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Finite Subdivision Rules from Matings of Quadratic Functions

Mary E. Wilkerson

(ABSTRACT)

Combinatorial methods are utilized to examine preimage iterations of topologically glued
polynomials. In particular, this paper addresses using finite subdivision rules and Hubbard
trees as tools to model the dynamic behavior of mated quadratic functions. Several methods
of construction of invariant structures on modified degenerate matings are detailed, and
examples of parameter-based families of matings for which these methods succeed (and fail)
are given.
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Chapter 1

Preliminaries

1.1 Introduction

At the heart of complex dynamics is the desire to understand iterations of complex functions.
Students of complex analysis typically obtain an introduction to this topic when learning to
visualize how different functions map C to itself. Their textbooks usually illustrate a few
basic examples of functions by tiling C and using this tiling to display which regions of the
space map where. (Alternatively, for preimages, they may display which regions map to
the original tiles.) Thus, at a rudimentary level, tilings of C are useful for visualizing basic
dynamics on C.

To gain new insights on the structures of complex maps, however, we may opt to choose
more specialized tilings. If we are fortunate enough to know of invariant structures preserved
by a complex map, it may be possible to build a finite tiling utilizing said structures. Then,
if we investigate what happens to preimages of our map, the tiling will subdivide. Such
a tiling and subdivision paired with the map between them forms a finite subdivision rule
which records combinatorial information on the dynamics of the map [4].

Finite subdivision rules are a powerful tool in studying the complex dynamics of ra-
tional maps. Primarily, they serve to emphasize the basic structures of a map—such as
critical points, invariant sets, and clarifying where regions on a space will map (as previously
mentioned). However, it is also possible to start with finite subdivision rules and recover
information on expansion properties of maps, in some cases even working backwards to ob-
tain analytic maps with the same underlying structure. Finite subdivision rules may thus
be utilized in complex dynamics to “discretize” analytic information, in a process which is
sometimes reversible. Through using these combinatorial methods to study the dynamics
of maps that yield proper subdivisions, we may gain valuable information on when analytic
information can be retrieved from discrete information regarding a map, as well as further
insight into how finite subdivision rules work.

The area of focus of this paper specifically is the relationship between finite subdivision
rules and topological gluings of polynomials called matings. A primary objective in this work
has been to identify and catalogue tilings for finite subdivision rules that arise from matings.
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Through striving for this goal we have been able to examine the combinatorial dynamics on
related families of maps, and subsequently determine factors which will guarantee whether
or not a finite subdivision rule can be found for a mating of two polynomials.

In the remainder of Chapter 1, I summarize prerequisite material for examining finite
subdivision rules that come from mated quadratic functions. This includes background on
invariant structures of polynomials, and parameter notation that will be used to obtain
matings and finite subdivision rules. The link between finite subdivision rules and matings
of polynomials—as suggested by several results on rational maps—will also be discussed as
an argument for the subsequent investigations in this paper.

In Chapter 2, I discuss several potential tiling constructions for finite subdivision rules
that utilize pre-existing invariant structures on a suggested map. I detail the rules for
construction, illustrate how they may be applied with a few examples, and prove when each
of these methods will yield a tiling that can admit a finite subdivision rule. This includes
a discussion on what constitutes a successful and a “failed” tiling, and parameter-based
suggestions for when such cases will occur.

In Chapter 3, I place an example which has been well-discussed in the relevant literature
into context with the methods and insights from Chapter 2. I also make note of a few
intriguing parameter-based families of examples which arose during the cataloguing process,
and prove that under certain conditions we can obtain finite subdivision rules from matings
in these families. Finally, I detail the remaining notable connections between these findings
and the current literature, as well as topics for future study.

We start with a discussion of invariant structures on polynomial maps.

1.2 Invariant Structures

We have informally suggested that finite subdivision rules requires a tiling, a subdivision
of that tiling, and a map between the two which describes how the tiles subdivide. Thus,
should we wish to develop a subdivision rule that utilizes a specific map, we should have
an idea of what invariant structures on the map look like in order to devise a useful tiling.
This need for investigation of invariant structures essentially demands understanding of Julia
sets ; the methods utilized later on in this paper call for the definition of structures called
Hubbard trees.

1.2.1 Julia Sets

We utilize the definitions given in [17] to determine a Julia set:

Definition 1.1. A collection of holomorphic maps on Ĉ is normal if every infinite sequence
of maps from the collection contains a subsequence which converges locally uniformly (i.e.
converges uniformly on compact subsets) to a limit.

Definition 1.2. Let f ∶ Ĉ→ Ĉ be a non-constant holomorphic mapping, and let f ○n ∶ Ĉ→ Ĉ
be its n-fold iterate. The Fatou set of f , F (f), consists of all points z0 ∈ Ĉ that have an
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open neighborhood U such that {f ○n∣U ∶ n ∈ N} forms a normal family on U . The complement
of the Fatou set is the Julia set of f , J(f).

In essence, the definitions yield that the Fatou set for a map f is where points iterate
“nicely” and in a predicable manner, whereas the points in the Julia set for f behave more
“erratically” under iteration. By definition, the Fatou set is open (for any U as found in the
definition, it should be noted that U ⊆ F (f)), thus the Julia set is closed. In fact, the Julia
set is also known to be the closure of the set of repelling periodic points. Both F (f) and
J(f) are completely invariant under f—meaning each of these sets are fixed by f and f−1.

As an alternate way to develop the Julia set in the case of polynomials we may consider
the following:

Definition 1.3. For a polynomial f , the filled Julia set K(f) is given by the complement
of the basin of ∞—i.e., the set of points whose forward orbit under f is bounded.

The Julia set in the case of polynomials can also be defined as the boundary of the filled
Julia set. We also have that the filled Julia set is completely invariant under f .

Example 1.4. Consider f(z) = z2. On iteration, {∣z∣ < 1} converges locally uniformly to 0,
while {∣z∣ > 1} converges locally uniformly to ∞. Thus, limn→∞f ○n(z) is not a continuous
function on the boundary {∣z∣ = 1}. Since {f ○n} are continuous functions, we cannot expect
local uniform convergence to a discontinuous function—which is a concern on neighborhoods
of points on the unit circle. This implies that the Julia set of f is given by J(f) = {z ∶ ∣z∣ = 1}
and the Fatou set is given by its complement F (f) = {z ∶ z ∉ J(f)}.

Alternatively, we can note that K(f) is the closed unit disk, as the collection of points
{∣z∣ > 1} forms the basin of infinity. Since f is a polynomial, J(f) = ∂K(f), so we must have
that J(f) = {∣z∣ = 1}.

While the map in the above example yields a relatively simple geometrical figure for its
Julia set, this simplicity is fairly atypical and fractal Julia sets occur much more frequently.
A commonly studied grouping of Julia sets which includes the above and several other more
intricate examples stems from the Mandelbrot set:

Definition 1.5. Let c ∈ C and fc(z) = z2 + c. The Mandelbrot set, M , is the set of all
values of c such that the forward orbit of 0 under fc is bounded. Equivalently, the Mandelbrot
set is also the set of all values of c for which the Julia set of fc is connected. (See [8].)

Neat properties occur for values of c which allow the critical point 0 to have a periodic
or pre-periodic orbit under iterations of fc:

1. Values of c which yield a strictly preperiodic orbit for 0 under fc are called Mis-
iurewicz points. (By “strictly preperiodic” we emphasize that the forward orbit
becomes periodic after a finite number of iterations, but never returns to the initial
point.) We will refer to such fc as preperiodic functions.

2. Misiurewicz points are dense in the boundary of the Mandelbrot set.
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Figure 1.1: The Mandelbrot set, M . (The base graphics for this figure and many others in
this paper were generated with Mandel 5.4; see [11].)

3. If c is a Misiurewicz point, fc has a Julia set which is a dendrite that is simply and
locally connected. (A dendrite is a locally connected nonempty compact connected
metric space that contains no simple closed curves. This implies that the space has no
interior and admits a possibly infinite tree-like structure.) (See [19].)

4. If the forward orbit of 0 is periodic under fc, it returns to 0 after a finite number of
iterations. We will refer to such fc as periodic functions. The filled Julia sets of such
fc are also simply and locally connected, but have non-empty interior.

Since quadratic functions stemming from Misiurewicz points will be crucial to the main
points in this paper, it is important that we develop a parameter system for describing them.
The typical parameter convention as used above—that the “c” in fc is given by the complex
coordinate used in f(z) = z2 + c—is actually not one that we will continue to use through
much of this paper. We will develop the new convention in the following section on external
rays.

1.2.2 External rays and parameter notation

Definition 1.6. Let c ∈M and K(fc) be the filled-in Julia set of the map fc(z) = z2+c. Since
K(fc) is connected, C/K(fc) is conformally isomorphic to the complement of the closed unit
disk via some holomorphic map φ ∶ C/K(fc) → C/D. This map can be chosen to conjugate
z ↦ z2 on C/D to fc on C/K(f). (That is, φ(z2) = fc(φ(z)).)

Taking the preimage of rays of the form {re2πit ∶ 1 < r < ∞} under φ for fixed t ∈ R/Z
yields the external ray of angle t, Rc(t), on the filled Julia set K(fc). (See Figure 1.2.)

If K(fc) is locally connected, an external ray “lands” on the Julia set at a unique point—
that is, the map γc ∶ R/Z → C given by γc(t) = limr→1+ φ−1(re2πit) is well-defined. In this
case, γc(t) is the landing point of the external ray of angle t.[16]

Since periodic and preperiodic functions have filled Julia sets that are locally connected,
external rays land on the Julia sets of these functions. An important point to note is that
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Figure 1.2: External rays on K(f) come from preimages of rays on D under φ.

the semiconjugacy φ(z2) = fc(φ(z)) forces the following relationship: Applying fc to Rc(t)
yields Rc(2t), or in other words, fc doubles the angles of external rays on K(fc), mod 1. We
can thus use this notion to determine where the landing points of rays map under iterations
of fc, since it implies that f(γc(t)) = γc(2t):

Example 1.7. Consider fi(z) = z2 + i, as shown in Figure 1.3. This yields that the forward
orbit of 0 under fi is given by:

0 i -1+i -i

Now examine the angles of the external rays that land at each of these points, as the
above mapping sequence is essentially the following:

γ( 1
12) = γ( 7

12) γ(1
6) γ(1

3) γ(2
3)

Note how we can use external rays and the angle-doubling map to model what happens
to points when we iterate with fi!

This suggests an alternate parameter notation for Misiurewicz points—instead of referring
to the parameter coordinate c ∈M , we can refer to the external angle θ of the ray that lands
at c in J(f). Thus, instead of referring to the function in the above example as fi, we could
refer to it as f1/6. More generally, we write fθ for the typical fc. Since we can model the
forward orbit of c under fc = fθ by examining the forward orbit of θ under the angle-doubling
map, it should be noted that strictly preperiodic functions must be associated with rational
parameter angles θ possessing an even denominator.

Douady and Hubbard define that the external angle(s) associated to the preperiodic point
c on the Julia set of fc are the same as the external angle(s) associated to a point z = c on the
Mandelbrot set. In other words, even though our definition of this parameter system stems
from external rays on the filled Julia set, this system yields useful rays on the Mandelbrot
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Figure 1.3: Rays on z ↦ z2 + i

set as well. We shall distinguish between these rays by referring to external rays on the
Mandelbrot set as parameter rays.

While the above settles the nomenclature for preperiodic functions, Douady and Hubbard
also included in this scheme a naming system for periodic functions as well. Periodic functions
stem from parameters c ∈ C which lie at the center of connected components of M/∂M .
(These connected subsets of M are called hyperbolic components.) If an angle has a
forward orbit under doubling modulo 1 which mimics the forward orbit of c under z ↦ z2+c,
that angle has a parameter ray which lands at the base of the hyperbolic component for c (or
c) in M . (Note that we do not state that γ(θ) = c here: if z ↦ z2+c is periodic, c is contained
in the interior of K(f) and cannot be the landing point of any external ray.) Under our new
parameter system, periodic functions must be associated with rational θ possessing an odd
denominator. [7]

Figure 1.4: Parameter rays on the Mandelbrot set

These assignments yield an intuitive ordering of external rays on the Mandelbrot set, as
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the angles of these parameter rays increase as we travel counterclockwise around M . (See
Figure 1.4.) A subtle point to note since the boundary of the Mandelbrot set is tree-like in
places is that there is not a 1-1 correspondence between values of θ and c for Misiurewicz
points. If a parameter point c lies on a branch point of M , multiple parameter rays will land
at c. (Any point on J(f) where multiple external rays land is called multiply accessible.)
This is reflected in the local similarity of c ∈ J(f) to c ∈M , so multiple external rays will also
land at c ∈ J(f) as well. Thus, for these c we obtain multiple values of θ such that fθ = fc.

Figure 1.5: We have f9/56 = f11/56 = f15/56 due to parameter rays landing at a branch point
in M .

Since the focus of our paper is primarily on matings of preperiodic quadratics, we shall
adopt the usage of the notation fθ in favor of fc. Further, all notation which has previously
made use of the subscript c (i.e., Rc(t) and γc(t)) will reflect this change as well.

1.2.3 Hubbard Trees

While Julia sets are useful invariant structures to know of, it will be beneficial to obtain
“simpler” invariant structures for purposes encountered later in the paper. Ideally, such a
structure would still be able to record information on postcritical points, and could work in
line with the external-angle based parameter system described in the previous section.

Thus, we introduce the following useful tool for discretizing the invariant structures
discussed earlier in the paper:

Definition 1.8. Let fθ ∶ C→ C be given by fθ(z) = z2 + c for c some Misiurewicz point, and
let fθ have Julia set J(fθ) and postcritical set Pfθ . The Hubbard tree, Tθ, is the minimum
spanning tree of Pfθ on the dendrite J(fθ).[7]

While this definition can be extended to polynomials of higher degree (and even to
polynomials whose Julia sets are not dendrites), we present the definition in this simplified
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form to emphasize our later focus on matings of quadratics that stem from Misiurewicz
points.

Bruin and Schleicher give an alternative combinatorial definition of the Hubbard tree
which emphasizes several useful properties of the Hubbard tree defined above:

Definition 1.9. A Hubbard tree is a tree T equipped with a map f ∶ T → T and a
distinguished point, the critical point c0, satisfying the following:

1. f ∶ T → T is continuous and surjective.

2. Every point in T has at most 2 preimages under f.

3. For points in T /{c0}, the map f is a local homeomorphism onto its image.

4. All endpoints of T are in Pf .

5. The critical point is periodic or preperiodic, but not fixed.

6. Expansivity: If x and y with x ≠ y are branch points or points in Pf , then there is an
n ≥ 0 such that f on([x, y]) contains the critical point. [2]

The definition from Bruin and Schleicher is quite restrictive in that it only yields Hubbard
trees whose maps are of degree 2, much like our initial definition. It is simultaneously lenient,
however, in that it allows for purely topological Hubbard trees to occur whose maps cannot
be neatly embedded in C.

Figure 1.6: Generation of the Hubbard tree for f1/6

To see how these two definitions relate, consider the preperiodic quadratic polynomial fθ
and its Hubbard tree Tθ as given in our initial definition:

1. fθ is a polynomial and thus continuous.

2. Every point has at most two preimages sincefθ is quadratic.
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3. As a quadratic polynomial, fθ is a local homeomorphism everywhere except at its
critical point.

4. As we’ve defined the Hubbard tree to be the minimum spanning tree of Pfθ on J(fθ),
the endpoints must be in Pfθ .

5. Since c is a Misiurewicz point, fθ is preperiodic. Thus, c is not fixed.

It is a bit trickier to check the remaining assertions—that fθ maps Tθ onto itself, and
that the expansivity condition is met—but these hold as well. (See [2].) In short, these
conditions imply that Tθ is forward invariant under fθ, and that iterated preimages of Tθ
under fθ approach the Julia set for fθ. Another useful point for later on is that the closure
of each component of f−1(Tθ)/{0} maps bijectively onto Tθ via fθ—or in other words, the
preimage of Tθ looks like two miniature copies of Tθ glued together at the critical point.
Further, the nth preimage of Tθ resembles 2n miniature copies of Tθ glued together at the
(n − 1)th preimages of the critical point.

This insight into the behavior of Hubbard trees under their associated map is not all that
we may find in [2]. Bruin and Schleicher also provide several algorithms which detail how we
can use θ and the combinatorial structures associated with Tθ to gain information on fθ—
in other words, how we may start with discrete data and build back analytic information!
Since we have been very interested in observing how external angle parameters relate to the
functions they generate, a natural question to ask here is whether or not we can generate an
explicit relationship between parameter angles and Hubbard Trees.

The answer to this question is that we can. To illustrate this connection, we will briefly
discuss itineraries and an algorithmic test that will aid in the construction of a Hubbard tree
when given a parameter θ.

Definition 1.10. Let θ be an external angle in R/Z. We associate the itinerary of t
with respect to θ to any t ∈ R/Z, by vθ(t) = v1v2v3... with vi ∈ {⋆,0,1}. Here, the vi are
determined via the following assignments:

vi =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⋆ if 2i−1θ = θ
2 or θ+1

2

0 if θ+1
2 < 2i−1θ < θ

2

1 if θ
2 < 2i−1θ < θ+1

2 ,

where the inequalities are interpreted with respect to cyclic order on R/Z. (If it is unambigu-
ous what θ is, we simply call this the itinerary of t.) The kneading sequence of θ is the
itinerary of θ with respect to θ, vθ(θ). [2]

Intuitively, we are starting with some function, fθ, and splitting J(fθ) into three compo-
nents. The first component is the set containing the critical point, {⋆}. The two remaining
disjoint components are obtained by cutting J(fθ) in half at the critical point—along the
Rθ( θ2) and Rθ( θ+12 ) rays. The component(s) on the side of this ray-pair which contain(s)
γθ(θ) we denote by T1. (T1 contains the landing points of rays with external angles between
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θ
2 and θ+1

2 .) The remaining component(s) we will call T0. (T0 contains the landing points of
rays with external angles between θ+1

2 and θ
2 .)

Now we can assign the itinerary of an external angle t by listing in order which components
the forward iterates of Rθ(t) land in, starting with the initial position for t: ⋆ if the ray in
question lands at ⋆, 1 if we land in T1, and 0 if we land in T0. (Note: in [2], the authors
restrict T0 and T1 to be subsets of the Hubbard tree and not necessarily of the Julia set due
to their combinatorial approach. We would like to keep open the possibility of mentioning
the itinerary of points in J(fθ)/Tθ though, so we have slightly modified the usage of their
notation to include these points.)

For a concrete example of developing the itinerary for a point, consider the following
example:

Example 1.11. Suppose we wish to determine the itinerary of t = 1/12 with respect to
θ = 1/6. Essentially, this means that we are seeking the forward itinerary of γ1/6( 1

12) on
J(f1/6)—thus, we must revisit the function of Example 1.7, f1/6.

Here, the critical point is γ1/6( 1
12) = γ1/6( 7

12) = ⋆. T1 must contain γ1/6(1
6), thus we have

that T1 is the component of J(f1/6)/{⋆} on the upper half of Figure 1.7. This leaves T0 as
the remaining component on the bottom half of Figure 1.7.

Figure 1.7: ⋆, T0, and T1 on f1/6

To find v1/6( 1
12), we now need to note the location of external rays in the forward orbit

of R1/6(1
2). This is done fairly easily by considering the landing points of these rays. Recall

that the forward orbit of γ( 1
12) under f1/6 can be determined by applying the angle-doubling

map:

γ( 1
12) = γ( 7

12) γ(1
6) γ(1

3) γ(2
3)

We start out in {⋆}, map to a point in T1, map to a different point in T1, map to a point
in T0, and then cycle between the last two points. This yields v1/6( 1

12) = ⋆110.
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If the kneading sequence associated with this function was desired instead, we would have
to find the itinerary of 1/6: v1/6(1

6) = 110.

While it is helpful to have prior knowledge of the function to develop an itinerary, as in
Example 1.11, it is not wholly necessary. Relying strictly upon the definition of the itinerary,
we do not need to know the structure of J(fθ) to develop the itinerary for t with respect
to θ—we merely need to know what t and θ are. It is thus not terribly difficult to collect
combinatorial data on the orbits of the postcritical points of fθ.

This should come as little surprise: it is usually much easier to start with an analytic
object and collect combinatorial data than the other way around. The problem is often found
trying to go in the reverse direction—obtaining analytic information from combinatorial
objects. So, how may we attempt to gain information on the structure of fθ, strictly given
nothing but its parameter angle θ?

Here, it will be useful to combine information that we know about Hubbard trees with
the information that we know about forward orbits of points. Since the Hubbard tree maps
onto itself and its associated function is locally a homeomorphism everywhere except at the
critical point, we can take information on the itineraries of points and extend this to obtain
information on the itineraries of edges. For example, if γθ(t) has itinerary 10... and γθ(t′)
has itinerary 11..., we should suspect that the arc on the Julia set between γθ(t) and γθ(t′)
starts out in T1. This is because the itinerary places both points initially in T1. Further, we
should suspect that this arc maps to an arc that starts in T0 and ends in T1. This is because
fθ is locally a homeomorphism on T1, and because the second digit of the itinerary places
each image point in a separate subcomponent of J(fθ).

With a little ingenuity, it is also possible to see where larger sections of the Hubbard tree
map forward, and whether or not they collapse under forward iteration of the function. To
clarify what is meant here by “larger sections,” we define the following:

Definition 1.12. A triod is a connected compact set homeomorphic to a subset of the letter
Y. We shall let [a, b, c], with a, b, c ∈ J(f) denote the triod which is formed by taking the
minimum spanning tree of the points a, b and c on J(f).

We say that a triod is degenerate if it is homeomorphic to an arc or a point, and
nondegenerate if it is homeomorphic to the letter Y. [2]

Since we will be frequently referring to triods of postcritical points (as well as where they
map), it will be a matter of practicality to label the postcritical points of a given map in
sequential order: i.e., f on(⋆) = cn, n ∈ N. We will let ⋆ = c0, so that c0 ↦ c1 ↦ c2 ↦ ... etc. In
the case of periodic points, we will write the smallest n that can used to describe that point.

In later sections, it will be of use to discuss points which are iterated preimages of
the critical point of a map. While preimages branch off for quadratic maps (that is, each
point which is not a critical value will have two preimages under the map), with additional
information we will let c−n denote a point such that f on(c−n) = c0. Once fixing a particular
c−n, we will extend the above labeling convention for the forward orbit of c−n so that ck ↦ ck+1.
(Fixing a particular c−n is important, as we obtain two possible preimages for any point—one
which prepends 0 and another which prepends 1 to the initial point’s itinerary.)
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As an example of how this cn notation may be utilized, on f1/6 (as shown in Figure 1.7)
we have the following mapping scheme of points on the critical orbit:

γ( 1
12) = γ( 7

12) γ(1
6) γ(1

3) γ(2
3) , or alternatively,

⋆ = c0 c1 c2 c3 .
Further, we have that on this same example that [c1,⋆, c3] forms a triod which is degen-

erate and [c1, c2, c3] forms a triod which is nondegenerate. (We can confirm this by referring
back to Figure 1.3.)

Now that we have notation to describe these larger sections of the Hubbard tree, what
happens if we try to use the forward image of these points to predict where the triods map?

Examining the [c1, c2, c3] triod, the mapping scheme would seemingly suggest that f1/6
sends it to [c2, c3, c2]. This cannot be true: [c1, c2, c3] is the whole Hubbard tree and [c2, c3, c2]
is but an arc between c2 and c3. Something must be wrong here, since the Hubbard tree
should map onto itself, and not just onto an arc.

The problem is that we failed to consider that our initial triod included the critical point,
which is the only point at which f1/6 does not act like a local homeomorphism. If we “chop”
an arm of the triod at ⋆, however—thus removing the part of the triod that extends past
the critical point—f1/6 will act like a homeomorphism on this newer triod. In fact, the
nondegenerate triod [c1, c2,⋆] maps onto the whole Hubbard tree, [c2, c3, c1], as suggested
by the mapping scheme.

This observation can be developed into a much more powerful tool which tells us when
triods on a Julia set are degenerate, strictly based on the forward orbits of external rays
landing at their endpoints and not on any prior knowledge of the structure of the Julia set.
This algorithm is developed in [2], and summarized below:

Definition 1.13. The following algorithm serves as a test for the degeneracy of a given triod
[a, b, c] on a Julia set J(f). We check whether a triod is degenerate by iterating it:

1. Note the locations of a, b, and c in either {⋆}, T1, or T0. (If these are given as landing
points of external rays, we need not know the structure of J(f) to proceed.)

2. If a, b, and c are in three different locations, the triod is degenerate and the coordinate
in {⋆} is in the middle of a segment pair connecting the other two coordinates.

3. If more than one of a, b, or c is in {⋆}, the triod is degenerate. The triod is either
homeomorphic to an arc (two points are contained in {⋆}) or a point (a, b, c ∈ {⋆}).

4. If a, b, and c are contained in two locations, T0 and T1, “chop” off the odd one out by
replacing it with ⋆.

5. If either all of a, b, and c are contained in T0 ∪ {⋆} or all of a, b, and c are contained
in T1 ∪ {⋆}, we apply f to a, b, and c to see where this triod maps.
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6. Repeat this process until we’ve obtained a periodic cycle of coordinates, or have noted
that we have a degenerate cycle. If we have chopped an end of the triod off at least
once in each coordinate location of our ordered triple, the triod is nondegenerate. If
we have only chopped 2 ends of the triod, we have a degenerate segment pair, with the
non-chopped coordinate in the middle. [2]

Consider the triod [c1, c2, c3] on J(f1/6):

Example 1.14. To test a triod for degeneracy, we need to be able to determine the forward
orbit of each of the points at the ends of the triod, as well as their locations in T1, T0, or
{⋆}. Keep in mind that based on external angle considerations, we have determined that
c1, c2 ∈ T1 and c3 ∈ T0. Further, the angle-doubling map has given us the forward orbits of
each of these points as noted in the example above. Using this information, we can test a
triod for degeneracy:

[c1, c2, c3] (Located respectively in T1, T1, T0. We must “chop” the third coordinate.)
[c1, c2,⋆] (Located respectively in T1, T1,{⋆}. We may apply f1/6.)
[c2, c3, c1] (Located respectively in T1, T0, T1. We must chop at the second coordinate.)
[c2,⋆, c1] (Located respectively in T1,{⋆}, T1. We may apply f1/6.)
[c3, c1, c2] (Located respectively in T0, T1, T1. We must chop at the first coordinate.)
[⋆, c1, c2] (Located respectively in {⋆}, T1, T1. We may apply f1/6.)

It is possible to continue mapping forward under f1/6 and chopping where appropriate,
but note that we come back to the very triod that we started with on the last suggested
iteration under f1/6. We’ve reached a periodic cycle of triods, and have chopped off an arm
of the forward iterates of the triods in each of the three coordinate locations of our ordered
triple. By the above algorithm, we can confirm that this (as well as any other triod we have
cycled through) is a nondegenerate triod.

The remarkable thing about this test is that it suggests an iterative construction of the
Hubbard tree purely from any parameter angle θ associated with a Misiurewicz point. This
will be a combinatorial copy of the Hubbard tree T without embedded coordinates in C, but
it will share the essential topoplogical structures of Tθ as detailed earlier in this section.

We can obtain a Hubbard tree by first placing and drawing edges between three initial
points—any point from T0, any point from T1, and ⋆. These will have a minimum spanning
tree resembling an arc with ⋆ in the middle. We use this as a launching point to iteratively
place postcritical points of Tk, k ∈ {0,1}, on T by testing whether the to-be-added point is
degenerate or nondegenerate with pairs of previously placed points in Tk∪⋆: If the new point
is degenerate with any collection of pairs, the test yields a location for the postcritical point
on a currently existing arc (or on an extension of a currently existing arc) on the already
drawn subset of T . If the new point is nondegenerate with all collections of pairs from Tk,
it does not lie on any pre-established arcs of T and must connect to some branch point of
T . We must then test this branch point to see where the new limb of T is to be inserted on
the already-drawn subset of T . [2]
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Here, one can utilize the external angles associated with the cn to determine where the
new limb should be placed. (This is to ensure that the limbs about any branch point are
oriented in the correct order.) Once we exhaust the collection of postcritical points by placing
them in this manner, we have the desired copy of T .

Example 1.15. As a Hubbard tree with only one branch point, T1/6 can be approximated
in this manner relatively quickly.

Figure 1.8: Construction of the Hubbard tree associated with f1/6

As we can see in Figure 1.8, placing a point from each of T0, T1, and ⋆ takes care of all
but one postcritical point of f1/6. We now need to determine where to place the missing c2
by testing whether it forms any degenerate triods with pairs of points from T1 ∪ ⋆. There is
only one possible pair of points to test with c2, forming the triod [⋆, c1, c2]. However, since
this triod was contained in the periodic sequence of triods from the previous example, we
have by that test that this is a nondegenerate triod. This means that c2 does not lie on any
previously drawn arcs of T , and must be connected to T via some branch point in T1. Which
“side” of T should this new limb containing c2 be drawn on?

If we pay attention to the fact that each postcritical point has an associated external
angle, we should be able to use this to determine how to embed our tree: angles increase
cyclically as we travel counterclockwise around T . This means that the appropriate place-
ment of c2 is below the already drawn arc, as it yields the appropriate cyclic order 1/6,1/3,2/3.

Recall that backwards iteration of the Hubbard tree under its associated map approxi-
mates the map’s Julia set. Since this section demonstrates that only θ is needed to obtain a
combinatorial copy of Tθ, it should be clear that the parameter θ carries quite a large amount
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of information. We will make heavy usage of the link between θ and Tθ in subsequent chapters
to emphasize important structures on fθ through use of T .

For small ∣Pf ∣, the above algorithm for generating T may be fairly straightforward to
work through by hand. For more complicated quadratics, however, the process becomes
much more tedious. A program based upon this algorithm was generated by the author for
use in developing Hubbard trees for the motivating examples in this paper. Every Hubbard
tree structure asserted has been verified using this program and cross-comparison to [11].
For the interested reader, a record of the code used to generate the program is located in
Appendix A.

1.3 Matings of polynomials

Informally, a mating is a map which is obtained by gluing two polynomials together. The
vagueness of the operation suggested here naturally raises a few concerns: Can we mate
just any pair of polynomials? What polynomial domains do we consider when performing
this gluing? Can we perform this operation so that the resulting mating acts nicely on any
“boundary” obtained between our initial pair of functions? What sort of quotient space do
we obtain as a result of this gluing?

While there are some general restrictions to be addressed, the answer to most of these
questions is choice-dependent because there are several types of mating functions. We start
by developing a particular compactification of the complex plane needed to form the formal
mating, and proceed from there: all types of matings are either quotients of or related to
quotients of this formal mating map.

Definition 1.16. Let C̃ be the compactification of the complex plane given by adding
the circle at infinity: C̃ = C ∪ {∞ ⋅ e2πit∣t ∈ R/Z}. Give C̃ the natural topology so that it is
homeomorphic to D. If considering a monic quadratic polynomial on such a space, let R∗(t)
denote the usual external ray along with its landing point at ∞. [10]

Here, two important points are of note. First, we can continuously extend any monic
polynomial f ∶ C→ C of degree d to a polynomial f̃ ∶ C̃→ C̃ by letting f̃(∞⋅e2πit) = ∞⋅e2πitd.
Essentially, any such f will act on the circle at infinity much like z ↦ zd acts on the unit
circle—multiplying the argument of the initial point by d. This extension gives a landing
point of sorts at infinity for the external rays of f .

Second, we can form a topological two-sphere S2
a,b by taking S2

a,b = C̃a⊔ C̃b/(∞ ⋅ e2πit, a) ∼
(∞⋅e−2πit, b). Here, we’re essentially gluing the circles at infinity on two copies of C̃ together
with opposing angle identifications to form our two-sphere. With these two notes, we define
our first mating function:

Definition 1.17. Let fa, fb ∶ C→ C be two same-degree postcritically finite monic polynomi-
als. We define the formal mating of fa and fb, fa áf fb, to be the map fa áf fb ∶ S2

a,b → S2
a,b

given by fa áf fb∣C̃a ∶= f̃a and fa áf fb∣C̃b ∶= f̃b. [10] [16]
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To phrase the above definition more intuitively, note that we are gluing the compactified
domain spaces of fa and fb at their boundaries. Once this space is obtained, the collection
of equivalence classes containing identified boundary points now forms the equator of a
topological two-sphere. The formal mating is the map given by having fa and fb act on their
own respective hemispheres of this quotient space. (See Figure 1.9.) While formal matings
may be defined for general post-critically finite pairs of monic polynomials, we will emphasize
the quadratic case in this paper. Notably, when presented with a pair of functions fa and
fb, we will take a and b to be parameter angles as discussed in Section 1.2.1.

An immediate question to be raised here is whether the behavior on the equator is “nice”.
The prescribed manner in which we suggested gluing copies of C̃—by identifying (∞⋅e2πit, a)
to (∞ ⋅ e−2πit, b)—aligns the “z ↦ zd” behavior obtained at the boundaries of our respective
copies of C̃. (Note that this also identifies landing points at infinity of Ra(t) and Rb(−t).)
This forces fa áf fb to be a continuous branched covering from S2

a,b to itself.

Figure 1.9: f̃a and f̃b on their own respective copies of C̃. To obtain the domain of the
formal mating, identifications are made between the respective landing points at infinity of
Ra(t) and Rb(−t).

Starting with the formal mating, fa áf fb, it is possible to obtain other types of matings
as quotient maps, much like the following: The most closely related to fa áf fb of these maps
is the degenerate mating:

Definition 1.18. We define two equivalence relations, ∼top and ∼degen, on the space of the
formal mating as follows: Each point on the equator corresponds to two external rays which
land on the Julia sets of fa and fb. Let the point on the equator, pair of rays, and pair
of landing points generate an equivalence class [x] under the equivalence relation ∼top. Let
[x1], ..., [xn] be the equivalence classes containing at least 2 postcritical points. Then, let
[y1], ..., [ym] be the collection of [x1], ..., [xn] along with iterated preimages of these equiva-
lence classes containing at least one point on the critical orbit of fa áf fb. Set p ∼degen q if
p, q ∈ [yi] for some i.

If each of the [yi] are simply connected, the quotient space is a 2-sphere, and we define
a branched covering on S2 as follows: On the complement of open neighborhoods of the
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equivalence classes [yi] from y = 1, ...,m, let fa ád fb(z) = fa áf fb(z). On the equivalence
classes themselves, let fa ád fb([yi]) = [fa áf fb(yi)] for y = 1, ...,m. Finally, set fa ád fb to
be homeomorphic on the remainder of S2. fa ád fb is known as the degenerate mating of
fa and fb. [10] [12]

Figure 1.10: Ray equivalence classes of ∼degen for f1/4 ád f1/4. Stars denote critical points;
filled dots denote postcritical points.

Again, to phrase the above more intuitively, what we are doing is starting with the
quotient space S2

a,b and building an equivalence relation that identifies along external ray-pair
groupings, ∼top. (Since ∼top is constructed on the quotient space of the formal mating—which
we specified starts with postcritically finite quadratics—the filled Julia sets for the associated
maps are locally connected, and we can expect these external ray-pairs to land.) Next, we
form a secondary quotient space by identifying along a finite collection of equivalence classes
generated by ∼top. Namely, we build a quotient space by identifying along the ray-pair
groupings that contain pairs of points on the critical orbit, and preimages of these groupings
which contain at least one postcritical or critical point of fa áf fb. The equivalence relation
for which only these equivalence classes of ∼top are nontrivial is ∼degen.

As an example, consider Figure 1.10, which shows the nontrivial equivalence classes of
∼degen for f1/4 ád f1/4: we include the ray-pairs leading from γ(0) and γ(1

2) of the upper tree
because they include pairs of postcritical points. We also include preimages of these ray-pairs
under the formal mating which contain at least one point on the critical orbit of the formal
mating. This accounts for the remaining ray-pair groupings. At this point we’ve exhausted
all possible postcritical points on the map, so there are no more nontrivial equivalence classes
for ∼degen.

Once we pinch along equivalence classes of ∼degen, we alter the implied quotient map
slightly to yield a homeomorphism from the two-sphere to itself: The critical orbit suggests
a mapping scheme on equivalence classes of ∼degen, and we take the degenerate mating to
be equivalent to the formal mating off open neighborhoods of the equivalence classes. We
patchwork the rest of the map together by setting the degenerate mating to be homeomorphic
in the remaining space on the two-sphere. Despite the last portion of fa áf fb being defined
arbitrarily, fa áf fb is uniquely determined up to Thurston equivalence. (In other words,
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the dynamics of the map do not change based on which homeomorphism we pick in the last
part of the definition.)

If no pairs of postcritical points are identified by ∼degen, we have that fa ád fb = fa áf fb.
This happens most frequently when a and b are angles whose denominators are not offset by
powers of two (e.g. f1/6 and f1/4), as well as in some other special cases where the periodic
postcritical points of fa and fb do not “align” by the t and −t pairing (e.g. f1/14 and itself).
We also must have in these types of cases that postcritical points are not identified “through”
the opposing Julia set. (More on this in Section 2.4.1.)

If we are less restrictive in picking and choosing equivalence classes to identify, we obtain
another type of mating map:

Definition 1.19. Consider the quotient space K(fa) áK(fb) formed when each equivalence
class of ∼top is respectively identified to a point. (All points not in K(fa) ⊂ C̃a or K(fb) ⊂ C̃b

are contained in an equivalence class of ∼top which contains a point of K(fa) or K(fb), thus
the quotient space collapses all such points.)

We then define the topological mating, fa át fb, to be the map fa át fb ∶ K(fa) á
K(fb) →K(fa) áK(fb) given by fa át fb∣K(fa) = fa and fa át fb∣K(fa) = fb. [16]

Here, we are collapsing ray-pair groupings (particularly, collections of external ray-pairs
with shared landing points) respectively to a point. Unlike the degenerate mating, however,
we are not selective in choosing which identified ray-pair groupings to collapse. An alterna-
tive way to think about the quotient space formed with ∼top is the following: identify the
boundaries of K(fa) and K(fb) together under the relation γa(t) ∼ γb(−t). (We assumed a
while ago that fa and fb were postcritically finite, which tells us that their filled Julia sets
are locally connected and that they have external rays which land, so this is allowed.) The
topological mating is the map given by having fa and fb act on their own respective filled
Julia sets within this quotient space. (See Figure 1.11.)

Again, a potential concern regarding fa át fb is whether the function is “nice” on the edge
we just glued along. Similar to forming the formal mating, the identification γa(t) ∼top γb(−t)
aligns the “z ↦ zd” behavior obtained at the boundaries of K(fa) and K(fb); thus fa át fb
is continuous.

A point of note for the degenerate mating and the topological mating is that while we’ve
described the construction of the quotient spaces for these maps, we have not yet made any
explicit mention of what they actually look like. The space associated with the formal mating
is a two-sphere, but what about fa ád fb and fa át fb?

It is possible that we can glue along the boundaries of K(fa) and K(fb) (or just at
important points on their boundaries) and obtain a topological two-sphere. (Again, see
Figure 1.11.) In the case that a two-sphere is the resulting quotient space of the topological
mating, we have the following definition:

Definition 1.20. If there exists some topological conjugacy from fa át fb to some rational
map F on the Riemann sphere Ĉ, then we call F the geometric mating of fa and fb and
say that fa and fb are matable. We will alternatively use fa ág fb to denote this map. [16]
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Figure 1.11: The topological mating of fa = f1/7 and fb = f1/7. (Base graphics from [6].)

In other words, not only can some topological matings determine quotient spaces which
are two-spheres, such maps also have dynamics which emulate those of rational maps!

It cannot always be guaranteed, however, that the quotient space K(fa) á K(fb) (or
even the quotient space of the degenerate mating) is a two-sphere. As a somewhat trivial
example, consider the following:

Example 1.21. Examine f1/2 át f1/2. The Julia set of f1/2 is given by [−2,2] ⊂ R, with
γ1/2(1/2) = −2 and γ1/2(0) = 2. We have that each point in (−2,2) is biaccessible to external
rays, and further, that γ1/2(t) = γ1/2(−t) for all t. When self-mating f1/2, this identifies each
point in J(f1/2) with its copy on the opposing Julia set. (See the sample ray equivalence
classes marked in Figure 1.12.) We end up with K(f1/2) áK(f1/2) ≅K(f1/2).

Figure 1.12: The quotient space of f1/2 át f1/2: collapsing equivalence classes of ∼top yields a
line segment.
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If the quotient space of the topological mating is not the two-sphere, we cannot have a
rational map on the two-sphere which is topologically conjugate to our mating map. Thus,
the geometric mating of fa and fb need not always exist. So when do we know that we can
obtain a two-sphere in taking the topological mating? We utilize a result of H.L. Moore’s:

Theorem 1.22. Let ∼ be any equivalence relation on the sphere S2 which is topologically
closed. (That is, we assume that the set of all pairs (x, y) with x ∼ y forms a closed subset of
S2 × S2 .) Assume also that each equivalence class is connected, but is not the entire sphere.
Then the quotient space S2/ ∼ is itself homeomorphic to S2 if and only if no equivalence class
separates the sphere into two or more connected components. [18]

We have that ∼top is a topologically closed equivalence relation whose equivalence classes
are connected. (All equivalence classes are formed of external ray-pairs joined at landing
points on K(fa) or K(fb).) Further, none of these equivalence classes contain all of S2

a,b.
(For identification and forward orbit considerations, the external angles of periodic landing
points associated within the same ray equivalence class must have the same denominator.)
The underlying implication of this theorem for us is then that S2

a,b/ ∼top is a quotient two-
sphere if and only if no equivalence class of ∼top contains a Jordan curve on S2

a,b. Intuitively,
the problem caused is this: an equivalence class of ∼top containing a Jordan curve will collapse
to a point in the quotient space S2

a,b/ ∼top. This effectively “pinches off” a section of S2
a,b—so

our resulting quotient space cannot be homeomorphic to S2.
We have already seen a fairly trivial example (Figure 1.12) whose quotient space is not

a two-sphere. Another example of a topological mating whose quotient space is not S2 is
shown in Figure 1.13.

Now that we know what type of equivalence classes to avoid when pursuing a quotient
two-sphere, a natural question to ask is for what function pairs fa and fb can ∼top actually
yield a geometric mating. An elegant result in the case of postcritically finite quadratic
functions is due to Lei, Rees, and Shishikura:

Theorem 1.23. For c, c′ such that z ↦ z2 + c and z ↦ z2 + c′ are postcritically finite, this
function pair admits a geometric mating if and only if c and c′ are not in the same connected
component of M/W (where W denotes the main cardioid of M).

A synonymous phrasing of this theorem is as follows: for Misiurewicz points c and c′,
z ↦ z2 + c and z ↦ z2 + c′ are matable if and only if c and c′ do not lie in complex conjugate
limbs of M .[10] [20] [21]

This is an astounding result in that strictly based on parameters alone, we can tell whether
the boundaries of two filled Julia sets will glue together to form a quotient two-sphere. This
is a particularly astounding result when noting the fact that not all filled Julia sets have
interiors—it is thus possible to obtain a topological two-sphere by identifying points on two
dendrites. (Equivalence classes here can be surprisingly complex, as multiple accessibility of
points on these dendrites often allows for several “chains” of external rays to be in the same
class. See Figure 1.14.)

For sake of seeking results which can possibly be extended to this rational case and
subsequently observed as embedded in Ĉ, all of the matings investigated subsequently in
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Figure 1.13: A mating possessing a ray equivalence class that forms a Jordan curve. The
quotient space of the topological mating cannot be a two-sphere due to collapsing along the
depicted equivalence class of rays.

this paper will be constructed from preperiodic quadratic pairs which meet Lei, Rees, and
Shishikura’s restriction on parameters for c unless otherwise specified.

1.4 Finite Subdivision Rules

If we are to make rigorous the notion of subdivision of tiles, it will be of use to mention the
space that formal finite subdivision rules are developed upon: CW complexes.

Definition 1.24. We construct a space inductively via the following procedure:

1. Start with a discrete set X0, whose points we will call 0-cells.

2. Form the n-skeleton Xn from Xn−1 by attaching open n-cells enα via maps ϕα ∶ Sn−1 →
Xn−1. Thus, Xn is the quotient space of the disjoint union Xn−1⊔α enα of Xn−1 with a
collection of closed n-cells enα under the identifications x ∼ ϕα(x) for x ∈ ∂enα. Alterna-
tively, we have Xn =Xn−1⊔α enα.

3. Stop the inductive process at some n < ∞, and set X =Xn.

Any space X constructed in this manner is a n-dimensional CW complex. [9]
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Figure 1.14: The formal mating of f3/8 (top) and f1/4 (bottom), and a “winding” ray equiv-
alence class. Parameter rays 3/8 and 1/4 do not land in complex conjugate bulbs of M , so
K(f3/8) áK(f1/4) is actually a two-sphere.

A layman’s interpretation of the inductive building process is this: points are 0-cells,
open edges are 1-cells, open disks are 2-cells, et cetera—until we have that open n-disks are
n-cells. We start with a collection of 0-cells, and attach the boundaries of 1-cells to these 0-
cells (without allowing the open 1-cells to “cross” themselves or any other previously placed
structure) to form a 1-skeleton. We then attach the boundaries of 2-cells to the 1-skeleton
(similarly disallowing “crossing” of previous structures) to form a 2-skeleton. We continue
inductively until we form an n-skeleton, i.e., an n-dimensional CW complex.

Graphs are rudimentary examples of 1-dimensional CW complexes: we can picture this
inductive construction by starting with the collection of vertices of the graph, and then gluing
in open edges to connect the appropriate points. Of utmost importance to us in studying
finite subdivision rules will be special 2-dimensional CW complexes which we will refer to as
tilings. We can think of these as connected planar graphs with tiles attached in the open
regions enclosed by the graph’s edges and vertices.

In studying how such structures subdivide, it will be useful to formalize what we mean
by “subdivision”:

Definition 1.25. We say that Y is a subdivision of X if Y =X and each closed cell of Y
is contained in a closed cell of X.

For sake of the 2-dimensional CW complexes that we will focus on, this means that our
complexes must cover the same space. Further, vertices of Y must be contained somewhere
in X, edges of Y must be a subedge of an edge in X or contained in a tile of X, and tiles of
Y must be subtiles of tiles of X.

Finite subdivision rules offer a rigorous way to combinatorially characterize how certain
tilings can be subdivided:

Definition 1.26. A finite subdivision rule R consists of the following three things:
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1. A tiling. Formally, this is a finite 2-dimensional CW complex SR, called the subdivision
complex, with a fixed cell structure such that SR is the union of its closed 2-cells. We
assume that for each closed 2-cell s̃ of SR there is a CW structure s on a closed 2-disk
such that s has ≥ 3 vertices, the vertices and edges of s are contained in ∂s, and the
characteristic map ψs ∶ s → SR which maps onto s̃ restricts to a homeomorphism on
each open cell.

2. A subdivided tiling. Formally, this is a finite 2-dimensional CW complex R(SR) which
is a subdivision of the above CW complex SR.

3. A continuous cellular map gR ∶ R(SR) → SR, called the subdivision map, whose restric-
tion to any open cell is a homeomorphism. [4]

Thus, not only are we restricting to tilings formed by “filling in” connected planar graphs
with tiles, these tilings must also have a finite number of vertices, edges, and faces; none
of which are monogons or digons. Further, each edge of the tiling must be a boundary
edge to some tile. Once we subdivide this tiling, we will need a map that takes open cells
of the subdivision tiling homeomorphically to open cells of the original tiling. Only when
we have all three components—the initial tiling, the subdivision tiling, and a subdivision
map—do we have a complete finite subdivision rule. With all three elements, we obtain a
finite combinatorial rule that determines a subdivision of our finite planar tiling. Then, this
rule can be applied recursively to yield iterated subdivisions of the original tiling.

Example 1.27. As a fairly simple example, consider the following: on the Riemann sphere,
Ĉ, mark the real line along with the points z = 0,±1,∞. This gives us a tiling of the sphere
by 2 tiles which are topological quadrilaterals—one formed by the upper half plane, one
formed by the lower half plane.

If I examine the preimage of this structure under the map z ↦ z2, I get back both the
real and imaginary axes as marked lines, along with the marked points z = 0,±1,±i,∞. The
preimage of my original tiling—a quadrilateral pillowcase on the two-sphere—has sectioned
Ĉ into “orange slices”. (See Figure 1.15.) Taking subsequent preimages under z ↦ z2, we
obtain further subdivisions of our initial tilings that yield smaller and smaller “orange slices.”

In the above example, it is fairly simple to visualize the arrangement of tiles, as I’ve
given a familiar analytic map, and concrete 1-skeleton structures in Ĉ for our tiling and
subdivided tiling. (In fact, a similar example is reproduced in many introductory complex
analysis textbooks.) These analytic and embedded structures, however, are not requirements
for a finite subdivision rule. We just need a subdivision complex, its subdivision, and a
subdivision map between the two—and as hinted at in the initial definition, these do not
need to be analytic. (See Figure 1.16.)

It is entirely possible to obtain much more complicated combinatorial examples with
maps of higher degree. Some of these examples, unlike the example above, may not be
realizable by a rational map.
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Figure 1.15: Preimages of the map z ↦ z2 subdivide a tiling of Ĉ

Figure 1.16: Preimages of the map f subdivide a tiling of Ĉ. We may take this to be a
combinatorial version of our original example.

1.5 Rational maps

With the breadth of background material covered to this point, it may appear that each of
the topics discussed so far have barely related—if related at all. Julia sets and external rays
were needed in the construction of the mating map, and it can be argued that the emphasis
on the combinatorial structure of Hubbard trees plays into the combinatorial emphasis of
finite subdivision rules—but how can we link matings and finite subdivision rules?

Here, two results from the literature stand out. First, it is possible to start with a rational
map, and then obtain a subdivision rule:

Theorem 1.28. Suppose that f is a postcritically finite rational map with no periodic critical
points. If n is a sufficiently large positive integer, then f onis the subdivision map of a finite
subdivision rule.” [1] [5]
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Second, it is also possible to start with a rational map, and then obtain a mating of two
polynomials:

Theorem 1.29. Suppose that f is a postcritically finite rational map with no periodic critical
points. Then there exists an iterate f on that is obtained as a topological mating of two
polynomials Pw, Pb.[1] [13]

Theorem 1.29 makes heavy utilization of Theorem 1.28 in it’s approach: the essence of
both is in constructing a finite subdivision rule with 1-skeleton given by a Jordan curve con-
taining the postcritical set of the rational map. Meyer continues along this line of reasoning,
however, and in [13] and [15] discusses how edge mappings in the two tile subdivision rule
can be used to obtain external angle parameters for two polynomials which mate to form
the iterated rational map.

There are also results in the relevant literature on conditions under which finite subdivi-
sion rules may yield rational maps (see [3]), and it is trivial from the definition of geometric
mating that obtaining rational maps from matings is possible as well. As there are poten-
tially several paths to travel to switch between a subdivision map of a finite subdivision rule,
a rational map, and a mating, it is my belief that insight into the links between any pair of
these three topics will eventually yield insight into each and on the connections between all
three. Thus, although a core emphasis of this paper is to develop insight into the dynamics
and structure of matings through the lens of finite subdivision rules, it should be noted that
this is a potential stepping stone to the understanding of how rational maps can be composed
and decomposed as well.

At this point we have developed the fundamental tools for discussing finite subdivision
rules and matings, as well as a brief motivation for investigating connections between the
two topics. From here we would like to obtain constructions for developing finite subdivision
rules from matings, and determine when these constructions will work. It is thus time to
move on to chapter two!
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Chapter 2

Constructions

2.1 An introductory construction

Before developing finite subdivision rules on mated maps, we shall start small and apply our
prerequisites to tackle a simpler case. How might one develop a finite subdivision rule from
a preperiodic polynomial on Ĉ?

Recall that we need a tiling which subdivides under a map. If we are given a polynomial,
p ∶ Ĉ → Ĉ, that we wish to develop into a finite subdivision rule, it is assumed that we take
p to be our subdivision map. This leaves us to find a tiling whose preimage under p yields
a subdivision of the initial tiling. Herein lies our interest in Hubbard trees: These forward-
invariant trees provide a useful “guess” at base structures to develop subdivision complexes
from. Consider the map f1/4 as applied to two different structures on Ĉ: the Julia set and
the Hubbard tree.

Figure 2.1: The Julia set for f1/4 on Ĉ

The Julia set J(f1/4), as shown in Figure 2.1, is both forward and backward invariant
under iterations of the map f1/4. The Hubbard tree T1/4, as shown in Figure 2.2, is only
forward invariant under f1/4, and backwards iterations under f1/4 approach the Julia set.

We may visualize the complements of these structures in Ĉ as open tiles that we wish to
subdivide in our finite subdivision rule. The Julia set does not resemble a 1-skeleton for a
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Figure 2.2: The Hubbard tree for f1/4 on Ĉ

finite subdivision rule, however—it lacks the finite structure which is necessary for our tiling.
Thus, as a potential tiling, this option is out. In the case of the Hubbard tree, we have a
connected planar graph embedded in Ĉ—thus suggesting that we can take Ĉ/T1/4 to be an
open tile and T1/4 to be the 1-skeleton of a subdivision complex. We have two out of three
needed components for a subdivision rule and only need a subdivided tiling—but alas, the
tiling given by using T1/4 as a 1-skeleton does not subdivide under preimages of f1/4. As we
have merely doubled the number of edges of our original tile rather than subdividing it, we
have no subdivision tiling and thus have not constructed a finite subdivision rule for f1/4.

Let us examine instead what happens when we consider these sets along with the external
ray at 0 out to a marked point at ∞:

Figure 2.3: The Julia set and Hubbard tree for f1/4 along with the external ray of angle 0
on the left; respective preimages on the right.
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Taking preimages of both of these structures under f1/4 suggests a subdivision of our
only tile—but again, only the Hubbard tree variant offers an edge and vertex structure
which yields a 1-skeleton that may potentially be used as a subdivision complex. We obtain
this complex with very little sacrifice in visualizing the behavior of f1/4 on Ĉ. Further,
allowing this minor sacrifice finally yields a structure which fits the requirements we have
sought after: we have a tiling, a subdivision tiling, and a map that sends open cells of the
subdivided CW complex to open cells on the original complex. f1/4 is thus the subdivision
map of a finite subdivision rule.

In retrospect this is a quite natural construction, as we should expect that the 1-skeleton
of our tiling contains the postcritical points of our map. (Under subdivisions, our 1-skeletons
can be used to observe the local degree behavior of the map, and thus should record where
critical and postcritical points are located.) In this example, the insertion of ∞ in forming
the Riemann sphere adds a single periodic critical point to the map f1/4. By adding an edge
to ∞, we include this necessary postcritical point in our 1-skeleton.

Figure 2.4: Subdivisions of the tiling given by T1/4 ∪R1/4(0) under the map f1/4

Now that we have the necessary components for a finite subdivision rule, we can take
preimages of our 1-skeleton under f1/4 to subdivide. Upon taking subsequent subdivisions
of this tiling, we can observe as in Figure 2.4 how a series of stripe-like tiles are obtained,
bounded by part of the Hubbard tree (or an iterated preimage of the Hubbard tree) and
a pair of external rays. We can use such pairings of external rays to denote closed tiles
on a particular subdivision by [R(t1),R(t2)], where [R(t1),R(t2)] = ⋃

t∈[t1,t2]
R(t). Further,

we also denote open tiles on a particular subdivision Ron(SR) by (R(t1),R(t2)), where
(R(t1),R(t2)) = [R(t1),R(t2)]/Xn with Xn being the 1-skeleton of Ron(SR). (See Figure
2.5.)

Since we are dealing with a quadratic map in the example that we’ve been detailing
above, external rays double upon forward iterations of the map. Thus, we can exploit the
angle-doubling property along with our interval-like tile structure to easily determine the
forward orbit and potential preimages of any given tile under f1/4. As all postcritically finite
monic quadratic maps share this relationship between external rays and the angle-doubling
map, we can generalize this tile behavior. That is, for t1, t2 ∈ R/Z, we have that:

fθ([R(t1),R(t2)]) = [R(2t1),R(2t2)].
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Figure 2.5: Naming scheme for tiles about Tθ

If 0 ∉ (t1, t2], we further have that:

(fθ)−1([R(t1),R(t2)]) = [R( t12 ),R( t22 )] ∪ [R( t1+12 ),R( t2+12 )].

Finally, if 0 ∈ (t1, t2], then:

(fθ)−1([R(t1),R(t2)]) = [R( t1+12 ),R( t22 )] ∪ [R( t12 ),R( t2+12 )].

Note that we obtain two tiles from each tile preimage—this is because our polynomial is
a degree 2 map. The distinction between how tiles split into pairs based on whether they
contain the 0 ray stems purely from preserving the cyclic nature of our angle coordinates.

As an example, in the particular finite subdivision rule example we have been devel-
oping for f1/4, the external ray boundaries of tiles on any nth subdivision are given by
dyadic rational numbers: closed tiles look like [R1/4( k

2n ),R1/4(k+12n )], k ∈ R/Z. Thus, we have
that the preimage of the [R1/4(0),R1/4(1

2)] tile is [R1/4(0),R1/4(1
4)] ∪ [R1/4(1

2),R1/4(3
4)].

This implies that the preimage of the [R1/4(1
2),R1/4(0)] tile is the complementary tile pair

[R1/4(1
4),R1/4(1

2)] ∪ [R1/4(3
4),R1/4(0)].

We must note, however, that we can’t pick just any external ray (or rays) to develop a
finite subdivision rule. Consider what happens when we use T1/4 ∪R1/4(1/2) as our initial
1-skeleton, as in Figure 2.6:

The preimages of R1/4(1/2) are the external rays of angle 1/4 and 3/4. The preimage of
the suggested CW complex under f1/4 here does not yield a subdivision because the open tiles
of the “subdivision tiling” do not map to the original tiling. (Notably, (R1/4(1

4),R1/4(3
4)) is

not contained in (R1/4(1
2),R1/4(1

2)).) Another way to view this problem is to note that the
1-skeleton of our chosen CW complex is not forward invariant under f1/4. If some edge E is
included in our 1-skeleton while f(E) is not, E will be missing in the preimage tiling—as
we saw in the previous example. Then, the open tile in the “subdivision” containing E will
not map forward to an open tile in the original CW complex.

We can generalize the outcome of the previous example and the above comment by noting
the following: if an external ray is included in our initial structure, the forward orbit of that
ray under our map must also be included in the structure for there to be a subdivision rule.
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Figure 2.6: The Hubbard tree for f1/4 paired with the external ray of angle 1/2 fails to serve
as a 1-skeleton for a finite subdivision rule.

We must also impose a similar rule for marked points of our tree structure: any marked
point on our 1-skeleton must have all points on its forward orbit be marked points as well.

Further, if we are starting with the Hubbard tree and utilizing external rays, we must
ensure that the union of this collection of objects is a connected set before attempting to use
it to form a tiling. If it does not form a connected set, we have an annular tile, which is not
permissible for a subdivision complex of a finite subdivision rule. (Annular shapes are not
n-gons, and thus are not permissible tile shapes.) We can, however, make a modification to
the Hubbard tree in order to rectify this problem: start with the minimum spanning tree
of the postcritical set and landing points of problematic external rays rather than just the
minimum spanning tree of the postcritical set. (See Figure 2.7.) If we look at the union of
the structures found in the forward orbit of this 1-skeleton, we have a connected set. Further,
we meet the condition of having a forward invariant 1-skeleton structure. This new structure
now forms a subdivision complex for a finite subdivision rule.

Figure 2.7: If γθ(t) ∈ J(fθ)/Tθ, then Rθ(t) does not land on the Hubbard tree. If none of
our chosen rays land on Tθ, we have an annular tile. This can be fixed as shown on the far
left by using a modified Hubbard tree.

An important lesson here to carry into subsequent sections is the following: while Hub-
bard trees are useful building blocks for creating finite subdivision rules, we typically cannot
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rely on them alone, or haphazardly glue other components to them in order to develop tilings
for finite subdivision rules.

Now that we have seen how a Hubbard tree may be utilized in forming a finite subdivision
rule for a polynomial, a natural line of inquiry following Chapter 1 regards how to develop an
analogous process for matings. There are a variety of types of matings to start with (formal,
degenerate, topological, geometric), and given that matings require a pair of functions, we
now have two trees to build from. How do we start?

The first step is to consider on which matings a Hubbard-tree based finite subdivision
rule construction will be useful. We will show in the following sections that there is much
use of this approach in the settings of the formal and degenerate matings. What about the
topological and geometric cases? Consider the following example:

Example 2.1. Let θ be some preperiodic angle landing outside of the leftmost bulb of the
Mandelbrot set, and examine f1/2 át fθ. (Recall that to obtain a geometric mating, the
parameter rays for our chosen angles cannot land in complex conjugate bulbs—and that the
leftmost bulb is its own complex conjugate.) Before considering any sort of finite subdivision
rule structure, we must determine the quotient space for this mating.

Since we’ve selected our angles to meet the criteria for a geometric mating, the quotient
space for the topological mating is topologically equivalent to S2. Since our quotient space
is formed by identifying the boundary of J(f1/2) to that of J(fθ), and both of the associated
functions here are preperiodic, neither of these sets has an interior. We may imagine building
S2 by folding over and gluing J(f1/2) to the dendrite J(fθ) in a manner prescribed by the
equivalence relation ∼top associated with this particular mating.

Here, it should be recalled that J(f1/2) = T1/2 = [−2,2] ⊂ R. Since we remove no limbs
in constructing T1/2 from J(f1/2), all external rays land on T1/2 and all of the equivalence
classes of ∼top can thus be represented by points in T1/2. Thus, if we are to consider building
a finite subdivision rule on S2 for the topological mating f1/2 át fθ by starting with T1/2, we
are sorely out of luck: T1/2 after quotienting by ∼top to obtain the topological mating yields
a topological two-sphere. We are then also out of luck for the geometric mating, as it relies
on a map which is topologically conjugate to the topological mating.

While this example suggests that the techniques developed previously in this section
are not generalizable to topological or geometric matings, this does not mean that finite
subdivision rules have no place in studying these maps. Visualizing how identifications
between dendrites builds a topological two-sphere is difficult—thus, it may be beneficial
to apply our combinatorial tools to help understand how these quotient spaces are pieced
together from pairs of Julia sets.

To tackle this problem in following sections, we will develop several construction schemes
for finding finite subdivision rules on formal and degenerate matings. As these schemes
are not without problems for certain cases of note, potential obstacles to finding a finite
subdivision rule are highlighted along with suggested alternate constructions for reconciling
these problems. These obstacles suggest the development of several modified degenerate
mating maps, whose constructions will be given later on in this chapter. In these degenerate
cases, recursive subdivisions of the combinatorial finite subdivision rule suggest a way to
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visualize important point identifications in the topological mating. (This is also detailed
later in the chapter.)

As a reminder, all of the matings in the following sections are presumed to be constructed
from pairs of functions which are preperiodic monic quadratics, unless otherwise specified.
Such quadratics will be labeled fθ, where θ refers to a parameter ray on M which lands at
a Misiurewicz point. We will also assume that these pairs of functions do not correspond to
Misiurewicz points in complex conjugate limbs of M , also unless otherwise specified.

To begin, we will build finite subdivision rules starting with the simpler case of our
potential mating maps—the formal mating.

2.2 The formal mating

2.2.1 Construction 0

Suppose we are given two preperiodic quadratic polynomials fa and fb, and wish to construct
a finite subdivision rule on S2 with subdivision map given by the formal mating fa áf fb. As
in the previous section, this leaves us to find a tiling whose preimage under fa áf fb yields a
subdivision of the initial tiling. If we mimic the approach of the last section by starting with
the Julia sets or Hubbard trees related to our subdivision map, note that we now start with
two disjoint components: a copy of J(fa) (or its associated Hubbard tree) on one hemisphere
of S2, and a copy of J(fb) (or its associated Hubbard tree) on the opposing hemisphere.
Preimages of the Julia set pairs are invariant under the formal mating, and preimages of
the Hubbard tree pairs iteratively approximate the Julia set pairs under the formal mating.
(Recall that the formal mating was defined to have its constituent polynomials acting on
their own respective hemispheres—-so we should expect local polynomial behavior off of the
equator of S2.) As an example, we may consider Figure 2.8, which shows these invariant
structures for the map f1/4 áf f1/4.

If we wish to start with either a single Julia set or single Hubbard tree, or even a single
Julia set or Hubbard tree along with a collection of external rays associated with that
individual polynomial, we will not obtain a finite subdivision rule with subdivision map
given by the formal mating. Here, we run into the same initial problem encountered in
developing the finite subdivision rule in the last section: our 1-skeleton does not contain
the postcritical set of our map. Further, if we start with the Julia set or Hubbard tree pair
(or even one of each), we begin with an annular tile. Such tiles are not permitted in CW
complexes that admit a subdivision complex for a finite subdivision rule because they do not
possess a 2-disk structure.

To draw upon the lessons learned from the previous example, we could try adding in
the external rays Ra(0) and Rb(0) to our Julia set or tree pair to obtain a connected set
containing Pfaáffb that will be used to develop a 1-skeleton for a finite subdivision rule. (Note
that our external rays must line up at the equator and “connect” our invariant structures to
each other somehow; if they do not, our initial tile is still annular.) We see what happens
when we apply this construction to f1/4 áf f1/4 in Figure 2.9.
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Figure 2.8: Preimages of the Julia set and Hubbard tree pairs on the formal mating f1/4 áf
f1/4.

As the Hubbard trees reflect the base structure of our map and offer an edge and vertex
structure suggestive of a 1-skeleton, we opt for using this pairing over the Julia set pairing.
Taking the preimage of this structure under the mating f1/4 áf f1/4 suggests a subdivision,
and restricting to the Hubbard tree and external ray-pairs offers an edge and vertex structure
which suggests tilings of S2. The polynomial structure off the equator and the semiconjugacy
relationship near the equator yield that f1/4 áf f1/4 acts locally homeomorphically on the
two-sphere, as long as we are not on a set including critical points of the map. Since the
critical points are included in the 1-skeleton structure we’ve built, this forces f1/4 áf f1/4
to send open cells of the subdivision to open cells of the original tiling. Thus, the tiling,
subdivision, and formal mating map in this particular example yield a finite subdivision rule.

We draw further parallels to the previous construction:

1. We can utilize general finite collections of Ra(t) and Rb(−t) ray-pairs in our 1-skeleton
(instead of emphasizing the external rays of angle 0), and require that the forward
orbit of any ray-pair present in our initial tiling again needs to be present in our initial
tiling.

2. If a chosen external ray does not land on its Hubbard tree—i.e., γ(t) ∈ J(f)/T—use
the minimum spanning tree of the forward orbit of γ(t) and the postcritical set instead
of the Hubbard tree as the base structure.

3. Marked points on our structure are given by postcritical points, landing points of rays
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Figure 2.9: Preimages of the Julia set and Hubbard tree pairs along with the 0 rays on
f1/4 áf f1/4.

off of the equator, branch points, and all of their respective forward images under the
mating map.

The above may be formalized with the following definition:

Definition 2.2 (Construction 0). Given a formal mating fa áf fb, select a finite set of
external rays on fa, {Ra(tk)}nk=1, which contains all of the forward images of each of its ele-
ments under fa. Form the disjoint union of the minimum spanning tree of Pfa ∪ {γa(tk)}nk=1
on J(fa), the minimum spanning tree of Pfb ∪ {γb(−tk)}nk=1 on J(fb), the collection of rays
{Ra(tk)}nk=1, and the collection of rays {Rb(−tk)}nk=1 along with their landing points at infin-
ity. Give this set a graph structure on the quotient space of the formal mating by marking
{γa(tk)}nk=1 ∪ {γb(−tk)}nk=1} and all postcritical points and all branch points as vertices. The
associated 2-dimensional CW complex will yield our subdivision complex, SR.

We then take the preimage of this structure under fa áf fb, noting preimages of marked
points where appropriate. This “subdivided” tiling will be denoted R(SR). Then, fa áf
fb ∶ R(SR) → SR serves as a subdivision map and R yields a finite subdivision rule of
Construction 0.

As an example, consider f1/4 áf f1/4:

Example 2.3. We perform Construction 0 on the formal mating f1/4 áf f1/4 using the
external rays R1/4(0) and R1/4(1

2). These identify at the equator, respectively, with the
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1/2 and 0 rays of the opposing tree—so we must include these external rays as well. We
determine a graph structure on the two-sphere by taking these ray-pairs along with both
copies of the Hubbard trees for f1/4 and marking postcritical points and branch points as
vertices. The associated 2-dimensional CW complex is our subdivision complex.

Preimages of this tiling under f1/4 áf f1/4 yield subdivisions of our initial tiling, as in
Figure 2.10.

Figure 2.10: Subdivisions of a Construction 0 finite subdivision rule on f1/4 áf f1/4. The
initial external rays selected for our 1-skeleton are the 0 and 1

2 rays.

Upon taking successive subdivisions of the tiling, we obtain a series of stripe-like tiles,
bounded in part by two external ray-pairs—much like our introductory quadratic polyno-
mial construction. Now that we have a method of constructing finite subdivision rules in the
setting of the formal mating, we will adopt a tile naming convention similar to before where
we utilize collections of external rays to represent tiles. In this case (and for all subsequent
constructions), let [Ra(t1),Ra(t2)] denote any closed tile of Ron(SR) with the associated
external ray-pair as a boundary and let (Ra(t1),Ra(t2)) denote any open tile of Ron(SR)
with the associated external ray-pair as a boundary. More formally, given a formal mating
fa áf fb, we have that:

[Ra(t1),Ra(t2)] = ⋃
t∈[t1,t2]

Ra(t) ∪ ⋃
t∈[−t2,−t1]

Rb(t), and further,

(Ra(t1),Ra(t2)) = [Ra(t1),Ra(t2)]/Xn, where Xn is the 1-skeleton of Ron(SR).

As a naming convention we will use the first constituent polynomial referenced in the
mating function as a reference polynomial to name tiles from, as noted by the subscripted a
notation in our intervals of external rays.
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2.3 The degenerate mating

2.3.1 Construction 1: The basic construction

Recall that a major step in forming the degenerate mating is forming the quotient space
of fa ád fb by identifying equivalence classes of ∼degen to a point. The only nontrivial
equivalence classes of the equivalence relation ∼degen are those composed of external ray
chains which contain 2 or more points from the postcritical and critical sets of the formal
mating. Preimages of such ray chains that contain at least one point from the postcritical
and critical sets are also equivalence classes of ∼degen. As the degenerate mating is obtained
from the formal mating, it is a natural supposition that we could attempt to form a finite
subdivision rule by extending previous methods from the formal mating. The cases in which
we are able to do this directly, however, are limited.

A very simple case where we may perform such an extension is when the formal mating
is equivalent to the degenerate mating. This occurs when ∼degen is the equality equivalence
relation—i.e., each of its equivalence classes contains a single point. We obtain such an
equivalence relation when the points in the postcritical and critical set of the formal mating
are not identified to any other postcritical or critical points under ∼top. (i.e., none of these
points lies on a shared chain of ray-pairs collapsed by ∼top.) If the formal and degenerate
matings are equal, Construction 0 as detailed in the previous section also works for the
degenerate case because we start with the same map.

Suppose that postcritical or critical identifications of some sort were obtained via ∼degen,
and that our degenerate mating was not trivially constructed, though. What happens when
we start with a permissible tiling for a formal mating and try to use this as a base model for
the non-equivalent degenerate mating?

The answer here depends on the two polynomials in our mating, as well as on our choice
of external ray-pairs for developing the tiling for our finite subdivision rule. Since any
equivalence class of ∼degen collapses to a point in the degenerate mating, this may collapse
edges of a Construction 0 tiling for a formal mating if any of the ray chains included in
the 1-skeleton are in equivalence classes of ∼degen. This effectively takes the two Hubbard
tree structures of the constituent polynomials in our mating and glues them directly to each
other at a point or at multiple points. (See Figure 2.11.)

Another possible consequence is that ray chains might be left unchanged by moving
to the degenerate mating—if a ray-pair is not part of an equivalence class of ∼degen, such
edges in our Construction 0 tiling will be left alone. A final consequence is that we might
obtain new identifications between Hubbard trees which were not previously accounted for
in the tiling built using Construction 0. If the forward orbit of our collection of ray-pairs
does not contain the collection of rays that form equivalence classes of ∼degen, the remaining
equivalence classes will still necessarily be identified to their respective representative points.
This could again result in the two Hubbard tree structures being glued directly to each other
at a point or at multiple points. (See Figure 2.12 for an example which demonstrates both
of these potential outcomes.)

Some of these “quotiented tilings” yield permissible tilings for finite subdivision rules

36



Figure 2.11: External ray-pairs landing at periodic postcritical points of f1/6 áf f1/6, and a
similar construction restricted to Hubbard trees. The rays shown here collapse under ∼degen.

Figure 2.12: The zero external ray-pair on f1/6 áf f1/6, and a similar construction restricted
to Hubbard trees. This ray-pair does not collapse under ∼degen; further, we are still forced
to collapse identified postcritical points even though this construction did not initially make
note of them here.

along with the degenerate mating map—with such cases being documented in this section.
Others spawn major problems in developing a finite subdivision rule—such as having our
“subdivision map” take an edge of the subdivision tiling (i.e., the preimage tiling) to a single
point. (We will discuss these as a motivating case for other constructions as well.) We
simply cannot expect the quotient of a tiling to always yield a permissible tiling for a finite
subdivision rule in the general case.

With the above revelations, one might notice that we were actually fairly indiscriminate
in selecting which external ray-pairs to use for Construction 0 in the first place. As long as
the forward orbit of all included external ray-pairs and arms to them from J(f) were included
in the construction along with the necessary marked points, we obtained a valid 1-skeleton
for a finite subdivision rule. While formally allowable, being this indiscriminate will neither
aid in finding working subdivision rules for the degenerate case, nor will it help us use these
rules to develop intuition regarding the structure and dynamics of the topological mating.
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Consequently, we will focus on tilings which emphasize postcritical and critical identifications
unless it is unavoidable to do otherwise. We begin by detailing Construction 1: that is, a
suggested method for using the aforementioned “quotiented tiling” as a subdivision complex
for a finite subdivision rule. This will be shortly followed by a theorem detailing the cases
in which Construction 1 should be expected to generate an admissible rule.

Definition 2.4 (Construction 1). Given a degenerate mating fa ád fb, start with the disjoint
union of the pair of Hubbard trees associated with fa and fb. If 2 or more points in any
equivalence class of ∼degen are present on these trees, collapse the equivalence classes and
identify the points as prescribed for the degenerate mating. Give the resulting collection
of points a graph structure on the quotient space of the degenerate mating by marking all
postcritical points and branched points as vertices. (If need be, we mark additional periodic
or preperiodic points on either of the Hubbard trees—along with the points on their forward
orbits—to avoid tiles which form digons.) The associated 2-dimensional CW complex will
yield our subdivision complex, SR.

We then take the preimage of this structure under fa ád fb, noting preimages of marked
points where appropriate. This “subdivided” tiling will be denoted R(SR).

If R(SR) is a subdivision of SR and if the degenerate mating fa ád fb ∶ R(SR) → SR is a
subdivision map (i.e. if it is a continuous cellular map taking open cells of R(SR) to open
cells of SR), then R yields a finite subdivision rule of Construction 1.

The central idea behind this approach is that regardless of whether we intend to identify
them or not, groupings of postcritical points and critical points which collapse under the
degenerate mating will need to be identified on our Hubbard trees if we wish to use the de-
generate mating as a subdivision map. (This is due to the fact that these points are identified
in the quotient space that the degenerate mating is defined on.) Some identifications which
are made between the Julia sets of our polynomials, on the other hand, might not show up
in the one-skeleton built in Construction 1—but it turns out that this is necessary for us
to develop a finite subdivision rule. Recall that the Hubbard tree iteratively approximates
the Julia set under preimages—it is this building back of limbs (whose endpoints are sub-
sequently identified under the degenerate mating) which yields the subdivision of our tiling
when we take a preimage under the degenerate mating. We formalize how these notions fit
in with Construction 1 with the following theorem:

Theorem 2.5. Let {y1, ..., yn} ⊂ Ta⊔Tb, n > 1, with yi ∼degen yj for i, j ∈ {1, ..., n} be an
identified point grouping. If x1, ..., xm ∈ (fa áf fb)−1({y1, ..., yn}) such that xi ∼top xj for all
i, j ∈ {1, ...,m}, we say that the preimage point grouping {x1, ..., xm} meets condition (∗) if
and only if {x1, ..., xm}/ ∼degen is a single point.

Then, Construction 1 admits a finite subdivision rule with subdivision map fa ád fb if
and only if ∼degen identifies some point of Ta with some point of Tb and all identified point
groupings on Ta⊔Tb have only preimage point groupings meeting condition (∗).

Essentially, what Theorem 2.5 calls for is a check on the preimages of points identified
under ∼degen. Each identified point grouping yields two preimage point groupings under the
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formal mating (counted up to multiplicity). These preimage groupings identify respectively
under ∼top. If a preimage point grouping is already identified under ∼degen, we avoid the nasty
case of possibly having an unidentified ray-pair grouping map to a vertex under the degen-
erate mating. If all identified points have preimage groupings meeting these conditions, we
obtain a finite subdivision rule under Construction 1. Further, if we have a finite subdivision
rule under Construction 1, we are required to meet these constraints to avoid having open
edges of R(SR) map to vertices on SR.

Proof. (⇐) ∶ Let fa ád fb ≠ fa áf fb and all x, y ∈ J(fa)⊔J(fb) with x ∼degen y have only
preimage pairs meeting condition (∗). Further, let SR and R(SR) be constructed for the
mating fa ád fb as suggested in Construction 1. In seeking to show that Construction 1
yields a finite subdivision rule, we must show that the following requirements are met:

1. The 1-skeleton of SR is a connected, forward invariant, finite, planar graph containing
all postcritical points as vertices.

2. The complement of this graph on the two sphere has components (i.e. tiles) that are
not monogons or digons as dictated by the edges and vertices on the boundaries of
respective tiles.

3. The map fa ád fb takes open cells of R(SR) to open cells of SR.

Requirement 1 is fairly simple: since ∼degen identifies some point of Ta with some point of
Tb, we must have that the 1-skeleton which is developed in Construction 1 is connected. Since
our base structures Ta and Tb are forward invariant, finite, planar graphs containing postcrit-
ical points as vertices on their respective initial spaces, the degenerate mating construction
implies that the identified SR structure of Construction 1 will also be a forward invariant,
finite, and planar graph containing all postcritical points on its space under fa ád fb.

Requirement 2 is also fairly simple, as it comes trivially with the definition given for
Construction 1: we’ve been given provisions to insert vertices in our construction of SR
to avoid the situation where any tiles are monogons or digons. Since these vertices were
inserted along with their forward images, we do not interfere with the above forward invariant
requirement on the 1-skeleton of our subdivision complex. Since these vertices are assumed
to be periodic or preperiodic, they also do not interfere with the above requirement that our
1-skeleton is a finite graph.

Requirement 3 comes with a bit more work. Since only a finite number of ray-pairs are
members of equivalence classes of ∼degen, we need to be careful about ensuring that the open
1-cells of R(SR) map to open 1-cells of SR: these equivalence classes collapse into points on
the quotient space of fa ád fb. Thus, if there is a case where a non-collapsed edge of R(SR)
maps to a collapsed edge (i.e. vertex) of SR under the degenerate mating, we have an open
1-cell mapping onto a closed 0-cell. This would mean that the degenerate mating does not
serve as a subdivision map and we will not have a finite subdivision rule. Thus, we must
check where each of the edges developed in R(SR) map under fa ád fb.
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Edges on R(SR) may come from one of three possible locations: either they are subedges
of one of our initial Hubbard trees, preimages of sub edges of one of our initial Hubbard
trees, or potentially, we may obtain edges as preimages of identified postcritical points on
SR as noted above.

In the first two cases, note that critical points will be marked points of R(SR). (They are
preimages of the first postcritical points that they map to under the mating.) Since fa ád fb
is defined to be equivalent to fa áf fb off an open neighborhood about identified equivalence
classes (and the formal mating is homeomorphic off of the critical points) and equivalent to
a homeomorphism in the remaining space off of the identified equivalence classes, we have
that fa ád fb is a homeomorphism in all places that could potentially contain an open edge
of R(SR). This forces these Hubbard tree-based open 1-cells to map to open 1-cells of SR.

In the event that we must examine preimages of identified postcritical points on SR, we
must check whether these preimages yield edges or vertices of R(SR). If these preimages are
all vertices and never edges, we will have already shown that the only possible open 1-cells
of R(SR) map to open 1-cells.

It is here that we rely on the fact that all preimages of identified postcritical or critical
point pairs here have been assumed to meet condition (∗). This condition implies that any
point identified under the degenerate mating only has preimages which look like collections
of points from J(fa)⊔J(fb) that have been identified under ∼degen. Thus, since preimages
of vertices of SR can only be vertices of R(SR), we cannot have open 1-cells mapping to
points.

We finally check that open 2-cells of R(SR) map to open 2-cells of SR. Since SR contains
the postcritical set, and the degenerate mating is a branched covering map of the two-sphere
to itself, we must take open tiles to open tiles.

Since the map fa ád fb takes open cells of R(SR) to open cells of SR, it serves as a
subdivision map, and (SR,R(SR), fa ád fb) as given by Construction 1 is a finite subdivision
rule.

(⇒) ∶ We proceed by contradiction. Suppose that Construction 1 yields a finite subdivi-
sion rule for the degenerate mating fa ád fb and either:

Case 1: ∼degen does not identify any point of Ta with any point of Tb, or
Case 2: there exists some identified point grouping {x1, ..., xn} on Ta⊔Tb with some

preimage grouping {x′1, ..., x′n} failing to meet condition (∗).
In Case 1, note that the 1-skeleton formed by Ta⊔Tb/ ∼degen is not a connected set. We

have an annular tile in SR, which is contrary to the notion that SR is the subdivision complex
of a finite subdivision rule.

In Case 2, the failure to meet condition (∗) on all identified point groupings implies the
following: there exists some collection of vertices {y1, ..., yn} identified under ∼degen with a
preimage point grouping {x1, ..., xm} that is identified under ∼top but not under ∼degen. This
means that there is some collection of ray-pairs on the formal mating containing {x1, ..., xm}
that identifies to a point in the topological mating. Since this collection does not identify
under ∼degen, however, we have that this collection of ray-pairs forms a nontrivial tree on
the quotient space of the degenerate mating. This tree maps forward to a separate tree
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containing {y1, ..., yn} under the formal mating—but since this image tree and {y1, ..., yn}
identify under ∼degen, this implies that the tree containing {x1, ..., xm} maps to a point under
the degenerate mating. Since the tree containing {x1, ..., xm} was nontrivial, we have that
the degenerate mating takes a collection of edges to a point. This is contrary to the notion
that the degenerate mating is a subdivision map for a finite subdivision rule, since we have
open 1-cells being sent to closed 0-cells under the map.

In consideration of both of these cases, we must have that if Construction 1 yields a finite
subdivision rule for the degenerate mating, then the degenerate mating is not equivalent to
the formal mating and all identified point groupings on Ta⊔Tb have only preimage point
groupings meeting condition (∗).

As a side note, it might be possible that the hypothesis of the above theorem could be
rephrased to ask for fa ád fb to be a nontrivial mating rather than specifically requiring
that ∼degen identifies a point of Ta to Tb. Why? If all nontrivial degenerate matings involve
identifications between opposing trees, we could obtain a connected 1-skeleton by simply
requesting a nontrivial mating rather than requesting that the Hubbard trees are identified
together. If it is possible to preclude the case where the postcritical points of fa identify
to a multiply accessible point of J(fb)/Tb (or vice versa), we could make this substitution
of hypotheses and the conclusion of Theorem 2.5 would still hold—but the author has only
anecdotal evidence towards this conjecture.

To highlight a case where Construction 1 yields a finite subdivision rule, consider the
mating f1/6 ád f1/6:

Example 2.6. Given the mating f1/6 ád f1/6, Construction 1 prescribes that we start with
the disjoint union of Hubbard trees of the two constituent polynomials in the mating, f1/6
and f1/6. Rather obviously, the Hubbard tree structures for both of the polynomials here
comes out the same, and the Hubbard tree is presented on the left of Figure 2.13.

Figure 2.13: The Hubbard tree for f1/6, and the Construction 1 subdivision complex, SR,
for f1/6 ád f1/6

Construction 1 next calls for us to collapse the equivalence classes of ∼ degen. While all
postcritical points of our function pair are contained in nontrivial equivalence classes of ∼degen,
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the only equivalence classes that collapse points on our Hubbard trees are those associated
with the periodic postcritical points. Both identifications as noted on the right of Figure
2.13 make use of the 1

3–to–2
3 angle identification of external rays landing at these points.

This identified Hubbard tree pair, along with marked branch points and postcritical points,
forms the 1-skeleton SR. (Here the astute reader may have noticed that the Construction 1
subdivision complex for f1/6 ád f1/6 has a 1-skeleton that was first hinted at in Figure 2.11.)

We now need to take a preimage of this subdivision complex under the degenerate mating
to obtain the subdivided complexR(SR). Since we developed the construction with emphasis
on the topological rather than embedded 1-skeleton structure, it may not be obvious to the
reader how we may determine what the resulting 1-skeleton looks like. The Hubbard tree
structure is very helpful here: recall that the first preimage of a Hubbard tree yields two
miniature copies of the tree which map homeomorphically onto the original, joined at the
critical point. This suggests “missing limbs” which when filled in will subdivide the tiles
of SR. Noting where each of the marked points maps forward shows where to embed these
trees, since the initial 1-skeleton tells us which vertices (and thus which preimages) must be
identified. This yields the 1-skeleton of the subdivided complex, R(SR), as shown in Figure
2.14.

Figure 2.14: Determining the Construction 1 subdivided complex, R(SR)

Note that per Figure 2.14, the endpoints of these missing limbs are collapsed as prescribed
in Construction 1: here we have that preimages of the initially identified vertices of SR
contain postcritical points, and ∼degen admits nontrivial equivalence classes for such points.

An important thing to note in the above example is that we can obtain up to the first two
subdivisions utilizing the given degenerate mating map, but subsequent subdivisions do not
subdivide in the manner suggested by the original tiles. This is because after two subdivisions
we exhaust all of the equivalence classes which collapse to form the quotient space for the
degenerate mating. This means there are now whole edges in the “subdivisions” after the
second recursion that map to points, meaning that the degenerate mating is not actually
an allowable subdivision map for these later iterations. This was precisely the problem that
we were trying to avoid in developing a setting for when Construction 1 admits a finite
subdivision rule.
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While it may seem that we have a lost cause in using these examples to study the
topological mating, that is not true: keep in mind that finite subdivision rules do not require
embedded structures or maps to yield a rule—combinatorially defined rules are perfectly fine.
In this case, we may use our Hubbard tree structure and degenerate mating map to pave the
way for developing a purely combinatorial finite subdivision rule on the first iteration. (This
is, in part, why the figures and examples after developing Construction 1 have somewhat de-
emphasized the mating map as being embedded on the two-sphere.) After we find a workable
rule, we can then take the purely combinatorial structures inherent in the construction to
determine future subdivisions. While this is not the degenerate mating per se (the subsequent
subdivisions would suggest an infinite number of point identifications by ∼degen as we keep
on subdividing; and we can only have a finite number of identifications per the definition of
the degenerate mating map), the initial combinatorial rule is determined by the degenerate
mating structure. It tells us upon subsequent subdivisions what key identifications are made
in the topological mating—any time the opposing Hubbard tree structures meet, we have a
point identification which was made in developing the topological mating.

Now that we are armed with motivation for applying our basic construction to mating
maps, it would be wise to find other examples to study and apply our methods to. Theorem
2.5 certainly gives a criterion for when a particular quadratic pair yields a Construction
1 finite subdivision rule, but it does not give much insight into how we could seek out
function pairs that work. So, when is there potential for Construction 1 to yield a valid
finite subdivision rule?

To answer this question, condition (∗) of Theorem 2.5 suggests that we think about
when nontrivial degenerate mating maps identify points in their quotient spaces. We have
one of two potential manners in which the points of a disjoint union of Hubbard trees can
collapse under ∼degen. As all nontrivial degenerate matings involve postcritical identification
somewhere, we may have critical orbit to critical orbit identifications only, or alternatively
we have critical-orbit to non–critical-orbit identifications somewhere on the 1-skeleton of SR.

In the first case, we can look at parameter rays to suggest functions: the denominators
need to be offset by some power of 2. Further, the external angles of periodic postcritical
points on one function must be “conjugate” to the external angles of periodic postcritical
points for the opposing function. In Example 2.6, the points in the critical orbit on both our
Hubbard trees follow the mapping scheme:

γ( 1
12) = γ( 7

12) γ(1
6) γ(1

3) γ(2
3)

Since there is a 1/3 and 2/3 parameter on one tree and an opposing −1/3 ≅ 2/3 and
−2/3 ≅ 1/3 on the other tree, we are guaranteed postcritical identifications. Whether this
map will actually meet the criteria posed in Theorem 2.5 is not purely guaranteed by noting
identifications on this mapping scheme—but noting parameters and forward orbits of the
critical point of our function pairs does give us at least a starting ground for functions to
test.

In the alternate case of function pairs that could potentially yield Construction 1 finite
subdivision rules, we have postcritical to non-postcritical identifications somewhere on the
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1-skeleton of SR. These are a bit harder to single out based on function parameters, since
postcritical points of one tree may identify through multiply accessible points on the op-
posing tree. These multiply accessible points are not necessarily on any critical orbit. To
demonstrate, consider the following example:

Example 2.7. Compare the critical orbits of the polynomials f1/6 and f85/252:

γ( 1
12) = γ( 7

12) γ(1
6) γ(1

3) γ(2
3)

γ( 85
504) = γ(337

504) γ( 85
252) γ( 85

126) γ(22
63) γ(44

63) γ(25
63) γ(50

63) γ(37
63) γ(11

63)

The angles at landing points here do not suggest any identifications between postcritical
points. If we are particularly worried about having missed postcritical identifications some-
how, it can be verified that this is not due to having a non-unique parameter labeling of
functions (recall this characteristic of Figure 1.5) and further, that the postcritical points of
f85/252 do not identify to any points on the body of the Hubbard tree T1/6.

Figure 2.15: The subdivision associated with f1/6 ád f85/252 ∶ R(SR) → SR. The Hubbard
tree for f1/6 is in black; the tree for f85/252 is in red.
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With that said, the periodic postcritical points of f1/6 do identify to a multiply accessible

point on T85/252—namely, the fixed point γ85/252 (1
3
) = γ85/252 (2

3
). Thus, we identify two

postcritical points of f1/6 to each other, but we do it through the opposing tree, as shown
in Figure 2.15. The 1-skeletons shown in this figure are the subdivision complex SR and
the subdivided complex R(SR) given by Construction 1 for the degenerate mating map
f1/6 ád f85/252.

Now that we have developed an idea of what types of function pairs we may attempt
to perform Construction 1 on, the astute reader may observe that the necessary criteria
rule out an overwhelming number of maps. This is problematic, as a goal in developing
the construction was to create a tool for studying the construction and dynamics of the
topological mating. We will need to find other tools to tackle this issue—but first we must
develop an understanding of the hurdles in construction that we face in order to prompt
ways to work around them.

2.3.2 Problems and motivation for alternate constructions

We’ve hinted at a few examples in the previous section which will force major problems
to occur in using the degenerate mating as the subdivision map of a finite subdivision rule
involving Hubbard trees. More generally, when can we expect that these problems occur?
Using the postcritical identification scheme as in the last section has typically led to the
following 3 “Goldilocks” outcomes experimentally: just the right number of identifications,
too few identifications, or too many identifications. An explanation of these outcomes and
the types of function pairings most likely to lead to them are briefly summarized as follows:

1. Case 1: The identification between Hubbard trees works out so that preimages yield
subdivisions for which the degenerate mating is a subdivision map. This yields a finite
subdivision rule as the number of identifications is “just right.” This occurs in some
(but not all) cases where θ1 and θ2 parameters are offset by some power of 2, and
some of the external angles of the periodic postcritical points on the respective trees
are conjugate (as in Example 2.6). This also occurs in some (but not all) cases where
postcritical points of one polynomial identify through a multiply accessible point on
the body of the opposing Julia set (as in Example 2.7). If either of these is the case,
we may recursively subdivide as much as we desire to in order to iteratively model how
identifications between Julia set pairs will work. This identification scheme is detailed
by the above Construction 1.

2. Case 2: The degenerate mating is equivalent to the formal mating. In such a case,
∼degen is the equality equivalence relation, which does not identify any collection of
points on our starting Hubbard tree pair. This failure to connect the 1-skeleton of
the CW complex in forming SR using Construction 1 leaves us with an annular tile.
Thus, the number of identifications is “too few”—annular tiles are not permissible in
subdivision complexes for finite subdivision rules.
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This is easy to fix if we modify our degenerate mating map and/or select appropriate
limbs to append to the Hubbard trees prior to determining identifications. Essentially,
if we wish to develop a finite subdivision rule which glues together points on the Julia
sets of our two functions and avoids external rays to the equator of S2, we should
develop an analogue of the formal mating construction method for the degenerate
case. This will be Construction 2.

3. Case 3: A number of equivalence classes of points not noted by ∼degen (possibly infinitely
many) are “forced” under preimages. This occurs in some (but not all) cases where θ1
and θ2 parameters are offset by some power of 2, and the external angles of the periodic
postcritical points on the respective trees are conjugate. This also has potential to
occur in some (but not all) cases where postcritical identifications are made through
a multiply accessible point on one of the Hubbard trees. These settings are in most
respects identical to Case 1 where Construction 1 yields a working finite subdivision
rule—but subtle differences prevent the degenerate mating from acting as a subdivision
map due to these extra identifications. (Details which distinguish these examples from
those in which Construction 1 works will be provided later.) Here we do not obtain
a finite subdivision rule under Construction 1 because the number of identifications is
“too many.”

Some cases as described above can be reconciled by modifying the degenerate mating
map. (If reconciling things in this manner is a possibility, this will be Construction
3.) Other cases can be reconciled by using only one of the Hubbard tree structures in
developing a tiling for the finite subdivision rule. (If reconciling things in this manner
will be a possibility, this will be [De]construction 4.)

A final potential construction method relating to Hubbard trees will be given for matings
that yield subdivision rules utilizing some base structure developed with Construction 1, 2,
or 3. This will be Construction 5. Construction 5 yields a purely combinatorial finite
subdivision rule which does not preserve the embedded structures that we emphasize here.
The means of construction for this rule are quite different than those for Constructions 1-
4, and if the construction can be successfully applied, the resulting finite subdivision rule
relates to the current work of Daniel Meyer. (See [13],[14], and [15].) The author is not yet
aware of the circumstances under which this construction is forced to succeed or fail, and
hence will provide anecdotal examples with emphasis on relation to the current literature.

2.4 The modified degenerate mating

2.4.1 Construction 2: Too few identifications

Recall that for cases where there are no postcritical identifications in ∼degen, ∼degen yields the
equality equivalence relation, and we have that the degenerate mating is equivalent to the
formal mating. While we have thus far glossed over examples of function pairs that allow
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this to occur and only mentioned them in passing, now it will actually be useful to question
why and when this happens. So, why no identifications?

To help develop an answer, we will examine the following examples: f1/4 ád f1/6, and
f1/4 ád f13/14:

Example 2.8. Consider the critical orbit of f1/4:

γ1/4(1
8) = γ(5

8) γ1/4(1
4) γ1/4(1

2) γ1/4(0)

Now, consider the critical orbit of f1/6:

γ1/6( 1
12) = γ( 7

12) γ1/6(1
6) γ1/6(1

3) γ1/6(2
3)

None of the arguments of the postcritical points of f1/4 and f1/6 imply that there should
be direct identifications between T1/4(t) and T1/6(−t). Our only possible hope is to have
postcritical to non-postcritical identifications that involve multiply accessible points, forcing
a chain of identified external ray-pairs—but it turns out that there are no such chains for
f1/4 ád f1/6. (See Figure 2.16.) Here, f1/4 ád f1/6 = f1/4 áf f1/6. Since no identifications can
be made as suggested in Construction 1, we have an annular “tiling”. This means that here
we cannot have a finite subdivision rule under Construction 1.

Figure 2.16: External angles to postcritical points on f1/4 and f1/6, along with where these
would identify on the opposing tree.

If we expect a pair of postcritical points to have any hope of being identified in the
degenerate mating, the external rays that land at them need to have the same denominator.
If postcritical points identify due to being at the ends of an external ray-pair (i.e., their
external angles are t and −t) this should be clear. I explicitly avoid stating that this is the
only allowable case, however, because it simply is not true: if a postcritical point identifies
to a biaccessible point or branch point of the opposing Julia set, the external rays leading
“out the other side” have a chance at leading to another postcritical point. Since external
rays landing at multiply accessible points must have the same denominator, we have that
identified postcritical points must have the same denominator.
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As hinted at in the last section, it is not difficult to rig our function parameters to
guarantee identifications with a little consideration of the angle-doubling map. (Whether
these identifications will yield a finite subdivision rule or not is not immediately guaranteed,
however). Avoiding immediate identifications—as in Figure 2.16—is similarly easy to rig
through consideration of parameters, but it does not guarantee that postcritical points will
not be identified under the degenerate mating:

Example 2.9. Consider again the critical orbit of f1/4:

γ1/4(1
8) = γ(5

8) γ1/4(1
4) γ1/4(1

2) γ1/4(0)

And now, consider the critical orbit of f13/14:

γ13/14(13
28) = γ(27

28) γ13/14(13
14) γ13/14(6

7) γ13/14(5
7) γ13/14(3

7)

Figure 2.17: External angles at the branch point of f1/4.

It’s pretty easy to check that we shouldn’t expect any immediate postcritical identifi-
cations, but consider Figure 2.17: this shows that the periodic postcritical points of f13/14
identify at a branch point in J(f1/4). This identification of postcritical points of f13/14 is not
readily apparent from the function parameters, as it occurs through a multiply accessible
branch point on the body of the opposing Julia set.

The previous two examples suggest the following condition to imply that fa ád fb = fa áf
fb: The periodic postcritical points of fa do not immediately identify to the periodic post-
critical points of fb, and there are no postcritical identifications through multiply accessible
points. If this is the case, we can apply Construction 0 to obtain a finite subdivision rule
which utilizes fa ád fb as a subdivision map. Alternatively, if we wish to emphasize point
identifications (perhaps to get an idea of how the boundaries of K(fa) and K(fb) piece
together in the topological mating), it is in this specific setting that we wish to develop
Construction 2. We now present the required definitions for developing Construction 2 and
a theorem asserting the conditions under which it will yield an admissible finite subdivision
rule.
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Definition 2.10. Given a pair of preperiodic monic quadratic functions, fa and fb, define
an equivalence relation ∼con2 on the space of the formal mating as follows: select a nonempty
finite forward invariant set of periodic and/or preperiodic points on J(fa), {z1, ..., zn}, and
let [z1], ..., [zn] be the respective equivalence classes under ∼top of this collection of points.
Set x ∼con2 y if x ∼top y and fa áf fb(x), fa áf fb(y) ∈ [zi] for some i.

Define a branched covering fa á2 fb as follows: On the complement of open neighborhoods
of the nontrivial equivalence classes of ∼con2, set fa á2 fb = fa áf fb. On the equivalence
classes themselves, let fa á2 fb([zi]) = [fa áf fb(zi)]. Finally, let fa á2 fb be homeomorphic
on the remainder of S2. We will call fa á2 fb the modified degenerate mating for
Construction 2.

Definition 2.11 (Construction 2). Given a pair of functions, fa and fb, and a collection
of points {z1, ..., zn} ⊂ J(fa) as above, let {z∗1 , ..., z∗m} be the collection of points on J(fb)
with zi ∼top z∗j for some i, j. Form the disjoint union of the minimum spanning tree of
Pfa ∪ {z1, ..., zn} on J(fa) and the minimum spanning tree of Pfb ∪ {z∗1 , ..., z∗m} on J(fb)
and collapse the equivalence classes of ∼con2 as prescribed by the modified degenerate mating
for Construction 2. Give this set a graph structure on the quotient space of the degenerate
mating for Construction 2 by marking all postcritical points, branched points, and points
where our trees identify to themselves or each other under ∼con2 as vertices. (If need be,
we mark additional periodic or preperiodic points on either of the Hubbard trees—along with
the points on their forward orbits—to avoid tiles which form digons.) The associated 2-
dimensional CW complex will yield our subdivision complex, SR.

We can then take the preimage of this structure under fa á2 fb, noting preimages of
marked points where appropriate. This “subdivided” tiling will be denoted R(SR).

If R(SR) is a subdivision of SR and if the modified degenerate mating of construction 2
serves as a subdivision map then R yields a finite subdivision rule of Construction 2.

(Note: We may think of this yielding the same 1-skeleton structures for SR and R(SR)
as in Construction 0, except with ray-pair groupings in SR and R(SR) collapsed under ∼top.)

Although not explicitly mentioned in the definition of Construction 2 or its associated
modified degenerate mating, recall that an aim of this construction is to determine a fi-
nite subdivision rule to model mating maps in which the formal and degenerate cases are
equivalent. (It is possible to obtain Construction 2 related rules where this is not the case,
however.) To find a mating that serves as an intermediate case between the formal and
topological constructions, it is then necessary to create a new map. With some discretion,
we can pick and choose which identifications to highlight in this new map. As mentioned in
the note, this is highly analogous to the formal mating construction described at the begin-
ning of the chapter: instead of needing the forward orbit of all external rays present though,
we need the forward orbit of all point identifications present in our 1-skeleton, since here
external rays are collapsed. As far as forming a 1-skeleton for a finite subdivision rule utiliz-
ing this map, we must not only ensure that we have the appropriate identifications between
Hubbard tree structures, we must also ensure that we have made enough identifications to
give the preimage 1-skeleton appropriate identifications. Thus, in selecting identifications to
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be made, we must require that the first preimages of our selection of identified points are
also identified. So, in what setting must Construction 2 yield a finite subdivision rule?

Theorem 2.12. Let fa á2 fb, and let {y1, ..., yn} ⊂ J(fa)⊔J(fb) with yi ∼con2 yj for i, j ∈
{1, ..., n} be an identified point grouping. If x1, ..., xm ∈ (fa áf fb)−1({y1, ..., yn}) such that
xi ∼top xj for all i, j ∈ {1, ...,m}, we say that the preimage point grouping {x1, ..., xm} meets
condition (∗∗) if and only if either

1. all of the xi collapse under ∼con2 to a single marked vertex of SR, or

2. at most one of the xi is contained in SR.

Construction 2 admits a finite subdivision rule with subdivision map fa á2 fb if and only
if all identified point groupings on J(fa)⊔J(fb) have only preimage point groupings meeting
condition (∗∗).

Much like the proof of Theorem 2.5, the proof hinges on showing that no identified
vertex in SR has a preimage which is an edge of the 1-skeleton of R(SR). Since our chosen
collection of identified points forces preimage identifications to be included in ∼con2, we must
check that these forced identifications behave “nicely” when setting up the 1-skeletons for
SR and R(SR) for our finite subdivision rule.

Proof. (⇐): We again must check the following conditions:

1. The 1-skeleton of SR is a connected, forward invariant, finite, planar graph containing
all postcritical points as vertices.

2. Tiles on SR are not monogons or digons.

3. The map fa á2 fb takes open cells of R(SR) to open cells of SR.

Conditions 1 and 2 follow from similar arguments as given in Theorem 2.5 , since the
development of the Construction 2 type mating follows a similar structure to that of the
degenerate mating. The main point of the proof that necessitates a different argument is
showing that all open 1-cells of R(SR) map to open 1-cells of SR, which depends on the
equivalence relation ∼con2 and the identifications made in constructing the 1-skeletons of SR
and R(SR). Much like the proof of Theorem 2.5, however, this is given upon showing that
the preimages of all identified points which were collapsed to form the 1-skeleton of SR are
all vertices (and not edges!) of R(SR).

Let {z1, ..., zk} be an appropriate collection of points per the definition of the Construction
2 type mating associated with the equivalence relation ∼con2. Suppose we have a collection
of points {y1, ..., yn} ⊂ J(fa)⊔J(fb) identified under ∼con2 to a single marked vertex in the 1-
skeleton of SR, per the method of Construction 2. Further, suppose that {x1, ..., xm} ⊂ (fa áf
fb)−1({y1, ..., yn}) with {x1, ..., xm} equivalent under ∼top. Per the definition of ∼con2, since
our preimage point grouping identifies under ∼top and maps forward to the same equivalence
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class, [y1], in ∼con2, we have that {x1, ..., xm}/ ∼con2 is a single point. Thus, any preimage
point grouping in R(SR) which identifies under ∼top collapses along with the associated
external rays contained in its equivalence class to a single vertex. Thus preimages of vertices
of SR must be vertices (and not edges) of R(SR).

(⇒): We proceed by contradiction. Suppose that Construction 2 yields a finite subdivi-
sion rule for the Construction 2 type mating fa á2 fb and that there exists some identified
point grouping {y1, ..., yn} on J(fa)⊔J(fb) with a preimage point grouping {x1, ..., xm} that
fails to meet condition (∗∗). That is, {x1, ..., xm} does not collapse to a marked vertex of
SR, and two or more of the xi are contained in the 1-skeleton SR.

Since, as above, preimages of vertices of SR must be vertices of R(SR), we have that the
collection of points {x1, ..., xm} does collapse—just not to a vertex of our initial subdivision
complex. However, since at least two of the xi are contained in the 1-skeleton SR and we
know they identify, this implies that they collapse to a marked point of SR, per criteria for
establishing vertices of this subdivision complex under Construction 2. Thus, we establish a
contradiction.

Therefore, we must have that if Construction 2 admits a finite subdivision rule, then all
preimage point groupings of marked vertices of SR meet condition (∗∗).

We suggested earlier in this section that f1/4 ád f1/6 was a trivial degenerate mating—
i.e., this degenerate mating is equivalent to the formal mating of f1/4 and f1/6. Since trivial
degenerate matings are the target setting of Construction 2, let’s test out this construction:

Example 2.13. Let fa = f1/4 and fb = f1/6. To determine a finite subdivision rule based on
the mating, we must select a nonempty, finite, and forward invariant set of periodic and/or
preperiodic points on J(fa). To keep things simple, let’s stick with {γ1/4(0)}. We have
only two equivalence classes of ∼top that map onto [γ1/4(0)] via the formal mating—[γ1/4(0)]
itself and [γ1/4(1

2)]. We will set these two equivalence classes of points as the only nontrivial
equivalence classes of ∼con2 on the two-sphere.

In determining SR, we must first note the points on J(f1/6) that will identify with
γ1/4(0). We have that only γ1/6(0) shares an equivalence class with this point. We can now
develop the 1-skeleton of SR by forming the disjoint union of the minimum spanning tree of
Pf1/4 ∪ {γ1/4(0)} and the minimum spanning tree of Pf1/6 ∪ {γ1/6(0)}. Since γ1/4(0) ∈ Pf1/4 ,
the minimum spanning tree of Pf1/4 ∪{γ1/4(0)} is the same as the minimum spanning tree of
Pf1/4—which is really just the Hubbard tree T1/4. (We can observe in the left and center of
Figure 2.18 what the disjoint unions of Hubbard trees and “extended” Hubbard trees look
like here.) Once we have this union of trees, we collapse equivalence classes under ∼con2. This
involves gluing both of our trees together by the landing points of the zero external rays,
as in Figure 2.18. (Since the only point that identifies with γ1/4(1

2) is not on the extended
Hubbard tree for f1/6, we do not note any identifications there.) At this point, we develop a
graph structure by marking vertices which are postcritical, branch points, and points of our
trees identified under ∼con2. The 2-dimensional CW complex associated with this graph on
the 2-sphere is SR.

To finish up the construction, we must take the preimage of this map under the mating
f1/4 á2 f1/6 to develop R(SR). This is shown in Figure 2.19.
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Figure 2.18: Here, we let fa = f1/4 and fb = f1/6, with T1/4 shown in black and T1/6 shown in
red. We determine SR by identifying the landing points of the 0 rays.

Figure 2.19: A construction 2 type subdivision rule for the mating of f1/4 and f1/6.

A final note on this construction is that it may actually be applied in cases outside of
its intended scope—i.e., for nontrivial degenerate matings. In fact, we may think of the rule
given by Construction 1 as a special case of Construction 2 in the event that the degenerate
mating directly yields a subdivision rule. (We simply choose the points on J(fa) which
are collapsed and become marked vertices in the 1-skeleton for Construction 1 as our initial
collection of vertices in determining ∼con2.) In the case that we wish to perform Construction
2 on a function pair that forms a nontrivial degenerate mating, we must be very careful about
selecting postcritical points as vertices for developing ∼con2, however. While the trivial case
lets us choose fairly freely which collection of points to use to form ∼con2 (at least as long
as it is forward invariant and finite), the tree-to-tree identifications which are “forced” by
the degenerate mating might disallow certain selections of points. Consider the following
example:

Example 2.14. Recall the Hubbard tree structure of f1/4 from Figure 2.18. Given this
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information, we may piece together the Construction 2 finite subdivision rule for f1/4 ácon2
f1/4 as shown in Figure 2.20 by choosing {γ1/4(0), γ1/4(1

2)} as our collection of points in
determining ∼con2.

Figure 2.20: A Construction 2 subdivision rule for the self-mating of f1/4 which is equivalent
to the Construction 1 rule on f1/4 ád f1/4

Note, however, what happens in Figure 2.21 if we were to try instead to use the set
{γ1/4(0)} as our collection of points in determining∼con2:

Figure 2.21: Construction 2 can fail to yield a subdivision rule when a nontrivial degenerate
mating is involved.

Since preimages of the identified points given in our initial collection become identified
under ∼con2, the subdivision complex SR contains vertices that were formed after collapsing
the zero external ray-pair and the 1/2 external ray-pair. The identifications stop after this
first preimage though—so while our initial attempt at a subdivision rule worked, this one
fails since it does not identify the necessary preimages of the landing points of the 1/2 rays.
(Note that this does indeed fail as a finite subdivision rule: our initial subdivision complex
contained two hexagons; the subdivided complex contains two decagons. We do not have
that open 2-cells of R(SR) map homeomorphically to open 2-cells of SR.)

Since identifications on nontrivial degenerate matings require a bit more rigidity than in
Construction 2, we will typically limit the usage of this construction to function pairs whose
degenerate mating is equivalent to the formal mating.
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2.4.2 Construction 3: Tile pinching and too many identifications

Recall that taking iterated preimages of a Hubbard tree under the map which generates it
approximates the Julia set for that polynomial. (Or, in our heavily discretized conception
of the Hubbard tree, iterated preimages build back a topological structure which models the
Julia set of the polynomial.) We rebuild these structures through preimages by replacing
the “missing limbs” which were removed from the Julia set in order to form the Hubbard
tree. In Constructions 1 and 2, these missing limbs provide the edges that subdivide tiles
of our initial subdivision complexes. To revisit a previous example which yielded a finite
subdivision rule under Construction 1, consider Figure 2.20 from the last section, which
models a Construction 1/Construction 2 finite subdivision rule based on f1/4 ád f1/4. In
starting with pairs of identified Hubbard trees for this example, we get that the first preimage
under the degenerate mating inserts these missing limbs and simultaneously subdivides both
of the initial tiles in our subdivision complex SR. We have that this occurs in a manner
that also makes note of the identifications that are made under the degenerate mating. A
crucial point to observe here is that the tile subdivision we see upon taking preimages under
f1/4 ád f1/4 is the result of replacing these missing limbs on our one-skeleton structure: The
nth preimage of a quadratic Hubbard tree yields 2n miniature copies of the Hubbard tree,
affixed to each other at the critical point and preimages of the critical point of the associated
map. We can use this as a guide to observe where arms are “missing”, and can use angle
identification considerations to determine where to embed these arms.

As suggested earlier, however, this process can easily go astray. What sort of nontrivial
degenerate mating must we have to force Construction 1 to fail? Using Theorem 2.5 to
guide our intuition, we should seek a function pairing for our mating with some preimage of
identified points not noted by the degenerate mating. Consider the following example:

Example 2.15. We examine Construction 1 as applied to the degenerate mating f1/4 ád f7/8.
Before beginning our construction, note that the critical orbits of the constituent polynomials
in this mating are given by the following:

γ1/4(1
8) = γ(5

8) γ1/4(1
4) γ1/4(1

2) γ1/4(0)

γ7/8( 7
16) = γ7/8(15

16) γ7/8(7
8) γ7/8(3

4) γ7/8(1
2) γ7/8(0)

In this case, we have several more t and −t angle identifications under ∼top than we’ve
noted in any example thus far. Noting that γ1/4(1/16), γ1/4(9/16) ∈ T1/4, we even have
identifications of the critical point of f7/8 to points not contained on the critical orbit of
f1/4. Since the only nontrivial equivalence classes of ∼top contained in ∼degen are those that
contain a point on the critical orbit of f1/4 áf f7/8 and map forward to an equivalence class
containing two postcritical points, we have the following identifications of points under ∼degen:

[γ1/4( 1
16)] = [γ1/4( 9

16)] = [γ7/8( 7
16)] = [γ7/8(15

16)]
[γ1/4(1

8)] = [γ(5
8)] = [γ7/8(7

8)]
[γ1/4(1

4)] = [γ7/8(3
4)]

[γ1/4(1
2)] = [γ7/8(1

2)]
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[γ1/4(0)] = [γ7/8(0)]

Since we’ve exhausted all of the points on the critical orbit of f1/4 áf f7/8, these are the
only nontrivial equivalence classes of ∼degen. (Also note that the author has emphasized this
collection of points because they are the only points of T1/4⊔T7/8 which are contained in a
nontrivial equivalence class of ∼degen.)

Now that we have an idea of the structure of ∼degen, we may make an attempt at Con-
struction 1 for this mating. We begin with the disjoint union of Hubbard trees of f1/4 ád f7/8
(see the left side of Figure 2.22) and then collapse along ∼degen (see the right side of Figure
2.22). To give this a graph structure, we mark all points which are on the critical orbit (this
will include all locations where one tree has been glued to another ) as well as all points that
are branch points of this structure. Since this graph initially gives us a digon (note the tile
to the immediate left of the c3 ∈ T1/4 and c4 ∈ T7/8 identification in Figure 2.22), we must fix
this by marking an additional periodic or preperiodic point so that this tile ends up being a
triangle. We choose a point on T7/8 which is the preimage of the branched point of T7/8. Per
the instructions of Construction 1, taking the associated 2-dimensional CW complex with
this graph yields SR.

Figure 2.22: SR for f1/4 ád f7/8, as determined by Construction 1. T1/4 is shown in black and
T7/8 in red.

Now we can construct R(SR) by taking the preimage of SR under the map f1/4 ád f7/8,
as in Figure 2.23. We have two hints for how to proceed. First, the preimage of a given
Hubbard tree under the mating will appear to yield two miniature copies of that Hubbard
tree, affixed to each other at the critical point. (This suggests that we need to embed an
arm towards the preimage of the c2 arm on the black tree, as well as arms toward preimages
of points of c2 and c3 on the red tree in the figure.) Second, since SR already contains all
possible identifications of points in nontrivial equivalence classes of ∼degen, we must embed
our missing arms so that they do not intersect other edges or vertices of the graph. (Only the
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endpoints of such closed edges may intersect our initial 1-skeleton at the branch point from
which the edge extends.) Marking preimages of all marked points gives this new 1-skeleton
a graph structure whose associated 2-dimensional CW complex we will denote R(SR).

Figure 2.23: A Construction 1 development of R(SR) for f1/4 ád f7/8.

There is a very serious problem in asserting thatR as developed here is a finite subdivision
rule. First, note that we are missing some very necessary identifications in R(SR)—for one
of the more obvious ones, SR suggests that there should be an identification between pairs
of points that map to c2 ∈ T1/4 and c3 ∈ T7/8. The arms we embedded in determining the 1-
skeleton of R(SR) do not meet at the suggested juncture, thus there are preimages of marked
points of SR which do not collapse under ∼degen. We do not meet the criteria for Theorem
2.5, and fail to have a finite subdivision rule. The reason for this, as noted in the proof of
Theorem 2.5, is that the failure to include preimages of identified points of SR in nontrivial
equivalence classes of ∼degen forces 1-cells of R(SR) to map to 0-cells of SR. Subdivision
maps cannot send open edges to vertices, so we do not obtain a finite subdivision rule. We
see in Figure 2.24 all such edges of R(SR) (marked in dashed blue lines) that map to points
of SR. Each distinct dashed blue edge denotes an external ray-pair grouping that collapses
under ∼top, but not ∼degen.

An alternative way to think of the same problem is to note what this does to open tiles
in R(SR): any open tile containing a subsection of a dashed blue edge maps to a chain of
open tiles attached by points. These points are where the forward image of the dashed lines
collapse. Thus, open 2-cells of R(SR) do not all map under f1/4 ád f7/8 to open cells of SR.
This means, again, that the degenerate mating cannot be a subdivision map. We will call
this phenomenon tile pinching, and observe that it is fairly easy to look for in suggested
subdivided complexesR(SR): if a mated quadratic pair produces a working finite subdivision
rule, R(SR) has twice the number of tiles as SR, since the mating is a degree 2 map. While
the initially suggested subdivision complex for f1/4 ád f7/8 has six tiles (don’t forget to count
the “outside” tile!), the suggested R(SR) only has seven tiles instead of the expected twelve.
This is a huge red flag which indicates that we are missing some identifications that are
forced by a subdivision map.
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Figure 2.24: Construction 1 fails to form a finite subdivision rule for f1/4 ád f7/8—the mating
map sends the blue dashed open 1-cells to points.

Here we’ve demonstrated concretely that degenerate matings with tree–to–tree identifi-
cations do not always serve as subdivision maps for attempted Construction 1 type finite
subdivision rules. If open 1-cells of the subdivision do not map homeomorphically onto open
cells of the original tiling, the degenerate mating cannot serve as a subdivision map for an
finite subdivision rule.

This problem in expected mapping properties of open 1-cells hints that there may be
“missing” identifications on the 1-skeleton of the suggested subdivision complex of Con-
struction 1, failing the ability to meet condition (∗) as given in Theorem 2.5. What is meant
by this is that there are locations on the bodies of the two opposing Hubbard trees that
should have been identified beforehand, but were not: if the problematic edges that map to
points were collapsed, we would no longer have a problem with open 1-cells not mapping
to open 1-cells via the mating map. We can observe similar problematic behavior when
we purposely omit known identifications of the degenerate mating in developing our initial
tiling, as in Figure 2.25.

Here, we note the underlying problem: the equivalence relation ∼degen is very rigid about
which preimages of identified postcritical points are permitted to be contained together
in nontrivial equivalence classes—in some cases we just barely cover enough ground for
Construction 1 to admit a useful structure for SR. In other cases, we ignore tree-to-tree
identifications that are quite necessary for SR to have any hope of being practical.

With this idea in mind, how can we formally define a map and relevant construction
to form finite subdivision rules with such problematic function pairs? Further, under what
conditions can we prove that the construction yields admissible finite subdivision rules?

Definition 2.16. Let fa and fb be a pair of preperiodic monic quadratic functions and let x
and y be points in the quotient space of the formal mating. We say that x ∼con3 y if and only
if x and y meet the following conditions:

1. x ∼top y
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Figure 2.25: We form a map f1/4 á f1/4 and perform a 1-skeleton construction based on
making the zero ray-pair the only nontrivial equivalence class of the associated mating.
Omitting previously noted identifications from what would yield a successful Construction
1 rule gives a failed finite subdivision rule.

2. There exists some n ∈ N such that (fa áf fb)on(x) ∼degen (fa áf fb)on(y). (In other
words, x and y are contained in an equivalence class of ∼top that eventually maps under
the formal mating to some equivalence class containing at least 2 postcritical points of
fa áf fb.)

3. The equivalence class [x] under ∼top either contains two or more points of Ta⊔Tb, or
maps via the formal mating fa áf fb to an equivalence class of ∼top containing two or
more points of Ta⊔Tb.

Define a branched covering fa á3 fb as follows: On the complement of open neighborhoods
of the nontrivial equivalence classes of ∼con3, set fa á3 fb = fa áf fb. On the equivalence
classes themselves, let fa á3 fb([x]) = [fa áf fb(x)]. Finally, set fa á3 fb to be homeomorphic
on the remainder of S2. We will call fa á3 fb the modified degenerate mating for
Construction 3.

What this modified map does is modeled very strongly after the degenerate mating.
Whereas the degenerate mating stops identifying equivalence classes once our preimages
exhaust the critical orbit of fa áf fb, this new map has potential to keep going and to collapse
more equivalence classes if necessary. (We only stop identifying points one iteration after the
last Hubbard tree–to–Hubbard tree identification is made.) If there are preimages of points
identified under ∼degen that suggest identifications of points on Hubbard trees, ∼con3 prescribes
for the two trees to be identified where necessary—even if the associated equivalence class
contains no points on the critical orbit. The underlying idea in forming ∼con3 is to force
the preimage of all tree-to-tree identifications to be either pre-existing identifications or
tree-to-missing-limb identifications. Once we have the equivalence relation ∼con3 settled, the
definition of the associated map is formulated similarly to that of the degenerate mating.

So, how might we use this map to determine finite subdivision rules?
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Definition 2.17 (Construction 3). Given a pair of functions, fa and fb, start with the
disjoint union of the associated pair of Hubbard trees, Ta and Tb. If 2 or more points in
any equivalence class of ∼con3 are present on these trees, collapse the equivalence classes and
identify the points as prescribed for this mating. Give the resulting collection of points a graph
structure on the quotient space of the degenerate mating by marking all postcritical points
and branched points as vertices. (If need be, mark additional periodic or preperiodic points
on either of the Hubbard trees—along with the points on their forward orbits—to avoid tiles
which form digons.) The associated 2-dimensional CW complex will yield our subdivision
complex, SR.

We then take the preimage of this structure under fa á3 fb, noting preimages of marked
points where appropriate. This “subdivided” tiling will be denoted R(SR).

If R(SR) is a subdivision of SR and if the modified degenerate mating of construction 3
serves as a subdivision map, then R yields a finite subdivision rule of Construction 3.

The strong relationship between ∼degen and ∼con3 make this construction read much like
Construction 1: We start with a pair of Hubbard trees and identify them as prescribed by
the mating function that we are using. We may take a preimage to obtain the subdivided
tiling, and hopefully the mating will yield a subdivision map to complete our trio of required
elements for a finite subdivision rule R. In what cases, however, should we expect that this
actually occurs?

Theorem 2.18. Construction 3 admits a finite subdivision rule with subdivision map fa á3 fb
if and only if the number of nontrivial (i.e. not a single point) equivalence classes of ∼con3
is nonzero and finite, and if ∼con3 identifies some point of Ta to some point of Tb.

Much as in Construction 2, we are very much at the mercy of our preimages of identified
points in determining whether or not our construction will yield a finite subdivision rule:
We specify in defining ∼con3 that we can form equivalence classes based on preimages as far
back as is necessary to take care of all tree-to-tree identifications forced by ∼degen. Once
we enact this condition however, the map then determines which equivalence classes are
forced. There is not necessarily a bound on the number of iterations that will reconcile all
identifications—although there is evidence that the number of identifications is parameter-
based. In some cases we may be able to take a finite number of steps back to reconcile
needed identifications, in other cases there are an infinite number of needed identifications—
preventing the existence of a finite subdivision rule. (Parameter-based families meeting each
of these cases are discussed later on in Chapter 3).

With that said, most of our work in proving the above theorem is fairly similar to the
previous cases aside from worrying about this finiteness condition:

Proof. (⇐): We again must check the following conditions:

1. The 1-skeleton of SR is a connected, forward invariant, finite, planar graph containing
all postcritical points as vertices.

2. Tiles on SR are not monogons or digons.
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3. The map fa á3 fb takes open cells of R(SR) to open cells of SR.

Much like Theorem 2.12, Conditions 1 and 2 predominantly follow from similar arguments
as given for Theorem 2.5. The only important difference in the case of Construction 3 is that
∼con3 is not explicitly defined to have a finite number of nontrivial equivalence classes like
∼degen (associated with Construction 1) or ∼con2. Thus, we cannot guarantee for general ∼con3
that collapsing trees under ∼con3 and marking identified points as vertices will yield a finite
graph structure that can be used as a 1-skeleton for SR—so the general case potentially fails
condition 1. Here, however, the hypothesis that we have only a finite number of nontrivial
equivalence classes in ∼con3 fixes this problem, and we are able to meet the first condition.

Condition 3 follows from a similar argument as given for Theorem 2.12. The argument
made in the previous proof relies entirely on the fact that ∼con2 is defined to identify the
preimage point groupings (as appropriate) for all points that will be marked as vertices of
SR. Since ∼con3 does the same, we have that Condition 3 holds as well.

(⇒): This argument is also based on noting that preimages of marked points of SR are
identified under the asserted subdivision map. Thus, it is similar to that given for Theorem
2.12 as well.

It should be noted that if an example works under Construction 1, Construction 3 will
yield an identical combinatorial finite subdivision rule, thanks to the construction of ∼con3.
With that said, the author has found difficulty in determining nontrivial examples for this
case. The failed example detailed as motivation for our construction is a member of a
family of matings examined in Subsection 3.2.3 that fails to have subdivision rules by either
Construction 1 or Construction 3.

Since we still must find a finite subdivision rule for the pesky unresolved mating of
Example 2.15, we move on to examine how such a case has a chance of being resolved.

2.4.3 Construction 4: A “Deconstruction”

As we’ve seen in the last section, tree-to-tree identifications that show up in preimages of
subdivision complexes have a great propensity for causing constructions to fail due to tile
pinching. Since we’ve started out most of our constructions with a pair of Hubbard trees, a
natural question to ask is the following: is it possible to throw out one of the trees in order
to better our chances of avoiding tile pinching?

In some cases, the answer may be yes. The following problem must be considered in
disregarding one of the constituent invariant structures to form a rule, though: If we lose a
Hubbard tree, do we lose any postcritical points? Recall from Section 2.1 that a 1-skeleton
for a finite subdivision rule must contain the postcritical points of the associated subdivision
map. Since we are hoping to build a construction around the mating, this (along with Section
2.1) implies that we cannot randomly remove portions of our invariant structures without
giving some consideration to keeping the postcritical set in the 1-skeleton we build.

If we consider the previous trouble-causing function pair of Example 2.15, we may note
that in some pairings, there is potential to keep all of the postcritical points on one tree
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while deleting the edge structures from the opposing tree on our 1-skeleton. In the pairing
of f1/4 and f7/8, all of the postcritical points of f1/4 are identified to postcritical points of
f7/8. Thus, if we delete T1/4, the remaining T7/8 still contains all of the identified postcritical
points of f1/4 ád f7/8.

Before we attempt to form a rule with this example, let’s take a look at a formalization
of this construction. We will later follow this with a theorem asserting when an admissible
finite subdivision should be expected to exist.

Definition 2.19. Let fa and fb be some pair of preperiodic monic quadratic functions with
the critical point of fa identifying via ∼top to some postcritical point of Tb.

If Tb/ ∼degen≅ Tb, let SR be the subdivision complex with 1-skeleton Tb and R(SR) be the
CW complex with 1-skeleton (fa ád fb)−1(Tb).

If R(SR) is a subdivision of SR and if the degenerate mating fa ád fb serves as a subdi-
vision map, then R yields a finite subdivision rule of Construction 4.

Theorem 2.20. If only two points of (fa ád fb)−1(Tb) are contained in the same equivalence
class of ∼degen, then R is a finite subdivision rule.

In essence, the ideal setting for Construction 4 is the case where one Hubbard tree contains
all of the identified postcritical points, and that tree forms a one tile finite subdivision rule
under the degenerate mating. (In other words, the complement of the tree on the two-sphere
is a tile that is subdivided by the mating map.) For this to happen, a “missing limb” of the
Hubbard tree must appear in the preimage, and then be identified to the 1-skeleton SR at
each of its endpoints to subdivide the initial tile.

It is unknown to the author whether the two-point condition given in Theorem 2.20 is a
necessary condition for a finite subdivision rule in the setting of Construction 4, but we will
show that it is indeed a sufficient one:

Proof. Let fa ád fb be a degenerate mating, and let SR and R(SR) be as defined for Con-
struction 4. To show that R is a finite subdivision rule, we again must check the following
conditions:

1. The 1-skeleton of SR is a connected, forward invariant, finite, planar graph containing
all postcritical points as vertices.

2. Tiles on SR are not monogons or digons.

3. The mapfa ád fb takes open cells of R(SR) to open cells of SR.

To show condition 1, note that SR = Tb, and that the Hubbard tree is a connected,
forward invariant, finite, planar structure. Tb contains all of the postcritical points of the
mating due to fb, since the Hubbard tree is defined as the minimal spanning tree of the
postcritical points on a polynomial’s Julia set. Further, since one of the postcritical points
of fb identifies to the critical point of fa under ∼top, this implies that the forward orbit of
these points will also be identified under ∼top due to the angle-doubling semiconjugacy. Thus,
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all of the postcritical points of fa collapse to identify with postcritical points of Tb and we
have that our 1-skeleton contains all of the postcritical points as vertices.

To show condition two, note that since our 1-skeleton is a tree, our only possible open
tile is given by the complement of that tree in the two-sphere. We cannot obtain a monogon
when our 1-skeleton is a tree. To show that we cannot obtain a digon, we proceed by
contradiction.

If the only tile of SR is a digon, we must have a single edge forming the Hubbard tree
Tb. This would suggest only two postcritical points in our map.

Recall that our focus has been restricted to the setting of preperiodic monic polynomials
for this paper. Because fb is monic, the critical point must be 0. If we have only two
postcritical points, for the map to be preperiodic, we must have the following mapping
scheme for fb:

0 c1 c2

If fb = z2 +C, this says that c1 = C, and c2 = C2 +C = c3 = (C2 +C)2 +C. Solving for C
in this equation yields only 0 and −2 as options. We cannot have that fb = z2, since z ↦ z2

is not preperiodic. Thus, fb = z2 − 2 = f1/2.
Recall that per the setting of Construction 4, one of the postcritical points of fb must

identify to a critical point of a. Since the postcritical points of f1/2 are γ1/2(1/2) and γ1/2(0),
we must have that fa has a critical point γa(1/2) or γa(0). Using the angle-doubling semi-
conjugacy to track the forward orbit of the critical point of fa, we have that either the critical
point is periodic in the case of γa(0) (which is not permitted since we’ve restricted to the
postcritically finite setting), or that the critical point maps forward to a periodic postcrit-
ical point in the case of γa(1/2). The latter option gives the following mapping scheme for fa:

0′ c′1

If such is the case and fa = z2 + C ′, this implies that c′1 = C ′ = c′2 = (C ′)2 + C ′. Solving
this equation for C ′ forces fa to be periodic, which is again not permitted in the setting of
this paper.

Since the only cases that allow digon-shaped tiles to exist involve periodic quadratic
functions, we must have that there are no monogons or digons in the tiling.

Finally, to show condition 3 we will need to check that open edges map to open edges
(since our 1-skeleton is based on a Hubbard tree and its preimage, this is a given), and
further that open tiles map to open tiles. At this point, we require use of the hypothesis for
our theorem. We will prove that the nontrivial equivalence class of ∼top referenced must be
the equivalence class which contains the critical point of fa.

As mentioned above, since a postcritical point of fb identifies with the critical point of
fa, this implies that the forward orbits of these points also collapse pairwise under ∼top.
Let c0 and c1 denote the critical point and critical value of fa, respectively. Further, let d0
and d1 denote the postcritical point of fb specified in Construction 4 and its image, so that
c0 ∼top d0, and c1 ∼top d1.

Examine the preimages of c1 and d1. Since c0 is critical, c1 only has one preimage. Since
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d1 is a postcritical point of a polynomial, it may either have two preimages (one a postcritical
point, and one a non postcritical point), or 1 preimage (a critical point). If d0 was critical and
identified with c0, this would suggest that fa and fb were complex-conjugate polynomials—
which again, is outside of the scope of this section. Thus, d1 has two preimages—one of
which is d0, and the other which we will denote d′0.

Since preimages of identified points form identified preimage pairs (and critical points
are counted up to multiplicity), we have that d0 ∼top c0 and d′0 ∼top c0, or d0 ∼top d′0.

Since only two points in the preimage of Tb are contained in the same equivalence class of
∼top, d0 and d′0 must be these two points. Since Tb/ ∼degen≅ Tb, d′0 was not a point initially in
Tb and must be at the end of a missing limb for this Hubbard tree. Since one endpoint of this
limb must be a branch point and the other identifies to d0, this limb provides a subdivision
of our initial tile into two tiles. Do these open tiles map to the complement of Tb in the
two-sphere?

The answer is yes, since the degenerate mating is a branched covering map of the two-
sphere: Tb is a simply connected closed set containing the postcritical points of the mating,
so its complementary tile has a preimage whose components each map onto the original tile.
Thus, the open 2-cells of R(SR) map to the open 2-cell of SR.

Since we meet each of the 3 conditions, R is thus a finite subdivision rule.

We close this section by applying the construction to our motivating example:

Figure 2.26: Construction 4 applied to f1/4 ád f7/8. Notice how the initial Hubbard tree of
f7/8 does not identify to itself under the degenerate mating, and how only two points of its
preimage identify in order to form the subdivided tiling R(SR).
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Chapter 3

Further Results

3.1 An Introduction: Milnor’s Example

The constructions developed in the previous chapter are, as a whole, not entirely unrelated.
While various functions may fail to provide a subdivision rule under one or more methods, it
is possible to obtain finite subdivision rules for some maps under all of these constructions (or
at the very least, subtly modified variants of the constructions.) To point out relationships
between these maps, as well as a few notions about when they work or fail, we shall examine
in depth the self-mating of f1/4.

The function pair of f1/4 with itself has been a go-to source for examples throughout
much of this paper: see Figure 1.10 noting equivalence classes of the degenerate mating,
Section 2.2 for the motivating formal mating used throughout the entire section, Example
2.14 for a finite subdivision rule that can be generated by Constructions 1-3, and Section 3.2
for a parameter-based family of degenerate matings in which f1/4 ád f1/4 is a special case.
This paper is not alone in its inquiry into the workings of this function pair, as subtleties of
the self-mating of f1/4 have been discussed by both Milnor and Meyer in great detail. (See
[16] and [13].)

We will briefly recap the established claims regarding this mating within the context of
this paper, and from there extend and connect our results to those regarding this mating in
the literature.

3.1.1 Previous constructions

It will be of use to briefly recap the main points of the constructions we have encountered
so far:

In Construction 0, we utilize the formal mating as a subdivision map, and have 1-skeleton
of our subdivision complex given by a pair of Hubbard trees and a collection of forward
invariant external ray-pairs. (We also include edges to connect landing points of external
rays to the Hubbard tree if necessary in this 1-skeleton.) This works for general collections
of rays.
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In Construction 1, we utilize the degenerate mating as a subdivision map, and have 1-
skeleton of our subdivision complex given by a pair of Hubbard trees collapsed under ∼degen
This works when preimages of marked points collapse to points under ∼degen.

In Construction 2, we utilize a method which can be thought of as similar to Construction
1, but in the case that all of the external ray-pairs involved have been collapsed. This works
for general collections of rays if the only tree-to-tree identifications made in R(SR) are those
that have already been established in SR.

In Construction 3, we utilize a method which can be thought of as similar to Construction
1, but in the case that any “forced” identifications are rectified in both SR and R(SR). This
works if the number of “forced” identifications for a function pair are finite.

In Construction 4, we utilize a method which can be thought of as similar to Construction
1, but in the case that critical points are serial in the mapping scheme for the mating and
we can “throw out” one of the Hubbard trees. This works when SR is an unidentified
Hubbard tree whose preimage under the map only contains two points which are in the same
equivalence class of ∼top.

As a general rule for all of these constructions, we require only a finite number of iden-
tifications made in developing SR, and we are required to avoid tree-to-tree identifications
forced by the subdivision map that do not appear in the quotient space of the mating. The
definitions of the constructions above imply that Constructions 1 and 3 are a special case of
Construction 2. (These sub-cases occur when we choose a collection of initial ray-pairs that
corresponds with the necessary nontrivial equivalence classes for ∼degen or ∼con3.) Further, the
rule given for Construction 1, if it exists, is a special case of Construction 3. (In Construc-
tion 3, we simply add nontrivial equivalence classes to ∼degen to form ∼con3 if necessary. If no
additional equivalence classes are necessary, we may as well just start with the degenerate
mating as our subdivision map, since the 1-skeletons in these constructions are obtained in
the same manner.)

As noted throughout 2.2, f1/4 áf f1/4 serves as the subdivision map for several possible
finite subdivision rules under Construction 0. As discussed in 2.14, we have a 1-skeleton
for a Construction 1 finite subdivision rule which utilizes f1/4 ád f1/4 as a subdivision map.
Thus, we have that there exists a Construction 1, 2, and 3 finite subdivision rule for the
self-mating of f1/4.

What about Construction 4? We do not quite fit into the framework for this method here,
since no postcritical point of f1/4 ád f1/4 identifies to a critical point. We should, however,
recall that the construction relies on the identification of a tree to itself via a pair of points
that map through the critical point of the opposing function in the mating. Examining a few
preimages back on the Construction 1 rule for f1/4 ád f1/4, we obtain Figure 3.1. Note that
on the second preimage, we have identifications through the critical points of both trees.

If we use the intuition given by Construction 4 rather than the formal method itself, this
suggests that we can form a one-tile subdivision complex by using the preimage of one of
the trees under the degenerate mating as SR, its preimage as R(SR), and the degenerate
mating as the subdivision map. (See Figure 3.2.) Thus, even though Construction 4 does
not formally apply, we can obtain a finite subdivision rule here.
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Figure 3.1: Subsequent subdivisions of the Construction 1 rule for f1/4 ád f1/4. (Note
that the ↦ symbol on R○2(SR) denotes where the point in question maps to on SR under
(f1/4 ád f1/4)○2.)

Figure 3.2: A one-tile subdivision rule for f1/4 ád f1/4 modeled after Construction 4

3.1.2 Construction 5: connections to deconstructing the mating

Recall that in Section 1.5 we briefly discussed the relationship between rational maps, finite
subdivision rules, and matings. It was noted that in key theorems linking the three topics at
one juncture that a two-tile subdivision rule with 1-skeleton a Jordan curve containing the
postcritical set was an important tool in traveling from rational maps to finite subdivision
rules, and ultimately to matings. None of our finite subdivision rules resemble such a curve
as in Meyer’s work in [13], [14], or [15]. Is there any way that we can link these constructions?

While an authoritative link has not yet been established between the two-tile finite sub-
division rules in these papers and the constructions detailed in this document, the following
example highlights at least a minor link between the two.

Example 3.1. Consider the Construction 1 finite subdivision rule for f1/4 ád f1/4. While SR
in this case is rather obviously not a CW complex with 1-skeleton a Jordan curve, consider
what would happen if we tried to impose a Jordan curve-like structure on it in the following
manner:

Imagine that the 1-skeleton of SR is a sidewalk with a series of posts each located at the
marked postcritical vertices. Now, suppose that we are walking along this sidewalk carrying
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a rope. Our goal is to drag the rope along, hook the rope near a post, drag the rope along,
hook the rope near a different post, et cetera—without ever crossing the rope—until we have
hooked all of the posts and reached the point at which we started walking with the rope.
Once this point is reached, the ends of the rope are to be tied together. Assuming we stay
on the sidewalk to complete this task, this scenario models a Construction 1 based Jordan
curve containing the postcritical set of f1/4 ád f1/4.

If not already obvious, there is a major flaw in assuming that we obtain a Jordan curve
in staying “on the sidewalk” to form our curve: the edge of our 1-skeleton has 0 width, while
the average sidewalk does not. Such a curve on our actual 1-skeleton is not a Jordan curve
since it is forced to intersect itself. However, if we let the curve lie within an epsilon window
of our 1-skeleton in the space in which it is embedded (i.e., suppose we allow walking in the
grass with our rope as long as we don’t stray too far from the sidewalk), then we may have a
chance at a Jordan curve. We refer to the left of Figure 3.3 for a potential curve constructed
in such a manner.

Figure 3.3: The blue dashed line denotes Construction 5 on f1/4 ád f1/4.

Now, suppose we take the preimage of this curve under the mating map. We shall call
the initial curve with marked postcritical points, the preimage curve with marked points,
and the degenerate mating map together a Construction 5 type rule. Per the right side
of Figure 3.3 we have a preimage curve, which–if we hooked posts and not near posts in
the above scenario–crosses at the critical points on the 1-skeleton. If instead we hooked our
rope near our posts, we may think of this as a way to model the preimage as another Jordan
curve.

The reason that we do not emphasize Construction 5 to yield a finite subdivision rule in
the above case is that in the embedded setting that we have been focusing on, it clearly is
not—our structure does not appear forward invariant here like the Hubbard tree structures
do.

If we note that our postcritical points lie on the Jordan curve in the same cyclic order
we may make an argument for the curve being invariant in a combinatorial sense, however.
(That is, in traveling a counterclockwise loop along the blue curve, we pass through c3, c1,
and c2 of the black tree before passing through c1 on the red tree in both cases.) If we let
the cyclic order of vertices bounding a tile denote where that tile should homeomorphically
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map, we even have the open cells of the “subdivision” map to open cells of the original tiling!

It is precisely this type of curve that Meyer discusses in [13], [14], and [15]—however, in
these papers he starts with some iterate of a rational map in hopes of obtaining a mating.
Upon marking a black/white (i.e. inside/outside) tile structure on the above complexes
and/or noting edge mapping properties of this rule, he is able to ascertain external angle
information for postcritical points and decompose the map in order to record the constituent
polynomials of the mating.

3.2 Related families of matings

The previous section details how we may apply our methods to examine single examples in
detail. The emphasis on parameters in their relation to the structure of our initial Hubbard
trees and preimages of key points however, strongly suggests that we should spend some time
examining how parameters relate to each other and not just how they relate to individual
maps. In the following sections, we present parameter-related families of quadradic pairs
and show how parameter relationships imply similar properties on the resulting matings.

3.2.1 On a family under Construction 1

Theorem 3.2. Matings of the form f1/2m ád f1/2n , (m,n > 1,m,n ∈ N) admit a finite subdi-
vision rule under constructions 1, 2, and 3.

It should be noted that if a Construction 1 finite subdivision rule exists, then it im-
mediately follows that a Construction 2 and 3 rule exist, and further that they yield the
same combinatorial rule as Construction 1. We shall thus focus on the Construction 1 finite
subdivision rule case from here.

We shall examine the Hubbard trees of the family of maps {f1/2n ∶ n > 2} in detail to
prove this claim. We rely heavily upon the algorithms of Bruin and Schleicher detailed in
Section 1.2.3 to obtain the itinerary of the critical value and use this itinerary to create a
topological Hubbard tree. We subsequently use knowledge of the external angles at points
on the itinerary to develop an embedding of this Hubbard tree, and then describe the finite
subdivision rules obtained by applying Construction 1 to pairs of maps from this family.

Proof. To develop an itinerary for a map, recall that we need to follow the forward orbit
of the critical value c1 through the regions T1, T0, and ⋆ on the Hubbard tree. Here c0 = ⋆
denotes the critical point, T1 and T0 denote the connected components of the Hubbard tree
with the critical point removed—T1 denoting the component that contains c1. For any f1/2n ,

the angles of external rays at the critical point (thus of the point in ⋆) are given by 1
2n+1

and 2n+1
2n+1 . Since the angle at c1 is 1

2n , this forces T1 to contain the landing points of external

angles contained in ( 1
2n+1 ,

2n+1
2n+1 ). T0 contains the landing points of all other external angles.

The angle-doubling semiconjugacy yields c1 = γ(1/2n), ..., ci = γ(1/2n−i+1), ..., cn = γ(1/2).
These are all contained in T1.
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The angle-doubling semiconjugacy also yields that cn+1 = γ(0), which is a periodic point
located in T0.

This yields the itinerary 1...1±
n times

0 for the map f1/2n .

Figure 3.4: First, we determine the itinerary and relative locations of postcritical points in
T1 and T0.

We can use the test for degenerate/nondegenerate triods to determine the relative location
of each of the postcritical points on the Hubbard Tree. Starting with any three distinct i <
j < k in {1, ..., n}, we can observe the forward orbit of the [ci, cj, ck] triod and its truncations
to determine whether the triod is degenerate or not. Moving from line to subsequent line
represents forward iterations under f1/2n , except where a truncation has been noted:

[ci, cj, ck] (Located respectively in T1, T1, T1.)
...
[ci+n−k+1, cj+n−k+1, cn+1] (Located respectively in T1, T1, T0. We must chop at the third

coordinate. )
[ci+n−k+1, cj+n−k+1,⋆]
...
[ci+n−j+1, cn+1, ck−j] (Located respectively in T1, T0, T1. We must chop at the second coor-

dinate.)
[ci+n−j+1,⋆, ck−j]
...
[cn+1, cj−i, ck−i], (Located respectively in T0, T1, T1. We must chop at the first coordinate.)
[⋆, cj−i, ck−i]
...
[ci, cj, ck] (This was our original triod.)
As our sequence of forward iterates has become periodic and we’ve noted a truncation

at each of the three ends of the triod, this triplet (which represents any three postcritical
points in T1) is nondegenerate. With that said, we can actually take any triplet of postcritical
points of f1/2n to yield a nondegenerate triod, as the remaining critical point cn+1 is featured
in lines of the test above which occur pre-truncation. Since all triods with distinct postcritical
endpoints are nondegenerate, all elements of the postcritical set are endpoints of the Hubbard
tree for f1/2n .

We can elaborate on the structure of the Hubbard tree further by showing it has a star-
like shape: there is a single branch point of this Hubbard tree, located at the T1 fixed point.
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To prove this, we show that each triod which contains two postcritical points and this fixed
point is degenerate, and that such “triods” present as a two-edged path between the post-
critical points linked by the middle vertex p. Let i < j be contained in {1, ..., n}, and p denote
the T1 fixed point:

[ci, cj, p] (Located respectively in T1, T1, T1)
...
[ci+n−j+1, cn+1, p] (Located respectively in T1, T0, T1. We must chop at the second coordi-

nate.)
[ci+n−j+1,⋆, p]
...
[cn+1, cj−i, p] (Located respectively in T0, T1, T1. We must chop at the second coordinate.)
[⋆, cj−i, p]
...
[ci, cj, p] (This was our original triod.)

Since the sequence of forward iterates has become periodic and has never been truncated
in the third column, this triod is degenerate. We may imagine the three marked points
as lying on the Hubbard tree in such a way that we can form a path from ci to p to cj.
Similar to above, as cn+1 is featured in our sequence of triods, we can take this to hold for
all pairs of postcritical points and not just pairs of the first n postcritical points of f1/2n .
(As a note for future reference, since we never utilized that our map was periodic—i.e., we
always chopped a vertex off once it mapped to T0—this star-like tree shape will hold for any
kneading sequence that looks like a string of 1’s followed by a 0, regardless of the period or
preperiod of the sequence.)

Figure 3.5: Next, we determine an unembedded Hubbard tree for f1/2n . The tree resembles
a star.

At this point, we have a topological Hubbard tree for f1/2n . While the unembedded tree
for itinerary 1...1±

n times

0 has φ(n + 1) possible choices for embedding (where φ represents the

Euler φ function), recall that we have external angle information for ⋆ as well as each of the

70



postcritical points in addition to the itinerary. The ordering of these angles forces a cyclic
order for the postcritical points as shown in Figure 3.6.

Figure 3.6: The embedded Hubbard tree for f1/2n .

Now that we have an idea of the general structure of the Hubbard trees for the family
{f1/2n ∶ n > 2}, we can examine what happens when we use Construction 1 to form a mating
between pairs of these functions.

When forming identifications between postcritical points, recall that we only identify
angles θ and −θ on opposing trees. Since functions from our family have postcritical points
with external angles of the form 1/2n, this means that the only possible identifications to
be made are at the postcritical points where the external angles are 1/2 or 0. This yields a
two-tile one-skeleton.

The preimages of the 0–to–0 identification are the original identifications in our one-
skeleton. The preimages of the 1

2–to–1
2 identification are the pair of 1

4–to–3
4 and 3

4–to–1
4

identifications between the two trees. Since the 3
4 “limbs” are not present in either of the

initial Hubbard trees in our mating, the addition of these edges yields a subdivision of our
initial one-skeleton.

It should be noted that the simplest case of the mating family above—m = n = 2, or
f1/4 ád f1/4—is the example of interest in Section 3.1 and Figure 2.20.

3.2.2 On a family under Construction 3

Conjecture 3.3. Matings of the form f 1
4(2n−1)

ád f− 1
8(2n−1)

, n ≥ 2, admit a finite subdivision

rule under Constructions 3, but fail to admit a finite subdivision rule under Construction 1.

It should be noted that Bruin and Schleicher’s degenerate triod test is heavily utilized in
the following proof to determine whether certain preimage points are on the Hubbard tree
for a given polynomial. Much of this mechanical work has been relegated to Appendix B
and condensed in Figure 3.9 to clarify the underlying argument.

Proof. We shall begin by examining the Hubbard trees of the family of maps f 1
4(2n−1)

and

f
−

1
8(2n−1)

, starting with f 1
4(2n−1)

.
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To develop an itinerary, we much follow the forward orbit of the critical value c1 through
the regions T1, T0, and ⋆ on the Hubbard tree of f 1

4(2n−1)
. If a landing point has external

angles t with 1
8(2n−1) < t < 1

8(2n−1) + 1
2 , it is in T1; if it possesses external angles 1

8(2n−1) or
1

8(2n−1) + 1
2 , it is in ⋆; otherwise it is in T0.

For this particular map, we have that ck = γ 1
4(2n−1)

( 2k

8(2n−1)) for nonnegative k, thus

{c1, ..., cn+1} ⊂ T1, cn+2 ∈ T0, and cn+3 = c3. Thus, our function has itinerary given by 111...110´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+2 digits

.

By the aside mentioned in Section 3.2 regarding structure of Hubbard trees with kneading
sequence a series of 1’s followed by a 0, this admits a star-like Hubbard tree structure. Since
the external angles of postcritical points are increasing as we iterate forward (at least until
we hit cn+2) and each postcritical point corresponds to an endpoint of the Hubbard tree, we
have the embedding for f 1

4(2n−1)
as given in Figure 3.7.

Figure 3.7: The embedded Hubbard tree for f 1
4(2n−1)

.

Similarly for f −1
8(2n−1)

, we compute an itinerary to develop a Hubbard tree by using the

regions T ′

1, T
′

0, and ⋆′ on the Hubbard tree of f −1
8(2n−1)

. If a landing point has external angles

t with − 1
16(2n−1) − 1

2 < t < − 1
16(2n−1) , it is in T ′

1; if it possesses external angles − 1
16(2n−1) − 1

2 or

− 1
16(2n−1) , it is in ⋆′; otherwise it is in T ′

0.

For this particular map, we have that dk = γ −1
8(2n−1)

(− 2k

16(2n−1)) for nonnegative k, thus

{d1, ..., dn+2} ⊂ T ′

1, dn+3 ∈ T ′

0, and dn+4 = c4 ∈ T ′

1. Thus our function has itinerary given by
1111...110´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+3 digits

.

As above,this admits a star-like Hubbard tree structure. Since the external angles of
postcritical points are decreasing as we iterate forward (at least until we hit dn+3) and each
postcritical point corresponds to an endpoint of the Hubbard tree, we have the embedding
of f −1

8(2n−1)
as given in Figure 3.8.

Now that we have developed a basic idea of the structure of T 1
4(2n−1)

and T
−

1
8(2n−1)

, we

may focus more on the theorem’s claim regarding their relationship. In showing that there
is a Construction 3 type finite subdivision rule, we must prove that the number of nontriv-
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Figure 3.8: The embedded Hubbard tree for f −1
8(2n−1)

.

ial equivalence classes of ∼con3 for this mating is finite. This boils down to showing that
there are a finite number of tree-to-tree identifications that map forward to a postcritical–
to–postcritical identification for this map. We proceed by examining the postcritical–to–
postcritical identifications and looking at their preimages. Since Hubbard trees map onto
themselves, any place that we observe an off-tree–to–off-tree or tree–to–off-tree identification
will be a dead end and not yield further tree-to-tree identifications. If we reach only these
dead ends in iterating backwards, there are a finite number of nontrivial equivalence classes
of ∼con3, and there are Construction 3 based subdivision rules for our family of maps.

Since examining a particular set of preimages will be of utmost importance, we give
notation for these points now: let c−k, k ∈ N denote the iterated preimage of c0 (under
its associated map) with the itinerary 1...1±

k digits

⋆111...10´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
n+2 digits

, and d−k, k ∈ N denote the iterated

preimage of d0 (under its associated map) with the itinerary 1...1±
k digits

⋆1111...10´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+3 digits

. Further, let

c∗
−k, k ∈ N denote the iterated preimage of c0 (under its associated map) with the itinerary

01...1²
k digits

⋆111...10´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
n+2 digits

, and d∗
−k, k ∈ N denote the iterated preimage of d0 (under its associated map)

with the itinerary 01...1²
k digits

⋆1111...10´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+3 digits

.

With our fundamental goal and necessary notation established, we continue by noting
identifications that occur between T 1

4(2n−1)
and T

−
1

8(2n−1)
. A summary of tree-to-tree identifi-

cations for this mating is shown in Figure 3.9, and is supported by the following arguments.
By the previous notes on the external angles of postcritical points, we have that ck ∼degen

dk+1 for nonnegative k because the angles associated with these points are negative of each
other. As all postcritical points are endpoints on both trees and not biaccessible, we’ve
accounted for all tree-to-tree identifications that involve a pair of postcritical points. There
is one postcritical to critical point identification noted by the above, given by c0 ∼degen d1.
Since c0 is a critical point however, it is biaccessible. As “both” points of (f 1

4(2n−1)
)−1(c1)

must pair off with the two points in (f
−

1
8(2n−1)

)−1(d2), we have that c0 identifies to both
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cn+2 ∼top dn+3

...

c0 ∼top d1 (∼top the other preimage of d2, which is off the tree by Lemma B.1.)

c−1 ∼top d0 (∼top c∗−1, which is off the tree by Lemma B.2.)

c−2 ∼top d−1 (and c∗
−2 ∼top d∗−1, but d∗

−1 is off the tree by Lemma B.3.)

... ...

ck ∼top dk+1 (and c∗k ∼top d∗k+1, but d∗k+1 is off the tree by Lemma B.3.)

... ...

c−n ∼top d−n+1 (and c∗
−n ∼top d∗−n+1, but d∗

−n+1 is off the tree by Lemma B.3.)

c−n−1 ∼top d−n (and c∗
−n−1 ∼top d∗−n, but c∗

−n−1 is off the tree by Lemma B.4.)

c−n−2 ∼top d−n−1 (and c∗
−n−2 ∼top d∗−n−1, but d∗

−n−1 is off the tree by Lemma B.5.)

(c∗
−n−3 ∼top d−n−2 and c−n−3 ∼top d∗−n−2, but c∗

−n−3 and d∗
−n−2 are off the tree by Lemma B.6.)

Figure 3.9: Preimages of points identified under ∼degen. Arrows denote where the identified
point pairing maps under the mating f 1

4(2n−1)
ád f− 1

8(2n−1)
.
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preimages of d2.
By Lemma B.1 of Appendix B, d1 is the only preimage of d2 contained in the Hubbard

tree T
−

1
8(2n−1)

. Thus, the only tree-to-tree identification whose preimages we need to concern

ourselves with is c0 to d1.
Similarly, since d0 is a critical point, it is also biaccessible. As the two points of

(f 1
4(2n−1)

)−1(c0) must pair off with “both” points of (f
−

1
8(2n−1)

)−1(d1), we have that both

preimages of c0 identify to d0. By Lemma B.2 in Appendix B, c−1 is the only preimage of
c0 contained in the Hubbard tree T 1

4(2n−1)
. Thus, the only tree-to-tree identification whose

preimages we must concern ourselves with at this point is c−1 to d0.
At this point, it should be noted that c−k can be computed to be 1

2k−1
( 1
16(2n−1) + 1

2) and

d−k can be computed to be − 1
2k

( 1
16(2n−1) + 1

2) for 1 ≤ k ≤ n + 2. (For k = n + 3, angles of

these forms land in T0 and T ′

0 respectively.) Thus, c−k ∼top d−k+1 for 2 ≤ k ≤ n + 2 (and also,
c−n−3 ∼top d−n−2). By Lemma B.3 in Appendix B, we have that to avoid “dead ends” due to
dk which appear off-tree, we must follow the trail of c−k’s and d−k+1’s until we reach at least
c−n and d−n+1. At this point, we are still concerned only with preimages of this pair which
contain a point on either T 1

4(2n−1)
or T

−
1

8(2n−1)
.

The preimage groupings of c−n and d−n+1 are c−n−1 and d−n along with c∗
−n−1 and d∗

−n. We
can disregard the latter pair and its preimages as c∗

−n−1 is off-tree by Lemma B.4 of Appendix
B.

The preimage groupings of c−n−1 and d−n are c−n−2 and d−n−1 along with c∗
−n−2 and d∗

−n−1.We
can disregard the latter pair and its preimages as c∗

−n−1 is off-tree by Lemma B.5 of Appendix
B.

Finally, the preimage groupings of c−n−2 and d−n−1 are c∗
−n−3 and d−n−2 along with c−n−3

and d∗
−n−2. We can disregard both pairs, as c∗

−n−3 and d∗
−n−2 are both off-tree by Lemma B.6

of Appendix B.
Since we’ve run out of tree-to-tree identifications for the mating (and have thus explicitly

spelled out all of the possible point groupings that fall into nontrivial equivalence classes
of ∼con3), there is a nonzero finite number of nontrivial equivalence classes of ∼con3 for any
mating in the family f 1

4(2n−1)
ád f− 1

8(2n−1)
, n ≥ 2. By Theorem 2.18, the matings in this family

admit a Construction 3 type subdivision rule. Further, since there are nontrivial equivalence
classes of ∼con3 which are not equivalence classes of ∼degen, matings of this form fail to admit
Construction 1 type finite subdivision rules.

Even the simplest case of this family, n = 2, yields a somewhat messy-looking subdivision
rule, as in Figure 3.10.

3.2.3 On a family failing Constructions 1 and 3

Theorem 3.4. Matings of the form f1/2n á f−1/2m (n ≠ m;n,m ∈ N) do not admit a finite
subdivision rule under Constructions 1 or 3.

Here it should be noted that if we fail the Construction 3 method for finding a subdivision
rule (i.e., our map forces too many identifications on the 1-skeleton), we will fail to obtain
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Figure 3.10: The mating f1/12 á3 f−1/24. The Hubbard tree for f1/12 is depicted in red; the
Hubbard tree for f−1/24 is depicted in black. The labels correspond to identified points of
T−1/24.

a Construction 1 type finite subdivision rule. Thus, we will focus on showing that there are
an infinite number of identifications that are forced by the degenerate mating map, causing
Construction 3 to fail.

Proof. To prove this, we will need to make an observation about the structure of the Hubbard
tree for f1/2n : namely, that the landing points γ(1/2k), k > n lie on the body of the Hubbard
tree.

The case k = n+1 is fairly simple: γ(1/2n+1) = c0 for the map f1/2n . What about the case
k > n + 1?

Here, with close attention the ranges of angles given for T0 and T1 in Section 3.2, we
may note that the itinerary of γ(1/2k) is given by 0...0±

k′ times

⋆ 1...1±
n times

0 where k′ = k − n − 1. For

sake of maintaining our established notation in performing Bruin and Schleicher’s test for
degenerate/nondegenerate triods, we will refer to the point with this itinerary as c−k′ . Trying
this test with c−k′ , the critical point, and cn+1 yields the following:
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[c−k′ , cn+1, c0] (Located respectively in T0, T0,⋆)
[c−k′+1, cn+1, c1] (Located respectively in T0, T0, T1. We must chop at the third coordinate.)
[c−k′+1, cn+1, c0] (Located respectively in T0, T0,⋆)
Note that from the above, we will continue to sequentially iterate and truncate the third

column until we reach the following:
[c−1, cn+1, c0] (Located respectively in T0, T0,⋆)
[c0, cn+1, c1] (Located respectively in ⋆, T0, T))
Since we end with a column representing each of the three components ⋆, T0, and T1,

we have a degenerate triod. We may imagine the three initial marked points as lying on
the Hubbard tree in such a way that we can form a path from c0 to c−k′ to cn+1. Thus the
landing points γ(1/2k), k > n are contained in the Hubbard tree for f1/2n .

Now that we have developed information on the structure of f1/2n , what about f−1/2m?
First note that the landing points of the θ and −θ parameter rays on the Mandelbrot set

are at conjugate values. Second, note that just as the conjugate parameters c, c ∈ C yield
mirrored Julia sets for the function pair f(z) = z2 + c and f(z) = z2 + c, they similarly yield
mirrored Hubbard trees for these functions. Thus, since we’ve already detailed the structure
of Hubbard trees for the functions f1/2n , we’ve already completed most of the work of finding
the Hubbard trees for the functions f−1/2n—we just mirror the previously found trees. In
doing this, we can extend the previous result to state that the landing points γ(−1/2k), k >m,
are contained in the Hubbard tree for f−1/2m .

Comparing f1/2n á f−1/2m to the matings of Section 3.2, note that we increase the number
of postcritical identifications by pairing these “mirrored” maps. (If n <m, all of the postcrit-
ical points of f1/2n are identified to the body of the tree for f−1/2m , and vice versa.) Further,
preimages of these identifications give us problems in performing Construction 1 to develop
a finite subdivision rule. As noted in Subsection 2.4.2, identifications whose preimages yield
unassigned tree-to-tree identifications give rise to tile pinching. This tile pinching can only
be reconciled if the appropriate tree-to-tree identifications are assigned, and if there are only
finitely many of them to be found upon taking preimages. Otherwise, the mating fails to
take open tiles of the subdivision homeomorphically onto open tiles of the original tiling,
and cannot be a subdivision map for a finite subdivision rule.

For any N > max{n,m}, we have that the landing point of 1
2N

on the tree for f1/2n will
identify with the landing point of − 1

2N
on the tree for f1/2n . This forces an infinite number of

tree-to-tree identifications which are preimages of postcritical identifications. This implies
that we must construct an infinite number of tiles before reconciling all of our tree-to-tree
identifications and having any chance that the mating f1/2n á f−1/2m will act as a subdivision
map. This breaks the finiteness condition needed to obtain a finite subdivision rule, thus
matings of the form f1/2n á f−1/2m , (n ≠ m;n,m ∈ N) do not yield finite subdivision rules
under Construction 1 or 3.

It should be noted that one of the simplest cases—m = 3 and n = 2, or f1/4 ád f7/8–is an
example of focus in Section 2.4.2 and Figure 2.24.
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3.3 Topics for future study

As a look forward, there are several major topics that I would like to continue studying
that relate finite subdivision rules and matings of polynomials. Function parameters have
proven to be crucial in determining point-identification schemes under various refinements
of the equivalence relation ∼top. I thus believe that there is direct correlation between pa-
rameters and possible outcomes of finite subdivision rules. I would like to catalogue and
investigate finite subdivision rules generated from quadratic function pairs in order to study
this connection.

Once I’ve developed a stronger intuition regarding the direct relationship between quadratic
parameters and the associated rules, I would like to examine matings for polynomials that
are degree 3 and/or higher. Knowledge of how function parameters directly affect identifica-
tion schemes in matings could be particularly useful in building rational maps with chosen
postcritical mapping schemes at will.

I also wish to investigate further potential constructions for finite subdivision rules stem-
ming from mating maps. In particular, are there any constructions that solve the “too many
identifications” problem? Are there other utilizations of Hubbard trees as building blocks
for forming finite subdivision rules on mating maps? If so, are there any that will work by
default in all cases in some degenerate-like (i.e., with external rays collapsed to points on the
1-skeleton) setting? Is there a “canonical” choice of finite subdivision rule on the degenerate
mating map, or can some examples just not be modeled by a finite structure?

Finally, I wish to investigate the connections between the rules generated here and current
work being done in deconstructing iterates of rational maps as matings of two polynomials.
How do each of my constructions relate to the two-tile subdivision rules used by Meyer to
pry apart these rational maps? Is there any way that my constructions could potentially
generate space-filling curves on the two-sphere, much like the 1-skeleton of his two-tile rule?

Hopefully the outcomes of any of the above work will lead to new insight into the dynamics
of mated maps, and on the relationship between finite subdivision rules, matings, and rational
maps.
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Appendix A

Hubbard tree code

The following is code generated by the author in Mathematica 8 for obtaining Hubbard trees
from appropriate kneading sequences. The tree structures asserted for all of the quadratic
maps were verified using this code and [11]. The underlying algorithms driving this code
are based on those given in [2]. (Note: the trees output by this program reflect topological
structure of trees with a given itinerary, and not trees as embedded in the complex plane.)

(*Initialize the functions below. Instructions follow on how to use \

code to develop Hubbard trees based on appropriate kneading \

sequences.*)

ShortenRep[sequence_, period_] := (

seq = sequence;

test = False;

While[test == False,

If[Last[seq] == -1, test = True,(*it ends in a -1,

it’s a star periodic sequence.*)

If[Length[seq] == period, test = True,

If[seq[[-1]] == seq[[-period - 1]], seq = Drop[seq, -1],

test = True]]]];

{seq, period});

TestPeriod[sequence_, period_] :=

(n = 1;

norepeatsfound = True;

per = period;

If[Last[sequence] == -1, per = Length[sequence],

While[(n <= period/2) && (norepeatsfound == True),

If[Divisible[period, n],(*test to see if there are sequences,

else increment n:*)
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If[Flatten[

Table[Take[sequence, -n], {z, 1,

period/n}]](*repeated end string*)==

Take[sequence, -period],(*periodic part*)per = n;

norepeatsfound = False, n++], n++]]];

per);

SimplifySequence[sequence_, period_] :=

ShortenRep[sequence, TestPeriod[sequence, period]];

(*For sequence_, input the itinerary in the form of a list; i.e. \

{1,0,1,1,1,0,-1}, with -1 denoting *. For period_, input the period \

of the sequence. For example, to check if the *-periodic sequence \

101* can be simplified, we would input it as \

SimplifySequence[{1,0,1,-1},4]*)

ShortenRep2[sequence_, period_] := (

seq = sequence;

test = False;

While[test == False,

If[Length[seq] == period, test = True,

If[seq[[-1]] == seq[[-period - 1]], seq = Drop[seq, -1],

test = True]]];

{seq, period});

SimplifySequence2[sequence_, period_] :=

ShortenRep2[sequence, TestPeriod2[sequence, period]];

TestPeriod2[sequence_, period_] :=

(n = 1;

norepeatsfound = True;

per = period;

While[(n <= period/2) && (norepeatsfound == True),

If[Divisible[period, n],(*test to see if there are sequences,

else increment n:*)

If[Flatten[

Table[Take[sequence, -n], {z, 1,

period/n}]](*repeated end string*)==

Take[sequence, -period],(*periodic part*)per = n;

norepeatsfound = False, n++], n++]];

per);

DoubleCheck[sequence_,

period_] := (testset = SimplifySequence[sequence, period];
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If[Length[testset[[1]]] == testset[[2]] \[And]

Last[sequence] != -1, Print["Periodic! Stop!"],

If[First [sequence] == 0, Print["Sequence starts with 0! Stop!"],

testset]]);

Itinerary[number_, sequence_, period_] :=

SimplifySequence2[

Drop[Join[sequence, Take[sequence, -period]], number - 1], period];

FindT1[sequence_] := (T1 = Flatten[Position[sequence, 1]];

T0 = Flatten[Position[sequence, 0]];);

ModOut[input_, sequencelength_, period_] := (

If[IntegerQ[input],

If[input <= sequencelength, input,

Mod[input, period, sequencelength - period + 1]] ,

If[input[[1]] <= Length[input[[2]]],

input, {Mod[input[[1]], input[[3, 2]],

Length[input[[2]]] - input[[3, 2]] + 1], input[[2]],

input[[3]]} ]

]);(*returns a useful value that will refer to simplified versions \

of the sequence*)

ModOut2[input_, sequence_] :=

If[IntegerQ[input] == False, input,

If[input === 0, 0, If[sequence[[input]] === -1, 0, input]]];

AreTheseDifferent[input1_, input2_, input3_, sequencelength_,

period_] :=

If[Length[

Union[Function[x, ModOut[x, sequencelength, period]] /@ {input1,

input2, input3}]] == 3, True, False];

DegenTest[input1_, input2_, input3_, sequence_, period_] := (

seq = sequence; seqlength = Length[seq]; per = period;

in1 = ModOut2[ModOut[input1, seqlength, per], seq];

in2 = ModOut2[ModOut[input2, seqlength, per], seq];

in3 = ModOut2[ModOut[input3, seqlength, per], seq];

QuittingTime = False; periodic = False;

ListOfSequences = {{in1, in2, in3}};

While[QuittingTime == False,

If[AreTheseDifferent[in1, in2, in3, seqlength, per] ==
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False \[Or]

Length[Union[seq[[{in1, in2, in3}]] ]] ==

3 \[Or] (MemberQ[seq[[{in1, in2, in3}]], -1] \[And]

MemberQ[seq[[{in1, in2, in3}]], List]),

Degen = True;(*Print["Degenerate:

",ListOfSequences];*)QuittingTime = True,

chop = False;

If[MemberQ[seq[[{in1, in2, in3}]], -1] \[Or]

MemberQ[seq[[{in1, in2, in3}]], List] \[Or]

Length[Union[seq[[{in1, in2, in3}]] ]] == 1,

in1 = ModOut2[ModOut[in1 + 1, seqlength, per], seq];

in2 = ModOut2[ModOut[in2 + 1, seqlength, per], seq];

in3 = ModOut2[ModOut[in3 + 1, seqlength, per], seq];,

If[seq[[ in1]] == seq[[in2]] \[And] in3 != 0, in3 = 0;

chop = True,

If[seq[[in1]] == seq[[in3]] \[And] in2 != 0, in2 = 0;

chop = True,

If[seq[[in2]] == seq[[in3]] \[And] in1 != 0, in1 = 0;

chop = True]]];];

If[MemberQ[ListOfSequences, {in1, in2, in3}] == False \[And]

chop == False, AppendTo[ListOfSequences, {in1, in2, in3}],

If[MemberQ[ListOfSequences, {in1, in2, in3}] == False \[And]

chop == True,

ListOfSequences[[-1]] = {in1, in2, in3}; chop = False,

If[chop == True, ListOfSequences[[-1]] = {in1, in2, in3},

AppendTo[ListOfSequences, {in1, in2, in3}]];

itinofbpt = (SimplifySequence[

Flatten[Commonest /@

Function[x, seq[[x]]] /@ ListOfSequences],

Differences[

Position[ListOfSequences, Last[ListOfSequences]]][[1,

1]]]);(*Print["Periodic:

",ListOfSequences];*)(*Print["Itinerary of branched point = ",

itinofbpt];*) periodic = True;

If[(MemberQ[First /@ ListOfSequences, 0] \[Or]

MemberQ[

Table[sequence[[ListOfSequences[[i, 1]]]], {i, 1,

Length[ListOfSequences]}], -1]) \[And] (MemberQ[

Table[ListOfSequences[[i, 2]], {i, 1,

Length[ListOfSequences]}], 0] \[Or]

MemberQ[

Table[sequence[[ListOfSequences[[i, 2]]]], {i, 1,
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Length[ListOfSequences]}], -1]) \[And] (MemberQ[

Last /@ ListOfSequences, 0] \[Or]

MemberQ[

Table[sequence[[ListOfSequences[[i, 3]]]], {i, 1,

Length[ListOfSequences]}], -1]), Degen = False(*...b/

c it was a nondegenerate triod*), Degen = True];

QuittingTime = True]]]]);

PartitionPoints[sequence_, period_] := (

FindT1[sequence];

ListOfItins =

Table[Itinerary[i, sequence, period], {i, 1, Length[sequence]}];

T1Branch = {}; a = 1; b = 2;

While[a < Length[T1],

While[b <= Length[T1],

DegenTest[0, T1[[a]], T1[[b]], sequence, period];

If[Degen == False \[And]

itinofbpt != {Drop[

sequence, (Length[sequence] - Length[itinofbpt[[1]]])],

period},

AppendTo[

T1Branch, {1, Take[ListOfSequences, Length[itinofbpt[[1]]]],

itinofbpt}]; b++, b++]]; a++; b = a + 1];

a = 1; b = 2;

While[a < Length[T1Branch],

While[b <= Length[T1Branch],

If[T1Branch[[a, 3]] == T1Branch[[b, 3]],

T1Branch = Drop[T1Branch, {b}], b++]]; a++; b = a + 1];

a = 1; While[a <= Length[T1Branch],

If[MemberQ[ListOfItins, T1Branch[[a, 3]]],

T1Branch = Drop[T1Branch, {a}], a++]];

T1 = T1 \[Union] T1Branch;

T0Branch = {}; a = 1; b = 2;

While[a < Length[T0],

While[b <= Length[T0],

DegenTest[0, T0[[a]], T0[[b]], sequence, period];

If[Degen == False \[And]

itinofbpt != {Drop[

sequence, (Length[sequence] - Length[itinofbpt[[1]]])],

period},

AppendTo[

T0Branch, {1, Take[ListOfSequences, Length[itinofbpt[[1]]]],
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itinofbpt}]; b++, b++]]; a++; b = a + 1];

a = 1; b = 2;

While[a < Length[T0Branch],

While[b <= Length[T0Branch],

If[T0Branch[[a, 3]] == T0Branch[[b, 3]],

T0Branch = Drop[T0Branch, {b}], b++]]; a++; b = a + 1];

a = 1; While[a <= Length[T0Branch],

If[MemberQ[ListOfItins, T0Branch[[a, 3]]],

T0Branch = Drop[T0Branch, {a}], a++]];

T0 = T0 \[Union] T0Branch;);

incrementelt[x_] :=

If[IntegerQ[x],

ModOut2[ModOut[x + 1, seqlength, per],

seq], {ModOut2[ModOut[x[[1]] + 1, Length[x[[2]] ], x[[3, 2]]],

seq], x[[2]], x[[3]]}];

location[x_] := If[IntegerQ[x], seq[[x]], x[[3, 1, x[[1]]]] ];

ChanceAtAdjacency[input1_, input2_, input3_, sequence_, period_] := (

seq = sequence; seqlength = Length[seq]; per = period;

in1 = ModOut2[ModOut[input1, seqlength, per], seq];

in2 = ModOut2[ModOut[input2, seqlength, per], seq];

in3 = ModOut2[ModOut[input3, seqlength, per], seq];

QuittingTime = False;

ListOfSequences = {Function[x, ModOut[x, seqlength, per]] /@ {in1,

in2, in3}};

adjacent = True;

While[QuittingTime == False,

If[AreTheseDifferent[in1, in2, in3, seqlength, per] ==

False \[Or]

Length[Union[location /@ {in1, in2, in3} ]] ===

3 \[Or] (MemberQ[location /@ {in1, in2, in3}, -1] \[And]

MemberQ[location /@ {in1, in2, in3}, List]),

(*AppendTo[ListOfSequences,incrementelt/@{in1,in2,

in3}];*)(*Print["Degenerate"];*)

If[Last[ListOfSequences][[3]] === 0, adjacent = False];

QuittingTime = True,

If[MemberQ[location /@ {in1, in2, in3}, -1] \[Or]

MemberQ[location /@ {in1, in2, in3}, List] \[Or]

Length[Union[location /@ {in1, in2, in3} ]] == 1,

{in1, in2, in3} = incrementelt /@ {in1, in2, in3},
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If[location[ in1] == location[in2], in3 = 0,

If[location[in1] == location[in3], in2 = 0, in1 = 0]]];

If[MemberQ[ListOfSequences, {in1, in2, in3}] == False,

AppendTo[ListOfSequences, {in1, in2, in3}],

AppendTo[ListOfSequences, {in1, in2, in3}];(*Print["periodic"];*)

If[(MemberQ[First /@ ListOfSequences, 0] \[Or]

MemberQ[Table[

If[IntegerQ[ListOfSequences[[i, 1]]],

sequence[[ListOfSequences[[i, 1]]]], 1], {i, 1,

Length[ListOfSequences]}], -1]) \[And] (MemberQ[

ListOfSequences[[1 ;; Length[ListOfSequences], 2]],

0] \[Or]

MemberQ[Table[

If[IntegerQ[ListOfSequences[[i, 2]]],

sequence[[ListOfSequences[[i, 2]]]], 1], {i, 1,

Length[ListOfSequences]}], -1]) \[And] (MemberQ[

Last /@ ListOfSequences, 0] \[Or]

MemberQ[Table[

If[IntegerQ[ListOfSequences[[i, 3]]],

sequence[[ListOfSequences[[i, 3]]]], 1], {i, 1,

Length[ListOfSequences]}], -1]), adjacent = False(*;

Print["it’s a nondegenerate triod, so adjacent is false"]*),

If[(MemberQ[First /@ ListOfSequences, 0] \[Or]

MemberQ[

Table[If[IntegerQ[ListOfSequences[[i, 1]]],

sequence[[ListOfSequences[[i, 1]]]], 1], {i, 1,

Length[ListOfSequences]}], -1]) \[And] (MemberQ[

ListOfSequences[[1 ;; Length[ListOfSequences], 2]],

0] \[Or]

MemberQ[

Table[If[IntegerQ[ListOfSequences[[i, 2]]],

sequence[[ListOfSequences[[i, 2]]]], 1], {i, 1,

Length[ListOfSequences]}], -1]), adjacent = False(*;

Print["the last term is never chopped, so it’s between the \

first 2"]*), adjacent = True(*;Print[

"it’s degenerate, but the third vertex is not between the \

first two. the first two have a possibility of being adjacent"]*) ]];

QuittingTime = True]]];

adjacent);

(*RETURNS "False" IF THE LAST VERTEX SCREWS UP ADJACENCY OF THE FIRST \

TWO.*)
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AreTheseAdjacent[test1_, test2_, freevertices_, sequence_,

period_] := (

a = 1; freevert = Complement[freevertices, {test1, test2}];

seq = sequence; per = period;

adjacent = True;

While[a <= Length[freevert],

If[ChanceAtAdjacency[test1, test2, freevert[[a]], sequence,

period], a++, a = Length[freevert] + 1]]; adjacent);

DrawMeATree[sequence_, period_] := (

itin = sequence;

perd = period;

PartitionPoints[itin, perd];

Unplaced = T1;

Unchecked = {0};

HubbardTree = {};

While[Unplaced != {},

test = First[Unchecked];

filler = 1;

nonewmatches = True;

While[filler <= Length[Unplaced],

If[AreTheseAdjacent[test, Unplaced[[filler]], T1, itin, perd],

nonewmatches = False;

If[IntegerQ[Unplaced[[filler]]] \[And] IntegerQ[test],

AppendTo[HubbardTree, test -> Unplaced[[filler]]],

If[IntegerQ[test],

AppendTo[HubbardTree, test -> Unplaced[[filler]][[2, 1]] ],

If[IntegerQ[Unplaced[[filler]]],

AppendTo[HubbardTree, test[[2, 1]] -> Unplaced[[filler]]],

AppendTo[HubbardTree,

test[[2, 1]] -> Unplaced[[filler]][[2, 1]]]]]];

AppendTo[Unchecked, Unplaced[[filler]]];

Unplaced = Drop[Unplaced, {filler}],

filler++]];

If[IntegerQ[test] == False \[And] nonewmatches == True,

HubbardTree = DeleteCases[HubbardTree, (_ -> test[[2, 1]])]];

Unchecked = Drop[Unchecked, 1]];

Unplaced = T0;

Unchecked = {0};

While[Unplaced != {},

test = First[Unchecked];

filler = 1;
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nonewmatches = True;

While[filler <= Length[Unplaced],

If[AreTheseAdjacent[test, Unplaced[[filler]], T0, itin, perd],

nonewmatches = False;

If[IntegerQ[Unplaced[[filler]]] \[And] IntegerQ[test],

AppendTo[HubbardTree, test -> Unplaced[[filler]]],

If[IntegerQ[test],

AppendTo[HubbardTree, test -> Unplaced[[filler]][[2, 1]] ],

If[IntegerQ[Unplaced[[filler]]],

AppendTo[HubbardTree, test[[2, 1]] -> Unplaced[[filler]]],

AppendTo[HubbardTree,

test[[2, 1]] -> Unplaced[[filler]][[2, 1]]]]]];

AppendTo[Unchecked, Unplaced[[filler]]];

Unplaced = Drop[Unplaced, {filler}],

filler++]];

If[IntegerQ[test] == False \[And] nonewmatches == True,

HubbardTree = DeleteCases[HubbardTree, (_ -> test[[2, 1]])]];

Unchecked = Drop[Unchecked, 1]];

GraphPlot[HubbardTree, VertexLabeling -> True,

Method -> SpringElectricalEmbedding])

(*****INSTRUCTIONS AND EXAMPLES BELOW*****)

(*Run DoubleCheck on the sequence to confirm whether or not the \

kneading sequence is in the right format and/or that it is an \

admissable sequence. Give itinerary in 1s, 0s, and -1s [where -1 \

represents *], followed by the period/preperiod of the sequence. \

DoubleCheck will tell you to stop if the sequence is inadmissible for \

a Hubbard tree, or will make an attempt at fixing the period on the \

given sequence to make it admissible.*)

DoubleCheck[{1, 0, 1, 0, 1, 0}, 2]

(*Returns "Periodic! Stop!" This sequence is periodic, which \

implies * (or here, -1) should be on the periodic orbit. Since the \

sequence is not expressed in an appropriate format, it is \

inadmissible.*)

DoubleCheck[{0, 1, 1, 1, 0, 1}, 3]

(*Returns "Sequence starts with 0! Stop!" Per our naming \

scheme for T_ 0 and T_ 1, the first point after the critical point \

should fall in T_ 1 and thus should have first digit 1. Thus, the \

sequence is inadmissible.*)
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DoubleCheck[{1, -1}, 34983]

(*Returns "{{1,-1},2}". Doublecheck \

simplifies sequences and their periods where possible.*)

DoubleCheck[{1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0}, 2]

(*Returns "{{1,1,0},2}". Again, DoubleCheck simplifies \

sequences and their periods where possible.*)

DrawMeATree[{1,1,0},2]

(*Once you run DoubleCheck, DrawMeATree takes similar input--the \

itinerary followed by it’s period or preperiod. The above command \

yields following graphic.*)

Figure A.1: The resulting output of DrawMeATree[{1,1,0},2].
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Appendix B

Supporting claims for Subsection 3.2.2

The following require application of Bruin and Schleicher’s degenerate triod test. Note that
here, any coordinate labeled ck refers to a point on the Hubbard tree for f 1

4(2n−1)
, and any

coordinate labeled dk refers to a point on the Hubbard tree for f
−

1
8(2n−1)

, as defined in Section

3.2.2. These trees are determined in Section 3.2.2 to have a structure as given in Figure B.1.
We will assume for the following lemmas that we work in the n ≥ 2 case as proposed for the
main theorem of Section 3.2.2.

Figure B.1: The embedded Hubbard trees T 1
4(2n−1)

(left) and T
−

1
8(2n−1)

(right).

Lemma B.1. The non-postcritical preimage of d2 is not contained in T
−

1
8(2n−1)

.

Proof. Per Figure B.1, we have that d2 has itinerary 111...10´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
n+2 digits

, and d1 has itinerary 1111...10´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+3 digits

.

Thus, the non-postcritical preimage of d2 must have itinerary 0111...10´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+3 digits

. We will call this

point d∗1.
Since d∗1 has an itinerary starting with 0, it is contained in T ′

0. We will test to see whether
the critical point d0, d∗1, and dn+3 form a degenerate triod. (Since T ′

0 contains only degenerate
triods, if we obtain a nondegenerate triod, d∗1 is not on the tree.)
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[d0, d∗1, dn+3] (Located respectively in {⋆′}, T ′

0, T
′

0. We may iterate forward.)
[d1, d2, d4] (Located respectively in T ′

1, T
′

1, T
′

1.)
Since n ≥ 2, Figure B.1 shows that this triod is a nondegenerate triod in T ′

1. Since we
have mapped forward to a nondegenerate triod, [d0, d∗1, dn+3] must be nondegenerate. Thus,
d∗1 is not on the Hubbard tree T

−
1

8(2n−1)
.

The following proofs follow an essentially similar structure in showing that the points in
question form a nondegenerate triod with the critical point and postcritical point of T0 or
T ′

0. Since T0 and T ′

0 are degenerate subcomponents of T 1
4(2n−1)

and T
−

1
8(2n−1)

respectively, this

implies that the point in question is off-tree.

Lemma B.2. The point c∗
−1 with itinerary 0 ⋆ 111...10´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

n+2 digits

on the Julia set of f 1
4(2n−1)

is not

contained in T 1
4(2n−1)

.

Proof. Since c∗
−1 has an itinerary starting with 0, it is contained in T0. We will test to see

whether c∗
−1, the critical point c0, and cn+2 form a degenerate triod.

[c∗
−1, c0, cn+2] (Located respectively in T0,{⋆}, T0. We may iterate forward.)

[c0, c1, c3] (Located respectively in {⋆}, T1, T1.
Since n ≥ 2, Figure B.1 shows that this triod is a nondegenerate triod in T1. Since we have

mapped forward to a nondegenerate triod, the original triod must have been nondegenerate.
Thus, c∗

−1 is not on the Hubbard tree T 1
4(2n−1)

.

Lemma B.3. The points {d∗
−k−1}n−2k=0 with itinerary 0 1...1±

k digits

⋆1111...10´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+3 digits

on the Julia set of

f
−

1
8(2n−1)

are not contained in T
−

1
8(2n−1)

.

Proof. Let k ∈ {0, ..., n − 2}. Since d∗
−k−1 has an itinerary starting with 0, it is contained in

T ′

0. We will test to see whether d∗
−k−1, the critical point d0, and dn+3 form a degenerate triod.

[d∗
−k−1, d0, dn+3] (Located respectively in T ′

0,{⋆′}, T ′

0. We may iterate forward.)
[d−k, d1, d4] (Located respectively in T ′

1, T
′

1, T
′

1. We may iterate forward.)
...
[d−1, dk, dk+3] (Located respectively in T ′

1, T
′

1, T
′

1. We may iterate forward.)
[d0, dk+1, dk+4] (Located respectively in {⋆′}, T ′

1, T
′

1.)
Since k ∈ {0, ..., n − 2}, Figure B.1 shows that this triod is a nondegenerate triod in T ′

1.
Since we have mapped forward to a nondegenerate triod, the original triod must have been
nondegenerate. Thus, d∗

−k−1 is not on the Hubbard tree T
−

1
8(2n−1)

.

Lemma B.4. The point c∗
−n−1 with itinerary 0 1...1±

n digits

⋆111...10´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
n+2 digits

on the Julia set of f 1
4(2n−1)

is

not contained in T 1
4(2n−1)

.
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Proof. Since c∗
−n−1 has an itinerary starting with 0, it is contained in T0. We will test to see

whether c∗
−1, the critical point c0, and cn+2 form a degenerate triod.

[c∗
−n−1, c0, cn+2] (Located respectively in T0,{⋆}, T0. We may iterate forward.)

[c−n, c1, c3] (Located respectively in T1, T1, T1. We may iterate forward.)
...
[c−2, cn−1, cn+1] (Located respectively in T1, T1, T1. We may iterate forward.)
[c−1, cn, cn+2] (Located respectively in T1, T1, T0. We must chop at the third coordinate.)
[c−1, cn, c0] (Located respectively in T1, T1,{⋆}. We may iterate forward.)
[c0, cn+1, c1] (Located respectively in {⋆}, T1, T1.)
Figure B.1 shows that this triod is nondegenerate in T1. Since we have mapped forward

to a nondegenerate triod, the original triod must have been nondegenerate. Thus, c∗
−n−1 is

not on the Hubbard tree T 1
4(2n−1)

.

Lemma B.5. The point d∗
−n−1 with itinerary 0 1...1±

n digits

⋆1111...10´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+3 digits

on the Julia set of f
−

1
8(2n−1)

is not contained in T
−

1
8(2n−1)

.

Proof. Since d∗
−n−1 has an itinerary starting with 0, it is contained in T ′

0. We will test to see
whether d∗

−n−1, the critical point d0, and dn+3 form a degenerate triod.
[d∗

−n−1, d0, dn+3] (Located respectively in T ′

0,{⋆′}, T ′

0. We may iterate forward.)
[d−n, d1, d4] (Located respectively in T ′

1, T
′

1, T
′

1. We may iterate forward.)
...
[d−2, dn−1, dn+2] (Located respectively in T ′

1, T
′

1, T
′

1. We may iterate forward.)
[d−1, dn, dn+3] (Located respectively in T ′

1, T
′

1, T
′

0. We must chop at the third coordinate.)
[d−1, dn, d0] (Located respectively in T ′

1, T
′

1,{⋆′}. We may iterate forward.)
[d0, dn+1, d1] (Located respectively in {⋆′}, T ′

1, T
′

1.)
Figure B.1 shows that this triod is a nondegenerate triod in T ′

1. Since we have mapped
forward to a nondegenerate triod, the original triod must have been nondegenerate. Thus,
d∗
−n−1 is not on the Hubbard tree T

−
1

8(2n−1)
.

Lemma B.6. The point d∗
−n−2 with itinerary 0 1...1±

n+1 digits

⋆1111...10´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+3 digits

on the Julia set of f
−

1
8(2n−1)

is not contained in T
−

1
8(2n−1)

. Further, The point c∗
−n−3 with itinerary 0 1...1±

n+2 digits

⋆111...10´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
n+2 digits

on

the Julia set of T 1
4(2n−1)

is not contained in T 1
4(2n−1)

.

Proof. First, we’ll examine d∗
−n−2 . Since d∗

−n−2 has an itinerary starting with 0, it is contained
in T ′

0. We will test to see whether d∗
−n−2 the critical point d0, and dn+3 form a degenerate

triod.
[d∗

−n−2, d0, dn+3] (Located respectively in T ′

0,{⋆′}, T ′

0. We may iterate forward.)
[d−n−1, d1, d4] (Located respectively in T ′

1, T
′

1, T
′

1. We may iterate forward.)
...
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[d−3, dn−1, dn+2] (Located respectively in T ′

1, T
′

1, T
′

1. We may iterate forward.)
[d−2, dn, dn+3] (Located respectively in T ′

1, T
′

1, T
′

0. We must chop at the third coordinate.)
[d−2, dn, d0] (Located respectively in T ′

1, T
′

1,{⋆′}. We may iterate forward.)
[d−1, dn+1, d1] (Located respectively in T ′

1, T
′

1, T
′

1. We may iterate forward.)
[d0, dn+2, d2] (Located respectively in {⋆′}, T ′

1, T
′

1.)
Figure B.1 shows that this triod is a nondegenerate triod in T ′

1. Since we have mapped
forward to a nondegenerate triod, the original triod must have been nondegenerate. Thus,
d∗
−n−2 is not on the Hubbard tree T

−
1

8(2n−1)
.

Now, we may examine c∗
−n−3. Since c∗

−n−3 has an itinerary starting with 0, it is contained
in T0. We will test to see whether c∗

−n−3, the critical point c0, and cn+2 form a degenerate
triod.

[c∗
−n−3, c0, cn+2] (Located respectively in T0,{⋆}, T0. We may iterate forward.)

[c−n−2, c1, c3] (Located respectively in T1, T1, T1. We may iterate forward.)
...
[c−4, cn−1, cn+1] (Located respectively in T1, T1, T1. We may iterate forward.)
[c−3, cn, cn+2] (Located respectively in T1, T1, T0. We must chop at the third coordinate.)
[c−3, cn, c0] (Located respectively in T1, T1,{⋆}. We may iterate forward.)
[c−2, cn+1, c1] (Located respectively in T1, T1, T1. We may iterate forward.)
[c−1, cn+2, c2] (Located respectively in T1, T0, T1. We must chop at the second coordinate.)
[c−1, c0, c2] (Located respectively in T1,{⋆}, T1. We may iterate forward.)
[c0, c1, c3] (Located respectively in {⋆}, T1, T1.)
Figure B.1 shows that this triod is nondegenerate in T1. Since we have mapped forward

to a nondegenerate triod, the original triod must have been nondegenerate. Thus, c∗
−n−3 is

not on the Hubbard tree T 1
4(2n−1)

.
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