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Graph-based genomic signatures

Amrita Pati

(ABSTRACT)

Genomes have both deterministic and random aspects, with the underlying DNA sequences exhibiting fea-

tures at numerous scales, from codons to regions of conserved or divergent gene order. Genomic signatures

work by capturing one or more such features efficiently into a compact mathematical structure. This work

examines the unique manner in which oligonucleotides fit together to comprise a genome, within a graph-

theoretic setting. A de Bruijn chain (DBC) is a marriage of a de Bruijn graph and a finite Markov chain. By

representing a DNA sequence as a walk over a DBC and retaining specific information at nodes and edges, we

are able to obtain the de Bruijn chain genomic signature (DBCGS), based on both graph structure and the

stationary distribution of the DBC. We demonstrate that DBCGS is information-rich, efficient, sufficiently

representative of the sequence from which it is derived, and superior to existing genomic signatures such as

the dinucleotides odds ratio and word frequency based signatures. We develop a mathematical framework to

elucidate the power of the DBCGS signature to distinguish between sequences hypothesized to be generated

by DBCs of distinct parameters. We study the effect of order of the DBCGS signature on accuracy while pre-

senting relationships with genome size and genome variety. We illustrate its practical value in distinguishing

genomic sequences and predicting the origin of short DNA sequences of unknown origin, while highlighting

its superior performance compared to existing genomic signatures including the dinucleotides odds ratio.

Additionally, we describe details of the CMGS database, a centralized repository for raw and value-added

data particular to C. elegans.

This work was supported by NSF-ITR Grant-0428344 for the Computational Models for Gene Silencing

project.



Dedication

To Mummy and Baba, for introducing to me the scientific method and instilling in me the belief that all

dreams can be realized

To Juju, for always placing me first

To Swaroop, for being my inspiration for perfection

iii



Acknowledgments

I thank Dr. Lenny Heath for his invaluable guidance, advise, patience, encouragement, and his confidence in

me. Having him as my advisor has in many good ways enriched my time as a Ph.D. candidate and shaped my

approach towards research. I thank my committee members: Dr. Naren Ramakrishnan, Dr. João Setubal,

Dr. Dr. Richard Helm, and Dr. Anil Shende for their useful suggestions, directions, and help. My friends

in Torgersen Hall were always there with interesting conversations to brighten up dull times. Many thanks

to Allan, Douglas, Jon, Ying, and others for their lively presence.

My research work has been supported by the National Science Foundation’s NSF-ITR Grant-0428344 for

the Computational Models for Gene Silencing project and I am grateful for the support. I thank the

Department of Computer Science at Virginia Tech for the teaching assistantship that I have received and for

making graduate school a pleasant experience. Rob, our system administrator, has been very cooperative

with every request and I thank him for his help and many interesting discussions.

I thank my roommate Vidya for being there at all times, and the Shendes for many interesting times and a

lot of help. Friends in my music and dance groups were responsible for many fun times.

I thank my parents and my brother Animesh for their confidence, patience, and love. I also thank Aaee,

Aja, JJMa, and JJBapa for their blessings, and my uncles and aunts for their love and support.

I thank Radha, Ravi, Uncle, and Aunty for their love and support, and Rahul and Malavika for being

adorable.

I thank Swaroop for his love, support, inspiration, and for being a part of my life.

Finally, I thank God for making everything possible.

iv



Attribution

Several colleagues and coworkers aided in the writing and research behind Appendix A. A brief description

of their background and their contributions are included here.

Prof. Lenwood S. Heath - Ph.D. (Department of Computer Science, Virginia Tech) is the primary

advisor. Prof. Heath provided many useful insights during the construction of the database.

Prof. Naren Ramakrishnan - Ph.D. (Department of Computer Science, Virginia Tech) advised on aspects

of the data mining engine integrated with CMGSDB.

Ying Jin - Graduate student (Department of Computer Science, Virginia Tech) implemented the data-

mining engine.

Prof. Richard F. Helm - Ph.D. (Department of Biochemistry, Virginia Tech) advised on the integration

of RNAi phenotypes from multiple sources.

Karsten Klage - Ph.D. (Department of Biochemistry, Virginia Tech) helped in the classification of RNAi

phenotypes.

v



TABLE OF CONTENTS

1 Introduction 1

2 Definition, Notation, and Preliminaries 5

2.1 Formal language background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 De Bruijn graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Genomic signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Problem Definition 15

4 Literature Review 17

4.1 Dinucleotide odds ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Chaos Game Representations (CGRs) of sequences . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Word count vector signatures θwcv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Gene fragments as genomic barcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Classification of DNA fragments by different methods . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Purely graph-based genomic signatures 30

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vi



5.2 Databases of organisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 The word count (frequency) vector signature θwcv (θwfv) . . . . . . . . . . . . . . . . . . . . 31

5.3.1 Mathematical results for θwfv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3.2 Empirical results for the θwcv signature . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 The edge deletion cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5 The vertex deletion order signature θvdo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.6 The component-based edge deletion vector θced . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.7 The ordered vertex-based edge deletion vector θoed . . . . . . . . . . . . . . . . . . . . . . . . 39

5.8 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 The de Bruijn chain signature 57

6.1 Theory and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.1 Separation between π2 signs derived from sequences generated by the same DBC . . . 58

6.1.2 Separation between θovif2 signs derived from sequences generated by the same DBC . . 61

6.1.3 Separation between θdbc2 signatures derived from sequences generated by the same DBC 68

6.1.4 Separation between θdbc2 signatures of sequences generated by different DBCs . . . . . 68

6.1.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Characterization of the accuracy of the θdbc signature in origin prediction . . . . . . . 73

6.2.2 Comparison of performances of θdbc, θdor, and θwcv signatures . . . . . . . . . . . . . . 79

6.2.3 Combining the powers of θdbc2 and θdor . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.4 Accuracies of θdbc2 , θdor2 , θwcv2 , and θcombo2 for a large database of diverse species . . . . 86

6.2.5 Relationship between genome size and accuracy of origin prediction . . . . . . . . . . 96

7 Estimating Markov Chain Order 100

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

vii



7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2.1 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2.2 Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2.3 Maximal Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.4 Variation of distances between pe (x, y) and pd (x, y) with input sequence length . . . . . . . . 113

7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.5.1 Dependence of convergence on eigenvalues of Pw. . . . . . . . . . . . . . . . . . . . . . 116

7.6 Conclusions and Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8 Conclusions 124

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A CMGSDB: Integrating heterogeneous C. elegans data sources using compositional data mining

135

viii



LIST OF FIGURES

2.1 Schematic of de Bruijn graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Construction of the θdbc signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Construction of the θovif signature from an edge cover . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Plot of θdor signatures for 5 species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Word count θwcv2 signatures for five diverse species . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Pearson correlations between θwcv signatures of AT, CE, and SC . . . . . . . . . . . . . . . . 37

5.2 Accuracy of the θwcv2 signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 A binary DBC of order 2 with edge counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Edge deletion cycle - I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Edge deletion cycle - II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.6 Edge deletion cycle - III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.7 Edge deletion cycle - IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.8 θvdo3 signatures of entire chromosomes of various species . . . . . . . . . . . . . . . . . . . . . 44

5.9 θvdo3 signatures of entire chromosomes of SC and AT . . . . . . . . . . . . . . . . . . . . . . . 45

5.10 θvdo3 signatures of entire chromosomes of CP, CM, CE, BB, and HS . . . . . . . . . . . . . . . 46

5.11 Pearson correlations between θvdo signatures of the 16 SC chromosomes . . . . . . . . . . . . 47

5.12 Pearson correlations between θvdo signatures of chromosomes of (a) AT and (b) CE . . . . . . 48

ix



5.13 Pearson correlations between θvdo3 signatures of AT, CE, and SC chromosomes . . . . . . . . 48

5.14 θced2 signatures of various species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.15 Pearson correlations between θced3 signatures of AT, CE, and SC chromosomes . . . . . . . . . 50

5.16 Accuracy of first hits of the θced2 signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.17 θoed3 signatures for (a) 4 prokaryotes and (b) 4 eukaryotes . . . . . . . . . . . . . . . . . . . . 52

5.18 Comparison of accuracies of θwcv2 , θoed2 , and θdor2 signatures . . . . . . . . . . . . . . . . . . . 53

6.1 Plot of upper bounds derived in Theorem 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Plot of upper bounds derived in Theorem 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 Distribution of L1 distances between θdbc2 signatures of CE and PF . . . . . . . . . . . . . . . 70

6.4 Plot of accuracies of θdbcs of orders 2 through 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.5 Accuracy of θdbc2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6 Plot of prediction accuracy vs. order for θdbc signatures . . . . . . . . . . . . . . . . . . . . . 77

6.7 Summary of accuracy of first hits of θdbc2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.8 Accuracy of first hits of θdbc2 , θdor, and θwcv2 signatures . . . . . . . . . . . . . . . . . . . . . . 80

6.9 Comparison of relative accuracies of θdbc2 , θdor2 and θwcv2 . . . . . . . . . . . . . . . . . . . . . 81

6.10 Accuracy of first hits of θdbc2 , θdor, and θwcv2 signatures . . . . . . . . . . . . . . . . . . . . . . 82

6.11 Comparison of relative accuracies of θdbc2 , θdor2 and θwcv2 for APB . . . . . . . . . . . . . . . . 83

6.12 Comparison of median accuracies of θdbc2 , θdor, and θwcv2 signatures . . . . . . . . . . . . . . . 84

6.13 Accuracy of the combination of θdbc2 and θdor signatures . . . . . . . . . . . . . . . . . . . . . 85

6.14 Accuracy of the combination of θdbc2 and θdor signatures for α-proteobacteria . . . . . . . . . 85

6.15 Accuracy of origin prediction of the θdbc2 signature for a large database. . . . . . . . . . . . . 93

6.16 Accuracy of θdbc2 , θdor2 , and θwcv2 using a large database (i) . . . . . . . . . . . . . . . . . . . . 94

6.17 Accuracy of θdbc2 , θdor2 , and θwcv2 using a large database (ii) . . . . . . . . . . . . . . . . . . . 95

6.18 Median accuracies of θdbc2 , θdor2 , and θwcv2 using a large database . . . . . . . . . . . . . . . . . 96

x



6.19 Relationships between genome size, genome variation, and accuracy of θdbc2 . . . . . . . . . . 98

6.20 Variation of accuracy with genome size for 50 species . . . . . . . . . . . . . . . . . . . . . . . 99

7.1 Behavior of Varu [Z] and (b) Varu [Z]
′
with λ and Poisson distributed Y . . . . . . . . . . . . 110

7.2 Behavior of Varu [Z] and (b) Varu [Z]
′
with p′ and binomially-distributed Y . . . . . . . . . . 111

7.3 Surface plot illustrating probability bounds for a range of k and w values . . . . . . . . . . . 112

7.4 Pseudocode for determining the variation of ∆w with w. . . . . . . . . . . . . . . . . . . . . . 112

7.5 Variation of L1 distances with input sequence length and word length variation . . . . . . . . 114

7.6 Variation of ∆w in sequences generated by Markov chains of different orders . . . . . . . . . . 115

7.7 Plot of average ∆w values over 100 samples of β . . . . . . . . . . . . . . . . . . . . . . . . . 116
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Chapter 1

Introduction

The last 25 years have seen tremendous progress in our understanding of biological paradigms. The se-

quencing of genomes has opened up aspects of genomic sequences that had never been envisaged. Since

the first sequencing of a genome (the 5386-base long bacteriophage φ-X174) in 1977, several genomes have

been sequenced, including the 3.2×109 bases long human genome, whose sequencing was completed in 2003.

A comprehensive source of detailed information regarding complete and ongoing genome projects around

the world is the Genomes Online Database [79], which housed approximately 3250 incomplete and approx-

imately 800 completed genome projects as of January 2008. Of these, approximately 2300 are bacterial

genome projects, approximately 150 are archaeal genome projects, and approximately 1000 are eukaryotic

genome projects.

Analysis of such high-throughput genomic data has necessitated the application of computational models

and techniques. An organism’s genomic sequence encodes all of its individual traits at various scales ranging

from individual nucleotide (A, C, G, T) compositions to gene orders in large genomic regions. The genome G
of an organism is a set of long nucleotide sequences modeled, within a formal language framework, as strings

over ΣDNA = {A,C,G,T}, the DNA alphabet. Every genome has a unique constitution of nucleotides that

encode specific phenotypic traits and regulate the cellular and biological processes of that organism. Unique

features of a genomic sequence that are globally conserved and can be captured in the form of mathematical

structures can serve as signatures for that genome. Since G itself differs from one species to another, it can

serve as a unique mathematical structure, a string, representing a species. However, a genome is typically

quite large (e.g., billions of bases for the human genome) and also demonstrates slight differences from one

individual of a species to another.
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Fix a genomic sequence H that is a substring of some string in G. Intuitively, a genomic signature for an

organism is a mathematical structure θ(H), typically a vector of numbers derived from H, which, ideally, can

be efficiently computed, is significantly smaller to represent than H, and, if H is sufficiently representative

of G, can accurately identify the original organism even for relatively short lengths of H. The intent is that

the signatures of other large substrings from G be highly similar to θ(H) and distinguishably different from

signatures of other organisms. A genomic signature is judged along two, typically antagonistic, dimensions:

(1) the amount of compression achieved by θ(H), and (2) its effectiveness in identifying the genome from

relatively short sequences.

The term “genomic signature” must not be confused with the term “gene expression signature” [67, 84],

although the two terms have been used interchangeably in a number of works [99, 7, 32, 124, 85, 19]. A

gene expression signature is a distinct conserved model of gene expression patterns observed in a set of genes

during specific biological phenomena or environmental conditions [67, 84]. Normark et al. [93] have used

the term “genomic signature” to represent long term genomic effects of the loss of sex and recombination on

asexual eukaryotic genomes. Cannon et al. [17] have used it to represent probe sequences that are short (25

bases and less) primers that are hyper-dispersed in a probability space of sequences and generated without

knowledge of the target genome, while scientists who study the effects of ionizing radiation on genomes use

the term to indicate radiation-induced genomic changes such as gene copy number and intra-chromosomal

aberrations [50, 65]. In this work, a genomic signature, as defined in the previous paragraph, is a unique

mathematical structure strictly computed from sequence data and conserved across reasonably large (a few

kilobases) subsequences of a genome for a wide range of subsequence lengths.

We propose a novel genomic signature called the de Bruijn chain signature θdbc. A de Bruin chain (DBC)

is a de Bruijn graph with an underlying finite Markov Chain (Chapter 2). We derive the θdbc signature

by thinking of a genomic sequence as a walk over a suitably defined DBC. We then combine characteristic

properties of the stationary distribution of the underlying Markov chain with the manner in which the DBC

disintegrates on deleting edges in a systematic manner, to obtain the θdbc signature. By definition, the θdbc

signature retains features of genomic sequences that are different from features retained by word-count based

signatures explored in related literature (See Chapter 4). In this work, we explore the properties of the θdbc

signature and several other genomic signatures with an emphasis on the identification of short unknown

DNA sequences.

The species from which a genomic sequence is derived is its origin. A genomic sequence X of unknown

origin is to be analyzed. We visualize X as an overlap of numerous successive short sequences of pre-defined

length w each, in a specific manner. The order is the above word length w at which a genomic sequence is

analyzed. A signature θw(X) of a pre-defined type at order w, is computed from X and compared to the

2



same signature at the same order w for the genomic sequences of all species with sequenced genomes using

an algorithm proposed in this work. The correlations between θ(X) and the existing signatures are used

to predict the origin of X. We demonstrate that the θdbc signature performs better than its competitors,

the di-nucleotides odds ratio θdor and the word count vector θwcv. We further illustrate that combining the

strengths of the θdbc signature and the θdor signature results in higher accuracy of origin identification while

distinguishing between distant species.

Several applications of genomic signatures are possible, some of which are as follows. A database of signatures

of all fully or partially sequenced genomes can be constructed. Apart from being a beneficial public resource,

such a database will enable identification of the origin and/or closest relatives of segments of unknown DNA.

An exhaustive database will lead to the discovery of new species and their placement on the tree of life

[81]. A sequence identification gadget constructed using this database and the algorithms we propose can

be used as a household utility for testing food products for infectious microbial growth, screening insects for

parasites, and understanding the origin and properties of plants and animals in the surroundings. Such an

instrument will be invaluable to ecologists. The application of genomic signatures to binning metagenomic

data can also be perceived.

Another aspect of sequences that are hypothesized to be generated by a Markov chain M is the order

of the underlying Markov chain M. We hypothesize that each genome is generated, within a reasonable

approximation, by a Markov chain of unknown order. Given a sequence H, we call such a Markov chain

M that generates H, the generating Markov chain of H. Estimating the order of the generating Markov

chain will assist in understanding biological phenomena such as a difference in frequencies of observed DNA

word1 patterns and repeats in the genome [52, 54]. We present an algorithm that uses frequencies of DNA

words at various orders to estimate the order of the Markov chain that generates a given sequence. While

existing methods are based on principles of entropy estimation, maximal fluctuation, and maximum likelihood

estimation, in this work, we propose a randomized algorithm for estimating the order of a generating Markov

chain within a framework of probability distributions of its states and transitions.

This dissertation is organized as follows. Chapter 2 defines the fundamental mathematical concepts used in

this work. It also lays down the basic conceptual framework within which the rest of this work is organized,

and establishes notation. Chapter 3 precisely defines the computational problem at hand and describes its

various sub-problems and derivatives that are addressed in this work. In Chapter 4 we describe relevant

research in the scientific literature related to this work and highlight their key contributions and impor-

tant results. Chapter 5 introduces and defines purely graph-based signatures. It establishes graph-based

1A DNA word of length w is a string in Σw
DNA

.
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signatures as discriminating between species and conserved within a species. We also present comparisons

between existing signatures in the literature and purely graph-based signatures. In Chapter 6 we introduce

and define the novel de Bruijn chain signature θdbc. We explore its properties, both within a theoretical

framework, and using experimental methods. We establish its accuracy in origin prediction of unknown DNA

sequences as greater than the accuracy of any existing methods and present relevant results. In this chapter,

we establish the superiority of the θdbc signature over existing signatures. We study the variation in accuracy

of origin prediction with varying sample sequence length as well as order of the signature. In Chapter 7,

we explore the problem of predicting the order of the generating Markov chain of a given sequence. We

examine existing methods for doing so, and present a novel, sampling-based approach to predict the order

of the generating Markov chain of a given sequence. The complexity of this algorithm is much less than that

of existing methods. The dissertation is concluded in Chapter 8, where we summarize our insights into the

area of genomic signatures and discuss future directions of research.

The Appendix describes in detail the database for the Computational Models for Gene Silencing (CMGS)

project. Although unrelated to the central theme of this dissertation, the grant for the CMGS project was

responsible for funding this work.
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Chapter 2

Definition, Notation, and

Preliminaries

In this chapter, we define the essential concepts for a study of genomic sequences and genomic signatures

within a graph-theoretic and formal language framework. We build the fundamental framework and establish

necessary notation.

2.1 Formal language background

Hopcroft and Ullman [60] and Lewis and Papadimitriou [77] are standard references for formal language

concepts. An alphabet Σ is a non-empty, finite set of symbols. In particular, the DNA alphabet is ΣDNA =

{A,C,G,T} and the binary alphabet is ΣB = {0, 1}. A string over Σ is a finite sequence of symbols, written

as a concatenation of symbols. For a string u over Σ, the length |u| of u is its length as a sequence. The

sequence ATGCCA is a length-6 string over ΣDNA. The empty string λ is the unique string of length 0.

A single chromosome in a genome is typically written as the string of nucleotides on one DNA strand. A

genomic sequence is a chromosomal sequence or any substring of it. An organism’s genome G is the set of

all its chromosomal sequences.

The set of all strings over Σ is Σ∗, an infinite set. If u, v ∈ Σ∗, and · is the concatenation operator, the

concatenation u · v of u and v is the sequence obtained by putting u before v; the concatenation u · v is

typically abbreviated uv. Clearly, |uv| = |u| + |v|. The concatenation of the two strings GGAG and TCC
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from Σ∗
DNA is GGAGTCC. The set Σ∗ is a monoid [61] under concatenation, with identity element λ. Let

u = σ1σ2 · · ·σn ∈ Σ∗ be a string of length n. A string v ∈ Σ∗ is a substring of u if there exist strings

x, y ∈ Σ∗ such that u = xvy. A string v ∈ Σ∗ is a prefix of u if there exists a string x ∈ Σ∗ such that u = vx.

A string v ∈ Σ∗ is a suffix of u if there exists a string x ∈ Σ∗ such that u = xv. Including the empty string,

u has n+ 1 prefixes and n+ 1 suffixes.

For strings x and y with |x| ≤ |y|, occ (x, y) is the count of occurrences of x as a substring of y. We indicate

x being a substring of y by the expression x @ y. The frequency of x in y is

freq (x, y) =
occ (x, y)

|y| − |x|+ 1
.

Fix a word length w ≥ 1. The order-w state space is Sw = ΣwDNA, the set consisting of the 4w words of

length w.

2.2 Markov chains

We are interested only in discrete-time stochastic processes that have a finite state space. Let X = {Xi |
0 ≤ i} be a set of random variables, indexed by non-negative integers, over the same probability space, such

that each Xi takes values in the state space Sw of X . The set X has the Markov property if, for all n ≥ 0

and all 0, 1, . . . , n+ 1 ∈ Sw, we have

Pr [Xn+1 = n+ 1 | X0 = 0, X1 = 1, . . . , Xn = n] = Pr [Xn+1 = n+ 1 | Xn = n] .

If X has the Markov property, then it is a discrete time, finite Markov chain, or simply, a Markov chain.

The Markov chain M is homogeneous in time if, for all m,n ≥ 0 and all j, k ∈ Sw, we have

Pr [Xm+1 = m+ 1 | Xm = m] = Pr [Xn+1 = m+ 1 | Xn = m] .

We will assume all Markov chains are homogeneous in time. The resulting conditional probabilities

pkj = Pr [Xn+1 = j | Xn = k]

are the (stationary) transition probabilities of M.

Let s = |Sw|. For ease of notation, we label the states in Sw so that Sw = {1, 2, . . . , s}. The transition

probability matrix of M is the s× s matrix

PM =

















p1,1 p1,2 . . . p1,s

p2,1 p2,2 . . . p2,s

...
...

. . .
...

ps,1 ps,2 . . . ps,s
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For all n ≥ 0, let µn be the probability distribution on Xn. For a Markov chain M, the choice of µ0, the

initial probability distribution, determines every other µn. In fact, we have that

(

µn(1) µn(2) . . . µn(s)
)

=
(

µ0(1) µ0(2) . . . µ0(s)
)

PnM ,

written more simply as µn = µ0P
n
M . Let i, j ∈ Sw be fixed states of M. State i is recurrent if

Pr [Xn = i, for some n ≥ 1 | X0 = i] = 1;

otherwise, state i is transient. State i is absorbing if pi,i = 1. The period of state i is the greatest common

divisor of the set

{n ≥ 1 | Pr [Xn = i | X0 = i] > 0}.

State i is periodic if its period is greater than 1; otherwise, it is aperiodic. The state pair (i, j) communicates

if

Pr [Xn = j, for some n ≥ 1 | X0 = i] > 0.

The Markov chain M is ergodic if every pair of states communicates and if every state is recurrent and

aperiodic.

Let S be a genomic sequence of length n. The generating Markov chain of S, G(S), is defined as the yet to be

characterized, hypothetical, Markov chain that generates S. Consider the transition probabilities computed

for an order-w Markov chain using the counts of strings in Sw in S. Define the empirical transition function

Pw,emp(S) as the transition probability matrix obtained by enumerating all words of length w in S and

calculating probabilities of transitions between them. Define the derived transition function Pw,der(S) as the

transition probability matrix obtained from Pw−1,emp(S). Let x, y ∈ Sw. Then,

Pw,der(x, y) = Pw−1,emp(x[2 . . . w − 1], y[2 . . . w − 1]),

and

Pw,emp(x, y) =
occ (x · y[w], S)

occ (x, S)
.

Consider an empirical transition probability matrix P3,emp(s) over ΣDNA and some string s.

Let P3,emp(CCG,CGT ) = 0.053. Then P4,der(ACCG,CCGT ) = P3,emp(CCG,CGT ) = 0.053.

A complex number λ that is a solution to the matrix equation PMv = λv is an eigenvalue of PM corresponding

to the eigenvector v. As the matrix equation has s, not necessarily distinct, complex roots, we can list the

s roots as λ1, λ2, . . . , λs in decreasing order by modulus. The set {λ1, λ2, . . . , λs} is the spectrum of PM .
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Let x, y ∈ Sw. If π is a probability distribution on Sw such that

∑

x∈Sw

π(x)P (x, y) = π(y),

then π is a stationary distribution. π is represented as an n−dimensional vector satisfying the property

πTP = πT .

The distribution at time step 0 is denoted by π0. Additionally, the distribution at time step t is denoted by

πt = π0P
t. If π0 = π, then πt = π0P

t = π for all t.

Two states i, j ∈ Sw in the Markov chain M communicate if state j can be reached from state i and state

i can be reached from state j. Markov chain M is said to be irreducible when every pair of states in Sw

communicate. The period of a state i is defined as the greatest common divisor g of the set

{n | Pr [Xn = i | X0 = i] > 0}.

A state is said to be aperiodic when g = 1.

An irreducible finite Markov chain is ergodic when all its states are aperiodic. For an ergodic Markov chain,

π is unique and πt → π as t→∞.

Further related material on Markov chains can be found in a number of references, including these [4, 5, 10,

14, 34, 46, 59, 104].

2.3 De Bruijn graphs

The order-w de Bruijn graph DBw = (Sw, E) over alphabet Σ is a directed graph, where (xi, xj) ∈ E when

xiσ = ιxj , for some σ, ι ∈ Σ; such an edge is labeled σ [103]. Figure 2.1 depicts de Bruijn graphs of orders

2 and 3 over the binary alphabet ΣB and the de Bruijn graph of order 2 over the DNA alphabet ΣDNA. As

observed, the vertex sets of the binary de Bruijn graphs of orders 2 and 3 are the set of all binary strings of

length 2 ({00, 01, 10, 11}) and the set of all binary strings of length 3 ({000, 001, 010, 011, 100, 101, 110, 111}),
respectively. Similarly, the vertex set of the DNA de Bruijn graph of order 2 is

Σ2
DNA = {AA,AC,AG,AT,CA,CC,CG,CT,GA,GC,GG,GT,TA,TC,TG,TT}.

Let H ∈ Σ∗
DNA have length |H| = n. We think of H as a long genomic sequence that traces a walk in DBw.

The vertex count of xi in H is vc (xi, H) = occ (xi, H), while the edge count of edge (xi, xj) ∈ E in H, where

xiσ = γxj , is ec ((xi, xj), H) = occ (xiσ,H). The order-w word count vector θwcvw (H) of H is the 4w-vector
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Figure 2.1: Schematic of de Bruijn graphs. (a) The order-2 de Bruijn graph over ΣB. (b) The order-3 de

Bruijn graph over ΣB; the red line indicates a walk in the graph traced by the sequence 0001110111000101.

(c) Representation of the de Bruijn graph DB2 over ΣDNA in terms of supernodes and superedges. Each

supernode consists of the 4 nodes with the same 1-symbol prefix in their labels and is closed by a dotted

boundary. An edge from a node to a supernode represents a set of edges from the node to all nodes

in the supernode. For example, the edge from node AC to supernode C represents the set of edges

{(AC,CA), (AC,CC), (AC,CG), (AC,CT)}.
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Table 2.1: Nucleotide counts and frequencies in various genomic sequences.

Sequence Length Nucleotide Counts (Frequencies)

A C G T

E. coli 4639675 1142228 (0.246) 1179554 (0.254) 1176923 (0.254) 1140970 (0.246)

C. pneumoniae 1229858 363689 (0.296) 249149 (0.203) 249836 (0.203) 367115 (0.299)

B. burgdorferi 910724 323079 (0.355) 130760 (0.144) 129646 (0.142) 327196 (0.359)

A. thaliana, Chr 1 30268597 9711178 (0.321) 5436538 (0.180) 5422303 (0.179) 9698578 (0.320)

S. cerevisiae, Chr 12 1078173 330586 (0.307) 207778 (0.193) 207064 (0.192) 332745 (0.309)

Uniform1 4000000 1001610 (0.250) 999091 (0.250) 1000543 (0.250 998756 (0.250

having components occ (xi, H), in lexicographic order. The corresponding order-w word frequency vector

is the 4w-vector having components freq (xi, H), in lexicographic order. In Figure 2.1(b), for instance, the

word count vector is 〈2, 2, 1, 2, 1, 2, 2, 2〉. Nucleotide frequencies vary between species, while, as Fickett et

al. [39] observe, the frequencies of A’s and T’s (and hence of G’s and C’s) are approximately constant within

a single genome. This is illustrated in Table 2.1.

Now consider the Markov chain underlying the above de Bruijn graph DBw = (Sw, E). The said Markov

chain has state space Sw and a sparse transition probability matrix with nonzero transition probabilities

only for edges in DBw; such a Markov chain is called an order-w de Bruijn chain (DBC). Here, we use

DBCs in modeling of genomic signatures, based on the following intuition. Let DC be an order-w DBC with

4w × 4w transition probability matrix P = (pij); here, pij is the probability of a one-step transition from

state xi to state xj [37]. P is sparse, with at most 4 nonzero entries per row. The order-w DBC, DCw(H),

for genomic sequence H has transition probabilities

pij =







ec((xi,xj),H)
occ(xi,H) if occ (xi, H) > 0,

0 otherwise.

Genomic sequences are sufficiently large and diverse in their composition to ensure occurrence of all words in

Sw for reasonably small w ∈ [1..5]. Any DBC generating such a sequence is irreducible. We also assume that

DBCs generating genomic sequences are aperiodic with finite state space. Thus, we assume that all DBC

are ergodic and hence that there is a unique stationary distribution π = (πi) on Sw satisfying πP = π [37].

Ergodicity may not hold in the case of a short genomic sequence consisting of systematic repeats of a small

number of length-w words.

1Sequence generated by a Markov Chain with uniform transition probabilities.
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2.4 Genomic signatures

For a genome G and a genomic sequence H taken from G, a genomic signature for H is a function θ, mapping

H to a mathematical structure θ(H). Ideally, θ(H) is efficiently computable and can identify sufficiently

large substrings that come from G and accurately identify the origin genome G of H from a set of genomes

by using the signature. In Chapter 5, we define several signatures computed from the structure of the DBC

and evaluate these and other signatures, such as the word frequency vector (θwfv) and the dinucleotides

odds ratio signature (θdor) [52, 53]. In Chapter 6 we study the behavior of the θdbc signature and present

associated empirical results [53].

Let H ∈ Σ∗
DNA have length |H| = n. Fixing word length w ≥ 1, we obtain DBw(H), with associated

vc (xi, H) and ec ((xi, xj), H), where xi, xj ∈ Sw. Let ψ ≥ 0 be an integer threshold. Let E≤ψ = {(xi, xj) ∈
E | ec ((xi, xj), H) ≤ ψ}, be the set of edges with counts at most ψ. Then edge deletion is the process of

deleting edges in E≤ψ from DBw, while varying ψ from 0 to Ξ = max{ec ((xi, xj), H) | (xi, xj) ∈ E} and

deleting edges with tied counts in arbitrary order. As ψ increases from 0 to Ξ, the number of isolated vertices

increases from 0 to 4w while the number of connected components increases from 1 to 4w. The vertex deletion

order θvdo is the permutation of Sw giving the order in which vertices become isolated during edge deletion.

Let ψi be the smallest integer such that DBw(H) has precisely i connected components. The component-based

edge deletion vector θced is the 4w-vector whose ith component is the number of edge deletions required to go

from i−1 to i components. The vertex-based edge deletion vector θved is the 4w-vector whose ith component

is the number of edge deletions required to go from i− 1 to i isolated vertices. The ordered vertex-based edge

deletion vector θoed is the 4w-vector whose ith component is the total number of edge deletions required to

isolate the vertex xi, where xi is the ith element of Sw in lexicographic order. Define the ordered vertex

isolation frequency vector θovif as the 4w-vector whose ith component is the frequency of the last edge whose

deletion isolates vertex labeled with the ith string in lexicographic order. The de Bruijn chain signature

θdbc is the 2 · 4w-vector πw · θovifw /4w−1, where πw is the estimated stationary distribution for the order-w

de Bruijn chain and ‘·’ represents vector concatenation. Figure 2.2 illustrates the construction of the θdbc

signature.

For example, consider the E. coli K12 genome. Table 2.2 contains the order-2 transition matrix for this

sequence.

For the given transition matrix, the order-2 stationary distribution is

〈0.0730 0.0552 0.0511 0.0668 0.0698 0.0584 0.0747 0.0511 0.0576 0.0827 0.0584 0.0552 0.0457 0.0576 0.0698 0.0730〉.

The corresponding θovif2 signature is
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θovif /4

Ordered vertex isolation frequencies: θovif
2

de Bruijn chain signature: θdbc
2

Genomic Sequence H

Stationary distribution: π2

Figure 2.2: Construction of the θdbc signature.

Table 2.2: Order 2 transition matrix for the E. coli genome.
AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

0.322 0.243 0.187 0.245 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.228 0.291 0.285 0.195 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.237 0.340 0.213 0.210 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0.205 0.279 0.247 0.269

0.237 0.205 0.321 0.237 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.317 0.176 0.321 0.187 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.206 0.332 0.251 0.211 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0.114 0.179 0.438 0.268

0.313 0.204 0.159 0.324 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.249 0.241 0.299 0.209 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.207 0.342 0.176 0.275 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0.205 0.213 0.259 0.322

0.325 0.248 0.127 0.299 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.313 0.209 0.267 0.209 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.259 0.295 0.265 0.181 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0.203 0.247 0.227 0.323
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Figure 2.3: Construction of the θovif signature from an ed ge cover. (a) The binary de Bruijn graph of order

3. (b) The edge cover from which values for individual components of θovif3 are taken.

〈0.325 0.291 0.340 0.324 0.321 0.321 0.332 0.438 0.324 0.342 0.342 0.322 0.325 0.313 0.438 0.323〉.

Therefore, the θdbc2 signature for this species is

〈0.073 0.0552 0.0511 0.0668 0.0698 0.0584 0.0747 0.0511 0.0576 0.0827 0.0584 0.0552 0.0457 0.0576 0.0698 0.0730

0.081 0.073 0.085 0.081 0.080 0.080 0.083 0.106 0.081 0.085 0.085 0.081 0.081 0.078 0.109 0.081〉.

Our results (Chapter 6) indicate that the performance of the θdbc signature in predicting the origin of

short DNA sequences is much better than the individual performances of the π and θovif signatures or the

individual performances of any of the signatures described before. The individual components of the θovifw

signature can also be visualized as weights on the edges of an edge cover of DBw(H). In the edge cover, each

vertex remains connected through the strongest edge (edge with highest frequency) incident on it. Figure 2.3

illustrates this point.

We compare a pair of signatures by computing the Pearson correlation coefficient [115] between them.

Pearson’s correlation reflects the degree of linear relationship between two variables. It ranges from +1 to

−1. A correlation of +1 means that there is a perfect positive linear relationship between variables. A

correlation of −1 means that there is a perfect negative linear relationship between variables. A correlation

of 0 means there is no linear relationship between the two variables. For vectors X and Y of length n, the
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Pearson correlation coefficient is computed as:

R(X,Y ) =
n
∑n
i=1XiYi −

∑n
i=1Xi

∑n
i=1 Yi

√

n
∑n
i=1X

2
i − (

∑n
i=1Xi)2

√

n
∑n
i=1 Y

2
i − (

∑n
i=1 Yi)

2
.

A pair of vectors can also be compared by calculating the distance between their transition probability

matrices. The following distance measures have been used in this work. Let x, y be vectors of n elements

each.

The Bray-Curtis or Sorensen distance between x and y is computed as

dbc(x, y) =

∑n
i=1 |xi − yi|

∑n
i=1(xi + yi)

. (2.1)

If all xi, yi are positive, 0 ≤ dbc(x, y) ≤ 1. A distance of 0 indicates equal sequences.

The Kullback-Leibler distance is a directed discrepancy measure between two functions. It is defined as the

“information” lost when a function g is used to approximate a function f , where f, g are discrete functions,

and is given by

dKL(f, g) =

n
∑

i=1

filog

(

fi
gi

)

. (2.2)

fi gives the true probability of the ith outcome, while gi gives the approximating probability. dKL(f, g) is

not necessarily equal to dKL(g, f). Because of this asymmetry, dKL is not a metric. dKL(x, y) is calculated

similarly.

The L1-distance or Manhattan distance between x and y is computed as

d (x, y) =

n
∑

i=1

|xi − yi|. (2.3)

It takes values in the interval [0,∞).

The L2-distance or Euclidean distance between x and y is computed as

dL2(x, y) =
√ n
∑

i=1

(xi − yi)2. (2.4)

It takes values in the interval [0,∞).

The Cosine distance between x and y is computed as

dcos(x, y) = 1−
∑n
i=1(xiyi)

∑n
i=1 x

2
i

∑n
i=1 y

2
i

. (2.5)

It takes values in the interval [0, 1].
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Chapter 3

Problem Definition

In this chapter, the central computational problem addressed in this dissertation is described. We define

“genomic signature” as a computational concept and characterize mathematical structures that conform to

this definition.

As defined in Chapters 1 and 2, a “genomic signature” is a mathematical structure that is efficiently com-

putable from a genomic sequence at hand, sufficiently representative of the sequence from which it is derived,

sufficiently different from the genomic signatures derived from genomic sequences of other genomes, and re-

quiring significantly smaller storage space than the sequence itself.

Consider a signature function θ that takes a genomic sequence as input and returns a signature as output.

Let SG = {G1,G2, . . . ,GN} be a set of N genomes. Recall that each genome can be comprised of multiple

chromosomal sequences. Consider a genome Gi ∈ SG . Let SGi
= {H1, . . . , HNGi

} be the set of genomic

sequences constituting genome Gi. Consider a genomic subsequence S @ Hq ∈ SGi
of length n. Then θ(S)

should satisfy the following properties:

1. θ(S) should be sufficiently representative of the sequences in SGi
. Mathematically, this means that for

a large range of n values, the distance between θ(S) and θ(Hr) for some Hr ∈ SGi
should be very

small.

2. θ(S) should be sufficiently conserved within the genome Gi. This means that, for any genomic subse-

quence S′ @ Hr ∈ SGi
of length m, for a large range of values of m, the distance between θ(S) and

θ(S′) should be very small.

3. θ(S) should be sufficiently different from the signatures of genomic sequences sampled from other
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genomes. For any genomic subsequence S ′′ @ SGj
, i 6= j, Gj ∈ SG , the distance between θ(S) and

θ(S′′) should be large, much larger in magnitude than the distance between θ(S) and θ(S ′). It is

notable here that the distance between θ(S) and θ(S ′′) is generally dependent on their phylogenetic

separation.

4. θ(S) should be efficiently computable. The complexity of computing the signature will already have a

large component contributed by the input sequence that is to be scanned. So, the computation process

for the signature should be as inexpensive as possible.

5. θ(S) should require much less space than the input sequence. Since θ(S) is a predefined mathematical

structure, a small, constant space requirement is ideal.

A direct application of genomic signatures is the process of identifying the origin of a DNA sequence of

unknown origin. A genomic sequence S whose origin is unknown is at hand. A database D of a pre-defined

genomic signature θ is precomputed. The origin of S is predicted by computing θ(S) and comparing it with

the signatures in D using a pre-defined algorithm.

In the rest of this work, we introduce several genomic signatures and evaluate them with respect to origin

prediction.
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Chapter 4

Literature Review

In this chapter, we explore all types of genomic signatures proposed, derived, and used in the scientific

literature. As discussed in Chapter 1, the term “genomic signature” has been used in two broad contexts.

In the first context, the term refers to unique imprints captured from the DNA sequences of a genome G
that have the power to distinguish between sequences sampled from G and sequences sampled from other

genomes. In the second context, it refers to gene expression signatures, which are distinct conserved models

of gene expression patterns observed in a set of genes during specific biological phenomena or environmental

conditions [67, 84]. We will limit ourselves to the discussion of genomic signatures in the first context.

The signatures we will discuss in this chapter are the dinucleotide odds ratio signature θdor, the word count

vector signature θwcvw , the word frequency vector signature θwfvw , and Chaos Game Representation (CGR)

images.

4.1 Dinucleotide odds ratio

A DNA word or an oligonucleotide is a short string of predefined order over the DNA alphabet. Oligonu-

cleotide frequencies have been described as characteristic features of genomes in many works [18, 22, 27, 31,

33, 38, 64, 68, 70, 106, 123, 126, 127]. Karlin and Burge [68] were among the first to use the term genomic

signature. They define the dinucleotide odds ratio (θdor) or relative abundance, which is the collection of 16

functions defined for dinucleotides XY ∈ Σ2
DNA by

ρXY (H) =
freq (XY,H)

freq (X,H) freq (Y,H)
,
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where freq (x,H) is the frequency of string x as a substring in H. As an example, consider the following

DNA sequence

S = ACGATACAGATCGATACGATACACCCCAAAATTTGGGAGAGAGAGAGGGG.

S has length 50. The frequencies of the mononucleotides A, C, G, and T are freq (A, S) = 19/50 = 0.38,

freq (C, S) = 9/50 = 0.18, freq (G, S) = 15/50 = 0.30, and freq (T, S) = 7/50 = 0.14. The frequencies of the

dinucleotides in lexicographic order are

〈0.0612, 0.1020, 0.1224, 0.1020, 0.0408, 0.0612, 0.0612, 0, 0.1837, 0, 0.1224, 0, 0.0612,

0.0204, 0.0204, 0.0408〉.

As an example, the odds-ratio corresponding to the dinucleotide AC is computed as follows:

θdorAC (S) =
freq (AC, S)

freq (A, S) freq (C, S)

=
0.1020

(0.38)(0.18)

= 1.4912.

So, the dinucleotides odds ratio signature θdor(S) is given by

θdor(S) = 〈ρAA(S), ρAC(S), ρAG(S), ρAT(S), ρCA(S), ρCC(S), ρCG(S), ρCT(S),

ρGA(S), ρGC(S), ρGG(S), ρGT(S), ρTA(S), ρTC(S), ρTG(S), ρTT(S)〉

= 〈0.4238, 1.4912, 1.0737, 1.9173, 0.5965, 1.8889, 1.1333, 0, 1.6114, 0,

1.36, 0, 1.1504, 0.8095, 0.4857, 2.0816〉.

Karlin and Burge observe that ρ values are similar throughout a genome and compare θdor for a number of

organisms. They also note that the variations in the dinucleotide abundances within a genome are limited and

propose its use as a genomic signature for discriminating genomic DNA. Figure 4.1 plots the θdor signatures

for 5 species.

Karlin et al. [70] observe that individual components of the θdor vector typically range from 0.78 to 1.23.

They use a normalized L1-distance, called delta-distance (δ), to distinguish between species. Given the

dinucleotides odds ratio signatures θdor(S1) and θdor(S2) for two sequences S1 and S2, respectively, the

δ-distance between them is computed as follows:

δ(θdor(S1), θ
dor(S2)) =

1000

16
d
(

θdorS1
, θdorS2

)

.

Karlin et al. [70] compare and contrast genome-wide compositional biases and distributions of short oligonu-

cleotides across 15 diverse prokaryotes that have substantial genomic sequence collections. They observe that
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Figure 4.1: Plot of the θdor signatures for 5 species. The species shown are R. leguminosarum, M. leprae, P.

falciparum, E. coli, and H. sapiens chromosome 21, using double stranded genomic DNA sequences. Note

the symmetry in the odds-ratios of dinucleotides that are reverse complements of one another.
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the dinucleotide relative abundance profiles over multiple 50 Kb disjoint contigs within the same genome

are approximately constant. They further note that the differences between θdor vectors of 50 Kb sample

contigs of different genomes almost always exceed the differences between those of the same genomes.

Campbell et al. [16] compare θdor signatures of prokaryotic, plasmid, and mitochondrial DNA. Their com-

parisons of θdor signatures for plasmids, both specialized and broad-range, and their hosts indicate that

plasmids and their hosts have substantially compatible (similar) genome signatures. They also observe that

while mammalian mitochondrial (Mt) genomes are very similar, and animal and fungal Mt are generally

moderately similar, they diverge significantly from plant and protist Mt sets. 1 They find that in terms

of similarities between θdor signatures, archaea are not a coherent clade and contain some greatly diver-

gent species. They also found no consistent pattern of signature differences among thermophiles. They

group prokaryotes by environmental criteria (e.g., habitat propensities, osmolarity tolerance, chemical con-

ditions) and do not observe any tight correlations of genome signatures in these groups. This does not

provide evidence for the proposition of Karlin et al. [70] that dinucleotide composition could be related to

the determination of behaviors of species to various environmental conditions.

Gentles and Karlin [42] examine the θdor signature in sequences of eukaryotic genomes and chromosomes,

including human chromosomes 21 and 22, Saccharomyces cerevisiae, Arabidopsis thaliana, and Drosophila

melanogaster. They find that dinucleotide relative abundances are remarkably constant across human chro-

mosomes and within the DNA of a particular species. They also observe that “dinucleotide biases differ

between species, providing a genome signature that is characteristic of the bulk properties of an organism’s

DNA”.

Jernigan and Baran [64] analyze 22 sequences, representing 19 species, to assess stability of the signature

in windows ranging in size from 50 kilobases down to 125 bases. For each sequence, they compute the

distance of the global signature from the locally-computed signatures for all non-overlapping windows on

each sequence. They find that these distances are log-normally distributed with nearly constant variance and

with means that tend to zero slower than reciprocal square root of window size. Further, the mean distance

within genomes is larger for protist, plant, and human chromosomes, and smaller for archaea, bacteria, and

yeast, for any window size. They demonstrate empirically that the δ-distance between θdor signatures of

strings sampled within a genome is approximately preserved over a wide range of string lengths, while it

varies for strings sampled from different genomes.

1Protists are eukaryotic organisms that vary a lot from one another and are classified into the kingdom Protista.
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4.2 Chaos Game Representations (CGRs) of sequences

The second most widely-used method in the literature to visualize and study the composition of DNA

sequences is Chaos Game Representation (CGR). Mathematically, the Chaos Game is an iterated function

system. CGR uses a two-dimensional heat-map-style plot to provide a visual representation of composition

of a given DNA sequence in terms of DNA word frequencies. The tiled geometrical patterns in the CGR

sharpen with increasing DNA word lengths. Visualization of DNA sequence composition using CGRs was

first proposed by Jeffrey [63]. Subsequent work on CGRs involved mathematical characterization of CGRs

to predict the presence or absence of a sequence in any gene family by using properties of CGRs as classifiers

of gene families [35], analysis of CGR images to deduce that CGRs within a species were closely similar

while the differences between CGRs of two sequences grew with increased phylogenetic separation [58], and

calculation of entropic profiles of DNA sequences through analysis of their CGRs [94]. In 1993, Goldman [44]

asserted that dinucleotide and trinucleotide frequencies alone explain the patterns observed in CGRs. In

2004, Wang et al. [129] challenged Goldmann’s results. They concluded that “if a CGRs resolution is 1/2k

and the DNA sequence is much longer than k, this CGR is completely determined by all the numbers of

length k oligonucleotide occurrences”. They also mention that the θdor signature and CGRs are related

and that all genomic signatures are members of a spectrum of properties where each signature has its own

properties. In this work, distances between CGR images are also suggested as a basis for phylogeny.

Deschavanne et al. [31] have devised a graphic method which makes it possible to show frequencies of the

various words of a given length, by a CGR image with a fractal structure. Each pixel of the image is

dedicated to a word and the pixel intensity is proportional to the frequency of its associated word in the

genome. The resolution of the image determines the length of the studied words. At the lowest level are

the frequencies of mononucleotides A, C, G, and T. The image showing mononucleotide frequencies has

the smallest resolution; four pixels with each pixel allocated to one mononucleotide. This is illustrated by

the first image in Figure 1 in Deschavanne et al. [31], with the top-left square allocated to the frequency

of C, and the top-right, bottom-right, and bottom-left squares allocated to the frequencies of G, T, and

A, respectively. For every higher resolution-level, each pixel is broken up into four pixels while prefixing a

character from ΣDNA to it. The four corners are assigned in the exact same order of the prefixed characters

as described above for the mononucleotide scenario. For example, sequences of 2 bases generated starting

from the pixel for C are CC, GC, AC, and TC starting at the top-left square and moving clockwise one

square at a time. Thus a 128 pixels-square image will describe frequencies of all the 7 letter-words in the

analyzed genomic sequence. The CGR images for oligonucleotides from length 1 to length 8 are presented in

the same figure in Deschavanne et al. [31]. The dictionary of all the words of fixed length used in a genome

can therefore be visualized by a CGR image.
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Figure 4.2: Word count θwcv2 signatures for five diverse species.

Deschavanne et al. [31, 38] have constructed CGR images from oligonucleotide frequencies and built the

application GENSTYLE, which predicts the approximate origin of a sequence using L1-distances to oligonu-

cleotide frequency vectors of all genome sequences in the Entrez database, thus formally introducing CGRs

as a genomic signature.

In the first figure at the GENSTYLE website, Deschavanne et al. [29] use CGR images for 7-long DNA words

to illustrate that the CGR image may vary significantly from one species to another. While some images are

well-structured, others are chaotic with no obvious well-defined structure. Also some regions of the image

can be astonishingly denser than the remaining regions. In the fourth figure, Deschavanne et al. [29] discuss

the diversity and conservation of the CGR image as a signature. They compare the CGR image for length

5 DNA words for the entire genome of a species to CGR images of fragments of different lengths sampled

from that genome. They observe that as the fragment size decreases, so does the resemblance of its CGR

image to the CGR image for its entire genome.

4.3 Word count vector signatures θwcv

The simple word count vector has also been used as a genomic signature in various works. Figure 4.2

illustrates the θwcv2 signatures of 5 diverse species.
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For bacterial species, Coenye and Vandamme [22] correlate the δ-distance (Section 4.1) with 16S rDNA

sequence similarity and DNA-DNA hybridization values. They demonstrate that the correlation between

the genomic signature and DNA-DNA hybridization values is high, while the overall correlation between

the genomic signature and 16S rDNA sequence similarity is low, except for closely related organisms (16S

rDNA similarity > 94%). For 57 prokaryotic genomes, Sandberg et al. [106] quantify the species-specificity

of θwfv2 genomic signatures in the complete genomes of 57 prokaryotes. They confirm that the θwfv2 genomic

signature is genome-wide, with high species-specificity in both coding and non-coding regions, and compare

G+C content, oligonucleotide frequency, and codon bias. Dufraigne et al. [33] and van Passel et al. [126]

employ oligonucleotide frequencies to identify regions of horizontal gene transfer (HGT) in prokaryotes.

Carbone et al. [18] correlate the ecological niches of 80 Eubacteria and 16 Archaea to codon bias used as a

genomic signature.

The application TETRA [123] uses tetranucleotide frequencies to calculate similarity between sequences.

It stores tetranucleotide usage patterns in all genomic sequences available at NCBI. Based on a Markov

model, it evaluates the levels of over- and underrepresentation for each of the 256 possible tetranucleotides

in a submitted DNA sequence. These data are then normalized via a z-transformation and their correlation

coefficients to tetranucleotide frequencies of existing genomes are calculated. TETRA is available both as a

stand-alone tool and a web-based system at http://www.megx.net/tetra_new/index.html.

4.4 Gene fragments as genomic barcodes

DNA barcoding is a method of characterizing an organism using a relatively short subsequence of its genome

at an agreed upon position. Prof. Paul D. N. Hebert was the first to propose the use of a specific genomic

region as a genomic barcode. Hebert et al. [55] have established that a 648 base long region in subunit I

of the mitochondrial gene cytochrome c oxidase I (COI) can serve as the core of a global bioidentification

system for higher animals. This is based on the concept that most eukaryotic cells contain mitochondria,

and hence, mitochondrial DNA (mtDNA), which has a fast mutation rate resulting in greater variation of

mtDNA between species and much smaller variation of mtDNA within a species.

At a level of finer detail the term DNA barcode differs slightly from the classical definition of a barcode. All

pieces of a product being sold or displayed are marked by the same 11-digit barcode identifier. However,

the same cannot be said about the DNA barcode of different individuals from the same species. Although a

DNA barcode is meant to be species-specific, there is some variation, albeit small, of DNA barcodes within

members of a species.
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Hebert et al. [57] tested the effectiveness of the 648-bp region of the mitochondrial gene, cytochrome c oxidase

I (COI) in discriminating bird species. They determined COI barcodes for 260 North American birds and

found that each species has a different COI barcode. Also, the differences between closely related species

were, on average, 18 times higher than the differences within species. Their results identified 4 probable new

species of American birds, and they suggested that a global survey with a standard screening of sequence

difference of COI sequences can identify new organisms quickly and inexpensively.

Next, Hebert et al. [56] applied DNA barcodes to the common neotropical skipper butterfly Astraptes ful-

gerator. They used a combination of natural history and morphological studies along with DNA barcoding

of museum specimens to show that A. fulgerator is a complex of at least 10 different cryptic butterflies

species 2 from northwestern Costa Rica. However, Brower [15] challenged the results of Hebert et al. [56]

by conducting experiments that showed that at least 3, but not more than 7 mtDNA clades that may cor-

respond to the above cryptic species are supported by the evidence. He also addressed some methodological

and philosophical weaknesses of Hebert’s claim that the DNA barcoding approach could serve as a proxy

for the arduous, painstaking work of genuine systematics. Thus, it can be concluded that the process of

delimiting species using DNA barcoding is much dependent on the premises and analytical methods used by

the researchers. Hence, the results vary and are subjective.

Subsequently, Smith et al. [114] examined whether the cytochrome COI DNA barcode could function as a

tool for species identification and discovery for the 20 morphospecies of Belvosia parasitoid flies (Diptera:

Tachinidae) that have been reared from caterpillars (Lepidoptera) in Area de Conservacio’ n Guanacaste

(ACG), northwestern Costa Rica. They also found that barcoding not only discriminates among all 17

highly host-specific morphospecies of ACG Belvosia, but it also raises the species count to 32 by revealing

that each of the three generalist species are actually arrays of highly host-specific cryptic species. In 2007,

Smith et al. [113] DNA-barcoded 2134 flies belonging to what appeared to be the 16 most generalist of

the reared tachinid morphospecies. They encountered 73 mitochondrial lineages separated by an average

of 4% sequence divergence and, as these lineages are supported by collateral ecological information, and,

where tested, by independent nuclear markers (28S and ITS1), the authors therefore viewed these lineages

as provisional species. Each of the 16 initially apparent generalist species were categorized into one of four

patterns: (i) a single generalist species, (ii) a pair of morphologically cryptic generalist species, (iii) a complex

of specialist species plus a generalist, or (iv) a complex of specialists with no remaining generalist. In sum,

there remained 9 generalist species classified among the 73 mitochondrial lineages analyzed.

In [108], marine biologists Schander and Willassen propose that DNA barcodes could be a very useful tool

2 Cryptic species are animals that appear morphologically identical but are genetically quite distinct.
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for taxonomy. They argue that barcodes could help to identify cryptic and polymorphic species and give

means to associate life history stages of unknown identity and provide tools for higher taxonomic resolution

of disparate life forms in case of ambiguous morphology. However, they conclude that morphology and other

biological information about species is vital for their identification and cannot be made obsolete by barcodes.

In plants, the same COI gene could not be used as a barcode because of a much slower rate of COI gene

evolution in higher plants than in animals. In 2005, Kress et al. [71] proposed the nuclear internal transcribed

spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying

barcoding to flowering plants. They based their proposition on the fact that internal transcribed spacer is

the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows

high levels of interspecific divergence. The trnH-psbA spacer, although short (≈ 450-bp), is the most variable

plastid region in angiosperms and is easily amplified across a broad range of land plants. They compared the

total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm

taxa, including closely related species in seven plant families and a group of species sampled from a local flora

encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), and found results that

suggest that the sequences in this pair of loci have the potential to discriminate among the largest number

of plant species for barcoding purposes. In 2008, however, Savloleinen and his team [72] undertook intensive

field collections in two biodiversity hotspots (Mesoamerica and southern Africa). Using >1600 samples, they

compared eight potential genomic regions for ideal DNA barcoding properties. They assessed to what extent

a “DNA barcoding gap” is present between intra- and interspecific variations, using multiple accessions

per species. They identified a portion of the plastid matK gene that had an adequate rate of variation,

easy amplification, and alignment, as a good DNA barcode for flowering plants. They also analyzed >1000

species of Mesoamerican orchids, and DNA barcoding with matK alone revealed cryptic species and proved

useful in identifying species listed in the Convention on International Trade of Endangered Species (CITES)

appendixes.

The prospect of cataloging ancient life using DNA barcodes was explored by Lambert et al. [73] in 2005.

They sequenced the 5’ terminus of the mitochondrial COI gene of individuals belonging to the moa of New

Zealand, a group of extinct ratite birds. They derived precise information about the number of moa species

that existed using a phylogenetic approach based on a large data set including protein coding and 12S DNA

sequences, as well as morphology. They showed that each moa species had a distinct COI barcode and that

the variation in COI barcodes among individuals of any moa species was low. They suggested that DNA

barcoding might also help detect other extinct animal species and build a large-scale directory of ancient

life.

Taxonomists saw the application of DNA barcodes to classify species as an oversimplification of rigorous

25



systematic taxonomic methods. It has been found that using an mtDNA barcode to assign a species name

to an animal will be ambiguous or erroneous some 23% of the time [86]. Studies with insects suggest an

equal or even greater error rate, due to the frequent lack of correlation between the mitochondrial genome

and the nuclear genome or the lack of a barcoding gap [132]. Given that insects represent over 75% of all

known organisms [56], this suggests that while mtDNA barcoding may work for vertebrates, it may not be

effective for the majority of known organisms.

The Consortium for Barcoding of Life (CBOL) has built the Barcoding of Life Database (BOLD) [102].

BOLD provides a repository for barcode records coupled with analytical tools and serves as an online

workbench for the DNA barcode community. It also provides a species identification tool that accepts DNA

sequences from the barcode region and returns a taxonomic assignment to the species level when possible.

4.5 Classification of DNA fragments by different methods

The genomic signatures described in this chapter have been demonstrated by investigators to vary very little

within a species and much more between species. While between-species variations in signatures have been

amply pointed out in the literature, systematic tests to determine the power of these signatures in predicting

the origin of short DNA fragments have been rare. In this section, we summarize all efforts made so far

in scientific literature towards exploring the power of genomic signatures described in this chapter in the

classification of DNA fragments of unknown origin.

A few tests were conducted by Deschavanne and his team [31, 30] to study the conservation of the CGR

genomic signature in DNA fragments. They observe that “images obtained from parts of a genome present

the same structure as that of the whole genome” (Fourth figure in [29]). They note that, with decreased

segment sizes, a distinct reduction in sharpness of the images is observed. However, their overall structure

resembles the general design of the image for the genome. They carried out an analysis using 13 species:

A. fulgidus, B. subtilis, C. acetobutylicum, D. radiodurans, E. coli, H. sapiens, M. leprae, M. musculus,

M. tuberculosis, S. cerevisiae, S. pombe, T. maritiana, and V. cholerae. They randomly selected a 100 kb

subsequence from each species. The euclidean distances between the signature of the 100 kb subsequence

of one species and the signatures of the 100 kb subsequences of other species were computed. The mean

distance of each species to other species is indicated by the stars in Figure 3(b) in Deschavanne et al. [31].

The quantile plots and the associated mean and standard deviations represent the distribution of distances

between signatures of intra-genomic fragments. Deschavanne et al. [31] observe that the mean intra-genomic

distance is about 700, compared with 1900 for the mean inter-genomic distance. The right-most quantile

plot in the figure represents the distribution of distances between signatures of inter-genomic fragments.
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Deschavanne et al. [30] examine the effect of DNA word length and fragment length on the classification

efficiency using CGR images. The results are summarized in Figure 1 in [30]. The authors used 16 unspecified

genomes for the experiment. They randomly sampled series of (100, 25, 10, 5, 1, 0.5 and 0.1 kb) non-

overlapping DNA fragments from each genome and generated the corresponding CGR images. They observe

that whole genome patterns are maintained even when the segment size decreases. In order to test to what

extent short DNA fragments share properties of the species they derive from, the authors use an unsupervised

clustering technique to group fragments as a function of the characteristics of their word distribution. The

proportion of well-classified fragments is then computed by comparing the fragments to the origin. They

observe that the variability of word frequencies within a genome decreases when the size of the fragment

increases. They also note that longer words may be more species-specific although their frequency along

the genome may be more variable. The proportion of well-classified fragments roughly increases with the

size of the fragment, whatever the length of the words considered in the calculation. They, however, point

out that a surprising high proportion of 1 kb fragments is properly classified. Similarly, the proportion of

well-classified fragments increases with the length of the words, whatever the size of the fragment. Their

key observation is that, while a perfect classification is already achieved using 3 letter-words and 100 kb

fragments, the analysis of longer words is required to get good results when small fragments are considered.

They comment that the usage of long words (5-letters) seems to be quite constant along each genome while

being also very species-specific.

Next, we explore the literature that has utilized dinucleotide compositions to classify DNA fragments.

Nakashima et al. [89] analyzed human, yeast, and E. coli coding sequences in terms of dinucleotide oc-

currences. In 16-dimensional space, they observed that the human and E. coli clusters were distinctly

separated while that for yeast was positioned in between. They observed that genes from the same organism

were clustered in the space. Later, Nakashima et al. [90] used the 16 normalized dinucleotide compositions to

analyze the protein-encoding nucleotide sequences in nine complete genomes including 3 Gram-negative bac-

teria (Escherichia coli, Haemophilus influenzae, Helicobacter pylori), 2 Gram-positive bacteria (Mycoplasma

genitalium, Mycoplasma pneumoniae), one cyanobacterium (Synechocystis sp.), two archaea (Methanococcus

jannaschii, Archaeoglobus fulgidus), and one eukaryote (Saccharomyces cerevisiae). They extracted protein-

coding nucleotide sequences from these species using sequences and feature tables from the DNA data bank

of Japan. They observed that, as expected, the dinucleotide composition is significantly different between

the organisms. They found that using the dinucleotide composition alone the genes from the nine complete

genomes cluster around their respective genomes’ centers with 80% accuracy in dinucleotide composition

space using Euclidean distances to compute separation. They observe that the fact that the whole genome

compositions are close to compositions of coding regions suggests that the characteristic feature of dinu-

cleotides holds not only for protein coding regions but also noncoding regions. Despite all of the above
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observations, this work did not report experimental results on the effectiveness of the genomic signature in

identifying targets accurately.

Karlin et al. [70] established differences among θdor signatures of 15 diverse prokaryotes. They observe the

constancy of θdor signatures of 50 kb sequences sampled from any genome. They also observe that the

separations between θdor signatures of sequences sampled within a genome were much less on average than

the separations between θdor signatures of sequences sampled from different genomes. Even though Karlin et

al. [70] point out interesting oligonucleotides of varying lengths in different species, they do not comment on

the efficacy of the θdor signature on target identification or the effects of available sequence length and word

length on it. Campbell et al. [16] point out the similarities in dinucleotide compositions of plasmids and their

hosts but do not address the problem of target identification in their work, or the effect of the lengths of

sequences available from hosts and plasmids on the similarity between them. Gentles and Karlin [42] make

the same observations, while examining the genomes of yeast, arabidopsis, and drosophila, but do not mention

anything formally about the mapping of short sequences to their respective origins. Karlin et al. [69] show

that δ-distances between different genomic sequences in the same species are low and are generally smaller

than the between-species δ-distances. They point out extremes in short oligonucleotide over- and under-

representation in several species. They assess homogeneity of the dinucleotide relative abundance profile

through the delta-distance and propose the following standards for measuring the similarity of an available

sequence to a putative target:

0 < δ < 15 random

15 < δ < 30 very close

30 < δ < 45 close

45 < δ < 65 moderately related

65 < δ < 95 distantly related

Based on this standard, Jernigan and Baran [64] examine 22 sequences from 19 species and 17 genera

with the understanding that the sequence is fundamentally non-stationary, exhibiting statistically significant

variations in base frequencies between non-overlapping 50 kb windows in a genome. They state that the

scaled δ-distance (δ/
√
n), where n is the length of the sequence, is a statistical invariant for any benchmark

sequence generated by a Markov chain exhibiting the same signature as the given sequence. Their results

suggest that profiles seen through smaller windows are statistically closer to the global signature. The profiles

seen through larger windows tend toward the signature but local fluctuations tend to zero slower than 1/
√
n

(i.e., the convergence rate is “sub-Markov”). For details, please see Figure 1 in [64].

All of the above results further reinforce the conserved nature of dinucleotide odds within a genome, but do
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not say much about inter-genomic distances and how they contribute to origin prediction.

4.6 Summary

The signatures described in this chapter demonstrate that signatures differ among species, but with the

exception of the CGR images, none formally address the amount of variation, identification of unknown

DNA, and the effect of short available sequence length on these signatures. Moreover, they do not examine

sequences from the point of view of the structure of a graph on which the sequence can be defined as a

walk. As part of our DNA Words program investigating mathematical invariants derived from genomes,

we examine the finest scale in graph-theoretic terms, while integrating DNA word graph structure with

Markov chain properties. One frequently exploited observation is that a string over ΣDNA defines a walk in

a suitably defined de Bruijn graph. Closely related is the correspondence of such a string to an Eulerian tour

in a suitably defined multigraph. Applications include DNA physical mapping, DNA sequence assembly,

and multiple sequence alignment problems [96, 97, 134, 101, 135]. We explore purely graph-based genomic

signatures and compare their performance with the word count vector and the dinucleotides odds ratio

signatures. We identify a graph-based signature that is competitive with the dinucleotides odds ratio (most

efficient among existing signatures), performing marginally better (See Chapter 5). We introduce the de

Bruijn chain signature θdbc and demonstrate that it performs better than all existing genomic signatures

with emphasis on target identification from short DNA segments (See Chapter 6). This signature performs

much better than oligonucleotide frequency vectors in differentiating among diverse genomes. We propose a

mathematical framework for characterizing the ability of the θdbc signature to distinguish between genomes

using short genomic segments. We examine the effect of different orders on the efficiency of the θdbc signature.

We also study relationships among efficiency, genome variation, and genome size.
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Chapter 5

Purely graph-based genomic

signatures

5.1 Introduction

A genomic sequence H of length n defines a walk over a de Bruijn graph DBw of order w. The de Bruijn

graph DBw over the DNA alphabet ΣDNA = {A,C,G,T} has vertex set ΣwDNA and edge set Σw+1
DNA. Using

a sliding window that moves one character at a time, vertex counts and edge counts of DBw (H) can be

recorded using occurrences of w-mers in H. In this chapter, we explore various properties of the graph

DBw (H) and structures that are conserved across sequences sampled randomly from a genome and vary

between sequences sampled randomly from different genomes.

5.2 Databases of organisms

To test the accuracy of these first, purely graph-based signatures in identifying an organism from its sequence,

we used a database of diverse genomic sequences of various lengths, including α-proteobacteria, infectious

bacteria, and eukaryotes. Table 5.1 identifies these genomic sequences and the acronyms used for them in

this chapter.
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Table 5.1: List of genomic sequences in the set of diverse species. Bacterial and eukaryotic species have been

used.

Species Acronym Sequence length NCBI identifier

Rhizobium leguminosarum RL 5.1 Mb NC 008380

Erythrobacter litoralis EL 3.1 Mb NC 007722

Mycobacterium leprae ML 3.3 Mb NC 002677

Neisseria meningitidis NM 2.2 Mb NC 008767

Plasmodium falciparum PF chr 12, 2.3 Mb NC 004316

Pseudomonas aeruginosa PA 6.4 Mb NC 002516

Streptococcus pneumoniae SP 2.1 Mb NC 008533

Escherichia coli EC 4.7 Mb NC 000913

Caenorhabditis elegans CE chr 1, 15.3 Mb NC 003279

Homo sapiens HS chr 1, 228.7 Mb AC 000044

Arabidopsis thaliana AT chr 4, 18.85 Mb NC 003075

Saccharomyces cerevisiae SC chr 4, 1.6 Mb NC 001136

5.3 The word count (frequency) vector signature θwcv (θwfv)

The word count vector signature θwcv of order w is defined as the 4w long vector whose ith compo-

nent is given by occ (xi, H), where xi is the ith word in lexicographic order in ΣwDNA. The word fre-

quency vector signature θwfv of order w is defined as the 4w long vector whose ith component is given

by occ (xi, H) /(n−w + 1), where xi is the ith word in lexicographic order in ΣwDNA. Consider the DNA se-

quence S = AAACGAGTCATTCCTGAGGAGCACC. Here n = 25. The corresponding θwcv2 (S) signature

is

〈2, 2, 3, 1, 2, 2, 1, 1, 3, 1, 1, 1, 0, 2, 1, 1〉,

and since n− w + 1 = 24, the corresponding θwfv2 (S) signature is

〈0.0833, 0.0833, 0.125, 0.0417, 0.0833, 0.0833, 0.0417, 0.0417, 0.125, 0.0417, 0.0417, 0.0417, 0, 0.0833, 0.0417, 0.0417〉.

In Chapter 4, the word count and word frequency vector and its variants have been discussed in detail, so

we will not discuss its fundamental properties further. In the rest of this section, we propose a mathematical

framework within which we characterize the separation between the θwfv signatures of sequences generated

by the same DBC. We also characterize the separation between the θwfv signatures of sequences generated

by different DBCs. Thereafter, we describe empirical results that illustrate the conservation of the θwfv

signature within a genome. We also study the accuracy of the θwfv signature in origin prediction.
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5.3.1 Mathematical results for θwfv

Let DC be an ergodic, order-w DBC. Let H be a sequence generated by DC, where |H| = n. If xi, xj ∈ Sw,

the probability of transition from state xi to state xj is given by pi,j , and the stationary probability for xi

is πi.

Let x = σ1σ2 . . . σw ∈ ΣwDNA. A period of x is an integer i, where 1 ≤ i ≤ w, such that x[1 . . . i] =

x[w−i+1 . . . w]. Two occurrences H[i . . . i+w−1] and H[j . . . j+w−1] of x in H overlap if i ≤ j ≤ i+w−1

or j ≤ i ≤ j + w − 1. An x-clump in H is a maximal subsequence of one or more consecutive overlapping

occurrences of x. For example, 2 is a period of x = AACAA, and AACAACAACAACAA is a clump with 4

occurrences of x. Waterman [130] notes that the count of a rare DNA word in H is a function of the number

of x-clumps in H, which approximately follows a Poisson distribution [130], with parameter λβ (derived

below). Let x be a DNA word with shortest period d. Then a declumping event with respect to x is defined

as the event of not observing the string x′ = x[1 . . . d]. Suppose the probability of occurrence of x′ is px.

Then the probability of a declumping event is given by qx = 1− px. The number of occurrences of x within

a clump is approximately geometric with mean 1/px [130].

Lemma 5.1. Let Xx be the random variable that is the number of occurrences of word x in genomic sequence

H. Then the probability generating function of Xx is

fXx
(t) = exp

(

λx(t− 1)(1− px)
1− qxt

)

.

Proof. Let Z be the random variable that is the number of x-clumps in H, and let Ci be the number of

occurrences of x in the ith clump. Hence,

Xx =

Z
∑

i=1

Ci.

Since Z has (approximately) a Poisson distribution with parameter λx, the probability generating function

for Z is

fZ(t) =

∞
∑

k=0

e−λx
(λxt)

k

k!
= eλx(t−1).

The probability generating function for each Ci is

fC(t) = px

∞
∑

k=0

(qxt)
k =

px
1− qxt

.

Assuming independence of the Ci, the probability generating function for Xx is

fXx
(t) = fZ(fC(t)) = exp

(

λx

(

px
1− qxt

− 1

))

= exp

(

λx(t− 1)(1− px)
1− qxt

)

.

¤
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Lemma 5.2. E [Xx] =
λxqx
px

and Var [Xx] =
λxqx
px

(

2qx
px

+ 1

)

.

Proof. By results in [37], E [Xx] = f ′Xx
(1) and Var [Xx] = f

′′

Xx
(1) + f

′

Xx
(1)− (f

′

Xx
(1))2.

f
′

Xx
(t) = exp

(

λx(t− 1)(1− px)
1− qxt

)(

λx(1− px)
1− qxt

+
qxλx(t− 1)(1− px)

(1− qxt)2
)

.

f
′′

Xx
(t)

= f
′

Xx
(t)

(

λx(1− px)
1− qxt

+
qxλx(t− 1)(1− px)

(1− qxt)2
)

+ fXx
(t)

(

2qxλx(1− px)
(1− qxt)2

+
2q2xλx(t− 1)(1− px)

(1− qxt)3
)

.

We have

E [Xx] = f
′

Xx
(1) =

λxqx
px

.

Now,

f
′′

Xx
(1) =

λ2
xq

2
x

p2
x

+
2λxq

2
x

p2
x

.

Therefore,

Var [Xx] = f
′′

Xx
(1) + f

′

Xx
(1)− (f

′

Xx
(1))2

=
λ2
xq

2
x

p2
x

+
2λxq

2
x

p2
x

+
λxqx
px
− λ2

xq
2
x

p2
x

=
λqx
px

(

2qx
px

+ 1

)

.

The lemma follows from the above calculations. ¤

Lemma 5.3. Let H be a genomic sequence of length n, and let χwH be its word count vector. Fix threshold

τ > 0. Then

Pr [d (χ,E [χ]) ≥ 4wτ ] ≤
∑

x∈Sw

nπx
τ2

(

2qx
px

+ 1

)

.

Proof. Let χwH = (X1, X2, . . . X4w). Since E [Xx] = nπx = (λxqx)/px, we have λx = (nπxpx)/qx. The

distance between χ and E [χ] is d (χ,E [χ]) =
∑

x∈Sw

|Xx − E [Xx] |. By Chebyshev’s bound and Lemma 5.2,

we obtain

Pr [|Xx −E [Xx] | ≥ τ ] ≤
Var [Xx]

τ2
=
λxqx
pxτ2

(

2qx
px

+ 1

)

=
nπx
τ2

(

2qx
px

+ 1

)

.

The lemma follows from the resulting inequality:

Pr [d (χ,E [χ]) ≥ 4wτ ] ≤
∑

x∈Sw

Pr [|x−E [x] | ≥ τ ] .
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¤

Theorems 5.4 and 5.5 address the ability of word count vectors to identify and distinguish DBCs.

Theorem 5.4. Let DC be an order s DBC. Let H1 and H2 be two genomic sequences of length n generated

independently by DC. Let χ1 and χ2 be their respective order-w word count vectors. Then,

Pr
[

d (χ1, χ2)) ≥ 2 · 4wτ
√
n
]

≤ 2

τ2
(2 · 4w − 1).

Proof. The component-wise expected values in χ1 and χ2 are the same. Their expected difference is therefore

the 0 vector. Therefore,

d (χ1 −E [χ1] , χ2 −E [χ2]) = d (χ1, χ2) .

Furthermore using T = τ
√
n we obtain,

Pr [d (χ1,E [χ1]) ≥ 4wT ] = Pr [d (χ2,E [χ2]) ≥ 4wT ] .

Using the above equations and Lemma 5.3, we obtain

Pr [d (χ1 −E [χ1] , χ2 −E [χ2]) ≥ 2 · 4wT ] = Pr [d (χ1, χ2) ≥ 2 · 4wT ] .

Pr [d (χ1, χ2) ≥ 2 · 4wT ] ≤ Pr [d (χ1,E [χ1]) ≥ 4wT ] + Pr [d (χ2,E [χ2]) ≥ 4wT ]

= 2
∑

x∈Sw

nπx
T 2

(

2qx
px

+ 1

)

.

If x′ = x[1 . . . d], where d is the smallest period of x, |x| ≥ |x′|. Therefore, px ≥ πx and
qx
px
≤ 1− πx

πx
, which

yields

Pr [d (χ1, χ2) ≥ 2 · 4wT ] ≤ 2

τ2

∑

x∈Sw

πx

(

1− πx
πx

+ 1

)

=
2

τ2

∑

x∈Sw

(2− πx) .

From the above results we have

Pr
[

d (χ1, χ2) ≥ 2 · 4wτ
√
n
]

≤ 2

τ2
(2 · 4w − 1).

¤

Let H1 and H2 be genomic sequences of length n, generated independently by DBCs DC1 and DC2 of orders

s1 and s2, respectively. Let χ1 = χH1

1 and χ1 = χH2

2 be their order-w word count vectors. This assumption

formalizes the separation of genomic sequences obtained from different organisms.
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Assumption 5.1. There exists a non-negative real number γ ∈ (0, 1] such that

Pr
[

d (E [χ1] ,E [χ2]) ≥ 3 · 4wτ
√
n
]

≥ γ.

Then, the distance d (χ1, χ2) can distinguish DC1 and DC2.

Theorem 5.5. let Xx,1 and Xx,2 denote the counts of x in H1 and H2, respectively. Assuming that H1 and

H2 are both generated by Markov chains DC ′1 and DC′2 of order w, let πx,1 and πx,2 denote the stationary

probabilities of state x in DC ′1 and DC′2, respectively. If there exists a constant γ as in Assumption 5.1 then,

Pr
[

d (χ1, χ2) ≥ 4wτ
√
n
]

≥ γ − 2

τ2
(2 · 4w − 1).

Proof. Treating d (χ1, χ2), d (χ1,E [χ1]), d (χ2,E [χ2]), and d (E [χ1] ,E [χ2]) as distances d, d1, d2, and d3,

respectively, in 1-dimensional space and using T = τ
√
n we obtain,

d3 ≤ d+ d1 + d2

Pr [d3 ≥ 3 · 4wT ] ≤ Pr [d ≥ 4wT ] + Pr [d1 ≥ 4wT ] + Pr [d2 ≥ 4wT ] .

From Assumption 5.1, Lemma 5.3, and πx ≤ px we obtain,

γ ≤ Pr [d (χ1, χ2) ≥ 4wT ] +
∑

x∈Sw

nπx,1
T 2

(

2qx,1
px,1

+ 1

)

+
∑

x∈Sw

nπx,2
T 2

(

2qx,2
px,2

+ 1

)

,

Pr
[

d (χ1, χ2) ≥ 4wτ
√
n
]

≥ γ − 1

τ2

∑

x∈Sw

(2− πx,1)−
1

τ2

∑

x∈Sw

(2− πx,2)

= γ − 1

τ2
(2 · 4w − 1)− 1

τ2
(2 · 4w − 1)

= γ − 2

τ2
(2 · 4w − 1).

The theorem follows. ¤

By Theorem 5.5, the probability that the distance between the word count vectors of sequences generated

by different DBCs exceeds 4wτ
√
n, increases with τ . Sequences assumed to be generated by two different

DBC with sufficiently different stationary distributions would have a high probability of being separated by

a large distance.

5.3.2 Empirical results for the θwcv signature

In this section, we examine the properties of the θwcv signature within genomic sequences of a diverse set of

genomes.
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First, we computed θwcv signatures of orders 2 and 3 for entire chromosomal sequences of AT chromosomes

I, II, and III, CE chromosomes I, III, and IV, and SC chromosomes IV, V, and VIII. We then computed

Pearson correlation between the signatures of each pair of chromosomes. Figure 5.1 illustrates the results.

Figure 5.1(a) contains the results corresponding to order-2 θwcv signatures while Figure 5.1(b) contains the

results corresponding to order-2 θwcv signatures. Each rectangle with rounded corners illustrates the Pearson

correlation coefficients between the θwcv signatures of chromosomal sequences within genome. Edges between

rectangles indicate the range of Pearson correlation coefficients between the θwcv signatures of each of the 9

pairs of chromosomes for every pair of organisms.

Observe that the range of Pearson correlation coefficients between the chromosomal sequences of a genome

is not very different from the range of Pearson correlation coefficients between the chromosomal sequences

of two different genomes irrespective of the order of the θwcv signature. It is expected of a good genomic

signature that the range of Pearson correlation coefficients between genomes be lower in magnitude than the

range of Pearson correlation coefficients within a genome. This property is not demonstrated by the θwcv

signature as is illustrated in Figure 5.1. Therefore, we study graph-based signatures to examine if they are

competitive with word-count based signatures.

Next, we examined the accuracy of the θwcv signature in predicting the origin of relatively short DNA

sequences. Figure 5.2 illustrates the results. From each species on the x-axis, 100 sequence samples of

of length 10 kb each were randomly sampled. For each sample, the θwcv2 signature was computed and its

distance computed from each θwcv2 signature in the set of 12 genomic signatures for all species on the x-axis.

The species with the closest distance was predicted as the origin of the sample. The number of correct

predictions is the accuracy, which is plotted on the y-axis. Although the θwcv2 signature is not able to

effectively distinguish between entire chromosomal sequences of different species, it can predict the origin of

short DNA sequences with higher accuracy than was expected from the results in Figure 5.1.

5.4 The edge deletion cycle

Let ψ ≥ 0 be an integer threshold. Let E≤ψ = {(i, j) ∈ E | ec ((i, j), H) ≤ ψ} be the set of edges with

counts at most ψ. Then edge deletion is the process of deleting edges in E≤ψ from DBw, while varying ψ

from 0 to Ξ = max{ec ((i, j), H) | (i, j) ∈ E} and deleting edges with tied counts in arbitrary order. The

ψ-edge deletion of DBw is DBw(ψ) = (S , E − E≤ψ). As ψ increases from 0 to Ξ, the number of connected

components in DBw(ψ) increases from 1 to 4w, while the number of isolated vertices increases from 0 to 4w.

Figures 5.4, 5.5, 5.6 and 5.7 illustrate the various stages of edge deletion in the order-3 DBC over the binary
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Figure 5.1: Pearson correlation coefficients between θwcv signatures of AT, CE, and SC. θwcv signatures of

orders (a) 2 and (b) 3 have been used.
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Figure 5.2: Accuracy of the θwcv2 signature. DNA fragments of length 10 kb and a database of 12 diverse

species have been used.

alphabet shown in Figure 5.3.

5.5 The vertex deletion order signature θvdo

In the course of an edge deletion cycle, vertices of the DBC become isolated. The number of isolated vertices

increases from 0 at the beginning of the edge deletion cycle to |V | at the end of the edge deletion cycle,

where |V | is the number of vertices in the DBC. The vertex deletion order θvdo is the permutation of Sw

giving the order in which vertices become isolated during edge deletion.

Figure 5.8 contains the graphical representations of the θvdo2 signatures of several species, including multiple

chromosomes of some species. Observe that the θvdo2 signatures of different organisms are very different

from each other. The θvdo2 signatures of two closely related species C. pneumoniae and C. muridarum are

very similar. The θvdo2 signatures of two different AT chromosomes are almost the same, as are the θvdo2

signatures of three different SC chromosomes. Figures 5.9 and 5.10 contain the graphical representations of

θvdo3 signatures of AT and SC chromosomes. Figure 5.11 (a) illustrates the Pearson correlation coefficients

between the θvdo2 signatures of the 16 SC chromosomes while Figure 5.11 (b) illustrates the Pearson correlation

coefficients between the θvdo3 signatures of the 16 SC chromosomes. Similarly, Figure 5.12 (a) illustrates the

Pearson correlation coefficients between the θvdo3 signatures of the 5 AT chromosomes while Figure 5.12 (b)
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Figure 5.3: A binary DBC of order 2 with edge counts.

illustrates the Pearson correlation coefficients between the θvdo3 signatures of the 6 CE chromosomes. Observe

that the θvdo signature is conserved very well between the genomic sequences of a given genome. However,

while the θvdo signature is conserved very well within a genome, it is not very effective at distinguishing

between genomes as is illustrated in Figure 5.13.

5.6 The component-based edge deletion vector θced

In the course of an edge-deletion cycle, the number of connected components in the DBC increases from 1 at

the beginning of the edge deletion cycle to |V | at the end of the edge deletion cycle. Let ψi be the smallest

integer such that DBw(ψi) has precisely i connected components. The component-based edge deletion vector

θced is the 4w-vector whose ith component is the number of edge deletions required to go from i − 1 to i

components. Figure 5.14 shows the θced2 signatures for the entire chromosomal sequences of several sequences.

The ability of the θced3 signature to distinguish between the chromosomal sequences of the three species AT,

CE, and SC is better than that of the θwcv3 and θvdo3 signatures as is illustrated in Figure 5.15. However, the

accuracy of the θced2 signature in identifying the origin of a short DNA sequence of length 10 kb is much less

than the accuracy of the order-2 signatures discussed so far as illustrated in Figure 5.16.

5.7 The ordered vertex-based edge deletion vector θoed

The vertex-based edge deletion vector θved is the 4w-vector whose ith component is the number of edge

deletions required to go from i− 1 to i isolated vertices. The ordered vertex-based edge deletion vector θoed
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Figure 5.4: Edge deletion cycle - I. Edge deletion cycle steps: 1, 2, 3, and 4.
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Figure 5.5: Edge deletion cycle - II. Edge deletion cycle steps: 5, 6, 7, and 8.
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Figure 5.6: Edge deletion cycle - III. Edge deletion cycle steps: 9, 10, 11, and 12.
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Figure 5.7: Edge deletion cycle - IV. Edge deletion cycle steps: 13, 14, 15, and 16.
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Figure 5.8: θvdo3 signatures of entire chromosomes of various species.
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Figure 5.9: θvdo3 signatures of entire chromosomes of SC and AT.
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Figure 5.10: θvdo3 signatures of entire chromosomes of CP, CM, CE, BB, and HS.
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Figure 5.11: Pearson correlation coefficients between θvdo signatures of the 16 SC chromosomes. (a) θvdo2

signatures and (b) θvdo3 signatures have been used.
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Figure 5.12: Pearson correlations between θvdo3 signatures of chromosomes of (a) AT and (b) CE. Chromo-

somal sequences of the 5 AT chromosomes and 6 CE chromosomes have been used.
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Figure 5.14: θced2 signatures of various species. Complete chromosomal sequences have been used to generate

signatures. The first figure corresponds to the θced2 signature for a sequence generated by a DBC with uniform

transition probabilities.
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Figure 5.16: Accuracy of first hits of the θced2 signature. Sample sequences of length 10 kb and a database

of 12 diverse species have been used.
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is the 4w-vector whose ith component is the total number of edge deletions required to isolate the vertex xi,

where xi is the ith element of Sw in lexicographic order. Figure 5.17 illustrates that the θoed3 bar code of

each species is unique and sufficiently different from the θoed3 bar codes of other species.

The accuracies of origin prediction of the three signatures θwcv2 , θdor2 , and θoed2 were compared in two scenarios.

The first scenario consisted of testing the accuracy of origin prediction, while choosing from an existing

database consisting of signatures of far-away species. We used 12 species for this purpose as described in

Table 6.1. Sequences of length 50 kb that were randomly sampled from genomic sequences of these species

were used as input data. The results are shown in Figure 5.18(a).

The second scenario consisted of testing the accuracy of origin prediction while choosing from an existing

database consisting of signatures of closely-related species. We used 20 species for sampling purposes as

described in Table 6.2, while the database consisted of signatures of 52 α-proteobacteria as listed in Table 5.2.

In this work, we have excluded plasmids from all experiments involving bacteria. Sequences of length 50 kb

that were randomly sampled from genomic sequences of these species were used as input data. The results

are shown in Figure 5.18(b).
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(a)

(b)

Figure 5.17: θoed3 signatures for (a) 4 prokaryotes and (b) 4 eukaryotes. Numbers denote chromosomes. The

above is a gray scale representation. Each shaded-bar represents a specific component in the signature.
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Figure 5.18: Comparison of accuracies of θwcv2 , θoed2 , and θdor2 signatures. We have examined origin prediction

of random 50 kb segments taken from the species on the x-axis. 100 samples were used to determine the

accuracy for each species. In (a), the database of 12 diverse species was used, while in (b), the database of

20 α-proteobacteria was used.
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Table 5.2: List of 53 α-proteobacterial species. List of α-proteobacteria

and their genomic sequences used to build a large database of closely-

related species.

Species Size NCBI accession numbers

A. marginale 1214881 NC 004842

A. phagocytophilum 1492378 NC 007797

A. tumafaciens 2882199 NC 003062, NC 003063, NC 003304, NC 003305

B. abortus, chromosomes 1, 2 2154688 NC 006932, NC 006933

B. bacilliformis, KC583 1465745 NC 008783

B. henselae, Houston-1 1958717 NC 005956

B. japonicum, USDA-110 9235994 NC 004463

B. melitensis, 16M, chromosomes 1,

2

2147476 NC 003317, NC 003318

B. melitensis, biovar-Abortus-2308,

chromosomes 1, 2

2151768 NC 007618, NC 007624

B. quintana 1604058 NC 005955

B. suis, chromosomes 1, 2 2137988 NC 004310, NC 004311

C. crescentus 4074408 NC 002696

C. pelagibacter, ubique-HTCC1062 1327544 NC 007205

E. canis, Jake 1333891 NC 007354

E. chaffeensis, Arkansas 1193136 NC 007799

E. litoralis, HTCC2594 3096085 NC 007722

E. ruminantium, Gardel 1521430 NC 006831

E. ruminantium, Welgevonden 1534678 NC 006832

G. bethesdensis, CGDNIH1 2747130 NC 008343

G. oxydans, 621H 2740851 NC 009977

H. neptunium, ATCC-15444 3758031 NC 008358

Jannaschia sp. CCS1 4379731 NC 007802

Mesorhizobium sp. BNC1 4475553 NC 008254

M. loti 7136665 NC 002678

M. magneticum, AMB-1 5038190 NC 007626

M. maris, MCS10 3416978 NC 008347

N. aromaticivorans, DSM-12444 3612554 NC 007794

N. hamburgensis, X14 4470001 NC 007964

N. winogradskyi 3450775 NC 007406
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P. denitrificans, PD1222, chromo-

somes 1, 2

2893125 NC 008686, NC 008687

R. bellii, RML369-C 1543895 NC 007940

R. conorii, Malish7 1286962 NC 003103

R. denitrificans, OCh-114 4192225 NC 008209

R. etli 4444225 NC 007761

R. felis, URRWXCal2 1506440 NC 007109

R. leguminosarum 5129417 NC 008380

R. palustris, BisA53 5584227 NC 008435

R. palustris, BisB18 5592696 NC 007925

R. palustris, BisB5 4962694 NC 007958

R. palustris, CGA009 5537284 NC 005296

R. palustris, HaA2 5407903 NC 007778

R. prowazekii, Madrid-E 1127486 NC 000963

R. rubrum, ATCC-11170 4415090 NC 007643

R. sphaeroides, 2. 4. 1 3234254 NC 007493

R. typhi, Wilmington 1127456 NC 006142

S. alaskensis, RB2256 3393039 NC 008048

Silicibacter sp. TM1040 3246738 NC 008044

S. meliloti 1373665 NC 003037, NC 003047, NC 003078

S. pomeroyi, DSS-3 4168226 NC 003911

Wolbachia, Brugia malayi endosym-

biont

1095613 NC 006833

Wolbachia, Drosophila melanogaster

endosymbiont

1285992 NC 002978

Z. mobilis 2085879 NC 006526

5.8 Discussion and Conclusions

To compare the accuracies of the three signatures we used sequence samples of fairly large length, i.e., 50

kb. From Figure 5.18(a), we observe that the θoed2 signature outperforms the θwfv2 signature 4/12 times

while the latter outperforms the former 4/12 times. Similarly, the θoed2 signature outperforms the θdor2
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signature 5/12 times while the θdor2 signature outperforms the θoed2 signature 5/12 times. From the plot in

both Figure 5.18(b), we observe that the θoed2 signature outperforms the θwfv2 signature 11/20 times while

the latter outperforms the former 8/20 times. Similarly, the θoed2 signature outperforms the θdor2 signature

10/20 times while the θdor2 signature outperforms the θoed2 signature 9/20 times. Observe also, that, while

distinguishing a DNA segment sampled from R. leguminosarum is more accurate using a database of diverse

species, the identification becomes less accurate when a database of closely-related species. While it appears

that the graph-based θoed2 signature is evenly matched with both the dinucleotide frequency based signatures,

it is notable that their performances are complimentary to each other. For instance, observe that, in the

case of B. suis, the graph-based θoed2 signature performs much better than the θdor2 and θwcv2 signatures.

suggesting that the sequence features captured by the θoed2 signature are more well-conserved in B. suis than

dinucleotide counts or odds ratios. The complementarity of accuracies could be attributed to the fact that

the two categories of signatures pick out entirely different features of sequences. This led to the possibility

that a signature that picked out both graph structure-based features and oligonucleotide frequency based

features would have substantially higher accuracy than either of these signatures alone. In further chapters,

we further improve the θoed signature to obtain the more accurate θovif signature. We also derive a stronger

and more accurate word frequency based signature, the π signature. In Chapter 6, we combine these two

signatures to obtain the θdbc signature that has a higher accuracy of origin prediction than any of the

signatures discussed so far.
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Chapter 6

The de Bruijn chain signature

In this chapter, we characterize the de Bruijn chain signature θdbc. We build a theoretical framework within

which the properties of the θdbcw signature can be explored. Within this framework, we characterize the θdbc2

signature in particular, although the methods and bounds presented for the θdbc2 signature are applicable to

higher-order θdbcw signatures. We derive and evaluate probabilistic upper bounds on the separation between

the θdbc2 signatures of sequences generated by the same de Bruijn chain and probabilistic lower bounds on

the separation between the θdbc2 signatures of sequences generated by different de Bruijn chains. We present

results that show the accuracy of target identification by the θdbc2 signature when the database consists of

far-away species as well as closely-related species. In the end, we combine the powers of the θdbc2 and θdor2

signatures for even more accurate origin predictions.

6.1 Theory and Methods

In this section, we build a theoretical framework to analyze distances between θdbc2 signatures in terms of

the parameters of the DBCs generating them. Let DC be an ergodic, order-2 DBC. Let H be a sequence

generated by DC, where |H| = n. If xi, xj ∈ S2, the probability of transition from state xi to state xj is

given by pi,j , while the stationary probability for xi is πxi
. The stationary probability for xi, when estimated

from a given sequence H, is denoted by πxi
(H).

As observed in Chapter 2, the θdbc2 signature is a concatenation of the π2 signature and the θovif2 /4 signature.

First we develop a framework for characterizing π2.
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6.1.1 Separation between π2 signs derived from sequences generated by the

same DBC

Let H be a long DNA sequence generated by an order-w DBC with irreducible transition matrix P and

stationary distribution πw(H). Let h be a much shorter subsequence of H with transition matrix P ′ and

stationary distribution πw(h). Assuming that P ′ is irreducible, P ′ is a perturbed form of P . When P and

P ′ are close, the distance between πw(H) and πw(h) is very small and can be bounded.

Recall that S is a genomic sequence over the alphabet ΣDNA.

Solan and Vieille [116] have defined a measure of closeness of P ′ to P . They define ζ as

ζP = minC⊂S

∑

s∈C

πw(H)Pr
[

s→ C̄
]

.

They state that P ′ is (ε, b)-close to P if for all pairs of states s, t ∈ Sw,

∣

∣

∣

∣

1− P ′(s→ t)

P (s→ t)

∣

∣

∣

∣

≤ b

whenever (a) πws (H)P (s→ t) ≥ εζP or (b) πws (H)P ′(s→ t) ≥ εζP . Let

L =

|Sw|−1
∑

i=1

(|Sw|
i

)

i|S
w|.

Then, if b ∈ (0, 1/2|S
w|) and ε ∈

(

0,
b(1− b)
L|Sw|4

)

, for every transition matrix P ′ that is (ε, b)-close to P

• P ′ is irreducible and

• Its stationary distribution πw(h) satisfies

∣

∣

∣

∣

1− πws (h)

πws (H)

∣

∣

∣

∣

≤ 18bL.

A more detailed account of the above intuition can be found in Solan and Vieille [116].

From the above discussion, it is clear that for a genomic sequence H generated by order-w DBC DC and its

much smaller subsequence h, the stationary distribution of DC can be accurately represented by πw(H) and

closely approximated by πw(h). Therefore, the estimated stationary distribution of the DBC that generates

a genomic sequence, can serve as a genomic signature.

Our results [53] (not shown here) suggest that θwfvw (H) ≈ πw(H), and πw(h) ≈ πw(H), while θwfvw (h) might

not display such similarity to either θwfvw (H) or πw(H). This property is conserved for a wide range of

lengths of h (tested for ≥ 5 kb). In Theorem 6.2, we bound the distance between the stationary distributions
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derived from the transition matrices of sequences generated by the same DBC. First, we prove the following

lemma.

Lemma 6.1. Let H be a genomic sequence of length n generated by an order 2 DBC with underlying sta-

tionary distribution π. Assume that the number of occurrences of a dinucleotide x has a Poisson distribution

with mean nπx. Let π̂x be the random variable representing the stationary probability πx(H) of x estimated

from H. Then for τ > 0 and T = nτ ,

Pr [|π̂x −E [π̂x] | > τ ] < Lπ(x) + Uπ(x),

where

Lπ(x) = exp

(

T 2

2nπx

)

and

Uπ(x) =







e
T

nπx

(

1 + T
nπx

)1+ T
nπx

.







nπx

.

Proof. Let Xx be the random variable representing the number of occurrences of the dinucleotide x. Then

Xx can be expressed as a sum of n− 1 indicator random variables, each representing the occurrence of x at

a given position in the sequence. In particular,

Xx =

n−1
∑

i=1

Xx(i),

where Pr [Xx(i) = 1] is equal to πx for all i, and E [Xx] ≈ nπx. Now,

Pr [|πx −E [πx] | > τ ] = Pr [|Xx −E [Xx] | > nτ ] .

Let T = nτ . Since Xx can be expressed as a sum of independent indicator random variables, Chernoff’s

bounds [87] are applicable. For the lower tail of the above probability, the following Chernoff bound [87] is

applicable:

Pr [Xx < (1− δ)µ] < e
−µδ2

2 ,

where µ = E [Xx]. Using

Pr [Xx −E [Xx] < −T ] = Pr [Xx < nπx − T ]

= Pr [Xx < (1− δ)nπx]

we get

nπx − T = (1− δ)nπx

or δ =
T

nπx
.
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Therefore, the lower tail probability is bound as follows:

Pr [Xx −E [Xx] < −T ] < exp

(

−nπx
2
·
(

T

nπx

)2
)

= exp

(−T 2

2nπx

)

.

For the corresponding upper tail of the probability, the following Chernoff’s bound [87] is applicable:

Pr [Xx > (1 + δ)µ] <

(

eδ

(1 + δ)1+δ
.

)µ

.

Using

Pr [Xx −E [Xx] > T ] = Pr [Xx > nπx + T ]

= Pr [Xx > (1 + δ)nπx]

we get

nπx + T = (1 + δ)nπx

or δ =
T

nπx
.

Therefore, the upper tail probability is bound as follows:

Pr [Xx −E [Xx] > T ] <







e
T

nπx

(

1 + T
nπx

)1+ T
nπx

.







nπx

.

Combining the two tail probabilities we have

Pr [|π̂x −E [π̂x] | > τ ] = Pr [|Xx −E [Xx] | > T ]

≤ Lπ(x) + Uπ(x).

The lemma follows. ¤

Theorem 6.2. Let H1 and H2 be genomic sequences of length n independently generated by the same order

2 DBC with underlying stationary distribution π. Let π̂1 and π̂2 be the random variables representing the

order 2 stationary distributions derived from the respective transition matrices of H1 and H2. Assume that

the number of occurrences of a dinucleotide x has a Poisson distribution with mean nπx. Then for τ > 0

and T = nτ ,

Pr
[

d
(

π̂1, π̂2
)

> 32τ
]

< 2 ·
∑

x∈S2

(Lπ(x) + Uπ(x)) .
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Proof. Using the bound for the stationary distribution of each dinucleotide as derived in Lemma 6.1 and

applying the union bound we have

Pr
[∣

∣π̂1 −E
[

π̂1
]∣

∣ > 16T/n
]

≤
∑

x∈S2

(Lπ(x) + Uπ(x))

and

Pr
[∣

∣π̂2 −E
[

π̂2
]∣

∣ > 16T/n
]

≤
∑

x∈S2

(Lπ(x) + Uπ(x)) .

The expected value of πx for any x is the same in both sequences H1 and H2. Therefore,

d
(

(π̂1 −E
[

π̂1
]

), (π̂2 −E
[

π̂2
]

)
)

= d
(

π̂1, π̂2
)

.

Using the union bound we get,

Pr
[

d
(

π̂1, π̂2
)

> 32τ
]

= Pr
[

d
(

π̂1, π̂2
)

> 32T/n
]

= Pr
[

d
(

π̂1 −E
[

π̂1
]

, π̂2 −E
[

π̂2
])

> 32T/n
]

≤ Pr
[

|π̂1 −E
[

π̂1
]

| > 16T/n
]

+ Pr
[

|π̂2 −E
[

π̂2
]

| > 16T/n
]

.

The theorem follows. ¤

We study the nature of the above bound in Theorem 6.2 as follows. In Figure 6.1(a), we have plotted

the distribution of T = nτ values using τ values computed from L1 distances between sequences sampled

from the same organism. Sequences of size 10 kilobases were used. A set of genomic sequences were

randomly selected. From each genomic sequence 100 pairs of sub-sequences were independently sampled at

random, their stationary distributions were estimated, and the L1 distance between each pair of stationary

distributions was recorded. Both τ and T values were computed from this distance and their distribution

plotted as in Figure 6.1(a). In Figure 6.1(b), the theoretical bounds are simulated for different values of

T and the upper bounds on probability are plotted using n = 10000 and both uniform and non-uniform

stationary distributions. Note that approximately for T > 160, the corresponding probability of separation

is very low. This illustrates that the bound displays a strong synergy to real data from genomes.

6.1.2 Separation between θ
ovif
2 signs derived from sequences generated by the

same DBC

Next, we present bounds for separation between the θovif2 signatures derived from a pair of genomic sequences

generated by the same DBC. We begin by characterizing the distribution of the transition probability between

two states. Let the transition t : σ1 · · ·σw → σ2 · · ·σw+1 be defined. Let X and Y be random variables
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Figure 6.1: Plot of upper bounds derived in Theorem 6.2. (a) Plot of distribution of T values computed

using τ values taken from L1 distances between stationary distributions of sequences from the same genome.

The L1 distance between each pair was equated to 32τ . τ , and subsequently T , were derived and the

distribution of T values was computed and plotted. Note that approximately T > 150 indicates a large

and unlikely separation between π̂ signatures of sequences generated by the same DBC. (b) Plot of upper

bounds of separation between stationary distributions of sequences from the same DBC using the theoretical

expression derived in Theorem 6.2.
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denoting the number of occurrences of α = σ1σ2 · · ·σw+1 and β = σ1 · · ·σw respectively in a sequence H.

The random variable Z representing the estimated probability of the transition t is

Z =







X/Y if Y 6= 0,

0 otherwise.

Lemma 6.3 presents an upper bound on the probability of a specified separation between the frequency of a

given transition t and its expected value.

Lemma 6.3. Assume, for α and β as described above, that, given an occurrence of β, the occurrence of α is

binomially distributed with parameter πα/πβ. Let a sequence H of length n be given along with a transition

t represented by the random variable Z as defined above. Then for τ > 0,

Pr [|Z/4−E [Z/4] | ≥ τ ] < Lovif (β) + Uovif (β),

where,

Lovif (β) = e−nπβ

(

exp

(

exp

(

−8τ2 πβ
πα

)

(nπβ)

)

− 1

)

and

Uovif (β) = e−nπβ











exp



















e
4τπβ

πα

(

1 +
4τπβ

πα

)1+
4τπβ

πα









πα
πβ

(nπβ)











− 1











.

Proof. Recall that the θovif2 signature is scaled by 4 to maintain similar orders of magnitude as the πw

signature (Section 6.1). Let Xα and Xβ be random variables representing the number of occurrences of

strings α and β respectively in H.

Pr [|Z/4−E [Z/4] | ≥ τ ] = Pr

[∣

∣

∣

∣

Xα

4Xβ
−E

[

Xα

4Xβ

]∣

∣

∣

∣

≥ τ
]

=

∞
∑

c=1

Pr

[∣

∣

∣

∣

Xα

4c
− 1

4
E

[

Xα

Xβ

]∣

∣

∣

∣

≥ τ | Xβ = c

]

· Pr [Xβ = c]

=

∞
∑

c=1

Pr

[∣

∣

∣

∣

Xα

4
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4πβ
c

∣

∣

∣

∣

≥ τc | Xβ = c

]

· e
−nπβ (nπβ)

c

c!

=

∞
∑

c=1

Pr

[∣

∣

∣

∣

Xα −
cπα
πβ

∣

∣

∣

∣

≥ 4τc | Xβ = c

]

· e
−nπβ (nπβ)

c

c!
.

Since Xα can be represented as a sum of independent indicator random variables with E [Xα] = cπα/πβ ,

Chernoff’s bounds [87] are applicable to the probability

Pr

[∣

∣

∣

∣

Xα −
cπα
πβ

∣

∣

∣

∣

≥ 4τc | Xβ = c

]

.
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Consider the lower tail probability

Pr

[

Xα −
cπα
πβ
≤ −4τc | Xβ = c

]

= Pr

[

Xα ≤
cπα
πβ
− 4τc | Xβ = c

]

.

Chernoff’s lower tail bounds [87] are of the form

Pr [X < (1− δ)µ] < e
−µδ2

2 ,

where µ = E [Xα]. Using

cπα
πβ
− 4τc = (1− δ)cπα

πβ

we get

δ =
4τπβ
πα

.

Therefore, the lower tail probability is bounded as follows:

Pr

[

Xα −
cπα
πβ
≤ −4τc | Xβ = c

]

< exp

(

−cπα
2πβ

·
(

4τπβ
πα

)2
)

= exp

(

−8cτ2 πβ
πα

)

.

Now consider the upper tail probability

Pr

[

Xα −
cπα
πβ
≥ 4τc | Xβ = c

]

= Pr

[

Xα ≥
cπα
πβ

+ 4τc | Xβ = c

]

.

The following Chernoff’s bound [87] is applicable.

Pr [Xx > (1 + δ)µ] <

(

eδ

(1 + δ)1+δ
.

)µ

.

Using

cπα
πβ

+ 4τc = (1 + δ)
cπα
πβ

we get

δ =
4τπβ
πα

.

Therefore, the upper tail probability is bounded as follows:

Pr

[

Xα −
cπα
πβ
≥ 4τc|Xβ = c

]

<









e
4τπβ

πα

(

1 +
4τπβ

πα

)1+
4τπβ

πα









cπα
πβ

.
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Combining the two tail probabilities we get
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.

The lemma follows. ¤

We assume the existence of a maximum transition probability among all probabilities associated with tran-

sitions to or from any given state in Assumption 6.1.

Assumption 6.1. Consider an order-2 DBC DC that generates sequence H. Let D̂C be the DBC recon-

structed from H. Given a state β ∈ ΣwDNA in the DBC DC, define trans(β) as the set of all transitions of

the form β → β[2 · · ·w]σ or σβ[1 · · ·w − 1] → β, for σ ∈ ΣDNA. There exists a positive constant s, and a

maximum transition t∗ ∈ trans(β) in DC such that, for all t ∈ trans(β) \ {t∗},

p(t∗)− p(t) > s,

where p(t) denotes the probability associated with the transition t. For some ς, where 0 < ς ≤ 1, and

transitions t ∈ trans(β), the probability that the same transition t∗ ∈ trans(β) is also the maximum probability

transition for state β in D̂C is given by

Pr [p(t∗)− p(t) > s] = ς.

Given β ∈ ΣwDNA, we define the maximum β-transition t∗β as the transition in trans(β) having maximum

frequency. The frequency of t∗β is the vertex isolation frequency of β. Define S(β) as the state at which t∗β

starts and E(β) as the state at which t∗β ends. Define T (β) as the label of t∗β . When t∗β is directed away

from β, S(β) = β, E(β) = β[2 . . . w]σ, and T (β) = βσ, for some σ ∈ ΣDNA. When t∗β is directed into β,

S(β) = σβ[1 . . . w − 1], E(β) = β, and T (β) = σβ, for some σ ∈ ΣDNA.
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The L1 distance between the θovif2 signatures of sequences generated by the same DBC is bounded in

Theorem 6.4.

Theorem 6.4. Assume Assumption 6.1. Let H1 and H2 be two genomic sequences generated by the same

DBC of order 2. Let θovif1 and θovif2 be their respective order-2 θovif signatures. Then for any τ > 0,

Pr

[

d

(

θovif1

4
,
θovif2

4

)

> 32τ

]

< 2ς2
∑

β∈S2

(

Lovif (β) + Uovif (β)
)

.

Proof. Using the results from Lemma 6.3, Assumption 6.1, and the union bound we get
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)

The component-wise expected values in θovif1 /4 and θovif2 /4 are the same. Therefore,

d

(
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4
,
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4

)
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.

We get
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(
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4
,
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> 32τ

]
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[
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4
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[

θovif2

4
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> 32τ

]
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[

d

(

θovif1

4
,E

[

θovif1

4
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> 16τ

]
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[

d

(

θovif2

4
,E

[

θovif2

4

])

> 16τ

]

< 2ς2
∑

β∈S2

(

Lovif (β) + Uovif (β)
)

.

The theorem follows. ¤

We now analyze the behavior of the upper bound in Theorem 6.4 when applied to real data. For a randomly

selected set of genomic sequences, 100 pairs of sequences of length 100 kilobases each were randomly and

independently sampled from each genomic sequence. For each pair, their θovif2 /4 signatures were computed

and the L1 distance between them was noted. Figure 6.2(a) plots the distribution of these distances. Note

that a distance greater than approximately 0.5 marks a large and unlikely separation. The τ value corre-

sponding to a distance of 0.5 is 0.5/32 = 0.0156, whose corresponding upper bound of probability is very

low as observed in Figure 6.2(b).

Next, we combine the properties of the π̂2 and θovif2 /4 signatures to derive the separation between θdbc2

signatures of sequences generated by the same DBC.
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Figure 6.2: Plot of upper bounds derived in Theorem 6.4. (a) Plot of distribution of L1 distances between

θovif2 /4 signatures of sequences from the same genome. τ can be derived by dividing each L1 distance by

32. Note that approximately 0.5 distance or τ = 0.0156 indicates a large and unlikely separation between

two θovif2 /4 signatures. (b) Plot of upper bounds of separation between θovif2 /4 signatures of sequences

from the same DBC using the theoretical expression derived in Theorem 6.4. Note that the probability for

τ > 0.0156 is 0.006113, which is low. n = 10000, ς = 0.75, and a uniform stationary distribution were used

for computing the bounds in (b).
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6.1.3 Separation between θdbc
2 signatures derived from sequences generated by

the same DBC

For sequences hypothesized to be generated by the same de Bruijn chain, Theorem 6.5 proves that the

separation between their θdbcw signatures is less than a specified threshold with high probability.

Theorem 6.5. Let DC be an order 2 DBC with underlying stationary distribution π. Let H1 and H2 be two

genomic sequences of length n generated independently by DC. Let θdbc1 and θdbc2 be their respective order-w

DBC signatures. Similarly, let π̂1 and π̂2 be their estimated order-2 stationary distributions and θovif1 and

θovif2 be their order-2 OVIF signatures, respectively. Then,

Pr
[

d
(

θdbc1 , θdbc2

)

> 64τ
]

< 2 ·
∑

β∈S2

(Lπ(β) + Uπ(β)) + 2ς2
∑

β∈S2

(

Lovif (β) + Uovif (β)
)

.

Proof. Note that θdbc2 = π̂2 · θovif2 /4. Using the union bound we have

Pr
[

d
(

θdbc1 , θdbc2

)

> 64τ
]

≤ Pr
[

d
(

π̂1, π̂2
)

> 32τ
]

+ Pr
[

d
(

θovif1 , θovif2

)

> 32τ
]

.

The theorem follows using the results from Theorems 6.2 and 6.4. ¤

6.1.4 Separation between θdbc
2 signatures of sequences generated by different

DBCs

Let H1 and H2 be genomic sequences of length n, generated independently by two different order-2 DBCs

DC1 and DC2, respectively. Let θdbc1 and θdbc2 be their order-w DBC signatures. Let π̂1 and π̂2 be the

stationary distributions estimated from the respective two sequences and θovif1 and θovif2 be their respective

OVIF signatures.

Then, the distance d
(

θdbc1 , θdbc2

)

can distinguish DC1 and DC2. Assumptions 6.2 formalizes the separation of

estimated stationary distributions of genomic sequences obtained from different organisms, while Assump-

tion 6.3 formalizes the probability of the maximum transition being different for a given state using genomic

sequences obtained from different organisms.

Assumption 6.2.

d
(

E
[

π̂1
]

,E
[

π̂2
])

> 3 · 16τ.

Assumption 6.3.

d
(

E
[

θovif1

]

,E
[

θovif2

])

> 3 · 16τ.
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Theorem 6.6. If there exist constants γ and ν as in Assumptions 6.2 and 6.3 then,

Pr
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]
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[
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)
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E
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as distances d1,

d2, d3, and d4 respectively, in 1-dimensional space we obtain,

d3 ≤ d1 + d2 + d3

Pr [d4 ≥ 6 · 16τ ] ≤ Pr [d ≥ 2 · 16τ ] + Pr [d1 ≥ 2 · 16τ ] + Pr [d2 ≥ 2 · 16τ ] .

From Assumptions 6.2 and 6.3 we obtain,
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.

The theorem follows. ¤

We demonstrate Assumptions 6.2 and 6.3 using sequences from the species C. elegans and P. falciparum.

Figure 6.3 presents the distribution of L1 distances between θdbc2 signatures of pairs of 10 kilobase long

sequences randomly sampled from the above two species, respectively. The actual distance between the

expected values of π1 and π2 is 0.4735. From Assumption 6.2 we have τ < 0.4735/48 = 0.0099. Using

d
(

θdbc1 , θdbc2

)

≥ 2 · 16τ gives d
(

θdbc1 , θdbc2

)

≥ 32τ . For τ < 0.0099, 32τ < 0.3168, and the probability

Pr
[

d
(

θdbc1 , θdbc2

)

≥ 2 · 16τ
]

is large as seen in Figure 6.3. A similar scenario is observed for Assumption 6.3.

The L1 distance between the expected values of the θovif1 and θovif2 0.374622, which leads to τ being less

than 0.374622/48 = 0.0078. For these values of τ the probability Pr
[

d
(

θdbc1 , θdbc2

)

≥ 2 · 16τ
]

is high.

In Theorem 6.6, each negative term in the R.H.S. is very small, making the total probability on the R.H.S

a very large value. Theorem 6.6 states that the probability that the separation between the θdbcw s of two

sequences hypothesized to be generated by different DBCs exceeds a given threshold is very high.

6.1.5 Algorithm

Let H be a genomic sequence whose origin is unknown. Algorithm 1 is used to approximate the origin of an

unknown sequence using order-2 θdbc signatures. For an available genomic sequence H, the corresponding

DBC signature θdbc2 (H) is first computed. This signature is then compared with all DBC signatures of order
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Figure 6.3: Distribution of L1 distances between θdbc2 signatures of CE and PF. Distribution of L1 distances

between θdbc2 signatures of pairs of 10 kilobase long sequences randomly sampled from the two species C.

elegans and P. falciparum.

2 stored in the database D using the Pearson correlation coefficient. The genome whose signature displays

maximum correlation with θdbc2 (H) is predicted as the target for H.

The θdbc2 for a sequence of length n can be computed in O(n + 16 log n + 4096) = O(n) time and space. In

general, the complexity of the order-w θdbcw signature for a sequence of length n is O(n+ 4w log n+ (43w) =

O(n+64w). The 43w factor is contributed by the Cholesky decomposition performed by MATLAB to compute

the stationary distribution. For small w ∈ [1, 4], we observed that the time-complexity was dominated by n,

as we would expect.

6.2 Results

To evaluate the θdbc signature and to compare its accuracy in sequence origin prediction with that of existing

signatures, we used bacterial and eukaryotic genomic sequences. First, we compiled a list of diverse genomic

sequences of various lengths including α-proteobacteria, infectious bacteria, and eukaryotes. Table 6.1 dis-

plays these genomic sequences and the acronyms used for them in this chapter.

Second, we collected a set of 52 α-proteobacterial genomes including multiple strains of several species to
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Algorithm 1: MATCH

INPUT: Set S of genomic sequences, Database D of existing θdbc2 s for sequences in S, Sequence H of

unknown origin.

1: Compute θovif2 (H)

2: Compute π2(H)

3: θdbc2 (H)← π2(H) · θovif2 (H)/4

4: maxcorr = 0

5: origin(H) = λ

6: for each sequence X ∈ S do

7: θdbc2 (X)← D(X)

8: ρ← R(θdbc2 (H), θdbc2 (X))

9: if ρ > maxcorr then

10: maxcorr← ρ

11: origin(H)← origin(X)

12: end if

13: end for

14: return origin(H)

Table 6.1: List L1 of genomic sequences in the set of diverse species.

Species Acronym Sequence length NCBI identifier

R. leguminosarum RL 5.1 Mb NC 008380

E. litoralis EL 3.1 Mb NC 007722

M. leprae ML 3.3 Mb NC 002677.1

N. meningitidis NM 2.2 Mb NC 008767.1

P. falciparum PF chr 12, 2.3 Mb NC 004316.2

P. aeruginosa PA 6.4 Mb NC 002516.2

S. pneumoniae SP 2.1 Mb NC 008533.1

E.coli EC 4.7 Mb NC 000913

C. elegans CE chr 1, 15.3 Mb NC 003279

H. sapiens HS chr 1, 228.7 Mb AC 000044

A. thaliana AT chr 4, 18.8 Mb NC 003075

S. cerevisiae SC chr 4, 1.6 Mb NC 001136
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Table 6.2: List of genomic sequences in the set of closely-related α-proteobacterial species

Species Sequence length NCBI identifier

Wolbachia BM 1.1 Mb NC 006833

R. typhi 1.1 Mb NC 006142

A. marginale 1.2 Mb NC 004842

C. pelagibacter 1.3 Mb NC 007205

A. phagocytophilum 1.5 Mb NC 007797

B. suis chr 1, 2.1 Mb NC 004310

G. bethesdensis 2.7 Mb NC 008343

P. denitrificans chr 1, 2.9 Mb NC 008686

E. litoralis 3.1 Mb NC 007722

S. alaskensis 3.4 Mb NC 008048

H. neptunium 3.8 Mb NC 008358

C. crescentus 4.1 Mb NC 002696

S. pomeroyi 4.2 Mb NC 003911

Jannaschia ssp. CCS1 4.4 Mb NC 007802

R. rubrum 4.4 Mb NC 007643

N. hamburgensis 4.5 Mb NC 007964

M. magneticum 5.0 Mb NC 007626

R. leguminosarum 5.1 Mb NC 008380

R. palustris 5.6 Mb NC 008435

M. loti 7.1 Mb NC 002678

build a collection of genomic sequences derived from closely related species. As before, plasmid sequences

were excluded. Of these 52 sequences, the 20 that were used to randomly sample shorter sequences for origin

prediction are listed in Table 6.2.

Two databases of θdbc signatures were constructed; the first database Ddbc1 consisted of the signatures cor-

responding to the complete sequences in list L1, while the second database Ddbc2 consisted of the signatures

corresponding to the complete sequences of the 52 α-proteobacteria, E. coli, and the 4 higher eukaryotes

from list L1. Similar databases Ddor1 and Ddor2 corresponding to the θdor signature, and Dwcv1 and Dwcv1

corresponding to the θwcv signature were also constructed.
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6.2.1 Characterization of the accuracy of the θdbc signature in origin prediction

First, the ability of the θdbc signature to distinguish between genomic sequences taken from distant species

was tested. In the associated experiment, the variables are the order w, the sample sequence length, and

the database used for matching signatures. We used orders 2, 3, 4, and 5, sequence length 10 kb, 25 kb,

50 kb, and 100 kb, and database Ddbc1 for this purpose. For each 〈order, length〉 combination, 100 samples

were randomly sampled from each organism in list L1 (Table 6.1). We do not ensure that sampled regions

are non-overlapping. For each sample X, the vector θdbcw (X) was correlated, using the Pearson correlation

coefficient, with all the θdbcw vectors in D1. Accuracy was computed as follows. For a sample X, the matches

to θdbcw (X) were ranked 1, 2, 3, . . . in decreasing order of their correlation coefficients or increasing order of

their distances. Recall that the actual species from which the sample is taken is called the origin of the

sample. In a first hit scenario, the origin is ranked 1. In a good hit scenario, the origin is ranked 1, 2, or 3.

Depending on the scenario under consideration, the number of first hits (or good hits) per 100 samples is

the accuracy.

Figure 6.4 illustrates the accuracy of first-hits for each organism in list L1 for all points in the above

experiment. For fixed order, observe that the accuracy of origin prediction increases with increasing sample

size, reaching 100% first hits at length 100 K for all species at order 4. This is intuitive because a larger

sequence encodes more information about the underlying DBC. This in turn leads to the calculation of a

θdbc signature highly representative of the origin. The figure also suggests that the θdbc signature is more

highly conserved at order 4 than at other orders. This coincides with the hypothesis behind the application

TETRA [123], which also attempts to discover the origin of unknown DNA sequences, but does not work

well with short sequences. However, we also note that sufficient information about the underlying DBC of

order 4 can only be acquired from sequences of size 50 Kb or higher under our model; this is not helpful

in identifying origins of short DNA sequences. Intuitively, a short sequence contains maximum information

about the underlying DBC of order 1. Although the corresponding θdbc1 signature can be computed in less

time than higher order signatures, it encodes information about mononucleotides only, which is insufficient

to accurately predict the origin of an unknown sequence. Therefore, for identification of the origin of short

DNA sequences, we use the more accurate and origin-representative, but expeditiously computable order-2

θdbc2 signatures.

In Figure 6.5, we explore the distributions of the Pearson correlation coefficients between the θdbc2 signature

of a sample sequence and the θdbc2 signatures of other sequences in the database including those of the origin

of the sample sequence.

For each species on the x-axis, there are 2 box and whisker plots generated as follows. 100 samples of length
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Figure 6.4: Plot of accuracies of θdbcs of orders 2 through 5. Prediction of origins from database Ddbc1 has

been examined. The x-axis indicates species from list L1. The y-axis indicates the order w. The z-axis

represents the accuracy of first hits. Sample sequences of length (a) 10 kilobases, (b) 25 kilobases, (c) 50

kilobases, and (d) 100 kilobases, have been used.

74



0 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

C
or

re
la

tio
ns

R. leguminosarum

E.litoralis

M. leprae

N. meningitidis

P. falciparum

P. aeruginosa

S. pneumoniae

E. coli

C. elegans

H. sapiens

A. thaliana

S. cerevisiae
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θdbc2 of their origin. The larger box and whisker plots represent the distribution of correlations with θdbc2 s of

other genomes.
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50 kb each are randomly sampled from the genome of each species. The correlation of the θdbc2 signature

of each sample with the θdbc2 signature of its origin is binned separately from its correlations with the θdbc2

signatures of all other organisms. The distribution of numbers in each bin is represented by a box and

whisker plot along the y-axis. The smaller box plots with medians close to 1 and small ranges between

the first quartile and the third quartile represent the distribution of correlations of signatures of sample

sequences with the signatures of their origin. The larger box plots with large ranges between their first and

third quartiles and smaller medians represent the distribution of correlations with species other than the

origin. These data demonstrate that the θdbc signature retains features unique to each organism and can

differentiate between the origin and other species. It is highly conserved within a genome and differs between

genomes.

Second, the ability of the θdbc signature to distinguish between genomic sequences from closely-related species

and different strains of the same species was tested. The same steps as above were followed with the following

difference. Only the 20 sequences listed in list L2 (Table 6.2) were used as sources for sampling while using

D2 (57 signatures) for origin prediction. Similar results for the set of α-proteobacteria are presented for

sample sequences of lengths 10 Kb and 50 Kb in Figure 6.6. Observe that the order-2 θdbc signature is better

at distinguishing between closely related species than θdbc signatures of higher order.

The accuracy of the θdbc2 signature for both test cases is summarized in Figure 6.7.
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Figure 6.6: Plot of prediction accuracy vs. order for θdbc signatures. Plot of accuracies of origin prediction

for orders 2, 3, 4, and 5 θdbc signatures using database D2 of closely related species. 100 sequences samples

of lengths (a) 10 kilobases and (b) 50 kilobases were used from the α-proteobacteria in List L2.
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Median accuracy of first hits

Sample sequence length List L1 List L2

5 kb 90.5 77.5

10 kb 94.5 84

20 kb 96 93

25 kb 97 -

50 kb 100 99

100 kb 100 -

(c)

Figure 6.7: Summary of accuracy of first hits of θdbc2 . (a) Species in list L1, (b) Species in list L2. (c)

Listing of median first hit accuracies of origin prediction for various sample sequence lengths using θdbc2 . The

hyphens indicate placeholders for entries that were computed not for 100 samples, but for a lesser number

of samples, and hence, are not shown here.
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In case of list L1, a median accuracy greater than 90% is achieved even for sequences as short as 5 kb.

The median accuracy increases steadily with sample size and is 100% at a sample length of 50 kb. In the

case of the human genome, the θdbc2 signature consistently does not perform well. This issue is addressed

in Section 6.2.2 where we compare different signatures and discuss conservation of specific features in each

genome. Distinguishing between closely-related species is a harder task than distinguishing between diverse-

species. The signature must capture subtle differences at a much finer scale between two closely-related

sequences in order to be able to tell them apart. Therefore, the reduced accuracy in case of list L2 is

expected. In case of list L2, a median accuracy greater than 84% is achieved for sequences of length 10

kb, and improves to almost 100% on increasing the sample sequence size to 50 kb. We note that sample

sequences of length 20 kb are sufficient to predict the origin with reasonably high accuracy.

6.2.2 Comparison of performances of θdbc, θdor, and θwcv signatures

We compared the accuracy of the three signatures θdbc, θdor, and θwcv in predicting the origin of short

DNA segments. The same methods and terminologies as described in Section 6.2.1 have been used. Order 2

signatures were used for several reasons. In Section 6.2.1 we found order-2 DBCs to be most representative

of the origin in the case of short sequences and the corresponding θdbc2 more quickly computable than higher

order signatures. Also, the θdor signature has an underlying order of 2, hence, using the same order for its

competitors is fair.

First, the ability of all three signatures to distinguish between highly separated species was tested using

list L1 for sampling and Ddbc1 , Ddor1 , and Dwcv1 databases for origin prediction. Shorter sequence samples of

lengths 5 kb, 10 kb, and 20 kb were used. Figure 6.8(a), (b), and (c) illustrate the results. 100 subsequences

were randomly sampled from each of the 12 diverse species on the x-axis. All three signatures were computed

using each sample and correlated to their respective D1 databases of signatures. The accuracy of first hits

are recorded on the y-axis.

Observe that the θdbc2 signature outperforms the θdor signature for all sequence lengths by demonstrating

better accuracy in the case of 8/12, 9/12, and 8/12 species for sequence lengths 5 kb, 10 kb, and 20 kb,

respectively. The θdbc2 signature also outperforms the θwcv2 signature for all sequence lengths by demonstrating

better accuracy in the case of 9/12, 10/12, and 11/12 species for sequence lengths 5 kb, 10 kb, and 20 kb,

respectively. The only genomes for which θdbc2 consistently demonstrates worse accuracy than θdor are

N. meningitidis, E. coli, and H. sapiens. Of particular interest is the human genome, where the θdor

signature appears to be very well conserved demonstrating almost 100% accuracy irrespective of the sample

sequence length. In the rest of the genomes (RL, EL, ML, PF, PA, SP, CE, AT, SC), the θdbc2 signature is
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(c) 20 kb sample sequences from L1 matched against D∗

1

Figure 6.8: Accuracy of first hits of θdbc2 , θdor, and θwcv2 signatures. 100 Sample sequences of lengths (a) 5

kb, (b) 10 kb, and (c) 20 kb have been used from each species from list L1 of diverse species on the x-axis.

The y-axis represents the number of first hits out of 100. The legends in the plots indicate specific data for

each signature.
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Figure 6.9: Comparison of relative accuracies of θdbc2 , θdor2 and θwcv2 . Comparison of relative accuracies of

(a) θdbc2 and θdor2 and (b) θdbc2 and θwcv2 for sequence lengths 5 kb, 10 kb, and 20 kb. For each species on

the x-axis, the y-axis represents the number of samples out of 100 where the θdbc2 signature outperforms its

competitor.

better conserved than the θdor signature. Compared with the θwcv2 signature, the θdbc2 signature consistently

performs worse only in case of C. elegans. For all other species, the accuracy of the θdbc2 signature is

better than or equal to that of the θwcv2 signature. Consider Figure 6.9. In Figure 6.9(a), for each species

on the x-axis, the y-axis plots the number of samples out of 100 for each sequence length, where θdbc2

outperformed the θdor signature in predicting the origin of the sample. Observe that with decreasing sequence

length, the relative predictive accuracy of θdbc2 increases and is an advantage over that of the θdor signature.

The exceptions are the three species pointed out above where θdor is more well-conserved than θdbc2 . The

same behavior is repeated in the case of the comparison between prediction accuracies of θdbc2 and θwcv2 in

Figure 6.9(b) with C. elegans being the only exception.

Next, we compared the abilities of the three signatures to distinguish between closely-related species while

using list L2 for sampling and the Ddbc2 , Ddor2 , and Dwcv2 databases for origin prediction. Short sequence

samples of lengths 5 kb, 10 kb, and 20 kb were used. Figure 6.10(a), (b), and (c) illustrate the results. The

same method was followed as in the previous case of diverse species. 100 subsequences were randomly sampled

from each species of the 20 closely-related α-proteobacterial species on the x-axis. All three signatures were

computed using each sample and correlated to their respective D2 databases of signatures. The accuracy of

first hits are recorded on the y-axis.

The database, in this case, contains 52 species from the same family (α-proteobacteria) and 5 other diverse

species. Figure 6.10(a), (b), and (c) illustrate that the θdbc2 signature outperforms both θdor and θwcv2

signatures in the case of all sequence lengths with better predictive accuracy for 15/20 species against the
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Figure 6.10: Accuracy of first hits of θdbc2 , θdor, and θwcv2 signatures. 100 Sample sequences of lengths (a) 5

kb, (b) 10 kb, and (c) 20 kb have been used from each species from list L2 of closely related α-proteobacterial

species on the x-axis. The y-axis represents the number of first hits out of 100. The legends in the plots

indicate specific data for each signature.
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(a) θdbc2 vs. θdor (b) θdbc2 vs. θwcv2

Figure 6.11: Comparison of relative accuracies of θdbc2 , θdor2 and θwcv2 for APB. Comparison of relative

accuracies of (a) θdbc2 and θdor and (b) θdbc2 and θwcv2 for sequence lengths 5 kb, 10 kb, and 20 kb randomly

sampled from α-proteobacteria. For each species on the x-axis, the y-axis represents the number of samples

out of 100 where the θdbc2 signature outperforms its competitor.

θdor signature and an average better accuracy of 16.33/20 species against the θwcv2 signature. The θdor

signature appears consistently more well-conserved than the θdbc2 signature in the case of Wolbachia. In the

comparison between the θdbc2 and θwcv2 signatures, the θdbc2 signature is consistently at least as well conserved

as its competitor in all species but that of B. suis. Even in the case of closely-related species, the relative

accuracy of the θdbc2 signature increases with decreasing sequence length as is demonstrated by the data in

Figure 6.11.

For the order-2 signatures above, Figure 6.12 summarizes the median accuracy of prediction of first hits in

the case of both list L1 and L2 and varying sequence lengths of 5 kb, 10 kb, and 20 kb. Observe that in all

cases, the θdbc2 signature outperforms the θdor signature, which in turn outperforms the θwcv2 signature.

6.2.3 Combining the powers of θdbc
2 and θdor

In Section 6.2.2, we demonstrated that in predicting the origin of an unknown DNA sequence the θdbc2

signature has greater accuracy than the θdor and θwcv2 signatures. The objective of this work is not to

introduce yet another genomic signature. We are interested in exploring the different aspects of construction

of the genomic sequence a genome that are preserved within the genome itself, while differing from those

aspects in the genomic sequences of other species. So far, we have been successful in discovering some such

aspects through the θdbc signature.

To test whether an even greater accuracy of origin prediction for short sequences can be achieved, we con-
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Figure 6.12: Comparison of median accuracies of θdbc2 , θdor, and θwcv2 signatures. The x-axis represents

sample sequence lengths. The y-axis represents accuracy of first hits.

ducted experiments where we combined the strengths of the θdbc2 and θdor signatures. We tried three different

methods of doing the above. We concatenated the two signatures into one vector and used Pearson correla-

tions to determine the closest species. This method works no better than using individual θdbc2 signatures.

Working with the sum of the Pearson correlation distance and the normalized L1-distance, separately com-

puted, did not yield better results either. However, using the product of the Pearson correlation distance

and the normalized δ-distance, separately computed, produces different results.

To reiterate our observations from Section 6.2.1, the θdbc2 demonstrates high accuracy when sample sequences

of length 20 kb or higher are available, both in differentiating between far-away species and closely-related

species. Its accuracy drops only when sample sizes drop to lower lengths than 20 kb. We are interested

in coupling the properties of the θdbc2 signature and the θdor signature to improve the accuracy of origin

prediction in such cases. Using the product of the Pearson correlation distance and the normalized δ-distance

appears to produce a better accuracy than using the θdbc2 signature alone, in the case of differentiating between

far-away species as observed in Figure 6.13. The same method as described in the previous sections was

used to determine accuracy.

However, the same method does not demonstrate substantially higher accuracy than the θdbc2 signature

in differentiating between closely-related species. We make this observation based on the results in in

Figure 6.14. In fact, in this case, accuracy drops to less than 25% for most species when the sample sequence

length is approximately 1 kb, which is why results corresponding to such short sequences are not shown.
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Figure 6.13: Accuracy of the combination of θdbc2 and θdor signatures. Comparison of the accuracies of the

θdbc2 signature and the combination signature θcomb2 of θdbc2 and θdor in predicting origins of unknown short

sequences from list L1. Sequences of lengths (a) 1 kb, (b) 2 kb, (c) 5 kb, and (d) 10 kb have been used.
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Figure 6.14: Accuracy of the combination of θdbc2 and θdor signatures for α-proteobacteria. Comparison of

the accuracies of the θdbc2 signature and the combination signature θcomb2 of θdbc2 and θdor in predicting origins

of unknown short sequences from list L2. Sequences of lengths (a) 5 kb and (b) 10 kb have been used.
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6.2.4 Accuracies of θdbc
2 , θdor

2 , θwcv
2 , and θcombo

2 for a large database of diverse

species

In this section, we construct a larger diverse database of signatures for 50 diverse species while ensuring that

as many regions as possible in the taxonomic tree in NCBI’s database have representation in this database.

In Table 6.3, we list the genomic sequences of these 50 species that we use along with their accession numbers,

sizes, and positions in the taxonomic tree. We use a collection of 10 archaeal genomic sequences, 20 bacterial

genomic sequences, and 20 eukaryotic genomic sequences.

Table 6.3: List of 50 diverse species taken uniformly from the taxonomic

tree. List of organisms and their genomic sequences used to build a

larger database of 50 diverse species while sampling species uniformly

and manually from the taxonomic tree.

Aeropyrum pernix K1,

complete genome

NC 000854 1693618 cellular organisms; Archaea; Crenarchaeota; Ther-

moprotei; Desulfurococcales; Desulfurococcaceae;

Aeropyrum; Aeropyrum pernix

Sulfolobus tokodaii

str. 7, complete gen-

ome

NC 003106 2733328 cellular organisms; Archaea; Crenarchaeota; Ther-

moprotei; Sulfolobales; Sulfolobaceae; Sulfolobus; Sul-

folobus tokodaii

Pyrobaculum aerophi-

lum str. IM2,

complete genome

NC 003364 2254259 cellular organisms; Archaea; Crenarchaeota; Ther-

moprotei; Thermoproteales; Thermoproteaceae; Py-

robaculum; Pyrobaculum aerophilum

Archaeoglobus

fulgidus DSM 4304,

complete genome

NC 000917 2209600 cellular organisms; Archaea; Euryarchaeota;

Archaeoglobi; Archaeoglobales; Archaeoglobaceae;

Archaeoglobus

Halobacterium sp.

NRC-1, complete gen-

ome

NC 002607 2043086 cellular organisms; Archaea; Euryarchaeota;

Halobacteria; Halobacteriales; Halobacteriaceae;

Halobacterium

Methanococcus mari-

paludis C5, complete

genome

NC 009135 1806279 cellular organisms; Archaea; Euryarchaeota;

Methanococci; Methanococcales; Methanococcaceae;

Methanococcus; Methanococcus maripaludis

Methanopyrus kand-

leri AV19, complete

genome

NC 003551 1719258 cellular organisms; Archaea; Euryarchaeota;

Methanopyri; Methanopyrales; Methanopyraceae;

Methanopyrus; Methanopyrus kandleri
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Thermoplasma volca-

nium GSS1, complete

genome

NC 002689 1607521 cellular organisms; Archaea; Euryarchaeota; Thermo-

plasmata; Thermoplasmatales; Thermoplasmataceae;

Thermoplasma; Thermoplasma volcanium

Methanospirillum

hungatei JF-1,

complete genome

NC 007796 3595457 cellular organisms; Archaea; Euryarchaeota;

Methanomicrobia; Methanomicrobiales; Methanospir-

illaceae; Methanospirillum; Methanospirillum hun-

gatei

Nanoarchaeum

equitans Kin4-M,

complete genome

NC 005213 497975 cellular organisms; Archaea; Nanoarchaeota; Nanoar-

chaeum; Nanoarchaeum equitans

Frankia sp. EAN1pec,

complete genome

NC 009921 8982042 cellular organisms; Bacteria; Actinobacteria;

Actinobacteria (class); Actinobacteridae; Actinomyc-

etales; Frankineae; Frankiaceae; Frankia

Streptomyces

avermitilis MA-4680,

complete genome

NC 003155 9025608 cellular organisms; Bacteria; Actinobacteria;

Actinobacteria (class); Actinobacteridae; Actinomyc-

etales; Streptomycineae; Streptomycetaceae; Strepto-

myces

Aquifex aeolicus VF5,

complete genome

NC 000918 1551335 cellular organisms; Bacteria; Aquificae; Aquificae

(class); Aquificales; Aquificaceae; Aquifex

Acaryochloris marina

MBIC11017, complete

genome

NC 009925 6503724 cellular organisms; Bacteria; Bacteroidetes/Chlorobi

group; Bacteroidetes; Sphingobacteria;

Sphingobacteriales; Flexibacteraceae; Cytophaga; Cy-

tophaga hutchinsonii

Chlamydophila

pneumoniae CWL029,

complete genome

NC 000922 1230230 cellular organisms; Bacteria; Chlamydiae/

Verrucomicrobia group; Chlamydiae; Chlamydiae

(class); Chlamydiales; Chlamydiaceae;

Chlamydophila; Chlamydophila pneumoniae

Herpetosiphon

aurantiacus ATCC

23779, complete gen-

ome

NC 009972 6346587 cellular organisms; Bacteria; Chloroflexi; Chloroflexi

(class); Herpetosiphonales; Herpetosiphonaceae; Her-

petosiphon; Herpetosiphon aurantiacus

Nostoc sp. PCC 7120,

complete genome

NC 003272 6413771 cellular organisms; Bacteria; Cyanobacteria; Nosto-

cales; Nostocaceae

Deinococcus radiodu-

rans R1 chromosome

1, complete sequence

NC 001263 2648638 cellular organisms; Bacteria; Deinococcus-Thermus;

Deinococci; Deinococcales; Deinococcaceae;

Deinococcus; Deinococcus radiodurans
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Solibacter usitatus

Ellin6076, complete

genome

NC 008536 9965640 cellular organisms; Bacteria; Fibrobacteres

/Acidobacteria group; Acidobacteria; Solibacteres;

Solibacterales; Solibacteraceae; Solibacter

Alkaliphilus metalli-

redigens QYMF,

complete genome

NC 009633 4929566 cellular organisms; Bacteria; Firmicutes; Clostridia;

Clostridiales; Clostridiaceae

Bacillus cereus ATCC

14579, complete gen-

ome

NC 004722 5411809 cellular organisms; Bacteria; Firmicutes; Bacilli;

Bacillales; Bacillaceae; Bacillus; Bacillus cereus group

Fusobacterium nuclea-

tum subsp. nucleatum

ATCC 25586, com-

plete genome

NC 003454 2174500 cellular organisms; Bacteria; Fusobacteria; Fusobac-

teria (class); Fusobacteriales; Fusobacteriaceae; Fu-

sobacterium; Fusobacterium nucleatum

Rhodopirellula baltica

SH 1, complete gen-

ome

NC 005027 7145576 cellular organisms; Bacteria; Planctomycetes; Planc-

tomycetacia; Planctomycetales; Planctomycetaceae;

Rhodopirellula

Bradyrhizobium

japonicum USDA 110,

complete genome

NC 004463 9105828 cellular organisms; Bacteria; Proteobacteria; α-

proteobacteria; Rhizobiales; Bradyrhizobiaceae;

Bradyrhizobium; Bradyrhizobium japonicum

Delftia acidovorans

SPH-1, complete

genome

NC 010002 6767514 cellular organisms; Bacteria; Proteobacteria; Betapro-

teobacteria; Burkholderiales; Comamonadaceae; Delf-

tia; Delftia acidovorans

Syntrophobacter

fumaroxidans MPOB,

complete genome

NC 008554 13033779 cellular organisms; Bacteria; Proteobacteria;

delta/epsilon subdivisions; Deltaproteobacteria;

Myxococcales; Sorangineae; Polyangiaceae;

Sorangium

Hahella chejuensis

KCTC 2396, complete

genome

NC 007645 7215267 cellular organisms; Bacteria; Proteobacteria;

Gammaproteobacteria; Oceanospirillales;

Hahellaceae; Hahella; Hahella chejuensis

Leptospira interrogans

serovar Lai str. 56601

chromosome I,

complete sequence

NC 004342 4332241 cellular organisms; Bacteria; Spirochaetes;

Spirochaetes (class); Spirochaetales; Leptospiraceae;

Leptospira; Leptospira interrogans
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Caldicellulosiruptor

saccharolyticus DSM

8903, complete

genome

NC 009437 2970275 cellular organisms; Bacteria; Synergistetes;

Syntrophomonadaceae; Caldicellulosiruptor; Caldicel-

lulosiruptor saccharolyticus

Petrotoga mobilis

SJ95, complete

genome

NC 010003 2169548 cellular organisms; Bacteria; Thermotogae; Thermo-

togae (class); Thermotogales; Thermotogaceae; Petro-

toga; Petrotoga mobilis

Plasmodium falci-

parum 3D7 chromo-

some 14, complete

sequence

NC 004317 3291006 cellular organisms; Eukaryota; Alveolata; Apicom-

plexa; Aconoidasida; Haemosporida; Plasmodium;

Plasmodium (Laverania)

Eimeria tenella str.

Houghton chromosome

1, complete sequence

NC 008685 1347714 cellular organisms; Eukaryota; Alveolata; Apicom-

plexa; Coccidia; Eucoccidiorida; Eimeriorina; Eimeri-

idae; Eimeria

Paramecium tetraure-

lia macronuclear,

complete genome

NC 006058 984602 cellular organisms; Eukaryota; Alveolata; Ciliophora;

Intramacronucleata; Oligohymenophorea; Peniculida;

Parameciidae; Paramecium

Guillardia theta nucle-

omorph chromosome

1, complete sequence

NC 002752 196216 cellular organisms; Eukaryota; Cryptophyta; Cryp-

tomonadaceae; Guillardia

Leishmaniabraziliensis

MHOM/BR75/M2904

chromosome 20

NC 009312 1668259 cellular organisms; Eukaryota; Euglenozoa; Kineto-

plastida; Trypanosomatidae; Leishmania; Viannia;

Leishmania braziliensis species complex

Magnaporthe grisea

70-15 chromosome 7,

complete sequence

NC 009594 3994966 cellular organisms; Eukaryota; Fungi/Metazoa group;

Fungi; Dikarya; Ascomycota; Pezizomycotina; Sor-

dariomycetes; Sordariomycetes incertae sedis; Magna-

porthaceae; Magnaporthe; Magnaporthe grisea

Saccharomyces cere-

visiae chromosome IV,

complete chromosome

sequence

NC 001136 1531918 cellular organisms; Eukaryota; Fungi/Metazoa group;

Fungi; Dikarya; Ascomycota; Saccharomycotina;

Saccharomycetes; Saccharomycetales; Saccharomyc-

etaceae; Saccharomyces

Cryptococcus neofor-

mans var. neoformans

JEC21 chromosome 1,

complete sequence

NC 006670 2300533 cellular organisms; Eukaryota; Fungi/Metazoa group;

Fungi; Dikarya; Basidiomycota; Agaricomycotina;

Tremellomycetes; Tremellales; Tremellaceae; Filobasi-

diella
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Encephalitozoon cuni-

culi GB-M1 chro-

mosome XI, complete

sequence

NC 003237 267509 cellular organisms; Eukaryota; Fungi/Metazoa group;

Fungi; Microsporidia; Apansporoblastina; Unikary-

onidae; Encephalitozoon

Rattus norvegicus

chromosome 12,

reference assembly

(based on RGSC v3.4)

NC 005111 46782294 cellular organisms; Eukaryota; Fungi/Metazoa group;

Metazoa; Eumetazoa; Bilateria; Coelomata;

Deuterostomia; Chordata; Craniata; Vertebrata;

Gnathostomata; Teleostomi; Euteleostomi;

Sarcopterygii; Tetrapoda; Amniota; Mammalia;

Theria; Eutheria; Euarchontoglires; Glires;

Rodentia; Sciurognathi; Muroidea; Muridae;

Murinae; Rattus

Homosapiens chromo-

some 21, alternate as-

sembly (based on Cel-

era assembly), whole

genome shotgun

sequence

AC 000064 33216610 cellular organisms; Eukaryota; Fungi/Metazoa group;

Metazoa; Eumetazoa; Bilateria; Coelomata;

Deuterostomia; Chordata; Craniata; Vertebrata;

Gnathostomata; Teleostomi; Euteleostomi;

Sarcopterygii; Tetrapoda; Amniota; Mammalia;

Theria; Eutheria; Euarchontoglires; Primates;

Haplorrhini; Simiiformes; Catarrhini; Hominoidea;

Hominidae; Homo/Pan/Gorilla group; Homo

Equus caballus chro-

mosome 13, reference

assembly (based on

EquCab1), whole gen-

ome shotgun sequence

NC 009156 17519737 cellular organisms; Eukaryota; Fungi/Metazoa group;

Metazoa; Eumetazoa; Bilateria; Coelomata;

Deuterostomia; Chordata; Craniata; Vertebrata;

Gnathostomata; Teleostomi; Euteleostomi;

Sarcopterygii; Tetrapoda; Amniota; Mammalia;

Theria; Eutheria; Laurasiatheria; Perissodactyla;

Equidae; Equus; Equus subg. Equus

Gallus gallus chromo-

some 9, reference as-

sembly (based on Gal-

lus gallus-2.1)

NC 006096 25554352 cellular organisms; Eukaryota; Fungi/Metazoa group;

Metazoa; Eumetazoa; Bilateria; Coelomata;

Deuterostomia; Chordata; Craniata; Vertebrata;

Gnathostomata; Teleostomi; Euteleostomi;

Sarcopterygii; Tetrapoda; Amniota; Sauropsida;

Sauria; Archosauria; Dinosauria; Saurischia;

Theropoda; Coelurosauria; Aves; Neognathae;

Galliformes; Phasianidae; Phasianinae; Gallus

90



Danio rerio chromo-

some 25, reference as-

sembly (based on Zv6)

NC 007136 40315040 cellular organisms; Eukaryota; Fungi/Metazoa group;

Metazoa; Eumetazoa; Bilateria; Coelomata;

Deuterostomia; Chordata; Craniata; Vertebrata;

Gnathostomata; Teleostomi; Euteleostomi;

Actinopterygii; Actinopteri; Neopterygii;

Teleostei; Elopocephala; Clupeocephala; Otocephala;

Ostariophysi; Otophysi; Cypriniphysi; Cypriniformes;

Cyprinoidea; Cyprinidae; Rasborinae; Danio

Tribolium cas-

taneum linkage group

9, reference assembly

(based on Tcas 2.0),

whole genome shotgun

sequence

NC 007424 15222296 cellular organisms; Eukaryota; Fungi/Metazoa group;

Metazoa; Eumetazoa; Bilateria; Coelomata; Protosto-

mia; Panarthropoda; Arthropoda; Mandibulata; Pan-

crustacea; Hexapoda; Insecta; Dicondylia; Pterygota;

Neoptera; Endopterygota; Coleoptera; Polyphaga;

Cucujiformia; Tenebrionoidea; Tenebrionidae; Tri-

bolium

Caenorhabditis elegans

chromosome III,

complete sequence

NC 003281 13783681 cellular organisms; Eukaryota; Fungi/Metazoa group;

Metazoa; Eumetazoa; Bilateria; Pseudocoelomata;

Nematoda; Chromadorea; Rhabditida; Rhabditoidea;

Rhabditidae; Peloderinae; Caenorhabditis

Dictyostelium dis-

coideum AX4 chromo-

some 2, complete

sequence

NC 007088 8470428 cellular organisms; Eukaryota; Mycetozoa;

Dictyosteliida; Dictyostelium

Ostreococcus lucimari-

nus CCE9901

chromosome 1, com-

plete sequence

NC 009355 1152508 cellular organisms; Eukaryota; Viridiplantae; Chloro-

phyta; Prasinophyceae; Mamiellales; Mamiellaceae;

Ostreococcus; Ostreococcus ’lucimarinus’

Arabidopsis thaliana

chromosome 4, com-

plete sequence

NC 003075 18585042 cellular organisms; Eukaryota; Viridiplantae; Strepto-

phyta; Streptophytina; Embryophyta; Tracheophyta;

Euphyllophyta; Spermatophyta; Magnoliophyta; eu-

dicotyledons; core eudicotyledons; rosids; eurosids II;

Brassicales; Brassicaceae; Arabidopsis
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Oryza sativa (japon-

ica cultivar-group) ge-

nomic DNA, chromo-

some 10

NC 008403 22685906 cellular organisms; Eukaryota; Viridiplantae; Strepto-

phyta; Streptophytina; Embryophyta; Tracheophyta;

Euphyllophyta; Spermatophyta; Magnoliophyta; Lil-

iopsida; commelinids; Poales; Poaceae; BEP clade;

Ehrhartoideae; Oryzeae; Oryza; Oryza sativa

The objective of retesting the accuracy of origin prediction with a larger diverse database is twofold. First, it

facilitates the study of the behavior of all signatures when the database is larger. Second, a uniform sampling

of organisms from different parts of the taxonomic tree will shed light on whether each signature is conserved

for species in all parts of the tree and help identify pockets of high or low conservation of each signature in

the tree. We computed databases of θdbc2 , θdor2 , θwcv2 , and θcombo2 signatures of the 50 species in Table 6.3.

Accuracies were determined for sequence samples at lengths 100 kb, 50 kb, 25 kb, 10kb, 5 kb, and 2.5 kb. As

before, at each length, 100 subsequences of that length were randomly sampled from each genomic sequence

listed in Table 6.3. For each sample, all signatures of order 2 were computed. The origin was predicted for

each sample with each signature using its respective database. The accuracy at each length for each species

was computed as the number of correct first hits in the 100 samples. Figure 6.15 illustrates the accuracy of

the θdbc2 signature for each of the 50 species. The first 10 ticks on the x-axis correspond to archaeal genomic

sequences, ticks 11-30 correspond to bacterial genomic sequences, and ticks 31-50 correspond to eukaryotic

genomic sequences.

Observe that, as expected, accuracy drops with decreasing sequence length. The average accuracies of origin

prediction of the θdbc2 signature for sequences of lengths 100 kb, 50 kb, 25 kb, 10 kb, 5 kb, and 2.5 kb are

95.3%, 94.04%, 92.52%, 87.02%, 80.52%, and 70.3%, respectively. We also observe that the accuracy of the

θdbc2 signature is very low for the genomic sequences of H. sapiens, E. caballus, and G. gallus. The average

accuracies of the θdbc2 signature for the above 3 species are 43.33%, 40.33%, 44.33%, 36%, 30.33%, and 25.33%

for samples of lengths 100 kb, 50 kb, 25 kb, 10 kb, 5 kb, and 2.5 kb, respectively. Excluding these 3 species,

the average accuracies of origin prediction of the θdbc2 signature for sequences of lengths 100 kb, 50 kb, 25

kb, 10 kb, 5 kb, and 2.5 kb are 98.62%, 97.47%, 95.60%, 90.28%, 83.68%, and 73.17%, respectively.

In Figures 6.16 and 6.17, we compare the accuracies of all the three signatures for all sample lengths listed

above.

Observe that, the results are similar to those observed in Section 6.2.2. For samples of length 100 kb all

three signatures demonstrate an average accuracies greater than 90%. As the sample length decreases,
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Figure 6.15: Accuracy of origin prediction of the θdbc2 signature for a large database. Accuracy of origin

prediction of the θdbc2 signature using the species listed in Table 6.3.

accuracy falls for all signatures. We note that the θdor2 signature has a much higher fluctuation in accuracies

among different species than the θdbc2 signature. For the 3 species mentioned in the previous paragraph, all

three signatures demonstrate relatively lower accuracies. It is easy to see that in general, the θdbc2 signature

demonstrates higher overall accuracy of prediction than the θdor2 and θwcv2 signatures. Specific numbers are

discussed in the following passages. Also note that, for some species, the θdbc2 signature is consistently more

well-conserved than the the θdor2 signature. These species are A. fulgidus, M. maripaludis, T. volcanium,

N. equitans, Frankia, S. avermitilis, A. marina, C. pneumoniae, H. aurantiacus, Nostoc, D. radiodurans,

S. usitatus, A. metalliredigens, B. cereus, R. baltica, B. japonicum, D. acidovorans, S. fumaroxidans, L.

interrogans, C. saccharolyticus, P. mobilis, P. falciparum, E. tenella, P. tetraurelia, G. theta, M. grisea, S.

cerevisiae, R. norvegicus, T. castaneum, C. elegans, D. discoideum, O. lucimarinus, A. thaliana, and O.

sativa. For other species such as A. pernix, P. aerophilum, M. hungatei, F. nucleatum, H. chejuensis, C.

neoformans, E. cuniculi, H. sapiens, E. caballus, G. gallus, and D. rerio, the θdor2 signature is consistently

more well-conserved than the the θdbc2 signature.

At sequence length of 5 kb, the accuracy of the θdbc2 signature is approximately 80%. Below 5 kb, the

accuracy of the θdbc2 signature falls to values lower than 80%. The median accuracies of the three signatures

for various sequence lengths are summarized in Figure 6.18. Observe that the median accuracy of the θdbc2
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Figure 6.16: Accuracy of θdbc2 , θdor2 , and θwcv2 using a large database (i). Sample sequences of lengths (a) 100

kb, (b) 50 kb, and (c) 25 kb have been used.
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Figure 6.17: Accuracy of θdbc2 , θdor2 , and θwcv2 using a large database (ii). Sample sequences of lengths (a) 10

kb, (b) 5 kb, and (c) 2.5 kb have been used.
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Figure 6.18: Median accuracies of θdbc2 , θdor2 , and θwcv2 using a large database.

signature is higher than those of the other signatures at every sample length. Also observe that, as the

sample length decreases, the amount by which the median accuracy of the θdbc2 signature is greater than

those of the other signatures increases.

The experiments conducted in this section demonstrate that the θdbc2 signature predicts origins of short DNA

segments accurately even when the database size is large, and in doing so, performs much better than θwcv2

and θdor2 genomic signatures.

6.2.5 Relationship between genome size and accuracy of origin prediction

Next, we explored pairwise relationships between genome size, genome variation, and accuracy of first hits of

the θdbc2 signature using sequence samples of length 10 Kb. Given a genomic sequence H, define the genome

variation of H as follows. Define an order w, a window length W , and a skip length s. Compute the word

frequency vector signature θwfvw (H) for the entire genome. Start at the beginning of the sequence and read

the sequence W characters at a time, while sliding the window by s characters each time. For each substring

thus read, compute the word frequency vector signature and store the component-wise absolute difference

from θwfvw (H). After the sliding window has read the entire sequence, compute the average absolute difference

for each component. The genome variation is the sum of the averages thus computed. Figure 6.19 presents

scatter plots for 3 kinds of pairwise relationships possible. We have used W = 10 kb and s = 2.5 kb for our
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computations. Plots (a), (b), and (c) are for 11 out of 12 genomes in list L1 (the human genome was not

used as it was an outlier that disrupted the otherwise observed correlations, because of its large size), while

plots (d), (e), and (f) are for the 20 α-proteobacterial species. Observe that the accuracy of θdbc is negatively

correlated with genome size in both sets, using the Pearson correlation coefficient. Other relationships are

not obvious from these results.

However, when we study the variation of accuracy with genome size for the larger database of 50 species,

the negative correlation is not observed. The results are shown in Figure 6.20.
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Figure 6.19: Relationships between genome size, genome variation, and accuracy of θdbc2 . (a), (b), and (c)

demonstrate results for the first 11 organisms in list L1. (d), (e), and (f) demonstrate results for the 20

α-proteobacterial species.
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Figure 6.20: Variation of accuracy with genome size for 50 species. All three signatures have been examined.
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Chapter 7

Estimating Markov Chain Order

7.1 Introduction

At its lowest level, almost every organizational unit of a genome is a genomic (that is, contiguous) sequence,

which is formally a string over the alphabet ΣDNA = {A,C,G, T}. Genomic sequences encode the genes of an

organism, among other characteristics. We hypothesize that each segment of a genome is generated, within a

reasonable approximation, by a Markov chain of unknown order. Given a sequence S, we call such a Markov

chainM that generates S, the generating Markov chain of S. Estimating the order of the generating Markov

chain will assist in understanding biological phenomena such as a difference in frequencies of observed DNA

word1 patterns and repeats in the genome [52, 54].

Others [3, 25, 28, 36, 95, 110] have proposed methods for estimating the order of the generating Markov

chain of a sequence. Peres and Shields [95] introduce two Markov order estimators. Both estimators use test

functions that depend on sample size and a candidate w for the order. As w increases, the test functions

exhibit a qualitative change of behavior when w reaches the true order. The first test function is based on

a form of entropy, while the second test function is based on maximal fluctuation (see Section 7.2.3) and is

more relevant to our formulation.

Dalevi and Dubhashi [28] give a novel interpretation of the Peres-Shields estimator as a sharp transition

function. They claim that their interpretation makes the estimator more useful in the context of DNA

sequences when sequence sizes are moderate, and extend the estimator to variable length Markov chains.

1A DNA word of length w is a string in Σw
DNA

.
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Their method is useful in identifying the order of the generating Markov chain for a sequence effectively.

However, a mathematical framework that models nucleotide frequencies and the sharp transition function

was not proposed. Moreover, the algorithm has time complexity that is exponential in the order of the

underlying Markov chain.

Existing methods are based on principles of entropy estimation, maximal fluctuation, and maximum likeli-

hood estimation. In this work, we propose a randomized algorithm for estimating the order of a generating

Markov chain within a framework of probability distributions of its states and transitions.

Section 7.2 introduces and defines relevant computational concepts, and establishes notation. Section 7.3

builds the framework, computes a distribution for the transition probability, and describes the algorithm to

estimate order. We give a qualitative description of the maximum fluctuation that leads to a decision about

the generating Markov chain order. Section 7.5 discusses results and illustrates the maximum fluctuation.

In Section 7.6, we draw conclusions and discuss possible improvements and future directions.

7.2 Preliminaries

7.2.1 Strings

As usual, an alphabet Σ is a finite, nonempty set of symbols. A string over Σ is a finite sequence of symbols

from Σ. Henceforth, we take Σ = ΣDNA = {A,C,G,T}. The length of a string is its length as a sequence.

The empty string λ is the unique string of length 0. For n ≥ 0, Σn is the set of strings of length n over Σ,

while Σ∗ =
⋃

n≥0

Σn is the set of all strings over Σ. By convention, we employ α, β, and γ for strings and ρ,

σ, and τ for symbols.

The concatenation of strings α and β is α · β or, simply, αβ. Let α = ρ1ρ2 · · · ρn ∈ Σn. For 1 ≤ k ≤ n,

the kth character of α is α[k] = ρk. If 1 ≤ i ≤ j ≤ n, then the (i, j) substring or subsequence of α is

α[i..j] = ρiρi+1 · · · ρj ; otherwise, α[i..j] = λ. The (i, j) substring α[i..j] occurs at position i. For strings α

and β, the predicate β
i
A α is true just when β = α[i..j], for some j ≥ 0.

Let α = ρ1ρ2 · · · ρn ∈ Σn. For 0 ≤ k ≤ n, the length-k prefix of α is α[1..k] = ρ1ρ2 · · · ρk, while the length-k

suffix of α is α[n− k + 1..n] = ρn−k+1ρn−k+2 · · · ρn. Strings α and β overlap if a nonempty prefix of α is a

suffix of β or vice versa. Strings α and β are non-overlapping if they do not overlap.

The count of the occurrences of β in α is

Ψ(α, β) =

∣

∣

∣

∣

{

i | 1 ≤ i ≤ n− |β|+ 1 and β
i
A α

}∣

∣

∣

∣

.
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The frequency of β in α is

freq (α, β) =











Ψ(α, β)

n− |β|+ 1
if n ≥ |β|;

0 otherwise.

7.2.2 Probabilities

For w ≥ 1, a Markov chain M = (Σw, P ) of order w over Σ consists of the state space Σw and a 4w × 4w

stochastic matrix P of transition probabilities with rows and columns indexed by elements of Σw. For

α, β ∈ Σw satisfying α[2, w] = β[1..w − 1], the transition probability pα,β is the probability of leaving α on

the symbol β[w]. Alternately, if σ ∈ Σ, then the transition from α ∈ Σw to β = α[2..w] · σ is abbreviated

α
σ→ β and pα,β = Pr

[

α
σ→ β

]

.

LetM be an ergodic Markov chain of order w. Let S be a random sequence generated byM. The Markov

Order problem is to determine the order of M, using only the generated sequence S. For α
σ→ β, the

empirical transition probability from α to β is

pe (α, β) =







Ψ(S,α·σ)
Ψ(S,α) if Ψ(S, α) 6= 0;

0 otherwise.

As an example, let w = 3, α = AAG, β = AGT, and

S = AAGTCGAAGTTATGTCGGTAAGCCAGCGCCCAAGA.

By observation, Ψ(S,AAG) = 4 and Ψ(S,AAGT) = 2. Hence, pe (AAG,AGT) = 2/4 = 1/2. The derived

transition probability from α to β is the empirical transition probability for α[2, w]
σ→ β[2, w], which is

pd (α, β) = pe (α[2, w], β[2, w]) .

In the previous example,

pd (AAG,AGT) = pe (AG,GT) = 2/5.

Clearly, pe (α, β) and pd (α, β) may differ.

Note that both the empirical and derived transition probabilities give transition matrices for Markov chains

of order w. The probability differential ∆w is the L1 distance between the two transition matrices:

∆w =
∑

α∈Σw

∑

σ∈Σ

∑

α
σ
→β

|pe (α, β)− pd (α, β)| .

Intuitively, for any β randomly chosen, this is very small if w − 1 is the order of the Markov chain that

generated S. To empirically confirm this intuition, sequences of length between 50 and 19531250 were
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Table 7.1: Distances between empirical and derived probability distributions: true order 5. Distances

between empirical and derived probability distributions of a sequence of length 781250 bases generated by a

Markov chain of order 5.

w dBC dKL dL1 dL2 dcos

3 0.01215 0.33447 0.19453 0.06930 0.03565

4 0.00529 0.45641 0.16951 0.04048 0.02314

5 0.00496 3.53444 0.31770 0.05248 0.07102

6 3.55E-05 0.00249 0.00454 0.00063 2.03E-05

7 5.75E-05 0.13273 0.01472 0.00258 0.00066

8 4.04E-05 0.32663 0.02053 0.00191 0.00072

9 3.30E-05 5.00267 0.03317 0.00281 0.00314

10 2.59E-05 15.81827 0.05098 0.00264 0.00560

generated by Markov chains of various orders. These sequences were then used to estimate the order of the

generating Markov chain using distances between empirical and derived distributions at each order. Table

7.1 summarizes the results for a sequence of length 781250 bases that was generated using a Markov chain of

order 5. Table 7.2 summarizes the results for a sequence of length 3906250 bases that was generated using a

Markov chain of order 4. Observe that when the value of w equals one more than the order of the generating

Markov chain, i.e., w = 6 in Table 7.1 and w = 5 in Table 7.2, every distance between the empirical and

derived distributions falls abruptly to a very small number.

7.2.3 Maximal Fluctuations

Let S = σ1σ2 · · · be an infinite sequence generated by a Markov chain of order ŵ. For n ≥ 1, let fn : Σn → N

be any function. Peres and Shields [95] define the sequence f1, f2, . . . to be a consistent order estimator if

lim fn(S[1..n]) = w with probability 1.

Dalevi and Dubhashi [28] interpret the Peres-Shields estimator as a sharp transition function described

below. Let β ∈ Σl and γ = β[l − w + 1 . . . l] be the w-suffix of β. Then, given a sequence S and for σ ∈ Σ,,

Dw
S (β) is defined as the difference between the observed and expected number of occurrences of βσ in S as

follows:

Dw
S (β) = max

σ∈Σ

∣

∣

∣

∣

Ψ(S, βσ)− Ψ(S, γσ)

Ψ(S, γ)
Ψ(S, β)

∣

∣

∣

∣

,
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Table 7.2: Distances between empirical and derived probability distributions: true order 4. Distances

between empirical and derived probability distributions of a sequence of length 3906250 bases generated by

a Markov chain of order 4.

w dBC dKL dL1 dL2 dcos

3 0.02765 1.27104 0.44251 0.13007 0.10903

4 0.00756 1.21845 0.24209 0.05821 0.04057

5 2.56545e-05 0.00013 0.00164 0.00030 2.12975e-06

6 4.37504e-05 0.00633 0.00560 0.00105 5.20785e-05

7 4.04292e-05 0.05512 0.01034 0.00155 0.00022

8 3.94200e-05 1.25930 0.02014 0.00254 0.00120

9 3.15086e-05 3.62831 0.03190 0.00279 0.00293

10 2.15628e-05 14.67987 0.04258 0.00251 0.00481

The estimator is described as

wPS(S) = min

{

w ≥ 0| max
w<|β|<log logn

Dw
S (β) < n3/4

}

,

where they state that this interpretation makes the estimator more useful in the context of DNA sequences

when sequence sizes are moderate. They also extend the estimator to variable length Markov chains.

7.3 Theory

Let M = (Σŵ, P ) be an ergodic Markov chain of order ŵ. Let S be a random sequence of length n > ŵ

generated byM. For some w satisfying 1 ≤ w ≤ n− 1, let β be a random string of length w+ 1 that occurs

in S and does not overlap itself. Let α = β[1..w], the length w prefix of β, and let γ = β[2..w+1], the length

w suffix of β. Let σ = β[w + 1]. Then α
σ→ γ.

For 1 ≤ i ≤ n, let Xi be the indicator random variable for β
i
A S and Yi the indicator random variable for

α
i
A S. Then, X =

∑

iXi = Ψ(S, β) and Y =
∑

i Yi = Ψ(S, α) are non-negative random variables. Note

that Xi = 1 implies Yi = 1, for all i; therefore, 0 ≤ X ≤ Y .

We assume that Pr [Xi = 1 | Yi = 1] = pe (α, γ) = X/Y . For purposes of abbreviation, set p = pe (α, γ). Let

fY : N→ R be the probability density function for Y . Note that, since β occurs in S, we have fY (0) = 0.
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Define Z to be the random variable

Z =







X/Y if Y 6= 0,

0 otherwise.

Then Lemma 7.1 and Lemma 7.2 hold.

Lemma 7.1. Under the assumption that Xi conditioned on Yi occurs with probability p, we have

E [X] = pE [Y ]

and

Var [X] = pVar [Y ] + p(1− p)(E [Y ])2.

Proof. Start with the probability distribution of X, which is

fX(x) = Pr [X = x]

=
∑

y≥x

Pr [X = x | Y = y] Pr [Y = y] .

The expected value is now

E [X] =
∑

x≥0

x
∑

y≥x

Pr [X = x | Y = y] Pr [Y = y]

=
∑

x≥0

x
∑

y≥x

(

y

x

)

px(1− p)y−xPr [Y = y]

=
∑

y≥0

Pr [Y = y]
∑

0≤x≤y

x

(

y

x

)

px(1− p)y−x

=
∑

y≥0

Pr [Y = y] (yp)

= pE [Y ] .
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The variance is then

Var [X] = E
[

X2
]

− (E [X])2

= E
[

X2
]

− p2(E [Y ])2

=
∑

x≥0

x2
∑

y≥x

Pr [X = x | Y = y] Pr [Y = y]− p2(E [Y ])2

=
∑

x≥0

x2
∑

y≥x

(

y

x

)

px(1− p)y−xPr [Y = y]− p2(E [Y ])2

=
∑

y≥0

Pr [Y = y]
∑

0≤x≤y

x2

(

y

x

)

px(1− p)y−x − p2(E [Y ])2

=
∑

y≥0

Pr [Y = y] (y2p(1− p) + (yp)2))− p2(E [Y ])2

= pE
[

Y 2
]

− p2(E [Y ])2

= p(Var [Y ] + (E [Y ])2)− p2(E [Y ])2

= pVar [Y ] + p(1− p)(E [Y ])2.

¤

Lemma 7.2. Under the assumption that Xi conditioned on Yi occurs with probability p, we have

E [Z] = p

and

Var [Z] = p(1− p)E [1/Y ] .

Proof. Start with the probability distribution of Z, which is, for 0 < z ≤ 1 and z rational,

fZ(z) = Pr [Z = z]

=
∑

y≥1

∑

0≤x≤y

Pr [X = yz | Y = y] Pr [Y = y] .

Note that, if yz is not an integer, then

Pr [x = yz | Y = y] = 0.
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The expected value is now

E [Z] =
∑

y≥1

∑

0≤x≤y

(

x

y

)

Pr [X = x | Y = y] Pr [Y = y]

=
∑

y≥1

Pr [Y = y]

y

∑

0≤x≤y

xPr [X = x | Y = y]

=
∑

y≥1

Pr [Y = y]

y

∑

0≤x≤y

x

(

y

x

)

px(1− p)y−x

=
∑

y≥1

Pr [Y = y]

y
(yp)

= p.

The variance is then

Var [Z] = E
[

Z2
]

− (E [Z])2

= E
[

Z2
]

− p2

=
∑

y≥1

∑

0≤x≤y

(

x2

y2

)

Pr [X = x | Y = y] Pr [Y = y]− p2

=
∑

y≥1

Pr [Y = y]

y2

∑

0≤x≤y

x2Pr [X = x | Y = y]− p2

=
∑

y≥1

Pr [Y = y]

y2

∑

0≤x≤y

x2

(

y

x

)

px(1− p)y−x − p2

=
∑

y≥1

Pr [Y = y]

y2
(yp(1− p) + y2p2)− p2

=
∑

y≥1

Pr [Y = y]

y2
(yp(1− p) + y2p2)− p2

=
∑

y≥1

Pr [Y = y]

y
(p(1− p)) +

∑

y≥1

Pr [Y = y] (p2)− p2

= p(1− p)E [1/Y ] + p2 − p2

= p(1− p)E [1/Y ] .

¤

The proofs are straight-forward and have been derived from first principles. Next, we derive upper bounds

on E [1/Y ] as given in Lemmas 7.3 and 7.4.

Lemma 7.3. If Y has a Poisson distribution with parameter λ, then

E [1/Y ] < 2λ−1 − 2e−λλ−1 − 2e−λ.
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Proof. The upper bound is obtained as follows.

E [1/Y ] = e−λ
∑

y≥1

1

y
· λ

y

y!

= e−λλ−1
∑

y≥1

y + 1

y
· λy+1

(y + 1)!

= e−λλ−1
∑

y≥1

(

1 +
1

y

)

· λy+1

(y + 1)!

< e−λλ−1
∑

y≥1

2 · λy+1

(y + 1)!

= 2e−λλ−1
(

eλ − 1− λ
)

= 2λ−1 − 2e−λλ−1 − 2e−λ.

¤

Lemma 7.4. If Y has a binomial distribution with parameters m and p, then

E [1/Y ] <
2

(m + 1)p

`

1 − (1 − p)m+1 − (m + 1)p(1 − p)m
´

.

Proof. The upper bound is obtained as follows.

E [1/Y ] =
m
∑

y=1

1

y

(

m

y

)

py(1− p)m−y

=
m
∑

y=1

1

y

m!

y!(m− y)! · p
y(1− p)m−y

=

m
∑

y=1

y + 1

y

m!

(y + 1)!(m− y)! · p
y(1− p)m−y

< 2

m
∑

y=1

m!

(y + 1)!(m− y)!p
y(1− p)m−y

=
2

m+ 1

m+1
∑

y=2

(m+ 1)!

y!(m+ 1− y)!p
y−1(1− p)m+1−y

=
2

(m+ 1)p

m+1
∑

y=2

(m+ 1)!

y!(m+ 1− y)!p
y(1− p)m+1−y

=
2

(m+ 1)p

(

1− (1− p)m+1 − (m+ 1)p(1− p)m
)

.

¤

Let S be a random sequence of length n generated by M = (Σŵ, P ). Let β be a random string of length

l > ŵ that occurs in S. Let σ = β[l]. For w satisfying l − 1 ≥ w > 0, let αw = β[l − w . . . l − 1], the length
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w suffix of the length l − 1 prefix of β, and let γw = β[l − w + 1 . . . l], the length w suffix of β. Similarly,

let αw−1 = β[l − w + 1 . . . l − 1], and γw−1 = β[l − w + 2 . . . l]. Let Zw be the random variable for the

transition probability p = pe (αw, γw) and let Zw−1 be the random variable for the transition probability

pe (αw−1, γw−1). Let

∆w = |Zw − Zw−1|.

Then, Theorem 7.5 follows.

Theorem 7.5. Let S be a sequence of length n generated by a Markov chain M of order ŵ. If ∆w is as

defined above, then for all w > ŵ,

E [∆w] = 0.

Proof. Since the order ofM is ŵ, and w > ŵ, we have w− 1 ≥ ŵ. By definition of w and w− 1, E [Zw] = p

and E [Zw−1] = p. Therefore,

E [∆w] = E [Zw − Zw−1] = E [Zw]−E [Zw−1] = p− p = 0.

¤

Consider Var [Z]. If Y is Poisson distributed with parameter λ, and Xi, conditioned on Yi, occurs with

probability p, from Lemmas 7.2 and 7.3, Var [Z] has the following upper bound Varu [Z]:

Varu [Z] = 2p(1− p)(λ−1 − e−λλ−1 − e−λ).

Figure 7.1 depicts the behavior of Varu [Z] and Varu [Z]
′

with increasing λ. Varu [Z]
′

=
dVaru [Z]

dλ
is the

function

2p(1− p)(e−λ − λ−2 + λ−2e−λ + λ−1e−λ),

which has zeroes at λ = {0, 1.79328213}. Moreover, Varu [Z]
′
decreases in the interval λ ∈ (0, 1.79328213]

and increases in the interval λ ∈ [1.79328213,∞). For a given α, let πα be its stationary probability. Then,

λα = nπα. Observe that as the length of α increases, πα decreases. In case of uniformly distributed words,

πα decreases approximately by a factor of 4 with each successive increase in the length of α by 1. For a

sequence of fixed length, in the interval [1.793,∞), Varu [Z] increases with decreasing λ, and hence π, while

increasing with increasing word size. This is intuitive and expected. However, in the interval [0, 1.793],

Varu [Z] increases with increasing λ, and hence π, and thus decreases with increasing word size. Although
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Figure 7.1: Behavior of Varu [Z] and (b) Varu [Z]
′

with λ and Poisson distributed Y . λ = 1.79328213 is

a local maximum. Varu [Z] decreases with increasing λ, therefore, increasing with increasing word length

in the interval [1.79328213,∞), where it occurs with high probability. It displays opposite behavior in the

interval [0, 1.79328213], where its probability of occurrence is low.

the behavior of Varu [Z] is inconsistent with what is expected, the probability of λ being in this interval is

extremely low as shown in Lemma 7.6.

If Y is binomially distributed with parameters m and p′, then Var [Z] has the following upper bound:

Varu [Z] ≤ p(1− p) 2

(m+ 1)p′
(1− (1− p′)m+1 − (m+ 1)p′(1− p′)m).

Figure 7.2 depicts the behavior of Varu [Z] and Varu [Z]
′

with increasing p′. Observe that the behavior

exhibited by Varu [Z] is similar in case of both the Poisson and binomial approximations to the distribution

of Y .

Lemma 7.6. Let S be a sequence of length n = 4k. Assuming that k >> 2w, and S is observed at scale w,

the probability that λ ∈ [0, 2] is bounded above by

Pr [λ ∈ [0, 2]] ≤ exp
(

−2 · 4k−4w − 41−w + 41−k
)

.

Proof. There are 4w words at scale w, and approximately 4k (precisely 4k − w + 1) positions in S where a

word could occur. The probability that any word has less than or equal to 2 occurrences is then given by

the left tail of the binomial distribution as follows:

Pr [λ ≤ 2] = B
(

0; 4k, 4−w
)

+B
(

1; 4k, 4−w
)

+B
(

2; 4k, 4−w
)

,
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Figure 7.2: Behavior of Varu [Z] and (b) Varu [Z]
′
with p′ and binomially-distributed Y .

where B(k;n, p) is the binomial probability of observing k successes in a Binomial distribution with pa-

rameters (n, 4−w), and B(k;n, p) is the corresponding cumulative probability. Since k >> 2w, applying

Chernoff’s inequality [20] to the binomial distribution, we have

Pr [λ ≤ 2] = F

(

2; 4k,
1

4w

)

≤ exp
(

−2(4k−2w − 41−w + 41−k)
)

.

¤

Figure 7.3 illustrates the probability variation for different values of k and w. It is clear that for k >> 2w,

the probability is close to zero. The above results suggest that, for a sequence S of length n, that is analyzed

at scale w, Varu [Z] increases with increasing w with high probability.

Theorem 7.5 suggests that, for a sequence S generated by a Markov chain of order w, |Zk − Zk+1| is very

close to zero for all k ≥ w. We use this fact to estimate the order of the generating Markov chain for a

sequence as described in the algorithm in Figure 7.4.

The upper bound on the variance of Z, Varu [Z] increases with increasing k for a given sequence. For a given

wmax and a sequence S of length n, our algorithm estimates ŵ in O(µ(nwmax + c)) time and space, where µ

is the number of times β is sampled. Values of µ are discussed in Section 7.5.
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Figure 7.3: Surface plot illustrating probability bounds for a range of k and w values. For k > 2w, the

probability is close to zero. For the very unlikely case k ≤ 2w, the probability has been manually set to −1.

Observe that the probability is much larger when k = 2w. This case does not satisfy the requirements of

Lemma 7.6 and is rarely seen in real data.

INPUT: S, wmax

1: Generate a random word β of length wmax + 1, conditioned on Ψ(S, β) > 0.

2: α1 ← β[wmax]

3: γ1 ← β[wmax + 1]

4: pe (α1, γ1)←
Ψ(S, α1)

Ψ(S, α1.γ1)
5: for w = 2 to wmax do

6: αw ← β[wwmax − w + 1..wwmax]

7: γw ← β[wwmax − w + 2..wwmax + 1]

8: pe (αw, γw)← Ψ(S, αw · γw[w])

Ψ(S, αw)
9: pd (αw, γw)← pe (αw−1, γw−1)

10: end for

11: for w = 1 to wmax do

12: ∆w ← L1(pe (iw, jw) , pd (iw, jw))

13: print ∆w

14: end for

Figure 7.4: Pseudocode for determining the variation of ∆w with w.
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7.4 Variation of distances between pe (x, y) and pd (x, y) with input

sequence length

To build a Markov chain corresponding to an input sequence, enough sequence must be present for the

Markov chain to sample the transitions sufficient number of times and model the input sequence correctly.

This means that the input sequence should be long enough to enable sufficient sampling of each state. In

the absence of a sufficiently long sequence, the Markov chain produced from the sequence is no longer a

true model. Figure 7.5 examines the variation of distances between Pw,emp and Pw,der for binary sequences

of different lengths. In Figure 7.5(a), the generating Markov chain of the sequences has order 3, while in

Figure 7.5(b), the generating Markov chain of the sequences has order 5. Observe that as the sequence gets

longer, the sharp transition indicating the order of the generating Markov chain becomes more and more

prominent and the noise at higher word lengths decreases.

7.5 Results

To study the ability of our algorithm to identify the order of the generating Markov chain for a given

sequence, we conducted the following experiment. We randomly generated Markov chains of orders 2, 3, 4,

5, 6, and 7. Each Markov chain was used to generate sequences of length 1 Mb. Each sequence was examined

at word lengths w ∈ [2, 10].

First, we studied the behavior of ∆w. For each sequence, β was sampled 100 times and ∆w was computed

for w ∈ [2, 10] as described in Figure 7.4 and Section 7.3. For each w, ∆w was plotted. Figure 7.6 illustrates

the variation of ∆w with increasing w. Observe that the change in ∆w between consecutive values of w is

negative and maximum between w = ŵ and w = ŵ+1. Figure 7.6(a) and (b) also illustrate that E [∆w]→ 0

for w ≥ ŵ. In the ideal situation, with more sequence at hand, this phenomenon is also exhibited when

ŵ is higher. Observe that as w increases, for the same sequence size, the noise increases. This can be

attributed to the behavior of Var [Z] as described in Section 7.3. For a sequence of a given length, higher

order words occur more infrequently, and their occurrence counts do not represent their real distribution.

This is responsible for increased noise at higher values of w.

Figure 7.6 also suggests that it is not reliable to utilize a single instance of β to estimate ŵ. Sampling β

several times gives a more reliable estimate of ∆w values, as illustrated in Figure 7.7. For each sequence,

we used 100 samples of β to compute the average value of ∆w at each value of w. These average values are

plotted in Fig 7.7. Observe that when an average over multiple samples are taken, the ∆w curve is much
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(a)

(b)

Figure 7.5: Variation of L1 distances with input sequence length and word length variation. The x-axis

indicates the word length at which the sequence is being examined. The y-axis indicates the distance

between the empirical and derived distributions. Different colors indicate distance variation graphs for input

sequences of different lengths. (a) An order 3 generating Markov chain was used. (b) An order 5 generating

Markov chain was used.
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Figure 7.6: Variation of ∆w in a sequence generated by Markov chains of different orders. (a) ŵ = 3 and

(b) ŵ = 4. , (c) ŵ = 5, and (d) ŵ = 6. Observe that E [∆w] ≈ 0 for w > ŵ is demonstrated nicely by (a).

This is because of the presence of ample sequence to characterize the transition probabilities at various word

lengths.
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Figure 7.7: Plot of average ∆w values over 100 samples of β. The identification of ŵ is much more well-

defined. The sharp transitions are clearer and the ∆w curve is much smoother.

smoother and identifies ŵ correctly in all cases.

Next, we studied the effectiveness of our algorithm in identifying ŵ for a given sequence. Using each Markov

chain, we generated 25 sequences and then used average ∆w values across multiple samples of β to estimate

ŵ. Figure 7.8 illustrates the results. In 100% of the samples, our algorithm estimated ŵ correctly. Genomic

segments of A. thaliana including coding regions, untranslated regions, and random genomic segments of

lengths 30 kilobases and 80 kilobases were studied using our estimator. Neither our estimator nor the

Dalevi-Dubhashi estimator identified an order in these sequences.

7.5.1 Dependence of convergence on eigenvalues of Pw.

In this section, we explore the relationships between the second largest eigenvalue modulus (SLEM) of the

transition matrix and the convergence of its Markov chain. We then try to relate the SLEM to the order of

the generating Markov chain. A transition matrix P is said to have an eigenvalue λ if there exists a vector

v 6= 0 such that

P · v = λ · v.

The eigenvalues of P are the roots of the characteristic polynomial p(λ) = det(P−λI), where I is the identity

matrix. If |S | = n and P is n × n, P has n eigenvalues λ0, λ1, . . . , λn−1, and corresponding eigenvectors

v0, v1, . . . , vn−1.
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Figure 7.8: Effectiveness of ∆w in identifying ŵ. 25 different sequences generated by Markov chains of order

(a) 3 (b) 4 and (c) 5, respectively, have been used.
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Lemma 7.7. Any stochastic matrix P has an eigenvalue equal to 1.

Proof. If P is a stochastic matrix, then, for the vector u such that u(x) = 1 for all x ∈ Sw, P · u = u.

Therefore, any stochastic matrix P has an eigenvalue equal to 1. ¤

Let λ0 = 1. Among λ1, . . . , λn−1, let λ∗ be the largest eigenvalue. |λ∗| is called the Second Largest Eigenvalue

Modulus (SLEM). Then, Lemma 7.8 holds.

Lemma 7.8. For a stochastic matrix P , let λ∗ be the SLEM of P . Then λ∗ ≤ 1.

Proof. Let Pv = λv for some eigenvalue λ and corresponding eigenvector v. Choose x ∈ Sw such that

|v(x)| ≥ |v(y)| for all y ∈ Sw.

|λv(x)| = |(Pv)x|

=

∣

∣

∣

∣

∣

∑

y

P (x, y)v(y)

∣

∣

∣

∣

∣

≤
∑

y

|v(y)|P (x, y)

≤
∑

y

|v(x)|P (x, y)

≤ |v(x)|.

So, |λ| ≤ 1. Therefore, λ∗ ≤ 1. ¤

Lemma 7.9. A finite Markov chain satisfies λ∗ < 1 if and only if it is both indecomposable and aperiodic.

A proof for Lemma 7.9 can be found in Behrends [10].

Recall that an n×n matrix P is said to be diagonalizable if P can be written as P = BDB−1, where D is a

diagonal n× n matrix with the eigenvalues of P as its main entries and B is an invertible (i.e., det(B) 6= 0)

n× n matrix consisting of the eigenvectors corresponding to the eigenvalues of P .

Lemma 7.10. If P is diagonalizable and λ∗ < 1, then there is a unique stationary distribution π on Sw.

Given an initial distribution µ0 and a point x ∈ Sw,

|µk(x)− π(x)| ≤
n−1
∑

m=1

|amvm(x)||λm|k ≤
( n−1
∑

m=1

|amvm(x)|
)

(λ∗)
k,

where, k denotes the number of steps,

λ0, λ1, . . . , λn−1
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are the eigenvalues of P ,

v0, v1, . . . , vn−1

are a basis of the corresponding right eigenvectors, and am are the unique complex coefficients satisfying

µ0 = a0v0 + a1v1 + . . .+ an−1vn−1.

Proof. The following proof has been taken from Behrends [10].

µk = µ0P
k. (7.1)

vmP = λmvm. (7.2)

λ0 = 1. (7.3)

Using Equations 7.1, 7.2, and 7.3, we get

µk = (a0v0 + a1v1 + . . .+ an−1vn−1)P
k (7.4)

= (a0v0 + a1v1 + . . .+ an−1vn−1)(v
−1
m λmvm)k (7.5)

= a0v0λ0 + a1v1(λ1)
k + . . .+ an−1vn−1(λn−1)

k. (7.6)

λ∗ < 1. So, (λm)k → 0 as k →∞, for 1 ≤ m ≤ n− 1. So, µk → a0v0. And a0 =
(
∑

y v0(y)
)−1

. Therefore,

π = a0v0 is a unique probability distribution independent of µ0 and

µk(x)− π(x) = a1v1(x)(λ1)
k + . . .+ an−1vn−1(x)(λn−1)

k (7.7)

⇒ |µk(x)− π(x)| = |a1v1(x)(λ1)
k + . . .+ an−1vn−1(x)(λn−1)

k| (7.8)

⇒ |µk(x)− π(x)| ≤
n−1
∑

m=1

|amvm(x)||λm|k. (7.9)

¤

For more explanations, consult Feller [37]. The above bounds were verified by comparing to the actual

number of steps needed for a Markov chain to converge. For the alphabet B = {0, 1}, Markov chains of order

w = 3 and w = 4 were generated. The number of steps needed for each transition matrix P to converge was

computed empirically by raising P to the kth power such that norm(P k−P k−1) < ε, where epsilon = 10−5.

The theoretical bound on the number of steps was computed using Lemma 7.10 by taking the average value

over all x ∈ Sw. A subset of the results is summarized in Table 7.3 which demonstrates that the theoretical

and empirical values of k are close.

119



Table 7.3: Number of steps required for matrix convergence. Comparison of number of steps required for

transition matrix convergence, when computed empirically and theoretically.

w k (empirical) k (theoretical)

3 18 18.375

3 44 47.750

3 53 56.625

3 32 34.000

4 74 73.500

4 84 92.937

4 44 43.000

4 33 34.313

The following experiment is done to study the SLEMs and steps needed for convergence of Markov chains

of various orders computed from a sequence generated by a Markov chain of fixed order. Markov chains

of orders 3 until 10 are generated by randomly assigning probabilities to their transition matrices, while

maintaining their stochastic nature. These Markov chains are used to generate sequences.

Proposition 1. If a sequence S has a generating Markov chain of order ŵ, then, the SLEMs of the transition

matrices of all Markov chains of order ŵ + 1 and greater generated from S will differ by ε, where ε→ 0, as

S →∞.

While we do not have a theoretical proof for the above proposition yet, Figure 7.9 illustrates values that

agree with Proposition 1. Figure 7.10 illustrates the number of steps needed for convergence in generated

Markov chains. We observe that while the SLEM varies very little for w > ŵ + 1, the number of steps

required for convergence does not stabilize for generated Markov chains of orders w and greater.

Further exploration in this direction is one of the future directions of research we are exploring.

7.6 Conclusions and Future work

In this work, we have built a formal framework for the analysis of sequences using DNA words of different

lengths and illustrated the performance of the algorithm we use to estimate Markov chain order. With suit-

able sampling, it is possible to predict the order of generating Markov chains using much shorter sequences.

The exact method and the corresponding mathematical framework is one of the directions we are pursuing.

120



Figure 7.9: Variation of SLEMs in generated Markov chains of different orders. Different colors indicate

generated transition matrix SLEM trends for generating Markov chains of different orders. The color legend

gives the generating Markov chain orders.
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Figure 7.10: Variation of steps needed for convergence in generated Markov chains of different orders.

Different colors indicate steps required for generated transition matrix convergence for generating Markov

chains of different orders. The color legend gives the generating Markov chain orders.
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Comparison of the performance of our algorithm to that of the Peres-Shields and Dalevi-Dubhashi estima-

tors is also one of the future directions. Having sufficient sequence to summarize the transition probabilities

accurately at all word lengths is also important. Ultimately, the amount of available sequence, the range of

word lengths, the behavior of the variance, and the transition probabilities, can all be integrated to compute

an efficient Markov order estimator from sequence.
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Chapter 8

Conclusions

Genomic signatures computed from sequences that use oligonucleotide frequencies have been studied exten-

sively in scientific literature. In computing the de Bruijn chain signature, we have integrated aspects of graph

structure and Markov chain stationary distributions to extract unique aspects of genomic sequences. Both

the stationary distribution and graph-based signatures are novel approaches that have not been explored

previously in the scientific literature. The graph-based component of the DBC signature is a measure of

the strength of connectivity of each vertex to the largest connected component of the graph of which it is

part, while the stationary distribution is a relative of word frequency based signatures that characterizes the

underlying Markov chain more closely. Together, these two features result in a powerful signature that has a

better accuracy of origin prediction for short DNA sequences than existing word frequency based signatures.

Using a collection of species sampled uniformly from all parts of the taxonomic tree, we have demonstrated

that the θdbc2 signature is very well-conserved in all species except the set of tetrapod vertebrates in our

collection. We demonstrate that the θdbc2 signature is able to accurately distinguish between diverse species

as well as closely-related species.

In this work, besides exploring the properties of the θdbc2 signature using empirical results, we build a

theoretical framework within which we characterize the separation between θdbc2 signatures of DNA fragments

hypothesized to be generated by either the same or different de Bruijn chains. We obtain probabilistic

bounds on separation using parameters of the hypothetical generating de Bruijn chain(s). Additionally, we

also establish a mathematical framework for the word count vector, which is novel.

Several interesting computational problems arise from the study of genomic signatures. Distances between

θdbc2 signatures can serve as a basis for phylogenetic reconstruction. This would eliminate the need for
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computation-intensive alignments. Another possible direction is to study the conservation of each genomic

signature under every level of organization in the taxonomic tree. This will help identify the extent to

which the organisms under every level of organization are related to each other. Tree-wide analysis will

also help to identify horizontal transfers between species. Moreover, alternate positions for organisms in the

taxonomic tree may be identified. A large-scale software system that stores the genomic signatures of all

sequenced genomes and is meant to identify the origin and close relatives of short segments of DNA is under

construction.

Genomic signatures are the central topic of this dissertation. Two other computational problems have also

been addressed in this work. The first problem deals with the estimation of Markov chain order. Given a

sequence hypothesized to be generated by a Markov chain, we propose a mathematical framework and an

algorithm to estimate the order of that Markov chain using properties of oligonucleotides in the sequence.

The second topic is a part of the Computational Models for Gene Silencing project. It consists of a centralized

database for all types of biological data for C. elegans. Associated computational tools perform data-mining

operations on this data and enrich the database with the computed results. Raw data as well as hypotheses

generated by the data-mining methods are served using an associated website.
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Appendix A

CMGSDB: Integrating heterogeneous

C. elegans data sources using

compositional data mining

Other contributors to this work are Ying Jin, Karsten Klage, Lenwood S. Heath, Richard Helm, and Naren

Ramakrishnan.

Introduction

The availability of high-throughput screens has opened up awareness of the importance of data integration

to reveal useful biological insight. For instance, the study of even a focused aspect of cellular activity, such as

gene action, now benefits from multiple high-throughput data acquisition technologies, such as microarrays,

genome-wide deletion screens, and RNAi assays. While enormous quantities of data are available, it remains

a major challenge to construe meaningful biological evidence from this data that explains, for example,

the role of a biological pathway, the effects of a SNP on disease phenotypes, or the regulatory networks or

metabolic pathways underlying a cellular state. Two major factors make this process harder. First, high-

throughput experiments for a given genome are performed by independent groups of researchers that develop

their own naming conventions and schemes for information storage and retrieval. This makes it difficult for

scientists to utilize all available data for a genome to draw inferences. Second, even if such integration is

accomplished, the possibility of linking data across sources is often restricted to individual entities, such as
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genes or proteins; it is difficult to track sets of entities, which is the more natural way to interact with such

databases.

As a case in point, consider the possibilities of integration opened up by the availability of RNAi screens.

Post-transcriptional gene silencing via RNAi was first described in the nematode Caenorhabditis elegans

(C. elegans, CE) [40], and is presently utilized for a variety of functional genomics experiments using RNAi

assays. Although Wormbase serves as a centralized repository for C. elegans data, the sources of RNAi

experiments in C. elegans are many, their data representation formats are varied, and some information is

lost while integrating them into the Wormbase [43] schema.

Here, we present CMGSDB, a database for computational models in gene silencing, where the following goals

have been achieved. We have integrated genome annotation data, gene expression data, protein interaction

data, gene regulation data, GO (Gene Ontology) annotation data, and RNAi data for C. elegans into a

centralized schema. RNAi experiments and phenotypes have been integrated from independent research

groups into a single schema. A common hierarchical structure has been designed to organize the phenotypes

from different sources. The hierarchy is accessible via a web browser. Compositional data mining [66] is

used to identify relationships among sets of entities across the database schema, where these sets are mined

automatically and not defined a priori. A detailed web interface that reports all the data and the patterns

computed is available at https://bioinformatics.cs.vt.edu/cmgs/CMGSDB/.

Compositional Data Mining

The basic idea in compositional data mining is to mirror the shift-of-vocabulary as we traverse a database

schema in a composition of data mining algorithms that mine the respective entities and relationships.

For instance, consider a multiple stress environment where numerous physiological responses are occurring

simultaneously. Efforts to identify a set of C. elegans genes (perhaps encoding transcription factors (TFs))

to knock down (via RNAi) in order to ascertain key mechanisms of response might begin by identifying

those genes whose knock down produces phenotypes that modulate survival, and then find one or more

transcription factors that combinatorially control the expression of these genes. This analysis can be modeled

as a chain: transcription factors → genes → phenotypes. Each step in this chain is computed using a data

mining algorithm, so that we first mine the relationship between transcription factors and genes for concerted

(TF, gene) sets called biclusters, then mine the relationship between genes and phenotypes to find concerted

biclusters of (gene, phenotype) pairs. The biclusters share the gene boundary leading us to investigate

if these biclusters approximately match at the gene interface. The projection of the biclusters with an

approximate match at one interface is called a redescription. Thus, compositional data mining is a way of
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problem decomposition (see [66] for more details) where biclustering and redescription mining algorithms

are chained in a way that mirrors the underlying “join-order” path in the database schema.

As illustrated in Figure A.1, we mine biclusters between genes and the transcription factors that regulate

them, mine biclusters between genes and the phenotypes that result when they are knocked down, and relate

one side of the first bicluster with one side of the second bicluster. Hence the task of integrating diverse data

sources is reduced to composing data mining patterns computed over each of the sources separately. The

advantage of this formulation is that each data source can be mined individually using a biclustering algorithm

that is suited for that purpose. For instance, the xMotif [48], SAMBA [122], and ISA [11] algorithms are

suited for mining numeric data (e.g., such as gene expression relationships), while Apriori [2] and CHARM

[62] algorithms are suited for mining boolean data (e.g., graph adjacencies).

The approximate matching of biclusters is ensured using a similarity search algorithm or redescription mining

approach. This problem, in various guises, has been studied by the database community; see [91] and [107]

for examples. In this work, we utilize a cover-tree approach for fast computation of similar biclusters. The

overlap between the sides of biclusters is qualified using the Jaccard’s coefficient: the Jaccard’s coefficient

between two sets X and Y is the ratio

|X ∩ Y |/|X ∗ Y |.

It is zero if the sets are disjoint and one if they are the same. In practice, we use a lax threshold on

Jaccard’s coefficient such as 0.5 and ensure that all similarities have a p-value significance of at least 0.001.

Specifically, we use the hypergeometric distribution to assess the likelihood of observing a given Jaccard’s

threshold (given the sizes of X and Y) and use this probability to derive a p-value test.

Given a database schema and two entity sets participating in it, e.g., “TFs” and “phenotypes”, we first

identify the paths between these entity sets in the underlying E/R diagram of the schema. Observe that

there can be many paths, including recursive ones (e.g., “TFs regulate TFs which regulate other genes,

contributing to phenotypes, when knocked-down.”). Corresponding to each path, we instantiate a sequence

of biclusterings and use the cover-tree to identify redescriptions that can link them into chains.

CMGSDB data sources and methods

We refer to the biological entities captured in CMGSDB as biots. CMGSDB contains exhaustive data about

the following biots in C. elegans: chromosomes, genes, transcripts, and proteins. For genes, extensive anno-

tations (IDs, locations, names, annotations, locus, transcripts) are complemented by microarray data, RNAi

knockout experimental data, interaction data, gene regulatory information, and functional categorization
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Figure A.1: Finding transcription factors (TFs) whose knock down induces improved desiccation tolerance

in C. elegans. Two biclusters (shaded rectangles) joined at the gene interface using a redescription between

their projections. Below that is the compositional data mining schema, displaying the sequence of primitives.

138



using the GO categories. Proteins, besides containing complete annotations, are enhanced by the addition

of SwissProt/TrEMBL cross-references, physical structure details and properties, and orthology/paralogy

information. Finally, groups of all types of biots and biot information are linked together by patterns found

by compositional data mining, as described in the previous section.

Data Sources

Genome annotation data (chromosomes, genes, proteins, sequences, transcripts) for C. elegans are retrieved

from Wormbase [43]. Attention has been paid to retaining all transcripts and their respective constituting

coding sequences for each gene. These transcripts serve as a link to gene expression data and RNAi transcript

information. Gene orthology and paralogy data have also been taken from Wormbase.

Protein sequences and annotations have been obtained from Wormbase, while their physical properties and

PDB (Protein Data Bank [13]) homologs have been obtained from the SGCE (Structural Genomics of C.

elegans [121]) project. Protein interaction data and gene regulatory information have been obtained from

BioGRID [118]. Internal mappings from BioGRID IDs to Wormbase IDs have been generated.

Genomewide gene expression data for 496 C. elegans microarray experiments have been collected from

SMD (Stanford Microarray Database [8]). Expression values have been related to the genes through gene

transcripts.

The RNAi component of CMGSDB is one of the chief characteristics that discriminates CMGSDB from

other C. elegans resources. The RNAi experiments obtained from Wormbase have been supplemented by

RNAi experiments retrieved from Phenobank [117], PhenomicDB [47], and RNAi phenome database [83].

The same has been done for RNAi phenotypes. All RNAi phenotypes, thus obtained, have been organized

into a hierarchical structure, with Body, Cell, Development, Lethal and Sterile, and Miscellaneous as the top

phenotypic categories. While Phenobank’s experiments test all C. elegans genes for their role in the first two

rounds of mitotic cell division, RNAi phenome database’s experiments are aimed at evaluating the effects of

RNAi on genes whose knockdown causes embryonic lethality. PhenomicDB is a multi-organism phenotype-

genotype database including human, mouse, fruit fly, C. elegans, and other model organisms. Apart from

these web-based RNAi data sources, there are a number of genome-wide RNAi screens in literature that are

undocumented in these web-based sources but have been included in CMGSDB ([21, 23, 26, 41, 45, 49, 51,

74, 76, 92, 98, 100, 105, 109, 111, 119, 120, 125, 128]).
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Database schema

The key components of CMGSDB are illustrated in Figure A.2. Biots are contained in light green boxes,

which are represented by one or more relations in CMGSDB. Blue arrows represent relationships in CM-

GSDB. Plain black arrows represent data flow.

Applying CDM to CMGSDB

We applied compositional data mining (CDM) to CMGSDB as follows. There are a variety of biclustering

algorithms that can be applied for mining relationships [82]. For the purpose of this study, we utilized

CHARM [133] to mine biclusters in binary relationships. For gene expression data, we utilized SAMBA

[122] to mine biclusters.

Given a binary 0 − 1 matrix, the CHARM algorithm identifies sets of rows that show the same bit (0/1)

patterns across all columns. The row set is grown to be maximal in size and, together with the columns for

which the rows have a “1”, defines the bicluster. CHARM identifies overlapping biclusters, which can be

organized alongside a lattice of subset relationships.

The SAMBA algorithm casts biclustering as a problem of finding bicliques in a bipartite graph. Given an

edge-weighted graph (e.g., between genes and experiments labeled with expression levels) SAMBA detects

dense subgraphs, which are then iteratively improved (using local addition/removal of vertices) in a post-

processing phase.

Biclusters are connected if the overlap between the participating entities satisfied a Jaccard’s threshold of

0.5. Chains computed in this manner all mediate through the Gene entity set, since it serves a central role

in CMGSDB (i.e., all relationships involve Genes).

Patterns mined by CDM serve many purposes. For instance, they can be used to impute functions and

properties to unannotated genes, they can make unexpected connections between upstream and downstream

indicators, and they can summarize the distribution of data in the database more succinctly by identifying

the sets of entities that dominate in many compositions.
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Figure A.2: Data integration and analysis in CMGSDB.
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Table A.1: Summary of chain 153 containing gene glp-1

Bicluster Type Set 1 Set 2

1 Gene-Phenotype nmy-1, par-1 PBPhen25 (Asymmetry of divison),

WBPhen30 (Embryonic lethal), WBPhen301

(Protruding vulva), WBPhen320 (Sterile),

WBPhen326 (Sterile progeny), WBPhen7

(Asymmetry of divison abnormal)

2 Gene-GO apx-1, glp-1,

nmy-1, par-1

GO:0002119 (Larval dev. (sensu Nematoda)),

GO:0044464 (Cell part), GO:0009987 (Cellu-

lar process), GO:0048856 (Anatomical struc-

ture dev.), GO:0007389 (Pattern specification

process) , GO:0009790 (Embryonic dev.),

GO:0009791 (Post-embryonic dev.)

3 Gene-Gene glp-1, par-1 glp-1, par-1

Querying CMGSDB

CMGSDB consists of a web interface and a PostgreSQL database management system. The web interface

has been implemented using static and dynamic HTML, PHP, CSS, and Javascript. PostgreSQL is used to

store the data described in the previous section and in Figure A.2.

The web interface of CMGSDB can be used for querying. The user can search against all C. elegans biots.

Genes, for example, can be searched using names, loci, transcript IDs, and annotations. A biot page, apart

from displaying basic information about that biot, also displays relationships with other biots that have been

captured within CMGSDB. For instance, the phenotype page not only displays phenotype description, ID,

and source, but also shows existing relationships with other phenotypes, GO categories associated with the

phenotype, RNAi experiments in which the phenotype was observed, genes whose knock down resulted in the

phenotype, and chains in which the phenotype participates. Biot pages are closely interlinked through biot

IDs. As far as possible, biots are hyperlinked on pages. A biot page also contains hyperlinks to Wormbase

and GO wherever applicable. Figure A.3 illustrates the page for the gpr-1 gene through a screen shot.

Chains, as described before, are available for searching and browsing. Chains can be queried by participating

genes, number of common genes among all biclusters, and number of biclusters. A chain with 3 biclusters

containing gene glp-1 is shown in Table A.1.
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Figure A.3: Screenshot of the gene page.
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LIN-12/Notch signaling

In C. elegans, the LIN-12/Notch protein family mediates cell-cell interactions. Glp-1 and lin-12 encode two

proteins in the LIN-12/Notch pathway, which is conserved in mammalian development. The two general

cell-cell interactions that determine cell-fate and involve these proteins are lateral specification and induction.

Querying CMGSDB for glp-1 gives two chains (chain 153 and chain 154). Table A.1 illustrates chain 153,

which demonstrates a chain of 3 (2 non-trivial) biclusters. The biclusters with the GO categories and RNAi

phenotypes suggest that genes in this chain contribute to the structural aspects of cell division such as

pattern specification leading to asymmetry of division, and these might be important to avoid embryonic

lethality, protruding vulva, and sterile progeny. Furthermore, this set of genes is likely to be self-regulated.

Four genes characterize the two chains: par-1, apx-1, nmy-2, and glp-1. Par-1 encodes a serine threonine

kinase, which is required for the spatial regulation of GLP-1 asymmetry [24]. Par-1 is connected to glp-

1 through the GO and gene regulation blocks. Apx-1 encodes a ligand homolog to the Delta protein of

Drosophila. Both proteins contribute to the establishment of the dorsal-ventral axis in the early C. elegans

embryo [6]. Chains 153 and 154 suggest an interaction between par-1 and apx-1. The likelihood of this

prediction is further strengthened by the computational prediction of interaction between the same pair of

genes (or their products) by Zhong and Sternberg [136]. A putative gene in the Notch pathway is nmy-2,

which encodes a maternally expressed non-muscle myosin II. The corresponding protein is linked through

the phenotype bicluster containing par-1. The function of NMY-2 and PAR-5 is to together establish

polarization in the C. elegans zygote along the anterior-posterior axis 23. In summary, glp-1 and par-1

interaction was already suggested, while apx-1 and nmy-2 represent new potential interactions with glp-1

in the LIN-12/Notch pathway, uncovered through compositional data mining.

Wnt pathway

The Wnt signal transduction pathway regulates diverse processes including cell proliferation, migration,

polarity, differentiation, and axon outgrowth in C. elegans. The signaling is composed of two pathways,

the canonical wnt/BAR-1 pathway and the non-canonical wnt/WRM-1 pathway. A common component in

both pathways is the HMG box containing protein POP-1, which is a member of the TCF/LEF family of

transcription factors. The wnt-signaling pathway regulates the activation of the latter [78, 112]. CMGSDB

reported 32 chains containing pop-1, the common target of the two wnt-pathways. These 32 chains suggested

18 new gene candidates (daf-2, par-2, par-3, par-5, par-6, pkc-3, pkc-6, ooc-3, gpa-16, mbk-2, mes-1, csn-

3, pgl-1, egl-46, tac-1, rab-5, tba-2, uri-1 ) for the pathway. Of these, only par-5 (chains 234, 236, 240)
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has been confirmed as a regulator of pop-1 [80]. pop-1 is connected to par-2 (chains 204, 206, 210, 212)

through a regulatory network [88, 131]. Consistent with the results from CMGSDB, Zhong and Sternberg

[136] predicted interactions among par-2, mes-1 (chains 246, 248), a gene encoding a tyrosine kinase-like

protein that is required for unequal cell division [12], ooc-3 (chains 222, 224), encoding a protein required

to establish asymmetrical anterior-posterior cortical domains and spindle orientation [9], and gpa-16 (chains

234, 236), encoding a member of the G-protein alpha-subunit family of heterochromatic GTPase that effects

spindle position and orientation [1]. It can be hypothesized that PAR-2 is regulated by POP-1 over PAR-5.

Further evidence shows that PAR-2 is regulated independently from the wnt-pathway, as it is not regulated

by MOM-5 and MOM-2, the wnt-receptor and wnt-ligand respectively [75]. From the above gene list of 18

genes, CMGSDB suggests an interaction of wnt-proteins with the tyrosine kinase receptor DAF-2, which

is involved in longevity and insulin signaling. This can be a potential link between daf-proteins and wnt-

pathway proteins, indicating a possible connection between insulin and wnt signaling.

Some database statistics

In this section, we describe some basic statistics about the data in CMGSDB, especially focusing on data

related to RNAi experiments and phenotypes and chains. Figure A.4 illustrates some of the statistics of

chains. Chains consisting of 3, 4, and 5 biclusters, number 2054, 1654, and 426, respectively. Figure A.4

examines the distribution of the total number of genes in a chain and the number of common genes among

all biclusters in a chain.

CMGSDB stores 81722 RNAi experiments and 565 RNAi phenotypes. This includes 145028 relationships

between 21222 unique C. elegans gene transcripts and the above 565 phenotypes.

Phenotype browser

In CMGSDB, phenotypes from several different sources have been organized into a common hierarchy. This

hierarchy is available for browsing via a phenotype browser available at

https://bioinformatics.cs.vt.edu/cmgs/CMGSDB/Treeview/index.php.

The viewer has been implemented using the PHP TreeView class and is dynamically linked to individual

phenotype pages and to other biots. Figure A.5 illustrates the phenotype browser with the tree view on the

left.
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(a)

(b)

(c)

Figure A.4: Statistics of chains. (a) Distribution of number of common genes in a chain. (b) Distribution of

total number of genes in a chain. (c) Subset of (b).
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Figure A.5: Screenshot of the phenotype browser.

Downloads

We have made the CMGSDB schema, scripts, and raw data freely available under the GPL. Only the software

for computing chains is not included. The download package is available at

https://bioinformatics.cs.vt.edu/cmgs/CMGSDB/download.php.

Using this package, a user with proper hardware and software resources (including PostgreSQL and Perl)

can locally set up an exact replica of CMGSDB’s back end. The data is downloaded at runtime dynamically

over the Internet. Scripts prepare the data and populate the database. This includes the integration of

phenotypes from various sources.

All data in CMGSDB (except data related to chains) is available for download as flat files at the downloads

page.

147

https://bioinformatics.cs.vt.edu/cmgs/CMGSDB/download.php


Concluding remarks

The integration of RNAi data and the application of data mining within CMSGDB provide the user with

enhanced abilities to interpret raw C. elegans data. Unlike existing C. elegans resources, CMGSDB integrates

RNAi data from multiple discrete sources. Using chains, users can discover new associations and relationships

in the data that can be tested experimentally. A very meaningful future direction is to further consolidate

the phenotypes to support alternate sets of phenotypes. This could be done by identifying very similar

phenotypes as the same or by choosing a level of specialization in the phenotype tree. During the final two

years of the CMGS project, additional data mining and modeling capabilities will be added.
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