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Nonlinear Response of Cantilever Beams

Haider N. Arafat

(ABSTRACT)

The nonlinear nonplanar steady-state responses of cantilever beams to direct and parametric har-

monic excitations are investigated using perturbation techniques. Modal interactions between the

bending-bending and bending-bending-twisting motions are studied. Using a variational formu-

lation, we obtained the governing equations of motion and associated boundary conditions for

monoclinic composite and isotropic metallic inextensional beams. The method of multiple scales

is applied either to the governing system of equations and associated boundary conditions or to

the Lagrangian and virtual-work term to determine the modulation equations that govern the slow

dynamics of the responses. These equations are shown to exhibit symmetry properties, reflecting

the conservative nature of the beams in the absence of damping.

It is popular to first discretize the partial-differential equations of motion and then apply a per-

turbation technique to the resulting ordinary-differential equations to determine the modulation

equations. Due to the presence of quadratic as well as cubic nonlinearities in the governing sys-

tem for the bending-bending-twisting oscillations of beams, it is shown that this approach leads to

erroneous results. Furthermore, the symmetries are lost in the resulting equations.

Nontrivial fixed points of the modulation equations correspond, generally, to periodic responses

of the beams, whereas limit-cycle solutions of the modulation equations correspond to aperiodic

responses of the beams. A pseudo-arclength scheme is used to determine the fixed points and

their stability. In some cases, they are found to undergo Hopf bifurcations, which result in limit

cycles. A combination of a long-time integration, a two-point boundary-value continuation scheme,

and Floquet theory is used to determine in detail branches of periodic and chaotic solutions and



assess their stability. The limit cycles undergo symmetry-breaking, cyclic-fold, and period-doubling

bifurcations. The chaotic attractors undergo attractor-merging and boundary crises as well as

explosive bifurcations.

For certain cases, it is determined that the response of a beam to a high-frequency excitation is

not necessarily a high-frequency low-amplitude oscillation. In fact, low-frequency high-amplitude

components that dominate the responses may be activated by resonant and nonresonant mecha-

nisms. In such cases, the overall oscillations of the beam may be significantly large and cannot be

neglected.
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Chapter 1

Introduction

1.1 Motivation

We investigate nonlinear modal interactions that may occur in externally excited cantilever beams.

Airplane wings, helicopter blades, gun barrels, and high-rise buildings are just some of the me-

chanical and structural examples where vibration analysis of structures in general and beams in

particular is essential for their design. Linear modeling of structures can be inaccurate, inade-

quate, and misleading. It is inaccurate when the amplitudes of oscillations are high and the natural

frequencies become increasingly dependent on these amplitudes (e.g., Woinowski-Krieger, 1950;

Burgreen, 1951). It is inadequate because it does not consider the effect of one mode’s oscillations

on another, and therefore it eliminates the possibilities of quasiperiodic and whirling motions (e.g.,

McDonald, 1955; Haight and King, 1970 and 1972). Finally, it is misleading because it might pre-

dict a certain solution to be stable when in fact it is unstable (e.g., Nayfeh and Mook, 1979,§7.3).

Needless to say, certain response characteristics, such as jumps, bifurcations, saturation, and multi-

plicity of solutions, are all ignored by linear models, all of which can occur in a structure. Therefore,

to fully grasp and anticipate the behavior of a structure, one needs to consider the influence of non-

linearities inherent in the system (von Kármán, 1940; Zavodney, 1987; Nayfeh, Mook, and Nayfeh,

1987; Hodges, Crespo da Silva, and Peters, 1988; and Nayfeh and Balachandran, 1989).

Nonlinearities may couple the different flexural, torsional, and longitudinal modes of a structure,

1
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and hence the reaction to a simple harmonic excitation can be either a simple harmonic response

or a very complex response consisting of many modes and exhibiting undesirable motions, such as

chaotic oscillations. Therefore, unless these responses are fully understood and accounted for in

designing a structure, unpredictable results that can be in some instances catastrophic may occur.

To further illustrate this point, we present three examples.

Probably, the most notorious is the collapse of the Tacoma Narrows Bridge on November 7, 1940,

just a few months after it was finished (Billah and Scanlan, 1990). From the beginning, motorists

noticed that the bridge repeatedly and noticeably vibrated in pure bending, even when under good

weather conditions, that it was labeled “Galloping Gertie.” However inconvenient, such bending

motions were believed to be safe because their amplitudes were small and limited, and so they

would eventually be damped out. However, on the ill-fated day, the narrow I-section bridge was

hit by a 42 mph wind gust that ever-so-slightly excited the fundamental torsional mode. This

torsional motion, whose amplitude was not limited, induced a flutter wake. The flutter wake in

turn fed energy back into the torsional motion, acting as a parametric excitation that produced

negative damping in the system. This process continued for nearly 45 minutes with the torsional

motion monotonically increasing until the bridge fell apart, as can be seen from Figures 1.1 and

1.2. Subsequent design modifications included a larger width-to-span ratio and framed sides. This

stiffened the bridge in torsion and prevented the wind from getting trapped underneath it, thereby

eliminating the possibility of introducing negative damping.

An equally disastrous event is that of the Lockheed L-188 Electra plane (Serling, 1963). In 1959,

Lockheed introduced its first turboprop engine plane that was capable of carrying at least 65

passengers and cruising at a speed of more than 400 mph. The plane, which was propelled by four

engines, was designed to be fail-safe and was extensively tested both for structural strength and for

handling and performance under severe weather conditions. It also passed and exceeded all of the

required Civil Aeronautics Administration (now the Federal Aviation Agency) safety specifications.

However, on September 29, 1959, just ten days after it was delivered, Braniff flight 542 on its way

from Houston to New York broke apart and crashed over Buffalo, Texas, killing all passengers.

Investigators combed through the wreckage and found that parts of the left engines (numbers one

and two) as well as a section of the left wing were the farthest distance away, indicating a structural
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(a) (b)

Figure 1.1: The Tacoma Narrows bridge before failure exhibiting large twisting
motions. (a) Side view and (b) end view. Obtained from the internet site:
http://www.fen.bris.ac.uk/engmaths/research/nonlinear/tacoma/tacoma.html.

failure of the left wing. However, they were baffled as to the cause for such a failure, especially

since the weather was calm and the wings had been put through torture without failing.

Less than six months later, on March 17, 1960, Northwest flight 710 from Minneapolis to Miami

crashed over Tell City, Indiana as it encountered severe “clear-air” turbulence. Similar to the first

accident, the right wing and parts of the right-most engine (number four) were located the farthest

away from the crash site. It was later discovered that small whirling motions of the propeller

caused the engine to wobble in its nacelle in the opposite direction. Such whirling motions were

not uncommon and are usually resisted and quenched by the stiffness in the nacelle. However, in

this case, the engine mounts were designed for strength but lacked the necessary stiffness. As the

opposing whirlings of the propeller and turbine kept feeding each other, their gyroscopic motion

caused the wing to vibrate. After some time, as the frequency of the whirling motion slowed down,

its amplitude became very large, thereby inducing very violent forces on the wing. Eventually, the

whirling frequency went down to about 3 Hz, which happened to be the flutter frequency of the

wing. At that moment, the wing tore apart. It is estimated that the whole process took about

thirty seconds.
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Figure 1.2: A side view of the Tacoma Narrows bridge tearing apart. Obtained from the internet
site: http://www.civeng.carleton.ca/Exhibits/Tacoma Narrows/DSmith/photos.html.

Figure 1.3: A model of the Lockheed L-188 Electra plane (Braniff Airways).

The third case happened early last year as I was driving my 1988 Ford Escort in Blacksburg. For

weeks, squeaking noises were coming from the engine hood because the alternator belt was slipping.

The belt was replaced several times, but the slipping persisted. One day, the alternator mounting

bracket all of a sudden snapped and broke into two pieces. The bracket was originally attached to

the engine block by two bolts. Apparently, one bolt had sheared and the other one, while still able

to hold the bracket to the block, could not keep it still. Excitations due to the tension forces in

the belt and the inertia of the alternator caused the bracket to vibrate to the point that the bolt

rimmed the block around it, creating a hole twice the diameter of the original one. Presumably,

because of the bracket’s increasing oscillations, the stresses became so large that it broke. The
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cut was smooth and at an angle indicating that it might have been vibrating in torsion as well

as bending. This is quite possible as the cast-aluminum part had an almost C-type cross-section

which can be susceptible to twisting.

These incidents clearly demonstrate the importance of considering modal interactions, whether

occurring within the structure itself or between the structure and its surroundings. The purpose

of this work is to investigate such interactions in cantilever beams.

1.2 Background and Literature Review

The analytical investigations of the nonplanar responses of cantilever beams basically fall into two

categories. In the first category, the influence of nonlinearities were either neglected or partially

considered. Some included the effect of inertia nonlinearities but disregarded the effect of geometric

ones (Haight and King, 1970, 1972; and Hyer, 1979); some considered just the effect of geomet-

ric nonlinearities (Tso, 1968); and then, others considered just the linear system (Dugundji and

Mukhopadhyay, 1973; Cartmell and Roberts, 1987; and Kar and Sujata, 1990, 1992). In the second

category, both geometric and inertia nonlinearities were considered (Crespo da Silva and Glynn,

1978b; Nayfeh and Pai, 1989; Pai and Nayfeh, 1990a, b and 1991a, b; Crespo da Silva, Zaretzky,

and Hodges, 1991; Shyu, Mook, and Plaut, 1993a, b, and c; Crespo da Silva and Zaretzky, 1994;

Zaretzky and Crespo da Silva, 1994b; and Lee, Lee, and Chang, 1997).

The second-category work clearly shows that including both geometric and inertia nonlinearities

is very important for predicting the beam’s response accurately. Therefore, we account for both

geometric and inertia nonlinearities in our analysis. Furthermore, unlike most studies, we account

for nonlinearities in the boundary conditions. This is important for ensuring that the obtained

approximate solution without the damping terms is derivable from a Lagrangian and a virtual-

work term, and hence the conservative nature of the beam in the absence of damping is not lost.

Moreover, neglecting the effect of nonlinearities in the boundary conditions leads to inaccurate

results, which may be more significant in the case of composite beams where the coupling is linear

as well as nonlinear.

In general, two analytical approaches have been used to investigate the nonlinear vibrations of
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distributed-parameter systems. In the first approach, the governing partial-differential equations

and boundary conditions are first discretized using a variant of the method of weighted residuals.

Then, a perturbation method is applied to a truncated set of the discretized nonlinear ordinary-

differential equation. In the second approach, a perturbation method is directly applied to the

partial-differential system. To third order, both of these approaches are equivalent for systems

possessing cubic nonlinearities, as in the case of flexural-flexural vibrations of beams. On the other

hand, for systems possessing quadratic and cubic nonlinearities, as in the case of flexural-flexural-

torsional vibrations of beams, the first approach may lead to erroneous values for the coefficients

of the modulation equations. This is because the influence of the spatial solution at second order

is incorrectly accounted for (Nayfeh, 1997).

Therefore, throughout our investigation, we employ the direct approach and apply the method

of multiple scales directly to the partial-differential equations of motion and nonlinear boundary

conditions or apply the method of time-averaged Lagrangian along with Hamilton’s extended prin-

ciple directly to the Lagrangian and virtual-work term. This is in contrast to the work of Crespo

da Silva and Zaretzky (1994), Zaretzky and Crespo da Silva (1994b), and Lee, Lee, and Chang

(1997) who investigated flexural-flexural-torsional responses of cantilever beams by treating a trun-

cated set of discretized equations and neglecting nonlinearities in the boundary conditions. We

demonstrate such discrepancy between these two approaches for a metallic beam that experiences

bending-torsional interactions due to combination parametric resonances.

Feng and Leal (1994) pointed out and analytically established symmetries in the modulation equa-

tions derived by Nayfeh and Pai (1989) for flexural-flexural vibrations of cantilever beams. Using

the method of time-averaged Lagrangian, we show that, as long as a system is derivable from a

Lagrangian and a virtual-work term, the corresponding modulation equations possess some sym-

metries. Next, we present a review of the relevant investigations in more detail.
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1.2.1 Flexural-Flexural Oscillations of Inextensional Beams

Free Oscillations and Primary Resonance Responses

Haight and King (1972) theoretically and experimentally investigated the responses of circular and

near-square cantilever beams to lateral base excitations. They neither accounted for the effect of

torsional oscillations nor included geometric nonlinearities; they included only the inertia nonlin-

earities. They found that, in certain cases, planar motions can lose stability, thereby driving the

nonplanar motions. In addition, they found that whirling motions existed in the instability zones

in contrast to their experience with parametrically excited beams (Haight and King, 1970). Dowell,

Traybar, and Hodges (1977) experimentally investigated the free responses of cantilever beam-mass

systems taking into account the effect of static twist. The static deflections and natural frequencies

were measured and compared to analytical results obtained using the equations of Hodges and

Dowell (1974) for helicopter blades. They found good agreement for relatively small tip loads.

However, the discrepancies widened for heavier tip loads.

Crespo da Silva and Glynn (1978b) used the equations they (1978a) had derived to investigate the

flexural-flexural responses of near-square cantilever beams to primary resonances. They accounted

for both geometric and inertia nonlinearities. They found that the response curves for the first

mode are significantly different from the response curves for the higher ones. Furthermore, the

influence of the nonlinear curvature terms on the response diminishes for higher modes. They

(1979) also used their equations to investigate the free nonplanar responses of internally resonant

cantilever beams.

Hyer (1979) investigated the whirling responses of compact cantilever beams to lateral base excita-

tions. He used the equations of Haight and King (1972), neglected the effect of damping, and found

that whirling motions exist when the beam is excited near resonance. Furthermore, he was unable

to locate unstable whirling motions. Crespo da Silva (1980) also considered the whirling motions

of base-excited cantilever beams by using the equations of Crespo da Silva and Glynn (1978b) and

including viscous damping. He found that some whirling motions are unstable and that, in some

ranges of frequency detuning, neither planar nor nonplanar stable steady-state motions existed.

Pai and Nayfeh (1990a) used the equations of Crespo da Silva and Glynn (1978b) to investigate
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the nonplanar oscillations of square and rectangular cantilever beams to lateral base excitations.

They located Hopf bifurcations and found that the system can exhibit quasiperiodic (beating)

and chaotic motions. Furthermore, they found that the geometric nonlinearities dominate the

inertia nonlinearities for the low-frequency modes, whereas the inertia nonlinearities dominate the

geometric nonlinearities for the high-frequency modes. The geometric nonlinearities produce a

hardening spring effect and the inertia nonlinearities produce a softening spring effect.

Crespo da Silva, Zaretzky, and Hodges (1991), in a work related to that of Dowell, Traybar,

and Hodges (1977), analytically investigated the accuracy of approximate solutions for the free

nonplanar response of cantilever beam-mass systems. They found excellent agreement with the

results obtained by numerically integrating the exact equations, even for large tip loads.

Shyu, Mook, and Plaut (1993a, b, and c) investigated the nonlinear response of square cantilever

beams to transverse harmonic and nonstationary excitations. In addition to the cubic geometric and

inertia nonlinearities, they accounted for the effect of the static deflection due to the beam’s weight,

which introduced quadratic nonlinearities in the governing equations. They applied the method

of multiple scales to the discretized system and studied primary, superharmonic, and subharmonic

resonances. They found that whirling motions are possible and in some cases they are the only

stable motions. Furthermore, they found that increasing the damping reduces the amplitudes of

the whirling motions.

Zaretzky and Crespo da Silva (1994a) experimentally investigated the nonlinear flexural-flexural

responses of cantilever beams to harmonic base excitations. They found excellent agreement be-

tween their experimental results and the analytical results obtained by Crespo da Silva and Glynn

(1978b). Furthermore, they concluded that the effect of nonlinear damping can be quite significant

for high-amplitude motions.

Principal Parametric Resonance

Very interesting phenomena that can occur in the vibrations of structures are parametric reso-

nances. In such cases, the excitation appears as a time varying coefficient in the equations of

motion. Principal parametric resonances occur when the excitation frequency is near twice one of
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the natural frequencies of the system. Many studies investigated the responses of general single-

and multi-degree-of freedom systems to parametric resonances (Krishnaiyar, 1922; Rayleigh, 1945,

§68b; Bolotin, 1964; Mettler, 1967; Asmis and Tso, 1972; Tso and Asmis, 1974; Nayfeh and Mook,

1979; Tezak, Nayfeh, and Mook, 1982; Nayfeh, 1983a, b and 1987; Nayfeh and Zavodney, 1986;

Nayfeh and Jebril, 1987; Streit, Bajaj, and Krousgrill, 1988; Cartmell, 1990; and Chin, Nayfeh,

and Mook, 1995).

Evan-Iwanowski (1965) gave an excellent review of the parametric response of structures. He noted

that although such a phenomenon was first observed by Faraday in 1833, Beliaev in 1924 was

the first to investigate it in connection with the vibrations of structures. Beliaev considered the

linear response of a pinned-pinned beam under a combined harmonic and constant axial load and

found that the first resonant frequency of oscillation was one-half the forcing frequency. This was

followed by the works of Kryloff and Bogolyubov in 1935, Mettler in 1940, Lubkin and Stoker in

1943, Gol’denblat in 1944, and Bolotin in 1950, just to name a few. More recently, a summary of

the stability of parametrically excited structures was given by Ariaratnam (1986).

Haight and King (1970) theoretically and experimentally investigated the stability of cantilever

beams, which are axially excited at principal parametric resonance and have a one-to-one internal

resonance involving the in-plane and out-of-plane flexural modes. They included the nonlinear

inertia effects, but neglected the effects of geometric nonlinearities and torsional oscillations. They

found that, when the internal resonance was perfectly detuned, the in-plane motions were always

stable and hence the out-of-plane modes would never be excited. If, on the other hand, the frequency

ratio was slightly mistuned, then the in-plane motions could lose stability and the out-of-plane

motions would be excited. Furthermore, they concluded that whirling motions cannot occur for

all practical purposes. Comparing their analytical results to experimental ones, they found good

qualitative agreement but significant quantitative differences.

Nayfeh and Pai (1989) used the equations of Crespo da Silva and Glynn (1978a, b) to investigate

the nonlinear nonplanar responses of cantilever beams to parametric excitations in the presence of

a one-to-one internal resonance involving two flexural modes. They applied the method of multiple

scales directly to the integro-partial-differential equations and obtained the equations governing the

modulation of the amplitudes and phases. They found that the geometric nonlinearities dominate
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the inertia nonlinearities for the first mode, while the inertia nonlinearities dominate the geometric

nonlinearities for the higher modes. The inertia nonlinearities have a softening effect, whereas the

geometric nonlinearities have a hardening effect. They located Hopf bifurcations and showed that

quasiperiodic (beating) oscillations can occur.

Kar and Sujata (1990) investigated the parametric instabilities that can occur in the response of a

linear damped beam that is elastically restrained at one end and free at the other to a harmonic

force. They assumed the force to be acting at the free end and considered the cases of uniaxial

and follower-type forces. They found that the regions of instability for a uniaxial force are in

general wider than those for a follower-type force. They (1992) also investigated the parametric

instabilities of a rotating, pretwisted, and preconed cantilever beam, taking into consideration the

Coriolis effects. They found that the Coriolis force reduces the instability zones of the principal

parametric resonance.

High-to-Low Resonance

A nonresonant mechanism that is responsible for transferring energy from a high-frequency mode

to a low-frequency mode was discovered experimentally by Anderson, Balachandran, and Nayfeh

(1992). They considered a thin rectangular beam whose first four natural frequencies are 0.65,

5.65, 16.19, and 31.91 Hz. They excited the beam around 32.0 Hz so that the third and fourth

modes were activated by principal and fundamental parametric resonances, respectively. As they

varied the excitation frequency, the two-mode response lost stability and resulted in modulated

oscillations that contained a significant contribution from the first mode. A characteristic of the

response was the presence of sidebands in the spectrum around the peak corresponding to the third

mode, which were separated by approximately 0.65 Hz (≈ ω1). In a second experiment, they excited

the beam parametrically at 138 Hz and found that the second mode dominated the response even

though no resonance relationship was apparent. Again, there were small peaks in the strain gage

spectrum near the excitation frequency, which were separated by approximately 5.6 Hz (≈ ω2).

Sidebands were also found in the acceleration spectrum, indicating that the base acceleration was

modulated. Anderson, Balachandran, and Nayfeh (1994) excited the same beam parametrically

near its third natural frequency. In some regions of the excitation frequency, they found that only
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the fourth and the first modes were excited with the first mode dominating the response. Tabaddor

and Nayfeh (1997) experimentally investigated the response of a cantilever beam whose first four

natural frequencies are 0.70, 5.89, 16.75, and 33.10 Hz. They directly excited the fourth mode

and found that, as they slowly varied the excitation frequency, a contribution from the first mode

appeared in the response.

Nayfeh and Nayfeh (1992, 1994) investigated the response of a circular cross-section cantilever beam.

They directly excited the fifth mode whose natural frequency is ω5 = 83.1 Hz. They found that the

response was dominated by the first mode whose natural frequency is ω1 = 1.3 Hz. The spectrum

showed that both the peaks corresponding to the fifth and first modes had sidebands. Nayfeh and

Nayfeh (1993) theoretically investigated the mechanism that is responsible for transferring energy

from high-frequency to low-frequency modes in directly excited systems. They used the method of

averaging to study the behavior of the fixed-point and periodic solutions and found that the latter

leads to chaotic attractors via a sequence of period-doubling bifurcations.

Nayfeh and Chin (1995) investigated the system of Nayfeh and Nayfeh (1993) when it is excited

at principal parametric resonance and found that the response can be complex, including chaos,

crises, and intermittency. Feng (1996) investigated the existence of Shilnikov homoclinic orbits in

the system of Nayfeh and Chin (1995).

Nayfeh and Mook (1995) gave a comprehensive review of the investigations of the different mecha-

nisms responsible for the transfer of energy from high- to low-frequency modes in structures.

1.2.2 Flexural-Flexural-Torsional Oscillations of Inextensional Beams

Primary Resonance

Crespo da Silva and Zaretzky (1994) investigated the nonlinear flexural-flexural-torsional responses

of cantilever beams to primary resonances in the presence of a one-to-one internal resonance between

the first torsional mode and the directly excited flexural mode. They accounted for the torsional

motion explicitly and found that the system exhibits jumps and saturation.

Lee, Lee, and Chang (1997) used the equations of Crespo da Silva and Zaretzky (1994) to investi-
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gate the nonlinear flexural-flexural-torsional responses of cantilever rectangular beams to harmonic

torsional base excitations in the presence of a one-to-one internal resonance. They found that two-

mode oscillations occur as a result of the torsional mode losing stability. Furthermore, the two-mode

solutions of the modulation equations undergo Hopf bifurcations, resulting in periodically varying

amplitudes and hence quasiperiodic beam motions.

Internal Combination Resonance

Internal combination resonances can occur when three or more of the system’s natural frequencies

are near commensurate. For systems with quadratic nonlinearities, they have the form ωk ≈ ωi±ωj .
For systems with cubic nonlinearities, they have the forms ωl ≈ ωk ± ωi ± ωj or ωk ≈ 2ωi + ωj

(Nayfeh and Mook, 1978; Nayfeh and Mook, 1979).

Zaretzky and Crespo da Silva (1994b) investigated the nonlinear nonplanar response of cantilever

beams having the internal combination resonance ωφ ≈ ωv + ωw, with the in-plane bending mode

being excited at primary resonance (i.e., Ω ≈ ωv). They discretized the partial-differential equations

and then used perturbation methods to analyze the motion. They found that, when the multimode

solution is activated, the out-of-plane bending and torsional modes are related by a constant. In

addition, the directly excited in-plane bending mode seems to saturate.

Combination Parametric Resonance

Combination parametric resonances occur when the excitation frequency is near the sum or differ-

ence of two of the system’s natural frequencies. Dugundji and Mukhopadhyay (1973) theoretically

and experimentally investigated the response of a thin cantilever beam to combination parametric

resonances involving the first bending and torsional modes, Ω ≈ ωB1 + ωT1, in one case, and the

second bending and first torsional modes, Ω ≈ ωB2 +ωT1, in another. They included only coupling

due to the parametric force and nonlinearities caused by damping. However, they neglected geo-

metric and inertia nonlinearities. They found that the beam exhibits significant oscillations both

in bending and in torsion. In addition, at large excitation amplitudes they observed the beam

snapping-through and whipping around.
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Cartmell and Roberts (1987) theoretically and experimentally investigated the response of a can-

tilever beam-mass system excited by two simultaneous combination parametric resonances Ω ≈
ωB1 +ωT1 ≈ ωB2−ωT1. They neglected the cubic nonlinear terms and used the method of multiple

scales to determine periodic responses and their stability. They found good agreement between

theory and experiment within certain ranges of the excitation frequency. However, in other regions

where periodic modulations can occur, the correlation was not satisfactory because the theoretical

solution could not predict nonstationary responses.

In addition to investigating principal parametric resonances, Kar and Sujata (1990, 1992) also

investigated instabilities due to combination parametric resonances. For an elastically restrained

beam, they (1990) found that, when the force is uniaxial or supertangential, only additive-type

combination parametric resonances occur. In contrast, difference-type combination parametric

resonances are dominant when the force is subtangential or tangential. For a rotating, pretwisted,

and preconed beam, they (1992) found that including the Coriolis force increases the instability

zones of the combination parametric resonances.

Ibrahim and Hijawi (1998) investigated the nonlinear responses of cantilever beam-mass systems

near combination parametric resonances to deterministic and stochastic excitations. They took

into account geometric and inertia nonlinearities; however they analyzed a discretized model of the

beam using the method of multiple scales.

1.2.3 Longitudinal-Torsional Oscillations of Inextensional Beams

Tso (1968) investigated the torsional response of rectangular cantilever beams to parametric longi-

tudinal excitations. He considered both the case where the longitudinal modes were not at primary

resonance and the case where they were resonant. He included coupling between the longitudinal

and torsional motions due to the “shortening effect” (Cullimore, 1949). In the first case, he ignored

the longitudinal inertia and reduced the system to a single equation for the torsional oscillations.

He found regions of instability when the forcing frequency is near twice the natural frequency of

the excited torsional mode. The instability regions widen for higher torsional modes. In the second

case, the effect of the longitudinal inertia is significant. He found two regions of instability: the

first is when the forcing frequency is near twice the natural frequency of a torsional mode and the
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second is when the forcing frequency is near the natural frequency of the excited longitudinal mode.

Furthermore, he found the second region to be sensitive to longitudinal damping. He concluded

that, in the presence of a two-to-one internal resonance, a single larger region of instability would

result.

1.2.4 Nonplanar Oscillations of Composite Inextensional Beams

Bauchau and Hong (1988) developed a composite beam theory that includes the effects of shear

deformations and torsional warping. They further generalized their theory to account for pretwist

and initial curvature.

Pai and Nayfeh (1990b) used a Newtonian formulation to derive a system of partial-differential

equations governing the nonplanar motions of extensional and inextensional composite beams.

They neglected the effect of shear deformation and expanded their transcendental equations in

terms of polynomials keeping up to third order. They noted that, for asymmetrically laminated

composite beams, the assumption of inextensionality is not valid due to the extension-torsion and

extension-bending linear couplings. They (1992) presented an improved and a more comprehensive

beam theory that includes the effects of shear deformation to third order.

Zavodney and Nayfeh (1989) experimentally investigated the response of a composite beam-mass

system to parametric excitations. The beam was made of [0◦/90◦/90◦/0◦]s 4-ply graphite-epoxy

material. In addition to planar steady-state periodic oscillations, they observed the beam to undergo

large chaotic motions, which involved out-of-plane bending and torsion.

Pai and Nayfeh (1991a, b) used their equations (1990b) to investigate the response of symmetrically

laminated cantilever composite beams to flapwise (in-plane) and chordwise (out-of-plane) base

excitations, respectively. In both cases, they considered the two-to-one internal resonance ωw ≈
2ωv = ωφ, where ωv, ωw, and ωφ are the fundamental flapwise-bending, chordwise-bending, and

torsional natural frequencies. They applied the method of multiple scales directly to the partial-

differential equations of motion to obtain the equations governing the modulations of the amplitudes

and phases of the interacting modes. They found that the system can exhibit interesting dynamics,

including periodic, quasiperiodic, and chaotic motions.
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1.2.5 Theories for Rotating Beams and Blades

The nonlinear nonplanar equations of motion for inextensional beams may be considered as a spe-

cialized case of the equations of motion of rotating blades. In addition to the influence of centrifugal

forces, other effects that are considered include pretwist and precone angles and asymmetric cross-

sections. Therefore, we present here some of the theories for rotating blades that are germane to

this work.

Hodges and Dowell (1974) developed a set of equations governing the motion of a rotor blade both

by using Hamilton’s principle and Newton’s equations. They kept up to quadratic nonlinear terms

and accounted for the effect of warping. Anderson (1975) formulated the nonlinear equations of

motion for a rotating beam in terms of the longitudinal force, the shear force, and the bending

moment. He then used the linearized form of these equations to show that the frequencies of

the longitudinal modes increase as the angular velocity of rotation increases. Crespo da Silva

(1981) extended the work of Hodges and Dowell (1974) and derived the equations describing the

flap-lead/lag-torsional motions of rotor blades in hover and in forward flight, keeping up to cubic

nonlinear terms and accounting for warping.

1.3 Dissertation Objectives and Organization

Because many systems may be idealized as inextensional beams, it is very important to gain good

understanding of the responses of such beams. It is clear from the previous section that great

strides have been accomplished in that respect. The works of Haight and King, Crespo da Silva

et al., and Nayfeh and Pai may stand out as most closely related to this research. Therefore, the

objectives of this dissertation are two-fold. First, we expand on some of the investigations already

conducted. To do so, we use alternate approaches to those previously used to analyze the systems in

greater detail. Second, we fill in some of the gaps by investigating newer cases that are of practical

importance. Emphasis is placed on the concept of energy transfer from high-frequency modes to

low-frequency modes via either a resonant or a nonresonant (zero-to-one) mechanism.

In Chapter 2, we use a combination of a 3-2-1 Euler-angle body rotation, a Lagrange multiplier, the
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theory of mechanics of composites, and Hamilton’s extended principle to derive the Lagrangian,

and hence the governing nonlinear partial-differential equations of motion and associated boundary

conditions, for monoclinic composite and metallic inextensional Euler-Bernoulli beams. In Chap-

ters 3 and 4, we use the method of time-averaged Lagrangian to investigate in detail the nonlinear

bending-bending responses of near-square metallic beams to parametric and direct excitations, re-

spectively. In Chapter 5, we investigate the nonlinear bending-bending-twisting responses of metal-

lic beams to combination parametric resonances. Results from the two approaches are compared.

First, we directly attack the partial-differential system of equations and boundary conditions. Sec-

ond, we attack a discretized set of ordinary-differential equations. In Chapter 6, we investigate

the nonlinear bending-bending-twisting responses of metallic beams, accounting for the transfer of

energy from high- to low-frequency modes through a zero-to-one resonance. In Chapter 7, we show

that the modulation equations for symmetrically laminated composite beams do in fact exhibit

symmetry properties, as in the case of metallic beams. In Chapter 8, we present our conclusions

and recommendations for future work.



Chapter 2

Introduction to Beam Theory

2.1 Brief Historical Background

In what follows, a brief and by no means complete historical summary of the origins of the theory

of beams is presented. According to Love (1944), the first to consider the elastic problem of thin

beams was James (Jacob according to Timoshenko, 1983) Bernoulli in 1705 where he assumed

that the moment resisting the deflection is the result of the elongation and contraction of the

beam’s filaments. His results amounted to the fact that the bending moment is proportional to the

curvature after deflection. Following a suggestion by Daniel Bernoulli in 1742 that the differential

equation describing the deflection of a beam can be obtained by minimizing the work done by the

bending moment, Euler in 1744 was able to derive such equation and classify several cases. A

detailed account of the works of the Bernoulli’s and Euler, among others, is given by Cannon and

Dostrovsky (1981).

Unlike Euler who in his theory assumed the beam to consist of a line of particles resistant to

bending, Coulomb in 1776 was the first to apply the force and moment equilibrium equations to a

finite section to obtain a more accurate differential equation. He was also the first to consider the

idea that beams are also resistant to torsion. However, his results were not based on any elasticity

theory. A more robust theory on the torsion of prismatic bars was presented by Saint-Venant in

1855 and 1856. Saint-Venant assumed that the extension and contraction of the beam’s filaments

17
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are proportional to their normal distance from the centroidal axis. Furthermore, as a simplification,

Saint-Venant proposed that the effect of replacing distributed end loads by a statically equivalent

resultant load system on a point that is relatively far away from the boundary is negligible (Shames

and Dym, 1985). This later came to be known as Saint-Venant’s principle of the elastic equivalence

of statically equipollent systems of loads (Love, 1944).

In 1859, Kirchhoff derived an approximate measure of the strain in an element of a rod, and thus

he was able to determine an expression for the potential energy in the element. Then, by varying

this energy, he obtained the equilibrium and vibration equations. Furthermore, he showed that

the equations of a thin rod subjected only to end forces have the same form as those of a rigid

body oscillating about a fixed point. This is referred to as Kirchhoff’s kinetic analogue (Love, 1944;

Southwell, 1941)

In his book The Theory of Sound, first published in 1877, Rayleigh (1945) included the effects of

rotary inertia in the equations describing the flexural and longitudinal vibrations of beams and

showed that, at high-frequency oscillations, such corrections to the natural frequencies are impor-

tant. The effect of shear deformation on the vibrations of beams was introduced by Timoshenko

(1921, 1922). As an example, he considered free vibrations of a simply-supported beam and showed

that the correction due to shear is four times more important than that due to rotary inertia. Fur-

thermore, he showed that the Euler-Bernoulli and Rayleigh beam equations are special cases of his

result.

2.2 Variational Mechanics

Crespo da Silva and Glynn (1978a, b) used a variational formulation to derive the equations gov-

erning nonlinear nonplanar vibrations of metallic beams. Pai (1990) used a Newtonian formulation

to derive the equations governing nonlinear nonplanar vibrations of symmetrically laminated com-

posite beams. Here, we will make use of both of their results and use a variational formulation to

derive the equations governing nonlinear nonplanar vibrations of symmetrically laminated compos-

ite beams. We will then reduce our results to the equations of Crespo da Silva and Glynn (1978a,

b) for metallic beams.
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Figure 2.1: A schematic of a composite cantilever beam under direct and parametric excitations.

2.2.1 Stress-Strain Relationships

The dynamics of a beam are described through the longitudinal displacement u(s, t), the transverse

displacements v(s, t) and w(s, t) along the y- and z-axes, respectively, and the torsional angle φ(s, t),

as shown in Figure 2.1. Here, x − y − z is a global orthogonal coordinate system, while ξ − η − ζ
is a local orthogonal coordinate system. When using index notation in our derivation, we assume

that u1 = u, u2 = v, u3 = w, x1 = x, x2 = y, and x3 = z. Furthermore, the coordinates s and ξ

are used interchangeably.

Two Cartesian coordinate systems xi and x′i can be related to each other through the transformation


x′1

x′2

x′3

 =


a11 a12 a13

a21 a22 a23

a31 a32 a33




x1

x2

x3

 (2.1)
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where aij = cos (x′i, xj) is cosine of the angle between the ith primed and jth unprimed coordinate

system. Then, using this transformation, one can relate the stresses, σ′ij , acting on a body with

respect to the primed coordinate system to the stresses, σkl, with respect to the unprimed coordinate

system as (Whitney, 1987)

σ′ij = aikajlσkl ≡ [Tσ]σkl (2.2)

The Lagrangian (or Green) strain tensor is related to the displacements ui(xj , t) as (Mase, 1970)

Lij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1
2
∂uk
∂xi

∂uk
∂xj

(2.3)

For infinitesimal strains, one can neglect the nonlinear terms and obtain the linearized Lagrangian

strain tensor

lij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.4)

However, it is more convenient here to consider the engineering strains εij , which are defined as

εij =

 Lij for i = j

2Lij for i 6= j
(2.5)

Then, similar to the stresses, the engineering strains with respect to the primed coordinate system

can be related to the engineering strains with respect to the unprimed coordinate system as

ε′ij = aikajlεkl ≡ [Tε] εkl (2.6)

For a rotation of angle θ about the x2-axis, as shown in Figure 2.2, Eqs. (2.1), (2.2), and (2.6)

become 
x′1

x′2

x′3

 =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




x1

x2

x3

 =


m 0 −n
0 1 0

n 0 m




x1

x2

x3

 (2.7)
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θ

θ
x1

x3

′x1

′x3

x2 , ′x2

Figure 2.2: The coordinate system x′i as a result of rotating the coordinate system xi with angle θ
about the x2-axis.



σ′11

σ′22

σ′33

σ′23

σ′31

σ′12


=



m2 0 n2 0 −2mn 0

0 1 0 0 0 0

n2 0 m2 0 2mn 0

0 0 0 m 0 n

mn 0 −mn 0 m2 − n2 0

0 0 0 −n 0 m





σ11

σ22

σ33

σ23

σ31

σ12


(2.8)



ε′11

ε′22

ε′33

ε′23

ε′31

ε′12


=



m2 0 n2 0 −mn 0

0 1 0 0 0 0

n2 0 m2 0 mn 0

0 0 0 m 0 n

2mn 0 −2mn 0 m2 − n2 0

0 0 0 −n 0 m





ε11

ε22

ε33

ε23

ε31

ε12


(2.9)

where m = cos θ and n = sin θ.

The stress-strain relationship (or generalized Hooke’s law) for the mth lamina with respect to the

x′i coordinate system is given by

σ
′(m)
ij = C

(m)
ijklε

′(m)
kl (2.10)
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Substituting Eqs. (2.2) and (2.6) into Eq. (2.10) and premultiplying the result by [Tσ]−1, we obtain

the stress-strain relationship for the mth lamina with respect to the xi coordinate system as

σ
(m)
ij = [Tσ]−1C

(m)
ijkl [Tε] ε

(m)
kl = Q

(m)
ijklε

(m)
kl (2.11)

In Eqs. (2.10) and (2.11), C(m)
ijkl and Q(m)

ijkl are fourth-order tensors that denote the material proper-

ties of the mth lamina with respect to the x′i and xi coordinate systems, respectively. For a general

anisotropic material, Qijkl ( or Cijkl) is given by

[Q] =



Q1111 Q1122 Q1133 Q1123 Q1113 Q1112

Q1122 Q2222 Q2233 Q2223 Q2213 Q2212

Q1133 Q2233 Q3333 Q3323 Q3313 Q3312

Q1123 Q2223 Q3323 Q2323 Q2313 Q2312

Q1113 Q2213 Q3313 Q2313 Q1313 Q1312

Q1112 Q2212 Q3312 Q2312 Q1312 Q1212


(2.12)

which has 21 independent constants.

If there is one plane of symmetry, then the material is called monoclinic. Assuming x2 is the axis

perpendicular to the plane of symmetry, then one has

Q1123 = Q1112 = Q2223 = Q2212 = Q3323 = Q3312 = Q2313 = Q1312 = 0 (2.13)

and the fourth-order tensor becomes

[Q] =



Q1111 Q1122 Q1133 0 Q1113 0

Q1122 Q2222 Q2233 0 Q2213 0

Q1133 Q2233 Q3333 0 Q3313 0

0 0 0 Q2323 0 Q2312

Q1113 Q2213 Q3313 0 Q1313 0

0 0 0 Q2312 0 Q1212


(2.14)

which has 13 independent constants. If a second plane of symmetry is present, then the material
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is called orthotropic and, in addition to Eq. (2.13), we have

Q1113 = Q2213 = Q3313 = Q2312 = 0 (2.15)

Hence, the fourth-order tensor becomes

[Q] =



Q1111 Q1122 Q1133 0 0 0

Q1122 Q2222 Q2233 0 0 0

Q1133 Q2233 Q3333 0 0 0

0 0 0 Q2323 0 0

0 0 0 0 Q1313 0

0 0 0 0 0 Q1212


(2.16)

which has 9 independent constants. Furthermore, if in addition to two planes of symmetry, one

of the planes is isotropic and hence its material properties are independent of direction, then the

composite is called transversely isotropic and the fourth-order tensor, [Q], is given in terms of 5

independent constants. Lastly, if the material properties are independent of direction in two planes

of symmetry, then the material is called isotropic and, in addition to Eqs. (2.13) and (2.15), we

have

Q1111 = Q2222 = Q3333 = λ̂+ 2µ̂, Q1122 = Q1133 = Q2233 = λ̂, and Q2323 = Q1313 = Q1212 = µ̂

(2.17)

where λ̂ and µ̂ are called the Lamé constants. Hence, the fourth-order tensor in terms of 2 inde-

pendent constants becomes

[Q] =



λ̂+ 2µ̂ λ̂ λ̂ 0 0 0

λ̂ λ̂+ 2µ̂ λ̂ 0 0 0

λ̂ λ̂ λ̂+ 2µ̂ 0 0 0

0 0 0 µ̂ 0 0

0 0 0 0 µ̂ 0

0 0 0 0 0 µ̂


(2.18)
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The Lamé constants in terms of Young’s modulus E, Poisson’s ratio ν, and the shear modulus G,

are given by

µ̂ = G =
E

2(1 + ν)
and λ̂ =

Eν

1− ν − 2ν2
(2.19)

Because for most materials 0 ≤ ν ≤ 0.5, it is popular to assume that ν2 ¿ 1 and neglect it in Eq.

(2.19).

The analysis presented from here on will assume that the beam has at least one plane of symmetry

(i.e., monoclinic). Furthermore, we choose x1−x3 to be the plane of symmetry. Then, substituting

Eq. (2.14) into Eq. (2.11), one obtains the following constitutive equations for a monoclinic

material:

σ11 = Q1111ε11 +Q1113ε13 +Q1122ε22 +Q1133ε33 (2.20)

σ22 = Q1122ε11 +Q2213ε13 +Q2222ε22 +Q2233ε33 (2.21)

σ33 = Q1133ε11 +Q3313ε13 +Q2233ε22 +Q3333ε33 (2.22)

σ23 = Q2312ε12 +Q2323ε23 (2.23)

σ31 = Q1113ε11 +Q1313ε13 +Q2213ε22 +Q3313ε33 (2.24)

σ12 = Q1212ε12 +Q2312ε23 (2.25)

For long thin beams having no traction, one can assume that the normal stresses σ22 and σ33 as

well as the shear stress σ23 are equal to zero (Pai, 1990). Then, from Eqs. (2.21)-(2.23), one can

solve for the strains ε22, ε33, and ε23 as

ε22 = −(Q1133Q2233 −Q1122Q3333)
Q2

2233 −Q2222Q3333
ε11 −

(Q2233Q3313 −Q2213Q3333)
Q2

2233 −Q2222Q3333
ε13 (2.26)

ε22 = −(Q1122Q2233 −Q1133Q2222)
Q2

2233 −Q2222Q3333
ε11 −

(Q2213Q2233 −Q2222Q3313)
Q2

2233 −Q2222Q3333
ε13 (2.27)

ε23 = −Q2312

Q2323
ε12 (2.28)
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Substituting Eqs. (2.26)-(2.28) into Eqs. (2.20), (2.24), and (2.25), we obtain


σ11

σ31

σ12

 =


Q̄11 Q̄15 0

Q̄15 Q̄55 0

0 0 Q̄66




ε11

ε31

ε12

 (2.29)

where

Q̄11 = Q1111 +
Q2222Q

2
1133 − 2Q1122Q1133Q2233 +Q3333Q

2
1122

Q2
2233 −Q2222Q3333

(2.30)

Q̄15 = Q1113 +
Q1133 (Q2222Q3313 −Q2213Q2233) +Q1122 (Q2213Q3333 −Q2233Q3313)

Q2
2233 −Q2222Q3333

(2.31)

Q̄55 = Q1313 +
Q2222Q

2
3313 − 2Q2213Q2233Q3313 +Q2

2213Q3333

Q2
2233 −Q2222Q3333

(2.32)

Q̄66 = Q1212 −
Q2

2312

Q2323
(2.33)

The strains ε11, ε31, and ε12 at a point having the coordinates (ξ, η, ζ) can be expressed as

ε11 = e(ξ, t)− ηρζ(ξ, t) + ζρη(ξ, t) (2.34)

ε31 = εζξ(ξ, t) + ηρξ(ξ, t) (2.35)

ε12 = εξη(ξ, t)− ζρξ(ξ, t) (2.36)

where e, εζξ, and εξη are the axial and shear strains at the point (ξ, 0, 0) along the elastic axis and

ρξ, ρη, and ρζ are the curvatures. The variation of Eqs. (2.34)-(2.36) is given by

δε11 = δe(ξ, t)− ηδρζ(ξ, t) + ζδρη(ξ, t) (2.37)

δε31 = δεζξ(ξ, t) + ηδρξ(ξ, t) (2.38)

δε12 = δεξη(ξ, t)− ζδρξ(ξ, t) (2.39)
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2.2.2 Strain Energy

The strain energy is given by

U =
1
2

∫ L

0

∫ h
2

−h
2

∫ b
2

− b
2

(σ11ε11 + σ31ε31 + σ12ε12) dζdηdξ

=
1
2

∫ L

0

∫ h
2

−h
2

∫ b
2

− b
2

(
Q̄11ε

2
11 + 2Q̄15ε11ε31 + Q̄55ε

2
31 + Q̄66ε

2
12

)
dζdηdξ (2.40)

Taking the variation of Eq. (2.40) and using Eqs. (2.37)-(2.39), we obtain

δU =
∫ L

0

∫ h
2

−h
2

∫ b
2

− b
2

[(
Q̄11ε11 + Q̄15ε31

)
δε11 +

(
Q̄15ε11 + Q̄55ε31

)
δε31 + Q̄66ε12δε12

]
dζdηdξ

=
∫ L

0

[
(A11e+A13εζξ +B11ρξ +B13ρζ) δe+ (A22εξη) δεξη + (A13e+A33εζξ +B31ρξ

+B33ρζ)δεζξ + (B11e+B31εζξ +D11ρξ +D13ρζ) δρξ + (D22ρη) δρη + (B13e+B33εζξ

+D13ρξ +D33ρζ)δρζ

]
dξ (2.41)

where

A11

A13

A22

A33


=
∫ h

2

−h
2

∫ b
2

− b
2



Q̄11

Q̄15

Q̄66

Q̄55


dηdζ = b

M∑
m=1



Q̄
(m)
11

Q̄
(m)
15

Q̄
(m)
66

Q̄
(m)
55


[
h(m) − h(m−1)

]
(2.42)



B11

B13

B31

B33


=
∫ h

2

−h
2

∫ b
2

− b
2



ηQ̄15

−ηQ̄11

ηQ̄55

−ηQ̄15


dηdζ =

b

2

M∑
m=1



Q̄
(m)
15

−Q̄(m)
11

Q̄
(m)
55

−Q̄(m)
15


[
h2

(m) − h2
(m−1)

]
(2.43)



D11

D13

D22

D33


=
∫ h

2

−h
2

∫ b
2

− b
2



η2Q̄55 + ζ2Q̄66

−η2Q̄15

ζ2Q̄11

η2Q̄11


dηdζ
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=
b

3

M∑
m=1



Q̄
(m)
55

−Q̄(m)
15

0

Q̄
(m)
11


[
h3

(m) − h3
(m−1)

]
+
b3

12

M∑
m=1



Q̄
(m)
66

0

Q̄
(m)
11

0


[
h(m) − h(m−1)

]
(2.44)

and h(m) is defined in Figure 2.3. Using the results from Eqs. (2.42)-(2.44), we rewrite the strain

energy (i.e., Eq. (2.40)) as

U =
1
2

∫ L

0
εT [K] εdξ (2.45)

where

ε =



e

εξη

εζξ

ρξ

ρη

ρζ


and [K] =

 [A] [B]

[B]T [D]

 =



A11 0 A13 B11 0 B13

0 A22 0 0 0 0

A13 0 A33 B31 0 B33

B11 0 B31 D11 0 D13

0 0 0 0 D22 0

B13 0 B33 D13 0 D33


(2.46)

Mid-surface

h

2

h

2

x1

x2

x3

h(M)

h(M −1)

h(5)

h(1)

h(0)m=1

m=2

m=3

m=4

m=5

m=M-1

m=M

...

...

Figure 2.3: A schematic of a composite beam element showing how h(m) is defined.



Haider N. Arafat Chapter 2. Introduction to Beam Theory 28

Note that, although Aij = Aji and Dij = Dji, Bij 6= Bji. In fact, it is clear from Eq. (2.43) that

B13 6= B31.

The strain energy and its variation given by Eqs. (2.40) and (2.41) include the effects of first-

order shear deformation. However, warping and Poisson effects were neglected. In our analysis,

we consider beams that follow the Euler-Bernoulli theory, which assumes that the normal to the

mid-surface before deformation remains normal to it after deformation. Therefore, we let the shear

strains and their variation be

εζξ(ξ, t) = εηξ(ξ, t) = δεζξ(ξ, t) = δεηξ(ξ, t) = 0 (2.47)

Then, Eqs. (2.40) and (2.41) become

U =
1
2

∫ L

0

(
A11e

2 +D11ρ
2
ξ +D22ρ

2
η +D33ρ

2
ζ + 2D13ρζρξ + 2B11ρξe

+ 2B13ρζe
)
dξ (2.48)

δU =
∫ L

0

[
(A11e+B11ρξ +B13ρζ) δe+ (B11e+D11ρξ +D13ρζ) δρξ

+ (D22ρη) δρη + (B13e+D13ρξ +D33ρζ) δρζ

]
dξ (2.49)

Note that, in Eqs. (2.48) and (2.49), the terms multiplying D13 produce linear coupling between

the in-plane bending and twist deflections, while those multiplying B11 and B13 produce linear

couplings between the stretching and twisting and stretching and in-plane bending deflections,

respectively. Because of our choice of the plane of symmetry, the out-of-plane bending deflection

is linearly uncoupled.

2.2.3 Strain-Displacement Relationships

Before deformation, the position of a point on the elastic axis is given by r0 = sex. After deforma-

tion, its position is given by

r = (s+ u)eξ + veη + weζ (2.50)
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Then, the strain along the elastic axis of a differential element ds is defined by

e =
(
∂r
∂s
· ∂r
∂s

) 1
2

−
(
∂r0

∂s
· ∂r0

∂s

) 1
2

=
√

(1 + u′)2 + v′2 + w′2 − 1 (2.51)

If the beam is assumed to be inextensional, then the elongation eds is assumed to be zero, yielding

the condition

(
1 + u′

)2 + v′2 + w′2 = 1 (2.52)

Solving for u′ and expanding the result in a Taylor expansion, we have

u′ =
√

1− v′2 − w′2 − 1 ≈ −1
2
(
v′2 + w′2

)
+ · · · (2.53)

Figure 2.4: Deformation of a beam element.

Therefore, if v and w are of order O(ε), ε ¿ 1, then u = O(ε2). Such an assumption is reason-

able when the boundary conditions are geometric at one end only, such as in cantilever or pin-free

beams. However, when there are geometric boundary conditions at both ends, such as in simply-

supported beams, the effect of midplane stretching is significant and cannot be neglected. In ad-

dition, for anisotropic composite beams (i.e., asymmetrically laminated), linear bending-stretching

and twisting-stretching couplings exist, and hence one cannot assume the beam to be inextensional

regardless of the boundary conditions (Pai, 1990). On the other hand, assuming inextensionality for

monoclinic composite beams is valid because, upon substituting Eq. (2.53), the terms multiplying
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B11 and B13 in Eqs. (2.48) and (2.49) vanish. In this work, we concentrate only on symmetrically

laminated and isotropic cantilever beams.

We consider a differential element initially of length ds along the ex direction. After deformation, its

length is given by ds′ = (1 + e)ds along the eξ direction. The relationship between the original and

deformed coordinate systems can be described by three successive Euler-angle rotations (Crespo

da Silva and Glynn, 1978a). In this case, we use a 3-2-1 body rotation with the angles of rotation

being ψ(s, t), θ(s, t), and φ(s, t), respectively. This yields the transformation


ex

ey

ez

 =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




1 0 0

0 cosφ − sinφ

0 sinφ cosφ




eξ

eη

eζ


(2.54)

=


cosψ cos θ sinψ cosφ+ cosψ sin θ sinφ − sinψ sinφ+ cosψ sin θ cosφ

− sinψ cos θ cosψ cosφ− sinψ sin θ sinφ − cosψ sinφ− sinψ sin θ cosφ

− sin θ cos θ sinφ cos θ cosφ




eξ

eη

eζ


The rotation angles can be related to the deflections from geometry. Referring to Figure 2.4, one

can see that

sinψ =
v′√

(1 + u′)2 + v′2
cosψ =

(1 + u′)√
(1 + u′)2 + v′2

tanψ =
v′

1 + u′

(2.55)

sin θ =
−w′√

(1 + u′)2 + v′2 + w′2
cos θ =

√
(1 + u′)2 + v′2√

(1 + u′)2 + v′2 + w′2
tan θ =

−w′√
(1 + u′)2 + v′2

The angular velocity of the element for the 3-2-1 body rotation used above can be defined by

ω = ψ̇ez + θ̇ey′ + φ̇ex′′

=
(
φ̇− ψ̇ sin θ

)
eξ +

(
ψ̇ cos θ sinφ+ θ̇ cosφ

)
eη +

(
ψ̇ cos θ cosφ− θ̇ sinφ

)
eζ (2.56)

ω ≡ ωξeξ + ωηeη + ωζeζ
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By virtue of Kirchhoff’s kinetic analogue (Love, 1944), we can obtain the beam’s curvatures ρξ, ρη,

and ρζ by replacing the time derivatives ∂
∂t with the spatial derivatives ∂

∂s in the angular velocity

expressions. Therefore, the curvatures are given by

ρ =
(
φ′ − ψ′ sin θ

)
eξ +

(
ψ′ cos θ sinφ+ θ′ cosφ

)
eη +

(
ψ′ cos θ cosφ− θ′ sinφ

)
eζ

≡ ρξeξ + ρηeη + ρζeζ (2.57)

Using the definitions in Eq. (2.55), we obtain exact expressions for ψ̇, θ̇, ψ′, and θ′ by differentiating

tanψ and tan θ. The result is

ψ̇ =
v̇′ (1 + u′)− v′u̇′
(1 + u′)2 + v′2

θ̇ =
1[

(1 + u′)2 + v′2 + w′2
]
w′ [(1 + u′) u̇′ + v′v̇′]√

(1 + u′)2 + v′2
− ẇ′

√
(1 + u′)2 + v′2


(2.58)

ψ′ =
v′′ (1 + u′)− v′u′′

(1 + u′)2 + v′2

θ′ =
1[

(1 + u′)2 + v′2 + w′2
]
w′ [(1 + u′)u′′ + v′v′′]√

(1 + u′)2 + v′2
− w′′

√
(1 + u′)2 + v′2


Assuming v, w, and φ = O(ε) and u = O

(
ε2
)
, substituting Eqs. (2.55) and (2.58) into Eqs. (2.56)

and (2.57), and expanding the outcomes in Taylor series, we find that the angular velocities and

curvatures, up to O
(
ε3
)
, are

ωξ = φ̇+ w′v̇′ + · · · (2.59)

ωη = −ẇ′ + φv̇′ + w′u̇′ + v′w′v̇′ +
1
2
φ2ẇ′ + u′ẇ′ +

1
2
v′2ẇ′ + w′2ẇ′ + · · · (2.60)

ωζ = v̇′ + φẇ′ − v′u̇′ − 1
2
φ2v̇′ − u′v̇′ − v′2v̇′ − 1

2
w′2v̇′ + · · · (2.61)

ρξ = φ′ + w′v′′ + · · · (2.62)

ρη = −w′′ + φv′′ + w′u′′ + v′w′v′′ +
1
2
φ2w′′ + u′w′′ +

1
2
v′2w′′ + w′2w′′ + · · · (2.63)

ρζ = v′′ + φw′′ − v′u′′ − 1
2
φ2v′′ − u′v′′ − v′2v′′ − 1

2
w′2v′′ + · · · (2.64)
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2.2.4 Kinetic Energy

The kinetic energy for a beam consists of two parts: one accounts for the motion due to displacement

and the other accounts for the motion due to rotation. For beams having symmetric cross sections,

the product mass moments of inertia Jij , i 6= j, are zero because a principal coordinate system is

being used. Therefore, using the notation J11 = Jξ, J22 = Jη, and J33 = Jζ , one can express the

inertia tensor for a beam with a rectangular cross section as

[J ] =


Jξ 0 0

0 Jη 0

0 0 Jζ

 =
1
12
m


(b2 + h2) 0 0

0 b2 0

0 0 h2

 (2.65)

The kinetic energy is then defined as

T =
1
2

∫ L

0

{
m
(
u̇2 + v̇2 + ẇ2

)
+ ωT [J ]ω

}
ds (2.66)

2.3 Lagrangian and Virtual-Work Term

The Lagrangian is defined as L ≡ T −U . Using Eqs. (2.45) and (2.66) and introducing the Lagrange

multiplier λ(s, t) to enforce the inextensionality conditions, we have

L =
1
2

∫ L

0

{
m
(
u̇2 + v̇2 + ẇ2

)
+ ωT [J ]ω − εT [K] ε+ λ

[
1−

(
1 + u′

)2 + v′2 + w′2
]}

ds (2.67)

Then, substituting Eqs. (2.46), (2.56), and (2.65) into Eq. (2.67), we express the Lagrangian for

monoclinic composite beams as

L =
1
2

∫ L

0

{
m
(
u̇2 + v̇2 + ẇ2

)
+
(
Jξω

2
ξ + Jηω

2
η + Jζω

2
ζ

)
−
(
A11e

2 +D11ρ
2
ξ +D22ρ

2
η

+D33ρ
2
ζ + 2D13ρζρξ + 2B11ρξe+ 2B13ρζe

)
+ λ

[
1−

(
1 + u′

)2 + v′2 + w′2
]}

ds (2.68)
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For isotropic beams, linear couplings among the bending, stretching, and twisting terms no longer

exist. Therefore, we set

A11 = EA, D11 = Dξ, D22 = Dη, D33 = Dζ , and D13 = B11 = B13 = 0 (2.69)

For beams with rectangular cross sections (Timoshenko, 1970),

Dξ = Gbh3κξ (2.70)

Dη =
1
12
Ehb3 (2.71)

Dζ =
1
12
Ebh3 (2.72)

where

κξ =
1
3

1−
[

192
π5

(
h

b

)] ∞∑
n=1,3,···

1
n5

tanh
[
nπ

2

(
b

h

)] (2.73)

Then, from Eqs. (2.68) and (2.69), the Lagrangian for isotropic beams is

L =
1
2

∫ L

0

{
m
(
u̇2 + v̇2 + ẇ2

)
+
(
Jξω

2
ξ + Jηω

2
η + Jζω

2
ζ

)
−
(
EAe2

+Dξρ
2
ξ +Dηρ

2
η +Dζρ

2
ζ

)
+ λ

[
1−

(
1 + u′

)2 + v′2 + w′2
]}

ds (2.74)

To account for nonconservative forces, such as damping and external excitations, we introduce the

virtual-work term

δW =
∫ L

0

(
Q∗uδu+Q∗vδv +Q∗wδw +Q∗φδφ+Q∗λδλ

)
ds

=
∫ L

0

[
(Qu − cuu̇) δu+ (Qv − cvv̇) δv + (Qw − cwẇ) δw +

(
Qφ − cφφ̇

)
δφ
]
ds (2.75)

where Q∗λ = 0.
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2.3.1 Symmetrically Laminated Composite Beams

Substituting Eqs. (2.59)-(2.64) into Eq. (2.68), we obtain the Lagrangian up to quartic terms for

monoclinic composite beams as

L =
1
2

∫ L

0

{
m
(
u̇2 + v̇2 + ẇ2

)
+ Jξ

(
φ̇2 + 2φ̇v̇′w′ + v̇′2w′2

)
+ Jη

(
ẇ′2 − 2φv̇′ẇ′ + φ2v̇′2

− 2v′v̇′w′ẇ′ − 2u̇′w′ẇ′ − φ2ẇ′2 − 2u′ẇ′2 − v′2ẇ′2 − 2w′2ẇ′2
)

+ Jζ

(
v̇′2 + 2φv̇′ẇ′

− 2u̇′v′v̇′ − φ2v̇′2 − 2u′v̇′2 − 2v′2v̇′2 − v̇′2w′2 + φ2ẇ′2
)
−D11

(
φ′2 + 2φ′v′′w′ + v′′2w′2

)
−D22

(
w′′2 − 2φv′′w′′ + φ2v′′2 − φ2w′′2 − 2u′′w′w′′ − 2v′v′′w′w′′ − 2u′w′′2 − v′2w′′2

− 2w′2w′′2
)
−D33

(
v′′2 + 2φv′′w′′ − 2u′′v′v′′ − 2u′v′′2 + φ2w′′2 − φ2v′′2 − 2v′2v′′2

− v′′2w′2
)

+D13

(
2v′φ′u′′ − 2φ′v′′ + φ2φ′v′′ + 2u′φ′v′′ + 2v′2φ′v′′ + w′2φ′v′′ − 2w′v′′2

− 2φφ′w′′ − 2φw′v′′w′′
)
−B11

(
2u′φ′ + v′2φ′ + w′2φ′ + 2u′w′v′′ + v′2w′v′′ + w′3v′′

)
−B13

(
2u′v′′ + v′2v′′ + w′2v′′ + 2φu′w′′ + φv′2w′′ + φw′2w′′

)
−A11

(
u′2 + u′v′2

+ u′w′2 +
1
4
v′4 +

1
2
v′2w′2 +

1
4
w′4
)

+ λ
[
1−

(
1 + u′

)2 − v′2 − w′2]}ds (2.76)

Then, substituting the inextensionality condition, given by Eq. (2.53), and applying the boundary

condition u(0, t) = 0, and hence

u(s, t) = −1
2

∫ s

0

(
v′2 + w′2

)
ds+ · · · , (2.77)

we rewrite the Lagrangian for monoclinic composite beams in terms of v, w, and φ as

L =
1
2

∫ L

0

{
m

[
∂

∂t

∫ s

0

1
2
(
v′2 + w′2

)
ds

]2

+m
(
v̇2 + ẇ2

)
+ Jξ

(
φ̇2 + 2φ̇v̇′w′ + v̇′2w′2

)
+ Jη

(
ẇ′2 + φ2v̇′2 − 2φv̇′ẇ′ − φ2ẇ′2 + w′2ẇ′2

)
+ Jζ

(
v̇′2 − φ2v̇′2 + v′2v̇′2 + 2φv̇′ẇ′

+ 2v′w′v̇′ẇ′ + φ2ẇ′2
)
−D11

(
φ′2 + 2φ′v′′w′ + v′′2w′2

)
−D22

(
w′′2 + φ2v′′2 − 2φv′′w′′

− φ2w′′2 + w′2w′′2
)
−D33

(
v′′2 − φ2v′′2 + v′2v′′2 + 2φv′′w′′ + 2v′w′v′′w′′ + φ2w′′2

)
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−D13

(
2φ′v′′ − φ2φ′v′′ + v′2φ′v′′ + 2w′v′′2 + 2φφ′w′′ + 2v′w′φ′w′′ + 2φw′v′′w′′

)}
ds (2.78)

We note that the first term multiplying D13 is the only one left that produces linear coupling in

the governing equations and associated boundary conditions. It couples the in-plane bending and

twisting equations.

2.3.2 Isotropic Metallic Beams

Substituting Eqs. (2.59)-(2.64) into Eq. (2.74) yields the following Lagrangian up to quartic terms

for isotropic beams:

L =
1
2

∫ L

0

{
m
(
u̇2 + v̇2 + ẇ2

)
+ Jξ

(
φ̇2 + 2φ̇v̇′w′ + v̇′2w′2

)
+ Jη

(
ẇ′2 − 2φv̇′ẇ′ + φ2v̇′2

− 2v′v̇′w′ẇ′ − 2u̇′w′ẇ′ − φ2ẇ′2 − 2u′ẇ′2 − v′2ẇ′2 − 2w′2ẇ′2
)

+ Jζ

(
v̇′2 + 2φv̇′ẇ′

− 2u̇′v′v̇′ − φ2v̇′2 − 2u′v̇′2 − 2v′2v̇′2 − v̇′2w′2 + φ2ẇ′2
)
−Dξ

(
φ′2 + 2φ′v′′w′ + v′′2w′2

)
−Dη

(
w′′2 − 2φv′′w′′ + φ2v′′2 − φ2w′′2 − 2u′′w′w′′ − 2v′v′′w′w′′ − 2u′w′′2 − v′2w′′2

− 2w′2w′′2
)
−Dζ

(
v′′2 + 2φv′′w′′ − 2u′′v′v′′ − 2u′v′′2 + φ2w′′2 − φ2v′′2 − 2v′2v′′2 − v′′2w′2

)
− EA

(
u′2 + u′v′2 + u′w′2 +

1
4
v′4 +

1
2
v′2w′2 +

1
4
w′4
)

+ λ
[
1−

(
1 + u′

)2 − v′2 − w′2]}ds
(2.79)

Then, substituting Eqs. (2.53) and (2.77) into Eq. (2.79), we rewrite the Lagrangian for isotropic

beams in terms of v, w, and φ as

L =
1
2

∫ L

0

{
m

[
∂

∂t

∫ s

0

1
2
(
v′2 + w′2

)
ds

]2

+m
(
v̇2 + ẇ2

)
+ Jξ

(
φ̇2 + 2φ̇v̇′w′ + v̇′2w′2

)
+ Jη

(
ẇ′2 + φ2v̇′2 − 2φv̇′ẇ′ − φ2ẇ′2 + w′2ẇ′2

)
+ Jζ

(
v̇′2 − φ2v̇′2 + v′2v̇′2 + 2φv̇′ẇ′

+ 2v′w′v̇′ẇ′ + φ2ẇ′2
)
−Dξ

(
φ′2 + 2φ′v′′w′ + v′′2w′2

)
−Dη

(
w′′2 + φ2v′′2 − 2φv′′w′′

− φ2w′′2 + w′2w′′2
)
−Dζ

(
v′′2 − φ2v′′2 + v′2v′′2 + 2φv′′w′′ + 2v′w′v′′w′′ + φ2w′′2

)}
ds (2.80)



Haider N. Arafat Chapter 2. Introduction to Beam Theory 36

2.4 Equations of Motion and Boundary Conditions

The governing equations of motion and boundary conditions can be determined using Hamilton’s

extended principle

δI =
∫ t2

t1

(δL+ δW) dt = 0 (2.81)

Defining `(s, t) as the Lagrangian density (i.e., L(t) =
∫ L

0 `(s, t)ds), we have

δI =
∫ t2

t1

∫ L

0

(
δ`+Q∗uδu+Q∗vδv +Q∗wδw +Q∗φδφ+Q∗λδλ

)
dsdt = 0 (2.82)

where δu, δv, δw, δφ, and δλ = 0 at t = t1 and t2. Because the Lagrangian density for beam systems

is ` = `(qi, q̇i, q′i, q
′′
i , q̇
′
i, s, t), Eq. (2.82) yields the following equations of motion (Meirovitch, 1997):

∂`

∂qi
− ∂

∂s

(
∂`

∂q′i

)
+

∂2

∂s2

(
∂`

∂q′′i

)
− ∂

∂t

(
∂`

∂q̇i

)
+

∂2

∂s∂t

(
∂`

∂q̇′i

)
= −Q∗i , 0 < s < L (2.83)

and associated boundary conditions:

B1i =
{[

∂`

∂q′i
− ∂

∂s

(
∂`

∂q′′i

)
− ∂

∂t

(
∂`

∂q̇′i

)]
δqi

}s=L
s=0

= 0 (2.84)

B2i =
{[

∂`

∂q′′i

]
δq′i

}s=L
s=0

= 0 (2.85)

where qi(s, t) represents the variables u(s, t), v(s, t), w(s, t), φ(s, t), and λ(s, t).

2.4.1 Symmetrically Laminated Composite Beams

Setting qi = u(s, t) and applying Eqs. (2.83)-(2.85) to Eq. (2.76), we obtain the following equation

of motion governing the longitudinal vibrations:

mü−Q∗u =
[
λ
(
1 + u′

)]′ +A11

(
u′ +

v′2

2
+
w′2

2

)′
+B11

(
φ′ + v′′w′

)′ +B13

(
v′′ + φw′′

)′
+D22

(
w′w′′′

)′ +D33

(
v′v′′′

)′ +D13

(
v′φ′′

)′ − Jη (w′ẅ′)′ − Jζ (v′v̈′)′ (2.86)
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The associated boundary conditions are

u = 0 at the fixed end s = 0, (2.87)

and

λ
(
1 + u′

)
= −A11

(
u′ +

v′2

2
+
w′2

2

)
−B11

(
φ′ + v′′w′

)
−B13

(
v′′ + φw′′

)
−D22

(
w′w′′′

)
−D33

(
v′v′′′

)
−D13

(
v′φ′′

)
+ Jη

(
w′ẅ′

)
+ Jζ

(
v′v̈′
)

(2.88)

at the free end s = L. Then, using Eqs. (2.53) and (2.77) and keeping terms up to O(ε2), we solve

Eqs. (2.86) and (2.88) for the Lagrange multiplier λ(s, t). The result is

λ = Jη
(
w′ẅ′

)
+ Jζ

(
v′v̈′
)
−D22

(
w′w′′′

)
−D33

(
v′v′′′

)
−D13

(
v′φ′′

)
−B11

(
φ′ + v′′w′

)
−B13

(
v′′ + φw′′

)
− m

2

∫ s

L

[
∂2

∂t2

∫ s

0

(
v′2 + w′2

)
ds

]
ds−

∫ s

L
Q∗uds+ · · · (2.89)

Setting qi = v(s, t), applying Eqs. (2.83)-(2.85) to Eq. (2.76), and then substituting Eqs. (2.53),

(2.77), and (2.89), we obtain the following equation of motion governing the in-plane bending

vibrations:

mv̈ + cvv̇ +D33v
iv +D13φ

′′′ − Jζ v̈′′ = Qv −D11

(
φ′w′ + v′′w′2

)′′ − (D22 −D33)
(
φ2v′′ − φw′′

)′′
−D33

[
v′
(
v′v′′

)′ + v′
(
w′w′′

)′]′ +D13

[
1
2
(
φ′φ2

)′
−
(
2v′′w′

)′ − 1
2
v′2φ′′ −

(
w′w′′

)′
φ

]′
+ Jξ

∂

∂t

(
φ̇w′ + v̇′w′2

)′
− (Jη − Jζ)

[(
v′w′ẅ′

)
− ∂

∂t

(
v̇′φ2 − ẇ′φ

)]′
+ Jζ

(
v′v̇′2

+ v′ẇ′2
)′ − m

2

{
v′
∫ s

L

[
∂2

∂t2

∫ s

0

(
v′2 + w′2

)
ds

]
ds

}′
−
(
v′
∫ s

L
Q∗uds

)′
(2.90)
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The boundary conditions are

v = 0 and v′ = 0 at the fixed end s = 0, (2.91)

and

D33v
′′ +D13φ

′ = −D11

(
v′′w′2 + φ′w′

)
− (D22 −D33)

(
φ2v′′ − φw′′ − v′w′w′′

)
+D13

(
1
2
φ2φ′ − 1

2
v′2φ′ − φw′w′′ − 2v′′w′

)
(2.92)

D33v
′′′ +D13φ

′′ − Jζ v̈′ = −D11

(
φ′w′ + w′2v′′

)′ − (D22 −D33)
(
φ2v′′ − φw′′

)′
−D33

[
v′
(
v′v′′

)′ + v′
(
w′w′′

)′]+D13

[
1
2
(
φ2φ′

)′ − 1
2
v′2φ′′

− φ
(
w′w′′

)′ − 2
(
v′′w′

)′ ]+ Jξ
∂

∂t

(
φ̇w′ + w′2v̇′

)
+ (Jη − Jζ)

∂

∂t

(
φ2v̇′ − φẇ′

)
+ Jζ

[
v′
∂

∂t

(
v′v̇′
)

+ v′
∂

∂t

(
w′ẇ′

)]
(2.93)

at the free end s = L.

Setting qi = w(s, t), applying Eqs. (2.83)-(2.85) to Eq. (2.76), and then substituting Eqs. (2.53),

(2.77), and (2.89), we obtain the following equation of motion governing the out-of-plane bending

vibrations:

mẅ + cwẇ +D22w
iv − Jηẅ′′ = Qw +D11

(
φ′v′′ + v′′2w′

)′ + (D22 −D33)
(
φ2w′′ + φv′′

)′′
−D22

[
w′
(
w′w′′

)′]′ −D33

[
w′
(
v′v′′

)′]′ +D13

[
v′′2 −

(
φφ′
)′

− w′
(
φv′
)′′ ]′ − Jξ (φ̇v̇′ + v̇′2w′

)′
+ Jη

(
w′ẇ′2

)′ + Jζ
(
w′v̇′2

)′
− (Jη − Jζ)

∂

∂t

[(
ẇ′φ2

)
+
(
v̇′φ
)]′ − (w′ ∫ s

L
Q∗uds

)′
− m

2

{
w′
∫ s

L

[
∂2

∂t2

∫ s

0

(
v′2 + w′2

)
ds

]
ds

}′
(2.94)

The boundary conditions are

w = 0 and w′ = 0 at the fixed end s = 0, (2.95)
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and

D22w
′′ = (D22 −D33)

(
φ2w′′ + φv′′

)
−D13

[
φφ′ +

(
φv′
)′
w′
]

(2.96)

D22w
′′′ − Jηẅ′ = D11

(
w′v′′2 + v′′φ′

)
−D22

[
w′
(
w′w′′

)′]−D33

[
w′
(
v′v′′

)′]
+ (D22 −D33)

(
φ2w′′ + φv′′

)′ −D13

[
w′
(
φv′
)′′ + (φφ′)′ − v′′2]

− Jξ
(
w′v̇′2 + φ̇v̇′

)
+ Jη

[
w′
∂

∂t

(
w′ẇ′

)]
+ Jζ

[
w′
∂

∂t

(
v′v̇′
)]

− (Jη − Jζ)
∂

∂t

(
φ2ẇ′ + φv̇′

)
(2.97)

at the free end s = L.

Setting qi = φ(s, t), applying Eqs. (2.83)-(2.85) to Eq. (2.76), and then substituting Eqs. (2.53),

(2.77), and (2.89), we obtain the following equation of motion governing the torsional vibrations:

Jξφ̈+ cφφ̇−D11φ
′′ −D13v

′′′ = Qφ +D11

(
v′′w′

)′ + (D22 −D33)
(
v′′w′′ − φv′′2 + φw′′2

)
+D13

[
1
2
(
v′2v′′

)′ − 1
2
φ2v′′′ + v′

(
w′w′′

)′ + φw′′′
]

− Jξ
∂

∂t

(
v̇′w′

)
+ (Jη − Jζ)

(
φv̇′2 − φẇ′2 − v̇′ẇ′

)
(2.98)

The boundary conditions are

φ = 0 at the fixed end s = 0, (2.99)

and

D11φ
′ +D13v

′′ = −D11

(
v′′w′

)
+D13

(
1
2
φ2v′′ − 1

2
v′2v′′ − φw′′ − v′w′w′′

)
(2.100)

at the free end s = L.

In addition to the linear coupling terms, Eqs. (2.90)-(2.100) also contain quadratic and cubic

nonlinearities coupling the bending-bending and bending-twisting motions. We should also note

that, because φ(s, t) is actually an Euler-rotation angle, the angle of twist γ(s, t), which the beam
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physically experiences, can be obtained from integrating the twisting curvature, Eq. (2.62), and

using Eq. (2.99). The result is

γ =
∫ s

0
ρξds = φ+

∫ s

0
v′′w′ds+ · · · = φ+ v′w′ −

∫ s

0
v′w′′ds+ · · · (2.101)

Although the governing equations of motion and associated boundary conditions are independent

of the terms multiplying B11 and B13, the Lagrange multiplier λ is not. One can interpret λ as an

axial force acting at the beam’s tip to prevent it from stretching. We see from Eq. (2.89) that λ is

O(ε). However, if we apply Eq. (2.69) to Eq. (2.89), we find for isotropic beams that

λ = Jη
(
w′ẅ′

)
+ Jζ

(
v′v̈′
)
−Dη

(
w′w′′′

)
−Dζ

(
v′v′′′

)
− m

2

∫ s

L

[
∂2

∂t2

∫ s

0

(
v′2 + w′2

)
ds

]
ds−

∫ s

L
Q∗uds+ · · · (2.102)

which is O(ε2). Therefore, a larger axial force may be needed to enforce the inextensionality of a

composite beam.

2.4.2 Isotropic Metallic Beams

Whether repeating the same process as in Section (2.4.1) but with Eq. (2.79) or applying Eq.

(2.69) to Eqs. (2.86)-(2.100), one obtains the following equations of motion governing the bending-

bending-torsional vibrations of inextensional metallic beams:

mv̈ + cvv̇ +Dζv
iv − Jζ v̈′′ = Qv −Dξ

(
φ′w′ + v′′w′2

)′′ − (Dη −Dζ)
(
φ2v′′ − φw′′

)′′
−Dζ

[
v′
(
v′v′′

)′ + v′
(
w′w′′

)′]′ + Jξ
∂

∂t

(
φ̇w′ + v̇′w′2

)′
− (Jη − Jζ)

[(
v′w′ẅ′

)
− ∂

∂t

(
v̇′φ2 − ẇ′φ

)]′
+ Jζ

[
v′
(
v̇′2 + ẇ′2

)]′
− m

2

{
v′
∫ s

L

[
∂2

∂t2

∫ s

0

(
v′2 + w′2

)
ds

]
ds

}′
−
(
v′
∫ s

L
Q∗uds

)′
(2.103)

mẅ + cwẇ +Dηw
iv − Jηẅ′′ = Qw +Dξ

(
φ′v′′ + v′′2w′

)′ + (Dη −Dζ)
(
φ2w′′ + φv′′

)′′
−Dη

[
w′
(
w′w′′

)′]′ −Dζ

[
w′
(
v′v′′

)′]′ − Jξ (φ̇v̇′ + v̇′2w′
)′
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− (Jη − Jζ)
∂

∂t

[(
ẇ′φ2

)
+
(
v̇′φ
)]′ + Jη

(
w′ẇ′2

)′ + Jζ
(
w′v̇′2

)′
− m

2

{
w′
∫ s

L

[
∂2

∂t2

∫ s

0

(
v′2 + w′2

)
ds

]
ds

}′
−
(
w′
∫ s

L
Q∗uds

)′
(2.104)

Jξφ̈+ cφφ̇−Dξφ
′′ = Qφ +Dξ

(
v′′w′

)′ + (Dη −Dζ)
(
v′′w′′ − φv′′2 + φw′′2

)
− Jξ

∂

∂t

(
v̇′w′

)
+ (Jη − Jζ)

(
φv̇′2 − φẇ′2 − v̇′ẇ′

)
(2.105)

The associated boundary conditions are:

v = 0, v′ = 0, w = 0, w′ = 0, and φ = 0 at the fixed end s = 0, (2.106)

and

Dζv
′′ = −Dξ

(
v′′w′2 + φ′w′

)
− (Dη −Dζ)

(
φ2v′′ − φw′′ − v′w′w′′

)
(2.107)

Dζv
′′′ − Jζ v̈′ = −Dξ

(
φ′w′ + w′2v′′

)′ − (Dη −Dζ)
(
φ2v′′ − φw′′

)′
−Dζ

[
v′
(
v′v′′

)′ + v′
(
w′w′′

)′]+ Jξ
∂

∂t

(
φ̇w′ + w′2v̇′

)
+ (Jη − Jζ)

∂

∂t

(
φ2v̇′ − φẇ′

)
+ Jζ

[
v′
∂

∂t

(
v′v̇′
)

+ v′
∂

∂t

(
w′ẇ′

)]
(2.108)

Dηw
′′ = (Dη −Dζ)

(
φ2w′′ + φv′′

)
(2.109)

Dηw
′′′ − Jηẅ′ = Dξ

(
w′v′′2 + v′′φ′

)
−Dη

[
w′
(
w′w′′

)′]−Dζ

[
w′
(
v′v′′

)′]
+ (Dη −Dζ)

(
φ2w′′ + φv′′

)′ − (Jη − Jζ)
∂

∂t

(
φ2ẇ′ + φv̇′

)
− Jξ

(
w′v̇′2 + φ̇v̇′

)
+ Jη

[
w′
∂

∂t

(
w′ẇ′

)]
+ Jζ

[
w′
∂

∂t

(
v′v̇′
)]

(2.110)

Dξφ
′ = −Dξ

(
v′′w′

)
(2.111)

at the fixed end s = L.

We note that Eqs. (2.103)-(2.111) are linearly uncoupled. Furthermore, although the nonlineari-

ties coupling the bending-twisting motions are quadratic and cubic, the nonlinearities coupling the

bending-bending motions are only cubic. In deriving the governing system of equations and associ-

ated boundary conditions, we neglected the effect of shear deformation. Hence, they are applicable
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to long thin beams. Furthermore, because the effect of the rotatory inertia terms (i.e., Jη and Jζ

terms) is the same order as the effect of the shear deformation terms (Timoshenko, 1921), we will

neglect them in what follows.

A special case of practical importance may be considered for beams whose fundamental torsional

frequency is much higher than the frequencies of the directly excited flexural modes. This is true,

for example, in beams that have near-square or near-circular cross-sections and hence, they are

very rigid in torsion. Then, the torsional inertia terms can be neglected in comparison with the

flexural inertia and stiffness terms (Crespo da Silva, 1978b). Consequently, integrating Eq. (2.105)

twice, using Eqs. (2.106e) and (2.111), and keeping terms of O(ε2), we obtain

Dξφ = −Dξ

∫ s

0
v′′w′ds−

∫ s

0

∫ s

L

[
Q∗φ + (Dη −Dζ) v′′w′′

]
dsds+ · · · (2.112)

Therefore, for such beams, if v and w = O(ε), then from Eq. (2.112), φ = O(ε2).

Substituting Eq. (2.112) into Eqs. (2.103) and (2.104), we obtain the following equations of motion

governing the nonlinear bending-bending vibrations of inextensional metallic beams:

mv̈ + cvv̇ +Dζv
iv = Qv + (Dη −Dζ)

[
w′′
∫ s

L
v′′w′′ds− w′′′

∫ s

0
v′′w′ds

]′
− (Dη −Dζ)2

Dξ

[
w′′
∫ s

0

∫ s

L
v′′w′′dsds

]′′
−Dζ

[
v′
(
v′v′′ + w′w′′

)′]′
− m

2

{
v′
∫ s

L

[
∂2

∂t2

∫ s

0

(
v′2 + w′2

)
ds

]
ds

}′
−
(
v′
∫ s

L
Q∗uds

)′
+
(
w′
∫ s

L
Q∗φds

)′′
− (Dη −Dζ)

Dξ

(
w′′
∫ s

0

∫ s

L
Q∗φdsds

)′′
(2.113)

mẅ + cwẇ +Dηw
iv = Qw − (Dη −Dζ)

[
v′′
∫ s

L
v′′w′′ds− v′′′

∫ s

0
v′w′′ds

]′
− (Dη −Dζ)2

Dξ

[
v′′
∫ s

0

∫ s

L
v′′w′′dsds

]′′
−Dη

[
w′
(
v′v′′ + w′w′′

)′]′
− m

2

{
w′
∫ s

L

[
∂2

∂t2

∫ s

0

(
v′2 + w′2

)
ds

]
ds

}′
−
(
w′
∫ s

L
Quds

)′
−
(
v′′
∫ s

L
Q∗φds

)′
− (Dη −Dζ)

Dξ

(
v′′
∫ s

0

∫ s

L
Q∗φdsds

)′′
(2.114)
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The boundary conditions reduce to

v = 0, v′ = 0, w = 0, and w′ = 0, at s = 0 (2.115)

v′′ = 0, v′′′ = 0, w′′ = 0, and w′′′= 0, at s = L (2.116)

and the corresponding Lagrangian is given by

L =
1
2

∫ L

0

{
m

[
∂

∂t

∫ s

0

1
2
(
v′2 + w′2

)
ds

]2

+m
(
v̇2 + ẇ2

)
− (Dη −Dζ)

(
2v′′w′′

∫ s

0
v′′w′ds

)
−Dη

(
w′′2 + w′2w′′2

)
−Dζ

(
v′′2 + v′2v′′2 + 2v′v′′w′w′′

)
− (Dη −Dζ)

2

Dξ

[(∫ s

L
v′′w′′ds

)2

+
(

2v′′w′′
∫ s

0

∫ s

L
v′′w′′dsds

)]}
ds (2.117)

The nonlinearities coupling the bending-bending motions in Eqs. (2.113) and (2.114) are only

cubic. This is unlike the case when we directly accounted for the torsional vibrations. The terms

underlined once represent the bending-twisting geometric nonlinearities; the terms underlined twice

represent the bending-bending inertia nonlinearities; and the terms underlined three times represent

the bending-bending geometric nonlinearities.

We note that for near-square or near-circular cross-section beams, the coefficient (Dη −Dζ) = O(ε).

Therefore, the important nonlinearities in the responses of such beams are the bending-bending

geometric and inertia nonlinearities. Crespo da Silva and Glynn (1978b) showed that the geomet-

ric nonlinearities are as important as the inertia nonlinearities and hence should not be neglected.

Nayfeh and Pai (1989) and Pai and Nayfeh (1990) showed that the geometric nonlinearities, having

a hardening influence, are dominant when the modes excited are low, whereas the inertia nonlinear-

ities, having a softening influence, are dominant when the modes excited are high. Therefore, the

overall effective nonlinearity may either be hardening or softening, depending on the mode being

excited.

Setting w(s, t) = 0, one obtains the following equation of motion governing the nonlinear planar
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bending vibrations of inextensional beams:

mv̈ + cvv̇ +Dζv
iv = −Dζ

[
v′
(
v′v′′

)′]′ − m

2

{
v′
∫ s

L

[
∂2

∂t2

∫ s

0
v′2ds

]
ds

}′
−
(
v′
∫ s

L
Q∗uds

)′
+Qv

(2.118)

The corresponding Lagrangian is

L =
1
2

∫ L

0

{
m

[
∂

∂t

∫ s

0

1
2
v′2ds

]2

+mv̇2 −Dζ

(
v′′2 + v′2v′′2

)}
ds (2.119)



Chapter 3

Bending-Bending Dynamics of

Parametrically Excited Cantilever

Beams

The nonlinear nonplanar response of a cantilever inextensional metallic beam to a principal para-

metric excitation of two of its flexural modes, one in each plane, is investigated. The lowest torsional

frequencies of the beams considered are much larger than the frequencies of the excited modes so

that the torsional inertia can be neglected. The method of time-averaged Lagrangian is used to

derive four first-order nonlinear ordinary-differential equations governing the modulation of the am-

plitudes and phases of the two interacting modes. These modulation equations are shown to exhibit

the symmetry conditions found by Feng and Leal (1994). A pseudo-arclength scheme is used to

trace the branches of the equilibrium solutions and the eigenvalues of the Jacobian matrix are used

to assess their stability. The effect of the cross-section and forcing frequency detunings on the static

and dynamic bifurcations is investigated. The equilibrium solutions experience pitchfork, saddle-

node, Hopf, and codimension-2 bifurcations. Five branches of dynamic (periodic and chaotic)

solutions of the modulation equations are found. Two of these branches emerge from two Hopf

bifurcations and the other three are isolated. The limit cycles undergo symmetry-breaking, cyclic-

fold, and period-doubling bifurcations, whereas the chaotic attractors undergo attractor-merging

45



Haider N. Arafat Chapter 3. Parametrically Excited Cantilever Beams 46

and boundary crises. Other interesting phenomena found include bubble structures, phase-locked

limit cycles, and explosive bifurcations.

v(s,t)

w(s,t)

s+u(s,t)

x

y

z

ζ

ξ

η

φ

b
h ζ

η

Q (t)=GΩ cos(Ωt)u
2

Figure 3.1: A schematic of a near-square cantilever beam under parametric excitation.

3.1 Problem Formulation

Using the nondimensional quantities

s∗ =
s

L
, t∗ =

√
Dη

mL4
t, v∗ =

v

L
, w∗ =

w

L
, βy =

Dζ

Dη
, βγ =

Dξ

Dη
(3.1)

in Eq. (2.117), we express the nondimensional Lagrangian L∗ = (L/Dη)L as

L =
∫ 1

0

(
1
2

{[
∂

∂t

∫ s

0

1
2
(
v′2 + w′2

)
ds

]2

+ v̇2 + ẇ2

}
− (1− βy)

{
v′′w′′

∫ s

0
v′′w′ds

}

− 1
2

{
w′′2 + w′2w′′2

}
− 1

2
βy

{
v′′2 + v′2v′′2 + 2v′v′′w′w′′

}

− (1− βy)2

2βγ

{[∫ s

1
v′′w′′ds

]2

+
[
2v′′w′′

∫ s

0

∫ s

1
v′′w′′dsds

]})
ds (3.2)
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where the asterisk has been dropped for convenience. To account for the damping and parametric

excitation, we set Qu(t) = GΩ2 cos (Ωt) and introduce the nondimensional virtual-work term

δW =
∫ 1

0

(
Q∗vδv +Q∗wδw

)
ds

= −
∫ 1

0

([
v′′(s− 1) + v′

]
GΩ2 cos(Ωt) + cvv̇

)
δvds

−
∫ 1

0

([
w′′(s− 1) + w′

]
GΩ2 cos(Ωt) + cwẇ

)
δwds (3.3)

The corresponding nondimensional governing equations of motion are obtained by applying Eq.

(3.1) to Eqs. (2.113) and (2.114). The result is

v̈ + cvv̇ + βyv
′′′′ = (1− βy)

[
w′′
∫ s

1
v′′w′′ds− w′′′

∫ s

0
v′′w′ds

]′
− (1− βy)2

βγ

[
w′′
∫ s

0

∫ s

1
v′′w′′dsds

]′′
− βy

[
v′
(
v′v′′ + w′w′′

)′]′
− 1

2

{
v′
∫ s

1

∂2

∂t2

[∫ s

0

(
v′2 + w′2

)
ds

]
ds

}′
−
[
v′′ (s− 1) + v′

]
GΩ2 cos(Ωt) (3.4)

ẅ + cwẇ + w′′′′ = −(1− βy)
[
v′′
∫ s

1
v′′w′′ds− v′′′

∫ s

0
v′w′′ds

]′
− (1− βy)2

βγ

[
v′′
∫ s

0

∫ s

1
v′′w′′dsds

]′′
−
[
w′
(
v′v′′ + w′w′′

)′]′
− 1

2

{
w′
∫ s

1

∂2

∂t2

[∫ s

0

(
v′2 + w′2

)
ds

]
ds

}′
−
[
w′′ (s− 1) + w′

]
GΩ2 cos(Ωt)

(3.5)

The associated boundary conditions are given by Eqs. (2.115) and (2.116).

3.2 Perturbation Analysis

To determine the modulation equations governing the amplitudes and phases, we apply the method

of multiple scales (Nayfeh, 1973, 1981) directly to the Lagrangian and virtual-work term. We

introduce ε¿ 1 as a bookkeeping parameter such that the kth time scale Tk = εkt for k = 0, 1, 2, · · · .
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Then, using the chain rule, we transform the first and second time derivatives according to

∂

∂t
=

∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
+ · · ·

≡ D0 + εD1 + ε2D2 + · · · (3.6)

∂2

∂t2
=

∂2

∂T 2
0

+ 2ε
∂2

∂T0∂T1
+ ε2

(
∂2

∂T 2
1

+ 2
∂2

∂T0∂T2

)
+ · · ·

≡ D2
0 + 2εD0D1 + ε2

(
D2

1 + 2D0D2

)
+ · · · (3.7)

Because Eqs. (3.4) and (3.5) contain only cubic nonlinearities, the solution is independent of the

time scale T1. Then, we seek a uniform expansion for v(s, t) and w(s, t) as

v(s, t) = v(s, T0, T2) = εv1(s, T0, T2) + ε3v3(s, T0, T2) + · · · (3.8)

w(s, t) = w(s, T0, T2) = εw1(s, T0, T2) + ε3w3(s, T0, T2) + · · · (3.9)

It follows from Eqs. (2.115), (2.116), (3.4), and (3.5) that the linear undamped natural frequencies

and their corresponding mode shapes are given by

ω̂1m = z2
m

√
βy, ω2n = z2

n (3.10)

Φi(s) = cosh zis− cos zis+
cos zi + cosh zi
sin zi + sinh zi

(sin zis− sinh zis) , i = m,n (3.11)

where ω̂1m and ω2n are the natural frequencies in the y and z directions and the zi are the roots of

1 + cos z cosh z = 0 (3.12)

The lowest five roots are 1.8751, 4.6941, 7.8548, 10.9955, and 14.1372.

Following Nayfeh and Pai (1989), we consider the case of one-to-one internal resonance between the

mth mode in the y direction and the nth mode in the z direction; that is, ω̂1m ≈ ω2n. To express
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the nearness of these frequencies quantitatively, we let

βy = 1 + δ0 + ε2δ2 (3.13)

so that when δ2 = 0, the internal resonance is perfectly tuned and we have

ω1m = z2
m

√
1 + δ0 = z2

n = ω2n (3.14)

We note that δ0 = 0 for a near-square cross-section. For the case of principal parametric resonance

of the nth mode in the z direction, we put

Ω = 2ω2n

(
1 + ε2σ

)
= 2ω1m

(
1 + ε2σ

)
(3.15)

where σ is a detuning parameter. We also set G = ε2g.

Nayfeh and Pai (1989) directly attacked Equations (3.4) and (3.5) by using the method of multiple

scales and obtained the following second-order uniform expansion of the response of the beam:

v(s, T0, T2) = εΦm(s)A1(T2)eiω1mT0 + cc + · · · (3.16)

w(s, T0, T2) = εΦn(s)A2(T2)eiω2nT0 + cc + · · · (3.17)

where the complex-valued functions A1 and A2 are governed by

iω1m

(
2A′1 + 2µ1A1

)
= −δ2z

4
mA1 −

[
δ0α1 +

δ2
0

βγ
α2 + (1 + δ0)α3

] (
2A1A2Ā2 + Ā1A

2
2

)
− 3(1 + δ0)α4A

2
1Ā1 + 2α5ω

2
1mĀ1A

2
1 + 2α6ω

2
2nĀ1A

2
2

− 2α7gω
2
2nĀ1e

2iω2nσT2 (3.18)

iω2n

(
2A′2 + 2µ2A2

)
=
(
δ0β1 −

δ2
0

βγ
β2 − β3

)(
2A2A1Ā1 + Ā2A

2
1

)
− 3β4A

2
2Ā2 + 2β5ω

2
2nĀ2A

2
2 + 2β6ω

2
1mĀ2A

2
1

− 2β7gω
2
2nĀ2e

2iω2nσT2 (3.19)
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and µ1 and µ2 are defined by

ε2µ1 =
1
2

∫ 1

0
cvΦ2

mds and ε2µ2=
1
2

∫ 1

0
cwΦ2

nds (3.20)

The αi are given by

α1 =
∫ 1

0
Φm

[
Φ′′n

∫ s

1
Φ′′mΦ′′nds− Φ′′′n

∫ s

0
Φ′′mΦ′nds

]′
ds (3.21)

α2 =
∫ 1

0
Φm

[
Φ′′n

∫ s

0

∫ s

1
Φ′′mΦ′′ndsds

]′′
ds (3.22)

α3 =
∫ 1

0
Φm

[
Φ′m

(
Φ′nΦ′′n

)′]′
ds (3.23)

α4 =
∫ 1

0
Φm

[
Φ′m

(
Φ′mΦ′′m

)′]′
ds (3.24)

α5 =
∫ 1

0
Φm

[
Φ′m

∫ s

1

∫ s

0
Φ′2mdsds

]′
ds (3.25)

α6 =
∫ 1

0
Φm

[
Φ′m

∫ s

1

∫ s

0
Φ′2n dsds

]′
ds (3.26)

α7 =
∫ 1

0

[
(s− 1)ΦmΦ′′m + ΦmΦ′m

]
ds (3.27)

The βi can be obtained from the αi by interchanging the subscripts m and n.

By analytically manipulating the integrals in Eqs. (3.21)-(3.27), Feng and Leal (1994) proved that

α1 + α3 = −β1, α2 = β2, α3 = β3, and α6 = β6 (3.28)

for a beam with rectangular cross-section. For near-square beams, Φm = Φn and hence

µ1 = µ2, α3 = α4, α5 = α6, and αi = βi for i = 1, 2, · · · , 6 (3.29)

Next, we show that beams exhibit these symmetry conditions by deriving the modulation equations

using the method of time-averaged Lagrangian.

To apply the method of time-averaged Lagrangian, we substitute Eqs. (3.16) and (3.17) into the

Lagrangian and virtual-work term, perform the spatial integrations, keep the slowly varying terms
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only, and obtain

< L >
ε4

= −δ2z
4
mA1Ā1 − iω1m

(
A′1Ā1 −A1Ā

′
1

)
− iω2n

(
A′2Ā2 −A2Ā

′
2

)
+
[
ω2

1mΓ5 −
3
2

(1 + δ0) Γ4

]
A2

1Ā
2
1 +

(
ω2

2nΛ5 −
3
2

Λ4

)
A2

2Ā
2
2

+ ω1mω2nΓ6

(
A2

1Ā
2
2 + Ā2

1A
2
2

)
−
[

1
2

(1 + δ0) Γ3 +
1
2
δ0Γ1 +

δ2
0

2βγ
Γ2

]
×
(
A2

1Ā
2
2 + 4A1Ā1A2Ā2 + Ā2

1A
2
2

)
+ · · · (3.30)

δW

ε4
= Q∗1δA1 +Q∗2δA2 + Q̄∗1δĀ1 + Q̄∗2δĀ2

= −
[
2gω2

1mΓ7A1e
−2iω1mσT2 − 2iω1mµ1Ā1

]
δA1 −

[
2gω2

1mΓ7Ā1e
2iω1mσT2

+ 2iω1mµ1A1

]
δĀ1 −

[
2gω2

2nΛ7A2e
−2iω2nσT2 − 2iω2nµ2Ā2

]
δA2

−
[
2gω2

2nΛ7Ā2e
2iω2nσT2 + 2iω2nµ2A2

]
δĀ2 + · · · (3.31)

where

Γ1 = −2
∫ 1

0
Φ′′mΦ′′n

(∫ s

0
Φ′′mΦ′nds

)
ds (3.32)

Γ2 =
∫ 1

0

[(∫ s

0
Φ′′mΦ′′nds

)2

+ 2Φ′′mΦ′′n

∫ s

0

∫ s

1
Φ′′mΦ′′ndsds

]
ds (3.33)

Γ3 = 2
∫ 1

0
Φ′mΦ′′mΦ′nΦ′′nds (3.34)

Γ4 = 2
∫ 1

0
Φ′2mΦ′′2m ds (3.35)

Λ4 = 2
∫ 1

0
Φ′2nΦ′′2n ds (3.36)

Γ5 =
∫ 1

0

(∫ s

0
Φ′2mds

)2

ds (3.37)

Λ5 =
∫ 1

0

(∫ s

0
Φ′2n ds

)2

ds (3.38)

Γ6 =
∫ 1

0

(∫ s

0
Φ′2mds

)(∫ s

0
Φ′2n ds

)
ds (3.39)

Γ7 =
∫ 1

0

[
ΦmΦ′′m(s− 1) + ΦmΦ′m

]
ds (3.40)
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Λ7 =
∫ 1

0

[
ΦnΦ′′n(s− 1) + ΦnΦ′n

]
ds (3.41)

Table 3.1: Values of the Γi and Λi for different mode combinations.

Term Modes (1,1) Modes (1,2) Modes (1,3)
Γ1 -20.220 334.259 996.978
Γ2 -16.608 -263.080 -585.081
Γ3 40.440 172.740 321.098
Γ4 40.440 40.440 40.440
Λ4 40.440 13418.226 264372.686
Γ5 4.597 4.597 4.597
Λ5 4.597 144.728 999.865
Γ6 4.597 25.174 66.898
Γ7 1.571 1.571 1.571
Λ7 1.571 8.647 24.953

Term Modes (2,1) Modes (2,2) Modes (2,3)
Γ1 -507.000 -6709.113 86993.521
Γ2 -263.080 -63028.330 -98696.589
Γ3 172.740 13418.226 6829.742
Γ4 13418.226 13418.226 13418.226
Λ4 40.440 13418.226 264372.686
Γ5 144.728 144.728 144.728
Λ5 4.597 144.728 999.865
Γ6 25.174 144.728 369.714
Γ7 8.647 8.647 8.647
Λ7 1.571 8.647 24.953

Term Modes (3,1) Modes (3,2) Modes (3,3)
Γ1 -1318.077 -93823.263 -132186.326
Γ2 -585.081 -98696.589 -4503896.355
Γ3 321.098 6829.742 264372.686
Γ4 264372.686 264372.686 264372.686
Λ4 40.440 13418.226 264372.686
Γ5 999.865 999.865 999.865
Λ5 4.597 144.728 999.865
Γ6 66.898 369.714 999.865
Γ7 24.953 24.953 24.953
Λ7 1.571 8.647 24.953

The numerical values of the coefficients Γi and Λi are given in Table 3.1 for combinations of the
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first three modes. Using Hamilton’s extended principle

d

dT2

(
∂ < L >
∂Ā′1

)
− ∂ < L >

∂Ā1
= Q̄∗1 (3.42)

d

dT2

(
∂ < L >
∂Ā′2

)
− ∂ < L >

∂Ā2
= Q̄∗2 (3.43)

and Eqs. (3.30) and (3.31), we obtain the modulation equations

2iω1m
dA1

dT2
=
[
2ω2

1mΓ5 − 3 (1 + δ0) Γ4

]
A2

1Ā1 + 2ω1mω2nΓ6Ā1A
2
2 −

(
2iω1mµ1 + δ2z

4
m

)
A1

−
[
(1 + δ0) Γ3 +

δ2
0

βγ
Γ2 + δ0Γ1

](
Ā1A

2
2 + 2A1A2Ā2

)
− 2gω2

1mΓ7Ā1e
2iω1mσT2 (3.44)

2iω2n
dA2

dT2
=
(

2ω2
2nΛ5 − 3Λ4

)
A2

2Ā2 + 2ω1mω2nΓ6A
2
1Ā2 − 2iω2nµ2A2

−
[
(1 + δ0) Γ3 +

δ2
0

βγ
Γ2 + δ0Γ1

](
A2

1Ā2 + 2A1Ā1A2

)
− 2gω2

2nΛ7Ā2e
2iω2nσT2 (3.45)

Comparing Equations (3.44) and (3.45) obtained with the time-averaged Lagrangian with Equa-

tions (3.18) and (3.19) obtained by directly attacking the integro-partial-differential equations, we

conclude that

Γ1 = α1 Γ2 = α2 = β2 Γ3 = α3 = β3 Γ1 + Γ3 = −β1

Γ4 = α4 Λ4 = β4 Γ5 = α5 Λ5 = β5 (3.46)

Γ6 = α6 = β6 Γ7 = α7 Λ7 = β7

For a near-square cross-section, Φm(s) = Φn(s) and hence

Γ4 = Λ4 = α4 = β4

Γ5 = Λ5 = α5 = β5

Γ7 = Λ7 = α7 = β7 (3.47)

Γ5 = Γ6 = α5 = α6

Γ3 = Γ4 = α3 = α4
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These symmetry conditions are the same as those obtained by Feng and Leal (1994).

To analyze solutions of the modulation equations, we express A1 and A2 in the polar form

A1(T2) =
1
2
a1(T2)eiθ1(T2) and A2(T2)=

1
2
a2(T2)eiθ2(T2) (3.48)

separate Eqs. (3.44) and (3.45) into real and imaginary parts, and obtain

2ω1ma
′
1 = −

[
R1 +R2a

2
2 sin[2(γ1 − γ2)] +R3 sin(2γ1)

]
a1 (3.49)

2ω1ma1γ
′
1 =

[
R4 +R5a

2
1 −R6a

2
2 −R2a

2
2 cos[2(γ1 − γ2)]−R3 cos(2γ1)

]
a1 (3.50)

2ω2na
′
2 = −

[
E1 −R2a

2
1 sin[2(γ1 − γ2)] + E3 sin(2γ2)

]
a2 (3.51)

2ω2na2γ
′
2 =

[
E4 + E5a

2
2 −R6a

2
1 −R2a

2
1 cos[2(γ1 − γ2)]− E3 cos(2γ2)

]
a2 (3.52)

where

γ1 = ω1mσT2 − θ1 (3.53)

γ2 = ω2nσT2 − θ2 (3.54)

and the Ri and Ei are defined in Appendix A. Alternatively, one can express A1 and A2 in the

Cartesian form

A1 =
1
2

(p1 − iq1)eiω1mσT2 and A2=
1
2

(p2 − iq2)eiω2nσT2 (3.55)

separate real and imaginary parts in Eqs. (3.44) and (3.45), and obtain

p′1 = − 1
2ω1m

{
R4q1 +R5

(
p2

1 + q2
1

)
q1 −R6

(
p2

2 + q2
2

)
q1

+R1p1 +R2

[ (
p2

2 − q2
2

)
q1 − 2p1p2q2

]
+R3q1

}
(3.56)

q′1 = − 1
2ω1m

{
−R4p1 −R5

(
p2

1 + q2
1

)
p1 +R6

(
p2

2 + q2
2

)
p1

+R1q1 +R2

[ (
p2

2 − q2
2

)
p1 + 2q1p2q2

]
+R3p1

}
(3.57)
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p′2 = − 1
2ω2n

{
E4q2 + E5

(
p2

2 + q2
2

)
q2 −R6

(
p2

1 + q2
1

)
q2

+ E1p2 +R2

[ (
p2

1 − q2
1

)
q2 − 2p1q1p2

]
+ E3q2

}
(3.58)

q′2 = − 1
2ω2n

{
− E4p2 − E5

(
p2

2 + q2
2

)
p2 +R6

(
p2

1 + q2
1

)
p2

+ E1q2 +R2

[ (
p2

1 − q2
1

)
p2 + 2p1q1q2

]
+ E3p2

}
(3.59)

We note that the system (3.56)-(3.59) is invariant under the transformations (p1, q1, p2, q2) ⇐⇒
(−p1,−q1, p2, q2) ⇐⇒ (p1, q1,−p2,−q2) ⇐⇒ (−p1,−q1,−p2,−q2). Therefore, for any asymmetric

solution found, three other solutions can be obtained using the above transformations (Nayfeh and

Balachandran, 1995).

In the next section, we describe bifurcations of solutions of the modulation equations in the case of

beams with near-square cross-sections in detail. For such beams, δ0 = 0, E1 = R1, E3 = R3, and

E5 = R5.

3.3 Bifurcation Analysis

3.3.1 Equilibrium Solutions

First, we determine the equilibrium solutions and their stability. To this end, we set the time

derivatives in Eqs. (3.56)-(3.59) equal to zero and solve the resulting system of algebraic equations

for p1, q1, p2, and q2 for a specified value of the parameter σ, which is a measure of the detuning

of the principal parametric resonance. Then, the amplitudes a1 and a2 are calculated from ai =√
p2
i + q2

i . The stability of a fixed point is determined by investigating the eigenvalues of the

Jacobian matrix of the right-hand sides of Eqs. (3.56)-(3.59). A pseudo-arclength scheme is used

to trace branches of the equilibrium solutions (Nayfeh and Balachandran, 1995; Seydel, 1994).

When δ2 = −0.05, we show in Figure 3.2 typical frequency-response curves for modes (1,1) and

(2,2). For modes (1,1), the planar response curves are bent to the right and hence the effective

nonlinearity is of the hardening type. Therefore, the nonlinear geometric terms are dominant for

these modes. In part (b), the planar response curves are bent to the left and hence the effective
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nonlinearity is of the softening type for modes (2,2). Therefore, the nonlinear inertia terms are

dominant for these modes. These results agree with those of Nayfeh and Pai (1989). In part (a),

the nonplanar response undergoes a Hopf bifurcation at σ = 0.0566242, resulting in the creation

of limit cycles for the amplitudes and phases. The corresponding fixed point at the Hopf point

is (p1, q1, p2, q2) = (0.241107, 0.0240642,−0.0929129, 0.131068). On the other hand, the nonplanar

response of modes (2,2) do not undergo Hopf bifurcations for the parameters used.

Changing the detuning parameter δ2 from -0.05 to -0.5, we obtained the frequency-response curves

shown in Figure 3.3 for modes (1,1). For the most part, the general characteristics of these curves

are qualitatively similar to those in Figure 3.2(a).
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Figure 3.2: Frequency-response curves when δ2 = −0.05, µ1 = µ2 = 0.025, g = 0.03, and βγ =
0.6489: (a) modes (1,1) and (b) modes (2,2). The planar response amplitudes are denoted by a1

and a2 and the nonplanar response amplitudes are denoted by a1n and a2n. (——) Stable solution,
(– – –) saddles, and (· · · ) unstable foci, PF = pitchfork bifurcation, SN = saddle-node bifurcation,
and HF = Hopf bifurcation.

The normal form of any autonomous system near a generic Hopf bifurcation point is (Nayfeh and
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Balachandran, 1995)

ṙ = ε1(σ − σc)r + αrr
3 (3.60)

θ̇ = ε2(σ − σc) + αir
2 (3.61)

where r is a measure of the amplitude of the created limit cycle. The bifurcation is generic if

ε1 6= 0 and subcritical if αr > 0 and supercritical if αr < 0. The created limit cycle is stable if

the bifurcation is supercritical and unstable if the bifurcation is subcritical. The amplitudes of the

created limit cycle are given by r =
√
−ε1(σ − σc)/αr.

A Mathematica code was used to calculate the coefficients in the normal form of the Hopf bifurca-

tions. For the Hopf bifurcation at σ = 0.0694703, the corresponding fixed point is (p1, q1, p2, q2) =

(0.254868, 0.0200404,−0.0560086, 0.411458). For this point, ε1 = −39.1347 and αr = 1.41995,

indicating that the bifurcation is generic and subcritical. Hence, the created limit cycles are un-

stable. The two-mode solutions occur over a longer range of values for σ because increasing the

magnitude of the detuning δ2 creates stronger coupling between the in-plane and out-of-plane

modes. An important difference in this case is the occurrence of a second Hopf bifurcation point

at σ = −0.0383338 and (p1, q1, p2, q2) = (0.005642228, 0.0001068165,−0.02463237, 0.324553). The

corresponding values for ε1 and αr are 1049.01 and -2844.36, respectively, indicating a generic su-

percritical Hopf bifurcation with the unstable foci to its right. In Figure 3.4, we show a clearer

view of this Hopf bifurcation point, which is very close to the pitchfork bifurcation that occurs at

σ = −0.0383862.

The characteristic equation of the matrix [J − λI] is given by

λ4 + r1λ
3 + r2λ

2 + r3λ+ r4 = 0 (3.62)

where [J ] is the Jacobian matrix evaluated at a fixed point FP (σ, δ2) = (p1, q1, p2, q2) and the ri =

ri(σ, δ2;FP ). Applying the Routh-Hurwitz criterion yields the following conditions for stability:

r1 > 0, r1r2 − r3 > 0, r3 (r1r2 − r3)− r2
1r4 > 0, and r4 > 0 (3.63)



Haider N. Arafat Chapter 3. Parametrically Excited Cantilever Beams 58

A static bifurcation occurs when a real eigenvalue crosses transversely the imaginary axis. The

locus of such a bifurcation is given by r4 = 0. On the other hand, a Hopf bifurcation occurs

when a pair of complex conjugate eigenvalues cross transversely the imaginary axis. In this case,

the locus of the Hopf bifurcation is determined from r3 (r1r2 − r3) − r2
1r4 = 0. A codimension-2

bifurcation occurs when two real eigenvalues or one real and two complex conjugate eigenvalues

cross transversely the imaginary axis at the same time. In this case two parameters are needed to

analyze the system.
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Figure 3.3: Frequency-response curves for modes (1,1) when δ2 = −0.5, µ1 = µ2 = 0.025, g = 0.03,
and βγ = 0.6489. The planar response amplitudes are denoted by a1 and a2 and the nonplanar
response amplitudes are denoted by a1n and a2n. (——) Stable solution, (– – –) saddles, and
(· · · ) unstable foci, PF = pitchfork bifurcation, SN = saddle-node bifurcation, and HF = Hopf
bifurcation.

The loci of the bifurcations, in terms of the frequency detuning parameter σ and the bending

stiffness ratio (or cross-section ratio) detuning parameter δ2, are presented in Figure 3.5 for modes

(1,1). The lines denoted by PF1 and PF2 are the loci of pitchfork bifurcations of the trivial solution,

resulting in single-mode solutions for a1. The lines denoted by PF3 and PF4 are the loci of pitchfork

bifurcations of the trivial solution, resulting in single-mode solutions for a2. The lines denoted by
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Figure 3.4: Enlargements of the blocked areas shown in Figure 3.3. The planar response amplitudes
are denoted by a1 and a2 and the nonplanar response amplitudes are denoted by a1n and a2n. (—
—) Stable solution, (– – –) saddles, and (· · · ) unstable foci, PF = pitchfork bifurcation, and HF =
Hopf bifurcation.

PF5 and PF6 are the loci of pitchfork bifurcations of the single-mode solutions, resulting in two-

mode solutions. The lines denoted by HF1 and HF2 are the loci of supercritical and subcritical Hopf

bifurcations, respectively. Lastly, the line denoted by SN is the locus of saddle-node bifurcations.

We note that the loci of the pitchfork bifurcations PF3 and PF4 are unaffected by δ2 whereas

those of PF1 and PF2 do vary with δ2. Therefore, as δ2 is increased beyond point A, where A is

given by (σ, δ2, p1, q1, p2, q2) = (−0.0465906,−0.186362218, 0, 0, 0, 0), the order of the single-mode

branches changes. This is evident from comparing Figures 3.2(a) and 3.3. As δ2 approaches point

A, the supercritical Hopf bifurcation HF1 and the pitchfork bifurcations PF2, PF3, and PF5 merge

with each other, resulting in a codimension-2 bifurcation, as shown in Figure 3.6(a). Increasing

δ2 beyond point A, only the pitchfork bifurcations survive so that the codimension-2 bifurcation

results in the creation (or destruction) of the supercritical Hopf bifurcation. A second codimension-2

bifurcation occurs at point B where the loci of the subcritical Hopf bifurcation HF2 and the saddle-

node bifurcation SN merge together, as shown in Figure 3.6(b). This codimension-2 bifurcation is

given by (σ, δ2, p1, q1, p2, q2) = (0.0527954,−0.0103,−0.135242,−0.0237346, 0.217697,−0.0382052).

As we increase δ2 past point B, only the saddle-node bifurcation survives and then vanishes at

point C. However, point C is not a codimension-2 bifurcation as the corresponding fixed points

for the saddle-node SN and pitchfork PF6 are different from each other. Further increasing δ2, we
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have only the pitchfork bifurcations PF1-PF6.
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Figure 3.5: Bifurcation diagram showing the loci of the static and dynamic bifurcation points,
which the equilibrium solutions (trivial and nontrivial) undergo, in terms of the frequency detuning
parameter σ and the bending stiffness ratio detuning parameter δ2 for modes (1,1) when µ1 = µ2 =
0.025, g = 0.03, and βγ = 0.6489. SN = saddle-node bifurcation, PFi = pitchfork bifurcation, HF1
= supercritical Hopf bifurcation, and HF2 = subcritical Hopf bifurcation.
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3.3.2 Dynamic Solutions

The dynamic behavior of the modulation equations was studied for modes (1,1) for the case

δ2 = −0.5, corresponding to Figures 3.3 and 3.4. A long-time integration, a combination of a

two-point boundary-value program and Newton’s scheme, and Floquet theory (Nayfeh and Bal-

achandran, 1995) were used to generate five branches of dynamic solutions and assess their sta-

bility. The two Hopf bifurcation points, one supercritical and the other subcritical, produce two

branches of dynamic solutions. Branch I corresponds to dynamic solutions that emerge from the

supercritical Hopf bifurcation, whereas branch IV corresponds to dynamic solutions that emerge

from the subcritical Hopf bifurcation. Branches II and V are isolated branches found near branch

I, whereas branch III spans the region between the two Hopf points. In Figure 3.7, we show a

schematic of the regions where dynamic solutions occur; in Figure 3.8(a), we give a clearer view of

branches I, II, and V; and in Figure 3.8(b) we show a close-up of the period-doubling sequence on

branch III.
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Figure 3.6: Enlargements of the blocked area in Figure 3.5 showing a clearer view of the
codimension-2 bifurcations. In part (a) the supercritical Hopf and three pitchfork bifurcation
points merge and in part (b) the subcritical Hopf and saddle-node bifurcation points merge. SN
= saddle-node bifurcation, PFi = pitchfork bifurcation, HF1 = supercritical Hopf bifurcation, and
HF2 = subcritical Hopf bifurcation.

In Figure 3.9, we show a schematic of the dynamic solutions on branch I. The asymmetric limit

cycle that emerges from the supercritical Hopf bifurcation at σ = −0.0383338 grows and deforms
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Figure 3.7: A schematic of the dynamic solutions found for modes (1,1) when δ2 = −0.5, µ1 =
µ2 = 0.025, g = 0.03, and βγ = 0.6489. (——) Stable limit cycle, (· · · ) unstable limit cycle, CF =
cyclic-fold bifurcation, SB = symmetry-breaking bifurcation, PF = pitchfork bifurcation, and HF
= Hopf bifurcation.

as σ increases, as shown in Figures 3.10(a)-(c). Then it undergoes a sequence of period-doubling

bifurcations, culminating in a chaotic attractor, as shown in Figures 3.10(d)-(i). The attractor and

its three clowns continue to grow and deform as σ is increased further, as shown in Figure 3.11(a).

When σ is increased to -0.03831015, the four clown chaotic attractors merge in pairs, forming

two larger asymmetric chaotic attractors. The time histories in Figures 3.11(b)-(c) demonstrate

the irregular switching of the motion on one of these attractors between its two ghost attractors.

Increasing σ = −0.03830689, the two large asymmetric chaotic attractors undergo an explosive

bifurcation (Nayfeh and Balachandran, 1996; Nayfeh and Chin, 1996), resulting in their merger
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(——) Stable limit cycle, (· · · ) unstable limit cycle, CF = cyclic-fold bifurcation, SB = symmetry-
breaking bifurcation, PDn = nth period-doubling bifurcation, and HF = Hopf bifurcation.

and the creation of a much larger single symmetric chaotic attractor. In Figure 3.12(a), we show

one of the asymmetric chaotic attractors before the explosive bifurcation, and in Figure 3.12(b),

we show the large symmetric chaotic attractor after the explosive bifurcation. As σ is further

increased, the large symmetric chaotic attractor continues to grow and deform until it undergoes a

boundary crisis, resulting in a large limit cycle on the isolated branch III, as shown in Figure 3.13.

On branch III, we followed the symmetric limit cycle, shown in Figure 3.14(a), that resulted from the

chaotic attractor on branch I having experienced a boundary crisis. In Figure 3.14(a), we also show

the corresponding FFT for this limit cycle. As σ is decreased, this limit cycle undergoes a cyclic-fold

bifurcation at σ = −0.047110 and tends to the single-mode equilibrium solution. As σ is increased,

the symmetric limit cycle grows and deforms, as seen in Figures 3.14(b)-(c). It then undergoes a

symmetry-breaking bifurcation at σ = 0.079000 as is demonstrated by the FFT in Figure 3.14(d).

The asymmetric limit cycle then undergoes a sequence of period-doubling bifurcations, culminating

in a chaotic attractor, as shown in Figures 3.14(e)-(h). This chaotic attractor continues to grow

until it undergoes a boundary crisis at σ = 0.081070, resulting in a jump to a smaller symmetric
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limit cycle on branch IV, as shown in Figure 3.15.
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Figure 3.9: A schematic of the dynamic solutions found on branches I and V for modes (1,1) when
δ2 = −0.5, µ1 = µ2 = 0.025, g = 0.03, and βγ = 0.6489. (——) Stable limit cycle, (· · · ) unstable
limit cycle, PDn = nth period-doubling bifurcation, and HF = Hopf bifurcation.

A schematic of the dynamic solutions on branch IV is shown in Figure 3.16. We followed the sym-

metric limit cycle, shown in Figure 3.15(b), that resulted from the boundary crisis on branch III.

As σ is decreased, the limit cycle goes through a cyclic-fold bifurcation at σ = 0.0790294, causing it

to jump to the two-mode equilibrium solution. As σ is increased, it undergoes a subcritical pitch-

fork bifurcation, creating unstable limit cycles that eventually tend to the two-mode equilibrium

solution. Tracing the unstable limit cycle as σ is increased by using a combination of a shooting

technique and Floquet theory led us to another stable symmetric limit cycle. An example is shown

in Figure 3.17(a) for σ = 0.1229000. As σ is increased further, the limit cycle undergoes a cyclic-fold

bifurcation, causing it to jump to the two-mode equilibrium solution. The corresponding unstable
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limit cycle is traced back towards the subcritical Hopf bifurcation point, as is shown in Figure 3.16.

On the other hand, if σ is decreased, the limit cycle undergoes a symmetry-breaking bifurcation

at σ = 0.1227400, as shown in Figure 3.17(b). As σ is decreased further, the asymmetric limit

cycle undergoes repeated period-doubling bifurcations resulting in a chaotic attractor, as shown

in Figures 3.17(c)-(e). Then, the chaotic attractor undergoes a boundary crisis and tends to the

two-mode equilibrium solution.

A small isolated branch, labeled V in Figure 3.8(a), was found. In Figure 3.18(a), we show a

limit cycle found on this branch at σ = −0.038310125. As σ is decreased, this limit cycle en-

counters a cyclic-fold bifurcation at σ = −0.038310132, and a chaotic attractor similar to the

one shown in Figure 3.10(i) emerges. As σ is increased, the limit cycle undergoes a sequence of

period-doubling bifurcations, culminating in a chaotic attractor, as shown in Figure 3.18(d). When

σ = −0.038310115, the chaotic attractor undergoes an attractor-merging crisis and a larger at-

tractor that is similar to that shown in Figure 3.11(b) emerges. As σ is increased further, this

chaotic attractor deforms and then splits into two smaller attractors, as shown in Figure 3.19a.

Consequently, it undergoes a sequence of reverse period-doubling bifurcations, resulting in a limit

cycle, as shown in Figure 3.19. The dynamics on this branch is an example of a bubble structure

(Nayfeh and Balachandran, 1995). The limit cycle then encounters a cyclic-fold bifurcation at

σ = −0.038307990, causing the response to jump to the chaotic attractor on branch I.

In Figure 3.20, we show a phase-locked limit cycle (Nayfeh and Balachandran, 1995; Thompson

and Stewart, 1988) found just to the left of Branch V at σ = −0.0383106. The one-sided Poincaré

section in part (c) showing seven points is a clear indication of the long-period limit cycle.

On the isolated branch II, a symmetric limit cycle was found at σ = −0.03842000 through sim-

ulation of the modulation equations. As σ is decreased, the limit cycle encounters a cyclic-fold

bifurcation at σ = −0.03843652, causing the response to jump to the single-mode equilibrium solu-

tion. As σ is increased, the symmetric limit cycle grows, as seen in Figures 3.21(a)-(c). It then goes

through a symmetry-breaking bifurcation at σ = −0.03838650, as shown in Figures 3.21(d)-(e).

The asymmetric limit cycle then undergoes successive period-doubling bifurcations until the mo-

tion becomes chaotic, as shown in Figures 3.21(f)-(i). This chaotic attractor continues to grow until

it experiences an attractor-merging crisis at σ = −0.03835000, resulting in a symmetric attractor,
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Figure 3.10: Two-dimensional projections of the phase portraits onto the p1q1-plane, showing bifur-
cations of the created limit cycle on branch I resulting from the supercritical Hopf bifurcation. As
σ is increased, the limit cycle grows, deforms, and undergoes repeated period-doubling bifurcations
that culminate in chaos, as shown in part (i). The corresponding values of σ are σa = −0.03833350,
σb = −0.03832500, σc = −0.03831920, σd = −0.03831900, σe = −0.03831600, σf = −0.03831530,
σg = −0.03831519, σh = −0.03831500, and σi = −0.03831100.
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as shown in Figure 3.22(a). As σ is increased to -0.03834964, the symmetric chaotic attractor goes

through an exterior crisis (Nayfeh and Balachandran, 1995; Nayfeh and Chin, 1996), causing it to

jump to the two-mode equilibrium solution, as shown in Figure 3.22(b).
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Figure 3.11: Two-dimensional projections of the phase portraits onto the p1q1-plane and long-time
histories showing an attractor-merging crisis. The corresponding values of σ are σa = −0.03831016,
σb = −0.03831015, and σc = −0.03830690.
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Figure 3.12: Two-dimensional projections of the phase portraits onto the p1q1- and p2q2-planes
showing the chaotic attractor before and after the explosive bifurcation. The values of σ are
σa = −0.03830690 and σb = −0.03669000.

Figure 3.13: Long-time histories showing the chaotic attractor undergoing an explosive bifurcation
followed by a boundary crisis. The values of σ are σa = −0.03830689 and σb = −0.03668000.
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Figure 3.14: Two-dimensional projections of the phase portraits onto the p1q1-plane and FFT’s
of p1 showing bifurcations of the limit cycle on the isolated branch III. As σ is increased, the
limit cycle grows, deforms, and undergoes repeated period-doubling bifurcations that culminate in
chaos, as shown in part (h). The corresponding values for σ are σa = −0.036680, σb = 0.040000,
σc = 0.075000, σd = 0.079000, σe = 0.080850, σf = 0.080970, σg = 0.081034, and σh = 0.081060.
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Figure 3.15: Two-dimensional projections of the phase portraits onto the p1q1-plane, FFT’s of p1,
and time histories showing the chaotic attractor in Figure 3.14(h) as it goes through a boundary
crisis and tends to a periodic limit cycle on branch IV as shown in part (b). The corresponding
values of σ are σa = 0.081069 and σb = 0.081070.
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−0.5, µ1 = µ2 = 0.025, g = 0.03, and βγ = 0.6484. (——) Stable limit cycle, (· · · ) unstable
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Figure 3.17: Two-dimensional projections of the phase portraits onto the p1q1- and p2q2-planes and
FFT’s of q2 showing the symmetric limit cycle on branch IV breaking its symmetry, undergoing
repeated period-doubling bifurcations, and eventually becoming chaotic. The corresponding values
for σ are σa = 0.1229000, and σb = 0.1227000, σc = 0.1226368, σd = 0.1226250, and σe = 0.1226230.
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Figure 3.18: Two-dimensional projections of the phase portraits onto the p1q1-plane and FFT’s
of p1 showing the left part of the bubble structure found on branch V. As σ is increased, the
limit cycle in part (a) undergoes a sequence of period-doubling bifurcations that culminates in a
chaotic attractor, as shown in part (d). The corresponding values of σ are σa = −0.038310125,
σb = −0.038310122, σc = −0.038310121, and σd = −0.038310116.
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Figure 3.19: Two-dimensional projections of the phase portraits onto the p1q1-plane and FFT’s
of p1 showing the right part of the bubble structure on branch V. As σ is increased, the chaotic
attractor in Figure 3.18(d) undergoes a sequence of reverse period-doubling bifurcations that results
in a limit cycle, as shown in part (d). The corresponding values of σ are σa = −0.03830840,
σb = −0.03830831, σc = −0.03830822, and σd = −0.03830800.
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Figure 3.20: A phase-locked limit cycle found at σi = −0.0383106. (a) Two-dimensional projection
of the phase portrait onto the p1q1-plane, (b) three-dimensional projection of the phase portrait
onto the p1q1p2-space, (c) Poincaré section, and (d) time history.
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Figure 3.21: Two-dimensional projections of the phase portraits onto the p1p2-plane showing the
symmetric limit cycle located on the isolated branch II. As σ is increased, the limit cycle grows,
deforms, and undergoes repeated period-doubling bifurcations that culminate in chaos, as shown
in part (i). The corresponding values for the σ are σa = −0.038436515, σb = −0.03840000,
σc = −0.03838750, σd = −0.03838650, σe = −0.03836810, σf = −0.03836150, σg = −0.03835950,
σh = −0.03835907, and σi = −0.03835550.
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Figure 3.22: Two-dimensional projections of the phase portraits onto the p1p2-plane and long-
time histories showing the chaotic attractor in Figure 3.21(i) undergoing an attractor-merging
crisis when increasing the parameter σ. Further increasing σ, this new attractor goes through a
boundary crisis and reverts to the two-mode equilibrium solution. The corresponding values for σ
are σa = −0.03835000 and σb = −0.03834964.



Chapter 4

Nonlinear Nonplanar Dynamics of

Directly Excited Cantilever Beams

The nonlinear nonplanar response of a cantilever inextensional metallic beam to a transverse base

excitation of one of its flexural modes is investigated. The lowest torsional frequencies of the beams

considered are much larger than the frequencies of the excited modes so that the torsional inertia

can be neglected. In Chapter 3, when the beam was parametrically excited, we used the method of

time-averaged Lagrangian to derive a set of four first-order nonlinear ordinary-differential equations

governing the modulation of the amplitude and phases of the two interacting modes. Modifying

the virtual-work term to account instead for the transverse excitation, we obtain a similar set of

modulation equations when the beam is excited at primary resonance. A pseudo-arclength scheme

is used to trace the branches of the equilibrium solutions and the eigenvalues of the Jacobian

matrix are used to assess their stability. The effects of the cross-section detuning, forcing-frequency

detuning, and forcing amplitude on the static and dynamic bifurcations are investigated. The

equilibrium solutions experience pitchfork, saddle-node, and Hopf bifurcations. Eleven branches

of dynamic (periodic and chaotic) solutions of the modulation equations are found. Two of these

branches emerge from two Hopf bifurcations and the rest are isolated. The limit cycles undergo

symmetry-breaking, cyclic-fold, and period-doubling bifurcations, whereas the chaotic attractors

undergo attractor-merging and boundary crises. Other interesting phenomena found include bubble

77
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structures and homoclinic bifurcations.
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Figure 4.1: A schematic of a near-square cantilever beam under transverse base excitation.

4.1 Problem Formulation

The nondimensional bending-bending equations of motions for a base excited cantilever beam are

obtained by setting Qu(t) = 0, Qv(t) = 0, Qφ(t) = 0, and Qw(t) = FΩ2 cos (Ωt) in Eqs. (2.113)

and (2.114) and then applying Eq. (3.1). The result is

v̈ + cvv̇ + βyv
′′′′ = (1− βy)

[
w′′
∫ s

1
v′′w′′ds− w′′′

∫ s

0
v′′w′ds

]′
− (1− βy)2

βγ

[
w′′
∫ s

0

∫ s

1
v′′w′′dsds

]′′
− βy

[
v′
(
v′v′′ + w′w′′

)′]′
− 1

2

{
v′
∫ s

1

∂2

∂t2

[∫ s

0

(
v′2 + w′2

)
ds

]
ds

}′
(4.1)

ẅ + cwẇ + w′′′′ = −(1− βy)
[
v′′
∫ s

1
v′′w′′ds− v′′′

∫ s

0
v′w′′ds

]′
− (1− βy)2

βγ

[
v′′
∫ s

0

∫ s

1
v′′w′′dsds

]′′
−
[
w′
(
v′v′′ + w′w′′

)′]′
− 1

2

{
w′
∫ s

1

∂2

∂t2

[∫ s

0

(
v′2 + w′2

)
ds

]
ds

}′
+ FΩ2 cos(Ωt) (4.2)
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The nondimensional Lagrangian corresponding to Eqs. (4.1) and (4.2) is given by Eq. (3.2). The

corresponding nondimensional virtual-work term is

δW =
∫ 1

0
(Q∗vδv +Q∗wδw) ds = −

∫ 1

0

{
cvv̇δv +

[
cwẇ − FΩ2 cos (Ωt)

]
δw
}
ds (4.3)

The one-to-one internal resonance between the mth in-plane bending mode and nth out-of-plane

bending mode is defined by Eq. (3.14) and is repeated here for convenience

ω̂1m = z2
m

√
βy = z2

m

√
1 + δ0 + ε2δ2 + · · · (4.4)

ω1m = z2
m

√
1 + δ0 = z2

n = ω2n (4.5)

To relate the nearness of the forcing frequency Ω to the natural frequency of the nth out-of-plane

bending mode ω2n, we introduce the detuning parameter σ defined according to

Ω = ω2n + ε2σ (4.6)

Furthermore, we scale the damping and forcing terms so that their effects balance the effect of the

nonlinearities. Therefore, we replace cv and cw by ε2cv and ε2cw and F by ε3f .

Because, except for the forcing terms, the perturbation analysis is the same as that used in the case

of parametric excitation (Section 3.2), we present only the final solution. The modulation equations

that govern the interaction between the in-plane and out-of-plane bending modes in complex-valued

form are

2iω1m
dA1

dT2
=
[
2ω2

1mΓ5 − 3 (1 + δ0) Γ4

]
A2

1Ā1 + 2ω1mω2nΓ6Ā1A
2
2 −

(
2iω1mµ1 + δ2z

4
m

)
A1

−
[
(1 + δ0) Γ3 +

δ2
0

βγ
Γ2 + δ0Γ1

](
Ā1A

2
2 + 2A1A2Ā2

)
(4.7)

2iω2n
dA2

dT2
=
(

2ω2
2nΛ5 − 3Λ4

)
A2

2Ā2 + 2ω1mω2nΓ6A
2
1Ā2 − 2iω2nµ2A2

−
[
(1 + δ0) Γ3 +

δ2
0

βγ
Γ2 + δ0Γ1

](
A2

1Ā2 + 2A1Ā1A2

)
+

Ω2

2
Λ8fe

iω2nσT2 (4.8)
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where the Γi and Λi are defined by Eqs. (3.32)-(3.40) and

Λ8 =
∫ 1

0
Φnds (4.9)

Using Eq. (3.48), we express the modulation equations in the polar form

2ω1ma
′
1 = −

{
R1 +R2a

2
2 sin[2(γ1 − γ2)]

}
a1 (4.10)

2ω1ma1γ
′
1 =

{
R4 +R5a

2
1 −R6a

2
2 −R2a

2
2 cos[2(γ1 − γ2)]

}
a1 (4.11)

2ω2na
′
2 = −

{
E1 −R2a

2
1 sin[2(γ1 − γ2)]

}
a2 + E8 sin γ2 (4.12)

2ω2na2γ
′
2 =

{
E4 + E5a

2
2 −R6a

2
1 −R2a

2
1 cos[2(γ1 − γ2)]

}
a2 + E8 cos γ2 (4.13)

where

γ1 = ω1mσT2 − θ1 (4.14)

γ2 = ω2nσT2 − θ2 (4.15)

and the Ri and Ei are defined in Appendix A. Alternatively, using Eq. (3.55), we express the

modulation equations in the Cartesian form

p′1 = − 1
2ω1m

{
R4q1 +R5

(
p2

1 + q2
1

)
q1 −R6

(
p2

2 + q2
2

)
q1

+R1p1 +R2

[ (
p2

2 − q2
2

)
q1 − 2p1p2q2

]}
(4.16)

q′1 = − 1
2ω1m

{
−R4p1 −R5

(
p2

1 + q2
1

)
p1 +R6

(
p2

2 + q2
2

)
p1

+R1q1 +R2

[ (
p2

2 − q2
2

)
p1 + 2q1p2q2

]}
(4.17)

p′2 = − 1
2ω2n

{
E4q2 + E5

(
p2

2 + q2
2

)
q2 −R6

(
p2

1 + q2
1

)
q2

+ E1p2 +R2

[ (
p2

1 − q2
1

)
q2 − 2p1q1p2

]}
(4.18)

q′2 = − 1
2ω2n

{
− E4p2 − E5

(
p2

2 + q2
2

)
p2 +R6

(
p2

1 + q2
1

)
p2
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+ E1q2 +R2

[ (
p2

1 − q2
1

)
p2 + 2p1q1q2

]
− E8

}
(4.19)

We note that the system (4.16)-(4.19) is invariant under the transformation (p1, q1, p2, q2) ⇐⇒
(−p1,−q1, p2, q2). That is, for any asymmetric solution found, a second solution can be obtained

using the above transformation. This is unlike the case of parametric excitation, where for any

asymmetric solution, three other solutions can be found.

In the next section, we investigate bifurcations of the solutions of the modulation equations for

a near-square beam (i.e., δ0 = 0 and m = n). The influence of the forcing-frequency detuning

σ on the fixed points was investigated by Pai and Nayfeh (1990a). Therefore, we concentrate on

the influence of the forcing amplitude f and cross-section detuning δ2 on the fixed points of Eqs.

(4.16)-(4.19). Then, a detailed bifurcation analysis of limit-cycle solutions of Eqs. (4.16)-(4.19) in

terms of the forcing-frequency detuning is presented.

4.2 Bifurcation Analysis

4.2.1 Equilibrium Solutions

To determine the fixed points, we set ȧ1, γ̇1, ȧ2, and γ̇2 equal to zero in Eqs. (4.10)-(4.13) or ṗ1, q̇1,

ṗ2, and q̇2 equal to zero in Eqs. (4.16)-(4.19) and solve for roots of the resulting algebraic system.

Because the system is directly excited, a trivial solution is not possible. There are two possible

solutions: (i) single-mode solutions where a1 = 0 and a2 6= 0, and (ii) two-mode solutions where

a1 6= 0 and a2 6= 0. In the first case, only the directly excited mode is activated and the motion is

planar. In the second case, both the in-plane and out-of-plane modes are activated and the motion

of the beam is nonplanar (i.e., whirling motion).

For the case of planar motion, one can obtain a solution for a2 in closed form. Setting a1 = 0 in

Eqs. (4.12) and (4.13) and then squaring and adding the results, we obtain

E2
5a

6
2 + 2E4E5a

4
2 +

(
E2

1 + E2
4

)
a2

2 − E2
8 = 0 (4.20)

which is cubic in a2
2. Therefore, either one or three branches of single-mode solutions exist, de-
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pending the values of the parameters used. On the other hand, for the case of nonplanar motion,

a closed-form solution is not readily available, and therefore the fixed points are determined nu-

merically using a pseudo-arclength scheme (Nayfeh and Balachandran, 1995; Seydel, 1994). In this

case, it was more convenient to use Eqs. (4.16)-(4.19).

Crespo da Silva and Glynn (1978b) and Pai and Nayfeh (1990a) investigated the effect of slowly

varying the forcing frequency on the fixed points. They found that the effect of the geometric

nonlinearities, which have a hardening-spring behavior, is as important as the effect of the inertia

nonlinearities, which have a softening-spring behavior. For the first bending modes, the geomet-

ric nonlinearities dominate the response, whereas for the higher modes, the inertia nonlinearities

dominate the response.
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Figure 4.2: Frequency-response curves for (a) modes (1,1) and (b) modes (2,2) when µ1 = µ2 = 0.02.
In (a), δ2 = −0.01 and Λ8f = 0.002 and in (b), δ2 = 0.002 and Λ8f = 0.00006. The planar response
amplitudes are denoted by a1 and a2 and the nonplanar response amplitudes are denoted by a1n

and a2n. (——) Stable solution, (– – –) saddles, (· · · ) unstable foci, PF = pitchfork bifurcation,
SN = saddle-node bifurcation, and HF = Hopf bifurcation.

In Figure 4.2, we present frequency-response curves that were initially calculated by Pai and Nayfeh

(1990a). In Figure 4.2a, modes (1,1) are considered when Λ8f = 0.002 and δ2 = −0.01, whereas

in Figure 4.2b, modes (2,2) are considered when Λ8f = 0.00006 and δ2 = 0.002. The curves for

single-mode solutions are bent to the right in Figure 4.2a, indicating that the effective nonlinearity
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is of the hardening type for modes (1,1). On the other hand, the curves for single-mode solutions

are bent to the left in Figure 4.2b, indicating that the effective nonlinearity is of the softening

type for modes (2,2). Furthermore, the fixed points in the case of modes (2,2) undergo two Hopf

bifurcations that lead to limit cycles, whereas, in the case of modes (1,1), the fixed points do not

undergo any Hopf bifurcations. This is in contrast to the case of principal parametric resonance

where the fixed points for modes (1,1) undergo Hopf bifurcations, while those for modes (2,2) do

not (see Figures 3.2 and 3.3). Furthermore, it follows from Figure 4.2b that, there is a region where

no stable fixed points (either single-mode or two-mode solutions) exist. Hence, the response of

the beam in this region is expected to be either quasiperiodic or chaotic. We study this region in

greater detail in Section 4.3.2.
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Figure 4.3: Amplitude-response curves for modes (1,1) when δ2 = −0.01, σ = 0.001, and µ1 =
µ2 = 0.02. The planar response amplitudes are denoted by a1 and a2 and the nonplanar response
amplitudes are denoted by a1n and a2n. (——) Stable solution, (– – –) saddles, PF = pitchfork
bifurcation, SN = saddle-node bifurcation.

In Figure 4.3, we present amplitude-response curves for modes (1,1) when δ2 = −0.01 and σ = 0.001.

Because the beam is directly excited, planar oscillations occur as soon as the excitation amplitude

is increased from zero. As the excitation level exceeds a certain threshold, two-mode solutions occur

as a result of the single-mode solution losing stability through a supercritical pitchfork bifurcation.

As the forcing amplitude increases further, the amplitude a2n of the directly excited mode remains

almost constant while the amplitude a1n of the indirectly excited mode increases monotonously,
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which is reminiscent of the saturation phenomenon (Nayfeh and Mook, 1978). Further increasing

Λ8f , we find that the two-mode solution loses stability through a saddle-node bifurcation and a

jump to the stable branch of single-mode fixed points occurs.
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Figure 4.4: Response curves for modes (1,1) in terms of the cross-section detuning δ2 when Λ8f =
0.002 and µ1 = µ2 = 0.02. The corresponding values of σ are σa = −0.005, σb = 0.0, and σc = 0.01.
The planar response amplitudes are denoted by a1 and a2 and the nonplanar response amplitudes
are denoted by a1n and a2n. (——) Stable solution, (– – –) saddles, PF = pitchfork bifurcation,
and SN = saddle-node bifurcation.

In Figure 4.4, we present response curves for modes (1,1) in terms of the cross-section detuning

parameter δ2 when Λ8f = 0.002. In part (a) σ = −0.005, in part (b) σ = 0.0, and in part (c)

σ = 0.01. From Appendix A, we note that none of the Ei coefficients depends on δ2. Therefore,

it follows from Eq. (4.20) that the amplitude a2 of the single-mode response is independent of

δ2, as shown Figures 4.4a, b, and c. This is because the governing equations of motion were

nondimensionalized with respect to the out-of-plane bending rigidity Dη. In other words, if the

base excitation was instead along the y-axis in Eqs. (4.1) and (4.2), the amplitude a1 of the single-

mode response would be dependent on δ2. In either case, the influence of δ2 on the response cannot

be ignored because it affects the stability of both planar and nonplanar oscillations, as can be seen

from Figures 4.4.

When δ2 < 0, the beam is less rigid in bending in the plane normal to the base excitation, whereas

when δ2 > 0, the beam is less rigid in the plane along the base excitation. Therefore, activating

nonplanar oscillations through the internal resonance is easier when δ2 < 0. Figures 4.4a, b,

and c clearly illustrate this point. In part (a), when σ = −0.005, the single-mode response loses
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stability through two supercritical pitchfork bifurcations, thereby transitioning smoothly to two-

mode solutions. When σ = 0.0, one of the pitchfork bifurcations is supercritical and the other

is subcritical, as shown in part (b). When σ = 0.01, both pitchfork bifurcations are subcritical,

resulting in sudden jumps to the branches of two-mode solutions.
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Figure 4.5: Amplitude-response curves for modes (2,2) when δ2 = 0.002 and µ1 = µ2 = 0.02. The
corresponding values of σ are σa = 0.001 and σb = −0.001. The planar response amplitudes are
denoted by a1 and a2 and the nonplanar response amplitudes are denoted by a1n and a2n. (——)
Stable solution, (– – –) saddles, (· · · ) unstable foci, PF = pitchfork bifurcation, SN = saddle-node
bifurcation, and HF = Hopf bifurcation.

In Figure 4.5, we present amplitude-response curves for modes (2,2) when δ2 = 0.002. In part (a),

σ = 0.001 and in part (b), σ = −0.001. Because the beam is directly excited, planar oscillations

occur as soon as the excitation amplitude is increased from zero, as shown in Figures 4.5a and b.

As the level of excitation increases beyond a threshold, two-mode solutions occur as a result of

the single-mode solution losing stability through a pitchfork bifurcation. In part (a), the pitchfork

bifurcation is supercritical and the transition is gradual, whereas in part (b), the pitchfork bifur-

cation is subcritical and a jump occurs. The two-mode solutions in part (a) remain stable and

their amplitudes monotonously increase as f increases, whereas in part (b), they undergo two Hopf

bifurcations that result in limit cycles. In the region between the two Hopf bifurcations, there are

no stable solutions, and hence aperiodic, including chaotic, oscillations may occur.
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Figure 4.6: Response curves for modes (2,2) in terms of the cross-section detuning δ2 when Λ8f =
0.00006 and µ1 = µ2 = 0.02. The corresponding values of σ are σa = −0.008, σb = −0.006, σc =
−0.005, σd = 0.0, σe = 0.003, and σf = 0.005. The planar response amplitudes are denoted by a1

and a2 and the nonplanar response amplitudes are denoted by a1n and a2n. (——) Stable solution,
(– – –) saddles, (· · · ) unstable foci, PF = pitchfork bifurcation, SN = saddle-node bifurcation, and
the numbers 1, 2, 3, and 4 denote the Hopf bifurcations HF1, HF2, HF3, and HF4.
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In Figure 4.6, we present response curves for modes (2,2) in terms of the cross-section detuning

parameter δ2 when Λ8f = 0.00006. In part (a) σ = −0.008, in part (b) σ = −0.006, in part (c)

σ = −0.005, in part (d) σ = 0.0, in part (e) σ = 0.003, and in part (f) σ = 0.005. In parts (a)-(e),

nonplanar motions occur as the single-mode solution loses stability through either a supercritical

or a subcritical pitchfork bifurcation. In part (f), the single-modes solution is always stable and

hence the motion remains planar.

In Figures 4.6a and b, three branches of single-mode solutions exist. In both parts, the nonplanar

fixed points undergo two Hopf bifurcations, resulting in limit cycles. It is interesting to note, from

Figures 4.6a and b, that the branches of two-mode solutions start from one branch of single-mode

solutions and end at a different branch of single-mode solutions as δ2 is varied. When σ = −0.005,

only one branch of single-mode solutions exists, as shown in Figure 4.6c. Furthermore, the branches

of two-mode solutions from parts (a) and (b) seem to have coalesced in part (c), creating a larger

branch of nonplanar fixed points that undergoes four Hopf bifurcations. As σ is increased to 0.0,

the regions of unstable single-mode and stable two-mode solutions decrease and only one region of

unstable foci exists, as shown in Figure 4.6d. When σ = 0.003, the unstable region between the two

pitchfork bifurcations further decreases and the nonplanar solutions no longer undergo any Hopf

bifurcations, as shown in Figure 4.6e. Finally, for values of σ ≥ 0.005, the two pitchfork bifurcation

points coalesce and only stable single-mode solutions exist, as shown in Figure 4.6f.

4.2.2 Dynamic Solutions

We investigated the dynamic solutions of the modulation equations for modes (2,2) when δ2 = 0.002

and Λ8f = 0.00006, corresponding to Figure 4.2b. Using long-time integration, a combination of

a two-point boundary-value program and Newton’s scheme, and Floquet theory, we were able to

determine eleven branches (A − K) of dynamic solutions, as shown in Figure 4.7. Two of these

branches result from the equilibrium solutions undergoing two Hopf bifurcations, branch A from the

point HF1 and branch K from the point HF2. The remaining branches are isolated. Calculating

the normal forms for the Hopf bifurcations, defined by Eqs. (3.60) and (3.61), we found that both

HF1 at σ = −0.011259 and HF2 at σ = −0.000988 are supercritical.
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In Figure 4.7, we present a schematic diagram showing the regions where periodic and chaotic

solutions occur in terms of σ. Thick solid and dashed lines denote branches of stable and saddle

fixed points, thick dotted lines denote branches of unstable foci, and thin solid and dotted lines

denote branches of stable and unstable limit cycles. The light-shaded areas are regions of chaotic

attractors that result from limit cycles undergoing either cyclic-fold bifurcations or sequences of

period-doubling bifurcations. On the other hand, the dark-shaded areas are regions of chaotic

attractors that result from the smaller attractors undergoing attractor-merging crises. In addition,

we present in Figure 4.7 phase portraits in the p1q1-, p2q2-, and a1a2-, planes characterizing the

period-one limit cycles found on each branch.

0.011020-0.011100-

HF1

PD
PD

Points Fixed Unstable

Foci Unstable

)(Branch A

Points Fixed Mode)(Two Stable -

σ0.011259- 0.011169-

0.011055-

Chaos

Points Fixed Mode)(Single Stable -

PD

PD

SB

CrisisBoundary 

HB

Figure 4.8: A schematic of the dynamic solutions found on branch A for modes (2,2) when δ2 =
0.002, Λ8f = 0.00006, and µ1 = µ2 = 0.02. (——) Stable limit cycles, (· · · ) unstable limit cycle,
PD = period-doubling bifurcation, CF = cyclic-fold bifurcation, HF1 = Hopf bifurcations, and HB
= homoclinic bifurcation.

It is interesting to note from Figure 4.7 that most branches of dynamic solutions are located in the

region between the saddle-node bifurcation SN and the right Hopf bifurcation HF2. In contrast,

only branch A, which emanates from the left Hopf bifurcation HF1, was found in the region to the



Haider N. Arafat Chapter 4. Directly Excited Cantilever Beams 90

left of SN. This is most likely due to the fact that no stable fixed points exist in the region between

SN and HF2, whereas single- and two-mode fixed points exist in the region between HF1 and SN,

as shown in Figure 4.2b. Therefore, the response of the beam in the region to the left of SN and

the region to the right of HF2 is likely to be periodic in one plane or a simple whirling motion in

two planes. On the other hand, the response of the beam in the region between SN and HF2 is

likely to be aperiodic (beating-type whirling) and chaotic.

PD

PD

PD

PDPDPD PD
SB

CF

CF

CF

)(Branch B )(Branch C

SN

Points Fixed Unstable

Points Fixed Stable

005330.0− 005255.0− 005167.0−

005162.0−

005108.0−

σ

CrisisBoundary 

crisis merging-attractor beforeregion  Chaotic =

crisis merging-attractorafter region  Chaotic =

Figure 4.9: A schematic of the dynamic solutions found on branches B and C for modes (2,2)
when δ2 = 0.002, Λ8f = 0.00006, and µ1 = µ2 = 0.02. (——) Stable limit cycles, (· · · ) unstable
limit cycles, SN = saddle-node bifurcation, PD = period-doubling bifurcation, CF = cyclic-fold
bifurcation, and SB = symmetry-breaking bifurcation.

More detailed schematic diagrams of the dynamic solutions and their bifurcations are presented in

Figures 4.8-4.12. In Figure 4.8, we consider branch A; in Figure 4.9, we consider branches B and

C; in Figure 4.10, we consider branches D and E; in Figure 4.11, we consider branches F and G;

and in Figure 4.12, we consider branches H, I, J , and K.

In Figure 4.13a, we present two-dimensional projections of the phase portraits onto the p1q1- and

p2q2-planes of a small limit cycle on branch A that resulted from the supercritical Hopf bifurcation

HF1 at σHF1 = −0.011259. As we increase σ, the limit cycle grows, as shown in Figures 4.13b and
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Figure 4.10: A schematic of the dynamic solutions found on branches D and E for modes (2,2)
when δ2 = 0.002, Λ8f = 0.00006, and µ1 = µ2 = 0.02. (——) Stable limit cycles, (· · · ) unstable
limit cycles, PD = period-doubling bifurcation, CF = cyclic-fold bifurcation, and SB = symmetry-
breaking bifurcation.
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Figure 4.11: A schematic of the dynamic solutions found on branches F and G for modes (2,2)
when δ2 = 0.002, Λ8f = 0.00006, and µ1 = µ2 = 0.02. (——) Stable limit cycles, (· · · ) unstable
limit cycles, PD = period-doubling bifurcation, CF = cyclic-fold bifurcation, and SB = symmetry-
breaking bifurcation.

c. It then goes through a sequence of period-doubling bifurcations resulting in a chaotic attractor,

as shown in Figures 4.13d-f. Increasing σ further, the chaotic attractor grows and deforms, as shown

in parts g and h, then goes through a sequence of reverse period-doubling bifurcations, resulting in

a larger limit cycle, as shown in Figure 4.13j.
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Figure 4.12: A schematic of the dynamic solutions found on branches I, J, K, and L for modes
(2,2) when δ2 = 0.002, Λ8f = 0.00006, and µ1 = µ2 = 0.02. (——) Stable limit cycles, (· · · )
unstable limit cycle, PD = period-doubling bifurcation, CF = cyclic-fold bifurcation, and HF2 =
Hopf bifurcations.

As σ is increased further, the asymmetric limit cycle in Figure 4.13j and its clone approach a

saddle-focus, as shown in Figures 4.14a and b. When σ = −0.011056 (σHB), the orbits become

homoclinic to the saddle-focus located at (p1, q1, p2, q2) = (0, 0,−0.0163588, 0.0141822). This is

confirmed by the fact that the period of the limit cycle approaches infinity as σ −→ σHB, as shown

in Figure 4.15.
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Figure 4.13: Two-dimensional projections of the phase portraits on the p1q1- and p2q2-planes show-
ing bifurcations of the limit cycle on branch A. σa = −0.011250 (P1), σb = −0.011230 (P1),
σc = −0.011210 (P1), σd = −0.011190 (P2), σe = −0.011180 (P4), σf = −0.011160 (Chaos),
σg = −0.011140, σh = −0.011120, σi = −0.011100 (P2), and σj = −0.011075 (P1).
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Following Shilnikov (1965, 1968, and 1970), we consider the three-dimensional system

ẋ = −ρx− ωy + f1(x, y, z; ε) (4.21)

ẏ = −ρy + ωx+ f2(x, y, z; ε) (4.22)

ż = µz + f3(x, y, z; ε) (4.23)

where ρ, ω, and µ are positive constants and the origin (x, y, z, ε) = (0, 0, 0, 0) is a saddle-focus. The

eigenvalues of Eqs. (4.21)-(4.23) corresponding to the saddle-focus are given by λ1,2 = −ρ± iω and

λ3 = µ. Defining δ ≡ ρ
µ , then when there is an orbit homoclinic to a saddle-focus, Shilnikov proved

the following result. If δ > 1, the system has a periodic orbit on one side of the homoclinicity and

no recurrent behavior on the other. As the orbit approaches the saddle-focus (i.e., ε→ 0), its period

tends to infinity. On the other hand, if δ < 1, the system has an infinite number of unstable periodic

orbits near the homoclinic orbit and hence the response is chaotic. Furthermore, Glendinning (1994)

showed that if Eqs. (4.21)-(4.23) possess the symmetry (x, y, z)⇐⇒ (−x,−y,−z), then for δ > 1,

two asymmetric periodic orbits exist on one side of the homoclinicity, while one symmetric orbit

exists on the other side.

Although, this theory is presented for three-dimensional systems, it applies to higher-dimensional

systems provided that the eigenvalues of the Jacobian at the saddle-focus are as follows. First, of

all the eigenvalues on the right-half of the complex plane, the closest to the imaginary axis must

be real. Second, of all the eigenvalues on the left-half of the complex plane, the closest to the

imaginary axis must be a pair of complex conjugates. The reverse is also true. That is, if the

eigenvalue on the right-half of the complex plane closest to the imaginary axis is a complex pair,

then the eigenvalue on the left-half of the complex plane closest to the imaginary axis must be real

for application of the Shilnikov theory.

For the four-dimensional system analyzed here, these conditions are met as the eigenvalues of the

Jacobian corresponding to the saddle-focus at σHB = −0.011056 are λ1,2 = −0.02 ± 0.113295i,

λ3 = 0.00643158, and λ4 = −0.0464316. Since the corresponding value of δ = 3.118 > 1 and

Eqs. (4.16)-(4.19) exhibit the symmetry (p1, q1, p2, q2) ⇐⇒ (−p1,−q1, p2, q2), we expect to have

two periodic orbits on one side of the homoclinicity and a single symmetric orbit on the other
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Figure 4.14: Two-dimensional projections of the phase portraits on the p1q1-plane of the limit cycle
on branch A, before and after homoclinicity to the saddle-focus. σa = −0.011060, σb = −0.011056,
σc = −0.011055, and σd = −0.011045

side, as shown in Figure 4.14. In Figure 4.16, we present the time histories of p1 and p2 before

the homoclinicity at σ = −0.011056 and after the homoclinicity at σ = −0.011055. The period

of the asymmetric limit cycle at σ = −0.011056 is approximately 990.6 whereas, the period of the

symmetric limit at σ = −0.011055 is approximately 1729.3. As σ increases further, the symmetric
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limit cycle loses symmetry and goes through a period-doubling route to chaos. The chaotic attractor

then undergoes a boundary crisis, resulting in a jump to the branch of single-mode fixed points, as

shown in Figure 4.8.

σ

T

-0.01108 -0.01107 -0.01106 -0.01105 -0.01104

0

1000

2000

Figure 4.15: Variation of the period of the period-one limit cycle on branch A with changes in σ.

If follows from Figures 4.8-4.12 that period-doubling routes to chaos and bubble structures are

very common. In a representative manner, we concentrate on the dynamics occurring on branch

D, shown in Figure 4.10. In Figure 4.17a, we present two-dimensional phase portraits onto the

p1q1-plane and FFTs of p1 of a symmetric limit cycle on branch D at σ = −0.0048. As σ decreases

beyond −0.004827, the limit cycle experiences a cyclic-fold bifurcation and the response becomes

chaotic. As σ increases, the limit cycle goes through a symmetry-breaking bifurcation, as shown in

part (b), followed soon by a reverse symmetry-breaking bifurcation, as shown in part (c). In parts

(a) and (c), the FFT contains only odd harmonics, indicating that the limit cycle is symmetric,

whereas in part (b), the FFT contains even and odd harmonics, indicating that the limit cycle is

asymmetric. As σ increases further, the limit cycle experiences a cyclic-fold bifurcation and the

response jumps to another subbranch. The symmetric limit cycle on this subbranch is shown in

Figure 4.17d for σ = −0.0045. As σ decreases slightly, the limit cycle shown in part (d) experiences

a cyclic-fold bifurcation and the response jumps back to the limit cycle shown in part (c).

The limit cycle in part (d) undergoes a symmetry-breaking bifurcation as σ increases, as shown in

Figure 4.17e for σ = −0.0044. It then undergoes a sequence of period-doubling bifurcations, culmi-

nating in a single-band chaotic attractor, as shown in parts (f)-(i). The presence of subharmonics
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Figure 4.16: Time histories for p1 and p2 of the limit cycle on branch A, before and after homoclin-
icity to the saddle-focus. σa = −0.011260 and σb = −0.011255

of order 1
k , k = 2, 4, 8, in the FFTs in parts (f)-(h) is a characteristic of period-k limit cycles. In

addition, the broad-band nature of the FFT in part (i) is a characteristic of a chaotic attractor.

As σ is increased further, a small periodic window emerges, as shown in Figure 4.17(j) for σ =

−0.00432. The FFT in part (j) contains harmonics of order 1
3 , indicating a window of a period-

three limit cycle. Soon after, the periodic window closes and the response reverts to a two-band

(Thompson and Stewart, 1988) chaotic attractor, as shown in part (k) for σ = −0.00431. The

chaotic attractor then undergoes a sequence of reverse period-doubling bifurcations, parts (l) and

(m), resulting in an asymmetric limit cycle, as shown in part (n) for σ = −0.00423. Soon after, this

limit cycle experiences another sequence of period-doubling bifurcations, culminating in a chaotic

attractor. The chaotic region separates branches D and E.

The dynamics in Figures 4.13c-j on branch A and Figures 4.17e-n on branch D are examples of

bubble structures. Bubble structures where chaos does not ensue are also possible and were found

on branches B, C, and G, as shown in Figures 4.9 and 4.11.
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Figure 4.17: Two-dimensional projections of the phase portraits onto the p1q1-plane and FFT’s
of p1 showing the dynamics that occur on Branch D as σ is slowly increased. CF = cyclic-fold
bifurcation, SB = symmetry-breaking bifurcation, and PD = period-doubling bifurcation.
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Other interesting dynamics the system exhibits include attractor-merging and boundary crises. In

the case of attractor-merging crises, two asymmetric chaotic attractors merge together and form

a single larger symmetric chaotic attractor. The reverse is also possible. Attractor merging crises

were observed in the chaotic regions between the saddle-node SN and branch B, branches E and

F , and branches H and I, as shown in Figure 4.7. Three different types of boundary crises were

observed. In the first, a jump from a chaotic attractor to a fixed point (single-mode) occurred, as

shown in Figure 4.9. In the second, a jump from a chaotic attractor to a limit cycle (on branch I)

occurred. In the third, jumps between two chaotic attractors in both directions occurred. The last

two types are illustrated in Figure 4.12.



Chapter 5

Nonlinear Bending-Bending-Torsional

Oscillations of Cantilever Beams to

Combination Parametric Excitations

The nonlinear nonplanar oscillations of cantilever beams to combination parametric resonances

of the form Ω ≈ ωv + ωφ are investigated. Two approaches to determine uniform expansions of

the solutions are presented. In the first, the method of multiple scales is directly applied to the

partial-differential equations of motion and associated boundary conditions to derive the equations

governing the modulations of the amplitudes and phases of the interacting modes. In the second,

a set of three ordinary-differential equations is obtained using the Galerkin procedure. Then, the

method of multiple scales is applied to determine the modulation equations. The influence of the

forcing frequency and amplitude on the responses is analyzed and both solutions are compared.

The results show that, through this mechanism, a small-amplitude high-frequency excitation can

produce a large-amplitude low-frequency response, which cannot be predicted by linear theory.

100
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5.1 Introduction

Using Eq. (3.1) in Eqs. (2.103)-(2.111) and neglecting rotatory inertia terms, we obtain the

following nondimensional equations of motion and boundary conditions:

v̈ + cvv̇ + βyv
iv = (1− βy)

(
φw′′

)′′ −{ (1− βy)
(
φ2v′′

)′′ + βγ
(
φ′w′ + v′′w′2

)′′
− Jξ

∂

∂t

(
φ̇w′ + v̇′w′2

)′
+ βy

[
v′
(
v′v′′

)′ + v′
(
w′w′′

)′]′
+

1
2

[
v′
∫ s

1

∂2

∂t2

∫ s

0

(
v′2 + w′2

)
dsds

]′}
(5.1)

ẅ + cwẇ + wiv = Qw(t) +
{
βγ
(
φ′v′′ + v′′2w′

)′ + (1− βy)
(
φ2w′′ + φv′′

)′′
− Jξ

(
φ̇v̇′ + v̇′2w′

)′
−
[
w′
(
w′w′′

)′]′ − βy [w′ (v′v′′)′]′
− 1

2

[
w′
∫ s

1

∂2

∂t2

∫ s

0

(
v′2 + w′2

)
dsds

]′}
(5.2)

Jξφ̈+ cφφ̇− βγφ′′ = (1− βy)
(
v′′w′′

)
+
{
βγ
(
v′′w′

)′ − (1− βy)
(
φv′′2 − φw′′2

)
− Jξ

∂

∂t

(
v̇′w′

)}
(5.3)

At the fixed end s = 0,

v = 0, v′ = 0, w = 0, w′ = 0, and φ = 0. (5.4)

At the free end s = 1,

βyv
′′ = −βγ

(
v′′w′2 + φ′w′

)
− (1− βy)

(
φ2v′′ − φw′′ − v′w′w′′

)
(5.5)

βyv
′′′ = −βγ

(
φ′w′ + v′′w′2

)′ − (1− βy)
(
φ2v′′ − φw′′

)′
− βy

[
v′
(
v′v′′

)′ + v′
(
w′w′′

)′]+ Jξ
∂

∂t

(
φ̇w′ + v̇′w′2

)
(5.6)

w′′ = (1− βy)
(
φ2w′′ + φv′′

)
(5.7)

w′′′ = βγ
(
v′′2w′ + φ′v′′

)
+ (1− βy)

(
φ2w′′ + φv′′

)′
−
[
w′
(
w′w′′

)′]− βy [w′ (v′v′′)′]− Jξ (φ̇v̇′ + v̇′2w′
)

(5.8)
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βγφ
′ = −βγ

(
v′′w′

)
(5.9)

The beams considered here are assumed to have a large width-to-thickness ratio, and hence the

x

φ

y

z

s

L

v

w b

h

Q  (t)=fcos(Ωt)w

g

Ω~~ + vkωωφ1

Figure 5.1: A schematic of a thin rectangular cantilever beam under combination parametric exci-
tation.

out-of-plane bending rigidity is much higher than the in-plane bending and torsional rigidities.

Equations (5.1)-(5.9) can be simplified to two partial-differential equations for v(s, t) and φ(s, t) as

follows. First, we neglect the nonlinear terms in the boundary conditions and those between the

parenthesis in Eqs. (5.1)-(5.3). Second, because the beams are much more rigid in the out-of-plane

bending direction, we assume that the out-of-plane oscillations are quasi-static; that is, ẇ and

ẅ ≈ 0. Then, it follows from Eq. (5.2) that w′′ = 1
2(s− 1)2Qw(t). As a result, Eqs. (5.1) and (5.3)

reduce to

v̈ + cvv̇ + βyv
iv =

1
2

(1− βy)
[
φ(s− 1)2

]′′
Qw(t) (5.10)

Jξφ̈+ cφφ̇− βγφ′′ =
1
2

(1− βy)
[
v′′(s− 1)2

]
Qw(t) (5.11)

Bolotin (1964) used Eqs. (5.10) and (5.11) to discuss the parametric stability of beam structures.

Dugundji and Mukhopadhyay (1973) and Dokumaci (1978) analytically and experimentally inves-

tigated the stability of the linear responses of cantilever beams to the combination parametric

resonances Ω ≈ ωv + ωφ. Dugundji and Mukhopadhyay (1973) discretized Eqs. (5.10) and (5.11)

using the Galerkin procedure and then applied the method of harmonic balance to calculate the

boundaries of instabilities. On the other hand, Dokumaci (1978) applied the Rayleigh-Ritz method



Haider N. Arafat Chapter 5. Combination Parametric Excitations of Cantilever Beams 103

and a perturbation technique to determine general expressions for the boundaries of instabilities.

Of particular interest here, are the results of the experiments of Dugundji and Mukhopadhyay (1973)

conducted on an aluminum beam having the natural frequencies fv1 = 1.08 Hz, fv2 = 7.0 Hz, and

fφ1 = 17.0 Hz. When they excited the beam near Ω = ωv1 + ωφ1, they observed it oscillating

significantly both in bending and in torsion. Furthermore, at large excitation amplitudes, they

observed the beam snapping-through and whipping around. This is despite the fact that the ratio

of Ω to ωv1 is approximately 18 : 1, demystifying the myth that high-frequency excitations only

cause safe high-frequency low-amplitude vibrations.

5.2 Direct Perturbation Analysis of the Partial-Differential Equa-

tions of Motion and Boundary Conditions

We use the method of multiple scales to determine a second-order uniform expansion of the solution

of Eqs. (5.1)-(5.9). To this end, we introduce the nondimensional parameter ε ¿ 1 as a measure

of smallness and seek uniform expansions for v, w, and φ in the form

v(s, t) = εv1(s, T0, T1, T2) + ε2v2(s, T0, T1, T2) + ε3v3(s, T0, T1, T2) + · · · (5.12)

w(s, t) = εw1(s, T0, T1, T2) + ε2w2(s, T0, T1, T2) + ε3w3(s, T0, T1, T2) + · · · (5.13)

φ(s, t) = εφ1(s, T0, T1, T2) + ε2φ2(s, T0, T1, T2) + ε3φ3(s, T0, T1, T2) + · · · (5.14)

Furthermore, we scale the damping and forcing terms so that their effects balance the effect of the

nonlinearities. So we replace cv, cw, and cφ by ε2cv, ε2cw, and ε2cφ and set the forcing Qw(t) =

ε2f cos(Ωt), where Ω ≈ ωv+ωφ. Next, we substitute Eqs. (5.12)-(5.14) into Eqs. (5.1)-(5.9), equate

coefficients of like powers of ε, and obtain

Order ε

D2
0v1 + βyv

iv
1 = 0 (5.15)

JξD
2
0φ1 − βγφ′′1 = 0 (5.16)

D2
0w1 + wiv1 = 0 (5.17)
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v1 = 0, v′1 = 0, φ1 = 0, w1 = 0, and w′1 = 0 at s = 0 (5.18)

v′′1 = 0, v′′′1 = 0, φ′1 = 0, w′′1 = 0, and w′′′1 = 0 at s = 1 (5.19)

Order ε2

D2
0v2 + βyv

iv
2 = −2D0D1v1 + (1− βy)

(
φ1w

′′
1

)′′ + JξD0

[
(D0φ1)w′1

]′ − βγ (φ′1w′1)′′ (5.20)

JξD
2
0φ2 − βγφ′′2 = −2JξD0D1φ1 + (1− βy)

(
v′′1w

′′
1

)
− JξD0

[(
D0v

′
1

)
w′1
]

+ βγ
(
v′′1w

′
1

)′ (5.21)

D2
0w2 + wiv2 = −2D0D1w1 − Jξ

[
(D0φ1)(D0v

′
1)
]′ + (1− βy)(φ1v

′′
1)′′ + βγ(φ′1v

′′
1)′

+ f cos(ΩT0) (5.22)

v2 = 0, v′2 = 0, φ2 = 0, w2 = 0, and w′2 = 0 at s = 0 (5.23)

v′′2 = 0, φ′2 = 0, w′′2 = 0, w′′′2 = −Jξ
[
(D0φ1)(D0v

′
1)
]
,

and βyv
′′′
2 = −βγ

(
φ′1w

′
1

)′ + JξD0

[
(D0φ1)w′1

]
at s = 1 (5.24)

Order ε3

D2
0v3 + βyv

iv
3 = −D2

1v1 − 2D0D2v1 − 2D0D1v2 − cvD0v1 + JξD1

[
(D0φ1)w′1

]′
− βγ

(
φ′1w

′
2 + φ′2w

′
1 + v′′1w

′2
1

)′′ − βy [v′1 (v′1v′′1)′ + v′1
(
w′1w

′′
1

)′]′
− (1− βy)

(
φ2

1v
′′
1 − φ1w

′′
2 − φ2w

′′
1

)′′ + JξD0

[
(D0φ2)w′1 + (D1φ1)w′1

+ (D0φ1)w′2 +
(
D0v

′
1

)
w′21
]′ − 1

2

[
v′1

∫ s

1

∫ s

0
D2

0(v′21 + w′21 )dsds
]′

(5.25)

JξD
2
0φ3 − βγφ′′3 = −2JξD0D1φ2 − 2JξD0D2φ1 − JξD2

1φ1 − cφD0φ1 − JξD0

[ (
D0v

′
1

)
w′2

+
(
D0v

′
2

)
w′1 +

(
D1v

′
1

)
w′1
]
− JξD1

[(
D0v

′
1

)
w′1
]

+ βγ
(
v′′1w

′
2 + v′′2w

′
1

)′
− (1− βy)

(
φ1v
′′2
1 − φ1w

′′2
1 − v′′1w′′2 − v′′2w′′1

)
(5.26)
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v3 = 0, v′3 = 0, and φ3 = 0 at s = 0 (5.27)

v′′3 = 0, φ′3 = 0, and

βyv
′′′
3 = −βγ

(
φ′1w

′
2 + φ′2w

′
1

)′ + (1− βy)
(
φ1w

′′
2

)′ + JξD1

[
(D0φ1)w′1

]
+ JξD0

[
(D0φ1)w′2 + (D0φ2)w′1 + (D1φ1)w′1 +

(
D0v

′
1

)
w′21
]

at s = 1 (5.28)

5.2.1 First-Order Problem

Because of the presence of damping and the absence of internal resonances, the steady-state response

of the beam will consist of only the modes that are directly excited by the forcing. Hence, we take

w1 = 0 because none of the associated modes is directly or indirectly excited. Furthermore, we

assume that v1 and φ1 consist of the modes excited by the combination resonance; that is,

v1(s, T0, T1, T2) = Φv(s)
[
Av(T1, T2)eiωvT0 + cc

]
(5.29)

φ1(s, T0, T1, T2) = Φφ(s)
[
Aφ(T1, T2)eiωφT0 + cc

]
(5.30)

where cc stands for the complex conjugate of the preceding terms and Av and Aφ are complex-

valued functions, which will be determined at higher-order levels of approximation. The functions

Φv(s) and Φφ(s) are the linear undamped mode shapes for a cantilever beam. They are given by

Φv(s) = κv

{
cosh zs− cos zs+

cos(z) + cosh(z)
sin(z) + sinh(z)

[
sin zs− sinh zs

]}
(5.31)

Φφ(s) = κφ sin
[

1
2

(2n− 1)πs
]

(5.32)

where z is a root of 1+cos(z) cosh(z) = 0. The mode shape Φw(s) can be obtained from Eq. (5.31)

by replacing the subscript v by w. The first five roots are 1.8751, 4.6941, 7.8548, 10.9955, and
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14.1372. The constants κv and κφ are chosen so that

∫ 1

0
Φ2
vds = 1 and

∫ 1

0
Φ2
φds = 1 (5.33)

which yield 1 and
√

2, respectively. The nondimensional natural frequencies are given by

ωv = z2
√
βy, ωw = z2, and ωφ =

1
2

(2n− 1)π

√
βγ
Jξ

(5.34)

5.2.2 Second-Order Problem

Substituting Eqs. (5.29) and (5.30) into Eqs. (5.20)-(5.22), we obtain

D2
0v2 + βyv

iv
2 = −2iωvΦv

∂Av
∂T1

eiωvT0 + cc (5.35)

JξD
2
0φ2 − βγφ′′2 = −2iωφJξΦφ

∂Aφ
∂T1

eiωφT0 + cc (5.36)

D2
0w2 + wiv2 =

[
βγ(Φ′φΦ′′v)

′ + (1− βy)(ΦφΦ′′v)
′′ + Jξωvωφ(ΦφΦ′v)

′
]
AφAve

i(ωφ+ωv)T0

+
[
βγ(Φ′φΦ′′v)

′ + (1− βy)(ΦφΦ′′v)
′′ − Jξωvωφ(ΦφΦ′v)

′
]
AφĀve

i(ωφ−ωv)T0

+
1
2
feiΩT0 + cc (5.37)

The boundary conditions at s = 0 are given by Eq. (5.23), whereas at s = 1, Eqs. (5.24) become

v′′2 = 0, v′′′2 = 0, φ′2 = 0, w′′2 = 0, and

w′′′2 = Jξωφωv
(
ΦφΦ′v

)
s=1

[
AφAve

i(ωφ+ωv)T0 −AφĀvei(ωφ−ωv)T0 + cc
]

(5.38)

Eliminating the terms that produce secular terms from Eqs. (5.35) and (5.36), we obtain

∂Av
∂T1

= 0 and
∂Aφ
∂T1

= 0 (5.39)
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Therefore, both Av and Aφ are independent of the time scale T1. Then, the solutions of Eqs. (5.23)

and (5.35)-(5.38) can be expressed as

v2 = 0 (5.40)

φ2 = 0 (5.41)

w2 = Φw(s)AweiωwT0 + Φ1(s)AφAvei(ωφ+ωv)T0 + Φ2(s)AφĀvei(ωφ−ωv)T0 + Φ3(s)eiΩT0 + cc (5.42)

The function Φ1(s) is determined from the boundary-value problem

Φiv
1 − (ωφ + ωv)2Φ1 = βγ(Φ′φΦ′′v)

′ + (1− βy)(ΦφΦ′′v)
′′ + Jξωvωφ(ΦφΦ′v)

′ (5.43)

Φ1 = 0 and Φ′1 = 0 at s = 0 (5.44)

Φ′′1 = 0 and Φ′′′1 = Jξωφωv
(
ΦφΦ′v

)
at s = 1 (5.45)

The function Φ2(s) is determined from the boundary-value problem

Φiv
2 − (ωφ − ωv)2Φ2 = βγ(Φ′φΦ′′v)

′ + (1− βy)(ΦφΦ′′v)
′′ − Jξωvωφ(ΦφΦ′v)

′ (5.46)

Φ2 = 0 and Φ′2 = 0 at s = 0 (5.47)

Φ′′2 = 0 and Φ′′′2 = −Jξωφωv
(
ΦφΦ′v

)
at s = 1 (5.48)

The function Φ3(s) is determined from the boundary-value problem

Φiv
3 − Ω2Φ3 =

1
2
f (5.49)

Φ3 = 0 and Φ′3 = 0 at s = 0 (5.50)

Φ′′3 = 0 and Φ′′′3 = 0 at s = 1 (5.51)
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The general form of the functions Φ1(s) and Φ2(s) can be expressed as

Φi(s) = sin
[

1
2

(2n− 1)πs
]

[Bi1 sin zs+Bi2 cos zs+Bi3 sinh zs+Bi4 cosh zs]

+ cos
[

1
2

(2n− 1)πs
]

[Bi5 sin zs+Bi6 cos zs+Bi7 sinh zs+Bi8 cosh zs]

+Bi9 sin ris+Bi10 cos ris+Bi11 sinh ris+Bi12 cosh ris (5.52)

where ri =
√
ωφ + ωv when i = 1 and

√
ωφ − ωv when i = 2. On the other hand, the function Φ3(s)

is given by

Φ3(s) = C1 sin r3s+ C2 cos r3s+ C3 sinh r3s+ C4 cosh r3s−
f

2Ω2
(5.53)

where r3 =
√

Ω.

5.2.3 Third-Order Problem

To relate quantitatively the nearness of Ω to ωv + ωφ, we introduce the detuning parameter σ so

that

Ω = ωv + ωφ + ε2σ (5.54)

Substituting Eqs. (5.29), (5.30), and (5.40)-(5.42) into Eqs. (5.25)-(5.28) and using Eq. (5.54), we

obtain

D2
0v3 + βyv

iv
3 = g(s, T2)eiωvT0 + cc + NST (5.55)

JξD
2
0φ3 − βγφ′′3 = h(s, T2)eiωφT0 + cc + NST (5.56)

v3 = 0, v′3 = 0, and φ3 = 0 at s = 0 (5.57)

v′′3 = 0, φ′3 = 0, and βyv
′′′
3 = g0(T2)eiωvT0 + cc + NST at s = 1 (5.58)
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where NST stands for terms that do not produce secular terms and the functions g, h, and g0 are

defined in Appendix B.

Next, to determine the equation governing Av, we seek a solution to Eqs. (5.55), (5.57), and (5.58)

in the form

v3(s, T0, T2) = ψ(s, T2)eiωvT0 + cc + NST (5.59)

Hence, ψ is given by the boundary-value problem

βyψ
iv − ω2

vψ = g (5.60)

ψ(0) = 0, ψ′(0) = 0, ψ′′(1) = 0, and βyψ
′′′(1) = g0 (5.61)

Because the homogeneous problem corresponding to Eqs. (5.60) and (5.61) has a nontrivial solution,

the inhomogeneous problem has a solution only if a solvability condition is satisfied (Nayfeh, 1981).

To determine this solvability condition, we multiply Eq. (5.60) by the adjoint ψ∗(s), integrate over

the spatial domain, transfer the derivatives from ψ to ψ∗ using repeated integrations by parts, and

obtain

βy

[
ψ∗ψ′′′ − ψ∗′ψ′′ + ψ∗′′ψ′ − ψ∗′′′ψ

]s=1

s=0

+
∫ 1

0

(
βyψ

∗iv − ω2
vψ
∗)ψds =

∫ 1

0
gψ∗ds (5.62)

To determine the adjoint, we consider the homogeneous problem (i.e., g = 0 and g0 = 0). For

this case, it turns out that the resulting boundary-value problem for the adjoint is the same as the

homogeneous problem, and therefore the system is self-adjoint and ψ∗ = Φv. Then, Eq. (5.62)

reduces to the solvability condition

∫ 1

0
Φvgds− Φv(1)g0 = 0 (5.63)

Similarly, to determine the equation governing Aφ, we seek a solution to Eqs. (5.56)-(5.58) in the
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form

φ3(s, T0, T2) = χ(s, T2)eiωφT0 + cc + NST (5.64)

where χ is given by the boundary-value problem

βγχ
′′ + ω2

φJξχ = −h (5.65)

χ(0) = 0 and χ′(1) = 0 (5.66)

Repeating the same process as before, we find that this problem is also self-adjoint, and hence the

adjoint χ∗(s) = Φφ(s) and the solvability condition is given by

∫ 1

0
Φφhds = 0 (5.67)

Substituting for the functions g, h, and g0 from Appendix B in Eqs. (5.63) and (5.67), we obtain

the following modulation equations governing the behavior of Av and Aφ:

2iωv
dAv
dT2

= −2iωvµvAv + Γ1A
2
vĀv + Γ2AvAφĀφ + Γ3Āφe

iσT2 (5.68)

2iωφJξ
dAφ
dT2

= −2iωφµφAφ + Γ4AφAvĀv + Γ5Āve
iσT2 (5.69)

where

Γ1 = ω2
vα7 − βyα8 (5.70)

Γ2 = − [βγα1 + (1− βy)α2 + ωvωφJξα3] (5.71)

Γ3 = − [βγα4 + (1− βy)α5 + ωvωφJξα6] (5.72)

Γ4 = − [βγα9 + (1− βy)α10 + ωvωφJξα11] (5.73)

Γ5 = − [βγα12 + (1− βy)α13 + ωvωφJξα14] (5.74)

and αi, µv, and µφ are defined in the Appendix B. Because in the absence of damping, the original
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system is Hamiltonian, we expect that the coefficients in the modulation equations exhibit the

symmetries

Γ2 = Γ4 and Γ3 = Γ5 (5.75)

5.3 Perturbation Analysis of the Discretized System

Another approach that is popular in solving such problems is to treat a discretized model of the

partial-differential equations of motion and boundary conditions. Using single-mode discretization,

we let

v(s, t) = Φv(s)V (t) (5.76)

w(s, t) = Φw(s)W (t) (5.77)

φ(s, t) = Φφ(s)η(t) (5.78)

in Eqs. (5.1)-(5.3), take the inner product of each equation with its corresponding mode shape,

and obtain one ordinary-differential equation for each of V , W , and η as

V̈ + cvV̇ + ω2
vV = δ1ηW + δ2 (η̇W ). + δ3V

3 + δ4V
(
V 2
).. + δ5η

2V (5.79)

Ẅ + cwẆ + ω2
wW = δ6ηV + δ7η̇V̇ + δ8f cos(Ωt) (5.80)

Jξη̈ + cφη̇ + Jξω
2
φη = δ9VW + δ10

(
V̇ W

). + δ11ηV
2 (5.81)

where the δi are constants defined in Appendix B.

Next, we use the method of multiple scales to seek a uniform expansion of the solutions of Eqs.

(5.79)-(5.81) in the form

V (t) = εV1(T1, T2) + ε2V2(T1, T2) + ε3V3(T1, T2) + · · · (5.82)

W (t) = εW1(T1, T2) + ε2W2(T1, T2) + ε3W3(T1, T2) + · · · (5.83)

η(t) = εη1(T1, T2) + ε2η2(T1, T2) + ε3η3(T1, T2) + · · · (5.84)
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Substituting Eqs. (5.82)-(5.84) into Eqs. (5.79)-(5.81) and equating coefficients of like power of ε,

we obtain

Order ε

D2
0V1 + ω2

vV1 = 0 (5.85)

D2
0W1 + ω2

wW1 = 0 (5.86)

JξD
2
0η1 + Jξω

2
φη1 = 0 (5.87)

Order ε2

D2
0V2 + ω2

vV2 = −2D0D1V1 + δ1η1W1 + δ2D0 [(D0η1)W1] (5.88)

D2
0W2 + ω2

wW2 = −2D0D1W1 + δ6η1V1 + δ7 (D0η1) (D0V1) + δ8f cos (ΩT0) (5.89)

JξD
2
0η2 + Jξω

2
φη2 = −2JξD0D1η1 + δ9V1W1 + δ10D0 [(D0V1)W1] (5.90)

Order ε3

D2
0V3 + ω2

vV3 = −2D0D1V2 − 2D0D2V1 −D2
1V1 − cvD0V1 + δ1 (η1W2 + η2W1)

+ δ2

{
D0 [(D0η1)W2] +D0 [(D0η2)W1] +D0 [(D1η1)W1]

+D1 [(D0η1)W1]
}

+ δ3V
3

1 + δ4V1D
2
0

(
V 2

1

)
+ δ5η

2
1V1 (5.91)

D2
0W3 + ω2

wW3 = −2D0D1W2 − 2D0D2W1 −D2
1W1 − cwD0W1 + δ6 (η2V1 + η1V2)

+ δ7

[
(D0η1) (D0V2) + (D0η2) (D0V1) + (D1η1) (D0V1)

+ (D0η1) (D1V1)
]

(5.92)

JξD
2
0η3 + Jξω

2
φη3 = −2JξD0D1η2 − 2JξD0D2η1 − JξD2

1η1 − cφD0η1 + δ9 (V1W2 + V2W1)

+ δ10

{
D0 [(D0V2)W1] +D0 [(D1V1)W1] +D0 [(D0V1)W2]

+D1 [(D0V1)W1]
}

+ δ11η1V
2

1 (5.93)

Carrying out the analysis at O(ε) and O(ε2), we find that

V1 = Av(T2)eiωvT0 + Āv(T2)e−iωvT0 (5.94)
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W1 = Aw(T2)eiωwT0 + Āw(T2)e−iωwT0 (5.95)

η1 = Aφ(T2)eiωφT0 + Āφ(T2)e−iωφT0 (5.96)

V2 = 0 (5.97)

W2 = ∆1AvAφe
i(ωφ+ωv)T0 + ∆2ĀvAφe

i(ωφ−ωv)T0 + ∆3e
iΩT0 + cc (5.98)

η2 = 0 (5.99)

where

∆1 =
(δ6 − ωvωφδ7)
ω2
w − (ωφ + ωv)

2 , ∆2 =
(δ6 + ωvωφδ7)
ω2
w − (ωφ − ωv)2 , and ∆3 =

δ8

2 (ω2
w − Ω2)

f. (5.100)

Then, substituting Eqs. (5.94)-(5.99) into Eqs. (5.91) and (5.93) and eliminating secular terms, we

obtain the modulation equations in complex-valued form. They have the same form as Eqs. (5.68)

and (5.69) except that the Γi are now defined as

Γ1 = 3δ3 − 4ω2
vδ4 (5.101)

Γ2 = δ1 (∆1 + ∆2) + δ2ωvωφ (∆1 −∆2) + 2δ5 (5.102)

Γ3 = (δ1 + δ2ωvωφ) ∆3 (5.103)

Γ4 = δ9 (∆1 + ∆2) + δ10ωvωφ (∆1 −∆2) + 2δ11 (5.104)

Γ5 = (δ9 + δ10ωvωφ) ∆3 (5.105)

5.4 Response Analysis

We introduce the polar transformation

Av =
1
2
av(T2)eiθv(T2) and Aφ =

1
2
aφ(T2)eiθφ(T2) (5.106)

into Eqs. (5.68) and (5.69), separate real and imaginary parts, and obtain

a′v = −µvav +
Γ3

2ωv
aφ sin γ (5.107)
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avθ
′
v = − Γ1

8ωv
a3
v −

Γ2

8ωv
ava

2
φ −

Γ3

2ωv
aφ cos γ (5.108)

a′φ = −µφaφ +
Γ5

2ωφJξ
av sin γ (5.109)

aφθ
′
φ = − Γ4

8ωφJξ
aφa

2
v −

Γ5

2ωφJξ
av cos γ (5.110)

γ = σT2 − θv − θφ (5.111)

Equations (5.107)-(5.111) admit two possible equilibrium (fixed-point) solutions: (a) av = 0 and

aφ = 0 and the beam is not excited and (b) av 6= 0 and aφ 6= 0 and the beam’s response is

quasiperiodic. In the second case, Eqs. (5.108), (5.110), and (5.111) can be combined into a single

equation governing γ:

γ′ = σ +
(

Γ1

8ωv
+

Γ4

8ωφJξ

)
a2
v +

Γ2

8ωv
a2
φ +

[(
Γ3

2ωv

)
aφ
av

+
(

Γ5

2ωφJξ

)
av
aφ

]
cos γ (5.112)

Setting the time derivatives equal to zero in Eqs. (5.107), (5.109), and (5.112) and solving the

resulting equations, we obtain the equilibrium solutions

Γeffa2
v = −σ ± (µv + µφ)

√
Γ3Γ5

4µvµφωvωφJξ
− 1 (5.113)

a2
φ =

Γ5µvωv
Γ3µφωφJξ

a2
v (5.114)

sin γ = ±
√

4µvµφωvωφJξ
Γ3Γ5

(5.115)

where the effective nonlinearity Γeff is

Γeff =
[(

Γ1

8ωv
+

Γ4

8ωφJξ

)
+

Γ2

8ωv

(
Γ5µvωv

Γ3µφωφJξ

)]
(5.116)

The stability of the nontrivial equilibrium solutions can then be studied by calculating the eigen-

values of the Jacobian matrix of the modulations equations. Substituting Eqs. (5.29), (5.30),

and (5.106) back into Eqs. (5.12) and (5.14), we find that to second order the in-plane bending
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deflection and angle of torsion of the beam are given by

v(s, t) = εΦv(s)av cos(ωvt+ θv) + · · · (5.117)

φ(s, t) = εΦφ(s)aφ cos
[(
ωφ + ε2σ

)
t− γ − θv

]
+ · · · (5.118)

As an example, we consider an aluminum beam having the following properties: E = 10.1Mpsi,

G = 3.7Mpsi, L = 13 in, b = 0.992 in, and h = 0.03 in. The corresponding nondimensional

quantities are Jξ = 0.000486, βy = 0.000915, βγ = 0.001315, ωv1 = 0.106, ωv2 = 0.666, ωφ1 = 2.584,

and ωw1 = 3.516. We let µv1 = 0.000242, µv2 = 0.001521, and µφ1 = 0.003659. Values for the

coefficients Γi and Γeff are presented in Table 5.1 for both the direct and discretization approaches.

Table 5.1: Values of Γi and Γeff for the cases Ω ≈ ωvk + ωφ1, k = 1, 2. In the discretization
approach, ωw1 was used.

Ω ≈ Direct Discretization
ωv1 + ωφ1 Approach Approach

Γ1 −0.0070 −0.0070
Γ2 4.918 2.615
Γ3 0.373f 0.386f
Γ4 4.918 2.569
Γ5 0.373f 0.384f

Γeff 522.160 273.001

Ω ≈ Direct Discretization
ωv2 + ωφ1 Approach Approach

Γ1 91.713 91.713
Γ2 278.930 −432.882
Γ3 −4.867f −5.032f
Γ4 278.930 −433.340
Γ5 −4.867f −5.025f

Γeff 39342.719 −61034.424

We note from Table 5.1 that the symmetries given by Eq. (5.75) are satisfied when using the direct

approach. However, this is not the case when using the discretization approach. This is because

the discretization was done using the linear undamped mode shapes, and hence the nonlinearities

in the boundary conditions were neglected, rendering the system non-Hamiltonian. Because the

Lagrangian inherently contains the effect of nonlinearities in the boundary conditions, one can
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remedy this inconsistency by first discretizing the Lagrangian and then obtaining the discretized

equations of motion using Hamilton’s principle.

Also, important to note from Table 5.1 are the significant discrepancies in the values of the Γi

for both approaches. This is because, in the discretization approach, the influence of the spatial

solution at order O(ε2) is incorrectly accounted for in the modulation equations (Nayfeh, 1997).

In Figures 5.2 and 5.3 we present typical frequency-response curves when f = 0.1 and amplitude-

response curves when σ = 10 for the case Ω ≈ ωv1 + ωφ1. In Figures 5.4 and 5.5 we present typical

frequency-response curves when f = 0.1 and amplitude-response curves when σ = 10 for the case

Ω ≈ ωv2 + ωφ1. For all figures, the curves in part (a) were obtained by using the direct approach

and the curves in part (b) were obtained by using the discretization approach.
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Figure 5.2: Frequency-response curves for the case Ω ≈ ωv1+ωφ1 when f = 0.1: (a) Direct approach
and (b) discretization approach. (—) denote stable fixed points and (· · · ) denote saddles.

In the case Ω ≈ ωv1 + ωφ1, it can be concluded from Figures 5.2a and 5.2b and Figures 5.3a

and 5.3b that the difference between analyzing the original partial-differential system and the

discretized model is mainly quantitative. However, in the case Ω ≈ ωv2+ωφ1, the difference between

the two approaches is qualitative as well as quantitative. It follows from Figures 5.4a and 5.4b
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that the direct approach predicts a softening-spring behavior whereas the discretization approach

predicts a hardening-spring behavior. Furthermore, in the direct approach, the modal interaction is

activated as the trivial solution loses stability through a supercritical pitchfork bifurcation, whereas

in the discretization approach, the trivial solution undergoes a subcritical pitchfork bifurcation, as

shown in Figures 5.5a and 5.5b. Therefore, discretizing the system in this case leads to erroneous

conclusions about the behavior.
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Figure 5.3: Amplitude-response curves for the case Ω ≈ ωv1+ωφ1 when σ = 10: (a) Direct approach
and (b) discretization approach. (—) denote stable fixed points and (· · · ) denote saddles.

Looking at Figures 5.2, 5.3, 5.4, and 5.5, one gets the impression that the amplitude of the torsional

oscillations is much larger than the amplitude of the in-plane bending oscillations. This is misleading

because aφ is the amplitude of an angle, whereas av is the amplitude of a displacement. A more

accurate representation would be to compare the maximum tip deflection due to twisting with the

tip deflection due to bending. Therefore, we let

ρT ip(t) ≡
b

2h
φ(1, t) = ε

b

2h
Φφ(1)aφ cos

[(
ωφ + ε2σ

)
t− γ − θv

]
+ · · · (5.119)

vT ip(t) ≡ v(1, t) = εΦv(1)av cos [ωvt+ θv] + · · · (5.120)
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Figure 5.4: Frequency-response curves for the case Ω ≈ ωv2+ωφ1 when f = 0.1: (a) Direct approach
and (b) discretization approach. (—) denote stable fixed points and (· · · ) denote saddles.
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Figure 5.5: Amplitude-response curves for the case Ω ≈ ωv2+ωφ1 when σ = 10: (a) Direct approach
and (b) discretization approach. (—) denote stable fixed points and (· · · ) denote saddles.
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In Figures 5.6 and 5.7 we present time histories of the beam’s tip deflection vT ip due to bending and

the maximum tip deflection ρT ip due to twisting for the cases Ω ≈ ωv1 + ωφ1 and Ω ≈ ωv2 + ωφ1,

respectively. Both figures reflect results using the direct approach and the parameters used are

f = 0.5, σ = 10, and ε = 0.1. Comparing Figures 5.6a and 5.6b and Figures 5.7a and 5.7b, one

can see that the amplitude of the low-frequency vibrations due to bending are higher than the

amplitude of the high-frequency vibrations due to torsion. Hence, the overall motion of the beam,

although under a high-frequency excitation, may be dominated by a low-frequency high-amplitude

component that, if ignored, may be disastrous.
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Figure 5.6: Time histories of the beam’s tip for the case Ω ≈ ωv1 + ωφ1 when f = 0.5, σ = 10, and
ε = 0.1: (a) Vibrations due to bending and (b) maximum vibrations due to twisting.
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Figure 5.7: Time histories of the beam’s tip for the case Ω ≈ ωv2 + ωφ1 when f = 0.5, σ = 10, and
ε = 0.1: (a) Vibrations due to bending and (b) maximum vibrations due to twisting.



Chapter 6

Transfer of Energy from High- to

Low-Frequency Modes in the

Bending-Torsion Oscillations of

Cantilever Beams

We investigate the nonlinear bending-torsion response of a cantilever beam to a transverse harmonic

excitation, where the forcing frequency is near the natural frequency of the first torsional mode.

Using perturbation techniques, we analyze the case where the first in-plane bending mode is acti-

vated by a non-resonant mechanism. Two approaches to analyze the system are presented. In the

first, the method of multiple scales is directly applied to the governing nonlinear partial-differential

equations and associated boundary conditions. In the second, the method of time-averaged La-

grangian and virtual-work term is used. In both cases, the modulation equations obtained are the

same. These equations are then used to investigate the behavior of limit-cycle oscillations of the

beam as the excitation amplitude is slowly varied. As an example, we consider the response of an

aluminum beam for which the natural frequency of the first in-plane bending mode is fv1 ≈ 5.7 Hz

and the natural frequency of the first torsional mode is fφ1 ≈ 138.9 Hz.

120
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6.1 Introduction

Several recent experiments have demonstrated the transfer of energy from high-frequency modes

to low-frequency modes of a system, resulting in overall large-amplitude oscillations. In most

cases, the low-frequency modes are activated through a resonant mechanism, be it internal or

external. Examples include two-to-one, three-to-one, combination, and subcombination resonances.

In Chapter 5, we considered one such mechanism, namely the activation of low-frequency modes

by a high-frequency excitation due to combination parametric resonances.

In some cases, however, low-frequency modes are activated even though they are not involved in

a resonance relationship. This case is sometimes labeled zero-to-one resonance. A review of the

works regarding this mechanism is presented in Section 1.3. Of importance are the experimental

results of Anderson, Balachandran, and Nayfeh (1992, 1994), which dealt with the planar response

of a cantilever beam, and Nayfeh and Nayfeh (1992, 1994), which dealt with the bending-bending

response of a circular cross-section cantilever beam.

In experiments conducted on an aluminum beam with the same configuration shown in Figure 6.1

and having the natural frequencies fv1 = 5.719 Hz, fφ1 = 138.938 Hz, and fw1 = 189.730 Hz, we

observed that, as the forcing amplitude is increased, the first in-plane bending mode was activated.

As the forcing amplitude was increased further, the bending mode began to dominate the response,

resulting in the beam oscillating at a large amplitude. In the frequency spectrum, we noticed the

appearance of sidebands around fφ1 that are approximately separated by fv1. This is characteristic

of the zero-to-one resonance. Increasing the excitation amplitude some more resulted in chaotic

motions.

In this chapter, we investigate the nonlinear bending-torsion interactions of a cantilever beam due

to nonresonant mechanisms. The beam considered is metallic and is assumed to be relatively long

and to have a thin rectangular cross section. We excite the beam by a base harmonic forcing at

a frequency near the natural frequency of the first torsional mode (i.e., fundamental parametric

resonance). We apply the method of multiple scales directly to the governing partial-differential

equations and associated boundary conditions to determine the modulation equations. We also

show that one can obtain the same modulation equations by using the method of time-averaged
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Figure 6.1: A schematic of a thin rectangular cantilever beam under fundamental parametric exci-
tation.

Lagrangian. Furthermore, because, in the absence of damping, the governing equations are derivable

from a Lagrangian and a virtual-work term, the coefficients in the modulation equations must

exhibit certain symmetries.

6.2 Problem Formulation

The equations of motion and associated boundary conditions for the system considered here are

obtained from Eqs. (2.103)-(2.111) by neglecting the rotatory inertia terms and setting Qu = Qv =

Qφ = 0 and Qw = f cos(Ωt). As a result, we obtain

mv̈ + cvv̇ +Dζv
iv = −Dξ

(
φ′w′ + v′′w′2

)′′ − (Dη −Dζ)
(
φ2v′′ − φw′′

)′′
−Dζ

[
v′
(
v′v′′

)′ + v′
(
w′w′′

)′]′ + Jξ
∂

∂t

(
φ̇w′ + v̇′w′2

)′
− m

2

{
v′
∫ s

L

[
∂2

∂t2

∫ s

0

(
v′2 + w′2

)
ds

]
ds

}′
(6.1)

mẅ + cwẇ +Dηw
iv = Qw +Dξ

(
φ′v′′ + v′′2w′

)′ + (Dη −Dζ)
(
φ2w′′ + φv′′

)′′
−Dη

[
w′
(
w′w′′

)′]′ −Dζ

[
w′
(
v′v′′

)′]′ − Jξ (φ̇v̇′ + v̇′2w′
)′

− m

2

{
w′
∫ s

L

[
∂2

∂t2

∫ s

0

(
v′2 + w′2

)
ds

]
ds

}′
(6.2)

Jξφ̈+ cφφ̇−Dξφ
′′ = Dξ

(
v′′w′

)′ + (Dη −Dζ)
(
v′′w′′ − φv′′2 + φw′′2

)
− Jξ

∂

∂t

(
v̇′w′

)
(6.3)
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The associated boundary conditions are

v = 0, v′ = 0, w = 0, w′ = 0, and φ = 0 at the fixed end s = 0, (6.4)

and

Dζv
′′ = −Dξ

(
v′′w′2 + φ′w′

)
− (Dη −Dζ)

(
φ2v′′ − φw′′ − v′w′w′′

)
(6.5)

Dζv
′′′ = −Dξ

(
φ′w′ + w′2v′′

)′ − (Dη −Dζ)
(
φ2v′′ − φw′′

)′
−Dζ

[
v′
(
v′v′′

)′ + v′
(
w′w′′

)′]+ Jξ
∂

∂t

(
φ̇w′ + w′2v̇′

)
(6.6)

Dηw
′′ = (Dη −Dζ)

(
φ2w′′ + φv′′

)
(6.7)

Dηw
′′′ = Dξ

(
w′v′′2 + v′′φ′

)
−Dη

[
w′
(
w′w′′

)′]−Dζ

[
w′
(
v′v′′

)′]
+ (Dη −Dζ)

(
φ2w′′ + φv′′

)′ − Jξ (w′v̇′2 + φ̇v̇′
)

(6.8)

Dξφ
′ = −Dξ

(
v′′w′

)
(6.9)

at the fixed end s = L. The Lagrangian and virtual-work term corresponding to Eqs. (6.1)-(6.9)

are given by

L =
1
2

∫ 1

0

{
m

[
1
2
∂

∂t

∫ s

0

(
v′2 + w′2

)
ds

]2

+m
(
v̇2 + ẇ2

)
+ Jξ

(
φ̇+ v̇′w′

)2

−Dη

(
w′′2 + w′2w′′2

)
−Dζ

(
v′′2 + v′2v′′2 + 2v′v′′w′w′′

)
−Dξ

(
φ′ + v′′w′

)2 − (Dη −Dζ)
[
φ2
(
v′′2 − w′′2

)
− 2φv′′w′′

]}
ds (6.10)

δW = −
∫ 1

0

{
cvv̇δv + cφφ̇δφ+

[
cwẇ −Qw(t)

]
δw
}
ds (6.11)

6.3 Direct Perturbation Solution of the Partial-Differential Equa-

tions and Boundary Conditions

We use the method of multiple scales (Nayfeh, 1981) to determine a second-order uniform expansion

for the solution of Eqs. (6.1)-(6.9). To this end, we introduce the nondimensional parameter ε¿ 1
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as a measure of smallness. An appropriate value in this case is ε = ωv
ωφ

, where ωv is the circular

natural frequency of the first in-plane bending mode and ωφ is the circular natural frequency of the

first torsional mode.

Then, we see from the linear undamped response that, in order to accurately capture the interaction

between the high- and low-frequency modes, we need to scale the linear in-plane bending stiffness

term Dζv
iv as ε2Dζv

iv in Eq. (6.1). Furthermore, we scale the damping and forcing terms so that

their effects balance the effect of nonlinearities. So we scale cv as εcv, cφ and cw as ε2cφ and ε2cw,

and set Qw(t) = ε2f cos(Ωt).

Next, we seek a uniform expansions for v, w, and φ in the form of Eqs. (5.12)-(5.14). Substituting

Eqs. (5.12)-(5.14) into Eqs. (6.1)-(6.9) and equating coefficients of like powers of ε, we obtain the

following system of linear partial-differential equations and boundary conditions:

Order ε

mD2
0v1 = 0 (6.12)

JξD
2
0φ1 −Dξφ

′′
1 = 0 (6.13)

mD2
0w1 +Dηw

iv
1 = 0 (6.14)

v1 = 0, v′1 = 0, φ1 = 0, w1 = 0, and w′1 = 0 at s = 0 (6.15)

and

v′′1 = 0, v′′′1 = 0, φ′1 = 0, w′′1 = 0, and w′′′1 = 0 at s = L (6.16)

Order ε2

mD2
0v2 = −2mD0D1v1 + (Dη −Dζ)

(
φ1w

′′
1

)′′ + JξD0

[
(D0φ1)w′1

]′ −Dξ

(
φ′1w

′
1

)′′
− cvD0v1 (6.17)

JξD
2
0φ2 −Dξφ

′′
2 = −2JξD0D1φ1 + (Dη −Dζ)

(
v′′1w

′′
1

)
− JξD0

[(
D0v

′
1

)
w′1
]

+Dξ

(
v′′1w

′
1

)′ (6.18)
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mD2
0w2 +Dηw

iv
2 = −2mD0D1w1 + (Dη −Dζ)(φ1v

′′
1)′′ − Jξ

[
(D0φ1)(D0v

′
1)
]′ +Dξ(φ′1v

′′
1)′

+ f cos(ΩT0) (6.19)

v2 = 0, v′2 = 0, φ2 = 0, w2 = 0, and w′2 = 0 at s = 0 (6.20)

and

v′′2 = 0, Dζv
′′′
2 = −Dξ

(
φ′1w

′
1

)′ + JξD0

[
(D0φ1)w′1

]
, φ′2 = 0, w′′2 = 0,

and Dηw
′′′
2 = −Jξ

[
(D0φ1)(D0v

′
1)
]

at s = L (6.21)

Order ε3

mD2
0v3 = −Dζv

iv
1 −m

(
2D0D1v2 +D2

1v1 + 2D0D2v1

)
− cvD0v2 − cvD1v1

−Dξ

(
φ′1w

′
2 + φ′2w

′
1 + v′′1w

′2
1

)′′ −Dζ

[
v′1
(
v′1v
′′
1

)′ + v′1
(
w′1w

′′
1

)′]′
− (Dη −Dζ)

(
φ2

1v
′′
1 − φ1w

′′
2 − φ2w

′′
1

)′′ + JξD1

[
(D0φ1)w′1

]′
+ JξD0

[
(D0φ2)w′1 + (D1φ1)w′1 + (D0φ1)w′2 +

(
D0v

′
1

)
w′21
]′

− m

2

[
v′1

∫ s

L

∫ s

0
D2

0(v′21 + w′21 )dsds
]′

(6.22)

JξD
2
0φ3 −Dξφ

′′
3 = −Jξ

(
2D0D1φ2 +D2

1φ1 + 2D0D2φ1

)
− cφD0φ1 − JξD1

[(
D0v

′
1

)
w′1
]

− JξD0

[(
D0v

′
1

)
w′2 +

(
D0v

′
2

)
w′1 +

(
D1v

′
1

)
w′1
]

+Dξ

(
v′′1w

′
2 + v′′2w

′
1

)′
− (Dη −Dζ)

(
φ1v
′′2
1 − φ1w

′′2
1 − v′′1w′′2 − v′′2w′′1

)
(6.23)

mD0w3 +Dηw
iv
3 = −m

(
2D0D1w2 +D2

1w1 + 2D0D2w1

)
− cwD0w1 −Dζ

[
w′1
(
v′1v
′′
1

)′]′
−Dη

[
w′1
(
w′1w

′′
1

)′]′ + (Dη −Dζ)
(
φ2

1w
′′
1 + φ1v

′′
2 + φ2v

′′
1

)′′ +Dξ

(
φ′1v
′′
2

+ φ′2v
′′
1 + v′′21 w′1

)′ − Jξ[(D0φ1)(D0v
′
2) + (D0φ1)(D1v

′
1) + (D0φ2)(D0v

′
1)

+ (D1φ1)(D0v
′
1) +

(
D0v

′
1

)2
w′1

]′
− m

2

[
w′1

∫ s

L

∫ s

0
D2

0(v′21 + w′21 )dsds
]′

(6.24)
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v3 = 0, v′3 = 0, φ3 = 0, w3 = 0, and w′3 = 0 at s = 0 (6.25)

and

v′′3 = 0, φ′3 = 0, w′′3 = 0,

Dζv
′′′
3 = −Dξ

(
φ′1w

′
2 + φ′2w

′
1 + v′′1w

′2
1

)′ + (Dη −Dζ)
(
φ1w

′′
2

)′ + JξD0

[
(D0φ1)w′2

+ (D0φ2)w′1 + (D1φ1)w′1 +
(
D0v

′
1

)
w′21

]
+ JξD1

[
(D0φ1)w′1

]
,

and Dηw
′′′
3 = (Dη −Dζ)

(
φ1v
′′
2

)′ − Jξ[(D0φ1)(D0v
′
2) + (D0φ1)(D1v

′
1) + (D0φ2)(D0v

′
1)

+ (D1φ1)(D0v
′
1) +

(
D0v

′
1

)2
w′1

]
at s = L (6.26)

6.3.1 First-Order Problem

Because of the presence of damping, the steady-state response of the beam will consist of only

the modes that are directly excited by the forcing or indirectly excited by the zero-to-one internal

resonance. Hence, the homogeneous solution

w1(s, T0, T1, T2) = Φw(s)
[
Aw(T1, T2)eiωwT0 + Āw(T1, T2)e−iωwT0

]
(6.27)

is assumed to die out as t→∞ since ωw is neither commensurate with the forcing frequency Ω nor

with the natural frequencies ωv and ωφ. Furthermore, the solutions for v1 and φ1 are expressed as

v1(s, T0, T1, T2) = Φv(s)η(T1, T2) + V1(s, T1, T2)T0 (6.28)

φ1(s, T0, T1, T2) = Φφ(s)
[
Aφ(T1, T2)eiωφT0 + Āφ(T1, T2)e−iωφT0

]
(6.29)

where η and Aφ are slowly time-varying functions, which will be determined at higher-order levels

of approximation, and Āφ is the complex conjugate of Aφ.

To ensure that the expansion for v1(s, T0, T1, T2) remains uniform as T0 becomes large, we set
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V1(s, T1, T2) = 0 in Eq. (6.28). Therefore, to first order, the in-plane bending oscillations are a

function of the slow time scales, whereas the torsional oscillations are governed by both the fast

and slow time scales. The functions Φv(s) and Φφ(s) are the linear undamped mode shapes for

cantilever beams and are given by

Φv(s) = κv

{
cosh

(zs
L

)
− cos

(zs
L

)
+

cos(z) + cosh(z)
sin(z) + sinh(z)

[
sin
(zs
L

)
− sinh

(zs
L

) ]}
(6.30)

Φφ(s) = κφ sin
[

1
2

(2n− 1)
πs

L

]
, n = 1, 2, · · · (6.31)

where z is a root of 1+cos(z) cosh(z) = 0. The mode shape Φw(s) can be obtained from Eq. (6.30)

by replacing the subscript v by w. The first five roots are 1.8751, 4.6941, 7.8548, 10.9955, and

14.1372. The constants κv and κφ are chosen so that

∫ L

0
Φ2
vds = 1 and

∫ L

0
Φ2
φds = 1 (6.32)

which yield 1√
L

and
√

2√
L

, respectively. In addition, the corresponding circular natural frequencies

are

ωv = z2

√
Dζ

mL4
, ωw = z2

√
Dη

mL4
, and ωφ =

1
2

(2n− 1)
π

L

√
Dξ

Jξ
(6.33)

6.3.2 Second-Order Problem

We substitute Eqs. (6.28) and (6.29) into Eqs. (6.17)-(6.21) and obtain

mD2
0v2 = 0 (6.34)

JξD
2
0φ2 −Dξφ

′′
2 = −2iωφJξΦφ

∂Aφ
∂T1

eiωφT0 + cc (6.35)

mD2
0w2 +Dηw

iv
2 =

[
Dξ(Φ′φΦ′′v)

′ + (Dη −Dζ)(ΦφΦ′′v)
′′
]
ηAφe

iωφT0 +
1
2
feiΩT0 + cc (6.36)

v2 = 0, v′2 = 0, φ2 = 0, w2 = 0, and w′2 = 0 at s = 0 (6.37)
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v′′2 = 0, v′′′2 = 0, φ′2 = 0, w′′2 = 0, and w′′′2 = 0 at s = L (6.38)

where cc stands for the complex conjugate of the preceding terms. Eliminating the terms that

produce secular terms in Eq. (6.35), we obtain

∂Aφ
∂T1

= 0 (6.39)

Therefore, Aφ is independent of the time scale T1. However, the dependence of the function η on

T1 is still undetermined.

The solutions of Eqs. (6.34)-(6.38) are

v2(s, T0, T1, T2) = 0, φ2(s, T0, T1, T2) = 0, and

w2(s, T0, T1, T2) = Φw(s)AweiωwT0 + Φ1(s)ηAφeiωφT0 + Φ2(s)feiΩT0 + cc (6.40)

where the function Φ1(s) is determined from the boundary-value problem

DηΦiv
1 −mω2

φΦ1 = Dξ(Φ′φΦ′′v)
′ + (Dη −Dζ)(ΦφΦ′′v)

′′ (6.41)

Φ1 = 0 and Φ′1 = 0 at s = 0 (6.42)

Φ′′1 = 0 and Φ′′′1 = 0 at s = L (6.43)

and the function Φ2(s) is determined from the boundary-value problem

DηΦiv
2 −mΩ2Φ2 =

1
2

(6.44)

Φ2 = 0 and Φ′2 = 0 at s = 0 (6.45)

Φ′′2 = 0 and Φ′′′2 = 0 at s = L (6.46)
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The general form of the functions Φ1(s) and Φ2(s) can be expressed as

Φ1(s) = sin
[

1
2

(2n− 1)
πs

L

] [
B1 sin

(zs
L

)
+B2 cos

(zs
L

)
+B3 sinh

(zs
L

)
+B4 cosh

(zs
L

)]
+ cos

[
1
2

(2n− 1)
πs

L

] [
B5 sin

(zs
L

)
+B6 cos

(zs
L

)
+B7 sinh

(zs
L

)
+B8 cosh

(zs
L

)]
+B9 sin

(r1s

L

)
+B10 cos

(r1s

L

)
+B11 sinh

(r1s

L

)
+B12 cosh

(r1s

L

)
(6.47)

Φ2(s) = C1 sin
(r2s

L

)
+ C2 cos

(r2s

L

)
+ C3 sinh

(r2s

L

)
+ C4 cosh

(r2s

L

)
− 1

2mΩ2
(6.48)

where r1 = 4

√
mL4ω2

φ

Dη
and r2 = 4

√
mL4Ω2

Dη
.

6.3.3 Third-Order Problem

To proceed further, we need to relate the excitation frequency Ω to the torsional natural frequency

ωφ. To this end, we introduce the detuning parameter σ so that

Ω = ωφ + ε2σ (6.49)

Then, substituting Eqs. (6.28), (6.29), and (6.40) into Eqs. (6.22)-(6.26) and using Eq. (6.49), we

obtain

mD2
0v3 = g(s, T1, T2) + NST (6.50)

JξD
2
0φ3 −Dξφ

′′
3 = h(s, T1, T2)eiωφT0 + cc (6.51)

where the functions g and h are defined in Appendix C and NST stands for terms that do not

produce secular terms. The boundary conditions at the fixed end s = 0 are

v3 = 0, v′3 = 0, and φ3 = 0 (6.52)

and the boundary conditions at the free end s = L are

v′′3 = 0, φ′3 = 0, and Dζv
′′′
3 = g0(T1, T2) + NST (6.53)
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where g0 is defined in Appendix C.

Next, to determine the equations governing η and Aφ, we seek the solutions of Eqs. (6.50)-(6.53)

in the form

v3(s, T0, T1) = ψ(s, T1) + NST (6.54)

φ3(s, T0, T2) = χ(s, T2)eiωφT0 + cc + NST (6.55)

where ψ(s) is given by the boundary-value problem

Dζψ
iv −mω2

vψ = g(s, T1, T2) (6.56)

ψ(0) = 0, ψ′(0) = 0, ψ′′(L) = 0, and Dζψ
′′′(L) = g0(T1, T2) (6.57)

and χ(s) is given by the boundary-value problem

Dξχ
′′ + ω2

φJξχ = −h(s, T1, T2) (6.58)

χ(0) = 0 and χ′(L) = 0 (6.59)

Following the argument presented in Section 5.2.3, we require the solutions of Eqs. (6.56)-(6.59) to

be orthogonal to their respective adjoints ψ∗(s) = Φv(s) and χ∗(s) = Φφ(s). As a result, we obtain

the following solvability conditions:

∫ L

0
Φvgds− Φv(L)g0 = 0 (6.60)∫ L

0
Φφhds = 0 (6.61)

Substituting for the functions g, h, and g0 from Appendix C into Eqs. (6.60) and (6.61), we obtain
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the following modulation equations governing the behavior of η(T1) and Aφ(T2):

m
d2η

dT 2
1

= −cv
dη

dT1
−mω2

vη + α1η
3 + 2α2ηAφĀφ + α3f

(
Aφe

−iσT2 + Āφe
iσT2

)
(6.62)

2iωφJξ
dAφ
dT2

= −iωφcφAφ + β2η
2Aφ + β3fηe

iσT2 (6.63)

where the coefficients αi and βi are defined in Appendix C.

6.4 Perturbation Analysis Using the Method of Time-Averaged

Lagrangian

We use the method of time-averaged Lagrangian as an alternate approach to obtaining the modu-

lation equations governing the nonlinear dynamics of this system. To this end, we substitute Eqs.

(5.12)-(5.14) directly into Eqs. (6.10) and (6.11), make use of the fact that D1Aφ = 0, w1 = 0,

v2 = 0, and φ2 = 0, and obtain

L =
ε2

2

∫ L

0

{
Jξ(D0φ1)2 −Dξφ

′2
1

}
ds+

ε4

2

∫ L

0

{
m(D1v1)2 +m(D0w2)2

+ 2Jξ
[
(D0φ1)(D0φ2) + (D0φ1)(D2φ1)

]
−Dηw

′′2
2 −Dζ

[
v′′21 + v′21 v

′′2
1

]
− 2Dξ

[
φ′1φ

′
3 + φ′1v

′′
1w
′
2

]
− (Dη −Dζ)

[
φ2

1v
′′2
1 − 2φ1v

′′
1w
′′
2

]}
ds (6.64)

δW = −ε4
∫ L

0

{
cv(D1v1)δv1 + cφ(D0φ1)δφ1

}
ds (6.65)

Next we substitute for v1, φ1, and w2 from Eqs. (6.28), (6.29), and (6.40) in Eqs. (6.64) and

(6.65), retain the slowly varying terms, and obtain the following time-averaged Lagrangian and

virtual-work term:

< L >
ε4

=
1
2
m

(
dη

dT1

)2

− 1
2
mω2

vη
2 + iωφJξ

(
Aφ

dĀφ
dT2
− Āφ

dAφ
dT2

)
− 1

2
ν1η

4 + ν2η
2AφĀφ + ν3fη

(
Aφe

−iσT2 + Āφe
iσT2

)
+ constant + · · · (6.66)

< δW >

ε4
= −cv

dη

dT1
δη − iωφcφ

(
AφδĀφ − ĀφδAφ

)
+ · · ·

= Qηδη +QφδAφ + Q̄φδĀφ (6.67)
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where the νi are defined in Appendix C. Then, applying Hamilton’s extended principle

d

dT1

∂ < L >
∂
(
dη
dT1

)
− ∂ < L >

∂η
= Qη (6.68)

d

dT2

∂ < L >
∂
(
dĀφ
dT2

)
− ∂ < L >

∂Āφ
= Q̄φ (6.69)

to Eqs. (6.66) and (6.67), we obtain the following modulation equations:

m
d2η

dT 2
1

= −cv
dη

dT1
−mω2

vη − 2ν1η
3 + 2ν2ηAφĀφ + ν3f

(
Aφe

−iσT2 + Āφe
iσT2

)
(6.70)

2iωφJξ
dAφ
dT2

= −iωφcφAφ + ν2η
2Aφ + ν3fηe

iσT2 (6.71)

6.5 Response Analysis

Comparing Eqs. (6.70) and (6.71) with Eqs. (6.62) and (6.63), we find that the following symmetries

must be satisfied:

α1 = −2ν1, α2 = β2 = ν2, and α3 = β3 = ν3 (6.72)

Next, using the definitions T1 ≡ εt and T2 ≡ ε2t, substituting the Cartesian transformation

Aφ =
1
2

(p− iq) eiσT2 and Āφ =
1
2

(p+ iq) e−iσT2 (6.73)

into Eqs. (6.70) and (6.71), and separating real and imaginary terms, we obtain a set of four

first-order ordinary-differential equations that govern the modulations of η, ζ, p, and q as

η̇ = εζ (6.74)

ζ̇ = −ε
{
cv
m
ζ + ω2

vη +
2ν1

m
η3 − ν2

2m
η
(
p2 + q2

)
− ν3

m
pf

}
(6.75)

ṗ = −ε2
{
σq +

cφ
2Jξ

p+
ν2

2ωφJξ
η2q

}
(6.76)
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q̇ = −ε2
{
−σp+

cφ
2Jξ

q − ν2

2ωφJξ
η2p− ν3

ωφJξ
ηf

}
(6.77)

Alternatively, we can use the transformation

Aφ =
1
2
aeiθ and Āφ =

1
2
ae−iθ (6.78)

to express Eqs. (6.70) and (6.71) in polar form as

η̇ = εζ (6.79)

ζ̇ = −ε
{
cv
m
ζ + ω2

vη +
2ν1

m
η3 − ν2

2m
ηa2 − ν3

m
af cos γ

}
(6.80)

ȧ = −ε2
{
cφ
2Jξ

a+
ν3

ωφJξ
ηf sin γ

}
(6.81)

aγ̇ = −ε2
{
σa+

ν2

2ωφJξ
η2a+

ν3

ωφJξ
ηf cos γ

}
(6.82)

where γ = θ − ε2σt and a =
√
p2 + q2.

To determine the equilibrium solutions, we set η̇, ζ̇, ṗ, and q̇ = 0 in Eqs. (6.74)-(6.77). There

are two possible solutions: (i) trivial fixed points where η, ζ, p, and q = 0 or (ii) nontrivial fixed

points where ζ = 0 but η, p, and q 6= 0. The stability of the fixed points can be examined from

the eigenvalues λi of the Jacobian matrix of Eqs. (6.74)-(6.77). For this system, the characteristic

equation is given by

λ4 + κ3λ
3 + κ2λ

2 + κ1λ+ κ0 = 0 (6.83)

Applying the Routh-Hurwitz criterion, we find that the equilibrium solutions are stable if

κ3 > 0, κ2κ3 − κ1 > 0, κ1(κ2κ3 − κ1)− κ0κ
2
3 > 0, and κ0 > 0 (6.84)

When κ0 = 0, the equilibrium solutions undergo a static bifurcation. On the other hand, when

κ1(κ2κ3 − κ1)− κ0κ
2
3 = 0, the equilibrium solutions undergo a Hopf bifurcation.
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For the trivial solution, the coefficients κi are given by

κ0 = ε6σ2ω2
v +

ε6c2
φω

2
v

4J2
ξ

+
f2ε6σν2

3

mJξωφ
(6.85)

κ1 =
ε5σ2cv
m

+
εcvc

2
φ

4mJ2
ξ

+
ε4cφω

2
v

Jξ
(6.86)

κ2 = ε4σ2 +
ε4c2

φ

4J2
ξ

+
ε3cvcφ
mJξ

+ ε2ω2
v (6.87)

κ3 =
εcv
m

+
ε2cφ
Jξ

(6.88)

Hence, it follows from Eq. (6.85) that the trivial solution loses stability when

f = ±i ωv
2ν3

√
mωφ
Jξσ

√
4J2

ξ σ
2 + cφ (6.89)

or when

σ = −
f2ν2

3 ±
√
f4ν4

3 −m2c2
φω

4
vω

2
φ

2mJξω2
vωφ

(6.90)

which may be true only when σ < 0 in the first case and when f4ν4
3 −m2c2

φω
4
vω

2
φ > 0 in the second

case.

For the nontrivial fixed points, closed-form solutions are not readily available. Instead, we calculate

them numerically using a pseudo-arclength continuation scheme (Nayfeh and Balachandran, 1995).

It is worth noting, however, that the system (6.74)-(6.77) is invariant under the transformation

(η, ζ, p, q) ⇐⇒ (η, ζ,−p,−q). Hence, for any asymmetric solution, a second one can be obtained

using this transformation.

6.6 Example

As an example, we consider an aluminum beam having the following properties: E = 70 GPa,

G = 26 GPa, L = 33.020 cm, b = 2.520 cm, and h = 0.076 cm. The corresponding quantities

are m = 0.052 kg/m, Jξ = 2.755 × 10−6 kg · m, Dη = 71.106 N · m2, Dζ = 0.065 N · m2, and
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Table 6.1: Values of the αi, βi, and νi for the aluminum beam considered.

Time-Averaged Directly Attacking the
Lagrangian Partial-Differential System

ν1 3072.39 α1 −6144.77
ν2 42920.6 α2 42920.6 β2 42920.6
ν3 0.332 α3 0.332 β3 0.332

Dξ = 0.095 N ·m2. The circular natural frequencies are ωv1 = 35.934 rad/s, ωφ1 = 872.97 rad/s,

and ωw1 = 1192.11 rad/s. The damping coefficients were taken to be cv = 0.01 N · s/m2 and

cφ = 1× 10−4 N · s.

Values for the coefficients αi, βi, and νi are presented in Table 6.1. We note from Table 6.1 that the

symmetries given by Eq. (6.72) are satisfied, which reflects the conservative nature of the system

(6.1)-(6.9), in the absence of damping.

It follows from Eqs. (5.12), (5.14), (6.28), and (6.29) that the in-plane bending and torsional

oscillations to second order are given by

v(s, t) = εΦv(s)η(t) + · · · (6.91)

φ(s, t) = εΦφ(s) [p(t) cos(ωφt) + q(t) sin(ωφt)] + · · · (6.92)

Therefore, it follows from Eqs. (6.91) and (6.92) that the nontrivial fixed points of Eqs. (6.74)-

(6.77) correspond to the beam experiencing a static bending while at the same time oscillating

periodically in torsion. However, since we are neglecting gravity effects and assuming the beam

to be initially straight, we expect that this solution to be mostly unstable. This is apparent from

Figures 6.2 and 6.3. On the other hand, limit-cycle solutions of Eqs. (6.74)-(6.77) correspond to

the beam simultaneously oscillating periodically in bending and quasiperiodically in torsion.

In Figure 6.2, we present typical amplitude-response curves when σ = −5. As the forcing level is

increased beyond f = 10.187, the trivial solution loses stability through a subcritical pitchfork bi-

furcation and the response of the beam becomes nontrivial. However, the branch of nontrivial fixed

points is unstable, and hence we expect the trivial solution to jump up to a dynamic limit-cycle
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Figure 6.2: Amplitude-response curves when σ = −5: (—) Stable solutions, (· · · ) saddles, and PF
= pitchfork bifurcation

or chaotic solution. Around point A in Figure 6.2, the nontrivial solution undergoes a saddle-node

bifurcation, at fSN = 9.821292345, and briefly becomes stable. At f = 9.821292404, however, the

nontrivial solution loses stability again as a pair of complex-conjugate eigenvalues crosses trans-

versely the imaginary axis from the left- to the right-half of the complex plane, indicating a Hopf

bifurcation. However, through long-term numerical integration, we were unable to determine the

limit cycle emanating from the Hopf bifurcation. We suspect that the closeness of the supercritical

Hopf bifurcation to the saddle-node probably caused the limit cycle to experience a cyclic-fold

bifurcation and lose stability.

In Figure 6.3, we present frequency-response curves when f = 10. The trivial solution loses stability

through a supercritical and a subcritical pitchfork bifurcation. The nontrivial solutions are again

mostly unstable, and hence, at either pitchfork bifurcation point, the transition to a nontrivial

response is a sudden jump to a branch of dynamic solutions. The behavior around point B in
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Figure 6.3: Frequency-response curves when f = 10: (—) Stable solutions, (· · · ) saddles, and PF
= pitchfork bifurcation

Figure 6.3 is similar to that at point A in Figure 6.2.

Next, we investigated the dynamic solutions of Eqs. (6.74)-(6.77), corresponding to Figure 6.2,

when σ = −5. Using long-time integration, a combination of a two-point boundary-value program

and Newton’s scheme, and Floquet theory, we were able to determine two isolated branches, I and

II, of dynamic solutions, as shown in Figure 6.4.

In Figure 6.5a, we present two-dimensional projections of the phase portraits onto the ηζ- and

pq-planes and an FFT of η of a symmetric limit cycle found on branch I for f = 1. As we decrease

f beyond 0.73, the limit cycle loses stability through a cyclic-fold bifurcation and a jump to the

trivial solution occurs. As f is increased, the symmetric limit cycle grows and deforms, as shown in

Figure 6.5b for f = 10. As f is increased further, the limit cycle undergoes a symmetry-breaking

bifurcation, as shown in part (c) for f = 11. The presence of odd and even harmonics in the FFT
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Figure 6.4: A schematic of the dynamic solutions found when σ = −5: (—) Stable limit cycles, (· · · )
unstable limit cycles, PD = period-doubling bifurcation, SB = symmetry-breaking bifurcation, and
CF = cyclic-fold bifurcation.

in part (c) indicates that the limit cycle is asymmetric. The limit cycle then undergoes a period-

doubling bifurcation, as shown in part (d) for f = 12.5. The presence of subharmonics of order 1
2

in the FFT in part (d) indicates that the limit cycle is period-two. As f is increased further, the

limit cycle goes through a second period-doubling bifurcation, which is subcritical.

In Figure 6.6, we present time histories of η, ζ, p, and q for f = 12.59, just after the subcritical

period-doubling bifurcation. It is clear from Figure 6.6 that the response starts out as a periodic

limit cycle, but fairly quickly it becomes intermittently chaotic. In Figure 6.7, we present the

time histories of the states over a long span of time. Because the intermittency resulted after a

subcritical period-doubling bifurcation, it is of type III (Nayfeh and Balachandran, 1995).
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Figure 6.5: Two-dimensional projections of the phase portraits onto the ηζ- and pq-planes and
FFTs of η showing the dynamics occurring on Branch I as f is slowly varied. The corresponding
values of f are fa = 1, fb = 10, fc = 11, and fd = 12.5.
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Figure 6.6: Close up of the time histories for η, ζ, p, and q at f = 12.59, showing the chaotic
response that results as the limit cycle on branch I loses stability through a subcritical period-
doubling bifurcation.
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Figure 6.7: Long time histories for η, ζ, p, and q at f = 12.59 showing the chaotic response that
results as the limit cycle on branch I loses stability through a subcritical period-doubling bifurcation.
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Figure 6.8: Two-dimensional projections of the phase portraits onto the ηζ- and pq-planes and
FFTs of η showing the dynamics occurring on Branch II as f is slowly varied. The corresponding
values of f are fa = 1, fb = 6, fc = 7, fd = 7.5, and fe = 7.6.
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In Figure 6.8, we present phase portraits and FFTs of the dynamic solutions found on branch II.

In part (a), we show a symmetric limit cycle for f = 1. As f is decreased below 0.9, the limit cycle

undergoes a cyclic-fold bifurcation and a jump to the trivial solution occurs. As f is increased, the

limit cycle grows and deforms, as shown in part (b) for f = 6. As f is increased further, the limit

cycle undergoes a symmetry-breaking bifurcation and becomes asymmetric, as shown in part (c)

for f = 7. The limit cycle then goes through a period-doubling bifurcation, as shown in part (d) for

f = 7.5, which is soon followed by a second period-doubling bifurcation, as shown in part (e) for

f = 7.6. Both of these period-doubling bifurcations are supercritical and the resulting period-two

and period-four limit cycles are stable.
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Figure 6.9: Close up of the time histories for η, ζ, p, and q at f = 7.612, showing the chaotic
response that results as the limit cycle on branch II loses stability through a subcritical period-
doubling bifurcation.

As f is slightly increased, the period-four limit cycle shown in Figure 6.8e undergoes another period-

doubling bifurcation. Integrating the system numerically just after the bifurcation at f = 7.612,

we obtain the time histories shown in Figure 6.9. The chaotic nature of the response indicates that

the third period-doubling bifurcation is subcritical, causing the period-four limit cycle solution to

lose stability and become intermittent of type III. In Figure 6.10, we present time histories that
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show the chaotic response over a long period of time.
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Figure 6.10: Long time histories for η, ζ, p, and q at f = 7.612 showing the chaotic response
that results as the limit cycle on branch II loses stability through a subcritical period-doubling
bifurcation.



Chapter 7

Symmetry in Composite Beams

We investigate the nonlinear response of symmetrically laminated composite beams. A two-to-

one internal resonance between the out-of-plane bending motion and the in-plane bending and

torsional motions is considered. Pai and Nayfeh (1991a, b) investigated this case by directly

applying the method of multiple scales to a set of governing partial-differential equations and

boundary conditions, which they derived by using a Newtonian approach (Pai, 1990). However,

their modulation equations do not show any symmetry properties. In contrast, we consider the

partial-differential equations and boundary conditions derived in Chapter 2 by using a variational

approach. We apply the method of multiple scales directly to the governing partial-differential

system to determine a set of ordinary-differential equations that govern the modulation of the

interacting modes. In addition, we use the method of time-averaged Lagrangian and virtual work

to determine a similar set of modulation equations. We show that both sets of modulation equations

are the same. Furthermore, we show that these equations possess symmetry properties, reflecting

the conservative nature of the system in the absence of damping and external excitations.

144
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Figure 7.1: A schematic of a symmetrically laminated composite cantilever beam under external
excitations.

7.1 Direct Perturbation Analysis of the Partial-Differential Equa-

tions of Motion and Boundary Conditions

In Chapter 2, we derived the equations of motion and associated boundary conditions for symmet-

rically laminated inextensional composite beams by using a variational approach. In dimensional

form, these are given by Eqs. (2.90)-(2.100). Because it is more convenient to deal with a nondi-

mensional system, we define the following:

s∗ =
s

L
, c∗v =

cvL
2

√
mD33

, β11 =
D11

D33
, J∗ξ =

Jξ
mL2

, Q∗v =
L3

D33
Qv, t∗ =

√
D33

mL4
t

v∗ =
v

L
, c∗w =

cwL
2

√
mD33

, β22 =
D22

D33
, J∗η =

Jη
mL2

, Q∗w =
L3

D33
Qw, β33 = 1 (7.1)

w∗ =
w

L
, c∗φ =

cφ√
mD33

, β13 =
D13

D33
, J∗ζ =

Jζ
mL2

, Q∗φ =
L2

D33
Qφ, (Q∗u)∗ =

L3

D33
Q∗u

Scaling the forcing terms, damping terms, and both quadratic and cubic nonlinear terms to be of

order ε and neglecting the nonlinear rotary inertia terms, we obtain the nondimensional equations



Haider N. Arafat Chapter 7. Symmetry in Composite Beams 146

of motion

v̈ + εcvv̇ + β33v
iv + β13φ

′′′ − Jζ v̈′′ = ε
{
Qv(t)−

[
v′(s− 1)

]′
Qu(t) +Hv(s, t)

}
(7.2)

ẅ + εcwẇ + β22w
iv − Jηẅ′′ = ε

{
Qw(t)−

[
w′(s− 1)

]′
Qu(t) +Hw(s, t)

}
(7.3)

Jξφ̈+ εcφφ̇− β11φ
′′ − β13v

′′′ = ε
{
Qφ(t) +Hφ(s, t)

}
(7.4)

where the asterisk has been dropped for convenience and the functions Hv, Hw, and Hφ are defined

in Appendix D. The corresponding nondimensional boundary conditions are

v = 0, v′ = 0, w = 0, w′ = 0, and φ = 0 (7.5)

at the fixed end s = 0 and

β33v
′′ + β13φ

′ = εBv1(t) (7.6)

β33v
′′′ + β13φ

′′ − Jζ v̈′ = εBv2(t) (7.7)

β22w
′′ = εBw1(t) (7.8)

β22w
′′′ − Jηẅ′ = εBw2(t) (7.9)

β11φ
′ + β13v

′′ = εBφ1(t) (7.10)

at the free end s = 1 where the functions Bv1, Bv2, Bw1, Bw2, and Bφ1 are defined in Appendix D.

Next, we apply the method of multiple scales directly to Eqs. (7.2)-(7.10) to determine a uniform

expansion of the response of the beam. To this end, we substitute

v(s, t) = v0(s, T0, T1) + εv1(s, T0, T1) + · · · (7.11)

w(s, t) = w0(s, T0, T1) + εw1(s, T0, T1) + · · · (7.12)

φ(s, t) = φ0(s, T0, T1) + εφ1(s, T0, T1) + · · · (7.13)

into Eqs. (7.2)-(7.10), use Eqs. (3.6) and (3.7), equate terms of like powers of ε, and obtain
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Order 1

D2
0v0 + β33v

iv
0 + β13φ

′′′
0 − JζD2

0v
′′
0 = 0 (7.14)

D2
0w0 + β22w

iv
0 − JηD2

0w
′′
0 = 0 (7.15)

JξD
2
0φ0 − β11φ

′′
0 − β13v

′′′
0 = 0 (7.16)

v0 = 0, v′0 = 0, w0 = 0, w′0 = 0, and φ0 = 0 (7.17)

at the fixed end s = 0 and

β33v
′′
0+β13φ

′
0 = 0, β33v

′′′
0 + β13φ

′′
0 − JζD2

0v
′
0 = 0, β22w

′′
0 = 0,

β22w
′′′
0 − JηD2

0w
′
0 = 0, and β11φ

′
0 + β13v

′′
0 = 0 (7.18)

at the free end s = 1.

Order ε

D2
0v1 + β33v

iv
1 + β13φ

′′′
1 − JζD2

0v
′′
1 = −2D0D1v0 + 2JζD0D1v

′′
0 − cvD0v0 +Qv(T0, T1)

−
[
v′0(s− 1)

]′
Qu(T0, T1) +Hv(s, T0, T1) (7.19)

D2
0w1 + β22w

iv
1 − JηD2

0w
′′
1 = −2D0D1w0 + 2JηD0D1w

′′
0 − cwD0w0 +Qw(T0, T1)

−
[
w′0(s− 1)

]′
Qu(T0, T1) +Hw(s, T0, T1) (7.20)

JξD
2
0φ1 − β11φ

′′
1 − β13v

′′′
1 = −2JξD0D1φ0 +Qφ(T0, T1) +Hφ(s, T0, T1) (7.21)

v1 = 0, v′1 = 0, w1 = 0, w′1 = 0, and φ1 = 0 (7.22)

at the fixed end s = 0 and

β33v
′′
1 + β13φ

′
1 = Bv1(T0, T1), β33v

′′′
1 + β13φ

′′
1 − JζD2

0v
′
1 = 2JζD0D1v

′
0 +Bv2(T0, T1),

β22w
′′
1 = Bw1(T0, T1), β22w

′′′
1 − JηD2

0w
′
1 = 2JηD0D1w

′
0 +Bw2(T0, T1), and
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β11φ
′
1 + β13v

′′
1 = Bφ1(T0, T1) (7.23)

at the free end s = 1.

7.1.1 First-Order Problem

We divide the first-order problem into two parts. The first part corresponds to the linearly coupled

in-plane bending v0 and torsional φ0 motions, as described by Eqs. (7.14) and (7.16)-(7.18). The

second part corresponds to the out-of-plane bending motion w0, as described by Eqs. (7.15), (7.17),

and (7,18). Next, we assume solutions for v0, φ0, and w0 as

v0 = Φv(s)
[
Av(T1)eiωvT0 + Āv(T1)e−iωvT0

]
= Φv(s)

[
A(T1)eiωT0 + Ā(T1)e−iωT0

]
(7.24)

φ0 = Φ̂φ(s)
[
Aφ(T1)eiωφT0 + Āφ(T1)e−iωφT0

]
= Φ̂φ(s)Γ

[
A(T1)eiωT0 + Ā(T1)e−iωT0

]
= Φφ(s)

[
A(T1)eiωT0 + Ā(T1)e−iωT0

]
(7.25)

w0 = Φw(s)
[
Aw(T1)eiωwT0 + Āw(T1)e−iωwT0

]
= Φw(s)

[
B(T1)eiρT0 + B̄(T1)e−iρT0

]
(7.26)

where ω is the natural frequency of the in-plane bending and torsional motions, ρ is the natural

frequency of the out-of-plane bending motion, and A and B are complex-valued functions. The

functions Φv(s), Φφ(s), and Φw(s) are the linear undamped mode shapes, which are governed by

the following boundary-value problems:

β33Φiv
v + ω2JζΦ′′v − ω2Φv + β13Φ′′′φ = 0 (7.27)

−β11Φ′′φ − ω2JξΦφ − β13Φ′′′v = 0 (7.28)

Φv = 0, Φ′v = 0, and Φφ = 0 at s = 0 (7.29)

Φ′′v = 0, Φ′φ = 0, and β33Φ′′′v + β13Φ′′φ + ω2JζΦ′v = 0 at s = 1 (7.30)

and

β22Φiv
w + ρ2JηΦ′′w − ρ2Φw = 0 (7.31)
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Φw = 0 and Φ′w = 0 at s = 0 (7.32)

Φ′′w = 0 and β22Φ′′′w + ρ2JηΦ′w = 0 at s = 1 (7.33)

In-Plane Bending and Torsional Mode Shapes and Natural Frequencies

We rewrite Eqs. (7.27) and (7.28) in a differential operator form (Dokumaci, 1987; Bishop, Cannon,

and Miao, 1989) as

L1Φv + L2Φφ = 0 (7.34)

L3Φv + L4Φφ = 0 (7.35)

where

L1 = β33D
4 + ω2JζD

2 − ω2, L2 = β13D
3, L3 = −β13D

3, L4 = −β11D
2 − ω2Jξ, (7.36)

and Dn( ) = dn

dsn ( ). Applying the operator L4 on Eq. (7.34) and the operator L2 on Eq. (7.35),

subtracting the two results, and assuming that LiLj = LjLi (i.e., the Li commute), we obtain

(L4L1 − L2L3) Φv = 0 (7.37)

Similarly, applying the operator L3 on Eq. (7.34) and the operator L1 on Eq. (7.35) and subtracting

the two results, we obtain

(L4L1 − L2L3) Φφ = 0 (7.38)

Hence, for nontrivial solutions of Φv and Φφ, we must have

L4L1 − L2L3 = 0 (7.39)

Equations (7.37) and (7.38) can then be expressed as

α1D
6ψ + α2D

4ψ + α3D
2ψ + α4ψ = 0 (7.40)



Haider N. Arafat Chapter 7. Symmetry in Composite Beams 150

where ψ(s) denotes either Φv or Φφ and

α1 = β2
13 − β11β33 (7.41)

α2 = −ω2Jζβ11 − ω2Jξβ33 (7.42)

α3 = −ω4JξJζ + β11ω
2 (7.43)

α4 = Jξω
4 (7.44)

It follows from Eqs. (7.42) and (7.44) that α2 is always negative while α4 is always positive. Next,

we substitute

ψ = eλ̂s (7.45)

into Eq. (7.40), divide the result by α1, and obtain

r3 + τ1r
2 + τ2r + τ3 = 0 (7.46)

where r = λ̂2 and the τi are real-valued constants defined as

τ1 =
α2

α1
, τ2 =

α3

α1
, and τ3 =

α4

α1
(7.47)

Since Eq. (7.46) is cubic in r, it is possible for one to determine the solutions in closed-form.

Defining

Q =
3τ2 − τ2

1

9
and R =

9τ1τ2 − 27τ3 − 2τ3
1

54
(7.48)

we express the roots of Eq. (7.46) as (Spiegel, 1968)

r1 = S + T − 1
3
τ1 (7.49)

r2 = −1
2

(S + T )− 1
3
τ1 + i

√
3

2
(S − T ) (7.50)

r3 = −1
2

(S + T )− 1
3
τ1 − i

√
3

2
(S − T ) (7.51)
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where S = 3

√
R+

√
Q3 +R2 and T = 3

√
R−

√
Q3 +R2. In addition, we define the discriminant

∆ ≡ Q3 +R2. Hence,

1. if ∆ > 0, then one root is real and the other two are complex conjugates,

2. if ∆ = 0, then all three roots are real and at least two are repeated, and

3. if ∆ < 0, then all three roots are real and distinct.

Furthermore, for the last case (i.e., ∆ < 0) and because α2 < 0 and α4 > 0, it follows that of

the three real roots of Eq. (7.46), only one root is positive when α1 < 0, while two roots are

positive when α1 > 0. In the first case, if we assume that r1 > 0 while r2 and r3 < 0, then

λ̂1 = ±√r1 = ±λ1, λ̂2 = ±√r2 = ±iλ2, and λ̂3 = ±√r3 = ±iλ3 where the λi are real-valued

constants. Then, it follows from Eq. (7.45) that the mode shapes have the form

Φv(s) = E1 cosh(λ1s) + E2 sinh(λ1s) + E3 cos(λ2s) + E4 sin(λ2s) + E5 cos(λ3s) + E6 sin(λ3s) (7.52)

Φφ(s) = F1 cosh(λ1s) + F2 sinh(λ1s) + F3 cos(λ2s) + F4 sin(λ2s) + F5 cos(λ3s) + F6 sin(λ3s)

(7.53)

On the other hand, in the second case, if we assume that r1 < 0 while r2 and r3 > 0, then

λ̂1 = ±√r1 = ±iλ1 while λ̂2 = ±√r2 = ±λ2 and λ̂3 = ±√r3 = ±λ3. Hence, the mode shapes have

the form

Φv(s) = E1 cos(λ1s) + E2 sin(λ1s) + E3 cosh(λ2s) + E4 sinh(λ2s) + E5 cosh(λ3s) + E6 sinh(λ3s)

(7.54)

Φφ(s) = F1 cos(λ1s) + F2 sinhλ1s) + F3 cosh(λ2s) + F4 sinh(λ2s) + F5 cosh(λ3s) + F6 sinh(λ3s)

(7.55)

For the [10◦6/45◦4/90◦5]s graphite-epoxy composite beam considered by Pai and Nayfeh (1991a, b),

we find that ∆ < 0 and α1 < 0 and, hence, the mode shapes are given by Eqs. (7.52) and (7.53).

Therefore, the results we present next will be specific to Eqs. (7.52) and (7.53). The same steps,

however, are applicable if α1 is greater than zero and, hence, the mode shapes are given by Eqs.

(7.54) and (7.55).



Haider N. Arafat Chapter 7. Symmetry in Composite Beams 152

Next, we require that Eqs. (7.52) and (7.53) satisfy the boundary-value problem governing Φv

and Φφ. Substituting Eqs. (7.52) and (7.53) into either Eq. (7.27) or Eq. (7.28), we relate the

coefficients Fi to the coefficients Ei by

F1 = Ψ1E2, F3 = Ψ2E4, F5 = Ψ3E6,

(7.56)

F2 = Ψ1E1, F4 = −Ψ2E3, F6 = −Ψ3E5

where

Ψ1 = −β33λ
4
1 + ω2Jζλ

2
1 − ω2

β13λ3
1

= − β13λ
3
1

β11λ2
1 + ω2Jξ

(7.57)

Ψ2 = −β33λ
4
2 − ω2Jζλ

2
2 − ω2

β13λ3
2

= − β13λ
3
2

β11λ2
2 − ω2Jξ

(7.58)

Ψ3 = −β33λ
4
3 − ω2Jζλ

2
3 − ω2

β13λ3
3

= − β13λ
3
3

β11λ2
3 − ω2Jξ

(7.59)

As a result, we rewrite the mode shape Φφ, which is defined by Eq. (7.53), as follows:

Φφ(s) = Ψ1 [E2 cosh(λ1s) + E1 sinh(λ1s)] + Ψ2 [E4 cos(λ2s)− E3 sin(λ2s)]

+ Ψ3 [E6 cos(λ3s)− E5 sin(λ3s)] (7.60)

Then, substituting Eqs. (7.52) and (7.60) into the boundary conditions given by Eqs. (7.29) and

(7.30), we determine the coefficients E2-E6 in terms of E1. Furthermore, the last boundary condition

yields a complicated characteristic equation in terms of λ1, λ2, and λ3, which, when combined with

Eq. (7.46), can be solved numerically for the natural frequency ω of the in-plane bending and

torsional oscillations.

Out-of-Plane Bending Mode Shapes and Natural Frequencies

The mode shapes for the out-of-plane bending oscillations are governed by Eqs. (7.31)-(7.33).

Substituting

Φw(s) = eν̂s (7.61)
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into Eq. (7.31), we obtain

R2 + κ1R− κ2 = 0 (7.62)

where R = ν̂2 and κ1 and κ2 are constants defined as

κ1 =
ρ2Jη
β22

and κ2 =
ρ2

β22
(7.63)

The solutions of Eq. (7.62) are

R1 = −κ1

2
+

√(κ1

2

)2
+ κ2 and R2 = −κ1

2
−
√(κ1

2

)2
+ κ2 (7.64)

Because κ2 is greater than zero according to Eq. (7.63), it follows from Eq. (7.64) that R1 > 0 while

R2 < 0. Hence, ν̂1 = ±
√
R1 = ±ν1 whereas ν̂2 = ±

√
R2 = ±iν2 where ν1 and ν2 are real-valued

constants. Accordingly, the solution of Eq. (7.31) can be expressed as

Φw(s) = G1 cosh (ν1s) + G2 sinh (ν1s) + G3 cos (ν2s) + G4 sin (ν2s) (7.65)

Next, using the first three boundary conditions from Eqs. (7.32) and (7.33), we determine the

values of G2, G3, G4 in terms of G1 and obtain

Φw(s) = G1

{[
cosh (ν1s)− cos (ν2s)

]
−
(
ν2

1 cosh ν1 + ν2
2 cos ν2

ν2
1 sinh ν1 + ν1ν2 sin ν2

)[
sinh (ν1s)−

ν1

ν2
sin (ν2s)

]}
(7.66)

Then, substituting Eq. (7.66) into the second boundary condition in Eq. (7.33), we obtain a

characteristic equation in terms of ν1 and ν2 which, along with Eq. (7.64), can be numerically

solved to determine the natural frequency ρ of the out-of-plane oscillations.

Numerical Results

Following Pai and Nayfeh (1991a, b), we consider a graphite-epoxy composite beam with the

lay-up [10◦6/45◦4/90◦5]s and the following material properties: E1 = 1.92 × 107 psi, E2 = E3 =
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1.56× 106 psi, G23 = 5.23× 105 psi, G12 = G13 = 8.20× 105 psi, ν23 = 0.49, ν12 = ν13 = 0.24, and

ρ0 = 96.1 lbm/ft3. For a beam with the dimensions L = 1.5 ft, b = 0.37526 in, h(k) = 0.005 in,

and h = 2 × 15 × h(k) = 0.15, the bending and torsional rigidities are D11 = 436.23 lbf · in2,

D22 = 5547.2 lbf · in2, D33 = 1532.4 lbf · in2, and D13 = 252.02 lbf · in2. The corresponding

nondimensional stiffnesses and mass moments of inertia are

β11 = 0.284671 Jξ= 4.20062× 10−5

β22 = 3.61994 and Jη= 3.62192× 10−5 (7.67)

β13 = 0.164461 Jζ= 5.78704× 10−6

Using Mathematica, we numerically calculated the nondimensional natural frequencies of the first

bending and torsional modes to be

ω = 3.34465987 and ρ = 6.68906 (7.68)

The corresponding nondimensional mode shapes are given by

Φv(s) = − cosh(1.87503s) + 0.734073 sinh(1.87503s) + cos(1.87509s)− 0.734047 sin(1.87509s)

− 4.62941× 10−8 cos(0.0406291s)− 7.36223× 10−10 sin(0.0406291s) (7.69)

Φφ(s) = −0.794809 cosh(1.87503s) + 1.08274 sinh(1.87503s) + 0.795556 cos(1.87509s)

+ 1.08379 sin(1.87509s)− 7.46689× 10−4 cos(0.0406291s)

+ 4.69522× 10−2 sin(0.0406291s) (7.70)

Φw(s) = cosh(1.87497s)− 0.734054 sinh(1.87497s)− cos(1.87508s) + 0.734007 sin(1.87508s)

(7.71)

where we arbitrarily took E1 = −1.0 in Eqs. (7.54) and (7.60) and G1 = 1.0 in Eq. (7.66).

7.1.2 Second-Order Problem

We consider directly exciting the beam along the y-direction (i.e., flapwise excitation). Therefore,

we set Qw = 0, Qφ = 0, Qu = 0, and Qv = fΩ2 cos(ΩT0) in Eqs. (7.19)-(7.21). In addition,
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we introduce the detuning parameters σ and δ to express the nearness of the primary and the

two-to-one internal resonances as follows:

Ω = ω (1 + εσ) and ρ = 2ω (1 + εδ) (7.72)

Then, we substitute Eqs. (7.24)-(7.26) into Eqs. (7.19)-(7.23), use Eq. (7.72), and obtain

D2
0v1 + β33v

iv
1 + β13φ

′′′
1 − JζD2

0v
′′
1 = H∗v (s, T1)eiωT0 + cc + NST (7.73)

JξD
2
0φ1 − β11φ

′′
1 − β13v

′′′
1 = H∗φ(s, T1)eiωT0 + cc + NST (7.74)

D2
0w1 + β22w

iv
1 − JηD2

0w
′′
1 = H∗w(s, T1)eiρT0 + cc + NST (7.75)

where cc stands for the complex conjugate of the preceding terms, NST stands for the terms that

do not produce secular terms, and the functions H∗v , H∗φ, and H∗w are defined in Appendix D. The

boundary conditions are

v1 = 0, v′1 = 0, w1 = 0, w′1 = 0, and φ1 = 0 (7.76)

at the fixed end s = 0 and

β33v
′′
1 + β13φ

′
1 = NST, β33v

′′′
1 + β13φ

′′
1 − JζD2

0v
′
1 = B∗v2(T1)eiωT0 + cc + NST, β22w

′′
1 = NST,

β22w
′′′
1 − JηD2

0w
′
1 = B∗w2(T1)eiρT0 + cc + NST and β11φ

′
1 + β13v

′′
1 = NST (7.77)

at the free end s = 1, where the functions B∗v2 and B∗w2 are defined in Appendix D. We seek

solutions of Eqs. (7.73)-(7.77) in the form

v1 = V (s, T1)eiωT0 + cc + NST (7.78)

φ1 = Ξ(s, T1)eiωT0 + cc + NST (7.79)

w1 = W (s, T1)eiρT0 + cc + NST (7.80)

Substituting Eqs. (7.78)-(7.80) into Eqs. (7.73), (7.74), (7.76), and (7.77), we obtain the following
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boundary-value problem governing V and Ξ:

β33V
iv + Jζω

2V ′′ − ω2V + β13Ξ′′′ = H∗v (7.81)

−β11Ξ′′ − Jξω2Ξ− β13V
′′′ = H∗φ (7.82)

V = 0, V ′ = 0, and Ξ = 0 at s = 0 (7.83)

V ′′ = 0, β33V
′′′ + Jζω

2V ′ + β13Ξ′′ = B∗v2, and Ξ′ = 0 at s = 1 (7.84)

Similarly, substituting Eqs. (7.78)-(7.80) into Eqs. (7.75)-(7.77), we obtain the following boundary-

value problem governing W :

β22W
iv + Jηρ

2W ′′ − ρ2W = H∗w (7.85)

W = 0 and W ′ = 0 at s = 0 (7.86)

W ′′ = 0 and β22W
′′′ + Jηρ

2W ′ = B∗w2 at s = 1 (7.87)

Since the homogeneous boundary-value system given by Eqs. (7.81)-(7.84) has a nontrivial solution,

the inhomogeneous system has a solution only if a solvability condition is satisfied. To determine

this solvability condition, we take the inner product of Eq. (7.81) with the adjoint V ∗(s) and Eq.

(7.82) with the adjoint Ξ∗(s), add the two results, and obtain

∫ 1

0

{
β33V

∗V iv + Jζω
2V ∗V ′′ − ω2V ∗V + β13V

∗Ξ′′′
}
ds+

∫ 1

0

{
− β11Ξ∗Ξ′′

−Jξω2Ξ∗Ξ− β13Ξ∗V ′′′
}
ds =

∫ 1

0
V ∗H∗vds+

∫ 1

0
Ξ∗H∗φds (7.88)

Then, we transfer the derivatives to the adjoints through repeated integrations by parts and obtain

∫ 1

0

(
V ∗H∗v + Ξ∗H∗φ

)
ds =

[
β33

(
V ∗V ′′′ − V ∗′V ′′ + V ∗′′V ′ − V ∗′′′V

)
+ Jζω

2
(
V ∗V ′ − V ∗′V

)
− β11

(
Ξ∗Ξ′ − Ξ∗′Ξ

)
+ β13

(
V ∗Ξ′′ − V ∗′Ξ′ + V ∗′′Ξ− Ξ∗V ′′ + Ξ∗′V ′
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− Ξ∗′′V
)]s=1

s=0

+
∫ 1

0

{
V
[
β33V

∗iv + Jζω
2V ∗′′ − ω2V ∗ + β13Ξ∗′′′

]
+ Ξ

[
− β11Ξ∗′′ − Jξω2Ξ∗ − β13V

∗′′′
]}
ds (7.89)

To determine the adjoints, we consider the homogeneous problem (i.e., H∗v = 0, H∗φ = 0, and

B∗v2 = 0). The resulting system is similar to Eqs. (7.27)-(7.30) and, hence, the adjoints are

V ∗(s) = Φv(s) and Ξ∗(s) = Φφ(s). Having defined the adjoints, we reduce Eq. (7.89) to the

following solvability condition for A(T1):

∫ 1

0

(
ΦvH

∗
v + ΦφH

∗
φ

)
ds− Φv(1)B∗v2 = 0 (7.90)

To determine the solvability condition for B(T1), we take the inner product of Eq. (7.85) with the

adjoint W ∗(s), integrate by parts, and obtain

∫ 1

0
W ∗H∗wds =

[
β22

(
W ∗W ′′′ −W ∗′W ′′ +W ∗′′W ′ −W ∗′′′W

)
+ Jηρ

2
(
W ∗W ′ −W ∗′W

) ]s=1

s=0

+
∫ 1

0

{
W
[
β22W

∗iv + Jηρ
2W ∗′′ − ρ2W ∗

]}
ds (7.91)

Setting H∗w = 0 and B∗w2 = 0 in Eq. (7.91), we find that the homogeneous problem is similar to

Eqs. (7.31)-(7.33). Hence, the system is self-adjoint and W ∗(s) = Φ∗w(s). Accordingly, Eq. (7.91)

reduces to the following solvability condition for B(T1):

∫ 1

0
ΦwH

∗
wds− Φw(1)B∗w2 = 0 (7.92)

Substituting for H∗v , H∗φ, H∗w, B∗v2, and B∗w2 from Appendix D into Eqs. (7.90) and (7.92) and

performing the spatial integrations, we obtain the following modulation equations governing the

dynamics of the interacting modes:

2iωΓ1A
′ = 2iωΓ2A− Γ3ĀBe

2iωδT1 − 2Γ4ABB̄ − 3Γ5A
2Ā− Γ6e

iωσT1 (7.93)

2iρΛ1B
′ = 2iρΛ2B − Λ3A

2e−2iωδT1 − 2Λ4AĀB − 3Λ5B
2B̄ (7.94)
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where the Γi and Λi are defined in Appendix D.

7.2 Perturbation Analysis Using the Method of Time-Averaged

Lagrangian

The Lagrangian and virtual-work term corresponding to Eqs. (7.2)-(7.10) are

L =
1
2
ε

∫ 1

0

{[
∂

∂t

∫ s

0

1
2
(
v′2 + w′2

)
ds

]2

+
1
ε

(
v̇2 + ẇ2

)
+ Jξ

(
1
ε
φ̇2 + 2φ̇v̇′w′ + v̇′2w′2

)
+

1
ε

(
Jηẇ

′2 + Jζ v̇
′2)− β11

(
1
ε
φ′2 + 2φ′v′′w′ + v′′2w′2

)
− β22

(
1
ε
w′′2 + φ2v′′2 − 2φv′′w′′

− φ2w′′2 + w′2w′′2
)
− β33

(
1
ε
v′′2 − φ2v′′2 + v′2v′′2 + 2φv′′w′′ + 2v′v′′w′w′′ + φ2w′′2

)
− β13

(
2φ′v′′ − φ2φ′v′′ + v′2φ′v′′ + 2w′v′′2 + 2φφ′w′′ + 2v′w′φ′w′′ + 2φw′v′′w′′

)}
ds (7.95)

δW = ε

∫ 1

0

{[
Qv −

[
v′(s− 1)

]′
Qu − cvv̇

]
δv +

[
Qw −

[
w′(s− 1)

]′
Qu − cwẇ

]
δw

+
[
Qφ − cφφ̇

]
δφ

}
ds = ε

∫ 1

0

{[
fΩ2 cos(Ωt)− cvv̇

]
δv − [cwẇ] δw −

[
cφφ̇
]
δφ

}
ds (7.96)

In the absence of damping and external forces, the system is conservative; the original partial-

differential equations of motion and associated boundary conditions are derivable from a La-

grangian. As a consequence, the modulation equations obtained in Section 7.2 are expected to

contain some symmetry properties. However, without numerically calculating the values of the

coefficients one cannot easily identify the symmetries in Eqs. (7.93) and (7.94).

To further emphasize this point, we use the method of time-averaged Lagrangian and virtual work to

determine once again the modulation equations. The advantage of this approach is that the process

is more straightforward and the symmetries in the modulation equations are readily apparent.

Therefore, we substitute Eqs. (3.6), (3.7), and (7.11)-(7.13) into Eqs. (7.95) and (7.96) and obtain

L =
1
2

∫ 1

0

{
(D0v0)2 + (D0w0)2 + Jξ (D0φ0)2 + Jη

(
D0w

′
0

)2 + Jζ
(
D0v

′
0

)2 − β11φ
′2
0 − β22w

′′2
0

− β33v
′′2
0 − 2β13φ

′
0v
′′
0

}
ds+

1
2
ε

∫ 1

0

{[
D0

∫ s

0

1
2
(
v′20 + w′20

)
ds

]2

+ 2 (D0v0) (D1v0)
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+ 2 (D0v0) (D0v1) + 2 (D0w0) (D1w0) + 2 (D0w0) (D0w1) + 2Jξ

[
(D0φ0) (D1φ0)

+ (D0φ0) (D0φ1) + (D0φ0)
(
D0v

′
0

)
w′0 +

1
2
(
D0v

′
0

)2
w′20

]
+ 2Jη

[ (
D0w

′
0

) (
D1w

′
0

)
+
(
D0w

′
0

) (
D0w

′
1

) ]
+ 2Jζ

[ (
D0v

′
0

) (
D1v

′
0

)
+
(
D0v

′
0

) (
D0v

′
1

) ]
− 2β11

[
φ′0φ

′
1 + φ′0v

′′
0w
′
0

+
1
2
v′′20 w′20

]
− 2β22

[
w′′0w

′′
1 +

1
2
φ2

0v
′′2
0 − φ0v

′′
0w
′′
0 −

1
2
φ2

0w
′′2
0 +

1
2
w′20 w

′′2
0

]
− 2β33

[
v′′0v
′′
1

− 1
2
φ2

0v
′′2
0 +

1
2
v′20 v

′′2
0 + φ0v

′′
0w
′′
0 + v′0v

′′
0w
′
0w
′′
0 +

1
2
φ2

0w
′′2
0

]
− 2β13

[
φ′0v
′′
1 + φ′1v

′′
0 −

1
2
φ2

0φ
′
0v
′′
0

+
1
2
v′20 φ

′
0v
′′
0 + w′0v

′′2
0 + φ0φ

′
0w
′′
0 + v′0w

′
0φ
′
0w
′′
0 + φ0w

′
0v
′′
0w
′′
0

]}
ds+ · · · (7.97)

δW = ε

∫ 1

0

{[
fΩ2 cos (ΩT0)− cvD0v0

]
δv0 − [cwD0w0] δw0 − [cφD0φ0] δφ0

}
ds+ · · · (7.98)

Next, we substitute Eqs. (7.24)-(7.26) into Eqs. (7.97) and (7.98), use Eq. (7.72), retain only the

slowly-varying terms, and obtain the following time-averaged Lagrangian and virtual work:

< L >
ε

= −iωΠ1

(
AĀ′ −A′Ā

)
− iρΠ2

(
BB̄′ −B′B̄

)
+ Π3

(
Ā2Be2iωδT1 +A2B̄e−2iωδT1

)
+ 2Π4AĀBB̄ + 3Π5A

2Ā2 + 3Π6B
2B̄2 + · · · (7.99)

< δW >

ε
= −2iωΠ7

(
AδĀ− ĀδA

)
− 2iρΠ8

(
BδB̄ − B̄δB

)
+ Π9

(
δĀeiωσT1 + δAe−iωσT1

)
+ · · ·

= Q∗AδA+ Q̄∗AδĀ+Q∗BδB + Q̄∗BδB̄ + · · · (7.100)

where the Πi are defined in Appendix D. Then, using Hamilton’s extended principle

d

dT1

(
∂ < L >
∂Ā′

)
− ∂ < L >

∂Ā
= Q̄∗A (7.101)

d

dT1

(
∂ < L >
∂B̄′

)
− ∂ < L >

∂B̄
= Q̄∗B (7.102)

yields the following modulation equations governing the dynamics of the interacting modes:

2iωΠ1A
′ = 2iωΠ7A− 2Π3ĀBe

2iωδT1 − 2Π4ABB̄ − 6Π5A
2Ā−Π9e

iωσT1 (7.103)

2iρΠ2B
′ = 2iρΠ8B −Π3A

2e−2iωδT1 − 2Π4AĀB − 6Π6B
2B̄ (7.104)
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Table 7.1: Values of the Γi, Λi, and Πi for the [10◦6/45◦4/90◦5]s graphite-epoxy composite beam
considered.

Time-Averaged Directly Attacking the
Lagrangian Partial-Differential System

Π1 −1.00005 Γ1 −1.00005 Λ1 −1.00008
Π2 −1.00008 Γ2 0.49998cv + 0.77663cφ Λ2 0.49996cw
Π3 −20.68924 Γ3 −41.37849 Λ3 −20.68924
Π4 −20.78901 Γ4 −20.78901 Λ4 −20.78901
Π5 −19.50055 Γ5 −39.00110 Λ5 −9.28130
Π6 −4.64065 Γ6 −0.39149fΩ2

Π7 0.49998cv + 0.77663cφ
Π8 0.49996cw
Π9 −0.39149fΩ2

Using integration by parts once, we note from Appendix D that

Π1 ≡ −
∫ 1

0

(
Φ2
v + JζΦ′2v + JξΦ2

φ

)
ds =

∫ 1

0

(
JζΦvΦ′′v − Φ2

v − JξΦ2
φ

)
ds−

[
JζΦvΦ′v

]
s=1
≡ Γ1 (7.105)

and

Π2 ≡ −
∫ 1

0

(
Φ2
w + JηΦ′2w

)
ds =

∫ 1

0

(
JηΦwΦ′′w − Φ2

w

)
ds−

[
JηΦwΦ′w

]
s=1
≡ Λ1 (7.106)

Therefore, comparing Eqs. (7.103) and (7.104) with Eqs. (7.93) and (7.94), we find that

Γ2 = Π7, Γ3 = 2Π3, Γ4 = Π4, Γ5 = 2Π5, Γ6 = Π9,

(7.107)

Λ2 = Π8, Λ3 = Π3, Λ4 = Π4, and Λ5 = 2Π6

Furthermore, one can now easily deduce the following symmetries in the modulation equations:

Γ3 = 2Λ3 = 2Π3 and Γ4 = Λ4 = Π4 (7.108)

For the [10◦6/45◦4/90◦5]s graphite-epoxy composite beam, whose properties and mode shapes are
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defined by Eqs. (7.67)-(7.71), we present in Table 7.1 values of the coefficients Γi, Λi, and Πi. It is

clear from the Table 7.1 that the properties given by Eqs. (7.107) and (7.108) are satisfied.



Chapter 8

Conclusions

8.1 Results

We investigated the nonlinear responses of cantilever beams to direct and parametric harmonic

excitations. An emphasis was put on the importance of nonlinear modal interactions on the steady-

state responses. Both inertia and geometric nonlinearities were accounted for in the governing

equations of motion and associated boundary conditions. We assumed the beams to be relatively

long and thin, and therefore we modeled them using the Euler-Bernoulli theory.

Using three successive Euler-rotation angles, principles of mechanics of composites, and a vari-

ational formulation, we derived the Lagrangian, equations of motion, and boundary conditions

governing the nonlinear bending-bending-twisting vibrations of symmetrically laminated compos-

ite and isotropic metallic inextensional beams.

Unlike linear beam theory, an exact analytical solution of the nonlinear response is typically

unattainable. However, for weak nonlinearities in the governing equations of motion and asso-

ciated boundary conditions, perturbation methods can be used to determine uniform approximate

solutions. Next, we summerize the results of the different investigations.

162
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8.1.1 Bending-Bending Dynamics of Parametrically Excited Cantilever Beams

The nonlinear nonplanar response of a cantilever inextensional metallic beam to a principal para-

metric resonance of its flexural modes was investigated. The cross section of the beam is such that

the excited mode is involved in a one-to-one internal resonance with a flexural mode in the orthog-

onal direction. The lowest torsional frequencies of the beams are much larger than the frequencies

of the excited modes so that the torsional inertia can be neglected.

We used the inextensionality condition to express the longitudinal displacement u(s, t) in terms

of v(s, t) and w(s, t). Moreover, neglecting the rotational inertia, we expressed φ(s, t) in terms

of v(s, t) and w(s, t). Substituting these expressions for u(s, t) and φ(s, t) into the Lagrangian

derived by Crespo da Silva and Glynn (1978a, b), we obtained a Lagrangian in terms of v(s, t) and

w(s, t). Instead of following Nayfeh and Pai (1989) and applying the method of multiple scales to

the equations derived by Crespo da Silva and Glynn (1978b), we applied the method of multiple

scales to the Lagrangian to derive the modulation equations. These equations exhibit all of the

symmetries found by Feng and Leal (1994).

Using a pseudo-arclength continuation scheme, we generated typical frequency-response curves.

Calculating the eigenvalues of the Jacobian matrix, we assessed the stability of these responses.

We found that, as the excitation frequency is slowly varied, the responses may undergo saddle-node

bifurcations and subcritical and supercritical pitchfork and Hopf bifurcations. The normal form

of the modulation equations were calculated in the vicinity of the Hopf bifurcations to assess the

stability of the created limit cycles and determine whether the Hopf bifurcations are subcritical

or supercritical. The effect of the bending stiffness ratio detuning on the loci of the bifurcation

points was investigated and codimension-2 bifurcations were identified. A combination of a two-

point boundary-value scheme and a Newton-Raphson procedure was used to calculate limit-cycle

solutions of the modulation equations and then Floquet theory was used to assess their stability.

We found that these limit cycles may undergo symmetry-breaking, cyclic-fold, and period-doubling

bifurcations. The period-doubling bifurcations culminate in chaos. The chaotic attractors may

undergo attracting-merging and boundary crises.
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8.1.2 Nonlinear Nonplanar Dynamics of Directly Excited Cantilever Beams

The nonlinear nonplanar response of a cantilever inextensional metallic beam to a transverse base

excitation of one of its flexural modes was investigated. The cross section of the beam is near-

square, and hence the excited mode is involved in a one-to-one internal resonance with a flexural

mode in the orthogonal direction. Because the system is similar to that discussed in Chapter 4, we

only needed to modify the virtual-work term to account for the base excitation and hence, obtain

the modulation equations. Using a pseudo-arclength scheme, we studied the influence of the forcing

amplitude and the internal resonance detuning on the fixed points. We considered two cases: (i)

the first bending modes, modes (1,1), are excited and (ii) the second bending modes, modes (2,2),

are excited.

Because the system is directly excited, nontrivial single-mode fixed points exist as soon as the

forcing amplitude f is increased from zero. As f increases beyond a threshold, the single-mode

solution loses stability through a pitchfork bifurcation and two-mode solutions come about. For

modes (1,1), we found that the excited mode may exhibit pseudo-saturation. For modes (2,2), the

two-mode response may either continue to be stable while its amplitude increases monotonously or

undergo Hopf bifurcations resulting in limit-cycle solutions.

Due to the nondimensionalizing scheme used, we found that the internal resonance detuning δ2 does

not affect the amplitude of the single-mode solutions. However, we showed that the influence of δ2

on the amplitude of the two-mode solutions and the stability of both single-mode and two-mode

solutions can be significant. Furthermore, we found that nonplanar oscillations are more likely to

occur when δ2 < 0; that is, when the excitation is along the direction where the beam is stiffer in

bending.

Using numerical integration, a shooting algorithm, and Floquet theory, we traced eleven branches of

limit-cycle solutions for the case of modes (1,1). Two of the branches result from two supercritical

Hopf bifurcations while the remaining nine are isolated. We found that the response can be complex,

undergoing cyclic-fold, symmetry-breaking, and period-doubling bifurcations. The period-doubling

bifurcations sometimes culminate in chaos and other times result in bubble structures.

A case where an asymmetric limit cycle underwent a homoclinic bifurcation near a saddle-focus
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was analyzed. Following Shilnikov theory and using the symmetry of the modulation equations, we

found that the response after the homoclinicity is a larger symmetric limit cycle. Other interesting

behaviors found include attractor-merging and boundary crises.

8.1.3 Nonlinear Bending-Bending-Torsional Oscillations to Combination Para-

metric Excitations

The nonlinear bending-torsional oscillations of cantilever beams excited by combination parametric

resonances were analyzed using two approaches. In the first approach, the method of multiple scales

was applied directly to the partial-differential system to derive the modulation equations. In the

second approach, the equations of motion were first discretized with respect to the linear undamped

mode shapes and then the method of multiple scales was applied to obtain the modulation equations.

We considered two resonance cases, Ω ≈ ωv1 + ωφ1 and Ω ≈ ωv2 + ωφ1, and generated typical

frequency- and amplitude-response curves. The results obtained with discretization are erroneous.

This is because the discretization assumes that the spatial part of the solution at the higher orders

is equal to the mode shapes of the undamped system. However, solving the partial-differential

system, we saw that in general this is not true.

The analysis demonstrates that high-frequency low-amplitude torsional oscillations may activate

low-frequency high-amplitude flexural oscillations through combination parametric resonances. The

resulting overall motion of the beam in such cases may be sufficiently large and if ignored may be

disastrous.

8.1.4 Transfer of Energy from High- to Low-Frequency Modes in the Bending-

Torsion Oscillations

We investigated the transfer of energy from high- to low-frequency modes in the nonlinear bending-

twisting response of cantilever beams. We assumed the beam to be relatively long, thin, and wide.

We excited it transversely along its stiff direction at a forcing frequency near the first natural

frequency of the fundamental torsional mode. We found that through the zero-to-one internal

resonance, the first in-plane bending mode is activated.
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We obtained the modulation equations using two approaches: (i) applying the method of multiple

scales directly to the governing partial-differential system and (ii), using the method of time-

averaged Lagrangian and virtual work. The results are identical and the symmetries exhibited by

the system were obtained.

Using a pseudo-arclength scheme, we generated typical frequency- and force-response curves. We

found that the trivial solution loses stability through supercritical and subcritical pitchfork bifurca-

tions. The nontrivial fixed points, which for this system correspond to the beam statically bending

while simultaneously oscillating periodically in torsion, were found to be mostly unstable. Hence,

the oscillatory response of the beam is expected to be at least periodic in bending and quasiperiodic

in torsion.

Using numerical integration, a shooting algorithm, and Floquet theory, we traced two branches of

dynamic solutions. In both cases, as the forcing amplitude was increased, the symmetric limit cycle

lost symmetry and then underwent a sequence of period-doubling bifurcations. For the limit cycle

on the first branch, the period-two limit cycle underwent a subcritical period-doubling bifurcation.

For the limit cycle on the second branch, the period-four limit cycle underwent a subcritical period-

doubling bifurcation. In both cases, a type-3 intermittency occurred.

The dominant influence of the high-amplitude low-frequency response of the first in-plane bending

mode on the periodic and chaotic responses of a beam excited by a high-frequency forcing demon-

strates the importance of considering nonlinearities and the possible modal interactions they may

produce.

8.1.5 Symmetry in Composite Beams

We used the Lagrangian and corresponding partial-differential equations of motion and associated

boundary conditions derived in Chapter 2 to analyze the nonlinear responses of symmetrically

laminated composite beams. A two-to-one internal resonance between the out-of-plane bending

motion and the in-plane bending and torsional motions was considered. The main objective was to

demonstrate that the modulation equations exhibit symmetry properties as the original system, in

the absence of damping and external forces, is conservative and hence derivable from a Lagrangian.
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This is contrary to the results of Pai and Nayfeh (1991a, b) whose modulation equations did not

exhibit any symmetry properties.

We used two approaches to determine the equations that govern the dynamics of the interacting

modes. In the first, we directly applied the method of multiple scales to the governing partial-

differential equations and associated boundary conditions. In the second, we applied the method

of multiple scales to the Lagrangian and virtual-work term. We then averaged the result and used

Hamilton’s extended principle to obtain the modulation equations. Comparing the two results,

we found that one can easily deduce the symmetry in the modulation equations. Furthermore,

we numerically calculated the coefficients for a [10◦6/45◦4/90◦5] graphite-epoxy composite beam and

found that the results demonstrate these symmetry properties.

8.2 Recommendations for Future Work

8.2.1 External Combination, Subcombination, and Multifrequency Resonances

When the excitation is direct, an external combination resonance can occur in systems with

quadratic nonlinearities when the excitation frequency Ω ≈ |ωi ± ωj | and in systems with cu-

bic nonlinearities when Ω ≈ |ωi±ωj +ωk| or Ω ≈ |2ωi±ωj |. Furthermore, external subcombination

resonances can occur when Ω ≈ 1
2(ωi ± ωj). Multifrequency resonant excitations occur when the

external excitation is assumed to be the sum of two harmonics with incommensurate frequencies

Ωn and Ωm such that NΩn±MΩm ≈ ωi or ≈ ωi±ωj . In the presence of damping, all of the modes

that are not directly excited or indirectly excited by an internal resonance will decay with time.

Hence, the steady-state response of the system will consist of modes excited by the combination

resonance (Sridhar, Nayfeh, and Mook, 1975; Nayfeh and Mook, 1979; Nayfeh, 1983c, 1984, and

1985; and Mook, HaQuang, and Plaut, 1986).

Although some work has been done to investigate such resonances in structures, none dealt with

the nonplanar responses of cantilever beams. Nayfeh and Arafat (1998) investigated the nonlinear

planar responses of cantilever beams to combination and subcombination resonances. Yamamoto,

Yasuda, and Tei (1981, 1982) and Yasuda, Kato, and Masuda (1993) considered simply-supported
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beams; Sridhar, Nayfeh, and Mook (1975) considered hinged-clamped beams; Yasuda and Hayashi

(1982) considered clamped circular plates; and Popovic, Nayfeh, Oh, and Nayfeh (1995) considered

a portal frame.

Therefore, analyzing the nonplanar responses of cantilever beams to combination resonances will

further enhance our understanding of the modal interactions they can undergo. A possible scenario

is the combination resonance Ω ≈ ωv + ωφ.

8.2.2 Nonlinear Responses of Symmetrically Laminated Composite Beams

The response of monoclinic composite beams having a two-to-one internal resonance to direct

excitations was investigated by Pai and Nayfeh (1990b, 1991a and b). However, their modulation

equations did not exhibit any symmetric properties and, hence, did not reflect the conservative

nature of the system in the absence of damping. Therefore, the results of their analysis are incorrect.

In contrast, we derived in Chapter 7 the modulation equations for the monoclinic composite beams

considered by Pai and Nayfeh (1991a, b) and showed that they do in fact exhibit symmetry prop-

erties. Therefore, it would be worthwhile to use these results to perform a detailed analysis of the

response of the beam.

Furthermore, the nonlinear modal interactions in symmetrically laminated composite beams that

are parametrically excited have not been, to my knowledge, considered.

8.2.3 Nonlinear Responses of Asymmetrically Laminated Composite Beams

The investigation of nonlinear modal interactions in anisotropic composite beams, where all bend-

ing, stretching, and twisting modes are linearly and nonlinearly coupled, is an interesting yet

challenging problem. If one can taylor the analysis to a specific material that is widely used in

industry, the benefits could be tremendous.
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Appendix A

Bending-Bending Oscillations of

Beams

R1 = 2ω1mµ1 (8.1)
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Bending-Bending-Torsional

Oscillations of Beams to Combination

Parametric Excitations
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Transfer of Energy from High- to

Low-Frequency Modes
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{
DζΦiv

v η +mΦv
∂2η

∂T 2
1

+ cvΦv
∂η

∂T1
+Dζ

[
Φ′v
(
Φ′vΦ

′′
v

)′]′
η3

+ 2
[
Dξ

(
Φ′φΦ′1

)′′ − (Dη −Dζ)
(
ΦφΦ′′1 − Φ2

φΦ′′v
)′′]

ηAφĀφ

+
[
Dξ

(
Φ′φΦ′2

)′′ − (Dη −Dζ)
(
ΦφΦ′′2

)′′]
f
(
Aφe

−iσT2 + Āφe
iσT2

)}
(8.41)

h(s, T1, T2) = −
{

2iωφJξΦφ
dAφ
dT2

+ iωφcφΦφAφ −
[
(Dη −Dζ)

(
Φ′′vΦ

′′
1 − ΦφΦ′′2v

)
+Dξ

(
Φ′′vΦ

′
1

)′ ]
η2Aφ −

[
(Dη −Dζ)

(
Φ′′vΦ

′′
2

)
+Dξ

(
Φ′′vΦ

′
2

)′]
fηeiσT2

}
(8.42)

g0(T1, T2) = −
{

2Dξ

(
Φ′φΦ′1

)′
ηAφĀφ −Dξ

(
Φ′φΦ′2

)′
f
(
Aφe

−iσT2 + Āφe
iσT2

)}
s=L

(8.43)

α1 = −
∫ L

0
DζΦv

[
Φ′v
(
Φ′vΦ

′′
v

)′]′
ds (8.44)

α2 = −
∫ L

0

[
DξΦv

(
Φ′φΦ′1

)′′ − (Dη −Dζ)Φv

(
ΦφΦ′′1 − Φ2

φΦ′′v
)′′]

ds+
[
DξΦv

(
Φ′φΦ′1

)′]
s=L

(8.45)

α3 = −
∫ L

0

[
DξΦv

(
Φ′φΦ′2

)′′ − (Dη −Dζ)Φv

(
ΦφΦ′′2

)′′]
ds+

[
DξΦv

(
Φ′φΦ′2

)′]
s=L

(8.46)

β2 =
∫ L

0

[
(Dη −Dζ)

(
ΦφΦ′′vΦ

′′
1 − Φ2

φΦ′′2v
)

+DξΦφ

(
Φ′′vΦ

′
1

)′]
ds (8.47)
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β3 =
∫ L

0

[
(Dη −Dζ)

(
ΦφΦ′′vΦ

′′
2

)
+DξΦφ

(
Φ′′vΦ

′
2

)′]
ds (8.48)

ν1 =
∫ L

0
Dζ

(
Φ′2v Φ′′2v

)2
ds (8.49)

ν2 =
∫ L

0

{
mω2

φΦ2
1 −DηΦ′′21 − 2Dξ

(
Φ′φΦ′′vΦ

′
1

)
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(
Φ2
φΦ′′2v − 2ΦφΦ′′vΦ

′′
1

)}
ds (8.50)

ν3 =
∫ L

0

{
mω2

φΦ1Φ2 −DηΦ′′1Φ′′2 −Dξ

(
Φ′φΦ′′vΦ

′
2

)
+ (Dη −Dζ)

(
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′′
2

)}
ds (8.51)



Appendix D

Symmetrically Laminated Composite

Beams

Hv(s, t) = −β11

(
φ′w′ + v′′w′2

)′′ − (β22 − β33)
(
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1
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2
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∂
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(
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2

{
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1

[
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∫ s

0

(
v′2 + w′2

)
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]
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}′
(8.52)

Hw(s, t) = β11

(
φ′v′′ + v′′2w′

)′ + (β22 − β33)
(
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(
w′w′′

)′]′ − β33

[
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(
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1

[
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(
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Hφ(s, t) = β11

(
v′′w′
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(
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)
+ β13

[
1
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(
v′2v′′
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2
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(
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∂
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(
v̇′w′

)
(8.54)

Bv1(t) = −β11

(
v′′w′2 + φ′w′

)
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(
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)
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+ β13

(
1
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ĀBe2iωδT1

)
+
{
− β11

(
Φ′′vΦ

′2
w

)′′ − β33

[
Φ′v
(
Φ′wΦ′′w

)′]′ − β13

[(
Φ′wΦ′′w

)′Φφ

]′
− Jξω2

(
Φ′vΦ

′2
w

)′}(2ABB̄)+
{
− (β22 − β33)

(
Φ2
φΦ′′v

)′′ − β33

[
Φ′v
(
Φ′vΦ

′′
v

)′]′
+
β13

2
(
Φ′φΦ2

φ

)′′ − β13

2
(
Φ′2v Φ′′φ

)′ + 2ω2

3

(
Φ′v

∫ s

1

∫ s

0
Φ′2v dsds

)′}(
3A2Ā
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