strand intersections and the associated probabilities from origin to destination.  A flight plan’s 

probability-footprint will differ for each level of refinement.  It is from these probability-

footprints that we extract the pertinent information for our economic benefit analysis.  Figure 4-

12 depicts a segment of the probability-footprints for the full probability-net using all 809 

pertinent MOS reporting stations and two less-refined probability-nets using 200 and 50 

reporting stations. 
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Figure 4-11:  Variations in Probability-Net Refinement. 
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Figure 4-12:  Probability-Footprints. 
 The economic benefit for a specific level of refinement stems from the value of 

information existing within the probability-footprint.  A closer look at the distance interval from 

1500 km to 1130 km in Figure 4-12 reveals the importance of the additional information found in 

the probability-footprint for the more refined structure.  Figure 4-13 illustrates this fact as we 

assess potential flight plans.  For this particular discussion, let us assume that the specified 

threshold strand probability is 23.0=σ  (i.e., the maximum allowed probability associated with 

the intersection of any strand and the flight plan).   If we use a probability-net consisting of only 
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200 reporting stations, there is a 345 km gap between two sequential strand intersections, as 

indicated in Figure 4-13.  Since neither point has an associated probability greater than 0.23, the 

minimum flight distance would be obtained by a straight line between the two waypoints 

illustrated by the line segment between the aircraft icon and the box labeled “k=200”.  In contrast, 

the probability-footprint associated with the most refined probability-net contains multiple 

intersections within the same 345 km interval.  More importantly, some of the intersection points 

have associated probabilities exceeding ,σ which induces an alternative flight plan (comprised of 

waypoints a and b) in order to prevent the higher probabilities of encountered severe weather 

from occurring. 
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Figure 4-13: Economic Benefit Illustration. 

Given that our focus is on strategic level flight planning, the related economic benefit is a 

function of the cost associated with the execution of each flight plan under different weather 

realizations.  Let us designate the plan consisting of the straight-line segment as Route A and the 

alternative plan as Route B.  In conjunction with these two routes, we define four scenarios; (1) 

Route B is executed and severe weather is not realized, (2) Route B is executed and severe 

weather is realized, (3) Route A is executed and severe weather is not realized, and (4) Route A is 

executed and severe weather is realized.  By allocating the resources (fuel, crews, gate times, 

 



Michael V. McCrea  Chapter 4. Flight Generation, Probabilistic Delay Estimation, and  74 
                                                   Economic Impact Using the Proposed Weather-Based Models 

etc.) required to support Route B, Scenario (1) will most likely result in an expected or on-time 

arrival, which translates to a potential reduction in overall operating costs.  Scenario (2) may 

incur a slight increase in delay time as a result of further route adjustments required to 

circumvent the severe weather.  However, these route adjustments will be minor when compared 

to those for Scenario (4).  (We shall clarify this point with an example later in this chapter.)  By 

allocating the same resource categories required to support Route A, Scenario (3) will more than 

likely result in an on-time arrival with lower operating costs when compared with Scenarios (1) 

and (2).  However, it should be noted that planning a flight route through forecasted severe 

weather is risky business.  The occurrence of Scenario (3) translates to a situation in which the 

flight planners beat the odds.  For Scenario (4), let us assume the worst case in that the flight is 

en route and has traveled some distance c (see Figure 4-13).  At this point in time, the weather 

situation necessitates the re-routing of the flight to waypoints a and b via the flight segment 

annotated by the distance d in Figure 4-13, thereby allowing the aircraft to circumvent the severe 

weather.  The operating costs associated with this scenario will exceed that for the previous three 

scenarios based on the increased flight distance.                                                   

  To further illustrate the economic benefit in relation to the four scenarios, we continue 

with the previous example consisting of a single flight f from Chicago to Miami.  A principal 

assumption regarding our economic benefit analysis is that the aircraft executes the APCDM- 

generated flight plan unless the presence of severe weather dictates additional route adjustments.  

The exit probability for a straight-line trajectory from the origin to the destination is 0.41.  

Therefore, let 41.0=σ  be the threshold strand probability for the direct route (shortest path), 

Route A, and let Route B be the alternative route generated using a threshold strand probability 

20.0=′σ  (an intermediate value).  In order to calculate the expected weather delay and weather 

delay factors, we included two additional routes corresponding to 10.0=′′σ  and 01.0=ε .  

Figure 4-14 depicts the four routes associated with these threshold values along with their 

respective distances from the origin to the destination.  Assuming an average ground speed of 

650 km/h, we get ,0.01 =d ,91.10=′d ,54.25=′′d  52.47 and 2 =d  minutes, which again 

represent the trajectory delays based on the differences between the trajectory distances and the 

shortest path distance.  The three-step approximation defined in (4.3) yields an expected weather 

delay of minutes for Route A, and the same distribution, but using Equation (4.2) for 14.6=EWD
fAt
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the portion to the right of d  for Route B yields an expected weather delay of 

minutes. Using (4.4), these expected delays result in weather delay factors of 

 and  minutes, respectively.  Note that these weather delay factors for the 

two routes provide an indication of the expected potential disruption to planned operations and 

connections beyond what is anticipated from the trajectory-based delay alone.  For example, if 

we planned, scheduled resources, and executed Route A, the additional probabilistic weather 

delay that we could expect with this plan is much greater than that associated with having 

planned, scheduled resources, and executed Route B.  This is compounded further when we 

apply the appropriate connection delay factors  in (4.5).              

′

73.13=EWD
fBt

14.6=w
fAt 82.2=w

fBt

c
fd

Shortest Path (1930.8 km)
σ= 0.20 (2048.2 km)
σ= 0.10 (2206.7 km)
σ= ε (2341.4 km)

 

Figure 4-14:  Flight Plans as a Function of σ. 
 

4.5. Expected Weather Delay and Disruption Factors Using a Decision-Theory Technique 

As an alternative technique, we present in this section a decision theory approach to 

determine expected weather delay and disruption factor computations.  Instead of using a delay 

distribution for estimating expected weather delays as prescribed in Section 4.3, we assume that 

the planned flight will be realized with probability )1( σ− , but with probability σ , severe 

weather will be encountered, by virtue of which the flight will be diverted in a specified fashion 

with respect to the ε -threshold route.  This pre-determination of an alternative route is the 

fundamental difference between this and the previous approach.   

Using the decision-making terminology prescribed by Marshall and Oliver (1995), let D 

be the set consisting of all the choices from which the decision-makers must make a single 
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selection, let X be an uncertain event (with an associated probability distribution) for which there 

are at least two outcomes, and let R be the set of rewards that are a function of the decision and 

the outcome of the random event.  For our example, D consists of the σ-threshold flight plans, X 

is the event that severe weather (SW) is realized or not, and the set R consists of the delay times 

relative to route selection and thunderstorm realization.  The associated decision tree with four 

scenario outcomes for our illustration example of Section 4.4 is depicted in Figure 4-15, where r1, 

r2, and r4 are the trajectory delay minutes for Scenarios (1), (2), and (4), respectively.  Suppose 

that for these four scenarios, the decision to alter the flight route will occur at some specified 

distance into the flight if severe weather is realized.  By assuming that Route A and Route B will 

be rerouted to the same point in order to circumvent the severe weather in Scenarios (2) and (4), 

we know that  based on the geometry of the problem.    From the decision tree, we can 

calculate expected weather delays for each route decision as follows: 

124 rrr >>

441.0) Route( rAE = , and  

21 2.08.0) Route( rrBE += . 

For our example, we assume that the decision to reroute a flight is made 200 km into the flight 

(since no strand intersections occurred within the first 205 km for each route), and if so, it is 

rerouted to the first waypoint on the ε-threshold route (see Figure 4-14).  Based on this reroute 

criteria, the corresponding delay times are ,91.101 =r   ,61.452 =r  and  minutes, 

resulting in expected weather delays of 21.55 and 17.85 minutes for Routes A and B, respectively.  

Therefore, by this analysis, the decision-maker would prefer Route B.  Note that while these 

expected weather delays were calculated using an alternative approach, the results still indicate 

that Route B is the better selection.           
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Figure 4-15:  Decision Tree for Routes A and B. 

 



Michael V. McCrea  Chapter 4. Flight Generation, Probabilistic Delay Estimation, and  77 
                                                   Economic Impact Using the Proposed Weather-Based Models 

 The delay times r1, r2, and r4 are a function of the average ground speed and the increased 

route distance as compared to the straight-line trajectory associated with Route A.  By removing 

the trajectory-related delay from the overall delay times, we can calculate a disruption time that 

is solely a function of the weather, thereby determining the weather delay factor for each branch 

of the decision tree.  For example, the disruption time for Scenario (1) is 0.0 minutes whereas the 

disruption time for Scenario (2) is 7.3412 =− rr  minutes.  Note that the expected disruption time 

is equivalent to the previously defined weather delay or disruption factor.  This weather delay or 

disruption factor for each of the Routes A and B equals 21.55 and 6.94 minutes, respectively. 

Again, the results indicate that Route B is the better selection when using the weather delay or 

disruption factor as the guiding criterion.  Intuitively, flight routes generated using larger 

threshold probabilities would tend to have larger disruption factors than those generated with 

smaller threshold probabilities.  Therefore, we must exercise caution in using the disruption 

factor by itself as a decision criterion (as indicated below).   

These decisions above, however, are based upon only two routes.  Given that we have 

planned flight trajectories and distances from the previous approach corresponding to the 

threshold strand probabilities 10.0=σ  and εσ = , we can expand the decision tree as depicted 

in Figure 4-16.  Note that there is no random event in the decision tree for the decision related to 

the selection of the ε -threshold route since this route circumvents any severe weather 

probabilities.  The delays on the right-hand side were computed under the same assumption that 

the decision to reroute a flight is made 200 km into the flight, and if so, it is rerouted to the first 

waypoint on the ε-threshold route.  In addition to the corresponding delay times, we also display 

the associated disruption times.  The resulting expected weather delays and disruption factors are 

shown in Table 4-4.  Once again, the results indicate that the best decision, based on the expected 

weather delay, is to select the route generated using 20.0=σ (the previous Route B).  However, 

the best decision based on the disruption factor is naturally associated with the route generated 

using 01.0== εσ , which essentially removes any chance of encountering severe weather.  

Therefore, a decision-maker may chose to adopt some weighted compromise between delay and 

disruption in making a route selection.  Viewing Table 4-4, the route corresponding to 20.0=σ  

appears to strike a reasonable compromise between these two factors.       
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Figure 4-16:  Decision Tree for Flight Plan Selection. 

 

Table 4-4:  Expected Weather Delay and Disruption Factors. 
σ Expected Delay (minutes) Disruption Factors (minutes)

0.41 21.55 21.55
0.20 17.85 6.94
0.10 26.89 1.34
0.01 37.98 0.00  

 
 Recall that a key assumption in this example is the designation of the reroute decision 

point at 200 km into the flight, which stemmed from the proximity of the forecast probabilities to 

the various routes.  Since this reroute decision point can be made earlier, we experimented 

further to determine the expected weather delays when (a) the decision to reroute the flight is 

made 100 km into the flight, and (b) the reroute decision is made 50 km into the flight.  We also 

computed expected weather delays and disruption factors using additional values of σ .  Figures 

4-17 and 4-18 graphically portray the results for each reroute decision point distance.  The 

smallest expected weather delays correspond to 25.0=σ  regardless of the location of the reroute 

decision point.  While the smallest weather delay factor naturally corresponds to the ε -threshold 

route, the route corresponding to 20.0=σ  once again appears to strike a reasonable compromise 

between the expected weather delay and the disruption factors.            
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Figure 4-17:  Expected Delays for Strategic Level Planning. 
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Figure 4-18: Disruption Factors for Strategic Level Planning. 

 
Strategic level flight planning without regard to severe weather can significantly increase 

airline operating costs as a result of excessive delays.  While there exist inherent difficulties in 

forecasting severe weather, it is economically beneficial to plan flight trajectories in accordance 

with the probabilistic incidence of severe weather rather than to ignore it and have to non-

optimally readjust flight plans en route.  Through a discrete representation of severe weather 

probabilities, the superimposition of a flight-trajectory-grid network upon our probability-net 

concept provides the airlines with the capability to generate flight plans that circumvent the 

severe weather based upon a given probability threshold.  By including our proposed weather-

modeling concepts along with the derived trajectories and their associated delay factors within 

 



Michael V. McCrea  Chapter 4. Flight Generation, Probabilistic Delay Estimation, and  80 
                                                   Economic Impact Using the Proposed Weather-Based Models 

the framework of the APCDM model, planners can effectively account for probabilistic weather 

and generate a set of optimal flight plans that circumvent potentially severe weather with an 

acceptable threshold probability, while considering issues related to sector workloads, airspace 

conflicts, as well as overall equity concerns among the involved airlines.    

 



 

Chapter 5 

Modeling Slot Exchanges and Related Equity Concepts 
 

The primary inputs into the APCDM are the surrogate sets  associated with the flights 

.  The various surrogate plans for a given flight are differentiated by flight trajectories 

(altitude and path) and departure and arrival times.  The APCDM selects an optimal set of flights 

(one from each surrogate), which specifies the arrival time for each flight at the corresponding 

destination airport.  Once a GDP is imposed and the arrival capacity at the associated airport is 

reduced, the available slots are allocated to specific flights using RBS.  Hence, new arrival times 

are assigned to flights that are later than the originally scheduled times, which requires the re-

evaluation of selected flight paths with respect to sector workloads and conflict risks.  In addition, 

the acceptable trades are also subject to the same workload and conflict constraints.  Therefore, 

an additional set of inputs for the APCDM is required that relates acceptable trades and their 

associated flight plans.  In this chapter, we propose two slot-exchange approaches.  In addition to 

the equity terms and constraints developed by Sherali et al. (2006), we propose four additional 

equity methods specific to characteristics of trade offers.  

0fP

Ff ∈

 

5.1. External Slot-Exchange Approach 

5.1.1.  Package-Deal Generation  

Suppose that airlines submit “at-least, at-most” offers as defined by Vossen and Ball 

(2004).  As previously stated in Chapter 2, feasible trades are represented by the presence of one 

or more directed cycles within a slot offer network.  We define such an instance of feasible 

trades as a “package-deal”.  Note that based on the number of participating airlines, the set of 

available slots, and the flexibility of the individual trade offers, there can exist several viable 

package-deals.  The flexibility of an individual trade offer is reflected by the length of the 

additional delay an airline is willing to accept in return for a reduction in the delay of a second 

particular flight.  For example, if the “at-most” offer corresponds to an adjacent slot, then the 

offer has limited flexibility, whereas an offer that accepts any of the next four later slots has 

increased flexibility.  Accordingly, let the package-deals be given by: 

81 
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Note that each package-deal corresponds to a union of directed cycles that represent a collection 

of selected flight plans based on an agreed-upon exchange mechanism, which is also feasible to 

the trade restrictions.     

Consider the following illustrative situation where due to weather conditions at Airport X, 

the FAA has reduced the airline arrival capacity by imposing a Ground Delay Program (GDP).  

Suppose that the execution of the RBS procedure produces the arrival slot allocations for 

Airlines A, B, and C as depicted in Figure 5-1, based upon their arrival times listed in the OAG.  

For example, flight #1 for Airline A (designated as A1) has been allocated the 0800 slot arrival 

time, and so forth for Airlines B and C.  Under the enhancements to the GDP, Airline A owns the 

0800-slot and thus, may consider offering that slot to another airline in return for a slot that 

reduces the delay for one of its subsequent flights.  Under the “at-least, at-most” offer restriction, 

each airline owning two or more slots can make an offer to increase the delay of some specified 

flight in return for a reduction in the delay of a second particular flight.  In this spirit, consider 

the offers from Airlines A, B, and C as shown in Figure 5-2.  A key assumption used in the 

Package-Deal Generation algorithm is that an airline will not allow a trade to occur in which a 

further delay is imposed on a flight without reducing the delay of another flight.  We refer to this 

as a trade restriction throughout the remainder of the dissertation. 

0800    A1
0804    C1
0808    A2
0812    B1
0816    C2
0820    B2
0824    B3
0828    A3

0800    A10800    A1
0804    C10804    C1
0808    A20808    A2
0812    B10812    B1
0816    C20816    C2
0820    B20820    B2
0824    B30824    B3
0828    A30828    A3  

Figure 5-1:  Slot Allocations from the Imposed GDP. 

In the example, Airline A has offered to increase the delay of flight #1 with an arrival 

time no later than the 0816 slot in return for moving flight #3 up to an arrival time no earlier than 

the 0816 slot, which corresponds to that flight’s earliest arrival time listed in the OAG.  Using 

the slot times as nodes and the “at-least, at-most” offers, we can represent the slot offers as a 
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directed network as depicted in Figure 5-3.  Acceptable trades, subject to trade restrictions, are in 

the form of directed cycle(s) in this network.  Not displayed in Figure 5-3, but integral to the 

generation of package-deals, is the existence of a directed self-loop at each node.  This self-loop 

signifies the preservation of an assigned slot if no trades are accepted for that airline.  In most 

instances, more than one set of acceptable trades exists.  Therefore, a methodology is required to 

generate all possible trades that preserve feasibility to the trade restriction.  This is accomplished 

through the application of the Package-Deal Generation model. 
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Figure 5-2:  Airline Slot Offers. 
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Figure 5-3:  Slot Offer Network. 
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For notational simplicity, we designate slot time 0800 as node 1, slot time 0804 as node 2, 

and so on.  Based upon the directed network in Figure 5-3, let represent the selection of 

(and hence the trade represented by) the directed arc between the two slot times corresponding to 

nodes i and j, so that = 1 if the arc is selected and is 0 otherwise.  Under the offer 

format for each airline a, we define  as the flight specified for an increase in delay, and 

 as the flight specified for a decrease in delay.  We also, define  as the set of all later 

slots that airline a  is willing to accept, and let  be the set of all earlier slots that airline a  is 

willing and permitted to accept in return.  We use the following model to generate a set of 

directed cycles that represent acceptable trades, where is a prescribed benefit parameter 

associated with the arc (i,j).   

jiTR ,

jiTR , ),( ji

aFID

aFRD aLS

aES

jib ,

 PDG:             (5.2) ji
i j

ji TRb ,,Maximize ∑∑

             (5.3) ∑ ∀=
j

ji iTR ,1subject to ,

            (5.4) ∑ ∀=
i

ji jTR ,1               ,

  ∑ ∑
∈ ∈

∀≤−
a a

aa
LSj ESk

kFRDjFID aTRTR ,0               ,,               (5.5) 

  ).,(binary,               , jiTR ji ∀           (5.6) 

Constraints (5.3) and (5.4) in the model formulation are the standard assignment constraints that 

drive the generation of the required directed cycles by ensuring that the out-degree and the in-

degree of each node equals one.  Constraint (5.5) represents the trade restriction for each airline a.  

The inequality allows for the condition where a flight receives a delay reduction alone.  Note that 

our goal is to generate a variety of possible directed cycles that are feasible to the constraints.  

The formulation above, however, generates only one jointly compatible solution for each set of 

benefit parameters and specified trade restrictions.  Several runs of Model PDG could be used 

with varying parameters and offer restrictions to generate sets of package-deals that are 

acceptable to the involved airlines.  Such deals might, of course, also be formulated by airlines 

independently of using Model PDG.  Table 5-1 displays the resulting directed cycles for our 

example over different iterative runs.  Notice that the first model iteration resulted in a single 

directed cycle while each of the other iterations generated two directed cycles within the network.  
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(Nodes not listed in the cycles displayed in Table 5-1 maintained their assigned slots via the self-

loops.)  Each directed cycle represents a possible trade and specific unions of such cycles 

constitute admissible package-deals (see Table 5-2).  The two cycles from the second model 

iteration are acceptable trades individually since each relates to an “in-house” slot exchange for a 

particular airline and, therefore, can be represented as separate package-deals or combined in a 

third package-deal.   

Following the submission of trade offers from the participating airlines, we can therefore 

generate a number of package-deals that, in combination with other package-deals specifically 

proposed by the participating airlines, will serve as inputs into APCDM.  The next step involves 

the development of the constraints that would optimally select package-deals in concert with 

specific flight plans that correspond to the approved slot trades, while considering sector 

workloads, conflict risk, and equity issues. 

Table 5-1:  Directed Cycles Resulting from Different Runs of Model PDG. 
Model Iteration Set of Directed Cycles

1 {(1,4,8,6,2,5,1)}
2 {(2,5,2) (4,6,4)}
3 {(1,5,1) (2,4,8,6,2)}
4 {(4,8,6,4) (1,2,5,1)}  

Table 5-2:  Package-Deals Corresponding to the Cycles in Table 5-1. 

Package Deal Corresponding Cycle
1 (1,4,8,6,2,5,1)
2 (2,5,2)
3 (4,6,4)
4 (2,5,2) and (4,6,4)
5 (1,5,1) and (2,4,8,6,2)
6 (4,8,6,4) and (1,2,5,1)
7 (No Trades)  

    

5.1.2. Package-Deal Based Formulations 

Recall that the principal binary variable within APCDM is , which takes on a value of 

1 when the flight plan  is selected for flight f, and 0 otherwise.  The surrogate set  for 

each flight will contain a cancellation plan, one or more plans corresponding to the assigned slot, 

and one or more plans corresponding to each possible traded slot in any package-deal.  Note that 

fpx

0fPp∈ 0fP
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in this lattermost case, if more than one plan exists for some exchanged slot, then we construct a 

single dummy representative flight plan, say , for this collection.  Accordingly, let ),( dpf

⎭
⎬
⎫

⎩
⎨
⎧

=
 ),( planflight  tiverepresenta based-slot
  the todcorrpespon flight  of  plans :),(

,
d

pf pf
fppf

S
d

.          (5.7) 

Then, we incorporate the following constraint in APCDM: 

           (5.8) ∑
∈

∀=
dpf

d
Spf

dpffp pfxx
,),(

, .pairs),(such,

Hence, in what follows, for the flight plans recorded in each package-deal, we will assume that 

for any flight f associated with a particular slot at the GDP airport, there is a single representative 

plan. 

 The following constraint is accommodated within APCDM: 

                (5.9) ∑
∈

∀=
0

.,1
fPp

fp fx

Note that in case of multiple surrogate plans for a flight that pertains to a particular traded slot, 

 is assumed to contain the corresponding representative plan alone; hence, (5.9) is used in 

concert with (5.8).  Next, we represent the selection of a particular package-deal through the use 

of the binary variable, , where 

0fP

gy

         (5.10) ⎩
⎨
⎧

=
otherwise.  0

selected is  deal-package if  1 g
yg

Then we accommodate the constraints 

 GgPpfyx ggfp ,...,1,),(, =∀∈∀≥         (5.11) 

           (5.12) ∑
∈

∈∀=
fpPg

gfp TRpfyx ),(,

where 

     (5.13) { } tradedeal-package some ofpart  is flight  of  plan :),( fppfTR =

and where 

       (5.14) { } .),(,),( contains  deal-package : TRpfpfggP fp ∈∀=

Note that Constraint (5.11) asserts that if 1=gy  (package-deal g is selected), then each flight 

plan  associated with  must be activated ),( pf gP )),(,1( gfp Ppfx ∈∀= .  Moreover, Constraint 
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(5.12) ensures that if  for any 1=fpx TRpf ∈),( , then exactly one package-deal that contains it 

must  be selected (hence, in particular, the exchange prompted by 1=fpx  cannot be “double-

dipping” into more than one package-deal).  Furthermore, if 0=fpx , then  

which is also prompted by (5.11).  Note that it could be that some , but yet, 

, in that  could be a subset of the selected package-deals in such a 

solution.   

,,0 fp
g Pgy ∈∀=

0=gy

gfp Ppfx ∈∀= ),(,1 gP

 In addition, we could further tighten the model representation by constructing a package-

deal graph , where the set of nodes  represent the different package-deals ),( PDPDPD ANG = PDN

PDNGg ≡= ,...,1 , and for any pair of package-deals  that are not jointly compatible, 

we have an edge (undirected arc)  in .  Let 

21  and gg

),( 21 gg PDA },...,1,{ RrICr =  be a maximal clique 

cover for , where each  is a maximal clique of , in the sense that it is a clique of  

that is not a proper subset of a larger clique, and where .  

Then, we include the constraints 

PDA rIC PDG PDG

{ } PDr

R

r

GIC =
=

by  induced subgraph
1
U

           (5.15)  ∑
∈

=∀≤
rICg

g Rry .,...,1,1

The difficulty associated with the compatibility issue is finding the maximal clique cover.  

Using our previous example, we generated seven package-deals, .7,...,1=g  The corresponding 

package-deal graph is shown in Figure 5-4.  Each solid black edge represents an incompatibility 

between the incident nodes.  The compliment of the graph, PDG , is illustrated with the dashed 

red lines.  In essence, the graph PDG  uncovers the package-deals that are pairwise independent.  

Using this information, we prescribe a procedure, MCC, for generating a possible maximal 

clique cover.         

Figure 5-5 presents a flow-chart for the procedure MCC. The procedure begins with an 

initialization of the incompatible graph and its compliment along with the supporting ordered 

sets.  We begin the construction of the first maximal clique IC1 using the first node listed in the 

ordered set L1 and adding additional nodes into IC1 that meet the required adjacency conditions.  

Once a maximal clique is created, it is used to update the set L2 of nodes that are covered by the 

set of cliques generated thus far.  Treating L1 essentially as a circular list, the procedure MCC 
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continues by selecting the next node in L1 and making a complete circular pass through it to 

generate another distinct maximal clique as possible.  The procedure terminates when the set L2 

contains all the nodes of the graph GPD. 
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P5P6

P7

P1 P2
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P4

P5P6

P7

P1 P2

P3

P4
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Figure 5-4:  Package-Deal Graph, GPD. 
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Figure 5-5:  Flow-chart for Procedure MCC. 
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For our example depicted in Figure 5-4, the procedure MCC would begin by ordering the 

nodes having incident edges in the graph PDG  in order from highest to lowest in terms of node 

degree in PDG , and then ordering the remaining nodes from the graph  in order from highest 

to lowest node degree in .  This would produce the initial ordered set 

.  The construction of the first clique, , would begin with the 

inclusion of node  followed by the addition of all nodes that satisfy the clique adjacency 

criteria defined in the graph .  Following one complete pass through the ordered set , we 

get 

PDG

PDG

{ 76514321 ,,,,,, PPPPPPPL = } 1IC

2P

PDG 1L

{ }}765121 ,,,, PPPPPIC = , and the set  contains all the nodes listed in this first clique.  

Continuing this process, the procedure MCC produces the maximal cliques and maximal clique 

cover specified in Table 5-3.  Note that the above example contained only one clique in 

2L

PDG .  To 

illustrate a situation in which more than one clique exists in the compliment graph, consider the 

scenario in which an eighth package-deal   exists that is incompatible with all other package-

deals except   The procedure MCC described above would then produce the ordered set 

 along with the maximal cliques and maximal clique cover as 

shown in Table 5-4.  This completes the development of the package-deal based selection 

formulations (2.5b) and (5.7-5.15) that we propose for inclusion into the APCDM.     

8P

.5P

{ 761854321 ,,,,,,, PPPPPPPPL = }

Table 5-3:  Maximal Clique Cover and Individual Maximal Cliques.   

r IC
1 {2,1,5,6,7}
2 {3,1,5,6,7}
3 {4,1,5,6,7}  

 

Table 5-4:  Maximal Clique Cover and Individual Maximal Cliques Involving P8. 
r IC
1 {2,1,5,6,7}
2 {3,1,5,6,7}
3 {4,1,5,6,7}
4 {8,1,6,7}  
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5.2. Internal Slot-exchange Approach 

 The previous approach entails an external a priori generation of a number of package-

deals.  For the flights involved with the GDP-imposed airport, each package-deal concerns a 

subset of these flights for which it prescribes a flight plan for each flight that is part of a 

specified slot exchange scheme that is feasible to the trade restrictions, as well a flight plan for 

each flight that maintains its slot allocated under the GDP.  We now propose another approach in 

which package-deals are automatically generated as required within the APCDM model itself.  

Suppose that based on various offer schemes, we have a collection of exchange graphs 

 where each exchange graph  has a node set  corresponding to the 

related slots, and where each directed arc in  corresponds to a flight plan  that switches 

from the tail-slot to the head-slot.  For example, Figure 5-3 illustrates a particular exchange 

graph in which, for instance, arc (1,4) corresponds to Flight A1 adopting a designated flight plan 

that arrives at the GDP destination airport at time 0812.  Note that in case we wish to consider 

multiple flight plans corresponding to a given slot-trade (or arc) that might differ in their 

trajectories and departure times, we will maintain multiple corresponding arcs, each representing 

the particular plan.  Observe that we do not construct self-loop arcs pertaining to plans that retain 

the associated assigned slot for the corresponding flight in this approach.  The -variables 

pertaining to such flight plans would be directly accommodated within (2.5b), and if set equal to 

one, would therefore automatically imply the retention of the allocated slot.  Since the selected 

flight plans that constitute a valid exchange scheme within any graph  would be represented 

by directed cycles, with a node being involved in at most one such cycle, we formulate the 

following constraints: 

,,...,1),,( EeANG eee == eG eN

eA ),( pf

fpx

eG

          (5.16) ∑ ∑
∈ ∈

=∀∈∀≤=
e
k

e
kRpf Fpf

efpfp EeNkxx
),( ),(

,...,1,,1

where for each , and , we have  Ee ,...,1= eNk ∈

 { }kxpfR fp
e
k  node into coming arc reverse""a   toscorrespond  :),(=      (5.17) 

 { }kxpfF fp
e

k  node ofout  going arc forward""a   toscorrespond  :),(= .    (5.18) 

Hence, (5.16) requires flows to be circulatory, and to have at most a unit flow in each circulation 

or cycle, with at most one cycle involving any particular node. 

 



Michael V. McCrea     Chapter 5. Model Slot Exchanges and Related Equity Concepts 91 

 However, we also want to ensure that the trades prompted by the selected directed cycles 

satisfy the trade restrictions.  Toward this end, let  

         (5.19) { delayed be  tooffered is flight  : ffD = }
and for each , let Df ∈

 
}.flight  delayingaccept  order to in selected bemust  airline same

  the tobelongingflight  of  plansflight   theseof oneleast at  :),{(

f

fppfH f ′′′′=
   (5.20) 

Note that for any distinct flights  and  in D, we assume that 1f 2f 0
21

/=∩ ff HH .  Hence, an 

upward-move cannot by itself compensate for more than one downward-move.  Also, let 

 { ., ofdelay   the toscorrespond  plan : DffppDf } ∈∀=       (5.21) 

Hence, in any of the exchange graphs, if for some flight Df ∈ , we have that  for any 

, then at least one of  for 

1=fpx

fDp∈ pfx ′′ fHpf ∈′′ ),(  must also be 1.  This is enforced by the 

constraints 

          (5.22) ∑ ∑
∈ ∈′′

′′ ∈∀≤
f fDp Hpf

pffp Dfxx
),(

.,

While some slot exchanges may result in a significant improvement by reducing the net 

delay in passenger-minutes, the structure of the individual trade offers may result in a net 

increase in passenger-minutes of delay for one or more airlines.  In some instances, this might be 

acceptable for the corresponding airline as long as that airline’s primary concern was the 

acquisition of any earlier designated slot for the flight identified for an upward-move, in 

exchange for any designated later slot for the corresponding flight identified for the downward-

move in the related offer.  However, we could impose an additional restriction that for each 

airline, the realized net reduction in passenger-minutes of delay at the GDP-imposed airport due 

to upward- and downward-moves resulting from slot exchanges should be nonnegative.  To 

model this restriction, as well as our alternative equity concepts (formulated in Section 5.3), let 

us define the following additional parameters and coefficients, where all delays are measured 

with respect to the published OAG schedule. 

 
trA :  The set of airlines involved in the trade offers.   

fPAX :  The number of passengers associated with flight f. 
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fpD :  The delay (minutes) for plan p of flight f relative to the published OAG schedule.  (Note 

that ) ).,(,0 pfD fp ∀≥

GDP
fD :  The delay (minutes) for flight f based on the GDP assigned slot. 

 

The restriction on achieving a nonnegative net reduction in passenger-minutes (NRPM) of delay 

at the GDP airport for each airline can be formulated as follows: 

[ ] [ ] .,0
),(
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ADf Dp Hpf
pfpf
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fffpfp
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ff AxDDPAXxDDPAXNRPM

f f
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⎬
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⎧
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′′′′′′ α
α

α   (5.23) 

 Alternatively, given each offer of downward- and upward-moves, to complement (5.22), 

we could require that the corresponding net reduction in passenger-minutes of delay, given by {}⋅  

in (5.23), should be nonnegative.  This would permit the corresponding airline making the offer 

to specify additional downward-move slots for the related ,Df ∈  while ensuring that any such 

accepted delay is adequately compensated by an associated upward-move in terms of the 

resulting net reduction in passenger-minutes of delay.  This constraint can be formulated as 

follows, noting that this restriction requires each term within {}⋅  in (5.23) to be nonnegative, as 

opposed to the sum of such terms over  ., trAADf ∈∀∩∈ αα

 .,0][][
),(

DfxDDPAXxDDPAX
f fDp Hpf

pfpf
GDP
fffpfp

GDP
ff ∈∀≥−+−∑ ∑

∈ ∈′′
′′′′′′     (5.24) 

Observe that since  and  

(5.24) implies (5.22) in the integer sense, but not necessarily in the continuous sense of a linear 

programming (LP) relaxation.  Hence, even when we use (5.24), we retain (5.22) in order to 

tighten the underlying LP relaxation.  In Chapter 6, we experiment with the inclusion of either 

(5.23) or (5.24) in the overall model formulation to provide related insights on the effect this has 

on the resulting solutions. 

,,0][ ffp
GDP
ff DpDDPAX ∈∀<− ,),(,0][ fpf

GDP
ff HpfDDPAX ∈′′∀>− ′′′′

Remark 1.  Note that different flights typically have different fare-class passengers, and it might 

be in the interest of airlines to consider this feature in accounting for the economic consequence 

of passenger delays.  To accomplish this, instead of defining  simply as the number of 

passengers associated with flight f, we could compute this value as the total passenger revenue 

associated with flight f divided by the basic coach fare for that flight.  This redefined value of 

fPAX
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fPAX  could then be used in (5.23) and (5.24) above, as well as in the equity formulations 

discussed later in Section 5.3. □     

Accordingly, we formulate the slot-exchange APCDM model (designated SE-APCDM) 

as given by (2.5a-2.5o) plus (5.16) and (5.22), and optionally, (5.23) or (5.24).  Note that in 

(2.5b), the set  now includes all plans that represent either slot-trades or (possibly multiple) 

alternatives corresponding to retaining the assigned slot at the GDP airport, for each flight f.  

Moreover, the objective function considers the overall equity achieved among the airlines in this 

slot-exchange bartering process, and the model also ensures that the mix of flight plans selected 

are compatible with sector workload and conflict risk considerations.     

0fP

 To illustrate the concept of using multiple exchange graphs along with the foregoing 

slot-exchange mechanism, consider the set of trade offers depicted in Figure 5-6.  The trade 

offers submitted between 0800 and 0828 (above the line) are those specified in the previous 

example (see Figure 5-2).  In addition, we have multiple “at-least, at-most” offers from Airlines 

A and C as depicted in the lower half of Figure 5-6.  The trade offers of Figure 5-6 are 

represented by the two disjoint directed graphs  and  displayed in Figure 5-7.  For the sake 

of illustration, we have included multiple arcs from node 11 to node 9 in  to represent 

multiple possible surrogate flight plans for Flight A4 of Airline A, all of which have an arrival 

time of 0832.     
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Figure 5-6:  Expanded Trade Offer Example. 
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Figure 5-7:  Slot Offer Network for Expanded Example. 

To illustrate the generation of the circulatory flow constraint (5.16), consider node 11 

from graph G2.  Recall that the primary inputs for APCDM are the surrogate flight plan sets  

associated with the flights ,  and that each arc in the slot offer network represents a 

specific plan for a given flight.  For illustrative purposes, we have extracted node 11 and its 

adjacent nodes from Figure 5-7 and have depicted this relevant portion of  in Figure 5-8, 

where we have additionally affixed a label on each incident arc that lists the specific flight name 

and the flight plan number corresponding to the slot arrival time associated with the node.  

Notice the inclusion of the multiple flight plans (designated 2, 3, and 4) for Flight A4, which 

pertain to Airline A having submitted three separate flight plans with a slot arrival time of 0832.  

Observing Figure 5-8, we have the following sets for node 11 (k = 11) in graph G

0fP

Ff ∈

2G

2 (e = 2) as 

defined in equations (5.17) and (5.18): 

{ } { })4,4(),3,4(),2,4(),1,4(and)1,3(),2,5( 2
11

2
11 AAAAFCCR == . 

The corresponding circulatory constraint (5.16) for k  = 11 and e = 2 is thus given by  

 14,43,42,41,41,32,5 ≤+++=+ AAAACC xxxxxx . 
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To illustrate further, consider next the generation of the trade restriction constraint (5.22) for f = 

A5 , where from equations (5.19) – (5.21) and figures 5-6 thru 5-8, we have D∈

 { } { } { 2,1and)4,4(),3,4(),2,4(),1,4(,5,3,1,1,1 55 = }== AA DAAAAHACCBAD . 

The associated trade restriction constraint (5.22) can then be stated as follows: 

 4,43,42,41,42,51,5 AAAAAA xxxxxx +++≤+ . 
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Figure 5-8:  Flight and Plan Specification Labels. 
 

For the example depicted in figures 5-6 and 5-8, we formulated the complete set of 

circulatory flow constraints (5.16) and the trade restriction constraints (5.22).  In addition, we 

included the APCDM selection constraint (2.5b).  For illustrative purposes, we then contrived a 

simple submodel comprised of just these constraints, and with an objective function to maximize 

the number of allowable trades, as represented by the sum of the -variables associated with 

flight plans that are involved in a trade.  The solution generated by solving the resulting 

submodel using CPLEX 9.0 is shown in Figure 5-9.  The list on the right side of Figure 5-9 

highlights those slots that were traded along with the corresponding newly assigned flights.    

fpx

We now proceed to present various equity issues corresponding to slot exchanges, 

followed by some computational experience on embedding this slot-exchange mechanism within 

APCDM, resulting in the selection of a set of “trade-accepted” flight plans feasible to sector 

workload, conflict risk, and equity considerations. 
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Figure 5-9: Example Results. 
 
 
 5.3.  Equity Within Slot Exchanges  

Given a set of trade offers, the ideal situation regarding slot exchanges would be 

represented by the solution in which every airline incurs only slight increases in delays for the 

flights offered for downward-moves, while receiving more significant reductions in the delays 

for flights offered for upward-moves.  This ideal situation portrays an instance where both equity 

and efficiency are achieved simultaneously.  Unfortunately, this situation is rarely achievable and 

more often than not, the antithetical situation occurs for one or more airlines involved.  When 

addressing equity issues, Vossen et al. (2002), Tadenuma (1998), and others agree that efficiency 

and equity habitually conflict in that attempts to improve equity amongst the participants vying 

for a resource typically results in a reduction in the efficient distribution of that resource.  Luss 

(1999) discusses the shortfalls when applying minimax objective functions to situations 

involving equity, and subsequently provides a lexicographic minimax solution approach, which 

can be applied to both single and multiple resource problems.     
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In our situation involving possible slot exchanges, the resource considered is the 

collection of available arrival slots.  Vossen (2002) claims that the primary problem governing 

equity within resource apportionment resides in the “indivisibility” of the resource.  Hence, the 

problem becomes one in which an equitable solution attempts to attain at least a perceived quota 

for every participant involved (i.e., everyone receives a fair share).  Since each airline that 

submits a trade offer is allocated at least two slots at the arriving airport, our situation is not 

necessarily dependent on satisfying a quota in terms of the number of slots, but rather, also 

involves achieving equity within other “resource” categories such as fuel and delay costs as a 

result of the trade.  We prescribe five equity concepts with respect to potential slot exchanges, 

which rely on both existing approaches as well as newly developed ideas.   

Our first equity concept utilizes the collaboration efficiency paradigm that is embedded in 

the original APCDM model.  The collaboration efficiency for each airline is based on the fuel 

and delay costs incurred in the overall solution prescribed by the model in comparison to the 

corresponding costs related to individually optimized decisions.  Sherali et al. (2006) determine 

the total cost of executing a flight plan p of flight f  as 

,,...,1,, FfPpDFc ffpfpfp =∈∀+=                     (5.25) 

where Ffp and Dfp are the associated fuel and delay costs, respectively.  Note that while operating 

under a GDP, the delay is given by the (likely positive) difference between the scheduled arrival 

time and the actual arrival time, where the latter is either the arrival time corresponding to the 

allocated slot from RBS and Compression, or that pertaining to a new slot obtained via a slot 

exchange.  Therefore, using the scheduled arrival time for each flight as an input, we can 

determine both the fuel and delay cost depending on the selected flight plan as prescribed in 

Sherali et al. (2006), and use the APCDM model’s collaboration efficiency-based equity 

formulations.  This modeling construct is summarized below and is used as a foundation for 

several alternative equity formulations as discussed subsequently.   

 Given the cost factor specified in Equation (5.25), let us define a relative performance 

ratio as follows, where   fcc fpPpf
f

∀≡
∈

},{min*

 .,...,1,)( *
0 αα

α

α

α =∀=
∑

∑ ∑

∈

∈ ∈

Af
ff

Af Pp
fpfpf

cW

xcW
xd f         (5.26)    
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Based on this ratio, we define the collaboration efficiency as a linear function (see Figure 5-10) 

for each airline α  according to 

 .,...,1,
1

)()(
max

max ααα
α =∀

−
−

=
D

xdDxE          (5.27) 

 

)(xEα

)(xdα2.1max =D
(1,0)

1

)(xEα
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)(xdα2.1max =D
(1,0)

1

 

Figure 5-10:  Collaboration Efficiency. 
Accordingly, we then define the collaboration equity function as 

 ,         (5.28) 

and incorporate these efficiency and equity functions within the objective function using the 

terms 

∑−=
α

αααα ω )()()( xExExE e

 ∑ ∑+−
α α

αααα ωμωμ )()](1[ xExE eeD ,        (5.29) 

where, for a specified constant , we also restrict (as in (2.5o))  eEmax

 .,...,1,)( max ααω αα =∀≤ ee ExE          (5.30) 

Sherali et al. (2006) have conducted sensitivity analyses of the APCDM model using 

either a constant value for the maximum weighted inequity,  (prescribed as eEmax max
eE = 0.07/α ), 

or treating  as a variable while incorporating an additional objective term .  For the 

purpose of considering equity with respect to slot exchanges, we will limit our approach to the 

case where  is a constant in order to simply bound the weighted collaboration inequity, 

eEmax
ee Emaxmaxμ

eEmax

)(xE e
ααω , for each airline α , and avoid an additional embedded minimax structure via (2.5a) 

and (2.5o) when  is a variable.    eEmax
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The key idea behind the development of our four alternative equity concepts is to specify 

different performance ratios (5.26) and their related efficiency functions (5.27), and then use the 

same constructs as embodied by (5.28) – (5.30) above.  Toward this end, consider the following 

alternative definitions (a) – (d), where we focus on delays, assuming that the wind/weather 

optimized trajectory costs are compatible among the different surrogate plans for each flight.  

We define the following additional function to model these alternative equity formulations. 

 

∑
∈

≡
0

)(
fPp

fpfp
CDM
f xDxD :  The CDM-realized delay function for flight f. 

 

Method (a).  The relative performance ratio in this case measures the total average delay 

realized per passenger (or per weighted passenger – see Remark 1), and is given by 

 .,...,1,
)(

)()(
)(1 αα

α

α
α =∀=

∑
∑

∈

∈

Af
f

Af

CDM
ff

PAX

xDPAX
xd         (5.31) 

Observe that this performance measure encompasses all the flights αAf ∈ , for each airline ,α  

as opposed to simply those flights involved with the GDP-imposed airport(s).  Accordingly, as 

depicted in Figure 5-11, we define efficiency as 

 ,,...,1,)()( 1
max

11
max1 ααα

α =∀
−

=
D

xdDxE          (5.32)  

where  is some maximum passenger delay tolerance.  We will explore different values for 

this tolerance based on a computational sensitivity analysis.  

1
maxD

)(1 xEα

)(1 xdα
1
maxD
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)(1 xEα

)(1 xdα
1
maxD
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)(1 xEα

)(1 xdα
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Figure 5-11:  Efficiency Based on Average Delay per Passenger. 
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Method (b).  The relative performance ratio in this case represents the net savings in delay per 

passenger due to slot exchanges, and is given by 

 ,
)(

)]()[(
)(2

∑
∑

∈

∈

−
=

α

α
α

Af
f

Af

CDM
f

GDP
ff

PAX

xDDPAX
xd         (5.33) 

where for any flight not associated with the GDP-imposed airport(s),  corresponds to the 

delay with respect to the OAG schedule for the nominally assigned slot at that airport.  (Possibly, 

 = 0.)  Note from equations (5.31) and (5.33) that 

GDP
fD

GDP
fD

 ( ) αααααα

α

α ,...,1 say, ),()(
)(

)(
)( 12

max
12 =∀−≡−=

∑
∑

∈

∈ xdDxd
PAX

DPAX
xd

Af
f

Af

GDP
ff

.    (5.34) 

Let us assume that ,,...,1,)(0 1
max

2
max ααα =∀<< DD  else, this method shall revert to using 

Method (a).  Now, when , i.e., 0)(2 =xdα ( ) ,)( 2
max

1
αα Dxd =  we have that the CDM-realized 

average passenger-minutes of delay equals that corresponding to the set of nominally assigned 

slots.  In this event, let us assume that the efficiency achieved is some , where 

 (say, ; we shall experiment with different values of , which 

appears reasonable).  Then letting efficiency be defined as illustrated in Figure 5-12, using the 

previous relative performance ratio function  itself in lieu of , we get: 

%100 *p

10 * << p 8.0* =p 15.0 * <≤ p

)(1 xdα )(2 xdα

  
( )

( ) αα
α

αα
α ,...,1,

)()1(
)( 2

max

1*2
max2 =∀

−−
=

D
xdpD

xE .       (5.35) 

In contrast with Method (a), comparing figures 5-11 and 5-12, observe that the slope of the 

efficiency curve in Method (b) is different for each airline α , and is governed by the average 

GDP slot-based delay per passenger ( )α2
maxD  defined in (5.34). 

Remark 2.  Note that if  for any airline ]/)[(1 1
max

2
max

* DDp α−= α , then . Hence, 

given that 

)()( 12 xExE αα =

,,...,1,)(0 1
max

2
max ααα =∀<< DD  we could prescribe  as an average of the values 

that match the efficiency curves of methods (a) and (b), i.e., equal to 

*p

 ( )

( )
.1 1

max

1

2
max

*

D

D
p a α

α

α
α∑

=−=            (5.36) 
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We shall also experiment with  in our computations. □ *
)(

*
app =

)(2 xEα

)(1 xdα( )α2
maxD
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)(1 xdα( )α2
maxD

(0,0)

*p

)(2 xEα

)(1 xdα( )α2
maxD

(0,0)

*p

1

 

Figure 5-12:  Efficiency Based on Net Delay Savings per Passenger. 
 
Method (c).  The relative performance ratio in this case represents the proportion of downward-

moves accepted (in compensation of corresponding upward-moves), and is given by 

 ,,)(3 trADf Dp
fp

A
AD

x
xd f ∈∀

∩
=
∑ ∑
∩∈ ∈ α

α
α

α          (5.37) 

where  again is the set of airlines that have submitted trade offers.   Note that in achieving 

equity, the focus here is on the proportion of accepted trade offers at the GDP airport(s), as 

opposed to the overall impact this has on the average delay per passenger across all flights 

 as assessed by  and  in (5.31) and (5.34), respectively.  The efficiency 

measure, , in this case is also a linear function, but unlike the two previous cases, has a 

positive slope as shown in Figure 5-13, being simply defined as 

trA

αAf ∈ )(1 xdα )(2 xdα

)(3 xEα

 .          (5.38)  trAxdxE ∈∀= ααα ),()( 33
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Figure 5-13:  Efficiency Based on the Proportion of Downward Trades. 
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Method (d).  The relative performance ratio in this case also focuses on GDP airport(s), but 

measures an average value realized via upward-moves per offered downward-moves, and is 

given by 

,,)( ),(4 trADf Hpf
pfpf

A
AD

xV
xd f ∈∀

∩
=
∑ ∑
∩∈ ∈′′

′′′′

α
α

α
α             (5.39) 

where  is a predefined quantity that corresponds to a discrete, non-decreasing,  single 

dimensional value function, which is based on a delay reduction corresponding to the number of 

upward-move slots attained by the flight in the particular trade (see Figure 5-14).  Noting that the 

inequality (5.22) is likely to be satisfied as an equality in competitive situations, the definition in 

(5.39) is a generalization of (5.37), which, in effect, assumes a unit value of 

   

]1,0[∈′′pfV

.,),(, αADfHpfV fpf ∩∈∀∈′′∀′′

The critical requirement associated with this equity method is the generation of the value 

functions for airlines.  Value functions are often used to combine multiple evaluation measures 

into a single measure.  When a value function is based on a single measure, it is more commonly 

referred to as a single attribute value function (Kirkwood, 1997).  Within our slot-exchange 

construct, an airline’s value function that is associated with the slots obtained in an upward-move 

may be a general function of passenger load, the downstream departure frequency for the 

affected airport, or other critical parameters.  Indeed, the measures  and  reflect 

specific value functions of this type.  In the absence of airline input, we shall assume that the 

value functions across all flights are uniformly evaluated via the function  

)(1 xdα )(2 xdα

[ ,1 pf
GDP
f DD

pf eV ′′′ −−
′′ −≡ λ ]  where .0>λ          (5.40) 

Figure 5-14 illustrates the impact on the shape of the value function with respect to increasing 

values of the parameter λ .      
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Figure 5-14:  Various Value Functions. 

Similar to the previous efficiency measure,  is also a linear function with a positive slope 

as shown in Figure 5-15, and is defined as 

)(4 xEα

 .          (5.41) trAxdxE ∈∀= ααα ),()( 44
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Figure 5-15:  Efficiency Based on the Value per Offered Downward-Move. 

 Note that the value function in (5.40) is a concave function, which intuitively represents 

diminishing marginal returns as the delay  reduces and the flight time approaches the OAG 

time.    As an alternative to (5.40), we may consider a value function of the form 

pfD ′′

  where ,1,1 >−≡
⎥⎦
⎤

⎢⎣
⎡ ′′−′−

′′ qeV
q

pfDGDP
fD

pf

λ

0>λ ,       (5.42) 

which yields a convex-concave function (see Figure 5-16) that represents an increase in marginal 

returns for initial reductions in delay up to some point, after which diminishing marginal returns 

sets in for further reductions in delay.   
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Figure 5-16:  Alternative Value Function. 
 
Proposition 1.  Consider the function  where ,1,1)( >−= − qexf

qxλ 0>λ  and where 

 in (5.42).  This function is convex-concave, with the switchover (inflection) 

point from convexity to concavity occurring at the point (of diminishing marginal returns) given 

by  

][ pf
GDP
f DDx ′′′ −≡

.1
/1 q

dmr q
qxx ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
≡=

λ
 

Proof.  From calculus, we get ( ) [ ]qqx qxqqxexf
q

λλλ −−=′′ −− 1)( 2 .  The proof follows noting that 

 for  as defined in the proposition, where 0)( =′′ xf dmrxx = 0)( ≥′′ xf  for  and 

 for . □ 

dmrxx ≤

0)( ≤′′ xf dmrxx ≥

Remark 3.  Using the alternative value function in (5.42) in conjunction with Proposition 1, we 

can allow the airlines to specify their own value function by simply identifying their perceived 

point of diminishing marginal returns ( ) within the trade offer.  Let dmrx y  represent the largest 

reduction of delay that an airline can obtain through a slot exchange based on the flight’s arrival 

time listed in the OAG.  Since  as defined in Proposition 1 asymptotically approaches the 

value of one, we must specify a value for 

)(xf

1)( <yf .  Given yxdmr <  and the value at  we 

can then determine the parameters q  and 

)( yf

λ  (see Proposition 2), which define an airline specific 

value function for each plan  that represents an upward-move for a given flight .  Figure 5-

17 depicts three particular value functions for different values of , while maintaining a 

constant value for 

p′ f ′

dmrx

y  and selecting 95.0)( =yf . □  
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Figure 5-17:  Example of Airline Specific Value Functions. 

Proposition 2.  Given  and yxdmr < θ=)( yf , the corresponding parameters q and λ  in (5.42) 

exist and are unique. 

Proof.  From Proposition 1, we get q
dmrqx

q 1−
=λ .  Substituting forλ  in θ=)( yf  and solving for q, 

we get 
)1(

)1ln(
−
−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
q

q
x

y
q

dmr
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⎛
= q

q
q

x
yqh

q

dmr

θ , we then check the 

properties of  to show that a unique root exists.  Because , and )(qh dmrxy > 10 << θ , 

 as  and  as .  Therefore, a root exists.  Its uniqueness 

follows by noting that 

∞→)(qh ∞→q −∞→)(qh +→ 1q

,0
)1(

)1ln(ln)( 2 >
−
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=′

qx
y

x
yqh

dmr

q

dmr

θ  since  ,  and ,yxdmr < 1>q

10 << θ .  □ 

Remark 4.  Adapting an alternative general equity formulation presented by Luss (1999), we 

could explore lexicographically maximizing the vector corresponding to a non-decreasing 

arrangement of some equity factor for each airline involved (where larger values are more 

preferable).  To implement such a lexicographic optimization procedure, once we have 

maximized the minimum value for this equity factor, we could constrain all equity factors to take 

on at least this value, determine the set of airlines that could then achieve a strictly higher value, 

and subsequently maximize the minimum equity measure among the remaining airlines.  This 

iterative process could be continued until optimality is attained, as indicated by the latter set of 

remaining airlines becoming null.  Observe that this would require multiple runs of APCDM, 
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which might be suitable only for strategic planning purposes, and that might require some 

heuristic implementation in tactical contexts. □          

Remark 5.  Additional perceived equity issues arise in situations when airlines are allocated a 

greater portion of available slots at an airport, and thus have potentially greater flexibility 

regarding trade offers.  However, recalling that the allotted slots are assigned using RBS and 

Compression, which is based on the scheduled arrival times listed in the OAG, the FAA traffic 

flow managers and the airlines have come to a consensus that these two enhancements to the 

GDP achieve an equitable initial distribution of slots (Vossen and Ball, 2001).  Therefore, we 

will not address the initial distribution of slots as an equity-producing option. □ 
 We now proceed to present computational results related to our proposed slot-exchange 

mechanism and equity concepts, and provide insights into the effects of alternative modeling 

constructs and parameter settings.   

 



 

Chapter 6 

Computational Results, Sensitivity Analyses, and Insights 
 

 In this chapter, we demonstrate the functionality of our proposed slot-exchange 

mechanism and related equity concepts in support of the tactical level decision-making process 

related to GDPs.  We begin by evaluating a relatively small test set and computing the pertinent 

performance metrics in order to compare the SE-APCDM model solutions within, and across, 

each equity method as prescribed in the previous chapter.  Furthermore, we impose the 

nonnegativity restrictions on the slot exchanges and evaluate the impact of these restrictions 

upon the resulting solutions.  Next, we address the sensitivity of our solutions to changes in the 

equity cost factors for the original test set and, subsequently, a second test set characterized by an 

increase in slot competition.  We conclude by evaluating a larger test set that closely resembles a 

scenario in which an airport is operating near a specified FAA-benchmarked capacity.  

Additionally, we evaluate and compare the computational-effort performance, under both time 

limits and optimality thresholds, for each equity approach in order to obtain further insights 

regarding potential improvements to the overall efficiency of the SE-APCDM model.  All 

reported computations have been performed on a Dell PWS650 Workstation equipped with a 2.4 

GHz Xeon processor and 1.5 Gb Random Access Memory, and running the Microsoft Windows 

XP operating system.  The optimization problems were solved using CPLEX 9.0.               

    

6.1. Test Data Sets 

For our computational experiments, we constructed three basic scenarios as shown in 

Table 6-1, using real data obtained from the FAA based on the Enhanced Traffic Management 

System (ETMS) flight information pertaining to the Miami and Jacksonville Air Route Traffic 

Control Centers (ARTCC).  From this data, we selected flight trajectories that traverse through a 

subset of the 88 sectors that comprise the two aforementioned ARTCCs.  Adjustments to the 

flight data with respect to the arrival times were made in order to account for the slot allocations 

as per the assumed imposed GDP. 

For the purpose of testing the slot-exchange modeling constructs, our first test set consists 

of 30 flights, in which 16 of the flights have been allocated arrival slots into Miami based on a 

hypothetical FAA-imposed GDP having a duration of one hour.  Additionally, eight flights 
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depart from Miami within the one-hour interval.  The arrival slots are at four minute increments, 

which satisfies Miami’s reported airport arrival capacity when operating at an Instrument Flight 

Rules (IFR) rate shown in Figure 6-1.  The solid line represents the calculated capacity while the 

solid dot represents the airport’s reported capacity.  As long as the point specified by the two-

tuple (Departures per Hour, Arrivals per Hour) lies within the boundary defined by the solid line 

(for example, the point (40, 40) lies within this boundary, while the point (60, 60) lies outside it), 

we can state that the two-tuple satisfies the airport’s IFR rate.  For our second test set, we 

modified the first test set by adjusting the trade offers in order to increase slot competition 

between airlines. Our final test set was constructed by restricting the maximum IFR arrival and 

departure capacities for the airport of interest. 

Table 6-1:  Test Data Sets for Slot-Exchange Evaluations. 

Number of Flights 30 30 110
Surrogates per Flight 6 6 6
Number of Airlines 5 5 6
Number of Flights Arriving Miami 16 16 40
Airlines:  Flights per Airline AAL: 10 AAL: 10 AAL: 24

DAL: 5 DAL: 5 COA: 16
NWA: 5 NWA: 5 DAL: 23
UAL: 7 UAL: 7 NWA: 14
USA: 3 USA: 3 UAL: 17

USA: 16
Time Horizon 900 minutes 900 minutes 1200 minutes
Number of Conflicts* Level 1: 143 Level 1: 147 Level 1: 2868
Identified (using the Probabilistic Level 2: 506 Level 2: 669 Level 2: 544
Aircraft Encounter Module of APCDM) Fatal: 40 Fatal: 8 Fatal: 60
* Level 1: Based on FAA's standard separation criteria;
   Level 2: Based on halving Level 1's criteria;
   Fatal: Unacceptably close encounter.

Test Set #1 Test Set #3Test Set #2
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Figure 6-1:  Miami IFR Rate. 
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 Adopting the baseline threshold probabilities { } { }thresh 1 2 fatal
1 1 1, , , ,3 6 18p p p p= =  as 

recommended in Sherali et al. (2006) and 15 rectangular probabilistic realizations, the PAEM 

determined the number of conflicts (as shown in Table 6-1) in 71.4 cpu seconds.  Given that 

there were no modifications made to the PAEM as part of this proposed slot-exchange approach, 

the relationship between the number of probabilistic realizations and the cpu time will continue 

to be an increasing quadratic relationship as described in Sherali et al. (2006).  Regardless of 

which equity approach was applied within the model formulation, SE-APCDM successfully 

generated a feasible set of slot exchanges while considering both sector workloads and conflict 

resolutions.  The solution characteristics and the computational times required to generate 

acceptable slot exchanges varied with the alternative equity approaches as discussed in the 

following sections.                    

 

6.2. Computational Results Using Test Set #1 

 The strategic level application of the APCDM model assumes various passenger load 

estimates, , based on aircraft types, as opposed to determining actual passenger loads for each 

evaluated flight f.  However, because an airline will more than likely submit a trade offer based 

upon the desire to reduce the delay of a flight at or near capacity, the tactical level application of 

the SE-APCDM model will require actual passenger loads for each flight arriving at the GDP 

affected airport.  Therefore, the SE-APCDM model accordingly modifies the flight plan cost  

by replacing the aircraft passenger load estimate (utilized within the formula for ) with the 

respective number of passengers for all flights f assigned to a GDP arrival slot.  Table 6-2 

provides the number of passengers for the flights offered for downward-moves and upward-

moves, respectively, as well as the total number of passengers arriving for each airline at the 

GDP affected airport for the test set described in Table 6-1.        

fl

fpc

fpc

Table 6-2:  Passenger Numbers for Test Set 1 at GDP Airport. 
AAL DAL NWA UAL USA

PAX in Downward-Move Offers 138 151 153 120 136
PAX in Upward-Move Offers 275 261 250 310 265
Total PAX Arriving GDP Airport 835 412 583 955 401  
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6.2.1. Results Using the Equity Concept in the Original APCDM Model 

We first examined the generation of acceptable slot exchanges using the APCDM 

model’s existing equity concepts as described in Sherali et al. (2003).  The corresponding version 

of SE-APCDM produced the results shown in Table 6-3 (in 5.20 cpu seconds), which provide the 

time differences between the offered slots and the slots generated by the SE-APCDM based on 

the trade realizations for the downward-moves and upward-moves for each participating airline, 

designated  and , respectively.  Note that the quantities DΔ UΔ DΔ  and UΔ  displayed row-wise 

in Table 6-3 are computed via  (5.24) as ∑
∈

−≡Δ
fDp

fpfp
GDP
fD xDD ][ and 

 Because each airline designates only one 

downward-move flight in this test set, these 

. eachfor  ][
),(

DfxDDPAX
fHpf

pfpf
GDP
ffU ∈−≡Δ ∑

∈′′
′′′′′′

DΔ  and UΔ  are individual airline measures as well 

in this case.  We also compute the net reduction in terms of passenger-minutes of delay for each 

airline α  as given by  via Equation (5.23).  For example, the improvement for NWA is 

computed as follows: 

αNRPM

.836250*4153*12 −=+−   The total improvement over all participating 

airlines is 4,404 passenger-minutes.  Observe that AAL and UAL improve significantly at the 

expense of NWA.  In addition, AAL is able to reduce the delay of a later flight without having to 

incur additional delays to the flight it offered for a downward-move.  As a percentage of the total 

improvement,  AAL and UAL improved 49.95% and 69.02%, respectively, while NWA had a 

net percentage improvement of -18.98%.         

Table 6-3:  SE-APCDM Results using APCDM Equity Approach. 
Airline
α Offered SE-APCDM ΔD (min) Offered SE-APCDM ΔU (min) NRPM α

AAL 10:00 10:00 0 10:28 10:20 8 2200
NWA 10:04 10:16 -12 10:16 10:12 4 -836
UAL 10:12 10:28 -16 10:20 10:04 16 3040
USA 10:36 10:36 0 11:00 11:00 0 0
DAL 10:52 10:52 0 10:40 10:40 0 0

Downward-Moves Upward-Moves

 
  

6.2.2. Total Average Delay-based Equity Formulation Results: Method (a) 

Note that feasibility to  (Equation (2.5o)) requires via (5.32) that 

 Therefore, we began our analysis in this section with a value of  just large 

enough to assure feasibility with respect to a solution set corresponding to the selection of the 

0)(1 ≥xEα

.)( 1
max

1 Dxd ≤α
1
maxD
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cancellation surrogate for each flight, which itself represents an upper bound on .  We then 

proceeded to generate solutions based on varying values of  using a multiplicative scaling 

factor, .  Fractional values of this factor were also explored until the problem 

became infeasible.  Figure 6-2 displays the total net reduction in passenger-minutes of delay for 

varying values of .  The solution set of slot exchanges did not change for 

adjustment factors greater than 2.0.  Likewise, for this test set, adjustment factors less than 0.25 

resulted in problem infeasibility.     

1
maxD

1
maxD
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Figure 6-2:  Total Net Reduction in Passenger-Minutes of Delay per D1
max adjustment 

Factor. 

 
 While the total net reduction (7,364 PAX-minutes of delay) appears to be the greatest for 

an adjustment factor of 0.25, analysis of the improvement for each airline (see Figure 6-3) 

indicated that the corresponding slot-exchange solution was the least favorable for NWA.  As we 

increased the adjustment factor from 0.25, SE-APCDM generated different slot-exchange 

solutions with varying results in the total reduction.   Applying adjustment factors of 1.5 and 

greater, the slot-exchange solution did not change and resulted in a total net reduction of 7,220 

PAX-minutes, which is an improvement of 2,816 PAX-Minutes when compared to the original 

APCDM equity approach.  Note that at the upper values for the adjustment factor, it appears that 

the net reduction is spread more equitably among the participating airlines.  Figure 6-4 provides 

the net reduction percentage  for each airline )( αNRP α  as determined by 

 .%,100 tr

A

A
NRPM

NRPMNRP
tr

∈∀⋅≡
∑
∈

α

α
α

α
α                 (6.1)  
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While both DAL and AAL have net losses at the larger values of , these losses 

are less than those acquired by NWA and DAL when the adjustment factor is 0.25.  For this test 

set, as we increased the value for , the number of slots exchanged between 

airlines increased until all airlines that submitted downward-move offers achieved an accepted 

downward-move in exchange for an upward-move.  Additionally, the computational time 

decreased as a function of the adjustment factor as shown in Figure 6-5.  In summary, it appears 

from this example that the larger values of  result in more equitable trades at a 

reduction in computational effort.                

adjustmentD1
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Figure 6-3:  Net Reduction of Delay by Airline. 
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Figure 6-4:  Net Reduction Percentage by Airline. 
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Figure 6-5:  Computational Time Versus D1
max adjustment Factor. 

 
6.2.3. Net Delay Savings-based Equity Formulation Results: Method (b) 

 As described in Section 5.3, this equity formulation focuses on the net savings in delay 

between the allotted GDP slot time and the slot-exchange time generated by the SE-APCDM 

model for each flight f.  Given the structure of this test set, the slot exchanges generated for 

different values of  were identical.  (The value  given by (5.36) equals 0.666.)  

There were, however, variations in the set of optimal plans selected for a subset of the flights not 

involved in the trade offers as a result of varying .  (In a subsequent test set defined in Section 

6.3.2, variations in  did result in alternative slot exchanges.)  The slot-exchange results using 

this equity formulation are shown in Table 6-4, which equate to a total net reduction of 7,220 

PAX-minutes.  Note that, in terms of the total net reduction in passenger-minutes of delay, this 

solution is comparable to the best solution generated using the previous equity approach.  

However, when experimenting with a value of , the solution generated using this equity 

method was worse than any solution generated using the previous method.  This occurs because 

 constrains  to be less than or equal to the delay  corresponding to the 

nominally assigned slots, which severely restricts slot exchanges.         

)1,5.0[* ∈p ( )
*
ap

*p
*p

0* =p

0* =p )(1 xdα α)( 2
maxD
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Table 6-4:  SE-APCDM Results using Net Delay Savings Equity Approach.  
Airline
α Offered SE-APCDM ΔD (min) Offered SE-APCDM ΔU (min) NRPM α

AAL 10:00 10:16 -16 10:28 10:20 8 -8
NWA 10:04 10:12 -8 10:16 10:00 16 2776
UAL 10:12 10:28 -16 10:20 10:04 16 3040
USA 10:36 10:40 -4 11:00 10:52 8 1576
DAL 10:52 11:00 -8 10:40 10:36 4 -164

Downward-Moves Upward-Moves

 
 

6.2.4. Downward-Move Ratio-based  Equity Formulation Results: Method (c) 

 In this approach, SE-APCDM attempts to equitably increase  in order to decrease 

the second cost term in the objective function (2.5a).  The upper-bound value for  and its 

corresponding efficiency measure  for each airline is achieved when all downward-moves 

are accepted.  The results obtained using this equity formulation are shown in Table 6-5.  The 

computational time required to generate the solution was 0.875 cpu-seconds.  The results were 

equivalent to those generated using the total average delay equity formulation (Method (a)) with 

, which should be expected given that all participating airlines are involved 

in both downward and upward moves.  This equity concept resulted in a total net reduction of 

7,220 in passenger-minutes of delay at a slight reduction in computational time for this test set 

when compared to the solution generated from Method (a) using . 

)(3 xdα

)(3 xdα

)(3 xEα

5.11
max ≥adjustmentD

5.11
max =adjustmentD

Table 6-5:  SE-APCDM Results using Downward-Move Ratio Equity Approach. 
Airline
α Offered SE-APCDM ΔD (min) Offered SE-APCDM ΔU (min) NRPM α

AAL 10:00 10:16 -16 10:28 10:20 8 -8
NWA 10:04 10:12 -8 10:16 10:00 16 2776
UAL 10:12 10:28 -16 10:20 10:04 16 3040
USA 10:36 10:40 -4 11:00 10:52 8 1576
DAL 10:52 11:00 -8 10:40 10:36 4 -164

Downward-Moves Upward-Moves

 
 

6.2.5. Upward-Move Value-based Equity Formulation Results: Method (d) 

 The critical step for this equity approach involves the generation of the value functions 

for each participating airline.  While each airline would undoubtedly want to generate its own 

value functions in an attempt to influence the resulting slot exchanges, we established a standard 

value function for all upward-move flights f ′  as a function of the resulting delay time for each 
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submitted path p   as defined by (5.40), where the parameter ′ λ  is used to generate and test 

various value functions.  

Figure 6-6 displays the total net reduction in passenger-minutes of delay for varying 

values of the parameter λ.  For this test set, as we increased λ, the net reduction in passenger-

minutes of delay either decreased or remained the same as a function of the various slot 

exchanges.  This equity approach generated a few slot-exchange solutions that had not yet been 

realized using the previous approaches given that the SE-APCDM model tried to generate as 

many upward-moves as possible while limiting the number of downward-moves.  This result is 

expected given that the first term in the objective function (2.5a) is a function of the respective 

flight delays.  Therefore, the SE-APCDM model generates a downward-move, which increases 

the delay of a specific flight, only when this can be accompanied by beneficial upward-moves.  

For example, when 01.0=λ , three upward-moves and two downward-moves were generated.  

For purposes of comparison, when using Method (c), if three upward-moves are generated, we 

are guaranteed that three downward-moves will be present in the solution.             
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Figure 6-6: Total Improvement for the Parameter λ.   
A breakdown of the net reduction in delay by airline (see Figure 6-7) indicated that for 

the parameter value 005.0=λ , three of the five airlines achieved a net reduction in delay at the 

expense of only a relatively small increase in delay for two airlines.  When ]01.0,0075.0[∈λ , 

the total net reduction decreased; however, four of the five airlines obtained a net reduction in 

delay, which appears to yield a more equitable slot exchange as depicted in Figure 6-8 when 

compared with the solutions obtained for lower values for λ.  For values of ]4.0,02.0[∈λ , the 

airlines maintained their original slots for this test set.  As λ was increased beyond 0.5 (not 
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shown), the resulting slot exchanges were identical to those generated when 005.0=λ .  This 

occurs due to the shape of the value function for large values of λ in that, there is a rapid 

increase in value for only minor delay reductions followed by a relatively flat line for the larger 

delay reductions.  In essence, in the absence of any significant differences between the values 

relative to the potential delay reduction, the SE-APCDM model attempts to find slot exchanges 

that involve significant improvements in slot times.  Additionally, the computational time 

generally increased as a function of the parameter λ  as shown in Figure 6-9.   

Airline Net Reduction (PAX-Min)

-500

0

500

1000

1500

2000

2500

3000

3500

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

λ

N
R

PM
α

AAL
NWA
UAL
USA
DAL

 

Figure 6-7:  Net Reduction of Delay by Airline. 
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Figure 6-8:  Net Reduction Percentage by Airline. 
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Figure 6-9:  Computation Time Versus Parameter λ. 

 

6.2.6. Comparison of the Different Equity Concepts 

 From the five equity approaches tested within the SE-APCDM model for this test set, the 

greatest total net reduction in passenger-minutes of delay was generated using Method (a) with 

.  However, the associated slot exchanges were not as equitable in terms 

of the net reduction percentage for each airline when compared to other possible solutions 

generated from the same equity approach.  Figures 6-10 and 6-11 display the optimal solutions 

for each equity approach by airline in terms of the -values for each  and also the 

net reduction percentage  for each airline 

25.01
max =adjustmentD

αNRPM ,trA∈α

)( αNRP α ,  respectively.  It is readily apparent that, for 

this test set, the slot exchanges generated from methods (a) – (d) are preferable over those 

generated via the original APCDM approach, which exhibits a  significant variability across the 

airlines.  While the last equity approach has a total net reduction in passenger-minutes of delay 

less than that for methods (a) – (c), a benefit from this last approach is that four of the five 

participating airlines improve their delay status at a minor cost to only one airline.  Therefore, 

depending on the primary goal of the decision-maker regarding the slot exchange, the equity 

methods (a) – (d) all appear to be suitable formulations for the SE-APCDM model based on this 

test case. 
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Figure 6-10:  Equity Comparison in Net Reduction by Airline. 
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Figure 6-11:  Equity Comparison in Net Reduction Percentage by Airline. 

 Given that the various equity formulations consider different relative performance ratio 

measures as specified in Section 5.3, the results depicted in Figures 6-10 and 6-11 are biased 

more towards Methods (a) and (b) since the focus here is on passenger-minutes as the 

comparison criteria.  Therefore, we also compared the different methods based on the 

distribution of their respective collaboration efficiencies achieved over the set of airlines.  These 

results are depicted in Figure 6-12.  Note that we have normalized the collaboration efficiencies 

within each equity method in order to present a fair comparison across all methods.  From Figure 

6-12, equity Methods (a) and (c) appear to generate the most equitable solutions when using 

individual airline collaboration efficiencies as the comparison criteria for this test set.     
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Figure 6-12:  Comparison of Collaboration Efficiencies Across Respective Airlines. 

6.2.7. Benchmark Runs 

 To gain an appreciation for the impact that the aforementioned equity approaches have on 

the generation of slot exchanges, we report on two additional benchmark runs using Test Set #1.  

For the first run, we removed all the equity terms from the original APCDM model formulation 

and minimized the system cost while maintaining the sector workload and airspace conflict 

constraints.  Since the cost to execute a flight plan, , is a function of multiple cost factors that 

include delay times and the number of passengers, we expected the SE-APCDM model to 

produce slot exchanges that moved up flights having larger passenger loads if possible.  The 

results from this benchmark run were consistent with our expectations and coincided with the 

results from equity methods (a) – (c).  This equivalence, however, stems from the passenger load 

characteristic associated with the given trade offers.  If an airline submits a trade offer based 

upon criteria other than passenger loads, we are not guaranteed to obtain the same results from 

such a run.            

fpc

 In the second benchmark run, we eliminated the system cost (first term in (2.5a)) and 

retained the various equity structures.  Figure 6-13 displays the optimal solution for each equity 

approach in terms of the NRPMα measure for each airline α.  The results indicate that the 

exclusion of the system cost does not provide a better solution with respect to slot exchanges.  

Observe that Methods (a), (b), and (d) achieve perfect equity by simply retaining the allotted 

slots, and hence, provide no further incentive to select cost effective plans.  It is important to note 
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that the results from the equity approaches and the benchmark runs are all scenario-dependent 

and a function of the trade offers from the airlines.   
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Figure 6-13:  Equity Comparison in Net Reduction for Benchmark Run 2. 

6.2.8. Nonnegativity Restrictions on Net Passenger-minute Delay Reductions 

 The structure of the individual trade offers from the initial test set resulted in a negative 

net reduction for two airlines as indicated in Figure 6-10 for AAL and DAL using methods (a) – 

(c). Using the nonnegativity constraints (5.23) (or (5.24)), we compared the impact of these 

additional restrictions on the solution produced using Method (a) (see Figure 6-14).  Note that 

(5.23) and (5.24) are the same in this context because the test set consists of only one “at-least, 

at-most” trade offer per airline.  Without this nonnegativity restriction, the total improvement 

from the slot exchanges was 7,220 PAX-minutes, which includes a negative improvement for 

DAL of  PAX-minutes.  The addition of the nonnegativity constraint reduced the total 

improvement to 3,924 PAX-minutes.  Note that, based on the formulation of its relative 

performance ratio (5.37), Method (c) considers only the number of accepted moves without 

concern for whether or not it produces additional delays (i.e., negative values for NRPM).  

Therefore, it is important to use (5.23) in concert with Method (c).  Given that the addition of the 

nonnegativity formulation in (5.23) makes practical sense with respect to both the structure of 

trade offers and particular equity methods, we will retain this constraint in all future runs, except 

as noted for specific purposes.   

164−

 



Michael V. McCrea    Chapter 6. Computational Results, Sensitivity Analyses, and Insights 121 

-500
0

500
1000
1500
2000
2500
3000
3500

NRPM α

Original Nonnegativity

Nonnegativity Comparison

AAL
NWA
UAL
USA
DAL

 
Figure 6-14:  Nonnegativity Comparison. 

 

6.3. Sensitivity Analysis of the Equity Weight Factors 

 Throughout our analysis of the various equity approaches, we have retained the original 

APCDM model relative weights  for the equity terms in (2.5a) in which each 

weight is a function of 
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0μ .  By restricting our analysis to the case where  is a constant,  
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0μμμ 1.00 =μ  as prescribed in Sherali et al. 

(2006).         

 

6.3.1. Sensitivity Analysis with Respect to the Parameter μ0

 We begin by replicating within the present slot-exchange construct the sensitivity 

analysis conducted in Sherali et al. (2006) by defining the Average CDM Improvement as    
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where {}
00 μμ =⋅  is the value of the corresponding quantity {}⋅  for the solution generated when 

00 μμ = .  Equity methods (a) and (d) under (5.23) were not sensitive to the variations of the 

parameter μ0 as we increased the value of μ0 from zero to 0.3.  Only Method (c) displayed some 

sensitivity to initial changes in μ0 around the value of 0.05, but (6.2) remained unaffected as 0μ  

increased further.  Figure 6-15 depicts the results of this sensitivity analysis for Method (c), 
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Figure 6-15:  Sensitivity Analysis for Method (c) with Respect to μ0. 
Given the apparent insensitivity of the relevant slot-exchange equity terms with respect to the 

parameter μ0 for this test set, we adopt the same prescription for the value of μ0 as in the original 

APCDM model when defining .      ∑
=

=
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f
f

D c
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*
0μμ

      

6.3.2. Sensitivity Analysis under Increased Slot Competition (Test Set #2) 

 In Test Set #1, the airlines do not all compete for identical earlier slots as specified by 

their respective upward-move offers.  To explore the effect of increased competition for slots, we 

generated an alternative test set (Test Set #2) in which the airlines all compete for the same 

earlier slots.  Figure 6-16 depicts this second test set.  The directed arcs represent potential 

downward-moves while the dotted box encompasses the earlier slots that the airlines are 

attempting to acquire through the slot-exchange procedure.  To remove additional clutter from 

the slot-exchange network in Figure 6-16, we have omitted the directed arcs that exist within the 

dotted box (e.g., AAL has directed arcs from 0800 to the 0804, 0808, 0812, and 0816 slots).  

Notice that given the specified downward-move limits for this test set and the trade restriction 

stipulation, AAL will be involved in a slot exchange if and only if DAL acquires the 0836 slot.  

Otherwise, AAL will maintain its original time slots.  In addition to the changes in the trade 

offers, we reduced the time interval between the OAG listed arrival time and the GDP arrival 

time associated with each path p for flight f .                     
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Figure 6-16:  Identical Slot Competition Test Set. 

The equity comparison under (5.23) for this alternative test set is displayed in Figure 6-17.  

It is readily apparent from Figure 6-17 that for each equity method, at least four of the five 

participating airlines achieve net reductions with respect to passenger delays.  While the 

numerical results again are scenario-dependent, we anticipated such an improvement over the 

original test set since the number of potential slot exchanges increased due to the increased 

density of the slot-exchange network in the vicinity of the desirable earlier slots.  More 

importantly, when applying Method (a), the resulting solutions were, in fact, sensitive to 

variations in the cost parameter μ0 as depicted in Figure 6-18.  As we initially increased the value 

of the cost parameter μ0 from 00 =μ  to 15.00 =μ , we obtained a CDM improvement.  Values of 

the cost parameter greater than 0.15 resulted in only minor improvements in the APCDM 

model’s performance with respect to the CDM improvement criterion.              
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Figure 6-17:  Identical Slot Competition Equity Comparison. 
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Figure 6-18:  Sensitivity Analysis for Method (a) Under Identical Slot Competition. 

  

In addition to the insights gained with respect to the sensitivity of Method (a) to the cost 

parameter μ0, we gleaned further insights into Method (b) with this alternative test set by varying 

 in (5.35) with the nonnegativity restriction (5.23) omitted.  As we increased the value of  

from 0.8 to 0.85, the total net reduction in delay improved from 13,696 PAX-minutes to 13,808 

PAX-minutes.  However, as depicted in Figure 6-19, this improvement in the net reduction in 

PAX-minutes of delay came at the expense of DAL, which experiences a net increase in delay of 

932 PAX-minutes as a result of the slot exchange generated using .  When comparing 

individual airline normalized collaboration efficiencies (see Figure 6-20), it is apparent that the 

increase of  from 0.80 to 0.85 results in a greater spread among the individual collaboration 

efficiencies.  More importantly, this increase in the value of  results in an increase of 56.2% in 

the second term of (5.29).  Therefore, while we gain additional improvements in passenger-

minutes of delay for values of , a more equitable slot exchange for the participating 

airlines is achieved for values of   (where the slope of the efficiency curves 

become steeper for reduced values of ).  For this alternative test set,  (see Figure 

6-21), which produces the same slot-exchange solution as the optimal solution for Method (a).  

This result is expected given that  in (5.36) is the average value that matches the efficiency 

curves of Methods (a) and (b).       

*p *p

85.0* =p

*p
*p

185.0 * <≤ p

8.05.0 * ≤≤ p
*p 7104.0*

)( =ap

*
)(ap

Note in Figure 6-21 that the sum of the collaboration efficiency and equity terms in the 

objective function, as defined in (5.29), decreases as we increase  up to .  Since the *p 85.0* =p
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slot-exchange solutions for  are identical (hence,  remains constant), the 

slope of the efficiency curve for each airline in (5.35) increases (becomes less negative) as we 

increase the value of , which in turn reduces the variation between the individual airline 

collaboration efficiencies.  However, when , a new slot-exchange solution is generated 

that further reduces the value of the overall objective function (2.5a) while slightly increasing the 

sum of the terms in (5.29).  As we continue to increase the value of   beyond 0.85, the sum of 

the collaboration efficiency and equity terms in (5.29) decreases again due to the behavior of the 

efficiency curve slope in relation to . 

]8.0,5.0[* ∈p )(1 xdα

*p

85.0* =p

*p

*p

Finally, we note that when we impose the nonnegativity constraint (5.23) along with 

Method (b) for this particular experiment, the slot-exchange solution generated with  is 

prohibited, in favor of a more equitable solution as discussed above.           
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Figure 6-19:  Method (b) Equity Comparison for Variations of p*. 
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Figure 6-20:  Airline Efficiency Comparison for Method (b). 
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Figure 6-21:  Variations in the Sum of Collaboration Efficiency and Equity Terms. 

6.4. Computational Results Using Test Set #3 

The FAA (2004) Benchmark Results for the Miami International Airport (MIA) details 

the airport’s reported capacity under optimal, marginal, and Instrument Flight Rules (IFR) 

operating rates. The SE-APCDM model proved effective in generating slot exchanges for the 

previous test cases in which the arrival and departure rates were well below the published IFR 

operating rates, therefore, this third test set (see Table 6-1) was generated to evaluate the 

effectiveness of the SE-APCDM model given a hypothetically FAA-imposed GDP having a 

duration of one hour for MIA, while operating near the IFR maximum capacity rates (40 arrivals 

and 52 departures per hour).  In addition to the 40 arrivals and 52 departures, we included 18 

flights that transit the Miami and Jacksonville ARTCCs.  To evaluate the flexibility of the SE-

APCDM model, we included multiple “at-least, at-most” trade offers from two (AAL and NWA) 

of the six airlines (see Table 6-6).  The existence of multiple trades most prominently affects the 

equity formulations for Methods (c) and (d), given that the denominators in (5.37) and (5.39) are 

no longer equal to one for the airlines submitting multiple offers.          

Table 6-6:  Trade Offers and Passenger Counts. 
Downward-Move Flight Allotted Time # PAX Upward-Move Flight Allotted Time # PAX

AAL1 600 98 AAL3 616.5 160
AAL8 642 111 AAL10 652.5 200
COA2 630 118 COA3 636 170
DAL1 606 122 DAL2 610.5 179
NWA1 601.5 142 NWA3 621 230
NWA4 645 155 NWA5 651 320
UAL1 607.5 95 UAL2 609 215
USA1 612 112 USA2 618 217  
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The SE-APCDM (using (5.23)) again mediated several slot exchanges under various 

equity formulations for this test case of MIA operating at maximum IFR capacity.  Figure 6-22 

displays the optimal solutions generated for each equity approach by airlines in terms of the 

-values for each .  The first significant observation is that Equity Method (c) did 

not prescribe any slot exchanges, even though there do exist plausible slot exchanges as 

identified by the original APCDM equity formulation as well as by Methods (a), (b), and (d).  A 

second significant observation is the exclusion of a slot exchange for COA given that the 

structure of the trade offers provides at least the opportunity of a slot exchange between the two 

COA flights themselves, even if an exchange does not occur involving another airline.  After 

further analysis, we discovered that these two observations result from a fatal conflict identified 

by the model.  In other words, all the submitted flight plans associated with any potential 

upward-move for flight COA3 place the aircraft within the fatal conflict range of another more 

preferably selected flight plan, i.e., they penetrate this aircraft’s separation shell specified by 500 

feet in the in-trail and cross-track dimensions, and 100 feet in altitude dimension (Sherali et al., 

2003).  Therefore, the upward-move flight plans for COA3 are explicitly prohibited as prescribed 

in (2.5g), and this flight retains its allotted GDP slot.  This also underscores the importance of 

examining potential slot exchanges in combination with the joint viability of all accepted flight 

plans. 
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Figure 6-22:  Equity Comparison in Net Reduction by Airline. 

Due to the imposed trade restriction in (5.22), the retention of COA3’s allotted GDP slot 

eliminates any potential downward-moves for COA2 and, thus, the collaboration efficiency for 

Method (c) in (5.38) for COA equals zero.  Hence, using the cost parameter μ0 = 0.1, the optimal 

solution from SE-APCDM for Method (c) produced no slot exchanges as shown in Figure 6-22.  
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However, when we removed (5.23) and increased μ0 beyond 0.165, downward-moves were 

generated for all flights (compensated by corresponding upward-moves).  While this result 

initially seemed beneficial for all airlines, a further analysis indicated that it came at a 

considerable expense for another airline not involved in the slot-exchange scheme.  As 

mentioned in the preceding paragraph, COA was unable to obtain a slot exchange due to a fatal 

conflict associated with the upward-move flight plans.  By increasing the cost parameter μ0, we 

essentially forced a slot exchange to occur for COA, which was only possible if the flight that 

COA had a fatal conflict with was cancelled (this cancellation was a viable offer made by the 

associated airline).  Since that flight in question was also allocated an arrival slot into MIA, this 

situation is not favorable and should not be considered as a viable solution.  Note that the other 

equity methods, which explicitly consider the delay costs for all airlines, precluded this 

cancellation from occurring. 

 

6.5. Computational Effort Analysis 

In order for the SE-APCDM model to be a successful decision support tool for the FAA 

at the tactical level, it must provide results well within the decision timeline.  Note from Figure 

6-22 that the slot exchanges generated under (5.23) using the original APCDM equity 

formulation performed almost as well as Methods (a), (b), and (d) did in terms of net reduction in 

passenger-minutes of delay.  These results under the original APCDM equity formulation, 

however, required a computational effort in excess of 7 hours, which is unacceptable given the 

nature of GDPs.  As indicated in Table 6-7, when we limited the processing time to 20 minutes, 

the equity methods (a) – (d) performed significantly better than the original APCDM equity 

formulation with respect to the optimality gap between the generated mixed-integer 

programming solution and the corresponding linear programming solution at termination.  Hence, 

the equity methods (a) – (d) provide a structure that is evidently relatively easier to optimize, at 

least to near-optimality (i.e. within 3% of optimality). 

Table 6-7:  Equity Method Performance under Time Limits. 
Equity Method IP/LP Gap

Original 21.70%
A 0.80
B 0.30
C 0.58
D 2.99

%
%
%
%  
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 Whereas the results for Test Set #3 suggest that methods (a) – (d) perform better under 

cpu time limits, we further compared the computational effort required for each of the 

aforementioned equity approaches given an optimality threshold by modifying the three test 

cases of Table 6-1 with respect to flights or cost parameters to generate several alternative 

representative test sets as indicated in Table 6-8.  For example, we generated Slot-exchange 

Computational Test Set #2 (denoted SCT-2) by increasing the fuel cost parameter from $1.20 per 

gallon used in Test Set #1 to $2.14 per gallon, and so forth as indicated in the notes of Table 6-8.  

For each alternative test set, we terminated the model run and recorded the computational effort 

required in cpu seconds once we obtained a solution within 5% of optimality.  It is readily 

apparent that the computational effort required for methods (a) – (d) is less than the 

computational effort required under the original APCDM model equity formulation.  In 

particular, we obtained near-optimal solutions quickly for methods (a) – (d) for the larger 

alternative test sets (SCT-9,…, SCT-13) in contrast to the original APCDM model equity 

formulation, which we failed to produce solutions meeting the 5% optimality criterion due to the 

memory limitations of the computer.  On the other hand, as indicated before, Methods (a), (b), 

and (d) tend to produce slot-exchange solutions similar to those resulting from using the original 

APCDM equity formulation.                    

Table 6-8: Computational Effort for Alternative Test Sets Using Different Equity 
Formulations. 

Label Test Set Method (a) Method (b) Method (c) Method (d) Original APCDM
SCT - 1 1 0.78 0.79 0.86 0.78 2.375
SCT - 2 1 (1) 0.80 0.75 0.80 0.73 5.70
SCT - 3 1 (2) 0.81 0.86 0.95 0.83 5.72
SCT - 4 1 (3) 0.75 0.81 0.94 0.75 2.41
SCT - 5 2 0.66 0.64 0.97 1.25 2.14
SCT - 6 2 (1) 0.50 0.52 0.94 0.94 1.64
SCT - 7 2 (2) 0.63 0.69 0.83 1.06 1.77
SCT - 8 2 (3) 0.64 0.66 0.86 1.19 1.58
SCT - 9 3 32.01 32.90 12.39 37.78 *
SCT - 10 3 (1) 29.40 24.87 10.44 55.25 *
SCT - 11 3 (2) 32.22 28.81 8.66 11.52 *
SCT - 12 3 (3) 40.95 46.88 12.92 28.92 *
SCT - 13 3 (4) 236.11 66.91 66.10 185.97 *
Notes:

(1) - increased fuel cost from 1.20 $/gal to 2.14 $/gal
(2) - increased delay penalty from 0.2 to 0.4
(3) - decreased maximum sector capacity by 30%
(4) - modified Test Set #3 to 40 arrivals, 40 departures, and no transit flights
*  Exceeded the computer's memory capacity

Equity Approach (cpu seconds)
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As discussed in Section 6.2.8, the optimal solutions produced under (5.23) prevent 

negative values for the net reduction in passenger-minutes of delay for airlines.  However, the 

inclusion of (5.23) may also significantly reduce the total NRPM for the GDP airport by 

eliminating high payoff slot exchanges (i.e., slot exchanges that have only a minor increase in 

delay for the designated downward-move flight in return for a large reduction in delay for the 

corresponding upward-move flight).  For Test Set #3, the removal of (5.23) generated the results 

shown in Figure 6-23 for Method (a), which represents a 76.8% increase in the total NRPM 

(from 531 passenger-minutes under the nonnegativity constraints to 2296 passenger-minutes 

without (5.23)).  Method (b), without (5.23), produced the same results as Method (a), while the 

removal of (5.23) for Method (d) produced a total NRPM of 1270 passenger-minutes.  The 

potential increase in the total NRPM without (5.23) as depicted in Figure 6-23, however, comes 

at a “computational price”.  For instance, the computational effort required for Method (a) 

increased from 32.01 cpu-seconds to 87.39 cpu-seconds.  Similar increases in the computational 

effort were observed for Methods (b) and (d) as well.  The ability of the SE-APCDM model to 

generate optimal slot exchanges with or without (5.23) provides another level of flexibility to the 

decision makers for mediating any trade offer scenario.           
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Figure 6-23:  Nonnegativity Comparison for Test Set #3. 

 

 Using real data obtained from the FAA based on ETMS, we have demonstrated the 

ability to generate viable slot exchanges under a GDP scenario in support of the FAA’s CDM 

initiative.  Additionally, we have provided and evaluated four alternative equity approaches that 
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will allow the FAA to mediate slot-trading opportunities fairly while maintaining flexibility in 

the evaluation criteria.  As a safeguard for the participating airlines, we have included 

nonnegativity constraints to ensure that slot exchanges will not result in an increase in the net 

reduction in passenger-minutes of delay.  Computationally, in summary, our proposed APCDM 

model concepts provide effective decision-making support to the FAA that can be implemented 

in a timely fashion at the tactical level.          

 

 



 

Chapter 7 

Summary, Conclusions, and Recommendations for Future Research 
 

7.1. Summary and Conclusions 

The weather, above all other external factors, wreaks the greatest havoc within the airline 

industry.  According to the Bureau of Transportation Statistics, 24.83% of all flight delays in 

2005 were weather-induced (DOT, 2006), amounting to billions of US dollars in delay-related 

costs.  With respect to strategic and tactical level flight planning, the ideal scenario would be one 

in which the airlines and the Federal Aviation Administration (FAA) could acquire perfect 

knowledge on the dynamic characteristics of the severe weather patterns that habitually degrade 

aviation operations.  This perfect knowledge would subsequently reduce many of the 

complications associated with generating weather-based flight routes and, thus, reduce the delay-

related costs inherent with Ground Delay Programs and unexpected reroutes.  Given the unstable 

nature of weather and the accuracy of current forecasting models, this scenario is yet to be 

realized and we are left with the task of strategic level flight planning shrouded in weather 

uncertainty.   

Even though there are no absolutes when it comes to severe weather forecasting, a 

complete disregard for weather forecasts in conducting strategic level flight planning is an 

impractical option.  Accordingly, we have presented and evaluated two significant modeling 

concepts within the context of a large-scale Airspace Planning and Collaborative Decision-

Making Model in order to enhance its current functionality in support of both strategic and 

tactical level flight assessments under severe weather uncertainties.  Within this dissertation, we 

have provided evidence that by incorporating severe weather probabilities into flight plan 

generation at the strategic level, we can significantly reduce the expected delay cost of a flight.  

Furthermore, by integrating the proposed slot-exchange mechanisms and accompanying equity 

formulations within the APCDM model, we have demonstrated that passenger delay costs 

associated with GDPs can be appreciably reduced as well.      

The strategic level concept developed is a new severe weather-modeling paradigm, which 

incorporates Model Output Statistics (MOS) forecasted severe weather probability data from the 

National Weather Service’s Meteorological Development Lab.  The probability data associated 

with specific MOS reporting sites serves as the foundation for the construction of our discretized 
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severe weather probability-nets that are subsequently used to determine the probability that a 

flight trajectory could encounter severe weather.  More importantly, by superimposing a flight-

trajectory-grid network onto the probability-nets, we developed an approach to generate flight 

plans that can circumvent severe weather phenomena with specified probability levels based on 

determining constrained, time-dependent shortest paths between the respective origin and 

destination airports.  By generating alternative flight plans pertaining to specified threshold 

strand probabilities, we prescribed a methodology for computing appropriate expected weather 

delay and related disruption factors for inclusion within the APCDM model.  We also derived a 

technique for conducting a cost benefit analysis using a k-means clustering mechanism in concert 

with our delay assessment methodology in order to evaluate delay costs and system disruptions 

associated with different levels of probability-net refinement.                        

The notion of “slot ownership”, formalized via the FAA’s Collaborative Decision- 

Making initiative under the enhancements to the GDP, has spawned new research efforts 

pertaining to slot-trading opportunities that could provide additional benefits in terms of flight 

efficiencies and desirable airline schedules.  Therefore, our tactical level concept focuses on 

reducing the costs associated with GDPs.  Given that airlines submit trade offers of the “at-least, 

at-most” type, we have produced a modeling capability that automatically incorporates the 

acceptance of a combination of such trades in terms of related slot exchanges, while 

simultaneously considering the impact of the resultant overall mix of flight plans on sector 

workloads, safety with respect to conflict risk, and equity among the involved airlines.  In 

keeping with the spirit of the FAA’s collaborative decision-making initiative, we have also 

proposed alternative formulations of the concept of achieving equity with respect to the 

generated slot exchanges.  Computational results based on test cases derived from FAA’s 

Enhanced Traffic Management System (ETMS) data provide insights into the effect of different 

equity measures and the extent of flexibility inherent in the offered trade opportunities.  The four 

proposed slot-exchange-based equity formulations, in conjunction with the developed slot-

exchange mechanisms, demonstrated a potential for significant net savings in computational 

effort ranging from 25% to 86% over the original APCDM model equity formulation.  The 

results also indicated that the designed slot-exchange model, SE-APCDM, offers a viable tool 

that can be used by the FAA for both tactical air traffic management purposes, as well as 
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strategic applications to study the impact of different types of trade restrictions, collaboration 

policies, and equity concepts, among others as discussed by Sherali et al. (2003, 2006). 

  

7.2. Recommendations for Future Research 

 The primary reason for incorporating severe weather data from the Model Output 

Statistics (MOS) resides on the point-by-point structure of the forecasts, which was essential to 

the development of our probability-net concept.  With over 1,500 reporting sites providing 

quantitative forecast probabilities, the computational results reported herein for constructing the 

probability-nets and assessing flight trajectories clearly demonstrates that our algorithm can be 

applied in a timely fashion to support strategic level decision-making.  Unfortunately, some of 

the severe weather data, such as thunderstorm probabilities, are provided at only six hours 

intervals.  Therefore, we recommend the development and use of weather forecast sources that 

can provide the essential point-by-point probability data for relatively smaller time intervals. 

 For prototypical reasons, the flight plan generation implemented in this dissertation 

imports flight waypoints into Microsoft Excel and subsequently plots these points onto a chart 

with the U.S. map incorporated in the background.  Further refinement of the C++ code in 

conjunction with advanced graphical output capabilities would serve to greatly enhance the 

capabilities of our proposed flight-plan-generation tool. 

On November 17, 2005, FlightAware (2006) released a Live Flight Tracking web-site 

that provides real-time en route flight data (minute-by-minute locations, altitude, and airspeed) 

and historical flight records for 120 days.  It is currently the most popular tracking service 

available on the internet.  In addition to the flight tracking capability, the web-site also provides 

airport information and relevant statistics.  The information is free and available for both private 

and commercial air traffic use.  Given that the historical flight data for each flight contains a 

flight log, the realized flight trajectory could be evaluated using the forecasted severe weather 

probabilities provided by MOS to derive alternative statistically-based weather delay factors 

based on comparing planned and achieved flight routes.  We recommend the development of 

such a technique and its benchmarking against our proposed methodology for future research.            

Finally, regarding our slot-exchange mechanisms, we recommend further 

experimentation in order to evaluate the efficiency and effectiveness of our proposed approach 

under longer GDP periods and under scenarios involving multi-airport GDPs.  It is also useful to 
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explore avenues for including Slot Credit Substitutions (SCS) within the equity formulations.  

The premise behind SCS is that an airline submits a flight (along with its assigned slot under a 

GDP) for cancellation, conditioned on the ability to move a later flight to an earlier slot time.  

Given that a submitted SCS can alter the flight times of one or more flights as a function of 

newly acquired slot times, these new flight plans must be evaluated with respect to sector 

workloads, conflict risk, and equity among the involved airlines.  Our modeling framework 

provides the mechanism for incorporating such considerations, and it would be useful to conduct 

specific case-studies to assess the economic value of Slot Credit Substitutions.  Another 

interesting area of future research is to examine side-payments as part of the trade-offer and 

equity structure, as suggested by Vossen (2002).  
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