MECHANICAL BEHAVIOR OF SOIL-BENTONITE CUTOFF WALLS

Diane Yamane Baxter

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

> Doctor of Philosophy in Civil Engineering

Approved:

G. M. Filz, Chairman

R. C. Batra

J. M. Duncan

T. Kuppusamy

J. K. Mitchell

April 14, 2000 Blacksburg, Virginia

Keywords: Soil-Bentonite, Cutoff Wall, Vertical Barrier Finite Element, Constitutive Modeling

MECHANICAL BEHAVIOR OF SOIL-BENTONITE CUTOFF WALLS

Diane Yamane Baxter

(ABSTRACT)

A soil-bentonite cutoff wall is a type of subsurface vertical barrier constructed by backfilling a trench with a mixture of soil, bentonite, and water. Although soil-bentonite cutoff walls are common, their mechanical behavior is not well understood. Current design procedures do not consider the final stress state of the consolidated soil-bentonite backfill or deformations in adjacent ground. The final stress state in the completed wall is important because it influences the hydraulic conductivity of the cutoff (*Barrier* 1995), the cutoff's susceptibility to hydraulic fracture, and the magnitude of deformations adjacent to the cutoff wall. Deformations adjacent to the cutoff wall can be significant and can cause damage to adjacent structures. The objectives of this research are to 1) add to the current body of knowledge of the properties of soil-bentonite mixtures, 2) evaluate constitutive models and select a model to represent soil-bentonite, 3) model a soilbentonite cutoff wall using finite elements, and 4) investigate the influence of several factors on the deformations in adjacent ground.

These objectives were met by first summarizing information from the literature on soilbentonite properties and then performing a laboratory testing program on different soilbentonite mixtures. Five constitutive models were evaluated to determine how well they match the data from the laboratory testing program. A model referred to as the RS model was chosen to best represent soil-bentonite, and provided a good match of the soilbentonite behavior. The RS model, which is a special case of a more complicated existing model, is a non-associative Modified Cam Clay type model that has parameters to change the yield surface and plastic potential surface into ellipses of varying shapes. The RS model was implemented into the finite element program SAGE. A finite element model was developed using SAGE to simulate all stages of construction of a soil-bentonite cutoff wall including excavation of a trench under bentonite-water slurry, replacement of the bentonite-water slurry with soil-bentonite backfill, and consolidation of the soil-bentonite backfill. The model was calibrated with a welldocumented case history, and predicted deformations in adjacent ground were close to measured deformations. Evaluation of the model indicates that there is good confidence in the prediction of deformations in adjacent ground, but there is lower confidence in the predicted stresses in the consolidated soil-bentonite and settlement of the backfill in the trench. A parametric study was then performed using the finite element model assuming sand sites of varying density and OCR. Deformations in adjacent ground were calculated for various soil conditions, soil-bentonite properties, and trench configurations. A correlation was found between maximum calculated settlement in adjacent ground and factor of safety against trench stability during excavation.

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Professor George Filz for asking me to work with him on this very challenging and interesting project and for providing guidance, insight, and support throughout the course of this research. I have learned a lot from his thorough and insightful review of this research and his dedication to producing high quality and practical research.

I would like to thank my committee members Professors Romesh Batra, J. Michael Duncan, T. Kuppusamy, and James K. Mitchell for their advice and suggestions during this research and for providing many engineering tools that I have gathered from their classes.

I received financial support from the Charles E. Via Jr. Department of Civil Engineering in the form of a Via Fellowship and also from a Research Assistantship, which was funded by the National Science Foundation and Woodward-Clyde Consultants. I gratefully acknowledge this support.

I would like to thank many people who provided insight and suggestions on this research and also provided a changing collective of friends who made my stay in Blacksburg, Virginia very enjoyable: John Bonita, Jeremy Britton, Faith Capone, Harry Cooke, Jaco Esterhuizen, Trish Gallagher, Jesús Gómez, Matt Helmers, Wayne Herring, Travis Munson, Kathy Patterson, Carmine Polito, Alan Rauch, and Carol Crawford Smith. I especially want to thank Gerry Heslin and Laura Henry for assistance with the laboratory testing program, Tiffany Adams for collecting information on soil-bentonite cutoff wall case histories, Dave Bentler for providing technical assistance with SAGE and making changes to SAGE, and Guney and Selen Olgun for taking me into their home for my last semester in Blacksburg. I am grateful for the love and support of my Mom and Dad, Barbara and Herbert Yamane, my brother, Stephen, and his wife, Jennifer, my nephews, K.B. and Brett, my godmother, Jan Pavliska, and my Baxter family, Thelma, Dave, and Ian.

Most importantly, I am so grateful and fortunate to be married to the most patient, understanding, loving, wise, and entertaining person that I know. Thank you Chris for literally going through this experience with me.

TABLE OF CONTENTS

Abstract	ii
Acknowledgements	iv
Table of Contents	vi
List of Tables	ix
List of Figures	xi

CHAPTER 1 INTRODUCTION

1.1 Description of Soil-Bentonite Cutoff Walls	1
1.2 Need for Information on Mechanical Behavior of Soil-Bentonite Cutoff Wa	lls2
1.3 Objectives and Scope of Research	2
14 Overview of Penert	

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	6
2.2	Construction Process	6
2.3	Current Design Procedures	7
2.4	Engineering Properties of Soil-Bentonite	9
2.5	In Situ State of Stress in Soil-Bentonite Backfill	15
2.6	Deformations of Soil-Bentonite Cutoff Walls and Adjacent Ground	19

CHAPTER 3 LABORATORY TESTING PROGRAM

3.1	Description of Laboratory Testing Program	. 32
3.2	Grain Size Distribution and Index Tests	.33
3.3	Hydraulic Conductivity Tests	. 35
3.4	Consolidation Tests	.38
3.5	Triaxial Tests	.43

CHAPTER 4 CONSTITUTIVE MODELING FOR SOIL-BENTONITE

89
91
95
109
114
• • •

CHAPTER 5 CASE HISTORY OF A SOIL-BENTONITE CUTOFF WALL

5.1	Introduction	155
5.2	Site Conditions	156
5.3	Cutoff Wall Construction	158
5.4	Deformations of the Ground Adjacent to the Cutoff Wall	160

CHAPTER 6 FINITE ELEMENT MODELING OF A SOIL-BENTONITE CUTOFF WALL

6.1	Introduction	178
6.2	Previous Examples of Finite Element Modeling of Soil-Bentonite Cutoff Walls	179
6.3	Preliminary Finite Element Analyses	183
6.4	Modeling Soil Conditions at Raytheon	184
6.5	Description of the Finite Element Model	195
6.6	Procedures for Modeling Construction Sequence	198
6.7	Comparison of Predicted and Measured Deformations	207
6.8	Calibration of Model and Results of Revised Analysis	211

CHAPTER 7 PARAMETRIC STUDY USING FINITE ELEMENT MODEL

7.1	Introduction	. 235
7.2	Base Case Description and Evaluation of Results	. 236
7.3	Description of Parametric Study	. 246
7.4	Results of Parametric Study	. 249

CHAPTER 8 SUMMARY AND CONCLUSIONS

8.1	Introduction	
8.2	Literature Review	
8.3	Laboratory Testing Program	
8.4	Constitutive Modeling of Soil-Bentonite	
8.5	Finite Element Analysis of Soil-Bentonite Cutoff Walls	
8.6	Parametric Study using Finite Element Model	
8.7	Practical Implications of Research	
8.8	Recommendations for Further Research	
REFERENCES		
AP	PENDIX A CORRECTIONS TO TRIAXIAL DATA	

APPENDIX B PRELIMINARY FINITE ELEMENT ANALYSES WITH SAGE	
D.1. Varification of the DS Model in SACE	210
B.2 Analysis of Arching in a Soil-Bentonite Cutoff Wall	318
B.3 Shearing of a Thin 2-D Element of Soil-Bentonite	327
APPENDIX C INPUT DATA FILE FOR CASE HISTORY ANALYSIS	
WITH SAGE	339
VITA	

LIST OF TABLES

Table 2.1 1992)	Consolidation Data on Various Soil-Bentonite Mixtures (after Khoury et al. 11
Table 2.2	Consolidation Data from Undisturbed Samples (Evans and Cooley 1993)11
Table 3.1	Index Properties of Soil-Bentonite Mixtures SB1 and SB334
Table 3.2	Consolidation Test Results on SB1 and SB341
Table 3.3	Isotropically Consolidated Undrained Triaxial Test Results for SB1
Table 3.4	Isotropically Consolidated Undrained Triaxial Test Results for SB348
Table 3.5	K _o Consolidated Undrained Triaxial Test on SB151
Table 3.6	Undrained Strength Parameter Values for SB1 and SB352
Table 3.7	Isotropically Consolidated Drained Triaxial Test Results for SB154
Table 3.8	Isotropically Consolidated Drained Triaxial Test Results for SB355
Table 3.9	Drained Strength Parameter Values for SB1 and SB355
Table 4.1	Hyperbolic Parameter Values for SB194
Table 4.2	Cam Clay and Modified Cam Clay Parameter Values for SB1 102
Table 4.3	Values of K_o for R Model with M=1.3 113
Table 4.4	Values of K_o for RS Model with M=1.3 120
Table 4.5	Parameter Values for RS Model for SB1 and SB3121
Table 6.1	Soil Parameter Values used in Finite Element Model
Table 6.2	Stress History of Clay Layers
Table 6.3	Steps for Modeling Construction Sequence
Table 6.4	Modeling of Soil-Bentonite During Fill Placement

Table 6.5	Modified Finite Element Analysis	214
Table 7.1	Soil Parameters used in Parametric Study Base Case	237
Table 7.2	Steps for Modeling Base Case	239
Table 7.3	Summary of Parametric Study	247
Table 7.4	Soil Parameter Values for Sand used in Parametric Study	248
Table 7.5 Study	Summary of Maximum Deformations in Adjacent Ground for Parametric	250
Table 7.6 Excavatio	Factor of Safety During Excavation and Maximum Settlement Values After n and Consolidation	252

LIST OF FIGURES

Figure 2.1 Soil-Bentonite Cutoff Wall Construction Process (<i>Barrier</i> 1995)24
Figure 2.2 Compression Ratio Versus Fines Content for Various Soil-Bentonite Mixtures (D'Appolonia 1980)
Figure 2.3 Triaxial Test Data on Various Soil-Bentonite Mixtures (D'Appolonia 1980)
Figure 2.4 Effect of Consolidation Pressure on Hydraulic Conductivity of Soil-Bentonite Mixtures (<i>Barrier</i> 1995)
Figure 2.5 Theoretical Predictions of Major Principal Effective Stress in a Soil-Bentonite Cutoff Wall
Figure 2.6 Ground Deformations Due to Construction of a Soil-Bentonite Cutoff Wall (Filz 1996)
Figure 2.7 Ground Settlement Due to Slurry Trench Excavation (Cowland and Thorley 1985)
Figure 2.8 Building Settlements Due to Slurry Trench Excavation (Cowland and Thorley 1985)
Figure 3.1 Grain Size Distributions of SB1, SB2, and SB3
Figure 3.2 Slump Versus Water Content for Various Soil-Bentonite Mixtures
Figure 3.3 Hydraulic Conductivity Results for Various Soil-Bentonite Mixtures
Figure 3.4 One-Dimensional Consolidation Test C5 on SB159
Figure 3.5 One-Dimensional Consolidation Test C6 on SB1
Figure 3.6 Isotropic Consolidation Test IC_1 on SB160
Figure 3.7 Isotropic Consolidation Test IC_2 on SB160
Figure 3.8 One-Dimensional Consolidation Test CP5 on SB361
Figure 3.9 One-Dimensional Consolidation Test CP6 on SB361

Figure 3.10 Major Principal Effective Stress Versus Void Ratio for Consolidation Tests on SB1 and SB3
Figure 3.11 Mean Effective Stress Versus Void Ratio for Consolidation Tests on SB1 and SB3
Figure 3.12 Consolidated Undrained Triaxial Test CU_3 on SB163
Figure 3.13 Consolidated Undrained Triaxial Test CU_4 on SB164
Figure 3.14 Consolidated Undrained Triaxial Test CU_5 on SB165
Figure 3.15 Consolidated Undrained Triaxial Test CU_6 on SB1
Figure 3.16 Consolidated Undrained Triaxial Test CU_7 on SB167
Figure 3.17 Consolidated Undrained Triaxial Test CU_8 on SB168
Figure 3.18 Consolidated Undrained Triaxial Test CU_9 on SB169
Figure 3.19 Consolidated Undrained Triaxial Test CU_11 on SB370
Figure 3.20 Consolidated Undrained Triaxial Test CU_13 on SB371
Figure 3.21 Consolidated Undrained Triaxial Test CU_14 on SB372
Figure 3.22 Combined Stress Path for K _o Consolidation Test Ko_2 on SB1 Subsequently Sheared Undrained as Test CU_15
Figure 3.23 K _o Consolidation Test Ko_2 on SB174
Figure 3.24 K _o Consolidated Undrained Triaxial Test CU_15 on SB175
Figure 3.25 Undrained Strength Envelope for SB1
Figure 3.26 Undrained Strength Envelope for SB3
Figure 3.27 Consolidated Drained Triaxial Test CD_1 on SB178
Figure 3.28 Consolidated Drained Triaxial Test CD_2 on SB179
Figure 3.29 Consolidated Drained Triaxial Test CD_5 on SB180
Figure 3.30 Consolidated Drained Triaxial Test CD_6 on SB181

Figure 3.31 Consolidated Drained Triaxial Test CD_7 on SB182
Figure 3.32 Consolidated Drained Triaxial Test CD_8 on SB183
Figure 3.33 Consolidated Drained Triaxial Test CD_10 on SB1
Figure 3.34 Consolidated Drained Triaxial Test CD_11 on SB385
Figure 3.35 Consolidated Drained Triaxial Test CD_12 on SB3
Figure 3.36 Drained Strength Envelope for SB1
Figure 3.37 Drained Strength Envelope for SB3
Figure 4.1 Determining Hyperbolic Parameter Values from CD tests on SB1122
Figure 4.2 Comparison of CD Tests on SB1 and Hyperbolic Model Prediction
Figure 4.3 Comparison of One-Dimensional Consolidation Test on SB1 and Hyperbolic Model Prediction
Figure 4.4 Properties of Cam Clay Model and Modified Cam Clay Model125
Figure 4.5 Determining N Parameter of Cam Clay Model for SB1126
Figure 4.6 Determining Poisson's Ratio for SB1
Figure 4.7 Determining the Yield Point for CD_4128
Figure 4.8 Yield Points for SB1 Normalized by the Mean Consolidation Pressure, p _{con}
Figure 4.9 Consolidated Drained Triaxial Test CD_8 on SB1
Figure 4.10 Shape of Yield Functions for SB1 and Cam Clay Models
Figure 4.11 Normalized Plots of CU Tests on Normally Consolidated Samples of SB1 with Representative Curves
Figure 4.12 Normalized Plots of CD Tests on Normally Consolidated Samples of SB1 with Representative Curves
Figure 4.13 Representative Normalized CU Test of SB1 and Cam Clay Models

Figure 4.14 Representative Normalized CD Test of SB1 and Cam Clay Models
Figure 4.15 Comparison of One-Dimensional Consolidation Test on SB1 with Modified Cam Clay Model
Figure 4.16 Comparison of Isotropic Consolidation Test on SB1 with Cam Type Models
Figure 4.17 Properties of R Model
Figure 4.18 Graphical Estimate of R Parameter for SB1
Figure 4.19 Shape of Yield Functions for SB1 and R Model with Various R and p' _o Values
Figure 4.20 Representative Normalized CU Test of SB1 and R Model with Varying R Values
Figure 4.21 Representative Normalized CD Test of SB1 and R Model with Varying R Values
Figure 4.22 Properties of RS Model
Figure 4.23 Plastic Strain Increment Vectors for SB1 Plotted at Yield Points
Figure 4.24 Estimated Shape of Plastic Potential Function for SB1145
Figure 4.25 Points on Plastic Potential Function for SB1 and RS Model Plastic Potential Function with S=3.1
Figure 4.26 Representative Normalized CU Test of SB1 and RS Model with Varying R Values and Constant S Value
Figure 4.27 Representative Normalized CD Test of SB1 and RS Model with Varying R Values and Constant S Value
Figure 4.28 Representative Normalized CU Test of SB1 and RS Model with Varying S Values and Constant R Value
Figure 4.29 Representative Normalized CD Test of SB1 and RS Model with Varying S Values and Constant R Value

Figure 4.30 Representative Normalized CU Test of SB1 and RS Model with Best Fit R and S Parameters
Figure 4.31 Representative Normalized CD Test of SB1 and RS Model with Best Fit R and S Parameters
Figure 4.32 Representative Normalized CU Test of SB3 and RS Model with Best Fit R and S Parameters
Figure 4.33 Representative Normalized CD Test of SB3 and RS Model with Best Fit R and S Parameters
Figure 5.1 Raytheon Site Plan (after HLA 1989)
Figure 5.2 Typical Subsurface Profile (after Golder 1987)167
Figure 5.3 Simplified Hydrogeologic Subsurface Profile
Figure 5.4 Soil-Bentonite Cutoff Wall Construction at Raytheon (after Burke and Achhorner 1988)
Figure 5.5 Hydraulic Conductivity Tests on Soil-Bentonite (after Burgess et al. 1988)
Figure 5.6 Lateral Deformation with Depth at Inclinometer RGI-2
Figure 5.7 Lateral Deformation with Depth at Inclinometer RGI-3 172
Figure 5.8 Increments of Lateral Deformation at Various Times After Backfill Placement at RGI-2 and RGI-3
Figure 5.9 Timelines for Excavation Sequence, Groundwater Levels, and Deformations in the Vicinity of RGI-2
Figure 5.10 Groundwater Levels at the North Leg of the Cutoff Wall
Figure 5.11 Timelines for Excavation Sequence, Groundwater Levels, and Deformation in the Vicinity of RGI-3
Figure 5.12 Movements of Adjacent Ground During Soil-Bentonite Cutoff Wall Construction and Consolidation
Figure 6.1 Soil Profile used in Finite Element Analyses

Figure 6.2 Penetration Tests Performed in Sand	16
Figure 6.3 Penetration Tests Performed in Clays2	17
Figure 6.4 Preconsolidation Pressures from 1-D Consolidation Tests2	18
Figure 6.5 Undrained Shear Strengths for Clays	19
Figure 6.6 RS Model Predictions of CU Tests of Soil-Bentonite	20
Figure 6.7 Hydraulic Conductivity Tests on Sands and Clays with Values used in Analyses	.21
Figure 6.8 Hydraulic Conductivity Tests on Soil-Bentonite (after Burgess et al. 1988)	.22
Figure 6.9 Plan of Raytheon Site and Section Analyzed with Finite Element Model 2	23
Figure 6.10 Finite Element Mesh and Boundary Conditions	24
Figure 6.11 Enlargement of Finite Element Mesh Near Soil-Bentonite Cutoff Wall2	25
Figure 6.12 Assumed Initial Pore Pressures	26
Figure 6.13 Stress Distributions Applied to Represent Bentonite-Water Slurry	27
Figure 6.14 Void Ratio versus Mean Effective Stress for Soil-Bentonite	28
Figure 6.15 Schematic of Recently Placed Row of Soil-Bentonite Elements	29
Figure 6.16 Pore Pressures in Soil-Bentonite Backfill	30
Figure 6.17 Comparison of Predicted and Measured Incremental Lateral Deformation	.31
Figure 6.18 Comparison of Predicted and Measured Total Settlement of Ground Surfac Adjacent to Soil-Bentonite Cutoff Wall	е .32
Figure 6.19 Revised Model: Predicted and Measured Incremental Lateral Deformation	.33
Figure 6.20 Revised Model: Predicted and Measured Total Settlement of Ground Surface Adjacent to Soil-Bentonite Cutoff Wall	34

Figure 7.1 Section Analyzed in Parametric Study	.254
Figure 7.2 Preliminary Analysis: Predicted Lateral Deformations after Excavation	. 255
Figure 7.3 Pressures at Trench Wall with Depth for Base Case Analysis	256
Figure 7.4 Base Case: Predicted Lateral Deformations after Excavation	.257
Figure 7.5 Base Case: Incremental Lateral Deformation at a Distance of 27 ft from Trench Centerline	. 258
Figure 7.6 Base Case: Total Lateral Deformation at a Distance of 27 ft from Trench Centerline	. 259
Figure 7.7 Base Case: Deformation at Ground Surface	. 260
Figure 7.8 Base Case: Settlement in Soil-Bentonite Trench	261
Figure 7.9 Vertical Effective Stress in Consolidated Soil-Bentonite	. 262
Figure 7.10 Horizontal Effective Stress in Consolidated Soil-Bentonite	.263
Figure 7.11 Stress State for Selected Gauss Points in Consolidated Soil-Bentonite	264
Figure 7.12 Effect of Trench Depth on Deformations in Adjacent Ground	265
Figure 7.13 Effect of Sand Density for OCR=1 on Deformations in Adjacent Ground	. 266
Figure 7.14 Effect of OCR of Loose Sand on Deformations in Adjacent Ground	. 267
Figure 7.15 Effect of OCR of Medium Sand on Deformations in Adjacent Ground	. 268
Figure 7.16 Effect of OCR of Dense Sand on Deformations in Adjacent Ground	. 269
Figure 7.17 Effect of Soil-Bentonite R Parameter on Deformations in Adjacent Ground	. 270
Figure 7.18 Effect of Soil-Bentonite λ Parameter on Deformations in Adjacent Ground	. 271
Figure 7.19 Effect of Water Table on Deformations in Adjacent Ground	. 273

Figure 7.20 Maximum Settlement versus Factor of Safety Against Trench Stability During Excavation
Figure A.1 Schematic of Stress-Strain Curves for Membrane
Figure A.2 Stress Paths from CU Tests on SB1 With and Without Baxter and Filz Triaxial Corrections
Figure A.3 Effect of Various Components of Baxter and Filz Correction
Figure A.4 Comparison of Various Triaxial Corrections
Figure B.1 Numerical Modeling of a CD Triaxial Test Using the RS Model
Figure B.2 Numerical Modeling of a CU Triaxial Test Using the RS Model
Figure B.3 Stress-Strain Predictions of a One-Dimensional Consolidation Test Using the RS Model
Figure B.4 Settlement Versus Time Predictions of a One-Dimensional Consolidation Test Using the RS Model
Figure B.5 Numerical Modeling of an Isotropic Consolidation Test Using the RS Model
Figure B.6 Predictions of Plane Strain Compression of Normally Consolidated Soil- Bentonite Using SAGE
Figure B.7 Predictions of Plane Strain Compression of Over Consolidated Soil-Bentonite Using SAGE
Figure B.8 Stress in Soil-Bentonite at Center of Trench for Arching Analysis
Figure B.9 Displaced Mesh for Arching Anlaysis
Figure B.10 Stress-Strain Behavior of a Long Thin 2-D Element of Soil-Bentonite Using RS Model
Figure B.11 Comparison of Behavior of Direct Shear Test on Filter Cake and SAGE Analysis of Shearing of Long Thin 2-D Soil-Bentonite Element