Prioritized Reconfiguration of
Interdependent

Critical Infrastructure Systems
David Kleppinger

Dissertation Submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for tdegree of

Doctor of Philosophy
In
Computer Engineering

Robert P. Broadwater (Chairman)
Lynn Abbott
Jung-Min Park
Michael Hsiao

Manuel Perez-Quinonez

March 19, 2009
Blacksburg, Virginia

Keywords: Infrastructure Systems, Reconfiguration Restoration, Generic Analysis, Graph Trace
Analysis, Priority, Interdependence

Prioritized Reconfiguration of
Interdependent

Critical Infrastructure Systems

David Kleppinger

Abstract

This dissertation contains an examination of thabj@m of reconfiguration for restoration in critica
infrastructure systems, with regard for the pripation of those systems and the relationships éetw
them. The complexity of the reconfiguration prables demonstrated, and previous efforts to present
solutions to the problem are discussed.

This work provides a number of methods by whictordiguration for restoration of an arbitrary
number of prioritized interdependent critical irdiaucture systems can be achieved. A method of
modeling systems called Graph Trace Analysis isl igs&nable generic operation on various system
types, and a notation for writing algorithms withe@h Trace analysis models is presented.

The algorithms described are compared with eacr @hd with prior work when run on a model of
actual electrical distribution systems. They ofgema a greedy fashion, attempting to restore loads
decreasing priority order. The described algorglare also run on example models to demonstrate the

ability to reconfigure interdependent infrastruetgystems and systems which do not operate radially

Acknowledgements

I would like to thank Dr. Robert Broadwater for Bigpport and assisstance both in my research and
in writing this dissertation. His unwavering bélie the value of what | was doing and the strergjth
my writing has been an invaluable source of comfogeto me.

| would also like to thank Electric Distribution Bign (EDD) Inc. for providing me with the
resources necessary for me to conduct my resaarphrticular the Distributed Engineering
Workstation (DEW) software without which | wouldve been unable to perform any evaluation of the
validity of my work.

I would like to thank the Army, the Office of Naviaesearch, and the Orange and Rockland
electrical utility for providing support for thigsearch.

Furthermore | would like to thank the other memh®rsy committee — Dr. Lynn Abbott, Dr. Jung-
Min Park, Dr. Michael Hsiao and Dr. Manuel Perezf@uez — for their service both on my committee
and as my professors in the various classes | tadem with them.

Lastly I would like to thank my friends and famiiyr their support both as | have been working on
this dissertation and throughout my life, and dtsdheir patience with me when | was caught ughwit

the stress of everything.

This Dissertation is dedicated
in loving memory of my Grandmother
Bessie Masson,

who was as eager to see it completed as| was.

Table of Contents

Y oL £ = Tt PP PPPPPPRRTT ii
ACKNOWIEAGEMENTS ...ttt ettt e et e et ettt e et et s e e ts st st eee e e e e e e e e e e eeeeeeeeeaeeeeeeeeeeeeeeeeeeenens iii
(IR [g oTo (W Tox o] o EUu PSPPSR PP 1
1.1 Objective of Reconfiguration for REStOratiQn..............uuuuiiuiuii e eeeeeaeeenes 1
1.2 Challenges of Interdependent System Reconfigura.............cccoooeiiiiiiiiiieee e, 2
[L PAST WVOTK . ..ot st ekt s et s bkttt bttt bn e s e e nn 4

2.1 A Survey of the State of the Art in Distributi®ystem Reconfiguration for System

LOSS REAUCHION. ... 4
2.2 Service Restoration in Naval Shipboard POWESEEBRSccoooiiiiiiiiii e 5
2.3 Restoration of Services in Interdependent #tfueture Systems: A Network Flows

Y o] o] o= Yol o H TSP U SRR UPTURRURR 7.

2.4 New Approach for Distribution Feeder Reconfajian for Loss Reduction and Service

RESTOTALION ...t ns 9.
2.5 A Heuristic Nonlinear Constructive Method foisibution System Reconfiguration 10.
2.6 Control Reconfiguration of Discrete Event Sgsa/Nith Dynamic Control.............cccceeeeeeenen. 11
2.7 Solutions Based on Genetic Algorithms and OFhwlutionary Techniques...........ccccvvvvvnnnn. 12
2.8 Market-based Multiagent System for Reconfigarabf Shipboard Power Systems................: 4..1
2.9 SOIULIONS DASEA ON RUIESeeiiii e ettt et e e e e e e e e e e e e e e aneane s 14
2.10 Computer-based Strategy for the Restoratiohl®m in Electric Power Distribution............. 16

2.11 Optimized Restoration of Combined AC/DC ShagaldoPower Systems Including
Distributed Generation and Islanding TEChNIQUES . ..cccooviiiiiiiiiieee 17

P B OF oY 1 (g1 o101 110 o TP 18

1. Graph TracCe ANGIYSIS ...ttt ettt e te e e e e e e e e eeeeeaeeeeeaeeeeeeeeeeeeeeeeeeeeees 19

N R G I o) =i [0 I PRSP PP PPPPPPPPPPPPPN 19
T N I - 1o PSPPSR PSP 21
3.3 Component Structure for Reconfiguration anRm Definition...........ccocoieeiiiiiiiee s e 23
3.4 Complexity of Prioritized Reconfigurationcoooviiiiiiiiiiiiiiiiiiiicciieeeeeeee e 27
.5 FRALUIES OF GTA o iiiiiiiii ettt e e e e et e ettt e e e e e et e et e e e e e e e s e abbbrbr e e e e aeeeeaaanns 32
IV. Reconfiguration AIGOItNMS ..o s 33
4.1 From Loads AlIQOItNM ... 33
4.2 From LOAOS EXAMPIEcoiiiiiiiii oo s ettt ettt e s e s e et e et eestnssnnnnenennnes 35
4.3 From Sources AlGOITNML. 37
4.4 From SOUICES EXaMPIEcoeiiiiiiiieeeeeeeeee 39
4.5 HybDrid AlQOItNm. ... et s st et ee bbbt bt bt bnbennnnne 41
4.6 HYDIIO EXAMPIEot ettt s st st e et s ebebenbnsnnnes 42
4.7 Cotree SWILCh AlGOTItNM 44
4.8 COtree SWILCN EXAMPIE. uuiitiitiiei e et eteteetteetttetatt bttt mmsmse e s e et s e ssssesssssesssnsnnsnnnnne 45
v/ I (o [T Lol e To] o 1< J PP PPPPRPPPP 46
AV ool 41 g1 0 g I =T (o] 4 T o o RPN 49
5.1 Example 1: Real-World Electrical MOAEL.. .. ooeiiiiiiiiieiiiiieeeeeeeeeeeee 49
5.2 Example 2: Large Real-World Electrical MOdel...............ouviviiiiiiiiiiiiiiiiiiiiiiiieereen e 52
5.3 Example 3: Integrated MOEL.............ooeeeeeeeiiiiiiiiiiiiiiiiiieiie it ee e e e e ee e e eeeeeeeeeeeeeeeneees 54
5.4 Example 4: Integrated Model With LOOPS. ..ccceeeuurniimiiiiiiiiisis s 55
CS ST 0] 10T 0] =211 7 58
5.6 Algorithm Comparison vs. COMPIEXity FACIOIS.........uuuiiiiiiiiiiiiiiiiiiiiieiieiieiieieeneeeeeeeeeeeeeeeeeees 65

Vi

5.7 PerformanCe OB SEIVATIONSc. e e e e e et e et e ettt e e e et e e e emaee e eeeenreneeneanaaeareneenaenn 71

RV o] o ot 111 o] o PP PPPPPPPPPPPPP 37
6.1 FULUIE WOTK ...ttt ettt e e e e s et e e e e e e e s e bbb e et e e e e e e e e s s nnnnnne e 74

VL REFEIEICES ...t ettt e e e e e e e e e e e e e s s st bbb e e et e e e e e s e s nnnbnnnrreeeeeeenead 67

Appendix A — Reconfiguration AlgOItNMS...... oo 81

vii

Tables and Figures

Tables
Table 1: Collection-Specific GTA Operations UsedI@configuration..............ccceeevvvven s mmmme e eeeeens 20
Table 2: Other GTA Operations Used In Reconfigorati................ooovviiiiiiiiiiiiiiiiiiiieeeemeeiiieiiieieee 21
Table 3: Seqs Created DY GTA TIACESttt ee e e e ee e e e e e e e e e e e aaaaaaeaeaaaeeees 23
Table 4: Component Status DefiNItiONS.......comueeuieeeiiiieiiii e ee e e e e e e e e 25
Table 5: Ex. 1 Algorithm CompariSON IN TIME ..o .euueniei e e eeeeeeeeeenenenenenes 50
Table 6: Ex. 1 Algorithm Comparison in Loads SEBEC............coooiiiiiiiiiiiiiiiiiiieeeees e 50
Table 7: Ex. 1 Algorithm Comparison in Mean Phasbdlance Across Sources..................vvwameen. 00
Table 8: Ex. 1 Algorithm Comparison in Number ofitélves Operated..............ccoeeeeeeevvvrv o eenn. D0
Table 9: Ex. 1 Algorithm Comparison in Mean kW Les#\cross Sources and Phases................ 5l...
Table 10: Ex. 1 Algorithm Comparison in Mean KWWIBer SOUrCe.........coeevvvvvviieiiie e s veeeeeennn 51
Table 11: Ex. 1 Algorithm Comparison in Standardiidgon of KW Across All Sources................. 81
Table 12: Ex. 2 Algorithm CompariSON iN TIME . eeeeeeeeeieiieiiiiiiiieiieeee ettt e e e e ee e e e e e e e e e e eaaaeaeaes 53
Table 13: Ex. 2 Algorithm Comparison in Loads RESHO..............uuuuuiuruimiiiiiiiiiiiniie e eeeieeeneneees 54
Table 14: Ex. 2 Algorithm Comparison in Switchese@qied ... 54
Table 15: Complexity of Reconfiguration FUNCLIONS...........coiiiiiiiiiiiiie i 59
Figures

Figure 1: SIMPle GTA MOUEL.......coooiiiieeeeeeeeee e 22
Figure 2: AND and OR DEPENUENCIES.utitimeieeieeiieiie ettt ettt aeaaaa e e e e e e e e e e e e e e aaaaaaaaaeas 25
Lo [0 I T 00T E 1 U o (=0 S Y] (= o 28
Figure 4:Circular InterdepenencCy CRaiN......cccucee . enanennnaneanee 31

viii

Figure 5: Sample GTA MOUEI ceeiee bbb bbb abe b anssnannnnna 36

Figure 6: Sample GTA Model With FAIlUIE e eeeeeeeiieiiiiieiiiieiiieiieiieiresieeriererees e 45
Figure 7: Real-World Electrical MOUEI e seeneennennne 49
Figure 8: Large Real-World EleCtrical MOAE! .. couau.vvvvriiiiiiiiiiiiiiii s eeeveveeeveneeenenenes 53
Figure 9: Second Test System — Electrical and Fiyidh Dependencies and Missions 55

Figure 10: Algorithm Results for EXample 2. 56
Figure 11: EXQmMPIE 3 SYSTEIM ...uuuiiiiiiiiiiiieeeeer ettt ettt ettt ettt e eeeae e saeeeeeeaaaaaaaeaaaeaeaeaeasaeeaeeeeeaeees 57
Figure 12: Example 3 Results at 100% and 75% REOMENLSeeuvrvriiiiiiiiiiiiiiiiiiirerereeeeeeeeee 58

Figure 13: Ex. 3 Reconfiguration Results, 80% Delegicy Requirement.................c.oooee oo ennn D8

Figure 14:From Loads FUNCLION HEIFAICNYcusueruneiitiiiiiiiiiii e seeeeseeeeesneneasnnees 60
Figure 15:From Sources FUNCLION HEIFAICNYc.ooiiiiiiiiiiiiiiiiiiiieiiiiieiitieeieee e e e e 61
Figure 16:Hybrid Reconfiguration HEIFAICNYeeeetuieiiiiiiiii e eeeeeeeeenneees 63
Figure 17: Algorithm Performance versus NUumber @ldlSueuuiimeiiiiiiieieeee e 66
Figure 18: Algorithm Performance versus NUmbern@itEhes......... ..o e 67
Figure 19: Algorithm Performance versus Number offPonentscccvvveeiiieeeiiiiiieseeesinne 68
Figure 20:Algorithm Performance versus Number térdtiependencies............cooeeeeeeeiiieeeeeeeeen. 68
Figure 21:Algorithm Performance versus Number ofaBencCies..........ccccceeeveii 69
Figure 22:Algorithm Performance Degradation vseddépendencies ... ccccecinnnnns 70

l. Introduction

Modern society depends on a set of critical infragtire systems. These systems include electrical
distribution, potable water, sewage, gas, and sthé&hen a problem occurs in one of these systéms,
can cause disruption of services not only in itgesy but in other systems. Often this only becomes
evident during major catastrophes.

In this dissertation loads are considered to bed@wice which requires service from a system.
Based upon the mission of the system, some lo@&dsare important than others, and the missionef th
system may change. Thus, the importance of a laadaimange. Reconfiguration for restoration is the
process whereby disruption in services to loadesponded to and the system or systems in question
are altered to restore service to the loads.

In all of these systems there are devices whichbeaoperated to alter the system topology or even
cut off entire sections of the system in ordeistlate faults. These sectionalizing devices arectite
of reconfiguration. In this dissertation all secthlizing devices that are available for use, wiethey
be valves in fluid systems or breakers in eledisgatems, will be referred to as switches.

1.1 Objective of Reconfiguration for Restoration

When faced with a reconfiguration problem, the elysbperator needs to be able to operate switches
in order to alter service flows in the system andimize the effects of the disruption on the system
loads. System loads and the components whichthesd may rely on services from other systems in
order to run, and the loads themselves may diffeelative importance.

The objective of reconfiguration, therefore, iofmerate system switches in order to restore laads i
accordance with their importance and with respethé various interdependencies in the system. As

will be discussed in section 3.4, the problem ndliing the optimal solution is NP-hard, and so the

algorithms presented in this dissertation are gréediristics which attempt to restore loads in
decreasing priority order.
1.2 Challenges of Interdependent System Reconfiguian

Loads on a system are not of equal importanceerQftere is a hierarchy of importance among
system loads, and thus reconfiguration must taikeptfioritization into account when determining
where to restore service. Furthermore the impodgaf@ load may change based upon what the system
is being asked to do, or its mission. It is typfoa prior work which recognizes prioritization ionit
themselves to only a few levels [1-3], but a fultypust solution must be able to handle an arbitrary
number of priority levels, to the point of everatbhaving its own unique level of importance.

Critical infrastructure systems are not independémach other. Each has elements which depend
on elements in another system. For example, wsgtems employ pumps. These pumps are often
driven by electrical motors, which are loads ondlextrical system. These intersystem dependencies
must be considered by reconfiguration. Works agRinaldi et. al. and Lee et. al. which have labke
at the question of system interdependencies (thaoglin the case of Rinaldi et. al., for
reconfiguration) split up dependencies into differeubcategories depending on the commodity being
exchanged or due to being in a geographical spgbg [This categorization is unnecessary for
reconfiguration analysis, as any dependency betiveecomponents in different systems can be
represented by the percent of service needed of@m@onent by the other. This is the method adbpte
in this dissertation.

In addition to those challenges, prioritized reagunfation is a difficult combinatorial problem. Fo
a system witm switches, there aré' possible system states which could be the opsiystem state.

Prioritized reconfiguration is in fact NP-hard,vail be demonstrated in 3.4.

The work here considers a “system of systems” mdci#tical infrastructure systems are
interdependent with one another, and a disruptiaane system often results in a disruption in agroth
system. For valid solutions these interdependsmoigst be considered. An electrical outage caritresu
in an outage in the potable water system, and aipgmpon the length of the outage, the potablemwat
system may need to be flushed for some periodvad prior to using the water. In some systems
electrical power equipment depends upon coolingmvaf the cooling water suffers a disruptiongaft

some period of time the electrical equipment neéeds turned off or suffer failure due to overhegti

Il. Past Work

2.1 A Survey of the State of the Art in Distribution System Reconfiguration for System
Loss Reduction
-R.J. Sarfi, M.M.A. Salama, A.Y. Chikhani

The authors of this paper examined the previouswaat had been accomplished in examining the
reconfiguration problem. They were able to clasit solutions they found into three basic categor
methods which blended heuristics and optimizafoome heuristics, and Al-based methods.

Methods blending heuristics and optimization wezawily influenced by the algorithm developed
by Merlin and Black [6], and later improved by $Shohammadi and Hon@]. These algorithms
looked at the loops in the system and determinadhwdwitch on the loop should be turned off for the
least loss of power. Loops could be examinedtalhae as in [7], or one at atime as in [8]. The
solution proposed by Huddleston et. al. deviatethfthis single-switch approach by simplifying the
flow model to the point where a matrix solver cob&lused to determine all of the required switch
operations at once [9]. Another similar solutignBroadwater et. al. was cited for its improvedigbi
to use actual system measurements [10]. Lateradsttieveloped after this survey’s publication such
as those proposed by [11] and [12] operate in dagifiashion, with incremental improvements mostly
in determining network flows. These methods akeestricted to radial electrical systems, and only
seek to minimize power losses.

Pure heuristic methods discussed in the papertegakine the number of possible states through a
set of rules. The remaining space would be exairimeetermine a solution. The most prominent of
these was the solution developed by Civanlar ef18], which utilized a pair of rules to eliminate
switches from being operable, and then used arogppation for load flows to examine the remaining
switch combinations for pairs of switches which lddoe operated to maintain radiality and most reduc

losses. Other techniques discussed in the symesgnted merely incremental improvements over the

algorithm by Civanlar et. al. [13]. An heuristleveloped by Lee et. al. [14] shortly after theveyr
was written similarly sought to operate pairs oftslhes to reduce losses. Rather than apply fles ru
proposed by Civanlar et. al. [13], the solutionlae et. al. simply picks the most reductive pagaih
find at each step, acting like a depth-first sedtel). Castro and Watanabe, rather than lookeb#st
operation at each step like Civanlar et. al., exdteperated as many viable options at a givenastep
were feasible in an effort to avoid local minimaj b global optimum was still not assured [15].vAth
the blended heuristic/optimization algorithms, nohéese algorithms look at load priority, non+iedd
systems, or interdependent systems.

The last category of solution examined by the spwas that of what the authors described as Al-
based solutions: neural networks, genetic algosthand expert systems. An algorithm using a eura
network was discussed because it sought to parzalligle system into zones which could be congifured
seperately, but the system suffered from the saot@dgms as any neural network, which is that threy a
only as good as the data provided, and they take o train [16]. Only one method using a genetic
algorithm was discussed, but it involved simplyating switch states as an individual and using the
objective function as the fitness function [17jm#arly only one expert system was discussed, llyat
Taylor and Lubkeman [18], which acted as an extemef the heuristic proposed by Civanlar et. al.
[13]. As before, none of these solutions recoghjzeoritization or interdependencies.

2.2 Service Restoration in Naval Shipboard Power Stems
-K.L. Butler-Purry, N.D.R. Sarma and 1.V. Hicks

The goal of the authors of this paper was to craatethod for prioritized reconfiguration of a
shipboard power system [1]. To that end, they attegpfixed-charge, network flow method to model an
electrical utility system. In their method, thessegm is modeled as a network, where each component
serves as an edge in a graph. Loads are nodes grdph and are considered to be prioritized or

nonprioritized, and either fixed or variable. FiXeads can either be fully supplied or not sughlie

while variable loads can be partially supplied.rtkermore, paths to loads are also prioritizedr Fo
example, assuming two paths to a given load, ayphith passes through more automatic transfer
switches than the other (as opposed to passingghrmanual transfer switches) would have higher
priority.

The loads and switches then are used as variabfesming a series of constraint equations and an
objective function. The constraint equations casgects of the system such as current capacity and
Kirchoff's Laws. The objective function then se&ksnaximize the number of prioritized paths used
and the value of the loads served. The valuel@d@is defined as a function of the load's cayaauiid
a weighting factor based on whether or not the leaatioritized. Linear programming is then used t
maximize the objective function. The authors fipgroceed to show results of several simulations,
both with and without a fault in the system, wheitis method found an optimal solution.

The proposed method has a number of advantaga#ovits partial restoration of loads which can
be partially restored, and it allows a limited qiadive evaluation of paths for loads which are fieh
more than one path. These two factors allow grékebility in the possible reconfigurations dfe
system, and make it more likely that the ultimatieigon will be optimal.

Unfortunately the authors' method also suffers feonumber of limitations in terms of how it deals
with prioritization. Priorities are a simple twieited system. Either a load is vital, or it is.ndblo
allowance is made for a third load being somewbeteeen two others in importance. Furthermore,
the assumption that loads will only have two pashgery restrictive, particularly for highly
reconfigurable systems with multiple generatorbe Prioritization of paths becomes much more
complex as the reconfigurability of the system @ases, and the authors fail to account for that.

Lastly, the way the proposed method solves thatfipeogram it creates requires holding a large

matrix in memory. Each node requires at leastdigeations, and each edge requires one equation for

each phase, with more for systems with faults. |[&@e systems, this can result in a very largeimat
and the calculations involved in solving it would difficult to distribute across multiple processor
2.3 Restoration of Services in Interdependent Infratructure Systems: A Network Flows

Approach
-E.E. Lee, J.E. Mitchell, and W.A. Wallace

The goal of Lee, Mitchell, and Wallace is sigraifintly more ambitious than that of the others papers
discussed here [4]. With this paper, the autheek $0 provide a fully detailed mathematical model
describing a set of critical infrastructure systdgisctricity, water, etc.) and their interactiomsich
could be used in creating a decision support sysbeisystem operators or analysts. It also suplie
detailed classification for the ways in which @i infrastructure systems can be interdependadt, a
described the use of their model in solving a probln Manhattan.

The authors approach the problem from a netwoskdlperspective. Each infrastructure system is
considered to be its own network. Each compomeaach infrastructure system is represented by a
node in the network, which can be supply nodes,aeimodes, or transhipment nodes. Each node has
associated with it a supply and a demand, with lsupgpdes having no demand and demand nodes
having no supply. Arcs represent connections éetwnodes, and have a capacity, a cost, and a flow.
Equations are then developed which describe cantstrsuch as maximum flow through a node and
conservation of flow. Optimizing the system wothén involve finding the min-cost flow.

To handle disruptions, the authors must expandnibael beyond simple capacity and flow
conservation constraints. First, the authors addirgrasystem effects of a disruption by addistaak
variables to each node, representing the node's demandahohh addition, each node is also given a
weightk, which serves as its priority. The authors theroofluce system interdependencies to the model
by introducing a binary variablewhich represents the dependency between a dencaledmone
system and an arbitrary node in another systemaasadiableb which represents the quantity of the

service provided by that dependency. A value ioidicates that the demand of the demand node is

being supplied by the node in the other system,aavalue of O indicates that demand is not mete Th
objective function for restoration is then basedwnimizing a number of factors, primary among
which are the sum of the produé&ssfor each node in the system plus the surkbgi-y) for each
interdependency in the model, subject to conssaitich are exhaustively detailed by the authors.

In addition to the extensive definition of termsaihved with critical infrastructures and their
interdependencies, the authors manage to proviégtaemely detailed and complete model for critical
infrastructure systems. It accounts for an arbitraimber of systems, it allows an arbitrary granity
in priorities, and it models system interdependesici Because of the model's completeness, asoluti
achieved by solving it with a linear programmingltis very likely to be truly optimal.

The authors' model also has some flaws. As wimtlethod proposed in [1], solving the system
requires an extensive matrix calculation, whichgain not easily distributable and thus relatively
unsuited to real-time operations. The proposedaialdo only treats dependencies as being satisfied
unsatisfied. Though the authors concede that ardigmcy could in reality be partially satisfiedthe
model they decline to allow for it.

The authors describe the use of their model antiadedf reconfiguration to solve a problem with
infrastructure systems in Manhattan. While theyalyle to solve their model quickly, doing so reegii
a number of simplifications which greatly limit tpeecision and flexibility of their method. For
example, in the power system all transformers abfegder were aggregated into one transformer, as
were all loads in a service area. Demand at theéslavas also assumed to be at a given level for all
loads in one of only two customer classes, andfuwéiser assumed to be constant. Making
simplifications of this nature greatly speeds ulpisag an otherwise highly complex nonlinear system,
but it reduces the precision of the flows thatfatend and decreases the possible granularity anpiat

solutions.

2.4 New Approach for Distribution Feeder Reconfiguation for Loss Reduction and Service
Restoration
-W.M. Lin and H.C. Chin

The authors of this paper propose a reconfiguratiethod for radial systems [19]. In this paper,
reconfiguration is split into two different problenreconfiguration for optimization and reconfigioa
for restoration. The goal of optimization is toprave a system which has suffered no service
disruptions, while the goal of restoration is tedghe system respond to address such a disruption.

The optimization algorithm starts by turning onsllitches. For each loop created in this way, it
then chooses a switch to turn off based on impestaimcthe loop, voltage losses across the loop, and
distance from the tie switch in the loop. A tieitelv is a switch which connects parts of the system
which nominally are fed by different sources. Hhgorithm starts at loops closest to the sourcéisan
system, and terminates once the system is radial.

The restoration algorithm turns on tie switchesetsiore service to an area where there has been a
disruption based on the same criteria as in thienggdtion algorithm. If a constraint is violateg this
action, the switch is turned back off and anotkeried until either all choices are exhaustedrns
found which works.

The proposed algorithms are simple and do notdeWeloping and solving a large matrix in order to
arrive at a reconfiguration solution (though ih@ explained how system voltages would be
determined), which should result in better perfanogathan some other solutions. However, the need
for the restriction of the restoration algorithmojoerating tie switches is not thoroughly explainéds
possible that a better solution could be foundlmang more switches inside the failed area to be
operated, and the authors do not discuss whetbdratieoff between time and solution quality caused

by increasing the search space was explored.

In addition, this method suffers from some of thee limitations as others previously discussed.
There is no consideration of the relative imporeaatloads, and because the algorithms were prdpose
specifically for electrical systems there is hacdission of how to address interdependencies between
infrastructure systems. The paper also suggeatsditures in a system must be isolated from #s¢ r
of the system by operating switches bounding thegments, but seems to assume that this is done
before reconfiguration begins. The algorithmsadse restricted to radial systems, and so are
inadequate for systems which operate with loopsder to service some loads.

2.5 A Heuristic Nonlinear Constructive Method for Distribution System Reconfiguration
-T.E. McDermott, |. Drezga, and R.P. Broadwater
Minimum Loss Optimization in Distribution Systems: Discrete Ascent Optimal
Programming
-R.P. Broadwater, P.A. Dolloff, T.L. Herdman, Rr&aikhova, and A.F. Sargent

Together these papers describe an algorithm fonfagration called Discrete Ascent Optimal
Programming (DAOP) that focuses on reducing lirssés in the system [20,21]. DAOP considers the
system being reconfigured as a graph where eacpament is an edge in the graph. Two subgraphs
are considered: a supplied graph of all compometsiving service and an unsupplied graph of all
components not receiving service. The supplieglgia not necessarily connected, as mutiple sources
could feed different parts of the entire systerhe Supplied and unsupplied graphs are mutually
exclusive.

DAOP begins with all switches turned off such thlabost the entire system is in the unsupplied
graph. DAOP then searches for the source-endand)pair to restore which would result in the least
loss increase. Ending loads are those loads iarteepplied graph which are connected by a least-lo
path to the supplied graph. DAOP then operatekbes in order to restore the ending load in tla#t p

If a constraint is violated, the switches are reagkto their prior state. DAOP continues in tlasHion

until either all loads are restored or no more $oak restorable.

10

DAOP will always converge on a solution that isseldo optimal in terms of reducing line losses,
and does so without using matrix-based methodddtarmining the reconfiguration solution. In
addition, it does not require that any simplificats or assumptions be made with regard to therayste
model. However it was not designed to take intmaant interdependent systems, and does not tadke int
account load priority. Rather than try to restibre most important loads at any given time, DAOP is
instead trying to restore the loads closest tsttstem area which is receiving service. While thay
result in a good solution with respect to line &xsghere is no guarantee that the solution wapprly
reflect the user’s priorities.

2.6 Control Reconfiguration of Discrete Event Systas With Dynamic Control
-R. Sampath, H. Darabi, U. Buy, and J. Liu

The writers of this paper write about reconfiguratnot for infrastructure systems, but rather for
systems such as a hospital or a factory: a ‘phaitti various stations where steps of a processérapp
[22]. While this prevents the work in this papearh being directly applicable to critical infrastture
reconfiguration, the principles are similar. listpaper, the authors describe a system as a”plant
having a finite set of tasks to be accomplishexktaof constraints (i.e., available resourcesaces$’ in
the plant, transitions between places, and coetofbr the transitions. Places can consist ¢ibstsin
the plant such as a hospital ER or a particulantpm an assembly line, or they can represent igidac
point in the next step to take such as the pointhéth a patient must be sent to recovery or thd.MR
Each place has a number of transitions associatadtyeach of which has exactly one output place.
Together, these places and transitions form ateéidegraph. Each place also has a controller assaki
with it, which determines which transition to useaaiven time based on the given constraints.

Reconfiguration in response to a disruption themolves updating the constraints on the controllers
for the affected places, and checking if the nestesy state is feasible. If not, the algorithm then

determines which sequence of transitions to taleder to restore normal operation. This is doith w

11

a linear program that minimizes the cost of a sege®f transitions to reach an acceptable systats, st
the math for which is exhaustively detailed in paper.

This method of reconfiguration is different fronatlrequired to examine critical infrastructure
systems. For example, while the service providedrbinfrastructure system could perhaps be modeled
as flowing across transitions and system comporaemnpaces, this would require modifying transision
to have mutiple outputs to allow for a componerfegd mutiple other components. It also doesik# ta
into account the possibility of mutiple interdepentlsystems. Furthermore, while the matrix-based
nature of the proposed algorithm is suitable ferrélatively small example of modeling a hospitak
unlikely to be as effective for large infrastru@wsystems which can feature thousands of companents
While it may be possible to adapt this solutiomeconfiguring critical infrastructure systems, aswnot
designed for that purpose and so doing so wouklakiveto forcing a square peg into a round hole.

2.7 Solutions Based on Genetic Algorithms and Othdfvolutionary Techniques

A popular method for solving reconfiguration isuge some form of genetic algorithm to find a
solution. In Augugliaro et. al. [23], Zhu [24],&Kumar et. al. [25] a simple genetic algorithnused.
Individuals in the populations of Zhu and Kumaratt.are defined in terms of switch status (ON or
OFF), while Augugliaro et. al. also includes capadbanks and loads which can be disconnected.
Crossover and mutation are used in all three, thaliferent methods are used to ensure each
individual remains a representation of a radiateays Augugliaro et. al. simply do not perform thos
operations on the parts of the individual reprasgrewitch status, while Zhu keeps a constant numbe
of switches turned off and Kumar et. al. perfornadiality check on new crossovered/mutated
individuals and force them back to radiality if tltanstraint is violated [23-25]. Augugliaro elt. take
the extra step of adding a ‘branch exchange’ omerathich finds two switches in a loop and swaps

their status.

12

Chang and Kuo [26] and Su and Lee [27] both usenatic algorithm based on simulated annealing,
in which an initial system state is iteratively ‘venl’ to neighboring states based on a fitness fonct
(in both cases, the relative power loss betweemwhbestates, with lesser losses being preferréd).
each move, a ‘temperature’ value is decreasedtrendlgorithm quits when the temperature reaches th
freezing point.

Zhang et. al. [28] and Shin et. al. [29] propodetsans based on a TABU search (TS) algorithm. In
a TS algorithm, the current state is moved to ghi®ring state based on a fitness function andivenet
the potential new state is on a list of previougfited states. This is done using a mutation .
States on this TABU list cannot be visited agaur, ds new states are added to the list old ongsaffo
Zhang et. al. use a straightforward TS algorithinilevShin et. al. combine a TABU list with a stardla
genetic algorithm to expand the number of possidslibeing examined at once [28,29].

Another evolutionary technique used by Su et.3l] fnd Carpento and Chicco [31] is based on the
pathfinding behavior of ants. In this kind of dodn, a number of ‘ants’ are initialized to a giveystem
state. The ants then iteratively move from syséate to a neighboring system state. At each, stede
ants deposit an amount of ‘pheremone’, which devalyseach iteration. State transitions are
determined by the amount of pheromone on cand&tates and by problem-defined rules. Higher
amounts of pheremone are preferred. In ISotlet. aland Carpento and Chico, the additional rules
consider the relative power loss of the states woadlesideration. The algorithm terminates afteeta
number of generations or when all the ants reaelséime state, whichever is first. The solutiotestga
that which the greatest number of ants have foGA¢B[L].

All of these evolutionary techniques are capablénafing a feasible solution to the reconfiguration
problem, but they only examine electrical systenm\waith the exception of Kumar et. al., they allyon

seek to minimize power losses in the system. Kughaal. also seek to minimize switching operations

13

and number of loads dropped [25]. None of thenregfdthe prioritization of loads, nor do they actou
for interdependencies between system types. Fumthre, these kinds of solutions can take several
minutes to run on even small systems, which likebkes them infeasible for the larger systems
maintained by utility companies.

2.8 Market-based Multiagent System for Reconfigurabn of Shipboard Power Systems
-K. Huang, S. Srivatava, D.A. Cartes, L.H. Sun

In this paper, Huang et.al. propose a multiagesitesy for reconfiguration of radial electrical
systems in which each major component in the sygagiven its own agent [32]. These agents then
coordinate with each other to determine how poweukl be routed through the system. Loads which
have a higher priority in the system are granted tervice requests first. This kind of solutloas the
advantage of decentralized control, and thus nglesiiailure point. However, a distributed agent
system like that described would require a lotgpfipment in order to implement. Combined with the
security concerns posed by the potential for raggents, an agent-based system like the one describe
could be cost-prohbitive to implement, particulddy large distribution systems. Furthermore, @& w

most other solutions, there is no accounting fetey interdependencies.

2.9 Solutions based on Rules

Zhu et. al. [33] and Ding et. al. [34] propose noeth for reconfiguration which make use of rules.
Such solutions seek to decrease the potentialisolspace by use of a set of rules derived from a
combination of past experiences and other knowledgiee system. In the case of Zhu et. al., these
rules are enumerated in their paper and seek sitogiyminate potential switching operations which
are likely to lead to either a greater power lasa esser power loss than another option. After

applying each rule in sequence to a loop in théegysthe resulting switch is operated. This isestpd

14

for each loop. This method is restricted to radlattrical systems and contains no accountin¢pfmt
prioritization [33].

Ding et. al. propose a much more complex systenghwtecognizes the prioritization of loads in the
context of missions the system must fullfill. Tiheblution involves three parts: a database, a load
prioritization module, and an expert control acienodule. The database contains information on the
configuration of the system (including load staswitch states, bus transfer states, etc.) and the
possible ‘missions’ in which the system may engabjee load prioritization module is responsible for
generating a priority list of loads for the curremsion configuration. It uses information abtihe
loads such as their power factors and harmonicecongs well as the loads' importance to the ctirren
mission configuration, to generate the list of kadhis list is then provided to the expert contro
actions module. The expert control actions modudm tuses an expert rules system to evaluate the
system configuration and the load priority listigtermine which loads to shed and what operatimns t
perform to accomplish the shedding [34].

The method proposed by Ding et. al. has the adgardaproviding a great deal of flexibility.
Among the factors involved in prioritizing loadsdhe results of expert interviews which help
determine the relative importance of loads, ansl thies-based method is capable of significantly
pruning the number of switching options that mwestekamined [34]. Furthermore, the proposed
method allows for mission changes to affect thatneg priorities of loads in the system. This flehkty
allows for a much greater chance of being abléni & solution for any given situation.

However, because the method proposed by Ding.ekles so much on expert interviews it has
significant room for human error [34]. An errons@assesment of the relative importance of various
loads could result in the solution proposed byatigerithm being suboptimal. The mission prioristd

used by this paper combine with its focus on Idatiging also make it possible for this method &dsh

15

low priority loads such that no mission is complefelfilled. Furthermore, any model utilizing thi
method for reconfiguration will have to performaage number of database accesses, which are quite
expensive in terms of time and could prohibit thisthod from being used for large systems in an
operational capacity.
2.10 Computer-based Strategy for the Restoration Piblem in Electric Power Distribution

Systems)

-S.Curcié, C.S. Ozveren, and K.L. Lo

The authors of this paper propose one of the fethods that recognize load prioritization as part of
the reconfiguration problem [2]. Their method misdbe system as a graph in which components are
nodes. The algorithm looks for ‘islands’ of unoeed load: connected subgraphs of the model with
loads that are not receiving service. Their atganithen proceeds through three stages for eaadis|
addressing each island in order of decreasing sifest tries to restore the island with a sigl
switching operation. If that fails, the algorittattemps to restore the island node-by-node, operati
switches in decreasing order of spare capacitgtly,ahe algorithm will attempt to perform switclgj
operations in order to eliminate bottlenecks — binas with a minimum available spare capacity — by
looking for alternative sources for nodes suppbga bottleneck.

Once all islands have been addressed in this Wwayalgorithm looks to see if there are any
important loads which are not receiving supplysdf then for each island with unrestored important
loads, the algorithm tries to restore those imprti@ads by disconnecting relatively unimportarads,
then tries to restore islands of unrestored loadkasribe above. Once all islands of unrestored
important loads have been addressed, the algotéminates.

The proposed algorithm has the advantage of loakirige problem from the perspective of
restoring prioritized loads, where most methodspmattempt to reduce losses. However, it seems to

treat restoring important loads as something dfgerthought, rather than a primary goal of the

16

algorithm. Instead, most of the algorithm seentsi$ed on just restoring as many loads as posdible.
addition, the proposed method is only capable ofihiag radial electrical systems, and so doesk# ta
into account interdepenencies between differertegys.
2.11 Optimized Restoration of Combined AC/DC Shipbard Power Systems Including

Distributed Generation and Islanding Techniques

-S. Chushalani, J. Solanki, and N. Shulz

The authors of this paper present another of twenfethods which recognize and take into account
the prioritization of loads [3]. In the proposeétimod, the authors propose a method for the
reconfiguration of a shipboard power system. Tasdidea is to formulate constraint equationgtier
system, with an objective function to maximize ghieritized load restored. These constraints laga t
solved using a linear problem solver. The probiesplit into two parts: restoration of balanced an
restoration of unbalanced systems. In balanceaemgs load in the system is balanced across akthr
phases, which is not the case for unbalanced sgste@onsequently the constraints for balanced
systems are much easier and more compact to expieish led the authors to handle the two problems
separately.

The proposed solution does recognize prioritizatimrt only at three levels: vital, semi-vital, and
non-vital. However, there is nothing intrinsictire authors’ formulation of the problem which would
prohibit altering the method to allow for arbitrgssiority levels. Despite having this advantagerov
other systems, the proposed method still suffarsdiging on solving a large matrix (265 variabéesl
290 constraints for even a small unbalanced systeorder to reach a solution. Relying on matrices
this fashion is likely to cause a reconfiguratioethod to scale poorly, and thus be unsuitable ger u
with large distribution systems. Lastly, as is ttase with almost all other solutions, the propgose

method is restricted to electrical systems onlyg @mes not account for system interdependencies.

17

2.12 Contributions

Past reconfiguration solutions all feature cerfaimblems. Some do not account for load priority,
reducing the likelyhood of an optimal solution. n8do not account for interdependencies among
multiple system types, which limits the usefullnésslarge-scale, coordinated response. Manyzetili
matrices or linear programs to determine the ragardtion solutions, which reduces the ability to
respond rapidly to changes in the system. And soatdee simplifications to the models or flow
algorithms which are likely to reduce the abilibyfind optimal solutions.

This dissertation seeks to address these problgmeoposing a set of algorithms which may be
used to reconfigure critical infrastructure systenie proposed algorithms, based on the use of a
Graph Trace Analysis (GTA) model, address all efabove problems. Each is run on a complete,
unsimplified model, allows for arbitrary load piitiration, and accounts for the reliance of compase
from one system on components from another. Fumbee, they do not make use of matrix
calculations to determine their solutions, and&y tallow system parameters to be rapidly changed i
the model and resolved without needing to completformulate the problem. The complexity of the
proposed algorithms is also demonstrated to netdyse than polynomial in time with respect to the
nature and size of the systems on which they are ru

Also proposed in this dissertation is a notatiandescribing algorithms for use with a GTA model.
The GTA notation described in this paper is basethe Object Constraint Language, and uses sets and
sequences in order to work with collections of comgnts in the GTA model. This allows great
flexibility when designing and implementing algbnts for GTA models. In addition, it is easy to
implement algorithms using this notation with teattires provided by the C++ Standard Template

Library.

18

lll. Graph Trace Analysis

Graph Trace Analysis (GTA) is a method of analyaggtems predicated on graphs [35]. GTA
uses concepts of graphs; sets generated by tridwimggh the graph; where traces are implementdd wit
iterators; and set operators. GTA uses a seterfatipns based on the Object Constraint Language
described by Warmer and Kleppe [36]. The subs&Toh operators used in reconfiguration are
described in Tables 1 and 2.

A GTA model is based on a multi-dimensional dirdageaph. Each component in a GTA model
corresponds to an edge of the graph, and the raddbe graph are the connections between
components. Furthermore, the model of the gragioigght of just in terms of edges. That is, theleto
is an edge-edge graph, and nodes are not treatspasate entities, but become part of the edgi. its
Edges in the model have the responsibility of tragkhe other edges at their ends, but the coroeti
themselves are not an explicit part of the mod@nnectivity is therefore maintained among the sdge
of the GTA model by having each edge track the sdgevhich it is connected.

3.1 GTA Notation

The primary focus of GTA is on sets and sequen®¥gile algorithms written with GTA notation
do feature single-item variables, the operatorsigeal by GTA are primarily intended to make working
with collections of items easy. Operators speddisets and sequences and members of GTA sets,
sequences, and complex data structures are aceessgdhe— symbol. Sets are denoted by {} and
sequences by []. Parts of an expression contauithih parenthesis are executed before the retbteof
expression.

The most important operator in GTA is the colleciferator. collect() operates on a set or a
sequence, and takes as an argument an expressi@v#fuates to true or false for each elemertief t

set or sequence in question. collect() then rstaroollection consisting of all elements of thibemtion

19

=

a b Operation Result Effect

set or seq -@size int The number of elements in a

set or seq expr -acollect(p| b) setorseq Returns all elementsafior which b is true

seq ao#index int The current position of the iteratiodéx of a

seq expr aiterate(b) seq Executes expression b on each eteman
with a—#index going from 0O to-asize-1. The
resultis a

seq expr ariterate(b) seq Executes expression b on each atema,
with a—#index going from & size-1to 0. The
resultis a

set or seq expr —-aorder(b) seq Orders a such that its elements are in
increasing order according to b. If ais a set
order makes it a seq

set or seq any -aincludes(b) bool Returns whether b is an elemeiat of

set or seq any -aexcludes(b) bool Returns whether b is not an el¢miea

set or seq any -aincluding(b) set Returns the union of set a wignaént b

set or seq any —aexcluding(b) setorseq Returns a except for el¢dnelf a was a
sequence, order is retained.

seq any aprepend(b) seq Returns the sequence of b followete
elements of a

seq any aappend(b) seq Returns the sequence of the eleieats
followed by b

seq int a~at(b) element Returns the element of a at index b.
0< b <a>size

seq seq asymmetricDifference(b) seq Returns the sequenetenfients in either a o
b but not both. First the elements of a in the
order they were in in a, then the elements of b
in the order they were inin b

set or seq set or seq| —#ntersection(b) set Returns the set of elemenb®th a and b

set or seq expr —-aexists(b) bool Returns whether there is an elerokatfor
which b is true

set or seq expr -aforall(b) bool Returns whether b is true for akmlents of a

seq aofirst element The first element of a

seq a-last element The last element of a

set or seq max a any Returns the maximum elenfientas defined
by the > operator. Requires that the elements
of a have > defined.

set or seq expr -asum(b) any Returns the sum of the expression Ipplged

to each element of a. Requires that + be
defined for the elements of a.

Table 1: Collection-Specific GTA Operations Used IrReconfiguration

20

a b Operation Result Effect

any any a=b Assigns bto a

any any a==b bool Returns whether a and b are alguit/

any any a<b bool Returns whether a is less thawdks for
any pair of data types for which < is defined

any any a>b bool Returns whether a is greater thaworks
for any pair of data types for which > is
defined

any any & ba>b bool As > and <, but less than or equal to and

greater than or equal to.

any any a+,-*/b any Math operators. Work foy gair of data
types for which they are defined.

bool bool aAND,OR b bool Boolean operators.

Table 2: Other GTA Operations Used In Reconfiguraton

on which collect() was called for which the giveqpeession is true. If the collection on which egli()
is called is a set, so is the output collectidithé collection on which collect() is called is@guence,
then the output collection is a sequence where elechent is in the same order as in in the input
collection. For example, if sequence A=[1,2,3,4tb¢n A—collect(p| p % 2 == 1) would return [1,3,5].
The collect() operator is a powerful tool in GTA feating new sets and subsets of related objeuts,
is used extensively in the reconfiguration alganshdescribed in this dissertation.
3.2 GTA Traces

In a GTA model, each component has one and onlyefeeence source. Though multiple sources can
feed any given component, only one of those sowaede its reference source. The combinatioheof t
reference source and the graph topology in a GTAahdefines a set of iterators for each component:
forward, backward, feeder path, brother, and adjace

The forward and backward traces are used to traoeigh every component with the same reference
source once and only once. The component in thveafd trace from the current component and which

has the same brother as the current componentagéive flow from the current component, origingtin

21

with its reference source. The brother represietsirst component in the forward trace of therent
component not fed by the current component. Toose all components fed by the current component
are included in the forward trace, the next compbirethe forward trace is the current component’s
brother. In this way, all components fed by thereot component will be found in the forward trace
before any components not fed by it. The backwack is simply the reverse of the forward trace.

The feeder path trace for a given component givesdomponent which immediately feeds the
given component. The feeder path trace is funatipcomplete, in that all other traces can bewassti
from it [35].

The adjacent trace gives a component physicallpected to the current component but which is
not in the forward or feeder path trace from therent component. An adjacent component may have a
different reference source than the current compidnéhe existence of an adjacent component marks a

possible cotree location in the graph [35].

(=)

Figure 1: Simple GTA Model
As an example, Figure 1 shows a simple systemtwithsources and six components, where for

purposes of discussion each component is identifidda unique number. In this system, the refegen
source of component 2 is 1. 1 is also the feedtr pace of 2. The forward trace component o 2
Component 3’s forward trace is 4, which is alsditsther trace. Component 3 also has an adjacent

trace of 6.

22

Each of these traces defines an ordered sequémomponents. These sequences are described
in Figure 2. Thus, using the example in FigureTk=[4], BTs=[2, 1], FP&=[2, 1], BRT3=[4], and
ADJ=[6].

Sequences generated with traces can then be mateiguising the operators shown in Tables 1 and

2. The GTA trace sequences are described in Table

FT, = seq of components in forward trace from
component p

BT, = seq of components in backward trace
from component p

FPT, = seq of components in feeder path trace
from component p

BRT, = seq of components in brother trace

from component p

ADJ, = seq of components in adjacent trace

from component p

Table 3: Seqs Created by GTA Traces

3.3 Component Structure for Reconfiguration and Prdlem Definition

Using GTA, the reconfiguration problem can be dedims follows. A componefitis, for the
purposes of reconfiguration, a 17-tuple which dedinertain characteristics of the component importa
to reconfiguration.

C={p.type,systype,c,fd,ft,fpt,bt,brt,adjt, AD,OD,pri,status, statds operable}
where p = unique component identifier
type = LOAD, SOURCE, SWITCH, OTHER
systype = systiype: ELECTRIC, FLUID, GAS, and more as the ussgds
C = capacity, or rating of a component
f = flow, where £ ¢
feq = required flow if type == LOAD
ft,fpt,bt,brt,adjt = components relatedZ via
forward, feeder path, backdya
brother, anjeaént trace,
respectiveh\have a value of 0
mplies the component does not exist
AD = set of ‘AND’ dependencies
OD = set of ‘OR’ dependencies
pri = component priority
status = status of component-ON, GHHLED
statug, = status of component’s dependencies
operable = wiertthe component can be turned on or off - YES, NO

23

These characteristics include the component typec{Bcally, whether or not it is a load, source,
switch, or other), the system type (electricalidjwetc.), the flow capacity of the component ¢ tlow f
through the component, the required flowy for the component, the component’s trace inforomatthe
component’s priority, and the components on whidk dependent. The adjacent trace for any
component must have the same system type as timgioc@nt.

A component’s dependencies are contained in tws) A& and OD. AD represents ‘AND’
dependencies, or dependencies which must all isdtfor the current component to have service.
OD represents ‘OR’ dependencies, or dependenciehich only one must be satisfied for the current
component to have service. A dependency is a eboph component and a percentage. The
component in the dependency couplet is the supgpocbmponent which must receive service to satisfy
the dependency, and the percentage is the propatithe supporting component’s demand which must
be met in order to satisfy the dependency. Thegmtage can be any value between 0 and 1, allowing

for recognition of partial dependency requirements.

Dependency={pCmp, percent}
where pCmp = supporting component
percent = percent of supporting congmis demand that must be met to satisfy
the dependency

The statug, variable is a value indicating whether or not¢benponent’s dependencies are
satisfied. If they are, stayysis 1. Otherwise, itis O.

Figure 2 shows two situations with AND and OR dejmties. In Figure 2a, component 1 has
AND dependencies on components 2 and 3. If edberponent 2 or component 3 is unrestored, then
component 1's dependencies are unsatisfied. Biyasinin Figure 3b component 1 has OR
dependencies on components 2 and 3. In Figurec?hpponent 1's dependencies are satisfied as long as

either or both of components 2 and 3 are restored.

24

i

a b

Figure 2: AND and OR Dependencies

A component is considered restored (status is O dependencies are satisfied and all
components in its feeder path are restored. A compt’'s dependencies are satisfied if all ‘AND’
dependencies are satisfied and at least one ‘Of®rdkency is satisfied. Table 4 illustrates GTA
notation for a component with a status of ON widependencies are satisfied.

Lastly, a switch component can be marked as ope@irhion-operable. For non-switchable
components, &operable is set to NO.

A GTA model M is a set of all components in the mlodA systentis a subset of M. Itis a
collection of components such that for each compb@e’ S, C's forward, backward, feeder path,
brother, and adjacent trace are also contain€{1). All components in a system must share aegfyst

type (C-systype is the same for @l S). Mutiple systems can be contained in a givenehod

CeS,§—includes(G—-ft, C—bt, C—fpt, C—brt, C—adijt) (1)

For a non-supporting component p (no component isgpendent on p),
p—status==ON
implies p->f==p—f.q AND p—statuge==1 AND FPT,—forall(g—status==ON)

For a supporting component p with set of component8Deps with AND dependcies upon it and set of ¢
components ODeps with OR dependencies upon it,
p—status==ON
implies ADeps-forall(p|p—f/p—f..0—AD—collect(r|—pCmp==p)—first—percent) AND
ODepsforall(p|p—f/p—f>d—OD—collect(r|»pCmp==p)—first—percent) AND
p—statuge==1 AND FPT,—forall(g|g—status==ON)

p—statuge==1
iff p—AD—forall(g|g—pCmp—status==ON AND (g>pCmp—f/g—pCmp-f.)>g—percent) AND
p~OD—exists(q|eg-status==ON AND (e»pCmp—f/g—pCmp—f.)>g—percent)

Table 4: Component Status Definitions

25

Two more subsets of components, the souscescesand loadd.oadsare defined.

Sources=M—select(p-type==SOURCE) (2)
Loads=M-select(p-type==LOAD) 3)

Reconfiguration is then performed on the model\Mhen the status member of the component
structure is mapped such that ON==1, OFF==0, anidlEEB==0 and the boolean values TRUE and
FALSE are mapped to 1 and 0 respectively, the tilbgeof reconfiguration is to maximize the amount

of load restored, weighted by the priority of tbads as follows:

IsSupportingLoad(p)=1- M-exists(q| g~AD—includes(rf>pCmp==p) OR
g—OD—includes(rf>pCmp==p)) (4)

g = max{ Losum((p—pri) * (1/(1 + |p—-feq- p—f[*IsSupportingLoad(p))) *
(p—statugey) * (p—status)) })(5

In the objective function equation (5), a highaopty results in a higher value for a load’s term.
The flow on the load being closer to its requireavfalso results in a higher value for that terness
the load is a supporting load as defined in (45ugporting loads may only need to be partially
supplied. Lastly, if the load’s dependencies aresatisfied or if it is not restored, the termpsamut of
the function completely.

The reconfiguration solution is subject to the ¢aaist that no component in any system has a flow
greater than its capacity:

M—collect(p—f > p—c)—size == 0 (6)

This flow capacity constraint is not the only pbésiconstraint to apply, but it is the only mandgto
one as increasing flow beyond a component’s capaait have disastrous consequences. The
reconfiguration algorithms proposed in this diss#oh are designed in a way that the implementaifon
them can include any number of additional constretiecks which may apply only to a specific system
type or even a specific model.

As will be discussed in section 3.4, finding thigimal solution is NP-hard, and thus the algorithms

presented in this dissertation attempt to solvienplgfied version of the optimized reconfiguration

26

problem. The simplified problem is as follows.v&m a model M as described in the optimized
problem with set of switches S, find two sets oftshes Gyenand Spseasuch that the following are true:

Syoen 1S, Syoees 1S Supen 0 Suipeed = Sr Soen M Suoeed = SO'S,

open 1 ~closed open closed open

pen Iff S—status==0FF (7)

Furthermore, there must exist no switthl S such that changing the statusaficreases the value
of the non-maximized version of the function giver{5) and such that (6) is still satisfied. Ifeostarts
with all switches in eithergen0r Siosea then move switches one at a time to the othechetking that
the value of (5) increases and (6) is still sa$fach time, eventually this condition will be m8ince
this operation requires O(sn) operations, thisecedwproblem is polynomial. However, so simple an
algorithm ignores factors such as load priorit@atand so more thorough methods such as those
proposed in this dissertation are needed to aatieemore optimal solution.
3.4 Complexity of Prioritized Reconfiguration

In order to show that prioritized reconfigurati@nNP-hard, it must be shown that all NP-complete
problems are reducible to it in polynomial timenc® all NP-complete problems are reducible to each
other in polynomial time, it is sufficient to shdtat there is an NP-complete problem which is
polynomial-time reducible to prioritized reconfigdiion [37]. This means it must be shown that an
arbitrary instance of a known NP-complete probleusimave a polynomial-time mapping to an
instance of prioritized reconfiguration.

The knapsack problem is a known NP-complete proj8dh In the knapsack problem there is a
knapsack of capacityv, andn itemsx;_, which have valueg; ,and weightsv; . The objective of the

knapsack problem is to fit the greatest valueerhi into the knapsack without going over its weight

capacity:

max)_ Y X subjecttoy WX <W (8)
i=1 i=1
where x, =[0]1] indicates whether itemis or is not in the knapsack (1 is yes, 0 is no).

27

Theorem 1: Prioritized Reconfiguration is NP-hard
Let there be a knapsack with capadyandn itemsx; ,with valuesy; , and weightsv; .
Construct a systei@as follows:
1. Scontains loadsL;. , such thati—priority=y; andLi—freq=Wi.
2. Each load,in Sis fed by a switcls with s—c>w;.
3. All switchess are fed by the same lihavith [>c=W.

4. Linel is fed by the system sourBewhereR -~ c=>"w .

i=1

The described system appears in Figure 3.

Figure 3: Constructed Systent

In this constructed syste8) if a switchs is turned on, the corresponding Idads restored
andL;—f is added td—f. By definition, ifL; is restoredlj—status=1 and ifL; is not restored,
Li—status==0. Furthermore, because souRis capable of supplying enough flow for all loads
once, no load can be only partially fég-6f < Li—feq andLi—status=1).

Thus, since&s has no interdependencies, the reconfigurationl@notior Sis simply to
operate switches in order to maximize:

(L - pri)(L, — statug (9)

i=1

28

in accordance with (EQ#), subject to the constraint

i(l‘i S f)L, - statug<| - c. (10)

i=1
When the assigned values are substituted, thegimobécomes that of maximizing:

n

>y L - statug @)

i=1

subject toZn:(vvi L - statugswW (@12)

i=1

If a load being restored is considered equivalemteing placed in the knapsack, then the priodtize
reconfiguration problem of the constructed sysg&isiequivalent to the original knapsack problem.

Since the mapping from the knapsack problem tgtlozitized reconfiguration problem involves a
constant number of steps for each itemm the knapsack problem (creating the system tbjpad
connecting them together in the prescribed fashibig mapping is polynomial. Thus, prioritized
reconfiguration must be at least as hard as thpdawk problem, and so prioritized reconfigurat®n i
NP-hard.

What this does not mean is that reconfiguratidhéssame problem as the knapsack problem.
Critical infrastructure systems are much more caxjpthan the system representing an arbitrary
knapsack problem shown in Figure 3, and systenndependencies add another layer of complexity
missing from the knapsack problem definition. #uos reason, it is better to develop a solution
specifically for the reconfiguration problem asidetl in Section 3.3, rather than try and apply a
solution for the different and possibly less comitaapsack problem.

Finding an optimal solution for the reconfiguratigmoblem requires considering the system as a
whole. Because each component in a system hasrsaximum flow capacity, it is possible for the
restoration of one load to prevent the restoratioother loads by consuming flow capacity on the

components required to feed it. For example, tegysnay have three loads A, B, and C fed at some

29

point in their feeder paths by a single switch.isT@witch may only have enough capacity to feedeeit
load A or both loads B and C. If A and B have shene priority, and C has a lesser priority, it rhay
optimal to restore B and C rather than A. Thisldanly be determined by taking a global view o th
system and considering the effects of restorind Wa@r load B on the ability to restore load C.ugh
finding an optimal solution for the reconfiguratiproblem requires considering what effect restoring
one load will have on the ability to restore alh@tloads, in order to ensure that loads are mdlima
restored.

The algorithms presented in this paper take a rooad view of the system, only considering a load
or a segment at a time. Rather than trying to éinaptimal solution to the problem as described in
section 3.3, they focus on greedily trying to restoads according to their priority level. The
algorithms attempt to restore loads that have hdrnigriority (and hence higher value) before tryiog
restore lower priority loads. By doing so, theaaithms seek to get the most value out of the |dbaesg
do restore in the hopes that the resultant solwiatirbe “good enough.” In this way, they are abde
determine a solution to the reconfiguration in palyial time. The cost for this is that situaticugh
as that described above can arise in which loadishvdre restored earlier in the process can cédugse t
solution to be further from optimality than othelgions.

An additional problem caused by taking this lodalv of the system is that it becomes difficult for
the algorithms to handle circular interdependen@irts (A depends on B depends on C depends on A).
Without being able to look at the system on a dltdzel and determine a set of switch states which
causes all loads in the circular interdependenayncto be restored, the algorithms presented s thi
dissertation can fail to restore some or all ofrih€The reason for this is that supporting loadstrbe
restored before supported loads can be considestored, and the way in which the algorithms choose

to restore supporting loads may prevent them fiater Irestoring the supported loads.

30

B, £=30

c, £=30

&
@

=
-
0
]
n
[

o) ©

Figure 4:Circular Interdepenency Chain

Figure 4 shows such a circular interdependencynchiai the figure, Load A depends on Load B,
which depends on Load C, which depends on Loadldads B and C each require a flow of 30, and
line L has a maximum flow capacity of 50. If Lo&ds restored first, and it is restored througle Iin
then B will be unrestorable, as will A, and hencw/ill also be considered unrestorable. If the glob
view could be taken, it could be seen that load@dbe restored through the switch on its rigtead
of the one on its left and that this would allowe #mtire chain to be restored.

This problem can also be seen in situations wheneetis no circular chain. In the system shown in
Figure 4, even if Load A was not present (and héneeircular chain was broken), it would still be
possible for a locally-focused algorithm to restGrénrough line L, preventing load B from being

restorable.

31

3.5 Features of GTA

In a GTA model, changing the system by deletingditing components only requires that local
iterators be updated [35]. Thus any componenbesgiound from any other component it interacts with
via the various iterators. This simplifies thegass of altering and maintaining a model becaule on
local iterators need to be updated to reflect stmpelogy change such as a switch operation.

Another primary consequence of using iterators &amnitain graph topology is that GTA provides for
a natural method of distributing the model and @alttons on the model among processors. Because
each component keeps track of the other compometttsterators, it does not matter on which
processor those other components are stored. Thaistraightforward to distribute the model &30
processors.

In addition, by standardizing the connections betweomponents in this fashion, other qualities of
components can be restricted to the componentsseiieas. As a result, components can calculate
values such as their own flows by examining thein@ualities and iterators [35]. The consequerice o
this is that algorithms which must work with thealdnmodel such as reconfiguration can abstract out
system-specific factors by using GTA, and examingeibterdependencies between multiple kinds of

infrastructure systems at the same time.

32

V. Reconfiguration Algorithms

This dissertation presents a collection of différ@gorithms for the prioritized reconfiguration of
interdependent infrastructure systems described @itA: From Loads, From Sources, Hybrid, and
Cotree Switch. Each algorithm is run in two phaseg which tries to configure the system to be as
radial as possible (with few or no loops), and wéch adds loops as necessary. The first phagesof
first three algorithms always result in a radiabnfigured model, which is one in which there ave n
loops, while the first phase of the Cotree Switlgoathm is capable of resulting in a looped system
The second phase of each algorithm consists ofdaiidops function, which addresses underfed loads
by adding loops to the model. Appendix A contairfall description of these algorithms written in
GTA notation.

4.1 From Loads Algorithm

The From Loads Algorithm seeks to restore servicstarting at the loads and working back toward
the sources to develop a valid restoration patledoh load. From Loads addresses the interdepende
nature of multiple system types by recursivelydaling dependencies on a potential restoration path
and trying to find restoration paths for any supipgrcomponents in other systems. From Loads
addresses priorities by attempting to restore loadescending priority order. Thus, at any gitiere
during execution there can be no restorable lodl avhigher priority than the one currently being
restored. As a result of this approach, restanatiomore important loads is never affected by
restoration of less important loads.

From Loads initially turns off all switches. Thmalds in the model are then collected and sorted bot
by priority and such that all loads not in anotb@mponent’s dependency list occur before any loads
that are in another component’s dependency libusTthe sequence of loads will first contain all

critical system loads before any supporting loatisis prevents the algorithm from restoring a

33

supporting load, which may only have a high priobecause a critical load relies on it, beforeveelo
priority critical load if that high priority critial load is unrestorable. At the same time, itvedidhe
algorithm to later restore that supporting loathédre is spare capacity after restoring criticatla A
component ¢'s dependency list is the list of congmds in e~AD and ¢~OD. Restoration of each load

is then attempted in this order.

Loads—order(p<q if (p~priority > g—priority OR
(Mexists(S|S»exists(tf>AD—exists(u|u> pCmp==q) OR
- OD—exists(ulg» pCmp==q)))
AND
(M forall(S|S~ forall(tjt— AD—-collect(u]u—» pCmp==p)— size==0 AND
- OD—collect(u|u» pCmp==p)— size==0))))) (13)

For each load, if that load is unrestored, theralgm collects a set of components via which the
load could be connected to a source. That ideider path traces from these components will fead
sources that could potentially supply service ®wltad. These components include the feeder path
trace of the load, as well as any components \Wigrsame reference source as the load that have an
adjacent trace. Let these components be placie iset Pathswhere | is the load of interest.

For each component c in Patlsarting with the load’s feeder path trace, tlge@thm creates a
sequence Pathcontaining the path from | to a source throughltthe component ¢ of Pajh=eing
examined is the load I's feeder path trace, theéh, Peonsists of the load | followed by I's feeder path
Otherwise, Pail consists of the load I, followed by the componemtsnecting | and c, then c, then
c—adjt, and finally e~adjt's feeder path.

Once Patfy is created, the algorithm checks if it containg emmponents with status==FAILED. If
so, Path is not valid, and the algorithm proceeds to the semponent in PathsOtherwise, the

algorithm develops a sequence named DecisionPloamsthose in Paiy. The components in

DecisionPoints are those components along,.Pathich must have some processing performed on

34

them during restoration. They consist of switclaesl components which have dependencies (AD or

OD is not empty).

DecisionPoints=Path—collect(p—type==SWITCH OR
p—AD !={} OR
p—OD !={}) —»reverse (14)

Because Pathis a sequence ordered from | to ¢’s referencecgpecisionPoints is ordered in the
opposite fashion, such that the first element igiflenPoints is the one closest to c’s referencecs
The algorithm addresses each one in turn, by dpgratvitches or by recursively restoring components
to satisfy dependencies. By addressing them sndfder, service is gradually restored to the syste
rather than all at once. This allows problemsorésg) a given path would create, such as unsatisfia
dependencies, to be detected earlier in the reégtonarocess, preventing the algorithm from wasting
time.

Once | is restored, system constraints are chefthetle components that have been affected by the
restoration. These components are those whichéedstoration shared a reference source withrdithe
or c. If any constraints are violated, the aldoritbacks up along DecisionPoints looking for
components which have OR dependencies{8ize>0) and selects a different OR dependency to
restore. If no set of OR dependencies of such ocompts can be chosen such that | is restorable, the
algorithm backs up its actions along DecisionPatotsipletely and selects the next component from
Pathsto try. If no path is found that can restore Isileemed unrestorable and the algorithm moves on
to the next load until all loads have either bexstiared or deemed unrestorable.

4.2 From Loads Example

Figure 5 shows a simple example system. The tiocuthe left is a fluid circuit, and the other two

are electrical circuits connected by an open switCbmponents 6, 12, and 17 are loads. Load @imas

assigned priority of 9, load 12 has an assigneatipriof 5, and load 17 has an assigned priorit@.of

35

Load 6 has an AND dependency on load 17 represéytéte ‘A’, which means load 17 must be
restored in order for load 6 to be restored. Camepts 3, 7, 9, and 15 are switches. All otherabsyi
are transmission devices. For purposes of thiplsiexample, there is enough capacity providechby t
sources (1, 8, and 13) to service all of the loadd, the transmission devices are capable of handll

of the load present in their respective systenec{etal or fluid).

G Pri==5s 12 Pri=>5

11

© ~

10

=+ =
a2 iy
=t e8]
o

Figure 5: Sample GTA Model

From Loads begins by turning off the switches 3r8J 15. It then collects and sorts the loads as
described in (12). For this system, Loads = [6]1122, Note that although load 17 has an assigned
priority greater than that of load 12, load 12 osdirst in Loads because load 17 is containedaad |
6’s dependency list. From Loads then collectspibtential paths for load 6. In this case, P&l 7].
From Loads first examines Paghas[6,5,4,3,2,1]. The decision points along Pattere the switch at 3

and the load itself at 6 because it has a depegdérus, DecisionPoints=[3,6]. FromLoads then

36

addresses each element of DecisionPoints. Switsla@dressed by operating the switch
(3—status=ON). Load 6 must be addressed by satisg/gigependencies: in this case by recursively
restoring 6’'s AND dependency, load 17.

To restore load 17, From Loads collects Pa#}3$6], then DecisionPoints=[15]. The valve at 45
operated (15>status=0ON), at which point load 17 has been redto8ince execution is not at the top
level of recursion, system constraints are not keeat this point. From Loads returns to the
restoration of load 6. With load 17 restored,dependencies of load 6 are satisfied, and so &ht.

5's DecisionPoints have been successfully addre$sad 6 has been restored. System constraints are
checked and no problems are discovered, so FromsLim@ves on to the next component in Loads, load
12.

Restoration of load 12 is similar to that of logdegcept that load 12 has no dependencies.
Pathsg,=[11,10], as 16~adjt==7. Path.1:=[12,11,10,9,8], and so DecisionPoints=[9]. Frooadls
operates switch 9 {9status=ON), at which point load 12 is restoredst&y constraints are checked
and no problems are found. Pathgdoes not need to be checked, so From Loads nexd¢syan to
load 17. Since load 17 has already been restbred) Loads skips over it and finishes execution.

4.3 From Sources Algorithm

The From Sources algorithm approaches restoration the opposite end of the system than the
From Loads method. Rather than operating switahdssatisfying dependencies while traversing from
the load towards a source, this algorithm starteeasources and works towards the loads. This
algorithm has the potential for resulting in a meven distribution of loading among the sources.
From Sources uses priority propagation from theddaack to the sources in order to determine which
switches to operate at a given point. From Souadesesses system interdependencies by propagating

priorities across dependencies. For examplepifaity 9 load is dependent on a component in la@ot

37

system, that other component will be given a piyaof at least 9. Further, at any given time, the
algorithm will only attempt to turn on a switch tvithe highest priority from among its options, whic
ensures that higher priority loads will be restdoetbre lower priority ones.

From Sources utilizes a “working priority.” The kg priority is initially set to the highest
priority present in the model, and the algorithrouges on restoring loads with a priority at leastad
to the working priority. As loads are restorec Working priority is gradually reduced.

The first step of From Sources is to turn off alitshes. Next priorities are propagated from the
loads back to the sources. For each componenbigdss feeder path, that component’s priorityes s
to the maximum of its own priority and that of fbad. In addition, if that component has any
dependencies, the component’s priority is recuhgigmpagated down the feeder path of all
components supporting it.

The algorithm then iteratively turns on switchesdach source to expand the system area receiving
service from that source. To decide which switckutn on, the algorithm first collects all of each
source’s bounding switches. The bounding switdiessource are those switches that have a status o
OFF such that if they were turned ON, service wdidgrovided to a segment of the system which is

currently unserviced. The bounding switch setafaource is given by

BoundSwitg,. =
(FTgc—collect(p—type == SWITCH AND

—pstatus == OFF AND

—pfpt—status == ON))->including(RE—collect(p—adj| p—~status == ON AND
padjt!=0 AND
padjt>type == SWITCH AND
pradjtostatus == OFF AND
pradjt-fpt—status == OFF)) (15)

The algorithm then turns on one of these boundwitckes with the highest priority. A number of

checks are then performed on the system segmdntegtored service. These checks prevent the

38

algorithm from violating system constraints anddiglp to minimize the number of low-priority loads
restored. Violations that could occur include:

* Flow constraint violations

* New segment contains a failed component

If any check fails, the switch is turned back aftlahe algorithm continues through the bounding
switch list until it is exhausted or a valid switshfound.

A load is considered resolved once the algorithendttempted to restore service to its segment by
turning on a switch, whether or not it was sucadbsfestored. Later operations may or may not
restore a load that is initially not restorabléles algorithm continues execution.

Once a sectionalizing device has been turned émeoalgorithm determines there are no possible on
switch operations, an accounting is made of thelved loads. If all loads with priority greateiathor
equal to the working priority have been resolvéad, working priority is set to the next lowest pitipr
and the algorithm repeats the described stepseititér all loads are restored or no switches @n b
successfully turned on. Priorities are also repgaped to account for the changed topology of the
model.

4.4 From Sources Example

Using the same example model as before (Figurerbin Sources begins by turning off the
switches 3, 9, and 15. It then collects and gbedoads by priority, so that Loads = [6,17,1Efom
Sources then collects the sources in the systenthairdboundary switches. In this case Sourcesls [{
{{3, false}}}, {8, {{9, false}}}, {13, {{15, false} }}]. The first element in each of the coupletstire
Sources sequence is the source component (1, 83nd he second element is the set of boundary
switches paired with whether From Sources hasriget to operate that switch. The latter value is

initialized to false. The boundary switch for soaid is 3, for source 8 it is 9, and for sourcét 1815.

39

From Sources also propagates priorities back flemridads and across dependencies. Note that this
changes load 17’s priority to 9. The working pitiprs set to 9.

From Sources then sorts Sources in increasing ofdbe proportion of their capacity being used
(p—f/p—c). Since there is currently no flow on any seutbe order of Sources is not changed. The
next step is to iterate across Sources and attenghdse a boundary switch for each source. Forcgo
1, switch 3 is turned on because it has a priafity, and constraints are checked. Since theraare
problems, 3’'s boundary switches are updated tofglée}}, and priorities are repropagated. From
Sources then moves on to source 8, but does ribafig switches to operate becausemiority == 5,
which is lower than the working priority. From Soes completes this iteration across Sources by
turning on switch 15 for source 13 and updates k8ismdary switches to {}.

At this point all loads with a priority greater thar equal to the working priority have had service
restored to them (loads 6 and 17). Thus, Fromc@suwipdates the working priority to the next lowest
priority, which in this case is 5, the priority lofad 12. The above steps are repeated. Soursesésl,
but because source 8 has no flow on it, Sourc€8,#{P, false}}, {1, {{7, false}}, {13, {}}]. Fro m
Sources iterates across sources, operating switwmhs@urce 8 and restoring service to load 12.
Constraints are checked and there are no probEm&s boundary switches are updated to {{7, fdlse}
Also at this point, all loads with priority greatiwan or equal to the working priority have been
addressed, so the working priority is updated tasthere are no unaddressed loads left with ahigh
priority.

When From Sources considers the boundary switdresotirce 1, it now finds none that can be
operated because both sides of switch 7 have serlis boundary switches are thus updated to {{7,

true}}. Since all of source 1's boundary switches/e been visited, but no operable ones found, From

40

Sources moves on to source 13 and again finds e@ble switches. From Sources iterates through the
sources one more time, but finds no switches tharbe operated, and so the algorithm terminates.
4.5 Hybrid Algorithm

The Hybrid algorithm combines aspects of the Fraur&s and From Loads algorithms. Like the
From Sources algorithm, it approaches the probltem the sources, turning on switches as it spreads
towards the loads. Unlike the From Sources mettimoperable devices are limited according toghos
which could be used to restore the unresolved lo&tise current highest priority. This adds some
initial overhead, but places stronger restrictionsvhich switches can be operated, limiting the bem
of cases in which lower priority loads get restopedore higher priority loads. Again, system
interdependencies are addressed through the saonigyropagation as they are in the From Sources
method.

After all switches are turned off and prioritiessedeen propagated (as in From Sources), the
algorithm creates the set of potential feeder pRtthsfor each load of the current highest priority s i
the From Loads method. Each switch along the fRa#ltis. as described in the From Loads method is
marked as operable. The algorithm then proceedslass in From Sources, except that it does not
attempt to turn on any devices not marked as opgeralthen all of the loads at the working priority
level have been resolved as in From Sources, gogitdm marks the devices on potential feeder paths
to loads of the next highest priority as operable.

In this way, by restoring service to the systemtistg from the sources but only allowing operation
of devices that could feed loads of highest piyaaita given time, the Hybrid method keeps theddrc
balance of the From Sources method while furthe@imizing the number of low priority loads restored

at the expense of high priority loads.

41

4.6 Hybrid Example

Again using the system in Figure 5, Hybrid begigpsurning off the switches 3, 9, and 15, then
marks all of those switches inoperable~{(@perable=FALSE). It then collects and sorts tlzfoby
priority. As in From Sources, Loads = [6,17, 1Zhe working priority is then set at 9, which i th
priority of the highest priority load and priorisi@re propagated back from the loads, which changes
17’s priority to 9.

Hybrid then collects the potential paths for loaith @rder to make operable those switches along
paths which could feed it. In this case, Pgt[s 7]. Hybrid first examines Paths=[6,5,4,3,2,1].
Since 6 has a dependency, Hybrid goes acrossépandency to make operable the switches feeding
the supporting load 17. Paths[16], so Pathg.1[17,16,15,14,13]. The only switch along Pathsis
15, so Hybrid sets it operable{gperable=TRUE) and returns to processing Rath$he only switch
along Pathss is component 3, and it is set to be operable. ridyloves on to the next load at or above
the working priority, 17, but since 17 has alreadgn addressed it skips it. No other loads aoe at
above the working priority, so Hybrid moves onéstoring loads.

Hybrid next collects the sources in the systemtaed boundary switches. In this case Sources =
[{1, {{3, false}}}, {8, {{9, false}}}, {13, {{15, f alse}}}]. The first element in each of the coudén
the Sources sequence is the source componentgad8,3). The second element is the set of boyndar
switches paired with whether Hybrid has yet triedperate that switch. The latter value is inited to
false. The boundary switch for source 1 is 3sfmurce 8 it is 9, and for source 13 it is 15.

Hybrid then sorts Sources in increasing order efgfoportion of their capacity being used
(p—f/p—c). Since there is currently no flow on any seutbe order of Sources is not changed. The
next step is to iterate across Sources and attenghwse a boundary switch for each source. Forcgo

1, switch 3 is turned on because it has a priafity and is operable, and constraints are checBette

42

there are no problems, 3's boundary switches adateg to {{7, false}}, and priorities are
repropagated. Hybrid then moves on to source 8ddes not find any switches to operate because
switch 9 is not operable. Hybrid completes thesation across Sources by turning on switch 15 for
source 13 and updates 13’s boundary switches to {}.

At this point all loads with a priority greater thar equal to the working priority have had service
restored to them (loads 6 and 17). Thus, Hybridiatgs the working priority to the next lowest pitiar
which in this case is 5, the priority of load 1&/ith a new working priority set, Hybrid attemptsrtaark
more switches as operable. Loads 6 and 17 haverbs®red, so they are ignored, but load 12 has no
Pathg,=[11], so Hybrid sets as operable all switches g@Baths,.;:=[12,11,10,9,8,7], which in this
case is just component 9.

The above steps are repeated. Sources is soutdoedause source 8 has no flow on it, Sources =
[{8, {{9, false}}, {1, {{7, false}}, {13, {}}]. Hy brid iterates across sources, operating switar 9 f
source 8 and restoring service to load 12. Comssrare checked and there are no problems, so 8's
boundary switches are updated to {{7, false}}. @&kt this point, all loads with priority greateathor
equal to the working priority have been addressedhe working priority is updated to 0, as theee a
no unaddressed loads left with a higher priority.

When Hybrid considers the boundary switches for@d, it now finds none that can be operated
because both sides of switch 7 have service. dusdbary switches are thus updated to {{7, true}}.
Since all of source 1's boundary switches have ested, but no operable ones found, From Sources
moves on to source 13 and again finds no operabtelges. Hybrid iterates through the sources one

more time, but finds no switches than can be opdratnd so the algorithm terminates.

43

4.7 Cotree Switch Algorithm

The Cotree Switch method attempts to minimize tnalmer of operations which must be performed
in order to successfully reconfigure the system{g)e Cotree Switch algorithm is similar to those
described in [2], but does not share the samedtioits. Unlike the other algorithms proposed hiere,
starts by turning on all switches. Priorities prepagated from the loads as in From Sources, e t
any failed components in the system are isolatetitoyng off the switches bounding the failures’
respective segments. As in From Sources and Hysyglem interdependencies are addressed by
propagating priorities across dependencies.

After switches are closed and failures isolateslystiem constraint check is then performed. Ifgher
are any constraint violations, the components whereviolations occur are sorted by increasing
priority. For each violation, the algorithm colte@ll components feeding and fed by the violairda
a set FullPatl, as described in (16). FullPgthis then searched for the turned-on switch with the
lowest priority, as described in (17). That switshurned off, priorities are repropagated, anstesy
constraints are checked again. Because turningtssa off drops loads, this gradually reduces liwe f
on the system and thus eliminates constraint vaylat This is repeated until there are no more
constraint violations. Using GTA notation this dandescribed as follows for a given component with

a violation viol.

FullPath,=(FPT,is—append(FJi,—collect(p—ft |= viol -brt AND FPT,—includes(viol-brt) == false))
—prepend(viol) (16)
OperateDevicg,=FullPath;,—collect(p| p~type==SWITCH AND p-status==ON AND
FullPath,—includes(g-pri<p—pri)==false}-first a7

Once all constraint violations have been eliminatied algorithm collects all of the cotrees in the

system(s). Cotrees are switches which are turnexhd create independent loops in the system. They

44

can be found by collecting those switches whichtameed on and have an adjacent component which is

also receiving service, as described in (18).

Cotreeg=S—-collect(p—type==SWITCH AND p-status==ON AND p~adjt—status==ON) (18)

For each Cotree, the algorithm creates a set cwhitehes along the feeder path of the cotree devic
and its adjacent trace. These devices are thésdsoy flow, and the one with the least flow isiedl
off. A constraint check is performed, and if thexa violation or if a load has become unrestotieel,
sectionalizing device is turned back on. The athor terminates once each cotree has been addressed
in this manner.

4.8 Cotree Switch Example

G Pri==5s 12 Pri=>5

11

© ~

10

Figure 6: Sample GTA Model With Failure

45

In Figure 6, component 2 of the sample model h#fergd a failure when Cotree Switch starts to
run. Cotree Switch starts by turning on all swischehich in this case means closing switch 7 sallce
others are already on. This creates a cotree bata@mponent 7 and component 10. Cotree Switch
then collects the model loads into Loads=[6,12, 1] failed components into a sequence Failuned, a
also a sequence Violations of all failed componant all components C where-& > C—c. In this
model, Failures=[2] and Violations=[]. Loads i®thordered as in From Loads, so Loads=[6,12,17],
then priorities are propagated back from the loads.

Cotree Switch then operates switches to isolateetitomponents in Failures. In this case, the only
failure is at component 2. Failures are isolatgdlibning off all switches bordering that comporignt
segment, and in this case the only such switcbngponent 3. Turning off switch 3 removes the eotre
added earlier. Cotree Switch now moves on to rgmegconstraint violations in the system by opening
low priority switches fed by the violating compom&n Since Violations is empty for this model, @eatr
Switches skips this step.

Lastly, Cotree Switches tries to turn off switclesrder to eliminate loops that have been creasted
the system. Again, turning off switch 3 removed ¢imly loop in the system, so Cotree Switch skips t
step and terminates. After Cotree Switch execlw@s, 6 has ceased to be fed through a faultybine
source 1, and is instead fed through switch 7 oaltannate route by source 8.

4.9 Adding Loops

Once any of the above algorithms have terminatshnfiguration must look to see if any of the
loads to which service has been restored are iegesufficient service. Because it is possibledor
single source not to be able to provide enough floa load to meet its demand, reconfiguration ases
Add Loops algorithm to find any such loads andHartoperate switches in order to increase the flow

that can reach the load, creating independent loogiee model. An additional consideration is the

46

possibility that a component may have a dependdndymay not require the component on which it is
dependent to be fully served in order for that deleecy to be satisfied. Add Loops also accounts fo
partial dependencies, and does not attempt to geawiore power to supporting loads which already
have met the demand placed on them by the comptmnsupport.

The first step in adding loops is to collect alidis that are underfed as described in (19), and sor
them as in From Loads. Underfed loads are thasgslavhich have flow less than their required flow,
or any load L which is part of another componerd AND depenency list such that the flow on L does
not meet the demand required by C, or any load iclwis part of a component C's OR dependency list
such that none of C’s OR dependencies are sufflgiamet. These loads are held in a sequence

Underfed.

Thus Load | in Model M is underfed if and only if:
bf <1-fOR
M-exists(p| p>AD—exists(q| gpCmp==I AND I->f/l »f.¢q < g—percent)) OR
M—exists(p| p>OD—exists(q| g2pCmp==I AND I->f/l »f,¢q < g—percent) AND
—pOD—exists(q| g=pCmp—f/g—pCmp—f.eq > g—percent)==FALSE) 19§

Once the underfed loads are collected and sorted LAops iterates across each load | in Underfed.
If I is still underfed, then for each componenhdPT, Add Loops collects a set of components

SegSwits consisting of all switches already in Sdgsall switches in ¢’'s segment that are off, aihd a

components with an adjacent trace in c's segmeighndre switches that are off (20).

SegSwts=SegSwisincluding(Segmept->collect(p| p-type==SWITCH AND p-status==OFF)
—including(Segment>collect(p—adijt| p—~adjt'=NULL AND
padjt->type==SWITCH AND
-padjtostatus==0FF))) (20)

Add Loops then turns on all switches in SegSwigsteédn constraints are checked, and if there are
any, all switches in SegSwts are reopened and Adg4 gives up on |. If there are no system

constraint violations and | is no longer underf&dd Loads sorts SegSwts in order of increasing flow

47

on the switches, and opens them until it cannohapere without causing | to be underfed. Add loops
then moves on to the next load in Underfed.

If after all switches in SegSwts are closed theeen® constraint violations but | is still underfed
Add Loops moves on to the next component in |FRTin the same segment as ¢, and repeats the abov
for that segment. Add Loops continues this urisldither completely fed or there are no more dveisc
to close to further supply it.

Add Loops terminates once all loads in Underfedehaseen addressed in this fashion.

48

V. Algorithm Performance

5.1 Example 1: Real-World Electrical Model

To examine the performance of these algorithmsn@hementation of each was run on a model of a
real distribution system and compared to an impfeat®n of the Discrete Ascent Optimal
Programming (DAOP) algorithm described by Broadwateal. [17,18]. Tests were performed using a
2.00GHz Intel Pentium M processor. The model usedsting is shown in Figure 7 It contained 1835

load points and seven sources.

The yellow components in Figure 7 indicate compésm@rhich have failed, dropping several
hundred of the 1,835 loads, with the exact numbsetl on which switches are allowed to be operated.
Switching operations were restricted to three-plueseces, of which there were 171. Each algorithm
(except for DAOP, which did not provide this capii was run in both one and two stages. In the
two-stage runs, the first stage only allowed openadf major, automatic 3-phase devices, while the

second stage allowed operation of all 3-phase dsvia the runs with the DAOP algorithm all 3 phase

49

switches were operable. The first stage also oséd a relatively quick load estimation technicqure f
judging constraint violations, while the secondystased a full non-linear power flow. The purpote
the two-stage process was to emulate what migbbhe in the even of a real emergency: performing a
fast reconfiguration with devices that could beraped remotely for an immediate response, followed
by a slower and more thorough run using all devioetetermine what should best be done manually.
Tables 5-11 show the results of the runs. Athefalgorithms proposed in this dissertation were
able to run in under 18s in the single-stage rumastender 30s in the 2-stage runs, configuring the
system to provide service to 98.96% of the loadhisan all cases. In comparison, the DAOP algarith
took over five and a half minutes to run, and waly able to provide service to 86.1% of load paints
Even just the first stage of the 2-stage runs mamagestore a substantially higher percentageauf |

points than DAOP.

Time From From Hybrid | Cotree | DAOP Amount | From From Hybrid | Cotree | DAOP
Loads | Sources Switch Serviced | Loads | Sources Switch
1 Stage 7.68s 9.30s 17.559 2.675 1 Stage | 98.96% 98.96% 98.96% 98.96%
2.30s 1.72s 4.00s 1.64s 95.00% 95.00% 95.00% 94.99%
2 Stages 335s 2 Stages 86.10%
7.55s 951s 25.274 5.654 98.96% 98.96% 98.96% 98.96%
Table 5: Ex. 1 Algorithm Comparison in Time Table6: Ex. 1 Algorithm Comparison in Loads Serviced
Mean Phase From From Hybrid | Cotree | DAOP
Imbalance Loads Sources Switch
1 Stage 21.71% | 19.86%| 16.579 8.71%

26.43% | 25.29%| 25.299 18.57%17.29%
21.71% | 18.86%| 16.869 8.71%

2 Stages

Table 7: Ex. 1 Algorithm Comparison in Mean Phasermbalance Across Sources

Switches From From Hybrid | Cotree | DAOP
Operated Loads | Sources Switch
1 Stage 11 13 21 15

3 9 9 9 66
2 Stages 100 120 21@) | 6()

Table 8: Ex. 1 Algorithm Comparison in Number of Svitches Operated

50

kW From From Hybrid | Cotree | DAOP
Losses Loads Sources Switch
1 Stage 20.34 20.91 20.93 18.69

20.16 20.99 20.99 19.03] 25.47
2Stages m5032 21.00 2091| 18.69

Table 9: Ex. 1 Algorithm Comparison in Mean kW Los®s Across Sources and Phases

Mean kW | From From Hybrid | Cotree | DAOP
Flow Loads Sources Switch
1 Stage 3231 3250 3249 3244

3140 3148 3148 3155| 2758
2 Stages 3337 3250 3249 | 3244

Table 10: Ex. 1 Algorithm Comparison in Mean kW Flowv Per Source

kW Flow From From Hybrid | Cotree | DAOP
[Loads Sources Switch
1 Stage 1774 1539 2248 1981

1873 2100 2100 2344 3517
2 Stages [T1772 1557 2244 | 1981

Table 11: Ex. 1 Algorithm Comparison in Standard Deiation of kW Across All Sources

Table 7 shows mean phase imbalance across theifotussystem. By this measurement, DAOP
falls in the middle of the field, with the Hybrishd Cotree Switch algorithms producing smaller phase
imbalances and the From Loads and From Sourcesodgefitoviding larger ones. While the first stage
of the two-stage runs is unambiguously worse thA®B by this metric in all cases, the first stage
solution is not meant to last longer than it tatkkeget crews out to perform the second stage
reconfiguration.

Table 8 shows the number of switches operateddcdn eun. For the two-stage runs, the number in
parentheses is the switches operated in stagechwi@re returned to their original state in stag&\R
four algorithms proposed in this dissertation penfanuch better than DAOP at this metric, requiring
far fewer switches to be operated in order to reaeh solution states, with From Loads and From
Sources being the top performers in the singleestag and Cotree Switch being the best in the two

stage run.

51

Table 9 shows the losses in kW resulting from esystiemn configuration generated by the various
algorithms. To determine these figures, the lopeesource per phase were averaged. By thisanetri
DAOP, which was designed with the minimization@sdes in mind [20,21], performs between 21.7%
and 36.3% worse than all four proposed algorithmibé single-stage runs, and between 21.3% and
25.2% worse than the complete two-stage runs (dititeamore worse than the first stage of two of
those runs). The algorithms proposed in this diagen are all remarkably consistent in the logkes
solutions allow on this system, ranging in a narb@amd from 18.69kW to 20.99kW.

Lastly, Tables 10 and 11 show information regardivegdistribution of kW flow across the sources
in the system. The mean flow for each of the psegaalgorithms shown in Table 10 exists within a
very narrow range, as they all restore the sameuatraf load, while the DAOP algorithm has a much
lower mean reflecting its much lower amount of loestored. However, in Table 11 it is apparent tha
the proposed algorithms all produce a much more digtribution of load across the sources than
DAOP. The best performer by this metric is therkt®ources method, which was specifically designed
to try and create a better load balance.

5.2 Example 2: Large Real-World Electrical Model

Figure 8 shows a real-world electrical model tkanuch larger than that shown in Figure 7,
containing 961 three-phase switches and 9,598 |delbefore, each algorithm described in this
dissertation was run on the model in both one mdstages. Attempts were made to run DAOP on the
model as well, but DAOP was unable to reach a mwidor the model. As with the first example, the
yellow components in the upper left are those wiiabe failed.

Tables 12-14 show the results of the algorithm runghese runs, the Cotree Switch algorithm is
clearly the better solution when it comes to exiecutime and loads restored, but falls short offham

Sources algorithm in terms of number of switchesrafed. Interestingly, the first stage of the stage

52

runs for From Loads, From Sources, and Hybrid restmore loads than the second stage. This is
attributable to the different constraint check noehutilized in the two stages, with the first stagly
performing a flow estimate as opposed to the meaeteng full power flow algorithm used in the

second stage.

- ‘{
& >,
J N g .
- = 4
1 =3 a"d; = r C"{Q
jrr._ \"{- —1{ i i..#_ !
1'3‘: {:1‘- B) < X
T ‘ s, Tl SR H
L ! = = (g v)
5:1,) L :"AJ

i ;

I 1 i =il [o
}25:“ - — 5% AT fE
: f T
= I [k& "
il A
2 : 1?'1' 2}?'{" L~ T
THiA, -
H el _
J-l I{\) . i
'[- e 8

Figure 8: Large Real-World Electrical Model

Time From From Hybrid | Cotree DAOP
Loads Sources Switch

1 Stage 2ma7s 6mls 6m36s 2m23s
1m27s 1m37s 1m52s 1m34s

2 Stages -
3m3s 6m30s 8ml5s 5mls

Table 12: Ex. 2 Algorithm Comparison in Time

53

Amount From From Hybrid | Cotree DAOP
Serviced Loads Sources Switch

1 Stage 97.98% | 97.97% 97.969 99.52%
99.34% | 99.34% 99.349 99.34%

2 Stages
97.98% | 97.98% 97.969 99.52%

Table 13: Ex. 2 Algorithm Comparison in Loads Resteed

Switches | From From Hybrid Cotree DAOP
Operated | Loads | Sources Switch
1 Stage 99 73 129 86
3 19 25 50
2Stages [ggy | 68(10) | 146(15) 38(1)

Table 14: Ex. 2 Algorithm Comparison in Switches Oprated

5.3 Example 3: Integrated Model

The proposed methods were also run in one stagfeesystem shown in Figure 9. This system
contains both electrical and fluid circuits, asveesl a number of logical loads defining system rorss
Missions are represented by the red squares ardependent on loads in the electrical and fluid
systems. The fluid system is represented by teerglines and the electrical system by the black an
brown ones. The yellow line represents a compowéith has failed. The missions AAW (Anti-Air
Warfare, priority 5) and ASW (Anti-Surface Warfapeiority 3) have OR dependencies on Radar 2,
Gun, and Radar 1, each of which have at least dti@ dependency on one or more of the physical
circuits. The three propulsion missions (from teftight, priorities 9, 2, and 6) have AND
dependencies on electrical loads, and the two pumnii fluid circuits each have an AND dependency
on an electrical load. There are five indepeh@ééattrical loads (those on which no mission is
dependent) with priorities of 9, 0, 0, 0, and Onu#mber of the loads are grouped into 2 ‘panel$’fe
automatic transfer switches.

Figures 10a-10d show the results of running thegsed methods on the system in Figure 9 if the
line feeding the right panel is failed. Componesmtsch have become pink have lost service.The From
Sources and Hybrid methods yielded the same reBuolth of them restore all loads except for thegdar

priority O load on the lower right of the left pand@he From Loads algorithm does not restore Radar

54

because doing so was unnecessary to restore AAW.rdsult of ignoring the loads supporting Radar 2
is that the large load on the left panel was regtie: Finally, the Cotree Switch method manages to
restore all loads, but only does so by creatingpa in the electrical system. The Cotree Switchthoe

is the only method which can create loops in thay.w

Figure 9: Second Test System — Electrical and FlujdWith Dependencies and Missions

5.4 Example 4: Integrated Model With Loops

The model displayed in Figure 11 is that of a sariptegrated model, with a fluid load dependant
on an electrical load. In this system, the eleatrioad has a requirement of 60,000kW distributed
evenly across each phase. However, the impedaetes the lines are set such that neither elattric
source is able to provide that much power to tlad lon its own, nor are they able to when working in
concert and both switches are turned on. Wherswiteh is turned on, the load is able to draw
46,482kW, or 77.47% of demand. When both are thore the load is able to draw 49,407kW, or

82.35% of demand.

55

3 R 4 N
-~ 1
G-mu:z{ S oS- Lo L - Q_pm\,i.g{ . - L ‘-e
te e . W};\—e —Qnm te P W};_G —eﬁé‘)
— o S =
Cey @@—é " 05@‘}

Figure 10a: From Loads Result Figure 10c: Hybrid Result

| 1
.z I , ,
Y e L T F L
o e 2 o1 2] o Qe e 1
e I T] LR e,] _ - - N
o L. — =
ey o S0 i

Figure 10b: From Sources Result Figure 10d: Cotree Switch Result

Figure 10: Algorithm Results for Example 2

The purpose of this example is to demonstrate iigyeof the AddLoops part of the
reconfiguration algorithms described in this dits#on to restore loads which can’t be restoredfro
only a single source, and to demonstrate its glidirespect partial dependencies: where a componen
depends on a supporting load, but only requiresitiaa to have a certain percentage of its demand i
order to function.

Because of the inability of the system to fully glypthe electrical load, if the fluid load requirée
electrical load to be fully satisfied-{pAD—first—percent==100) when any reconfiguration algorithm
is run on it, they all result in both loads being\pded service with the electrical load receiveggvice

through just one switch. However, despite configyithe system such that service is provided to the

56

loads, they are not considered restoreggfmatus==0ON) because the electrical load is undenfelthe
fluid load’s dependency is unsatisfied (Fig. 12a).

If the fluid load requires the electrical load tayreceive 75% of its demand to satisfy the
dependency pAD—first—percent==75), all algorithms result in the systesimg configured in the

same way as when the fluid load required the etattioad be 100% serviced. However in this case

& & &

Figure 11: Example 3 System

they recognize both loads as being restored (Rilgy) d4ince the electrical load is sufficiently seed for
the purposes of this system: that of satisfyingflind load’s dependency.

When the service requirement the fluid load plaarethe electrical load is raised to 80%
(p—AD—first—percent==80), radial configuration of the systemadonger enough. If
reconfiguration wishes to restore the fluid loadhis case, the AddLoops algorithm must turn ornbot
switches in the electrical system in order to fulgtore the system, which it does (Fig. 12) fofaalr

algorithms.

57

Reconfiguration Statistics Reconfiguration Stafisfics

Total Loads: 2 Total Loads: 2

Total Operable Sectionalizing Devices: 3 Total Operable Sectionalizing Devices: 3

Loads Initially Dropped By Failures: 0 Loads Initially Dropped By Failures: 0

Total Loads Serviced: 0 Total Loads Serviced: 2

Figure 12a: Ex. 3 Reconfiguration Results, 100% Figure 12b: Ex. 3 Reconfiguration Results, 75%
Dependency Requirement Dependency Requirement

Figure 12: Example 3 Results at 100% and 75% Requéments

Reconfiguration Statistics

Total Loads: 2

Total Operable Sectionalizing Devices: 3
Loads Initially Dropped By Failures: 0
Total Loads Serviced: 2

O

Figure 13: Ex. 3 Reconfiguration Results, 80% Depeatency Requirement

5.5 Complexity

The number of operations necessary for each ddltfegithms presented in this dissertation to
complete varies depending on a number of inputee Aumber of loads, switches, interdependencies,
adjacencies, and the total number of components &athave a significant impact on execution.
However, due to the different approaches takergop algorithm, the impact of each of these factors

can vary. In this section, the following notatisrused:

n = # of components

o = # of loads

¢ = # of adjacencies

s = # of switches

d = # of interdependencies

58

Table 15 summarizes the complexity of the variauefions called by the algorithms.
From Loads Complexity Analysis

The complexity of the From Loads algorithm is priityadriven by the number of components in the
system, but other factors can significantly affectWhile several of the functions it uses arelyai

simple and operate in O(n) (such as Segment, EhilbedSegment, ClearPriorities, and CreatePaths),

Function Complexity Function Name Complexity
From Loads ocdh+ odsi + Backup n+s
ond*log(o)
From Sources gd” + so + 8n° + sn°d” RestoreDependencies d*O(RestoreCmp)
Hybrid o*log(o)+$n’+sorfd™+ ProcessDecPt n+s+d*O(RestoreCmp
ocdr{+ocrf
Cotree Switch ond*log(o) + saif + sn ProcessPath ZAns+
+ cs*log(s) + csn dn*O(RestoreCmp)
Add Loops ond*log(o) + o+ RestoreCmp cdnt dsrf
ons*log(s) + ofsd
Segment n Process Sources n’ & sond”
FailurelnFedSegment n ValidBoundSwitches snd eg{y)
ClearPriorities n UnlockSwitches(int) ocdhocr?
PropagatePriorities o UnlockSwitches cdr? + crf
(Component, set of
Component)
ChoosePathStart cn’ FindOpSwt $
AreConnectedNoFailures tn IsUnderfed nd
CreatePaths n

Table 15: Complexity of Reconfiguration Functions

others are more complicated or are affected by ri@ne just the number of components. One such
more complex function used by all the algorithmBiiepagatePriorities, which operates at?@{n
AreConnectedNoFailures is a recursive function Whiwst perform hoperations in the worst case
in each recursion, but in the worst case mustraiser ¢ times, resulting in an O@n Since it is called
n times by the ChoosePathStart function, Choos&®atrhas a worst case complexity of GjcrThe
Backup function, on the other hand, has a completiO(n+s) because it performs a pair of linear

operations on all components, followed by a lingagration on switches specifically.

59

From Loads Segment
¢ CreatePaths
»| RestoreCmp
¢ ChoosePathStar
ProcessPathﬁ
Backup AreConnectedNoFailures
A 4
ProcessDec i‘
D
i FailureInFedSegment
RestoreDependencieq

Figure 14:From Loads Function Heirarchy
The remaining functions, RestoreCmp, ProcessPaticeBsDecPt, and RestoreDependencies are

part of a recursion chain as shown in Figure 1dst&eCmp calls, among others, ProcessPath.
ProcessPath calls ProcessDecPt, and ProcessDédsMRestoreDependencies which calls RestoreCmp
again. RestoreDependencies has a complexity of@RestoreCmp)) due to needing to call
RestoreCmp on components across interdependeriRiesessDecPt makes calls to
FailureInFedSegment, RestoreDependencies, and Baekich gives it a complexity of
O(n+s+d*O(RestoreCmp)).

ProcessPath must perform a operation of O(n) arketra&all to ProcessDecPt and Backup all a
total of n times, giving it a complexity of Gems+dn*O(RestoreCmp)). Lastly, RestoreCmp muit ca
ChoosePathStart and ProcessDecPt n times in trst @age for a complexity of
O(cr+n’s+drf*O(RestoreCmp)), which reduces to O(&dndsr).

RestoreCmp is called by the main From Loads algaribnce for each load, giving that operation a
complexity of O(ocdh+ odsi). The only other operation the From Loads algomiperforms that is
more than O(n) is the initial sorting of loads gbfd*log(0)), so the overall complexity of From ldsa

is O(ocdfi + odst + ond*log(0)).

60

From Sources Complexity Analysis

The complexity of the From Sources algorithm is tinesavily influenced by the number of
components in the system, but other subsidiarpfaaan also have an effect. Like From Loads, From
Sources makes use of the simple, O(n) functionsn®agand ClearPriorities. It also uses two other,
more complex functions in ProcessSources and ValidBSwitches.

ValidBoundSwitches is a function which, for a givesurce, determines which of the switches
bounding its service area can be used by recofiigur to try and expand that service area (disogulti
potential flow constraint violations). This reqesra series of linear operations on the number of

switches (s) fed by the source, but also requinesking components (n) in the segment potentiallly

From Sources ClearPriorities

!

ProcessSources

v

ValidBoundSwts

PropagatePriority

Segment

Figure 15:From Sources Function Heirarchy

by a switch in order to determine that their inegreindencies (d) are satisfied. The remaining begtc
must then be sorted according to their prioritydgts)). This results in a total complexity for
ValidBoundSwitches of O(snd + s*log(s)).

ProcessSources is the core of the From Sourcesthlgo For each source in the system (n), it must
call ValidBoundSwitches to determine potential ddates for operation. For each of these candidates
(s), ProcessSources then perform a series of chieakare linear on the number of components in the
system (n), an operation of order sn, and in thesix@ase must also call PropagatePriorities afd(n
The result of this is that ProcessSources has aralbeomplexity of O(n*(O(ValidBoundSwitches) +

s(n + sn + fo?))), which collapses to Of& + sorid?).

61

From Sources mostly contains operations whichiaeat on the number of components in the
system (n). The function call heirarchy for Froou&es is shown in Figure 15. It calls
PropagatePriorities once for each load (B3¢0, and has an’roperation when it initializes the
boundary switches for the sources. However, timepbexity of these operations are eclipsed by the
main loop which iterates a maximum s times (oncee&xh switch in the system). This loop performs a
sort on the sources (O(n*log(n))), and then makesllao ProcessSources followed by some linear
operations on the number of components (n) and puwidoads (0). This loop has an overall
complexity of O(so +%? + £n’d?), which makes the final worst-case complexityhe Erom Sources
algorithm O(odn? + so + &n? + $n’d).

Hybrid Complexity Analysis

Because the Hybrid algorithm combines aspects tf Biom Loads and From Sources, it is
influenced by a number of factors, but like thewas two algorithms the greatest influence on its
complexity is the number of components. Hybrid ssmlse of several functions previous described,
including PropagatePriorites at Ofdf), AreConnectedNoFailures at OfnProcessSources at s
+ osm), and CreatePaths, ClearPriorities, Segment, aildrElnFedSegment at O(n). Hybrid also
makes use of a ValidBoundSwitches function likedhe used by From Sources which only differs
from that version by a constant operation, andifidias a complexity of O(snd+s*log(s)). Hybrid’'s
function call heirarchy is shown in Figure 16.

The new functions used by Hybrid are UnlockSwit¢imtsand UnlockSwitches(Component, set of
Component). The former unlocks all switches ttoatid feed loads of a given or higher priority, and
iteratively calls the latter on each load with &isiently high priority to unlock switches whictoald
feed that load. Thus, UnlockSwitches(int) has mmexity of O(o*O(UnlockSwitches(Component, set

of Component))). UnlockSwitches(Component, seComponent) starts by calling CreatePaths on the

62

load it is given (O(n)), then for each of thosegmital paths, calls AreConnectedNoFailures to getrer
the full path and UnlockSwitches(Component, seEafponent) on any components on which the
components on the path are dependant, as well aseonomponent in each segment along that path.
This gives UnlockSwitches(Component, set of Compre complexity of O(ch+ (drf +
n°)*UnlockSwitches(Component, set of Component)),alihiollapses to O(cdr crf). This gives

UnlockSwitches(int) a complexity of O(octi ocrf).

From Sources ClearPriorities

!

ProcessSources

y

ValidBoundSwts

PropagatePriority

Segment

UnlockSwitches(Component,
» UnlockSwitches(int) Y] set of Component)

Figure 16:Hybrid Reconfiguration Heirarchy

The main Hybrid function performs a number of opierss, but the only ones that are non-
dominated in terms of complexity are the sortindpafdls at O(o*log(0)), and the main processing loop
The main processing loop is dominated by a caflrcessSources and UnlockSwitches(int), and must
be executed order n times, which gives it a coniplet O(n($n” + sorid® + ocdf + ocrl)).
Consequently, the worst-case complexity of the Hlyalgorithm is
O(o*log(o)+<n’*+sorfd®+ocdr+ocrf).

Cotree Switch Complexity Analysis

Unlike the previous three algorithms which are dwated by the number of components in the
system, Cotree Switch is influenced most strongliyhie number of switches specifically. Cotree
Switch again starts off with some operations whiakie been seen before, including sorting the lbgds

priority at O(ond*log(o)), ClearPriorities at O(rgnd calling PropagatePriorities on each load &i’on

63

The new function used by Cotree Switch is FindOpSvwhkich is used to determine which switch to
operate to alleviate a violation. FindOpSwt camsza number of order n and s operations, but is
dominated by an ordefrsoperation where it eliminates any candidate $wichat are in the feeder
path of another candidate switch. Thus, FindOp®sta complexity of Ofg).

There are two main loops in Cotree Switch. Th&t fg executed order s times, and contains a
sorting of components, a call to FindOpSwt, a talClearPriorities, and calling PropagatePriorities
once for each load for a total complexity of O(sw{in) + $n + sn + sofd?). The other loop is
executed order c times, and reduces to a sort dohes (O(s*log(s))) and an order n operation ogler
times for a total complexity of O(cs*log(s) + csihus, Cotree Switch has an overall complexity of
O(ond*log(o) + sofd? + £n + cs*log(s) + csn).

Add Loops Complexity Analysis

Add Loops makes extensive use of Segment and duretion called IsUnderfed. IsUnderfed
which checks the flow level of a component and ¢h@smponents supporting it for a complexity of
O(nd).

Add Loops itself first calls IsUnderfed on ordecomponents, then sorts order o components as
seen in the load sorting in From Loads at O(ondtgg This is followed by a loop which is executed
order o times on the underfed loads. In this looilhe worst case, Add Loops calls IsUnderfed dad a
checks that the load does not have a failure iseitgnent in an ordef pperation. The loop then has
another embedded loop that executes order n tieaeh, time taking in the worst case ordetn
s*log(s) + snd operations. This gives Add Loopstal worst case complexity of O(ond*log(o) +°en

ons*log(s) + ofsd).

64

Effect of Interdependencies on Algorithm Complexity

Dependencies have a substantial impact on the \wasst complexity of these algorithms.
PropagatePriorities, for example, is normally an’@) function which is very commonly called.
However, if there are no interdependencies in yiséem, it collapses to a simple O(n) function beseau
it no longer needs to propagate down supportingoaomants as well as the original component’s feeder
path. Many instances of recursion and many ofribst complex statements involve performing some
action, and then performing that same action otreraelated action on supporting components on the
other side of an interdependency. RestoreCmpeXample, doesn’t recur at all if there are no
interdependencies in the system.

The overall effect of cutting out interdependenese® significantly reduce overall complexity of
the algorithms. From Loads drops to O(on*log(act® + osrf), From Sources drops to &S + osrf),
Hybrid to O(0*log(o) + &* + osri + ocrf), Cotree Switch to Ofn+ sn*log(n) + &n + son + cs*log(s) +
csn), and Add Loops to O(on*log(o) +bh ons*log(s) + osf). The biggest beneficiaries of dropping
interdependencies from the system in terms of wease complexity are From Loads, which loses®n n
term, and Hybrid, which loses afiterm.
5.6 Algorithm Comparison vs. Complexity Factors

Analysis of the algorithms presented in this papéicates that they are at worst polynomial time in
the average case. Figures 17 through 21 shove#iudts of execution in terms of runtime of each
algorithm on systems of varying sizes with respe¢he number of loads, switches, total components,
interdependencies, and adjacencies in those sygtell # of components is held constant for
dependency and adjacency analysis). The curvéeifigures are best fit trendlines generated by

Microsoft Excel. The From Loads, From Sources, @ottee Switch algorithms in particular

65

demonstrate a strong polynomial relationship, wthikeHybrid algorithm is relatively weak in its
trendline, but still no more than polynomial.

Theoretical analysis indicates that the compleaitgach algorithm is quadratic with respect to the
number of interdependencies and linear with resjoeitte number of adjacencies. However, the
algorithms are not equally affected by the numberach present, as for example every term of the
From Loads complexity function is affected by ingpendencies, compare to only two for From
Sources. Figures 20 and 21 show the responsesd# #idgorithms to a system with around 50,000
components as dependencies or adjacencies wer@mgnddded to it, and shows that From Loads and
Cotree Switch were the algorithms most heavilyuaficed by the presence of interdependencies, while
Cotree Switch and Hybrid were the only algorithngmgicantly affected by the number of adjacencies.

The trendline for the Cotree Switch algorithm ogufe 20 ignores the two outliers.

A From Loads
Performance vs. # of Loads o From Sources
= Hybrid
300000 - . @ FSiy=0.0024x2 - 6.6838x + 12664 e Cotree Switch
250000 - R 09532 — From Loads
. — From Sources
(%) 200000 B Hy=7.9452x11042 g ;
£ R =0.4023) — Hybrid
g 150000 = —— Cotree Switch
100000 - 2 CS:y = 0.0018x - 9.0618x + 16146
R?=0.95
50000 H FL:y =0.0001x? + 4.7015x - 7175.6
0 R? =0.8919
0 2000 4000 6000 8000 10000 12000
of Loads

Figure 17: Algorithm Performance versus Number of loads

66

Perf 4 of Switch A From Loads
erformance vs. # of Switches . Erom Sources
= Hybrid
300000 . m FSiy=02643x2-83.347x +15281| e Cotree Switch
250000 R 09877 — From Loads
—~ 200000 /. — From Sources
|2 mH: y = 21.554x13565 .
E R e 0_55/ P — Hybrid
g 150000 . — Cotree Switch
100000 CS:y = 0.1907x? - 97.053x + 17226
R® = 0.9906
50000 FL:y = 0.0126x2 + 46.491x - 6913.1
0 | R:=0.8734
0 200 400 600 800 1000 1200
of Switches

Figure 18: Algorithm Performance versus Number of @itches

The reasons for deviation of the empirical resulthese cases from theoretical analysis are
primarily threefold. The theoretical analysis gd®s for algorithm complexity in a worst-case scena
which would involve every component having an agfay or every component being dependent on
every other component. Such systems simply d@xist. The worst-case analysis also assumes things
such as no restoration path in From Loads is \&limkpt the last one examined, which boosts the
complexity over what would actually be seen. Idiadn, the presence of interdependencies and
adjacencies can limit the possible options therélyos can explore, which can significantly deceeas

the number operations necessary to reach a salution

67

A From Loads
Performance vs. # of Components o From Sources
300000 " Mhbrd
- a FSiy=1E04x?-15958x + 14849 | e Cotree Switch
250000 R=094m — From Loads
— From Sources
@ 200000 - = Hy =0.5558x 184 — Hvbrid
g/ R? =0.4039 Y
g 150000 - — Cotree Switch
100000 - - CS:y = 7E-05x2 - 1.9939x + 18725
R? =0.9639
50000
FL:y = 5E-06x? + 0.9089x - 8132.4
0 R? =0.899
0 10000 20000 30000 40000 50000 60000
of Components
Figure 19: Algorithm Performance versus Number of @mponents
. A From Loads
Performance vs. Interdependencies
+ From Sources
450000 - " Hybrid
400000 - o e Cotree Switch
350000 Hy = 44.104x + 217342 — From Loads
— 'y =44.104x +
g 300000 R =0.7167 s _ FSy SBL521x + 175600 | From Sources
£ 250000 ’_l___.;l—-—“';/‘_".—: R? =0.797 — Hybrid
Q 200000 | * o A FLy 3 0.0251x2? +81.503x + 11411)
£ 150000 R? = 0.7699 —— Cotree Switch
|_
100000 CSty = 0.061x2 - 38.018x + 44782
1y =0.061x2 - 38.018x +
50000 R? = 0.8856
0 I I I I 1
0 500 1000 1500 2000
of Interdependencies

Figure 20:Algorithm Performance versus Number of Inerdependencies

The difficulty of dealing with interdependenciegparticularly evident in each algorithm. Even

though From Sources and Hybrid seem to be signifigdess affected by interdepenencies than From

68

Loads or Cotree Switch, they still see large tim@eases of up to 50% as the number of

interdependencies is increased.

)) Ao From Loads
Performance vs. Adjacencies
¢ From Sources

= Hybrid
200000 Hy 21;3.72X + 147766 -
= RT=08269 e Cotree Switch
]
__ 150000 W./__._-_._..—-—:—r” —— From Loads
2 e T ersy 424k + 130223 |~ FTOm Sources
o 100000 - R =0.1469 — Hybrid
.E —— Cotree Switch
FL:y = 73.497x + 21838
50000 RP=0.2581 A e
‘ww = 165.28x + 10638
¢ R?=0.8977
O T T 1
0 50 100 150

Adjacencies

Figure 21:Algorithm Performance versus Number of Adacencies

Figure 22 shows the degradation of the performaiftiee algorithms as interdependencies are
increased. Each algorithm restores all or nedrlyassible restorable loads up until a point, atcli
the number of restored loads drops off precipitpbsifore levelling out. For From Loads, From
Sources, and Hybrid, this breakpoint occurs afterfirst few hundred interdependencies, while the
Cotree Switch algorithm lasts significantly londpefore succumbing to the complexity the
interdependencies add to the system. The reasthisadecrease in performance has to do with the
way interdependencies affect the order of loadratibn. Satisfying interdependencies first casulie
in some loads being unrestorable which might haenbrestorable if restoration had been attempted in
a different order or with different restoration lpgt The reason for the steepness of the droptieis
increased probability of circular interdependenlegins (A depends on B depends on C depends on A).

Such chains are difficult for the algorithms toalee and can lead to unrestored load that could be

69

restored by an algorithm capable of finding anmoptisolution. Fortunately, the likelyhood of ateys

of this size having that many interdependencie®iig low.

. . o From Loads
Degradation vs. Interependencies
¢ From Sources
= Hybrid
12000 v = -3E.-06x2 2 .
= CS:y =-3E-06x +|;)2(103_57>;643- 1.2888x +9299.1 e Cotree Switch
S :
5 10000 L0 — From Loads
a — From Sources
% — Hybrid
-cfc; —— Cotree Switch
— H:y = 1E-06x3 + 0.0001x? - 6.8597x + 9671.9
S 2000 - R2 =0.9189
** FL:y =-1E-06x® + 0.0078x2 - 13.752x + 10676 FS:y =5E-08x° +0.0037x? - 10.139x + 10189
0 ‘RZ =0.8928 ‘ ‘ R?=0.9179

0 500 1000 1500 2000

of Interdependencies

Figure 22:Algorithm Performance Degradation vs. Inerdependencies

The reason for the difference in the dropoff pbietween Cotree Switch and the other algorithms
has to do with the way they handle restorationgaifhe Cotree Switch algorithm starts from a syste
with all switches turned on, and then turns offtstves as long as doing so causes no constraint
violations or additional dropped loads. By corir&om Loads, From Sources, and Hybrid reach a
restoration solution by turning on switches in oriberestore load. In other words, Cotree Switelnts
with all paths restored and tries to prune unneagsmes while the other algorithms seek to bueta
of restoration paths. While the former is not gueed to result in a radial solution (a desireable
condition for many utilities), it does create Iggdential for restoring loads in an order whichvamts

otherwise restorable loads from being restored.

70

5.7 Performance Observations

The first two examples examining the models shawigures 7 and 8 reveal some valuable
information about the algorithms. First, each perfs better than the DAOP method in almost every
examined metric (the sole exception being phasenbalg, where DAOP is in the middle of them). In
the first example, all four proposed algorithms substantially better than DAOP at minimizing Issse
— the very thing DAOP was designed to do [19,Z8])rthermore, they all feature lower losses than the
DAOP solution while providing substantially morewsy to the system due to the fact that they restore
more load.

Of the four proposed algorithms, the best perfosnaee From Sources and Cotree Switch. The
Cotree Switch algorithm is in general faster tHandthers by a substantial margin (except forwee t
stage From Loads solution for example 2), and péstorms best in phase imbalance and kW losses.
However, the From Sources algorithm demonstratiésridead balancing across the sources, and in
general produces solutions which require fewerd@dwilg operations to implement, a significant
advantage in implementing solutions in practice.

The speed advantage possessed by the Cotree @Qigitetihm is related to the fact that it startshwit
a system that has all switches turned on. Instéatlecking system constraints every time a load is
picked up as switches are turned on as in the algerithms, Cotree Switch only needs to check
constraints each time it drops a load when isajdi@ilure or breaks an independent loop. Becduse t
number of potential loops in a real-world systerinsted (only 82 in the large example, which has
over 50,000 components), the Cotree Switch algorighgoing to spend significantly less time chegkin
constraints, which is the most expensive part efalgorithms. As an example, the single stageofun

the From Sources algorithm on the larger exampléaingpends 97% of its time checking constraints

71

calling the power flow algorithm over 9000 timed)ile the Cotree Switch algorithm only calls power
flow 245 times, taking up only 77% of the total &m

However, the speed difference of a couple minuédsden the algorithms on the larger model may
not actually be significant in a real-world implemt&tion, particularly since the algorithms are lyki
be run on a much more powerful computer than teatl dor testing. The few seconds difference on the
smaller model is almost certainly insignificant.

The From Loads and Hybrid algorithms lag behindadtieer, but were designed with highly-
prioritized systems in mind, a condition which does apply to the real-world examples presented.her
It is possible that they would show a better penfance on a larger system that was more fully
prioritized, and in fact the third example on the@e integrated model indicates that this mayHee t

case at least for From Loads.

72

VI. Conclusion

The problem of how to respond to disruptions imasfructure systems is an important and common
one. Prioritization of loads, interdependencidsveen systems, and non-linear flows of some systems
only complicate it. In fact, as proven in thiss#igation in 3.4, the prioritized reconfiguratiamiplem
is an NP-hard problem. Many solutions have beepgsed for this problem, but no comprehensive
solutions have been developed without needingtplgly the system model.

This dissertation has proposed four algorithmstifier prioritized reconfiguration of interdependent
critical infrastructure systems. These algorithmes gesigned to use a Graph Trace Analysis model tha
is an unsimplified representation of the systemadganalyzed, and are written using a new notation
developed and described in this dissertation spatif for GTA. This notation can be used to write
algorithms in GTA that are independent of the systdeing analyzed. It is also easy to implement
algorithms written this notation using tools such those provided in the C++ Standard Template
Library.

Of all prior works surveyed, very few recognizee theed for arbitrary prioritization and only one
[4] attempted to address both arbitrary priorii@atand system interdependencies. While it was ol
achieve results for its example systems very qujdkiwas only able to do so through applying many
simplifying assumptions to its model, and it wascéal to use different models for each of the system
involved.

By contrast, each of the algorithms proposed is thissertation are capable of quickly solving
reconfiguration for large systems without any siifigations being applied to the system model. They
also all allow for arbitrary levels of priority osystem loads. In addition, the generic nature DAG
allows the proposed algorithms to do so with alsingtegrated model containing all systems being

examined, complete with the dependencies betwesn.th

73

The proposed algorithms are further capable of Irapdiependencies which only need to be
partially satisfied as shown in 5.4. In the evdrdt a supporting load can only receive part of the
service it normally demands, the proposed algostlane capable of determining that it should s#ll b
provided service if it can be provided enough ttsfathe loads it supports. This recognition and
handling of partial dependencies is something whlprior solution has addressed.

Performance testing of these algorithms showsthiegt are competetive with or better than previous
solutions in mutiple metrics (line losses, switchioperations, loads restored, etc.), while addngssi
aspects of the reconfiguration problem (such agrarp prioritization and interdependencies, in¢chgl
partial dependency fulfillment) which previous dadas have not. The complexity of the algorithms i
demonstrated to be polynomial, with the ability Handle loops and dependencies not causing an
unreasonable increase in complexity for realistgtems.

In addition, the proposed algorithms are not rednndas they have advantages over each other
depending on the nature of the model being analyZeddiscussed in 5.5, while the Cotree Switch and
From Sources algorithms seem to perform the bestdmrreal-world models tested, they each perform
better than each other in different metrics. Thsralso evidence to suggest that the From Loads an
Hybrid algorithms may have advantages over othéewveonsidering highly prioritized systems.

6.1 Future Work

Future work with the algorithms proposed in thisséirtation will require field experimentation with
actual utility systems to see how they deal wittualcdisruptions. Different kinds of utilities ithe
same geographic area could be encouraged to wgsther to develop an integrated systems model
complete with dependencies between system typesiar to perform fully robust experiments with the

proposed algorithms. Furthermore, a standard progring library akin to the C++ Standard Template

74

Library could be developed to implement the GTAatioh proposed in this dissertation in order teeeas

the writing of further analysis algorithms for GTodels.

75

VIl. References

[1] K.L. Butler-Purry, N.D.R. Sarma and I.V. Hicks, $iee Restoration in Naval Shipboard Power
Systems|EE Proc. Generation, Transmission and Distributidol. 151, Iss. 1Jan. 2004, pp. 95-
102.

[2] S.Curci¢, C.S. Ozveren and K.L. Lo, Computer-Based Strafegthe Restoration Problem in
Electric Power Distribution System&E Proc. Generation, Transmission and Distribufidol.
144, I1ss. 5Sep. 1997, pp. 389-398.

[3] S. Khushalani, J. Solanki and N. Shulz, OptimizedtBration of Combined AC/DC Shipboard
Power Systems Including Distributed Generation latahding Techniqueglectric Power
Systems Research, {&08) 1528-1536.

[4] E.E. Lee, J.E. Mitchell and W.A. Wallace, Restamatof Services in Interdependent Infrastructure
Systems: A Network Flows ApproadiEE Trans. Systems, Man, and Cybernetics—Part C:
Applications and Reviews, Vol. 37, NoNav. 2007, pp. 1303-1317.

[5] S.M. Rinaldi, J.P. Peerenboom and T.K. Kelly, ldgirtg, Understanding, and Analyzing Critical
Infrastructure InterdependenciédSEE Control Systems Magazjrigec. 2001, pp. 11-25.

[6] A. Merlin and H. Back, Search for a Minimal-Lossd&dg@ting Spanning Tree Congifuration in an
Urban Power Distribution Systemroc. 5" Power System Computation Conf. (PSCC),
Cambridge, UK1975, pp. 1-18.

[71 D. Shirmohammadi and H.W. Hong, Reconfiguratioflafctric Distribution Networks for
Resistive Line Loss ReductiofltEE Trans. Power Delivery, @989)1492-1498.

[8] S.K.Goswami and S.K. Basu, A New Algorithm for Reconfiguration of Distribution Feeders

for Loss Minimization|EEE Trans. Power Delivery, (1992) 1484-1491.

76

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

C.T. Huddleston, R.P. Broadwater and A. Chandrasek&econfiguration Algorithm for
Minimizing Losses in Radial Electric DistributioryS8emsElectric Power Systems Research, 18
(1990) 57-66.

R.P. Broadwater, A.H. Khan, H.E. Shaalan and Rde, Time Varying Load Analysis to Reduce
Distribution Losses Through ReconfiguratidBEE Trans. Power Delivery, @993) 294-300.

A. Augugliaro, L. Dusonchet and S. Mangione, Aniéént Greedy Approach for Minimum Loss
Reconfiguration Distribution NetworkElectric Power Systems Research(B%895) 167-176.

J.A. Martin and A.J. Gil, A New Heuristic Approafdr Distribution Systems Loss Reduction,
Eletric Power Systems Research,(Z808) 1953-1958.

S. Civanlar, J.J. Grainger, H. Yin and S.S.H. I@isfribution Feeder Reconfiguration for Loss
Reduction]EEE Trans. Power Delivery, @988) 1217-1223.

T.E. Lee, M.Y. Cho and C.S. Chen, Distribution 8ystReconfiguration to Reduce Resistive
LossesElectric Power Systems Research,(B994) 25-33.

C.A. Castro and A.A. Watanabe, An Efficient Recgafation Algorithm for Loss Reduction of
Distribution Systemdlectric Power Systems Research,(1990) 137-144.

K. Kim, Y. Ko and K.H. Hung, Artificial Neural Netark Based Feeder Reconfiguration for Loss
Reduction in Distribution Systemi&EE Trans. Power Delivery, @993) 1356-1366.

K. Nara, T. Satoh and M. Kitagawa, Distribution &ys Loss Minimum Re-configuration by
Genetic AlgorithmpProc. 3oh Symp. Expert Systems Application to P&ystems (ESAPS),
Tokyo and Kobe, Japan, 1994p. 724-730.

T. Taylor and D. Pubkeman, Implementation of HeieriSearch Strategies for Distribution Feeder

Reconfiguration|EEE Trans. Power Delivery, 8990) 239-246.

77

[19] W.M. Lin and H.C. Chin, A New Approach for Distritton Feeder Reconfiguration for Loss
Reduction and Service RestoratitleEE Trans. Power Delivery, Vol. 13, No.J8ly 1998, pp.
870-875.

[20] T.E. McDermott, I. Drezga and R.P. Broadwater, Aitigic Nonlinear Constructive Method for
Distribution System ReconfiguratiolsEE Trans. Power Delivery, Vol. 14, Iss.N2ay 1999, pp.
478-483.

[21] R.P. Broadwater, P.A. Dolloff, T.L. Herdman, R. Barikhova and A.F. Sargent, Minimum Loss
Optimization in Distribution Systems: Discrete Ast®ptimal Programmingd;lectric Power
Systems Research, @®96) 113-121.

[22] R. Sampath, H. Darabi, U. Buy, and J. Liu, ConRetonfiguration of Discrete Event Systems
With Dynamic Control SpecificationtsEE Trans. Automation Science and Engineeing, Yol.
No. 1,Jan. 2008, pp. 84-100.

[23] A. Augugliaro, L. Dusonchet, E. Riva Sanseverinervige Restoration in Compensated
Distribution Networks Using a Hybrid Genetic Algibnin, Electric Power Systems Research, 46
(1998) 59-66.

[24] J.Z. Zhu, Optimal Reconfiguration of Electrical Dilsution Network Using the Refined Genetic
Algorithm, Electric Power Systems Research,(8202) 37-42.

[25] Y. Kumar, B. Das and J. Sharma, Service Restorati@istribution System Using Non-
dominated Sorting Genetic Algorithifalectric Power Systems Research(Z606) 768-777.

[26] H.C. Chang and C.C. Kuo, Network Reconfiguratio®istribution Systems Using Simulated
Annealing,Electric Power Systems Research,(2994) 227-238.

[27] C.T. Suand C.S. Lee, Feeder Reconfiguration ampa€iar Setting for Loss Reduction of

Distribution Systemdlectric Power Systems Research(8801) 97-102.

78

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

D. Zhang, Z. Fu and L. Zhang, An Improved TS Algfum for Loss-Minimization
Reconfiguration in Large-Scale Distribution SysteBiectric Power Systems Research,(ZG07)
685-694.

D.J. Shin, J.0. Kim, T.K. Kim, J.B. Choo and C. @inOptimal Service Restoration and
Reconfiguration of Network Using Genetic-Tabu Aligom, Electric Power Systems Research, 71
(2004) 145-152.

C.T. Su, C.F. Chang and J.P. Chiou, Distributiotwdek Reconfiguration for Loss Reduction by
Ant Colony Search AlgorithnElectric Power Systems Research(Z®5) 190-199.

E. Carpento and G. Chicco, Distribution System ki Loss Reconfiguration in the Hyper-
Cube Ant Colony Optimization Framewoiklectric Power Systems Research(2808) 2037-
2045.

K. Huang, S.K. Srivastava, D.A. Cartes and L.H. ,Svarket-Based Multiagent system for
Reconfiguration of Shipboard Power SysteHEisctric Power Systems Research(Z009) 550-
556.

J. Zhu, X. Xiong, J. Zhang, G. Shen, Q. Xu and ¥eXA Rule Based Comprehensive Approach
for Reconfiguration of Electrical Distribution Netwk, Electric Power Systems Research, 79
(2009) 311-315.

Z. Ding, S.K. Srivastava, D.A. Cartes and S. Suayayanan, Dynamic Simulation Based Analysis
of a New Load Shedding Scheme for a Notional Dgstr@lass Shipboard Power SystéBEE
Electric Ship Technologies Symposium, 200ay 2007, pp. 95-102.

L.R. Feinauer, K.J. Russell, and R. Broadwaterp&iteace Analysis and Generic Algorithms for
Interdependent Reconfigurable System Design andr@oNaval Engineers Journal, Vol. 120,

Iss. 1,March 2008.

79

[36] J.B. Warmer and A.G. Kleppe, The Object Constriaamguage: Precise Modeling With UML,
Addison-Wesley, Reading, MA, 1999.

[37] M. Sipser, Introduction to the Theory of ComputatiS8econd Edition, Thomson Course
Technology, Boston, MA, 2006.

[38] M. Garey and D. Johnson, Computers and Intractgbfli Guide to the Theory of NP-

Completeness, Freeman, San Francisco, CA, 1979.

80

Appendix A — Reconfiguration Algorithms

Utility Functions
0. Segment()
1. ClearPriorities()
2. PropagatePriority()
3. CheckConstraints()

Segment(Component Cmp)
0. SegStart=FPT(Cmp)collect(p|p-type==SWITCH || FPT(p»size==0}-first
1. return
FT(SegStart»collect(p|FPT(p}>collect(q|g-type==SWITCH}>first=={SegStart}}»including({SegStart})

ClearPriorities(Model M)

0. M—iterate(p| If p-type!=LOAD
Thenppriority=0
Endlf)

FailurelnFedSegment(Component pCmp)
0. If Segment(pCmp>pF)—collect(p|p—status==FAILED)
Then return TRUE
Else return FALSE

PropagatePriority(Component pCmp)
0. FPT(pCmp)-iterate(p| If p»priority < pCmp—priority
Thenrypriority = pCmp—priority
Endlf,
—pAD—iterate(q| If g>pCmp—priority < p—priority
Then-¢pCmp—priority = p—priority,
PropagatePriority¢gCmp)
Endlf),
—pOD—iterate(q| If g>pCmp—priority < p—priority
Then-pCmp—priority = p—priority,
PropagatePriorit¢gCmp)
Endlf))
CheckConstraints(Component pCmp)

CheckConstraints is a function which checks a Carmpbto ensure that it has not violated any coimtras defined by
the person implementing Reconfiguration, for pugsosf maximizing flexibility and generalization ayaom specific
system types. The only mandatory constraint cieakhether a component's flow violates its capac@@yeckConstraints
must return a boolean value indicating whetherabtCmp violates any constraints.

From Loads Functions
FromLoads()
RestoreCmp()
CreatePaths()
ChoosePathStart()
ProcessPath()
CreateDecPoints()
ProcessDecPt()
RestoreDependencies()
Backup()
AreConnectedNoFailures()

©CoNoO~WNEO

81

From Loads Structures
ClsdSwt
Component pCmp
int level

DecPt
Component pCmp
int failedOrDeps

From Loads Globals
0. set of ClsdSwt ClosedSwitches
1. set of Component Restored
2. set of Component BeingRestored

FromLoads(Model M)
0. seq of Component Loads =Mcollect(p|p-~type == LOAD)
1. M-—collect(p|p-type == SWITCH}-collect(p| p»status=0OFF)
2. Loads—order(p<q if (p~priority > gq—priority OR
(Mexists(S—exists(t>AD—exists(u| .»pCmp==qg) OR
+0OD—exists(u]| k>pCmp==q)))
AND
Mforall(S|S—forall(tjt—AD—-collect(u| 4>pCmp==p}->size==0 AND
-bOD—-collect(u] v>pCmp==p}->size==0)))))
3. Loads—iterate(ClosedSwitches={}, BeingRestored={}, RegtGmp(p, 0))
4. AddLoops(M)

RestoreCmp(Component Cmp, int level)
0. bool backedup=FALSE, restored=FALSE, startingpafRHE, pathfail=FALSE;
Component pCmp=Cmp;
seq of Component visited, InitPath;
1. If Restored-includes(Cmp)
Then return TRUE
EndIf
2. If BeingRestoreebincludes(Cmp)
Then return TRUE
EndIf
3. CmpSeg=Segment(Cmp)
4. If CmpSeg-collect(p|p-status==FAILED}>size > 0
Then return FALSE
EndIf
5. CreatePaths(Paths, Cmp)
6. Paths-iterate(p| If ChoosePathStart(pCmp, p, Cmp, sigptith, Paths, InitPath)==FALSE
Then return FALSE
Endlf,
If pPCmp!=NULL AND FPT(p@p)—collect(p|p—status==FAILED}»size>0

Then result=ProcessRehngp, Cmp, startingpath, Paths, InitPath, backeldwe], restored)

Else startingpath=TRUE
EndIf)
7. |If restored==FALSE
Then return FALSE
Else Restored=Restoredncluding(Cmp)
return TRUE
EndIf

82

CreatePaths(Sequence Paths, Component Cmp)
0. Paths = FT(FPT(Cmp}last}—collect(p|p—adjt'=NULL)
1. Paths-prepend(Cmp-fpt)
2. return TRUE
ChoosePathStart(Component pCmp, Component p, Compamt Cmp, bool startingpath,

seq of Component Paftseq of Component InitPath)
0. restored=TRUE, visited={}, InitPath={}
1. If startingpath==TRUE
Then If Cmp==p
Then pCmp=p,
startingpath=false
Else pCmp=NULL,
If AreConnectedNoFailures(Cmpyigited, InitPath) == TRUE
Then pCmp=padit,
InitPath=InitPatireverse,
startingPath=FALSE
Else visited={},
InitPath={}
EndIf
If pPCmp==NULL AND Paths#index+1==Paths-size
Then return FALSE
EndIf
EndIf
Else Paths>#index--
EndIf
2. return TRUE

ProcessPath(Component pCmp, Component Cmp, bool stangpath, seq of Component Paths,

seq of Component InitPath, bbbackedup, int level, bool restored)
0. seq of DecPoint DecisionPoints={}
1. DecisionPoints=FPT(pCmg}collect({p,0}| (p—type==SWITCH AND p-status==OFF)
OR p>OD—size>0 OR p>AD—size>0}-reverse
2. DecisionPoints=DecisionPointsappend(InitPath-collect({p,0}| (p—type==SWITCH AND p-status==OFF) OR
p—OD—size>0 OR
p—AD—size>0)-reverse)
3. DecisionPoints»iterate(p| ProcessDecPt(DecisionPoints, p, pCmgkdahup, startingpath, level, restored)
If lewsd0 AND
DeoisPoints—#index+1=DecisionPointssize AND
stagpath==false
TherQlosedSwitches>size>0 AND
M—collect(q|CheckConstraints(q)==FALSE}ize>0
Then If Backup(pCmp, DecisionPoints, 0)==FALSE
Then startingpath=TRUE,
restored=FALSE
Else backedup=TRUE
EndIf
Else Restored = Restoredncluding(Cmp)
return TRUE
EndIf
Elseflihdex+1==DecisionPointssize AND restored==TRUE
Then Restored=Restoredncluding(Cmp)
return TRUE
EndIf
EndlIf)

83

4. If DecisionPoints»size==0 AND restored==TRUE
Then Restored=Restoredncluding(Cmp)
return TRUE
EndIf

ProcessDecPt(seq of DecPoint DecisionPoints, Comjeon pCmp, bool backedup,

bool startingpath, int levebool restored)
0. bool mustbackup=FALSE,
Component curCmp
1. If backedup==TRUE
Then DecisionPoints#index = 0,
backedup=FALSE
Endlf
2. curCmp=DecisionPointsat(DecisionPoints>#index)}»pCmp
3. If curCmp—-type==SWITCH AND curCmp->status==OFF
Then If curCmp-fpt—status==OFF OR
(curCmp»adjt'=NULL AND curCmp—adjt—>fpt—status==0OFF) OR
curCmpradjt==NULL
Then curCmpstatus=ON
If FailurelInFedSegment(curCmp)RtIE
Then mustbackup=TRUE
EndIf
ClosedSwitches=ClosedSwitehésluding({curCmp, level})
EndIf
EndIf
4. If mustbackup==FALSE
Then mustbackup=RestoreDependencies(DecisionPtaned, curCmp)
EndIf
5. If mustbackup==TRUE
Then If Backup(pCmp, DecisionPoints, level)==FALSE
Then startingpath=TRUE,
restored==FALSE,
DecisionPoints#tindex=DecisionPointssize
Else backedup=TRUE
Endlf
EndIf

RestoreDependencies(seq of Component DecisionPojntg level, Component curCmp)
0. bool mustbackup=FALSE
1. curCmp—AD—siterate(p| If RestoreCmp{ppCmp, level+1)==FALSE
Then nhatkup=TRUE,
#index=curCmp~AD —size
EndlIf)
2. If mustbackup==TRUE
Then return TRUE
EndIf
3. mustbackup=TRUE
4. curCmp-OD—iterate(p| If RestoreCmp{ppCmp, level+1)==TRUE
Then nhatkup=FALSE,
#index=curCmp->OD—size
EndlIf)
5. return mustbackup

84

Backup(Component pCmp, seq of Component DecisionRus, int level)
0. bool found=FALSE
int curPt=DecisionPointscollect(n| DecisionPointsat(n-1}-»pCmp==pCmp}-first
1. DecisionPoints-riterate(p| If DecisionPoints#index > curPt
TheerdisionPoints>#index=curPt
Endlf,
H4pCmp—-0OD—size > 0 AND p~failedOrDeps+1 < p>pCmp—-OD—size
TherfailedOrDeps++,
found=TRUE,
DecisionPoints>#index=0
ElsefailedOrDeps=0
EndlIf)
2. ClosedSwitchesscollect(p| If p—level >= level
ThempCmp—status=OFF
EndlIf)
3. return found

AreConnectedNoFailures(Component a, Component b, sef Component visited,

seq@imponent InitPath)
0. seq of Component Path, set of Component AdjPosetsof Component Try
1. If FPT(a)~last==FPT(b}-last
Then Path = FPT(a}symmetricDifference(FPT(b)prepend(a)append(b)
If Path~collect(p| p-status==FAILED}»size==0
Then InitPath = InitPathappend(Path),
return TRUE
Else return FALSE
EndIf
EndIf
AdjPoints = FT(FPT(aplasty—»collect(p|p~adjt!=NULL)
Try=AdjPoints—excluding(AdjPoints~intersection(visited))
If Try—size==0
Then return FALSE
EndIf
5. visited = visited-union(Try)
6. Try—iterate(p| Path=FPT(@symmetricDifference(FPT(p}»prepend(a)append(b),
If Pathcollect(q| gostatus==FAILED}>size==
Then If AreConnectedNoEeek(p—adijt, b, visited, Path)==TRUE
Then InitPathtRath—append(Path),
returRUE
EndIf
Endif)

PN

7. return FALSE

From Sources Functions
0. FromSources()
1. ProcessSources()
2. ValidBoundSwitches()

From Loads Structures
Src
Component pCmp
set of Swt BoundSwts

85

Swt
Component pCmp
bool visited

From Sources Globals

set of Component Restored

set of Component FailedRestore
seq of Component Loads

seq of Src Sources

int highPrior

PP O

FromSources(Model M)

0. bool actiontaken=TRUE, int oldHP

1. M-—collect(p|p-type == SWITCH}-collect(p| p-~status=OFF)

2. Sources=M-collect({p, {}}| p —type==SOURCE)

3. Loads=M-—-collect(p| p~type==LOAD)

4. Loads—order(p<q if p~priority > g—priority)

5. Sources=Sourcesexcluding(p| Segment{fppCmp)

—collect(g|g—status==FAILED}»size>0)

6. highPrior=Loads-first—priority

7. ClearPriorities(M)

8. Loads—iterate(p| PropagatePriority(p))

9. Sources»iterate(p| p>BoundSwts=M-collect({q,FALSE}| q¢—type==SWITCH AND

—gtatus==0OFF AND
RHqg)—collect(r|F»status==0ON}»size==
FPT(g)-size AND

PHq)—includes(p)) OR
—f@djt'=NULL AND

UK g—adjt)—collect(r|~status==ON}»size==
FPT(g~adjt)—size AND
PHag—adjt)—includes(p))))
10. M—iterate(z| If actiontaken==TRUE
Then M#index=0,

Soureewrder(p < q if p~f/[p—c < g-flg—c),

actiontaken=Proceas8es(),

If Restoregtollect(p|p—priority>=highPrior}-size +
FailedRestereollect(p|p—priority>=highPrior}-size ==
Loadsgollect(p|p—priority>=highPrior}-size

Then oldHP=highPyior

If Loaggollect(p|p—priority<highPrior}-size > 0
Then higldPsLoads—collect(p|p—priority<highPrior}-first—priority
Else higtdP+0
EndIf
EndIf
Else M#index=M-size
EndIf)
11. AddLoops(M)

86

ProcessSources()
0. bool actiontaken=FALSE, bool found=FALSE, set oh@@mnent TrySwts
1. Sources-iterate(p| TrySwts=ValidBoundSwitches(p),
TrySwts-iterate(q|
g-status=ON,
p~BoundSwts~collect(r|—pCmp==q}-first—-visited=TRUE,
If Segment(gft)—collect(r|r—status==FAILED}>size > 0
Then ¢pstatus=0OFF,
Else If Segment{gft)—collect(r|r—type==LOAD)—size > 0
Then If Mxcollect(p|CheckConstraints(p)==FALSE}ize>0
Then-gstatus=OFF,
FailedRestdfailedRestore>append(Segment{gft) —collect(r|—type==LOAD))
ElsepBoundSwts=p~BoundSwts»excluding(rj—~pCmp==q),
—pBoundSwts=p>BoundSwts~including(
Segment{gft) —>collect({r,FALSE}|
—type==SWITCH AND
—status==0OFF AND
r'3a)
—pBoundSwts=p»>BoundSwts-including(
Segment{gft) »collect({r—adjt,FALSE}|
—adjt!'=NULL AND
—adjt->type==SWITCH AND
—adjt-status==0OFF AND

r'30)
ClearPrior#{#1),
Loadsterate(r| PropagatePriority(r)),
Restored=Reste-including(Segment(eft) —collect(r|~type==LOAD)),
FailedRestdratedRestore>excluding(Segmentfgft) —collect(r|~type==LOAD)),
actiontaken=TR
TrySwasgtindex=TrySwts-»size
Endlf
Else ClearPriorities(M),
Loadsiterate(r| PropagatePriority(r)),
p>BoundSwts=p>BoundSwts-»excluding(r[~pCmp==q),
$rBoundSwts=p>BoundSwts-including(Segment(e-ft) —>collect({r,FALSE}|
—type==SWITCH AND
—status==0FF AND

r'30)
prBoundSwts=p>BoundSwts-including(Segment(eft) —collect({r—adjt,FALSE}|
—adjt'=NULL AND

—adjt->type==SWITCH AND
—adjt-status==0FF AND
r'3a)
actiontaken=TRUE,
TrySwis#index=TrySwts-size
Endif))
2. return actiontaken

ValidBoundSwitches(Component pCmp)
0.

seq of Component Swts=pCryBoundSwts-collect(p—pCmp| p-visited==FALSE AND
{pPpCmp—ft==p—pCmp—brt OR p—>pCmp—ft—status==OFF) AND
{ppCmp—adjt==NULL OR p—pCmp—adjt-status==OFF)
Swts=Swts»excluding(p| p~adjt'=NULL AND
Segmentfipt)—collect(q| g-status==FAILED}-size>0) AND
Segmeny@djty—collect(q| g-status==FAILED}»size>0))
Swits=Swts~excluding(p| p~adjt==NULL AND
Segment{pft) —collect(q|g~AD—collect(r[»pCmp—status==OFF}size>0 AND
g—priority<highPrior}-size>0 AND
Segment{pft) —>collect(qlg~OD—-collect(r|—»pCmp—status==ON}»size==0 AND
g—priority<highPrior}-size>0)
Swits=Swts»excluding(p| p~adjt'=NULL AND p—adjt—status==OFF AND
Segment{padjt}—collect(q| g=AD—collect(r|[F~pCmp—status==OFF)size>0
AND @-priority<highPrior}»size>0 AND
Segment{padjt}—collect(q| g~OD—collect(r|[—~pCmp—status==0ON}»size==0
AND g-priority<highPrior}-»size>0)
Swis=Swts»excluding(p| p~adjt'l=NULL AND p—fpt—status==OFF AND
Segment{pfpt)—collect(q|g~AD—collect(r|—~pCmp—status==0OFF)»size>0 AND
g—priority<highPrior)y-size>0 AND
Segment{pfpt)—collect(q|g~OD—-collect(r|—~pCmp—status==ON}»size==0 AND
g priority<highPrior}-size>0)
return Swts-order(p<q if p-priority>g—priority)

Hybrid Functions

APwhPEO

Hybrid()

ProcessSources()

ValidBoundSwitches()

UnlockSwitches(int)
UnlockSwitches(Component, set of Component)

Hybrid Structures

Src

Swit

Component pCmp
set of Swt BoundSwts

Component pCmp
bool visited

Hybrid Globals

PwdbdPFO

set of Component Restored

set of Component FailedRestore
seq of Component Loads

seq of Src Sources

int highPrior

88

Hybrid(Model M)

bool actiontaken=TRUE, int oldHP

M—-collect(p|p~type == SWITCH}-collect(p| p—»status=0OFF)
Loads=M—-collect(p| p~type==LOAD)

Loads—order(p<q if p»priority > g—priority)
Sources=Sourcesexcluding(p| Segment{ppCmp)—collect(q|g—status==FAILED}-size>0)
M—-collect(p| p~type==SWITCH AND p-operable=FALSE)
highPrior=Loads~first—priority

ClearPriorities(M)

Loads—iterate(p| PropagatePriority(p))

. UnlockSwitches(highPrior)

10. Sources=M-collect({p, {}}| p —type==SOURCE)

11. Sources~iterate(p| p~BoundSwts=M-collect({q,FALSE}|

©CoNOUO~WNEO

gptype==SWITCH AND
gpstatus==0OFF AND
g>operable==TRUE AND
((FPT(g»collect(r|r—status==0ON}»>size==
FPT(e)size AND
FPT(gpincludes(p)) OR
(epadjt!'=NULL AND

FUT (epadjt}—collect(r|—status==ON}»size==
FPT{gadjt)—size AND
FPT(epadjt)}—includes(p))))
12. M—iterate(z| If actiontaken==TRUE
Then M#index=0,

Source®rder(p < q if p»flp—c < g—f/lg—c),

actiontaken=Proceas8es(),

If Restoregtollect(p|p—priority>=highPrior}-size +
FailedRestereollect(p|p—priority>=highPrior}-size ==
Loadsollect(p|p—priority>=highPrior}-size

Then oldHP=highPyior

If Loadgollect(p|p—priority<highPrior}-size > 0
Then higldPsLoads—collect(p|p—priority<highPrior}-first—priority

Else higtdP+0
Endif,
UnlockSwites(highPrior),
Soureeiserate(p| p~BoundSwts=M-collect({q,FALSE}|
eptype==SWITCH AND
g status==OFF AND
gpoperable==TRUE AND
((FPT(gpcollect(r|F—status==ON}»size==
FPT(epsize AND
FPT(egyincludes(p)) OR
(epadjt'=NULL AND
FUT (gpadjty—collect(r|r—status==ON}»size==
FPT{gadjt)—size AND
FPT(eadjt)—includes(p))))
EndIf
Else M#index=M-size
EndIf)

13. AddLoops(M)

89

ProcessSources()
As with the From Sources Algorithm

ValidBoundSwitches(Component pCmp)

0. seq of Component Swts=pCmBoundSwts~collect(p—»pCmp| p-Visited==FALSE AND
{pPpCmp—ft==p—pCmp—brt OR p—>pCmp—ft—ostatus==OFF) AND
{ppCmp—adjt==NULL OR p—pCmp—adjt-status==OFF)

Swts=Swts~excluding(p| p~operable==FALSE)
2. Swts=Swts»excluding(p| p~adjt!'=NULL AND
Segmentfipt)—collect(q| g-status==FAILED}-size>0) AND
Segmeny@djty—collect(q| g-status==FAILED}»size>0))
3. Swts=Swts»excluding(p| p~adjt==NULL AND
Segment{pft) —collect(q|g~AD—collect(r|—»pCmp-status==OFF}size>0 AND
g—priority<highPrior}-size>0 AND
Segment{pft) —collect(q|g~OD—-collect(r|—»pCmp—status==ON}»size==0 AND
g—priority<highPrior}-size>0)
4. Swts=Swts»excluding(p| p~adjt!=NULL AND p—adjt—status==OFF AND
Segment{padjt}—collect(q| g=AD—collect(r|[~pCmp—status==OFF)size>0
AND g-priority<highPrior}-size>0 AND
Segment{padjt}—collect(q| g>OD—collect(r[—~pCmp—status==0ON}»>size==0
AND g-priority<highPrior}-»size>0)
5. Swts=Swts»excluding(p| p~adjt'=NULL AND p—fpt—status==OFF AND
Segment{pfpt)—collect(q|g—~AD—collect(r[»pCmp—status==OFF}size>0 AND
g—priority<highPrior}-size>0 AND
Segment{pfpt)—collect(q|g~OD—-collect(r|—~pCmp—status==ON}»size==0 AND
g—priority<highPrior}-size>0)
6. return Swts-»order(p<q if p—priority>g—priority)

=

UnlockSwitches(int priority)
0. set of Component visited, seq of Component Padtspg Component InitPath,
seq of Component Feeder, set of Component seenp@want prevSwt, int prevSwtldx
1. UnlockLoads=Loads>collect(p| p—priority >= priority)
2. UnlockLoads~iterate(p| visited={}, UnlockSwitches(p, visited))

UnlockSwitches(Component Cmp, set of Component visid)
0. seq of Component Feeder, seq of Component InitBatlgf Component seen, int prevSwtldx
1. CreatePaths(Paths, p)
2. Paths-iterate(q| seen={}
If g==pfpt
Then InitPath=FPT(q)
Else If AreConnectedNibr@s(p, g, seen, InitPath)==TRUE
Then Feeder=RpPFadjty—prepend(q),
InitRatnitPath—append(Feeder),
EndIf,
InitPatkiterate(r| If ~status==FAILED
Then InitPath#index=InitPath-size
Else If-Htype==SWITCH
Then prevSwtldx=InitPathindex
EndIf
EndIf),
InitPatkiterate(r| Feeder=Feedeappend(r),
If InitPath>#index=prevSwtldx
Then InitPath#index=InitPath-size
EndIf),

90

Feedecollect(r| type==SWITCH AND r—operable=TRUE),
Feedecollect(r| —adjt'=NULL AND r—adjt->type==SWITCH AND
radjt-operable=TRUE),
Feedecollect(r| —AD—iterate(s| UnlockSwitches{spCmp, visited)),
—OD—iterate(s| UnlockSwitches{spCmp, visited))),
Feedeiterate(r]| Segment(ryiterate(s| If visiteg»includes(s)==FALSE
arhUnlockSwitches(s, visited)
dif)
EndIf)

Cotree Switch Functions
0. CotreeSwitch()
1. FindOpSwt()

Cotree Switch Globals

0. seq of Component Loads
1. seq of Component Violations

CotreeSwitch(Model M)
0. set of Component Cotrees, seq of Component FPIfsegmponent FP2,
set of Component openSwts
M—-collect(p| p~type==SWITCH}-collect(p| status=ON)
Loads=M—-collect(p| p~type==LOAD)
Violations=M—-collect(p| p»status==FAILED OR CheckConstraints(p)==FALSE)
Loads—order(p<q if (p~priority > g—priority OR
(Mexists(S~exists(t>AD—exists(u| .»pCmp==qg) OR
+HOD—exists(u] b»-pCmp==q)))

AN PRE

AND
Mforall(S|S—forall(tjt—AD—-collect(u| »pCmp==p}>size==0 AND
-bOD—-collect(u] »>pCmp==p}>size==0)))))

ClearPriorities(M)

Loads—iterate(p| PropagatePriority(p))

M—iterate(z| If Violations»size==0

Then M#index=M-size

Else Violationsorder(p<q if p~priority<g—priority),
FindOpSwt(Violationdirst)—status=OFF,
ClearPriorities(M),
Loadsiterate(p| PropagatePriority(p)),
Violations=Mcollect(p| p~status==FAILED OR p>f>p—c))

8. Cotrees=M-collect(p| p~type==SWITCH AND p-adjt'=NULL AND
—pstatus==ON AND p~adjt—>status==ON AND
FPT{p)ast!'=FPT(p~adjt)—last)

9. Cotrees~iterate(p| openSwts=FPTp)xollect(q| g-type==SWITCH),
openSwts=openSwappend(FPT (p>adjty—collect(q| g-type==SWITCH)),
openSwasorder(g<r if g-f<r—f),
openSwisdterate(q| g-status=OFF,

If M—collect(r|CheckConstraints(r)==FALSE)ize==0
Then openSwis#index=openSwts>size
Else g»status=ON))

No o

10. AddLoops(M)

FlndOpSWt(Component pCmp)

set of Component candidates, int lowPrior

candidates=FTtoB(pCmgp}collect(p| p-~type==SWITCH)
candidates=candidatesncluding(FPT(pCmp)>collect(p| p-type==SWITCH))

If pPCmp—type==SWITCH

Then candidates=candidatescluding(pCmp)

EndIf

lowPrior=candidates>collect(p| candidatesexists(q| g~priority<p—priority)==FALSE)}—first—priority
candidates=candidatesexcluding(p| p~priority > lowPrior)

candidates=candidatesexcluding(p| candidatesexists(q| FPT(g»includes(p)==TRUE))==TRUE)
return candidatescollect(p| candidatesexists(q| »f>p—f)==FALSE)—first

whnh o

No gk

Adding Loops

AddLoops(ModeI M)
seq of Component Underfed, set of Component Cmpesrqg of Component SegSwts
seq of Component Trace
1. Underfed=M-collect(p| p~type==LOAD AND IsUnderfed(M, p)==TRUE)
2. Underfed-order(p<q if (p~priority > q—priority OR
(Mexists(S—exists(t>AD—exists(u| tk»pCmp==q) OR
+HOD—exists(u] b»pCmp==q)))
AND
Mforall(S|S—forall(tjt—AD—-collect(u| 4»pCmp==p}->size==0 AND
-OD—-collect(u] v>pCmp==p}>size==0)))))
3. Underfed-iterate(p|
If IsUnderfed(p)==TRUE AND
FPT(p)-forall(g|Segment(g)-collect(r|—status==FAILED}»size==0)==TRUE
Then Trace=FPT(p),
Traceiterate(q|
If CmpSegexcludes(q)
Then CmpSeg=Segment(q),
SegSwts=CmpSerpllect(r| ~type==SWITCH AND r-status==OFF),
SegSwis=SegSwincluding(CmpSeg-collect(r—adjt| —adjt!'=NULL
ANB>adjt—type==SWITCH
ANB-adjt—status==0OFF
ANERgment@-adjt—fpt) —

collect(s|s»status==FAILED)—size==0)),

SegSwigtollect(r| F>status=ON),
If CheckConstraints(JFRUE AND IsUnderfed(M, p)==FALSE
Then SegSwasrder(r<s if >f<s—f)
SegSwiiterate(r| +>status==0FF,
If IsUnderfed(M, p)==TRUE
Thenstatus=ON,
SegSwigtindex=SegSwtssize
EndlIf)
Else If CheckConstra{jt=FALSE
Then SegSwillect(r| F»status=OFF),
Tras#index=Trace-»size
EndIf
EndIf
EndIf)
Endif)

92

IsUnderfed(Model M, Component pCmp)
0. return (pCmp-f < pCmp-fry) OR

M-—exists(p| p>AD—exists(q| gpCmp==pCmp AND
pCmp-f / pCmp—fq< g—percent)) AND

M-exists(p| p~OD—exists(q| e»pCmp==pCmp AND
pCmp-f / pCmp—fq< g—percent)

AND
-pOD—exists(q| g»pCmp—f / g—pCmp—fq>g—percent)==FALSE)

93

