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Theory and Application of a Class of
Abstract Differential-Algebraic Equations

Mark A. Pierson

(ABSTRACT)

We first provide a detailed background of a geometric projection methodology developed
by Professor Roswitha März at Humboldt University in Berlin for showing uniqueness
and existence of solutions for ordinary differential-algebraic equations (DAEs). Because
of the geometric and operator-theoretic aspects of this particular method, it can be ex-
tended to the case of infinite-dimensional abstract DAEs. For example, partial differential
equations (PDEs) are often formulated as abstract Cauchy or evolution problems which
we label abstract ordinary differential equations or AODE. Using this abstract formula-
tion, existence and uniqueness of the Cauchy problem has been studied. Similarly, we
look at an AODE system with operator constraint equations to formulate an abstract
differential-algebraic equation or ADAE problem. Existence and uniqueness of solutions
is shown under certain conditions on the operators for both index-1 and index-2 abstract
DAEs. These existence and uniqueness results are then applied to some index-1 DAEs
in the area of thermodynamic modeling of a chemical vapor deposition reactor and to a
structural dynamics problem. The application for the structural dynamics problem, in
particular, provides a detailed construction of the model and development of the DAE
framework. Existence and uniqueness are primarily demonstrated using a semigroup ap-
proach. Finally, an exploration of some issues which arise from discretizing the abstract
DAE are discussed.

This research was funded in part by the Defense Advanced Research Projects Agency
(DARPA), the National Aeronautical and Space Administration (NASA) Langley Re-
search Center (LaRC), and the National Institute of Aerospace (NIA).



Dedication

This work is dedicated to Professor Terry Herdman who first got me interested in math-
ematics at the Virginia Tech Northern Virginia Falls Church Campus and was gracious
enough to allow my further pursuits in Blacksburg. I would also dedicate this to my
wife Rebekah Paulson for giving me the time and support to follow my dream. Finally,
I dedicate this work to my father, Richard E. Pierson, Lt. Col., U.S.A.F. (ret.), who is
a Ph.D. at heart and is pursuing his own research dreams.

iii



Acknowledgments

I especially want to thank Professor Gene Cliff who, since he is a Professor Emeritus
in the Department of Aerospace and Ocean Engineering, was able to spend plenty of
time trying to keep me honest about the mathematics and in keeping me on track to
reach my goal. I also would like to acknowledge the many excellent professors that I had
the pleasure of taking classes from who taught me a lot about mathematics: Professors
Terry Herdman, David Russell, John Burns, Joe Ball, Jeff Borggaard and Peter Haskell.
Obviously, any mistakes I have made in this work are not their fault but solely my own.

I also want to acknowledge my previous superiors at the Office of Naval Research (ONR),
Drs. Spiro Lekoudis and Ron DeMarco, who motivated me to get back into the academic
arena through stimulating intellectual discussions. I also want to thank them for allowing
me time off to do my own research through the Research Opportunities for Program
Officers available at ONR and for the necessary time to take late afternoon classes at the
Virginia Tech Northern Virginia Campus.

Finally, I want to thank Professor Terry Herdman again for all he has done to help me at
Virginia Tech both as a student and for his advice in the job search process. Despite times
of discouragement, he still had confidence in me that I would persevere and continue to
make progress. The fact that you never gave up on me helped keep me going.

iv



Contents

1 Introduction 1

1.1 The ‘What’ and ‘Why’ of DAEs . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Matrix Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 A Geometric Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Abstract Differential Equations . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Partial Differential-Algebraic Equations (PDAEs) and Index . . . . . . . 8

1.6 Discretization Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Ordinary DAEs: The Finite-dimensional LTV Case 10

2.1 Background and Matrix Sequence . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Key Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Abstract DAEs: Infinite-dimensional LTI Index-1 Case 22

3.1 Infinite-dimensional Linear Algebra . . . . . . . . . . . . . . . . . . . . . 22

3.2 Abstract Index and Operator Sequence . . . . . . . . . . . . . . . . . . . 23

3.3 The Index-1 Semi-explicit Case . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 A Case Where B is Bounded . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 A Case Where B is Unbounded . . . . . . . . . . . . . . . . . . . . . . . 34

4 Abstract DAEs: Infinite-dimensional LTI Index-2 Case 38

4.1 Background for Abstract Hessenberg DAE . . . . . . . . . . . . . . . . . 38

v



4.2 A Case Where B is Bounded . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 A Case Where B is Unbounded . . . . . . . . . . . . . . . . . . . . . . . 46

5 Applications 49

5.1 Thermal Model for Chemical Vapor Deposition
Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Coupled Transversal Motion of Two Beams
Connected by a Rigid Joint . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Modeling and Development of Abstract DAE . . . . . . . . . . . . 52

5.2.2 Existence and Uniqueness . . . . . . . . . . . . . . . . . . . . . . 61

6 Discretized Differential-Algebraic Equations 70

6.1 Solvability of the Differential-Algebraic Equation . . . . . . . . . . . . . 70

6.2 Incorporating the Algebraic Constraints into an Explicit ODE . . . . . . 74

6.3 Hessenberg Form of DAEs . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Conclusions 81

7.1 Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Bibliography 84

Vita 87

vi



List of Figures

5.1 Simplified Thermal Model of a Chemical Vapor Deposition Reactor . . . 50

5.2 An Example of a Truss Array . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Model of Two Beams and a Joint . . . . . . . . . . . . . . . . . . . . . . 53

vii



Chapter 1

Introduction

1.1 The ‘What’ and ‘Why’ of DAEs

Differential-algebraic equations can now be found quite frequently in the literature . A
myriad of terminology is often used depending on the application in which they arose.
For example, one will often run across terms such as descriptor systems, singular differen-
tial equations, degenerate differential equations, semi-state systems, implicit differential
equations, constrained differential equations and generalized state space systems. They
all refer to the same concept of differential-algebraic equations. So what are they?

Essentially differential-algebraic equations can be thought of as a differential equation
describing a process that is coupled with an algebraic constraint equation. Hence, its
name. Differential-algebraic equations, hereafter referred to as DAEs, of this sort take
the form

F (x′(t), x(t), y(t), t) = 0

G(x(t), y(t), t) = 0,

where the Jacobian Fx′ is nonsingular. Note also that one of the variables y(t) is not differ-
entiated in a differential equation and is coupled to the differential equation F (·, ·, ·, ·) = 0
via the algebraic constraint equation G(·, ·, ·) = 0. This nondifferentiated variable is often
a key identifier that one may have a DAE. More generally, one could have a fully implicit
DAE of the form

F (x′(t), x(t), t) = 0,

where in this case the Jacobian Fy′ is singular. This is one reason for the name singular
differential equations. The name singular differential equations or degenerate differential
equations also comes about from the following form which we will primarily use in this
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paper:
E(t)x′(t) + B(t)x(t) = q(t),

where x(t) and q(t) are finite-dimensional vectors and the finite-dimensional matrix E(t)
is singular for all t of interest. This is the linear time-varying (LTV) form of a DAE. We
also have the case of linear constant coefficients or the linear time-invariant (LTI) form

Ex′(t) + Bx(t) = q(t),

where the matrix E is singular and thus noninvertible. This is the primary form we will
focus our research on in the abstract Hilbert space setting. We will then further refine
the LTI DAE form into a block matrix equation which is called the semi-explicit form
(since the x′(t) variable is available explicitly with no singular coefficient):[

I 0
0 0

] [
x′

1(t)
x′

2(t)

]
+

[
B11 B12

B21 B22

] [
x1(t)
x2(t)

]
=

[
q1(t)
q2(t)

]
where E =

[
I 0
0 0

]
is singular.

However, this results in two equations: a differential equation and an algebraic constraint
equation.

x′(t) + B11x1(t) + B12x2(t) = q1(t)

B21x1(t) + B22x2(t) = q2(t),

where the variable x2(t) is not differentiated. The ability to be able to do such a decoupling
for a general DAE will be important later on in determining existence and uniqueness of
solutions to the DAE. We will especially use this property in the more abstract setting
in Chapters 3 and 4.

It is also important to note that in some cases one can solve for the x2(t) variable in the
algebraic constraint equation explicitly in terms of x1(t) (such as when B22 is invertible,
for example). This is then substituted back into the differential equation to obtain an
ordinary differential equation (ODE) in terms of only x1(t) without any constraints.
This is often referred to as the “underlying” differential equation. However, one needs
to be careful in the sense that while solutions of the original DAE are solutions to the
underlying ODE assuming the same initial conditions, the opposite is not true for all
initial conditions. All solutions of the ODE are not necessarily solutions to the DAE.
In particular, there is no guaranteed existence of solutions under similar hypotheses
as for ODEs. This raises the issue of what is called consistent initial conditions. In
other words, the initial conditions need to be compatible with the algebraic constraint
equation. Furthermore, when one solves the underlying ODE, even using consistent initial
conditions, there tends to be the problem of numerical “drift”. In particular the numerical
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solution drifts off of the manifold determined by the algebraic constraint equation. Thus,
the final numerical solution may no longer satisfy the algebraic constraints. Moreover,
DAEs are numerically similar to very stiff ODEs and hence are not always numerically
solvable. This issue of a DAE not being an ODE is addressed in a frequently cited
paper by Petzold [35] with the appropriate title, Differential/Algebraic Equations are not
ODEs.

Now that we have answered the basic question of what is a DAE? Why do we need to be
concerned with solving them? Why and where do they come up? First of all, as discussed
above, we may not be able to convert every DAE to its underlying ODE. Even if we were
able to accomplish this it may be too expensive or time consuming to do so. Even if we
could easily convert it to an ODE, we may lose whatever sparsity or structure that we
initially may have had in the original DAE formulation. Often the variables have some
physical significance which then gets lost in the translation to an ODE. It then gets hard
to interpret the results of the underlying ODE in terms of the original variables. We have
a similar situation in the case where a parametrization is related to the original variables
but then the useful relationship gets lost in the transformation. It also turns out that
the dimension of the solution manifold is different for the DAE versus the underlying
ODE. How does this impact the results? Finally, with the advent of automatic computer
generation of differential equations and algebraic constraint equations by various software
packages, it would be advantageous to have an automated solver for DAEs that can then
be coupled together with these other off-the-shelf packages. Hence, it is necessary that a
methodology be developed to solve DAEs directly without using the associate underlying
ODE.

DAEs arise frequently in numerous applications. In fact, in certain applications, DAEs
provide a better framework for modeling and analysis. DAEs can be found in a rich vari-
ety of applications such as: constrained variational problems, chemical reaction kinetics
and processes, combustion, electrical circuits and networks, trajectory prescribed path
control, optimal control problems, robotics, discretization of partial differential equations
(PDEs) using the method of lines, and mechanical systems simulations, to name just a
few. Applications also arise in the area of PDEs such as from incompressible Navier-
Stokes equations when using finite element methods for spatial discretization where the
algebraic constraints arise from the divergence-free condition. We will apply some of our
theory of abstract DAEs to some example applications involving PDEs later in Chapter
5.

There are many good monographs and books that can give one a good introduction to
both the theory and the numerical solution of DAEs. A short list would include works
by Brenan, Campbell and Petzold [3]; Campbell [5] and [6]; Ascher and Petzold [1];
Boyarintsev [4]; Rabier and Rheinboldt [36]; Hairer, Norsett and Wanner [20]; and März
[33].
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1.2 Matrix Inverses

Of significance is the fact that most of the methods used to discuss either the theory or
the numerical solution of DAEs involve the definition of some sort of inverse for matrices
or operators. The conventional definition of an inverse of a matrix A, i.e., A−1, applies
to the case of a nonsingular square matrix where A−1A = AA−1 = I. For a nonsingular
square matrix A, its inverse is unique. If we have a singular square matrix A, then we
have the concept of the Drazin inverse AD which must satisfy the following conditions:

AAD = ADA

ADAAD = AD

(I − ADA)Ak = 0,

where k is the index of the matrix A, that is, k is the smallest nonnegative integer
satisfying the relation rank Ak+1 = rank Ak. If k = 0, then the matrix A is nonsingular
and AD = A−1. The Drazin inverse AD is unique for any given square matrix A. The
following representation for the Drazin inverse may be useful. First put the matrix A
into its Jordan canonical form:

A = N

[
J0 0
0 J1

]
N−1,

where J0 consists of nilpotent blocks and J1 consists of nonsingular blocks. Every matrix
A can be put into its Jordan canonical form (see Gantmacher [16] for example). The
Drazin inverse AD can be represented by (see Boyarintsev [4])

AD = N

[
0 0
0 J−1

1

]
N−1.

What if a matrix is not square? For rectangular matrices, we have the Moore-Penrose
pseudo-inverse, A+, where A+ = X satisfies the four Moore-Penrose conditions:

AXA = A

XAX = X

(AX)T = AX

(XA)T = XA.

The Moore-Penrose inverse A+ is also unique for any given matrix A. Thus, in the
case where A is a square nonsingular matrix, A−1 = A+. If a rectangular matrix A
has full column rank, then A+ = (AT A)−1AT . If it has full row rank instead, we have
A+ = AT (AAT )−1. The pseudo-inverse A+ also has the properties (A+)+ = A and
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(AT )+ = (A+)T . If the matrix A is real, symmetric and square, i.e., AT = A, then the
pseudo-inverse A+ is also symmetric. Furthermore, for real, symmetric square A, we have
that the Drazin inverse AD = A+ the pseudoinverse of A. Finally, the Moore-Penrose
conditions essentially result in the requirement that AA+ and A+A become orthogonal
projections onto im A and im AT respectively (see Golub and Van Loan [18]). The use
of projection operators will appear frequently throughout our development of the theory
of DAEs in abstract spaces.

We can generalize the concept of the inverse of a matrix A even further. These more
general concepts of an inverse become useful for the infinite-dimensional operator setting
where the notion of square and rectangular do not exactly fit. The most general form of
an inverse is called a semi-inverse by Boyarintsev [4]. The semi-inverse for any m × n
matrix A is defined as the n × m matrix A˜ such that for A˜ = X we have AXA = A.
However, one drawback is that the semi-inverse A˜ of a matrix A is generally not unique.
A representation for the semi-inverse where A˜ = X is

X = +(I − A˜A)U + V (I − AA˜),

where A˜ is any semi-inverse matrix for A and U and V are arbitrary matrices of the
appropriate dimension. Thus, if you know one semi-inverse of A, all others can be found
via the representation above. We now become a little more restrictive and define what
Boyarintsev calls the inverse semi-reciprocal matrix A− of an arbitrary m× n matrix A.
The inverse semi-reciprocal A− satisfies both AA−A = A and A−AA− = A−. März [33]
calls this the reflexive generalized inverse of the matrix A. We will follow März and use
reflexive generalized inverse as this name seems more appropriate. Of course, both terms
are translated into English from their native languages. The reflexive generalized inverse
A− is also generally not unique. It has a representation of the more complicated form

X = A−AA− + A−AU(I − AA−) + (I − A−A)UAA− + (I − A−A)UAU(I − AA−),

where A− is any reflexive generalized inverse of A and U is an arbitrary matrix of the
appropriate dimension. Thus, if you know one reflexive generalized inverse of A, all
others can be found via the representation above. Note also since we have added one
more condition XAX = X, we have one less arbitrary matrix, i.e., just U vice both U
and V , in the representation formula. We also remark that if A is square and has index
k = 1, then the Drazin inverse AD is also a reflexive generalized inverse of A. It should be
clear that both the semi-inverse A˜ and the reflexive generalized inverse A− exist for any
arbitrary matrix whether rectangular or square, invertible or noninvertible. As indicated
these inverses are not unique.

As we will see, the concept of a semi-inverse or reflexive generalized inverse becomes
very useful for defining various subspaces of m x n rectangular matrices. These reflexive
generalized inverses can also be readily extended to operators on infinite-dimensional
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spaces. We will use some of the subspace descriptions which follow in the case of finite-
dimensional matrices and for bounded infinite-dimensional operators. For example, Bo-
yarintsev [4] provides the following results. We have kerA = im (I − A˜A) = ker A˜A
and im A = im AA˜. If we have two matrices, an m1 × n matrix A and an m2 × n
matrix B, then ker A ∩ ker B = im P where P is a projector on R

n defined by P =
(I − A˜A)[I − (B − BA˜A)˜(B − BA˜A)]. Likewise, ker A ∪ ker B = ker P̃ where

P̃ = [I − (B −BA˜A)(B −BA˜A)˜]B. Finally, for m× n1 matrix A and m× n2 matrix
B, we have im A∪ im B = ker Q where Q = [I − (B −AA˜B)(B −AA˜B)˜](I −AA˜).

1.3 A Geometric Approach

The subspace descriptions above become more meaningful in light of using a geomet-
rical approach to solving DAEs. Rabier and Rheinboldt [36] use a geometric approach
for rigid mechanical systems. The geometric framework turns out to be very powerful.
While their approach is very useful in many finite-dimensional applications it does not
seem to extend as well to the infinite-dimensional framework. This then becomes the
advantage of the geometric approach utilized by März [33]. She defines operators, pro-
jectors and subspaces derived from the matrices E(t) and B(t) which are found in the
DAE E(t)x′(t)+B(t)x(t) = q(t). Furthermore, at the end of her article [33], she hints at
a framework for applying her methodology to the infinite-dimensional setting. It is her
methodology that we will follow in this research. We will also utilize the same notation
as that in her article for the operators, projectors and subspaces in order to provide for
comparison and to avoid confusion in translation to another set of symbols.

Chapter 2 below repeats the key Lemmas and Theorem from [33] for the LTV index-2
DAE. We also will define there the concept of an index using März’s definitions. We
further include the proofs of these Lemmas and Theorem in Chapter 2 as some of the
needed proofs of the Propositions and Lemmas are not in her paper but are instead in
other hard to find references. In addition, those proofs that are contained in [33] often
leave out many steps due to page limit constraints and it is not always obvious how to
fill in the missing steps. It was considered important to fill in the gaps to provide a more
complete picture of this methodology before proceeding to the abstract case. Thus, there
is no new work represented by Chapter 2 other than that of putting it all together in a
unified treatment. We will then build from there starting with the infinite-dimensional
setting beginning in Chapter 3.

We will see that one of the primary benefits of März’s geometric approach is that this
method can decouple the DAE into its inherent regular ODE and the algebraic constraint
equation. In the case of an index-2 DAE which is more complicated we can even determine
the so-called “hidden constraint equation.” This inherent regular ODE is usually located
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in a lower dimensional manifold than that of the “underlying ODE” discussed earlier.
Hence, the inherent regular ODE is also referred to as the essential underlying ODE by
other authors such as Petzold because it incorporates only the essential or smallest part
of the space that is needed. In the infinite-dimensional setting, this inherent regular ODE
takes the form of an inhomogeneous abstract Cauchy problem (IACP) for the LTI case,
i.e., x′(t) + Ax(t) = f(t) or x′(t) = −Ax(t) + f(t). In the case where the operator A(t)
depends on time as well we have evolution equations. We use the term abstract ODE or
AODE to describe either situation.

1.4 Abstract Differential Equations

In order to determine whether a unique solution exists to the AODE we end up using
the already developed theory of differential equations in abstract spaces. This theory is
usually developed in the most general abstract infinite-dimensional Banach space setting.
However, since we are just beginning to develop a theory we will restrict ourselves to the
Hilbert space setting. Obviously any result which applies to a Banach space, or a reflexive
Banach space, will also apply to the Hilbert space setting. Many good monographs and
books exist on the general theory of abstract differential equations such as: Krein [25];
Ladas and Lakshmikantham [27]; Zaidman [41]; and Fattorini [13] and [14]. One of the
methods that will be utilized to show existence and uniqueness of the AODE in this
research includes that of semigroup theory. The primary monographs and books used
here for semigroup theory and applications include: Pazy [34]; Goldstein [17]; Kato [23];
Engel and Nagel [12]; Liu and Zheng [30]; and the original main reference in this area,
Hille and Phillips [21]. Engel and Nagel was particularly useful since it is an up-to-date
treatment of semigroups in a textbook format and includes many of the advances in the
theory since the other classic monographs were written.

There is also some literature on degenerate or singular Cauchy problems. These include
the monographs by Carroll and Showalter [8] and Favini and Yagi [15]. However, these
problems differ considerably from those which will be discussed here. Our abstract DAE
takes the form E(t)x′(t) + Bx(t) = q(t) where the operator E(t) is singular for all t and
the prime indicates differentiation with respect to time t. Carroll and Showalter look
at abstract equations of the form A(t)x′′(t) + B(t)x′(t) + C(t)x(t) = g(t) where some
of the operators A(t), B(t) and/or C(t) become zero or infinite at t = 0. They define
the problem as degenerate if some of the operator coefficients become zero as t → 0
and as singular if at least one of the operator coefficients becomes infinity as t → 0.
This distinction becomes somewhat artificial in the case when some of the operators are
invertible or when a suitable change of variable is introduced. Their study was motivated
by many problems in physics, geometry, and applied mathematics that are of this form.
Similarly, Favini and Yagi were also motivated by the large number of partial differential
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equations arising in physics and the applied sciences which can be written in this form.
They studied similar problems of the form d

dt
(Ex) = Lx + f(t) where E−1 may exist but

is not necessarily bounded. In our case, the distinction is that for an abstract DAE E is
noninvertible for all time t, not just at t = 0 or when the inverse is unbounded.

In addition to various inverses of matrices, another aspect of DAEs that has been studied
is that of matrix pencils. For a LTI DAE of the form Ex′(t) + Bx(t) = q(t) one can look
at the matrix pencil (λE + B). It turns out that the DAE is solvable if and only if the
matrix pencil is a regular pencil, i.e., det(λE + B) is not identically zero as a function
of λ. Gantmacher [16] discusses matrix pencils in general and develops what he calls the
Kronecker canonical form. Brenan, Campbell and Petzold [3] and Campbell [5] discuss
solvability of LTI DAEs with respect to matrix pencils. This concept can be extended as
well to the abstract differential equation case. This area was started with Keldysh [24]
and was further developed by Markus [32] for a spectral theory of polynomial operator
pencils. Yakubov and Yakubov [39] extended the idea further to that of generalized
resolvents. The idea is to invert the polynomial operator pencil in order to derive the
solution of the abstract differential equation. Yakubov and Yakubov, in particular, use
this methodology to investigate higher order elliptic, parabolic and hyperbolic differential
equations.

The closest discussion of abstract differential equations related to abstract DAEs is that of
Zaidman [42]. In this monograph, Zaidman investigates abstract differential equations of
the form d

dt
(Ex(t)) = Bx(t) or Ex′(t) = Bx(t) where E and A are linear, often unbounded,

operators on either a Hilbert space or a Banach space. He calls these type of equations
singular abstract differential equations. As above, in most cases it is assumed that the
operator E is invertible (but not necessarily bounded) and that the operator E−1B exists.
In another case, it is determined that even if E is not invertible, that the operator
pencil (λE + B) is invertible in some half-plane Reλ > ω. Finally, all cases are for the
homogeneous form of the equation and do not address the inhomogeneous case. It would
be interesting in the future to compare Zaidman’s two methodologies with that of März.
Zaidman does not address the issue of index and it may be that the different approaches
are required because of different index equations.

1.5 Partial Differential-Algebraic Equations (PDAEs)

and Index

There is also now a lot of literature in the area of what is called partial differential-
algebraic equations. This term is used to describe various DAEs that arise from PDEs. For
example, Lucht, Strehmel and Eichler-Liebenow [31] label those systems where Fourier
or Laplace transforms of PDEs result in a sequence of DAEs as PDAEs. They give
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an example from a model of population dynamics. PDAEs usually take the form of
Aut(t, y) + Buyy(t, y) + Cu(t, y) = q(t, y) where at least one of the matrices A,B,C ∈
L(Rn) is singular. Lucht, et al, further indicate that there are two kinds of indexes
for PDAEs: a differential spatial index and a uniform differential time index. März’s
group defines a PDAE as a set of PDEs coupled with ordinary DAEs. März’s definition
of abstract index generalizes the Kronecker index. Essentially the notion of abstract
DAE index by März approximates that of the uniform differential time index. We will
not investigate the various definitions of index for PDAEs and abstract DAEs. We
will use that given by März as it proves useful in determining existence and uniqueness
of solutions. A detailed analysis of index for PDAEs can be found in Campbell and
Marszalek [7]. Finally, some work has also been done by Reid, Lin and Wittkopf [37] in
the area of existence and uniqueness of PDAEs using differential elimination - completion
algorithms. They show that for autonomous first-order DAEs, this algorithm is equivalent
to the Cartan-Kuranishi algorithm for completing a system of differential equations to
involutive form. This algorithm can also be applied to PDAEs and results in existence
and uniqueness for systems in involutive form.

The framework developed by März [33] and by Lamour, März and Tischendorf [29] for
abstract DAEs covers the case of PDAEs. However, it is much more general in that it
covers other cases as well including those often considered to be hybrid systems. We
therefore emphasize this methodology in our research toward existence and uniqueness
theorems for abstract DAEs. Chapters 3 and 4 builds up the theory for abstract DAEs.
The examples provided in Chapter 5 indicate the diversity of problems that can utilize
this approach.

1.6 Discretization Issues

Finally, in Chapter 6 we briefly look at issues related to numerical solutions of abstract
DAEs. When discretizing the spatial variables using finite element methods, we end up
with an ordinary DAE. We look at the Hessenberg form in particular and discuss various
formulations such as the underlying ODE, the inherent regular ODE, and differentiation
of constraints to reduce the index of the resulting DAEs. We then end with some final
remarks, conclusions and future directions for further research.



Chapter 2

Ordinary DAEs: The
Finite-dimensional LTV Case

2.1 Background and Matrix Sequence

Consider the linear time-varying DAE:

A(t)(D(t)x(t))′ + B(t)x(t) = q(t), t ∈ I, (2.1)

with matrix coefficients

A ∈ C(I,L(Rn , Rm)), D ∈ C(I,L(Rm , Rn)), B ∈ C(I,L(Rm)),

where the prime notation in (2.1) represents differentiation with respect to time t.

Definition 2.1. Subspace and Matrix Sequence (We use the notation of März [33])

We define the following matrices and subspaces which will be used in this section:

G0(t) := A(t)D(t), B0(t) = B(t)

For i = 0, 1 :

Ni(t) := ker Gi(t),

Qi(t) ∈ L(Rm), Qi(t)
2 = Qi(t), im Qi(t) = Ni(t),

Pi(t) := I − Qi(t),

Wi(t) ∈ L(Rm), Wi(t)
2 = Wi(t), ker Wi(t) = im Gi(t),

Si(t) = ker Wi(t)Bi(t) = {z ∈ R
m : Bi(t)z ∈ im Gi(t)},

Gi+1(t) := Gi(t) + Bi(t)Qi(t), Bi+1(t) := Bi(t)Pi(t).

10
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Definition 2.2. From März [33], we define the reflexive generalized inverse of D(t) by
D(t)− such that DD−D = D and D−DD− = D−. More information on generalized
inverses can be found in Boyarintsev [4] where he refers to matrices such as D(t)− as
the inverse semi-reciprocal matrix. In general, D(t)− exists for any m × n matrix and
is not unique. However, we can make it unique by setting D(t)−D(t) = P0(t) with
P0(t) = I − Q0(t). We then define the unique projector R by R(t) = D(t)D(t)− using
this unique D(t)−.

Remark. There is more than one choice for Q0(t) that will satisfy the conditions in
Definition 2.1. However, once a particular Q0(t) is chosen, D(t)− is fixed and unique.
Thus, D(t)− will depend on the choice of Q0(t) just as P0(t) does.

Definition 2.3. The ordered pair of continuous matrix functions A and D is said to be
well-matched if

im D(t) ⊕ ker A(t) = R
n , t ∈ I, (2.2)

and these subspaces are spanned by continuously differentiable bases.

When A(t) and D(t) are well-matched, there is a unique projector R(t) ∈ L(Rn) such
that,

R2(t) = R(t), im R(t) = im D(t), ker R(t) = ker A(t), R ∈ C1(I, L(Rn).

The decomposition (2.2) implies that for all t ∈ I,

im A(t)D(t) = im A(t), ker A(t)D(t) = ker D(t), ker A(t) ∩ im D(t) = {0}.

Note that both matrices A(t) and D(t) will have constant rank r on I.

Definition 2.4. The DAE (2.1) with well-matched A(t) and D(t) and nontrivial N0(t)
has index-1 if N0(t) ∩ S0(t) = {0} on t ∈ I and has index-2 if dim(N0(t) ∩ S0(t)) =
constant > 0 and N1(t)∩S1(t) = {0} on t ∈ I. The intersection Nj(t)∩Sj(t) will always
have the same dimension as the subspace Nj+1(t), j = {0, 1}.
In terms of Gi(t), the DAE (2.1) has index-1 if G1(t) is nonsingular and has index-2 if
G1(t) is singular with constant rank < m and G2(t) is nonsingular.

Before we proceed any further we will need the following proposition derived from
Griepentrog and März [19] (Lemma 14, Appendix A). This proposition is established
using the same steps as the proof of the Lemma in [19], but it used in a different setting
with different results. We provide the proof of the proposition here as it is not found
anywhere else in the published literature.

Proposition 2.1. Given an index-2 DAE (2.1), let Q1 be any projection onto N1. Then

Q̃1 = Q1G
−1
2 BP0 is the projection onto N1 along S1.
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Proof. Using the subspace and matrix sequence from Definition 2.1 we have N1 = ker G1

and N1 = im Q1. Thus, G1Q1 = 0. Since Q1 is a projection, Q1
2 = Q1. Additionally,

G2 := G1 + B1Q1 and since the DAE has index-2, G2 is invertible. Then,

I − Q1 = G−1
2 G2(I − Q1)

= G−1
2 (G1 + B1Q1)(I − Q1)

= G−1
2 G1(I − Q1) + G−1

2 B1Q1(I − Q1)

= G−1
2 G1(I − Q1)

= G−1
2 G1 − G−1

2 (G1Q1)

= G−1
2 G1.

Thus, I − Q1 = G−1
2 G1. We next have

Q1 = I − (I − Q1) = I − G−1
2 G1

= I − G−1
2 (G2 − B1Q1) = I − I + G−1

2 B1Q1

= G−1
2 B1Q1

or, Q1 = G−1
2 B1Q1. Now it follows that

(Q1G
−1
2 B1)

2 = Q1(G
−1
2 B1Q1)G

−1
2 B1

= Q2
1G

−1
2 B1 = Q1G

−1
2 B1.

This identity shows that Q1G
−1
2 B1 is a projector with im Q1G

−1
2 B1 ⊆ im Q1 = N1. Then

Q1G
−1
2 B1x = 0 implies G−1

2 B1x ∈ im (I −Q1) or G−1
2 B1x = (I −Q1)z for some z. Thus,

B1x = G2(I − Q1)z = (G1 + B1Q1)(I − Q1)z

= G1(I − Q1)z + B1Q1(I − Q1)z

= G1z ∈ im G1.

This implies x ∈ S1 since S1 = {x : B1x ∈ im G1}. Since ker Q1G
−1
2 B1 = S1 and

im Q1G
−1
2 B1 ⊕ ker Q1G

−1
2 B1 = R

m , we have im Q1G
−1
2 B1 = ker G1 = N1 (Note that

N1 ⊕ S1 = R
m). Finally, since B1 := BP0, we end up with Q̃1 = Q1G

−1
2 BP0 where Q̃1 is

the projection onto N1 along S1 starting with a Q1 being any projection onto N1.

2.2 Key Results

We now state and prove some Lemmas and a main Theorem which come from März [33].
The proof of Lemma 1 is expanded from that of Balla and März [2]. This reference is
also not readily available so the proof is provided here for completeness.
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Lemma 2.1. Given an index-2 DAE (2.1). Let Q1(t) denote the projection onto N1(t)
along S1(t), t ∈ I. Then, for all t ∈ I, we have the decomposition

D(t)S1(t) ⊕ D(t)N1(t) ⊕ ker A(t) = R
n , (2.3)

where
D(t)P1(t)D(t)−, D(t)Q1(t)D(t)−, I − R(t)

are the uniquely determined projectors respectively that realize this decomposition.

If additionally, D(t)S1(t) and D(t)N1(t) are spanned by continuously differentiable func-
tions defined on I, then DP1D

−, DQ1D
− ∈ C1(I, L(Rn)).

Proof. The projectors P̂1(t) and Q̂1(t) are determined from the matrix sequence in Defi-

nition 2.1. Let Q̂1(t) be any projector onto N1(t). From Proposition 2.1 it is shown that

if we start with any non-unique projector Q̂1(t) onto N1(t) we can obtain the unique

projector Q1(t) onto N1(t) along S1(t) by the formula Q1 = Q̂1G
−1
2 BP0. (We drop the

function of t for ease of notation.)

By construction, Q1 = Q1G
−1
2 BP̂0, G2 = G1 + BP̂0Q1, and Q1Q̂0 = 0, where Q̂0 is any

projector onto N0 = ker G0 = ker AD. We get Q1Q̂0 = 0 because Q0 is onto N0 with
N0 ⊆ S1 while Q1 is onto N1 along S1. Since P1 = I − Q1, we have

P̂0P1Q̂0 = P̂0(I − Q1)Q̂0 = P̂0Q̂0 − P̂0Q1Q̂0 = 0.

Therefore,

(DQ1D
−)(DQ1D

−) = DQ1(D
−D)Q1D

− = DQ1P̂0Q1D
−

= DQ1(I − Q̂0)Q1D
−

= DQ1Q1D
− − D(Q1Q̂0)Q1D

−

= DQ1D
−.

Similarly,

(DP1D
−)(DP1D

−) = D(I − Q1)D
−D(I − Q1)D

−

= DD−D(I − Q1)D
− − DQ1D

−D(I − Q1)D
−

= D(I − Q1)D
− − DQ1D

−DD− + (DQ1D
−)(DQ1D

−)

= D(I − Q1)D
− − DQ1D

− + DQ1D
−

= D(I − Q1)D
−

= DP1D
−

and (I − R)(I − R) = I − R.
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Obviously, (DQ1D
−)(DP1D

−) = 0 and (DP1D
−)(DQ1D

−) = 0. Moreover,
R = DD− leads to

DQ1D
−(I − R) = DQ1D

− − DQ1D
−DD− = DQ1D

− − DQ1D
− = 0 and,

(I − R)DQ1D
− = 0.

Similarly, DP1D
−(I − R) = 0 and (I − R)DP1D

− = 0. Thus, DP1D
−, DQ1D

−, and
I − R are projectors in R

n .

Since P1 and Q1 are orthogonal projectors and Q1 projects onto the ker G1, P1 projects
onto im G1. Furthermore, for index-2 DAEs we have the decomposition N1(t) ⊕ S1(t) =
R

m and N1 = im Q1. Thus, it follows that im DP1 ⊆ DS1 and im DQ1 ⊆ DN1.

As noted N1 = im Q1 and Q1 projects onto the ker G1. Thus, if G1 has rank r1, the
subspace N1 has dimension m − r1. In addition, since

P0Q1 = (I − Q0)Q1 = (I − Q0Q1)Q1,

where (I − Q0Q1) is nonsingular, P0N1 has the same dimension m − r1 as N1. Hence,
dim DN1 = dim P0N1 = dim N1 = m − r1. Therefore, we conclude that

im DQ1D
− = DN1, im DP1D

− = DS1.

For the last part of the Lemma we assume both subspaces DS1 and DN1 are spanned
by continuously differentiable functions. Additionally, by construction we chose Q1(t)
and P1(t) to be continuous. We now show that the projectors DP1D

− and DQ1D
− are

continuous.

We let dim (im D(t)) = r, then since A(t) and D(t) are well-matched dim (ker A(t)) =
n − r. Since dim DN1 = m − r1, this implies dim DS1 = r − (m − r1) = r + r1 − m.

Now denote the continuously differentiable functions that span DS1 by DS1 = span {Dsj :
j = 1, . . . , r − (m − r1)}, DN1 = span {Dnj : j = 1, . . . ,m − r1}, and ker A =
span {ηr+1, . . . , ηn}. Then, the matrix function

Γ := (Ds1, . . . , Dsr−(m−r1), Dn1, . . . , Dnm−r1 , ηr+1, . . . , ηn)

is nonsingular and belongs to C1. WE observe that

ΓIDSΓ−1, ΓIDNΓ−1, ΓIAΓ−1, (2.4)

with block diagonal projector matrices defined as IDS = diag (Ir−(m−r1), 0m−r1 , 0n−r),
IDN = diag (0r−(m−r1), Im−r1 , 0n−r) and IA = diag (0r−(m−r1), 0m−r1 , In−r), are C1 and
we have the decomposition (2.3). The indices show the indicated dimensions of the
identity and zero matrices. But, the projectors (2.4) are also uniquely defined by the
decomposition. Therefore, from our earlier results, they coincide with DP1D

−, DQ1D
−,

and I − R respectively. In particular, DP1D
− and DQ1D

− belong to C1.
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Remark. The subspace DS1 will later be relevant for the “inherent regular ODE”, whereas
DN1 is related to the “hidden constraint” that appears in index-2 DAEs.

Our next goal is to develop a solution representation for the DAE (2.1) and to define the
“inherent regular ODE” associated with the DAE. However, before we can go further we
will need to create some identities to be used in our derivations.

From Proposition 2.1, we saw G1Q1 = 0 and using Q1 = Q1G
−1
2 BP0 we get Q1Q0 = 0.

Therefore,

P1P0 = G−1
2 G2P1P0 = G−1

2 (G1 + B1Q1)P1P0

= G−1
2 G1P1P0 + G−1

2 B1Q1P1P0 = G−1
2 G1P1P0

= G−1
2 G1(I − Q1)P0 = G−1

2 G1P0 − G−1
2 (G1Q1)P0

= G−1
2 G1P0 = G−1

2 (AD + BQ0)P0 = G−1
2 ADP0

= G−1
2 ADD−D = G−1

2 AD.

Thus, G−1
2 AD = P1P0.

Since G1 = G0 +BQ0 = AD +BQ0 by Definition 2.1 and from Proposition 2.1 G−1
2 G1 =

I − Q1,

G−1
2 BQ0 = G−1

2 (G1 − AD) = G−1
2 G1 − G−1

2 AD

= (I − Q1) − P1P0 = P1 − P1(I − Q0)

= P1 − P1 + P1Q0 = (I − Q1)Q0 = Q0 − Q1Q0 = Q0.

Thus, G−1
2 BQ0 = Q0.

Using the identity G−1
2 BP0Q1 = Q1 from Proposition 2.1 and the last identity above,

G−1
2 B = G−1

2 BI = G−1
2 B(P0 + Q0) = G−1

2 BP0I + G−1
2 BQ0

= G−1
2 BP0(P1 + Q1) + G−1

2 BQ0

= G−1BP0P1 + G−1
2 BP0Q1 + G−1

2 BQ0

= G−1BP0P1 + Q1 + Q0.

Thus, G−1
2 B = G−1

2 BP0P1 + Q1 + Q0.

We now multiply the DAE (2.1) by G−1
2 and use the identity A = AR = ADD− to get

G−1
2 A(Dx)′ + G−1

2 Bx = G−1
2 q

G−1
2 ADD−(Dx)′ + G−1

2 Bx = G−1
2 q.

Substituting in the identities we just derived for G−1
2 AD and G−1

2 B along with P0 = D−D
leads to

P1P0D
−(Dx)′ + G−1

2 BP0P1x + Q1x + Q0x = G−1
2 q or,

P1P0D
−(Dx)′ + G−1

2 BD−DP1x + Q1x + Q0x = G−1
2 q. (2.5)
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We now multiply the modified DAE (2.5) by DP1, DQ1 and Q0P1 to decouple the system
into three new equations. First multiplying (2.5) by DP1 yields,

DP1P1P0D
−(Dx)′ + DP1G

−1
2 BD−DP1x + DP1Q1x + DP1Q0x = DP1G

−1
2 q

DP1D
−DD−(Dx)′ + DP1G

−1
2 BD−DP1x = DP1G

−1
2 q

DP1D
−(Dx)′ + DP1G

−1
2 BD−DP1x = DP1G

−1
2 q. (2.6)

where we used DP1Q0 = D(I−Q1)Q0 = DQ0−D(Q1Q0) = DQ0 = 0 since im Q0 ⊆ ker D.

We next multiply (2.5) by DQ1 to obtain

DQ1P1P0D
−(Dx)′ + D(Q1G

−1
2 BD−D)P1x + DQ2

1x + D(Q1Q0)x = DQ1G
−1
2 q

DQ1P1x + DQ1x = DQ1G
−1
2 q

DQ1x = DQ1G
−1
2 q, (2.7)

where the identity Q1G
−1
2 BP0 = Q1G

−1
2 BD−D = Q1 was used.

Finally, multiplying (2.5) by Q0P1,

Q0P1P1P0D
−(Dx)′ + Q0P1G

−1
2 BD−DP1x + Q0P1Q1x + Q0P1Q0x = Q0P1G

−1
2 q

Q0(I − Q1)P0D
−(Dx)′ + Q0P1G

−1
2 BD−DP1x + Q0(I − Q1)Q0x = Q0P1G

−1
2 q

− Q0Q1D
−DD−(Dx)′ + Q0P1G

−1
2 BD−DP1x + Q0(Q0 − Q1Q0)x = Q0P1G

−1
2 q

− Q0Q1D
−(Dx)′ + Q0P1G

−1
2 BD−DP1x + Q0x = Q0P1G

−1
2 q. (2.8)

With the above equations we can now derive the following solution representation with
the new variable u := DP1x:

x = P0x + Q0x = D−Dx + Q0x = D−D(P1 + Q1)x + Q0x

= D−(DP1x) + D−(DQ1x) + Q0x.

We substitute the results for DQ1x from (2.7), for Q0x from (2.8), and u = DP1x into
the last equation above to obtain

x = D−u + D−DQ1G
−1
2 q + Q0P1G

−1
2 q + Q0Q1D

−(Dx)′ − Q0P1G
−1
2 BD−(DP1x)

= (I − Q0P1G
−1
2 BD−D)D−u + P0Q1G

−1
2 q + Q0P1G

−1
2 q + Q0Q1D

−(Dx)′

= (I − Q0P1G
−1
2 BP0)D

−u + (P0Q1 + Q0P1)G
−1
2 q + Q0Q1D

−(Dx).
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We next work on the last term Q0Q1D
−(Dx)′ from above:

Q0Q1D
−(Dx)′ = Q0Q1D

−DD−(Dx)′ = Q0Q1D
−D(P1 + Q1)D

−(Dx)′

= Q0Q1D
−DP1D

−(Dx)′ + Q0Q1D
−(DQ1D

−)(Dx)′

= Q0[Q1P0P1]D
−(Dx)′ + Q0Q1D

−(DQ1D
−)(D(P1 + Q1)x)′

= Q0[Q1(I − Q0)P1]D
−(Dx)′ + Q0Q1D

−(DQ1D
−)(DP1x)′

+ Q0Q1D
−(DQ1D

−)(DQ1x)′

= Q0[Q1P1]D
−(Dx)′ − Q0[(Q1Q0)P1]D

−(Dx)′

+ Q0Q1D
−(DQ1D

−)(DP1x)′ + Q0Q1P0Q1D
−(DQ1x)′

= Q0Q1D
−(DQ1D

−)(DP1x)′ + Q0Q1(I − Q0)Q1D
−(DQ1x)′

= [Q0Q1D
−(DQ1D

−DP1x)′ − Q0Q1D
−(DQ1D

−)′(DP1x)]

+ Q0Q1D
−(DQ1x)′ − Q0(Q1Q0)Q1D

−(DQ1x)′

= Q0Q1D
−(D[Q1P0P1]x)′ − Q0Q1D

−(DQ1D
−)′(DP1x)

+ Q0Q1D
−(DQ1x)′

= Q0Q1D
−(DQ1x)′ − Q0Q1D

−(DQ1D
−)′(DP1x). (2.9)

Substituting (2.9) for Q0Q1D
−(Dx)′, (2.7) for DQ1x and u = DP1x back into our solution

representation formula yields

x = (I − Q0P1G
−1
2 BP0)D

−u + (P0Q1 + Q0P1)G
−1
2 q + Q0Q1D

−(DQ1G
−1
2 q)′

− Q0Q1D
−(DQ1D

−)′u

= [I − Q0P1G
−1
2 BP0 − Q0Q1D

−(DQ1D
−)′D]D−u + (P0Q1 + Q0P1)G

−1
2 q

+ Q0Q1D
−(DQ1G

−1
2 q)′

= KD−u + (P0Q1 + Q0P1)G
−1
2 q + Q0Q1D

−(DQ1G
−1
2 q)′, (2.10)

where we used the identity Ru = DD−u = DD−DP1x = DP1x = u and defined K as
follows

K := I − Q0P1G
−1
2 BP0 − Q0Q1D

−(DQ1D
−)′D.

Furthermore, the u given in the solution representation formula (2.10) must satisfy the
below “inherent regular ODE”.

To derive the regular inherent ODE we first note that DQ0 = 0 and

DP1D
−D = DP1P0 = DP1(I − Q0) = DP1 − DP1Q0 = DP1 − D(I − Q1)Q0

= DP1 − DQ0 + D(Q1Q0) = DP1.

Thus, we have

(DP1x)′ = (DP1D
−Dx)′ = (DP1D

−)′(Dx) + DP1D
−(Dx)′. (2.11)
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Substituting u = DP1x, (2.6) for DP1D
−(Dx)′ and (2.7) for DQ1x leads to

u′ − (DP1D
−)′D(P1 + Q1)x − [DP1G

−1
2 q − DP1G

−1
2 BD−(DP1x)] = 0

u′ − (DP1D
−)′u − (DP1D

−)′(DQ1x) + DP1G
−1
2 BD−u = DP1G

−1
2 q

u′ − (DP1D
−)′(u + DQ1G

−1
2 q) + DP1G

−1
2 BD−u = DP1G

−1
2 q. (2.12)

Of note, the “inherent regular ODE” (2.12) can be constructed directly from the co-
efficients A, D, B, and the right-hand side q without making any assumptions on the
existence of a solution for the DAE (2.1).

Remark. In the index-1 case (2.10) and (2.12) simplify to

x = KD−u + Q0G
−1
1 q, K = I − Q0G

−1
1 B, (2.13)

u′ − R′u + DG−1
1 BD−u = DG−1

1 q. (2.14)

Remark. In the linear constant coefficient case (A, D, B do not vary with time), the
solution representation formula (2.10) and the inherent regular ODE (2.12) simplify to
the following as expected

x = KD−u + (P0Q1 + Q0P1)G
−1
2 q + Q0Q1G

−1
2 q′, (2.15)

K := I − Q0P1G
−1
2 BP0,

u′ + DP1G
−1
2 BD−u = DP1G

−1
2 q. (2.16)

Having defined the inherent regular ODE we can now prove the following useful lemma.

Lemma 2.2. Given an index-µ DAE (2.1), µ ∈ {1, 2}. Let DP1D
−, DQ1D

− be contin-
uously differentiable.

(i) Then, the subspaces D(t)S1(t) and D(t)N1(t) as well as the inherent regular ODE are
uniquely determined by the problem data.

(ii) D(t)S1(t) is a time-varying invariant subspace of the inherent regular ODE, i.e., if
a solution belongs to this subspace at a certain point, it runs within this subspace all the
time.

(iii) If D(t)S1(t) and D(t)N1(t) do not vary with time t, then, solving the IVP for (2.12)
with the initial condition u(t∗) ∈ D(t∗)S1(t∗) yields the same solution as solving this IVP
for

u′ + DP1G
−1
2 BD−u = DP1G

−1
2 q. (2.17)

Proof. (From März [33].) Part (i): When defining the inherent regular ODE (2.12), the

only flexibility is in our choice of P̂0 which will also affect the calculation of D−. Suppose
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then that we start with two different choices of P0 and P̃0 resulting in two different D−

and D̃−. Then, D−D = P0, D̃−D = P̃0, and DD− = DD̃− = R. Furthermore,

G̃1 = G0 + BQ̃0 = G0 + BQ0Q̃0 = G1(P0 + Q̃0),

(P0 + Q̃0)(P̃0 + Q0) = I, Ñ1 = (P̃0 + Q0)N1, S̃1 = S1,

Q̃1 := (P̃0 + Q0)Q1(P0 + Q̃0) = (P̃0 + Q0)Q1, im Q̃1 = Ñ1, ker Q̃1 = S1,

DQ̃1D̃
− = DQ1D̃

− = DQ1D̃
−DD̃− = DQ1D̃

−DD− = DQ1D
−,

DP̃1D̃
− = DD̃− − DQ̃1D̃

− = R − DQ1D
− = DP1D

−.

As a result, the projectors DP1D
− and DQ1D

− do not depend on the choice of P0.
Hence, their images, DS1 and DN1 respectively, also do not depend on P0. Thus, the
subspaces DS1 and DN1 are uniquely determined by the problem data.

As far as the inherent regular ODE (2.12) is concerned we need to look at the terms
DP1G

−1
2 and DP1G

−1
2 BD−:

G̃2 = G2(P0 + Q̃0 + Q0P̃0Q1), (P0 + Q̃0 + Q0P̃0Q1)(P̃0 + Q0 − Q0P̃0Q1) = I,

then, DG̃−1
2 = D(P̃0 + Q0 − Q0P̃0Q1)G

−1
2 = DG−1

2 ,

DP̃1G̃
−1
2 = DP̃1D̃

−DG̃−1
2 = DP1D

−DG−1
2 = DP1G

−1
2 ,

DP̃1G̃
−1
2 BD̃− = DP̃1G̃

−1
2 BD̃−DD̃− = DP̃1G̃

−1
2 BD̃−DD− = DP̃1G̃

−1
2 BP̃0D

−

= DP̃1G
−1
2 BD− = DP1G

−1
2 BD−.

Therefore, the inherent regular ODE is uniquely determined by the data.

Part (ii): Assume we have a solution ũ ∈ C1(I, Rm) of the inherent regular ODE (2.12)
such that ũ(t0) ∈ D(t0)S1(t0) for some t0 ∈ I. Put ũ into the inherent regular ODE
(2.12) and then multiply both sides by (I−DP1D

−) [since DP1D
− is the projection onto

DS1]. This results in

(I − DP1D
−)ũ′ − (I − DP1D

−)(DP1D
−)′ũ = 0.

Let ṽ := (I − DP1D
−)ũ and substitute into the above equation to yield

ṽ′ − (I − DP1D
−)′ṽ = 0, ṽ(t0) = 0.

The solution of this auxiliary ODE is ṽ(t) = 0. Thus, the solution ũ does not leave the
D(t)S1(t) subspace.

Part (iii): Even though D(t)P1(t)D(t)− and D(t)Q1(t)D(t)− are the unique projectors
whose images are the constant subspaces D(t)S1(t) and D(t)N1(t), these projectors are
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not necessarily constant themselves since their kernels could be changing with respect
to time. However, if the subspaces D(t)S1(t) and D(t)N1(t) are constant, there do exist
constant projectors, say U and V respectively, that project onto these constant subspaces.
This implies

(DP1D
−)′U = (DP1D

−U)′ = (U)′ = 0,

(DQ1D
−)′V = (DQ1D

−V )′ = (V )′ = 0 and,

(DP1D
−)′V = (DP1D

−V )′ = 0, (DQ1D
−)′U = (DQ1D

−U)′ = 0.

Furthermore, since u(t) = D(t)P1(t)x(t), we have u(t) = Uu(t) and DQ1G
−1
2 q = V DQ1G

−1
2 q.

Thus,

(DP1D
−)′(u + DQ1G

−1
2 q) = (DP1D

−)′Uu + (DP1D
−)′V DQ1G

−1
2 q = 0.

We expect that the solution of the DAE (2.1) should be a function x ∈ C(I, Rm) that
has a continuously differentiable product Dx, and satisfies the equation at all t ∈ I. We
define

C1
D(I, Rm) := {x ∈ C(I, Rm) : Dx ∈ C1(I, Rn)}

to be the appropriate solution space. We now state the main theorem of März [33] for
the finite-dimensional case.

Theorem 2.1. Given a DAE (2.1) with index µ, µ ∈ {1, 2}, and
DP1D

−, DQ1D
− ∈ C1(I,L(Rm)).

Then, the initial value problem for (2.1) with the initial condition

D(t0)P1(t0)(x(t0) − x0) = 0, x0 ∈ R
m , (2.18)

and t0 ∈ I, q ∈ C1
DQ1G−1

2

(I, Rm) has a unique solution x ∈ C1
D(I, Rm).

Hence, for any

q ∈ C1
DQ1G−1

2
(I, Rm) := {w ∈ C(I, Rm)) : DQ1G

−1
2 w ∈ C1(I, Rn)},

equation (2.1) is solvable on C1
D(I, Rm).

Proof. (From März [33].) Part(i): By standard ODE existence and uniqueness theory, the
inherent regular ODE (2.12) with initial condition u(t0) = D(t0)P1(t0)x

0 ∈ D(t0)S1(t0)
has a unique solution u(t) ∈ C1(I, Rn). We then use equation (2.10) with u(t) to
construct x(t).
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In deriving equation (2.10), we had

x = D−DP1x + D−DQ1x + Q0x.

We also know u = DP1x. Therefore,

Dx = DD−u + DQ1x + DQ0x.

However, u = Ru = DD−u, DQ1x = DQ1G
−1
2 q (see [33]), and DQ0x = D(I − P0)x =

D(I − D−D)x = Dx − Dx = 0. Thus,

Dx = u + DQ1G
−1
2 q,

which is continuously differentiable since q ∈ C1
DQ1G−1

2

(I, Rm) and therefore we have

x ∈ C1
D(I, Rm).

To show uniqueness, we first assume that there is a different x̂ that also solves the DAE
(2.1). Letting y = x− x̂ yields the initial condition D(t0)P1(t0)y = 0. From (2.10) above,
we end up with y = KD−DP1y. But the solution u = DP1y of the modified inherent
regular ODE with u(t0) = 0 is u(t) = 0. Thus, y = 0 or x = x̂ and the solution is unique.

That the DAE (2.1) is solvable follows directly from above.

Remark : For DAEs we need to have consistent initial conditions. We can interpret the
initial condition given in part (i) of Theorem 2.1 as follows. If we are given an arbitrary
condition x0 ∈ R

m , we can perturb it by using a unique x(t0) that satisfies the requirement
D(t0)P1(t0)(x(t0) − x0) = 0. We then use this modified consistent initial condition x(t0)
to guarantee a unique solution to the DAE.



Chapter 3

Abstract DAEs: Infinite-dimensional
LTI Index-1 Case

3.1 Infinite-dimensional Linear Algebra

We first collect some useful infinite-dimensional definitions and statements which will be
used in this and the next section. Details and proofs of these statements can be found
in standard functional analysis references such as [11], [26], [28] and [38]:

Proposition 3.1. Let L(X,Y ) denote the space of bounded linear operators from the
Hilbert space X into the Hilbert space Y . L(X) represents the space L(X,X).

(i) The finite sum and composition of bounded linear operators is a bounded linear opera-
tor. Specifically, for T1, T2, . . . , Tn ∈ L(X,Y ), K = T1 +T2 + · · ·+Tn =⇒ K ∈ L(X,Y )
and for Ti : Xi → Xi+1, K = TnTn−1 . . . T2T1 =⇒ K ∈ L(X1, Xn+1).

(ii) Given a bounded linear operator T ∈ L(X,Y ), ker T is a closed linear subspace, i.e.,
ker T = ker T .

(iii) An operator P is a projector if it is idempotent, i.e., P 2 = P . Furthermore, pro-
jectors are bounded i.e., P ∈ L(X), and both the kernel and image are closed linear
subspaces. For the special case of an orthogonal projector, we have im P = ker(I − P )
and (I − P )2 = (I − P ) ∈ L(X) with ker P ⊕ im P = X.

(iv) A bounded linear operator T ∈ L(X,Y ) is one-to-one (i.e., injective) if and only if
ker T = {0}.
(v) A bounded linear operator T ∈ L(X,Y ) that is one-to-one and onto all of Y (i.e.,
bijective) has a bounded inverse T−1 : Y → X.

22



Mark A. Pierson Chapter 3. LTI Index-1 Abstract DAEs 23

(vi) A projector P on L(X) has a finite dimensional image if and only if it is compact.

(vii) The sum of a closed linear operator and a bounded linear operator is a closed linear
operator, i.e., for B ∈ L(X,Y ) and closed linear operator C : X → Y , B + C defined on
D(C) is a closed linear operator.

(viii) For B ∈ L(X,Y ) and closed linear operator C : Y → Z, the composition CB
is a closed linear operator where D(CB) = {x ∈ X : Bx ∈ D(C)}. In particular, if
im (B) ⊂ D(C), then CB ∈ L(X,Z).

(ix) Similarly, for closed linear operator C : X → Y and B ∈ L(Y, Z), the composition
BC is a closed linear operator where D(BC) = D(C).

(x) Closed Graph Theorem: A closed linear operator C defined on all of a Hilbert space
X which maps into a Hilbert space Y is bounded.

(xi) If the inverse of a closed operator C exists, then C−1 is closed.

3.2 Abstract Index and Operator Sequence

We will thoroughly examine the linear constant coefficient case also known as the linear
time-invariant case.

We define the linear time-invariant abstract DAE: (where prime denotes differentiation
with respect to time)

Ex′(t) + Bx(t) = q(t), x ∈ X , q ∈ Y , or, (3.1)

ADx′(t) + Bx(t) = q(t),

where the operator E : X → Y is split or factored into a well-matched pair, i.e., E = AD,
such that kerA ⊕ im D = Z. The linear operators defined by A : Z → Y , B : X → Y ,
D : X → Z act on real Hilbert spaces X , Y , and Z. Furthermore, we will investigate the
bounded case where E , A and D are bounded and normally solvable (i.e., their images
are closed). We initially assume B is also bounded and densely defined on X (i.e., defined
on a dense subset D(B) ⊆ X ). The case where B is bounded is not as interesting but
it will provide some insight into how to handle the unbounded, but closed, case that is
investigated later.

Remark. For B bounded, we just have an ordinary differential equation, but on an ab-
stract Hilbert space. Our goal is to work with partial differential equations, so we will
need to address the case where B is unbounded but closed. We will do so following
discussion of the bounded case.
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Definition 3.1. We generalize the matrix and subspace sequence in Chapter 2 by defining
the following iterated time-invariant operator and subspace sequence:

G0 := E = AD, B0 = B
For i = 0, 1 :

Gi : X → Y
Ni := ker Gi = ker Gi := closure of ker Gi,

Qi ∈ L(X ), Q2
i = Qi, im Qi = Ni,

Pi := I − Qi,

Wi ∈ L(Y), W 2
i = Wi, ker Wi = im Gi = im Gi,

Si = ker WiBi,

Gi+1 := Gi + BiQi, Bi+1 := BiPi,

where all of the above define operators except for Ni and Si which are subspaces of X .

As before, we define D− : Z → X , the reflexive generalized inverse of D, by D−D = P0

with R2 = R = DD−.

Definition 3.2. For the general abstract DAE, we define:

(a) an abstract index-1 DAE, if dim(im W0) > 0 and G1 is injective and densely solvable
(i.e., im G1 is dense in Y);

(b) an abstract index-2 DAE, if dim(im Wi) > 0, i ∈ {0, 1}, and G2 is injective and
densely solvable.

The above statements for an abstract index provide criteria that must be met for an
abstract DAE to be index-1 or index-2. As we will see later, these criteria will also help
us to ensure that the abstract DAE has a unique solution.

3.3 The Index-1 Semi-explicit Case

Let us first begin with the index-1 abstract DAE case of (3.1). We will investigate the
index-2 abstract DAE case in the Chapter 4. To be more practical, we first investigate
the semi-explicit operator matrix version of this abstract DAE that might arise from the
coupling of a system of partial differential equations (PDEs) with an ordinary DAE or
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an operator constraint equation.[
I 0
0 0

] [
x′

1

x′
2

]
+

[
B11 B12

B21 B22

] [
x1

x2

]
=

[
q1

q2

]
(3.2)

where E =

[
I 0
0 0

]
, x =

[
x1

x2

]
and B =

[
B11 B12

B21 B22

]
.

Let H1, H2, and H3 be real Hilbert spaces with x1 ∈ H1, x2 ∈ H2, q1 ∈ H1, and q2 ∈ H3.
Then E : H1 × H2 → H1 × H3 and B : H1 × H2 → H1 × H3. We next split E into
a well-matched pair E = AD such that kerA ⊕ im D = H1. We see that A and D as
defined below satisfies the well-matched criteria.

A =

[
I
0

]
D =

[
I 0

]
.

Hence, for this special case we have the space X = H1 × H2, the space Y = H1 × H3,
and the space Z = H1.

Using the operator sequence from Definition 3.1 above, we next find the projector Q0

such that im Q0 = ker E . Clearly, ker E = {0} ×H2. Thus, for

Q0 =

[
0 0
0 I

]
we see that Q2

0 = Q0 and that im Q0 = {0} ×H2. We note that other choices for Q0 are
possible.

From the definitions P0 = I − Q0 and D−D = P0, we see that

P0 =

[
I 0
0 0

]
, and

D− =

[
I
0

]
.

We assume that this linear time-invariant semi-explicit abstract DAE has index - 1. Thus,
G1 must be one-to-one, i.e., ker G1 = {0} ∈ H1 ×H2. By definition, G1 = E + BQ0, or

G1 =

[
I 0
0 0

]
+

[
B11 B12

B21 B22

] [
0 0
0 I

]
,

G1 =

[
I B12

0 B22

]
. (3.3)
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To find ker G1 we calculate [
I B12

0 B22

] [
x1

x2

]
=

[
0
0

]
or,

x1 + B12x2 = 0

B22x2 = 0.

Therefore,

ker G1 =

[
−B12x2

x2

]
: x2 ∈ ker B22.

However, we want ker G1 = {0}, this means that we must satisfy[
−B12x2

x2

]
=

[
0
0

]
: x2 ∈ ker B22.

We then come to the conclusion that if the semi-explicit DAE (3.2) has index-1, or
ker G1 = {0}, then we need ker B22 = {0}. Likewise, if B22 is injective, then G1 is
injective and the DAE has index-1.

We have thus proven the following:

Lemma 3.1. The linear time-invariant semi-explicit abstract DAE (3.2) has abstract
index-1 if and only if B22 is one-to-one, i.e., ker B22 = {0}.

Remark. By looking at the representation for G1 above in (3.3), we observe that if B12

and B22 are bounded operators then G1 will also be bounded regardless of whether B11

or B21 are bounded.

Since B22 and G1 are assumed to be invertible for the index-1 case, we can calculate G−1
1

directly:

G−1
1 =

[
I −B12B

−1
22

0 B−1
22

]
where G−1

1 : D(G−1
1 ) ⊂ Y → X .

Lemma 3.2. If B22 is bijective, then G1 is also bijective.

Proof. Given any element y = [y1 y2]
T ∈ Y , we want to show there exists an x =

[x1 x2]
T ∈ X such that G1x = y. We have

[
I B12

0 B22

] [
x1

x2

]
=

[
y1

y2

]
or,
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x1 + B12x2 = y1

B22x2 = y2.

Since B22 is bijective, we can solve for x2 uniquely in terms of y2, i.e., x2 = B−1
22 y2. Then,

substituting back into the first equation we can solve x1 uniquely in terms of y1 and y2,
that is, x1 = y1 − B12B

−1
22 y2. Thus, given any y ∈ Y , we can always find an x ∈ X

such that G1x = y. Hence, G1 is surjective. From Lemma 3.1, we also have that G1

is injective. Therefore, G1 is bijective. We then have G−1
1 : Y onto→ X . Furthermore, by

Proposition 3.1, part (v), G−1
1 is bounded.

3.4 A Case Where B is Bounded

Before we state the theorem for the bounded index-1 case, we will first need the following
Lemmas:

Lemma 3.3. For E and B bounded, an index-1 abstract DAE (3.1) can be decoupled into

(i) an AODE:

u′(t) + DG−1
1 BD−u(t) = DG−1

1 q(t),where u(t) = Dx(t), (3.4)

(ii) and constraint equation:

Q0(I + G−1
1 BP0)x(t) = Q0G

−1
1 q(t). (3.5)

(iii) Furthermore, if u(t) is a solution to the AODE (3.4) above, then we have the fol-
lowing solution representation formula for (3.1):

x(t) = (I − Q0G
−1
1 B)D−u(t) + Q0G

−1
1 q(t). (3.6)

Proof. The development of the inherent abstract ODE, the constraint equation and the
solution representation parallels that given in Balla & März [2] for the index-1 finite
dimensional case. We will prove the Lemma for the general DAE (3.1) with E = AD a
well-matched pair:

ADx′(t) + Bx(t) = q(t).

We use the properties of the reflexive generalized inverse for D = DD−D and for the
orthogonal projectors P0 + Q0 = I to rewrite the above DAE as:

ADD−Dx′(t) + B(P0 + Q0)x(t) = q(t).
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We see that BQ0D−Dx′(t) = 0 and ADQ0x(t) = 0 since Q0D−D = Q0P0 = 0 and
DQ0 = DD−DQ0 = DP0Q0 = 0. We can therefore add the two zero terms to the
equation above and then factor to obtain

ADD−Dx′(t) + BQ0D−Dx′(t) + ADQ0x(t) + BQ0x(t) + BP0x(t) = q(t)

(AD + BQ0){D−Dx′(t) + Q0x(t)} + BP0x(t) = q(t)

G1{D−Dx′(t) + Q0x(t)} + BP0x(t) = q(t).

In the above, we used the identities G1 = AD + BQ0 and Q2
0 = Q0. Because this is

an index-1 DAE with bounded B, G1 is bijective. Therefore, multiplying the end result
above by G−1

1 is well-defined. This yields

D−Dx′(t) + Q0x(t) + G−1
1 BP0x(t) = G−1

1 q(t). (3.7)

We can then decouple the above equation (3.7) by multiplying by the orthogonal projec-
tors P0 and Q0 to obtain two equations. Multiplying first by P0 = D−D gives us

D−DD−Dx′(t) + D−DQ0x(t) + D−DG−1
1 BP0x(t) = D−DG−1

1 q(t)

D−Dx′(t) + D−DQ0x(t) + D−DG−1
1 BP0x(t) = D−DG−1

1 q(t).

We now multiply both sides by D to put the image of the equation into the space Z
which yields

DD−Dx′(t) + DD−DQ0x(t) + DD−DG−1
1 BP0x(t) = DD−DG−1

1 q(t)

(Dx)′(t) + DQ0x(t) + DG−1
1 BD−(Dx)(t) = DG−1

1 q(t).

But DQ0 = 0 and we define u(t) := Dx(t) ∈ Z to obtain the Abstract Ordinary Differ-
ential Equation (AODE):

u′(t) + DG−1
1 BD−u(t) = DG−1

1 q(t). (3.8)

This completes the proof of part (i).

We next multiply equation (3.7) by Q0 to obtain

Q0D−Dx′(t) + Q2
0x(t) + Q0G

−1
1 BP0x(t) = Q0G

−1
1 q(t).

As before, we have Q0D−D = 0 and Q2
0 = Q0. We have now derived the constraint

equation completing part (ii):

Q0x(t) + Q0G
−1
1 BP0x(t) = Q0G

−1
1 q(t)

Q0(I + G−1
1 BP0)x(t) = Q0G

−1
1 q(t). (3.9)
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We next derive a representation of the solution for the general linear time-invariant,
index-1 abstract DAE (3.1). We have

x(t) = (P0 + Q0)x(t) = P0x(t) + Q0x(t)

= D−Dx(t) + Q0x(t)

= D−Dx(t) − Q0G
−1
1 BP0x(t) + Q0G

−1
1 q(t)

= D−Dx(t) − Q0G
−1
1 BD−Dx(t) + Q0G

−1
1 q(t)

= (I − Q0G
−1
1 B)D−(Dx)(t) + Q0G

−1
1 q(t).

In the above we substituted for Q0x from the first part of equation (3.9). Since we
assumed existence of a solution u(t) for the AODE (3.4), we then substitute u(t) = Dx(t)
into the above to obtain the general solution representation:

x(t) = (I − Q0G
−1
1 B)D−u(t) + Q0G

−1
1 q(t), (3.10)

where u(t) satisfies the AODE (3.8).

Now we need to verify that (3.10) actually satisfies the abstract DAE (3.1). We do this by
verifying it satisfies the equivalent equation (3.7). In the following we use the previously
established identity DQ0 = Q0D− = 0. We substitute the solution representation (3.10)
into the equation (3.7), which yields

D−Dx′(t) + Q0x(t) + G−1
1 BP0x(t)

= D−D[(I−Q0G
−1
1 B)D−u(t) + Q0G

−1
1 q(t)]′

+ Q0[(I − Q0G
−1
1 B)D−u(t) + Q0G

−1
1 q(t)]

+ G−1
1 BP0[(I − Q0G

−1
1 B)D−u(t) + Q0G

−1
1 q(t)]

= [D−DD−u(t) −D−DQ0G
−1
1 BD−u(t) + D−DQ0G

−1
1 q(t)]′

+ Q0D−u(t) − Q0G
−1
1 BD−u(t) + Q0G

−1
1 q(t) + G−1

1 BP0D−u(t)

− G−1
1 BP0Q0G

−1
1 BD−u(t) + G−1

1 BP0Q0G
−1
1 q(t)

= [D−u(t)]′ − Q0G
−1
1 BD−u(t) + Q0G

−1
1 q(t) + G−1

1 BP0D−u(t)
= D−u′(t) − (I − P0)G

−1
1 BD−u(t) + Q0G

−1
1 q(t) + G−1

1 BP0D−u(t)
= D−u′(t) − G−1

1 BD−u(t) + D−DG−1
1 BD−u(t) + Q0G

−1
1 q(t) + G−1

1 BP0D−u(t)
= D−[u′(t) + DG−1

1 BD−u(t)] + Q0G
−1
1 q(t)

= D−[DG−1
1 q(t)] + Q0G

−1
1 q(t)

= P0G
−1
1 q(t) + Q0G

−1
1 q(t) = (P0 + Q0)G

−1
1 q(t)

= G−1
1 q(t).

Thus, the solution representation (3.10) for x(t) does in fact satisfy (3.7) and hence the
abstract index-1 DAE (3.1).
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Remark. We note that in this proof we also showed implicitly that the solution represen-
tation for x(t) is differentiable with respect to time.

Remark. The AODE established for this Lemma is for the linear time-invariant, abstract
index-1 case only. The time-varying and/or abstract index-2 AODE would be different.
See, for example, Chapter 4 for the LTI index-2 abstract Hessenberg case.

Remark. In the expression for the solution representation, x(t), we can show I−Q0G
−1
1 B =

P0c where P0c is the canonical projector onto S0 along N0. Thus, P0c is uniquely defined
by the given data of the problem. This can be seen from P0c = I − Q0c where Q0c can
be obtained from the expression Q0c = Q0G

−1
1 B for Q0 any projection onto N0 and G−1

1

derived from that Q0. This can be shown in a similar manner as Proposition 2.1.

As remarked earlier, there is more than one choice for the projector Q0. This directly
leads to a different result for P0 and ultimately D−. How does a different choice for Q0

affect the resulting AODE that we derive from the index-1 DAE and the corresponding
solution representation? The next Lemma addresses this issue.

Lemma 3.4. The index-1 AODE and solution representation in Lemma 3.3 are unique
in that they depend only on the given data for the problem, i.e., the operators E and B,
and not on the choice of projector Q0.

Proof. We will extend the proof of Balla & März [2]. First, we claim that the operator
compositions DG−1

1 and DG−1
1 BD− in the AODE are not affected by our choice of P0.

To see this, let P0 and P̃0 be two projectors along N0 = ker E = kerAD that arise
from two different choices of Q0. We then determine the respective reflexive generalized
inverses D− and D̃−. We next note that the projector R : Z → Z is uniquely defined
by the factoring E = AD since R is the projection onto im D along kerA. Since R is
unique, we have R = DD− = DD̃−. We also have the identity Q̃0 = Q0Q̃0 which implies

G̃1 = AD + BQ̃0

= AD + BQ0Q̃0

= ADD−D + ADQ̃0 + BQ0P0 + BQ0Q̃0

= (AD + BQ0)(P0 + Q̃0)

= G1(P0 + Q̃0).
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Thus, G̃1 = G1(P0 + Q̃0). We use this identity to get an expression for G̃−1
1 .

G̃1 = G1(P0 + Q̃0)

I = G1(P0 + Q̃0)G̃
−1
1

G−1
1 = (P0 + Q̃0)G̃

−1
1

(P̃0 + Q0)G
−1
1 = (P̃0 + Q0)(P0 + Q̃0)G̃

−1
1

(P̃0 + Q0)G
−1
1 = (P̃0P0 + P̃0Q̃0 + Q0P0 + Q0Q̃0)G̃

−1
1

(P̃0 + Q0)G
−1
1 = (P̃0 + Q̃0)G̃

−1
1

(P̃0 + Q0)G
−1
1 = G̃−1

1 .

Finally, we see

DG̃−1
1 = D(P̃0 + Q0)G

−1
1

DG̃−1
1 = DP̃0G

−1
1 + DQ0G

−1
1

DG̃−1
1 = DD̃−DG−1

1

DG̃−1
1 = DD−DG−1

1

DG̃−1
1 = DG−1

1 .

Thus, we have DG̃−1
1 = DG−1

1 .

Furthermore,

DG̃−1
1 BD̃− = DG̃−1

1 BD̃−DD̃− = DG̃−1
1 BD̃−DD−

= DG̃−1
1 BP̃0D− = D(P̃0 + Q0)G

−1
1 BP̃0D−

= DP̃0G
−1
1 BP̃0D− + DQ0G

−1
1 BP̃0D−

= DD̃−DG−1
1 B(I − Q̃0)D−

= DG−1
1 BD− −DG−1

1 BQ̃0D−

= DG−1
1 BD−,

where we used the identities G−1
1 BQ̃0 = Q̃0 and DQ̃0 = 0. Thus, we have DG̃−1

1 BD̃− =
DG−1

1 BD−. We conclude that the AODE is unique for the given problem data.

Next, we address the solution representation, x(t), in (3.10). We have the following
result:

Q̃0G̃
−1
1 = Q̃0(P̃0 + Q0)G

−1
1 = Q0G

−1
1 .

We remarked earlier that P0c = I −Q0G
−1
1 B is unique based on the problem data. Thus,
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P̃0c = I − Q̃0G̃
−1
1 B = I − Q0G

−1
1 B = P0c. Hence,

(I − Q0G
−1
1 B)D− = P0cD− = P0cP̃0D−

= P0cD̃−DD− = P0cD̃−DD̃− = P0cD̃− = P̃0cD̃−

= (I − Q̃0G̃
−1
1 B)D̃−,

where in the second line we used the identity P0c = P0cP̃0. Thus, this solution represen-
tation is in fact unique and only depends on the given data for the problem.

The final Lemma will be used later to show existence of a unique solution to the AODE.

Lemma 3.5. Given L ∈ L(Z), q̃ ∈ C([0, T ];Z) and u(0) = u0 ∈ Z for any T satisfying
0 < T < ∞, there exists a unique solution u ∈ C1([0, T ];Z) to the inhomogeneous
abstract Cauchy problem {

u′(t) + Lu(t) = q̃(t)

u(0) = u0.
(3.11)

Proof. By Pazy [34], Theorem 1.1.2, since L is a bounded linear operator, L is the
infinitesimal generator of a uniformly continuous semigroup {T (t)}t>0, and T (t) ∈ L(Z)

for each t > 0. Furthermore, T (t) = etL =
∑∞

n=1
(tL)n

n!
which converges and is, therefore,

well-defined on the Hilbert space Z.

There then exists a solution u(t) ∈ Z to the inhomogeneous abstract Cauchy problem
(3.11), using a “variation of parameters” formula:

u(t) = etLu0 +

∫ t

0

e(t−s)Lq̃(s)ds (3.12)

for q̃ ∈ C([0, T ];Z). By the above solution (3.12) it is clear that u(t) is strongly differ-
entiable. Furthermore, it is easy to see that u(t) as given by (3.12) actually satisfies the
inhomogeneous Cauchy problem including the initial condition u(0) = u0.

To show uniqueness, we use the standard procedure. Let v(t) be a second solution to
the inhomogeneous abstract Cauchy problem with initial condition v(0) = u0. Define
w(t) = u(t) − v(t). Then, w(t) satisfies the homogeneous abstract Cauchy problem{

w′(t) + Lw(t) = 0

w(0) = 0.

This problem has the single solution w(t) ≡ 0. Hence, we have v(t) = u(t) and the
solution is unique.
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We then specify some terminology that will be used.

Definition 3.3. The initial condition x0 is called a consistent index-1 initial condition
if x(t0) also satisfies the constraint equation (3.5) for the index-1 abstract DAE.

We can now state the following Theorem.

Theorem 3.1. Given the following: (i) B bounded with B22 bijective, (ii) the right-hand
side function q ∈ C([0, T ];Y), and (iii) a consistent index-1 initial condition x(t0) ∈
X , 0 < t0 < T, 0 < T < ∞.

Then there exists a unique solution x ∈ C([0, T ];X ) to the index-1, semi-explicit, abstract
DAE (3.2).

Proof. By Lemma 3.2, since B22 is bijective, G1 is bijective. Therefore, we have the
AODE (3.4), constraint equation (3.5) and solution representation (3.6) from Lemma
3.3.

Our plan is as follows. If we can show there exists a unique solution to the AODE (3.4),
then by (3.6) there will exist a solution to the general linear time-invariant, abstract
index-1 DAE (3.1). We then will need to show uniqueness of that solution to the general
DAE.

We now return to the AODE (3.4). First of all, since D : X → Z, D− : Z → X ,
B : X → Y , and G−1

1 : Y → X , we see that u(t) ∈ Z. By hypothesis, we are given an
initial condition x(t0) for the DAE (3.1). As u(t) = Dx(t), we get the resulting initial
condition for the AODE: u(t0) = Dx(t0) ∈ Z.

Since E and B are bounded, the operators D, D− and G−1
1 are bounded. By Proposition

3.1, part (i), the composition of bounded linear operators is a bounded linear operator.
Therefore, we can define the operator L ∈ L(Z) such that L = DG−1

1 BD−. We also
define q̃(t) ∈ Z by q̃(t) = DG−1

1 q(t). We rewrite the AODE (3.4) as

u′(t) + Lu(t) = q̃(t). (3.13)

Note that q ∈ C([t0, T ];Y) implies q̃ ∈ C([t0, T ];Z) and we have∫ T

t0

q̃(s)ds =

∫ T

t0

DG−1
1 q(s)ds

≤ ‖ D ‖‖ G−1
1 ‖

∫ T

t0

q(s)ds < ∞.

We now invoke Lemma 3.5 which states that the AODE (3.4) has a unique solution u(t).
By Lemma 3.4, this AODE is uniquely defined by the given data and is not dependent
on a particular choice of Q0.
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Since we have existence of a unique solution u(t) which satisfies the AODE (3.4), we
can write a solution representation for x(t) using (3.6). We therefore have existence of
a solution to the DAE. Again, by Lemma 3.4, this solution representation is uniquely
defined by the given data and is not dependent on a particular choice of Q0.

We now verify uniqueness of the solution to the DAE (3.2) with initial condition Dx(t0) =
f where f ∈ Z. If x̃(t) is a second different solution in addition to x(t) for the DAE, then
y(t) = x̃(t) − x(t) is a solution to the modified homogeneous DAE ADy′(t) + By(t) = 0
with initial condition Dy(t0) = 0. But by the AODE (3.13) with q̃(t) = 0, u(t) =
Dy(t) and u(t0) = Dy(t0) = 0, we get the solution u(t) = Dy(t) = 0. Thus, P0y(t) =
D−Dy(t) = 0 and by the constraint equation (3.5) we see Q0y(t) = 0 also. Therefore, we
have x̃(t) = x(t) + y(t) = x(t) + P0y(t) + Q0y(t) = x(t) which is a contradiction of our
original assumption. Therefore, the solution x(t) is unique.

By the solution representation (3.6), for u(t) ∈ C1([0, T ];Z) and q(t) ∈ C([0, T ];Y), we
have that x(t) ∈ C([0, T ];X ).

Remark. Instead of all the work that was required to show existence and uniqueness
for the index-1 semi-explicit DAE (3.2) using this projection framework, we could have
done so using a direct method. Specifically, the semi-explicit DAE can be written as two
equations:

x′
1(t) + B11x1(t) + B12x2(t) = q1(t),

B21x1(t) + B22x2(t) = q2(t).

Since B22 is bijective, we can solve for x2(t) in the second equation to obtain x2(t) =
B−1

22 q2(t) − B−1
22 B21x1(t). We substitute for x2(t) into the first equation to find x′

1(t) +
(B11 − B12B

−1
22 B21)x1(t) = q1(t) − B12B

−1
22 q2(t). It turns out this abstract ODE is the

same as the AODE in (3.4). Thus, if there is a unique solution to the AODE we then
have a unique solution for x1(t). We then substitute this into our expression for x2(t) =
B−1

22 q2(t) − B−1
22 B21x1(t) to obtain a unique solution for x2(t).

However, the direct method can only be used for index-1 semi-explicit DAEs of the form
(3.2), while the projection method described above can be used for a broader range of
problems that fit into the more general form of (3.1). Therefore, it was useful to show
this method on a known example.

3.5 A Case Where B is Unbounded

In Theorem 3.1 which we just proved above we assumed B was bounded. We now
generalize to a specific case of an unbounded but closed B.
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Theorem 3.2. Given the following: (i) B contains bounded operators B12, B21, and
B22 with B22 bijective, and (ii) B11 is the infinitesimal generator of a strongly continuous
semigroup on H1, (iii) the right-hand side function q ∈ C1([0, T ];Y), and (iv) a consistent
index-1 initial condition x(t0) ∈ X , 0 < t0 < T, 0 < T < ∞.

Then there exists a unique solution x ∈ C([0, T ];X ) to the index-1, semi-explicit, abstract
DAE (3.2).

Proof. Based on our definition of B above, since the domain of B11, D(B11), is dense in
H1, we see that the domain of B, D(B), is also dense in X = H1 × H2. By definition,
G1 = E + BQ0. However, for the semi-explicit case, we found Q0 to be:

Q0 =

[
0 0
0 I

]
.

Since im Q0 = {0} × H2 ⊂ D(B), the definition for G1 makes sense in this case and
D(G1) = X . Since B is a closed operator, and by Proposition 3.1, parts (vii), (viii) and
(x), we have the composition of closed operator B with bounded operator Q0 is a closed
operator. Then, the sum of a bounded operator E with closed operator BQ0 is a closed
operator. Finally, by the Closed Graph Theorem, since G1 is a closed operator defined
on the whole Hilbert space X , G1 is a bounded operator. However, this can also be seen
by equation (3.3) where we calculated G1 for the semi-explicit case to be:

G1 =

[
I B12

0 B22

]
.

Since we assume both B12 and B22 to be bounded, clearly G1 is also bounded. Further-
more, since B22 is bijective, G1 is bijective. Hence, G−1

1 exists, is bounded and was found
to be:

G−1
1 =

[
I −B12B

−1
22

0 B−1
22

]
.

Since G−1
1 is bounded, it can be extended to be defined on the entire Hilbert space Y .

As noted above and by Proposition 3.1, part (viii), BQ0 is actually a bounded operator
since im (Q0) ⊂ D(B) and D(BQ0) = X . Clearly, for x ∈ D(B), Q0x ∈ D(B). For
P0 = I − Q0, we have:

P0 =

[
I 0
0 0

]
.

Likewise for x ∈ D(B), we have P0x ∈ D(B). Thus, for x ∈ D(B), the derivation of
equation (3.7) in the bounded case is also valid for this version of B. We therefore have

D−Dx′(t) + Q0x(t) + G−1
1 BP0x(t) = G−1

1 q(t). (3.14)
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As for the bounded case, we decouple this equation by multiplying by the orthogonal
projectors P0 and Q0. We first multiply by P0, then by D, and finally substitute u(t) =
Dx(t) as before to obtain the Abstract Ordinary Differential Equation, or AODE:

u′(t) + DG−1
1 BD−u(t) = DG−1

1 q(t). (3.15)

As noted the middle term DG−1
1 BD−u(t) makes sense as D−u(t) = P0x(t) where we

assume x ∈ D(B) and hence P0x ∈ D(B). Also u(t) = Dx(t) = x1(t), where x1 ∈
D(B11) ⊂ H1. If we multiply out the various operator matrices for the specific semi-
explicit case for D, G−1

1 , B, and D−, we have

u′(t) + (B11 − B12B
−1
22 B21)u(t) = q1(t) − B12B

−1
22 q2(t). (3.16)

We note that the composition B12B
−1
22 B21 is a bounded operator since we assumed B12,

B21, and B22 are bounded and by Proposition 3.1, part (i), the composition of bounded
operators is a bounded operator. Then, (B11−B12B

−1
22 B21) becomes a bounded perturba-

tion to an infinitesimal generator of a strongly continuous semigroup. We can therefore
apply standard perturbation theory to give us our desired result, see Pazy Section 3.1
[34]:

Lemma 3.6. Let A be the infinitesimal generator of a strongly continuous semigroup on
a Hilbert space X . If B is a bounded linear operator, B ∈ L(X ,Y), then A + B is the
infinitesimal generator of a strongly continuous semigroup on X .

Thus, by Lemma 3.6, the sum (B11 − B12B
−1
22 B21) is also the infinitesimal generator of

a strongly continuous semigroup in H1. Furthermore, D(B11 − B12B
−1
22 B21) = D(B11) is

dense in H1.

We are now ready to state a uniqueness and existence result for the AODE (3.16) that
follows from Pazy Section 4.2 [34]:

Lemma 3.7. Let L be the infinitesimal generator of a strongly continuous semigroup
T (t) on a Hilbert space X . If f is Lipschitz continuous on the interval [0, T ] then the
initial value problem u′(t) + Lu(t) = f(t), t > 0, u(0) = x has a unique solution u on
[0, T ] for every x ∈ D(L). Furthermore, this solution is given by

u(t) = T (t)x +

∫ t

0

T (t − s)f(s)ds. (3.17)

We let L = (B11 − B12B
−1
22 B21) and f(t) = DG−1

1 q(t) = q1(t) − B12B
−1
22 q2(t), then by

Lemma 3.7 there is a unique solution u(t) to the AODE (3.16).

The rest of the proof follows from Theorem 3.1 with only minor modifications from the
bounded case.
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Remark. Using other perturbation results for semigroups, we can easily modify Theorem
3.2. For example, we use the following Lemma from Pazy Section 3.3 [34] to obtain a
Corollary.

Lemma 3.8. Let A be the infinitesimal generator of a strongly continuous semigroup of
contractions in a Hilbert space X . Let B be dissipative such that D(B) ⊃ D(A) and

‖Bx‖ ≤ ‖Ax‖ + b‖x‖ for x ∈ D(A)

where b ≥ 0. Then the closure of A + B is the infinitesimal generator of a strongly
continuous semigroup of contractions in X .

Using this Lemma we can now modify the theorem.

Corollary 3.1. For the conditions in Theorem 3.2 where the matrix operator B consists
of the elements: B11 the infinitesimal generator of a strongly continuous semigroup of
contractions; B12 and B22 linear bounded operators with B22 bijective; and B21 a linear
closed unbounded operator such that B12B

−1
22 B21 satisfies the conditions for the operator

B above in Lemma 3.8. Then, there exists a unique solution to the (index-1) semi-explicit
abstract DAE (3.2).

We note that many modifications to the above Corollary can be made. The most obvious
one is for the case when L = (B11−B12B−1

22 B21) is the infinitesimal generator of a strongly
continuous semigroup.

Corollary 3.2. Given the following: (i) The combination (B11 − B12B−1
22 B21) is an in-

finitesimal generator of a strongly continuous semigroup, (ii) the right-hand side function
q ∈ C1([0, T ];Y), and (iii) a consistent index-1 initial condition x(t0) ∈ X , 0 < t0 <
T, 0 < T < ∞.

Then there exists a unique solution x ∈ C([0, T ];X ) to the index-1, semi-explicit, abstract
DAE (3.2).



Chapter 4

Abstract DAEs: Infinite-dimensional
LTI Index-2 Case

4.1 Background for Abstract Hessenberg DAE

As for the index-1 case, we will also investigate the semi-explicit operator matrix ver-
sion (3.2) for the abstract index-2 case. From Lemma 3.1 we saw that the abstract
semi-explicit DAE had index-1 when the operator B22 was bijective. Since we want to
investigate the index-2 case, we will first assume the opposite extreme that B22 = 0, i.e.,
B22 is the zero operator. This leads us to the abstract Hessenberg DAE (so named for
the similarity to the Hessenberg size-2 finite dimensional DAE):[

I 0
0 0

] [
x′

1

x′
2

]
+

[
B11 B12

B21 0

] [
x1

x2

]
=

[
q1

q2

]
, (4.1)

with the auxiliary condition that the composition B21B12 is bijective. For the abstract
Hessenberg DAE, we will define the spaces X = Y = H1 × H2 and Z = H1, where H1

and H2 are real Hilbert spaces. As we proceed it will become clear why we included an
auxiliary condition on the operators B12 and B21.

We then factor E into a well-matched pair E = AD such that A, D, D−, P0, and Q0 are
all the same as for the index-1 case as these operators only depend on E , which is fixed,
and not on B. Specifically, we have

A =

[
I
0

]
D =

[
I 0

]
Q0 =

[
0 0
0 I

]
P0 =

[
I 0
0 0

]
, and D− =

[
I
0

]
.

38
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For now we will assume B is bounded. We then determine G1 for (4.1). By definition,
G1 = E + BQ0, or

G1 =

[
I 0
0 0

]
+

[
B11 B12

B21 0

] [
0 0
0 I

]
,

G1 =

[
I B12

0 0

]
. (4.2)

To find ker G1 we note [
I B12

0 0

] [
x1

x2

]
=

[
0
0

]
,

that is,
x1 + B12x2 = 0.

Therefore,

ker G1 =

[
−B12x2

x2

]
: x2 ∈ H2

Thus, for the abstract Hessenberg DAE, ker G1 is nontrivial and the abstract DAE is not
index-1. We then proceed to calculate Q1, P1, and G2.

To find Q1 we use the properties that Q2
1 = Q1 and im Q1 = ker G1. For w = [w1, w2]

T ∈
H1 ×H2, we have for im Q1

Q1w =

[
Q11 Q12

Q21 Q22

] [
w1

w2

]
=

[
Q11w1 + Q12w2

Q21w1 + Q22w2

]
.

However im Q1 = ker G1, so we have the condition

Q11w1 + Q12w2 = −B12(Q21w1 + Q22w2).

This statement is true for all w1 and w2. If we let w1 = 0, we have the result
Q12w2 = −B12Q22w2 or Q12 = −B12Q22. Similarly for w2 = 0, we get Q11 = −B12Q21.
We therefore write

Q1 =

[
−B12Q21 −B12Q22

Q21 Q22

]
.

We next use the fact Q1 is a projection so Q2
1 = Q1.

Q2
1 =

[
−B12Q21 −B12Q22

Q21 Q22

] [
−B12Q21 −B12Q22

Q21 Q22

]
=

[
B12Q21B12Q21 − B12Q22Q21 B12Q21B12Q22 − B12Q

2
22

−Q21B12Q21 + Q22Q21 −Q21B12Q22 + Q2
22

]
=

[
−B12Q21 −B12Q22

Q21 Q22

]
= Q1.
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This leads to four equations which can be written as follows:

B12(Q21B12 − Q22)Q21 = −B12Q21,

B12(Q21B12 − Q22)Q22 = −B12Q22,

(−Q21B12 + Q22)Q21 = Q21,

(−Q21B12 + Q22)Q22 = Q22.

These four equations all lead to the identity Q22 − Q21B12 = I or Q22 = I + Q21B12.
Then,

Q1 =

[
−B12Q21 −B12(I + Q21B12)

Q21 I + Q21B12

]
.

We note that Q1 is not unique as we can choose any Q21 ∈ L(H1,H2). For convenience,
we choose to let Q21 = 0. Then, we have

Q1 =

[
0 −B12

0 I

]
. (4.3)

As can easily be seen, this Q1 satisfies im Q1 = ker G1 and Q2
1 = Q1. This also gives us

P1 = I − Q1 =

[
I 0
0 I

]
−
[
0 −B12

0 I

]
=

[
I B12

0 0

]
.

We can now calculate G2 = G1 + BP0Q1.

G2 =

[
I B12

0 0

]
+

[
B11 B12

B21 0

] [
I 0
0 0

] [
0 −B12

0 I

]
=

[
I B12

0 0

]
+

[
B11 0
B21 0

] [
0 −B12

0 I

]
=

[
I B12

0 0

]
+

[
0 −B11B12

0 −B21B12

]
=

[
I (I − B11)B12

0 −B21B12

]
. (4.4)

We now show that given the auxiliary condition of B21B12 bijective, that G2 is one-to-one
and onto. We first determine ker G2, by considering[

I (I − B11)B12

0 −B21B12

] [
x1

x2

]
=

[
0
0

]
.
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This leads to

x1 + (I − B11)B12x2 = 0

−B21B12x2 = 0.

Since (B21B12)
−1 exists and is defined on all of H2, we get x2 = 0 and x1 = 0. Hence,

ker G2 = {0} and G2 is one-to-one. To show G2 is onto we show that for any y =
[y1 y2]

T ∈ H1 ×H2 one can find an x = [x1 x2]
T ∈ H1 ×H2 such that G2x = y, i.e.,[

I (I − B11)B12

0 −B21B12

] [
x1

x2

]
=

[
y1

y2

]
.

This implies

x1 + (I − B11)B12x2 = y1

−B21B12x2 = y2.

Since B21B12 is bijective, we get

x1 = y1 + (I − B11)B12(B21B12)
−1y2

x2 = −(B21B12)
−1y2.

Thus, G2 is one-to-one and onto.

Remark. Since G2 is one-to-one and onto, the abstract Hessenberg DAE (4.1) (with
auxiliary condition of B21B12 bijective) has abstract index-2.

Here we used the Q1 above to generate a G2. However, this Q1 is not unique in that it
can be any projection onto N1. The direction along which Q1 projects is not specified,
only the space onto which it projects is specified. Thus, there can be many different
Q1’s that satisfy the conditions of Definition 3.1. This is indicated by the fact that we
could choose anything for Q21 in our derivation of Q1 above. We now use the expression
developed in Proposition 2.1 and apply it to the infinite dimensional case. Given any
Q1 which projects onto N1 along with the G2 derived from that Q1, we can find the
unique canonical projection Q̃1 onto N1 along the space S1 by Q̃1 = Q1G

−1
2 BP0. Since

the G2 determined above is one-to-one and onto (bijective), a simple calculation shows
its inverse to be

G−1
2 =

[
I (I − B11)B12(B21B12)

−1

0 −(B21B12)
−1

]
.

We then calculate

Q̃1 = Q1G
−1
2 BP0

=

[
0 −B12

0 I

] [
I (I − B11)B12(B21B12)

−1

0 −(B21B12)
−1

] [
B11 B12

B21 0

] [
I 0
0 0

]
Q̃1 =

[
B12(B21B12)

−1B21 0
−(B21B12)

−1B21 0

]
.



Mark A. Pierson Chapter 4. LTI Index-2 Abstract DAEs 42

For ease of notation we define F = (B21B12)
−1B21 and H = B12F = B12(B21B12)

−1B21.
The operator H satisfies H2 = H and is the projection onto im B12 along ker B21. We also
note that F is a reflexive generalized inverse of B12 since FB12F = F and B12FB12 = B12.

We can then write

Q1 =

[
H 0
−F 0

]
. (4.5)

We next calculate a new G2 based on the canonical Q1,

G2 = G1 + BP0Q1

=

[
I B12

0 0

]
+

[
B11 B12

B21 0

] [
I 0
0 0

] [
H 0
−F 0

]
=

[
I B12

0 0

]
+

[
B11 0
B21 0

] [
H 0
−F 0

]
=

[
I B12

0 0

]
+

[
B11H 0
B21H 0

]
=

[
I + B11H B12

B21H 0

]
=

[
I + B11H B12

B21 0

]
, (4.6)

where in the last line we used B21H = B21B12(B21B12)
−1B21 = B21.

As expected this G2 is also one-to-one and onto. Instead of showing that kerG2 = {0}
and that given an arbitrary y we can find an x such that G2x = y, we will go about it in
a backwards manner. We will instead exhibit an operator matrix G−1

2 that satisfies the
conditions of an inverse and is defined on the entire space. The calculation to derive G−1

2

is not easy. We will use three formulae to derive the inverse: G−1
2 G2x = x, G2G

−1
2 y = y,

and Q̃1 = Q̃1G
−1
2 BP0. The first two formulae are merely the conditions required of an

inverse and the latter formula was used to find the canonical projection Q1 onto N1 along
S1. Clearly, this last formula should be an identity when the canonical projection Q̃1 is
used along with the G−1

2 derived from that Q̃1.

The details of the calculation are left to the reader. However, it is easy to check that the
below operator satisfies the three equations above. The final result is

G−1
2 =

[
(I − H) (I − B11 + HB11)B12(B21B12)

−1

F −F (I + HB11)B12(B21B12)
−1

]
.

If we let T = B12(B21B12)
−1 we can write this as

G−1
2 =

[
(I − H) (I − B11 + HB11)T

F −F (I + HB11)T

]
. (4.7)
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Similarly, we note that T is a reflexive generalized inverse of B21 since TB21T = T and
B21TB21 = B21. Furthermore, as we might expect FT = (B21B12)

−1.

4.2 A Case Where B is Bounded

We next observe that if B is bounded, then not only is G2 bounded but G−1
2 is also

bounded. Since (B21B12)
−1 is one-to-one and onto, G−1

2 is defined on all of Y . Hence,
this canonical G2 is also one-to-one and onto. Thus, for B bounded and (B21B12)

−1

bijective, the abstract Hessenberg DAE (4.1) has abstract index-2.

We next write the Hessenberg DAE (4.1) as two equations

x′
1(t) + B11x1(t) + B12x2(t) = q1(t) (4.8)

B21x1(t) = q2(t). (4.9)

We will also need to define a consistent initial condition for the abstract Hessenberg DAE
case.

Definition 4.1. The initial condition x(t0) is called a consistent Hessenberg initial con-
dition if x(t0) also satisfies the constraint equation (4.9) for the abstract Hessenberg DAE
(4.1).

We can now state the next result.

Theorem 4.1. Given: (i) B bounded with the composition B21B12 bijective, (ii) the right-
hand side function q(t) = [q1 q2]

T satisfies q1 ∈ C([0, T ];H1) and q2 ∈ C1([0, T ];H2), and
(iii) a consistent Hessenberg initial condition x1(0).

Then there exists a unique solution x ∈ C([0, T ];X ) to the index-2 semi-explicit abstract
Hessenberg DAE (4.1).

Proof. Since B is bounded and (B21B12)
−1 is bijective, we know from our calculations

above that G−1
2 exists on the entire space and is bounded. Thus, the abstract DAE (4.1)

has abstract index-2. As in the index-1 case, we now work to decouple the abstract
Hessenberg DAE (4.1) into an inherent abstract ODE (AODE), its constraint equa-
tion, and a solution representation. As in the finite-dimensional case (see [33]), we have
DP1D− = I−H and DQ1D− = H are projectors that yield the respective decomposition
DS1 ⊕DN1 = im D = Z = H1. We multiply the second equation (4.9) above by T , the
reflexive generalized inverse of B21, where T = B12(B21B12)

−1 to obtain

Hx1 = Tq2. (4.10)
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We then decouple the first equation (4.8) into two equations by multiplying first by
F , the reflexive generalized inverse of B12, where F = (B21B12)

−1B21 and second by
DP1D− = I − H. This yields

x2 = Fq1 − Fx′
1 − FB11x1 (4.11)

(I − H)x′
1 + (I − H)B11x1 = (I − H)q1, (4.12)

where we used the identities FB12 = I and (I − H)B12 = 0.

Let u(t) = DP1x(t) = (I − H)x1(t). Then, we observe that

(I − H)B11u = (I − H)B11(I − H)x1 = (I − H)B11x1 − (I − H)B11Hx1, or

(I − H)B11x1 = (I − H)B11u + (I − H)B11Hx1.

Substituting the last line above into (4.12) along with u′ = (I − H)x′
1 yields

u′ + (I − H)B11u = (I − H)q1 − (I − H)B11Hx1

u′ + (I − H)B11u = (I − H)q1 − (I − H)B11Tq2, (4.13)

where we also used Hx1 = Tq2 from equation (4.10). Equation (4.13) is called the
abstract ODE, or AODE, for this problem. We note that this AODE exists in the
space H1, i.e., u(t) ∈ H1. We therefore need an associated initial condition written as
u(0) = DP1x(0) = (I − H)x1(0) ∈ H1 (without loss of generality we assume our initial
time t0 = 0).

Since (I −H)2 = (I −H) and B are bounded, we can write the AODE (4.13) in the form

u′(t) + Lu(t) = q̃(t),

where L = (I − H)B11 with L ∈ L(Z), Z = H1, and q̃(t) equals the right-hand side of
the AODE. We now invoke Lemma 3.5 to give us existence and uniqueness of a solution
u(t) ∈ C1([0, T );H1) to this AODE (4.13), where q ∈ C(0, T ;Y) implies q̃ ∈ C(0, T ;Y).

However, we need to add a stronger condition on q. Since we need the derivative with
respect to time of u = (I − H)x1 = x1 − Hx1, Hx1 needs to be differentiable. If the
left-hand side of (4.10) is differentiable, then so must the right-hand side be. Thus, we
need q2 ∈ C1(0, T ;H2) whereas q1 ∈ C(0, T ;H1).

We are given a consistent Hessenberg initial condition for x1(0). Surprisingly, no initial
condition on x2(t) needs to be provided in order to solve for x(t). x2(0) will be determined
by q1(0), x1(0), and x′

1(0) and equation (4.11). Thus, the abstract Hessenberg DAE (4.1)
is solvable for consistent Hessenberg initial condition x1(0) that satisfies B21x1(0) = q2(0).

To obtain a solution representation, we start with u = (I − H)x1 = x1 − Hx1. This
gives x1 = u + Hx1. But from equation (4.10) we have Hx1 = Tq2. Thus, x1 = u + Tq2.
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Since we have a unique u from the AODE, we will have a unique solution x1. We note
that both the AODE (4.13) and the preceding formula for x1 only depend on elements of
the operator B, the right-hand side forcing function q and the consistent initial condition
x(0), all of which are given data of the problem. In other words, they are not dependent
on our particular choice of Q0. Additionally, we have that x1 ∈ C1([0, T ];H1) since both
u and q2 are continuously differentiable. Hence, once we have obtained a unique solution
for x1, we can obtain a unique solution x2 from equation (4.11). Thus, the solution may
be represented as

x(t) =

[
x1(t)
x2(t)

]
,

where

x1(t) = u(t) + Tq2(t)
x2(t) = Fq1(t) − Fx′

1(t) − FB11x1(t)
. (4.14)

Substituting back into (4.8) and (4.9), it is easy to show that our solution representation
for x1(t) and x2(t) from (4.14) satisfies the abstract Hessenberg DAE (4.1).

We can rewrite the solution representation (4.14) in terms of the unique solution u(t) of
the AODE and the right-hand side function q(t) to yield[

x1(t)
x2(t)

]
=

[
u(t) + Tq2(t)

Fq1(t) − Fx′
1(t) − FB11x1(t)

]
=

[
u(t) + Tq2(t)

Fq1(t) − Fu′(t) − FTq′2(t) − FB11u(t) − FB11Tq2(t)

]

=

⎡⎣ u(t) + Tq2(t)
Fq1(t)−F [−(I − H)B11u(t) + (I − H)q1(t) − (I − H)B11Tq2(t)]...

−FTq′2(t) − FB11u(t) − FB11Tq2(t)

⎤⎦
=

[
u(t) + Tq2(t)

−FB11u(t) + Fq1(t) − FB11Tq2(t) − (B21B12)
−1q′2(t)

]
=

[
I

−FB11

]
u(t) +

[
Tq2(t)

Fq1(t) − FB11Tq2(t) − (B21B12)
−1q′2(t)

]
. (4.15)

where we used the identity F (I−H) = 0 in some of the calculations. We note, it is obvious
from this version of the solution representation that we need q2 ∈ C1(0, T ;H2).

Remark. In the index-2 case, abstract DAEs can have “hidden” constraints. However,
in the abstract Hessenberg DAE case (4.1) this is not the situation as the algebraic
constraint equation is explicit in (4.9).
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4.3 A Case Where B is Unbounded

We now weaken the assumption that B is bounded. Specifically, we will look at the case
of B11 : D(B11) ⊂ H1 → H1 unbounded with D(B11) dense in H1. We will leave B12 and
B21 bounded with the auxiliary condition that B21B12 is one-to-one and onto. In order
to make this work we will have to impose an additional condition on D(B11) relative to
im B12. We can then state the following result.

Theorem 4.2. Given the following conditions: (i) B12 and B21 bounded with the compo-
sition B21B12 bijective, (ii) B11 is a closed operator with dense domain D(B11) ⊂ H1 such
that im B12 ⊂ D(B11), (iii) B11 is the infinitesimal generator of a strongly continuous
semigroup on H1, (iv) the right-hand side function q = [q1 q2]

T satisfies q1 ∈ C(0, T ;H1)
and q2 ∈ C1(0, T ;H2), and (v) a consistent Hessenberg initial condition x1(0).

Then there exists a unique solution x ∈ C([0, T ];X ) to the semi-explicit abstract Hessen-
berg DAE (4.1).

Proof. We first remark that since im B12 ⊂ D(B11), the compositions B11T and B11H
make sense where T and H are defined as in Section 4.1. Then the expressions for the
canonical G2 and G−1

2 given in (4.6) and (4.7) are still valid. Furthermore, both remain
bounded. Hence, G2 is bijective and this DAE remains index-2.

We now will work toward decoupling the abstract Hessenberg DAE into its AODE and
its constraint equation in a manner similar to that in Section 4.2. We start with the two
equations from the Hessenberg DAE (4.1):

x′
1(t) + B11x1(t) + B12x2(t) = q1(t) (4.16)

B21x1(t) = q2(t), (4.17)

where we assume x1(t) ∈ D(B11). As before we multiply the second equation (4.17) by
T , a reflexive generalized inverse of B21, to obtain

Hx1 = Tq2. (4.18)

We then multiply the first equation (4.16) once by F , a reflexive generalized inverse of
B12, and again by the projector (I − H) to yield two equations:

x2 = Fq1 − Fx′
1 − FB11x1, (4.19)

(I − H)x′
1 + (I − H)B11x1 = (I − H)q1. (4.20)

We let u(t) = (I − H)x1(t) and derive the AODE as previously,

u′ + (I − H)B11u = (I − H)q1 − (I − H)B11Tq2. (4.21)
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We note that u ∈ D(B11) ⊂ H1 so this equation is valid.

We will next utilize the following result on perturbation of a semigroup generator from
Engel and Nagel [12].

Lemma 4.1. Given a Banach space X with D(A) ⊂ X . Define XA
1 = D(A) with

the graph norm ‖x‖1 := ‖x‖X + ‖Ax‖X . If B ∈ L(XA
1 ,X ) and A is an infinitesimal

generator of a strongly continuous semigroup on X , then A + B with D(A + B) = D(A)
is an infinitesimal generator of a strongly continuous semigroup on X .

We have (I − H)B11 = B11 − HB11. We then need to show that −HB11 is bounded on
X B11

1 := (D(B11), ‖ · ‖1). We now restrict the operators H and B11 to D(B11). We then
have

‖ − HB11x‖1 = ‖HB11x‖ + ‖B11HB11x‖
≤ ‖H‖‖B11x‖ + ‖B11H‖‖B11x‖
≤ C1‖B11x‖ + C2‖B11x‖
= C‖B11x‖
≤ C‖x‖ + C‖B11x‖
= C‖x‖1,

where we used Proposition 3.1, part (viii), that B11H is a bounded operator by the
Closed Graph Theorem since it is defined on the entire space X1 = D(B11). Thus,
−HB11 ∈ L(X B11

1 ,H1). Then, by Lemma 4.1, (I −H)B11 is an infinitesimal generator of
a strongly continuous semigroup on H1.

Since we have a consistent Hessenberg initial condition x1(0), we then form u(0) =
(I−H)x1(0). Then by invoking Lemma 3.5, we can again obtain existence and uniqueness
of a solution u ∈ C1([0, T ];H1) to the AODE (4.21). The solution to the DAE can then
be found to be the unique representation

x1(t) = u(t) + Tq2(t)

x2(t) = Fq1(t) − Fx′
1(t) − FB11x1(t).

As above, x1(t) is continuously differentiable. Similarly, we can also write this represen-
tation in the form (4.15). As an end result, we also have that x ∈ C([0, T ];X ).

Remark. It is possible to revise some of the hypotheses of Theorem 4.2. If we have that
B11 is the infinitesimal generator of a strongly continuous semigroup of contractions on
H1 and if the composition −HB11 is dissipative, then one could use instead Lemma 3.8
above to get a unique solution to the AODE. One would then proceed as before to obtain
a solution representation.
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Remark. As seen in applications in the next chapter, it is not uncommon for the space H1

to be a product space such as X1×X2. Let Y2 be dense in X2. Then, if im B12 = {0}×Y2

with D(B11) = X1 × Y2 we will have im B12 ⊂ D(B11). Thus, our assumption may not
necessarily be that restrictive.

We may also be able to weaken the condition im B12 ⊂ D(B11). Let us define the concept
of uniformly dense with respect to P as follows:

Definition 4.2. If P is an orthogonal projector on a Hilbert space H and the domain
of an operator A, D(A), is dense in H such that D(A)∩ im P is also dense in im P and
D(A)∩ im (I −P ) is also dense in im (I −P ), then we say D(A) is uniformly dense with
respect to P .

We can then apply the following Lemma.

Lemma 4.2. Let the domain of an operator A, D(A), be dense in a Hilbert space H. Let
P be an orthogonal projector in H. Furthermore, let D(A) be uniformly dense with respect
to P . Then, D(A) restricted to those elements h ∈ D(A) ⊂ H such that Ph ∈ D(A) is
also dense in H, i.e., D(A)|P := {h ∈ D(A) ⊂ H : Ph ∈ D(A)}.

Proof. Let h ∈ H be arbitrary. Then, since D(A) is dense in H, there is an element
x ∈ D(A) such that given arbitrary ε > 0, ‖h − x‖H < ε

3
. Since P is an orthogonal

projector on H, we can write x = y + z where y = Px and z = (I − P )x. If y ∈ D(A)
we are done since then x ∈ D(A)|P .

If y /∈ D(A) we proceed as follows. Since im P for a projector in a Hilbert space is a
closed linear subspace and D(A) is dense in H, by D(A) uniformly dense with respect
to P there exists a ỹ ∈ D(A) ∩ im P such that ‖ỹ − y‖H < ε

3
. Define x̃ := ỹ + z. Then,

by definition, ‖x̃− x‖H = ‖ỹ + z − y − z‖H = ‖ỹ − y‖H < ε
3
. If x̃ ∈ D(A)|P , then we are

done since ‖h − x̃‖H = ‖h − x‖H + ‖x − x̃‖H < ε
3

+ ε
3

< ε.

However, if x̃ /∈ D(A)|P , similarly by D(A) uniformly dense with respect to P , there is
an element x̂ = ỹ + ẑ such that x̂ ∈ D(A) and ‖x̂ − x̃‖H < ε

3
. Note that we only change

x̃ to x̂ by perturbing z within im (I − P ) which is also a linear closed subspace of H.
Furthermore, by definition, x̂ ∈ D(A)|P . Finally, ‖h − x̂‖H = ‖h − x‖H + ‖x − x̃‖H +
‖x̃ − x̂‖H < ε

3
+ ε

3
+ ε

3
= ε. Thus, D(A)|P is also dense in H.

Remark. We can reapply this Lemma again if desired. For example, assume D(A) =
D(A)|P , we can then restrict this new domain to D(A)|I−P . We then have that the
restricted domain is also dense. We thus end up with the domain defined as {h ∈
D(A) ⊂ H : Ph ∈ D(A) and (I − P )h ∈ D(A)} is also dense in H.

Thus, we could require that D(B11) be uniformly dense with respect to H, apply the
Lemma, and then restrict u(t) in the AODE to D(B11)|H which would then be dense in
H1.



Chapter 5

Applications

We start with some applications involving systems of partial differential equations. Both
applications lead to index-1 abstract DAEs. The first example arises from a thermal
model of a chemical vapor deposition reactor for growing superconducting films. The
second example is much more detailed and includes the complete derivation and modeling
of a structural dynamics problem as a DAE.

5.1 Thermal Model for Chemical Vapor Deposition

Reactor

This application is related to the processing of superconducting films for use in high per-
formance microwave filters for cellular communications. One method involves growing
these films in a low-pressure chemical vapor deposition reactor. In this process chemical
reactants are sprayed onto a heated substrate. The goal is to then grow a thin uni-
form film on this substrate. It is expected that conduction and radiation will be the
dominant thermal mechanisms vice convection since the sprayed fluid has a low thermal
capacitance. The thermal controls used in this model will be the power supplied to the
individual heater rings which heat the substrate disk and the temperature of the reactor
walls which is controlled via an oil-cooled heat exchanger. A diagram of the key items
needed for the thermal model is shown in Figure 5.1. For ease of modeling, the substrate
as shown in this figure is actually upside down, that is, the thin film will be grown on
the bottom of the disk shown in the figure.

Cliff and Herdman [9] developed the model that we use here. For the disk, conduction

49
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Figure 5.1: Simplified Thermal Model of a Chemical Vapor Deposition Reactor

in a thin, circular plate is modeled by a diffusion equation:

∂Td(t, r)

∂t
=

κ

ρCpr

[
∂

∂r

(
r
∂Td(t, r)

∂t

)]
− S(t, r)

ρCpτ
, 0 < r < R, t > 0, (5.1)

where Td(t, r) is the surface temperature of the disk at distance r from the center. We
assume radial symmetry of the temperature distribution on the disk. S(t, r) is the net
heat flux from the surface, τ is the disk thickness which is assumed to be small compared
to its radius R, ρ is its density, Cp is the specific heat of the disk, and κ is the thermal
conductivity. Thus, κ

ρCP
is the usual thermal diffusivity of the disk. We also specify an

initial temperature distribution on the disk Td(0, r) = g(r).

The source term involving the net heat flux arises from radiant exchange among the
heater, the disk and the enclosure. It can be expressed as

S(t, r) =
ε

1 − ε

(
σT 4(t, r) − Bd(t, r)

)
, (5.2)

where Bd(t, r) is the disk radiosity or radiant energy flux departing from the disk. We
then have a coupled integral equation involving the disk radiosity Bd(t, r), the enclosure
radiosity Be(t, r) and the disk temperature Td(t, r),

(I − F )

[
Bd(t, r)
Be(t, r)

]
=

[
εdσT 4

d (t, r)
0

]
+ P

[
u1(t)
u2(t)

]
, (5.3)

where u1(t) is the heater power and u2(t) is the fourth power of the enclosure uniform
surface temperature Te(t). F is a linear Fredholm integral operator such that ‖F‖ < 1
and P is a bounded linear operator.
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We now put the system into abstract equation form. Let x1(t) = Td(t, ·) and

x2(t) :=

[
Bd(t, ·)
Be(t, ·)

]
.

Then, we can write equation (5.1) as

x′
1(t) + Kx1(t) + F(x1(t), x2(t)) = 0,

N (x1(t)) + (I − F )x2(t) = q2(t),

where prime indicates differentiation with respect to time, F is a nonlinear operator
involving the fourth power of x1(t), N is also a nonlinear operator involving the fourth
power of x1(t), and q2(t) = P [u1(t) u2(t)]

T . We will assume for simplicity that we can
linearize both F and N . We then incorporate the linearized term for x1(t) into the
operator K and call the remaining linear operator L. We label the linearized operator
for N as E. This yields the following linearized equations

x′
1(t) + Kx1(t) + Lx2(t) = 0,

Ex1(t) + (I − F )x2(t) = q2(t),

where L and E are linear bounded operators and Kz = −∆z + cz with c > 0. We then
put this in semi-explicit DAE form (3.2)[

I 0
0 0

] [
x′

1(t)
x′

2(t)

]
+

[
K L
E (I − F )

] [
x1(t)
x2(t)

]
=

[
0

q2(t)

]
. (5.4)

Since ‖F‖ < 1 we have that (I − F ) is one-to-one and onto by a standard functional
analysis theorem (for example, see Theorem III.1.4 in Taylor and Lay [38]). Furthermore,
E and L are bounded linear operators. Curtain and Pritchard [10], as well as Goldstein
[17] establish for the operator K with domain dense in a Hilbert space that K is the
infinitesimal generator of an analytic semigroup.

Finally, by Theorem 3.2 with q2(t) ∈ C1([0, T ];H) and with consistent index-1 initial
condition, there exists a unique solution to the semi-explicit DAE (5.4) for this linearized
thermal model of a chemical vapor deposition reactor.

Remark. In this example, previous work was done by Cliff and Herdman [9] to put the
model into DAE form. We did not go into the details of that construction. In contrast,
the next application will show how a DAE model is developed and implemented.

5.2 Coupled Transversal Motion of Two Beams

Connected by a Rigid Joint

The Defense Advanced Research Projects Agency (DARPA) is investigating stability and
dynamics of large space arrays. These arrays involve large trusses made up of pyramidal
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structures of beams. Figure 5.2 shows part of such a truss array. To simplify the analyses,
we look at a simple model involving just two beams, each fixed at one end and then
connected together at the other end by a rigid joint. See Figure 5.3 for a diagram.
While the joint restricts movement, bending and vibrations can and do occur. Hence,
the motivation to analyze such structures for stability and controllability.

Figure 5.2: An Example of a Truss Array

For our investigation, we model the problem in an abstract DAE format and show exis-
tence and uniqueness of solutions under certain conditions.

5.2.1 Modeling and Development of Abstract DAE

We model the bending motions of the two identical beams using the Euler-Bernoulli
beam partial differential equations with Kelvin-Voigt damping. We include homogeneous
boundary conditions at the fixed ends of the beams. For simplicity we assume each beam
is identical in this space truss. This leads to one partial differential equation for each
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�� �� �� ��
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�
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θ1

θ2

Figure 5.3: Model of Two Beams and a Joint

beam as follows (subscript 1 refers to beam 1 and subscript 2 refers to beam 2):

ρA
∂2w1(t, s1)

∂t2
+

∂2

∂s2
1

[
EI

∂2w1(t, s1)

∂s2
1

+ γ
∂3w1(t, s1)

∂s2
1∂t

]
= 0 (beam 1)

w1(t, 0) =
∂w1(t, 0)

∂s1

= 0

ρA
∂2w2(t, s2)

∂t2
+

∂2

∂s2
2

[
EI

∂2w2(t, s2)

∂s2
2

+ γ
∂3w2(t, s2)

∂s2
2∂t

]
= 0 (beam 2)

w2(t, 0) =
∂w2(t, 0)

∂s2

= 0,

(5.5)

where wi(t, si) represents the transverse displacement from the y-axis along beam i at
time t, si is the distance along beam i as measured from the fixed end 0 to the end
connected to the joint where si = L, the length of each beam. Since the beams are
identical the physical parameters ρ, A, E, and γ are the same for each beam, where A
is the cross-sectional area, ρ is the mass density, E is the Young’s modulus, and γ is
the Kelvin-Voigt damping parameter for each beam. We will also assume an appropriate
initial configuration of the beams at t = 0, i.e., w1(0, s1) = f1(s1) and w2(0, s2) = f2(s2).

The joint consists of a pivot point with two legs. Each leg is attached to the end of a
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beam. Once again the two joint legs will be considered identical with m the mass of
each joint leg, mp the mass of the pivot, M = 2m + mp the total mass of the entire joint
structure, � the length of each joint leg, d the distance from the center of mass of each
joint leg to the pivot point, I the moment of inertia of each joint leg about its center of
mass.

For simplicity of analysis, we further assume the two beams and joint start out close to
a straight vertical alignment and that the amplitude of vibrations are small compared
to the physical dimensions of the system. We therefore use linearized equations of mo-
tion derived from Newton’s Second Law of Motion. This leads to a system of ordinary
differential equations describing the motion of the joint pivot point and angles for the
joint legs. We define the vector-valued function y(t) = (x(t), θ1(t), θ2(t))

T ∈ R
3 where

x(t) represents the horizontal motion of the joint pivot along the x-axis (for simplicity
we ignore motion in the y-axis direction), θ1(t) represents the deviation angle of joint
leg 1 from the vertical and θ2(t) is for joint leg 2. We further assume that the joint
has internal viscous damping but no stiffness component. This leads to the system of
ordinary differential equations describing the motion of the joint pivot and its legs:

My′′(t) + Wy′(t) − LF (t) = q(t), or

y′′(t) + M−1Wy′(t) − M−1LF (t) = M−1q(t), (5.6)

where the prime (′) indicates differentiation with respect to time t and

M =

⎡⎣ M −md md
−md I + md2 0
md 0 I + md2

⎤⎦ , W =

⎡⎣0 0 0
0 b −b
0 −b b

⎤⎦ ,

with b ≥ 0 the damping coefficient. We remark at this point that M is positive definite
symmetric. We also have

L =

⎡⎣0 −1 0 1
1 � 0 0
0 0 1 �

⎤⎦ ,

where L has full row rank.

For some generality, we assume an external forcing function q(t) = [f(t) 0 0]T ∈ R
3

is applied at the pivot point. We define F (t) = (M1(t), N1(t),M2(t), N2(t))
T ∈ R

4 as
the applied load on the joint resulting from motion of the two attached beams, where
Mi(t) is the effective torque applied to the joint pivot point from beam i and Ni(t) is the
effective shear load applied to the center of mass of joint leg i due to beam i. These loads
can be represented in terms of the wi(t, si) variables from the beam partial differential
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equations. The resulting boundary compatibility constraints are:

F (t) =

⎡⎢⎢⎣
M1(t)
N1(t)
M2(t)
N2(t)

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EI
∂2w1(t, L)

∂s2
1

+ γ
∂3w1(t, L)

∂s2
1∂t

EI
∂3w1(t, L)

∂s3
1

+ γ
∂4w1(t, L)

∂s3
1∂t

EI
∂2w2(t, L)

∂s2
2

+ γ
∂3w2(t, L)

∂s2
2∂t

EI
∂3w2(t, L)

∂s3
2

+ γ
∂4w2(t, L)

∂s3
2∂t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.7)

As for the partial differential equations for the beams, we also assume an appropriate
initial condition for the configuration of the joint pivot location and joint leg angles, i.e.,
y(0) = y0 ∈ R

3.

We next have some geometric compatibility constraints that realize the connection be-
tween the ends of the joint leg and the ends of the beams. These conditions require that
the ends of the joint legs and beams have the same physical coordinates and that the end
slope of the beams remain aligned with that of the joint legs. This leads to the following
constraint equation: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∂w1(t, L)

∂s1

w1(t, L)

−∂w2(t, L)

∂s2

w2(t, L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= LT y(t). (5.8)

We now have all the governing equations describing the two beams and joint system.

We let

w(t) =

[
w1(t, ·)
w2(t, ·)

]
∈ H1 = {H2

� (0, L) ∩ H4(0, L)} x {H2
� (0, L) ∩ H4(0, L)},

where H2
� (0, L) = {wi(t, ·) ∈ H2(0, L) : wi(t, 0) = ∂wi(t,0)

∂si
= 0}.

We define w′(t), the derivative of w(t) with respect to time t, similarly with w′(t) ∈ H2 =
{H2

� (0, L) ∩ H4(0, L)} x {H2
� (0, L) ∩ H4(0, L)}.
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We then define

σ(t) =

[
σ1(t)
σ2(t)

]
=

⎡⎢⎢⎢⎣
EI

∂2w1(t, ·)
∂s2

1

+ γ
∂3w1(t, ·)

∂s2
1∂t

EI
∂2w2(t, ·)

∂s2
2

+ γ
∂3w2(t, ·)

∂s2
2∂t

⎤⎥⎥⎥⎦ , or

σ(t) = ED2w(t) + GD2w′(t), (5.9)

with σ(t) ∈ Hσ = H2(0, L) × H2(0, L) and

E =

[
EI 0
0 EI

]
, G =

[
γ 0
0 γ

]
, D2 =

⎡⎢⎢⎣
∂2

∂s2
1

0

0
∂2

∂s2
2

⎤⎥⎥⎦ .

We can now rewrite the beam partial differential equations (5.5) as an abstract second
order ODE:

w′′(t) + AD2σ(t) = 0, (5.10)

where

A =

[ 1
ρA

0

0 1
ρA

]
.

We next define the boundary operator T : {H2(0, L) × H2(0, L)} → R
4 as

T w(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∂w1(t, L)

∂s1

w1(t, L)

−∂w2(t, L)

∂s2

w2(t, L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and rewrite the geometric compatibility constraints (5.8) in the form

T w(t) = LT y(t). (5.11)

If we differentiate (5.11) with respect to time we get

T w′(t) = LT y′(t). (5.12)
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We use the boundary operator T to also rewrite our boundary compatibility constraints
(5.7). We first note that calculating T σ(t) yields:

T σ(t) = T (ED2w(t) + GD2w′(t))

= T ED2w(t) + T GD2w′(t)

= T

⎡⎢⎢⎢⎣
EI

∂2w1(t, ·)
∂s2

1

EI
∂2w2(t, ·)

∂s2
2

⎤⎥⎥⎥⎦+ T

⎡⎢⎢⎢⎣
γ
∂3w1(t, ·)

∂s2
1∂t

γ
∂3w2(t, ·)

∂s2
2∂t

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−EI
∂3w1(t, L)

∂s3
1

− γ
∂4w1(t, L)

∂s3
1∂t

EI
∂2w1(t, L)

∂s2
1

+ γ
∂3w1(t, L)

∂s2
1∂t

−EI
∂3w2(t, L)

∂s3
2

− γ
∂4w2(t, L)

∂s3
2∂t

EI
∂2w2(t, L)

∂s2
2

+ γ
∂3w2(t, L)

∂s2
2∂t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣
−N1(t)
M1(t)
−N2(t)
M2(t)

⎤⎥⎥⎦ .

We then multiply both sides by a permutation or rearrangement matrix R,

R =

⎡⎢⎢⎣
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎤⎥⎥⎦
to get

RT σ(t) =

⎡⎢⎢⎣
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎤⎥⎥⎦
⎡⎢⎢⎣
−N1(t)
M1(t)
−N2(t)
M2(t)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
M1(t)
N1(t)
M2(t)
N2(t)

⎤⎥⎥⎦ = F (t) or

RT σ(t) = F (t). (5.13)

Thus, the boundary compatibility constraint can be represented by the operator con-
straint equation RT σ(t) = F (t).

We now put this all together as a system of equations from (5.10), (5.6), (5.13), (5.9):

w′′(t) + AD2σ(t) = 0

y′′(t) + M−1Wy′(t) − M−1LF (t) = M−1q(t)

RT σ(t) − F (t) = 0

ED2w(t) + GD2w′(t) − σ(t) = 0.
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Let z1(t) = w(t), z2(t) = z′1(t) = w′(t), z3(t) = y′(t), z4(t) = σ(t), and z5(t) = F (t). This
leads to the following first order equations:

z′1(t) − z2(t) = 0

z′2(t) + AD2z4(t) = 0

z′3(t) + M−1Wz3(t) − M−1Lz5(t) = M−1q(t)

RT z4(t) − z5(t) = 0

ED2z1(t) + GD2z2(t) − z4(t) = 0.

Remark. By Fattorini [14], we can reduce such a second order system to a first order
system.

We then can put the above equations in matrix form:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0
... 0 0

0 I 0
... 0 0

0 0 I
... 0 0

· · · · · · · · · ... · · · · · ·
0 0 0

... 0 0

0 0 0
... 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
z′(t)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −I 0
... 0 0

0 0 0
... AD2 0

0 0 M−1W
... 0 −M−1L

· · · · · · · · · ... · · · · · ·
0 0 0

... RT −I

ED2 GD2 0
... −I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
z(t) =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0

M−1q(t)
· · ·
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ , (5.14)

where z(t) = (z1(t), z2(t), z3(t), z4(t), z5(t))
T . This equation is in the general form of

Ez′(t) + Bz(t) = f(t) with E a noninvertible operator. Furthermore, the domain of B,
D(B), is defined as D(B) = {z ∈ H1 ×H2 ×R

3 ×Hσ ×R
4 : T z2 = LT z3} where we have

incorporated the differentiated version of the geometric compatibility constraints (5.12)
into the domain of our operator B. Since the constraint T z2 = LT z3 only places conditions
on z2(t) = w′(t) on the right side (i.e., when s = L) and not the left, we have that D(B) is
dense in H = {L2(0, L)×L2(0, L)}×{L2(0, L)×L2(0, L)}×R

3×{L2(0, L)×L20, L}×R
4.
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We now partition the operator matrices as indicated by the dotted lines above to obtain[
I 0
0 0

]
z′(t) +

[
B11 B12

B21 B22

]
z(t) =

[
q1(t)

0

]
, (5.15)

where

B11 =

⎡⎣0 −I 0
0 0 0
0 0 M−1W

⎤⎦ , B21 =

[
0 0 0

ED2 GD2 0

]
,

and

B12 =

⎡⎣ 0 0
AD2 0

0 −M−1L

⎤⎦ , B22 =

[
RT −I
−I 0

]
, q1(t) =

⎡⎣ 0
0

M−1q(t)

⎤⎦ .

We then have that D(B11) = D(B21) = {(z1, z2, z3)
T ∈ H1 ×H2 × R

3 : T z2 = LT z3} and
D(B12) = D(B22) = {(z4, z5)

T ∈ Hσ × R
4}.

We first investigate B22 where B22 : D(B22) → Y2 = R
4 × {L2(0, L) × L2(0, L)}. We see

that kerB22 = {0}, since [
RT −I
−I 0

] [
z4

z5

]
=

[
0
0

]
implies

RT z4 − z5 = 0
−z4 = 0

}
⇒
[
z4

z5

]
=

[
0
0

]
.

Thus, by Lemma 3.1 the semi-explicit abstract DAE defined by (5.15) for this problem
is an index-1 DAE.

We investigate the image of B22:[
RT −I
−I 0

] [
z4

z5

]
=

[
y1

y2

]
implies

y1 = RT z4 − z5

y2 = −z4.

Thus, we have y2 ∈ Hσ. Solving for z4 and z5 yields[
z4

z5

]
=

[
−y2

−y1 − RT y2

]
.

It follows that, im B22 = R
4 × Hσ and im B22 is dense in Y2. We have then D(B22) is

dense in {L2(0, L)×L2(0, L)}× {L2(0, L)×L2(0, L)}×R
3} and B22 is densely solvable.

Since B22 is one-to-one, we can define its inverse B−1
22 : R

4 ×Hσ → Hσ × R
4 as

B−1
22 =

[
0 −I
−I RT

]
.
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We next investigate the image of B21 where
B21 : D(B21) = {(z1, z2, z3)

T ∈ H1 ×H2 × R
3 : T z2(t) = LT z3(t)} → Y2:[

0 0 0
ED2 GD2 0

]⎡⎣z1

z2

z3

⎤⎦ =

[
y1

y2

]
implies

y1 = 0,

y2 = ED2z1 + GD2z2.

Hence, y2 ∈ Hσ and im B21 = {0} ×Hσ where 0 ∈ R
4.

Finally, we investigate the image of B12 where
B12 : Hσ × R

4 → Y1 = {L2(0, L) × L2(0, L)} × {L2(0, L) × L2(0, L)} × R
3:⎡⎣ 0 0

AD2 0
0 −M−1L

⎤⎦[z4

z5

]
=

⎡⎣y1

y2

y3

⎤⎦
implies

y1 = 0,

y2 = AD2z4,

y3 = −M−1Lz5.

We have, y2 ∈ {L2(0, L)×L2(0, L)}. Since L ∈ R
3x4 with full row rank and M is full rank,

M−1L has full row rank. Therefore, we can solve for z5 above as z5 = −(LTM−1L)−1LT y3.
Thus, given any y3 ∈ R

3 we can find a z5 ∈ R
4. Likewise for any y2 ∈ {L2(0, L)×L2(0, L)}

we can find a z4 ∈ Hσ = {H2(0, L) × H2(0, L)} Hence,
im B12 = {0} × {L2(0, L) × L2(0, L)} × R

3.

From (3.3), we have

G1 =

[
I B12

0 B22

]
.

We define D(G1) = {L2(0, L)× L2(0, L)} × {L2(0, L)× L2(0, L)} × R
3 ×Hσ × R

4 which
is dense in H. Then, G1 : D(G1) ⊂ H → Y1 × Y2. We see that G1 is one-to-one as[

I B12

0 B22

] [
x1

x2

]
=

[
0
0

]
implies

x1 + B12x2 = 0
B22x2 = 0

}
⇒
[
x1

x2

]
=

[
0
0

]
,
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since B22 is one-to-one. We next investigate im G1:[
I B12

0 B22

] [
x1

x2

]
=

[
y1

y2

]
,

where x1 ∈ {L2(0, L)×L2(0, L)}×{L2(0, L)×L2(0, L)}×R
3 and x2 ∈ D(B12) = D(B22) =

Hσ × R
4. This implies

x1 + B12x2 = y1,

B22x2 = y2.

However, we have im B12 = {0} × {L2(0, L) × L2(0, L)} × R
3, and im B22 = R

4 × Hσ.
Thus, y2 ∈ R

4×Hσ and y1 ∈ {L2(0, L)×L2(0, L)}×{L2(0, L)×L2(0, L)}×R
3. Therefore,

im G1 is dense in Y1×Y2. Hence, G1 is densely defined, densely solvable, and one-to-one.
This is exactly the minimum requirement for a DAE to be index-1 by Definition 3.2.

5.2.2 Existence and Uniqueness

Now that we are done setting up and analyzing the problem, we show that there exists a
unique solution to this problem using the general theory developed for abstract index-1
DAEs in Chapter 3.

Theorem 5.1. Given consistent index-1 initial condition w(0) = [f1 f2]
T and the right-

hand side function q(t) Lipschitz continuous, there exists a unique solution z ∈ C([0, T ];H)
for this two beam and joint problem.

Proof. We proceed to the AODE using the direct method. From (5.15) we have two
equations which can be used to write the AODE in terms of u(t) = x1(t) ∈ D(B11) =
D(B21) = {x1 = (z1, z2, z3)

T ∈ H1 ×H2 × R
3 : T z2(t) = LT z3(t)}:

x′
1(t) + B11x1(t) + B12x2(t) = q1(t),

B21x1(t) + B22x2(t) = 0

implies
u′(t) +

(
B11 − B12B−1

22 B21

)
u(t) = q1(t),

where we used the constraint equation along with the fact that B22 is one-to-one to
obtain x2(t) = −B−1

22 B21x1(t). This expression makes sense as D(B−1
22 ) ⊃ im B21 and

D(B12) ⊇ im B−1
22 .

We let A = −(B11 − B12B−1
22 B21) and rewrite our AODE as:

u′(t) = Au(t) + q1(t). (5.16)
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The definitions for the block operator matrices and calculating −(B11−B12B−1
22 B21) yields

A =

⎡⎣ 0 I 0
−AED4 −AGD4 0

M−1LRT ED2 M−1LRT GD2 −M−1W

⎤⎦ . (5.17)

We define HODE = H1×{L2(0, L)×L2(0, L)}×R
3 and note that D(A) = {(z1, z2, z3)

T ∈
H1 × H2 × R

3 : T z2 = LT z3}. Furthermore, A : D(A) ⊂ HODE → HODE and im A =
HODE. We have im B11 = H1 × {0} × im (M−1W) and im B12 = {0} × {L2(0, L) ×
L2(0, L)} × R

3. Then, im A = B11 − B12B−1
22 B21 = im B11 ∪ im B12 = HODE. We will

formally verify that A maps onto HODE below.

We first define an energy norm on HODE as

‖z‖2
HODE

= (ED2z1, D
2z1)L2(0,L)2 + (A−1z2, z2)L2(0,L)2 + zT

3 Mz3,

or if we use our original variables

‖z‖2
HODE

= (ED2w,D2w)L2(0,L)2 + (A−1w′, w′)L2(0,L)2 + (y′ )TMy′,

where, in an abuse of notation, we use L2(0, L)2 = L2(0, L)×L2(0, L). Also, A−1 is just
the positive definite symmetric matrix

A−1 =

[
ρA 0
0 ρA

]
.

At this point we want to show that A is the infinitesimal generator of a strongly con-
tinuous semigroup of contractions. To do so we use a Corollary to the Lumer-Phillips
Theorem found in Liu & Zheng [30]. This Corollary states that if A is a linear operator
with dense domain and is dissipative with zero in its resolvent set, ρ(A), then A is the
infinitesimal generator of a strongly continuous semigroup of contractions.

A is linear with dense domain in HODE. We now show that A is dissipative, i.e.,
Re(Az, z) ≤ 0.

Before we calculate (Az, z)HODE
we will first need Az. We will need to do this calculation

with the original variables z = (w,w′, y′)T :

Az =

⎡⎣ 0 I 0
−AED4 −AGD4 0

M−1LRT ED2 M−1LRT GD2 −M−1W

⎤⎦⎡⎣w
w′

y′

⎤⎦
=

⎡⎣ w′

−AED4w − AGD4w′

M−1LRT ED2w + M−1LRT GD2w′ − M−1Wy′

⎤⎦ .
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We are now ready to calculate this inner product:

(Az, z)HODE
= (ED2w′, D2w)L2(0,L)2 (5.18)

+ (A−1(−AED4w − AGD4w′), w′)L2(0,L)2 (5.19)

+(y′)TM(M−1LRT ED2w + M−1LRT GD2w′ − M−1Wy′)︸ ︷︷ ︸
= IP1(5.18) + IP2(5.19) + IP3(5.20)

. (5.20)

We concentrate on the first two terms IP1 and IP2:

(ED2w′, D2w)L2(0,L)2 + (A−1(−AED4w − AGD4w′), w′)L2(0,L)2

= (ED2w′, D2w)L2(0,L)2 − (ED4w,w′)L2(0,L)2 − (GD4w′), w′(t))L2(0,L)2 .

Next using the definition of the inner product in the product space L2(0, L) × L2(0, L)
and integrating by parts, we have

(ED4w,w′)L2(0,L)2 =

⎛⎜⎜⎝
⎡⎢⎢⎣EI

∂4w1

∂s4

EI
∂4w2

∂s4

⎤⎥⎥⎦ ,

[
w′

1

w′
2

]⎞⎟⎟⎠
L2(0,L)2

= EI

∫ L

0

∂4w1

∂s4
w′

1dx + EI

∫ L

0

∂4w2

∂s4
w′

2dx

= EI
∂3w1

∂s3
w′

1

∣∣∣∣L
0

− EI

∫ L

0

∂3w1

∂s3

∂w′
1

∂s
dx

+ EI
∂3w2

∂s3
w′

2

∣∣∣∣L
0

− EI

∫ L

0

∂3w2

∂s3

∂w′
2

∂s
dx

= EI
∂3w1

∂s3
(L)w′

1(L) − EI
∂2w1

∂s2

∂w′
1

∂s

∣∣∣∣L
0

+ EI

∫ L

0

∂2w1

∂s2

∂2w′
1

∂s2
dx

+ EI
∂3w2

∂s3
(L)w′

2(L) − EI
∂2w2

∂s2

∂w′
2

∂s

∣∣∣∣L
0

+ EI

∫ L

0

∂2w2

∂s2

∂2w′
2

∂s2
dx

= EI
∂3w1

∂s3
(L)w′

1(L) − EI
∂2w1

∂s2
(L)

∂w′
1

∂s
(L) + EI

∂3w2

∂s3
(L)w′

2(L)

− EI
∂2w2

∂s2
(L)

∂w′
2

∂s
(L) + (ED2w′, D2w)L2(0,L)2 . (5.21)

In evaluating the functions at the end s = 0 we have used the fact that w′
i ∈ H2

� (0, L).
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Similarly we have

(GD4w′, w′)L2(0,L)2 =

⎛⎜⎜⎝
⎡⎢⎢⎣γ

∂4w′
1

∂s4

γ
∂4w′

2

∂s4

⎤⎥⎥⎦ ,

[
w′

1

w′
2

]⎞⎟⎟⎠
L2(0,L)2

= γ

∫ L

0

∂4w′
1

∂s4
w′

1dx + γ

∫ L

0

∂4w′
2

∂s4
w′

2dx

= γ
∂3w′

1

∂s3
w′

1

∣∣∣∣L
0

− γ

∫ L

0

∂3w′
1

∂s3

∂w′
1

∂s
dx

+ γ
∂3w′

2

∂s3
w′

2

∣∣∣∣L
0

− γ

∫ L

0

∂3w′
2

∂s3

∂w′
2

∂s
dx

= γ
∂3w′

1

∂s3
(L)w′

1(L) − γ
∂2w′

1

∂s2

∂w′
1

∂s

∣∣∣∣L
0

+ γ

∫ L

0

∂2w′
1

∂s2

∂2w′
1

∂s2
dx

+ γ
∂3w′

2

∂s3
(L)w′

2(L) − γ
∂2w′

2

∂s2

∂w′
2

∂s

∣∣∣∣L
0

+ γ

∫ L

0

∂2w′
2

∂s2

∂2w′
2

∂s2
dx

= γ
∂3w′

1

∂s3
(L)w′

1(L) − γ
∂2w′

1

∂s2
(L)

∂w′
1

∂s
(L) + γ

∂3w′
2

∂s3
(L)w′

2(L)

− γ
∂2w′

2

∂s2
(L)

∂w′
2

∂s
(L) + (GD2w′, D2w′)L2(0,L)2

= γ
∂3w′

1

∂s3
(L)w′

1(L) − γ
∂2w′

1

∂s2
(L)

∂w′
1

∂s
(L) + γ

∂3w′
2

∂s3
(L)w′

2(L)

− γ
∂2w′

2

∂s2
(L)

∂w′
2

∂s
(L) + (G

1
2 D2w′,G

1
2 D2w′)L2(0,L)2 , (5.22)

where we use that G is positive definite symmetric

G =

[
γ 0
0 γ

]
=

[
γ

1
2 0

0 γ
1
2

] [
γ

1
2 0

0 γ
1
2

]
= G

1
2G

1
2 .
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Now using (5.21) and (5.22), we have for IP1 + IP2:

IP1 + IP2 = (ED2w′, D2w)L2(0,L)2 − (ED4w,w′)L2(0,L)2 − (GD4w′), w′(t))L2(0,L)2

= (ED2w′, D2w)L2(0,L)2 − EI
∂3w1

∂s3
(L)w′

1(L) + EI
∂2w1

∂s2
(L)

∂w′
1

∂s
(L)

− EI
∂3w2

∂s3
(L)w′

2(L) + EI
∂2w2

∂s2
(L)

∂w′
2

∂s
(L) − (ED2w′, D2w)L2(0,L)2

− γ
∂3w′

1

∂s3
(L)w′

1(L) + γ
∂2w′

1

∂s2
(L)

∂w′
1

∂s
(L) − γ

∂3w′
2

∂s3
(L)w′

2(L)

+ γ
∂2w′

2

∂s2
(L)

∂w′
2

∂s
(L) − (G

1
2 D2w′,G

1
2 D2w′)L2(0,L)2

=

[
EI

∂2w1

∂s2
(L) + γ

∂2w′
1

∂s2
(L)

]
∂w′

1

∂s
(L) +

[
EI

∂2w2

∂s2
(L) + γ

∂2w′
2

∂s2
(L)

]
∂w′

2

∂s
(L)

−
[
EI

∂3w1

∂s3
(L) + γ

∂3w′
1

∂s3
(L)

]
w′

1(L) −
[
EI

∂3w2

∂s3
(L) + γ

∂3w′
2

∂s3
(L)

]
w′

2(L)

− ‖G 1
2 D2w′‖L2(0,L)2

= M1
∂w′

1

∂s
(L) + M2

∂w′
2

∂s
(L) − N1w

′
1(L) − N2w

′
2(L) − ‖G 1

2 D2w′‖L2(0,L)2 .

(5.23)

We next investigate the term IP3:

IP3 = (y′)TM(M−1LRT ED2w + M−1LRT GD2w′ − M−1Wy′)

= (y′)TLRT ED2w + (y′)TLRT GD2w′ − (y′)TWy′.

We look at each of these three terms separately. The first term yields

(y′)TLRT ED2w =
[
ẋ θ̇1 θ̇2

] ⎡⎣0 −1 0 1
1 � 0 0
0 0 1 �

⎤⎦
⎡⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−EI
∂3w1

∂s3
(L)

EI
∂2w1

∂s2
(L)

−EI
∂3w2

∂s3
(L)

EI
∂2w2

∂s2
(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −EI

∂3w1

∂s3
(L)(ẋ − �θ̇1) + EI

∂3w2

∂s3
(L)(ẋ + �θ̇2)

+ EI
∂2w1

∂s2
(L)θ̇1 + EI

∂2w2

∂s2
(L)θ̇2. (5.24)
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Similarly, the second term yields

(y′)TLRT GD2w′ =
[
ẋ θ̇1 θ̇2

] ⎡⎣0 −1 0 1
1 � 0 0
0 0 1 �

⎤⎦
⎡⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γ
∂3w′

1

∂s3
(L)

γ
∂2w′

1

∂s2
(L)

−γ
∂3w′

2

∂s3
(L)

γ
∂2w′

2

∂s2
(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −γ

∂3w′
1

∂s3
(L)(ẋ − �θ̇1) + γ

∂3w′
2

∂s3
(L)(ẋ + �θ̇2)

+ γ
∂2w′

1

∂s2
(L)θ̇1 + γ

∂2w′
2

∂s2
(L)θ̇2. (5.25)

Now we also must satisfy the domain constraint T w′ = LT y′, or⎡⎢⎢⎢⎢⎢⎢⎢⎣

−∂w′
1

∂s
(L)

w′
1(L)

−∂w′
2

∂s
(L)

w′
2(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣
0 1 0
−1 � 0
0 0 1
1 0 �

⎤⎥⎥⎦
⎡⎣ ẋ

θ̇1

θ̇2

⎤⎦ =

⎡⎢⎢⎣
θ̇1

−(ẋ − �θ̇1)

θ̇2

(ẋ + �θ̇2)

⎤⎥⎥⎦ . (5.26)

Substituting (5.26) into (5.24) yields

(y′)TLRT ED2w = EI
∂3w1

∂s3
(L)w′

1(L) + EI
∂3w2

∂s3
(L)w′

2(L)

− EI
∂2w1

∂s2
(L)

∂w′
1

∂s
(L) − EI

∂2w2

∂s2
(L)

∂w′
2

∂s
(L). (5.27)

Similarly, substituting (5.26) into (5.25) yields

(y′)TLRT GD2w′ = γ
∂3w′

1

∂s3
(L)w′

1(L) + γ
∂3w′

2

∂s3
(L)w′

2(L)

− γ
∂2w′

1

∂s2
(L)

∂w′
1

∂s
(L) − γ

∂2w′
2

∂s2
(L)

∂w′
2

∂s
(L). (5.28)
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Combining (5.27) and (5.28) we have

(y′)TLRT ED2w + (y′)TLRT GD2w′

= −
[
EI

∂2w1

∂s2
(L) + γ

∂2w′
1

∂s2
(L)

]
∂w′

1

∂s
(L) −

[
EI

∂2w2

∂s2
(L) + γ

∂2w′
2

∂s2
(L)

]
∂w′

2

∂s
(L)

+

[
EI

∂3w1

∂s3
(L) + γ

∂3w′
1

∂s3
(L)

]
w′

1(L) +

[
EI

∂3w2

∂s3
(L) + γ

∂3w′
2

∂s3
(L)

]
w′

2(L)

= −M1
∂w′

1

∂s
(L) − M2

∂w′
2

∂s
(L) + N1w

′
1(L) + N2w

′
2(L). (5.29)

Finally, for the third term we get

−(y′)TWy′ = −
[
ẋ θ̇1 θ̇2

] ⎡⎣0 0 0
0 b −b
0 −b b

⎤⎦⎡⎣ ẋ

θ̇1

θ̇2

⎤⎦
= −b(θ̇1 − θ̇2)

2, (5.30)

where b > 0. Thus, putting it all together with equations (5.20), (5.23), (5.29) and (5.30)
we end up with

(Az, z)HODE
= M1

∂w′
1

∂s
(L) + M2

∂w′
2

∂s
(L) − N1w

′
1(L) − N2w

′
2(L) − ‖G 1

2 D2w′‖L2(0,L)2

− M1
∂w′

1

∂s
(L) − M2

∂w′
2

∂s
(L) + N1w

′
1(L) + N2w

′
2(L) − b(θ̇1 − θ̇2)

2

= −‖G 1
2 D2w′‖L2(0,L)2 − b(θ̇1 − θ̇2)

2 ≤ 0. (5.31)

Therefore, we can conclude that A is dissipative.

We next work to show that zero is in the resolvent set of A. We do this by showing that
A is one-to-one and onto. Then, A−1 exists and is bounded.

We set Az = z̃:

Az =

⎡⎣ 0 I 0
−AED4 −AGD4 0

M−1LRT ED2 M−1LRT GD2 −M−1W

⎤⎦⎡⎣w
w′

y′

⎤⎦
=

⎡⎣ w′

−AED4w − AGD4w′

M−1LRT ED2w + M−1LRT GD2w′ − M−1Wy′

⎤⎦ =

⎡⎣z̃1

z̃2

z̃3

⎤⎦ .

This gives three equations:

w′ = z̃1 ∈ H1, (5.32)

− AED4w − AGD4w′ = z̃2 ∈ {L2(0, L) × L2(0, L)}, (5.33)

M−1LRT ED2w + M−1LRT GD2w′ − M−1Wy′ = z̃3 ∈ R
3. (5.34)
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Equation (5.32) yields a unique w′ for given z̃1. We then substitute for w′ in (5.33) and
solve for w to obtain an ODE with respect to s,

−AED4w = z̃2 + AGD4z̃1 or,

D4w = −E−1A−1z̃2 − E−1GD4z̃1. (5.35)

From the domain constraint for A we have T w′ = LT y′, or y′ = (LLT )−1LT w′, or
y′ = (LLT )−1LT z̃1 where we used (5.32). Substituting for y′ and w′ into (5.34) yields

M−1LRT ED2w = z̃3 − M−1LRT GD2z̃1 + M−1W(LLT )−1LT z̃1

LRT ED2w = Mz̃3 − LRT GD2z̃1 + W(LLT )−1LT z̃1

RT ED2w = (LTL)−1LTMz̃3 − RT GD2z̃1 + (LTL)−1LTW(LLT )−1LT z̃1

T ED2w = R−1(LTL)−1LTMz̃3 − T GD2z̃1 + R−1(LTL)−1LTW.(LLT )−1LT z̃1,

where we used the Moore-Penrose pseudoinverse of L, i.e., (LTL)−1LT , to solve for
T ED2w.

We write the right-hand side as known functions and calculate the left-hand side:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−EI
d3w1

ds3
(L)

EI
d2w1

ds2
(L)

−EI
d3w2

ds3
(L)

EI
d2w2

ds2
(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣
f1

f2

f3

f4

⎤⎥⎥⎦ , or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d3w1

ds3
(L)

d2w1

ds2
(L)

d3w2

ds3
(L)

d2w2

ds2
(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
f̃1

f̃2

f̃3

f̃4

⎤⎥⎥⎥⎥⎥⎦ . (5.36)

Thus, equation (5.34) provides boundary conditions (5.36) for the fourth order ODE
(5.35). Additionally, we also have the boundary conditions imposed by the domain
of A, i.e., H2

� (0, L) of w(0) = Dw(0) = 0. Thus, the lower order derivative terms
provide boundary conditions at s = 0 while the two higher order derivative terms provide
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boundary conditions at s = L. By standard ODE theory, these particular boundary
conditions result in existence of a unique solution for w (see for example Walter [40]
Chapter VI, Section 26, Parts X and XI). Also by standard linear elliptic differential
equation theory we have for a right-hand side function in {L2(0, L) × L2(0, L)} that
w ∈ {H2

� (0, L) ∩ H4(0, L)} × {H2
� (0, L) ∩ H4(0, L)} = H1. We have established that

given a right-hand side in HODE there exists a unique solution of Az = z̃.for w ∈ H1,
w′ ∈ H1 = H2 and y′ ∈ R

3 where y′ satisfies LT y′ = T w′. As a result we have shown
that A−1 exists.

We now show that A−1 is bounded. From expressions (5.32) and (5.35) and the expression
for y′ from the constraint equation, we have

‖w′‖ ≤ c1‖z̃1‖
‖w‖ ≤ c2(‖z̃2‖ + ‖z̃1‖)
‖y′‖ ≤ c3‖z̃1‖.

Thus,

‖z‖HODE
≤ C‖z̃1‖HODE

,

‖z‖HODE
≤ C‖Az‖HODE

,

‖A−1(Az)‖HODE
≤ C‖Az‖HODE

.

Therefore, A−1 is bounded and the resolvent operator for λ = 0, i.e., (0 − A)−1, is also
bounded. Thus, we have 0 ∈ ρ(A).

Hence, by the Corollary to Lumer-Phillips in Liu and Zheng [30] mentioned above, A is
the infinitesimal generator of a strongly continuous semigroup of contractions on HODE.

Now by Lemma 3.7 with q(t) Lipschitz continuous, and hence also q1(t), we have a unique
solution u(t) = x1(t) ∈ D(B11) = D(B21) to the inhomogeneous abstract Cauchy problem
(5.16). Then using the expression x2(t) = −B−1

22 B21x1(t) we obtain a unique solution for
x2(t) ∈ D(B12) = D(B22). We have therefore shown that there exists a unique solution
to this two beam and rigid joint problem.



Chapter 6

Discretized Differential-Algebraic
Equations

Once we have shown that there exists a unique solution to the abstract DAE we then
want to be able to develop numerical methods for approximating the solutions. One
approach is to discretize the spatial variables of the abstract DAE using a finite element
approach to form a finite dimensional DAE. We assume the boundary conditions and
constraints that are imposed in the domain of the operators have been incorporated into
the basis elements of the finite element space. In this chapter, we investigate some of the
issues that arise after discretization such as solvability, projections, index reduction, etc.

6.1 Solvability of the Differential-Algebraic Equation

Consider the linear constant coefficient Differential-Algebraic Equation (DAE) that may
be typical of those which arise from various structural dynamics applications:{

Mz̈(t) + Dż(t) + Kz(t) − CF (t) = f(t),

CT z(t) = 0,
(6.1)

where M ∈ R
nxn is a mass matrix with the property M > 0 and symmetric, D ∈ R

nxn

is a damping matrix, K ∈ R
nxn is a stiffness matrix with the usual property K ≥ 0

and symmetric, C ∈ R
nxp with full rank p, p ≤ n, z(t), f(t) ∈ R

n where f(t) is an
optional forcing function, and F (t) ∈ R

p are unknown functions related to the problem
(For example these could be the internal forces and moments imposed on a joint by two
vibrating beams like our application in Chapter 5). The second of the two equations
above represents a constraint on the second-order ODE in the first equation. Note that

70
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this system is a DAE because the unknown variable F (t) appears only in algebraic form
and is not differentiated in the equation.

We now convert this second-order system into a first-order ODE. Let x1(t) = z(t), x2(t) =
ż(t) = ẋ1(t), and x3(t) = F (t). We then get three equations:

ẋ1(t) − x2(t) = 0,

Mẋ2(t) + Dx2(t) + Kx1(t) − Cx3(t) = f(t),

CT x1(t) = 0.

We incorporate these three equations into matrix form,⎡⎣ In 0n 0n, p

0n M 0n, p

0p, n 0p, n 0p

⎤⎦⎡⎣ẋ1(t)
ẋ2(t)
ẋ3(t)

⎤⎦+

⎡⎣ 0n −In 0n, p

K D −C
CT 0p, n 0p

⎤⎦⎡⎣x1(t)
x2(t)
x3(t)

⎤⎦ =

⎡⎣ 0n

In

0p, n

⎤⎦ f(t), (6.2)

where a single subscript n or p indicate n × n or p × p square matrices respectively, and
double subscripts n, p or p, n indicate n × p or p × n rectangular matrices respectively.

We let

E =

⎡⎣ In 0n 0n, p

0n M 0n, p

0p, n 0p, n 0p

⎤⎦
B =

⎡⎣ 0n −In 0n, p

K D −C
CT 0p, n 0p

⎤⎦
x(t) =

⎡⎣x1(t)
x2(t)
x3(t)

⎤⎦
q(t) =

⎡⎣ 0n

In

0p, n

⎤⎦ f(t).

This yields the following DAE

Eẋ(t) + Bx(t) = q(t). (6.3)

We now present the first result.

Proposition 6.1. Let the matrix C have full rank. Then the DAE (6.1) is solvable if
and only if det(λM + D + 1

λ
K) �= 0 for some λ �= 0.
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Proof. Theorem 2.3.1 from Brenan, Campbell and Petzold [3] states that the DAE (6.3)
is solvable if and only if det (λE + B) �≡ 0, i.e., det (λE + B) is not identically
zero as a function of λ. We now apply this solvability condition to our specific matrices
involved in the DAE (6.3). We get the following block-partitioned matrix result for the
matrix pencil (λE + B),

λE + B =

⎡⎣λIn −In 0n, p

K λM + D −C
CT 0p, n 0p

⎤⎦ . (6.4)

We now drop the p and n subscripts. The size of an individual block matrix can be
determined by its position in the larger block-partitioned matrix. Specifically, the par-
titioned matrix has n rows for each block matrix in its first two partitioned rows and p
rows for each block matrix in its third partitioned row. The same applies respectively for
the columns of each block matrix based on the partitioned column in which it is located
in the larger matrix.

We will use two properties of determinants: (1) det F det G = det(FG), and (2) the de-
terminant of an upper or lower triangular block matrix is the product of the determinants
of the matrices on the diagonal. Using block matrix Gaussian elimination to perform row
reduction on (6.4) yields: (We assume λ �= 0.)

det

⎡⎣λI −I 0
K λM + D −C
CT 0 0

⎤⎦ = det

⎡⎣ I 0 0
− 1

λ
K I 0

0 0 I

⎤⎦
︸ ︷︷ ︸

=det I det I det I=1

det

⎡⎣λI −I 0
K λM + D −C
CT 0 0

⎤⎦

= det

⎡⎣λI −I 0
0 λM + D + 1

λ
K −C

CT 0 0

⎤⎦
= det

⎡⎣ I 0 0
0 I 0

− 1
λ
CT 0 I

⎤⎦ det

⎡⎣λI −I 0
0 λM + D + 1

λ
K −C

CT 0 0

⎤⎦
= det

⎡⎣λI −I 0
0 λM + D + 1

λ
K −C

0 1
λ
CT 0

⎤⎦
= λn det

[
λM + D + 1

λ
K −C

1
λ
CT 0

]
.

At this point, note that the element λM + D + 1
λ
K is a square matrix. The other

two nonzero matrices contained in the last determinant matrix are rectangular. In
order to proceed we now assume that the matrix λM + D + 1

λ
K is invertible, i.e.,
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det(λM + D + 1
λ
K) �= 0. Then,

det

[
λM + D + 1

λ
K −C

1
λ
CT 0

]
= det

[
I 0

− 1
λ
CT (λM + D + 1

λ
K)−1 I

]
det

[
λM + D + 1

λ
K −C

1
λ
CT 0

]
= det

[
λM + D + 1

λ
K −C

0 1
λ
CT (λM + D + 1

λ
K)−1C

]
= det(λM + D +

1

λ
K) det[

1

λ
CT (λM + D +

1

λ
K)−1C].

Therefore, since C (and CT ) is full rank, the requirement that det(λE + B) �= 0 results
in the condition that det(λM + D + 1

λ
K) �= 0.

Thus, the DAE (6.1) is solvable if and only if det(λM +D+ 1
λ
K) �= 0 for some λ �= 0.

So far we have only used the fact that C is full rank. If we add the additional condition
that M is nonsingular, then we can obtain an additional proposition. However, before
proceeding we will need the following lemma from functional analysis (see for example
Taylor and Lay [38], Theorem IV.1.5.).

Lemma 6.1. Let X be a Banach space and let L(X) be a Banach algebra of bounded
linear operators which map X into itself. By definition, an operator M is invertible in
L(X) if M is bijective and M−1 ∈ L(X), i.e., M−1 is bounded. If M is invertible in
L(X), N ∈ L(X), and ‖M − N‖ < 1

‖M−1‖ , then N is invertible in L(X).

Proposition 6.2. If C is full rank and M is nonsingular, then the DAE (6.1) is solvable.

Proof. From Proposition 6.1 assuming C is full rank, we obtained that the DAE (6.1) is
solvable if the matrix λM + D + 1

λ
K is invertible for some λ �= 0. We show that this

matrix is invertible for λ satisfying |λ| > ‖M−1‖(‖D‖ + ‖K‖) or |λ| > 1 whichever is
larger. In the following we assume |λ| > 1,

‖M−1‖(‖D‖ + ‖K‖) < |λ|

‖D‖ + ‖K‖ <
1

‖(λM)−1‖

‖D +
1

λ
K‖ ≤ ‖D‖ +

1

|λ|‖K‖ < ‖D‖ + ‖K‖ <
1

‖(λM)−1‖

‖ − D − 1

λ
K‖ <

1

‖(λM)−1‖

‖λM − λM − D − 1

λ
K‖ <

1

‖(λM)−1‖

‖λM − (λM + D +
1

λ
K)‖ <

1

‖(λM)−1‖ .
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Since M is invertible, λM is also invertible for λ �= 0. Now by Lemma 6.1, λM +
D + 1

λ
K is invertible. Thus for M invertible, we have det(λM + D + 1

λ
K) �= 0 for

some λ, specifically for any |λ| > max {1, ‖M−1‖(‖D‖ + ‖K‖)}, or equivalently, |λ| >

max {1, (‖D‖+‖K‖)
‖M‖ }.

6.2 Incorporating the Algebraic Constraints into an

Explicit ODE

We now look at a different formulation of the DAE (6.1) by using the constraint equation
CT z(t) = 0 to solve for F (t) and form an explicit ordinary differential equation (ODE).
Based on our results from Section 6.1 and given that C is full rank and M > 0 is
symmetric, we expect this method to be feasible since we know this particular DAE is
solvable.

We start with the second-order ODE equation. Since M > 0 is invertible, we multiply
by M−1 and then by the transpose CT . We have

Mz̈(t) + Dż(t) + Kz(t) = CF (t) + f(t)

z̈(t) + M−1Dż(t) + M−1Kz(t) = M−1CF (t) + M−1f(t)

CT z̈(t) + CT M−1Dż(t) + CT M−1Kz(t) = CT M−1CF (t) + CT M−1f(t).

We differentiate the constraint equation twice to obtain CT z̈(t) = 0 and apply to the last
equation above which yields

CT M−1Dż(t) + CT M−1Kz(t) = CT M−1CF (t) + CT M−1f(t)

CT M−1CF (t) = CT M−1Dż(t) + CT M−1Kz(t) − CT M−1f(t)

F (t) = (CT M−1C)−1CT M−1Dż(t) + (CT M−1C)−1CT M−1Kz(t)

− (CT M−1C)−1CT M−1f(t),

where we have used the fact C is full rank in order to justify the existence of (CT M−1C)−1.
We then substitute this result for F (t) back into the original second-order ODE:

Mz̈(t) + Dż(t) + Kz(t) − C(CT M−1C)−1CT M−1Dż(t) − C(CT M−1C)−1CT M−1Kz(t)

= f(t) − C(CT M−1C)−1CT M−1f(t)

Mz̈(t) + [I − C(CT M−1C)−1CT M−1]Dż(t) + [I − C(CT M−1C)−1CT M−1]Kz(t)

= [I − C(CT M−1C)−1CT M−1]f(t).

We define the matrix Q ∈ R
nxn as follows

Q = C(CT M−1C)−1CT M−1. (6.5)
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We then let P := I − Q ∈ R
nxn which then leads to the second-order ODE

Mz̈(t) + PDż(t) + PKz(t) = Pf(t). (6.6)

We now convert this to a first-order ODE where x1(t) = z(t) and x2(t) = ż(t) = ẋ1(t),[
In 0n

0n M

] [
ẋ1(t)
ẋ2(t)

]
+

[
0n −In

PK PD

] [
x1(t)
x2(t)

]
=

[
0n, 1

Pf(t)

]
,

[
ẋ1(t)
ẋ2(t)

]
+

[
I 0
0 M−1

] [
0 −I

PK PD

] [
x1(t)
x2(t)

]
=

[
I 0
0 M−1

] [
0

Pf(t)

]
,

[
ẋ1(t)
ẋ2(t)

]
+

[
0 −I

M−1PK M−1PD

] [
x1(t)
x2(t)

]
=

[
0

M−1Pf(t)

]
.

We note that the initial conditions must satisfy CT x1(0) = 0 and CT x2(0) = 0 to ensure
we start out on the constraint manifold. Thus, our final system becomes a regular initial
value problem ODE:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
ẋ1(t)

ẋ2(t)

]
+

[
0 −I

M−1PK M−1PD

][
x1(t)

x2(t)

]
=

[
0

M−1Pf(t)

]
[
CT 0

0 CT

][
x1(0)

x2(0)

]
=

[
0

0

] (6.7)

with a constraint imposed on the initial data, i.e., we require consistent initial data.

Remark. Not all solutions of the explicit ODE are solutions of the original DAE. However,
by imposing consistent initial conditions to ensure we start out in the constraint manifold,
{z ∈ R

n : CT z(t) = 0}, will ensure that the solution of the ODE and the solution of the
DAE are equivalent. However, when solving the explicit ODE numerically, one must be
aware of the issue of numerical drift when z(t) may drift off of the constraint manifold.

Letting

x(t) =

[
x1(t)
x2(t)

]
,

A =

[
0 I

−M−1PK −M−1PD

]
,

q(t) =

[
0

M−1Pf(t)

]
,

G =

[
CT 0
0 CT

]
,
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we have {
ẋ(t) = Ax(t) + q(t)

Gx(0) = 0.
(6.8)

Remark. Notice that regardless of whether we started with CT ż(t) = 0 or CT z(t) = 0
we would still get the same explicit ODE (6.7); the only difference is whether we had
to differentiate the constraint twice or just once before solving for the algebraic variable
F (t). However, if we started with CT ż(t) = 0, we would need to be careful that the initial
condition CT z(0) = 0 makes sense and is consistent. Additionally, even if the DAE (6.1)
were solvable it might not always be possible to form an explicit ODE. This would be
true in particular for implicit or nonlinear DAEs.

We now investigate the matrices Q and P. As noted above, Q = C(CT M−1C)−1CT M−1

and P = I − Q. Q is idempotent since

Q2 = C(CT M−1C)−1(CT M−1C)(CT M−1C)−1CT M−1

= C(CT M−1C)−1CT M−1

= Q.

Thus, we also have P 2 = P .

Before we give details on what Q does, we first review information on projections from
Householder, Section 1.3, [22]. Two vectors in R

n are orthogonal if yT x = 0. We can
always decompose any vector z ∈ R

n into two orthogonal components z = x + y such
that yT x = 0. If Qz = y and (I − Q)z = Pz = x, then Q is the orthogonal projection
onto im Q and P is the orthogonal projection onto (im Q)⊥ with Q2 = Q, QT = Q, and
PQ = QP = 0. Thus, we have (Qz)T (Pz) = zT QT Pz = zT QPz = 0 for all z ∈ R

n, or x
and y are orthogonal for z = x + y where x = Pz and y = Qz.

Likewise if a matrix C ∈ R
nxp has full rank p, p ≤ n, and if the vector Cx is the

orthogonal projection of a vector z ∈ R
n onto the space spanned by the columns of C,

then CT (z − Cx) = 0 since ker CT = (im C)⊥. Solving for x yields

CT (z − Cx) = CT z − CT Cx = 0

CT Cx = CT z

x = (CT C)−1CT z,

where (CT C)−1 exists because C has full column rank. Note that x ∈ R
p with dim (im C) =

p. Hence Q̃z = Cx = C(CT C)−1CT z or Q̃ = C(CT C)−1CT is the orthogonal projection

onto im C. It is easy to check Q̃2 = Q̃, Q̃T = Q̃. Furthermore, P̃ = I − Q̃ is then the
projection onto (im C)⊥ = ker CT .

We next generalize the above result. We say that, given a symmetric positive definite
matrix G, two vectors x and y are orthogonal with respect to G if yT Gx = 0. To
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give some understanding to this concept, a symmetric positive definite matrix G can
always be factored by a Cholesky factorization such that G = BT B. Then, we can
interpret yT Gx = yT BT Bx = (By)T (Bx) = 0 as the ordinary scalar product between
two orthogonal vectors By and Bx where x and y can be considered basis vectors in
an oblique coordinate system and then Bx and By are the respective basis vectors after
transformation into an orthogonal coordinate system.

We now repeat the derivation of Q as above except we generalize so that the projection is
orthogonal with respect to G. In our case, we let G = M−1. Thus, if M−1 is symmetric
positive definite, if C has full column rank p, and if we assume Cx is the orthogonal
projection with respect to M−1 of a vector z ∈ R

n onto the space spanned by the
columns of C, then CT M−1(z − Cx) = 0 since now ker CT M−1 = (im C)⊥. Solving
again for x yields

CT M−1(z − Cx) = CT M−1z − CT M−1Cx = 0

CT M−1Cx = CT M−1z

x = (CT M−1C)−1CT M−1z.

Hence, Qz = Cx = C(CT M−1C)−1CT M−1z or Q = C(CT M−1C)−1CT M−1. We then
define P = I − Q. Thus, Q is the orthogonal projection with respect to M−1 onto
im C. We note for information only that in this generalized projection case we do not
have QT = Q, i.e., Q is not symmetric. Since (im C)⊥ = ker CT , P is the orthogonal
projection with respect to M−1 onto ker CT .

Another way to express this result is that CT M−1Pz = 0 for any z ∈ R
n. Hence,

P can also be viewed as a projection onto ker(CT M−1). Therefore, CT M−1PKx(t) =
0, CT M−1PDẋ(t) = 0, and CT M−1Pf(t) = 0. Thus, multiplying the second-order
ODE (6.6) above by CT M−1, gives CT z̈(t) = 0 and shows that we satisfy our constraint
equation. Finally, in equation (6.7) above, M−1P can be interpreted as a mapping onto
ker CT , i.e., onto the constraint manifold {z(t) ∈ R

n : CT z(t) = 0}.
Remark. In our original two beam and joint problem, M was defined as a positive def-
inite symmetric mass matrix. Hence, we can assume that M−1 is also positive definite
symmetric and our interpretation of the projection P is valid.

6.3 Hessenberg Form of DAEs

Before we look at the Hessenberg form of DAEs, we first recall the definition of the index
of a DAE.

Definition 6.1. For the DAE (6.3), the index can be defined as the number of iterations
of the following process: (i) Perform coordinate changes to rewrite the DAE with explicit
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algebraic constraints, and then (ii) Differentiate the algebraic constraints. Repeat until
the system is reduced to an explicit ODE.

Remark. In the last section we formed an explicit ODE by differentiating the DAE (6.1)
constraints twice and substituting back in to solve for the unknown algebraic variables
F (T ). Based on this derivation of the explicit ODE and the definition of index, one may
think that the index for DAE (6.1) is two.

Since the DAE (6.1) has a 3 × 3 block matrix when put into a first order system (6.2),
let us look at the standard Hessenberg size-3 form of a DAE.

⎡⎣I 0 0
0 I 0
0 0 0

⎤⎦⎡⎣ẋ1(t)
ẋ2(t)
ẋ3(t)

⎤⎦+

⎡⎣B11 B12 B13

B21 B22 0
0 B32 0

⎤⎦⎡⎣x1(t)
x2(t)
x3(t)

⎤⎦ = q(t). (6.9)

Definition 6.2. A DAE is said to be in Hessenberg size-3 form if it has the standard
form above (6.9) and meets the condition that the product B32B21B13 is square and
nonsingular.

We compare the DAE (6.2) with the Hessenberg size-3 form by multiplying the second
row of (6.2) by M−1,

⎡⎣I 0 0
0 I 0
0 0 0

⎤⎦⎡⎣ẋ1(t)
ẋ2(t)
ẋ3(t)

⎤⎦+

⎡⎣ 0 −I 0
M−1K M−1D −M−1C

CT 0 0

⎤⎦⎡⎣x1(t)
x2(t)
x3(t)

⎤⎦ =

⎡⎣ 0
M−1f(t)

0

⎤⎦ .

In this case, the product B32B21B13 = 0. Before we say this is not a Hessenberg size-3
DAE, we notice that by reordering the x1 and x2 variables we can maintain our structure
in the left matrix in front of the differentiated variables. Then, the effect of reordering
the variables on the B matrix is to swap the first two rows and then switch the first two
columns. We then get the following reordered system:

⎡⎣I 0 0
0 I 0
0 0 0

⎤⎦⎡⎣ẋ2(t)
ẋ1(t)
ẋ3(t)

⎤⎦+

⎡⎣M−1D M−1K −M−1C
−I 0 0
0 CT 0

⎤⎦⎡⎣x2(t)
x1(t)
x3(t)

⎤⎦ =

⎡⎣M−1f(t)
0
0

⎤⎦ . (6.10)

Now the product B32B21B13 = CT M−1C is square and invertible since C is full rank.
Hence, our original DAE (6.1) is a Hessenberg size-3 DAE. Why is this significant?

From Brenan, Campbell, and Petzold [3], a Hessenberg size-i DAE is solvable and has
index i. Hence, our original DAE is solvable and has index three. The fact that it is
solvable agrees with our results from section 6.1.
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Remark. In section 6.2 we assumed that the index of this DAE was two, based on differ-
entiating the constraint equation twice. Hence, differentiating may only give a minimum
index number and may not be an accurate indicator of the index.

We now look at a modified version of (6.1). Specifically, we will look at the differentiated
constraint CT ż(t) = 0 vice CT z(t) = 0. Our modified system becomes{

Mz̈(t) + Dż(t) + Kz(t) − CF (t) = f(t),

CT ż(t) = 0.
(6.11)

When put into first order form we get:⎡⎣I 0 0
0 I 0
0 0 0

⎤⎦⎡⎣ẋ1(t)
ẋ2(t)
ẋ3(t)

⎤⎦+

⎡⎣ 0 −I 0
M−1K M−1D −M−1C

0 CT 0

⎤⎦⎡⎣x1(t)
x2(t)
x3(t)

⎤⎦ =

⎡⎣ 0
M−1f(t)

0

⎤⎦ .

Here we have multiplied the second row by M−1 to try to put the system into Hessenberg
form. The only difference between the original DAE and the modified DAE is that the
CT term is in the bottom center element of matrix B vice in the bottom left element.

We note immediately that the product B32B21B13 = 0. If we reorder the x1 and x2

variables as before the effect on the B matrix is to swap the first two rows and then switch
the first two columns. This will move the CT term from the bottom center element back
to the bottom left element. Then, B32 = 0 and hence the product B32B21B13 = 0. Thus,
this modified DAE is not a Hessenberg size-3 DAE.

However, if we partition the B matrix for this modified DAE, we have

B =

⎡⎢⎢⎢⎢⎣
0 −I

... 0

M−1K M−1D
... −M−1C

· · · · · · · · · · · ·
0 CT ... 0

⎤⎥⎥⎥⎥⎦ =

⎡⎣B11 B12

B21 0

⎤⎦ ,

where the product B21B12 = −CT M−1C is square and nonsingular.

Thus, we get a Hessenberg size-2 DAE:

[
I 0
0 0

] [
ẏ1(t)
ẏ2(t)

]
+

[
B11 B12

B21 0

] [
y1(t)
y2(t)

]
=

[
q1(t)
q2(t)

]
, (6.12)

where y1(t) = [x1(t), x2(t)]
T , y2(t) = x3(t), q1(t) = [0 M−1 f(t)]T , q2(t) = 0. Thus, this

modified DAE with the constraint differentiated once results in a solvable DAE and has
index two.
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Remark. It may not always be obvious that a DAE can be put into Hessenberg form. It
may take some work. But a word of warning, not all DAEs can be put into Hessenberg
form. Hence, if a DAE cannot be put into Hessenberg size-3 or size-2 does not mean it
is not an index-3 or index-2 DAE respectively. However, if the DAE can be put into a
Hessenberg form, it immediately tells us that the DAE is solvable and has index of ”i”
associated with size-i Hessenberg form.

Remark. We note that differentiating the constraint equation once reduced the index of
the DAE by one as expected.



Chapter 7

Conclusions

7.1 Summary and Contributions

Using the detailed framework and background developed by März [33] we have extended
the theory from ordinary DAEs to abstract DAEs involving systems of partial differential
equations and hybrid systems. We focused our initial efforts on index-1 DAEs and those
of semi-explicit form. While one could easily use a more direct approach for the index-1
semi-explicit DAE, this projection and subspace approach has much more potential for
those problems that do not exactly fit the semi-explicit index-1 form. Hence, our thorough
analysis of this method and the thorough example application of a structural dynamics
problem will be helpful in continuing the theory beyond its current bounds as well as
being useful for applications that may be index-1 abstract DAEs but do not allow use of
a direct method.

We have also started a theory for abstract Hessenberg DAEs in the index-2 abstract
DAE case. The theory for index-2 is much more difficult as seen. In the index-1 case,
the P0 and Q0 projectors only depend on E which in this case only included the identity
operator and zero operators. When moving into the index-2 case, even for the simplified
semi-explicit DAE, the projectors P1 and Q1 become much more complex. They now
depend on the operators making up the matrix operator B. We have to worry about
whether these index-2 projectors now “commute” with the various Bij operators, i.e.,
whether the images of the projectors are in the domains of the Bij operators, and whether
we lose infinitesimal generator and dissipative operator properties of the Bij operators
when composed with these index-2 projectors. This was one of the issues we attempted
to address for the abstract Hessenberg DAE and the associated projector H. In an
attempt to generalize the problem we also defined a concept of an operator domain that
is uniformly dense with respect to an orthogonal projector P on a Hilbert space.

81
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In the final chapter, we addressed some of the issues that arise when working with the
discretized DAE. Specifically, when an abstract DAE is discretized using a finite element
method for the spatial variables, we may end up with an ordinary DAE. What form of the
now discretized DAE do we want to work with? Can we work with the reduced index form
of the DAE by differentiating the constraints? What is the difference between converting
the discretized DAE to its underlying or explicit ODE? What are the drawbacks of
using the explicit ODE form? We explored some of these issues as well as converting a
DAE to Hessenberg form. However, we do not provide any answers to these questions
at this point. This exploration primarily whets the appetite for more work yet to be
done in this area. Moreover, a comparison between the form of the underlying explicit
ODE and that of the inherent regular ODE defined by März is interesting. There may
be a way to efficiently perform a projection at each step, or even more likely after a
series of steps, of the numerical approximation to help prevent drift off of the constraint
manifold. Determining how long one can proceed between correcting projection steps
would be critical. This idea could lead to a kind of “corrector” step which could be
added to existing algorithms.

7.2 Future Work

There is much work to be done in this area. Some related research is ongoing in the
area of PDAEs. However, we have only begun to scratch the surface of what needs to be
done for the broader scope of abstract DAEs. For example, in the area of well-posedness
more work still needs to be done with respect to continuous dependence on initial data.
Does this concept even apply? We only looked at existence and uniqueness of solutions.
Additionally, we primarily focused on semigroup methods for determining existence and
uniqueness of solutions to the AODE. There is much more literature on standard elliptic
and parabolic PDE theory. Thus, determining what it means to have a weak or mild
solution of a DAE would be a useful step forward.

Much more effort is needed for the abstract index-2 case. We only addressed the abstract
Hessenberg size-2 problem. It would be useful to attack a more general index-2 version.
The other thing to factor in are the applications. It would be helpful to first have some
good abstract index-2 problems to work with to help guide possible solutions. We also
only addressed the liner time-invariant case where our E and B operators were constant
and not a function of time. It would be useful to extend the abstract DAE theory to the
linear time-varying problem as well. Here the methodology developed by März should
also be helpful. Ordinary DAEs are already being used in the control literature. An
extension to abstract DAEs could be made for the infinite-dimensional control problem
or distributed parameter systems.
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There has already been some work in the area of numerical approximation to PDAEs. As
discussed above in Section 7.1 there is some potential for modifying algorithms to include
correction steps depending on the type of algorithm. Iterative methods in particular are
desired for the large matrices that result from discretization of PDEs. Stability, accuracy
and efficiency need to be addressed and resolved for the different algorithms and methods
used for numerically solving abstract DAEs. A general theory of index reduction for
discretized abstract DAEs would prove to be very useful and allow more problems to be
solved using existing algorithms.

As one can see there are many openings remaining for productive research in the area
of abstract DAEs. What are you waiting for? I for one will continue from where this
dissertation ends.
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