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(ABSTRACT)

Dynamical systems are mathematical models characterized by a set of differential or differ-

ence equations. Model reduction aims to replace the original system with a reduced system of

significantly smaller dimension that still describes the important dynamics of the large-scale

model. Interpolatory model reduction methods define a reduced model that interpolates the

full model at selected interpolation points. The reduced model may be obtained through

a Krylov reduction process or by using the Iterative Rational Krylov Algorithm (IRKA),

which iterates this Krylov reduction process to obtain an optimal H2 reduced model.

This dissertation studies interpolatory model reduction for first-order descriptor systems,

second-order systems, and DAEs. The main computational cost of interpolatory model re-

duction is the associated linear systems. Especially in the large-scale setting, inexact solves

become desirable if not necessary. With the introduction of inexact solutions, however, exact

interpolation no longer holds. While the effect of this loss of interpolation has previously

been studied, we extend the discussion to the preconditioned case. Then we utilize IRKA’s

convergence behavior to develop preconditioner updates.

We also consider the interpolatory framework for DAEs and second-order systems. While



interpolation results still hold, the singularity associated with the DAE often results in

unbounded model reduction errors. Therefore, we present a theorem that guarantees in-

terpolation and a bounded model reduction error. Since this theorem relies on expensive

projectors, we demonstrate how interpolation can be achieved without explicitly computing

the projectors for index-1 and Hessenberg index-2 DAEs. Finally, we study reduction tech-

niques for second-order systems. Many of the existing methods for second-order systems rely

on the model’s associated first-order system, which results in computations of a 2n system.

As a result, we present an IRKA framework for the reduction of second-order systems that

does not involve the associated 2n system. The resulting algorithm is shown to be effective

for several dynamical systems.
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Chapter 1

Introduction

1.1 Linear Dynamical Systems

Dynamical systems are mathematical models characterized by a set of differential or dif-

ference equations which capture the behavior of natural and artificial processes. Today’s

problems often lead to an almost insatiable demand for more precision, requiring a myr-

iad of equations to describe the system. Oftentimes, these dynamical systems may involve

thousands and even millions of equations. Although these complex models may capture the

overall dynamics of the system more accurately, limited computational resources, inaccuracy,

and ill-conditioning often result in these large models being computationally cumbersome or

even intractable to use in a practical setting. Therefore, the original system is replaced with

a reduced system described by a smaller set of equations. The aim of model reduction is to

1
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obtain this reduced system, which will still delineate the important intricacies of the original

system and yet be feasible to use in practice.

1.2 Notation:

Table 1.1: Notation

R
m×n set of real matrices of size m by n

C
m×n set of complex matrices of size m by n

s a complex number in C

AT transpose of A
regardless of whether A is real or complex

span{x1, ...,xl} span of the vectors x1, ...,xl

‖A‖, ‖A‖2 2-induced norm of A
‖A‖F Frobenius norm of A
I Identity matrix of appropriate size
ı

√−1
‖H‖H∞ H∞ norm of H(s)
‖H‖H2 H2 norm of H(s)
Null(M) Null space of M
Ran(M) Range of M

1.3 Model Reduction

We focus primarily on linear multiple-input/multiple-output (MIMO) systems and follow the

exposition of [7]. For an input, u(t), and output, y(t), let ũ(s) and ỹ(s) denote the system

inputs and outputs, respectively, in the Laplace transform domain. Then the state-space
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form of the linear MIMO system is given as

Find ṽ(s) such that K(s) ṽ(s) = B(s)ũ(s), then ỹ(s) :=C(s) ṽ(s) (1.3.1)

where the matrices K(s) ∈ C
n×n, C(s) ∈ C

p×n, B(s) ∈ C
n×m are analytic in the right-half

plane and K(s) is of full rank throughout the right-half plane as well. Using (1.3.1) to solve

for ỹ(s) leads to

ỹ(s) = C(s)K(s)−1B(s)ũ(s) = H(s)ũ(s), (1.3.2)

implying that the transfer function of (1.3.1) is given as

H(s) = C(s)K(s)−1B(s). (1.3.3)

We refer to (1.3.3) as the generalized coprime realization. One of the benefits of this frame-

work is its versatility since MIMO systems with various structures, such as second-order

systems or parametric models, can be described by (1.3.3). For example, a first-order descrip-

tor system, H(s) = C (sE − A)−1 B, with constant matrices E, A ∈ R
n×n, B ∈ R

n×m, and

C ∈ R
p×n is described in this framework by taking C(s) = C, B(s) = B, and K(s) = sE−A.

The dimension of the associated state space is defined to be equal to that of the dimension

of K(s). Since K(s) is an n × n matrix, the dimension of H(s) is n. Since oftentimes n is

so large it renders the model too cumbersome for efficient simulation or control applications,
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the goal of model reduction is to obtain a dynamical system with a state space form as

Find ṽ(s) such that Kr(s)ṽ(s) = Br(s)ũ(s), then ỹr(s) :=Cr(s)ṽ(s) (1.3.4)

where ỹr(s) is the reduced output, Kr(s) ∈ C
r×r, Cr(s) ∈ C

p×r, Br(s) ∈ C
r×m and r � n.

The transfer function of the reduced system is then

Hr(s) = Cr(s)Kr(s)
−1Br(s). (1.3.5)

Since the goal is ultimately to use Hr(s) as a surrogate for H(s), the reduced model needs to

satisfy additional criteria. First, Hr(s) must be obtained in a computationally feasible and

efficient manner even for large-scale dynamical systems. Secondly, system properties and

structure present in the full-order model ideally should also be represented in the reduced

model. Finally and perhaps most importantly, Hr(s) needs to capture the input and output

relationship of the original system. For more details, see [2].

1.4 Model Reduction by Projection and Interpolation

In this section, we describe the Petrov-Galerkin approximation process that leads to a

reduced-order system, Hr(s). Assume Vr and Wr are the right and left modeling r-dimensional

subspaces of R
n with Vr ∩W⊥

r = {0}. For inputs, ũ(s), the reduced output, ỹr(s), is then
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defined as

Find ṽ(s) ∈ Vr such that WT
r (K(s) ṽ(s) − B(s)ũ(s)) = 0 (1.4.1)

then ỹr(s) := C(s) ṽ(s) . (1.4.2)

In the Laplace domain, this projection process results in a reduced transfer function

Hr(s) = Cr(s)Kr(s)
−1Br(s) (1.4.3)

where

Kr(s) = WT
r K(s)Vr ∈ C

r×r, Br(s) = WT
r B(s) ∈ C

p×r,

and Cr(s) = C(s)Vr ∈ C
r×m. (1.4.4)

For interpolatory model reduction, Vr and Wr are defined to enforce certain interpolation

conditions. For the SISO case (m = 1, p = 1), for example, we aim to match certain

moments. The kth moment of H(s) at a point σi ∈ C is defined as the kth derivative of the

transfer function, H(s), evaluated at σi. The aim of model reduction by moment matching

is for the reduced model, Hr(s), to interpolate H(s) and a certain number of its derivatives

at selected interpolation points or shifts, which will be denoted by σk. To achieve Hermite
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interpolation, for example, our goal is to find a reduced-order model, Hr(s), such that

Hr(σk) = H(σk) and H′
r(σk) = H′(σk) for k = 1, ..., r.

In the general MIMO case, the multiple-input and multiple-output structure implies that

the moment matching requirement is too restrictive; instead, we aim to construct reduced-

order models that tangentially interpolate the full-order model. Given a set of interpolation

points {σi}r
i=1 , {μi}r

i=1 ⊂ C and sets of right-tangential directions, {bi}r
i=1 ⊂ C

m, and left-

tangential directions, {ci}r
i=1 ⊂ C

p, we say Hr(s) tangentially interpolates H(s) in the

following sense:

H(σj)bj = Hr(σj)bj cT
i H(μi) = cT

i Hr(μi) for i, j = 1, . . . , r. (1.4.5)

We say that Hr(s) bitangentially interpolates H(s) at μk provided

cT
k H′(μk)bk = cT

k H′
r(μk)bk. (1.4.6)

Naturally, we desire for the process with which we achieve the interpolation to be numerically

robust. Previous research has proven that the computation of moments is extremely ill-

conditioned [39]. Fortunately, the following theorem elucidates a way to achieve (1.4.5) and

(1.4.6) without explicit computation of the interpolated quantities.
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Theorem 1.1. [3] Suppose that B(s), C(s), and K(s) are analytic at σ ∈ C and μ ∈ C.

Also, let K(σ),K(μ), Kr(σ) = WT
r K(σ)Vr, and Kr(μ) = WT

r K(μ)Vr have full rank. Let

nonnegative integers M and N be given as well as nontrivial vectors, b ∈ R
m and c ∈ R

p.

Let the quantity H(m)(σ) denote the mth derivative of H(s) with respect to s evaluated at

s = σ and Dl
σf denote the lth derivative of the univariate function f(s) evaluated at s = σ.

a) If Di
σ[K(s)−1B(s)]b ∈ Ran(Vr) for i = 0, ..., N , then H(l)(σ)b = H(l)

r (σ)b for

l = 0, ..., N.

b) If (cTDj
μ[C(s)K(s)−1])T ∈ Ran(Wr) for j = 0, ...,M , then cT H(l)(μ) = cT H(l)

r (μ) for

l = 0, ...,M.

c) If (a) and (b) hold with σ = μ, then cT H(l)(σ)b = cT H(l)
r (σ)b for l = 0, ...,M + N + 1.

To implement this theorem so that Hermite interpolation is achieved, for example, the ma-

trices are constructed as:

Vr = [ v1, · · · , vr ] =
[

K(σ1)
−1B(σ1)b1, · · · , K(σr)

−1B(σr)br

]
, (1.4.7)

WT
r =

⎡
⎢⎢⎢⎢⎢⎢⎣

wT
1

...

wT
r

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cT
1 C(σ1)K(σ1)

−1

...

cT
r C(σr)K(σr)

−1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (1.4.8)

Deflating Vr and Wr if necessary, we will assume Vr and Wr to be full-rank. The reduced-

order model Hr(s) = Cr(s)Kr(s)
−1Br(s) is then defined by (1.4.4) using Vr and Wr as

defined in (1.4.7) - (1.4.8). From Theorem 1.1, Hr(s) tangentially interpolates H(s) as
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defined in (1.4.5) and (1.4.6).

1.5 H2 and H∞ Norms

Throughout this dissertation, we will use the H2 and H∞ norms. The H2 norm is defined as

‖H‖H2 :=

(
1

2π

∫ ∞

−∞
‖H(ıω)‖2

F dω

)1/2

. (1.5.1)

For more details, see [2].

The H2 norm is one way to evaluate the performance of the reduced-order model. In order

for Hr(s) to be of practical use, we desire Hr(s) to capture the relationship between the

input and output of the system, namely we want maxt>0 ‖y(t) − yr(t)‖∞ to be uniformly

small over all inputs u(t). As shown in [47], assuming u(t) is such that
∫∞

0
‖u(t)‖2

2dt ≤ 1,

then

max
t>0

‖y(t) − yr(t)‖∞ ≤ ‖H − Hr‖H2 (1.5.2)

with equality holding for the SISO case. Therefore, to minimize maxt>0 ‖y(t)− yr(t)‖∞, we

want ‖H−Hr‖H2 to be minimized. Assuming that H(s) is a stable dynamical system, the
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H∞ norm is defined as

‖H‖H∞ := sup
ω

‖H(ıω)‖2.

For first-order descriptor systems, K(s) = sE − A, such that E is singular, 0 must be a

nondefective eigenvalue of E so that H(s) remains bounded at ∞. One advantage of the

H∞ norm is its ability to capture the physical properties of the system. If we assume that

‖H − Hr‖H∞ ≤ α where α is a positive scalar, then

‖H − Hr‖H∞ = sup
u�=0

‖y − yr‖L2

‖u‖L2

≤ α.

For SIMO (m = 1) and MISO (p = 1) systems, a similar relationship also holds in the H2

norm:

‖H − Hr‖H2 = sup
u�=0

‖y − yr‖L∞

‖u‖L2

.

In this way, the H∞ and H2 norms describe the input and output relationship of the error

system. While both norms provide metrics for the fidelity of the reduced models, we will be

especially interested in the H2 norm and the associated optimal H2 model reduction problem

as discussed in the next section.
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1.6 Interpolation using H2 Optimality Conditions

For the optimal H2 model reduction problem, we consider the case when K(s) = sE−A in

the generalized coprime realization, implying that we aim to reduce a full-order system of

the form:

H(s) :

⎧⎪⎪⎨
⎪⎪⎩

Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t),

(1.6.1)

where E,A ∈ R
n×n,B ∈ R

n×m, and C ∈ R
p×n. Given a system H(s) as in (1.6.1), the aim

of optimal H2 model reduction is to find a reduced-order system, Hr(s), such that

Hr(s) = min
deg(Ĥr)=r

Ĥ:stable

‖H(s) − Ĥr(s)‖H2 . (1.6.2)

The significance of constructing a reduced-order model Hr(s) which satisfies (1.6.2) follows

from (1.5.2); by finding a reduced-order system that minimizes the H2 error, the maximum

difference between the outputs y(t) and yr(t) is as small as possible. This is an extremely

important feature for our reduced-order model to possess since the reduced-order model

needs to capture the relationship between the input and output of the original model. To

obtain the model that satisfies (1.6.2), we first present two results for SISO systems without

proof. The proofs may be found in [45], [47] and [62].

Theorem 1.2. [45] Given the full-order SISO model H(s) and a reduced-order model Hr(s),

let λi and λ̂j be the poles of H(s) and Hr(s), respectively. Suppose that the poles of Hr(s)
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are distinct. Let Φi and Φ̂j denote the residues of the transfer functions H(s) and Hr(s) at

their poles λi and λ̂j, respectively: Φi = res[H(s), λi], i = 1, ..., n and Φ̂j = res[Hr(s), λ̂j],

j = 1, ..., r. The H2 norm of the error system is given by

‖H(s) − Hr(s)‖2
H2

=
n∑

i=1

Φi(H(−λi) − Hr(−λi)) +
r∑

j=1

Φ̂i(Hr(−λ̂j) − H(−λ̂j)).

Theorem 1.2 describes the relationship between the H2 error and the poles of both H(s) and

Hr(s). To minimize ‖H(s) − Hr(s)‖H2 , we want Hr(s) to match H(s) at both the reflected

poles of H(s) and at the mirror images of its own poles. While Gugercin and Antoulas in [46]

illustrated the benefits of choosing the interpolation points, σi, to be the mirror images of the

poles of H(s) associated with the larger residuals, [47] proves that the second term of the sum

is actually more important. In fact, [47] shows that the optimal selection of interpolation

points, σi, is σi = −λ̂i. Therefore, Theorem 1.2 shows the important connection between

the poles of the full and reduced-order models. The next theorem also reflects the pivotal

importance of the reduced-order model’s poles.

Theorem 1.3. Meier-Luenberger [62] Let H(s) be the full-order SISO system and Hr(s) be

a minimizer for ‖H(s) − Hr(s)‖H2 with the simple poles of Hr(s) denoted by λ̂k. Then

H(−λ̂k) = Hr(−λ̂k) and H ′(−λ̂k) = H ′
r(−λ̂k) for k = 1, ..., r.

The Meier-Luenberger conditions as stated in Theorem 1.3 provide the first-order necessary
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conditions for H2 optimality, namely for a reduced-order model to satisfy (1.6.2), Hermite

interpolation of H(s) must occur at the mirror images of the poles of Hr(s). For the MIMO

case, first-order necessary conditions have been derived as discussed in [47], [76], and [25].

Below we state a theorem for the first-order necessary conditions in the MIMO case as

presented and proved in [47].

Theorem 1.4. [47] Suppose H(s) and Hr(s) are real stable dynamical systems. Let

Hr(s) =
r∑

i=1

1

s − λ̂i

cib
T
i

where
{

λ̂i

}r

i=1
and

{
cib

T
i

}r

i=1
are the simple poles and residues of Hr(s), respectively. Fur-

thermore, if Hr(s) satisfies

Hr(s) = min
deg(Ĥr)=r

Ĥ:stable

‖H(s) − Ĥr(s)‖H2 , (1.6.3)

then for i = 1, 2, ..., r

1) H(−λ̂i)bi = Hr(−λ̂i)bi

2) cT
i H(−λ̂i) = cT

i Hr(−λ̂i)

3) cT
i H′(−λ̂i)bi = cT

i H′
r(−λ̂i)bi.
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1.7 Optimal H2 Model Reduction

A plethora of research has shown that finding a global minimizer for the H2 error is an

extremely arduous process. While the existence of a global minimizer for the SISO case

is guaranteed, a similar guarantee has yet to be proven for the MIMO case [47]. As a

result, the common method is to focus on fulfilling only the first-order conditions for H2

optimality. Unfortunately, most of these methods rely on the computation of dense matrix

operations. See [81], [70], [23], [62], [53], and [80] for more details. Especially for large-

scale dynamical systems, the expensive computations involved often make these methods

not practical. To circumvent these issues, Gugercin et al. in [47] proposed the “Iterative

Rational Krylov Algorithm” (IRKA), which employs iterative rational Krylov steps such

that upon convergence the first-order necessary conditions are satisfied. The key feature of

IRKA is its ability to satisfy the first-order necessary conditions without explicitly computing

solutions of the expensive Lyapunov equations. IRKA iterates the Krylov reduction process

and assigns σi ← −λi(Ar,Er) as the new interpolation points until the iteration converges

to the optimal shift selection as defined by the first-order necessary conditions. For more

details about the theoretical motivation behind the algorithm, see [47].

Algorithm 1.7.1. [47] IRKA for MIMO H2 Optimal Tangential Interpolation

1. Make an initial shift selection σi for i = 1, . . . , r and initial tangent directions b1, ...,br

and c1, ..., cr.

2. Vr = [ (σ1E − A)−1Bb1, · · · , (σrE − A)−1Bbr ] .
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3. Wr =
[

(σ1E − A)−TCTc1, · · · , (σrE − A)−TCTcr

]
.

4. while (not converged)

(a) Ar = WT
r AVr, Er = WT

r EVr, Br = WT
r B, Cr = CVr.

(b) Compute YTArX = diag(λi) and YTErX = Ir where YT and X are left and

right eigenvectors of λEr − Ar.

(c) σi ←− −λi(Ar,Er) for i = 1, . . . , r, bT
i ←− eT

i YTBr, and cT
i ←− CrXei.

(d) Vr = [ (σ1E − A)−1Bb1, · · · , (σrE − A)−1Bbr ] .

(e) Wr =
[

(σ1E − A)−TCTc1, · · · , (σrE − A)−TCTcr

]
.

5. Ar = WT
r AVr, Er = WT

r EVr, Br = WT
r B, Cr = CVr.

Since the eigenvalue problem is of dimension r, the main cost of IRKA is the solution of the

2r linear systems at each iteration. Especially in a large-scale setting, inexact solves will

need to be employed in solving these systems. Using inexact solves creates new concerns

since exact Hermite interpolation of H(s) will no longer hold.

1.8 Dissertation Goals and Organization

The main aim of this dissertation is to contribute to the study of interpolatory model reduc-

tion. Chapter 2 continues the discussion of [7] and extends the results to the cases when left,

right or split preconditioning are implemented in the inexact solve. While the upper bounds
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for the subspace angles and pointwise error are similar for all preconditioning techniques, the

backward error result for the unpreconditioned case does not trivially extend to the precon-

ditioned case. Instead, the results of Chapter 2 prove that for left and right preconditioning,

a backward error result similar to [7] does not hold unless unique orthogonality conditions,

which are not readily available in iterative methods, are imposed. In addition, this chapter

proves that the backward error result requiring a Petrov-Galerkin framework holds when

split preconditioning is employed. Due to the importance of preconditioning, Chapter 3 1

develops preconditioning techniques that utilize the convergence of the shifts in the IRKA

iteration. Two update methods are studied, namely sparse approximate inverse precondi-

tioners (SAI) and a preconditioner update technique as proposed in [11]. We consider the

theoretical properties of these updates as well as presenting a numerical study of the updates

applied to the reduction of three dynamical systems.

In the remaining chapters, we focus on implementing IRKA for different types of dynam-

ical systems, namely DAEs and second-order systems. Chapter 4 considers the reduction

of DAEs, where the singular E matrix may potentially cause unbounded model reduction

errors when existing interpolatory methods are employed. To remedy this, we present a new

interpolation result and an algorithm for the reduction of DAEs. While this algorithm proves

to be effective, it depends on projectors that are computationally expensive. As a result, the

remainder of the chapter is devoted to theoretically and numerically illustrating how the ex-

plicit computation of the projectors can be circumvented for index-1 and Hessenberg index-2

DAEs. Finally, Chapter 5 presents an algorithm for the reduction of second-order systems

1Chapter 3 is the result of collaboration with Dr. Eric de Sturler.
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using the IRKA framework. The resulting algorithm is not just a trivial extension of IRKA

as there are several implementation issues introduced with the second-order structure. We

consider these issues and conclude with a numerical study of four models, which illustrates

the competitiveness of the proposed algorithm in comparison to existing methods. There-

fore, this dissertation offers a significant contribution to the study of first-order descriptor

systems, second-order systems and DAEs in the interpolatory framework.



Chapter 2

Preconditioned Iterative Solves in

Model Reduction

For interpolatory model reduction methods, the main cost emanates from the construction of

the matrices Vr and Wr, which requires the solution of 2r systems. Although interpolatory

methods assume that the systems are solved directly, the need for more accuracy often

augments the dimension of the dynamical system to the point where direct solves become

computationally infeasible. Since K(s) is typically sparse, this is an ideal setting in which to

employ iterative methods, such as GMRES and BiCG. For more details about these solvers,

see [69], [32], [41], [5], and [74]. However, the introduction of inexact solves implies exact

interpolation of the full-order model no longer holds. Hence, we wish to quantify the effect

of these inexact solves on the overall model reduction procedure. Suppose that v̂j and ŵi

17



Sarah Wyatt Chapter 2. Preconditioned Iterative Solves in Model Reduction 18

are approximate solutions to the linear systems

K(σj)vj = B(σj)bj (2.0.1)

K(μi)
T wi = C(μi)

T ci (2.0.2)

with corresponding residuals ηj and ξi defined as

ηj = K(σj)v̂j − B(σj)bj and ξi = K(μi)
T ŵi − C(μi)

T ci. (2.0.3)

We denote the resulting inexact matrices by

V̂r = [ v̂1, · · · , v̂r ] and ŴT
r =

⎡
⎢⎢⎢⎢⎢⎢⎣

ŵT
1

...

ŵT
r

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.0.4)

Then the inexact reduced-order model is given by

Ĥr(s) = Ĉr(s)K̂r(s)
−1B̂r(s),

where

K̂r(s) = ŴT
r K(s)V̂r, B̂r(s) = ŴT

r B(s), and Ĉr(s) = C(s)V̂r. (2.0.5)
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In [7], the effect of unpreconditioned inexact solves in this framework was examined. The aim

of our work is to extend the results of [7] to the preconditioned case. In Section 2.1, we define

the notation for the different types of preconditioning techniques considered, namely left,

right and split preconditioning. Using this notation, we closely follow the exposition of [7] to

extend the upper bounds for the subspace angle and pointwise errors to the preconditioned

case in Section 2.2 and Section 2.3. While the pointwise and subspace angle upper bounds

are similar to those as in the unpreconditioned case, the backward error result of [7] does

not trivially extend to the preconditioned case. As a result, the remainder of the chapter is

devoted to stating and proving the orthogonality conditions required for the backward error

results in the left, right and split preconditioning cases. For left and right preconditioning,

a backward error result similar to the one obtained in [7] requires a special orthogonality

condition, which can not be easily implemented in existing iterative solve methods. However,

we will conclude the chapter by proving that a Petrov-Galerkin framework combined with a

split preconditioner provides a similar backward error result as shown in [7].

2.1 Preconditioning Techniques

To improve the convergence of the linear solve, a preconditioner is often used. The aim of

preconditioning a linear system, Mg = h, is to find a matrix P such that the preconditioned

system has superior convergence properties, namely the eigenvalues of the preconditioned

system are clustered, ideally away from the origin. In solving the linear system, there are
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three common types of preconditioning, namely left preconditioning, right preconditioning

and split preconditioning. With left preconditioning, we compute a preconditioner P and

then solve the preconditioned system P−1Mg = P−1h. For right preconditioning, we solve

MP−1y = h, and then the solution to the unpreconditioned linear system is given by

g = P−1y. Finally, split preconditioning can be employed; for example, if P = LU, then

we solve L−1MU−1u = L−1h and the solution to the unpreconditioned system is given by

g = U−1u.

Applying split preconditioning in the context of interpolatory model reduction, we let

N = LU be a preconditioner and let v̂j = U−1
j ûj and ŵj = L−T

j ẑj be the inexact solutions

for the split preconditioned systems,

L−1
j K(σj)U

−1
j uj = L−1

j B(σj)bj (2.1.1)

U−T
j K(σj)

TL−T
j zj = U−T

j C(σj)
Tcj (2.1.2)

with associated residuals

ηj = L−1
j K(σj)U

−1
j ûj − L−1

j B(σj)bj (2.1.3)

ξj = U−T
j K(σj)

TL−T
j ẑj − U−T

j C(σj)
Tcj. (2.1.4)
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If left preconditioning is applied to (2.0.1) and (2.0.2), then we define v̂j and ŵj to be the

inexact solutions for the left preconditioned systems

N−1
j K(σj)vj = N−1

j B(σj)bj (2.1.5)

N−T
j K(σj)

Twj = N−T
j C(σj)

Tcj (2.1.6)

with associated residuals

ηj = N−1
j K(σj)v̂j − N−1

j B(σj)bj (2.1.7)

ξj = N−T
j K(σj)

T ŵj − N−T
j C(σj)

Tcj. (2.1.8)

If right preconditioning is applied, then we let v̂j and ŵj be the inexact solutions for the

right preconditioned systems

K(σj)R
−1yj = B(σj)bj where vj = R−1yj (2.1.9)

K(σj)
TR−Tzj = C(σj)

Tcj where wj = R−Tzj (2.1.10)
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with associated residuals

ηj = K(σj)R
−1ŷj − B(σj)bj (2.1.11)

ξj = K(σj)
TR−T ẑj − C(σj)

Tcj. (2.1.12)

For all preconditioning techniques, we denote the resulting inexact matrices by

V̂r = [ v̂1, · · · , v̂r ] and ŴT
r =

⎡
⎢⎢⎢⎢⎢⎢⎣

ŵT
1

...

ŵT
r

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2.1.13)

and the inexact reduced-order model as

Ĥr(s) = Ĉr(s)K̂r(s)
−1B̂r(s).

2.2 Upper Bounds for Subspace Angles

Since the range of the matrices in (1.4.7) - (1.4.8) or (2.1.13) ultimately determines the

reduced-order model, we are interested in establishing the relationship between the inexact

and exact spaces. In general, if X and Y are subspaces of C
n, then the angle between

subspaces Θ(X ,Y) is defined as
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supx∈X infy∈Y
‖y−x‖
‖x‖ = sin(Θ(X ,Y)).

For the unpreconditioned case, an upper bound for the subspace angles, sin Θ(V̂r, Vr) and

sin Θ(Ŵr, Wr), where Vr, V̂r,Wr, and Ŵr are the subspaces associated with the matrices

Vr, V̂r,Wr,Ŵr, was given in [7]. The next three theorems illustrate that the result of [7]

can be extended to the preconditioned case. We begin by presenting the theorem and proof

for the case of split preconditioning using the same notation and reasoning as in [7]. The

results and proofs associated with left and right preconditioning follow similarly; hence, we

only state the result.

Theorem 2.1. Let the columns of Vr, V̂r, Wr and Ŵr be exact and approximate solutions

to (2.1.1) and (2.1.2). Suppose approximate solutions are computed to a relative tolerance

of ε using split preconditioning, so that the associated residuals, ηi and ξi as defined in

(2.1.3) and (2.1.4), satisfy ‖ηi‖ ≤ ε‖L−1
i B(σi)bi‖ and ‖ξi‖ ≤ ε‖U−T

i C(σi)
Tci‖. Denoting

the associated subspaces as Vr,Wr, V̂r, and Ŵr, then

sin Θ(V̂r, Vr) ≤ ε
√

r

ςmin(V̂rDu)
(2.2.1)

sin Θ(Ŵr, Wr) ≤ ε
√

r

ςmin(ŴrDz)
(2.2.2)

where Du = diag
(
(‖K(σ1)

−1L1‖‖L−1
1 B(σ1)b1‖)−1, . . . , (‖K(σr)

−1Lr‖‖L−1
r B(σr)br‖)−1

)
,
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Dz = diag
(
(‖K(σ1)

−TUT
1 ‖‖U−T

1 C(σ1)
Tc1‖)−1, . . . , (‖K(σr)

−TUT
r ‖‖U−T

r C(σr)
Tcr‖)−1

)
, and

sin Θ(V̂r, Vr) ≤ ε
√

r

ςmin(V̂rD̃u)
max

i
‖U−1

i ‖κ2

(
L−1

i K(σi)U
−1
i , ûi

)
(2.2.3)

sin Θ(Ŵr, Wr) ≤ ε
√

r

ςmin(ŴrD̃z)
max

i
‖L−T

i ‖κ2

(
U−T K(σi)

TL−T , ẑi

)
(2.2.4)

where D̃u = diag (1/‖û1‖, . . . , 1/‖ûr‖), D̃z = diag (1/‖ẑ1‖, . . . , 1/‖ẑr‖),

the quantities κ2

(
L−1

i K(σi)U
−1
i , ûi

)
=

‖(UiK(σi)
−1Li‖ ‖L−1

i B(σi)bi‖
‖ûi‖ and

κ2

(
U−T

i K(σi)
TL−T

i , ẑi

)
=

‖(LT
i K(σi)

−T UT
i ‖ ‖U−T

i C(σi)
T ci‖

‖ẑi‖ are the condition numbers of the ith

linear system, and ςmin(M) is the smallest singular value of the matrix M.

Proof. Since the proofs are similar, we will only prove (2.2.1) and (2.2.3) by following an

analogous argument as seen in [7].

Write V̂r = Vr + E with E = [K(σ1)
−1L1η1, . . . ,K(σr)

−1Lrηr]. Then

sin Θ(V̂r, Vr) = max
v̂∈V̂r

min
v∈Vr

‖v − v̂‖
‖v̂‖

= max
xi

min
zi

‖∑r
i=1 ziK(σi)−1B(σi)bi −

∑r
i=1 xiv̂i‖

‖∑r
i=1 xiv̂i‖

= max
xi

min
zi

‖∑r
i=1(zi − xi)K(σi)−1B(σi)bi − xiK(σi)−1Liηi‖

‖∑r
i=1 xiv̂i‖

≤ max
xi

‖∑r
i=1 xiK(σi)−1Liηi‖
‖∑r

i=1 xiv̂i‖ = max
x

‖Ex‖
‖V̂rx‖

= max
x

‖EDx‖
‖V̂rDx‖

where D = diag(d1, . . . , dr) is a positive definite diagonal matrix. We may bound the
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numerator as follows:

‖EDx‖ ≤‖ED‖ ‖x‖ ≤ √
r ‖x‖ max

i

(
di‖K(σi)

−1Liηi‖
)

≤ √
r ‖x‖ max

i

(
di‖K(σi)

−1Li‖ ‖ηi‖
)
.

This gives

sin Θ(V̂r, Vr) ≤
√

r
maxi

(
di‖K(σi)−1Li‖ ‖ηi‖

)
minx

(
‖V̂rDx‖/‖x‖

) =
√

r
maxi

(
di‖K(σi)−1Li‖ ‖ηi‖

)
ςmin(V̂rD)

. (2.2.5)

While this bound holds for any di, we cite the Column Equilibration Theorem of van der

Sluis [75] to argue that the optimal choice of the diagonal constant will satisfy

di‖K(σi)
−1Li‖ ‖ηi‖ = C

where the constant C is independent of i = 1, . . . , r. Since the residuals satisfy ‖ηi‖ ≈

ε ‖L−1
i B(σi)bi‖, we take C = ε and di =

(‖K(σi)
−1Li‖ ‖L−1

i B(σi)bi‖
)−1

to achieve the best

bound. This leads to (2.2.1). To obtain a more computationally feasible upper bound, we

may define the diagonal matrix D to be D̃u = diag (1/‖û1‖, . . . , 1/‖ûr‖), which leads to

(2.2.3).

Theorem 2.2. Let the columns of Vr, V̂r, Wr and Ŵr be exact and approximate solutions

to (2.1.5) and (2.1.6). Suppose approximate solutions are computed to a relative tolerance

of ε, so that the associated residuals, ηi and ξi as defined in (2.1.7) and (2.1.8), satisfy
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‖ηi‖ ≤ ε‖N−1
i B(σi)bi‖ and ‖ξi‖ ≤ ε‖N−T

i C(σi)
Tci‖. Denoting the associated subspaces as

Vr,Wr, V̂r, and Ŵr, then

sin Θ(V̂r, Vr) ≤ ε
√

r

ςmin(V̂rDv)
(2.2.6)

sin Θ(Ŵr, Wr) ≤ ε
√

r

ςmin(ŴrDw)
(2.2.7)

where Dv = diag
(
(‖K(σ1)

−1N1‖‖N−1
1 B(σ1)b1‖)−1, . . . , (‖K(σr)

−1Nr‖‖N−1
r B(σr)br‖)−1

)
,

Dw = diag
(
(‖K(σ1)

−TNT
1 ‖‖N−T

1 C(σ1)
Tc1‖)−1, . . . , (‖K(σr)

−TNT
r ‖‖N−T

r C(σr)
Tcr‖)−1

)
, and

sin Θ(V̂r, Vr) ≤ ε
√

r

ςmin(V̂rD̃v)
max

i
κ2

(
N−1

i K(σi), v̂i

)
(2.2.8)

sin Θ(Ŵr, Wr) ≤ ε
√

r

ςmin(ŴrD̃w)
max

i
κ2

(
N−T

i K(σi)
T , ŵi

)
(2.2.9)

where D̃v = diag (1/‖v̂1‖, . . . , 1/‖v̂r‖), D̃w = diag (1/‖ŵ1‖, . . . , 1/‖ŵr‖),

the quantities κ2

(
N−1

i K(σi), v̂i

)
=

‖(K(σi)
−1Ni‖ ‖N−1

i B(σi)bi‖
‖v̂i‖ and

κ2

(
N−T

i K(σi)
T , ŵi

)
=

‖(K(σi)
−T NT

i ‖ ‖N−T
i C(σi)

T ci‖
‖ŵi‖ are the condition numbers of the ith linear

system, and ςmin(M) is the smallest singular value of the matrix M.

Proof. The proof follows in a manner similar to the split preconditioned case once we write

V̂r = Vr + E with E = [K(σ1)
−1N1η1, . . . ,K(σr)

−1Nrηr].
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Theorem 2.3. Let the columns of Vr, V̂r, Wr and Ŵr be exact and approximate solutions

to the right preconditioned systems (2.1.9) and (2.1.10). Suppose approximate solutions are

computed to a relative tolerance of ε, so that the associated residuals, ηi and ξi as defined

in (2.1.11) and (2.1.12), satisfy ‖ηi‖ ≤ ε‖B(σi)bi‖ and ‖ξi‖ ≤ ε‖C(σi)
Tci‖. Denoting the

associated subspaces as Vr,Wr, V̂r, and Ŵr, then

sin Θ(V̂r, Vr) ≤ ε
√

r

ςmin(V̂rDv)
(2.2.10)

sin Θ(Ŵr, Wr) ≤ ε
√

r

ςmin(ŴrDw)
(2.2.11)

where Dv = diag ((‖K(σ1)
−1‖‖B(σ1)b1‖)−1, . . . , (‖K(σr)

−1‖‖B(σr)br‖)−1),

Dw = diag
(
(‖K(σ1)

−T‖‖C(σ1)
Tc1‖)−1, . . . , (‖K(σr)

−T‖‖C(σr)
Tcr‖)−1

)
, and

sin Θ(V̂r, Vr) ≤ ε
√

r

ςmin(V̂rD̃v)
max

i
κ2 (K(σi), v̂i) (2.2.12)

sin Θ(Ŵr, Wr) ≤ ε
√

r

ςmin(ŴrD̃w)
max

i
κ2

(
K(σi)

T , ŵi

)
(2.2.13)

where D̃v = diag (1/‖v̂1‖, . . . , 1/‖v̂r‖), D̃w = diag (1/‖ŵ1‖, . . . , 1/‖ŵr‖),

the quantities κ2 (K(σi), v̂i) = ‖(K(σi)
−1‖ ‖B(σi)bi‖
‖v̂i‖ and

κ2

(
K(σi)

T , ŵi

)
= ‖(K(σi)

−T ‖ ‖C(σi)
T ci‖

‖ŵi‖ are the condition numbers of the ith linear system,
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and ςmin(M) is the smallest singular value of the matrix M.

Proof. After writing V̂r = Vr +E with E = [K(σ1)
−1η1, . . . ,K(σr)

−1ηr], the proof is similar

to the split preconditioning case.

2.2.1 Numerical Example of the Subspace Angles

These bounds illustrate that the stopping tolerance and the conditioning of the linear systems

are two important factors involved in the angle between the inexact and exact subspaces.

For all preconditioning techniques, the upper bound suggests that the difference between the

inexact and exact subspaces will decrease by a factor of ε as the stopping tolerance decreases.

Furthermore, the conditioning of the linear systems will also impact the decay in the upper

bound as the tolerance decreases. This behavior is observed in our numerical data. For

example, we computed the subspace angles associated with one-step of interpolatory model

reduction for the Rail Model. The Rail Model emerges from a semi-discretized heat transfer

problem for the optimal cooling of steel profiles. After a finite element discretization, we

obtain a descriptor system of the form

Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t)

where A,E ∈ R
n×n and B ∈ R

n×7,C ∈ R
6×n and n depends on the mesh width of the

discretization. For more details, see [12] and [13]. We only present our data for the SISO

system of order n = 1357 that relates the sixth input to the second output of the system.
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In Table 2.1, good shift and poor shift refer to shift selections that result in well-conditioned

and poorly-conditioned linear systems, respectively. In the good shift case, we observe the

ε decay as anticipated. These results are similar to those observed in the unpreconditioned

case, implying that the preconditioned linear systems do not necessarily change the reduced-

order model despite improving the convergence of the iterative solves.

Table 2.1: Rail 1357; r = 6; BiCG with ILU Left Preconditioning; sin(Θ(Vr, V̂r))

Tolerance Good shift Poor shift
1 × 10−1 2.72 × 10−1 1.00 × 100

1 × 10−2 5.15 × 10−2 9.94 × 10−1

1 × 10−3 2.34 × 10−3 9.91 × 10−1

1 × 10−4 5.34 × 10−4 9.96 × 10−1

1 × 10−5 1.31 × 10−5 9.94 × 10−1

1 × 10−6 1.93 × 10−6 9.90 × 10−1

1 × 10−7 6.78 × 10−7 4.89 × 10−1

1 × 10−8 7.04 × 10−9 7.17 × 10−1

1 × 10−9 3.92 × 10−9 1.69 × 10−1

1 × 10−10 3.45 × 10−10 9.97 × 10−3

2.3 Pointwise Error

Another main concern is to quantify the perturbation error introduced with inexact solves.

In [7], upper bounds for the pointwise error are proven, and we use the notation and reasoning

of [7] to extend these results to the preconditioned case. We consider perturbations in both
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B and C by defining the perturbed transfer functions,

HδB(s) = C(s)K(s)−1(B(s) + δB) and HδC(s) = (C(s) + δC)K(s)−1B(s)

and define the following condition numbers associated with perturbations δB and δC at

s = σ :

condB(H(σ)) =
‖C(σ)K(σ)−1‖ ‖B(σ)‖

‖H(σ)‖

condC(H(σ)) =
‖C(σ)‖ ‖K(σ)−1B(σ)‖

‖H(σ)‖ .

Furthermore, we define for values of s such that Kr(s) and K̂r(s) are nonsingular the fol-

lowing functions:

Pr(s) = K(s)VrKr(s)
−1WT

r , Qr(s) = VrKr(s)
−1 WT

r K(s),

P̂r(s) = K(s)V̂rK̂r(s)
−1ŴT

r , Q̂r(s) = V̂rK̂r(s)
−1 ŴT

r K(s). (2.3.1)

We note that Pr(s),Qr(s), P̂r(s), and Q̂r(s) are skew projectors and differentiable with

respect to s with

P̂
′
r(s) =

(
I − P̂r

)
K′(s)K(s)−1P̂r, Q̂

′
r(s) = Q̂rK(s)−1K′(s)

(
I − Q̂r

)

P′
r(s) = (I − Pr) K′(s)K(s)−1Pr, Q′

r(s) = QrK(s)−1K′(s) (I − Qr) .

(2.3.2)
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The importance of these projectors becomes evident once we note that the pointwise transfer

function error is expressed in terms of the projectors as follows:

H(s) − Ĥr(s) =C(s)K(s)−1
(
I − P̂r(s)

)
B(s)

=C(s)
(
I − Q̂r(s)

)
K(s)−1B(s)

=C(s)
(
I − Q̂r(s)

)
K(s)−1

(
I − P̂r(s)

)
B(s).

Moreover, the error in the transfer function’s first derivative is expressed in terms of these

projectors as

H′(s) − Ĥ
′
r(s) =

d

ds

[
C(s)K(s)−1

] (
I − P̂r(s)

)
B(s) (2.3.3)

+ C(s)
(
I − Q̂r(s)

) d

ds

[
K(s)−1B(s)

]
− C(s)

(
I − Q̂r(s)

) d

ds

[
K(s)−1

] (
I − P̂r(s)

)
B(s).

In order to bound these errors, we define the following subspaces:

Pr(s) = Ran Pr(s) = Ran K(s)Vr, Qr(s) = Ker
(
WT

r K(s)
)⊥

,

P̂r(s) = Ran P̂r(s) = Ran K(s)V̂r, Q̂r(s) = Ker
(
ŴT

r K(s)
)⊥

,

Bm(s) = Ran K(s)−1B(s), Cp(s) = Ker
(
C(s)K(s)−1

)⊥
,
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and note the following equalities:

‖P̂r(s)‖ = ‖I − P̂r(s)‖ =
1

cos Θ(P̂r(s), Ŵr)
(2.3.4)

‖Q̂r(s)‖ = ‖I − Q̂r(s)‖ =
1

cos Θ(Q̂r(s), V̂r)
. (2.3.5)

Using these quantities, the next three theorems extend the results of [7] to the preconditioned

case. It is important to emphasize that these results are very similar to the unpreconditioned

case as shown in [7] once the appropriate residuals are included.

Theorem 2.4. Given the full-order model H(s) = C(s)K(s)−1B(s), the interpolation points

{σj}, {μi} ∈ C and the corresponding tangential directions, {bi} ∈ C
m and {ci} ∈ C

p, let the

inexact interpolatory reduced model Ĥr(s) = Ĉr(s)K̂r(s)
−1B̂r(s) be constructed using split

preconditioning so that (2.1.1) - (2.1.4) hold. Then the pointwise tangential interpolation

error is

‖Ĥr(σj)bj − H(σj)bj‖
‖H(σj)bj‖ ≤condB(H(σj)bj)

sin Θ
(
Cp(σj), Ŵr

)
cos Θ

(
P̂r(σj), Ŵr

) ‖Ljηj‖
‖B(σj)bj‖ (2.3.6)

‖cT
i Ĥr(μi) − cT

i H(μi)‖
‖cT

i H(μi)‖
≤condC(cT

i H(μi))
sin Θ

(
Bm(μi), V̂r

)
cos Θ

(
Q̂r(μi), V̂r

) ‖UT
i ξi‖

‖cT
i C(μi)‖

. (2.3.7)

If μi = σi then,

|cT
i Ĥr(μi)bi − cT

i H(μi)bi| ≤ ‖K(μi)−1‖ ‖Liηi‖ ‖UT
i ξi‖

max
(
cos Θ

(
P̂r(μi), Ŵr

)
, cos Θ

(
Q̂r(μi), V̂r

)) , (2.3.8)
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and

|cT
i H′(μi)bi − cT

i Ĥ
′
r(μi)bi| ≤ M

⎛
⎝ ‖Liηi‖

cos Θ(P̂r(μi), Ŵr)
+

∥∥UT
i ξi

∥∥
cos Θ

(
Q̂r(μi), V̂r

)

+
‖Liηi‖

cos Θ(P̂r(μi), Ŵr)

∥∥UT
i ξi

∥∥
cos Θ

(
Q̂r(μi), V̂r

)
⎞
⎠ (2.3.9)

with M = max(
∥∥∥ d

ds

[
cT

i C K−1
]∣∣

μi

∥∥∥ ,
∥∥∥ d

ds

[
K−1Bbi

]∣∣
μi

∥∥∥ ,
∥∥∥ d

ds

[
K−1

]∣∣
μi

∥∥∥).
Proof. Using (2.1.3), we have that v̂j = K(σj)

−1(B(σj)bj +Ljηj), implying that K(σj)v̂j =

B(σj)bj +Ljηj ∈ P̂r(σj). Since P̂r is a skew projector,
(
I − P̂r(σj)

) (
B(σj)bj + Ljηj

)
= 0

or equivalently (
I − P̂r(σj)

)
B(σj)bj = −

(
I − P̂r(σj)

)
Ljηj. (2.3.10)

We then define Π̂ to be the orthogonal projector onto Ŵr = Ker
(
P̂r(s)

)⊥
, implying

I− P̂r(s) =
(
I − Π̂

)(
I − P̂r(s)

)
. Also, define Γ to be an orthogonal projector onto Cp(σj).

This implies that Ran(I−Γ) = Ker(C(σj)K(σj)
−1), and so C(σj)K(σj)

−1 = C(σj)K(σj)
−1Γ.

Using these observations, we can express the pointwise error as follows:

Ĥr(σj)bj − H(σj)bj = −C(σj)K(σj)
−1
(
I − P̂r(σj)

)
B(σj)bj

= C(σj)K(σj)
−1
(
I − P̂r(σj)

)
Ljηj (2.3.11)

= C(σj)K(σj)
−1
(
I − Π̂

)(
I − P̂r(σj)

)
Ljηj (2.3.12)

= C(σj)K(σj)
−1Γ

(
I − Π̂

)(
I − P̂r(σj)

)
Ljηj. (2.3.13)
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Taking norms results in (2.3.6):

‖Ĥr(σj)bj − H(σj)bj‖ ≤ ‖
(
I − Π̂

)
Γ
(
C(σj)K(σj)−1

)T ‖ · ‖I − P̂r(σj)‖ · ‖Ljηj‖

≤ ‖C(σj)K(σj)−1‖ ·
sin Θ

(
Cp(σj), Ŵr

)
cos Θ(P̂r(σj), Ŵr)

· ‖Ljηj‖.

To prove (2.3.7), we follow a similar reasoning using

cT
i C(μi)

(
I − Q̂r(μi)

)
= −ξT

i Ui

(
I − Q̂r(μi)

)
(2.3.14)

and defining the orthogonal projector, Ξ̂, onto V̂r = Ran
(
Q̂r(s)

)
, which gives

I − Q̂r(s) =
(
I − Q̂r(s)

)(
I − Ξ̂

)
. This yields

cT
i Ĥr(μi) − cT

i H(μi) = cT
i C(μi)

(
I − Q̂r(μi)

)
K(μi)

−1B(μi)

≤ ξT
i Ui

(
I − Q̂r(μi)

)(
I − Ξ̂

)
K(μi)

−1B(μi).

Taking norms, we then have

‖cT
i Ĥr(μi) − cT

i H(μi)‖ ≤ ‖UT
i ξi‖ · ‖I − Q̂r(μi)‖ · ‖

(
I − Ξ̂

)
K(μi)

−1B(μi)‖

≤ ‖K(μi)
−1B(μi)‖ ·

sin Θ
(
Bm(μi), V̂r

)
cos Θ

(
Q̂r(μi), V̂r

) · ‖UT
i ξi‖.
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If μi = σi, then

cT
i H(μi)bi − cT

i Ĥr(μi)bi = cT
i C(μi)

(
I − Q̂r(μi)

)
K(μi)−1

(
I − P̂r(μi)

)
B(μi)bi

= ξT
i Ui

(
I − Q̂r(μi)

)
K(μi)−1

(
I − P̂r(μi)

)
Liηi

=

⎧⎪⎪⎨
⎪⎪⎩

ξT
i UiK(μi)−1

(
I − P̂r(μi)

)
Liηi, or

ξT
i Ui

(
I − Q̂r(μi)

)
K(μi)−1Liηi,

resulting in the following:

|cT
i H(μi)bi − cT

i Ĥr(μi)bi| ≤ ‖UT
i ξi‖ · ‖Liηi‖ · ‖K(μi)

−1‖ · ‖I − P̂r(μi)‖

and

|cT
i H(μi)bi − cT

i Ĥr(μi)bi| ≤ ‖UT
i ξi‖ · ‖Liηi‖ · ‖K(μi)

−1‖ · ‖I − Q̂r(μi)‖.

Combining these bounds, we obtain (2.3.8). The last inequality comes from (2.3.3) with

s = μi:

cT
i H′(μi)bi − cT

i Ĥ
′
r(μi)bi =

d

ds

[
cT

i C K−1
]∣∣

μi

(
I − P̂r(μi)

)
B(μi)bi

+cT
i C(μi)

(
I − Q̂r(μi)

) d

ds

[
K−1Bbi

]∣∣
μi

−cT
i C(μi)

(
I − Q̂r(μi)

) d

ds

[
K−1

]∣∣
μi

(
I − P̂r(μi)

)
B(μi)bi.

Using the Cauchy-Schwarz inequality along with (2.3.10) and (2.3.14), the conclusion readily
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follows once we note that

∣∣∣cT
i H′(μi)bi − cT

i Ĥ
′
r(μi)bi

∣∣∣ ≤ ∣∣∣∣ d

ds

[
cT

i C K−1
]∣∣

μi

(
I − P̂r(μi)

)
Liηi

∣∣∣∣
+
∣∣∣∣ξT

i Ui

(
I − Q̂r(μi)

) d

ds

[
K−1Bbi

]∣∣
μi

∣∣∣∣
+
∣∣∣∣ξT

i Ui

(
I − Q̂r(μi)

) d

ds

[
K−1

]∣∣
μi

(
I − P̂r(μi)

)
Liηi

∣∣∣∣
≤
∥∥∥∥ d

ds

[
cT

i C K−1
]∣∣

μi

∥∥∥∥ · ‖Liηi‖
cos Θ(P̂r(μi), Ŵr)

+

∥∥UT
i ξi

∥∥
cos Θ

(
Q̂r(μi), V̂r

) ·
∥∥∥∥ d

ds

[
K−1Bbi

]∣∣
μi

∥∥∥∥
+
∥∥∥∥ d

ds

[
K−1

]∣∣
μi

∥∥∥∥ · ‖Liηi‖
cos Θ(P̂r(μi), Ŵr)

∥∥UT
i ξi

∥∥
cos Θ

(
Q̂r(μi), V̂r

) .

Theorem 2.5. Given the full-order model H(s) = C(s)K(s)−1B(s), the interpolation points

{σj}, {μi} ∈ C and the corresponding tangential directions, {bi} ∈ C
m and {ci} ∈ C

p, let

the inexact interpolatory reduced model Ĥr(s) = Ĉr(s)K̂r(s)
−1B̂r(s) be constructed using left

preconditioning so that (2.1.5) - (2.1.8) hold. Then the pointwise tangential interpolation

error is

‖Ĥr(σj)bj − H(σj)bj‖
‖H(σj)bj‖ ≤condB(H(σj)bj)

sin Θ
(
Cp(σj), Ŵr

)
cos Θ

(
P̂r(σj), Ŵr

) ‖Njηj‖
‖B(σj)bj‖ (2.3.15)

‖cT
i Ĥr(μi) − cT

i H(μi)‖
‖cT

i H(μi)‖
≤condC(cT

i H(μi))
sin Θ

(
Bm(μi), V̂r

)
cos Θ

(
Q̂r(μi), V̂r

) ‖NT
i ξi‖

‖cT
i C(μi)‖

. (2.3.16)
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If μi = σi then,

|cT
i Ĥr(μi)bi − cT

i H(μi)bi| ≤ ‖K(μi)−1‖ ‖Niηi‖ ‖NT
i ξi‖

max
(
cos Θ

(
P̂r(μi), Ŵr

)
, cos Θ

(
Q̂r(μi), V̂r

)) , (2.3.17)

and

|cT
i H′(μi)bi − cT

i Ĥ
′
r(μi)bi| ≤ M

⎛
⎝ ‖Niηi‖

cos Θ(P̂r(μi), Ŵr)
+

∥∥NT
i ξi

∥∥
cos Θ

(
Q̂r(μi), V̂r

)

+
‖Niηi‖

cos Θ(P̂r(μi), Ŵr)

∥∥NT
i ξi

∥∥
cos Θ

(
Q̂r(μi), V̂r

)
⎞
⎠ (2.3.18)

with M = max(
∥∥∥ d

ds

[
cT

i C K−1
]∣∣

μi

∥∥∥ ,
∥∥∥ d

ds

[
K−1Bbi

]∣∣
μi

∥∥∥ ,
∥∥∥ d

ds

[
K−1

]∣∣
μi

∥∥∥).
Theorem 2.6. Given the full-order model H(s) = C(s)K(s)−1B(s), the interpolation points

{σj}, {μi} ∈ C and the corresponding tangential directions, {bi} ∈ C
m and {ci} ∈ C

p, let the

inexact interpolatory reduced model Ĥr(s) = Ĉr(s)K̂r(s)
−1B̂r(s) be constructed using right

preconditioning so that (2.1.9) - (2.1.12). Then the pointwise tangential interpolation error

is

‖Ĥr(σj)bj − H(σj)bj‖
‖H(σj)bj‖ ≤condB(H(σj)bj)

sin Θ
(
Cp(σj), Ŵr

)
cos Θ

(
P̂r(σj), Ŵr

) ‖ηj‖
‖B(σj)bj‖ (2.3.19)

‖cT
i Ĥr(μi) − cT

i H(μi)‖
‖cT

i H(μi)‖
≤condC(cT

i H(μi))
sin Θ

(
Bm(μi), V̂r

)
cos Θ

(
Q̂r(μi), V̂r

) ‖ξi‖
‖cT

i C(μi)‖
. (2.3.20)
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If μi = σi then,

|cT
i Ĥr(μi)bi − cT

i H(μi)bi| ≤ ‖K(μi)−1‖ ‖ηi‖ ‖ξi‖
max

(
cos Θ

(
P̂r(μi), Ŵr

)
, cos Θ

(
Q̂r(μi), V̂r

)) (2.3.21)

and

|cT
i H′(μi)bi − cT

i Ĥ
′
r(μi)bi| ≤ M

⎛
⎝ ‖ηi‖

cos Θ(P̂r(μi), Ŵr)
+

‖ξi‖
cos Θ

(
Q̂r(μi), V̂r

)

+
‖ηi‖

cos Θ(P̂r(μi), Ŵr)

‖ξi‖
cos Θ

(
Q̂r(μi), V̂r

)
⎞
⎠ (2.3.22)

with M = max(
∥∥∥ d

ds

[
cT

i C K−1
]∣∣

μi

∥∥∥ ,
∥∥∥ d

ds

[
K−1Bbi

]∣∣
μi

∥∥∥ ,
∥∥∥ d

ds

[
K−1

]∣∣
μi

∥∥∥).

2.4 Backward Error

In this section, we examine the backward error emanating from the inexact solves. In solving

the linear systems, we have the standard backward error result that v̂j and ŵj are exact

solutions to systems with perturbed righthand sides, namely

v̂j = K(σj)
−1(ηj + B(σj)bj) and ŵj = K(σj)

−T (ξj + C(σj)
Tcj).
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As a result, the inexact reduced model, Ĥr(s) = Ĉr(s)K̂r(s)
−1B̂r(s), exactly interpolates a

perturbed full-order model:

Ĥ(s) = (ξT
j + cT

j C(s))K(s)−1(B(s)bj + ηj)

at s = σj. It important to note that Ĥr(s) will interpolate a different Ĥ(s) for each σ1, ..., σr.

Due to this shift dependence, the authors of [7] suggest imposing a Petrov-Galerkin frame-

work so that the backward error no longer depends on the particular shift selection. We

follow the discussion of [7] to define the Petrov-Galerkin structure as follows: let Pk and Qk

be subspaces of C
n with P⊥

k ∩Qk = {0}. Let ṽj ∈ Pk and w̃j ∈ Qk be the inexact solutions

of K(σj)vj = B(σj)bj and K(σj)
Twj = C(σj)

Tcj, respectively. Then, the Petrov-Galerkin

structure gives that

K(σj)ṽj − B(σj)bj ∈ Q⊥
k and K(σj)

T w̃j − C(σj)
Tcj ∈ P⊥

k . (2.4.1)

Assuming the Petrov-Galerkin framework is present in the inexact solver, the authors of

[7] prove that the computed inexact reduced-order model, H̃r(s) = C̃r(s)K̃r(s)
−1B̃r(s),

obtained via the Petrov-Galerkin process exactly tangentially interpolates the perturbed

full-order model, H̃(s) = C(s)(K(s) + Z)−1B(s), at each σi where Z is a rank 2r perturba-

tion matrix. Since H̃r(s) interpolates H̃(s) for all of the interpolation points, this result is

significant as it provides a more attractive backward error result. Moreover, it suggests that

Petrov-Galerkin solvers, such as BiCG, have a distinct advantage over other solvers, such



Sarah Wyatt Chapter 2. Preconditioned Iterative Solves in Model Reduction 40

as GMRES, when employed in the interpolatory model reduction setting. Of course, BiCG

is notorious for its disadvantages of serious breakdowns and erratic convergence issues. See

[69], [41], [5], and [74] for more details. In fact, for many models considered in the numerical

studies for this dissertation, BiCG only converged if the system was preconditioned, imply-

ing that a preconditioned BiCG algorithm is not only desirable but oftentimes necessary.

In the preconditioning process, we want to maintain a similar backward error result as in

[7]. The next two theorems delineate an important deviation from the unpreconditioned

case as they prove that the backward error result of [7] does not extend trivially when left

and right preconditioning are present in the inexact solve. Instead of requiring a Petrov-

Galerkin framework, which is readily available in such solvers as BiCG, the left and right

preconditioned cases require orthogonality conditions that are not easily implemented nu-

merically. Fortunately, the last theorem proves that split preconditioning provides a similar

backward error result to the unpreconditioned case, namely, split preconditioning requires

a Petrov-Galerkin framework as shown in Theorem 2.9. Therefore, these findings suggest a

noteworthy distinction between preconditioning techniques with respect to the model reduc-

tion backward error.

2.4.1 Backward Error for Left and Right Preconditioning

The next two theorems state the conditions required for the computed inexact reduced-order

model to exactly tangentially interpolate a perturbed full-order model for all of the inter-

polation points. Unfortunately, these conditions for left and right preconditioning require
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rather awkward orthogonality requirements. Let η̃j and ξ̃j be the residuals associated with

the solutions ṽj and w̃j obtained through a preconditioned inexact solve. For the case of

left preconditioning, the necessary orthogonality condition for the backward error result is

Njṽj ⊥ ξ̃j and NT
j w̃j ⊥ η̃j. (2.4.2)

Meanwhile, the orthogonality requirement for the right preconditioned systems is

R−1
j ỹj ⊥ ξ̃j and RT

j z̃j ⊥ η̃j (2.4.3)

where ṽj = R−1
j ỹj and w̃j = R−T

j z̃j. Conditions (2.4.2) and (2.4.3) are somewhat trouble-

some as they are not readily available in the implementation of inexact solvers. Therefore,

these next two theorems are significant as they illustrate that the backward error result for

the left and right preconditioning cases is not a trivial extension of the unpreconditioned

case.

Theorem 2.7. Given H(s) = C(s)K(s)−1B(s), r interpolation points {σj}r
j=1, and the

tangential directions {bi}r
i=1 and {ci}r

i=1, let the inexact solutions ṽj for K(σj)
−1B(σj)bj

and w̃j for K(σj)
−T C(σj)

Tcj be obtained using a left preconditioner, Nj. Let Ṽr and W̃r

denote the corresponding inexact interpolatory bases; i.e.

Ṽr = [ ṽ1, · · · , ṽr ] and W̃r = [ w̃1, · · · , w̃r ] . (2.4.4)
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Define the residuals

η̃j = N−1
j K(σj)ṽj − N−1

j B(σj)bj, ξ̃j = N−T
j K(σj)

T w̃j − N−T
j C(σj)cj, (2.4.5)

where the residuals and inexact solutions satisfy the following orthogonality conditions:

Njṽj ⊥ ξ̃j and NT
j w̃j ⊥ η̃j. (2.4.6)

Also, define the residual matrices

Rb = [N1η̃1, N2η̃2, . . . ,Nrη̃r] , Rc =
[
NT

1 ξ̃1, NT
2 ξ̃2, . . . ,NT

r ξ̃r

]
, (2.4.7)

and the rank-2r matrix

F2r = Rb(W̃T
r Ṽr)

−1W̃T
r + Ṽr(W̃

T
r Ṽr)

−1RT
c . (2.4.8)

Also, let H̃r(s) = C̃r(s)K̃r(s)
−1B̃r(s) denote the computed inexact reduced model where

K̃r(s) = W̃T
r K(s)Ṽr, B̃r(s) = W̃T

r B(s), and C̃r(s) = C(s)Ṽr. (2.4.9)

Then, H̃r(s) exactly tangentially interpolates the perturbed full-order model

H̃r(s) = C(s)(K(s) − F2r)
−1B(s), (2.4.10)
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for each σi, namely, for i = 1, . . . , r,

H̃(σi)bi = H̃r(σi)bi, cT
i H̃(σi) = cT

i H̃r(σi), and cT
i H̃

′
(σi)bi = cT

i H̃
′
r(σi)bi.

Proof. In order for the inexact reduced-order model, H̃r(s), to exactly tangentially interpo-

late H̃r(s), we need

(K(σi) − F2r) ṽi = B(σi)bi and w̃T
i (K(σi) − F2r) = cT

i C(σi) for i = 1, . . . , r,

or equivalently

F2rṽj = K(σj)ṽj − B(σj)bj and w̃T
j F2r = w̃T

j K(σj) − cT
j C(σj).

From (2.4.5), we have

Njη̃j = K(σj)ṽj − B(σj)bj and ξ̃
T

j Nj = w̃T
j K(σj) − cT

j C(σj).

Therefore, F2r must satisfy

F2rṽj = Njη̃j and w̃T
j F2r = ξ̃

T

j Nj.

In matrix form, these conditions are equivalent to F2rṼr = Rb and W̃T
r F2r = RT

c . The

orthogonality assumptions in (2.4.6) guarantee that W̃T
r Rb = 0 and RT

c Ṽr = 0. Note also



Sarah Wyatt Chapter 2. Preconditioned Iterative Solves in Model Reduction 44

that

K̃r(s) = W̃T
r K(s)Ṽr = W̃T

r (K(s) − F2r)Ṽr

since the orthogonality assumptions in (2.4.6) imply W̃T
r F2rṼr = 0.

It is important to note that the proof of this theorem is similar to the unpreconditioned case

as presented in [7]. The important deviation from the unpreconditioned case, however, lies

in how the residual matrices, Rb and Rc, and orthogonality conditions must be defined in

order for the following to hold:

W̃T
r Rb = 0, RT

c Ṽr = 0, and W̃T
r F2rṼr = 0 (2.4.11)

in the left preconditioned case. Without these equalities holding, the computed reduced-

order model will not exactly tangentially interpolate a perturbed dynamical system for all

interpolation points. In the next theorem, the residual matrices, Rb and Rc, along with the

orthogonality condition are modified to ensure that the equations in (2.4.11) are satisfied.

The proof is similar to the previous argument used for the left preconditioned case, and so

we only state the theorem.

Theorem 2.8. Given H(s) = C(s)K(s)−1B(s), r interpolation points {σj}r
j=1, and the

tangential directions {bi}r
i=1 and {ci}r

i=1, let the inexact solutions ṽj for K(σj)
−1B(σj)bj

and w̃j for K(σj)
−T C(σj)

Tcj be obtained using a right preconditioner, Rj. Let Ṽr and W̃r
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denote the corresponding inexact interpolatory bases; i.e.

Ṽr = [ ṽ1, · · · , ṽr ] and W̃r = [ w̃1, · · · , w̃r ] . (2.4.12)

Let the residuals be defined as in (2.1.11) and (2.1.12), where the residuals and inexact

solutions satisfy the following orthogonality conditions:

R−1
j ỹj ⊥ ξ̃j and R−T

j z̃j ⊥ η̃j.

Also, define the residual matrices

Rb = [η̃1, η̃2, . . . , η̃r] , Rc =
[
ξ̃1, ξ̃2, . . . , ξ̃r

]
, (2.4.13)

and the rank-2r matrix

F2r = Rb(W̃T
r Ṽr)

−1W̃T
r + Ṽr(W̃

T
r Ṽr)

−1RT
c . (2.4.14)

Also, let H̃r(s) = C̃r(s)K̃r(s)
−1B̃r(s) denote the computed inexact reduced model where

K̃r(s) = W̃T
r K(s)Ṽr, B̃r(s) = W̃T

r B(s), and C̃r(s) = C(s)Ṽr. (2.4.15)
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Then, H̃r(s) exactly tangentially interpolates the perturbed full-order model

H̃r(s) = C(s)(K(s) − F2r)
−1B(s), (2.4.16)

for each σi, namely, for i = 1, . . . , r,

H̃(σi)bi = H̃r(σi)bi, cT
i H̃(σi) = cT

i H̃r(σi), and cT
i H̃

′
(σi)bi = cT

i H̃
′
r(σi)bi.

2.4.2 Backward Error for Split Preconditioning

Perhaps the most important contribution of this chapter is the next theorem, which states

and proves the presence of a backward error result when split preconditioning is employed

in an inexact solver with an embedded Petrov-Galerkin framework. The proof of this result

follows a similar argument as employed for left and right preconditioning; however, the

residual matrices, Rb and Rc, are defined for split preconditioning so that only the Petrov-

Galerkin framework is required. As a result, the absence of the awkward orthogonality

conditions implies that split preconditioning offers an advantage in the interpolatory model

reduction framework.

Theorem 2.9. Given a full-order model H(s) = C(s)K(s)−1B(s), interpolation points

{σj}r
j=1, and tangential directions {bi}r

i=1 and {ci}r
i=1, let the inexact solutions ṽj for

K(σj)
−1B(σj)bj and w̃j for K(σj)

−T C(σj)
Tcj be obtained using split preconditioning in a

Petrov-Galerkin framework as in (2.4.1). Let Ṽr and W̃r denote the corresponding inexact
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interpolatory bases:

Ṽr = [ ṽ1, · · · , ṽr ] and W̃r = [ w̃1, · · · , w̃r ] . (2.4.17)

Define the residuals

η̃j = L−1
j K(σj)U

−1
j ũj − L−1

j B(σj)bj, ξ̃j = U−T
j K(σj)

TL−T
j z̃j − U−T

j C(σj)
Tcj,(2.4.18)

residual matrices

Rb = [L1η̃1, L2η̃2, . . . ,Lrη̃r] , Rc =
[
UT

1 ξ̃1, UT
2 ξ̃2, . . . ,UT

r ξ̃r

]
, (2.4.19)

and the rank-2r matrix

F2r = Rb(W̃T
r Ṽr)

−1W̃T
r + Ṽr(W̃

T
r Ṽr)

−1RT
c . (2.4.20)

Let H̃r(s) = C̃r(s)K̃r(s)
−1B̃r(s) denote the computed inexact reduced model via the Petrov-

Galerkin process where

K̃r(s) = W̃T
r K(s)Ṽr, B̃r(s) = W̃T

r B(s), and C̃r(s) = C(s)Ṽr. (2.4.21)
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Then, H̃r(s) exactly tangentially interpolates the perturbed full-order model

H̃(s) = C(s)(K(s) − F2r)
−1B(s) (2.4.22)

at each σi, namely:

H̃(σi)bi = H̃r(σi)bi, cT
i H̃(σi) = cT

i H̃r(σi),

and cT
i H̃

′
(σi)bi = cT

i H̃
′
r(σi)bi for each i = 1, . . . , r.

Proof. In order for the inexact reduced-order model, H̃r(s), to exactly tangentially interpo-

late H̃(s), we need

(K(σi) − F2r) ṽi = B(σi)bi and w̃T
i (K(σi) − F2r) = cT

i C(σi) for i = 1, . . . , r,

or equivalently

F2rṽj = K(σj)ṽj − B(σj)bj and w̃T
j F2r = w̃T

j K(σj) − cT
j C(σj).

From (2.4.18), we have

Ljη̃j = K(σj)ṽj − B(σj)bj and ξ̃
T

j Uj = w̃T
j K(σj) − cT

j C(σj).
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Therefore, F2r must satisfy

F2rṽj = Ljη̃j and w̃T
j F2r = ξ̃

T

j Uj,

which is equivalent to F2rṼr = Rb and W̃T
r F2r = RT

c . By the orthogonality assumptions,

we have W̃T
r Rb = 0 and RT

c Ṽr = 0. Note also that

K̃r(s) = W̃T
r K(s)Ṽr = W̃T

r (K(s) − F2r)Ṽr

since the orthogonality assumptions give W̃T
r F2rṼr = 0.

Remark: Since a similar backward error result as in [7] holds, other results from [7] can be

extended to the case of split preconditioning. For example, an analogous result to Theorem

4.2 of [7] holds in the split preconditioned case, namely the rank 2r perturbation term can

be bounded as

‖F2r‖F ≤ √
r‖φ̃r‖(max

i
‖Li‖‖ηi‖

‖ṽi‖ ςmin(ṼrDv)
−1 + max

i
‖Ui‖ ‖ξi‖

‖w̃i‖ςmin(W̃rDw)−1),

where φ̃r = Ṽr(W̃
T
r Ṽr)

−1W̃r. Perhaps most importantly, the presence of a backward error

result for the case of split preconditioning allows us to extend the results of [7] to a backward

error result for the IRKA algorithm, namely the computed reduced-order model obtained

in a Petrov-Galerkin framework via split preconditioning exactly tangentially interpolates a

nearby full-order dynamical system, H̃(s) = C(sE − (A − F2r))
−1B.
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2.5 Properties of the Backward Error Term: F2r

In this section, we study the backward error term by considering the Rail Model of dimension

n = 1357, which was reduced to dimension r = 6, as discussed in Section 2.2.1. As mentioned

previously, one of the key issues with BiCG is that it oftentimes fails to converge. Due to

the presence of Rb and Rc in the F2r term, it follows that the size of ‖F2r‖ would decrease

as the residuals decrease in the convergence of the iterative solve. We observe this expected

decay in our numerical results. In Figure 2.1, BiCG experiences a near breakdown due to

a poor initial guess, and we observe a stagnation of the ‖F2r‖
‖A‖ term. Meanwhile, in Figure

2.2 a nice decay is shown as BiCG converges. It is important to emphasize that this data is

representative of the results found when applying BiCG to several other models in addition

to the Rail Model, namely the convergence of BiCG coincided with a decline in the ‖F2r‖
‖A‖

quantity.

Figure 2.1: ‖F2r‖
‖A‖ when BiCG fails to converge

ε
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Figure 2.2: ‖F2r‖
‖A‖ when BiCG converges

ε

In Figure 2.3 and Figure 2.4, we present the ‖F2r‖
‖A‖ quantity throughout the IRKA iteration

for the unpreconditioned and split preconditioned cases. For a good shift selection as dis-

played in Figure 2.3, both unpreconditioned and preconditioned IRKA iterations converged

in eight iterations. However, there is a noticeable difference of several orders in the ‖F2r‖
‖A‖ term

between the two cases. In Figure 2.4, the distinction between the preconditioned and un-

preconditioned case is even more significant. With the poor shift selection, unpreconditioned

IRKA failed to converge in fifty iterations. However, once the systems were preconditioned

using an incomplete LU with a drop tolerance of 0.5, IRKA converged in fewer than twenty

iterations. This convergence behavior is captured by the ‖F2r‖ term. As shown in Figure

2.3 and Figure 2.4, the ‖F2r‖
‖A‖ term oscillated for the unpreconditioned case while remained

smoother and smaller for the preconditioned case. This suggests that preconditioning im-

proves the convergence of BiCG, and thereby the behavior of the ‖F2r‖ term. It is important
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to emphasize that these results are very representative of those observed with other models

and further indicate the importance of preconditioning.

Figure 2.3: ‖F2r‖
‖A‖ in IRKA: Good Shift

ε
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Figure 2.4: ‖F2r‖
‖A‖ in IRKA: Poor Shift

ε



Chapter 3

Preconditioner Updates

Collaboration Statement: This chapter is the result of collaboration with Dr. de Sturler.

In this chapter, we design preconditioning techniques specifically for IRKA. As Chapter 2

illustrated, there are several advantages associated with Petrov-Galerkin solvers, namely the

backward error result and the simultaneous computation of vi and wi. However, oftentimes

the main drawbacks of Petrov-Galerkin solvers, namely serious breakdowns and erratic con-

vergence, are only removed when the system is preconditioned. Even when the solver does

not experience convergence difficulties, preconditioning for generic iterative solvers often be-

comes desirable to improve the speed of convergence. While the preconditioner improves

convergence, it also adds to the computational cost of the algorithm. Since IRKA requires

2r linear systems at each step, the cost associated with preconditioning every linear system

becomes significant, especially for large systems. Fortunately, the convergence behavior of

IRKA suggests that computing a new preconditioner for every linear system may be unnec-

54
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essary. In Figure 3.1, for example, the relative difference from iteration k to iteration k − 1

of IRKA for the Rail Model’s third shift is given, which is representative of the behavior

observed for the other shifts. Figure 3.1 displays that the shifts converge as IRKA converges,

implying that a preconditioner from iteration k − 1 of IRKA may also be appropriate for

iteration k of IRKA. Moreover, the convergence of shifts implies that an update of an initial

Figure 3.1: IRKA Shift Evolution for σ3 of the Rail 1357 Model using BiCG

σ
σ

σ

σ

incomplete LU decomposition may only be required rather than completely computing a new

incomplete LU decomposition. While improving the convergence of a sequence of systems

has been studied, for example as in [65], the main aim of this chapter is to develop pre-

conditioner update methods specific to the systems required by IRKA. To do so, we study

two types of preconditioner updates, namely sparse approximate inverse updates (SAI) and

an approach suggested in Bellavia et al. [11]. The beginning of the chapter is devoted to

the first approach. In Section 3.2, we provide a brief overview of SAI updates and define
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the associated problem in the context of interpolatory model reduction. We then present

numerical results for three models in Section 3.3 and discuss how to efficiently update the

preconditioner based on the difference of the shifts, the matrix E, and the preconditioner

update. The latter part of the chapter is devoted to the Bellavia et al. update [11]. While

this update was originally proposed for the inverse of the Jacobian arising in the Newton

iteration, the method and its associated theoretical results can be extended to interpolatory

model reduction. One of the issues of the Bellavia et al. update is that oftentimes it is

abandoned due to near singularity in the update; hence, we conclude the chapter with a

discussion of the importance of strategically recomputing the incomplete LU decomposition

during IRKA.

3.1 Preconditioner Updates

Preconditioners for a matrix A are categorized as either explicit or implicit. An implicit

preconditioner requires the solution of a linear system within each step of the iterative solve

while explicit preconditioners rely on a known approximation for A−1 and only require a

matrix-vector product. Since applying an incomplete LU decomposition requires the so-

lution of two sparse triangular solves, incomplete LU decompositions belong to the latter

category. While the incomplete LU preconditioner has proven effective, IRKA requires 2r

linear systems and therefore up to 2r preconditioners at every iteration. To mitigate these

costs, we consider an explicit preconditioner as an update to an initial incomplete LU pre-
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conditioner. For previous works discussing the update of a preconditioner, see [20], [37], [38],

[1] and [78].

3.2 Sparse Approximate Inverse (SAI) Updates

The explicit preconditioner we consider is a sparse approximate inverse. In constructing

a preconditioner P for a matrix A, we would like PA ≈ I (for left preconditioning) and

AP ≈ I (for right preconditioning). SAI preconditioners minimize the associated error norm

‖I − PA‖ or ‖I − AP‖ for a given sparsity pattern. By choosing the Frobenius norm, we

have

‖I − AP‖2
F =

n∑
i=1

‖ei − Api‖2
2.

Hence, the minimization problem reduces to a linear least squares problem for each row or

column of A with the number of unknowns being equal to the number of nonzeros allowed in

the row or column. As discussed in [28], [40], [58], and [60], the least squares problems may

be solved with iterative or direct methods. For more details about these preconditioners, see

[16], [14], [28], [30], [34], [40], [42], [43] and [59], and the references therein.

3.2.1 Sparse Approximate Inverse (SAI) Updates in IRKA

In this section, we define a SAI update for the sequence of linear systems that arise in

interpolatory model reduction.
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To do so, let K0 = σ0E − A and Kk = σkE − A denote coefficient matrices. Let P0 be a

very good preconditioner for K0. In defining a cheap preconditioner update, Pk, for Kk, we

would like K0P0 ≈ KkPk. Since we assume that P0 is a good preconditioner, K0P0 ≈ KkPk

implies that Pk will be a good preconditioner for Kk [1]. To this end, we express Kk in

terms of K0:

Kk = σkE − A = K0 + (σk − σ0)E = K0(I + (σk − σ0)K
−1
0 E).

Then

K0P0 = K0(I + (σk − σ0)K
−1
0 E)(I + (σk − σ0)K

−1
0 E)−1P0 = KkPk

where Kk = K0(I + (σk − σ0)K
−1
0 E) and Pk = (I + (σk − σ0)K

−1
0 E)−1P0.

Define Mk ≈ (I+(σk−σ0)K
−1
0 E)−1, then K0P0 ≈ KkMkP0, implying K0 ≈ KkMk. At this

point, we employ the motivation for the SAI computation where AP ≈ I is solved through

minimizing ‖I − AP‖F . Applying this reasoning to K0 ≈ KkMk suggests a preconditioner

update that satisfies

min ‖KkMk − K0‖2
F = min

n∑
i=1

‖KkM
i
k − Ki

0‖2
2. (3.2.1)

where Ki
0 and Mi

k denote the ith columns of K0 and Mk, respectively. Although iterative

methods are available to solve the least squares problems, we assume a direct solve is used.
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Since K0P0 ≈ KkMkP0, the system Kkx = b is right preconditioned with P0 and a SAI

update as

KkMkP0x = b.

The idea of defining a preconditioner based on the Frobenius norm minimization has been

suggested previously in several papers; see for example [28], [52], and [26]. In these papers,

however, the goal is to improve an existing preconditioner whereas (3.2.1) aims to define a

preconditioner for a new matrix.

3.3 Numerical Results for SAI Updates

3.3.1 Models Studied

To study the SAI update’s effectiveness, we considered three models, namely the Rail, CD

and 1r models. While these models are small, they serve as proof of concepts examples. The

Rail Model obtained from a heat transfer problem was previously discussed in Section 2.2.1.

To initialize IRKA, we used six logarithmically spaced points in the interval [10−5, 100.7].

IRKA converged with a
‖H−Hr‖H∞

‖H‖H∞
error of 1.03 × 10−3, and a final shift set as shown in

Table 3.1. Table 3.1 also provides ‖σ(1)E−A‖ and ‖σ(f)E−A‖ where σ(1) and σ(f) are the

shifts from the first and final IRKA iterations, respectively. Among the studied models, the

Rail Model involves the smallest ‖σ(f)E−A‖ and ‖σ(1)E−A‖ terms. While the optimal H2
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Table 3.1: Shift Information for the Rail Model

Final Shifts ‖σ(1)E − A‖ ‖σ(f)E − A‖
1.88 × 10−5 4.80 × 10−5 4.80 × 10−5

2.92 × 10−4 4.80 × 10−5 4.80 × 10−5

4.47 × 10−3 4.83 × 10−5 4.91 × 10−5

5.04 × 10−2 5.63 × 10−5 6.65 × 10−5

2.38 × 10−1 3.24 × 10−4 2.17 × 10−4

1.07 × 100 4.35 × 10−3 9.40 × 10−4

points for the Rail Model are real, the CD Model has complex poles. The CD Model is a SISO

model of dimension 120 that describes the dynamics emerging from the lens actuator and the

radial arm position of a CD player. Without assuming prior knowledge, we initialized with

real shifts, namely forty points logarithmically spaced in the interval [100, 104]. The resulting

‖H−Hr‖H∞
‖H‖H∞

error is 3.78×10−6. The final shifts as well as the norms of the coefficient matrices

corresponding to the first and last IRKA iterations are given in Table 3.2. Finally, we studied

the 1r Model. The 1r Model describes component 1r of the International Space Station using

270 states, 3 inputs and 3 outputs, and we reduced only the SISO model relating the first

input to the first output. The shift initialization was 24 logarithmically spaced points in

the interval [10−3, 101], and the resulting final shifts are given in Table 3.3. Also, in Table

3.3, we present ‖σ(1)E − A‖ and ‖σ(f)E − A‖ for the first and last IRKA iterations. The

‖H−Hr‖H∞
‖H‖H∞

error is 1.75 × 10−2.
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Table 3.2: Shift Information for the CD Model

Final Shifts ‖σ(1)E − A‖ ‖σ(f)E − A‖
2.24 × 10−1 ± 2.25 × 101i 4.33 × 104 4.33 × 104

4.60 × 100 ± 4.76 × 101i 4.33 × 104 4.33 × 104

6.36 × 100 ± 6.43 × 101i 4.33 × 104 4.33 × 104

7.27 × 101 ± 7.37 × 101i 4.33 × 104 4.33 × 104

7.54 × 100 ± 7.38 × 101i 4.33 × 104 4.33 × 104

7.83 × 100 ± 7.77 × 101i 4.33 × 104 4.33 × 104

1.97 × 101 ± 1.96 × 102i 4.33 × 104 4.33 × 104

2.18 × 102 ± 4.28 × 102i 4.33 × 104 4.34 × 104

1.22 × 101 ± 3.06 × 102i 4.33 × 104 4.34 × 104

2.75 × 102 ± 4.40 × 102i 4.33 × 104 4.38 × 104

1.16 × 101 ± 5.81 × 102i 4.33 × 104 4.39 × 104

1.27 × 101 ± 6.35 × 102i 4.33 × 104 4.40 × 104

1.32 × 101 ± 6.60 × 102i 4.33 × 104 4.40 × 104

5.30 × 101 ± 3.82 × 103i 4.33 × 104 4.71 × 104

7.63 × 101 ± 4.14 × 103i 4.33 × 104 4.75 × 104

2.10 × 102 ± 5.20 × 103i 4.33 × 104 4.85 × 104

1.62 × 102 ± 1.04 × 104i 4.34 × 104 5.37 × 104

1.81 × 102 ± 1.08 × 104i 4.34 × 104 5.42 × 104

1.20 × 102 ± 1.21 × 104i 4.35 × 104 5.54 × 104

5.12 × 102 ± 2.55 × 104i 4.38 × 104 6.88 × 104

4.33 × 102 ± 4.33 × 104i 4.46 × 104 8.66 × 104

3.4 Effect of the SAI Update

In this section, we are interested in applying the SAI update proposed in Section 3.2.1 to

answer two questions. First, we want to determine if the SAI update is competitive compared

with recomputing a new incomplete LU decomposition. Also, we would like to study the

effect of applying only one SAI update in the IRKA iteration. To do so, we consider the IRKA

algorithm with three different types of preconditioning methods. For all of the algorithms,

we assume that GMRES is the iterative solver and that a direct solve is used for the least
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Table 3.3: Shift Information for the 1r Model

Final Shifts ‖σ(1)E − A‖ ‖σ(f)E − A‖
3.87 × 10−3 ± 7.75 × 10−1i 3.76 × 103 3.76 × 103

9.96 × 10−3 ± 1.99 × 100i 3.76 × 103 3.76 × 103

1.18 × 10−2 ± 2.29 × 100i 3.76 × 103 3.76 × 103

1.56 × 10−2 ± 2.48 × 100i 3.76 × 103 3.76 × 103

1.53 × 10−2 ± 2.56 × 100i 3.76 × 103 3.76 × 103

1.95 × 10−2 ± 3.91 × 100i 3.76 × 103 3.76 × 103

2.85 × 10−2 ± 5.62 × 100i 3.76 × 103 3.76 × 103

4.25 × 10−2 ± 7.92 × 100i 3.76 × 103 3.76 × 103

4.76 × 10−2 ± 9.22 × 100i 3.76 × 103 3.76 × 103

1.74 × 10−1 ± 3.49 × 101i 3.76 × 103 3.76 × 103

1.89 × 10−1 ± 3.79 × 101i 3.76 × 103 3.76 × 103

2.76 × 10−1 ± 4.79 × 101i 3.76 × 103 3.76 × 103

squares problems associated with the SAI update. The sparsity pattern of the SAI update is

taken to be that of A2. To compare methods, we will only use the convergence of GMRES.

Ideally, our comparison would also include timings since the start-up costs vary between the

update methods. However, due to the subtleties of MATLAB’s complied and interpreted

code, we only present our comparison in terms of GMRES iterations. In Algorithm 3.4.1,

IRKA[LiUi] is presented; this algorithm computes an incomplete LU decomposition for each

σiE − A with a drop tolerance of 10−8. Especially since the drop tolerance is so small, this

results in a computationally intensive algorithm that is expected to give convergence roughly

similar to using an exact solve. Therefore, IRKA[LiUi] serves as a lower bound benchmark

for the convergence of GMRES rather than as a practical method to be implemented in the

large-scale setting.
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Algorithm 3.4.1. IRKA[LiUi]: IRKA with Incomplete LU Decompositions

1. Make an initial shift selection σi for i = 1, . . . , r and initial tangent directions b1, ...,br

and c1, ..., cr.

2. Compute LiUi ≈ (σiE − A) for i = 1, . . . , r.

3. For i = 1, . . . , r, solve (σiE−A)U−1
i L−1

i vi = Bbi and (σiE−A)TL−T
i U−T

i wi = CTci.

4. Vr = [ v1, · · · ,vr ] and Wr = [ w1, · · · ,wr ] .

5. while (not converged)

(a) Ar = WT
r AVr, Er = WT

r EVr, Br = WT
r B, Cr = CVr.

(b) Compute YTArX = diag(λi) and YTErX = Ir where YT and X are left and

right eigenvectors of λEr − Ar.

(c) σi ←− −λi(Ar,Er) for i = 1, . . . , r, bT
i ←− eT

i YTBr, and cT
i ←− CrXei.

(d) Compute LiUi ≈ (σiE − A) for i = 1, . . . , r.

(e) For i = 1, . . . , r, solve (σiE − A)U−1
i L−1

i vi = Bbi and

(σiE − A)TL−T
i U−T

i wi = CTci.

(f) Vr = [ v1, · · · ,vr ] and Wr = [ w1, · · · ,wr ] .

6. Ar = WT
r AVr, Er = WT

r EVr, Br = WT
r B, Cr = CVr.

We also considered IRKA with the SAI update implemented at every step after the first shift

of the first IRKA iteration. The implementation details are given in IRKA[Mi] (Algorithm
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3.4.2). We assume that the shifts are ordered from smallest to largest, so that the first shift

corresponds to the smallest shift. With this algorithm, only one incomplete LU decomposi-

tion for the smallest shift is computed. The reasoning for computing the incomplete LU for

the smallest shift is that we expect this shift to correspond to the hardest system to solve,

implying this system benefits the most from a very good preconditioner. The remaining sys-

tems are solved using the SAI updates, Mi and Ni. If k is the number of IRKA iterations,

this implies that 2rnk−n least squares problems are required in addition to one incomplete

LU decomposition. The work required for the least squares problems is independent of n,

implying that the cost for the least squares problems remains linear in n.

Algorithm 3.4.2. IRKA[Mi]: IRKA with Mi SAI Updates

1. Make an initial shift selection σi for i = 1, . . . , r and initial tangent directions b1, ...,br

and c1, ..., cr.

2. Compute L1U1 ≈ (σ1E − A).

3. For i = 2, . . . , r, compute SAI updates, Mi and Ni, by solving

min ‖(σiE − A)Mi − (σ1E − A)‖F and min ‖(σiE − A)TNi − (σ1E − A)T‖F .

4. Solve (σ1E − A)U−1
1 L−1

1 v1 = Bb1 and (σ1E − A)TL−T
1 U−T

1 w1 = CTc1.

5. For i = 2, . . . , r, solve (σiE − A)MiU
−1
1 L−1

1 vi = Bbi and

(σiE − A)TNiL
−T
1 U−T

1 wi = CTci.

6. Vr = [ v1, · · · ,vr ] and Wr = [ w1, · · · ,wr ] .
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7. while (not converged)

(a) Ar = WT
r AVr, Er = WT

r EVr, Br = WT
r B, Cr = CVr.

(b) Compute YTArX = diag(λi) and YTErX = Ir where YT and X are left and

right eigenvectors of λEr − Ar.

(c) σi ←− −λi(Ar,Er) for i = 1, . . . , r, bT
i ←− eT

i YTBr, and cT
i ←− CrXei.

(d) For i = 1, . . . , r, compute SAI updates, Mi and Ni, by solving

min ‖(σiE − A)Mi − (σ1E − A)‖F and min ‖(σiE − A)TNi − (σ1E − A)T‖F .

(e) For i = 1, . . . , r, solve (σiE − A)MiU
−1
1 L−1

1 vi = Bbi and

(σiE − A)TNiL
−T
1 U−T

1 wi = CTci.

(f) Vr = [ v1, · · · ,vr ] and Wr = [ w1, · · · ,wr ] .

8. Ar = WT
r AVr, Er = WT

r EVr, Br = WT
r B, Cr = CVr.

Due to the large number of least squares problems associated with IRKA[Mi], we also imple-

mented IRKA[M r
2
+1] (Algorithm 3.4.3). In terms of the computations required in construct-

ing the preconditioners, IRKA[M r
2
+1] involves substantially less work as it computes only

one incomplete LU decomposition and one SAI update. For the first IRKA step, the incom-

plete LU is computed as L1U1 ≈ σ1E − A and an SAI update is computed for σ r
2
+1E − A.

The first r
2

systems are then preconditioned using L1U1 while the remaining systems are

preconditioned using the SAI update. Throughout the remainder of the IRKA iteration, the

incomplete LU and the SAI update are reused for all remaining systems in a similar manner.



Sarah Wyatt Chapter 3. Preconditioner Updates 66

Algorithm 3.4.3. IRKA[M r
2
+1]: IRKA with M r

2
+1 SAI Update

1. Make an initial shift selection σi for i = 1, . . . , r and initial tangent directions b1, ...,br

and c1, ..., cr.

2. Compute L1U1 ≈ (σ1E − A).

3. Compute SAI updates, M r
2
+1 and N r

2
+1 by solving

min ‖(σ r
2
+1E−A)M r

2
+1− (σ1E−A)‖F and min ‖(σ r

2
+1E−A)TN r

2
+1− (σ1E−A)T‖F .

4. For i = 1, . . . , r
2
, solve (σiE−A)U−1

1 L−1
1 vi = Bbi and (σiE−A)TL−T

1 U−T
1 wi = CTci.

5. For i = r
2

+ 1, . . . , r, solve (σiE − A)M r
2
+1U

−1
1 L−1

1 vi = Bbi

and (σiE − A)TN r
2
+1L

−T
1 U−T

1 wi = CTci.

6. Vr = [ v1, · · · ,vr ] and Wr = [ w1, · · · ,wr ] .

7. while (not converged)

(a) Ar = WT
r AVr, Er = WT

r EVr, Br = WT
r B, Cr = CVr.

(b) Compute YTArX = diag(λi) and YTErX = Ir where YT and X are left and

right eigenvectors of λEr − Ar.

(c) σi ←− −λi(Ar,Er) for i = 1, . . . , r, bT
i ←− eT

i YTBr, and cT
i ←− CrXei.

(d) For i = 1, . . . , r
2
, solve (σiE − A)U−1

1 L−1
1 vi = Bbi and

(σiE − A)TL−T
1 U−T

1 wi = CTci.
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(e) For i = r
2

+ 1, . . . , r, solve (σiE − A)M r
2
+1U

−1
1 L−1

1 vi = Bbi

and (σiE − A)TN r
2
+1L

−T
1 U−T

1 wi = CTci.

(f) Vr = [ v1, · · · ,vr ] and Wr = [ w1, · · · ,wr ] .

8. Ar = WT
r AVr, Er = WT

r EVr, Br = WT
r B, Cr = CVr.

In Table 3.4, we present the total number of GMRES iterations for the computation of Vr

throughout the IRKA iteration using the proposed preconditioners. The results are repre-

sentative of the behavior also observed in the computation of Wr. Even though IRKA[Mi]

for the Rail Model resulted in over five times as many GMRES iterations, IRKA[Mi] ap-

plied to the CD and 1r models yielded exactly the same number of GMRES iterations as

IRKA[LiUi]. This suggests that IRKA[Mi] is competitive with IRKA[LiUi] in terms of

GMRES iterations. Moreover, the computational cost of computing a new incomplete LU

for every system is much too expensive while IRKA[Mi] involves a reasonable computational

cost even in the large-scale dynamical setting. Nevertheless, IRKA[Mi] still requires n least

squares problems for every update computed. Therefore, we ideally want to avoid computing

a new Mi for every shift. In IRKA[M r
2
+1], we consider only computing one SAI update and

observe a substantial increase in GMRES iterations in Table 3.4. As a result, the aim of the

next section is to determine a method to dynamically decrease the number of SAI updates

computed without causing a substantial increase in GMRES iterations.
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Table 3.4: Total GMRES Iterations for Vr in IRKA

Method Rail CD 1r
LiUi 84 2000 624
Mi 490 2000 624

M r
2
+1 860 56799 25794

3.5 Using ‖ΔEMi‖ to Update

To further investigate IRKA[Mi] and IRKA[M r
2
+1], we report in Figures 3.2 - 3.4 the total

number of GMRES iterations per linear system of the first IRKA iteration. In the results, we

observe a steady increase in the number of GMRES iterations as the shifts move away from

the initial shift, namely the shift for which the incomplete LU preconditioner is computed.

In Figure 3.3, the CD Model shows a drop in GMRES iterations for the next five shifts after

the SAI update M r
2
+1 is computed; although, a similar reduction is not observed for the

Rail and 1r models. Nevertheless, the CD Model indicates that for certain models and shift

selections the computation of just one additional Mi preconditioner can noticeably reduce

the number of GMRES iterations. Due to the variation in the effectiveness of the SAI update

in reducing the number of GMRES iterations, the aim of this section is to develop a measure

that determines when to compute a new SAI preconditioner.

One would perhaps expect that as the shifts σj are further from σ r
2
+1, the preconditioner

quality would decrease. To quantify the relationship between shifts, let Δ = |σp − σj| where

σp is the shift for which the SAI preconditioner is computed. In Table 3.5, we report the

relative Δ values associated with the first iteration of IRKA. For example, IRKA[M r
2
+1] for
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Figure 3.2: GMRES Iterations (Rail Model)

σ

the CD Model required over 28 times more iterations than IRKA[Mi] while IRKA[M r
2
+1] for

the Rail Model resulted in roughly twice as many iterations as IRKA[Mi]. However,
|σp−σj |
|σp|

is of the same order or larger for the Rail Model than
|σp−σj |
|σp| for the CD Model. Therefore,

Table 3.5 implies that the difference in shifts does not solely determine the preconditioner’s

quality. To find an appropriate measure, we first consider two coefficient matrices of the

IRKA iteration: Ki = σiE−A and Kj = σjE−A. Let Ri = KiMi−K0. The preconditioner

Mi is obtained by solving

min ‖KiMi − K0‖F = min ‖Ri‖F .

If we consider using Mi for Kj, then

KjMi − K0 = KiMi + (σj − σi)EMi − K0 = Ri + ΔEMi.
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Figure 3.3: GMRES Iterations (CD Model)

σ

Thus, we have

‖KjMi − K0‖F ≤ ‖Ri‖F + ‖ΔEMi‖F ,

suggesting that if ‖Ri‖F and ‖ΔEMi‖F are small, then ‖KjMi − K0‖F will also be small.

Using this observation, we return to the comparison of IRKA[M r
2
+1] and IRKA[Mi]. To

quantify the relationship between the methods, we define the following quantities:

FG =
Total GMRES iterations using IRKA[M r

2
+1]

Total GMRES iterations using IRKA[Mi]

and

FM =
Total least squares problems to compute IRKA[M r

2
+1]

Total least squares problems to compute IRKA[Mi]
.

In Tables 3.6 - 3.8, we report the FG factor in the first column. The second column gives

‖Ri + ΔEMi‖F , which is bounded by the sum of the third and fourth columns. From
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Figure 3.4: GMRES Iterations (1r Model)

σ

these tables, we note that for all models the number of GMRES iterations for IRKA[M r
2
+1]

increases as ‖Ri + ΔEMi‖F and ‖ΔEMi‖F increases. Moreover, we notice that ‖Ri‖F is

small for all models, suggesting ‖ΔEMi‖F is more relevant in predicting the behavior of the

IRKA[M r
2
+1] method. Since we would like to minimize ‖Ri + ΔEMi‖F , this suggests that

a new SAI preconditioner update should be computed once ‖ΔEMi‖F is large. Of course,

one of the pivotal questions is how large should ‖ΔEMi‖F be to merit computing a new

preconditioner. From Tables 3.6 - 3.8, there does not seem to be an exact connection between

the size of FG and ‖ΔEMi‖F . With the 1r Model, for example, ‖ΔEMi‖F = 1.08× 102 and

IRKA[M r
2
+1] requires over 25 times as many iterations, whereas ‖ΔEMi‖F = 3.06×102 and

IRKA[M r
2
+1] only requires 6 times as many iterations for the CD Model. To investigate

the relationship between ‖ΔEMi‖F and the convergence of GMRES, we compute a new SAI

preconditioner only when ‖ΔEMi‖F > Ptol. In Table 3.9, the factors of additional GMRES
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Table 3.5:
|σp−σj |
|σp|

Shift Rail CD 1r
σ r

2
+2 1.28 × 101 2.66 × 10−1 4.93 × 10−1

σ r
2
+3 1.90 × 102 6.04 × 10−1 1.23

σ r
2
+4 - 1.03 2.32

σ r
2
+5 - 1.57 3.96

σ r
2
+6 - 2.26 6.41

σ r
2
+7 - 3.12 1.01 × 101

σ r
2
+8 - 4.22 1.55 × 101

σ r
2
+9 - 5.61 2.36 × 101

σ r
2
+10 - 7.38 3.57 × 101

σ r
2
+11 - 9.61 5.38 × 101

σ r
2
+12 - 1.24 × 101 8.09 × 101

σ r
2
+13 - 1.60 × 101 -

σ r
2
+14 - 2.05 × 101 -

σ r
2
+15 - 2.63 × 101 -

σ r
2
+16 - 3.36 × 101 -

σ r
2
+17 - 4.28 × 101 -

σ r
2
+18 - 5.44 × 101 -

σ r
2
+19 - 6.92 × 101 -

σ r
2
+20 - 8.79 × 101 -

iterations and preconditioner updates are presented. For the Rail Model, FG remains roughly

at 1 while there is a significant reduction in FM . As a result, the Rail Model suggests that

we can compute significantly fewer Mi preconditioners without increasing the number of

GMRES iterations. Meanwhile, the CD and 1r models give a different conclusion. In order

for the factor of GMRES iterations to remain roughly at 1, a new preconditioner needs to

be computed for almost every system. Otherwise, these models show that GMRES requires

up to 40 times more iterations than with IRKA[Mi]. To avoid this increase in GMRES

iterations, we note that for all models FG is around one when Ptol ≤ 10, suggesting that
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Table 3.6: FG and ‖Ri + ΔEMi‖F (Rail Model)

Shift FG ‖Ri + ΔEMi‖F ‖Ri‖F ‖ΔEMi‖F

σ r
2
+1 1 8.81 × 10−6 8.81 × 10−6 0

σ r
2
+2 2.28 1.28 × 10−3 8.81 × 10−6 1.28 × 10−3

σ r
2
+3 3.26 1.90 × 10−2 8.81 × 10−6 1.90 × 10−2

larger Ptol values have the potential to yield a significant increase in the total number of

GMRES iterations.

3.6 Bellavia et al. Updates

In this section, we consider updating the preconditioner through an approach suggested by

Bellavia et al. in [11]. While [11] considers updating preconditioners for the Jacobian in

Newton-Krylov methods, the authors mention that the results also apply to sequences of

nonsymmetric linear systems. Similar work has been presented by [15], [18], [19], [20], [37],

[38], and [63] for different types of systems as well. The idea is to begin with a factorized seed

matrix and seed preconditioner; the seed preconditioner is then used to construct precondi-

tioners for subsequent systems. In the interpolatory framework, we apply these updates to

the sequences:

Kseed = σ0E − A, K1 = σ1E − A, . . . , Kk = σkE − A.
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Table 3.7: FG and ‖Ri + ΔEMi‖F (CD Model)

Shift FG ‖Ri + ΔEMi‖F ‖Ri‖F ‖ΔEMi‖F

σ r
2
+1 1 2.84 × 10−11 2.84 × 10−11 0

σ r
2
+2 6 3.06 × 102 2.84 × 10−11 3.06 × 102

σ r
2
+3 8 6.93 × 102 2.84 × 10−11 6.93 × 102

σ r
2
+4 10.5 1.18 × 103 2.84 × 10−11 1.18 × 103

σ r
2
+5 12.5 1.80 × 103 2.84 × 10−11 1.80 × 103

σ r
2
+6 15 2.59 × 103 2.84 × 10−11 2.59 × 103

σ r
2
+7 17.5 3.59 × 103 2.84 × 10−11 3.59 × 103

σ r
2
+8 19.5 4.85 × 103 2.84 × 10−11 4.85 × 103

σ r
2
+9 21 6.45 × 103 2.84 × 10−11 6.45 × 103

σ r
2
+10 22.5 8.47 × 103 2.84 × 10−11 8.47 × 103

σ r
2
+11 23.5 1.10 × 104 2.84 × 10−11 1.10 × 104

σ r
2
+12 24.5 1.43 × 104 2.84 × 10−11 1.43 × 104

σ r
2
+13 26.5 1.84 × 104 2.84 × 10−11 1.84 × 104

σ r
2
+14 28 2.36 × 104 2.84 × 10−11 2.36 × 104

σ r
2
+15 30.5 3.02 × 104 2.84 × 10−11 3.02 × 104

σ r
2
+16 32.5 3.85 × 104 2.84 × 10−11 3.85 × 104

σ r
2
+17 33.5 4.91 × 104 2.84 × 10−11 4.91 × 104

σ r
2
+18 36 6.25 × 104 2.84 × 10−11 6.25 × 104

σ r
2
+19 37.5 7.94 × 104 2.84 × 10−11 7.94 × 104

σ r
2
+20 39.5 1.01 × 105 2.84 × 10−11 1.01 × 105

Following the notation of [11], we let

K−1
seed = WD−1ZT

where D is a diagonal matrix and W and Z are upper triangular matrices with unitary

diagonals. We then let

Δk = Kk − Kseed = (σk − σ0)E
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Table 3.8: FG and ‖Ri + ΔEMi‖F (1r Model)

Shift FG ‖Ri + ΔEMi‖F ‖Ri‖F ‖ΔEMi‖F

σ r
2
+1 1 4.50 × 10−12 4.50 × 10−12 0

σ r
2
+2 4 9.92 × 10−1 4.50 × 10−12 9.92 × 10−1

σ r
2
+3 4.5 2.47 4.50 × 10−12 2.47

σ r
2
+4 5.5 4.68 4.50 × 10−12 4.68

σ r
2
+5 7 7.98 4.50 × 10−12 7.98

σ r
2
+6 8.5 1.29 × 101 4.50 × 10−12 1.29 × 101

σ r
2
+7 10.5 2.02 × 101 4.50 × 10−12 2.02 × 101

σ r
2
+8 13 3.12 × 101 4.50 × 10−12 3.12 × 101

σ r
2
+9 15 4.76 × 101 4.50 × 10−12 4.76 × 101

σ r
2
+10 20 7.20 × 101 4.50 × 10−12 7.20 × 101

σ r
2
+11 25 1.08 × 102 4.50 × 10−12 1.08 × 102

σ r
2
+12 29 1.63 × 102 4.50 × 10−12 1.63 × 102

and

Ek = ZTΔkW.

Then the inverse of the Kk matrix is given as follows:

K−1
k = (Kseed + Δk)

−1 = (Z−TDW−1 + Z−TEkW
−1)−1 = W(D + Ek)

−1ZT . (3.6.1)

Since W and Z tend to be dense, [11] suggests using sparse approximations for these quan-

tities in order to mitigate the computational costs. These sparse matrices are then used to

create a computationally feasible preconditioner. Let D̃ be a nonsingular diagonal approxi-

mation to D while W̃ and Z̃ are sparse approximations to W and Z, respectively. Then a

preconditioner for Kseed is

Pseed = W̃D̃−1Z̃T , (3.6.2)
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Table 3.9: Factor of Additional GMRES Iterations and Preconditioners

Ptol Rail FG Rail FM CD FG CD FM 1r FG 1r FM

10−5 1.00 0.71 1.00 1.00 1.00 1.00
10−4 1.01 0.43 1.00 1.00 1.00 1.00
10−3 1.11 0.14 1.00 1.00 1.00 1.00
10−2 1.11 0.14 1.00 1.00 1.00 1.00
10−1 1.11 0.14 1.00 1.00 1.01 0.99
100 1.11 0.14 1.00 1.00 1.02 0.99
101 1.11 0.14 1.00 1.00 1.02 0.99
102 1.11 0.14 1.03 0.99 14.02 0.44
103 1.11 0.14 4.88 0.70 26.39 0.22
104 1.11 0.14 12.00 0.38 40.50 0.08
105 1.11 0.14 21.47 0.14 40.50 0.08

implying that a preconditioner for Kk is

Pk = W̃(D̃ + Ẽk)
−1Z̃T , (3.6.3)

where Ẽk is a sparse approximation of Z̃TΔ̃kW̃ and Δ̃k is a sparse approximation of Δk.

In [11], the authors present upper bounds for the accuracy of the preconditioner, which we

state below without proof.

Theorem 3.1. [11] Let Pseed and Pk be given as in (3.6.2) and (3.6.3). Let f and g be linear

operators dictating the sparsification of the matrix’s entries. Define of (M) = M − f(M)

and og(M) = M − g(M) to be linear operators. Define Θ1 = −og(Z̃
TΔkW̃) and Θ2 =

−g(Z̃T of (Δk)W̃). Furthermore, let ν = ‖Z̃−T‖‖W̃−1‖. Assume that Pseed satisfies

‖Kseed − P−1
seed‖ = ε‖Kseed‖
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for some ε > 0. Then the following upper bound holds:

‖Kk − P−1
k ‖ ≤ ε‖Kseed‖ + ν(‖Θ1‖ + ‖Θ2‖). (3.6.4)

Furthermore, if ‖Kk − Kseed‖ > ε‖Kseed‖, then

‖Kk − P−1
k ‖ ≤ ε‖Kseed‖ + ν(‖Θ1‖ + ‖Θ2‖)

‖Kk − Kseed‖ − ε‖Kseed‖ ‖Kk − P−1
seed‖. (3.6.5)

Another theoretical result of [11] relies on the assumption that the preconditioner updates are

designed for a sequence of Jacobians appearing in the Newton-Krylov methods. Assuming

the standard convergence assumptions, namely that the Jacobian is Lipschitz continuous in

a ball B(x∗, r) centered at x∗ with radius r and the sequence of iterates xk ∈ B(x∗, δ) for

k ≥ 0 and δ > 0, [11] proves several theorems about the spectrum of the preconditioned

Jacobian. Fortunately, these results, namely Theorem 4.3, Corollary 4.4, and Corollary 4.5

of [11], apply to IRKA as well by noting the presence of the Lipschitz constant in the IRKA

framework. Consider applying right preconditioning to a sequence of IRKA shifts {σk} so

that σk → σ∗ where σ∗ is the optimal H2 shift. Note that K(σi) = σiE − A is Lipschitz

continuous with Lipschitz constant ‖E‖. Due to this Lipschitz constant, we employ similar

reasoning as in [11] to state and prove the following theorem and corollaries.

Theorem 3.2. Let {σk} be a sequence of shifts generated by IRKA. Let σseed = σ0. Define

K(σi) = σiE − A. Assume that for k ≥ 0, σk ∈ B(σ∗, δ) where σ∗ is the optimal H2 shift.

Further assume that the preconditioner Pseed in (3.6.2) satisfies ‖Kseed−P−1
seed‖ ≤ ε for some
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positive ε. Then the right preconditioned system KkPk can be written as

KkPk = I + RkPk, Rk = Kk − P−1
k

where

‖Rk‖ = ε + 2c‖E‖δ

and

‖RkPk‖ ≤ ζ(ε + 2c‖E‖δ)‖(D̃ + Ẽk)
−1‖ (3.6.6)

for ζ = ‖Z̃‖‖W̃‖ and positive scalar c.

Proof: The proof follows exactly as in [11]. Instead of relying on the Lipschitz continuity

of the Jacobian as in [11], the Lipschitz continuity of the matrix K(σi) = σiE − A with

Lipschitz constant ‖E‖ yields the result.

Corollary 3.6.1. Let the assumptions of Theorem 3.2 hold. Then there exists δ̂ and ε̂ such

that for all 0 < δ ≤ δ̂ and 0 < ε ≤ ε̂, the eigenvalues of KkPk are clustered at 1 in the right

half complex plane with radius ρ = ζ(ε + 2c‖E‖δ)‖(D̃ + Ẽk)
−1‖ for all k.

Proof. Following the same reasoning as in [11], the result follows from (3.6.6) and letting δ̂

and ε̂ be such that for all 0 < δ ≤ δ̂ and 0 < ε ≤ ε̂, we have

ρ = ζ(ε + 2c‖E‖δ)‖(D̃ + Ẽk)
−1‖ < 1,
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implying the eigenvalues are clustered at 1 in the right half complex plane with radius ρ.

Corollary 3.6.2. Let the assumptions of Theorem 3.2 hold. Let Ẽk and D̃+ Ẽk be diagonal

approximations to Ek and D + Ek, respectively. For any diagonal matrix Q, denote the ith

entry of Q by (Q)i. Then KkPk = I + RkPk where

‖RkPk‖ ≤ ζ(ε + 2c‖E‖δ)
mini |(D̃ + Ẽk)i|

. (3.6.7)

Proof. As in [11], the proof follows directly from (3.6.6) and noting that

‖(D̃ + Ẽk)
−1‖ =

1

mini |(D̃ + Ẽk)i|
.

By proving the clustering of the eigenvalues for sufficiently small δ̂ and ε̂, the Bellavia et

al. approach is promising. It is important to emphasize, however, the assumptions of the

theorem. The quantities δ̂ and ε̂ depend on the distance between the shifts and the accuracy

of the preconditioner, respectively. Therefore, the shifts may need to be very close together

with a highly accurate preconditioner in order for the clustering of eigenvalues to be observed.

In the next section, we apply the Bellavia et al. approach to three models to answer the

question of if the Bellavia et al. update is numerically effective.
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3.7 Numerical Results for the Bellavia et al. Update

We applied our proposed preconditioner to the Rail, CD and 1r models as discussed in

Section 3.2. To compute the initial factorized form, [11] suggests two techniques: ILU and

AINV preconditioners. For the ILU preconditioner, we have

Kseed ≈ LDUT ,

where D is a diagonal matrix and the matrices L and U are unit lower triangular. To obtain

the factorized form of (3.6.2), take Z̃ ≈ L−T and W̃ ≈ U−T . For more details, see [69]. The

other method, AINV, employs the biconjugate Gram-Schmidt orthogonalization process to

obtain

Kseed = M−TDN−1. (3.7.1)

Taking W̃ = N, D̃ = D, and Z̃ = M, (3.7.1) fits into the appropriate factorized frame-

work. For more information about the AINV preconditioner, see [17]. We consider applying

both factorizations and obtained similar results for almost all of the models. However, the

AINV factorization was prone to occasional breakdowns; therefore, we present our results

obtained using the ILU method with zero level of fill-in to compute the seed preconditioner.

For the systems studied, the ilu(0) factorization yielded similar convergence as the ilutp

preconditioner.

To sparsify the matrices, [11] suggests several different types of banded approximations. In
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our numerical work, we used a diagonal sparsification of the D̃+ Ẽk and kept the factors W̃

and Z̃ as dense matrices. Then the definition of Δk implies that the updated preconditioner

is defined by

Pk = W(D̃ + Ẽk)
−1ZT , (3.7.2)

where Δ̃k = (σk − σ0)diag(E) and Ẽk = (σk − σ0)diag(ZT diag(E)W). As noted in [11],

a breakdown of the preconditioner update occurs if D̃ + Ẽk is singular. Therefore, [11]

recommends either shifting the entries or reusing the preconditioner update from the previous

iteration. In our numerical results, we implemented the latter approach and updated the

preconditioner only if

min
i

|(D̃ + Ẽk)i| > 10−4‖K0‖1. (3.7.3)

In Table 3.10, we report the total number of systems throughout the IRKA iteration for

which the update was abandoned. For reference, the third column of Table 3.10 reports the

number of systems solved throughout the IRKA iteration. It is important to note that all

models were plagued with a singular D̃ + Ẽk matrix at some point in the IRKA iteration.

Table 3.10: Instances of Abandoned Update

Model Update Abandoned Systems Solved
Rail 5 42
CD 110 1000
1r 198 312
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The IRKA algorithm with Bellavia et al. updates is given in IRKA[Bi] (Algorithm 3.7.1).

In applying the Bellavia et al. update, we only compute an initial LU preconditioner for

the first shift of the first IRKA iteration. The remaining shifts are preconditioned using the

update.

Algorithm 3.7.1. IRKA[Bi]: IRKA with Bellavia et al. Updates

1. Make an initial shift selection σi for i = 1, . . . , r and initial tangent directions b1, ...,br

and c1, ..., cr.

2. Compute L1U1 ≈ (σ1E − A).

3. For i = 2, . . . , r, compute updates, Pi as defined in (3.7.2).

4. Solve (σ1E − A)U−1
1 L−1

1 v1 = Bb1 and (σ1E − A)TL−T
1 U−T

1 w1 = CTc1.

5. For i = 2, . . . , r, solve (σiE − A)Pivi = Bbi and

(σiE − A)TPT
i wi = CTci if mini |(D̃ + Ẽk)i| > 10−4‖K0‖1.

Otherwise, solve (σiE − A)U−1
1 L−1

1 vi = Bbi and (σiE − A)TL−T
1 U−T

1 wi = CTci.

6. Vr = [ v1, · · · ,vr ] and Wr = [ w1, · · · ,wr ] .

7. while (not converged)

(a) Ar = WT
r AVr, Er = WT

r EVr, Br = WT
r B, Cr = CVr.

(b) Compute YTArX = diag(λi) and YTErX = Ir where YT and X are left and

right eigenvectors of λEr − Ar.
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(c) σi ←− −λi(Ar,Er) for i = 1, . . . , r, bT
i ←− eT

i YTBr, and cT
i ←− CrXei.

(d) For i = 1, . . . , r, compute updates Pi as defined in (3.7.2).

(e) For i = 1, . . . , r, solve (σiE − A)Pivi = Bbi and

(σiE − A)TPT
i wi = CTci if mini |(D̃ + Ẽk)i| > 10−4‖K0‖1.

Otherwise, solve (σiE−A)U−1
1 L−1

1 vi = Bbi and (σiE−A)TL−T
1 U−T

1 wi = CTci.

(f) Vr = [ v1, · · · ,vr ] and Wr = [ w1, · · · ,wr ] .

8. Ar = WT
r AVr, Er = WT

r EVr, Br = WT
r B, Cr = CVr.

Since [11] uses Theorem 3.1 to suggest that the update possesses the potential to be better

than freezing the preconditioner, we also consider IRKA[L0U0], where the incomplete LU

is computed for the smallest shift of the first IRKA iteration and then used for all remain-

ing linear systems. In Table 3.11, we report the total number of GMRES iterations for Vr

throughout the IRKA iteration, which are representative of those required for Wr. There

is no theoretical reason to expect that IRKA[Bi] will outperform IRKA[LiUi]; however,

we include this data as a lower bound measure since the preconditioner in IRKA[LiUi] is

computed very accurately and frequently. For the Rail Model, IRKA[Bi] results in fewer

iterations than freezing the preconditioner. Meanwhile, the CD and 1r models are examples

for which the Bellavia et al. update involves substantially more GMRES iterations in com-

parison to IRKA[L0U0]. In fact, the upper bounds of Theorem 3.1 and Theorem 3.2 suggest

this convergence behavior. As noted in [11], the first bound (3.6.4) suggests that the accuracy

of the preconditioner depends on two factors: the accuracy of the original preconditioner,
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Table 3.11: Total GMRES Iterations for Vr

Model IRKA[LiUi] IRKA[L0U0] IRKA[Bi]
Rail 84 1334 1271
CD 2000 31425 87861
1r 624 23286 25803

Pseed, and the terms ‖Θ1‖ and ‖Θ2‖, which quantify the entries eliminated in the sparsifi-

cation. Furthermore, the second bound suggests that if ν(‖Θ1‖ + ‖Θ2‖) is small, then the

updated preconditioner, Pk, may be more accurate than the original preconditioner, Pseed,

and so Pk would be a better preconditioner than simply freezing the preconditioner. Our

numerical results as reported in Table 3.12 support the theoretical conclusions of Theorem

3.1. For all of the models, the ‖Kk − Kseed‖ > ε‖Kseed‖ assumption is satisfied, imply-

ing that both bound (3.6.4) and (3.6.5) hold. Even though all models begin with accurate

seed preconditioners, the norm of ‖Kk − P−1
k ‖ is quite large for all models except the Rail

Model. Moreover, ν(‖Θ1‖ + ‖Θ2‖) is relatively small for the Rail Model in comparison to

the CD and 1r models. As a result, these bounds suggest that the update for the Rail Model

could be more effective than a frozen preconditioner while the update for the CD and 1r

models will probably not be effective. Moreover, it is important to emphasize that a small

‖Kk −P−1
k ‖ quantity does not necessarily guarantee a good preconditioner since ‖KkPk −I‖

could still be large due to a mismatch of the singular values and vectors of Pk and Kk. The

convergence behavior can also be explained through (3.6.6) of Theorem 3.2, which gives that



Sarah Wyatt Chapter 3. Preconditioner Updates 85

Table 3.12: Preconditioner Update Bounds

Model ‖Kseed − P−1
seed‖ ‖Kk − P−1

k ‖ (3.6.4) (3.6.5) ν(‖Θ1‖ + ‖Θ2‖)
Rail 1.58 × 10−5 5.41 × 10−3 3.33 × 10−2 3.34 × 10−2 3.33 × 10−2

CD 6.26 × 10−10 1.20 × 107 5.24 × 108 5.24 × 108 5.24 × 108

1r 1.49 × 10−12 8.34 × 105 2.69 × 109 2.69 × 109 2.69 × 109

KkPk = I + RkPk with

‖RkPk‖ ≤ ζ(ε + 2c‖E‖δ)‖(D̃ + Ẽk)
−1‖. (3.7.4)

As discussed previously, this upper bound suggests that if the quantities δ̂ and ε̂ are selected

sufficiently small, then the eigenvalues of KkPk will be clustered at 1 in the right half complex

plane. Tables 3.13 - 3.15 report ‖RkPk‖, ζ, ‖Rk‖ and ‖(D̃ + Ẽk)
−1‖. For models where the

preconditioner update resulted in substantially more GMRES iterations, we observe that

‖RkPk‖ is large. While Corollary 3.6.1 gives that the eigenvalues of KkPk will be clustered

at 1 in the right half complex plane, the result depends on selecting δ̂ and ε̂ so that 0 < δ ≤ δ̂

and 0 < ε ≤ ε̂ are such that ρ = ζ(ε + 2c‖E‖δ)‖(D̃ + Ẽk)
−1‖ < 1. However, as Table 3.14

and Table 3.15 show, the magnitudes of ‖(D̃ + Ẽk)
−1‖, ‖Rk‖, and ζ are so large that the δ̂

and ε̂ values need to be selected extremely small to ensure the conclusion of the eigenvalues

being clustered at 1. Since δ̂ and ε̂ depend on the distance between shifts and the accuracy

of the seed preconditioner, respectively, sufficiently small δ̂ and ε̂ values could very well

imply that the shifts would need to be very close together with a highly accurate seed

preconditioner in order to obtain the ideal spectrum. Therefore, even though Corollary 3.6.1
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seems theoretically promising, our numerical results present a bleaker reality.

Table 3.13: ‖RkPk‖ and Associated Terms for the Last IRKA Iteration of the Rail Model

Shift ‖RkPk‖ ζ ‖Rk‖ ‖(D̃ + Ẽk)
−1‖

σ1E − A 1.48 3.80 1.58 × 10−5 2.24 × 105

σ2E − A 1.46 3.77 1.58 × 10−5 2.23 × 105

σ3E − A 1.39 3.44 1.59 × 10−5 2.01 × 105

σ4E − A 1.17 3.07 1.57 × 10−5 1.20 × 105

σ5E − A 5.42 × 10−1 1.98 2.13 × 10−5 9.94 × 104

σ6E − A 8.34 × 10−1 1.94 3.69 × 10−3 3.49 × 104

3.8 Effect of Initial Preconditioner

In this next section, we consider implementing the preconditioner updates, but now with

an initial incomplete LU decomposition based on varying levels of fill-in. For a fill-in level

of one, the updated preconditioners result in noticeably larger GMRES iterations for all

models. As a result, our goal is to select certain points in the IRKA iteration to compute

a new incomplete LU in order to obtain better convergence for the updated preconditioned

systems as well. We consider two types of requirements for computing a new incomplete LU.

The first technique involves a static condition and results in IRKA[Mid, f ] (Algorithm 3.8.1).

In the algorithm below, the matrices, Pi and P̃i, denote the entire computed preconditioner,

including both the update and the Li and Ui factors if appropriate. This algorithm computes

an incomplete LU decomposition with level-f fill-in for the matrices L1U1 ≈ σ1E − A and

L r
2
+1U r

2
+1 ≈ σ r

2
+1E − A at each IRKA iteration. In constructing preconditioner updates
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for σiE − A, the decompositions L1U1 and L r
2
+1U r

2
+1 are used for i = 2, . . . , r

2

and i = r
2

+ 2, . . . , r, respectively. We also considered computing L1U1 ≈ σ1E − A and

L r
2
+1U r

2
+1 ≈ σ r

2
+1E−A for only the first IRKA iteration and then using the preconditioners

throughout all remaining IRKA iterations; however, this did not noticeably impact the

convergence of GMRES. As a result, we only present the results for IRKA[Mid, f ].

Algorithm 3.8.1. IRKA[Mid, f ]: IRKA with L r
2
+1U r

2
+1

1. Make an initial shift selection σi for i = 1, . . . , r and initial tangent directions b1, ...,br

and c1, ..., cr.

2. Compute L1U1 ≈ σ1E − A and L r
2
+1U r

2
+1 ≈ σ r

2
+1E − A with level-f fill-in.

3. For i = 1, r
2
+1, solve (σiE−A)U−1

i L−1
i vi = Bbi and (σiE−A)TL−T

i U−T
i wi = CTci.

4. For i = 2, . . . , r
2
, use L1U1 to compute the updated preconditioners, Pi and P̃i, and

solve (σiE − A)Pivi = Bbi and (σiE − A)T P̃iwi = CTci.

5. For i = r
2

+ 2, . . . , r, use L r
2
+1U r

2
+1 to compute the updated preconditioners, Pi and

P̃i, and solve (σiE − A)Pivi = Bbi and (σiE − A)T P̃iwi = CTci.

6. Vr = [ v1, · · · ,vr ] and Wr = [ w1, · · · ,wr ] .

7. while (not converged)

(a) Ar = WT
r AVr, Er = WT

r EVr, Br = WT
r B, Cr = CVr.

(b) Compute YTArX = diag(λi) and YTErX = Ir where YT and X are left and

right eigenvectors of λEr − Ar.
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(c) σi ←− −λi(Ar,Er) for i = 1, . . . , r, bT
i ←− eT

i YTBr, and cT
i ←− CrXei.

(d) Compute L1U1 ≈ σ1E − A and L r
2
+1U r

2
+1 ≈ σ r

2
+1E − A with level-f fill-in.

(e) For i = 1, r
2

+ 1, solve (σiE − A)U−1
i L−1

i vi = Bbi and

(σiE − A)TL−T
i U−T

i wi = CTci.

(f) For i = 2, . . . , r
2
, use L1U1 to compute the updated preconditioners, Pi and P̃i,

and solve (σiE − A)Pivi = Bbi and (σiE − A)T P̃iwi = CTci.

(g) For i = r
2

+ 2, . . . , r, use L r
2
+1U r

2
+1 to compute the updated preconditioners, Pi

and P̃i, and solve (σiE − A)Pivi = Bbi and (σiE − A)T P̃iwi = CTci.

(h) Vr = [ v1, · · · ,vr ] and Wr = [ w1, · · · ,wr ] .

8. Ar = WT
r AVr, Er = WT

r EVr, Br = WT
r B, Cr = CVr.

The next method, IRKA[G, f ], is detailed in Algorithm 3.8.2, which computes an initial

preconditioner for the first shift of the first IRKA iteration. Then the algorithm dynamically

computes updates based on the convergence of GMRES. During the first IRKA step, the

update is computed if the number of GMRES iterations exceeds twice the number of GMRES

iterations required for the first shift. After the first IRKA iteration, a new incomplete LU for

σ1E − A of the current iteration and a preconditioner update are computed only for shifts

resulting in more than twice the number of GMRES iterations required for σ1E−A. In this

way, the preconditioners are dynamically updated based on the convergence of GMRES. In

the algorithm below, Pi and P̃i denote the entire preconditioner.
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Algorithm 3.8.2. IRKA[G,f]: IRKA with Updates Based on GMRES

1. Make an initial shift selection σi for i = 1, . . . , r and initial tangent directions b1, ...,br

and c1, ..., cr.

2. Compute L1U1 ≈ (σ1E − A).

3. Let LiUi = L1U1 for i = 2, ..., r.

4. For i = 1, . . . , r, solve (σiE−A)U−1
i L−1

i vi = Bbi and (σiE−A)TL−T
i U−T

i wi = CTci

as follows:

(a) Let q and l be the total number of GMRES iterations required to solve

(σ1E − A)U−1
1 L−1

1 v1 = Bb1 and (σ1E − A)TL−T
1 U−T

1 w1 = CTc1.

(b) Solve (σiE − A)U−1
i L−1

i vi = Bbi and (σiE − A)TL−T
i U−T

i wi = CTci with the

maximum number of GMRES iterations equal to 2q or 2l, respectively.

(c) If GMRES does not converge within 2q or 2l iterations, compute an update pre-

conditioner, Pi or P̃i, and solve (σiE − A)Pivi = Bbi

and (σiE − A)T P̃iwi = CTci using GMRES.

5. Vr = [ v1, · · · ,vr ] and Wr = [ w1, · · · ,wr ] .

6. while (not converged)

(a) Ar = WT
r AVr, Er = WT

r EVr, Br = WT
r B, Cr = CVr.

(b) Compute YTArX = diag(λi) and YTErX = Ir where YT and X are left and

right eigenvectors of λEr − Ar.
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(c) σi ←− −λi(Ar,Er) for i = 1, . . . , r, bT
i ←− eT

i YTBr, and cT
i ←− CrXei.

(d) For i = 1, . . . , r, solve (σiE − A)U−1
i L−1

i vi = Bbi

and (σiE − A)TL−T
i U−T

i wi = CTci as follows:

i. Let q and l be the total number of GMRES iterations required to solve

(σ1E − A)U−1
1 L−1

1 v1 = Bb1 and (σ1E − A)TL−T
1 U−T

1 w1 = CTc1.

ii. Solve (σiE − A)U−1
i L−1

i vi = Bbi and (σiE − A)TL−T
i U−T

i wi = CTci with

the maximum number of GMRES iterations equal to 2q and 2l, respectively.

iii. If GMRES does not converge within 2q or 2l iterations, compute

L1U1 = σ1E − A, an updated preconditioner, Pi or P̃i, and solve

(σiE − A)Pivi = Bbi and (σiE − A)T P̃iwi = CTci using GMRES.

(e) Vr = [ v1, · · · ,vr ] and Wr = [ w1, · · · ,wr ] .

7. Ar = WT
r AVr, Er = WT

r EVr, Br = WT
r B, Cr = CVr.

We compare these methods with the previously proposed algorithms. Since we obtained

similar results for Wr, only the GMRES iterations required for Vr are recorded. Table 3.16,

Table 3.18, and Table 3.20 report the total number of GMRES iterations for Vr. In the tables,

IRKA[k,f] refers to applying IRKA[LiUi], IRKA[Mi] and IRKA[Bi]. In addition, Table 3.17,

Table 3.19 and Table 3.21 illustrate the total number of preconditioners computed during

the iteration. In examining this data, there are two relationships we would like to explore,

namely the performance of IRKA[Mid, f ] and IRKA[G, f ] with the updates and the effect

of the preconditioner’s accuracy.
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3.8.1 Effect of Preconditioner Accuracy

Intuitively, we expect a direct relationship between the accuracy of the initial preconditioner

and the overall GMRES convergence. For the Rail Model, such a relationship is observed,

namely for all methods, IRKA[·, 2] results in a similar or smaller number of GMRES iterations

than IRKA[·, 1]. For the CD and 1r models, the accuracy of the preconditioner is more

peculiar. If the SAI update is used for the CD and 1r models, then the number of GMRES

iterations for IRKA[·, 2] is less than or equal to the corresponding number for IRKA[·, 1] as

anticipated. With the Bellavia et al. update, however, GMRES actually experiences worse

convergence for IRKA[·, 2] than IRKA[·, 1]. Therefore, this suggests that the additional

computations required for obtaining a more accurate preconditioner do not always correspond

to improved GMRES convergence.

3.8.2 Effect of IRKA[Mid, f ] and IRKA[G, f ] on SAI Updates

The results indicate that the SAI method performs best with IRKA[Mid, f ]. In fact,

IRKA[Mid,2] with SAI updates resulted in fewer GMRES iterations than IRKA[k, 2] for all

models. This is quite impressive since IRKA[Mid, f ] requires substantially fewer incomplete

LU decompositions than IRKA[k, 2]; for example, IRKA[k, 2] for the 1r Model, involves over

fifteen times as many incomplete LU decompositions as IRKA[Mid, f ]. Therefore, this data

suggests that IRKA[Mid, f ] offers computational savings in terms of both GMRES iterations

and incomplete LU decompositions computed. In many ways, the superior performance of
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IRKA[Mid, f ] for the Rail Model is expected as IRKA[Mid, f ] computes more precondition-

ers. In examining Table 3.19 and Table 3.21, however, the superiority of IRKA[Mid, f ] is not

easily explained since IRKA[G, f ] computes over twelve and six times more preconditioners

than IRKA[Mid, f ], respectively. A possible explanation is the additional 2l and 2q GM-

RES iterations involved in IRKA[G, f ] before deciding to compute a new LU decomposition

outweighs the savings associated with the new preconditioner for these models. Since all

models display a noticeable increase with IRKA[G, f ], the conclusion is that the SAI update

is best implemented with IRKA[Mid, f ].

3.8.3 Effect of IRKA[Mid, f ] and IRKA[G, f ] on Bellavia et al. Up-

dates

From our findings, the effect of IRKA[Mid, f ] and IRKA[G, f ] seems to depend on the initial

quality of the Bellavia et al. update. For the Rail Model, convergence of the Bellavia et

al. update is similar to other methods, and we observe that the update benefits most from

the additional preconditioners computed by IRKA[Mid, f ]. For the CD and 1r models,

however, the bounds presented in Theorem 3.1 and Theorem 3.2 predict that the Bellavia et

al. update is a poor preconditioner, which is supported by the numerical results of Table 3.18

and Table 3.20. By computing a new seed preconditioner when these poor preconditioners

are encountered in the IRKA iteration, IRKA[G, f ] results in fewer GMRES iterations than

IRKA[Mid, f ], which continues to use the same initial seed preconditioner until the r
2

+ 1
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system. While IRKA[G, f ] always results in more GMRES iterations than IRKA[k, f], it

is important to emphasize that the former method computes only about sixty percent of

the incomplete LU decompositions that IRKA[k, f] computes. Especially if the cost of

computing an incomplete LU is large, this savings may outweigh the additional GMRES

iterations. Therefore, the models considered indicate that IRKA[G, f ] with Bellavia et al.

updates is an appropriate method, yielding a reasonable number of GMRES iterations and

incomplete LU decompositions when compared to other methods.

Especially considering the large number of GMRES iterations required for the SAI and

Bellavia et al. update with IRKA[k, f], these observations illustrate that the updates become

more competitive when implemented in conjunction with either IRKA[Mid, f ] or IRKA[G, f ].
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Table 3.14: ‖RkPk‖ and Associated Terms for the Last IRKA Iteration of the CD Model

Shift ‖RkPk‖ ζ ‖Rk‖ ‖(D̃ + Ẽk)
−1‖

σ1E − A 8.55 9.95 × 103 2.26 × 101 9.76 × 10−1

σ2E − A 8.20 9.94 × 103 2.26 × 101 7.75 × 10−1

σ3E − A 1.49 × 101 9.93 × 103 4.36 × 101 6.14 × 10−1

σ4E − A 1.50 × 101 9.91 × 103 4.77 × 101 4.87 × 10−1

σ5E − A 9.06 × 101 9.88 × 103 9.42 × 105 1.30 × 10−1

σ6E − A 9.52 × 101 9.85 × 103 1.27 × 106 3.37 × 10−2

σ7E − A 9.39 × 101 9.81 × 103 1.26 × 106 2.34 × 10−2

σ8E − A 9.25 × 101 9.76 × 103 1.44 × 106 1.71 × 10−2

σ9E − A 9.08 × 101 9.70 × 103 1.43 × 106 1.55 × 10−2

σ10E − A 8.85 × 101 9.63 × 103 1.50 × 106 1.39 × 10−2

σ11E − A 8.61 × 101 9.53 × 103 1.48 × 106 1.35 × 10−2

σ12E − A 9.30 × 101 9.41 × 103 3.70 × 106 5.23 × 10−3

σ13E − A 9.13 × 101 9.26 × 103 3.64 × 106 6.79 × 10−3

σ14E − A 1.13 × 101 9.08 × 103 2.45 × 102 4.64 × 10−2

σ15E − A 8.88 × 101 8.85 × 103 5.43 × 106 9.23 × 10−3

σ16E − A 8.70 × 101 8.58 × 103 5.27 × 106 5.98 × 10−3

σ17E − A 1.03 × 102 8.25 × 103 8.22 × 106 9.96 × 10−3

σ18E − A 9.91 × 101 7.86 × 103 7.75 × 106 8.58 × 10−3

σ19E − A 8.55 × 101 7.41 × 103 8.66 × 106 6.55 × 10−3

σ20E − A 8.31 × 101 6.89 × 103 8.08 × 106 4.10 × 10−3

σ21E − A 7.92 × 101 6.30 × 103 8.11 × 106 2.58 × 10−3

σ22E − A 7.62 × 101 5.66 × 103 7.35 × 106 2.10 × 10−3

σ23E − A 7.24 × 101 4.98 × 103 6.79 × 106 2.58 × 10−3

σ24E − A 6.88 × 101 4.29 × 103 5.95 × 106 2.46 × 10−3

σ25E − A 2.19 × 101 3.60 × 103 2.75 × 107 1.58 × 10−3

σ26E − A 2.17 × 101 2.94 × 103 2.25 × 107 7.06 × 10−4

σ27E − A 2.00 × 101 2.33 × 103 1.94 × 107 4.06 × 10−4

σ28E − A 1.97 × 101 1.80 × 103 1.50 × 107 8.63 × 10−4

σ29E − A 1.58 × 101 1.35 × 103 1.42 × 107 5.76 × 10−4

σ30E − A 1.55 × 101 9.93 × 102 1.04 × 107 3.47 × 10−4

σ31E − A 8.20 7.11 × 102 1.49 × 107 3.63 × 10−4

σ32E − A 8.10 4.98 × 102 1.04 × 107 1.88 × 10−4

σ33E − A 7.70 3.42 × 102 7.48 × 106 2.34 × 10−4

σ34E − A 7.52 2.32 × 102 5.09 × 106 2.05 × 10−4

σ35E − A 6.65 1.55 × 102 3.82 × 106 1.70 × 10−4

σ36E − A 6.38 1.02 × 102 2.56 × 106 1.46 × 10−4

σ37E − A 5.10 6.74 × 101 3.40 × 106 1.06 × 10−4

σ38E − A 4.17 4.42 × 101 2.22 × 106 8.07 × 10−5

σ39E − A 3.69 2.90 × 101 2.40 × 106 5.59 × 10−5

σ40E − A 4.39 1.92 × 101 1.55 × 106 4.64 × 10−5
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Table 3.15: ‖RkPk‖ and Associated Terms for the Last IRKA Iteration of the 1r Model

Shift ‖RkPk‖ ζ ‖Rk‖ ‖(D̃ + Ẽk)
−1‖

σ1E − A 1.99 3.76 × 109 7.75 × 10−1 1.00 × 103

σ2E − A 1.99 1.69 × 109 7.75 × 10−1 6.70 × 102

σ3E − A 5.12 7.58 × 108 1.99 4.49 × 102

σ4E − A 5.12 3.40 × 108 1.99 3.01 × 102

σ5E − A 5.91 1.53 × 108 2.30 2.02 × 102

σ6E − A 5.91 6.86 × 107 2.30 1.35 × 102

σ7E − A 6.40 3.08 × 107 2.49 9.05 × 101

σ8E − A 6.40 1.38 × 107 2.49 6.06 × 101

σ9E − A 6.60 6.21 × 106 2.57 4.06 × 101

σ10E − A 6.59 2.79 × 106 2.57 2.72 × 101

σ11E − A 1.00 × 101 1.25 × 106 3.91 1.82 × 101

σ12E − A 9.94 5.65 × 105 3.91 1.22 × 101

σ13E − A 1.41 × 101 2.56 × 105 5.63 8.19
σ14E − A 1.36 × 101 1.17 × 105 5.63 5.48
σ15E − A 1.80 × 101 5.43 × 104 7.93 3.67
σ16E − A 1.59 × 101 2.61 × 104 7.94 2.46
σ17E − A 8.11 × 102 1.32 × 104 1.98 × 105 7.18 × 10−1

σ18E − A 8.05 × 102 7.05 × 103 9.35 × 104 3.57 × 10−1

σ19E − A 2.15 × 102 4.00 × 103 1.74 × 105 2.40 × 10−1

σ20E − A 2.15 × 102 2.39 × 103 9.20 × 104 2.47 × 10−1

σ21E − A 1.97 × 102 1.48 × 103 5.72 × 104 9.05 × 10−2

σ22E − A 1.95 × 102 9.37 × 102 3.51 × 104 8.75 × 10−2

σ23E − A 1.55 × 102 6.05 × 102 2.84 × 104 7.20 × 10−2

σ24E − A 1.52 × 102 3.96 × 102 1.88 × 104 5.38 × 10−2

Table 3.16: Rail Model: Total GMRES Iterations for Vr

Method IRKA[LiUi] SAI Bellavia
IRKA[k,1] 1250 1553 1600

IRKA[Mid,1] - 1317 1398
IRKA[G,1] - 1606 1705
IRKA[k,2] 404 533 1336

IRKA[Mid,2] - 365 545
IRKA[G,2] - 1157 1776
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Table 3.17: Rail Model: Incomplete LU Decompositions Computed for Vr

Method IRKA[LiUi] SAI Bellavia
IRKA[k,f] 42 1 1

IRKA[Mid, f ] - 14 14
IRKA[G,1] - 1 3
IRKA[G,2] - 1 3

Table 3.18: CD Model: Total GMRES Iterations for Vr

Method IRKA[LiUi] SAI Bellavia
IRKA[k,1] 2000 20760 85358

IRKA[Mid,1] - 2000 76636
IRKA[G,1] - 6940 5872
IRKA[k,2] 2000 20760 85357

IRKA[Mid,2] - 1920 92528
IRKA[G,2] - 6665 8448

Table 3.19: CD Model: Incomplete LU Decompositions Computed for Vr

Method IRKA[LiUi] SAI Bellavia
IRKA[k,f] 1000 1 1

IRKA[Mid, f ] - 80 80
IRKA[G,1] - 983 644
IRKA[G,2] - 983 644

Table 3.20: 1r Model: Total GMRES Iterations for Vr

Method IRKA[LiUi] SAI Bellavia
IRKA[k,1] 624 5688 40934

IRKA[Mid,1] - 624 24912
IRKA[G,1] - 2135 1878
IRKA[k,2] 624 5688 40934

IRKA[Mid,2] - 576 35281
IRKA[G,2] - 1981 2520
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Table 3.21: 1r Model: Incomplete LU Decompositions Computed for Vr

Method IRKA[LiUi] SAI Bellavia
IRKA[k,f] 312 1 1

IRKA[Mid, f ] - 48 48
IRKA[G,1] - 298 186
IRKA[G,2] - 298 186



Chapter 4

Interpolatory Methods for DAEs

In this chapter, we consider systems modeled by differential algebraic equations, where the

transfer function, H(s) = C(sE−A)−1B, is characterized by a singular E matrix. Systems

with a singular E matrix arise naturally in modeling various physical processes, such as elec-

trical circuits, linearized and semidescretized Navier-Stokes equations, multibody systems,

and semidescretized partial differential equations. The aim of this chapter is to consider

applying interpolatory methods to DAE systems. To do so, Section 4.1 provides a brief

summary of important properties associated with DAEs and presents a counterexample to

illustrate that the simple application of Theorem 1.1 may result in unbounded model reduc-

tion errors. One of the main contributions of this chapter is Theorem 4.1, which defines a

reduced-order model so that the model reduction errors remain bounded and interpolation

is achieved. From Theorem 4.1, an extension of the IRKA framework to DAEs is presented.

While the resulting algorithm proves effective for the reduction of DAEs, it relies on com-

98
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putationally expensive projectors. As a result, the remainder of the chapter is devoted

to employing the characteristics associated with index-1 and Hessenberg index-2 DAEs to

circumvent the explicit computation of these projectors.

4.1 Interpolatory Model Reduction of DAEs

In this section, we provide a summary of the important theoretical properties of DAEs. A

DAE system is of the following form:

H(s) :

⎧⎪⎪⎨
⎪⎪⎩

Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t),

(4.1.1)

where E,A ∈ R
n×n,B ∈ R

n×m,C ∈ R
p×n, and the E matrix is singular. Closely related to

the characterization of the DAE is its differentiation index. For first-order equations, the

index refers to the total number of derivatives required in order to obtain an explicit ODE

[22]. An alternative definition of the index is given through the Weierstrass canonical form.

Assuming that λE−A is a regular pencil, namely there exists λ such that det(λE−A) �= 0,

the Weierstrass canonical form provides the existence of matrices S and T such that

E = S

⎡
⎢⎢⎣ Inf

0

0 N

⎤
⎥⎥⎦T−1, and A = S

⎡
⎢⎢⎣ J 0

0 In∞

⎤
⎥⎥⎦T−1
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where J is a Jordan block corresponding to the finite eigenvalues of λE − A and N is

a nilpotent submatrix corresponding to the infinite eigenvalues. The index of nilpotency

provides an alternative expression for the index of the DAE, namely the index of the DAE

is ν if and only if Nν−1 �= 0 and Nν = 0. If E is nonsingular, then the index is 0; therefore,

DAEs are characterized by an index greater than or equal to 1. See [24] for more details.

More importantly, the quantities nf and n∞ give the dimension of the deflating subspaces

of λE−A corresponding to the finite and infinite eigenvalues. The spectral projectors onto

the right and left deflating subspaces of λE − A corresponding to the finite eigenvalues are

defined as

Πr = T

⎡
⎢⎢⎣ Inf

0

0 0

⎤
⎥⎥⎦T−1, and Πl = S

⎡
⎢⎢⎣ Inf

0

0 0

⎤
⎥⎥⎦S−1.

The complementary projectors, Πr,∞ and Πl,∞, are the spectral projectors onto the right

and left deflating subspaces of λE − A corresponding to the infinite eigenvalues and are

defined as

Πr,∞ = I − T

⎡
⎢⎢⎣ Inf

0

0 0

⎤
⎥⎥⎦T−1, and Πl,∞ = I − S

⎡
⎢⎢⎣ Inf

0

0 0

⎤
⎥⎥⎦S−1.

Details regarding the DAE index and Weierstrass canonical form are in [71].

Due to the singularity of E, an additive decomposition of the transfer function H(s) exists



Sarah Wyatt Chapter 4. Interpolatory Methods for DAEs 101

as

H(s) = R(s) + P(s)

where R(s) is the strictly proper part and P(s) is the polynomial part. Since interpolation

results, such as Theorem 1.1, do not require the matrix E to be nonsingular, interpolation

methods can be applied to DAEs as long as σE−A is nonsingular. For example, we applied

Theorem 1.1 with M = N = 1 and σi = μi for i = 1, . . . , 24 to a model of dimension

n = 765 with p = 10 and m = 10 that describes an electrical circuit and was obtained

through modified nodal analysis. As the sigma plot shown in Figure 4.1 illustrates, Hr(s)

fails to capture the behavior of H(s) for higher frequencies, leading to unbounded model

reduction errors, ‖H(s) − Hr(s)‖H2 and ‖H(s) − Hr(s)‖H∞ . In general, the key issue in

Figure 4.1: MNA Sigma Plot

applying Theorem 1.1 to the DAE is that Wr and Vr tend to be of rank r; therefore, the
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reduced quantity WT
r EVr will be nonsingular provided r < rank(E). More importantly, the

nonsingularity of WT
r EVr implies that the reduced-order model is actually an ODE even

though the full-order model is a DAE. Since the polynomial part of an ODE is zero, the

reduced model does not account for the polynomial part of H(s). One way to introduce

the presence of a polynomial part in the reduced model is simply to take Pr(s) = P(s) and

define the reduced-order model as

Hr(s) = Rr(s) + P(s).

In doing so, the polynomial parts of the full and reduced models cancel in the error term,

resulting in the model reduction error only being expressed in terms of the strictly proper

parts, namely H(s) − Hr(s) = R(s) − Rr(s). As a result, the condition that

Pr(s) = P(s) reduces the interpolation of the DAE to only requiring interpolation of the

strictly proper part. The next theorem utilizes this observation to present a new interpolation

result for DAEs. This theorem is extremely noteworthy as it provides the theoretical basis

for how to achieve both interpolation and a bounded model reduction error.

Theorem 4.1. Given the full-order model H(s) = C(sE − A)−1B + D, define Πl and Πr

to be the spectral projectors onto the left and right deflating subspaces of the pencil λE − A

corresponding to the finite eigenvalues. Let the columns of W∞ and V∞ span the left and

right deflating subspaces of the pencil λE−A corresponding to the infinite eigenvalues. Let
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σ and μ be interpolation points and b ∈ R
m and c ∈ R

l. If

((σE − A)−1E)j−1(σE − A)−1Bb ∈ Ran(Vf ) for j = 1, ..., N

((σE − A)−TET )j−1(σE − A)−TCTc ∈ Ran(Wf ) for j = 1, ...,M,

then with the choice of W=[Wf W∞] and V=[Vf V∞], we have P(s) = Pr(s) and

1) H(l)(σ)b = H
(l)
r (σ)b for l = 0, . . . , N.

2) cTH(l)(σ) = cTH
(l)
r (σ) for l = 0, . . . , M.

3) cTH(l)(σ)b = cTH
(l)
r (σ)b for l = 0, . . . , M + N + 1.

Proof. Define Bp = ΠlB and Cp = CΠr. Let

((σE − A)−1E)j−1(σE − A)−1Bpb ∈ Ran(Vp) for j = 1, ..., N (4.1.2)

((σE − A)−TET )j−1(σE − A)−TCT
p c ∈ Ran(Wp) for j = 1, ...,M. (4.1.3)

Then properties of spectral projectors imply that span{Vf V∞} = span{Vp V∞} and

span{Wf W∞} = span{Wp W∞}. Hence, we will prove that (4.1.2) and (4.1.3) lead to

the theorem’s conclusion. Let the transfer functions H(s) and Hr(s) be additively decom-

posed as

H(s) = R(s) + P(s) and Hr(s) = Rr(s) + Pr(s)

where R(s) and Rr(s) denote the strictly proper parts and P(s) and Pr(s) are the polynomial
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parts of H(s) and Hr(s), respectively. Let the pencil λE − A be transformed into the

Weierstrass canonical form

E = S

⎡
⎢⎢⎣ Inf

0

0 N

⎤
⎥⎥⎦T−1, and A = S

⎡
⎢⎢⎣ J 0

0 In∞

⎤
⎥⎥⎦T−1, (4.1.4)

where S and T are nonsingular and N is nilpotent. Then the projectors Πl and Πr can be

represented as

Πl = S

⎡
⎢⎢⎣ Inf

0

0 0

⎤
⎥⎥⎦S−1, Πr = T

⎡
⎢⎢⎣ Inf

0

0 0

⎤
⎥⎥⎦T−1. (4.1.5)

With this form, the transfer function H(s) is

H(s) = CT

⎡
⎢⎢⎣ sInf

− J 0

0 sN − In∞

⎤
⎥⎥⎦S−1B + D. (4.1.6)

Let T = [T1 T2] and S−1 = [S1 S2]
T be partitioned conformally to E and A. Then

(4.1.6) gives

H(s) = CT1(sInf
− J)−1ST

1 B + CT2(sN − In∞)−1ST
2 B + D. (4.1.7)

Without loss of generality, assume that WT
∞ = [0, In∞ ]S−1 and V∞ = T[0, In∞ ]T . By
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(4.1.7), the polynomial part of H(s) then has the form

P(s) = CV∞(sWT
∞EV∞ − WT

∞AV∞)−1WT
∞B + D.

To see that P(s) = Pr(s), note that the matrices W=[Wp W∞] and V=[Vp V∞] yield

a reduced transfer function Hr(s) = Cr(sEr − Ar)
−1Br, where

Er = WTEV =

⎡
⎢⎢⎣ WT

p EVp WT
p EV∞

WT
∞EVp WT

∞EV∞

⎤
⎥⎥⎦ , Br = WTB =

⎡
⎢⎢⎣ WT

p B

WT
∞B

⎤
⎥⎥⎦ ,

Ar = WTAV =

⎡
⎢⎢⎣ WT

p AVp WT
p AV∞

WT
∞AVp WT

∞AV∞

⎤
⎥⎥⎦ , Cr = CV = [CVp, CV∞ ].

Due to the properties of spectral projectors, we have

EΠr = ΠlE and AΠr = ΠlA. (4.1.8)

Coupled with the assumptions that

((σE − A)−1E)j−1(σE − A)−1Bpb ∈ Ran(Vp) for j = 1, ..., N

((σE − A)−TET )j−1(σE − A)−TCT
p c ∈ Ran(Wp) for j = 1, ...,M,
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(4.1.8) gives that Ran(Vp) ∈ Ran(Πr) and Ran(Wp) ∈ Ran(ΠT
l ). This observation gives

Vp = ΠrVp Wp = ΠT
l Wp V∞ = (I − Πr)V∞ W∞ = (I − ΠT

l )W∞. (4.1.9)

Using (4.1.8) and (4.1.9), we have

WT
p EV∞ = 0, WT

∞EVp = 0, WT
p AV∞ = 0, WT

∞AVp = 0.

Thus, Hr(s) is expressed as

Hr(s) = CVp(sW
T
p EVp − WT

p AVp)
−1WT

p B

+ CV∞(sWT
∞EV∞ − WT

∞AV∞)−1WT
∞B + D.

This implies that

Rr(s) = CVp(sW
T
p EVp − WT

p AVp)
−1WT

p B (4.1.10)

and that the polynomial parts of the full and reduced models match since

Pr(s) = CV∞(sWT
∞EV∞ − WT

∞AV∞)−1WT
∞B + D = P(s).

Since P(s) = Pr(s), the proof of the interpolation result reduces to proving R(σ) = Rr(σ).
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To prove this, we first note that (4.1.4) and (4.1.5) imply that

Cp(σE − A)−1Bp = CT

⎡
⎢⎢⎣ Inf

0

0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣ sInf

− J 0

0 sN − In∞

⎤
⎥⎥⎦

−1 ⎡⎢⎢⎣ Inf
0

0 0

⎤
⎥⎥⎦S−1B.

Coupled with (4.1.7), this gives

Cp(σE − A)−1Bp = CT1(σInf
− J)−1ST

1 B = R(σ). (4.1.11)

Further note that Vp = ΠrVp and Wp = ΠT
l Wp imply

CpVp = CΠrVp = CVp and WT
p Bp = WT

p ΠlB = WT
p B. (4.1.12)

Due to the assumptions

((σE − A)−1E)j−1(σE − A)−1Bpb ∈ Ran(Vp) for j = 1, ..., N

((σE − A)−TET )j−1(σE − A)−TCT
p c ∈ Ran(Wp) for j = 1, ...,M

holding, Theorem 1.1 gives

CpVp(σWT
p EVp − WT

p AVp)
−1WT

p Bpb = Cp(σE − A)−1Bpb

cTCpVp(σWT
p EVp − WT

p AVp)
−1WT

p Bp = cTCp(σE − A)−1Bp.
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Using (4.1.11) and (4.1.12), the above equations become

CVp(σWT
p EVp − WT

p AVp)
−1WT

p Bb = R(σ)b

cTCVp(σWT
p EVp − WT

p AVp)
−1WT

p B = cTR(σ).

Coupled with (4.1.10), this gives

Rr(σ)b = R(σ)b and cTRr(σ) = cTR(σ). (4.1.13)

Since both (a) and (b) of Theorem 1.1 hold, we have cTR
′
r(σ)b = cTR

′
(σ)b. The remainder

of the proof follows by induction.

Remark: The one-sided interpolation result from Theorem 1.1 does not hold. If Wp = Vp,

for example, then

Hr(s) = CVp(sV
T
p EVp − VT

p AVp)
−1VT

p B + CV∞(sWT
∞EV∞ − WT

∞AV∞)−1WT
∞B + D+

CVp(sV
T
p EVp − VT

p AVp)
−1(sVT

p EV∞ − VT
p AV∞)(sWT

∞EV∞ − WT
∞AV∞)−1WT

∞B.

Due to the inclusion of V∞ and W∞, we still have

P(s) = CV∞(sWT
∞EV∞ − WT

∞AV∞)−1WT
∞B + D,
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and a similar argument as in the two-sided case yields

cTCVp(σVT
p EVp − VT

p AVp)
−1VT

p Bb = cTR(σ)b.

These observations give that

cTH(σ)b − cTHr(σ)b =

cTCVp(sV
T
p EVp −WT

∞AV∞)−1(sVT
p EV∞−VT

p AV∞)(sWT
∞EV∞−WT

∞AV∞)−1WT
∞Bb.

For the two-sided case, the (sVT
p EV∞−VT

p AV∞) term becomes sWT
p EV∞−WT

p AV∞ = 0,

and so cTH(σ)b − cTHr(σ)b = 0. In the one-sided case, however, this error term does not

vanish, implying that Rr(s) �= P(s).

Using Theorem 4.1, an algorithm for optimal H2 reduction of DAEs in the interpolatory

framework is presented in Algorithm 4.1.1. It is important to emphasize that one of the

main issues is the computation of the deflating subspaces. For large-scale dynamical systems,

computing Πr,∞ and Πl,∞ may not be computationally desirable or even feasible. See [35],

[36], [55], [56], and [77]. Fortunately, the remainder of this chapter discusses the utilization of

properties associated with index-1 and Hessenberg index-2 DAEs to circumvent the explicit

computation of the projectors.
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Algorithm 4.1.1. Interpolatory H2 Optimal Model Reduction Method for DAE

Descriptor Systems

1. Make an initial selection of the interpolation points {σi}r
i=1, and

tangent directions {bi}r
i=1 and {ci}r

i=1.

2. Compute Bp = ΠlB and Cp = CΠr.

3. Vf = [(σ1E − A)−1Bpb1 , . . . , (σrE − A)−1Bpbr ],

Wf =
[(

cT
1 Cp(σ1 E − A)−1

)T
, . . . ,

(
cT

r Cp(σr E − A)−1
)T ]

.

4. while (not converged)

(a) Asp
r = WT

f AVf , Esp
r = WT

f EVf , Bsp
r = WT

f B, and Csp
r = CVf .

(b) Compute Asp
r xi = λ̃iE

sp
r xi and yT

i Asp
r = λ̃iy

T
i Esp

r with yT
i Erxj = δij

where yi and xi are left and right eigenvectors associated with λ̃i.

(c) σi ← −λ̃i, bT
i ← yT

i Bsp
r and ci ← Csp

r xi, for i = 1, . . . , r.

(d) Vf = [(σ1E − A)−1Bpb1 , . . . , (σrE − A)−1Bpbr ],

Wf =
[(

cT
1 Cp(σ1 E − A)−1

)T
, . . . ,

(
cT

r Cp(σr E − A)−1
)T ]

.

5. Compute W∞ and V∞ such that Im(W∞) = Im(I − Πl)
T and

Im(V∞) = Im(I − Πr).

6. Set V = [ Vf V∞ ] and W = [ Wf W∞ ].

7. Er = WTEV, Ar = WTAV, Br = WTB, Cr = CV, Dr = D.
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4.2 Index-1 DAEs

We consider the following index-1 differential algebraic equation:

G(s) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E11ẋ1(t) + E12ẋ2(t) = A11x1(t) + A12x2(t) + B1u(t)

0 = A21x1(t) + A22x2(t) + B2u(t)

y(t) = C1x1(t) + C2x2(t)

(4.2.1)

where the state is x(t) =

⎡
⎢⎢⎣ x1

x2

⎤
⎥⎥⎦ ∈ R

n with x1 ∈ R
n1 , x2 ∈ R

n2 and n1 +n2 = n, the input

is u(t) ∈ R
m, the output is y(t) ∈ R

p, and E11,A11 ∈ R
n1×n1 ,E12,A12 ∈ R

n1×n2 ,A21 ∈

R
n2×n1 ,A22 ∈ R

n2×n2 ,B1 ∈ R
n1×m,B2 ∈ R

n2×m,C1 ∈ R
p×n1 ,C2 ∈ R

p×n2 . We assume that

A22 and E11 − E12A
−1
22 A21 are nonsingular.

For these systems, Theorem 1.1 can be applied to construct a reduced model Gr(s). As

the previous example illustrates, Gr(s) will oftentimes be strictly proper, implying that the

polynomial parts of G(s) and Gr(s) will not match. However, if we assume that G(s) is an

index-1 DAE, then the polynomial part is a constant matrix as the next lemma states and

proves.

Lemma 4.2. Let G(s) be an index-1 DAE such that A22 and E11−E12A
−1
22 A21 are invertible.

Then the polynomial part of G(s) is a constant matrix, namely

lim
s→∞

G(s) = C1M1B2 + C2M2B2
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where

M1 = (E11 − E12A
−1
22 A21)

−1E12A
−1
22 (4.2.2)

and

M2 = −A−1
22 A21(E11 − E12A

−1
22 A21)

−1E12A
−1
22 − A−1

22 . (4.2.3)

Proof. Consider ⎡
⎢⎢⎣ sE11 − A11 sE12 − A12

−A21 −A22

⎤
⎥⎥⎦

−1 ⎡⎢⎢⎣ B1

B2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ z1

z2

⎤
⎥⎥⎦

or equivalently ⎡
⎢⎢⎣ sE11 − A11 sE12 − A12

−A21 −A22

⎤
⎥⎥⎦
⎡
⎢⎢⎣ z1

z2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ B1

B2

⎤
⎥⎥⎦ .

Then we have

(sE11 − A11)z1 + (sE12 − A12)z2 = B1 (4.2.4)

−A21z1 − A22z2 = B2. (4.2.5)

Solving (4.2.5) for z2 gives z2 = −A−1
22 (B2 + A21z1), and so

z1 =
[
(sE11 − A11) − (sE12 − A12)A

−1
22 A21

]−1 [
B1 + (sE12 − A12)A

−1
22 B2

]
,
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implying that

lim
s→∞

z1 =
(
E11 − E12A

−1
22 A21

)−1
E12A

−1
22 B2.

Coupled with (4.2.5), this gives

lim
s→∞

z2 =
[
−A−1

22 A21

(
E11 − E12A

−1
22 A21

)−1
E12A

−1
22 − A−1

22

]
B2.

Finally, note that lims→∞ G(s) = lims→∞ C1z1 + C2z2.

Lemma 4.3. [3] Given G(s) as in (4.2.1), r distinct points {σi}r
i=1, left tangential directions

{ci}r
i=1, and right tangential directions {bi}r

i=1, let Vr ∈ C
n×r and

Wr ∈ C
n×r be as defined in (1.4.7) and (1.4.8), respectively. Define B and C to be the

matrices composed of the tangential directions as

B = [ b1, ...,br
], and CT = [ c1, ..., cr

]T , (4.2.6)

and define the reduced-order model quantities as

Er = WT
r EVr, Ar = WT

r AVr + CTDrB,

Br = WT
r B − CTDr, Cr = CVr − DrB,

Dr = C1M1B2 + C2M2B2

(4.2.7)

where Er is nonsingular. Then the polynomial parts of Gr(s) = Cr(sEr − Ar)
−1Br + Dr
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and G(s) match, and Gr satisfies

G(σi)bi = Gr(σi)bi, cT
i G(σi) = cT

i Gr(σi), cT
i G′(σi)bi = cT

i Gr
′(σi)bi (4.2.8)

for i = 1, · · · , r, provided σiE − A and σiEr − Ar are nonsingular.

Proof. By Lemma 4.2, choosing Dr = C1M1B2 + C2M2B2 ensures that the polynomial

parts of G(s) and Gr(s) match since

lim
s→∞

G(s) = lim
s→∞

Gr(s) = Dr,

and the interpolation as stated in (4.2.8) holds due to Theorem 3 of [3].

Applying Lemma 4.3 results in Algorithm 4.2.1, which delineates the method to achieve

Hermite interpolation of index-1 DAEs.

Algorithm 4.2.1. Interpolatory Index-1 Model Reduction Method

1. Make an initial selection of the interpolation points {σi}r
i=1, and

tangent directions {bi}r
i=1 and {ci}r

i=1.

2. Vr = [(σ1E − A)−1Bb1 , . . . , (σrE − A)−1Bbr ],

Wr =
[(

cT
1 C(σ1 E − A)−1

)T
, . . . ,

(
cT

r C(σr E − A)−1
)T ]

.

3. Define Dr = C1M1B2+C2M2B2 where M1 and M2 are defined in (4.2.2) and (4.2.3),

respectively.
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4. Define B = [ b1, ...,br
], and CT = [ c1, ..., cr

]T .

5. Er = WT
r EVr,Ar = WT

r AVr + CTDrB,Br = WT
r B − CTDr,Cr = CVr − DrB.

Of course, Lemma 4.3 also provides the theoretical basis for an IRKA iteration to reduce

index-1 DAEs. One option is to simply apply the IRKA iteration to the DAE and then

define the reduced-order model as

Er = WT
r EVr,Ar = WT

r AVr + CTDrB,Br = WT
r B − CTDr,Cr = CVr − DrB

once the IRKA iteration has converged. While the addition of the Dr term upon convergence

results in a bounded model reduction error, this addition also shifts the spectrum, and

thereby the resulting reduced model will not satisfy the optimal H2 necessary conditions.

In order to obtain the optimal H2 model, the Dr term must be included as part of the

IRKA iteration as shown in Algorithm 4.2.2. Then upon convergence of Algorithm 4.2.2

the reduced-order model will satisfy the optimal H2 conditions and have a bounded model

reduction error.

Algorithm 4.2.2. IRKA for Index-1 DAEs (IRKA-D):

1. Make an initial shift selection σi for i = 1, . . . , r and initial tangent directions b1, ...,br

and c1, ..., cr.

2. Vr = [ (σ1E − A)−1Bb1, · · · , (σrE − A)−1Bbr ] .
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3. Wr =
[

(σ1E − A)−TCTc1, · · · , (σrE − A)−TCTcr

]
.

4. Define Dr = C1M1B2+C2M2B2 where M1 and M2 are defined in (4.2.2) and (4.2.3),

respectively.

5. Define B = [ b1, ...,br
], and CT = [ c1, ..., cr

]T .

6. while (not converged)

(a) Er = WT
r EVr,Ar = WT

r AVr + CTDrB,Br = WT
r B− CTDr,Cr = CVr −DrB.

(b) Compute YTArX = diag(λi) and YTErX = Ir where YT and X are left and

right eigenvectors of λEr − Ar.

(c) σi ←− −λi(Ar,Er) for i = 1, . . . , r, bT
i ←− eT

i YTBr, and cT
i ←− CrXei.

(d) Vr = [ (σ1E − A)−1Bb1, · · · , (σrE − A)−1Bbr ] .

(e) Wr =
[

(σ1E − A)−TCTc1, · · · , (σrE − A)−TCTcr

]
.

7. Er = WT
r EVr,Ar = WT

r AVr + CTDrB,Br = WT
r B − CTDr,Cr = CVr − DrB.

Theorem 4.4. Suppose G(s) and Gr(s) are real stable dynamical systems. Let

Gr(s) =
r∑

i=1

1

s − λ̂i

cib
T
i + Dr

where
{

λ̂i

}r

i=1
and

{
cib

T
i

}r

i=1
are the simple poles and residues of Gr(s), respectively. Then

the reduced-order model, Gr(s), obtained with IRKA-D (Algorithm 4.2.2) satisfies the first-

order necessary conditions of the H2 optimality problem.
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Proof. The proof follows immediately from the shift selection prescribed in IRKA-D coupled

with Lemma 4.3.

4.3 Numerical Results for Index-1 DAEs

In this section, we consider index-1 DAE models of electrical circuits resulting from modified

nodal analysis. We are interested in comparing Algorithm 4.1.1 and Algorithm 4.2.2. To

emphasize the distinction between the algorithms, we will refer to Algorithm 4.1.1 and

Algorithm 4.2.2 as IRKA-P and IRKA-D, respectively. From a computation perspective,

IRKA-P requires substantially more work than IRKA-D. The aim of this section is to study

if IRKA-D provides models of high fidelity, indicating that computational savings are possible

without significant loss of accuracy in the reduced-order model.

4.3.1 TL1 Model

The first model, the TL1 Model, describes a transmission line with n = 600 and was reduced

to r = 16. IRKA-D converged in four iterations. In Figure 4.2, the bode plots indicate a nice

match between the full and reduced models. The overall model reduction errors as displayed

in Table 4.1 show that the method yields acceptable errors in both the transfer function

and the strictly proper part. As a result, the TL1 Model supports the argument that the

computation of the spectral projectors is unnecessary since IRKA-D provides a model of

high fidelity.



Sarah Wyatt Chapter 4. Interpolatory Methods for DAEs 118

Figure 4.2: TL1 Model: Amplitude Bode Plots of G(s) and Gr(s)

Table 4.1: Model Reduction Errors for the TL1 Model
Method

‖G−Gr‖H∞
‖G‖H∞

‖Gsp−Gsp
r ‖H∞

‖Gsp‖H∞
IRKA-D 9.36 × 10−5 1.46 × 10−4

4.3.2 TL2 Model

The second model, the TL2 Model, describes an RLC circuit using modified nodal analysis.

This results in a SISO model of dimension n = 400, which was reduced to r = 20. IRKA-D

required only three iterations to yield the bode plots for the full and reduced models as

given in Figure 4.3. These bode plots indicate a good match between the full and reduced

models. In addition, Table 4.2 indicates that the
‖G−Gr‖H∞

‖G‖H∞
and

‖G−Gsp
r ‖H∞

‖Gsp‖H∞
errors are satis-

factory. Therefore, these models illustrate that explicit computation of the projectors can be

circumvented without any significant loss of accuracy in the reduction of the index-1 model.
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Figure 4.3: TL2 Model: Amplitude Bode Plots of G(s) and Gr(s)

Table 4.2: Model Reduction Errors for the TL2 Model
Method

‖G−Gr‖H∞
‖G‖H∞

‖Gsp−Gsp
r ‖H∞

‖Gsp‖H∞
IRKA-D 4.87 × 10−4 4.57 × 10−4

4.4 Hessenberg Index-2 DAEs

In this next section, we consider Hessenberg index-2 differential algebraic equations. These

equations take the form:

H(s) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E11ẋ1(t) = A11x1(t) + A12x2(t) + B1u(t)

0 = AT
12x1(t) + B2u(t)

y(t) = C1x1(t) + C2x2(t) + Du(t)

(4.4.1)



Sarah Wyatt Chapter 4. Interpolatory Methods for DAEs 120

where the state is x(t) =

⎡
⎢⎢⎣ x1

x2

⎤
⎥⎥⎦ ∈ R

n with x1 ∈ R
n1 ,x2 ∈ R

n2 and n1 +n2 = n, the input is

u(t) ∈ R
m, the output is y(t) ∈ R

p, and E11,A11 ∈ R
n1×n1 ,A12 ∈ R

n1×n2 ,B1 ∈ R
n1×m,B2 ∈

R
n2×m,C1 ∈ R

p×n1 ,C2 ∈ R
p×n2 , and D ∈ R

p×m. For Hessenberg index-2 equations, the

matrix E11 is a symmetric positive definite matrix and A12 is of full rank.

In [49], the authors considered applying balanced truncation to system (4.4.1). The aim of

this next section is to reduce (4.4.1) using interpolatory model reduction. To begin, consider

the system (4.4.1) with B2 = 0 as the case of B2 �= 0 is similar. Following the exposition of

[49], we assume AT
12E

−1
11 A12 is nonsingular and define the oblique projector as

Π = I − A12(A
T
12E

−1
11 A12)

−1AT
12E

−1
11 .

Then system (4.4.1) can be written in terms of Π as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ΠE11Π
T ẋ1(t) = ΠA11Π

Tx1(t) + ΠB1u(t)

y(t) = CΠTx1(t) + D̃u(t)

ΠTx(0) = ΠTx0

(4.4.2)

where C = C1 − C2(A
T
12E

−1
11 A12)

−1AT
12E

−1
11 A11 and D̃ = D − C2(A

T
12E

−1
11 A12)

−1AT
12E

−1
11 B1.

By decomposing Π as

Π = ΘlΘ
T
r with Θl,Θr ∈ R

n1×(n1−n2) such that ΘT
l Θr = I, (4.4.3)
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and defining x̃1 = ΘT
l x1 ∈ R

n1−n2 , system (4.4.2) becomes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ΘT
r E11Θr

˙̃x1(t) = ΘT
r A11Θrx̃1(t) + ΘT

r B1u(t)

y(t) = CΘrx̃1(t) + D̃u(t)

x̃1(0) = ΘT
l x0.

(4.4.4)

As noted in [49], the reduction of the DAE system in (4.4.1) is equivalent to the reduction of

systems (4.4.2) or (4.4.4). However, the beauty of this equivalence lies in the observation that

systems (4.4.2) and (4.4.4) are ODEs, namely the algebraic component of the system has

been moved to the D̃ term. Therefore, standard model reduction procedures for ODEs can be

applied to systems (4.4.2) and (4.4.4), and the reduced model obtained will be equivalent to

directly reducing the DAE system in (4.4.1). It is important to emphasize that even though

(4.4.2) and (4.4.4) are equivalent to (4.4.1), the ultimate goal of this chapter is to develop

an interpolatory model reduction method that does not require the explicit computation of

either Π or Θr. To do so, the motivation for our method comes from [49], which defines

Ẽ = ΠE11Π
T , Ã = ΠA11Π

T , B̃ = ΠB1, C̃ = CΠT (4.4.5)

and then proves several key properties of the matrix Ẽ + μÃ. In the remainder of this

section, we are interested in applying interpolatory methods where the matrix of interest

will be shown to be σẼ−Ã. To implement interpolatory methods, we rely on the theoretical

results of [49]; however, we present these results in terms of σẼ − Ã instead of Ẽ + μÃ.
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Lemma 4.5. Let Θr be the matrix defined in (4.4.4) and let σ ∈ C
− be such that

σΘT
r E11Θr − ΘT

r A11Θr is nonsingular. The matrix defined as

(σẼ − Ã)I := Θr(σΘT
r E11Θr − ΘT

r A11Θr)
−1ΘT

r (4.4.6)

satisfies

(σẼ − Ã)I(σẼ − Ã) = ΠT and (σẼ − Ã)(σẼ − Ã)I = Π.

Similarly, the matrix defined as

(σẼT − ÃT )I := Θr(σΘT
r ET

11Θr − ΘT
r AT

11Θr)
−1ΘT

r (4.4.7)

satisfies

(σẼT − ÃT )I(σẼT − ÃT ) = ΠT and (σẼT − ÃT )(σẼT − ÃT )I = Π.

Proof. Following a similar argument to that in [49], the proof of the first equality follows

directly from the definitions (4.4.3) and (4.4.6).
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(σẼ − Ã)I(σẼ − Ã) = Θr(σΘT
r E11Θr − ΘT

r A11Θr)
−1ΘT

r Π(σE11 − A11)Π
T

= Θr(σΘT
r E11Θr − ΘT

r A11Θr)
−1ΘT

r (σE11 − A11)ΘrΘ
T
l

= Θr(σΘT
r E11Θr − ΘT

r A11Θr)
−1(σΘT

r E11Θr − ΘT
r A11Θr)Θ

T
l

= ΘrΘ
T
l

= ΠT .

The remaining equalities follow similarly.

At first glance, the definition of the inverse restricted to the subspace Π may seem irrelevant

to the reduction of the DAE system (4.4.1). However, recall that reducing (4.4.1) is equivalent

to reducing system (4.4.2). To reduce (4.4.2), Theorem 1.1 requires the inverses of (σẼ− Ã)

and (σẼT − ÃT ). However, these inverses do not exist. As a result, definitions (4.4.6) and

(4.4.7) become pivotal in order to achieve the interpolation of system (4.4.2) and thereby

interpolation of system (4.4.1) as shown in the next theorem.
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Theorem 4.6. Let Vr,Wr be full rank. Let s = σ, μ ∈ C be such that the matrices

sΘT
r E11Θr − ΘT

r A11Θr and sWT
r E11Vr − WT

r A11Vr are invertible.

Define the transfer functions

H̃(s) = CΘr(sΘ
T
r E11Θr − ΘT

r A11Θr)
−1ΘT

r B1 + D̃

H̃r(s) = CVr(sW
T
r E11Vr − WT

r A11Vr)
−1WT

r B1 + D̃.

Let b ∈ C
m and c ∈ C

l be fixed nontrivial vectors.

i) If (σẼ − Ã)IB̃b ∈ Ran(Vr), then H̃(σ)b = H̃r(σ)b.

ii) If (μẼT − ÃT )IC̃Tc ∈ Ran(Wr), then cT H̃(μ) = cT H̃r(μ).

iii) If (i) and (ii) hold and σ = μ, then cT H̃′(σ)b = cT H̃′
r(σ)b.

Remark: Before presenting the proof, it is important to emphasize that this interpolation

result is not the usual interpolation result as given in Theorem 1.1. In this theorem, the

reducing matrices Vr and Wr are in terms of system (4.4.2), namely Ã, Ẽ, B̃ and C̃ are

used to construct Vr and Wr. Such a construction only implies that system (4.4.2) is

interpolated. However, Theorem 4.6 states that this also yields interpolation of the original

DAE (4.4.1) which is described in terms of E11,A11,A12,B1,B2,C1,C2, and D̃. Also, it

is important to emphasize that unlike Theorem 4.1, where only the two-sided interpolation

result held for the DAE system, Theorem 4.6 states that the one-sided result holds for the

case of Hessenberg index-2 DAEs.
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Proof. To prove (i) − (iii), we first define

Ĥr(s) = CΘrṼr(sW̃
T
r ΘT

r E11ΘrṼr − W̃T
r ΘT

r A11ΘrṼr)
−1W̃T

r ΘT
r B1 + D̃

and set Ṽr = ΘT
l V and W̃r = ΘT

l Wr. Since ΘT
l Θr = I,

Vr = ΘrṼr and Wr = ΘrW̃r. (4.4.8)

This implies that Ĥr(s) = H̃r(s). To prove (i), we note that (4.4.3) implies that

ΘT
r B̃ = ΘT

r ΠB1 = ΘT
r ΘlΘ

T
r B1 = ΘT

r B1. (4.4.9)

Now let (σẼ − Ã)IB̃b ∈ Ran(Vr). Then there exists q ∈ R
r such that

(σẼ − Ã)IB̃b = Vrq.

By the definition of (4.4.6), we have

Θr(σΘT
r E11Θr − ΘT

r A11Θr)
−1ΘT

r B̃b = Vrq.

Using (4.4.8) and (4.4.9), the above equation is written in terms of Θr as:

Θr(σΘT
r E11Θr − ΘT

r A11Θr)
−1ΘT

r ΘlΘ
T
r B1b = ΘrṼrq.
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Left multiplying by ΘT
l gives

ΘT
l [Θr(σΘT

r E11Θr − ΘT
r A11Θr)

−1ΘT
r ΘlΘ

T
r B1b = ΘrṼrq],

implying

(σΘT
r E11Θr − ΘT

r A11Θr)
−1ΘT

r B1b = Ṽrq

by (4.4.3). Hence, (σΘT
r E11Θr−ΘT

r A11Θr)
−1ΘT

r B1b ∈ Ran(Ṽr). Combined with Theorem

1.1, we have that H̃(σ)b = Ĥr(σ)b. Finally, noting that Ĥr(s) = H̃r(s) gives the result.

To prove (ii), we first note that (4.4.3) implies that

ΘT
r C̃T = ΘT

r ΠCT = ΘT
r ΘlΘ

T
r CT = ΘT

r CT . (4.4.10)

Let (μẼT − ÃT )IC̃Tc ∈ Ran(Wr), then there exists q ∈ R
r such that

(μẼT − ÃT )IC̃Tc = Wrq.

By the definition of (4.4.7),

Θr(σΘT
r ET

11Θr − ΘT
r AT

11Θr)
−1ΘT

r C̃Tc = Wrq.



Sarah Wyatt Chapter 4. Interpolatory Methods for DAEs 127

Using (4.4.8) and (4.4.10), we have

Θr(σΘT
r ET

11Θr − ΘT
r AT

11Θr)
−1ΘT

r ΘlΘ
T
r CTc = ΘrW̃rq.

Left multiplying by ΘT
l gives

ΘT
l [Θr(σΘT

r ET
11Θr − ΘT

r AT
11Θr)

−1ΘT
r ΘlΘ

T
r CTc = ΘrW̃rq],

implying

(σΘT
r ET

11Θr − ΘT
r AT

11Θr)
−1ΘT

r CTc = W̃rq

by (4.4.3). Hence, (σΘT
r ET

11Θr−ΘT
r AT

11Θr)
−1ΘT

r CTc ∈ Ran(W̃r). Combined with Theorem

1.1, we have that cT H̃(σ) = cT Ĥr(σ). Noting that Ĥr(s) = H̃r(s) yields the conclusion.

To prove part (iii), we note that parts (i) and (ii) holding imply that (a) and (b) of Theorem

1.1 hold, namely,

H̃(σ)b = Ĥr(σ)b and cT H̃(σ) = cT Ĥr(σ).

Hence, part (c) of Theorem 1.1 implies

cT H̃
′
(σ)b = cT Ĥ

′
r(σ)b.
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Since Ĥr(s) = H̃r(s), we have

cT H̃′(σ)b = cT H̃′
r(σ)b.

Alternatively, we can consider interpolation through the Sylvester equation framework. For a

first-order descriptor system, H(s), with K(s) = sE−A, B(s) = B and C(s) = C, Theorem

1.1 with l = 0 is represented in terms of the Sylvester equation as described in the next

result.

Lemma 4.7. Let σi, μi ∈ C such that sE−A and sEr −Ar are invertible for s = σi, μi, i =

1 . . . , r. Define Σ = diag(σi),Υ = diag(μi),B = [ b1, ...,br
], C = [ c1, ..., cr

], where

bi ∈ C
m and ci ∈ C

l are fixed nontrivial vectors, then

a) If Vr solves the Sylvester equation

AVr − EVrΣ + BB = 0, (4.4.11)

then (σiE − A)−1Bbi = (σiEr − Ar)
−1Brbi.

b) If Wr solves the Sylvester equation

ATWr − ETWrΥ + CTC = 0, (4.4.12)

then cT
i C(μiE − A)−1 = cT

i Cr(μiEr − Ar)
−1.
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c) If both (a) and (b) hold with σi = μi then cT
i H

′
(σi)bi = cT

i H
′
r(σi)bi.

Proof. The result follows readily from Theorem 1.1 with M, N = 1 and noting that the ith

column of (4.4.11) is

Avi − σiEvi + Bbi = 0,

implying vi = (σiE − A)−1Bbi, and the ith column of (4.4.12) is

ATwi − μiE
Twi + CTci = 0,

implying wi = (μiE
T − AT )−1CTci.

Using Lemma 4.7, Theorem 4.6 can be reinterpreted in terms of the Sylvester equations as

shown in the next lemma.

Lemma 4.8. Let Vr,Wr be full rank. For i = 1, . . . , r, let s = σi, μi ∈ C be such that

sΘrE11Θr − ΘT
r A11Θr and sWT

r E11Vr − WT
r A11Vr are invertible.

a) Let Vr = ΘrṼr with vi = (σiẼ − Ã)IB̃bi. Then Vr satisfies

ΘT
r A11ΘrṼr − ΘT

r E11ΘrṼrΣ + ΘT
r B1B = 0, (4.4.13)

implying that H̃(σi)bi = H̃r(σi)bi.
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b) Let Wr = ΘrW̃r with wi = (μiẼ
T − ÃT )IC̃Tci. Then Wr satisfies

ΘT
r AT

11ΘrW̃r − ΘT
r ET

11ΘrW̃rΥ + ΘT
r CTC = 0, (4.4.14)

implying that cT
i H̃(μi) = cT

i H̃r(μi).

c) If both (a) and (b) hold with σi = μi then cT
i H̃

′
(σi)bi = cT

i H̃
′
r(σi)bi.

Proof. Define the transfer functions

H̃(s) = CΘr(sΘ
T
r E11Θr − ΘT

r A11Θr)
−1ΘT

r B1 + D̃

H̃r(s) = CVr(sW
T
r E11Vr − WT

r A11Vr)
−1WT

r B1 + D̃

Ĥr(s) = CΘrṼr(sW̃
T
r ΘT

r E11ΘrṼr − W̃T
r ΘT

r A11ΘrṼr)
−1W̃T

r ΘT
r B1 + D̃.

First, note by (4.4.3),

ΘT
r Π = ΘT

r ΘlΘ
T
r = ΘT

r . (4.4.15)

Let vi = (σiẼ − Ã)IB̃bi. Left multiplying by (σiẼ − Ã) gives

(σiẼ − Ã)vi = ΠB̃bi = B̃bi

by Lemma 4.5 and the projector property of Π, namely Π2 = Π. Rearranging, gives
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Ãvi − σiẼvi + B̃bi = 0, or equivalently the matrix equation

ÃVr − ẼrVrΣ + B̃B = 0.

Multiplying by ΘT
r and using (4.4.5) along with the definition of Vr, we have

ΘT
r ΠA11Π

TΘrṼr − ΘT
r ΠE11Π

TΘrṼrΣ + ΘT
r ΠB1B = 0.

Applying (4.4.15) yields

ΘT
r A11ΘrṼr − ΘT

r E11ΘrṼrΣ + ΘT
r B1B = 0.

Therefore, Vr satisfies the Sylvester equation required for interpolation of H̃(s)bi, implying

H̃(σi)bi = Ĥr(σi)bi by Lemma 4.7. Since ΘT
l Θr = I and Vr = ΘrṼr, we have

Ĥr(s)bi = H̃r(s)bi. Therefore, H̃(σi)bi = H̃r(σi)bi. For the proof of part (b), a similar

argument is used. Let wi = (μiẼ
T − ÃT )IC̃Tci. Left multiplying by (μiẼ

T − ÃT ) gives

(μiẼ
T − ÃT )wi = ΠC̃Tci = C̃Tci

by Lemma 4.5 and the projector property of Π, namely Π2 = Π. Rearranging, gives

ÃTwi − μiẼ
Twi + C̃Tci = 0, or equivalently the matrix equation

ÃTWr − ẼT
r WrΥ + C̃TC = 0.
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Multiplying by ΘT
r and using (4.4.5) and the definition of Wr, we have

ΘT
r ΠAT

11Π
TΘrW̃r − ΘT

r ΠET
11Π

TΘrW̃rΥ + ΘT
r ΠCTC = 0.

Applying (4.4.15) gives

ΘT
r AT

11ΘrW̃r − ΘT
r ET

11ΘrW̃rΥ + ΘT
r CTC = 0.

Therefore, Wr satisfies the Sylvester equation required for interpolation of H̃(s), implying

cT
i H̃(σi) = cT

i Ĥr(σi) by Lemma 4.7. Since ΘT
l Θr = I and Wr = ΘrW̃r, we have

cT
i Ĥr(s) = cT

i H̃r(s). Therefore, cT
i H̃(σi) = cT

i H̃r(σi). The proof of part (c) follows immedi-

ately from Lemma 4.7 once (a) and (b) are established.

4.4.1 Related Computational Issues to the Reduction of Hessen-

berg Index-2 DAEs

In [49], the authors present lemmas related to the computation of the matrix (Ẽ + μÃ)I .

For interpolatory model reduction, Theorem 4.6 shows that the quantities of interest are

(σẼ − Ã)IB̃b and (μẼT − ÃT )IC̃Tc. (4.4.16)

In the following lemmas, we will use the notation and reasoning of [49] to present the results

of [49] as they relate to the computation of (4.4.16).
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Lemma 4.9. [49] The matrix Z satisfies Z = ΠTZ and Π(σE11 − A11)Π
TZ = ΠF if and

only if

⎡
⎢⎢⎣ σE11 − A11 A12

AT
12 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣ Z

Γ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ F

0

⎤
⎥⎥⎦ . (4.4.17)

Proof. First note the projector properties of Π imply that

AT
12z = 0 if and only if ΠTz = z. (4.4.18)

If Z = ΠTZ satisfies Π(σE11 −A11)Π
TZ = ΠF, then Π[(σE11 −A11)Z−F] = 0, implying

the columns of (σE11 − A11)Z − F are in Null(Π) = Ran(A12). This provides the existence

of Γ such that

(σE11 − A11)Z − F = −A12Γ.

Rearranging, the above equation gives the first block of equations:

(σE11 − A11)Z + A12Γ = F.

The second block directly follows from Z = ΠTZ and projector properties of Π as stated

in (4.4.18). If (4.4.17) is satisfied, then AT
12Z = 0, implying Z = ΠTZ by (4.4.18). Since
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ΠA12 = 0,

ΠF = Π((σE11 − A11)Π
TZ + A12Γ) = Π(σE11 − A11)Π

TZ.

Lemma 4.10. [49] The matrix Q satisfies Q = ΠTQ and Π(σET
11 − AT

11)Π
TQ = ΠG if

and only if

⎡
⎢⎢⎣ σET

11 − AT
11 A12

AT
12 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣ Q

Λ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ G

0

⎤
⎥⎥⎦ . (4.4.19)

Proof. The proof follows a similar argument as employed in the proof of Lemma 4.9.

Lemma 4.11. [49] Let σ ∈ C
−. Then the vector

z = (σẼ − Ã)IB̃b (4.4.20)

solves

⎡
⎢⎢⎣ σE11 − A11 A12

AT
12 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣ z

Γ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ B1b

0

⎤
⎥⎥⎦ . (4.4.21)
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Proof. By Lemma 4.9, the matrix Z obtained by solving (4.4.21) must satisfy z = ΠTz and

(σẼ − Ã)z = ΠB1b = B̃b.

Left multiplying by (σẼ − Ã)I and using Lemma 4.5 gives

ΠTz = (σẼ − Ã)IB̃b.

Finally, noting z = ΠTz yields (4.4.20).

Lemma 4.12. [49] Let μ ∈ C
−. Then the vector

q = (μẼT − ÃT )IC̃Tc (4.4.22)

solves

⎡
⎢⎢⎣ μET

11 − AT
11 A12

AT
12 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣ q

Λ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ CTc

0

⎤
⎥⎥⎦ . (4.4.23)

Proof. By Lemma 4.10, the vector q obtained by solving (4.4.23) must satisfy q = ΠTq and

(μẼT − ÃT )q = ΠCTc = C̃Tc.
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Left multiplying by (μẼT − ÃT )I and using Lemma 4.5 gives

ΠTq = (μẼT − ÃT )IC̃Tc.

Finally, noting q = ΠTq yields (4.4.22).

From a computational perspective of implementing Theorem 4.6, these lemmas are extremely

important. To achieve interpolation, Theorem 4.6 relies on computing the quantities

(σẼ − Ã)IB̃b and (σẼT − ÃT )IC̃Tc, both of which involve the computation of Π and Θr.

However, Lemma 4.11 and Lemma 4.12 illustrate that the computation of Π and Θr is

unnecessary and only the following linear systems need to be solved to achieve interpolation

of the DAE:

⎡
⎢⎢⎣ σiE11 − A11 A12

AT
12 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣ vi

Γ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ B1bi

0

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣ σiE

T
11 − AT

11 A12

AT
12 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣ wi

Γ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ CTci

0

⎤
⎥⎥⎦ .

These observations yield the algorithm for interpolatory model reduction of Hessenberg

index-2 DAEs as described by Algorithm 4.4.1.

Algorithm 4.4.1. Interpolatory Model Reduction Method of Hessenberg Index-2

DAEs

1. Make an initial selection of the interpolation points {σi}r
i=1, and

tangent directions {bi}r
i=1 and {ci}r

i=1.
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2. For i = 1, ..., r solve

⎡
⎢⎢⎣ σiE11 − A11 A12

AT
12 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣ vi

Γ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ B1bi

0

⎤
⎥⎥⎦

⎡
⎢⎢⎣ σiE

T
11 − AT

11 A12

AT
12 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣ wi

Λ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ CTci

0

⎤
⎥⎥⎦ .

3. Vr = [v1, . . . ,vr], Wr = [w1, . . . ,wr].

4. Er = WT
r E11Vr, Ar = WT

r A11Vr, Br = WT
r B1, Cr = CVr, Dr = D̃.

4.4.2 IRKA for Hessenberg Index-2 DAEs

In implementing IRKA for Hessenberg index-2 DAEs, the direct computation of Π and Θr

is also undesirable. Fortunately, Vr = ΠTVr and Wr = ΠTWr give that

Er = WT
r ΠE11Π

TVr = WT
r E11Vr, and Ar = WT

r ΠA11Π
TVr = WT

r A11Vr.

Therefore, the computation of the generalized eigenvalue problems in IRKA can be imple-

mented without explicitly computing the projector Π. These observations result in Algorithm

4.4.2.
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Algorithm 4.4.2. IRKA for Hessenberg Index-2 DAEs

1. Make an initial shift selection σi for i = 1, . . . , r and initial tangent directions b1, ...,br

and c1, ..., cr.

2. For i = 1, ..., r solve

⎡
⎢⎢⎣ σiE11 − A11 A12

AT
12 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣ vi

Γ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ B1bi

0

⎤
⎥⎥⎦

⎡
⎢⎢⎣ σiE

T
11 − AT

11 A12

AT
12 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣ wi

Λ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ CTci

0

⎤
⎥⎥⎦ .

3. Vr = [v1, . . . ,vr], Wr = [w1, . . . ,wr].

4. Er = WT
r E11Vr, Ar = WT

r A11Vr, Br = WT
r B1, Cr = CVr, Dr = D̃.

5. while (not converged)

(a) Compute YTArX = diag(λi) and YTErX = Ir where YT and X are left and

right eigenvectors of λEr − Ar.

(b) σi ←− −λi(Ar,Er) for i = 1, . . . , r, bT
i ←− eT

i YTBr, and cT
i ←− CrXei.

(c) For i = 1, ..., r solve

⎡
⎢⎢⎣ σiE11 − A11 A12

AT
12 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣ vi

Γ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ B1bi

0

⎤
⎥⎥⎦
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⎡
⎢⎢⎣ σiE

T
11 − AT

11 A12

AT
12 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣ wi

Λ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ CTci

0

⎤
⎥⎥⎦ .

(d) Vr = [v1, . . . ,vr], Wr = [w1, . . . ,wr].

(e) Er = WT
r E11Vr, Ar = WT

r A11Vr, Br = WT
r B1, Cr = CVr, Dr = D̃.

Theorem 4.13. Suppose H(s) and Hr are real stable dynamical systems. Let

Hr(s) =
r∑

i=1

1

s − λ̂i

cib
T
i

where Er,Ar,Cr and Br are obtained from Algorithm 4.4.2 and
{

λ̂i

}r

i=1
and

{
cib

T
i

}r

i=1
are

the simple poles and residues of Hr(s), respectively. Then upon convergence of Algorithm

4.4.2, Hr(s) satisfies the first-order H2 optimality conditions, namely for i = 1, 2, ..., r

1) H(−λ̂i)bi = Hr(−λ̂i)bi

2) cT
i H(−λ̂i) = cT

i Hr(−λ̂i)

3) cT
i H′(−λ̂i)bi = cT

i H′
r(−λ̂i)bi.

Proof. Steps (5c) and (5d) of Algorithm 4.4.2 coupled with Lemma 4.11 and Lemma 4.12

give that (σẼ − Ã)IB̃b ∈ Ran(Vr) and (σẼT − ÃT )IC̃Tc ∈ Ran(Wr). Since the new shift

and direction iterate is given by σi ←− −λ̂i(Ar,Er) for i = 1, . . . , r, bT
i ←− eT

i YTBr, and

cT
i ←− CrXei, in Algorithm 4.4.2, Theorem 4.6 implies that for i = 1, . . . , r, we have

1) H(−λ̂i)bi = Hr(−λ̂i)bi

2) cT
i H(−λ̂i) = cT

i Hr(−λ̂i)
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3) cT
i H′(−λ̂i)bi = cT

i H′
r(−λ̂i)bi.

4.4.3 B2 �= 0 Case

As shown in [49], the B2 �= 0 case is similar to if B2 = 0. For the nontrivial B2 case, the

authors of [49] decompose the initial condition as follows:

x(t) = x0(t) + xg(t)

where xg(t) = −E−1
11 A12(A

T
12E

−1
11 A12)

−1B2u(t) with x0(t) satisfying AT
12x0(t) = 0. This

leads to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ΠE11Π
T ẋ0(t) = ΠA11Π

Tx0(t) + ΠBu(t)

ΠTx0(0) = ΠT (x0 − xg(0))

y(t) = CΠTx0(t) + D̃u(t) − C2(A
T
12E

−1
11 A12)

−1B2u̇(t)

(4.4.24)

where

C = C1 − C2(A
T
12E

−1
11 A12)

−1AT
12E

−1
11 A11 (4.4.25)

B = B1 − A11E
−1
11 A12(A

T
12E

−1
11 A12)

−1B2 (4.4.26)

D̃ = D − C2(A
T
12E

−1
11 A12)

−1AT
12E

−1
11 B1. (4.4.27)
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Therefore, the B2 �= 0 case extends to the interpolation framework as well. To see this, first

define

Ẽ = ΠE11Π
T Ã = ΠA11Π

T B̃ = ΠB C̃ = CΠT .

In this case, Theorem 4.14 reformulates Theorem 4.6 for the B2 �= 0 case, and the proof of

Theorem 4.14 follows similarly as the proof for Theorem 4.6.

Theorem 4.14. Let Vr,Wr be full rank. Let s = σ, μ ∈ C be such that the matrices

sΘT
r E11Θr − ΘT

r A11Θr and sWT
r E11Vr − WT

r A11Vr are invertible.

Define the transfer functions

H̃(s) = CΘr(sΘ
T
r E11Θr − ΘT

r A11Θr)
−1ΘT

r B + D̂

H̃r(s) = CVr(sW
T
r E11Vr − WT

r A11Vr)
−1WT

r B + D̂

where D̂ = D̃− sC2(A
T
12E

−1
11 A12)

−1B2 and D̃ is defined in (4.4.27). Let b ∈ C
m and c ∈ C

l

be fixed nontrivial vectors.

i) If (σẼ − Ã)IB̃b ∈ Ran(Vr), then H̃(σ)b = H̃r(σ)b.

ii) If (μẼT − ÃT )IC̃Tc ∈ Ran(Wr), then cT H̃(μ) = cT H̃r(μ).

iii) If (i) and (ii) hold and σ = μ, then cT H̃
′
(σ)b = cT H̃

′
r(σ)b.
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4.5 Numerical Results for Hessenberg Index-2 DAEs

In this section, we consider model reduction of the Oseen equations, which describe the

flow of a viscous and incompressible fluid. The goal of this section is to apply interpolatory

methods to these models and compare the results to those obtained with balanced truncation

as discussed in [49]. For more details about these models, see [49].

4.5.1 Problem 1

The Problem 1 Model is of the form:

H(s) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E11ẋ1(t) = A11x1(t) + A12x2(t) + B1u(t)

0 = AT
12x1(t) + B2u(t)

y(t) = C1x1(t)

(4.5.1)

where E11,A11 ∈ R
5520×5520,A12 ∈ R

5520×761,B1 ∈ R
5520×6,B2 ∈ R

761×6,C1 ∈ R
5520. By

definition of the reduced model, the polynomial parts of the full and reduced models match;

therefore, Table 4.3 only presents the error in the strictly proper parts associated with

reducing to order r = 14. The error for one step of interpolation was noticeably larger than

the error for balanced truncation and IRKA. In addition to the sigma plots in Figure 4.4, we

also used controls ui(t) = sin(it) for i = 1, ..., 6 to obtain the time domain plots as illustrated

in Figure 4.5, and both of these figures indicate a close match between the full and reduced

models.
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Table 4.3: Oseen Equations: Problem 1

Method
‖Hsp−Hsp

r ‖H∞
‖Hsp‖H∞

Balanced Truncation 2.70 × 10−5

One Step Interpolation 3.09 × 10−2

IRKA 9.20 × 10−5

Figure 4.4: Oseen Equation: Problem 1, Frequency Response

4.5.2 Problem 2

The DAE for Problem 2 is of the form

H(s) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E11ẋ1(t) = A11x1(t) + A12x2(t) + B1u(t)

0 = AT
12x1(t) + B2u(t)

y(t) = C1x1(t) + C2x2(t)

(4.5.2)
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Figure 4.5: Oseen Equation: Problem 1, Time Domain Response

where E11,A11 ∈ R
5520×5520,A12 ∈ R

5520×761,B1 ∈ R
5520×6,B2 ∈ R

761×6,C1 ∈ R
2×5520,C2 ∈

R
2×761.

Therefore, unlike the MISO model described by Problem 1, Problem 2 is a MIMO model

and was reduced to order r = 14. In Table 4.4, the model reduction errors indicate the

superiority of balanced truncation and IRKA. The importance of the IRKA iteration is

also displayed in the time domain response plots resulting from controls ui(t) = sin(it) for

i = 1, ..., 6. For the first output, Figure 4.6 depicts a complete mismatch between the full

and reduced models obtained by one step of interpolation; this difference is emphasized in

Figure 4.7 where only one step of interpolation and balanced truncation are shown. It is

important to note that this discrepancy is removed by the IRKA iteration, and a nice match

between the full and reduced models is observed in Figure 4.8. While the time domain

response associated with output one exemplifies the importance of IRKA, Figure 4.9 depicts
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all model reduction methods considered, namely balanced truncation, one step interpolation

and IRKA, resulting in similar time domain responses for output two. Also, the sigma plot

is shown in Figure 4.10, and all methods are observed to give similar results as the full-order

model. Therefore, these results indicate that interpolatory methods are competitive with

those proposed in [49].

Table 4.4: Oseen Equations: Problem 2

Method
‖Hsp−Hsp

r ‖H∞
‖Hsp‖H∞

Balanced Truncation 2.64 × 10−5

One Step Interpolation ∞
IRKA 5.15 × 10−5

Figure 4.6: Oseen Equation: Problem 2, Time Domain Response, First Output
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Figure 4.7: Oseen Equation: Problem 2, Time Domain Response, First Output: Balanced Trun-
cation and One Step Interpolation
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Figure 4.8: Oseen Equation: Problem 2, Time Domain Response, First Output: Balanced Trun-
cation and IRKA

Figure 4.9: Oseen Equation: Problem 2, Time Domain Response, Second Output
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Figure 4.10: Oseen Equation: Problem 2, Frequency Domain Response



Chapter 5

Model Reduction of Second-order

Systems

The aim of this chapter is to consider several frameworks for reducing second-order systems.

In Section 5.2, an overview of existing methods for the reduction of second-order systems is

provided. Then in Section 5.3, we use the first-order IRKA iteration to develop an IRKA

framework for second-order systems. In Section 5.4, additional implementation issues of the

algorithms proposed in Section 5.3 are studied. Finally, Section 5.4 provides a numerical

study of four models to compare the methods discussed in this chapter.

149
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5.1 Second-Order Systems

Second-order systems are represented in state-space as

H(s) :

⎧⎪⎪⎨
⎪⎪⎩

Mẍ(t) + Gẋ(t) + Kx(t) = Bu(t)

y(t) = C1 x(t) + C2ẋ(t),

(5.1.1)

where M,G,K ∈ R
n×n and B ∈ R

n×m,C1,C2 ∈ R
p×n, x(t) ∈ R

n is the state, u(t) ∈ R
m is

the input, and y(t) ∈ R
p is the output.

The transfer function H(s) is then given by

H(s) = (C1 + sC2)(s
2M + sG + K)−1B.

The second-order system is called asymptotically stable provided the matrix polynomial

P(λ) = λ2M + λG + K is stable.

Many physical phenomena are modeled with second-order systems; for example, structural

vibrations can be modeled in this way where M,G, and K describe the structure’s mass,

damping and stiffness distributions, respectively. Also, electrical circuits are frequently de-

scribed as second-order systems. Due to the nature of the physical phenomena modeled,

oftentimes M,G, and K are symmetric positive definite. See [8], [3], [79], [67] for more

examples.

For these second-order systems, the aim is to obtain a reduced-order model of order r << n
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of the same form as the full-order model, namely:

Hr(s) :

⎧⎪⎪⎨
⎪⎪⎩

Mrẍr(t) + Grẋr(t) + Krxr(t) = Bru(t)

yr(t) = C1r xr(t) + C2rẋr(t),

(5.1.2)

where Wr,Vr ∈ R
n×r are used to compute the reduced quantities

Mr = WT
r MVr, Gr = WT

r GVr, Kr = WT
r KVr, Br = WT

r B, C1r = C1Vr, C2r = C2Vr.

Taking K(s) = s2M+ sG+K, B(s) = B, and C(s) = C1 + sC2, system (5.1.1) fits into the

generalized coprime realization as defined by (1.3.3). Therefore, Theorem 1.1 can be applied

in the following way: given a set of interpolation points {σi}r
i=1 , {μi}r

i=1 ⊂ C and sets of

right-tangential directions, {bi}r
i=1 ⊂ C

m, and left-tangential directions, {ci}r
i=1 ⊂ C

p, define

Vr = [ (σ2
1M + σ1G + K)−1Bb1, · · · , (σ2

rM + σrG + K)−1Bbr ] , (5.1.3)

WT
r =

⎡
⎢⎢⎢⎢⎢⎢⎣

cT
1 (C1 + μ1C2)(μ

2
1M + μ1G + K)−1

...

cT
r (C1 + μrC2)(μ

2
rM + μrG + K)−1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5.1.4)

Then the reduced model, Hr(s), defined in (5.1.2) tangentially interpolates H(s), namely

H(σi)bi = Hr(σi)bi and cT
i H(σi) = cT

i Hr(σi).
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Furthermore, if μi = σi, then Hr(s) bitangentially interpolates H(s) at s = σi, namely

cT
i H′(σi)bi = cT

i H′
r(σi)bi.

For models where M,G, and K are symmetric positive definite, the reduced-order model

defined in terms of Vr and Wr will not necessarily be such that Mr,Gr and Kr are symmetric

positive definite. For these cases, taking Wr = Vr allows for the symmetry and positive

definiteness to be preserved. Moreover, the reduced model is guaranteed to be stable in this

case.

Another way to analyze second-order systems is to convert the second-order system into a

first-order system by letting

q(t) =

⎡
⎢⎢⎣ x(t)

ẋ(t)

⎤
⎥⎥⎦ ∈ R

2n.

Then the first-order state-space realization is given by

⎧⎪⎪⎨
⎪⎪⎩

E2nq̇(t) = A2nq(t) + B2n u(t)

y(t) = C2n q(t),

(5.1.5)

where

E2n =

⎡
⎢⎢⎣ I 0

0 M

⎤
⎥⎥⎦ , A2n =

⎡
⎢⎢⎣ 0 I

−K −G

⎤
⎥⎥⎦ , B2n =

⎡
⎢⎢⎣ 0

B

⎤
⎥⎥⎦ , C2n =

[
C1 C2

]
.
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Denote the associated transfer function by H2n(s) = C2n(sE2n − A2n)−1B2n. Of course,

since H2n(s) is simply the first-order representation of H(s), we have H2n(s) = H(s).

Applying Theorem 1.1 to H2n(s) requires constructing matrices

Vr,1 = [ v1, · · · , vr ] =
[

(σ1E2n − A2n)−1B2nb1, · · · , (σrE2n − A2n)−1B2nbr

]
,

WT
r,1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

wT
1

...

wT
r

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cT
1 C2n(σ1E2n − A2n)−1

...

cT
r C2n(σrE2n − A2n)−1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Here we use the subscript to emphasize that Vr,1 and Wr,1 are the reducing matrices for the

first-order representation. Of course, one of the main issues is that the second-order model

is now being reduced to a first-order model. To remedy this issue, [27] suggests splitting Vr,1

and Wr,1 as

Vr,1 =

⎡
⎢⎢⎣ V1

V2

⎤
⎥⎥⎦ and Wr,1 =

⎡
⎢⎢⎣ W1

W2

⎤
⎥⎥⎦ ,

and then defining the reducing matrices as

Ṽr =

⎡
⎢⎢⎣ V1 0

0 V2

⎤
⎥⎥⎦ and W̃r =

⎡
⎢⎢⎣ W1 0

0 W2

⎤
⎥⎥⎦ ,

where W̃T
r Ṽr = I2n and WT

1 V2 is assumed to be invertible. The reduced-order model defined
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by

⎧⎪⎪⎨
⎪⎪⎩

W̃T
r E2nṼrq̇(t) = W̃T

r A2nṼrq(t) + W̃T
r B2n u(t)

y(t) = C2nṼr q(t),

(5.1.6)

where

W̃T
r E2nṼr =

⎡
⎢⎢⎣ WT

1 V1 0

0 WT
2 MV2

⎤
⎥⎥⎦ W̃T

r A2nṼr =

⎡
⎢⎢⎣ 0 WT

1 V2

−WT
2 KV1 −WT

2 GV2

⎤
⎥⎥⎦

W̃T
r B2n =

⎡
⎢⎢⎣ 0

WT
2 B

⎤
⎥⎥⎦ C2nṼr =

[
C1V1 C2V2

]

corresponds to a second-order model as shown in [27]. For more details about second-order

models, see [8], [68], [31],[29], [27], [61], and [4].

5.2 Balanced Truncation Methods for Second-order Sys-

tems

First, we consider converting the second-order model into its corresponding first-order model,

H2n(s) = C2n(sE2n − A2n)−1B2n as in (5.1.5). Once the original model is represented as

a first-order model of order 2n, any generic model reduction method, such as IRKA or

balanced truncation, may be implemented. To apply IRKA in the first-order framework,
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take E = E2n,A = A2n,B = B2n, and C = C2n in Algorithm 1.7.1. Implementing balanced

truncation in the first-order framework requires the reachability and controllability gramians,

P and Q, respectively, which are the solutions to the computationally intensive Lyapunov

equations:

E2nPAT
2n + A2nPET

2n = −B2nBT
2n, ET

2nQA2n + AT
2nQE2n = −CT

2nC2n. (5.2.1)

For a reachable, observable and stable first-order system, a balancing transformation is

computed in order to give

TPTT = T−T QT−1 = diag(ν1, ...νr)

where νi is the ith Hankel singular value defined as

νi =
√

λi(PQ).

To obtain the reduced model, the states associated with the smallest singular values, namely

those that correspond to the states that are both difficult to reach and difficult to observe,

are eliminated. See [2] for implementation details.

While balanced truncation and IRKA may provide small model reduction errors, one of

the key concerns is that theoretical or computational issues may preclude the first-order

reduced model from being expressed as a second-order model as discussed in [64]. As a
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result, the second-order structure, and thereby the physical interpretation of the model,

is lost even though the model reduction error may be small. Since the preservation of

this second-order structure is pivotal for many models, research has been devoted to the

development of balanced truncation methods for second-order systems. To do so, balanced

truncation methods for the second-order framework as discussed in [68] begin by converting

the second-order model to its corresponding first-order state-space realization as in (5.1.5)

and then obtain the controllability and observability gramians, P and Q, respectively, by

solving (5.2.1). The gramians are then partitioned into four n × n blocks as follows:

P =

⎡
⎢⎢⎣ Pp P12

PT
12 Pv

⎤
⎥⎥⎦ , Q =

⎡
⎢⎢⎣ Qp Q12

QT
12 Qv

⎤
⎥⎥⎦ .

The quantities Pp and Pv are called the position and velocity controllability gramians of

the second-order system, and Qp and Qv are called the position and velocity observability

gramians of the second-order system, respectively. Using these gramians, the following sin-

gular values are defined, provided the second-order system is asymptotically stable:

a) The position singular values of (5.1.1), denoted by ηp
j , are defined as the square roots of

the eigenvalues of the matrix PpQp, namely ηp
j =

√
λ(PpQp).

b) The velocity singular values of (5.1.1), denoted by ηv
j , are defined as the square roots of

the eigenvalues of the matrix PvM
T QvM, namely ηv

j =
√

λ(PvMT QvM).

c) The position-velocity singular values of (5.1.1), denoted by ηpv
j , are defined as the square

roots of the eigenvalues of the matrix PpM
T QvM, namely ηpv

j =
√

λ(PpMT QvM).
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d) The velocity-position singular values of (5.1.1), denoted by ηvp
j , are defined as the square

roots of the eigenvalues of the matrix PvQp, namely ηvp
j =

√
λ(PvQp).

Using (a) - (d), the following balanced realizations are defined:

1) System (5.1.1) is position balanced if Pp = Qp.

2) System (5.1.1) is velocity balanced if Pv = Qv.

3) System (5.1.1) is position-velocity balanced if Pp = Qv.

4) System (5.1.1) is velocity-position balanced if Pv = Qp.

In order to compute the reduced-order model, the full-order system is converted into one of

the forms as given in (1) - (4) and then the appropriate position and velocity components

corresponding to the smallest singular values are eliminated. Therefore, these definitions

result in several methods, such as second-order balanced truncation with position balancing

(SOBTp), second-order balanced truncation with position-velocity balancing (SOBTpv) and

free velocity second-order balanced truncation (SOBTfv) as discussed in [68] and [64].

For the numerical simulations, we considered obtaining the position-velocity balanced form

through the SOBTpv method as proposed in [68]. To implement SOBTpv, a Cholesky

factorization

Pp = RpR
T
p Qv = LvL

T
v
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and a singular value decomposition

RT
p MTLv = UpvΣpvV

T
pv

are first computed. Then as [68] proves, system (5.1.1) is balanced when the balancing

transformation matrices are defined as

Tr = RpUpvΣ
− 1

2
pv and Tl = Σ

− 1
2

pv VT
pvL

T
v .

From this balancing transformation, an algorithm for balanced truncation of second-order

systems, SOBTpv, is presented in [68].

Algorithm 5.2.1. [68] Second-order Balanced Truncation Model Reduction with

Position-Velocity Balancing (SOBTpv)

1. Solve the Lyapunov equations (5.2.1) of dimension 2n to obtain P and Q.

2. Partition P and Q as in (5.2).

3. Compute the Cholesky factorizations: Pp = RpR
T
p Qv = LvL

T
v .

4. Compute the singular value decomposition: RT
p MTLv = UpvΣpvV

T
pv with

Upv =

[
Upv,1 Upv,2

]
, Σpv =

⎡
⎢⎢⎣ Σpv,1 0

0 Σpv,2

⎤
⎥⎥⎦ , Vpv =

[
Vpv,1 Vpv,2

]
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and Σpv,1 = diag(ηpv
1 , . . . , ηpv

r ) and Σpv,2 = diag(ηpv
r+1, . . . , η

pv
n ).

5. Define Wr = LvVpv,1Σ
− 1

2
pv,1 and Vr = RpUpv,1Σ

− 1
2

pv,1.

6. Mr = Ir, Gr = WT
r GVr, Kr = WT

r KVr, Br = WT
r B, Cr(s) = C(s)Vr.

It is important to emphasize that if the matrices M,G, and K are symmetric positive definite,

then SOBTpv and SOBTfv preserve this property. In general, however, stability can not be

guaranteed with second-order balanced truncation methods. Moreover, in all cases, a priori

upper bounds for second-order balanced truncation have yet to be presented. This is an

important deviation from the first-order case, where balanced truncation is lauded for its

preservation of stability and a priori upper bound despite its reliance on the costly solution

of the Lyapunov equations.

5.3 An IRKA framework for Second-order Systems

In this section, we consider extending the IRKA framework to second-order systems. The

H2 approximation problem for second-order systems is defined as

Hr(s) = min
deg(Ĥr)=r

Ĥ:stable
Ĥr=(C1r+sC2r)(s2Mr+sGr+Kr)−1Br

‖H(s) − Ĥr(s)‖H2 . (5.3.1)

Recall that IRKA converges to a reduced model that satisfies the first-order necessary con-

ditions. However, these conditions as stated in Theorem 1.4 only require a pole-residue
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formulation, namely the reduced-order model is defined as

Hr(s) =
r∑

i=1

1

s − λ̂i

cib
T
i

where
{

λ̂i

}r

i=1
and

{
cib

T
i

}r

i=1
are the simple poles and residues of Hr(s), respectively. By

expressing Hr(s) only in terms of its poles and residues, the model’s structure is ignored,

implying the reduced model obtained by IRKA will not satisfy (5.3.1), which restricts the

reduced-order model to be only of second-order structure. However, if IRKA is applied to

the first-order representation of the second-order model,

H(s) = H2n(s) = C2n(sE2n − A2n)−1B2n,

as defined in (5.1.5), then Hr(s) will satisfy the optimal H2 problem:

Hr(s) = min
deg(H̃r)=r

H̃2n:stable

‖H2n(s) − H̃r(s)‖H2 .

By reducing the second-order model to a first-order reduced model, the issues as previously

discussed arise, namely conversion of the first-order model to a second-order model may be

computationally intensive or impossible. As a result, this chapter proposes an IRKA-based

algorithm for second-order models that preserves the second-order structure. Applying the

IRKA iteration to second-order systems with K(s) = s2M + sG + K, B(s) = B, and

C(s) = C1 + sC2 requires using an initial shift selection of σi for i = 1, . . . , r and initial
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tangent directions b1, ...,br and c1, ..., cr to solve

Vr =
[

(σ2
1M + σ1G + K)−1Bb1, · · · , (σ2

rM + σrG + K)−1Bbr

] ∈ R
n×r

Wr =
[

(σ2
1M + σ1G + K)−TC(σ1)

Tc1, · · · , (σ2
rM + σrG + K)−TC(σr)

Tcr

] ∈ R
n×r

where C(s) = C1 + sC2. Then the intermediate reduced-order model is defined as

H2r = Cr(s)(s
2Mr + sGr + Kr)

−1Br

where Mr = WT
r MVr, Gr = WT

r GVr, Kr = WT
r KVr, Cr(s) = C1Vr + sC2Vr, and

Br = WT
r B. The reduced model’s transfer function is denoted by 2r to emphasize the

presence of 2r poles. This follows due to the quadratic polynomial eigenvalue problem

associated with the second-order model. The mirror images of these 2r poles then become

the shifts for the next iteration of IRKA. Now with 2r shifts, the next step requires computing

the n × 2r matrices:

V2r =
[

(σ2
1M + σ1G + K)−1Bb1, · · · , (σ2

2rM + σ2rG + K)−1Bb2r

] ∈ R
n×2r

W2r =
[

(σ2
1M + σ1G + K)−TC(σ1)

Tc1, · · · , (σ2
2rM + σ2rG + K)−TC(σ2r)

Tc2r

] ∈ R
n×2r.

Using V2r and W2r, the next reduced model obtained is

H4r = C2r(s)(s
2M2r + sG2r + K2r)

−1B2r,



Sarah Wyatt Chapter 5. Model Reduction of Second-order Systems 162

where M2r = WT
2rMV2r, G2r = WT

2rGV2r, K2r = WT
2rKV2r, C2r(s) = C1V2r + sC2V2r,

and B2r = WT
2rB. The key issue is that the presence of 2r rather than r shifts implies that

the reduced-order model will grow by a factor of two at each IRKA iteration. Letting k

denote the number of IRKA iterations, this shift increase implies that the final reduced-

order model will be of order 2k−1r when IRKA is initialized with r shifts and directions. To

prevent this growth, the new shift iterate must include only r shifts even though 2r poles

are available.

5.3.1 SOR-IRKA

The first IRKA-based algorithm is presented in Algorithm 5.3.1. To initialize, r shifts and

directions are chosen. Then the reducing matrices Vr and Wr are computed as in (5.1.3).

The reduced-order model, Hr(s) obtained in Step 4(a), is an rth order model with 2r poles.

To obtain only r shifts, we first convert Hr(s) to its corresponding first-order representation,

H2r(s) = C2r(sE2r − A2r)
−1B2r, where the subscript 2r is used to emphasize the model’s

dimension. At this point, any of the generic model reduction techniques can be applied

to reduce H2r(s) to an order r model, denoted by H̃r(s). In our numerical results, we

reduced H2r(s) using either IRKA (Method H1,r) or balanced truncation (Method H2,r). It

is important to keep in mind that the usual drawback of balanced truncation, namely the

expensive Lyapunov equations, is no longer a concern as the full-order model in this case is

only of dimension 2r with r << n. See [2] for implementation details of balanced truncation.

Upon obtaining the rth order model, H̃r(s), the shifts for the next iteration are the mirror
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images of H̃r(s). Since the shifts are not the mirror images of the poles of the second-order

reduced model, the H2 optimality first-order necessary conditions will not be satisfied upon

convergence. Despite this lack of optimality, this method may be justified as follows: model

reduction methods obtain an rth order model that captures the behavior of an order 2r

model, implying that the shift information of the rth order model may best describe the key

characteristics of the 2r shifts. This method as detailed in Algorithm 5.3.1 is referred to as

SOR-IRKA, where the letter suffix R in the title emphasizes that the intermediate model,

H2r(s), is reduced to obtain the r shifts.

Algorithm 5.3.1. Second-order IRKA for MIMO Tangential Interpolation

(SOR-IRKA)

1. Make an initial shift selection σi for i = 1, . . . , r and initial tangent directions b1, ...,br

and c1, ..., cr.

2. Vr = [ (σ2
1M + σ1G + K)−1Bb1, · · · , (σ2

rM + σrG + K)−1Bbr ] .

3. Wr =
[

(σ2
1M + σ1G + K)−TC(σ1)

Tc1, · · · , (σ2
rM + σrG + K)−TC(σr)

Tcr

]
.

4. while (not converged)

(a) Mr = WT
r MVr, Gr = WT

r GVr, Kr = WT
r KVr, Br = WT

r B, Cr(s) = C(s)Vr.

(b) Convert the second-order reduced model found in Step (4a) to its associated first-

order framework, H2r(s) = C2r(sE2r − A2r)
−1B2r, as in (5.1.5).
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(c) Intermediate Step: Reduce the order 2r system, H2r(s), to an order r system,

H̃r(s) = C̃r(sẼr − Ãr)
−1B̃r.

(d) Compute YT ÃrX = diag(λi) and YT ẼrX = Ir where YT and X are left and

right eigenvectors of λẼr − Ãr.

(e) σi ←− −λi(Ãr, Ẽr), bT
i ←− eT

i YT B̃r, and cT
i ←− C̃rXei for i = 1, . . . , r.

(f) Vr = [ (σ2
1M + σ1G + K)−1Bb1, · · · , (σ2

rM + σrG + K)−1Bbr ] .

(g) Wr =
[

(σ2
1M + σ1G + K)−TC(σ1)

Tc1, · · · , (σ2
rM + σrG + K)−TC(σr)

Tcr

]
.

5. Mr = WT
r MVr, Gr = WT

r GVr, Kr = WT
r KVr, Br = WT

r B, Cr(s) = C(s)Vr.

As discussed, we consider two approaches for Step (4c):

• Method H1,r: Reduce H2r(s) to order r using IRKA (Algorithm 1.7.1).

• Method H2,r: Reduce H2r(s) to order r using first-order balanced truncation.

5.3.2 SO-IRKA

Another IRKA-based algorithm is proposed in Algorithm 5.3.2. As with SOR-IRKA, the

algorithm begins by computing the matrices Vr and Wr required to achieve Hermite tangen-

tial interpolation for a given initial shift and direction selection. The second-order reduced

model calculated using Vr and Wr is then converted to its first-order representation, de-

noted by H2r(s). Instead of reducing H2r(s) as in SOR-IRKA, SO-IRKA computes the
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poles of H2r(s) and then assigns r of the mirror images of these poles to be the shifts used

in constructing the next Vr and Wr matrices.

Algorithm 5.3.2. Second-order IRKA for MIMO Tangential Interpolation

(SO-IRKA)

1. Make an initial shift selection σi for i = 1, . . . , r and initial tangent directions b1, ...,br

and c1, ..., cr.

2. Vr = [ (σ2
1M + σ1G + K)−1Bb1, · · · , (σ2

rM + σrG + K)−1Bbr ] .

3. Wr =
[

(σ2
1M + σ1G + K)−TC(σ1)

Tc1, · · · , (σ2
rM + σrG + K)−TC(σr)

Tcr

]
.

4. while (not converged)

(a) Mr = WT
r MVr, Gr = WT

r GVr, Kr = WT
r KVr, Br = WT

r B, Cr(s) = C(s)Vr.

(b) Convert the second-order reduced model found in Step (4a) to its associated first-

order framework H2r(s) = C2r(sE2r − A2r)
−1B2r as in (5.1.5).

(c) Compute YT A2rX = diag(λi) and YT E2rX = I2r where YT and X are left and

right eigenvectors of λE2r − A2r.

(d) Shift Selection Step: Using λ1, . . . , λ2r, assign σ1, . . . , σr and μ1, . . . , μr (see be-

low).

(e) Vr = [ (σ2
1M + σ1G + K)−1Bb1, · · · , (σ2

rM + σrG + K)−1Bbr ] .

(f) W =
[

(μ2
1M + μ1G + K)−TC(μ1)

Tc1, · · · , (μ2
rM + μrG + K)−TC(μr)

Tcr

]
.
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5. Mr = WT
r MVr, Gr = WT

r GVr, Kr = WT
r KVr, Br = WT

r B, Cr(s) = C(s)Vr.

One way to make the selection in Step (4d) is by choosing the same shifts for both Vr and

Wr, which is presented in Method H3,r. In this method, the mirror images of the poles

closest to the imaginary axis are chosen; however, any of the 2r shifts may be chosen.

Method H3,r : Shift Selection Step (4d) of SO-IRKA (Hermite)

• σi ←− −λi(A2r, E2r),b
T
i ←− eT

i YT B2r for i = 1, . . . , r.

• μi ←− −λi(A2r, E2r), cT
i ←− C2rXei for i = 1, . . . , r.

Since Method H3,r ignores the poles furthest away from the imaginary axis, we also consider

using all of the 2r shifts by defining the new shift selection as in Method H4,r. While Method

H4,r does not bitangentially interpolate H(s) as in Method H3,r, this method is motivated

by [48], where only tangential interpolation was achieved in order to maintain the structure

of the port-Hamiltonian system.

Method H4,r : Shift Selection Step (4d) of SO-IRKA (Lagrange)

• σi ←− −λi(A2r, E2r),b
T
i ←− eT

i YT B2r for i = 1, . . . , r.

• μi ←− −λi+r(A2r, E2r), c
T
i ←− C2rXei+r for i = 1, . . . , r.

It is important to emphasize the distinction between the SOR-IRKA and SO-IRKA algo-

rithms. Since SOR-IRKA uses the poles from the reduced model obtained through the

first-order representation, the shift iterates are no longer the mirror images of the poles
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of the second-order model. Therefore, SOR-IRKA will not satisfy any of the optimal H2

first-order necessary conditions. However, SO-IRKA satisfies a subset of the optimal H2

necessary conditions upon convergence.

Theorem 5.1. Suppose H(s) and Hr(s) are real stable dynamical systems. Let

Hr(s) =
2r∑

i=1

1

s − λ̂i

cib
T
i

where
{

λ̂i

}2r

i=1
and

{
cib

T
i

}2r

i=1
are the simple poles and residues of Hr(s), respectively, then

a) SO-IRKA with Method H3,r satisfies 3r of the first-order necessary conditions of the H2

optimality problem, namely

1. H(−λ̂i)bi = Hr(−λ̂i)bi for i = 1, . . . , r

2. cT
j H(−λ̂j) = cT

j Hr(−λ̂j) for j = 1, . . . , r

3. cT
i H′(−λ̂i)bi = cT

i H
′
r(−λ̂i)bi for i = 1, . . . , r.

b) SO-IRKA with Method H4,r satisfies 2r of the first-order necessary conditions of the H2

optimality problem, namely

1. H(−λ̂i)bi = Hr(−λ̂i)bi for i = 1, . . . , r

2. cT
j H(−λ̂j) = cT

j Hr(−λ̂j) for j = r + 1, . . . , 2r.

Proof. By Theorem 1.4, the first-order necessary conditions are given as
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1. H(−λ̂i)bi = Hr(−λ̂i)bi for i = 1, . . . , 2r

2. cT
i H(−λ̂i) = cT

i Hr(−λ̂i) for i = 1, . . . , 2r

3. cT
i H′(−λ̂i)bi = cT

i H′
r(−λ̂i)bi for i = 1, . . . , 2r.

The shift selection prescribed by Method H3,r gives that Hr(s) tangentially and bitangen-

tially interpolates H(s), namely

1. H(σi)bi = Hr(σi)bi for i = 1, . . . , r

2. cT
j H(σj) = cT

j Hr(σj) for j = 1, . . . , r

3. cT
i H′(σi)bi = cT

i H
′
r(σi)bi for i = 1, . . . , r.

The shifts used in Method H4,r imply that Hr(s) tangentially interpolates H(s), namely

1. H(σi)bi = Hr(σi)bi for i = 1, . . . , r

2. cT
j H(σj) = cT

j Hr(σj) for j = r + 1, . . . , 2r.

The result then follows immediately since the shifts are chosen to be the reflected poles of

the second-order model in Method H3,r and Method H4,r.

A similar approach to the Shift Selection Step was considered in [21], where the authors

applied a global Arnoldi method to the reduction of second-order MIMO systems. While

[21] chooses a subset of the eigenvalues based on their proximity to the imaginary axis,
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the approach of [21] does not include tangential interpolation, implying that only a limited

number of poles can be reflected and that none of the H2 optimality conditions are satisfied.

Remark: For models where M,G, and K are symmetric positive definite matrices, setting

Wr = Vr

in both SOR-IRKA (Algorithm 5.3.1) and SO-IRKA (Algorithm 5.3.2) implies that the

symmetry and positive definiteness is preserved as well as stability.

5.4 Numerical Results for the Effect of the Shift Re-

duction Step

To thoroughly investigate the Intermediate Step and Shift Selection Step of SOR-IRKA and

SO-IRKA, we reduced a one-dimensional beam model, a building model, and a truss segment

model using the methods proposed for SOR-IRKA and SO-IRKA.
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5.4.1 Building Model

The Building Model describes the Los Angeles University Hospital’s eight floors as a SISO

model of the form:

H(s) :

⎧⎪⎪⎨
⎪⎪⎩

Mẍ(t) + Gẋ(t) + Kx(t) = Bu(t)

y(t) = Cx(t),

(5.4.1)

where M,G,K ∈ R
24×24,B ∈ R

24, and C ∈ R
24. The reduced model obtained is a second-

order model of dimension r = 8. While this is a very small model, it serves as an example

of a second-order model where M,G, and K are not symmetric positive definite. Therefore,

Wr is not set to be equal to Vr, and two-sided reduction is implemented. For more details

about the Building Model, see [2] and [3].

Figure 5.1: Building Model Bode Plot (V �= W )
≠

In Figure 5.1, the bode plots resulting from Methods H1,r - H4,r illustrate a very close match
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Table 5.1: Building Model Errors, reducing from 2r to r, Vr �= Wr

Method
‖H−Hr‖H∞

‖H‖H∞

‖H−Hr‖H2

‖H‖H2

H1,r 2.08 × 10−1 2.57 × 10−1

H2,r 3.17 × 10−1 3.65 × 10−1

H3,r 3.06 × 10−1 3.80 × 10−1

H4,r 3.57 × 10−1 2.76 × 10−1

between the full and reduced models for all methods. Furthermore, all of the
‖H−Hr‖H∞

‖H‖H∞

and
‖H−Hr‖H2

‖H‖H2
errors are of the same order as shown in Table 5.1. Therefore, the Building

Model suggests that SOR-IRKA and SO-IRKA yield similar results regardless of how the

Intermediate Step and Shift Selection Step are implemented.

5.4.2 Beam Model

The Beam Model is a second-order system with proportional damping of the form:

H(s) :

⎧⎪⎪⎨
⎪⎪⎩

Mẍ(t) + (αM + βK)ẋ(t) + Kx(t) = Bu(t)

y(t) = Cx(t),

(5.4.2)

where M,G,K ∈ R
500×500,B ∈ R

500, and C ∈ R
500. The scalars α and β are proportional

damping coefficients set as α = 1/100 and β = 1/100. See [9] for more details about this

model.

Since the matrices M and K are symmetric positive definite, we set Wr = Vr, implying

that only one sided reduction occurs in SOR-IRKA and SO-IRKA. In Figure 5.2, the bode

plots for the full and reduced models are given. Although the oscillations associated with
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the middle frequencies are captured nicely by all methods, a significant mismatch for higher

frequencies occurs for Method H2,r,H3,r and H4,r, indicating that SOR-IRKA with IRKA

for the shift reduction step is superior. When examining Table 5.2, however, we observe that

the overall model reduction errors,
‖H−Hr‖H∞

‖H‖H∞
and

‖H−Hr‖H2

‖H‖H2
, are of the same order regardless

of the implementation.

Figure 5.2: Beam Model Bode Plot (V = W)

Table 5.2: Beam Model Errors, reducing from 2r to r, Vr = Wr

Method
‖H−Hr‖H∞

‖H‖H∞

‖H−Hr‖H2

‖H‖H2

H1,r 3.47 × 10−4 7.00 × 10−3

H2,r 3.08 × 10−4 5.46 × 10−3

H3,r 2.92 × 10−4 5.83 × 10−3

H4,r 2.92 × 10−4 5.83 × 10−3
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5.4.3 12a Model

The 12a Model describes the second left-side truss segment of the 1r Module from the

International Space Station. This is a SISO model of the form:

H(s) :

⎧⎪⎪⎨
⎪⎪⎩

Mẍ(t) + Gẋ(t) + Kx(t) = Bu(t)

y(t) = C1 x(t) + C2ẋ(t),

(5.4.3)

where M,G,K ∈ R
706×706,B ∈ R

706, and C1,C2 ∈ R
706. The matrices M,G and K are

symmetric positive definite, so we only consider one-sided implementation of SOR-IRKA

and SO-IRKA with Wr = Vr. For more details about this model, see [2] and [3].

In Figure 5.3, we observe that several of the methods fail to fully capture the complexity of

the original model. Especially for larger frequencies, Method H2,r is the only method that

matches the full-order model. This is also observed in Table 5.3, where the
‖H−Hr‖H∞

‖H‖H∞
and

‖H−Hr‖H2

‖H‖H2
errors associated with H2,r are one to two orders smaller than all other methods.

Therefore, this model suggests that the intermediate step may noticeably impact the SOR-

IRKA iteration.

Table 5.3: 12a Model Errors, reducing from 2r to r, Vr = Wr

Method
‖H−Hr‖H∞

‖H‖H∞

‖H−Hr‖H2

‖H‖H2

H1,r 9.75 × 10−1 1.25
H2,r 4.36 × 10−2 5.76 × 10−2

H3,r 9.92 × 10−1 1.32
H4,r 9.92 × 10−1 1.32
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Figure 5.3: 12a Model Bode Plot (V = W )

5.5 Comparison with Balanced Truncation Methods

In this section, we compare the IRKA-based second-order model reduction techniques to

the other methods discussed in Section 5.2 for several models. Since we are interested

in comparing both first and second-order models, r refers to the dimension of the first-

order reduced model and the dimension of the second-order model’s corresponding first-order

realization. In the reported data, Balanced Truncation denotes converting the given second-

order system into a first-order system and then applying the balanced truncation method.

SOR-IRKA refers to using balanced truncation for the intermediate step of SOR-IRKA.
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5.5.1 Building Model

The Building Model, as introduced in Section 5.4, is an example of a nonsymmetric model.

The full-order model of dimension n = 24 was reduced to dimension r = 16. In Table 5.4,

the
‖H−Hr‖H2

‖H‖H2
and

‖H−Hr‖H∞
‖H‖H∞

errors are displayed, and the bode plots are given in Figure 5.4.

Perhaps most noticeable from this data is the huge discrepancy between the full and reduced

models associated with the SOBTpv method. First-order balanced truncation results in the

smallest H∞ error, but the H2 errors for balanced truncation and SOR-IRKA are of the

same order. Also, for low frequencies, first-order balanced truncation fails to capture the

behavior of the full-order model, leaving SOR-IRKA to be the only method resulting in a

reduced model that reflects the behavior of the full-order model.

Table 5.4: Building Model Errors

Method
‖H−Hr‖H2

‖H‖H2

‖H−Hr‖H∞
‖H‖H∞

Balanced Truncation 1.01 × 10−1 7.31 × 10−2

SOBTpv 1.92 × 103 2.31 × 103

SOR-IRKA 3.65 × 10−1 3.17 × 10−1

5.5.2 Beam Model

Recall from Section 5.4 that the Beam Model is a model of dimension n = 500 where M,G,

and K are symmetric positive definite matrices. To preserve these system properties, we

took Wr = Vr and reduced to an order r = 60 model. As Table 5.5 demonstrates, the

errors associated with SOBTpv are much larger than those obtained with any of the other
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Figure 5.4: Building Model Bode Plot

methods while the first-order balanced truncation method results in the smallest errors. Since

SOR-IRKA preserves the second-order structure and produces reasonably small errors, we

conclude that SOR-IRKA is an appropriate method for the Beam Model.

Table 5.5: Beam Model Errors

Method
‖H−Hr‖H2

‖H‖H2

‖H−Hr‖H∞
‖H‖H∞

Balanced Truncation 1.28 × 10−4 1.16 × 10−6

SOBTpv 1.79 × 10−1 1.96 × 10−1

SOR-IRKA 5.46 × 10−3 3.08 × 10−4

5.5.3 12a Model

We reduced the 12a Model to dimension r = 120. In Table 5.6, the model reduction errors

are presented, and Figure 5.6 provides the comparison between the full and reduced model’s

bode plots. As illustrated by this data, SOR-IRKA is competitive with both the first-order
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Figure 5.5: Beam Model Bode Plot

and second-order balanced truncation frameworks. It is important to note, however, that the

balanced truncation errors came at the cost of solving two Lyapunov equations of dimension

2n, which may be an intractable problem especially for large-scale systems. Furthermore,

the reduced-order models obtained by first-order methods fail to reflect the structure of the

full-order model, potentially dimensioning the practicality of the reduced-order model in a

real-world setting. Especially for large-scale problems, where solving the Lyapunov equations

may be infeasible, these results illustrate the advantages associated with SOR-IRKA.

Table 5.6: 12a Model Errors

Method
‖H−Hr‖H2

‖H‖H2

‖H−Hr‖H∞
‖H‖H∞

Balanced Truncation 1.02 × 10−2 2.87 × 10−3

SOBTpv 1.47 × 10−2 7.01 × 10−3

SOR-IRKA 4.36 × 10−2 5.76 × 10−2
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Figure 5.6: 12a Model Bode Plot

5.5.4 Butterfly Gyro Model

As an example of a large-scale dynamical system, we consider applying SOR-IRKA to the

Butterfly Gyro Model. This model is provided by Dag Billger through the Oberwolfach Model

Reduction Benchmark Collection and models a gyro chip. The model has the following form

H(s) :

⎧⎪⎪⎨
⎪⎪⎩

Mẍ(t) + (αM + βK)ẋ(t) + Kx(t) = Bu(t)

y(t) = Cx(t),

(5.5.1)

where M,G,K ∈ R
17361×17361,B ∈ R

17361, and C ∈ R
12×17361 and M,G,K are symmetric

positive definite. For our numerical simulations, we took G = αM + βK with α = 0 and

β = 1 × 10−6 as suggested by [54]. More details are available in [54]. It is important to

emphasize that the associated Lyapunov equation for this model is of order 34,722, implying

that balanced truncation and SOBTpv are not feasible methods. As a result, we computed
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the second-order reduced model of dimension r = 30 by applying SOR-IRKA using H1,r.

To preserve the symmetry and positive definiteness of the original model, we only employed

one-sided reduction with Wr = Vr. The results of SOR-IRKA applied to this model are

quite impressive. Not only is the method computationally feasible, but rapid convergence

is observed. In Table 5.7, the first, second and final shift iterates of IRKA show that

by the second IRKA iteration the shifts have converged. Moreover, the reduced model

obtained is of high fidelity with the relative H∞ error,
‖H−Hr‖H∞

‖H‖H∞
, equal to 5.78 × 10−9.

Furthermore, an almost perfect match between the full and reduced-order models is observed

in Figure 5.7. Especially for this large-scale example, our results illustrate that the SOR-

IRKA method provides a second-order model reduction technique that is computationally

feasible and reliable.

Figure 5.7: Butterfly Gyro Model Bode Plot
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Table 5.7: Shift Iteration for the Butterfly Gyro Model

First IRKA Step Second IRKA Step Final IRKA Step
1.00 × 103 5.65 × 101 5.65 × 101

1.00 × 103 5.65 × 101 5.65 × 101

1.64 × 103 1.14 × 102 1.14 × 102

1.64 × 103 1.14 × 102 1.14 × 102

2.68 × 103 1.24 × 102 1.24 × 102

2.68 × 103 1.24 × 102 1.24 × 102

4.39 × 103 3.84 × 102 3.84 × 102

4.39 × 103 3.84 × 102 3.84 × 102

7.20 × 103 7.31 × 102 7.31 × 102

7.20 × 103 7.31 × 102 7.31 × 102

1.18 × 104 9.72 × 102 9.72 × 102

1.18 × 104 9.72 × 102 9.72 × 102

1.93 × 104 2.09 × 103 2.09 × 103

1.93 × 104 2.09 × 103 2.09 × 103

3.16 × 104 2.11 × 103 2.11 × 103

3.16 × 104 2.11 × 103 2.11 × 103

5.18 × 104 2.51 × 103 2.51 × 103

5.18 × 104 2.51 × 103 2.51 × 103

8.48 × 104 4.04 × 103 4.04 × 103

8.48 × 104 4.04 × 103 4.04 × 103

1.39 × 105 4.20 × 103 4.20 × 103

1.39 × 105 4.20 × 103 4.20 × 103

2.28 × 105 7.02 × 103 7.02 × 103

2.28 × 105 7.02 × 103 7.02 × 103

3.73 × 105 9.27 × 103 9.27 × 103

3.73 × 105 9.27 × 103 9.27 × 103

6.11 × 105 9.39 × 103 9.39 × 103

6.11 × 105 9.39 × 103 9.39 × 103

1.00 × 106 1.48 × 104 1.48 × 104

1.00 × 106 1.48 × 104 1.48 × 104



Chapter 6

Conclusion

In this dissertation, we studied and developed methods for effective interpolatory model

reduction. One of the key bottlenecks of interpolatory methods is the sequence of linear

systems required. Especially in the large-scale setting, inexact solves become necessary, and

the convergence of these iterative methods often benefits greatly from preconditioning. In

this dissertation, we studied the effect of the preconditioner in the model reduction setting

and showed that several previously proven results for unpreconditioned inexact solves also

hold in a similar manner for the preconditioned case. We also established an important

distinction between the types of preconditioning techniques, namely a backward error result

assuming only the Petrov-Galerkin framework exists in the case of split preconditioning but

not for right and left preconditioning.

Due to the importance of preconditioning, we developed preconditioning techniques specific

181
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to the IRKA iteration. Two updating methods, namely sparse approximate inverses (SAI)

and a modification of the update proposed by Bellavia et al. in [11] were studied. The SAI

update proved effective for some models, and even resulted in the same number of GMRES

iterations as when an incomplete LU was computed. For the Bellavia et al. update, we ex-

tended several results to the preconditioned IRKA case. Despite these promising theoretical

results, our data indicated that oftentimes the resulting update was close to singular, and

therefore should not be used. To remedy these issues, we considered computing additional

incomplete LU factorizations along with the update, which resulted in the updating methods

being more competitive with computing a new preconditioner at each step.

Perhaps the most important contribution of this dissertation is our study of several theo-

retical and numerical issues associated with interpolatory model reduction of DAEs. While

the main interpolation theorem holds for a DAE system, the model reduction error may

potentially be unbounded. As a result, we present a theorem that delineates the conditions

required for both interpolation and a bounded model reduction error for DAEs. Using this

theorem, we use the IRKA framework to present an algorithm for the reduction of DAEs.

Since this algorithm requires the explicit computation of the spectral projectors, we con-

sider exploiting the properties of certain DAEs to avoid this computation. For index-1 and

Hessenberg index-2 DAEs, we present theoretical and numerical results illustrating effective

reduction of the DAE system without the projectors.

Finally, another main contribution of this dissertation pertains to the study of second-order

systems. Many methods for reducing second-order systems rely on the first-order represen-
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tation of the second-order system, and thereby computations involving an order 2n model

at some point in the reduction process. Moreover, methods that reduce directly the first-

order representation of the second-order model may yield a model that can not be converted

back to the second-order framework. As a result, the physical meaning of the problem is

absent in the reduced-order model even though the model reduction error may be small.

To avoid these issues, this dissertation proposes IRKA-based algorithms for second-order

systems. Although the resulting model will not satisfy the H2 optimal conditions for second-

order systems, our numerical results indicate that the methods produce accurate reduced

second-order models.
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