Evaluating Thermal and Mechanical Properties of Electrically Conductive Adhesives for Electronic Applications

Shuangyan Xu

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering Science and Mechanics

David A. Dillard, Chairman
John G. Dillard
Thomas C. Ward
Scott W. Case
Guo-Quan Lu
Surot Thangjitham

April, 2001
Blacksburg, Virginia

Keywords: Electrically Conductive Adhesives, Environmental Aging, Thermal Properties, Mechanical Properties, Double Cantilever Beam, Durability, Fracture Toughness, Falling Wedge Test, Impact Resistance, Loss Factor

Copyright © 2002, Shuangyan Xu
Evaluating Thermal and Mechanical Properties of Electrically Conductive Adhesives for Electronic Applications

Shuangyan Xu

(ABSTRACT)

The objective of this study was to evaluate and gain a better understanding of the short-term impact performance and the long-term durability of electrically conductive adhesives for electronic interconnection applications. Three model conductive adhesives, designated as ECA1, ECA2 and ECA3, supplied by Emerson & Cuming, were investigated, in conjunction with printed circuit board (PCB) substrates with metallizations of Au/Ni/Cu and Cu, manufactured by Triad Circuit Inc.

Effects of environmental aging on the durability of conductive adhesives and their joints were evaluated. All the samples for both mechanical tests and thermal tests were aged at 85%, 100%RH for periods of up to 50 days. Studies of bulk conductive adhesives suggested that both plasticization, which is reversible and further crosslinking and thermal degradation, which are irreversible, might have occurred upon exposure of ECAs to the hot/wet environment. The durability of electrically conductive adhesive joints was then investigated utilizing the double cantilever beam (DCB) test. It was observed that the conductive adhesive joint was significantly weakened following hydrothermal aging, and there was a transition from cohesive failure to interfacial failure as aging continued. A comparative study of the durability of different conductive adhesive and substrate metallization combinations suggested that the resistance of the adhesive joints to moisture attack is related to the adhesive properties, as well as the substrate metallizations. It was noted that the gold/adhesive interface had better resistance to moisture attack than the copper/adhesive interface. A reasonable explanation of this phenomenon was given based upon the concept of surface free energy and interfacial free energy. XPS analysis was performed on the fractured surfaces of DCB samples. For adhesive joints with copper metallization, copper oxide was detected on the failed surfaces upon exposure of the conductive adhesive joints following aging. XPS analysis on the fractured surfaces of adhesive joints with Au metallization suggested that diffusion of Cu to the Au surface might have happened on the Au/Ni/Cu plated PCB substrates during aging.

The impact performance of conductive adhesives was quantitatively determined using a falling wedge test. This unique impact resistance testing method could serve as a useful tool to screen conductive adhesives at the materials level for bonding purpose. Moreover, this test could also provide some useful information for conductive adhesive development. This study revealed that the viscoelastic energy, which is a result of the internal friction created by chain motions within the adhesive material, played an important role in the impact fracture behavior of the conductive adhesives. This study also demonstrated that the loss factor $\tan \delta$, evaluated at the impact environment conditions is a good indicator of a conductive adhesive’s ability to withstand impact loading.
ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my advisor, Dr. David A. Dillard for his valuable time, advice, guidance and support through my study and research at Virginia Tech and for his steadfast patience, understanding, and encouragement over the last four years.

I also wish to acknowledge my other committee members Dr. John G. Dillard, Dr. Thomas C. Ward, Dr. Scott W. Case, Dr. Guo-Quan Lu and Dr. Surot Thangjitham for serving on my advisory committee, as well as for useful suggestions and guidance on my research work.

I would like to thank former research scientists Dr. Taigyoo Park, and Dr. Jang-Horng Yu, Dr. Donatus C. Ohanehi, Dr. Kai-tak Wan, and Mr. Shu Guo in the Adhesion Mechanics Lab, Guofeng Bai and Johan Strydom in the Power Electronics Packaging Laboratory and Dr. Didier Lefebvre for useful discussions and great help in this work.

A special mention of thanks goes to Mr. Frank Cromer in the surface analytical laboratory and Mr. Bob Simonds in the ESM Dept. at Virginia Tech for their great assistance in this work.

I would like to gratefully acknowledge the support from Motorola Automotive and Industrial Electronics Group, Emerson & Cuming and the Center for Adhesive and Sealant Science at Virginia Tech for this research. I wish to thank Stan Rak of Motorola, and Matt Canale, Gerald Fredrickson, Rose Ann Schultz, and Stone Cheng of Emerson & Cuming/National Starch for their assistance and advice in the work.

I would like to thank the Engineering Science and Mechanics Department at Virginia Tech for providing research facilities.

Thanks are also due to Ms. Shelia Collins and Ms. Loretta Tickle in the ESM Dept. and Ms. Linda Haney and Ms. Tammy Hiner at the Center for Adhesive and Sealant Science at Virginia Tech for their help over the years.

I owe my sincere appreciation to my family, friends, and relatives, who have supported and encouraged me over the years. I want to thank my husband, Dr. Xingsheng Liu for his inspiration, helping to put seemingly impossible struggles into perspective and his love, care, and support.
Finally, I extend my profound appreciation to my beloved parents for their love, affection, support, and blessings over the years.