Electrochemical Studies of Copper-Activation of Sphalerite and Pyrite

Zhuo Chen

(ABSTRACT)

Carbon matrix composite (CMC) electrode and surface conducting (SC) electrode have been developed to study the copper-activation and the subsequent xanthate adsorption on insulating sphalerite. Fabricating CMC electrode involves embedding sphalerite particles in carbon to form a carbon matrix composite; and SC electrode is designed by contacting a platinum wire to the sphalerite surface. When these electrodes are activated by heavy metal ions such as copper, a conducting layer is formed on the mineral surfaces that allows dynamic electrochemical studies to be conducted.

Voltammetric studies on the copper activated CMC:ZnS electrodes in inert electrolytes show that although the activation product and kinetics may differ with pH, copper-activation occurs at all pH ranges. At acidic pH, a Cu$_2$S-like activation product was formed at open circuit. When activation was conducted at near neutral and alkaline pH at open circuit, the surface products formed were identified to be CuS-like. It was also established that the amount of copper uptaken by sphalerite is strongly dependent on the time of activation and on the electrochemical potential applied during activation. Activation at potentials positive of the rest potential decreases the amount of copper on the surface. Indeed, activation at potentials of 50 to 100 mV more positive of the rest potential in the activating solution completely inhibits copper activation. This result is consistent with the anodic stripping voltammetry that shows copper can be removed from the surface of sphalerite at oxidizing potentials. Activation at potentials mildly negative of the rest potential causes a progressive increase in the amount of copper on the surface, consistent with the diffusion controlled reduction process between ZnS and Cu$^{2+}$ ions observed in the activating solution. At very low potentials, however, elemental copper is formed, which may worsen the selectivity of the sphalerite flotation. Controlled potential contact angle measurements showed that xanthate adsorption does occur on copper-activated sphalerite at all pH ranges. However, the contact angles and flotation recovery decrease at near neutral pH. This problem is caused by the
adsorption of the copper-hydroxy species on the activated sphalerite surface. It was found that addition of small amount of complexing reagent can improve the flotation recovery at the near neutral pH.

The results obtained in the present work show that potential control of the activation process can provide a means of controlling copper uptake and, hence, the selectivity and recovery of sphalerite flotation. The development of CMC:ZnS and SC:ZnS electrodes provides a practical and reliable way to quantitatively estimate the amount of copper uptake on sphalerite surface after activation.
ACKNOWLEDGEMENT

The author would like to thank Dr. Roe-Hoan Yoon, my advisor, for his patience, guidance and inspiration throughout the course of this study. Special thanks go to Drs. Paul Richardson, Noel Finkelstein and Ron Woods for their unconditional help, invaluable suggestions and guidance.

The author also wishes to thank Drs. Gerald Luttrell, Gregory Adel and Cesar Basilio for their support and suggestions. Sincere gratitude is expressed to Mr. Wayne Slusser who did a wonderful job in fabricating specially designed cells; to Mr. Roy Hill, who performed all the SEM analysis for my electrodes; and to Dr. Eric Yan, who helped me with countless computer problems.

Special thanks go to the fellow graduate students Rajesh, Vivek, Neeraj and Prabhu, who were always there for me, helping me going through a lot of trouble, academically and personally. The girls in CCMP, Bahar, Eva, Molly, I cannot thank enough for your love and support, and the wonderful time we had together. Many thanks go to Lee, Christine, Alisa, Barbara, Peggy, Lisa, Marcy and Keith, for their heart-warming help and care.

Finally, I would like to thank my parents and brother, who gave me the courage to overcome the problems I encountered in a foreign country, and were always there to support me emotionally.

I dedicate this dissertation to my grandparents, who protected me from the ugliness of the world. You made me everything I am. I know you are smiling at me from heaven.
TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .. 1
 1.1 General ... 1
 1.1.a Activation and Flotation of Sphalerite ... 1
 1.1.b Objectives .. 3
 1.2 Literature Review ... 4
 1.2.a Activation of Sphalerite ... 5
 1.2.b Activation of Pyrite ... 16
 1.3 Structure of the Present Dissertation ... 18

CHAPTER 2 ELECTROCHEMICAL ASPECTS OF COPPER-ACTIVATION OF SPHALERITE ... 22
 2.1 Abstract ... 22
 2.2 Introduction ... 23
 2.3 Experimental ... 24
 2.3.a Material .. 24
 2.3.b Procedure .. 25
 2.4 Results and Discussion .. 26
 2.4.a Characterization of the CMC:ZnS Electrode ... 26
 2.4.b Identification of Open Circuit Activation Surface Product 36
 2.4.c Activation under Controlled Potential Conditions ... 39
 2.4.d Chemical Analysis of Stripping Solutions ... 40
 2.4.e Potential Dependence of the Activation Process ... 34
 2.5 Summary and Conclusions ... 44
CHAPTER 3. ELECTROCHEMICAL STUDIES OF COPPER ACTIVATED SPHALERITE AT pH 9.2

3.1 Abstract .. 46
3.2 Introduction .. 46
3.3 Experimental ... 47
 3.3.a Materials .. 47
 3.3.b Procedures .. 48
3.4 Results and Discussion .. 49
 3.4.a Open Circuit Activation .. 49
 3.4.b Activation under Controlled Potential Conditions .. 53
 3.4.c Contact Angle Measurement .. 55
3.5 Conclusions .. 56

CHAPTER 4. ELECTROCHEMICAL CONTROL OF COPPER ACTIVATED SPHALERITE AT pH 9.2

4.1 Abstract .. 57
4.2 Introduction .. 57
4.3 Experimental ... 58
 4.3.a Materials and Experimental Procedures ... 58
4.4 Results and Discussion .. 58
 4.4.a Voltammetry in Cu(NO₃)₂ Solutions .. 58
 4.4.b Activation under Controlled Potential Conditions .. 63
4.5 Conclusions .. 68
CHAPTER 5. STUDIES OF ACTIVATION OF SPHALERITE BY COPPER AT NEAR NEUTRAL pH

5.1 Abstract .. 69
5.2 Introduction .. 69
5.3 Experimental .. 70
5.4 Results and Discussion .. 71
 5.4.a Open Circuit Activation .. 71
 5.4.b Controlled Potential Activation .. 75
 5.4.c Xanthate Adsorption on Copper-Activated ZnS .. 77
 5.4.d Proposed Mechanisms of Xanthate Adsorption on Copper-Activated ZnS at pH 6.8 ... 80
 5.4.e Improving the Hydrophobicity of ZnS Surface at pH 6.8 75
5.5 Conclusions ... 76

CHAPTER 6. IMPROVING FLOTATION OF SPHALERITE:
Effect Of pH and Activating Potential on The Kinetics of Copper Uptake and Xanthate Adsorption on Sphalerite 84

6.1 Abstract.. 84
6.2 Introduction ... 84
6.3 Experimental ... 86
 6.3.a Materials ... 86
 6.3.b Procedures ... 87
6.4 Results and Discussion ... 87
 6.4.a Effect of pH on the activation kinetics .. 87
 6.4.b Effect of Complex Reagent on the Kinetics of Activation at Different pHs .. 89
 6.4.c Effect of pH and potential on Xanthate Adsorption on Copper-Activated Sphalerite ... 90
 6.4.d Effect of pH and Complex Reagent on ZnS recovery 94
6.5 Conclusions... 95
CHAPTER 7. ELECTROCHEMICAL CONTROL OF PYRITE-ACTIVATION BY COPPER ... 96

7.1 Abstract... 96
7.2 Introduction... 96
7.3 Experimental Procedures .. 97
 7.3.a Materials ... 97
 7.3.b Solutions and Chemicals ... 98
7.4 Results .. 98
 7.4.a Pyrite oxidation and reduction at pH 4.6... 98
 7.4.b Pyrite activation in near-neutral solutions ... 99
 7.4.c Voltammetry in the copper activating solution ... 101
 7.4.d The effect of potential on Cu(II) activation of pyrite ... 102
 7.4.e Pyrite activation in acid solutions-pH 4.6 .. 103
 7.4.f The effect of galvanic contact between pyrite and iron on copper uptake 107
 7.4.g Cu(II) activation of freshly fractured pyrite surfaces ... 108
7.5 Conclusions ... 112

CHAPTER 8 SUMMARY AND FUTURE WORK ... 113

8.1 Summary of the Present Work .. 113
8.2 Suggestions for Future Work .. 114

REFERENCES .. 116

APPENDIX A .. 124
APPENDIX B .. 126
APPENDIX C .. 127
VITA ... 133
LIST OF FIGURES

Figure 2-1. Schematic Image of Carbon Matrix Composite Electrode 25

Figure 2-2. Rest potential measurements of a CMC:ZnS electrode and a CMC:Carbon electrode immersed in a 10^{-4} M CuSO$_4$ solution at pH 4.6. .. 27

Figure 2-3. Voltammograms of a CMC:ZnS electrode and a CMC:Carbon electrode in pH 4.6 buffer solution after activating at open circuit in pH 4.6 10^{-4} M CuSO$_4$ solution for 10 minutes. 28

Figure. 2-4. Voltammograms of the CMC:ZnS activated in 10^{-4} M CuSO$_4$ solution for 1, 2, 3, and 5 minutes. ... 30

Figure 2-5. Voltammogram of CMC:Zn electrode after activation in pH 4.6 10^{-4} M CuSO$_4$ solution for 10 minutes. Sweep rate 25 mV/s. First sweep positive-going. ... 30

Figure 2-6. Ring (b)-disc (a) voltammograms of the CMC:ZnS electrode after activation in pH 4.6 10^{-4} M CuSO$_4$ solution at open circuit (~0.38 V) for 5 minutes. The ring potential (b) was held at -0.55 V. Rotation rate 2000 rpm. 31

Figure 2-7. Voltammograms of CMC:ZnS at different pH's. Electrode activated in 10^{-4} M CuSO$_4$ at open circuit potential. sweep rate 50 mV/s. The pH's of activation and voltammetry are indicated on the voltammograms.. 32

Figure 2-8. Eh-pH diagram of Cu$_2$S (solid lines; from Young, 1988) and the commencement potentials (open circles) of the voltammograms from Figure 2-7 ... 33

Figure 2-9. Voltammograms of CMC:carbon (curve a) and CMC:ZnS (curve b) electrodes in pH 4.6 10^{-4} M CuSO$_4$ solution at a sweep rate of 5 mV/s. .. 25

Figure. 2-10. Ring disc voltammograms of the CMC:ZnS electrode activated after activation in pH 4.6 10^{-4} M CuSO$_4$ solution at -0.305 V for 2 minutes. The ring potential was held at -0.55 V. Rotation rate 2000 rpm... 35

Figure 2-11. Rest potential measurement of the CMC:ZnS electrode immersed in a 10^{-4} M CuSO$_4$ solution at pH 4.6. The measurement was conducted while stirring the solution. .. 36
Figure 2-12. Voltammogram of CMC:ZnS electrode after activation in pH 4.6 10^{-4} M CuSO$_4$ solution for 5 minutes. Sweep rate 25 mV/s; First sweep positive-going. .. 38

Figure 2-13. Voltammogram of CM:ZnS electrode after activation in pH 4.6 10^{-4} M CuSO$_4$ solution for 5 minutes. Sweep rate 25 mV/s. First sweep negative-going. .. 38

Figure 2-14. Voltammograms of CMC:ZnS electrodes after activation in pH 4.6 10^{-4} M CuSO$_4$ solution at -0.05 V for 10 minutes. The insert is the current-time curve obtained during activation. Sweep rate 25 mV/s. ... 35

Figure 2-15. Current-time curves obtained when activating CMC:ZnS electrodes in pH 4.6 10^{-4} M CuSO$_4$ solution at different potentials for 10 minutes. .. 42

Figure 2-16. Voltammograms of CMC:ZnS electrodes after activation in pH 4.6 10^{-4} M CuSO$_4$ solution for 10 minutes at different potentials. Sweep rate 25 mV/s. ... 43

Figure 3-1. Schematic Image of Surface Conductance Electrode .. 48

Figure 3-2. Potential-time curve of CMC:ZnS electrode in a deoxygenated pH 9.2 buffer solution. The arrow indicates the time of addition of copper sulfate. ... 50

Figure 3-3 (a). Voltammogram of CMC:ZnS electrode after activating in deoxygenated pH 9.2 10^{-4} M CuSO$_4$ solution for 10 minutes. Sweep rate 25 mV/s. First sweep positive-going. 51

Figure 3-3 (b). Voltammogram of CMC:ZnS electrode after activating in deoxygenated pH 9.2 10^{-4} M CuSO$_4$ solution for 10 minutes. Sweep rate 25 mV/s. First sweep negative-going. 51

Figure 3-4. Voltammogram of CMC:ZnS electrode after activating in pH 9.2 10^{-4} M CuSO$_4$ solution at 0.195 V for 10 minutes. Sweep rate 25 mV/s. ... 54

Figure 4-1. Voltammograms of CMC:ZnS electrode (curve a) and CMC:Carbon electrode (curve b) in pH 9.2 10^{-4} M Cu(NO$_3$)$_2$ solution. Sweep rate 1 mV/s. ... 60
Figure 4-2. Voltammograms of CMC:ZnS electrode (curve a) and CMC:Carbon electrode (curve b) in pH 9.2 10^{-4} M Cu(NO$_3$)$_2$ solution. Sweep rate 5 mV/s. ... 62

Figure 4-3. Voltammogram of CMC:ZnS electrode after activating in pH 9.2 10^{-4} M Cu(NO$_3$)$_2$ solution at 0.075 V for 10 minutes. The insert is the current-time curve obtained during activation. Sweep rate 35 mV/s. ... 64

Figure 4-4. Current-time curves obtained when activating CMC:ZnS electrode in pH 9.2 10^{-4} M Cu(NO$_3$)$_2$ solution at different potentials for 10 minutes. ... 66

Figure 4-5. Voltammograms of CMC:ZnS electrodes after activating in pH 9.2 10^{-4} M Cu(NO$_3$)$_2$ solution for 10 minutes at different potentials. Sweep rate 35 mV/s. ... 67

Figure 5-1. Rest potential measurement of the CMC:ZnS electrode immersed in a 10^{-4} M Cu(NO$_3$)$_2$ solution at pH 6.8. ... 72

Figure 5-2 (a). Voltammogram of CMC:ZnS electrode after activating in deoxygenated pH 6.8 10^{-4} M Cu(NO$_3$)$_2$ solution for 10 minutes. Sweep rate 25 mV/s. First sweep positive-going. 74

Figure 5-2 (b). Voltammogram of CMC:ZnS electrode after activating in deoxygenated pH 6.8 10^{-4} M Cu(NO$_3$)$_2$ solution for 10 minutes. Sweep rate 25 mV/s. First sweep negative-going. 74

Figure 5-3. Voltammogram of CMC:ZnS electrode after activating in pH 6.8 10^{-4} M Cu(NO$_3$)$_2$ solution at 0.18 V for 10 minutes. Sweep rate 25 mV/s. ... 75

Figure 5-4. Voltammograms of copper-activated CMC:ZnS electrode (curve a) and CMC:ZnS electrode (curve b) in pH 6.8 10^{-3} M KEX solution. Curve c: voltammogram of a copper activated CMC:ZnS electrode in pH 6.8 buffer solution. Sweep rate 25 mV/s. 78

Figure 5-5. Curve a: voltammogram of a copper-activated SC:ZnS electrode in pH 6.8 10^{-3} M KEX solution. Sweep rate 25 mV/s. Curve b: contact angles measured on a copper-activated SC:ZnS electrode in pH 6.8 10^{-4} M KEX solution. ... 80

Figure 6-1. Flotation recovery as a function of pH at different CuSO$_4$ concentration. (from Steininger et al, 1968). ... 85
Figure 6-2. Copper uptake measured by means of the height of the anodic peak in voltammograms as function of time at different pH ... 89

Figure 6-3. Copper uptake measured by means of the height of the anodic peak in voltammograms as function of time at different pH and solution conditions .. 90

Figure 6-4. Curve a: voltammogram of a copper-activated SC:ZnS electrode in pH 9.2 10^{-3} M KEX solution. Sweep rate 25 mV/s. Curve b: contact angles measured on a copper-activated SC:ZnS electrode in pH 9.2 10^{-4} M KEX solution .. 92

Figure 6-5. Curve a: voltammogram of a copper-activated SC:ZnS electrode in pH 4.6 10^{-3} M KEX solution. Sweep rate 25 mV/s. Curve b: contact angles measured on a copper-activated SC:ZnS electrode in pH 4.6 10^{-4} M KEX solution .. 92

Figure 6-6. Curve a: voltammogram of a copper-activated SC:ZnS electrode in pH 6.8 10^{-3} M KEX solution. Sweep rate 25 mV/s. Curve b: contact angles measured on a copper-activated SC:ZnS electrode in pH 6.8 10^{-4} M KEX solution .. 93

Figure 6-7. Flotation recovery of sphalerite as function of pH at different solution conditions .. 94

Figure 7-1. Background voltammogram (a) and ring current (b) for ring-disc electrode of pyrite at pH 4.6. Gold ring was held at -0.45 V. Sweep rate 30 mV/s; rotation speed 2000 rpm .. 99

Figure 7-2. First (1) and second (2) voltammograms (a) and ring current (b) for pyrite at pH 4.6 after 10 minutes activation in 10^{-4} M CuSO$_4$ at pH 6.7. Sweep rate 30 mV/s; rotation speed 2000 rpm .. 100

Figure 7-3. Voltammograms of pyrite in quiescent and stirred 10^{-4} M CuSO$_4$ solution at pH 6.2. Sweep rate 30 mV/s; rotation speed 2000 rpm .. 102

Figure 7-4. Voltammogram of pyrite at pH 4.6. The electrode was activated at pH 6.2 in 10^{-4} M CuSO$_4$ solution at 0.25 V (curve a) and 0.2 V (curve b). Sweep rate 20 mV/s; rotation speed 2000 rpm 103

Figure 7-5. Voltammogram of pyrite at pH 4.6 after activation at open circuit potential (~0.3 V) at pH 4.6 in 10^{-4} M CuSO$_4$ solution. Gold ring was held at -0.45 V. Sweep rate 30 mV/s; rotation speed 2000 rpm .. 105
Figure 7-6. First four voltammograms (curve a) of pyrite at pH 4.6 after activation at pH 4.6 in 10^{-4} M CuSO_{4} solution. Ring was held at -0.45 V on the first sweep (curve b) and at 0.65 V on the second sweep (curve c). ... 106

Figure 7-7. Potential of pyrite and iron as a function of time before and after galvanic coupling in 10^{-4} M CuSO_{4} solution at pH 6.4. 107

Figure 7-8. First five voltammograms of pyrite at pH 4.6 after activation at pH 6.4 in 10^{-4} M CuSO_{4} solution. Electrode was galvanically coupled with iron during activation. Gold was held at -0.45 V. Sweep rate 30 mV/s; rotation speed 2000 rpm. ... 108

Figure 7-9. Open circuit potential of pyrite electrode (#826) before and after fracture at pH 6.8 in 10^{-4} M CuSO_{4} solution... 109

Figure 7-10. Voltammogram of freshly fractured pyrite (#826) at pH 4.6 after activation at pH 6.8 in 10^{-4} M CuSO_{4} solution for 10 minutes. Sweep rate 30 mV/s. ... 110

Figure 7-11. Open circuit potential of pyrite electrode (#708) before and after fracture at pH 6.8 in 10^{-4} M CuSO_{4} solution.. 110

Figure 7-12. Voltammogram of freshly fractured pyrite (#708) at pH 4.6 after treatment at pH 6.8 in 10^{-4} M CuSO_{4} solution. Sweep rate 30 mV/s. ... 111

Figure 7-13. Voltammograms of freshly fractured pyrite(#708) at pH 4.6 after reactivation at pH 6.4 in 10^{-4} M CuSO_{4} solution at 0.25 V (curve a) and 0.15 V (curve b) for 10 minutes. Sweep rate 30 mV/s. 111
LIST OF TABLES

Table 2-1. Amount of Copper Present in Stripping Solutions as Determined by ICP .. 41

Table 3-1. Effect of Oxidation on Contact Angle .. 55

Table 5-1. Effect of Cleaning Reagent and Carbon Chain Length on Contact Angle ... 82