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Abstract 
 

This dissertation contains an examination of the problem of reconfiguration for restoration in critical 

infrastructure systems, with regard for the prioritization of those systems and the relationships between 

them.  The complexity of the reconfiguration problem is demonstrated, and previous efforts to present 

solutions to the problem are discussed.  

This work provides a number of methods by which reconfiguration for restoration of an arbitrary 

number of prioritized interdependent critical infrastructure systems can be achieved.  A method of 

modeling systems called Graph Trace Analysis is used to enable generic operation on various system 

types, and a notation for writing algorithms with Graph Trace analysis models is presented.   

The algorithms described are compared with each other and with prior work when run on a model of 

actual electrical distribution systems.  They operate in a greedy fashion, attempting to restore loads in 

decreasing priority order.  The described algorithms are also run on example models to demonstrate the 

ability to reconfigure interdependent infrastructure systems and systems which do not operate radially.
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I. Introduction  

Modern society depends on a set of critical infrastructure systems.  These systems include electrical 

distribution, potable water, sewage, gas, and others.  When a problem occurs in one of these systems, it 

can cause disruption of services not only in its system but in other systems.  Often this only becomes 

evident during major catastrophes.  

In this dissertation loads are considered to be any device which requires service from a system.  

Based upon the mission of the system, some loads are more important than others, and the mission of the 

system may change. Thus, the importance of a load may change. Reconfiguration for restoration is the 

process whereby disruption in services to loads is responded to and the system or systems in question 

are altered to restore service to the loads.   

In all of these systems there are devices which can be operated to alter the system topology or even 

cut off entire sections of the system in order to isolate faults.  These sectionalizing devices are the core 

of reconfiguration.  In this dissertation all sectionalizing devices that are available for use, whether they 

be valves in fluid systems or breakers in electrical systems, will be referred to as switches. 

1.1 Objective of Reconfiguration for Restoration 

When faced with a reconfiguration problem, the system operator needs to be able to operate switches 

in order to alter service flows in the system and minimize the effects of the disruption on the system 

loads.  System loads and the components which feed them may rely on services from other systems in 

order to run, and the loads themselves may differ in relative importance. 

The objective of reconfiguration, therefore, is to operate system switches in order to restore loads in 

accordance with their importance and with respect to the various interdependencies in the system.  As 

will be discussed in section 3.4, the problem of finding the optimal solution is NP-hard, and so the 
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algorithms presented in this dissertation are greedy heuristics which attempt to restore loads in 

decreasing priority order. 

1.2 Challenges of Interdependent System Reconfiguration 

Loads on a system are not of equal importance.  Often there is a hierarchy of importance among 

system loads, and thus reconfiguration must take this prioritization into account when determining 

where to restore service. Furthermore the importance of a load may change based upon what the system 

is being asked to do, or its mission.  It is typical for prior work which recognizes prioritization to limit 

themselves to only a few levels [1-3], but a fully robust solution must be able to handle an arbitrary 

number of priority levels, to the point of every load having its own unique level of importance. 

Critical infrastructure systems are not independent of each other.  Each has elements which depend 

on elements in another system.  For example, water systems employ pumps.  These pumps are often 

driven by electrical motors, which are loads on the electrical system.  These intersystem dependencies 

must be considered by reconfiguration.  Works such as Rinaldi et. al. and Lee et. al. which have looked 

at the question of system interdependencies (though not, in the case of Rinaldi et. al., for 

reconfiguration) split up dependencies into different subcategories depending on the commodity being 

exchanged or due to being in a geographical space [4,5].  This categorization is unnecessary for 

reconfiguration analysis, as any dependency between two components in different systems can be 

represented by the percent of service needed of one component by the other.  This is the method adopted 

in this dissertation. 

In addition to those challenges, prioritized reconfiguration is a difficult combinatorial problem.  For 

a system with n switches, there are 2n possible system states which could be the optimal system state.  

Prioritized reconfiguration is in fact NP-hard, as will be demonstrated in 3.4. 
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The work here considers a “system of systems” model. Critical infrastructure systems are 

interdependent with one another, and a disruption in one system often results in a disruption in another 

system.  For valid solutions these interdependencies must be considered. An electrical outage can result 

in an outage in the potable water system, and depending upon the length of the outage, the potable water 

system may need to be flushed for some period of time prior to using the water.  In some systems 

electrical power equipment depends upon cooling water.  If the cooling water suffers a disruption, after 

some period of time the electrical equipment needs to be turned off or suffer failure due to overheating. 
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II. Past Work 

2.1 A Survey of the State of the Art in Distribution System Reconfiguration for System  
Loss Reduction 
-R.J. Sarfi, M.M.A. Salama, A.Y. Chikhani 

The authors of this paper examined the previous work that had been accomplished in examining the 

reconfiguration problem.  They were able to classify the solutions they found into three basic categories: 

methods which blended heuristics and optimization, pure heuristics, and AI-based methods. 

Methods blending heuristics and optimization were heavily influenced by the algorithm developed 

by Merlin and Black [6], and later improved by Shirmohammadi and Hong [7].  These algorithms 

looked at the loops in the system and determined which switch on the loop should be turned off for the 

least loss of power.  Loops could be examined all at once as in [7], or one at a time as in [8].  The 

solution proposed by Huddleston et. al. deviated from this single-switch approach by simplifying the 

flow model to the point where a matrix solver could be used to determine all of the required switch 

operations at once [9].  Another similar solution by Broadwater et. al. was cited for its improved ability 

to use actual system measurements [10].  Later methods developed after this survey’s publication such 

as those proposed by [11] and [12] operate in a similar fashion, with incremental improvements mostly 

in determining network flows.  These methods are all restricted to radial electrical systems, and only 

seek to minimize power losses. 

Pure heuristic methods discussed in the paper seek to prune the number of possible states through a 

set of rules.  The remaining space would be examined to determine a solution.  The most prominent of 

these was the solution developed by Civanlar et. al. [13], which utilized a pair of rules to eliminate 

switches from being operable, and then used an approximation for load flows to examine the remaining 

switch combinations for pairs of switches which could be operated to maintain radiality and most reduce 

losses.   Other techniques discussed in the survey presented merely incremental improvements over the 
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algorithm by Civanlar et. al. [13].   An heuristic developed by Lee et. al. [14] shortly after the survey 

was written similarly sought to operate pairs of switches to  reduce losses.  Rather than apply the rules 

proposed by Civanlar et. al. [13], the solution by Lee et. al. simply picks the most reductive pair it can 

find at each step, acting like a depth-first search [14].  Castro and Watanabe, rather than look at the best 

operation at each step like Civanlar et. al., instead operated as many viable options at a given step as 

were feasible in an effort to avoid local minima, but a global optimum was still not assured [15]. As with 

the blended heuristic/optimization algorithms, none of these algorithms look at load priority, non-radial 

systems, or interdependent systems. 

The last category of solution examined by the survey was that of what the authors described as AI-

based solutions: neural networks, genetic algorithms, and expert systems.   An algorithm using a neural 

network was discussed because it sought to parallelize the system into zones which could be congifured 

seperately, but the system suffered from the same problems as any neural network, which is that they are 

only as good as the data provided, and they take time to train [16].  Only one method using a genetic 

algorithm was discussed, but it involved simply encoding switch states as an individual and using the 

objective function as the fitness function [17].  Similarly only one expert system was discussed, that by 

Taylor and Lubkeman [18], which acted as an extension of the heuristic proposed by Civanlar et. al. 

[13].  As before, none of these solutions recognized prioritization or interdependencies. 

2.2 Service Restoration in Naval Shipboard Power Systems 
 -K.L. Butler-Purry, N.D.R. Sarma and I.V. Hicks 

The goal of the authors of this paper was to create a method for prioritized reconfiguration of a 

shipboard power system [1].  To that end, they adapt the fixed-charge, network flow method to model an 

electrical utility system.  In their method, the system is modeled as a network, where each component 

serves as an edge in a graph.  Loads are nodes in the graph and are considered to be prioritized or 

nonprioritized, and either fixed or variable.  Fixed loads can either be fully supplied or not supplied, 
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while variable loads can be partially supplied.  Furthermore, paths to loads are also prioritized.  For 

example, assuming two paths to a given load, a path which passes through more automatic transfer 

switches than the other (as opposed to passing through manual transfer switches) would have higher 

priority. 

The loads and switches then are used as variables in forming a series of constraint equations and an 

objective function.  The constraint equations cover aspects of the system such as current capacity and 

Kirchoff's Laws.  The objective function then seeks to maximize the number of prioritized paths used 

and the value of the loads served.  The value of a load is defined as a function of the load's capacity and 

a weighting factor based on whether or not the load is prioritized.  Linear programming is then used to 

maximize the objective function.  The authors finally proceed to show results of several simulations, 

both with and without a fault in the system, where this method found an optimal solution. 

The proposed method has a number of advantages.  It allows partial restoration of loads which can 

be partially restored, and it allows a limited qualitative evaluation of paths for loads which are fed from 

more than one path.  These two factors allow greater flexibility in the possible reconfigurations of the 

system, and make it more likely that the ultimate solution will be optimal.   

Unfortunately the authors' method also suffers from a number of limitations in terms of how it deals 

with prioritization.  Priorities are a simple two-tiered system.  Either a load is vital, or it is not.  No 

allowance is made for a third load being somewhere between two others in importance.  Furthermore, 

the assumption that loads will only have two paths is very restrictive, particularly for highly 

reconfigurable systems with multiple generators.  The prioritization of paths becomes much more 

complex as the reconfigurability of the system increases, and the authors fail to account for that. 

Lastly, the way the proposed method solves the linear program it creates requires holding a large 

matrix in memory.  Each node requires at least five equations, and each edge requires one equation for 



 7 
 

each phase, with more for systems with faults.  For large systems, this can result in a very large matrix, 

and the calculations involved in solving it would be difficult to distribute across multiple processors. 

2.3 Restoration of Services in Interdependent Infrastructure Systems: A Network Flows  
Approach 
-E.E. Lee, J.E. Mitchell, and W.A. Wallace 
 

The goal of Lee,  Mitchell, and Wallace is significantly more ambitious than that of the others papers 

discussed here [4].  With this paper, the authors seek to provide a fully detailed mathematical model 

describing a set of critical infrastructure systems (electricity, water, etc.) and their interactions which 

could be used in creating a decision support system for system operators or analysts.  It also supplies a 

detailed classification for the ways in which critical infrastructure systems can be interdependent, and 

described the use of their model in solving a problem in Manhattan. 

The authors approach the problem from a network flows perspective.  Each infrastructure system is 

considered to be its own network.  Each component in each infrastructure system is represented by a 

node in the network, which can be supply nodes, demand nodes, or transhipment nodes.  Each node has 

associated with it a supply and a demand, with supply nodes having no demand and demand nodes 

having no supply.  Arcs represent  connections between nodes, and have a capacity, a cost, and a flow.  

Equations are then developed which describe constraints such as maximum flow through a node and 

conservation of flow.  Optimizing the system would then involve finding the min-cost flow. 

To handle disruptions, the authors must expand the model beyond simple capacity and flow 

conservation constraints.  First, the authors address intrasystem effects of a disruption by adding a slack 

variable s to each node, representing the node's demand shortfall.  In addition, each node is also given a 

weight k, which serves as its priority.  The authors then introduce system interdependencies to the model 

by introducing a binary variable y which represents the dependency between a demand node in one 

system and an arbitrary node in another system, and a variable b which represents the quantity of the 

service provided by that dependency.  A value of 1 indicates that the demand of the demand node is 
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being supplied by the node in the other system, and a value of 0 indicates that demand is not met.  The 

objective function for restoration is then based on minimizing a number of factors, primary among 

which are the sum of the products ks for each node in the system plus the sum of kb(1-y)  for each 

interdependency in the model, subject to constraints which are exhaustively detailed by the authors.   

In addition to the extensive definition of terms involved with critical infrastructures and their 

interdependencies, the authors manage to provide an extremely detailed and complete model for critical 

infrastructure systems.  It accounts for an arbitrary number of systems, it allows an arbitrary granularity 

in priorities, and it models system interdependencies.   Because of the model's completeness, a solution 

achieved by solving it with a linear programming tool is very likely to be truly optimal. 

The authors' model also has some flaws.  As with the method proposed in [1], solving the system 

requires an extensive matrix calculation, which is again not easily distributable and thus relatively 

unsuited to real-time operations.  The proposed model also only treats dependencies as being satisfied or 

unsatisfied.  Though the authors concede that a dependency could in reality be partially satisfied, in the 

model they decline to allow for it.   

The authors describe the use of their model and method of reconfiguration to solve a problem with 

infrastructure systems in Manhattan.  While they are able to solve their model quickly, doing so requires 

a number of simplifications which greatly limit the precision and flexibility of their method.  For 

example, in the power system all transformers along a feeder were aggregated into one transformer, as 

were all loads in a service area.  Demand at the loads was also assumed to be at a given level for all 

loads in one of only two customer classes, and was further assumed to be constant.   Making 

simplifications of this nature greatly speeds up solving an otherwise highly complex nonlinear system, 

but it reduces the precision of the flows that are found and decreases the possible granularity of potential 

solutions. 
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2.4 New Approach for Distribution Feeder Reconfiguration for Loss Reduction and Service  
Restoration 
-W.M. Lin and H.C. Chin 

The authors of this paper propose a reconfiguration method for radial systems [19].  In this paper, 

reconfiguration is split into two different problems: reconfiguration for optimization and reconfiguration 

for restoration.  The goal of optimization is to improve a system which has suffered no service 

disruptions, while the goal of restoration is to have the system respond to address such a disruption. 

The optimization algorithm starts by turning on all switches.  For each loop created in this way, it 

then chooses a switch to turn off based on impedances in the loop, voltage losses across the loop, and 

distance from the tie switch in the loop.  A tie switch is a switch which connects parts of the system 

which nominally are fed by different sources.  The algorithm starts at loops closest to the sources in the 

system, and terminates once the system is radial. 

The restoration algorithm turns on tie switches to restore service to an area where there has been a 

disruption based on the same criteria as in the optimization algorithm.  If  a constraint is violated by this 

action, the switch is turned back off and another is tried until either all choices are exhausted or one is 

found which works. 

The proposed algorithms are simple and do not rely developing and solving a large matrix in order to 

arrive at a reconfiguration solution (though it is not explained how system voltages would be 

determined), which should result in better performance than some other solutions.  However, the need 

for the restriction of the restoration algorithm to operating tie switches is not thoroughly explained.  It is 

possible that a better solution could be found by allowing more switches inside the failed area to be 

operated, and the authors do not discuss whether the tradeoff between time and solution quality caused 

by increasing the search space was explored.  
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In addition, this method suffers from some of the same limitations as others previously discussed.  

There is no consideration of the relative importance of loads, and because the algorithms were proposed 

specifically for electrical systems there is no discussion of how to address interdependencies between 

infrastructure systems.  The paper also suggests that failures in a system must be isolated from the rest 

of the system by operating switches bounding their segments, but seems to assume that this is done 

before reconfiguration begins.  The algorithms are also restricted to radial systems, and so are 

inadequate for systems which operate with loops in order to service some loads. 

2.5 A Heuristic Nonlinear Constructive Method for Distribution System Reconfiguration 
-T.E. McDermott, I. Drezga, and R.P. Broadwater 

      Minimum Loss Optimization in Distribution Systems: Discrete Ascent Optimal  
Programming 
-R.P. Broadwater, P.A. Dolloff, T.L. Herdman, R. Karamikhova, and A.F. Sargent 

Together these papers describe an algorithm for reconfiguration called Discrete Ascent Optimal 

Programming (DAOP) that focuses on reducing line losses in the system [20,21].  DAOP considers the 

system being reconfigured as a graph where each component is an edge in the graph.  Two subgraphs 

are considered: a supplied graph of all components receiving service and an unsupplied graph of all 

components not receiving service.  The supplied graph is not necessarily connected, as mutiple sources 

could feed different parts of the entire system.  The supplied and unsupplied graphs are mutually 

exclusive. 

DAOP begins with all switches turned off such that almost the entire system is in the unsupplied 

graph.  DAOP then searches for the source-ending load pair to restore which would result in the least 

loss increase.  Ending loads are those loads in the unsupplied graph which are connected by a least-loss 

path to the supplied graph.  DAOP then operates switches in order to restore the ending load in that pair.  

If a constraint is violated, the switches are reverted to their prior state.  DAOP continues in this fashion 

until either all loads are restored or no more loads are restorable. 
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DAOP will always converge on a solution that is close to optimal in terms of reducing line losses, 

and does so without using matrix-based methods for determining the reconfiguration solution.  In 

addition, it does not require that any simplifications or assumptions be made with regard to the system 

model.  However it was not designed to take into account interdependent systems, and does not take into 

account load priority.  Rather than try to restore the most important loads at any given time, DAOP is 

instead trying to restore the loads closest to the system area which is receiving service.  While this may 

result in a good solution with respect to line losses, there is no guarantee that the solution will properly 

reflect the user’s priorities. 

2.6 Control Reconfiguration of Discrete Event Systems With Dynamic Control 
-R. Sampath, H. Darabi, U. Buy, and J. Liu 

The writers of this paper write about reconfiguration not for infrastructure systems, but rather for 

systems such as a hospital or a factory: a ‘plant’ with various stations where steps of a process happen 

[22].  While this prevents the work in this paper from being directly applicable to critical infrastructure 

reconfiguration, the principles are similar.  In this paper, the authors describe a system as a ‘plant’ 

having a finite set of tasks to be accomplished, a set of constraints (i.e., available resources), ‘places’ in 

the plant, transitions between places, and controllers for the transitions.  Places can consist of stations in 

the plant such as a hospital ER or a particular point on an assembly line, or they can represent a decision 

point in the next step to take such as the point at which a patient must be sent to recovery or the MRI.  

Each place has a number of transitions associated with it, each of which has exactly one output place.  

Together, these places and transitions form a directed graph.  Each place also has a controller associated 

with it, which determines which transition to use at a given time based on the given constraints. 

Reconfiguration in response to a disruption then involves updating the constraints on the controllers 

for the affected places, and checking if the new system state is feasible.  If not, the algorithm then 

determines which sequence of transitions to take in order to restore normal operation.  This is done with 
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a linear program that minimizes the cost of a sequence of transitions to reach an acceptable system state, 

the math for which is exhaustively detailed in the paper. 

This method of reconfiguration is different from that required to examine critical infrastructure 

systems.  For example, while the service provided by an infrastructure system could perhaps be modeled 

as flowing across transitions and system components as places, this would require modifying transitions 

to have mutiple outputs to allow for a component to feed mutiple other components.  It also doesn’t take 

into account the possibility of mutiple interdependent systems.  Furthermore, while the matrix-based 

nature of the proposed algorithm is suitable for the relatively small example of modeling a hospital, it is 

unlikely to be as effective for large infrastructure systems which can feature thousands of components.  

While it may be possible to adapt this solution to reconfiguring critical infrastructure systems, it was not 

designed for that purpose and so doing so would be akin to forcing a square peg into a round hole. 

2.7 Solutions Based on Genetic Algorithms and Other Evolutionary Techniques 

A popular method for solving reconfiguration is to use some form of genetic algorithm to find a 

solution.  In Augugliaro et. al. [23], Zhu [24], and Kumar et. al. [25] a simple genetic algorithm is used.  

Individuals in the populations of Zhu and Kumar et. al. are defined in terms of switch status (ON or 

OFF), while Augugliaro et. al. also includes capacitor banks and loads which can be disconnected.  

Crossover and mutation are used in all three, though different methods are used to ensure each 

individual remains a representation of a radial system.  Augugliaro et. al. simply do not perform those 

operations on the parts of the individual representing switch status, while Zhu keeps a constant number 

of switches turned off and Kumar et. al. perform a radiality check on new crossovered/mutated 

individuals and force them back to radiality if that constraint is violated [23-25].  Augugliaro et. al. take 

the extra step of adding a ‘branch exchange’ operation which finds two switches in a loop and swaps 

their status. 
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Chang and Kuo [26] and Su and Lee [27] both use a genetic algorithm based on simulated annealing, 

in which an initial system state is iteratively ‘moved’ to neighboring states based on a fitness function 

(in both cases, the relative power loss between the two states, with lesser losses being preferred).  At 

each move, a ‘temperature’ value is decreased, and the algorithm quits when the temperature reaches the 

freezing point. 

Zhang et. al. [28] and Shin et. al. [29] propose solutions based on a TABU search (TS) algorithm.  In 

a TS algorithm, the current state is moved to a neighboring state based on a fitness function and whether 

the potential new state is on a list of previously visited states.  This is done using a mutation operation.  

States on this TABU list cannot be visited again, but as new states are added to the list old ones drop off.  

Zhang et. al. use a straightforward TS algorithm, while Shin et. al. combine a TABU list with a standard 

genetic algorithm to expand the number of possibilities being examined at once [28,29]. 

Another evolutionary technique used by Su et. al. [30] and Carpento and Chicco [31] is based on the 

pathfinding behavior of ants.  In this kind of solution, a number of ‘ants’ are initialized to a given system 

state.  The ants then iteratively move from system state to a neighboring system state.  At each state, the 

ants deposit an amount of ‘pheremone’, which decays with each iteration.  State transitions are 

determined by the amount of pheromone on candidate states and by problem-defined rules.  Higher 

amounts of pheremone are preferred.  In both Su et. al. and Carpento and Chico, the additional rules 

consider the relative power loss of the states under consideration.  The algorithm terminates after a set 

number of generations or when all the ants reach the same state, whichever is first.  The solution state is 

that which the greatest number of ants have found [30,31]. 

All of these evolutionary techniques are capable of finding a feasible solution to the reconfiguration 

problem, but they only examine electrical systems and with the exception of Kumar et. al., they all only 

seek to minimize power losses in the system. Kumar et. al. also seek to minimize switching operations 
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and number of loads dropped [25].  None of them address the prioritization of loads, nor do they account 

for interdependencies between system types.  Furthermore, these kinds of solutions can take several 

minutes to run on even small systems, which likely makes them infeasible for the larger systems 

maintained by utility companies. 

2.8 Market-based Multiagent System for Reconfiguration of Shipboard Power Systems 
-K. Huang, S. Srivatava, D.A. Cartes, L.H. Sun 

In this paper, Huang et.al. propose a multiagent system for reconfiguration of radial electrical 

systems in which each major component in the system is given its own agent [32].  These agents then 

coordinate with each other to determine how power should be routed through the system.  Loads which 

have a higher priority in the system are granted their service requests first.  This kind of solution has the 

advantage of decentralized control, and thus no single failure point.  However, a distributed agent 

system like that described would require a lot of equipment in order to implement.  Combined with the 

security concerns posed by the potential for rogue agents, an agent-based system like the one described 

could be cost-prohbitive to implement, particularly for large distribution systems.  Furthermore, as with 

most other solutions, there is no accounting for system interdependencies. 

 

2.9 Solutions based on Rules 

Zhu et. al. [33] and Ding et. al. [34] propose methods for reconfiguration which make use of rules.  

Such solutions seek to decrease the potential solution space by use of a set of rules derived from a 

combination of past experiences and other knowledge of the system.  In the case of Zhu et. al., these 

rules are enumerated in their paper and seek simply to eliminate potential switching operations which 

are likely to lead to either a greater power loss or a lesser power loss than another option.  After 

applying each rule in sequence to a loop in the system, the resulting switch is operated.  This is repeated 
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for each loop.  This method is restricted to radial electrical systems and contains no accounting for load 

prioritization [33]. 

Ding et. al. propose a much more complex system, which recognizes the prioritization of loads in the 

context of missions the system must fullfill.  Their solution involves three parts: a database, a load 

prioritization module, and an expert control actions module.  The database contains information on the 

configuration of the system (including load status, switch states, bus transfer states, etc.) and the 

possible ‘missions’ in which the system may engage.  The load prioritization module is responsible for 

generating a priority list of loads for the current mission configuration.  It uses information about the 

loads such as their power factors and harmonic content, as well as the loads' importance to the current 

mission configuration, to generate the list of loads.  This list is then provided to the expert control 

actions module. The expert control actions module then uses an expert rules system to evaluate the 

system configuration and the load priority list to determine which loads to shed and what operations to 

perform to accomplish the shedding [34]. 

The method proposed by Ding et. al. has the advantage of providing a great deal of flexibility.  

Among the factors involved in prioritizing loads are the results of expert interviews which help 

determine the relative importance of loads, and this rules-based method is capable of significantly 

pruning the number of switching options that must be examined [34].  Furthermore, the proposed 

method allows for mission changes to affect the relative priorities of loads in the system.  This flexibility 

allows for a much greater chance of being able to find a solution for any given situation. 

However, because the method proposed by Ding et. al. relies so much on expert interviews it has 

significant room for human error [34].  An erroneous assesment of the relative importance of various 

loads could result in the solution proposed by the algorithm being suboptimal.  The mission priority lists 

used by this paper combine with its focus on load shedding also make it possible for this method to shed 
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low priority loads such that no mission is completely fulfilled.  Furthermore, any model utilizing this 

method for reconfiguration will have to perform a large number of database accesses, which are quite 

expensive in terms of time and could prohibit this method from being used for large systems in an 

operational capacity. 

2.10 Computer-based Strategy for the Restoration Problem in Electric Power Distribution  
Systems 
-S. Ćurcić, C.S. Özveren, and K.L. Lo 

The authors of this paper propose one of the few methods that recognize load prioritization as part of 

the reconfiguration problem [2].  Their method models the system as a graph in which components are 

nodes.  The algorithm looks for ‘islands’ of unrestored load: connected subgraphs of the model with 

loads that are not receiving service.  Their algorithm then proceeds through three stages for each island, 

addressing each island in order of decreasing size.  It first tries to restore the island with a single 

switching operation.  If that fails, the algorithm attemps to restore the island node-by-node, operating 

switches in decreasing order of spare capacity.  Lastly, the algorithm will attempt to perform switching 

operations in order to eliminate bottlenecks – branches with a minimum available spare capacity – by 

looking for alternative sources for nodes supplied by a bottleneck.   

Once all islands have been addressed in this way, the algorithm looks to see if there are any 

important loads which are not receiving supply.  If so, then for each island with unrestored important 

loads, the algorithm tries to restore those important loads by disconnecting relatively unimportant loads, 

then tries to restore islands of unrestored load as describe above.  Once all islands of unrestored 

important loads have been addressed, the algorithm terminates. 

The proposed algorithm has the advantage of looking at the problem from the perspective of 

restoring prioritized loads, where most methods simply attempt to reduce losses.  However, it seems to 

treat restoring important loads as something of an afterthought, rather than a primary goal of the 
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algorithm.  Instead, most of the algorithm seems focused on just restoring as many loads as possible.  In 

addition, the proposed method is only capable of handling radial electrical systems, and so doesn’t take 

into account interdepenencies between different systems. 

2.11 Optimized Restoration of Combined AC/DC Shipboard Power Systems Including  
Distributed Generation and Islanding Techniques 
-S. Chushalani, J. Solanki, and N. Shulz 

The authors of this paper present another of the few methods which recognize and take into account 

the prioritization of loads [3].  In the proposed method, the authors propose a method for the 

reconfiguration of a shipboard power system.  The basic idea is to formulate constraint equations for the 

system, with an objective function to maximize the prioritized load restored.  These constraints are then 

solved using a linear problem solver.  The problem is split into two parts: restoration of balanced and 

restoration of unbalanced systems.  In balanced systems, load in the system is balanced across all three 

phases, which is not the case for unbalanced systems.   Consequently the constraints for balanced 

systems are much easier and more compact to express, which led the authors to handle the two problems 

separately.   

The proposed solution does recognize prioritization, but only at three levels: vital, semi-vital, and 

non-vital.  However, there is nothing intrinsic in the authors’ formulation of the problem which would 

prohibit altering the method to allow for arbitrary priority levels.  Despite having this advantage over 

other systems, the proposed method still suffers for relying on solving a large matrix (265 variables and 

290 constraints for even a small unbalanced system) in order to reach a solution.  Relying on matrices in 

this fashion is likely to cause a reconfiguration method to scale poorly, and thus be unsuitable for use 

with large distribution systems.   Lastly, as is the case with almost all other solutions, the proposed 

method is restricted to electrical systems only, and does not account for system interdependencies. 
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2.12 Contributions 

Past reconfiguration solutions all feature certain problems.  Some do not account for load priority, 

reducing the likelyhood of an optimal solution.  Some do not account for interdependencies among 

multiple system types, which limits the usefullness for large-scale, coordinated response.  Many utilize 

matrices or linear programs to determine the reconfiguration solutions, which reduces the ability to 

respond rapidly to changes in the system.  And some make simplifications to the models or flow 

algorithms which are likely to reduce the ability to find optimal solutions. 

This dissertation seeks to address these problems by proposing a set of algorithms which may be 

used to reconfigure critical infrastructure systems.  The proposed algorithms, based on the use of a 

Graph Trace Analysis (GTA) model, address all of the above problems.  Each is run on a complete, 

unsimplified model, allows for arbitrary load prioritization, and accounts for the reliance of components 

from one system on components from another.  Furthermore, they do not make use of matrix 

calculations to determine their solutions, and so they allow system parameters to be rapidly changed in 

the model and resolved without needing to completely reformulate the problem.  The complexity of the 

proposed algorithms is also demonstrated to not be worse than polynomial in time with respect to the 

nature and size of the systems on which they are run. 

Also proposed in this dissertation is a notation for describing algorithms for use with a GTA model.  

The GTA notation described in this paper is based on the Object Constraint Language, and uses sets and 

sequences in order to work with collections of components in the GTA model.  This allows great 

flexibility when designing and implementing algorithms for GTA models.  In addition, it is easy to 

implement algorithms using this notation with the features provided by the C++ Standard Template 

Library.  
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III. Graph Trace Analysis  

Graph Trace Analysis (GTA) is a method of analyzing systems predicated on graphs [35].  GTA 

uses concepts of graphs; sets generated by tracing through the graph; where traces are implemented with 

iterators; and set operators.  GTA uses a set of operations based on the Object Constraint Language 

described by Warmer and Kleppe [36].  The subset of GTA operators used in reconfiguration are 

described in Tables 1 and 2.   

A GTA model is based on a multi-dimensional directed graph.  Each component in a GTA model 

corresponds to an edge of the graph, and the nodes of the graph are the connections between 

components.  Furthermore, the model of the graph is thought of just in terms of edges. That is, the model 

is an edge-edge graph, and nodes are not treated as separate entities, but become part of the edge itself.   

Edges in the model have the responsibility of tracking the other edges at their ends, but the connections 

themselves are not an explicit part of the model.  Connectivity is therefore maintained among the edges 

of the GTA model by having each edge track the edges to which it is connected.  

3.1 GTA Notation 

The primary focus of GTA is on sets and sequences.  While algorithms written with GTA notation 

do feature single-item variables, the operators provided by GTA are primarily intended to make working 

with collections of items easy.  Operators specific to sets and sequences and members of GTA sets, 

sequences, and complex data structures are accessed using the → symbol.  Sets are denoted by {} and 

sequences by [].  Parts of an expression contained within parenthesis are executed before the rest of the 

expression. 

The most important operator in GTA is the collect() operator.  collect() operates on a set or a 

sequence, and takes as an argument an expression that evaluates to true or false for each element of the 

set or sequence in question.  collect() then returns a collection consisting of all elements of the collection 
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a b Operation Result Effect 

set or seq  a→size int The number of elements in a 

set or seq expr a→collect(p| b) set or seq Returns all elements p in a for which b is true 

seq  a→#index int The current position of the iteration index of a 

seq expr a→iterate(b) seq Executes expression b on each element in a, 
with a→#index going from 0 to a→size-1. The 
result is a 

seq expr a→riterate(b) seq Executes expression b on each element in a, 
with a→#index going from a→size-1 to 0. The 
result is a 

set or seq expr a→order(b) seq Orders a such that its elements are in 
increasing order according to b. If a is a set, 
order makes it a seq 

set or seq any a→includes(b) bool Returns whether b is an element of a 

set or seq any a→excludes(b) bool Returns whether b is not an element of a 

set or seq any a→including(b) set Returns the union of set a with element b 

set or seq any a→excluding(b) set or seq Returns a except for element b. If a was a 
sequence, order is retained. 

seq any a→prepend(b) seq Returns the sequence of b followed by the 
elements of a 

seq  any a→append(b) seq  Returns the sequence of the elements of a 
followed by b  

seq int a→at(b) element Returns the element of a at index b.  
0 ≤  b < a→size 

seq seq a→symmetricDifference(b) seq Returns the sequence of elements in either a or 
b but not both. First the elements of a in the 
order they were in in a, then the elements of b 
in the order they were in in b 

set or seq set or seq a→intersection(b) set Returns the set of elements in both a and b 

set or seq expr a→exists(b) bool Returns whether there is an element of a for 
which b is true 

set or seq expr a→forall(b) bool Returns whether b is true for all elements of a 

seq  a→first element The first element of a 

seq  a→last element The last element of a 

set or seq  max a any Returns the maximum element of a, as defined 
by the > operator.  Requires that the elements 
of a have > defined. 

set or seq expr a→sum(b) any Returns the sum of the expression b as applied 
to each element of a.  Requires that + be 
defined for the elements of a. 

 

 

Table 1: Collection-Specific GTA Operations Used In Reconfiguration 
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a b Operation Result Effect 

any any a=b  Assigns b to a 

any any a==b bool Returns whether a and b are equivalent 

any any a<b bool Returns whether a is less than b.  Works for 
any pair of data types for which < is defined 

any any a>b bool Returns whether a is greater than b.  Works 
for any pair of data types for which > is 
defined 

any any a ≤  b,a ≥  b bool As > and <, but less than or equal to and 
greater than or equal to. 

any any a +,-,*,/ b any Math operators. Work for any pair of data 
types for which they are defined. 

bool bool a AND,OR b bool Boolean operators. 

 

 

on which collect() was called for which the given expression is true.  If the collection on which collect() 

is called is a set, so is the output collection.  If the collection on which collect() is called is a sequence, 

then the output collection is a sequence where each element is in the same order as in in the input 

collection.  For example, if sequence A=[1,2,3,4,5], then A→collect(p| p % 2 == 1) would return [1,3,5].  

The collect() operator is a powerful tool in GTA for creating new sets and subsets of related objects, and 

is used extensively in the reconfiguration algorithms described in this dissertation. 

 3.2 GTA Traces 

In a GTA model, each component has one and only one reference source.  Though multiple sources can 

feed any given component, only one of those sources can be its reference source.  The combination of the 

reference source and the graph topology in a GTA model defines a set of iterators for each component: 

forward, backward, feeder path, brother, and adjacent.  

The forward and backward traces are used to trace through every component with the same reference 

source once and only once.  The component in the forward trace from the current component and which 

has the same brother as the current component will receive flow from the current component, originating 

Table 2: Other GTA Operations Used In Reconfiguration 



 22 
 

with its reference source.  The brother represents the first component in the forward trace of the current 

component not fed by the current component.  Thus, once all components fed by the current component  

are included in the forward trace, the next component in the forward trace is the current component’s 

brother.  In this way, all components fed by the current component will be found in the forward trace 

before any components not fed by it.  The backward trace is simply the reverse of the forward trace.  

The feeder path trace for a given component gives the component which immediately feeds the 

given component.  The feeder path trace is functionally complete, in that all other traces can be derived 

from it [35]. 

The adjacent trace gives a component physically connected to the current component but which is 

not in the forward or feeder path trace from the current component.  An adjacent component may have a 

different reference source than the current component.  The existence of an adjacent component marks a 

possible cotree location in the graph [35].  

 

 

Figure 1: Simple GTA Model 
As an example, Figure 1 shows a simple system with two sources and  six components, where for 

purposes of discussion each component is identified with a unique number.  In this system, the reference 

source of component 2 is 1.  1 is also the feeder path trace of 2.  The forward trace component of  2 is 3.  

Component 3’s forward trace is 4, which is also its brother trace.  Component 3 also has an adjacent 

trace of 6. 
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    Each of these traces defines an ordered sequence of components.  These sequences are described 

in Figure 2.  Thus, using the example in Figure 1, FT3=[4], BT3=[2, 1], FPT3=[2, 1], BRT3=[4], and 

ADJ3=[6]. 

Sequences generated with traces can then be manipulated using the operators shown in Tables 1 and 

2.  The GTA trace sequences are described in Table 3. 

 
 
 
 
 
 
 
 
 
 

Table 3: Seqs Created by GTA Traces 
 

3.3 Component Structure for Reconfiguration and Problem Definition 

Using GTA, the reconfiguration problem can be defined as follows.  A component C is, for the 

purposes of reconfiguration, a 17-tuple which defines certain characteristics of the component important 

to reconfiguration.   

C={p,type,systype,c,f,freq,ft,fpt,bt,brt,adjt,AD,OD,pri,status, statusdep, operable} 
where p = unique component identifier 

             type = LOAD, SOURCE, SWITCH, OTHER 
                                    systype = system type: ELECTRIC, FLUID, GAS, and more as the user needs 
             c = capacity, or rating of a component 
             f = flow, where f ≤ c 
            freq = required flow if type == LOAD 
          ft,fpt,bt,brt,adjt = components related to C via  
                       forward, feeder path, backward,  
                                    brother, and adjacent trace,  
                                    respectively, where a value of  0  
                                                  implies the component does not exist 
             AD = set of ‘AND’ dependencies 
             OD = set of ‘OR’ dependencies 
             pri = component priority 
             status = status of component-ON, OFF, FAILED 
             statusdep = status of component’s dependencies 
                                    operable = whether the component can be turned on or off - YES, NO 
 

FTp = seq of components in forward trace from  
component p 

BTp = seq of components in backward trace  
from component p 

FPTp = seq of components in feeder path trace  
from component p 

BRTp = seq of components in brother trace    
               from component p 
ADJp = seq of components in adjacent trace  
 from component p 
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These characteristics include the component type (specifically, whether or not it is a load, source, 

switch, or other), the system type (electrical, fluid, etc.), the flow capacity of the component c, the flow f 

through the component, the required flow freq for the component, the component’s trace information, the 

component’s priority, and the components on which it is dependent.  The adjacent trace for any 

component must have the same system type as that component. 

A component’s dependencies are contained in two sets, AD and OD.  AD represents ‘AND’ 

dependencies, or dependencies which must all be satisfied for the current component to have service.  

OD represents ‘OR’ dependencies, or dependencies of which only one must be satisfied for the current 

component to have service.  A dependency is a couplet of a component and a percentage.  The 

component in the dependency couplet is the supporting component which must receive service to satisfy 

the dependency, and the percentage is the proportion of the supporting component’s demand which must 

be met in order to satisfy the dependency.  The percentage can be any value between 0 and 1, allowing 

for recognition of partial dependency requirements. 

Dependency={pCmp, percent} 
where pCmp = supporting component 

             percent = percent of supporting component’s demand that must be met to satisfy 
                                                    the dependency 
 
The statusdep variable is a value indicating whether or not the component’s dependencies are 

satisfied.  If they are, statusdep is 1.  Otherwise, it is 0. 

Figure 2 shows two situations with AND and OR dependencies.  In Figure 2a, component 1 has 

AND dependencies on components 2 and 3.  If either component 2 or component 3 is unrestored, then 

component 1’s dependencies are unsatisfied.  By contrast, in Figure 3b component 1 has OR 

dependencies on components 2 and 3.  In Figure 2b, component 1’s dependencies are satisfied as long as 

either or both of components 2 and 3 are restored. 
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Figure 2: AND and OR Dependencies 

A component is considered restored (status is ON) if its dependencies are satisfied and all 

components in its feeder path are restored.  A component’s dependencies are satisfied if all ‘AND’ 

dependencies are satisfied and at least one ‘OR’ dependency is satisfied.  Table 4 illustrates GTA 

notation for a component with a status of ON where dependencies are satisfied. 

Lastly, a switch component can be marked as operable or non-operable.  For non-switchable 

components, C→operable is set to NO. 

A GTA model M is a set of all components in the model.  A system S is a subset of M.  It is a 

collection of components such that for each component SC ∈ , C’s forward, backward, feeder path, 

brother, and adjacent trace are also contained in S (1).  All components in a system must share a system 

type (C→systype is the same for all SC ∈ ).  Mutiple systems can be contained in a given model. 

CjεSj,Sj→includes(Cj→ft, Cj→bt, Cj→fpt, Cj→brt, Cj→adjt)  (1) 

 

 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Component Status Definitions 

 

1 

2 3 

A A 

1 

2 3 

O O 

a b 

For a non-supporting component p (no component is dependent on p), 
p→status==ON  
     implies p→f==p→freq AND p→statusdep==1 AND FPTp→forall(q→status==ON) 
 
For a supporting component p with set of components ADeps with AND dependcies upon it and set of c
 components ODeps with OR dependencies upon it, 
p→status==ON  
     implies ADeps→forall(p|p→f/p→freq≥q→AD→collect(r|r→pCmp==p) →first→percent) AND 
                 ODeps→forall(p|p→f/p→f req≥q→OD→collect(r|r→pCmp==p) →first→percent) AND 

   p→statusdep==1 AND FPTp→forall(q|q→status==ON) 
 
p→statusdep==1 
     iff p→AD→forall(q|q→pCmp→status==ON AND (q→pCmp→f/q→pCmp→f req)≥q→percent) AND 
          p→OD→exists(q|q→status==ON AND (q→pCmp→f/q→pCmp→freq)≥q→percent) 
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Two more subsets of components, the sources Sources and loads Loads are defined. 

Sources=M →select(p→type==SOURCE)  (2) 
    Loads=M→select(p→type==LOAD)       (3) 

 
Reconfiguration is then performed on the model M.  When the status member of the component 

structure is mapped such that ON==1, OFF==0, and FAILED==0 and the boolean values TRUE and 

FALSE are mapped to 1 and 0 respectively, the objective of reconfiguration is to maximize the amount 

of load restored, weighted by the priority of the loads as follows: 

IsSupportingLoad(p)=1- M→exists(q| q→AD→includes(r|r→pCmp==p) OR  
                                                               q→OD→includes(r|r→pCmp==p))           (4) 

g = max{ L→sum( (p→pri) * (1/(1 + |p→f req -  p→f|*IsSupportingLoad(p))) *        
                                                    (p→statusdep) * (p→status) )  }                                     (5) 

 
In the objective function equation (5), a higher priority results in a higher value for a load’s term.  

The flow on the load being closer to its required flow also results in a higher value for that term unless 

the load is a supporting load as defined in (4), as supporting loads may only need to be partially 

supplied.  Lastly, if the load’s dependencies are not satisfied or if it is not restored, the term drops out of 

the function completely. 

The reconfiguration solution is subject to the constraint that no component in any system has a flow 

greater than its capacity: 

M→collect(p→f ≥ p→c)→size == 0  (6) 
 
This flow capacity constraint is not the only possible constraint to apply, but it is the only mandatory 

one as increasing flow beyond a component’s capacity can have disastrous consequences.  The 

reconfiguration algorithms proposed in this dissertation are designed in a way that the implementation of 

them can include any number of additional constraint checks which may apply only to a specific system 

type or even a specific model.  

As will be discussed in section 3.4, finding this optimal solution is NP-hard, and thus the algorithms 

presented in this dissertation attempt to solve a simplified version of the optimized reconfiguration 
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problem.  The simplified problem is as follows.  Given a model M as described in the optimized 

problem with set of switches S, find two sets of switches Sopen and Sclosed such that the following are true: 

{},,, =∩=∪⊂⊂ closedopenclosedopenclosedopen SSSSSSSSS , openSs⊂  iff s→status==OFF  (7) 

Furthermore, there must exist no switch Ss⊂  such that changing the status of s increases the value 

of the non-maximized version of the function given in (5) and such that (6) is still satisfied.  If one starts 

with all switches in either Sopen or Sclosed, then move switches one at a time to the other set, checking that 

the value of (5) increases and (6) is still satisfied each time, eventually this condition will be met.  Since 

this operation requires O(sn) operations, this reduced problem is polynomial.  However, so simple an 

algorithm ignores factors such as load prioritization and so more thorough methods such as those 

proposed in this dissertation are needed to arrive at a more optimal solution. 

3.4 Complexity of Prioritized Reconfiguration 

In order to show that prioritized reconfiguration is NP-hard, it must be shown that all NP-complete 

problems are reducible to it in polynomial time.  Since all NP-complete problems are reducible to each 

other in polynomial time, it is sufficient to show that there is an NP-complete problem which is 

polynomial-time reducible to prioritized reconfiguration [37].  This means it must be shown that an 

arbitrary instance of a known NP-complete problem must have a polynomial-time mapping to an 

instance of prioritized reconfiguration.  

The knapsack problem is a known NP-complete problem [38].  In the knapsack problem there is a 

knapsack of capacity W, and n items x1..n which have values y1..n and weights w1..n.  The objective of the 

knapsack problem is to fit the greatest value of items into the knapsack without going over its weight 

capacity: 

∑
=

n

i
ii xy

1

max  subject to ∑
=

≤
n

i
ii Wxw

1

   (8) 

where ]1,0[=ix  indicates whether item x is or is not in the knapsack (1 is yes, 0 is no). 
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Theorem 1: Prioritized Reconfiguration is NP-hard 

Let there be a knapsack with capacity W and n items x1..n with values y1..n and weights w1..n. 

Construct a system S as follows: 

1. S contains n loads L1..n such that Li→priority=y i and Li→freq=wi. 

2. Each load Li in S is fed by a switch si with si→c≥wi. 

3. All switches si are fed by the same line l with l→c=W. 

4. Line l is fed by the system source R, where ∑
=

=→
n

i
iwcR

1

.   

The described system appears in Figure 3. 

 

Figure 3: Constructed System S 

In this constructed system S, if a switch si is turned on, the corresponding load Li is restored  

and Li→f  is added to l→f.  By definition, if Li is restored, Li→status==1 and if Li is not restored,  

Li→status==0.  Furthermore, because source R is capable of supplying enough flow for all loads at 

once, no load can be only partially fed (Li→f < Li→freq and Li→status==1).   

Thus, since S has no interdependencies, the reconfiguration problem for S is simply to  

operate switches in order to maximize: 

( )∑
=

→→
n

i
ii statusLpriL

1

)(   (9) 
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in accordance with (EQ#), subject to the constraint: 

( )( ) clstatusLfL
n

i
ii →≤→→∑

=1

.  (10) 

When the assigned values are substituted, the problem becomes that of maximizing:   

( )( )∑
=

→
n

i
ii statusLy

1

   (11) 

subject to ( )( ) WstatusLw
n

i
ii ≤→∑

=1

   (12) 

If a load being restored is considered equivalent to being placed in the knapsack, then the prioritized 

reconfiguration problem of the constructed system S is equivalent to the original knapsack problem. 

Since the mapping from the knapsack problem to the prioritized reconfiguration problem involves a 

constant number of steps for each item xi in the knapsack problem (creating the system objects and 

connecting them together in the prescribed fashion), this mapping is polynomial.  Thus, prioritized 

reconfiguration must be at least as hard as the knapsack problem, and so prioritized reconfiguration is 

NP-hard. 

What this does not mean is that reconfiguration is the same problem as the knapsack problem.  

Critical infrastructure systems are much more complex than the system representing an arbitrary 

knapsack problem shown in Figure 3, and system interdependencies add another layer of complexity 

missing from the knapsack problem definition.  For this reason, it is better to develop a solution 

specifically for the reconfiguration problem as defined in Section 3.3, rather than try and apply a 

solution for the different and possibly less complex knapsack problem. 

Finding an optimal solution for the reconfiguration problem requires considering the system as a 

whole.  Because each component in a system has some maximum flow capacity, it is possible for the 

restoration of one load to prevent the restoration of other loads by consuming flow capacity on the 

components required to feed it.  For example, a system may have three loads A, B, and C fed at some 
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point in their feeder paths by a single switch.  This switch may only have enough capacity to feed either 

load A or both loads B and C.  If A and B have the same priority, and C has a lesser priority, it may be 

optimal to restore B and C rather than A.  This could only be determined by taking a global view of the 

system and considering the effects of restoring load A or load B on the ability to restore load C.  Thus, 

finding an optimal solution for the reconfiguration problem requires considering what effect restoring 

one load will have on the ability to restore all other loads, in order to ensure that loads are maximally 

restored. 

The algorithms presented in this paper take a more local view of the system, only considering a load 

or a segment at a time.  Rather than trying to find an optimal solution to the problem as described in 

section 3.3, they focus on greedily trying to restore loads according to their priority level.  The 

algorithms attempt to restore loads that have a higher priority (and hence higher value) before trying to 

restore lower priority loads.  By doing so, the algorithms seek to get the most value out of the loads they 

do restore in the hopes that the resultant solution will be “good enough.”  In this way, they are able to 

determine a solution to the reconfiguration in polynomial time.  The cost for this is that situations such 

as that described above can arise in which loads which are restored earlier in the process can cause the 

solution to be further from optimality than other solutions.  

 An additional problem caused by taking this local view of the system is that it becomes difficult for 

the algorithms to handle circular interdependency chains (A depends on B depends on C depends on A).  

Without being able to look at the system on a global level and determine a set of switch states which 

causes all loads in the circular interdependency chain to be restored, the algorithms presented in this 

dissertation can fail to restore some or all of them.  The reason for this is that supporting loads must be 

restored before supported loads can be considered restored, and the way in which the algorithms choose 

to restore supporting loads may prevent them from later restoring the supported loads. 
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Figure 4:Circular Interdepenency Chain 

Figure 4 shows such a circular interdependency chain.  In the figure, Load A depends on Load B, 

which depends on Load C, which depends on Load A.  Loads B and C each require a flow of 30, and 

line L has a maximum flow capacity of 50.  If Load C is restored first, and it is restored through line L, 

then B will be unrestorable, as will A, and hence C will also be considered unrestorable.  If the global 

view could be taken, it could be seen that load C could be restored through the switch on its right instead 

of the one on its left and that this would allow the entire chain to be restored. 

This problem can also be seen in situations where there is no circular chain.  In the system shown in 

Figure 4, even if Load A was not present (and hence the circular chain was broken), it would still be 

possible for a locally-focused algorithm to restore C through line L, preventing load B from being 

restorable. 
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3.5 Features of GTA 

In a GTA model, changing the system by deleting or adding components only requires that local 

iterators be updated [35].  Thus any component can be found from any other component it interacts with 

via the various iterators.  This simplifies the process of altering and maintaining a model because only 

local iterators need to be updated to reflect some topology change such as a switch operation. 

Another primary consequence of using iterators to maintain graph topology is that GTA provides for 

a natural method of distributing the model and calculations on the model among processors.  Because 

each component keeps track of the other components with iterators, it does not matter on which 

processor those other components are stored.  Thus, it is straightforward to distribute the model across 

processors. 

In addition, by standardizing the connections between components in this fashion, other qualities of 

components can be restricted to the components themselves.  As a result, components can calculate 

values such as their own flows by examining their own qualities and iterators [35].  The consequence of 

this is that algorithms which must work with the whole model such as reconfiguration can abstract out 

system-specific factors by using GTA, and examine the interdependencies between multiple kinds of 

infrastructure systems at the same time. 
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IV. Reconfiguration Algorithms 

This dissertation presents a collection of different algorithms for the prioritized reconfiguration of 

interdependent infrastructure systems described with GTA: From Loads, From Sources, Hybrid, and 

Cotree Switch.  Each algorithm is run in two phases: one which tries to configure the system to be as 

radial as possible (with few or no loops), and one which adds loops as necessary.  The first phase of the 

first three algorithms always result in a radially configured model, which is one in which there are no 

loops, while the first phase of the Cotree Switch algorithm is capable of resulting in a looped system.  

The second phase of each algorithm consists of an AddLoops function, which addresses underfed loads 

by adding loops to the model.  Appendix A contains a full description of these algorithms written in 

GTA notation. 

4.1 From Loads Algorithm 

The From Loads Algorithm seeks to restore service by starting at the loads and working back toward 

the sources to develop a valid restoration path for each load.   From Loads addresses the interdependent 

nature of multiple system types by recursively following dependencies on a potential restoration path 

and trying to find restoration paths for any supporting components in other systems.  From Loads 

addresses priorities by attempting to restore loads in descending priority order.  Thus, at any given time 

during execution there can be no restorable load with a higher priority than the one currently being 

restored.  As a result of this approach, restoration of more important loads is never affected by 

restoration of less important loads. 

From Loads initially turns off all switches.  The loads in the model are then collected and sorted both 

by priority and such that all loads not in another component’s dependency list occur before any loads 

that are in another component’s dependency list.  Thus, the sequence of loads will first contain all 

critical system loads before any supporting loads.  This prevents the algorithm from restoring a 
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supporting load, which may only have a high priority because a critical load relies on it, before a lower 

priority critical load if that high priority critical load is unrestorable.  At the same time, it allows the 

algorithm to later restore that supporting load if there is spare capacity after restoring critical loads.  A 

component c’s dependency list is the list of components in c→AD and c→OD.  Restoration of each load 

is then attempted in this order. 

 
Loads→order(p<q if (p→priority > q→priority OR 
                                    (M→exists(S|S→exists(t|t→AD→exists(u|u→ pCmp==q) OR 
                                                                             t→ OD→exists(u|u→ pCmp==q))) 
                                    AND 
                                    (M→ forall(S|S→ forall(t|t→ AD→collect(u|u→ pCmp==p) → size==0 AND 
                                                                              t→ OD→collect(u|u→ pCmp==p) → size==0)))))      (13) 
 

For each load, if that load is unrestored, the algorithm collects a set of components via which the 

load could be connected to a source.  That is, the feeder path traces from these components will lead to 

sources that could potentially supply service to the load.  These components include the feeder path 

trace of the load, as well as any components with the same reference source as the load that have an 

adjacent trace.   Let these components be placed in the set Pathsl, where l is the load of interest. 

For each component c in Pathsl, starting with the load’s feeder path trace, the algorithm creates a 

sequence Pathl-c containing the path from l to a source through c.   If the component c of Pathsl being 

examined is the load l’s feeder path trace, then Pathl-c consists of the load l followed by l’s feeder path.  

Otherwise, Pathl-c consists of the load l, followed by the components connecting l and c, then c, then 

c→adjt, and finally c→adjt’s feeder path. 

Once Pathl-c is created, the algorithm checks if it contains any components with status==FAILED.  If 

so, Pathl-c is not valid, and the algorithm proceeds to the next component in Pathsl.  Otherwise, the 

algorithm develops a sequence named DecisionPoints from those in Pathl-c.  The components in 

DecisionPoints are those components along Pathl-c which must have some processing performed on 
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them during restoration.  They consist of switches  and components which have dependencies (AD or 

OD is not empty).  

 
DecisionPoints=Pathl-c→collect(p→type==SWITCH OR 
                                                    p→AD != {} OR 

                                                        p→OD != {})→reverse      (14) 
 

Because Pathl-c is a sequence ordered from l to c’s reference source, DecisionPoints is ordered in the 

opposite fashion, such that the first element in DecisionPoints is the one closest to c’s reference source.  

The algorithm addresses each one in turn, by operating switches or by recursively restoring components 

to satisfy dependencies.  By addressing them in this order, service is gradually restored to the system 

rather than all at once.  This allows problems restoring a given path would create, such as unsatisfiable 

dependencies, to be detected earlier in the restoration process, preventing the algorithm from wasting 

time.  

Once l is restored, system constraints are checked for the components that have been affected by the 

restoration.  These components are those which before restoration shared a reference source with either l 

or c.  If any constraints are violated, the algorithm backs up along DecisionPoints looking for 

components which have OR dependencies (OD→size>0) and selects a different OR dependency to 

restore.  If no set of OR dependencies of such components can be chosen such that l is restorable, the 

algorithm backs up its actions along DecisionPoints completely and selects the next component from 

Pathsl to try.  If no path is found that can restore l, it is deemed unrestorable and the algorithm moves on 

to the next load until all loads have either been restored or deemed unrestorable. 

4.2 From Loads Example 

Figure 5 shows a simple example system.  The circuit on the left is a fluid circuit, and the other two 

are electrical circuits connected by an open switch.  Components 6, 12, and 17 are loads.  Load 6 has an 

assigned priority of 9, load 12 has an assigned priority of 5, and load 17 has an assigned priority of 6.  
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Load 6 has an AND dependency on load 17 represented by the ‘A’, which means load 17 must be 

restored in order for load 6 to be restored.  Components 3, 7, 9, and 15 are switches.  All other devices 

are transmission devices.  For purposes of this simple example, there is enough capacity provided by the 

sources (1, 8, and 13) to service all of the loads, and the transmission devices are capable of handling all 

of the load present in their respective systems (electrical or fluid).  

 
Figure 5: Sample GTA Model 

 

From Loads begins by turning off the switches 3, 9, and 15.  It then collects and sorts the loads as 

described in (12).  For this system, Loads = [6,12, 17].  Note that although load 17 has an assigned 

priority greater than that of load 12, load 12 occurs first in Loads because load 17 is contained in load 

6’s dependency list.  From Loads then collects the potential paths for load 6.  In this case, Paths6=[5, 7].  

From Loads first examines Paths6-5=[6,5,4,3,2,1].  The decision points along Paths6-5 are the switch at 3 

and the load itself at 6 because it has a dependency.  Thus, DecisionPoints=[3,6].  FromLoads then 
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addresses each element of DecisionPoints.  Switch 3 is addressed by operating the switch 

(3→status=ON).  Load 6 must be addressed by satisfying 6’s dependencies: in this case by recursively 

restoring 6’s AND dependency, load 17. 

To restore load 17, From Loads collects Paths17=[16], then DecisionPoints=[15].  The valve at 15 is 

operated (15→status=ON), at which point load 17 has been restored.  Since execution is not at the top 

level of recursion, system constraints are not checked at this point.  From Loads returns to the 

restoration of load 6.  With load 17 restored, the dependencies of load 6 are satisfied, and so all of Path6-

5’s DecisionPoints have been successfully addressed, load 6 has been restored.  System constraints are 

checked and no problems are discovered, so From Loads moves on to the next component in Loads, load 

12. 

Restoration of load 12 is similar to that of load 6, except that load 12 has no dependencies.  

Paths12=[11,10], as 10→adjt==7.  Path12-11=[12,11,10,9,8], and so DecisionPoints=[9].  From Loads 

operates switch 9 (9→status=ON), at which point load 12 is restored.  System constraints are checked 

and no problems are found.  Paths12-10 does not need to be checked, so From Loads next moves on to 

load 17.  Since load 17 has already been restored, From Loads skips over it and finishes execution. 

4.3 From Sources Algorithm 

The From Sources algorithm approaches restoration from the opposite end of the system than the 

From Loads method.  Rather than operating switches and satisfying dependencies while traversing from 

the load towards a source, this algorithm starts at the sources and works towards the loads.  This 

algorithm has the potential for resulting in a more even distribution of loading among the sources.   

From Sources uses priority propagation from the loads back to the sources in order to determine which 

switches to operate at a given point.  From Sources addresses system interdependencies by propagating 

priorities across dependencies.  For example, if a priority 9 load is dependent on a component in another 
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system, that other component will be given a priority of at least 9.  Further, at any given time, the 

algorithm will only attempt to turn on a switch with the highest priority from among its options, which 

ensures that higher priority loads will be restored before lower priority ones. 

From Sources utilizes a “working priority.”  The working priority is initially set to the highest 

priority present in the model, and the algorithm focuses on restoring loads with a priority at least equal 

to the working priority.  As loads are restored, the working priority is gradually reduced. 

The first step of From Sources is to turn off all switches.  Next priorities are propagated from the 

loads back to the sources.  For each component in a load’s feeder path, that component’s priority is set 

to the maximum of its own priority and that of the load.  In addition, if that component has any 

dependencies, the component’s priority is recursively propagated down the feeder path of all 

components supporting it. 

The algorithm then iteratively turns on switches for each source to expand the system area receiving 

service from that source.  To decide which switch to turn on, the algorithm first collects all of each 

source’s bounding switches.  The bounding switches of a source are those switches that have a status of 

OFF such that if they were turned ON, service would be provided to a segment of the system which is 

currently unserviced.  The bounding switch set for a source is given by 

BoundSwtssrc =  
       (FTsrc→collect(p→type == SWITCH AND 
                                p→status == OFF       AND 
                                p→fpt→status == ON) )->including(FTsrc→collect(p→adj| p→status == ON                  AND 
                                                                                                                                p→adjt != 0                          AND 
                                                                                                                                p→adjt→type == SWITCH AND 
                                                                                                                                p→adjt→status == OFF       AND 
                                                                                                                                p→adjt→fpt→status == OFF))  (15) 
 

The algorithm then turns on one of these bounding switches with the highest priority.  A number of 

checks are then performed on the system segment with restored service.  These checks prevent the  
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algorithm from violating system constraints and also help to minimize the number of low-priority loads 

restored.  Violations that could occur include: 

• Flow constraint violations  

• New segment contains a failed component 

If any check fails, the switch is turned back off and the algorithm continues through the bounding 

switch list until it is exhausted or a valid switch is found.  

A load is considered resolved once the algorithm has attempted to restore service to its segment by 

turning on a switch, whether or not it was successfully restored.  Later operations may or may not 

restore a load that is initially not restorable as the algorithm continues execution.   

Once a sectionalizing device has been turned on or the algorithm determines there are no possible on 

switch operations, an accounting is made of the resolved loads.  If all loads with priority greater than or 

equal to the working priority have been resolved, the working priority is set to the next lowest priority 

and the algorithm repeats the described steps until either all loads are restored or no switches can be 

successfully turned on.  Priorities are also repropagated to account for the changed topology of the 

model. 

4.4 From Sources Example 

Using the same example model as before (Figure 5), From Sources begins by turning off the 

switches 3, 9, and 15.  It then collects and sorts the loads by priority, so that Loads = [6,17,12].  From 

Sources then collects the sources in the system and their boundary switches. In this case Sources = [{1, 

{{3, false}}}, {8, {{9, false}}}, {13, {{15, false} }}].  The first element in each of the couplets in the 

Sources sequence is the source component (1, 8, and 13).  The second element is the set of boundary 

switches paired with whether From Sources has yet tried to operate that switch.  The latter value is 

initialized to false.  The boundary switch for source 1 is 3, for source 8 it is 9, and for source 13 it is 15. 
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From Sources also propagates priorities back from the loads and across dependencies.  Note that this 

changes load 17’s priority to 9.  The working priority is set to 9. 

From Sources then sorts Sources in increasing order of the proportion of their capacity being used 

(p→f/p→c).   Since there is currently no flow on any source, the order of Sources is not changed.  The 

next step is to iterate across Sources and attempt to close a boundary switch for each source.  For source 

1, switch 3 is turned on because it has a priority of 9, and constraints are checked.  Since there are no 

problems, 3’s boundary switches are updated to {{7, false}}, and priorities are repropagated.  From 

Sources then moves on to source 8, but does not find any switches to operate because 9→priority == 5, 

which is lower than the working priority.  From Sources completes this iteration across Sources by 

turning on switch 15 for source 13 and updates 13’s boundary switches to {}. 

At this point all loads with a priority greater than or equal to the working priority have had service 

restored to them (loads 6 and 17).  Thus, From Sources updates the working priority to the next lowest 

priority, which in this case is 5, the priority of load 12.  The above steps are repeated.  Sources is sorted, 

but because source 8 has no flow on it, Sources = [{8, {{9, false}}, {1, {{7, false}}, {13, {}}].  Fro m 

Sources iterates across sources, operating switch 9 for source 8 and restoring service to load 12.  

Constraints are checked and there are no problems, so 8’s boundary switches are updated to {{7, false}}.  

Also at this point, all loads with priority greater than or equal to the working priority have been 

addressed, so the working priority is updated to 0, as there are no unaddressed loads left with a higher 

priority. 

When From Sources considers the boundary switches for source 1, it now finds none that can be 

operated because both sides of switch 7 have service.  1’s boundary switches are thus updated to {{7, 

true}}.  Since all of source 1’s boundary switches have been visited, but no operable ones found, From 
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Sources moves on to source 13 and again finds no operable switches.  From Sources iterates through the 

sources one more time, but finds no switches than can be operated, and so the algorithm terminates. 

4.5 Hybrid Algorithm  

The Hybrid algorithm combines aspects of the From Sources and From Loads algorithms.  Like the 

From Sources algorithm, it approaches the problem from the sources, turning on switches as it spreads 

towards the loads.  Unlike the From Sources method, the operable devices are limited according to those 

which could be used to restore the unresolved loads of the current highest priority.  This adds some 

initial overhead, but places stronger restrictions on which switches can be operated, limiting the number 

of cases in which lower priority loads get restored before higher priority loads.  Again, system 

interdependencies are addressed through the same priority propagation as they are in the From Sources 

method. 

After all switches are turned off and priorities have been propagated (as in From Sources), the 

algorithm creates the set of potential feeder paths Pathsl for each load of the current highest priority as in 

the From Loads method.  Each switch along the paths Pathl-c as described in the From Loads method is 

marked as operable.  The algorithm then proceeds as it does in From Sources, except that it does not 

attempt to turn on any devices not marked as operable.  When all of the loads at the working priority 

level have been resolved as in From Sources, the algorithm marks the devices on potential feeder paths 

to loads of the next highest priority as operable. 

In this way, by restoring service to the system starting from the sources but only allowing operation 

of devices that could feed loads of highest priority at a given time, the Hybrid method keeps the forced 

balance of the From Sources method while further minimizing the number of low priority loads restored 

at the expense of high priority loads. 
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4.6 Hybrid Example 

Again using the system in Figure 5, Hybrid begins by turning off the switches 3, 9, and 15, then 

marks all of those switches inoperable (p→operable=FALSE).  It then collects and sorts the loads by 

priority.  As in From Sources, Loads = [6,17, 12].  The working priority is then set at 9, which is the 

priority of the highest priority load and priorities are propagated back from the loads, which changes 

17’s priority to 9.   

Hybrid then collects the potential paths for load 6 in order to make operable those switches along 

paths which could feed it.  In this case, Paths6=[5, 7].  Hybrid first examines Paths6-5=[6,5,4,3,2,1].  

Since 6 has a dependency, Hybrid goes across that dependency to make operable the switches feeding 

the supporting load 17.  Paths17=[16], so Paths17-16=[17,16,15,14,13].  The only switch along Paths17-16 is 

15, so Hybrid sets it operable (p→operable=TRUE) and returns to processing Paths6-5.  The only switch 

along Paths6-5 is component 3, and it is set to be operable.  Hybrid moves on to the next load at or above 

the working priority, 17, but since 17 has already been addressed it skips it.  No other loads are at or 

above the working priority, so Hybrid moves on to restoring loads. 

Hybrid next collects the sources in the system and their boundary switches. In this case Sources = 

[{1, {{3, false}}}, {8, {{9, false}}}, {13, {{15, f alse}}}].  The first element in each of the couplets in 

the Sources sequence is the source component (1, 8, and 13).  The second element is the set of boundary 

switches paired with whether Hybrid has yet tried to operate that switch.  The latter value is initialized to 

false.  The boundary switch for source 1 is 3, for source 8 it is 9, and for source 13 it is 15.  

Hybrid then sorts Sources in increasing order of the proportion of their capacity being used 

(p→f/p→c).   Since there is currently no flow on any source, the order of Sources is not changed.  The 

next step is to iterate across Sources and attempt to close a boundary switch for each source.  For source 

1, switch 3 is turned on because it has a priority of 9 and is operable, and constraints are checked.  Since 
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there are no problems, 3’s boundary switches are updated to {{7, false}}, and priorities are 

repropagated.  Hybrid then moves on to source 8, but does not find any switches to operate because 

switch 9 is not operable.  Hybrid completes this iteration across Sources by turning on switch 15 for 

source 13 and updates 13’s boundary switches to {}. 

At this point all loads with a priority greater than or equal to the working priority have had service 

restored to them (loads 6 and 17).  Thus, Hybrid updates the working priority to the next lowest priority, 

which in this case is 5, the priority of load 12.  With a new working priority set, Hybrid attempts to mark 

more switches as operable.  Loads 6 and 17 have been restored, so they are ignored, but load 12 has not.  

Paths12=[11], so Hybrid sets as operable all switches along Paths12-11=[12,11,10,9,8,7], which in this 

case is just component 9.   

The above steps are repeated.  Sources is sorted, but because source 8 has no flow on it, Sources = 

[{8, {{9, false}}, {1, {{7, false}}, {13, {}}].  Hy brid  iterates across sources, operating switch 9 for 

source 8 and restoring service to load 12.  Constraints are checked and there are no problems, so 8’s 

boundary switches are updated to {{7, false}}.  Also at this point, all loads with priority greater than or 

equal to the working priority have been addressed, so the working priority is updated to 0, as there are 

no unaddressed loads left with a higher priority. 

When Hybrid considers the boundary switches for source 1, it now finds none that can be operated 

because both sides of switch 7 have service.  1’s boundary switches are thus updated to {{7, true}}.  

Since all of source 1’s boundary switches have been visited, but no operable ones found, From Sources 

moves on to source 13 and again finds no operable switches.  Hybrid iterates through the sources one 

more time, but finds no switches than can be operated, and so the algorithm terminates. 
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4.7 Cotree Switch Algorithm 

The Cotree Switch method attempts to minimize the number of operations which must be performed 

in order to successfully reconfigure the system(s).  The Cotree Switch algorithm is similar to those 

described in [2], but does not share the same limitations.  Unlike the other algorithms proposed here, it 

starts by turning on all switches.  Priorities are propagated from the loads as in From Sources, and then 

any failed components in the system are isolated by turning off the switches bounding the failures’ 

respective segments.  As in From Sources and Hybrid, system interdependencies are addressed by 

propagating priorities across dependencies. 

After switches are closed and failures isolated, a system constraint check is then performed.  If there 

are any constraint violations, the components where the violations occur are sorted by increasing 

priority.  For each violation, the algorithm collects all components feeding and fed by the violation into 

a set FullPathviol as described in (16).  FullPathviol is then searched for the turned-on switch with the 

lowest priority, as described in (17).  That switch is turned off, priorities are repropagated, and system 

constraints are checked again.  Because turning switches off drops loads, this gradually reduces the flow 

on the system and thus eliminates constraint violations.  This is repeated until there are no more 

constraint violations.  Using GTA notation this can be described as follows for a given component with 

a violation viol. 

 
FullPathviol=(FPTviol→append(FTviol→collect( p→ft != viol→brt AND FPTp→includes(viol→brt) == false) ) 
                     →prepend(viol)                                                                                                                                   (16) 
OperateDeviceviol=FullPathviol→collect(p| p→type==SWITCH AND p→status==ON AND 

                                                            FullPathviol→includes(q→pri<p→pri)==false)→first                           (17) 
 

Once all constraint violations have been eliminated, the algorithm collects all of the cotrees in the 

system(s).  Cotrees are switches which are turned on and create independent loops in the system.  They 
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can be found by collecting those switches which are turned on and have an adjacent component which is 

also receiving service, as described in (18). 

 
CotreesS=S→collect(p→type==SWITCH AND p→status==ON AND p→adjt→status==ON)                            (18) 
 

For each Cotree, the algorithm creates a set of the switches along the feeder path of the cotree device 

and its adjacent trace.  These devices are then sorted by flow, and the one with the least flow is turned 

off.  A constraint check is performed, and if there is a violation or if a load has become unrestored, the 

sectionalizing device is turned back on.  The algorithm terminates once each cotree has been addressed 

in this manner. 

4.8 Cotree Switch Example 

 

Figure 6: Sample GTA Model With Failure 
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In Figure 6, component 2 of the sample model has suffered a failure when Cotree Switch starts to 

run. Cotree Switch starts by turning on all switches, which in this case means closing switch 7 since all 

others are already on.  This creates a cotree between component 7 and component 10.  Cotree Switch 

then collects the model loads into Loads=[6,12,17],  all failed components into a sequence Failures, and 

also a sequence Violations of all failed components and all components C where C→f > C→c.  In this 

model, Failures=[2] and Violations=[].  Loads is then ordered as in From Loads, so Loads=[6,12,17], 

then priorities are propagated back from the loads. 

Cotree Switch then operates switches to isolate those components in Failures.  In this case, the only 

failure is at component 2.  Failures are isolated by turning off all switches bordering that component’s 

segment, and in this case the only such switch is component 3.  Turning off switch 3 removes the cotree 

added earlier.  Cotree Switch now moves on to remedying constraint violations in the system by opening 

low priority switches fed by the violating components.  Since Violations is empty for this model, Cotree 

Switches skips this step. 

Lastly, Cotree Switches tries to turn off switches in order to eliminate loops that have been created in 

the system.  Again, turning off switch 3 removed the only loop in the system, so Cotree Switch skips this 

step and terminates.  After Cotree Switch executes, load 6 has ceased to be fed through a faulty line by 

source 1, and is instead fed through switch 7 on an alternate route by source 8. 

4.9 Adding Loops 

Once any of the above algorithms have terminated, reconfiguration must look to see if any of the 

loads to which service has been restored are receiving sufficient service.  Because it is possible for a 

single source not to be able to provide enough flow to a load to meet its demand, reconfiguration uses an 

Add Loops algorithm to find any such loads and further operate switches in order to increase the flow 

that can reach the load, creating independent loops in the model.   An additional consideration is the 
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possibility that a component may have a dependency, but may not require the component on which it is 

dependent to be fully served in order for that dependency to be satisfied.  Add Loops also accounts for 

partial dependencies, and does not attempt to provide more power to supporting loads which already 

have met the demand placed on them by the component they support. 

The first step in adding loops is to collect all loads that are underfed as described in (19), and sort 

them as in From Loads.  Underfed loads are those loads which have flow less than their required flow, 

or any load L which is part of another component C’s AND depenency list such that the flow on L does 

not meet the demand required by C, or any load L which is part of a component C’s OR dependency list 

such that none of C’s OR dependencies are sufficiently met. These loads are held in a sequence 

Underfed. 

Thus Load l in Model M is underfed if and only if: 
            l→f < l→freq OR 
            M→exists(p| p→AD→exists(q| q→pCmp==l AND l→f/l→freq < q→percent)) OR 
            M→exists(p| p→OD→exists(q| q→pCmp==l AND l→f/l→freq < q→percent) AND 
                                  p→OD→exists(q| q→pCmp→f/q→pCmp→freq > q→percent)==FALSE)                                  (19)   
 

Once the underfed loads are collected and sorted, Add Loops iterates across each load l in Underfed.  

If l is still underfed, then for each component c in FPTl, Add Loops collects a set of components 

SegSwts consisting of all switches already in SegSwts, all switches in c’s segment that are off, and all 

components with an adjacent trace in c’s segment which are switches that are off (20). 

SegSwts=SegSwts→including(Segmentc→collect(p| p→type==SWITCH AND p→status==OFF) 
                                                                  →including(Segmentc→collect(p→adjt| p→adjt!=NULL AND     
                                                                                                                                    p→adjt→type==SWITCH AND 
                                                                                                                                    p→adjt→status==OFF)))             (20) 
 

Add Loops then turns on all switches in SegSwts.  System constraints are checked, and if there are 

any, all switches in SegSwts are reopened and Add Loops gives up on l.  If there are no system 

constraint violations and l is no longer underfed, Add Loads sorts SegSwts in order of increasing flow 
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on the switches, and opens them until it cannot open more without causing l to be underfed.  Add loops 

then moves on to the next load in Underfed.  

If after all switches in SegSwts are closed there are no constraint violations but l is still underfed, 

Add Loops moves on to the next component in FPTl not in the same segment as c, and repeats the above 

for that segment. Add Loops continues this until l is either completely fed or there are no more switches 

to close to further supply it.   

Add Loops terminates once all loads in Underfed have been addressed in this fashion. 
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V. Algorithm Performance 

5.1 Example 1: Real-World Electrical Model 

To examine the performance of these algorithms, an implementation of each was run on a model of a 

real distribution system and compared to an implementation of the Discrete Ascent Optimal 

Programming (DAOP) algorithm described by Broadwater et. al. [17,18].  Tests were performed using a 

2.00GHz Intel Pentium M processor.  The model used in testing is shown in Figure 7  It contained 1835 

load points and seven sources.   

 
Figure 7: Real-World Electrical Model 

 

The yellow components in Figure 7 indicate components which have failed, dropping several 

hundred of the 1,835 loads, with the exact number based on which switches are allowed to be operated. 

Switching operations were restricted to three-phase devices, of which there were 171.  Each algorithm 

(except for DAOP, which did not provide this capability) was run in both one and two stages.  In the 

two-stage runs, the first stage only allowed operation of major, automatic 3-phase devices, while the 

second stage allowed operation of all 3-phase devices. In the runs with the DAOP algorithm all 3 phase 
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switches were operable.  The first stage also only used a relatively quick load estimation technique for 

judging constraint violations, while the second stage used a full non-linear power flow.  The purpose of 

the two-stage process was to emulate what might be done in the even of a real emergency: performing a 

fast reconfiguration with devices that could be operated remotely for an immediate response, followed 

by a slower and more thorough run using all devices to determine what should best be done manually. 

Tables 5-11  show the results of the runs.  All of the algorithms proposed in this dissertation were 

able to run in under 18s in the single-stage runs and under 30s in the 2-stage runs, configuring the 

system to provide service to 98.96% of the load points in all cases.  In comparison, the DAOP algorithm 

took over five and a half minutes to run, and was only able to provide service to 86.1% of load points.  

Even just the first stage of the 2-stage runs manage to restore a substantially higher percentage of load 

points than DAOP. 

 

 
 

 
 

 
 

 
Mean Phase 
Imbalance 

From 
Loads 

From 
Sources 

Hybrid Cotree 
Switch 

DAOP 

1 Stage 21.71% 19.86% 16.57% 8.71% 
26.43% 25.29% 25.29% 18.57%  

2 Stages 21.71% 18.86% 16.86% 8.71% 

 
17.29% 

 
 

 
Switches 
Operated 

From 
Loads 

From 
Sources 

Hybrid Cotree 
Switch 

DAOP 

1 Stage 11 13 21 15 
3 9 9 9  

2 Stages 10(1) 12(4) 21(4) 6(1) 
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Amount 
Serviced 

From 
Loads 

From 
Sources 

Hybrid Cotree 
Switch 

DAOP 

1 Stage 98.96% 98.96% 98.96% 98.96% 
95.00% 95.00% 95.00% 94.99%  

2 Stages 
98.96% 98.96% 98.96% 98.96% 

 
 

86.10% 

Time From 
Loads 

From 
Sources 

Hybrid Cotree 
Switch 

DAOP 

1 Stage 7.68s 9.30s 17.55s 2.67s 
2.30s 1.72s 4.00s 1.64s  

2 Stages 
7.55s 9.51s 25.27s 5.65s 

 
 

335s 

Table 5: Ex. 1 Algorithm Comparison in Time  Table 6: Ex. 1 Algorithm Comparison in Loads Serviced 

Table 7: Ex. 1 Algorithm Comparison in Mean Phase Imbalance Across Sources 

Table 8: Ex. 1 Algorithm Comparison in Number of Switches Operated 
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kW 
Losses 

From 
Loads 

From 
Sources 

Hybrid Cotree 
Switch 

DAOP 

1 Stage 20.34 20.91 20.93 18.69 
20.16 20.99 20.99 19.03  

2 Stages 20.34 21.00 20.91 18.69 

 
25.47 

 
Mean kW 
Flow 

From 
Loads 

From 
Sources 

Hybrid Cotree 
Switch 

DAOP 

1 Stage 3231 3250 3249 3244 
3140 3148 3148 3155  

2 Stages 3231 3250 3249 3244 

 
2758 

 
Table 10: Ex. 1 Algorithm Comparison in Mean kW Flow Per Source 

 
kW Flow 
σ 

From 
Loads 

From 
Sources 

Hybrid Cotree 
Switch 

DAOP 

1 Stage 1774 1539 2248 1981 
1873 2100 2100 2344  

2 Stages 1774 1557 2244 1981 

 
3517 

Table 11: Ex. 1 Algorithm Comparison in Standard Deviation of kW Across All Sources 
 

Table 7 shows mean phase imbalance across the loads in the system.  By this measurement, DAOP 

falls in the middle of the field, with the Hybrid and Cotree Switch algorithms producing smaller phase 

imbalances and the From Loads and From Sources methods providing larger ones.  While the first stage 

of the two-stage runs is unambiguously worse than DAOP by this metric in all cases, the first stage 

solution is not meant to last longer than it takes to get crews out to perform the second stage 

reconfiguration. 

Table 8 shows the number of switches operated for each run.   For the two-stage runs, the number in 

parentheses is the switches operated in stage 1 which were returned to their original state in stage 2.  All 

four algorithms proposed in this dissertation perform much better than DAOP at this metric, requiring 

far fewer switches to be operated in order to reach their solution states, with From Loads and From 

Sources being the top performers in the single stage run and Cotree Switch being the best in the two 

stage run. 

Table 9: Ex. 1 Algorithm Comparison in Mean kW Losses Across Sources and Phases 
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Table 9 shows the losses in kW resulting from each system configuration generated by the various 

algorithms.  To determine these figures, the losses per source per phase were averaged.  By this metric, 

DAOP, which was designed with the minimization of losses in mind [20,21], performs between 21.7% 

and 36.3% worse than all four proposed algorithms in the single-stage runs, and between 21.3% and 

25.2% worse than the complete two-stage runs (and a little more worse than the first stage of two of 

those runs).  The algorithms proposed in this dissertation are all remarkably consistent in the losses their 

solutions allow on this system, ranging in a narrow band from 18.69kW to 20.99kW. 

Lastly, Tables 10 and 11 show information regarding the distribution of kW flow across the sources 

in the system.  The mean flow for each of the proposed algorithms shown in Table 10 exists within a 

very narrow range, as they all restore the same amount of load, while the DAOP algorithm has a much 

lower mean reflecting its much lower amount of load restored.  However, in Table 11 it is apparent that 

the proposed algorithms all produce a much more even distribution of load across the sources than 

DAOP.  The best performer by this metric is the From Sources method, which was specifically designed 

to try and create a better load balance. 

5.2 Example 2: Large Real-World Electrical Model 

Figure 8 shows a real-world electrical model that is much larger than that shown in Figure 7, 

containing 961 three-phase switches and 9,598 loads. As before, each algorithm described in this 

dissertation was run on the model in both one and two stages.  Attempts were made to run DAOP on the 

model as well, but DAOP was unable to reach a solution for the model.   As with the first example, the 

yellow components in the upper left are those which have failed. 

Tables 12-14 show the results of the algorithm runs.  In these runs, the Cotree Switch algorithm is 

clearly the better solution when it comes to execution time and loads restored, but falls short of the From 

Sources algorithm in terms of number of switches operated.  Interestingly, the first stage of the two stage 
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runs for From Loads, From Sources, and Hybrid restores more loads than the second stage.  This is 

attributable to the different constraint check methods utilized in the two stages, with the first stage only 

performing a flow estimate as opposed to the more exacting full power flow algorithm used in the 

second stage. 

 

 

Figure 8: Large Real-World Electrical Model 
 

 
 

 
 

 
 

Table 12: Ex. 2 Algorithm Comparison in Time 
 

 
 
 
 
 

Time From 
Loads 

From 
Sources 

Hybrid Cotree 
Switch 

DAOP 

1 Stage 2m47s 6m1s 6m36s 2m23s 
1m27s 1m37s 1m52s 1m34s  

2 Stages 
3m3s 6m30s 8m15s 5m1s 

 
 

---- 
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Table 13: Ex. 2 Algorithm Comparison in Loads Restored 
 
 
 
 
 

Table 14: Ex. 2 Algorithm Comparison in Switches Operated 
 

5.3 Example 3: Integrated Model 

The proposed methods were also run in one stage on the system shown in Figure 9.  This system 

contains both electrical and fluid circuits, as well as a number of logical loads defining system missions.  

Missions are represented by the red squares and are dependent on loads in the electrical and fluid 

systems.  The fluid system is represented by the green lines and the electrical system by the black and 

brown ones.  The yellow line represents a component which has failed.  The missions AAW (Anti-Air 

Warfare, priority 5) and ASW (Anti-Surface Warfare, priority 3) have OR dependencies on Radar 2, 

Gun, and Radar 1, each of which have at least one AND dependency on one or more of the physical 

circuits.  The three propulsion missions (from left to right, priorities 9, 2, and 6) have AND 

dependencies on electrical loads, and the two pumps in the fluid circuits each have an AND dependency 

on an electrical load.    There are five independent electrical loads (those on which no mission is 

dependent) with priorities of 9, 0, 0, 0, and 0.  A number of the loads are grouped into 2 ‘panels’ fed by 

automatic transfer switches.   

Figures 10a-10d show the results of running the proposed methods on the system in Figure 9 if the 

line feeding the right panel is failed. Components which have become pink have lost service.The From 

Sources and Hybrid methods yielded the same result.  Both of them restore all loads except for the large 

priority 0 load on the lower right of the left panel.  The From Loads algorithm does not restore Radar 2, 

Amount 
Serviced 

From 
Loads 

From 
Sources 

Hybrid Cotree 
Switch 

DAOP 

1 Stage 97.98% 97.97% 97.96% 99.52% 
99.34% 99.34% 99.34% 99.34%  

2 Stages 
97.98% 97.98% 97.96% 99.52% 

 
 

---- 

Switches 
Operated 

From 
Loads 

From 
Sources 

Hybrid Cotree 
Switch 

DAOP 

1 Stage 99 73 129 86 
3 19 25 50  

2 Stages 98(1) 68(10) 146(15) 38(1) 

 
---- 
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because doing so was unnecessary to restore AAW.  The result of ignoring the loads supporting Radar 2 

is that the large load on the left panel was restorable.  Finally, the Cotree Switch method manages to 

restore all loads, but only does so by creating a loop in the electrical system.  The Cotree Switch method 

is the only method which can create loops in this way. 

 

 
Figure 9: Second Test System – Electrical and Fluid, With Dependencies and Missions 

 

5.4 Example 4: Integrated Model With Loops 

The model displayed in Figure 11 is that of a simple integrated model, with a fluid load dependant 

on an electrical load.  In this system, the electrical load has a requirement of 60,000kW distributed 

evenly across each phase.  However, the impedances set on the lines are set such that neither electrical 

source is able to provide that much power to the load on its own, nor are they able to when working in 

concert and both switches are turned on.  When one switch is turned on, the load is able to draw 

46,482kW, or 77.47% of demand.  When both are turned on, the load is able to draw 49,407kW, or 

82.35% of demand.   
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Figure 10a: From Loads Result 

 

 
Figure 10b: From Sources Result 

 

 
Figure 10c: Hybrid Result 

 

 
Figure 10d: Cotree Switch Result 

 
Figure 10: Algorithm Results for Example 2

 

The purpose of this example is to demonstrate the ability of the AddLoops part of the 

reconfiguration algorithms described in this dissertation to restore loads which can’t be restored from 

only a single source, and to demonstrate its ability to respect partial dependencies: where a component 

depends on a supporting load, but only requires that load to have a certain percentage of its demand in 

order to function. 

Because of the inability of the system to fully supply the electrical load, if the fluid load requires the 

electrical load to be fully satisfied (p→AD→first→percent==100) when any reconfiguration algorithm 

is run on it, they all result in both loads being provided service with the electrical load receiving service 

through just one switch.  However, despite configuring the system such that service is provided to the 
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loads, they are not considered restored (p→status==ON) because the electrical load is underfed and the 

fluid load’s dependency is unsatisfied (Fig. 12a). 

If the fluid load requires the electrical load to only receive 75% of its demand to satisfy the 

dependency (p→AD→first→percent==75), all algorithms result in the system being configured in the 

same way as when the fluid load required the electrical load be 100% serviced. However in this case 

 

Figure 11: Example 3 System 
 

they recognize both loads as being restored (Fig. 12b) since the electrical load is sufficiently serviced for 

the purposes of this system: that of satisfying the fluid load’s dependency. 

When the service requirement the fluid load places on the electrical load is raised to 80% 

(p→AD→first→percent==80), radial configuration of the system is no longer enough.  If 

reconfiguration wishes to restore the fluid load in this case, the AddLoops algorithm must turn on both 

switches in the electrical system in order to fully restore the system, which it does (Fig. 12) for all four 

algorithms. 
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Figure 12a: Ex. 3 Reconfiguration Results, 100% 
Dependency Requirement 

 

Figure 12b: Ex. 3 Reconfiguration Results, 75% 
Dependency Requirement 

 
Figure 12: Example 3 Results at 100% and 75% Requirements 

 

 

 

 

 

 

 

Figure 13: Ex. 3 Reconfiguration Results, 80% Dependency Requirement 
 

5.5 Complexity 

The number of operations necessary for each of the algorithms presented in this dissertation to 

complete varies depending on a number of inputs.  The number of loads, switches, interdependencies, 

adjacencies, and the total number of components each can have a significant impact on execution.  

However, due to the different approaches taken by each algorithm, the impact of each of these factors 

can vary.  In this section, the following notation is used: 

n = # of components 
o = # of loads 
c = # of adjacencies 
s = # of switches 
d = # of interdependencies 
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Table 15 summarizes the complexity of the various functions called by the algorithms. 

From Loads Complexity Analysis 

The complexity of the From Loads algorithm is primarily driven by the number of components in the 

system, but other factors can significantly affect it.  While several of the functions it uses are fairly 

simple and operate in O(n) (such as Segment, FailureInFedSegment, ClearPriorities, and CreatePaths), 

Function Complexity  Function Name Complexity 
From Loads ocdn6 + odsn4 + 

ond*log(o) 
 Backup n+s 

From Sources od2n2 + so + s3n2 + s2n3d2  RestoreDependencies d*O(RestoreCmp) 
Hybrid o*log(o)+s2n3+son4d2+ 

ocdn7+ocn8 
 ProcessDecPt n+s+d*O(RestoreCmp) 

Cotree Switch ond*log(o) + son2d2 + s3n 
+ cs*log(s) + csn 

 ProcessPath n2+ns+ 
dn*O(RestoreCmp) 

Add Loops ond*log(o) + on3 + 
ons*log(s) + on2sd 

 RestoreCmp cdn6 + dsn4 

Segment n  Process Sources s2n2 + son3d2 
FailureInFedSegment n  ValidBoundSwitches snd + s*log(s) 
ClearPriorities n  UnlockSwitches(int) ocdn5 + ocn6 
PropagatePriorities n2d2  UnlockSwitches 

(Component, set of 
Component) 

cdn5 + cn6 

ChoosePathStart cn3  FindOpSwt s2n 

AreConnectedNoFailures cn2  IsUnderfed nd 
CreatePaths n    

Table 15: Complexity of Reconfiguration Functions 

others are more complicated or are affected by more than just the number of components.  One such 

more complex function used by all the algorithms is PropagatePriorities, which operates at O(n2d2). 

AreConnectedNoFailures is a recursive function which must perform n2 operations in the worst case 

in each recursion, but in the worst case must also recur c times, resulting in an O(cn2).  Since it is called 

n times by the ChoosePathStart function, ChoosePathStart has a worst case complexity of O(cn3).  The 

Backup function, on the other hand, has a complexity of O(n+s) because it performs a pair of linear 

operations on all components, followed by a linear operation on switches specifically. 



 60 

 

Figure 14:From Loads Function Heirarchy 
The remaining functions, RestoreCmp, ProcessPath, ProcessDecPt, and RestoreDependencies are 

part of a recursion chain as shown in Figure 14.  RestoreCmp calls, among others, ProcessPath.  

ProcessPath calls ProcessDecPt, and ProcessDecPt calls RestoreDependencies which calls RestoreCmp 

again.  RestoreDependencies has a complexity of O(d*O(RestoreCmp)) due to needing to call 

RestoreCmp on components across interdependencies.  ProcessDecPt makes calls to 

FailureInFedSegment, RestoreDependencies, and Backup, which gives it a complexity of 

O(n+s+d*O(RestoreCmp)).   

ProcessPath must perform a operation of O(n) and make a call to ProcessDecPt and Backup all a 

total of n times, giving it a complexity of O(n2+ns+dn*O(RestoreCmp)).   Lastly, RestoreCmp must call 

ChoosePathStart and ProcessDecPt n times in the worst case for a complexity of 

O(cn4+n2s+dn2*O(RestoreCmp)), which reduces to O(cdn6 + dsn4).   

RestoreCmp is called by the main From Loads algorithm once for each load, giving that operation a 

complexity of O(ocdn6 + odsn4).  The only other operation the From Loads algorithm performs that is 

more than O(n) is the initial sorting of loads at O(ond*log(o)), so the overall complexity of From Loads 

is O(ocdn6 + odsn4 + ond*log(o)). 

 

 

From Loads 

RestoreCmp 

ProcessPath 

ProcessDec
Pt 

RestoreDependencies 

Segment 

ChoosePathStart 

CreatePaths 

AreConnectedNoFailures Backup 

FailureInFedSegment 
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From Sources Complexity Analysis 

The complexity of the From Sources algorithm is most heavily influenced by the number of 

components in the system, but other subsidiary factors can also have an effect.  Like From Loads, From 

Sources makes use of the simple, O(n) functions Segment and ClearPriorities.  It also uses two other, 

more complex functions in ProcessSources and ValidBoundSwitches. 

ValidBoundSwitches is a function which, for a given source, determines which of the switches 

bounding its service area can be used by reconfiguration to try and expand that service area (discouting 

potential flow constraint violations).  This requires a series of linear operations on the number of 

switches (s) fed by the source, but also requires checking components (n) in the segment potentially fed 

 
Figure 15:From Sources Function Heirarchy 

by a switch in order to determine that their interdependencies (d) are satisfied.  The remaining switches 

must then be sorted according to their priority (s*log(s)).  This results in a total complexity for 

ValidBoundSwitches of O(snd + s*log(s)). 

ProcessSources is the core of the From Sources algorithm.  For each source in the system (n), it must 

call ValidBoundSwitches to determine potential candidates for operation.  For each of these candidates 

(s), ProcessSources then perform a series of checks that are linear on the number of components in the 

system (n), an operation of order sn, and in the worst case must also call PropagatePriorities at O(n2d2).  

The result of this is that ProcessSources has an overall complexity of O(n*(O(ValidBoundSwitches) + 

s(n + sn + n2d2))), which collapses to O(s2n2 + son3d2). 

From Sources 

ProcessSources 

ValidBoundSwts 

ClearPriorities 

Segment 

PropagatePriority 
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From Sources mostly contains operations which are linear on the number of components in the 

system (n).  The function call heirarchy for From Sources is shown in Figure 15.  It calls 

PropagatePriorities once for each load (O(on2d2)), and has an n3 operation when it initializes the 

boundary switches for the sources.  However, the complexity of these operations are eclipsed by the 

main loop which iterates a maximum s times (once for each switch in the system).  This loop performs a 

sort on the sources (O(n*log(n))), and then makes a call to ProcessSources followed by some linear 

operations on the number of components (n) and number of loads (o).  This loop has an overall 

complexity of O(so + s3n2 + s2n3d2), which makes the final worst-case complexity of the From Sources 

algorithm O(od2n2 + so + s3n2 + s2n3d2). 

Hybrid Complexity Analysis 

Because the Hybrid algorithm combines aspects of both From Loads and From Sources, it is 

influenced by a number of factors, but like the previous two algorithms the greatest influence on its 

complexity is the number of components.  Hybrid makes use of several functions previous described, 

including PropagatePriorites at O(on2d2), AreConnectedNoFailures at O(cn2), ProcessSources at O(s2n3 

+ osn3), and CreatePaths, ClearPriorities, Segment, and FailureInFedSegment at O(n).  Hybrid also 

makes use of a ValidBoundSwitches function like the one used by From Sources which only differs 

from that version by a constant operation, and so still has a complexity of O(snd+s*log(s)).  Hybrid’s 

function call heirarchy is shown in Figure 16. 

The new functions used by Hybrid are UnlockSwitches(int) and UnlockSwitches(Component, set of 

Component).  The former unlocks all switches that could feed loads of a given or higher priority, and 

iteratively calls the latter on each load with a sufficiently high priority to unlock switches which could 

feed that load.  Thus, UnlockSwitches(int) has a complexity of O(o*O(UnlockSwitches(Component, set 

of Component))).  UnlockSwitches(Component, set of Component) starts by calling CreatePaths on the 
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load it is given (O(n)), then for each of those potential paths, calls AreConnectedNoFailures to generate 

the full path and UnlockSwitches(Component, set of Component) on any components on which the 

components on the path are dependant, as well as on one component in each segment along that path.  

This gives UnlockSwitches(Component, set of Component) a complexity of O(cn3 + (dn2 + 

n3)*UnlockSwitches(Component, set of Component)), which collapses to O(cdn5 + cn6).  This gives 

UnlockSwitches(int) a complexity of O(ocdn5 + ocn6). 

 
Figure 16:Hybrid Reconfiguration Heirarchy 

The main Hybrid function performs a number of operations, but the only ones that are non-

dominated in terms of complexity are the sorting of loads at O(o*log(o)), and the main processing loop.  

The main processing loop is dominated by a call to ProcessSources and UnlockSwitches(int), and must 

be executed order n times, which gives it a complexity of O(n(s2n2 + son3d2 + ocdn6 + ocn7)).  

Consequently, the worst-case complexity of the Hybrid algorithm is 

O(o*log(o)+s2n3+son4d2+ocdn7+ocn8). 

Cotree Switch Complexity Analysis 

Unlike the previous three algorithms which are dominated by the number of components in the 

system, Cotree Switch is influenced most strongly by the number of switches specifically.  Cotree 

Switch again starts off with some operations which have been seen before, including sorting the loads by 

priority at O(ond*log(o)), ClearPriorities at O(n), and calling PropagatePriorities on each load at on2d2.   

From Sources 

ProcessSources 

ValidBoundSwts 

ClearPriorities 

Segment 

PropagatePriority 

UnlockSwitches(int) 
UnlockSwitches(Component, 

set of Component) 
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The new function used by Cotree Switch is FindOpSwt, which is used to determine which switch to 

operate to alleviate a violation.  FindOpSwt contains a number of order n and s operations, but is 

dominated by an order s2n operation where it eliminates any candidate switches that are in the feeder 

path of another candidate switch.  Thus, FindOpSwt has a complexity of O(s2n). 

There are two main loops in Cotree Switch.  The first is executed order s times, and contains a 

sorting of components, a call to FindOpSwt, a call to ClearPriorities, and calling PropagatePriorities 

once for each load for a total complexity of O(sn*log(n) + s3n + sn + son2d2).  The other loop is 

executed order c times, and reduces to a sort on switches (O(s*log(s))) and an order n operation order s 

times for a total complexity of O(cs*log(s) + csn).  Thus, Cotree Switch has an overall complexity of 

O(ond*log(o) + son2d2 + s3n + cs*log(s) + csn). 

Add Loops Complexity Analysis 

Add Loops makes extensive use of Segment and a new function called IsUnderfed.  IsUnderfed 

which checks the flow level of a component and those components supporting it for a complexity of 

O(nd). 

Add Loops itself first calls IsUnderfed on order n components, then sorts order o components as 

seen in the load sorting in From Loads at O(ond*log(o)).  This is followed by a loop which is executed 

order o times on the underfed loads.  In this loop in the worst case, Add Loops calls IsUnderfed and also 

checks that the load does not have a failure in its segment in an order n2 operation.  The loop then has 

another embedded loop that executes order n times, each time taking in the worst case order n2 + 

s*log(s) + snd operations.  This gives Add Loops a total worst case complexity of O(ond*log(o) + on3 + 

ons*log(s) + on2sd). 
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Effect of Interdependencies on Algorithm Complexity 

Dependencies have a substantial impact on the worst-case complexity of these algorithms.  

PropagatePriorities, for example, is normally an O(n2d2) function which is very commonly called.  

However, if there are no interdependencies in the system, it collapses to a simple O(n) function because 

it no longer needs to propagate down supporting components as well as the original component’s feeder 

path.  Many instances of recursion and many of the most complex statements involve performing some 

action, and then performing that same action or another related action on supporting components on the 

other side of an interdependency.  RestoreCmp, for example, doesn’t recur at all if there are no 

interdependencies in the system. 

The overall effect of cutting out interdependencies is to significantly reduce overall complexity of 

the algorithms.  From Loads drops to O(on*log(o) + ocn3 + osn2), From Sources drops to O(s2n3 + osn3), 

Hybrid to O(o*log(o) + s2n3 + osn3 + ocn7), Cotree Switch to O(n2 + sn*log(n) + s3n + son + cs*log(s) + 

csn), and Add Loops to O(on*log(o) + on3 + ons*log(s) + osn2).  The biggest beneficiaries of dropping 

interdependencies from the system in terms of worst-case complexity are From Loads, which loses an n6 

term, and Hybrid, which loses an n8 term. 

5.6 Algorithm Comparison vs. Complexity Factors 

Analysis of the algorithms presented in this paper indicates that they are at worst polynomial time in 

the average case.  Figures 17 through 21 show the results of execution in terms of runtime of each 

algorithm on systems of varying sizes with respect to the number of loads, switches, total components, 

interdependencies, and adjacencies in those systems (overall # of components is held constant for 

dependency and adjacency analysis).  The curves in the figures are best fit trendlines generated by 

Microsoft Excel.  The From Loads, From Sources, and Cotree Switch algorithms in particular 
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demonstrate a strong polynomial relationship, while the Hybrid algorithm is relatively weak in its 

trendline, but still no more than polynomial.   

Theoretical analysis indicates that the complexity of each algorithm is quadratic with respect to the 

number of interdependencies and linear with respect to the number of adjacencies.  However, the 

algorithms are not equally affected by the number of each present, as for example every term of the 

From Loads complexity function is affected by interdependencies, compare to only two for From 

Sources.  Figures 20 and 21 show the response of these algorithms to a system with around 50,000 

components as dependencies or adjacencies were randomly added to it, and shows that From Loads and 

Cotree Switch were the algorithms most heavily influenced by the presence of interdependencies, while 

Cotree Switch and Hybrid were the only algorithms significantly affected by the number of adjacencies.  

The trendline for the Cotree Switch algorithm on Figure 20 ignores the two outliers. 

Performance vs. # of Loads
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Figure 17: Algorithm Performance versus Number of Loads 
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Performance vs. # of Switches
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Figure 18: Algorithm Performance versus Number of Switches 

 

The reasons for deviation of the empirical results in these cases from theoretical analysis are 

primarily threefold.  The theoretical analysis provides for algorithm complexity in a worst-case scenario, 

which would involve every component having an adjacency or every component being dependent on 

every other component.  Such systems simply do not exist.  The worst-case analysis also assumes things 

such as no restoration path in From Loads is valid except the last one examined, which boosts the 

complexity over what would actually be seen.  In addition, the presence of interdependencies and 

adjacencies can limit the possible options the algorithms can explore, which can significantly decrease 

the number operations necessary to reach a solution.  
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Performance vs. # of Components
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Figure 19: Algorithm Performance versus Number of Components 

Performance vs. Interdependencies
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Figure 20:Algorithm Performance versus Number of Interdependencies 

The difficulty of dealing with interdependencies is particularly evident in each algorithm.  Even 

though From Sources and Hybrid seem to be significantly less affected by interdepenencies than From 



 69 

Loads or Cotree Switch, they still see large time increases of up to 50% as the number of 

interdependencies is increased.   

Performance vs.  Adjacencies
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Figure 21:Algorithm Performance versus Number of Adjacencies 

Figure 22 shows the degradation of the performance of the algorithms as interdependencies are 

increased.  Each algorithm restores all or nearly all possible restorable loads up until a point, at which 

the number of restored loads drops off precipitously before levelling out.  For From Loads, From 

Sources, and Hybrid, this breakpoint occurs after the first few hundred interdependencies, while the 

Cotree Switch algorithm lasts significantly longer before succumbing to the complexity the 

interdependencies add to the system.  The reason for this decrease in performance has to do with the 

way interdependencies affect the order of load restoration.  Satisfying interdependencies first can result 

in some loads being unrestorable which might have been restorable if restoration had been attempted in 

a different order or with different restoration paths. The reason for the steepness of the dropoff is the 

increased probability of circular interdependency chains (A depends on B depends on C depends on A).  

Such chains are difficult for the algorithms to resolve and can lead to unrestored load that could be 
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restored by an algorithm capable of finding an optimal solution.  Fortunately, the likelyhood of a system 

of this size having that many interdependencies is very low. 

Degradation vs. Interependencies
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Figure 22:Algorithm Performance Degradation vs. Interdependencies 

The reason for the difference in the dropoff point between Cotree Switch and the other algorithms 

has to do with the way they handle restoration paths.  The Cotree Switch algorithm starts from a system 

with all switches turned on, and then turns off switches as long as doing so causes no constraint 

violations or additional dropped loads.  By contrast, From Loads, From Sources, and Hybrid reach a 

restoration solution by turning on switches in order to restore load.  In other words, Cotree Switch starts 

with all paths restored and tries to prune unnecessary ones while the other algorithms seek to build a set 

of restoration paths.  While the former is not guaranteed to result in a radial solution (a desireable 

condition for many utilities), it does create less potential for restoring loads in an order which prevents 

otherwise restorable loads from being restored.  
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5.7 Performance Observations 

The first two examples examining the models shown in Figures 7 and 8 reveal some valuable 

information about the algorithms.  First, each performs better than the DAOP method in almost every 

examined metric (the sole exception being phase balancing, where DAOP is in the middle of them).  In 

the first example, all four proposed algorithms are substantially better than DAOP at minimizing losses 

– the very thing DAOP was designed to do [19,20].  Furthermore, they all feature lower losses than the 

DAOP solution while providing substantially more power to the system due to the fact that they restore 

more load. 

Of the four proposed algorithms, the best performers are From Sources and Cotree Switch.  The 

Cotree Switch algorithm is in general faster than the others by a substantial margin (except for the two 

stage From Loads solution for example 2), and also performs best in phase imbalance and kW losses.  

However, the From Sources algorithm demonstrates better load balancing across the sources, and in 

general produces solutions which require fewer switching operations to implement, a significant 

advantage in implementing solutions in practice.   

The speed advantage possessed by the Cotree Switch algorithm is related to the fact that it starts with 

a system that has all switches turned on.  Instead of checking system constraints every time a load is 

picked up as switches are turned on as in the other algorithms,  Cotree Switch only needs to check 

constraints each time it drops a load when isolating failure or breaks an independent loop.  Because the 

number of potential loops in a real-world system is limited (only 82 in the large example, which has 

over 50,000 components), the Cotree Switch algorithm is going to spend significantly less time checking 

constraints, which is the most expensive part of the algorithms.  As an example, the single stage run of 

the From Sources algorithm on the larger example model spends 97% of its time checking constraints 
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calling the power flow algorithm over 9000 times, while the Cotree Switch algorithm only calls power 

flow 245 times, taking up only 77% of the total time. 

However, the speed difference of a couple minutes between the algorithms on the larger model may 

not actually be significant in a real-world implementation, particularly since the algorithms are likely to 

be run on a much more powerful computer than that used for testing.  The few seconds difference on the 

smaller model is almost certainly insignificant. 

The From Loads and Hybrid algorithms lag behind the other, but were designed with highly-

prioritized systems in mind, a condition which does not apply to the real-world examples presented here.  

It is possible that they would show a better performance on a larger system that was more fully 

prioritized, and in fact the third example on the simple integrated model indicates that this may be the 

case at least for From Loads. 
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VI. Conclusion 

The problem of how to respond to disruptions in infrastructure systems is an important and common 

one.  Prioritization of loads, interdependencies between systems, and non-linear flows of some systems 

only complicate it.  In fact, as proven in this dissertation in 3.4, the prioritized reconfiguration problem 

is an NP-hard problem.  Many solutions have been proposed for this problem, but no comprehensive 

solutions have been developed without needing to simplify the system model. 

This dissertation has proposed four algorithms for the prioritized reconfiguration of interdependent 

critical infrastructure systems. These algorithms are designed to use a Graph Trace Analysis model that 

is an unsimplified representation of the systems being analyzed, and are written using a new notation 

developed and described in this dissertation specifically for GTA.  This notation can be used to write 

algorithms in GTA that are independent of the systems being analyzed.  It is also easy to implement 

algorithms written this notation using tools such as those provided in the C++ Standard Template 

Library.   

Of all prior works surveyed, very few recognized the need for arbitrary prioritization and only one 

[4] attempted to address both arbitrary prioritization and system interdependencies.  While it was able to 

achieve results for its example systems very quickly, it was only able to do so through applying many 

simplifying assumptions to its model, and it was forced to use different models for each of the systems 

involved.   

By contrast, each of the algorithms proposed in this dissertation are capable of quickly solving 

reconfiguration for large systems without any simplifications being applied to the system model.  They 

also all allow for arbitrary levels of priority on system loads.  In addition, the generic nature of GTA 

allows the proposed algorithms to do so with a single, integrated model containing all systems being 

examined, complete with the dependencies between them. 
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The proposed algorithms are further capable of handling dependencies which only need to be 

partially satisfied as shown in 5.4.  In the event that a supporting load can only receive part of the 

service it normally demands, the proposed algorithms are capable of determining that it should still be 

provided service if it can be provided enough to satisfy the loads it supports.  This recognition and 

handling of partial dependencies is something which no prior solution has addressed. 

Performance testing of these algorithms shows that they are competetive with or better than previous 

solutions in mutiple metrics (line losses, switching operations, loads restored, etc.), while addressing 

aspects of the reconfiguration problem (such as arbitrary prioritization and interdependencies, including 

partial dependency fulfillment) which previous solutions have not.  The complexity of the algorithms is 

demonstrated to be polynomial, with the ability to handle loops and dependencies not causing an 

unreasonable increase in complexity for realistic systems. 

In addition, the proposed algorithms are not redundant, as they have advantages over each other 

depending on the nature of the model being analyzed.  As discussed in 5.5, while the Cotree Switch and 

From Sources algorithms seem to perform the best in the real-world models tested, they each perform 

better than each other in different metrics.  There is also evidence to suggest that the From Loads and 

Hybrid algorithms may have advantages over others when considering highly prioritized systems. 

6.1 Future Work 

Future work with the algorithms proposed in this dissertation will require field experimentation with 

actual utility systems to see how they deal with actual disruptions.  Different kinds of utilities in the 

same geographic area could be encouraged to work together to develop an integrated systems model 

complete with dependencies between system types in order to perform fully robust experiments with the 

proposed algorithms.  Furthermore, a standard programming library akin to the C++ Standard Template 
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Library could be developed to implement the GTA notation proposed in this dissertation in order to ease 

the writing of further analysis algorithms for GTA models. 
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Appendix A – Reconfiguration Algorithms 

Utility Functions 
0. Segment() 
1. ClearPriorities() 
2. PropagatePriority() 
3. CheckConstraints() 

 
Segment(Component Cmp) 

0. SegStart=FPT(Cmp)→collect(p|p→type==SWITCH || FPT(p)→size==0)→first 
1. return   

     FT(SegStart)→collect(p|FPT(p)→collect(q|q→type==SWITCH)→first=={SegStart})→including({SegStart}) 
 
ClearPriorities(Model M) 

0. M→iterate(p| If p→type!=LOAD 
                      Then p→priority=0 
                      EndIf) 

 
FailureInFedSegment(Component pCmp) 

0. If Segment(pCmp→pF) →collect(p|p→status==FAILED) 
        Then return TRUE 
        Else return FALSE 

 
PropagatePriority(Component pCmp) 

0. FPT(pCmp)→iterate(p| If p→priority < pCmp→priority 
                                      Then p→priority = pCmp→priority 
                                      EndIf, 
                                      p→AD→iterate(q| If q→pCmp→priority < p→priority 
                                                                     Then q→pCmp→priority = p→priority, 
                                                                              PropagatePriority(q→pCmp) 
                                                                     EndIf), 
                                      p→OD→iterate(q| If q→pCmp→priority < p→priority 
                                                                     Then q→pCmp→priority = p→priority, 
                                                                              PropagatePriority(q→pCmp) 
                                                                     EndIf)) 

CheckConstraints(Component pCmp) 
CheckConstraints is a function which checks a Component to ensure that it has not violated any constraints as defined by 

the person implementing Reconfiguration, for purposes of maximizing flexibility and generalization away from specific 
system types.  The only mandatory constraint check is whether a component's flow violates its capacity.  CheckConstraints 
must return a boolean value indicating whether or not pCmp violates any constraints. 
 

From Loads Functions 
0. FromLoads() 
1. RestoreCmp() 
2. CreatePaths() 
3. ChoosePathStart() 
4. ProcessPath() 
5. CreateDecPoints() 
6. ProcessDecPt() 
7. RestoreDependencies() 
8. Backup() 
9. AreConnectedNoFailures() 
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From Loads Structures 
    ClsdSwt 
           Component pCmp 
           int level 
  
     DecPt 
          Component pCmp 
          int failedOrDeps 
  

From Loads Globals 
0. set of ClsdSwt ClosedSwitches 
1. set of Component Restored 
2. set of Component BeingRestored 

 
FromLoads(Model M) 

0. seq of Component Loads = M→collect(p|p→type == LOAD) 
1. M→collect(p|p→type == SWITCH)→collect(p| p→status=OFF) 
2. Loads→order(p<q if ( p→priority > q→priority OR 

                                    (M→exists(S→exists(t→AD→exists(u| u→pCmp==q) OR 
                                                                       t→OD→exists(u| u→pCmp==q))) 
                                     AND 
                                     M→forall(S|S→forall(t|t→AD→collect(u| u→pCmp==p)→size==0 AND 
                                                                            t→OD→collect(u| u→pCmp==p)→size==0)))))                               

3. Loads→iterate(ClosedSwitches={}, BeingRestored={}, RestoreCmp(p, 0)) 
4. AddLoops(M) 

 
RestoreCmp(Component Cmp, int level) 

0. bool backedup=FALSE, restored=FALSE, startingpath=TRUE, pathfail=FALSE; 
Component pCmp=Cmp; 
seq of Component visited, InitPath;  

1. If Restored→includes(Cmp) 
Then return TRUE 
EndIf 

2. If BeingRestored→includes(Cmp) 
Then return TRUE 
EndIf 

3. CmpSeg=Segment(Cmp) 
4. If CmpSeg→collect(p|p→status==FAILED)→size > 0 

Then return FALSE 
EndIf 

5. CreatePaths(Paths, Cmp) 
6. Paths→iterate(p| If ChoosePathStart(pCmp, p, Cmp, startingpath, Paths, InitPath)==FALSE 

                           Then return FALSE 
                           EndIf, 
                           If pCmp!=NULL AND FPT(pCmp)→collect(p|p→status==FAILED)→size>0 
                           Then result=ProcessPath(pCmp, Cmp, startingpath, Paths, InitPath, backedup, level, restored) 
                           Else startingpath=TRUE 
                           EndIf) 

7. If restored==FALSE 
Then return FALSE 
Else Restored=Restored→including(Cmp) 
        return TRUE 
EndIf 
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CreatePaths(Sequence Paths, Component Cmp) 

0. Paths = FT(FPT(Cmp)→last)→collect(p|p→adjt!=NULL) 
1. Paths→prepend(Cmp→fpt) 
2. return TRUE 

ChoosePathStart(Component pCmp, Component p, Component Cmp, bool startingpath,  
                              seq of Component Paths, seq of Component InitPath) 

0. restored=TRUE, visited={}, InitPath={} 
1. If startingpath==TRUE 

Then  If Cmp==p 
          Then pCmp=p, 
                    startingpath=false 
          Else pCmp=NULL, 
                  If AreConnectedNoFailures(Cmp, p, visited, InitPath) == TRUE 
                  Then pCmp=p→adjt, 
                            InitPath=InitPath→reverse, 
                            startingPath=FALSE 
                  Else visited={}, 
                          InitPath={} 
                  EndIf 
                  If pCmp==NULL AND Paths→#index+1==Paths→size 
                  Then return FALSE 
                  EndIf 
          EndIf 
Else Paths→#index-- 
EndIf 

2. return TRUE 
 
ProcessPath(Component pCmp, Component Cmp, bool startingpath, seq of Component Paths,  
                      seq of Component InitPath, bool backedup, int level, bool restored) 

0. seq of DecPoint DecisionPoints={} 
1. DecisionPoints=FPT(pCmp)→collect({p,0}| (p→type==SWITCH AND p→status==OFF)  
                                                                    OR p→OD→size>0 OR p→AD→size>0)→reverse 
2. DecisionPoints=DecisionPoints→append(InitPath→collect({p,0}| (p→type==SWITCH AND p→status==OFF) OR 

                                                                                                            p→OD→size>0                                               OR  
                                                                                                            p→AD→size>0)→reverse) 

3. DecisionPoints→iterate(p| ProcessDecPt(DecisionPoints, p, pCmp, backedup, startingpath, level, restored) 
                                           If level==0 AND  
                                              DecisionPoints→#index+1=DecisionPoints→size AND 
                                              startingpath==false 
                                           Then If ClosedSwitches→size>0 AND  
                                                        M→collect(q|CheckConstraints(q)==FALSE)→size>0 
                                                    Then If Backup(pCmp, DecisionPoints, 0)==FALSE 
                                                             Then startingpath=TRUE, 
                                                                      restored=FALSE 
                                                             Else backedup=TRUE 
                                                             EndIf 
                                                    Else Restored = Restored→including(Cmp) 
                                                            return TRUE 
                                                    EndIf 
                                            Else If #index+1==DecisionPoints→size AND restored==TRUE 
                                                    Then Restored=Restored→including(Cmp) 
                                                             return TRUE 
                                                    EndIf 
                                            EndIf) 
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4. If DecisionPoints→size==0 AND restored==TRUE 
Then Restored=Restored→including(Cmp) 
         return TRUE 
EndIf 

 
ProcessDecPt(seq of DecPoint DecisionPoints, Component pCmp, bool backedup,  
                        bool startingpath, int level, bool restored) 

0. bool mustbackup=FALSE, 
Component curCmp 

1. If backedup==TRUE 
Then DecisionPoints→#index = 0, 
         backedup=FALSE 
EndIf 

2. curCmp=DecisionPoints→at(DecisionPoints→#index)→pCmp 
3. If curCmp→type==SWITCH AND curCmp→status==OFF 

Then If curCmp→fpt→status==OFF                                                             OR  
             (curCmp→adjt!=NULL AND curCmp→adjt→fpt→status==OFF) OR 
             curCmp→adjt==NULL 
         Then curCmp→status=ON 
                  If FailureInFedSegment(curCmp)==TRUE 
                  Then mustbackup=TRUE 
                  EndIf 
                  ClosedSwitches=ClosedSwitches→including({curCmp, level}) 
         EndIf 
EndIf 

4. If mustbackup==FALSE 
Then mustbackup=RestoreDependencies(DecisionPoints, level, curCmp) 
EndIf 

5. If mustbackup==TRUE 
Then If Backup(pCmp, DecisionPoints, level)==FALSE 
         Then startingpath=TRUE, 
                  restored==FALSE, 
                  DecisionPoints→#index=DecisionPoints→size 
         Else backedup=TRUE 
         EndIf 
EndIf 

 
RestoreDependencies(seq of Component DecisionPoints, int level, Component curCmp) 

0. bool mustbackup=FALSE 
1. curCmp→AD→iterate(p| If RestoreCmp(p→pCmp, level+1)==FALSE 

                                          Then mustbackup=TRUE, 
                                                   #index=curCmp→AD→size 
                                          EndIf) 

2. If mustbackup==TRUE 
Then return TRUE 
EndIf 

3. mustbackup=TRUE 
4. curCmp→OD→iterate(p| If RestoreCmp(p→pCmp, level+1)==TRUE 

                                          Then mustbackup=FALSE, 
                                                   #index=curCmp→OD→size 
                                          EndIf) 

5. return mustbackup 
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Backup(Component pCmp, seq of Component DecisionPoints, int level) 
0. bool found=FALSE 

 int curPt=DecisionPoints→collect(n| DecisionPoints→at(n-1)→pCmp==pCmp)→first 
1. DecisionPoints→riterate(p| If DecisionPoints→#index > curPt 

                                             Then DecisionPoints→#index=curPt 
                                             EndIf, 
                                             If p→pCmp→OD→size > 0 AND p→failedOrDeps+1 < p→pCmp→OD→size 
                                             Then p→failedOrDeps++, 
                                                      found=TRUE, 
                                                      DecisionPoints→#index=0 
                                             Else p→failedOrDeps=0 
                                             EndIf) 

2. ClosedSwitches→collect(p| If p→level >= level 
                                             Then p→pCmp→status=OFF 
                                             EndIf) 

3. return found 
 
AreConnectedNoFailures(Component a, Component b, set of Component visited,  
                                             seq of Component InitPath) 

0. seq of Component Path, set of Component AdjPoints, set of Component Try 
1. If FPT(a)→last==FPT(b)→last 

Then Path = FPT(a)→symmetricDifference(FPT(b))→prepend(a)→append(b) 
         If Path→collect(p| p→status==FAILED)→size==0 
         Then InitPath = InitPath→append(Path), 
                  return TRUE 
         Else return FALSE 
         EndIf 
EndIf 

2. AdjPoints = FT(FPT(a)→last)→collect(p|p→adjt!=NULL) 
3. Try=AdjPoints→excluding(AdjPoints→intersection(visited)) 
4. If Try→size==0 

Then return FALSE 
EndIf 

5. visited = visited→union(Try) 
6. Try→iterate(p| Path=FPT(a)→symmetricDifference(FPT(p))→prepend(a)→append(b), 

                         If Path→collect(q| q→status==FAILED)→size==0 
                         Then If AreConnectedNoFailures(p→adjt, b, visited, Path)==TRUE 
                                  Then InitPath=InitPath→append(Path), 
                                           return TRUE 
                                  EndIf 
                         EndIf) 

7. return FALSE 
 
 
 

From Sources Functions 
0. FromSources() 
1. ProcessSources() 
2. ValidBoundSwitches() 

 

From Loads Structures 
Src 
       Component pCmp 
       set of Swt BoundSwts 
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Swt 
      Component pCmp 
      bool visited 

 

 From Sources Globals 
0. set of Component Restored 
1. set of Component FailedRestore 
2. seq of Component Loads 
3. seq of Src Sources 
4. int highPrior 

 
FromSources(Model M) 

0. bool actiontaken=TRUE, int oldHP 
1. M→collect(p|p→type == SWITCH)→collect(p| p→status=OFF) 
2. Sources=M→collect({p, {}}| p→type==SOURCE) 
3. Loads=M→collect(p| p→type==LOAD) 
4. Loads→order(p<q if p→priority > q→priority) 
5. Sources=Sources→excluding(p| Segment(p→pCmp) 

                           →collect(q|q→status==FAILED)→size>0) 
6. highPrior=Loads→first→priority 
7. ClearPriorities(M) 
8. Loads→iterate(p| PropagatePriority(p)) 
9. Sources→iterate(p| p→BoundSwts=M→collect({q,FALSE}| q→type==SWITCH                  AND 

                                                                                                   q→status==OFF                        AND 
                                                                                                   ((FPT(q)→collect(r|r→status==ON)→size== 
                                                                                                             FPT(q)→size                   AND 
                                                                                                     FPT(q)→includes(p))              OR 
                                                                                                    (q→adjt!=NULL                      AND 
                                                                                                     FUT(q→adjt)→collect(r|r→status==ON)→size== 
                                                                                                             FPT(q→adjt)→size         AND 
                                                                                                     FPT(q→adjt)→includes(p)))) 

10. M→iterate(z| If actiontaken==TRUE 
                      Then M→#index=0, 
                               Sources→order(p < q if p→f/p→c < q→f/q→c), 
                               actiontaken=ProcessSources(), 
                               If Restored→collect(p|p→priority>=highPrior)→size + 
                                   FailedRestore→collect(p|p→priority>=highPrior)→size == 
                                   Loads→collect(p|p→priority>=highPrior)→size 
                               Then oldHP=highPrior, 
                                        If Loads→collect(p|p→priority<highPrior)→size > 0 
                                        Then highPrior=Loads→collect(p|p→priority<highPrior)→first→priority 
                                        Else highPrior=0 
                                        EndIf 
                               EndIf 
                      Else M→#index=M→size 
                      EndIf) 

11. AddLoops(M) 
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ProcessSources() 
0. bool actiontaken=FALSE, bool found=FALSE, set of Component TrySwts 
1. Sources→iterate(p| TrySwts=ValidBoundSwitches(p), 

      TrySwts→iterate(q| 
            q→status=ON, 
            p→BoundSwts→collect(r|r→pCmp==q)→first→visited=TRUE, 
            If Segment(q→ft)→collect(r|r→status==FAILED)→size > 0 
            Then q→status=OFF, 
            Else If Segment(q→ft)→collect(r|r→type==LOAD)→size > 0 
                    Then If M→collect(p|CheckConstraints(p)==FALSE)→size>0 
                             Then q→status=OFF, 
                                      FailedRestore=FailedRestore→append(Segment(q→ft)→collect(r|r→type==LOAD)) 
                              Else p→BoundSwts=p→BoundSwts→excluding(r|r→pCmp==q), 
                                      p→BoundSwts=p→BoundSwts→including( 
                                                                       Segment(q→ft)→collect({r,FALSE}| 
                                                                                                 r→type==SWITCH AND 
                                                                                                 r→status==OFF       AND 
                                                                                                 r!=q)), 
                                      p→BoundSwts=p→BoundSwts→including( 
                                                                       Segment(q→ft)→collect({r→adjt,FALSE}| 
                                                                                                 r→adjt!=NULL                 AND 
                                                                                                 r→adjt→type==SWITCH AND 
                                                                                                 r→adjt→status==OFF       AND 
                                                                                                 r!=q)), 
                                     ClearPriorities(M), 
                                     Loads→iterate(r| PropagatePriority(r)), 
                                     Restored=Restored→including(Segment(q→ft)→collect(r|r→type==LOAD)), 
                                     FailedRestore=FailedRestore→excluding(Segment(q→ft)→collect(r|r→type==LOAD)), 
                                     actiontaken=TRUE, 
                                     TrySwts→#index=TrySwts→size 
                              EndIf 
             Else ClearPriorities(M), 
                     Loads→iterate(r| PropagatePriority(r)), 
                     p→BoundSwts=p→BoundSwts→excluding(r|r→pCmp==q), 
                     p→BoundSwts=p→BoundSwts→including(Segment(q→ft)→collect({r,FALSE}| 
                                                                                                 r→type==SWITCH AND 
                                                                                                 r→status==OFF       AND 
                                                                                                 r!=q)), 
                     p→BoundSwts=p→BoundSwts→including(Segment(q→ft)→collect({r→adjt,FALSE}| 
                                                                                                 r→adjt!=NULL                 AND 
                                                                                                 r→adjt→type==SWITCH AND 
                                                                                                 r→adjt→status==OFF       AND 
                                                                                                 r!=q)), 
                     actiontaken=TRUE, 
                     TrySwts→#index=TrySwts→size 
             EndIf)) 

2. return actiontaken 
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ValidBoundSwitches(Component pCmp) 
0. seq of Component Swts=pCmp→BoundSwts→collect(p→pCmp| p→visited==FALSE AND 

                                    (p→pCmp→ft==p→pCmp→brt OR p→pCmp→ft→status==OFF) AND 
                                    (p→pCmp→adjt==NULL OR p→pCmp→adjt→status==OFF) 

1. Swts=Swts→excluding(p| p→adjt!=NULL AND 
                                          Segment(p→fpt)→collect(q| q→status==FAILED)→size>0) AND 
                                          Segment(p→adjt)→collect(q| q→status==FAILED)→size>0)) 

2. Swts=Swts→excluding(p| p→adjt==NULL AND 
              Segment(p→ft)→collect(q|q→AD→collect(r|r→pCmp→status==OFF)→size>0  AND 
                                                          q→priority<highPrior)→size>0                                     AND 
              Segment(p→ft)→collect(q|q→OD→collect(r|r→pCmp→status==ON)→size==0 AND 
                                                          q→priority<highPrior)→size>0) 

3. Swts=Swts→excluding(p| p→adjt!=NULL AND p→adjt→status==OFF AND 
               Segment(p→adjt)→collect(q| q→AD→collect(r|r→pCmp→status==OFF)→size>0 
                                                               AND q→priority<highPrior)→size>0 AND 
               Segment(p→adjt)→collect(q| q→OD→collect(r|r→pCmp→status==ON)→size==0  
                                                               AND q→priority<highPrior)→size>0) 

4. Swts=Swts→excluding(p| p→adjt!=NULL AND p→fpt→status==OFF AND 
            Segment(p→fpt)→collect(q|q→AD→collect(r|r→pCmp→status==OFF)→size>0  AND 
                                                            q→priority<highPrior)→size>0                                   AND 
            Segment(p→fpt)→collect(q|q→OD→collect(r|r→pCmp→status==ON)→size==0 AND 
                                                            q→priority<highPrior)→size>0) 

5. return Swts→order(p<q if p→priority>q→priority) 
 
 
 

Hybrid Functions 
0. Hybrid() 
1. ProcessSources() 
2. ValidBoundSwitches() 
3. UnlockSwitches(int) 
4. UnlockSwitches(Component, set of Component) 

 

Hybrid Structures 
Src 
       Component pCmp 
       set of Swt BoundSwts 
  
Swt 
      Component pCmp 
      bool visited 

 

Hybrid Globals 
0. set of Component Restored 
1. set of Component FailedRestore 
2. seq of Component Loads 
3. seq of Src Sources 
4. int highPrior 
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Hybrid(Model M) 
0. bool actiontaken=TRUE, int oldHP 
1. M→collect(p|p→type == SWITCH)→collect(p| p→status=OFF) 
2. Loads=M→collect(p| p→type==LOAD) 
3. Loads→order(p<q if p→priority > q→priority) 
4. Sources=Sources→excluding(p| Segment(p→pCmp)→collect(q|q→status==FAILED)→size>0) 
5. M→collect(p| p→type==SWITCH AND p→operable=FALSE) 
6. highPrior=Loads→first→priority 
7. ClearPriorities(M) 
8. Loads→iterate(p| PropagatePriority(p)) 
9. UnlockSwitches(highPrior) 
10. Sources=M→collect({p, {}}| p→type==SOURCE) 
11. Sources→iterate(p| p→BoundSwts=M→collect({q,FALSE}|  

                                                                    q→type==SWITCH                  AND 
                                                                    q→status==OFF                        AND 
                                                                    q→operable==TRUE                AND 
                                                                    ((FPT(q)→collect(r|r→status==ON)→size== 
                                                                              FPT(q)→size                   AND 
                                                                      FPT(q)→includes(p))              OR 
                                                                     (q→adjt!=NULL                      AND 
                                                                      FUT(q→adjt)→collect(r|r→status==ON)→size== 
                                                                              FPT(q→adjt)→size         AND 
                                                                      FPT(q→adjt)→includes(p)))) 

12. M→iterate(z| If actiontaken==TRUE 
                      Then M→#index=0, 
                               Sources→order(p < q if p→f/p→c < q→f/q→c), 
                               actiontaken=ProcessSources(), 
                               If Restored→collect(p|p→priority>=highPrior)→size + 
                                   FailedRestore→collect(p|p→priority>=highPrior)→size == 
                                   Loads→collect(p|p→priority>=highPrior)→size 
                               Then oldHP=highPrior, 
                                        If Loads→collect(p|p→priority<highPrior)→size > 0 
                                        Then highPrior=Loads→collect(p|p→priority<highPrior)→first→priority 
                                        Else highPrior=0 
                                        EndIf, 
                                        UnlockSwitches(highPrior), 
                                        Sources→iterate(p| p→BoundSwts=M→collect({q,FALSE}|  
                                                                       q→type==SWITCH                  AND 
                                                                       q→status==OFF                        AND 
                                                                       q→operable==TRUE                AND 
                                                                       ((FPT(q)→collect(r|r→status==ON)→size== 
                                                                                FPT(q)→size                   AND 
                                                                         FPT(q)→includes(p))              OR 
                                                                       (q→adjt!=NULL                      AND 
                                                                        FUT(q→adjt)→collect(r|r→status==ON)→size== 
                                                                                 FPT(q→adjt)→size         AND 
                                                                        FPT(q→adjt)→includes(p)))) 
                               EndIf 
                      Else M→#index=M→size 
                      EndIf) 

13. AddLoops(M) 
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ProcessSources() 
As with the From Sources Algorithm 

 
ValidBoundSwitches(Component pCmp) 

0. seq of Component Swts=pCmp→BoundSwts→collect(p→pCmp| p→visited==FALSE AND 
                                    (p→pCmp→ft==p→pCmp→brt OR p→pCmp→ft→status==OFF) AND 
                                    (p→pCmp→adjt==NULL OR p→pCmp→adjt→status==OFF) 

1. Swts=Swts→excluding(p| p→operable==FALSE) 
2. Swts=Swts→excluding(p| p→adjt!=NULL AND 

                                          Segment(p→fpt)→collect(q| q→status==FAILED)→size>0) AND 
                                          Segment(p→adjt)→collect(q| q→status==FAILED)→size>0)) 

3. Swts=Swts→excluding(p| p→adjt==NULL AND 
              Segment(p→ft)→collect(q|q→AD→collect(r|r→pCmp→status==OFF)→size>0  AND 
                                                          q→priority<highPrior)→size>0                                     AND 
              Segment(p→ft)→collect(q|q→OD→collect(r|r→pCmp→status==ON)→size==0 AND 
                                                          q→priority<highPrior)→size>0) 

4. Swts=Swts→excluding(p| p→adjt!=NULL AND p→adjt→status==OFF AND 
               Segment(p→adjt)→collect(q| q→AD→collect(r|r→pCmp→status==OFF)→size>0   
                                                               AND q→priority<highPrior)→size>0 AND 
               Segment(p→adjt)→collect(q| q→OD→collect(r|r→pCmp→status==ON)→size==0  
                                                               AND q→priority<highPrior)→size>0) 

5. Swts=Swts→excluding(p| p→adjt!=NULL AND p→fpt→status==OFF AND 
            Segment(p→fpt)→collect(q|q→AD→collect(r|r→pCmp→status==OFF)→size>0  AND 
                                                          q→priority<highPrior)→size>0                                     AND 
            Segment(p→fpt)→collect(q|q→OD→collect(r|r→pCmp→status==ON)→size==0 AND 
                                                          q→priority<highPrior)→size>0) 

6. return Swts→order(p<q if p→priority>q→priority) 
 
UnlockSwitches(int priority) 

0. set of Component visited, seq of Component Paths, seq of Component InitPath,  
seq of Component Feeder, set of Component seen, Component prevSwt, int prevSwtIdx 

1. UnlockLoads=Loads→collect(p| p→priority >= priority) 
2. UnlockLoads→iterate(p| visited={}, UnlockSwitches(p, visited)) 

                                                             
                                                                                          

UnlockSwitches(Component Cmp, set of Component visited) 
0. seq of Component Feeder, seq of Component InitPath, set of Component seen, int prevSwtIdx 
1. CreatePaths(Paths, p) 
2. Paths→iterate(q| seen={} 

                           If q==p→fpt 
                           Then InitPath=FPT(q) 
                           Else If AreConnectedNoFailures(p, q, seen, InitPath)==TRUE 
                                   Then Feeder=FPT(q→adjt)→prepend(q), 
                                            InitPath=InitPath→append(Feeder), 
                                   EndIf, 
                                   InitPath→iterate(r| If r→status==FAILED 
                                                                  Then InitPath→#index=InitPath→size 
                                                                  Else If r→type==SWITCH 
                                                                          Then prevSwtIdx=InitPath→#index 
                                                                          EndIf 
                                                                  EndIf), 
                                   InitPath→iterate(r| Feeder=Feeder→append(r), 
                                                                  If InitPath→#index=prevSwtIdx 
                                                                  Then InitPath→#index=InitPath→size 
                                                                  EndIf), 
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                                   Feeder→collect(r| r→type==SWITCH AND r→operable=TRUE), 
                                   Feeder→collect(r| r→adjt!=NULL AND r→adjt→type==SWITCH AND 
                                                                 r→adjt→operable=TRUE), 
                                   Feeder→collect(r| r→AD→iterate(s| UnlockSwitches(s→pCmp, visited)), 
                                                               r→OD→iterate(s| UnlockSwitches(s→pCmp, visited))), 
                                   Feeder→iterate(r| Segment(r)→iterate(s| If visited→includes(s)==FALSE 
                                                                                                    Then UnlockSwitches(s, visited) 
                                                                                                    EndIf) 
                           EndIf) 

 
 

Cotree Switch Functions 
0. CotreeSwitch() 
1. FindOpSwt() 

 

Cotree Switch Globals 
0. seq of Component Loads 
1. seq of Component Violations 

 
CotreeSwitch(Model M) 

0. set of Component Cotrees, seq of Component FP1, seq of Component FP2, 
set of Component openSwts 

1. M→collect(p| p→type==SWITCH)→collect(p| status=ON) 
2. Loads=M→collect(p| p→type==LOAD) 
3. Violations=M→collect(p| p→status==FAILED OR CheckConstraints(p)==FALSE) 
4. Loads→order(p<q if ( p→priority > q→priority OR 

                                    (M→exists(S→exists(t→AD→exists(u| u→pCmp==q) OR 
                                                                      t→OD→exists(u| u→pCmp==q))) 
                                     AND 
                                     M→forall(S|S→forall(t|t→AD→collect(u| u→pCmp==p)→size==0 AND 
                                                                            t→OD→collect(u| u→pCmp==p)→size==0))))) 

5. ClearPriorities(M) 
6. Loads→iterate(p| PropagatePriority(p)) 
7. M→iterate(z| If Violations→size==0 

                      Then M→#index=M→size 
                      Else Violations→order(p<q if p→priority<q→priority), 
                              FindOpSwt(Violations→first)→status=OFF, 
                              ClearPriorities(M), 
                              Loads→iterate(p| PropagatePriority(p)), 
                              Violations=M→collect(p| p→status==FAILED OR p→f>p→c)) 

8. Cotrees=M→collect(p| p→type==SWITCH AND p→adjt!=NULL AND 
                                     p→status==ON AND p→adjt→status==ON AND 
                                     FPT(p)→last!=FPT(p→adjt)→last) 

9. Cotrees→iterate(p| openSwts=FPT(p)→collect(q| q→type==SWITCH), 
                          openSwts=openSwts→append(FPT(p→adjt)→collect(q| q→type==SWITCH)), 
                          openSwts→order(q<r if q→f<r→f), 
                          openSwts→iterate(q| q→status=OFF, 
                                                             If M→collect(r|CheckConstraints(r)==FALSE)→size==0 
                                                             Then openSwts→#index=openSwts→size 
                                                             Else q→status=ON)) 

10. AddLoops(M) 
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FindOpSwt(Component pCmp) 
0. set of Component candidates, int lowPrior 
1. candidates=FTtoB(pCmp)→collect(p| p→type==SWITCH) 
2. candidates=candidates→including(FPT(pCmp)→collect(p| p→type==SWITCH)) 
3. If pCmp→type==SWITCH 

Then candidates=candidates→including(pCmp) 
EndIf 

4. lowPrior=candidates→collect(p| candidates→exists(q| q→priority<p→priority)==FALSE)→first→priority 
5. candidates=candidates→excluding(p| p→priority > lowPrior) 
6. candidates=candidates→excluding(p| candidates→exists(q| FPT(q)→includes(p)==TRUE))==TRUE) 
7. return candidates→collect(p| candidates→exists(q| q→f>p→f)==FALSE)→first 

 
 
 
 

Adding Loops 
 
AddLoops(Model M) 

0. seq of Component Underfed, set of Component CmpSeg={}, seq of Component SegSwts 
seq of Component Trace 

1. Underfed=M→collect(p| p→type==LOAD AND IsUnderfed(M, p)==TRUE) 
2. Underfed→order(p<q if ( p→priority > q→priority OR 

                                    (M→exists(S→exists(t→AD→exists(u| u→pCmp==q) OR 
                                                                      t→OD→exists(u| u→pCmp==q))) 
                                     AND 
                                     M→forall(S|S→forall(t|t→AD→collect(u| u→pCmp==p)→size==0 AND 
                                                                            t→OD→collect(u| u→pCmp==p)→size==0))))) 

3. Underfed→iterate(p|  
          If IsUnderfed(p)==TRUE AND  
              FPT(p) →forall(q|Segment(q) →collect(r|r→status==FAILED)→size==0)==TRUE 
          Then Trace=FPT(p), 
                   Trace→iterate(q|  
                   If CmpSeg→excludes(q) 
                   Then CmpSeg=Segment(q), 
                            SegSwts=CmpSeg→collect(r| r→type==SWITCH AND r→status==OFF), 
                            SegSwts=SegSwts→including(CmpSeg→collect(r→adjt| r→adjt!=NULL 
                                                                                                   AND r→adjt→type==SWITCH 
                                                                                                   AND r→adjt→status==OFF 
                                                                                                   AND Segment(r→adjt→fpt) → 
                                                                                                      collect(s|s→status==FAILED) →size==0)), 
                            SegSwts→collect(r| r→status=ON), 
                            If CheckConstraints()==TRUE AND IsUnderfed(M, p)==FALSE 
                            Then SegSwts→order(r<s if r→f<s→f) 
                                     SegSwts→iterate(r| r→status==OFF, 
                                                                     If IsUnderfed(M, p)==TRUE 
                                                                     Then r→status=ON, 
                                                                              SegSwts→#index=SegSwts→size 
                                                                     EndIf) 
                            Else If CheckConstraints()==FALSE 
                                    Then SegSwts→collect(r| r→status=OFF), 
                                             Trace→#index=Trace→size 
                                    EndIf 
                            EndIf 
                    EndIf) 
          EndIf)           
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IsUnderfed(Model M, Component pCmp) 
0. return (pCmp→f < pCmp→freq) OR 

           M→exists(p| p→AD→exists(q| q→pCmp==pCmp AND  
                                                               pCmp→f / pCmp→freq < q→percent)) AND 
           M→exists(p| p→OD→exists(q| q→pCmp==pCmp AND  
                                                               pCmp→f / pCmp→freq < q→percent)  
                                 AND 
                                 p→OD→exists(q| q→pCmp→f / q→pCmp→freq >q→percent)==FALSE)  

 


