TABLE OF CONTENTS

TITLE PAGE..i

ABSTRACT...ii

ACKNOWLEDGEMENTS ..iv

TABLE OF CONTENTS ...v

LIST OF TABLES ..viii

LIST OF FIGURES...ix

CHAPTER 1: INTRODUCTION ...1

1.1 Coal Beneficiation..1

1.2 Electrophoresis: Electrostatic Separation for Coal Beneficiation......................................29

1.3 Triboelectrostatic Separation..45

1.4 Triboelectric Charge Measurement and Experimental Method...79

1.5 Scope and Objective of the Present Work..95

1.6 References ..97
CHAPTER 5: TRIBOELECTRIC CHARGING OF COAL AND QUARTZ BY TURBOCHARGER

5.1 Introduction

5.2 Apparatus and Experimental Procedure

5.3 Materials

5.4 Results and Discussions

5.5 Conclusions

5.6 References

CHAPTER 6: SUMMARY AND CONCLUSIONS

APPENDIX

VITA
LIST OF TABLES

Table 1.1	Summary of major chemical coal cleaning process	5
Table 1.2	Wet physical coal beneficiation	8
Table 1.3	The variances between dielectrophoresis and electrophoresis	28
Table 3.1	The operating conditions varied at the three code levels	150
Table 3.2	The test matrix of various combinations of parameters at different levels including the charge density data obtained from the tests	151
Table 4.1	The work function of metals	169
Table 4.2	The work function of various compounds	170
Table 4.3	The work function of different materials used to construct tribocharger for the particle-charging mechanism study	177
LIST OF FIGURES

Figure 1.1	Comparison of behaviors of neutral and charged bodies in (a) a uniform electric field; (b) a non-uniform electric field	25
Figure 1.2	Triboelectrification mechanisms explained by means of the work function	53
Figure 1.3	Two metals, A and B: (a) before contact, (b) after contact	57
Figure 1.4	The variation of the energy of an electron inside and outside a metal	58
Figure 1.5	Dependence of the potential energy of an ion on its position between two plane parallel insulator surfaces	65
Figure 1.6	Metal and Insulator	69
Figure 1.7	Evidence that contact charging of insulators by metals is determined by the energy difference between the metal Fermi energy and some energy \(E_0 \) characteristics of the insulator	73
Figure 1.8	Contact between a metal and an insulator or semiconductor containing localized states	75
Figure 1.9	The standard methods of measuring the charge on an insulator	84
Figure 1.10	Coaxial cylindrical capacitor with grounded outer tube	85
Figure 1.11	Schematic diagram of closed tube and the equivalent circuit diagram	85
Figure 1.12 Schematic diagram of the system for measuring the charging tendency of particle..87

Figure 1.13 Experimental set-up for fine particles...87

Figure 1.14 Experimental set-up of ultra-fine particles...88

Figure 1.15 Electrostatic Ball Probe...90

Figure 1.16 The developed “Phase Doppler Particle Analyzer (PDPA)” and triboelectrostatic separation system...94

Figure 2.1 Schematic representation of the principle of particle charge measurement using a Faraday cage ...122

Figure 2.2 The on-line charge measurement device developed for the experiments ...122

Figure 2.3 Schematic representation of the on-line tribocharge analyzer and the experimental set-up ...123

Figure 2.4 A printout from the data acquisition system used in conjunction with the on-line charge- measurement device...124

Figure 2.5 The effect of air velocity on charge densities of Pittsburgh No.8 clean coal (6.27% ash), quartz, and pyrite samples...125

Figure 2.6 The effect of particle feed rate on charge densities of Pittsburgh No.8 clean coal (6.27% ash), quartz, and pyrite samples...126

Figure 2.7 The effect of particle size on charge density of a Pittsburgh No.8 coal sample assaying 19-22% ash...127
Figure 2.8 Effect of ash content on the charge density of Pittsburgh No.8 coal Samples ...128

Figure 2.9 Effect of temperature on charge densities of Pittsburgh No.8 clean coal (6.27% ash), quartz, and pyrite samples ...129

Figure 3.1 The schematic view of the tribocharger and charge measuring device developed for the experiments ...153

Figure 3.2 The schematic representation of the on-line tribocharger analyzer and the experimental set-up ...154

Figure 3.3 The $k = 3$ Box-Behnken Design with a center point ...155

Figure 3.4 The effect of air velocity on the charge density of different coal samples, including quartz and pyrite samples ...156

Figure 3.5 The effects of operating parameters on particle charging characteristics157

Figure 3.6 The effects of operating parameters on particle charging characteristics158

Figure 3.7 The results of charge measurement presented in unit of coulomb per unit Particle ...159

Figure 3.8 The results of charge measurement presented in unit of coulomb per unit area from the same experiments as present in Figure 3.7 ...160

Figure 3.9 Printouts of analog signals recorded during the the period of particle charging characteristics study by the tribocharger analyzer developed in the present work ...161
Figure 3.10(a) The correlation between sample ash content and net charge ..162

Figure 3.10(b) The correlation between sample ash content and net charge ..163

Figure 4.1 The schematic view of the tribocharger and charge measuring device developed for the experiments ...187

Figure 4.2 The schematic representation of the on-line tribocharger analyzer and the experimental set-up ..188

Figure 4.3 Results of charge measurement conducted for the quartz sample on a variety of different charging materials ...189

Figure 4.4 The correlation between the charge density of the coal samples; (a) Pittsburgh No.8 clean coal (~ 5.3% ash) and (b) pre-cleaned utility mill reject (~ 6.1% ash), and the work function of metal employed to construct the tribocharger ...190

Figure 4.5 Results of particle triboelectrification mechanism study: the correlation between the charge density of the quartz sample and the work function of the material used to fabricate the tribocharger ...191

Figure 4.6 Schematic view of electron transfer mechanism explained by Thermodynamic Equilibrium Hypothesis for the samples involving in triboelectrostatic process ...192

Figure 5.1 The schematic view of the new turbocharger and the charge-measuring device developed for the experiments ...218

Figure 5.2 The schematic representation of the experimental set-up incorporating with the new designed turbocharger ...219
Figure 5.3 The effect of the rotor-blade rotation speed on the charge density of the coal and quartz samples at different particle sizes ..220

Figure 5.4 The effect of the rotor-blade rotation speed of the Plexiglas turbocharger on the charge density of the coal and quartz samples at different particle size221

Figure 5.5 The effect of particle feed rate on the charge density of the clean Pittsburgh No.8 coal sample (5.2% ash) at particle size –42+65-mesh fraction.................................222

Figure 5.6 The effect of particle feed rate on the charge density of the quartz sample at the particle size –42+65-mesh fraction..223

Figure 5.7 The charge density of the coal and quartz samples as a function of particle feed rate. The results show the influence of two different materials (Cu-Ni alloy and Plexiglas) used to construct the new turbocharger.................................224