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Bilinear Immersed Finite Elements For Interface Problems

Xiaoming He

(ABSTRACT)

In this dissertation we discuss bilinear immersed finite elements (IFE) for solving interface
problems. The related research works can be categorized into three aspects: (1) the con-
struction of the bilinear immersed finite element spaces; (2) numerical methods based on
these IFE spaces for solving interface problems; and (3) the corresponding error analysis.
All of these together form a solid foundation for the bilinear IFEs.

The research on immersed finite elements is motivated by many real world applications, in
which a simulation domain is often formed by several materials separated from each other
by curves or surfaces while a mesh independent of interface instead of a body-fitting mesh is
preferred. The bilinear IFE spaces are nonconforming finite element spaces and the mesh can
be independent of interface. The error estimates for the interpolation of a Sobolev function
in a bilinear IFE space indicate that this space has the usual approximation capability
expected from bilinear polynomials, which is O(h2) in L2 norm and O(h) in H1 norm. Then
the immersed spaces are applied in Galerkin, finite volume element (FVE) and discontinuous
Galerkin (DG) methods for solving interface problems. Numerical examples show that these
methods based on the bilinear IFE spaces have the same optimal convergence rates as those
based on the standard bilinear finite element for solutions with certain smoothness. For
the symmetric selective immersed discontinuous Galerkin method based on bilinear IFE, we
have established its optimal convergence rate. For the Galerkin method based on bilinear
IFE, we have also established its convergence.

One of the important advantages of the discontinuous Galerkin method is its flexibility for
both p and h mesh refinement. Because IFEs can use a mesh independent of interface, such
as a structured mesh, the combination of a DG method and IFEs allows a flexible adaptive
mesh independent of interface to be used for solving interface problems. That is, a mesh
independent of interface can be refined wherever needed, such as around the interface and
the singular source. We also develop an efficient selective immersed discontinuous Galerkin
method. It uses the sophisticated discontinuous Galerkin formulation only around the lo-
cations needed, but uses the simpler Galerkin formulation everywhere else. This selective
formulation leads to an algebraic system with far less unknowns than the immersed DG
method without scarifying the accuracy; hence it is far more efficient than the conventional
discontinuous Galerkin formulations.

This work received support from the NSF grant DMS-0713763 and NSERC (Canada).
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Chapter 1

Introduction

We consider the following model interface problem:

−∇ ·
(
β∇u

)
= f, (x, y) ∈ Ω, (1.1)

u|∂Ω = g, (1.2)

together with the jump conditions on the interface Γ:

[u] |Γ = 0, (1.3)[
β
∂u

∂n

]
|Γ = 0. (1.4)

As illustrated in Figure 1.1, without loss of generality, we assume that Ω ⊂ IR2 is a rect-
angular domain, the interface Γ is a curve separating Ω into two sub-domains Ω−, Ω+ such
that Ω = Ω− ∪Ω+ ∪Γ, and the coefficient β(x, y) is a piecewise constant function defined by

β(x, y) =

{
β−, (x, y) ∈ Ω−,
β+, (x, y) ∈ Ω+.

Ω

Ω+

Ω−

Γ

∂Ω

Figure 1.1: A sketch of the domain for the interface problem.

1



Xiaoming He Chapter 1. Introduction 2

First we consider the homogeneous jump condition for introducing immersed finite ele-
ments. In Chapter 9, we will discuss how to extend the IFE spaces for dealing with the
non-homogeneous jump conditions.

It is well-known that efficiently solving this kind of interface problem is critical in many appli-
cations of engineering and sciences, including electromagnetic problems [6, 32, 151, 152, 165,
166, 167, 170, 171, 191], flow problems [55, 56, 57, 58, 22, 23, 75, 120, 138], shape/topology
optimization problems [25, 26, 27, 74, 95, 108, 109, 125, 188], and the modeling of non-
linear phenomena [118, 194], to name just a few. In this chapter, we will first discuss a
few representative applications and then review some previous work on the model interface
problem.

1.1 Applications of the model interface problem

In this section, we will discuss three interesting applications that involve the model in-
terface problem: charging in space, projection method for Navier-Stokes equation and the
shape/topology optimization.

1.1.1 Charging in space

Charging is the physics underlying many problem associated with either natural phenomenon
or engineering applications. Charging in space appears in a series of important problems in
aerospace engineering, such as spacecraft charging under different types of solar winds, ion
propulsion and electrostatic levitation of lunar dust, to name just a few. In the following,
we will discuss the electrostatic levitation of lunar dust.

It is general accepted that lunar dust levitation is the primary mechanism for lunar horizontal
glow and lunar dust fountain, which were observed by Surveyor 5, 6, 7 and Apollo 17 [181].
Also, lunar dust can cause a wide range of serious problems for spacecraft and astronauts
such as vision obscuration, false instrument readings, clogging of equipment, seal failures,
contamination of surface, abrasion of space suits, breathing problems, and long term lung
problems for astronauts, etc. Figure 1.2 shows some pictures of lunar dust. The shape and
charging of lunar dust are actually the major reasons to cause those problems. From the
following remarks by Gene Cernan, the commander of Apollo 17, at Apollo 17 technical
debriefing, we can see the dramatic influence of lunar dust on spacecraft and astronauts.

Remark 1.1.1 ...I think probably one of the most aggravating, restricting facets of lunar
surface exploration is the dust and its adherence to everything no matter what kind of ma-
terial, whether it be skin, suit material, metal, no matter what it be and it’s restrictive
friction-like action to everything it gets on....We tried to dust them and bang the dust off
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Figure 1.2: SEM images of Apollo 17 lunar dust 70051

and clean them, and there was just no way...I think dust is probably one of our greatest
inhibitors to a nominal operation on the Moon. I think we can overcome other physiological
or physical or mechanical problems except dust...

In a word, it is very important to study the electrostatic levitation of lunar dust. Because
lunar surface, lunar dust, spacecraft and astronauts are charged under different types of
solar winds, they all interact with each other and affect the electric field. First, we need to
simulate the solar winds to generate the electric field. Then we can simulate the movement of
the lunar dust and the interaction between space and different objects, such as lunar surface,
lunar dust, spacecraft and astronauts. One of the efficient methods for plasma simulation is
called Particle-In-Cell (PIC) method.

In PIC method, first we set up a mesh for the domain of the simulation problem, which is
called PIC mesh. It will be used to locate the simulation particles, collect the information
from particles, and realize the effect of the electromagnetic field on the particles. Second,
because the charging is always changing, we need a partition in time. When the partition
is fine enough, we can assume that in each time interval, the charge is fixed. Third, at the
beginning of each time interval, we deposit the charge of all the particles to the PIC mesh
nodes according to the position of the particles. Fourth, using the charge, we can compute the
electric potential, hence the electric field. Then, we can compute the acceleration, velocity
and movement of the particles in this time interval. At the end of this time interval, we
get the new positions of all the particles, which will be used at the start of the next time
interval.
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Therefore, the basic steps in the PIC simulation are

Position of particles and charge on objects

=⇒ Charge on nodes

=⇒ Electric potential

=⇒ Electric field

=⇒ Acceleration, velocity and movement of particles

=⇒ New position of particles and charge on objects

=⇒ · · ·

One of the key steps in the simulation is

Charge on nodes =⇒ Electric potential

for which we need to numerically solve the following partial differential equation (PDE)

−∇ ·
(
β∇φ

)
= ρ, in Ω,

with certain boundary conditions. Here φ is the potential, ρ is the charge density and β is
the dielectric parameter. This is the same as our model interface problem.

In general, PIC itself needs two meshes. One is to locate the simulation particles, collect the
information from particles, and realize the effect of the electromagnetic field on the particles.
The other one is for numerically solving a partial differential equation for the electric poten-
tial. Since we generally need thousands of simulation steps to reach the stable status, the
two meshes should be well structured and easily communicate with each other. Otherwise,
the computational expense is formidable. However, the problem usually has complicated
interfaces between the space and different objects, such as lunar surfaces, spacecraft and
astronauts. Therefore, when we use the standard finite element, finite difference or finite
volume methods to solve the partial differential equation, we have to use body-fitting meshes,
which are unstructured and not suitable for PIC. Meanwhile, when the spacecraft and as-
tronauts are moving, the interfaces are moving. Hence the body-fitting meshes have to be
reformed again and again, which will increase computational cost even further by significant
amount.

This example is just one of the numerous plasma particle simulation applications. Many
other kinds of plasma particle simulations, such as ion optics plasma dynamics [130], are in
the same situation as above. Therefore, a structured mesh instead of a body-fitting mesh is
necessary for solving the interface partial differential equation for PIC method. As we can
see later, the immersed finite element method is one of the most efficient methods to solve
interface partial differential equations with a mesh independent of interface.
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1.1.2 Projection method for solving Navier-Stokes equations

It is well known that the Navier-Stokes equation is highly critical to flow problems. Therefore,
how to solve it numerically leads to a lot of interesting work. One of the popular methods
is the projection method, which was developed by A. J. Chorin first at the end of 1960’s,
see [55, 56, 57, 58]. Since then, people have generalized his idea to develop many kinds of
projection methods, see [22, 23, 120, 138] and references therein.

Consider the following Navier-Stokes equation

ρ(Ut + U · ∇U) = −∇p + ν∆U + F,

−∇ · U = 0,

where U is the velocity, p is the pressure, ρ is the density and ν is the viscosity. Basically,
Chorin’s projection method is an iteration method as follows. First, we set up a partition
0 = t0 < t1 < · · · < tm < · · · of the time with a fixed step size ∆t. Let Un be the
approximation of U at time tn, then the first step is to calculate an intermediate velocity U∗

which satisfies

U∗ − Un

∆t
= −Un · ∇Un +

1

ρ
(ν∆U + F )n.

Then we correct U∗ by the pressure term with

Un+1 − U∗

∆t
= −

∇p

ρ
, (1.5)

where

−∇ · Un+1 = 0. (1.6)

Then by (1.5) and (1.6), we get

∇ · (
1

ρ
∇p) =

∇ · U∗

∆t
.

Finally, we get the iteration method as follows.

U∗ − Un

∆t
= −Un · ∇Un +

1

ρ
(ν∆U + F )n,

∇ · (
1

ρ
∇p) =

∇ · U∗

∆t
,

Un+1 − U∗

∆t
= −

∇p

ρ
.

Obviously, the second step is the most time consuming part of this method. Therefore, an
efficient method for solving the PDE in the second step is crucial for the performance of the
whole method. If there are at least two fluids in the simulation domain separated from each
other, then ρ has jump at the interface of different flows, which leads to the model interface
problem considered in this dissertation.
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1.1.3 Shape/Topology optimization

From our daily experience, we know that the efficiency and reliability of manufactured prod-
ucts depend on geometrical aspects. Therefore, it is not surprising that optimal shape design
problems have attracted the attentions of many mathematicians and engineers. Many shape
optimization problems have been studied for more than 15 years, such as shape optimization
of linearly elastic structures, see [25] and references therein. There are also some quite new
problems, such as topology optimization for fluid problems, see [95] and references therein.

In general, we want to minimize a cost function in an optimization problem. However,
the minimization problem is usually subjected to some partial differential equations which
are similar to our model interface problem. For example, consider the following topology
optimization of heat conduction problems [95]. For the design of an optimal heat-conducting
device, we want to find the conductivity distribution k(x) that produces the least heat when
the amount of high conduction material is limited. Let Ω be the domain. T is the temperature
and f is the volumetric heat source. The cost function is

C =

∫

Ω

∇T · (k∇T ),

subject to

∇ · (k∇T ) + f = 0, in Ω, (1.7)

T = 0, on ΓD,

(k∇T ) · n = 0, on ΓN ,

where ΓD is the Dirichlet boundary, ΓN is the Neumann boundary, n is the unit normal
vector of ΓN . The cost function C represents the amount of the heat to be minimized.
When the problem domain consists of at least two materials, k is discontinuous, then (1.7)
becomes the model interface problem considered in this dissertation.

1.2 Methods for solving interface problems

In this section, we will survey some methods for solving interface problems.

Conventional finite difference (FD) methods [117, 186] and finite element (FE) methods
[12, 34, 54] can be used to solve the model interface problem. However, in order to guarantee
their convergence, they have to use a body-fitting mesh. That is, the mesh must be tailored
to resolve the interface, see Figure 1.3. Otherwise, because of the lack of smoothness of the
exact solution across the interface, these methods may not have optimal convergence rates
or even don’t converge at all [17, 34, 54].

This restriction leads to many drawbacks. For the applications with moving interfaces, the
mesh has to be reformed again and again according to the varying interface, which prevents
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Figure 1.3: The plot on the left shows how elements should be placed on one side of an
interface in a standard FE method. An element not allowed in a standard FE method is
illustrated by the plot on the right.

the conventional finite difference and finite element method from working efficiently. For
large scale problems, the computational expense for reforming the mesh again and again is
formidable. Additionally there are many applications and methods which prefer structured
meshes and work best with Cartesian meshes, such as Particle-In-Cell method for plasma
particle simulation, multigrid, level set method for moving interface/boundary problems,
and construction of super convergent approximations to important quantities. Last but not
least, many efficient solvers and packages, are available for structured meshes, not body-
fitting meshes.

Therefore, many methods have been developed to get rid of this limitation so that interface
problems can be solved with a mesh independent of interface. In finite difference formulation,
we first note the early work of Peskin’s immersed boundary method [174, 175]. Since then,
finite difference or finite volume methods such as the Cartesian grid method [4, 39], embedded
boundary method [119], immersed interface method [93, 136, 137], cut-cell method [123],
matched interface and boundary method [205, 206], etc., have been developed.

In finite element formulation, Babuška et al. [13, 16, 15] developed the generalized finite
element method. Their basic idea is to form the local basis functions in an element by
solving the interface problem locally. The local basis functions in their method can capture
important features of the exact solution and they can even be non-polynomials. Examples
of such methods in this framework are the partition of unity method [14], the extended finite
element methods (X-FEMs) [24, 163, 189], and the Eulerian-Lagrangian localized adjoint
methods [86, 87].

Immersed finite element method also falls into this framework, but it doesn’t solve the inter-
face problem locally to form the local basis functions. Instead, it uses the jump conditions
to form the reference basis functions and then maps them onto the local elements.
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1.3 Organization of the dissertation

In this dissertation, we will discuss the three fundamental aspects for the development of
bilinear immersed finite element(IFE): the construction of the bilinear immersed finite ele-
ment spaces, the implementation of numerical methods based on these new IFE spaces for
interface problems, and the corresponding error estimation. The rest of this dissertation is
organized as follows.

In Chapter 2, we recall the history of immersed finite elements.

In Chapter 3, we recall a bilinear immersed finite element space and present its properties.

In Chapter 4, we prove the optimal approximation capability of a bilinear immersed finite
element space. Some numerical examples are also provided to verify the interpolation error
estimates.

In Chapter 5, we discuss the Galerkin method based on the bilinear immersed finite element
space. Numerical examples show that this method possesses the optimal convergence rates
in both L2 and H1 norms. Convergence of this method is also proved.

In Chapter 6, we apply the bilinear immersed finite element space to the finite volume
element(FVE) method. Optimal convergence rates in L2 and H1 norm are demonstrated
numerically.

In Chapter 7, we introduce an immersed discontinuous Galerkin (DG) method which com-
bines the interior penalty DG method together with a bilinear immersed finite element space.
Numerical examples are provided to illustrate the features of the two methods, including the
optimal convergence rate in energy norm, the effect of local mesh refinement, and the de-
pendence and independence on the penalty constant, etc. The convergence analysis of the
immersed DG method is just a special case of the convergence analysis in Chapter 8.

In Chapter 8, we propose a selective immersed discontinuous Galerkin method. This method
only applies the discontinuous Galerkin formulation wherever necessary, but the standard
Galerkin formulation everywhere else. This method possesses the easy local refinement
feature of DG method while keeping the computational cost as close to that of Galerkin
method as possible. Hence, this new method has greatly alleviated the shortcoming of the
usual DG methods, which is their much larger computational cost than Galerkin method. We
also prove the optimal convergence rate in energy norm for the symmetric selective immersed
DG method with bilinear IFE.

In Chapter 9, we introduce a new bilinear IFE space to deal with the non-homogeneous flux
jump condition based on the bilinear IFE space discussed in Chapter 3. Some numerical
examples are provided.

In Chapter 10, we draw some conclusions for this dissertation and discuss some real world
applications of immersed finite elements. Some future plans are also discussed in this chapter.



Chapter 2

Review for immersed finite
elements(IFE)

In this chapter, we review some representative work for IFE, including the basic idea, con-
struction of different IFE spaces, implementation of different numerical methods based on
these IFE spaces, and the corresponding error analysis.

2.1 Basic idea of IFE

The recently developed immersed finite element (IFE) methods [2, 3, 40, 84, 98, 112, 113,
129, 130, 141, 142, 143, 144, 149, 150, 187, 199] falls into the general framework of Babuška
and J.E. Osborn [16, 15] to adapt finite element methods for interface problems by employing
local basis functions formed according to the interface jump conditions while their meshes
can be independent of the interface. However, IFE methods do not locally solve the interface
problem. The main idea in IFE methods is more similar to that used for the Hsieh-Clough-
Tocher macro C1 element [33] where each local basis function in an element is defined
piecewisely by cubic polynomials on three sub-triangles such that the required continuity
can be satisfied.

In IFE, we can use a mesh independent of interface, such as Cartesian mesh, and allow the
interface to go through the interior of the elements. Therefore, the mesh in an IFE method
consists of interface elements whose interiors are cut through by the interfaces and the rest
called non-interface elements. An IFE method uses standard finite element functions in all
non-interface elements. Special piecewise polynomials satisfying interface jump conditions
are employed only in interface elements. This is the basic idea of IFE.

9
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2.2 Construction of IFE spaces

In 1998, Z. Li [141] introduced an IFE space for a 1D interface problem as follows. Consider

−(β(x)u′)′ + q(x)u(x) = f(x), 0 ≤ x ≤ 1,

u(0) = 0, u(1) = 0,

where

0 = α0 < α1 < α2 = 1,

β = βi in [αi, αi+1), i = 0, 1,

[u]α1
= 0, [βux]α1

= 0.

Here [u]α1
is the jump of function u at α1.

In a uniform partition 0 = x0 < x1 < · · · < xn = 1 of [0, 1] with step size h, assume that the
element [xj , xj+1] has the interface point α1 inside it. Two piecewise linear basis functions
at xj and xj+1 were constructed as follows.

φj(x) =





x− xj−1

h
, xj−1 ≤ x < xj ,

xj − x
D + 1, xj ≤ x < α1,

ρ(xj+1 − x)
D

, α1 ≤ x < xj+1,

0, otherwise,

φj+1(x) =





x− xj

D , xj ≤ x < α1

ρ(x− xj+1)
D + 1, α1 ≤< xj+1,

xj+2 − x
h

, xj+1 ≤ x < xj+2,

0, otherwise,

where

ρ =
β0

β1
,

D = h−
β1 − β0

β1

(xj+1 − α1).

See Figure 2.1 for the graph of the two basis functions.

Remark 2.2.1 We would like to note that these basis functions satisfy the interface jump
conditions. Moreover, for the cases with more interface points, we can use the same way to
construct more basis functions as above.
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xj xj+1

xj xj+1

Figure 2.1: Two 1D linear IFE basis functions

These two functions are used as the global finite element basis at nodes xj and xj+1 while
standard finite element basis are used at other nodes. Then the new finite element space is
the span of all these global nodal basis functions.

Remark 2.2.2 Basically, the above construction falls into the general framework of Babuška
and J.E. Osborn [17, 16] from which we can deduce the construction above.

In the following, we will briefly recall the definitions of the 2D linear IFE space discussed in
[143, 144]. For any subset T of Ω, we let

T s = T ∩ Ωs, s = −,+.

For any function f(x, y) defined in T ⊂ Ω, we can restrict it to T s, s = −,+ to obtain two
functions as

f s(x, y) = f(x, y), if (x, y) ∈ T s, s = −,+.

We use DE to denote the line segment between two points D,E ∈ Ω. Consider a typical
triangular element T ∈ Th. Here, Th, h > 0 is a family of triangular meshes of the solution
domain Ω. Assume that the three vertices of T are Ai, i = 1, 2, 3, with Ai = (xi, yi)

t. If T is
an interface element, then we use D = (x

D
, y

D
)T and E = (x

E
, y

E
)T to denote the interface

points on its edges, see the sketch in Figure 2.2.

Then the 2D linear IFE functions, which satisfy the interface jump conditions, are defined
as follows:

φ(x, y) =





φ−(x, y) = a−x+ b−y + c−, (x, y) ∈ T−,
φ+(x, y) = a+x+ b+y + c+, (x, y) ∈ T+,
φ−(D) = φ+(D), φ−(E) = φ+(E),

β− ∂φ−

∂nDE
= β+ ∂φ+

∂nDE
,

(2.1)
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Γ

A1

A2

A3

D
E

T+

T−

Figure 2.2: A typical triangular interface element.

where nDE is the unit normal vector of the line DE. We let φi(X) be the piecewise linear
function described by (2.1) such that

φi(xj , yj) =

{
1, if i = j,
0, if i 6= j,

for 1 ≤ i, j ≤ 3, and we call them the 2D linear IFE nodal basis functions on an interface
element T . Now we use the mesh Th to define the 2D linear immersed finite element (IFE)
space Sh(Ω). First, for every element T ∈ Th, we let Sh(T ) = span{φi, i = 1, 2, 3}, where
φi, i = 1, 2, 3 are the standard bilinear nodal basis functions for a non-interface element
T ; otherwise, φi, i = 1, 2, 3 are the immersed bilinear basis functions defined above. Then,
we define a continuous piecewise bilinear global nodal basis function φN(x, y) for each node
(xN , yN)t of Th such that φN(xN , yN) = 1 but zero at other nodes, and φN |T ∈ Sh(T ) for any
rectangle T ∈ Th. Finally, we define Sh(Ω) as the span of these global nodal basis functions.
For more details about this space, such as its properties, we refer reader to [143, 144].

In addition to the above two IFE spaces, T. Lin, Y. Lin, R. C. Rogers and L. M. Ryan
[149] developed a bilinear IFE space in 2004. R. Kafafy, T. Lin, Y. Lin and J. Wang [129]
developed a 3D linear IFE space in 2005. B. Camp, T. Lin, Y. Lin and W. W. Sun [40]
developed 1D quadratic IFE space and a special 2D quadratic IFE space in 2006. S. Adjerid
and T. Lin [3] developed 1D IFE spaces with any degree in 2009.

2.3 IFE methods for interface problems

Galerkin method is a natural application of IFEs and all the IFE spaces mentioned above
have been applied to this method. For example, the Galerkin scheme using the 2D linear
IFE space can be described as follows: find uh ∈ Sh,0 satisfying

∑

T∈Th

∫

T

β∇uh · ∇vh dxdy =

∫

Ω

fvh dxdy, ∀ vh ∈ Sh,0,
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where Sh,0(Ω) ⊂ Sh(Ω) consists of functions of Sh(Ω) vanishing on Nh ∩ ∂Ω.

For more details about Galerkin method using IFE spaces, such as the the numerical exam-
ples demonstrating the performance, we refer the reader to see [3, 40, 141, 143, 144, 149, 150].

In addition to Galerkin method, in 1999, R. E. Ewing, Z. Li, T. Lin and Y. Lin [84] applied
2D linear IFE space to finite volume element method. In 2007, S. Adjerid and T. Lin [2]
applied 1D IFE spaces to a discontinuous Galerkin method, which transfer a higher-order
PDE to a system of first-order PDEs. Also, J. Wang, T. Lin and R. Kafafy applied the 3D
linear IFE space to some electromagnetic problems, such as plasma particle simulation and
ion optics modeling, see [130, 151, 152].

2.4 Error estimation of IFE

After we develop an IFE space, it is natural for us to analyze its approximation capability.
For the 1D linear IFE space, Z. Li [141] obtained the interpolation error estimation and the
finite element solution error estimation in 1998. Z. Li, T. Lin, Y. Lin and R. C. Rogers
[143] obtained the IFE interpolation error estimation for the 2D liner IFE space in 2004.
For 1D IFE spaces with any degree, S. Adjerid and T. Lin[3] derived the interpolation error
estimate and the finite element solution error estimate in 2009. We would like to note that
the analysis in 2D and higher dimension is much more difficult than that of 1D case since
the IFE functions are continuous in 1D but discontinuous in higher dimensional cases.

Let h be the step size of a mesh. For the approximation capability of the standard 2D linear
finite element space, we have the following well known theorem, see [178] and references
therein.

Theorem 2.4.1 There exists a constant C independent of mesh such that

‖Ihu− u‖0,Ω ≤ Ch2|u|2,Ω,

|Ihu− u|1,Ω ≤ Ch|u|2,Ω,

for any u ∈ H2(Ω) and h > 0 small enough, where Ihu is the finite element interpolation of
u.

One popular way for the interpolation error estimation is the scaling technique. However,
when we apply this technique to the 2D or 3D IFE spaces, it’s not clear that if the constant
C in the error bound depends on the interface and the optimal order cannot be achieved,
which cause the error estimation to fail. Therefore, multi-point Taylor expansions were used
to estimate the interpolation error of 2D linear IFE space [143]. The following is the final
conclusion from [143].
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Theorem 2.4.2 There exists a constant C independent of interface and mesh such that

‖Ihu− u‖0,Ω ≤ Ch2 ‖u‖2,Ω ,

|Ihu− u|1,Ω ≤ Ch ‖u‖2,Ω ,

for any u ∈ PH2
int(Ω) and h > 0 small enough, where Ihu is the immersed finite element

interpolation of u. Here

PH2
int(Ω) =

{
u ∈ C(Ω), u|Ωs ∈ H2(Ωs), s = −,+,

[
β
∂u

∂nΓ

]
= 0 on Γ ∩ Ω

}
,

‖Ihu− u‖2
0,Ω = ‖Ihu− u‖2

0,Ω+ + ‖Ihu− u‖2
0,Ω− ,

|Ihu− u|21,Ω = |Ihu− u|21,Ω+ + |Ihu− u|21,Ω−.

We can see that the interpolation error of 2D linear IFE space has the same accuracy order
as that of the standard 2D linear finite element space.

For the 1D pth degree IFE spaces, S. Adjerid and T. Lin [3] obtained error estimates for the
interpolation error and IFE solution error as follow:

Consider

−(β(x)u′)′ + q(x)u(x) = f(x), x ∈ I = (a, b),

u(a) = u0, u(b) = u1,

where

β =

{
β−, x ∈ I− = (a, α),
β+, x ∈ I+ = [α, b),

[u]α = 0,

[βux]α = 0.

Here [u]α is the jump of function u at α.

Let

H̃p+1(I) =

{
u ∈ C(I), u|Is ∈ Hp+1(Ωs), s = −,+,

[
β
∂ju

∂xj

]

α

= 0, j = 1, 2, · · · , p

}
.

Then from [3], we have the following two theorems.

Theorem 2.4.3 There exists a constant C independent of α such that for all u ∈ H̃p+1(Ω),
we have

‖Ipu− u‖0 ≤ C
4p

(p− 1)!
hp+1 |u|p+1 ,

|Ipu− u|1 ≤ C
4p

(p− 1)!
hp |u|p+1 .

Here Ipu is the pth degree IFE interpolation of u.
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Theorem 2.4.4 There exists a constant C independent of α such that the pth degree IFE
solution uh satisfies

‖uh − u‖0 ≤ C
4p

(p− 1)!
hp+1 |u|p+1 ,

|uh − u|1 ≤ C
4p

(p− 1)!
hp |u|p+1 .



Chapter 3

Bilinear immersed finite element

From this chapter, we start to discuss the bilinear immersed finite element which was origi-
nally introduced in [149]. We will first recall the definition of bilinear immersed finite element
basis functions and slightly modify it. Then we use them to construct a bilinear immersed
finite element space and describe its basic properties [110, 111, 112, 113, 149].

3.1 A bilinear IFE space

In this section, we will recall the construction of a bilinear immersed finite element space
from [149] and slightly modify it. Without loss of generality, we assume in the discussion
from now on that the elements in a rectangular mesh have the following features when the
mesh size is small enough:

(H1): An interface Γ will not intersect an edge of any element at more than two points unless
this edge is part of Γ.

(H2): If Γ intersects the boundary of a rectangle at two points, then these two points must
be on different edges of this rectangle.

Now we recall the following definitions. For any subset Λ of Ω, we let

Λs = Λ ∩ Ωs, s = −,+.

For any function f(x, y) defined in Λ ⊂ Ω, we can restrict it to Λs, s = −,+ to obtain two
functions as

f s(x, y) = f(x, y), if (x, y) ∈ Λs, s = −,+.

We use DE to denote the line segment between two points D,E ∈ Ω. Assume Th, h > 0 is
a family of rectangular meshes of the solution domain Ω that can be a union of rectangles.

16
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The mesh consists of interface elements whose interiors are cut through by the interfaces
and the rest called non-interface elements. We use standard bilinear finite element functions
in all the non-interface elements. Special piecewise bilinear polynomials satisfying interface
jump conditions are employed only in interface elements as follows [112, 149].

We consider a typical rectangle element T ∈ Th. Assume that the four vertices of T are
Ai, i = 1, 2, 3, 4, with Ai = (xi, yi)

t. If T is an interface element, then we use D = (x
D
, y

D
)T

and E = (x
E
, y

E
)T to denote the interface points on its edges. When the mesh is fine enough,

there are two types of rectangular interface elements. Type I are those for which the interface
intersects with two of its adjacent edges; Type II are those for which the interface intersects
with two of its opposite edges, see the sketch in Figure 3.1.

Γ

Γ

A1A1 A2A2

A4 A4A3 A3D

D

EE

T+

T+T−T−

Figure 3.1: Two typical interface elements. The element on the left is of Type I while the
one on the right is of Type II.

Our main concern is the finite element functions on an interface rectangle T ∈ Th. For our
interface problems, the interface Γ divides an interface element T into two subsets T− and
T+, we naturally can try to form a piecewise function by two bilinear polynomials defined
in T− and T+, respectively. The challenge is obviously how to put them together so that
the jump conditions across the interface are maintained.

Note that each bilinear polynomial has four freedoms (coefficients). The values of the finite
element function at the vertices of T provide four restrictions. The normal derivative jump
condition on DE provides another. Then we can have three more restrictions by requiring

the continuity of the finite element function at interface points D,E and D + E
2 . Intuitively,

these eight conditions can yield the desired piecewise bilinear polynomial in an interface
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rectangle. This idea leads us to consider the bilinear IFE functions defined as follows:

φ(x, y) =





φ−(x, y) = a−x+ b−y + c− + d−xy, (x, y) ∈ T−,
φ+(x, y) = a+x+ b+y + c+ + d+xy, (x, y) ∈ T+,
φ−(D) = φ+(D), φ−(E) = φ+(E),

φ−(D + E
2 ) = φ+(D + E

2 ),
∫

DE

(
β− ∂φ−

∂nDE
− β+ ∂φ+

∂nDE

)
ds = 0,

(3.1)

where nDE is the unit vector perpendicular to the line DE. This is the definition of bilinear
IFE functions introduced in [112, 149].

However, when DE is vertical or horizontal, φ−(D) = φ+(D) and φ−(E) = φ+(E) automat-

ically imply φ−(D + E
2 ) = φ+(D + E

2 ), hence the bilinear IFE functions cannot be uniquely
defined. This was observed by M. L. Ryan and T. Lin before, but they showed that the
above definition can still uniquely determine the bilinear IFE functions in a limit sense.

Here, we directly propose one more condition to replace φ−(D + E
2 ) = φ+(D + E

2 ) so that
the piecewise bilinear IFE functions can be uniquely determined.

In fact, for general cases in which DE is neither vertical nor horizontal, we can show the
following lemma, which indicates that the mixed 2nd derivative of a bilinear IFE function is
continuous.

Lemma 3.1.1

d− = d+, (3.2)

Proof. Plugging φ−(D) = φ+(D) and φ−(E) = φ+(E) into φ−(D + E
2 ) = φ+(D + E

2 ), we
finish the proof.

Also, in Chapter 4, d− = d+ will be one of the key tools for the interpolation error estimation.

Therefore, we use d− = d+ to replace φ−(D + E
2 ) = φ+(D + E

2 ) to define the bilinear IFE
functions as follows:

φ(x, y) =





φ−(x, y) = a−x+ b−y + c− + d−xy, (x, y) ∈ T−,
φ+(x, y) = a+x+ b+y + c+ + d+xy, (x, y) ∈ T+,
φ−(D) = φ+(D), φ−(E) = φ+(E), d− = d+,
∫

DE

(
β− ∂φ−

∂nDE
− β+ ∂φ+

∂nDE

)
ds = 0.

(3.3)

In the above discussion, we use the original curve Γ to separate the two pieces T− and T+.
Actually, we can also use DE, the linear approximation to Γ, to separate them. Suppose the
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line DE separates T into two subelements: T̃− and T̃+. Here T̃− is the polygon contained
in T sharing at least one vertex of T− inside Ω− and the other subelement is T̃+. Then we
can define the bilinear IFE functions as follows:

φ(x, y) =





φ−(x, y) = a−x+ b−y + c− + d−xy, (x, y) ∈ T̃−,

φ+(x, y) = a+x+ b+y + c+ + d+xy, (x, y) ∈ T̃+,
φ−(D) = φ+(D), φ−(E) = φ+(E), d− = d+,
∫

DE

(
β− ∂φ−

∂nDE
− β+ ∂φ+

∂nDE

)
ds = 0.

(3.4)

In both (3.3) and (3.4), we obtain the same formulas φ−(x, y) and φ+(x, y). The only
difference is the domain of the piecewise function. The two ways have their own advantages,
see Section 3.3 for more detail. We would like to note that we now prefer to use DE to
separate the two pieces even though we use Γ in [112, 113, 149].

We let φi(X) be the piecewise linear function described by (3.4) such that

φi(xj , yj) =

{
1, if i = j,
0, if i 6= j,

for 1 ≤ i, j ≤ 4, and we call them the bilinear IFE nodal basis functions on an interface
element T .

Now we use the mesh Th to define the bilinear immersed finite element (IFE) space Sh(Ω).
First, for every element T ∈ Th, we let Sh(T ) = span{φi, i = 1, 2, 3, 4}, where φi, i = 1, 2, 3, 4
are the standard bilinear nodal basis functions for a non-interface element T ; otherwise, φi,
i = 1, 2, 3, 4 are the immersed bilinear basis functions defined above. Then, we define a
continuous piecewise bilinear global nodal basis function φN(x, y) for each node (xN , yN)t of
Th such that φN(xN , yN) = 1 but zero at other nodes, and φN |T ∈ Sh(T ) for any rectangle
T ∈ Th. Finally, we define Sh(Ω) as the span of these global nodal basis functions.

3.2 The existence and uniqueness of the bilinear IFE

basis functions

In this section, we discuss the existence and uniqueness of the bilinear IFE basis functions.
They were briefly proved in [149] and we will show more details in this section. As usual, we
only need to define the nodal bilinear IFE basis functions φ̂i(X̂), i = 1, 2, 3, 4 in the reference
element T̂ with vertices Âi = (x̂i, ŷi)

T , i = 1, 2, 3, 4:

Â1 =

(
0
0

)
, Â2 =

(
1
0

)
, Â3 =

(
1
1

)
, Â4 =

(
0
1

)
.
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The interface element T is related to the reference element by the usual affine mapping:

X = F (X̂) = B +MX̂, X =

(
x
y

)
, X̂ =

(
x̂
ŷ

)
. (3.5)

This affine mapping and φ̂i(X̂), i = 1, 2, 3, 4 can be used to defined φi(X), i = 1, 2, 3, 4
through the standard procedure.

Assume that under the affine mapping Γ ∩ T becomes Γ̂, D becomes D̂, E becomes Ê, and

D̂Ê separates T̂ into ˆ̃T+ and ˆ̃T−. Accordingly, there are two types of reference interface
elements, see the sketch in Figure 3.2.

Γ̂

Γ̂

Â1Â1 Â2Â2

Â4 Â4Â3 Â3D̂

D̂

ÊÊ

ˆ̃T+

ˆ̃T+ˆ̃T−ˆ̃T−

Figure 3.2: Two reference interface elements. The element on the left is of Type I while the
one on the right is of Type II.

By choosing proper B and M , i.e., a proper affine mapping, we can assume

D̂ =

(
0

b̂

)
, Ê =

(
â
0

)

for Type I reference element, and

D̂ =

(
b̂
1

)
, Ê =

(
â
0

)

for Type II reference element. Obviously, we can assume 0 < â, b̂ ≤ 1 for Type I reference
element, and 0 ≤ â, b̂ ≤ 1 for Type II reference element.

Assume φ̂i(X̂), i = 1, 2, 3, 4 are the bilinear IFE nodal basis on the reference element T̂ such
that

φ̂i(x̂, ŷ) =

{
â−i + b̂−i x̂+ ĉ−i ŷ + d̂−i x̂ŷ, if (x̂, ŷ) ∈ ˆ̃T−,

â+
i + b̂+i x̂+ ĉ+i ŷ + d̂+

i x̂ŷ, if (x̂, ŷ) ∈ ˆ̃T+.
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Then φ̂i(X̂), i = 1, 2, 3, 4 should satisfy




φ̂i(Âj) =

{
1, if i = j,
0, if i 6= j,

φ̂−
i (D̂) = φ̂+

i (D̂), φ̂−
i (Ê) = φ̂+

i (Ê), d̂−i = d̂+
i

∫
D̂Ê

(
β+ ∂φ̂−

i
∂n

D̂Ê

− β− ∂φ̂+
i

∂n
D̂Ê

)
ds = 0.

(3.6)

Basis functions in Type I elements: For Type I element, we first note that the nodal
value constraints at Â1 imply that

â−i =

{
1, i = 1,

0, i = 2, 3, 4.

Also, the nodal value constraints at Âi, i = 2, 3, 4 allow us to express b̂+i , ĉ
+
i and d̂+

i as linear
functions of â+

i . Then, the four conditions across the interface lead to a linear system about

b̂−i , ĉ
−
i , d̂

−
i , â

+
i . Solving this linear system, we can see that

b̂−i =
Pi,1(â, b̂)

W
, ĉ−i =

Pi,2(â, b̂)

W
, d̂−i =

Pi,3(â, b̂)

W
, â+

i =
Pi,4(â, b̂)

W
,

W =





[
âb̂2(2 − b̂) + â2b̂(2 − â)

]

+R
[
2b̂2(1 − â) + 2â2(1 − b̂) + â3b̂+ âb̂3

]
, if R = β−/β+ ≥ 1,

R
[
âb̂2(2 − b̂) + â2b̂(2 − â)

]

+
[
2b̂2(1 − â) + 2â2(1 − b̂) + â3b̂+ âb̂3

]
, if R = β+/β− ≥ 1,

where Pi,j(â, b̂), j = 1, 2, 3, 4 are polynomials of â and b̂. Moreover, Pi,j(â, b̂), j = 1, 2, 3, 4 are
linear combinations of the following terms:

â2, b̂2, âb̂, â3, b̂3, â2b̂, âb̂2, â3b̂, âb̂3. (3.7)

In fact, the whole 8 × 8 linear system arising from (3.6) for the Type I reference interface
element is the following.

A




â−i
b̂−i
ĉ−i
d̂−i
â+

i

b̂+i
ĉ+i
d̂+

i




= bi,
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where

A =




1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 0 1 0

1 0 b̂ 0 −1 0 −b̂ 0
1 â 0 0 −1 −â 0 0
0 0 0 1 0 0 0 −1

0 Rb̂ Râ Râ
2 + b̂2

2 0 −b̂ −â − â
2 + b̂2

2




,

and

b1 =




1
0
0
0
0
0
0
0




,b2 =




0
1
0
0
0
0
0
0




,b3 =




0
0
1
0
0
0
0
0




,b4 =




0
0
0
1
0
0
0
0




.

Here, R = β−/β+. Direct calculations give us

det(A) = −
1

2
â3b̂+

1

2
Râ3b̂+ â2b̂− Râ2b̂+Râ2 −

1

2
âb̂3 +

1

2
Râb̂3 + âb̂2 −Râb̂2 +Rb̂2

= â2b̂(1 −
1

2
â) + âb̂2(1 −

1

2
b̂) +Râ2(1 − b̂) +Rb̂2(1 − â) +

1

2
Râ3b̂+

1

2
Râb̂3

> 0,

which shows that the matrix A is non-singular for all â, b̂ ∈ [0, 1]. Solving this linear system,
we have

â−i =





1, i = 1,
0, i = 2,
0, i = 3,
0, i = 4,

b̂−i =





−(−2Rb̂â +Râ2b̂+Rb̂3 + 2b̂2 + 2âb̂− â2b̂− b̂3 + 2Râ2)
W , i = 1,

−(Râ2b̂−Rb̂3 − 2b̂2 − â2b̂+ b̂3 − 2Râ2)
W , i = 2,

b̂(â2 +Rb̂2â +Râ3 + b̂2 − Râ2 − Rb̂2 − â3 − âb̂2)
W

, i = 3,

−b̂(2Râ− 3Râ2 − Rb̂2 − 2â+ 3â2 + b̂2 +Râ3 +Rb̂2â− â3 − b̂2â)
W , i = 4,
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ĉ−i =





−(−2Rb̂â+Râ3 +Rb̂2â + 2âb̂+ 2â2 − â3 − b̂2â+ 2Rb̂2)
W

, i = 1,

−â(2Rb̂− Râ2 − 3Rb̂2 − 2b̂+ â2 + 3b̂2 +Râ2b̂+Rb̂3 − â2b̂− b̂3)
W , i = 2,

â(Râ2b̂+Rb̂3 + â2 + b̂2 − Râ2 −Rb̂2 − â2b̂− b̂3)
W , i = 3,

Râ3 −Rb̂2â + 2â2 − â3 + b̂2â+ 2Rb̂2
W , i = 4,

d̂−i =





2R(â2 + b̂2)
W , i = 1,

2(−Râ2 −Rb̂2 +Râ2b̂− â2b̂)
W , i = 2,

−2(−Rb̂2 +Rb̂2â− Râ2 +Râ2b̂− b̂2â− â2b̂)
W , i = 3,

−2(Rb̂2 + b̂2â− Rb̂2â+Râ2)
W , i = 4,

â+
i =





2R(â2 + b̂2)
W , i = 1,

âb(−2Rb̂+Râ2 +Rb̂2 + 2b̂− â2 − b̂2)
W , i = 2,

−âb̂(−b̂2 +Râ2 +Rb̂2 − â2)
W , i = 3,

âb̂(−2Râ +Râ2 +Rb̂2 + 2â− â2 − b̂2)
W , i = 4,

b̂+i =





−2R(â2 + b̂2)
W , i = 1,

−2(−Râ2 −Rb̂2 +Râ2b̂− â2b̂)
W , i = 2,

âb̂(−b̂2 +Râ2 +Rb̂2 − â2)
W , i = 3,

−âb̂(−2Râ +Râ2 +Rb̂2 + 2â− â2 − b̂2)
W , i = 4,

ĉ+i =





−2R(â2 + b̂2)
W , i = 1,

−âb̂(−2Rb̂+Râ2 +Rb̂2 + 2b̂− â2 − b̂2)
W , i = 2,

âb̂(−b̂2 +Râ2 +Rb̂2 − â2)
W , i = 3,

2(Rb̂2 + b̂2â− Rb̂2â+Râ2)
W , i = 4,
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d̂+
i =





2R(â2 + b̂2)
W

, i = 1,

2(−Râ2 −Rb̂2 +Râ2b̂− a2b̂)
W , i = 2,

−2(−Rb̂2 +Rb̂2â− Râ2 +Râ2b̂− b̂2â− â2b̂)
W , i = 3,

−2(Rb̂2 + b2â− Rb̂2â+Râ2)
W , i = 4.

Basis functions in Type II elements: Similarly, the nodal value constraints require that

â−i =

{
1, i = 1,

0, i = 2, 3, 4.
ĉ−i =





−1, i = 1,

0, i = 2, 3,

1, i = 4.

Also, the nodal value constraints imply that b̂+i , ĉ
+
i are linear functions of â+

i and d̂+
i . Then,

the conditions across the interface lead to a linear system about b̂−i , d̂
−
i , â

+
i and d̂+

i . Solving
this linear system, we have

b̂−i =
Pi,1(â, b̂)

W
, ĉ−i =

Pi,2(â, b̂)

W
, d̂−i =

Pi,3(â, b̂)

W
, â+

i =
Pi,4(â, b̂)

W
,

W =





if R = β−/β+ ≥ 1 :[
â(1 − â2) + b̂(1 − b̂2) + 2(â− b̂)2 + â2b̂+ âb̂2

]
+R

[
(2 − â− b̂) + (â + b̂)(â− b̂)2

]
,

if R = β+/β− ≥ 1 :

R
[
â(1 − â2) + b̂(1 − b̂2) + 2(â− b̂)2 + â2b̂+ âb̂2

]
+
[
(2 − â− b̂) + (â + b̂)(â− b̂)2

]
,

where Pi,j(â, b̂), j = 1, 2, 3, 4 are polynomials of â and b̂. Moreover, Pi,j(â, b̂), j = 1, 2, 3, 4 are
linear combinations of the following terms:

1, â, b̂, â2, b̂2, âb̂, â3, b̂3, â2b̂, âb̂2, â3b̂, âb̂3. (3.8)

In fact, the whole 8 × 8 linear system arising from (3.6) for the Type II reference interface
element is the following.

A




â−i
b̂−i
ĉ−i
d̂−i
â+

i

b̂+i
ĉ+i
d̂+

i




= bi,
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where

A =




1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 1 1
1 0 1 0 0 0 0 0

1 b̂ 1 b̂ −1 −b̂ −1 −b̂
1 â 0 0 −1 −â 0 0
0 0 0 1 0 0 0 −1

0 R R(â− b̂) R1 + â2 − b̂2
2 0 −1 −(â− b̂) −1 + â2 − b̂2

2




,

and

b1 =




1
0
0
0
0
0
0
0




,b2 =




0
1
0
0
0
0
0
0




,b3 =




0
0
1
0
0
0
0
0




,b4 =




0
0
0
1
0
0
0
0




.

Here, R = β−/β+. Direct calculations give us

det(A) = −
1

2
â3 +

1

2
Râ3 −

1

2
Râ2b̂+

1

2
â2b̂+ â2 − 2âb̂−

1

2
Râ+

1

2
â−

1

2
Râb̂2 +

1

2
âb̂2

+
1

2
Rb̂3 +R−

1

2
b̂3 + b̂2 −

1

2
Rb̂+

1

2
b̂

=
1

2
â(1 − â2) +

1

2
b̂(1 − b̂2) + (â− b̂)2 +

1

2
â2b̂+

1

2
âb̂2 +

1

2
R(2 − â− b̂)

+
1

2
R(â− b̂)2(â+ b̂)

> 0,

which shows that the matrix A is non-singular for all â, b̂ ∈ [0, 1]. Solving this linear system,
we have

â−i =





1, i = 1,
0, i = 2,
0, i = 3,
0, i = 4,
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b̂−i =





b̂Râ2 − 3Râ2 − b̂â2 + â2 + 2âRb̂+ 2Râ− 2â+ 2âb̂− R
W

+−Rb̂+Rb̂2 − Rb̂3 + b̂3 − 3b̂2 + b̂− 1
W , i = 1,

−(−Râ2 + b̂Râ2 − b̂â2 − â2 + 4âb̂+Rb̂2 − Rb̂3 +Rb̂− R + b̂3 − b̂− 3b̂2 − 1)
W , i = 2,

−â3 +Râ3 − Râ2 + â2 +Râ− âRb̂2 − â + âb̂2 −R +Rb̂2 + 1 − b̂2
W , i = 3,

−(−â3 +Râ3 − 3Râ2 + 3â2 + 3Râ+ 2âRb̂− âRb̂2 − 3â− 2âb̂+ âb̂2 − R)
W

+
−(Rb̂2 − 2Rb̂+ 1 − b̂2 + 2b̂)

W , i = 4,

ĉ−i =





−1, i = 1,
0, i = 2,
0, i = 3,
1, i = 4,

d̂−i =





2(Râ2 − 2âRb̂+R− Rb̂+Rb̂2 + b̂)
W , i = 1,

−2(â2 − 2âb̂+R− Rb̂+ b̂2 + b̂)
W , i = 2,

2(â2 −Râ + â− 2âb̂+R + b̂2)
W , i = 3,

−2(Râ2 − Râ− 2âRb̂+ â +Rb̂2 +R)
W , i = 4,

â+
i =





−(−b̂ + 2âRb̂− 2Râ2 +Rb̂− 2b̂2 − 2R− b̂â2 −Rb̂3 + 2âb̂+ b̂3 + b̂Râ2)
W , i = 1,

â(1 −R +Râ2 + b̂2 − â2 −Rb̂2)
W , i = 2,

−â(−1 +R +Râ2 + b̂2 − â2 − Rb̂2)
W , i = 3,

â(−1 + 2Rb̂+R− 2Râ + 2â+Râ2 − 2b̂+ b̂2 − â2 − Rb̂2)
W , i = 4,

b̂+i =





−b̂+ 2âRb̂− 2Râ2 +Rb̂− 2b̂2 − 2R− b̂â2 − Rb̂3 + 2âb̂+ b̂3 + b̂Râ2

W , i = 1,

−(−b̂ +Rb̂− 2â2 − 2b̂2 − 2R− b̂â2 −Rb̂3 + 4âb̂+ b̂3 + b̂Râ2)
W , i = 2,

â(−1 +R +Râ2 + b̂2 − â2 − Rb̂2)
W , i = 3,

−â(−1 + 2Rb̂+R− 2Râ+ 2â+Râ2 − 2b̂+ b̂2 − â2 − Rb̂2)
W , i = 4,
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ĉ+i =





−2(Râ2 − 2âRb̂+R−Rb̂+Rb̂2 + b̂)
W

, i = 1,

−(Râ3 − â3 − b̂Râ2 + b̂â2 − âRb̂2 − Râ+ â + âb̂2 +Rb̂3 +Rb̂− b̂3 − b̂)
W , i = 2,

Râ− â +Râ3 − â3 − b̂Râ2 + b̂â2 − aRb̂2 + âb̂2 +Rb̂3 −Rb̂− b̂3 + b̂
W , i = 3,

2(Râ2 −Râ− 2âRb̂+ â +Rb̂2 +R)
W , i = 4,

d̂+
i =





2(Râ2 − 2âRb̂+R− Rb̂+Rb̂2 + b̂)
W , i = 1,

−2(â2 − 2âb̂+R− Rb̂+ b̂2 + b̂)
W , i = 2,

2(â2 −Râ + â− 2âb̂+R + b̂2)
W

, i = 3,

−2(Râ2 − Râ− 2âRb̂+ â +Rb̂2 +R)
W , i = 4.

3.3 Some comments on immersed finite element spaces

The word “immersed” is used for this kind of finite element space just to emphasize the fact
that the mesh can be independent of interface such that the interface can be immersed inside
elements of this mesh. Figure 3.3 illustrates the difference between a bilinear IFE local nodal
basis function and a standard bilinear local nodal basis function.

0

0.5

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

0.5

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

Figure 3.3: The plot on the left is for one of the bilinear IFE local nodal basis functions, the
plot on the right is the corresponding regular bilinear local nodal basis function on the same
element.

In the following we discuss the difference between the two ways to separate the two pieces
which are mentioned in Section 3.1. See Figure 3.4 for two typical bilinear IFE basis functions
of Type I and Type II whose two pieces are separated by DE and see Figure 3.5 for two
typical bilinear IFE basis functions of Type I and Type II whose two pieces are separated
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by the original interface Γ. Note that the basis functions defined by Γ are discontinuous
inside the element, but the basis functions defined by DE are continuous inside the element.
Computationally we always use DE to locate the two pieces since it’s more convenient and
doesn’t decrease the accuracy order. Theoretically, the two different ways to locate the two
pieces of an IFE function φ have their own advantages. It is more natural to use Γ to
define the two pieces since the original problem domain is separated by the Γ. However,
the definition of φ using DE gives us the continuity of the basis function and its flux inside
the whole element, which are important properties to be used in the convergence analysis in
Chapter 5 and Chapter 8. The error estimation for the bilinear IFE interpolation in Chapter
4 can go through for both of the two kinds of definitions. Therefore, we now prefer to use
DE to separate the two pieces even though we use Γ in [112, 113]. We would like to note
that for all the other 2D or 3D IFE spaces, this issue can be handled similarly.
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Figure 3.4: The plot on the left is a bilinear IFE basis on a Type I interface element and the
plot on the right is a bilinear IFE basis on a Type II interface element. Both of them use
DE to separate the two pieces.
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Figure 3.5: The plot on the left is a typical bilinear IFE basis on a Type I interface element
and the plot on the right is a typical bilinear IFE basis on a Type II interface element. Both
of them use the original interface curve to separate the two pieces.
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Finally we would like to point out the following fact. If a node XN is a vertex of at least one
interface element, then its corresponding global nodal basis function φN ∈ Sh(Ω) is always
discontinuous on the elements edges cut by the interface, no matter which way mentioned
above is chosen to separate the two pieces of the immersed basis functions on interface ele-
ments. Therefore, immersed finite element spaces are non-conforming finite element spaces.
Figure 3.6 provides a sketch of the surface of a global bilinear IFE basis function over its
support, from which we can see its discontinuity on the edge cut by the interface. Figure
3.7 illustrates the difference between a typical bilinear IFE global nodal basis function and
a standard bilinear global nodal basis functions.
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Figure 3.6: The plot on the left is the surface of one global bilinear IFE basis over its support,
the plot on the right shows the elements forming the support and the interface.

3.4 Basic properties of the bilinear IFE space

In this section, we present basic properties of the bilinear IFE space discussed in [110, 111,
112, 113, 149]. It is easy to see that Sh(Ω) has the following properties [112, 149]:

• The IFE space Sh(Ω) has the same number of nodal basis functions as that formed by
the usual bilinear polynomials on the same partition of Ω.

• For a mesh Th fine enough, most of its rectangles are non-interface rectangles, and
most of the nodal basis functions of the IFE space Sh(Ω) are just the usual bilinear
nodal basis functions except for few nodes in the vicinity of the interface Γ.

• For any φ ∈ Sh(Ω), we have

φ|Ω\Ω′ ∈ H1(Ω\Ω′),

where Ω′ is the union of interface rectangles.
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Figure 3.7: The plot on the left is for a bilinear IFE global nodal basis function, the plot on
the right is the corresponding regular bilinear global nodal basis function.

In the discussion from now on, we denote any v(x, y) ∈ Sh(T ) as follows

v(x, y) =

{
v−(x, y) = a− + b−x+ c−y + d−xy, (x, y) ∈ T̃−,

v+(x, y) = a+ + b+x+ c+y + d+xy, (x, y) ∈ T̃+.
(3.9)

The results in the following two lemmas are related to the continuity of functions in Sh(Ω)
across the interface. First, the following lemma shows that every function v ∈ Sh(T ) where
T is an interface element is continuous across DE.

Lemma 3.4.1 For any v ∈ Sh(T ) written as (3.9), we have

v− ≡ v+ on DE. (3.10)

Proof. Note that any v ∈ Sh(T ) is continuous at D, E and D+E
2

. Since each piece of v is a

bilinear polynomial , then v is continuous on DE. Hence v− ≡ v+ on DE.
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Lemma 3.4.2 Assume T ∈ Th is an interface element.

1. If Γ ∩ T is a line segment, then

φ−|Γ∩T = φ+|Γ∩T , ∀φ ∈ Sh(Ω).

2. Every function φ ∈ Sh(T ) satisfies the flux jump condition on Γ ∩ T exactly in the
following weak sense:

∫

Γ∩T

(β−∇φ− − β+∇φ+) · n
Γ
ds = 0.

Proof. Property 1 follows directly from (3.10). For any φ ∈ Sh(T ), it is obvious that
φs ∈ H2(T s), s = −,+. Also, because φ is a piecewise bilinear polynomial satisfying (3.1),
Green’s formula leads to

∫

Γ∩T

(β−∇φ− − β+∇φ+) · n
Γ
ds = −

∫

DE

(β−∇φ− − β+∇φ+) · nDEds = 0.

As stated in the following theorem, the local basis functions in this bilinear IFE space has
the property of partition of unity.

Theorem 3.4.1 Let T ∈ Th be an interface element and let φi(X) ∈ Sh(T ), i = 1, 2, 3, 4 be
the local bilinear IFE basis functions defined above. Then,

φ1(X) + φ2(X) + φ3(X) + φ4(X) = 1, ∀X ∈ T.

Proof. We only need to verify this for the corresponding basis functions on the reference
element T̂ . For either Type I or Type II element, by direct calculations, we can see that

4∑

i=1

âs
i = 1,

4∑

i=1

b̂si = 0,
4∑

i=1

ĉsi = 0,
4∑

i=1

d̂s
i = 0, s = ±.

These imply that the partition of unity holds for the basis functions on the reference element
and the result of this theorem follows.

The following lemma indicates that the bilinear IFE functions are consistent with the stan-
dard bilinear finite element functions.
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Lemma 3.4.3 Assume that T ∈ Th is and interface element and φ ∈ Sh(T ). If β− = β+,
then

φ− = φ+

and φ becomes a bilinear polynomial.

Proof. By direct calculations we can see that the result is true for φ̂i, i = 1, 2, 3, 4 and then
for φi, i = 1, 2, 3, 4. Since φ ∈ Sh(T ) is a linear combination of φi, i = 1, 2, 3, 4, we know
that the result of this lemma is also true for every φ ∈ Sh(T ).

In the discussion below, we need another assumption on the mesh Th.

(H3): The family of partitions Th with h > 0 is regular. (See Definition 3.4.1 of [178] for
regular partitions)

We use C to represent a generic constant whose value might be different from line to line.
Unless otherwise specified, all the generic constants C in the presentation below are inde-
pendent of interface and mesh. The following theorem establishes bounds for the bilinear
IFE basis functions.

Theorem 3.4.2 Let T ∈ Th be an interface element and let φi(X) ∈ Sh(T ), i = 1, 2, 3, 4, be
the local bilinear IFE basis functions defined above. Then, there exists constants C such that

|φi(X)| ≤ C, i = 1, 2, 3, 4, (3.11)

‖∇φi(X)‖ ≤ Ch−1, i = 1, 2, 3, 4, (3.12)∣∣∣∣
∂2φi(X)

∂x∂y

∣∣∣∣ ≤ Ch−2, i = 1, 2, 3, 4. (3.13)

Proof. Without loss of generality, we assume that R = β−/β+ ≥ 1. Similar arguments hold
for R = β+/β− ≥ 1.

First, we show that the coefficients âs
i , b̂

s
i , ĉ

s
i , d̂

s
i , s = ±, i = 1, 2, 3, 4 of φ̂i are bounded. Note

that these coefficients are linear combinations of â
k b̂l
W with the values of k and l listed in (3.7)

for Type I interface element and (3.8) for Type II interface element. For Type I interface
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element, since 0 ≤ â, b̂ ≤ 1, we have

â2

W
≤





â2

R2â2(1 − b̂)
≤ 1
R ≤ 1, if 0 ≤ b̂ ≤ 1/2,

â2

â2b̂(2 − â)
≤ 2, if 1/2 ≤ b̂ ≤ 1,

b̂2

W
≤





b̂2

R2b̂2(1 − â)
≤ 1
R ≤ 1, if 0 ≤ â ≤ 1/2,

b̂2

âb̂2(2 − â)
≤ 2, if 1/2 ≤ â ≤ 1,

âb̂

W
≤





âb̂
â2b̂(2 − â)

= 1
â(2 − â)

≤ 2, if 1/2 ≤ â ≤ 1,

âb̂
âb̂2(2 − b̂)

= 1
b̂(2 − b̂)

≤ 2, if 1/2 ≤ b̂ ≤ 1,

âb̂
R
[
2b̂2(1 − â) + 2â2(1 − b̂)

] ≤ ab
R(â2 + b̂2)

≤ 1
2R ≤ 1

2 , if 0 ≤ â, b̂ ≤ 1/2,

â3

W
≤





â3

R2â2(1 − b̂)
≤ â
R ≤ 1

R ≤ 1, if 0 ≤ b̂ ≤ 1/2,

â3

â2b̂(2 − â)
= â
b̂(2 − â)

≤ 2â ≤ 2, if 1/2 ≤ b̂ ≤ 1,

b̂3

W
≤





b̂3

R2b̂2(1 − â)
≤ b̂
R ≤ 1

R ≤ 1, if 0 ≤ â ≤ 1/2,

b̂3

âb̂2(2 − b̂)
= b̂
â(2 − b̂)

≤ 2b̂ ≤ 2, if 1/2 ≤ â ≤ 1,

â2b̂

W
≤

â2b̂

â2b̂(2 − â)
=

1

(2 − â)
≤ 1,

âb̂2

W
≤

âb̂2

âb̂2(2 − b̂)
=

1

(2 − b̂)
≤ 1,

â3b̂

W
≤

â3b̂

Râ3b̂
=

1

R
≤ 1,

âb̂3

W
≤

âb̂3

Râb̂3
=

1

R
≤ 1.

These properties imply that there exists a constant C such that 0 ≤

∣∣∣∣ â
kb̂l
W

∣∣∣∣ ≤ C for the

values of k and l listed in (3.7).

For Type II interface element, by the following direct calculations, we can see that there

exists a constant C independent of interface and partition such that 0 ≤

∣∣∣∣ â
k b̂l
W

∣∣∣∣ ≤ C for the
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values of k and l listed in (3.8) since 0 ≤ â, b̂ ≤ 1.

1

W
≤





1
â2b̂

≤ 8, if 1/2 ≤ â, b̂ ≤ 1,

1
R(2 − â− b̂)

≤ 2
R ≤ 2, otherwise.

These inequalities lead to the boundedness of âi, b̂i, ĉi, d̂i, i = 1, 2, 3, 4, which imply the
boundedness of φ̂i, i = 1, 2, 3, 4. Then (3.11) follows because the affine transformation (3.5)
is used to define φi, i = 1, 2, 3, 4 from φ̂i.

Since the partition is regular, we have

∥∥M−T
∥∥ ≤ Ch−1. (3.14)

Then, (3.12) follows from

∇φi = M−T∇φ̂i,

and the boundedness of the coefficients of ∇φ̂i.

As for (3.13), we first let

m11 =
∂x̂

∂x
, ,m12 =

∂ŷ

∂x
, ,m21 =

∂x̂

∂y
, ,m22 =

∂ŷ

∂y
,

then

M−T =

(
m11 m12

m21 m22
.

)

Hence by
∂2φ̂i(X)
∂x̂2 = 0 and

∂2φ̂i(X)
∂ŷ2 = 0, we get

∂2φi(X)

∂x∂y
=

∂

∂y

(
∂φi(X)

∂x

)

=
∂

∂y

(
m11

∂φ̂i(X)

∂x̂
+m12

∂φ̂i(X)

∂ŷ

)

= m11
∂2φ̂i(X)

∂x̂2

∂x̂

∂y
+m11

∂2φ̂i(X)

∂x̂∂ŷ

∂ŷ

∂y
+m12

∂2φ̂i(X)

∂ŷ∂x̂

∂x̂

∂y
+m12

∂2φ̂i(X)

∂ŷ2

∂ŷ

∂y

=
∂2φ̂i(X̂)

∂x̂∂ŷ
(m12m21 +m11m22).

By (3.14), we have

|mij| ≤ Ch−1, i, j = 1, 2.
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Hence

|m12m21 +m11m22| ≤ Ch−2.

Note that
∂2φ̂i(X̂)
∂x̂∂ŷ

is a bounded constant d̂−(= d̂+), then

∣∣∣∣
∂2φi(X)

∂x∂y

∣∣∣∣ ≤ Ch−2.

For any function u defined on a rectangular element T = �A1A2A3A4, we let û be the
corresponding function on T̂ induced by u with

û(X̂) = u(F (X̂)),

where F : T̂ −→ T is the affine mapping defined by (3.5) in section 3.2. Let JF be the
Jacobian of F . Without loss of generality, we assume that A1 ∈ T̃−, A2, A3, A4 ∈ T̃+ for a
Type I rectangular interface element, A1, A4 ∈ T̃−, A2, A3 ∈ T̃+ for a Type II rectangular
interface element for the following lemma.

Lemma 3.4.4 On each interface element T , we have following results:

1. If T = �A1A2A3A4 is a rectangular interface element of Type I, then every ũh ∈ Sh(T )
can be uniquely represented as follows:

ũh(X) =





ũ−h (X) = ũh(A1)ψ1(X) +
4∑

i=2

wiψi(X), X ∈ T̃−,

ũ+
h (X) = w1ψ1(X) +

4∑
i=2

ũh(Ai)ψi(X), X ∈ T̃+,

(3.15)

2. If T = �A1A2A3A4 is a rectangular interface element of Type II, then for every ũh ∈
Sh(T ) can be uniquely represented as follows:

ũh(X) =





ũ−h (X) = ũh(A1)ψ1(X) +
3∑

i=2

wiψi(X) + ũh(A4)ψ4(X), X ∈ T̃−,

ũ+
h (X) = w1ψ1(X) +

3∑
i=2

ũh(Ai)ψi(X) + w4ψ4(X), X ∈ T̃+,

(3.16)
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3. There exist constants C1 and C2 such that

C1

∥∥~u+
∥∥ ≤

∥∥~u−
∥∥ ≤ C2

∥∥~u+
∥∥ , (3.17)

where

~u− =




ũh(A1)
w2

w3

w4


 , ~u+ =




w1

ũh(A2)
ũh(A3)
ũh(A4)


 .

for rectangular interface elements of Type I and

~u− =




ũh(A1)
w2

w3

ũh(A4)


 , ~u+ =




w1

ũh(A2)
ũh(A3)
w4


 .

for rectangular interface elements of Type II.

4. There exist constants C3 and C4 such that

C3 ‖~w‖ ≤ ‖~u‖ ≤ C4 ‖~w‖ , (3.18)

where

~u =




ũh(A1)
ũh(A2)
ũh(A3)
ũh(A4)


 , ~w =




w1

w2

w3

w4


 .

Proof. Without loss of generality, we only need to discuss on the reference interface element.
For a local interface element [0, h]× [0, h], if we define â = a

h
and b̂ = b

h
, then we can get the

same conclusions. First, we discuss rectangular interface element of Type I. Applying jump
conditions specified in (3.3) to ˆ̃uh in (3.15), we obtain a linear system about coefficients in
(3.15) which can be written as

Al ~w = Ar~u, ~w = (w1, w2, w3, w4)
t, ~u = (ũh(A1), ũh(A2), ũh(A3), ũh(A4))

t.

where

Al =




1 − b̂ 0 0 −b̂
1 − â −â 0 0

1 1 −1 1

−2â− 2b̂+ â2 + b̂2 R(−2b̂+ â2 + b̂2) −R(â2 + b̂2) R(−2â+ â2 + b̂2)


 ,

Ar =




1 − b̂ 0 0 −b̂
1 − â −â 0 0

1 1 −1 1

R(−2â− 2b̂+ â2 + b̂2) −2b̂+ â2 + b̂2 −(â2 + b̂2) −2â+ â2 + b̂2


 .
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Here R = β−/β+. Direct calculations give us

det(Al) = −2Râ2 + 2Râ2b̂− 2Rb̂2 + 2Râb̂2 −Râ3b̂−Râb̂3 − 2â2b̂− 2âb̂2 + â3b̂+ âb̂3

= −2Râ2(1 − b̂) − 2Rb̂2(1 − â) − Râ3b̂− Râb̂3 − â2b̂(2 − â) − âb̂2(2 − b̂)

< 0,

which shows that the matrix Al is non-singular for all â, b̂ ∈ [0, 1]. Hence ~C can be uniquely
determined by ~u and this leads to the unique representation of ũh ∈ Sh(T ) in (3.15).

Rearrange the linear system above we can have

A−~u
− = A+~u

+.

where

A− =




1 − b̂ 0 0 b̂
1 − â â 0 0

1 −1 1 −1

R(−2â− 2b̂+ â2 + b̂2) −R(−2b̂+ â2 + b̂2) R(â2 + b̂2) −R(−2â + â2 + b̂2)


 ,

A+ =




1 − b̂ 0 0 b̂
1 − â â 0 0

1 −1 1 −1

−2â− 2b̂+ â2 + b̂2 −(−2b̂+ â2 + b̂2) â2 + b̂2 −(−2â + â2 + b̂2)


 .

By direct calculations, we can show that A−1
− and A−1

+ exist such that the entries of A−1
− A+

and A−1
+ A− are either polynomials of â and b̂ or linear combination of functions in following

forms:

âra b̂rb

â2 + b̂2
, ra ≥ 0, rb ≥ 0, ra + rb ≥ 2.

It can be shown that all of these functions of â and b̂ are bounded by a constant independent
of â and b̂. Therefore, there exits a constant C such that

∥∥A−1
− A+

∥∥ ≤ C,
∥∥A−1

+ A−

∥∥ ≤

C, ∀â, b̂ ∈ [0, 1] and this leads to (3.17) for rectangular interface elements of Type I.

Similar arguments can be applied to obtain results for Type II rectangular and triangular
interface elements. For rectangular interface elements of Type II, applying jump conditions
specified in (3.3) to ˆ̃uh in (3.16), we obtain a linear system about coefficients in (3.16) which
can be written as

Al ~w = Ar~u, ~C = (w1, w2, w3, w4)
t, ~u = (ũh(A1), ũh(A2), ũh(A3), ũh(A4))

t.
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where

Al =




0 0 −b̂ 1 − b̂
1 − â −â 0 0

1 1 −1 −1

â2 − b̂2 − 1 − 2â+ 2b̂ R(â2 − b̂2 − 1) R(b̂2 − â2 − 1) b̂2 − â2 − 1 + 2â− 2b̂


 ,

Ar =




0 0 −b̂ 1 − b̂
1 − â −â 0 0

1 1 −1 −1

R(â2 − b̂2 − 1 − 2â+ 2b̂) â2 − b̂2 − 1 b̂2 − â2 − 1 R(b̂2 − â2 − 1 + 2â− 2b̂)


 .

Here R = β−/β+. Direct calculations give us

det(Al) = −Râ + â− Râb̂2 − Ra2b̂−Rb̂+ 2R + b̂+ 2â2 + 2b̂2 − b̂3 +Rb̂3 + â2b̂− 4âb̂

+âb̂2 +Râ3 − â3

= â(1 − â2) + b̂(1 − b̂2) + 2(â− b̂)2 + â2b̂+ âb̂2 +R(1 − â) +R(1 − b̂)

+R(â− b̂)2(â + b̂)

> 0,

which shows that the matrix Al is non-singular for all â, b̂ ∈ [0, 1]. Hence ~C can be uniquely
determined by ~u and this leads to the unique representation of ũh ∈ Sh(T ) in (3.16).

Rearrange the linear system above we can have

A−~u
− = A+~u

+.

where

A− =




0 0 b̂ 1 − b̂
1 − â â 0 0

1 −1 1 −1

R(â2 − b̂2 − 1 − 2â + 2b̂) R(1 − â2 + b̂2) R(1 + â2 − b̂2) R(b̂2 − â2 − 1 + 2â− 2b̂)


 ,

A+ =




0 0 b̂ 1 − b̂
1 − â â 0 0

1 −1 1 −1

â2 − b̂2 − 1 − 2â + 2b̂ 1 − â2 + b̂2 1 + â2 − b̂2 b̂2 − â2 − 1 + 2â− 2b̂


 .

By direct calculations, we can show that A−1
− and A−1

+ exist such that the entries of A−1
− A+

and A−1
+ A− are either polynomials of â and b̂ or linear combination of functions in following

forms:

âra b̂rb

(â− b̂)2 + 1
, ra ≥ 0, rb ≥ 0, ra + rb ≥ 0.
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It can be shown that all of these functions of â and b̂ are bounded by a constant independent
of â and b̂. Therefore, there exits a constant C such that

∥∥A−1
− A+

∥∥ ≤ C,
∥∥A−1

+ A−

∥∥ ≤

C, ∀â, b̂ ∈ [0, 1] and this leads to (3.17) for rectangular interface elements of Type II.

Finally similar arguments can be used to prove (3.18).

The results in the next lemma indicate that the bilinear IFE functions also satisfy certain
inverse inequalities. For an interface element T of Type I, we let T1/2 ⊂ T be the half of T
that is formed by a diagonal line not intersecting with DE. For an interface element T of
Type II, we can first divide T into 4 small rectangles by connecting the midpoints of opposite
edges of T . Note that DE can intersect with three of these small rectangles at most. Then,
we let T1/4 be one of these small rectangles not intersecting with DE. Also, for each element
T , we let hx and hy be the edge lengthes in x-direction and y-direction, respectively, and we
let h = max{hx, hy}. In the following discussion, we will use the notation T1/t with t = 2 for
a Type I interface element and t = 4 for a Type II interface element. It’s easy to see that
T1/t ⊂ T̃ s, s = + or −.

Lemma 3.4.5 There exists a constant C such that for all v ∈ Sh(T ), we have




‖v‖∞,T̃ s ≤ C
h
‖v‖0,T ,

‖vx‖∞,T̃ s ≤ C
h
‖vx‖0,T , ‖vy‖∞,T̃ s ≤

C
h
‖vy‖0,T ,

(3.19)

|v|1,T ≥ Ch|v|2,T , (3.20)

|v|0,T ≥ Ch2|v|2,T , (3.21)

|v|0,T ≥ Ch|v|1,T s, (3.22)

provided that T̃ s ⊃ T1/t, s = + or −, t = 2, 4.

Proof. For each v ∈ Sh(T ), its restriction on T̃ s is just a bilinear polynomial, we denote it
by vs. Let vs

ext be the extension of vs to the whole interface element T . Then, we can obtain
the first inequality in (3.19) as follows:

‖v‖∞,T̃ s = ‖vs‖∞,T̃ s =
∥∥v̂s
∥∥
∞,T̂ s ≤

∥∥∥v̂s
ext

∥∥∥
∞,T̂

≤ C
∥∥∥v̂s

ext

∥∥∥
0,T̂1/t

= C
∥∥v̂s
∥∥

0,T̂1/t

≤ C |JF |
−1/2 ‖vs‖0,T1/t

≤ Ch−1 ‖v‖0,T1/t
≤ Ch−1 ‖v‖0,T .

The other inequalities in (3.19) can be shown similarly.

∀v ∈ Sh(T ), we have

v(x, y) =

{
v−(x, y) = a−x+ b−y + c− + d−xy, (x, y) ∈ T̃−,

v+(x, y) = a+x+ b+y + c+ + d+xy, (x, y) ∈ T̃+,
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By Lemma 3.4.1, we have d− = d+. Therefore,

|v|22,T = ‖vxx‖
2
0,T + ‖vyy‖

2
0,T + ‖vxy‖

2
0,T = ‖vxy‖

2
0,T

=

∫

T̃−

(d−)2dxdy +

∫

T̃+

(d+)2dxdy =

∫

T

(d−)2dxdy

= (d−)2hxhy,

and

|v|22,T1/t
= ‖vxx‖

2
0,T1/t

+ ‖vyy‖
2
0,T1/t

+ ‖vxy‖
2
0,T1/t

= ‖vxy‖
2
0,T1/t

=

∫

T1/t

(d−)2dxdy

=
1

t
(d−)2hxhy.

Then, using the standard inverse inequality, we have

|v|21,T ≥ |v|21,T1/t
≥ Ch2|v|22,T1/t

= Ch21

t
(d−)2hxhy

= Ch2|v|22,T ,

which leads to (3.20). With the same idea, we can prove (3.21) and (3.22) as follows.

|v|20,T ≥ |v|20,T1/t
≥ Ch4|v|22,T1/t

= Ch4 1

t
(d−)2hxhy = Ch4|v|22,T ,

|v|20,T ≥ |vs|20,T1/t
≥ Ch2|vs|21,T1/t

≥ Ch2|vs
ext|

2
1,T ≥ Ch2|v|2

1,T̃ s.



Chapter 4

Approximation capability of the
bilinear IFE space

In this chapter we will analyze the approximation capability of the bilinear IFE space dis-
cussed in Chapter 3 by estimating the finite element interpolation error and present some
numerical examples to verify the theoretical conclusion [111, 112]. One popular way for the
interpolation error estimation is the scaling technique. However, when we apply this tech-
nique to the 2D or 3D IFE spaces, it’s not clear that if the constant C in the error bound
depends on the interface and the optimal order cannot be concluded, which cause the error
estimation to fail. Therefore, we follow the idea in [143] to estimate the interpolation error
of bilinear IFE space by using multi-point Taylor expansions.

4.1 Error estimation for the bilinear IFE interpolation

Our goal in this section is to estimate the bilinear IFE interpolation error, which is a critical
step in error estimation of a finite element (or finite volume element) method. We will
basically follow the framework developed in [143] which deals with a triangular IFE space.
However, the local bilinear IFE basis functions have a second degree term involving xy which
leads to new difficulties demanding different techniques to analyze the interpolation error.
In addition, we note that, topologically, there are two types of interface elements for a mesh
formed by rectangles in contrast with a triangular mesh in which there is basically only
one type of interface element, and the two types of interface elements need to be discussed
separately. We focus on the bilinear IFE interpolation of a function from a suitable Sobolev
space, and will derive error estimates in the corresponding Sobolev norms.

In [112], we analyze the interpolation error for the bilinear IFE space defined by the functions
in (3.1). In this dissertation, we choose the functions in (3.4) to construct the bilinear IFE
space, so we’ll analyze the interpolation error with similar arguments.

41
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4.1.1 Some preliminaries

For any subset Λ ⊂ Ω whose interior is cut through by the interface Γ, we let

PH2
int(Λ) =

{
u ∈ C(Λ), u|Λs ∈ H2(Λs), s = −,+,

[
β
∂u

∂nΓ

]
= 0 on Γ ∩ Λ

}
,

PCm
int(Λ) =

{
u ∈ C(Λ), u|Λs ∈ Cm(Λs), s = −,+,

[
β
∂u

∂nΓ

]
= 0 on Γ ∩ Λ

}
,

Obviously, we have PC2
int(Λ) ⊂ PH2

int(Λ). For any function u ∈ PH2
int(Λ), we define

‖u‖2
s,Λ = ‖u‖2

s,Λ+ + ‖u‖2
s,Λ−, s = 0, 1, 2,

|u|2s,Λ = |u|2s,Λ+ + |u|2s,Λ−, s = 0, 1, 2.

Consider an interface element T ∈ Th. For any function wh ∈ Sh(T ) and u ∈ PH2
int(T ), we

define

‖wh + u‖2
s,T = ‖wh + u‖2

s,T̃+∩T+ + ‖wh + u‖2
s,T̃+∩T−

+ ‖wh + u‖2
s,T̃−∩T+ + ‖wh + u‖2

s,T̃−∩T−
,

|wh + u|2s,T = |wh + u|2
s,T̃+∩T+ + |wh + u|2

s,T̃+∩T−
+ |wh + u|2

s,T̃−∩T+ + |wh + u|2
s,T̃−∩T−

,

s = 0, 1, 2.

Here note that one of T̃+ ∩ T− and T̃− ∩ T+ might be empty. In that case we can remove
the norm and semi-norm on the empty set from the above definitions.

In this chapter, we assume that the interface curve Γ and the mesh Th satisfy the following
assumptions:

(H4): The interface curve Γ is defined by a piecewise C2 function, and the mesh Th is formed
such that the subset of Γ in every interface element is C2.

(H5): The interface Γ is smooth enough so that PC3
int(T ) is dense in PH2

int(T ) for every
interface element T of Th.

We note that (H5) will hold if Γ is sufficiently smooth, see the results of [161, 201] on the
transmission problems.

For a function u ∈ PH2
int(T ), T ∈ Th, we let Ih,Tu ∈ Sh(T ) be its interpolation such that

Ih,Tu(X) = u(X) when X is a vertex of T . For an element T with vertices A1, A2, A3, A4,
we have

Ih,Tu(X) = u(A1)φ1(X) + u(A2)φ2(X) + u(A3)φ3(X) + u(A4)φ4(X).

Accordingly, for a function u ∈ PH2
int(Ω), we let Ihu ∈ Sh(Ω) be its interpolation such that

Ihu|T = Ih,T (u|T ) for any T ∈ Th.
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The purpose of this section is to derive error estimates for the interpolation of u ∈ PH2
int(Ω),

and we will carry out the discussion piecewisely for each element T in the mesh Th. Recall
that the error estimate of Ihu in any non-interface element T is well known, see for example
[178]:

‖Ihu− u‖0,T + h ‖Ihu− u‖1,T ≤ Ch2 ‖u‖2,T .

Therefore, in the discussion from now on, we focus on interface elements of Th.

We call a point X = (x, y)T in an interface element T an obscure point if one of the four
line segments connecting X and the vertices of T intersects the interface more than once.
Without loss of generality, we discuss interface elements that do not contain any obscure
point because the arguments used below can be readily extended to handle the interface
elements with obscure points.

Let ρ̃ =
β+

β− , ρ =
β−

β+ . For any point Ã ∈ Γ, let Ã⊥ be the orthogonal projection of Ã onto

DE. Now let us recall the following three lemmas from [143].

Lemma 4.1.1 Assume n(Ã) = (nx(Ã), ny(Ã))T is the unit normal vector of Γ at Ã,
n(DE) = (nx, ny)

T is the unit normal vector of DE, and XDE is a point on DE. Then, for
every function u(x, y) satisfying the interface jump conditions (1.3) and (1.4), we have

∇u+(Ã) = N−(Ã)∇u−(Ã), N−(Ã) =

(
ny(Ã)2 + ρnx(Ã)2 (ρ− 1)nx(Ã)ny(Ã)

(ρ− 1)nx(Ã)ny(Ã) nx(Ã)2 + ρny(Ã)2

)
, (4.1)

∇u−(Ã) = N+(Ã)∇u+(Ã), N+(Ã) =

(
ny(Ã)2 + ρ̃nx(Ã)2 (ρ̃− 1)nx(Ã)ny(Ã)

(ρ̃− 1)nx(Ã)ny(Ã) nx(Ã)2 + ρ̃ny(Ã)2

)
, (4.2)

and for every v ∈ Sh(T ) we have

∇v+(XDE) = N−
DE

∇v−(XDE) , N−
DE

=

(
n2

y + ρn2
x (ρ− 1)nxny

(ρ− 1)nxny n2
x + ρn2

y

)
, (4.3)

∇v−(XDE) = N+
DE

∇v+(XDE) , N+
DE

=

(
n2

y + ρ̃n2
x (ρ̃− 1)nxny

(ρ̃− 1)nxny n2
x + ρ̃n2

y

)
. (4.4)

Proof. We only carry out the proof for (4.1). The proof for the other three conclusions
is similar. Because of (1.3), we have u+(x, y) − u−(x, y) = 0 on Γ. Assume Γ can be
parametrized as follows:

Γ :

{
x = x(t),
y = y(t),
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then u+(x(t), y(t))−u−(x(t), y(t)) = 0. Therefore, we have 0 = u+
x x

′(t)+u+
y y

′(t)−u−x x
′(t)−

u−y y
′(t). Let ~T (t) =

(
x′(t)
y′(t)

)
, then ~T (t) is tangent to Γ. Assume ~T (t) = ~T at Ã, then

~T · n(Ã) = 0. Therefore, we get ~T =

(
−ny(Ã)

nx(Ã)

)
. Then

0 = −u+
x (Ã)ny(Ã) + u+

y (Ã)nx(Ã) + u−x (Ã)ny(Ã) − u−y (Ã)nx(Ã). (4.5)

Because of (1.4), we have

0 = β+ ∂u+

∂n(Ã)
− β− ∂u−

∂n(Ã)

= β+∇u+(Ã) · n(Ã) − β−∇u−(Ã) · n(Ã)

= β+u+
x (Ã)nx(Ã) + β+u+

y (Ã)ny(Ã) − β−u−x (Ã)nx(Ã) − β−u−y (Ã)ny(Ã). (4.6)

Solve (4.5) and (4.6) for u+
x (Ã) and u+

y (Ã), then we get (4.1).

Since Γ∩T is a C2 curve, when the mesh Th is fine enough, we can introduce a local coordinate
system centered at point D with one axis in the direction of DE. For any point (x, y)T , let
(ξ, η) be its coordinates in this local coordinate system where ξ-axis is in the direction of
DE. Then we have

(
x
y

)
=

(
xD

yD

)
+

(
cos(θDE) − sin(θDE)
sin(θDE) cos(θDE)

)(
ξ
η

)
, (4.7)

where (xD, yD)T is the coordinates of point D and θDE is the angle between DE and the x
axis. As in [91], we have the following Lemma.

Lemma 4.1.2 Let ξ̄ be the length of DE, then Γ has the following equation in this local
system:

η = φ(ξ), ξ ∈ [0, ξ̄],

with

|φ(ξ)| ≤ Ch2, (4.8)

|φ′(ξ)| ≤ Ch. (4.9)
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Proof. Note that Γ passes both D and E, whose local coordinates are (0, 0) and (ξ̄, 0)
separately. Therefore, in the local coordinate system, we have φ(0) = φ(ξ̄) = 0 and φ ∈ C2.
By using Mean Value Theorem, there exits a ξ1 ∈ (0, ξ̄) such that φ′(ξ1) = 0. Then

φ′(ξ) = φ′(ξ1) +

∫ ξ

ξ1

φ′′(s) ds =

∫ ξ

ξ1

φ′′(s) ds , ∀ξ ∈ (0, ξ̄).

Because φ ∈ C2 implies φ′′ is bounded in [0, ξ̄], we get

|φ′(ξ)| ≤

∣∣∣∣
∫ ξ

ξ1

φ′′(s) ds

∣∣∣∣ ≤ C |ξ − ξ1| ≤ Ch.

By Taylor expansion, ∀ξ ∈ (0, ξ̄) there exists ξ2 ∈ (0, ξ) such that

φ(ξ) = φ(0) + ξφ′(ξ2) = ξφ′(ξ2).

Then

|φ(ξ)| ≤ |ξφ′(ξ2)| ≤ Ch2.

From now on, if necessary, for any point P , we will use

(
xP

yP

)
and

(
ξP
ηP

)

to denote its coordinates in the x− y and ξ − η systems, respectively.

Lemma 4.1.3 There exist constants C > 0 such that for any point Ã ∈ Γ, we have

‖Ã− Ã⊥‖ ≤ Ch2, (4.10)

‖N s
DE

−N s(Ã)‖ ≤ Ch, s = −,+. (4.11)

Proof. The proof is the same as the proof of Lemma 3.1 in [143]. We just repeat it here. We
only need to prove these in the local coordinate system for one type of vector norm because
the transformation (4.7) preserves the vector length and all the finite dimensional vector

norms are equivalent to each other. In the local system, ∀Ã ∈ Γ, there exists ξ̃ ∈ (0, ξ̄) such
that

Ã =

(
ξ̃

φ(ξ̃)

)
, Ã⊥ =

(
ξ̃
0

)
.
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Hence (4.10) is just the consequence of (4.8). Also, we have

n(DE) =

(
0
1

)
,n(Ã) =

1√
1 +

(
φ′(ξ̃)

)2

(
−φ′(ξ̃)

1

)
.

Then, by (4.9), we have

∥∥∥n(DE) − n(Ã)
∥∥∥ =

∣∣∣∣∣∣∣∣

φ′(ξ̃)√
1 +

(
φ′(ξ̃)

)2

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
1 −

1√
1 +

(
φ′(ξ̃)

)2

∣∣∣∣∣∣∣∣

≤
∣∣∣φ′(ξ̃)

∣∣∣ +

∣∣∣∣∣∣∣∣

√
1 +

(
φ′(ξ̃)

)2

− 1
√

1 +
(
φ′(ξ̃)

)2

∣∣∣∣∣∣∣∣

≤
∣∣∣φ′(ξ̃)

∣∣∣ +

∣∣∣∣∣∣∣∣∣∣

(
φ′(ξ̃)

)2

√
1 +

(
φ′(ξ̃)

)2
(√

1 +
(
φ′(ξ̃)

)2

+ 1

)

∣∣∣∣∣∣∣∣∣∣

≤
∣∣∣φ′(ξ̃)

∣∣∣ +
∣∣∣∣
(
φ′(ξ̃)

)2
∣∣∣∣

≤ Ch,

which together with definition of N s
DE

and N s(Ã), s = −,+, lead to (4.11).

The following lemma gives the straight forward Taylor expansion of a bilinear function.

Lemma 4.1.4 If f(x, y) = a+ bx+ cy + dxy,X = (x, y), Z = (xz, yz), then

f(Z) = f(X) + ∇f(X) · (Z −X) + d(xz − x)(yz − y).

Proof.

∇f(X) · (Z −X) = (bxz − bx+ cyz − cy) + d(yxz − yx+ xyz − xy)

= (a+ bxz + cyz + dxzyz) − (a+ bx+ cy + dxy)

+dxy − dxzyz + d(yxz − yx+ xyz − xy)

= f(xz, yz) − f(x, y) + d(yxz + xyz − xy − xzyz)

= f(Z) − f(X) − d(xz − x)(yz − y).

Then f(Z) = f(X) + ∇f(X) · (Z −X) + d(xz − x)(yz − y).
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Now we separately discuss the IFE interpolation error estimates for the two types of interface
elements, i.e, Type I elements and Type II elements.

4.1.2 Interpolation error on a Type I interface element

In this section, we will discuss the bilinear IFE interpolation error on a Type I interface
element. Without loss of generality, we assume T ∈ Th is a Type I interface element with
vertices Ai = (xi, yi), i = 1, 2, 3, 4, such that A1 ∈ T+ and Ai ∈ T−, i = 2, 3, 4, see Figure
4.1.

We start with the estimation on T̃− ∩ T−. Consider a point X = (x, y)T ∈ T̃− ∩ T− and
assume that line segments XAi, i = 2, 3, 4 do not intersect with the interface and DE, while
line segment XA1 meets Γ at Ã1 (see Figure 4.1) with

Ã1 = t̃A1 + (1 − t̃)X = (x̃1, ỹ1)
T (4.12)

for a certain t̃. Note that Ã⊥
1 is the orthogonal projection of Ã1 ∈ Γ onto DE (see Figure

4.1).

Γ
X

A1 A2

A3A4

D

E

T+

T−

Ã1

Ã⊥
1

Figure 4.1: An interface rectangle element with no obscure point. A point X ∈ T̃− ∩ T− is
connected to the four vertices by line segments in a Type I interface element

In all the discussion from now on, for a given point X = (x, y)T , we let Xs = (y, x)T .

∀X = (x, y)T ∈ T−, A = (xA, yA)T ∈ T+, we let Ã = (x̃, ỹ)T be the intersection point of Γ
and AX.

The lemma below establishes an expansion of a bilinear IFE function across the interface.
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Lemma 4.1.5 Assume that v ∈ Sh(T ), X = (x, y)T ∈ T̃−, A = (xA, yA)T ∈ T̃+. Then

v(A) = v(X) + ∇v(X) · (A−X) + (N−
DE

− I)∇v(X) · (A− Ã)

+(N−
DE

− I)∇v(X) · (Ã−XDE) + d−N−
DE

(Xs
DE

−Xs) · (A−XDE)

+d−(xA − x̄)(yA − ȳ) + d−(x̄− x)(ȳ − y),

where XDE = (x̄, ȳ)T is an arbitrary point on DE.

Proof. By Lemma 4.1.4, Lemma 3.4.1 and (4.3), we have

v(A) = v+(A)

= v+(XDE) + ∇v+(XDE) · (A−XDE) + d+(xA − x̄)(yA − ȳ)

= v−(XDE) +N−
DE

∇v−(XDE) · (A−XDE) + d−(xA − x̄)(yA − ȳ)

= v−(X) + ∇v−(X) · (XDE −X) + d−(x̄− x)(ȳ − y)

+N−
DE

∇v−(XDE) · (A−XDE) + d−(xA − x̄)(yA − ȳ)

= v−(X) + ∇v−(X) · (A−X) + (N−
DE

− I)∇v−(X) · (A−XDE)

+N−
DE

[
∇v−(XDE) −∇v−(X)

]
· (A−XDE)

+d−(xA − x̄)(yA − ȳ) + d−(x̄− x)(ȳ − y).

Because

∇v−(XDE) =

(
b− + d−ȳ
c− + d−x̄

)
,∇v−(X) =

(
b− + d−y
c− + d−x

)
,

we have ∇v−(XDE) −∇v−(X) = d−(Xs
DE

−Xs). Hence,

v(A) = v−(X) + ∇v−(X) · (A−X) + (N−
DE

− I)∇v−(X) · (A−XDE) +

N−
DE
d−(Xs

DE
−Xs) · (A−XDE) + d−(xA − x̄)(yA − ȳ) + d−(x̄− x)(ȳ − y)

= v(X) + ∇v(X) · (A−X) + (N−
DE

− I)∇v(X) · (A− Ã)

+(N−
DE

− I)∇v(X) · (Ã−XDE) + d−N−
DE

(Xs
DE

−Xs) · (A−XDE)

+d−(xA − x̄)(yA − ȳ) + d−(x̄− x)(ȳ − y).

Now we prove the following two lemmas which will be used to prove the expansion of the
interpolation error.
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Lemma 4.1.6 Assume that v ∈ Sh(T ), X = (x, y)T ∈ T̃−. Then we have

∇v(X) ·
4∑

i=1

(Ai −X)φi(X)

= −(N−

DE
− I)∇v(X) · (A1 − Ã1)φ1(X) − (N−

DE
− I)∇v(X) · (Ã1 −XDE)φ1(X)

−d−
[
N−

DE
(Xs

DE
−Xs) · (A1 −XDE)φ1(X) + (x1 − x̄)(y1 − ȳ)φ1(X)

+(x̄− x)(ȳ − y)φ1(X) +

4∑

i=2

[
(xi − x)(yi − y)φi(X)

]]
.

Proof. By using Lemma 4.1.4 and Lemma 4.1.5, we can get

v(Ai) = v(X) + ∇v(X) · (Ai −X) + d−(xi − x)(yi − y), i = 2, 3, 4,

v(A1) = v(X) + ∇v(X) · (A1 −X) + (N−
DE

− I)∇v(X) · (A1 − Ã1)

+(N−
DE

− I)∇v(X) · (Ã1 −XDE) + d−N−
DE

(Xs
DE

−Xs) · (A1 −XDE)

+d−(x1 − x̄)(y1 − ȳ) + d−(x̄− x1)(ȳ − y1).

Because v ∈ Sh(T ),

v(X) = Ih,Tv(X)

=
4∑

i=1

v(Ai)φi(X)

= v(X)
4∑

i=1

φi(X) + ∇v(X) ·
4∑

i=1

(Ai −X)φi(X)

+(N−

DE
− I)∇v(X) · (A1 − Ã1)φ1(X) + (N−

DE
− I)∇v(X) · (Ã1 −XDE)φ1(X)

+d−
[
N−

DE
(Xs

DE
−Xs) · (A1 −XDE)φ1(X) + (x1 − x̄)(y1 − ȳ)φ1(X)

+(x̄− x)(ȳ − y)φ1(X) +

4∑

i=2

(xi − x)(yi − y)φi(X)
]
,

which leads to the result of this lemma because of Theorem 3.4.1.

Lemma 4.1.7 Given a two-dimensional vector q, a point X ∈ T̃− and two real numbers

r, d−, then there exists a function v ∈ Sh(T ) such that ∇v(X) = q, v(X) = r,
∂2v−(X)
∂x∂y

= d−
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and

q ·
4∑

i=1

(Ai −X)φi(X)

= −(N−

DE
− I)q · (A1 − Ã1)φ1(X) − (N−

DE
− I)q · (Ã1 −XDE)φ1(X)

−d−
[
N−

DE
(Xs

DE
−Xs) · (A1 −XDE)φ1(X) + (x1 − x̄)(y1 − ȳ)φ1(X)

+(x̄− x)(ȳ − y)φ1(X) +

4∑

i=2

(xi − x)(yi − y)φi(X)
]
, (4.13)

where XDE is an arbitrary point on DE.

Proof. Let v(Y ) be a piecewise bilinear function in term of Y = (x, y) as follows.

v(x, y) =

{
v−(x, y) = a− + b−x+ c−y + d−xy, (x, y) ∈ T̃−,

v+(x, y) = a+ + b+x+ c+y + d+xy, (x, y) ∈ T̃+.

First, ∇v(X) = q, v(X) = r,
∂2v−(X)
∂x∂y

= d− uniquely determine v−(Y ). Then the interface

conditions
∫

DE

(
β+ ∂v+

∂nDE

− β− ∂v−

∂nDE

)
ds = 0,

v−(D) = v+(D), v−(E) = v+(E), and d− = d+ uniquely determine v+(Y ). These conditions
also imply that v(Y ) is a function in the local bilinear IFE space Sh(T ). The proof is finished
by replacing ∇v(X) by q in Lemma 4.1.6.

We can now derive an expansion for the bilinear IFE interpolation error at any point X ∈
T̃− ∩ T− of a Type I interface element T .
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Theorem 4.1.1 For any u ∈ PC2
int(T ) and X = (x, y)T ∈ T̃− ∩ T−, we have

Ih,Tu(X) − u(X)

= (N−(Ã1) −N−
DE

)∇u(X) · (A1 − Ã1)φ1(X) − (N−
DE

− I)∇u(X) · (Ã1 −XDE)φ1(X)

−
∂2u(X)

∂x∂y

[
N−

DE
(Xs

DE
−Xs) · (A1 −XDE)φ1(X) + (x1 − x̄)(y1 − ȳ)φ1(X)

+(x̄− x)(ȳ − y)φ1(X) +

4∑

i=2

(xi − x)(yi − y)φi(X)
]

+(N−(Ã1) − I)

∫ 1

0

d[∇u(tÃ1 + (1 − t)X)]

dt
· (A1 − Ã1) dt φ1(X)

+

∫ t̃

0

(1 − t)
d2u(tA1 + (1 − t)X)

dt2
dt φ1(X) +

∫ 1

t̃

(1 − t)
d2u(tA1 + (1 − t)X)

dt2
dt φ1(X)

+
4∑

i=2

∫ 1

0

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt φi(X). (4.14)

where XDE is an arbitrary point on DE.

Proof. Since t 7→ u(tAi + (1 − t)X)), i = 2, 3, 4 are C2 functions in terms of t, using
integration by parts, we have

u(Ai) = u(X) +

∫ 1

0

d u(tAi + (1 − t)X)

dt
dt

= u(X) −

∫ 1

0

d u(tAi + (1 − t)X)

dt
d(1 − t)

= u(X) −
d u(tAi + (1 − t)X)

dt
(1 − t)

∣∣∣
t=1

t=0
+

∫ 1

0

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt

= u(X) + ∇u(X) · (Ai −X) +

∫ 1

0

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt. (4.15)
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Using integration by parts, (4.12) and (4.1), we have

u(A1) = u(X) +

∫ t̃

0

d u(tA1 + (1 − t)X)

dt
dt +

∫ 1

t̃

d u(tA1 + (1 − t)X)

dt
dt

= u(X) −

∫ t̃

0

d u(tA1 + (1 − t)X)

dt
d(1 − t) −

∫ 1

t̃

d u(tA1 + (1 − t)X)

dt
d(1 − t)

= u(X) −
d u(tA1 + (1 − t)X)

dt
(1 − t)

∣∣∣
t=t̃

t=0
+

∫ t̃

0

(1 − t)
d2u(tA1 + (1 − t)X)

dt2
dt

−
d u(tA1 + (1 − t)X)

dt
(1 − t)

∣∣∣
t=1

t=t̃
+

∫ 1

t̃

(1 − t)
d2u(tA1 + (1 − t)X)

dt2
dt

= u(X) − (1 − t̃)∇u−(Ã1) · (A1 −X) + ∇u(X) · (A1 −X)

+

∫ t̃

0

(1 − t)
d2u(tA1 + (1 − t)X)

dt2
dt+ (1 − t̃)∇u+(Ã1) · (A1 −X)

+

∫ 1

t̃

(1 − t)
d2u(tA1 + (1 − t)X)

dt2
dt

= u(X) −∇u−(Ã1) · (A1 − Ã1) + ∇u(X) · (A1 −X)

+

∫ t̃

0

(1 − t)
d2u(tA1 + (1 − t)X)

dt2
dt+ ∇u+(Ã1) · (A1 − Ã1)

+

∫ 1

t̃

(1 − t)
d2u(tA1 + (1 − t)X)

dt2
dt

= u(X) + ∇u(X) · (A1 −X) + (N−(Ã1) − I)∇u−(Ã1) · (A1 − Ã1)

+

∫ t̃

0

(1 − t)
d2u(tA1 + (1 − t)X)

dt2
dt +

∫ 1

t̃

(1 − t)
d2u(tA1 + (1 − t)X)

dt2
dt

= u(X) + ∇u(X) · (A1 −X) + (N−(Ã1) − I)∇u(X) · (A1 − Ã1)

+(N−(Ã1) − I)

∫ 1

0

d[∇u(tÃ1 + (1 − t)X)]

dt
· (A1 − Ã1) dt

+

∫ t̃

0

(1 − t)
d2u(tA1 + (1 − t)X)

dt2
dt

+

∫ 1

t̃

(1 − t)
d2u(tA1 + (1 − t)X)

dt2
dt. (4.16)
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Then

Ih,Tu(X) =
4∑

i=1

u(Ai)φi(X)

= u(X)

4∑

i=1

φi(X) + ∇u(X) ·
4∑

i=1

(Ai −X)φi(X)

+(N−(Ã1) − I)∇u(X) · (A1 − Ã1)φ1(X)

+(N−(Ã1) − I)

∫ 1

0

d[∇u(tÃ1 + (1 − t)X)]

dt
· (A1 − Ã1) dt φ1(X)

+

∫ t̃

0

(1 − t)
d2u(tA1 + (1 − t)X)

dt2
dt φ1(X)

+

∫ 1

t̃

(1 − t)
d2u(tA1 + (1 − t)X)

dt2
dt φ1(X)

+
4∑

i=2

∫ 1

0

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt φi(X). (4.17)

Now letting q = ∇u(X), r = u(X), d− =
∂2u(X)
∂x∂y

in Lemma 4.1.7, we have

∇u(X) ·
4∑

i=1

(Ai −X)φi(X)

= −(N−
DE

− I)∇u(X) · (A1 − Ã1)φ1(X) − (N−
DE

− I)∇u(X) · (Ã1 −XDE)φ1(X)

−
∂2u(X)

∂x∂y

[
N−

DE
(Xs

DE
−Xs) · (A1 −XDE)φ1(X) + (x1 − x̄)(y1 − ȳ)φ1(X)

+(x̄− x)(ȳ − y)φ1(X) +

4∑

i=2

(xi − x)(yi − y)φi(X)
]
. (4.18)

Finally, (4.14) follows from (4.17), (4.18) and Theorem 3.4.1.

The following theorem establish a bound in L2 norm for the bilinear IFE interpolation error.

Theorem 4.1.2 There exits a constant C independent of interface and mesh such that

‖Ih,Tu− u‖0,T̃−∩T−
≤ Ch2

(
|u|1,T̃−∩T− + |u|2,T̃−∩T−

)
≤ Ch2 ‖u‖2,T (4.19)

for any u ∈ PH2
int(T ), where T ∈ Th is a Type I interface element.
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Proof. Let Qi, i = 1, 2, · · · , 9 be the 9 terms on the right hand side of (4.14), and we proceed

by estimating their L2 norms. By Lemma 4.1.3, Theorem 3.4.2, and by letting XDE = Ã⊥
1

in (4.14), we have the following estimate for the L2 norms of the first three terms:

‖Q1‖0,T̃−∩T− + ‖Q2‖0,T̃−∩T− + ‖Q3‖0,T̃−∩T−

=
∥∥∥
(
N−(Ã1) −N−

DE

)
∇u(X) · (A1 − Ã1)φ1(X)

∥∥∥
0,T̃−∩T−

+
∥∥∥(N−

DE
− I)∇u(X) · (Ã1 − Ã⊥

1 )φ1(X)
∥∥∥

0,T̃−∩T−

+
∥∥∥∂

2u(X)

∂x∂y

[
N−

DE
(Xs

DE
−Xs) · (A1 −XDE)φ1(X) + (x1 − x̄)(y1 − ȳ)φ1(X)

+(x̄− x)(ȳ − y)φ1(X) +

4∑

i=2

(xi − x)(yi − y)φi(X)
]∥∥∥

0,T̃−∩T−

≤ Ch2 |u|1,T̃−∩T− + Ch2 |u|2,T̃−∩T−

≤ Ch2 ‖u‖2,T .

For the fourth term, we first note that

d[∇u(tÃ1 + (1 − t)X)]

dt
· (A1 − Ã1)

= uξξ(ξ, η)(x̃1 − x)(x1 − x̃1) + 2uξη(ξ, η)[(ỹ1 − y)(x1 − x̃1) + (x̃1 − x)(y1 − ỹ1)]

+uηη(ξ, η)(ỹ1 − y)(y1 − ỹ1)

with ξ = tx̃1 + (1 − t)x, η = tỹ1 + (1 − t)y. Then,

Q2
4 ≤ C

(∫ 1

0

[
uξξ(ξ, η)(x̃1 − x)(x1 − x̃1) +

2uξη(ξ, η)
(
(ỹ1 − y)(x1 − x̃1) + (x̃1 − x)(y1 − ỹ1)

)
+ uηη(ξ, η)(ỹ1 − y)(y1 − ỹ1)

]
dt
)2

≤ Ch4

(∫ 1

0

[
uξξ(ξ, η) + 2uξη(ξ, η) + uηη(ξ, η)

]
dt

)2

≤ Ch4

∫ 1

0

[
u2

ξξ(ξ, η) + u2
ξη(ξ, η) + u2

ηη(ξ, η)
]
dt,

here C stands for a generic constant. Since both X and Ã1 are in T−, then (ξ, η) ∈ T−.
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Therefore,

‖Q4‖
2
0,T̃−∩T− =

∫

T̃−∩T−

Q2
4dξdη

≤ Ch4

∫

T̃−∩T−

∫ 1

0

[
u2

ξξ(ξ, η) + u2
ξη(ξ, η) + u2

ηη(ξ, η)
]
dtdξdη

≤ Ch4

∫

T̃−∩T−

[
u2

ξξ(ξ, η) + u2
ξη(ξ, η) + u2

ηη(ξ, η)
]
dξdη

≤ Ch4 |u|22,T̃−∩T− ,

hence

‖Q4‖0,T̃−∩T− ≤ Ch2 |u|2,T̃−∩T− ≤ Ch2 ‖u‖2,T .

For the fifth term, we have

Q2
5 ≤ C

(∫ t̃

0

(1 − t)
[
uξξ(ξ, η)(x1 − x)2 + 2uξη(ξ, η)(x1 − x)(y1 − y) + uηη(ξ, η)(y1 − y)2

]
dt

)2

≤ Ch4

(∫ t̃

0

(1 − t) [uξξ(ξ, η) + 2uξη(ξ, η) + uηη(ξ, η)]dt

)2

≤ Ch4

∫ t̃

0

(1 − t)2
[
u2

ξξ(ξ, η) + u2
ξη(ξ, η) + u2

ηη(ξ, η)
]
dt

with ξ = tx1 + (1 − t)x, η = ty1 + (1 − t)y. Then

‖Q5‖
2
T̃−∩T− ≤ Ch4

∫

T̃−∩T−

∫ t̃

0

(1 − t)2
[
u2

ξξ(ξ, η) + u2
ξη(ξ, η) + u2

ηη(ξ, η)
]
dtdξdη

≤ Ch4

∫

T̃−∩T−

[
u2

ξξ(ξ, η) + u2
ξη(ξ, η) + u2

ηη(ξ, η)
]
dξdη ≤ Ch4 |u|22,T̃−∩T− ,

hence

‖Q5‖T̃−∩T− ≤ Ch2 |u|2,T̃−∩T− ≤ Ch2 ‖u‖2,T .

Similarly, we can show that ‖Qi‖T̃−∩T− ≤ Ch2 ‖u‖2,T , i = 6, 7, 8, 9. Finally, (4.19) follows
from the estimates for Qi, i = 1, 2, · · · , 9 above.

We now turn to the estimate of bilinear IFE interpolation error inH1 norm on the subelement
T−. In the discussion below, we let Ii, i = 1, 2, 3, 4 be the integral terms involving the vertices
Ai, i = 1, 2, 3, 4 in (4.14).
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Theorem 4.1.3 For any u ∈ PC3
int(T ) and X = (x, y)T ∈ T̃− ∩ T−, we have

∂(Ih,Tu(X) − u(X))

∂x

= (N−(Ã1) −N−
DE

)∇u(X) · (A1 − Ã1)
∂φ1(X)

∂x
− (N−

DE
− I)∇u(X) · (Ã1 −XDE)

∂φ1(X)

∂x

−
∂2u(X)

∂x∂y

[
N−

DE
(Xs

DE
−Xs) · (A1 −XDE)

∂φ1(X)

∂x
+N−

DE
(0,−1)T · (A1 −XDE)φ1(X)

+(x1 − x̄)(y1 − ȳ)
∂φ1(X)

∂x
− (ȳ − y)φ1(X) + (x̄− x)(ȳ − y)

∂φ1(X)

∂x

+
4∑

i=2

[
− (yi − y)φi(X) + (xi − x)(yi − y)

∂φi(X)

∂x

]]
+

4∑

i=1

Ii
∂φi(X)

∂x
, (4.20)

∂(Ih,Tu(X) − u(X))

∂y

= (N−(Ã1) −N−
DE

)∇u(X) · (A1 − Ã1)
∂φ1(X)

∂y
− (N−

DE
− I)∇u(X) · (Ã1 −XDE)

∂φ1(X)

∂y

−
∂2u(X)

∂x∂y

[
N−

DE
(Xs

DE
−Xs) · (A1 −XDE)

∂φ1(X)

∂y
+N−

DE
(−1, 0)T · (A1 −XDE)φ1(X)

+(x1 − x̄)(y1 − ȳ)
∂φ1(X)

∂y
− (x̄− x)φ1(X) + (x̄− x)(ȳ − y)

∂φ1(X)

∂y

+

4∑

i=2

[
− (xi − x)φi(X) + (xi − x)(yi − y)

∂φi(X)

∂y

]]
+

4∑

i=1

Ii
∂φi(X)

∂y
, (4.21)

where XDE is an arbitrary point on DE.

Proof. We give a proof only for (4.20), similar arguments can be used to show (4.21). Taking
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derivative for x on both sides of (4.14), we can get

∂(Ih,Tu(X) − u(X))

∂x

=
∂

∂x

[
(N−(Ã1) −N−

DE
)∇u(X) · (A1 − Ã1)

]
φ1(X)

+(N−(Ã1) −N−

DE
)∇u(X) · (A1 − Ã1)

∂φ1(X)

∂x

−
∂

∂x

[
(N−

DE
− I)∇u(X) · (Ã1 −XDE)

]
φ1(X) − (N−

DE
− I)∇u(X) · (Ã1 −XDE)

∂φ1(X)

∂x

−
∂3u(X)

∂x2∂y

[
N−

DE
(Xs

DE
−Xs) · (A1 −XDE)φ1(X) + (x1 − x̄)(y1 − ȳ)φ1(X)

+(x̄− x)(ȳ − y)φ1(X) +
4∑

i=2

(xi − x)(yi − y)φi(X)
]

−
∂2u(X)

∂x∂y

[
N−

DE
(Xs

DE
−Xs) · (A1 −XDE)

∂φ1(X)

∂x
+N−

DE
(0,−1)T · (A1 −XDE)φ1(X)

+(x1 − x̄)(y1 − ȳ)
∂φ1(X)

∂x
− (ȳ − y)φ1(X) + (x̄− x)(ȳ − y)

∂φ1(X)

∂x

+
4∑

i=2

[
− (yi − y)φi(X) + (xi − x)(yi − y)

∂φi(X)

∂x

]]

+

4∑

i=1

Ii
∂φi(X)

∂x
+

4∑

i=1

∂Ii
∂x

φi(X). (4.22)

Taking the first derivative with respect to x on both sides of (4.15) and (4.16), we can get

∂Ii
∂x

= −P · (Ai −X), i = 2, 3, 4,

∂I1
∂x

= −P · (A1 −X) −
∂

∂x

[
(N−(Ã1) − I)∇u(X)(A1 − Ã1)

]
,

where

P =
∂

∂x
∇u(X) = (

∂2u(X)

∂x2 ,
∂2u(X)

∂x∂y
)T .

Hence,

4∑

i=1

∂Ii
∂x

φi(X) = −P ·
4∑

i=1

(Ai −X)φi(X) −
∂

∂x

[
(N−(Ã1) − I)∇u(X)(A1 − Ã1)

]
φ1(X).

Applying Lemma 4.1.7 to the first term on the right hand side above, letting q = P, d− =
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∂3u(X)
∂x2∂y

, we have

4∑

i=1

∂Ii
∂x

φi(X)

= −
∂

∂x

[
(N−(Ã1) − I)∇u(X) · (A1 − Ã1)

]
φ1(X) + (N−

DE
− I)P · (A1 − Ã1)φ1(X)

+(N−
DE

− I)P · (Ã1 −XDE)φ1(X) +
∂3u(X)

∂x2∂y

[
N−

DE
(Xs

DE
−Xs) · (A1 −XDE)φ1(X)

+(x1 − x̄)(y1 − ȳ)φ1(X) + (x̄− x)(ȳ − y)φ1(X) +

4∑

i=2

(xi − x)(yi − y)φi(X)
]
. (4.23)

By direct calculations, we also have

∂

∂x

[
(N−(Ã1) −N−

DE
)∇u(X) · (A1 − Ã1)

]
φ1(X)

−
∂

∂x

[
(N−

DE
− I)∇u(X) · (Ã1 −XDE)

]
φ1(X)

−
∂

∂x

[
(N−(Ã1) − I)∇u(X) · (A1 − Ã1)

]
φ1(X)

+(N−
DE

− I)P · (A1 − Ã1)φ1(X) + (N−
DE

− I)P · (Ã1 −XDE)φ1(X)

= −
∂

∂x

[
(N−

DE
− I)∇u(X) · (A1 − Ã1)

]
φ1(X)

−
∂

∂x

[
(N−

DE
− I)∇u(X) · (Ã1 −XDE)

]
φ1(X) + (N−

DE
− I)P · (A1 −XDE)φ1(X)

= −
∂

∂x

[
(N−

DE
− I)∇u(X) · (A1 −XDE)

]
φ1(X) + (N−

DE
− I)P · (A1 −XDE)φ1(X)

= −(N−
DE

− I)P · (A1 −XDE)φ1(X) + (N−
DE

− I)P · (A1 −XDE)φ1(X)

= 0. (4.24)

Plugging (4.23) and (4.24) into (4.22), we finish the proof of (4.20).

Based on the above expansion, we get the following theorem.

Theorem 4.1.4 There exits a constant C independent of interface and mesh such that

|Ih,Tu− u|1,T̃−∩T− ≤ Ch
(
|u|1,T̃−∩T− + |u|2,T̃−∩T−

)
≤ Ch ‖u‖2,T

for any u ∈ PH2
int(T ), where T is a Type I interface element.
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Proof. The result follows by letting XDE = Ã⊥
1 in (4.20) and (4.21), applying Theorem

3.4.2, and applying arguments similar to those used in the proof of Theorem 4.1.2. Note
that (3.12) in Theorem 3.4.2 has to be used here.

We now turn to the estimate of bilinear IFE interpolation error inH2 norm on the subelement
T̃− ∩ T−.

Theorem 4.1.5 For any u ∈ PC3
int(T ) and X = (x, y)T ∈ T̃− ∩ T−, we have

∂2(Ih,Tu(X) − u(X))

∂x∂y

= (N−(Ã1) −N−
DE

)∇u(X) · (A1 − Ã1)
∂2φ1(X)

∂x∂y

−(N−
DE

− I)∇u(X) · (Ã1 −XDE)
∂2φ1(X)

∂x∂y

−
∂2u(X)

∂x∂y

[
N−

DE
(Xs

DE
−Xs) · (A1 −XDE)

∂2φ1(X)

∂x∂y

+N−
DE

(−1, 0)T · (A1 −XDE)
∂φ1(X)

∂x
+N−

DE
(0,−1)T · (A1 −XDE)

∂φ1(X)

∂y

+(x1 − x̄)(y1 − ȳ)
∂2φ1(X)

∂x∂y
+ φ1(X) − (ȳ − y)

∂φ1(X)

∂y
− (x̄− x)

∂φ1(X)

∂x

+(x̄− x)(ȳ − y)
∂2φ1(X)

∂x∂y
+

4∑

i=2

[
φi(X) − (yi − y)

∂φi(X)

∂y
− (xi − x)

∂φi(X)

∂x

+(xi − x)(yi − y)
∂2φi(X)

∂x∂y

]]
+

4∑

i=1

Ii
∂2φi(X)

∂x∂y
, (4.25)

where XDE is an arbitrary point on DE.
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Proof. Taking derivative for y on both sides of (4.20), we can get

∂2(Ih,Tu(X) − u(X))

∂x∂y

=
∂

∂y

[
(N−(Ã1) −N−

DE
)∇u(X) · (A1 − Ã1)

] ∂φ1(X)

∂x

+(N−(Ã1) −N−
DE

)∇u(X) · (A1 − Ã1)
∂2φ1(X)

∂x∂y

−
∂

∂y

[
(N−

DE
− I)∇u(X) · (Ã1 −XDE)

] ∂φ1(X)

∂x

−(N−
DE

− I)∇u(X) · (Ã1 −XDE)
∂2φ1(X)

∂x∂y

−
∂3u(X)

∂x∂y2

[
N−

DE
(Xs

DE
−Xs) · (A1 −XDE)

∂φ1(X)

∂x

+N−
DE

(0,−1)T · (A1 −XDE)φ1(X) + (x1 − x̄)(y1 − ȳ)
∂φ1(X)

∂x

−(ȳ − y)φ1(X) + (x̄− x)(ȳ − y)
∂φ1(X)

∂x

+

4∑

i=2

[
− (yi − y)φi(X) + (xi − x)(yi − y)

∂φi(X)

∂x

]]

−
∂2u(X)

∂x∂y

[
N−

DE
(Xs

DE
−Xs) · (A1 −XDE)

∂2φ1(X)

∂x∂y

+N−
DE

(−1, 0)T · (A1 −XDE)
∂φ1(X)

∂x
+N−

DE
(0,−1)T · (A1 −XDE)

∂φ1(X)

∂y

+(x1 − x̄)(y1 − ȳ)
∂2φ1(X)

∂x∂y
+ φ1(X) − (ȳ − y)

∂φ1(X)

∂y

−(x̄− x)
∂φ1(X)

∂x
+ (x̄− x)(ȳ − y)

∂2φ1(X)

∂x∂y

+

4∑

i=2

[
φi(X) − (yi − y)

∂φi(X)

∂y
− (xi − x)

∂φi(X)

∂x
+ (xi − x)(yi − y)

∂2φi(X)

∂x∂y

]]

+
4∑

i=1

∂Ii
∂y

∂φi(X)

∂x
+

4∑

i=1

Ii
∂2φi(X)

∂x∂y
. (4.26)

Taking the first derivative with respect to y on both sides of (4.15) and (4.16), we can get

∂Ii
∂y

= −P · (Ai −X), i = 2, 3, 4,

∂I1
∂y

= −P · (A1 −X) −
∂

∂y

[
(N−(Ã1) − I)∇u(X)(A1 − Ã1)

]
,
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where

P =
∂

∂y
∇u(X) = (

∂2u(X)

∂x∂y
,
∂2u(X)

∂y2 )T .

Hence,

4∑

i=1

∂Ii
∂y

∂φi(X)

∂x

= −P ·
4∑

i=1

(Ai −X)
∂φi(X)

∂x
−

∂

∂y

[
(N−(Ã1) − I)∇u(X)(A1 − Ã1)

]∂φ1(X)

∂x
. (4.27)

Taking the derivative for x on both sides of (4.13), we get

q ·
4∑

i=1

(Ai −X)
∂φi(X)

∂x

= −(N−

DE
− I)q · (A1 − Ã1)

∂φ1(X)

∂x
− (N−

DE
− I)q · (Ã1 −XDE)

∂φ1(X)

∂x

−d−
[
N−

DE
(0,−1)T · (A1 −XDE)φ1(X) +N−

DE
(Xs

DE
−Xs) · (A1 −XDE)

∂φ1(X)

∂x

+(x1 − x̄)(y1 − ȳ)
∂φ1(X)

∂x
− (ȳ − y)φ1(X) + (x̄− x)(ȳ − y)

∂φ1(X)

∂x

−
4∑

i=2

(yi − y)φi(X) +

4∑

i=2

(xi − x)(yi − y)
∂φ1(X)

∂x

]
. (4.28)

Applying (4.28) to the first term on the right hand side of (4.27) and letting q = P, d− =
∂3u(X)
∂x∂y2 , we have

4∑

i=1

∂Ii
∂y

∂φi(X)

∂x

= −
∂

∂y

[
(N−(Ã1) − I)∇u(X)(A1 − Ã1)

]∂φ1(X)

∂x
+ (N−

DE
− I)P · (A1 − Ã1)

∂φ1(X)

∂x

+(N−
DE

− I)P · (Ã1 −XDE)
∂φ1(X)

∂x

−
∂3u(X)

∂x∂y2

[
N−

DE
(0,−1)T · (A1 −XDE)φ1(X) +N−

DE
(Xs

DE
−Xs) · (A1 −XDE)

∂φ1(X)

∂x

+(x1 − x̄)(y1 − ȳ)
∂φ1(X)

∂x
− (ȳ − y)φ1(X) + (x̄− x)(ȳ − y)

∂φ1(X)

∂x

+

4∑

i=2

[
− (yi − y)φi(X) + (xi − x)(yi − y)

∂φi(X)

∂x

]]
. (4.29)
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By direct calculations similar to (4.24), we also have

∂

∂y
(N−(Ã1) −N−

DE
)∇u(X) · (A1 − Ã1)

∂φ1(X)

∂x

−
∂

∂y

[
(N−

DE
− I)∇u(X) · (Ã1 −XDE)

]∂φ1(X)

∂x

−
∂

∂y

[
(N−(Ã1) − I)∇u(X)(A1 − Ã1)

]∂φ1(X)

∂x

+(N−
DE

− I)P · (A1 − Ã1)
∂φ1(X)

∂x
+ (N−

DE
− I)P · (Ã1 −XDE)

∂φ1(X)

∂x
= 0. (4.30)

Plugging (4.29) and (4.30) into (4.26), we finish the proof of (4.25).

Based on the above expansion, we get the following theorem.

Theorem 4.1.6 There exits a constant C independent of interface and mesh such that

|Ih,Tu− u|2,T̃−∩T− ≤ C
(
|u|1,T̃−∩T− + |u|2,T̃−∩T−

)
≤ C ‖u‖2,T (4.31)

for any u ∈ PH2
int(T ), where T is a Type I interface element.

Proof. Since
∂2(Ih,T u)

∂x2 =
∂2(Ih,T u)

∂y2 = 0, then we complete the proof by applying the same

techniques of Theorem 4.1.2 to Theorem 4.1.5. Note that (3.13) is used here.

Now we discuss the estimation on T̃+ ∩ T+ for Type I interface elements. The estimate on
T̃+∩T+ is rather similar to that on T̃−∩T−, so we only state the results as follows. Let X =
(x, y)T be a point in T̃+ ∩ T+. Without loss of generality, we can assume that line segments
XA1 does not intersect with the interface and DE, while line segment XAi, i = 2, 3, 4 meet
Γ at Ãi, i = 2, 3, 4, see Figure 4.2. Also, we assume that Ai = (xi, yi)

T , i = 1, 2, 3, 4 and

Ãi = t̃iAi + (1 − t̃i)X = (x̃i, ỹi)
T , i = 2, 3, 4.
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Γ

XA1 A2

A3A4

D

E

T+

T−

Ã2

Ã3

Ã4

Figure 4.2: A point X ∈ T̃+ ∩ T+ is connected to the four vertices by line segments in a
Type I interface element

Lemma 4.1.8 Given a two-dimensional vector q, a point X ∈ T̃+ and two real numbers

r, d+, then there exists a v ∈ Sh(T ) such that ∇v(X) = q, v(X) = r,
∂2v+(X)
∂x∂y

= d+ and

q ·
4∑

i=1

[
(Ai −X)φi(X)

]

=
4∑

i=2

[
− (N+

DE
− I)q · (Ai − Ãi)φi(X) − (N+

DE
− I)q · (Ãi −X

(i)

DE
)φi(X)

]

−d+
[ 4∑

i=2

[
N+

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)φi(X) + (xi − x̄i)(yi − ȳi)φi(X) +

(x̄i − x)(ȳi − y)φi(X)
]

+ (x1 − x)(y1 − y)φ1(X)
]
,

where X
(i)

DE
= (x̄i, ȳi)

T , i = 2, 3, 4 are arbitrary points on DE.
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Theorem 4.1.7 For any u ∈ PC2
int(T ), X = (x, y)T ∈ T̃+ ∩ T+, we have

Ih,Tu(X) − u(X)

=

4∑

i=2

[
(N+(Ãi) −N+

DE
)∇u(X) · (Ai − Ãi)φi(X) − (N+

DE
− I)∇u(X) · (Ãi −X

(i)

DE
)φi(X)

]

−
∂2u(X)

∂x∂y

[ 4∑

i=2

[
N+

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)φi(X) + (xi − x̄i)(yi − ȳi)φi(X)

+(x̄i − x)(ȳi − y)φi(X)
]

+ (x1 − x)(y1 − y)φ1(X)
]

+

4∑

i=2

[
(N+(Ãi) − I)

∫ 1

0

d[∇u(tÃi + (1 − t)X)]

dt
· (Ai − Ãi) dt φi(X)

+

∫ t̃i

0

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt φi(X) +

∫ 1

t̃i

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt φi(X)

]

+

∫ 1

0

(1 − t)
d2u(tA1 + (1 − t)X)

dt2
dt φ1(X), (4.32)

where X
(i)

DE
= (x̄i, ȳi)

T , i = 2, 3, 4 are arbitrary points on DE.

We now let Ii, i = 1, 2, 3, 4 be the integral terms involving the vertices Ai, i = 1, 2, 3, 4 in
(4.32).

Theorem 4.1.8 For any u ∈ PC3
int(T ), X = (x, y)T ∈ T̃+ ∩ T+, we have

∂(Ih,Tu(X) − u(X))

∂x

=
4∑

i=2

[
(N+(Ãi) −N+

DE
)∇u(X) · (Ai − Ãi)

∂φi(X)

∂x

−(N+
DE

− I)∇u(X) · (Ãi −X
(i)

DE
)
∂φi(X)

∂x

]

−
∂2u(X)

∂x∂y

[ 4∑

i=2

[
N+

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)
∂φi(X)

∂x

+N+
DE

(0,−1)T · (Ai −X
(i)

DE
)φi(X) + (xi − x̄i)(yi − ȳi)

∂φi(X)

∂x
− (ȳi − y)φi(X)

+(x̄i − x)(ȳi − y)
∂φi(X)

∂x

]
− (y1 − y)φ1(X) + (x1 − x)(y1 − y)

∂φ1(X)

∂x

]

+

4∑

i=1

Ii
∂φi(X)

∂x
,
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∂(Ih,Tu(X) − u(X))

∂y

=

4∑

i=2

[
(N+(Ãi) −N+

DE
)∇u(X) · (Ai − Ãi)

∂φi(X)

∂y

−(N+
DE

− I)∇u(X) · (Ãi −X
(i)

DE
)
∂φi(X)

∂y

]

−
∂2u(X)

∂x∂y

[ 4∑

i=2

[
N+

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)
∂φi(X)

∂y

+N+
DE

(−1, 0)T · (Ai −X
(i)

DE
)φi(X) + (xi − x̄i)(yi − ȳi)

∂φi(X)

∂y
− (x̄i − x)φi(X)

+(x̄i − x)(ȳi − y)
∂φi(X)

∂y

]
− (x1 − x)φ1(X) + (x1 − x)(y1 − y)

∂φ1(X)

∂y

]

+
4∑

i=1

Ii
∂φi(X)

∂y
,

where X
(i)

DE
= (x̄i, ȳi)

T , i = 2, 3, 4 are arbitrary points on DE.

Theorem 4.1.9 For any u ∈ PC3
int(T ) and X = (x, y)T ∈ T̃+ ∩ T+, we have

∂2(Ih,Tu(X) − u(X))

∂x∂y

=
4∑

i=2

[
(N+(Ãi) −N+

DE
)∇u(X) · (Ai − Ãi)

∂2φi(X)

∂x∂y

−(N+
DE

− I)∇u(X) · (Ãi −X
(i)

DE
)
∂2φi(X)

∂x∂y

]

−
∂2u(X)

∂x∂y

[ 4∑

i=2

[
N+

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)
∂2φi(X)

∂x∂y

+N+
DE

(−1, 0)T · (Ai −X
(i)

DE
)
∂φi(X)

∂x
+N+

DE
(0,−1)T · (Ai −X

(i)

DE
)
∂φi(X)

∂y

+(xi − x̄i)(yi − ȳi)
∂2φi(X)

∂x∂y
+ φi(X) − (ȳi − y)

∂φi(X)

∂y
− (x̄i − x)

∂φi(X)

∂x

+(x̄i − x)(ȳi − y)
∂2φi(X)

∂x∂y

]
+ φ1(X) − (y1 − y)

∂φ1(X)

∂y
− (x1 − x)

∂φ1(X)

∂x

+(x1 − x)(y1 − y)
∂2φ1(X)

∂x∂y

]
+

4∑

i=1

Ii
∂2φi(X)

∂x∂y
,
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where X
(i)

DE
= (x̄i, ȳi)

T , i = 2, 3, 4 are arbitrary points on DE.

Theorem 4.1.10 There exits a constant C independent of interface and mesh such that

‖Ih,Tu− u‖0,T̃+∩T+ ≤ Ch2
(
|u|1,T̃+∩T+ + |u|2,T̃+∩T+

)
≤ Ch2 ‖u‖2,T ,

|Ih,Tu− u|1,T̃+∩T+ ≤ Ch
(
|u|1,T̃+∩T+ + |u|2,T̃+∩T+

)
≤ Ch ‖u‖2,T ,

|Ih,Tu− u|2,T̃+∩T+ ≤ C
(
|u|1,T̃+∩T+ + |u|2,T̃+∩T+

)
≤ C ‖u‖2,T ,

for any u ∈ PH2
int(T ), where T is a Type I interface element.

If T̃+ ∩ T− is not empty, then we can use (4.17) and Lemma 4.1.8 to obtain a expansion for
the interpolation error, which is similar to (4.14) and (4.32). Then we can follow the same
arguments for T̃− ∩ T− to obtain the following theorem.

Theorem 4.1.11 There exits a constant C independent of interface and mesh such that

‖Ih,Tu− u‖0,T̃+∩T− ≤ Ch2
(
|u|1,T̃+∩T− + |u|2,T̃+∩T−

)
≤ Ch2 ‖u‖2,T ,

|Ih,Tu− u|1,T̃+∩T− ≤ Ch
(
|u|1,T̃+∩T− + |u|2,T̃+∩T−

)
≤ Ch ‖u‖2,T ,

|Ih,Tu− u|2,T̃+∩T− ≤ C
(
|u|1,T̃+∩T− + |u|2,T̃+∩T−

)
≤ C ‖u‖2,T ,

for any u ∈ PH2
int(T ), where T is a Type I interface element.

Similarly, if T̃− ∩ T+ is not empty, we can also obtain the following theorem.

Theorem 4.1.12 There exits a constant C independent of interface and mesh such that

‖Ih,Tu− u‖0,T̃−∩T+ ≤ Ch2
(
|u|1,T̃−∩T+ + |u|2,T̃−∩T+

)
≤ Ch2 ‖u‖2,T ,

|Ih,Tu− u|1,T̃−∩T+ ≤ Ch
(
|u|1,T̃−∩T+ + |u|2,T̃−∩T+

)
≤ Ch ‖u‖2,T ,

|Ih,Tu− u|2,T̃−∩T+ ≤ C
(
|u|1,T̃−∩T+ + |u|2,T̃−∩T+

)
≤ C ‖u‖2,T ,

for any u ∈ PH2
int(T ), where T is a Type I interface element.
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Finally, combining Theorems 4.1.2, 4.1.4, 4.1.6, 4.1.10, 4.1.11 and 4.1.12, we have the fol-
lowing theorem for the interpolation error on each Type I interface element.

Theorem 4.1.13 There exits a constant C independent of interface and mesh such that

‖Ih,Tu− u‖0,T ≤ Ch2
(
|u|1,T + |u|2,T

)
≤ Ch2 ‖u‖2,T ,

|Ih,Tu− u|1,T ≤ Ch
(
|u|1,T + |u|2,T

)
≤ Ch ‖u‖2,T ,

|Ih,Tu− u|2,T ≤ C
(
|u|1,T + |u|2,T

)
≤ C ‖u‖2,T ,

for any u ∈ PH2
int(T ), where T is a Type I interface element.

4.1.3 Interpolation error on a Type II interface element

In this section, we will discuss the bilinear IFE interpolation error on a Type II interface
element. The estimate for Type II interface elements is similar to that for Type I interface
elements. Without loss of generality, we assume T ∈ Th is a Type II interface element with
vertices Ai = (xi, yi), i = 1, 2, 3, 4, such that A1, A2 ∈ T+ and A3, A4 ∈ T−, see Figure 4.3.

We start with the estimation on T̃− ∩ T−. Let X = (x, y)T be a point in T̃− ∩ T−. Without
loss of generality, we can assume that line segments XAi, i = 3, 4 do not intersect with the
interface Γ and DE, while line segment XAi, i = 1, 2 meet Γ at Ãi, i = 1, 2, see Figure 4.3.
Also, we assume that

Ãi = t̃iAi + (1 − t̃i)X = (x̃i, ỹi)
T , i = 1, 2. (4.33)

With arguments similar to those used for Lemma 4.1.5, we have the following lemma. The
only difference is that T is a Type II interface element here.

Lemma 4.1.9 Assume that v ∈ Sh(T ), X = (x, y)T ∈ T̃−, A = (xA, yA)T ∈ T̃+. Then

v(A) = v(X) + ∇v(X) · (A−X) + (N−
DE

− I)∇v(X) · (A− Ã)

+(N−
DE

− I)∇v(X) · (Ã−XDE) + d−N−
DE

(Xs
DE

−Xs) · (A−XDE)

+d−(xA − x̄)(yA − ȳ) + d−(x̄− x)(ȳ − y),

where XDE = (x̄, ȳ)T is an arbitrary point on DE.

The following lemma is similar to Lemma 4.1.6.
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Γ

X

A1

A2 A3

A4

D

E

T+

T−

Ã1

Ã2

Figure 4.3: A point X ∈ T̃− ∩ T− is connected to the four vertices by line segments in a
Type II interface element

Lemma 4.1.10 For any v ∈ Sh(T ) and X = (x, y)T ∈ T̃−,

∇v(X) ·
4∑

i=1

(Ai −X)φi(X)

=

2∑

i=1

[
− (N−

DE
− I)∇v(X) · (Ai − Ãi)φi(X) − (N−

DE
− I)∇v(X) · (Ãi −X

(i)

DE
)φi(X)

]

−d−
[ 2∑

i=1

[
N−

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)φi(X) + (xi − x̄i)(yi − ȳi)φi(X)

+(x̄i − x)(ȳi − y)φi(X)
]

+
4∑

i=3

[
(xi − x)(yi − y)φi(X)

]]
,

where X
(i)

DE
= (x̄i, ȳi)

T , i = 1, 2 are arbitrary points on DE.

Proof. By using Lemma 4.1.4 and Lemma 4.1.9,we can get

v(Ai) = v(X) + ∇v(X) · (Ai −X) + d−(xi − x)(yi − y), i = 3, 4,

v(Ai) = v(X) + ∇v(X) · (Ai −X) + (N−
DE

− I)∇v(X) · (Ai − Ãi) +

(N−
DE

− I)∇v(X) · (Ãi −X
(i)

DE
) + d−N−

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)

+d−(xi − x̄i)(yi − ȳi) + d−(x̄i − x)(ȳi − y), i = 1, 2.
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Because v ∈ Sh(T ),

v(X) = Ih,Tv(X)

=

4∑

i=1

v(Ai)φi(X)

= v(X)

4∑

i=1

φi(X) + ∇v(X) ·
4∑

i=1

(Ai −X)φi(X)

+
2∑

i=1

[
(N−

DE
− I)∇v(X) · (Ai − Ãi)φi(X) + (N−

DE
− I)∇v(X) · (Ãi −X

(i)

DE
)φi(X)

]

+d−
[ 2∑

i=1

[
N−

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)φi(X) + (xi − x̄i)(yi − ȳi)φi(X)

+(x̄i − x)(ȳi − y)φi(X)
]

+

4∑

i=3

(xi − x)(yi − y)φi(X)
]
.

Because of Theorem 3.4.1,the proof is completed.

By arguments similar to those used for Lemma 4.1.7, we get the following lemma.

Lemma 4.1.11 Given a two-dimensional vector q, a point X ∈ T̃− and two real numbers

r, d−, then there exists a function v ∈ Sh(T ) such that ∇v(X) = q, v(X) = r,
∂2v−(X)
∂x∂y

= d−

and

q(X) ·
4∑

i=1

(Ai −X)φi(X)

=
2∑

i=1

[
− (N−

DE
− I)q · (Ai − Ãi)φi(X) − (N−

DE
− I)q · (Ãi −X

(i)

DE
)φi(X)

]

−d−
[ 2∑

i=1

[
N−

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)φi(X) + (xi − x̄i)(yi − ȳi)φi(X)

+(x̄i − x)(ȳi − y)φi(X)
]

+

4∑

i=3

[
(xi − x)(yi − y)φi(X)

]]
, (4.34)

where X
(i)

DE
= (x̄i, ȳi)

T , i = 1, 2 are arbitrary points on DE.
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We can now derive an expansion of the bilinear IFE interpolation error at any point X ∈ T−

of a Type II interface element T . The proof here is similar to the proof of (4.14).

Theorem 4.1.14 For any u ∈ PC2
int(T ) and X = (x, y)T ∈ T̃− ∩ T−, we have

Ih,Tu(X) − u(X)

=

2∑

i=1

[
(N−(Ãi) −N−

DE
)∇u(X) · (Ai − Ãi)φi(X) − (N−

DE
− I)∇u(X) · (Ãi −X

(i)

DE
)φi(X)

]

−
∂2u(X)

∂x∂y

[ 2∑

i=1

[
N−

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)φi(X) + (xi − x̄i)(yi − ȳi)φi(X)

+(x̄i − x)(ȳi − y)φi(X)
]

+

4∑

i=3

(xi − x)(yi − y)φi(X)
]

+
2∑

i=1

[
(N−(Ãi) − I)

∫ 1

0

d[∇u−(tÃi + (1 − t)X)]

dt
· (Ai − Ãi) dt φi(X)

+

∫ t̃i

0

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt φi(X) +

∫ 1

t̃i

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt φi(X)

]

+
4∑

i=3

∫ 1

0

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt φi(X), (4.35)

where X
(i)

DE
= (x̄i, ȳi)

T , i = 1, 2 are arbitrary points on DE.

Proof. Since t 7→ u(tAi + (1 − t)X))(i = 3, 4) is a C2 function,for i=3,4, we have

u(Ai) = u(X) +

∫ 1

0

d u(tAi + (1 − t)X)

dt
dt

= u(X) −

∫ 1

0

d u(tAi + (1 − t)X)

dt
d(1 − t)

= u(X) −
d u(tAi + (1 − t)X)

dt
(1 − t)

∣∣∣
t=1

t=0
+

∫ 1

0

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt

= u(X) + ∇u(X) · (Ai −X) +

∫ 1

0

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt. (4.36)
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For i = 1, 2, using integration by parts, (4.33) and (4.1), we have

u(Ai) = u(X) +

∫ t̃i

0

d u(tAi + (1 − t)X)

dt
dt +

∫ 1

t̃i

d u(tAi + (1 − t)X)

dt
dt

= u(X) −

∫ t̃i

0

d u(tAi + (1 − t)X)

dt
d(1 − t) −

∫ 1

t̃i

d u(tAi + (1 − t)X)

dt
d(1 − t)

= u(X) −
d u(tAi + (1 − t)X)

dt
(1 − t)

∣∣∣
t=t̃i

t=0
+

∫ t̃

0

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt

−
d u(tAi + (1 − t)X)

dt
(1 − t)

∣∣∣
t=1

t=t̃i
+

∫ 1

t̃

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt

= u(X) − (1 − t̃i)∇u
−(Ãi) · (Ai −X) + ∇u(X) · (Ai −X)

+

∫ t̃

0

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt+ (1 − t̃i)∇u

+(Ãi) · (Ai −X)

+

∫ 1

t̃

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt

= u(X) −∇u−(Ãi) · (Ai − Ãi) + ∇u(X) · (Ai −X)

+

∫ t̃

0

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt+ ∇u+(Ãi) · (Ai − Ãi)

+

∫ 1

t̃

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt

= u(X) + ∇u(X) · (Ai −X) + (N−(Ãi) − I)∇u−(Ãi) · (Ai − Ãi)

+

∫ t̃i

0

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt +

∫ 1

t̃i

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt

= u(X) + ∇u(X) · (Ai −X) + (N−(Ãi) − I)∇u(X) · (Ai − Ãi)

+(N−(Ãi) − I)

∫ 1

0

d[∇u(tÃi + (1 − t)X)]

dt
· (Ai − Ãi) dt

+

∫ t̃i

0

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt

+

∫ 1

t̃i

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt. (4.37)
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Then

Ih,Tu(X) =
4∑

i=1

u(Ai)φi(X)

= u(X)

4∑

i=1

φi(X) + ∇u(X) ·
4∑

i=1

(Ai −X)φi(X)

+

2∑

i=1

[
(N−(Ãi) − I)∇u(X) · (Ai − Ãi)φi(X)

+(N−(Ãi) − I)

∫ 1

0

d[∇u(tÃi + (1 − t)X)]

dt
· (Ai − Ãi) dt φi(X)

+

∫ t̃i

0

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt φi(X)

+

∫ 1

t̃i

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt φi(X)

]

+

4∑

i=3

∫ 1

0

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt φi(X). (4.38)

Now let q = ∇u(X), r = u(X), d− =
∂2u(X)
∂x∂y

in Lemma 4.1.11, we have

∇u(X) ·
4∑

i=1

(Ai −X)φi(X)

=
2∑

i=1

[
− (N−

DE
− I)∇u(X) · (Ai − Ãi)φi(X) − (N−

DE
− I)∇u(X)(X) · (Ãi −X

(i)

DE
)φi(X)

]

−
∂2u(X)

∂x∂y

[ 2∑

i=1

[
N−

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)φi(X) + (xi − x̄i)(yi − ȳi)φi(X)

+(x̄i − x)(ȳi − y)φi(X)
]

+

4∑

i=3

(xi − x)(yi − y)φi(X)
]

(4.39)

Finally, (4.35) follows from (4.38), (4.39) and Theorem 3.4.1.

Let Ii, i = 1, 2, 3, 4 be the integral terms involving vertices Ai, i = 1, 2, 3, 4 in (4.35). Then
we can prove the following two theorems similar to Theorem 4.1.3 and Theorem 4.1.5.
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Theorem 4.1.15 For any u ∈ PC3
int(T ) and X = (x, y)T ∈ T̃− ∩ T−, we have

∂(Ih,Tu(X) − u(X))

∂x

=

2∑

i=1

[
(N−(Ãi) −N−

DE
)∇u(X) · (Ai − Ãi)

∂φi(X)

∂x

−(N−
DE

− I)∇u(X) · (Ãi −X
(i)

DE
)
∂φi(X)

∂x

]

−
∂2u(X)

∂x∂y

[ 2∑

i=1

[
N−

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)
∂φi(X)

∂x

+N−

DE
(0,−1)T · (Ai −X

(i)

DE
)φi(X) + (xi − x̄i)(yi − ȳi)

∂φi(X)

∂x
− (ȳi − y)φi(X)

+(x̄i − x)(ȳi − y)
∂φi(X)

∂x

]
+

4∑

i=3

[
− (yi − y)φi(X) + (xi − x)(yi − y)

∂φi(X)

∂x

]]

+
4∑

i=1

Ii
∂φi(X)

∂x
, (4.40)

∂(Ih,Tu(X) − u(X))

∂y

=
2∑

i=1

[
(N−(Ãi) −N−

DE
)∇u(X) · (Ai − Ãi)

∂φi(X)

∂y

−(N−
DE

− I)∇u(X) · (Ãi −X
(i)

DE
)
∂φi(X)

∂y

]

−
∂2u(X)

∂x∂y

[ 2∑

i=1

[
N−

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)
∂φi(X)

∂y

+N−
DE

(−1, 0)T · (Ai −X
(i)

DE
)φi(X) + (xi − x̄i)(yi − ȳi)

∂φi(X)

∂y
− (x̄i − x)φi(X)

+(x̄i − x)(ȳi − y)
∂φi(X)

∂y

]
+

4∑

i=3

[
− (xi − x)φi(X) + (xi − x)(yi − y)

∂φi(X)

∂y

]]

+

4∑

i=1

Ii
∂φi(X)

∂y
, (4.41)

where X
(i)

DE
= (x̄i, ȳi)

T , i = 1, 2 are arbitrary points on DE.

Proof. We give a proof only for (4.40). (4.41) can be carried out similarly. Taking derivative



Xiaoming He Chapter 4. Approximation capability of the bilinear IFE space 74

for x on both sides of (4.35), we can get

∂(Ih,Tu(X) − u(X))

∂x

=

2∑

i=1

[ ∂
∂x

[
(N−(Ãi) −N−

DE
)∇u(X) · (Ai − Ãi)

]
φi(X) +

(N−(Ãi) −N−
DE

)∇u(X) · (Ai − Ã1)
∂φi(X)

∂x

−
∂

∂x

[
(N−

DE
− I)∇u(X) · (Ãi −X

(i)

DE
)
]
φi(X) − (N−

DE
− I)∇u(X) · (Ãi −X

(i)

DE
)
∂φi(X)

∂x

]

−
∂3u(X)

∂x2∂y

[ 2∑

i=1

[
N−

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)φi(X) + (xi − x̄i)(yi − ȳi)φi(X)

+(x̄i − x)(ȳi − y)φi(X) +
4∑

i=3

(xi − x)(yi − y)φi(X)
]
−

∂2u

∂x∂y

[ 2∑

i=1

[
N−

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)
∂φi(X)

∂x
+N−

DE
(0,−1)T · (Ai −X

(i)

DE
)φi(X)

+(xi − x̄i)(yi − ȳi)
∂φi(X)

∂x
− (ȳi − y)φi(X) + (x̄i − x)(ȳi − y)

∂φi(X)

∂x
+

4∑

i=3

[
− (yi − y)φi(X) + (xi − x)(yi − y)

∂φi(X)

∂x

]]

+
4∑

i=1

Ii
∂φi(X)

∂x
+

4∑

i=1

∂Ii
∂x

φi(X). (4.42)

Taking the derivative with respect to x on both sides of (4.36) and (4.37), we can get

∂Ii
∂x

= −P · (Ai −X), i = 3, 4,

∂Ii
∂x

= −P · (Ai −X) −
∂

∂x

[
(N−(Ãi) − I)∇u(X)(Ai − Ãi)

]
, i = 1, 2,

where

P =
∂

∂x
∇u(X) = (

∂2u(X)

∂x2 ,
∂2u(X)

∂x∂y
)T .

Hence

4∑

i=1

∂Ii
∂x

φi(X)

= −P ·
4∑

i=1

(Ai −X)φi(X) −
2∑

i=1

∂

∂x

[
(N−(Ãi) − I)∇u(X)(Ai − Ãi)

]
φi(X).
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Applying Lemma 4.1.11 to the first term on the right hand side above, letting q = P, d− =
∂3u(X)
∂x2∂y

, we have

4∑

i=1

∂Ii
∂x

φi(X)

=

2∑

i=1

[ ∂
∂x

[
(N−(Ãi) − I)∇u(X) · (Ai − Ãi)

]
φi(X) +

(N−

DE
− I)P · (Ai − Ãi)φi(X) + (N−

DE
− I)P · (Ãi −X

(i)

DE
)φi(X)

]

+
∂3u

∂x2∂y

[ 2∑

i=1

[
N−

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)φi(X) + (xi − x̄i)(yi − ȳi)φi(X)

+(x̄i − x)(ȳi − y)φi(X)
]

+

4∑

i=3

[
(xi − x)(yi − y)φi(X)

]]
. (4.43)

For i = 1, 2, by direct calculations, we also have

∂

∂x

[
(N−(Ãi) −N−

DE
)∇u(X) · (Ai − Ãi)

]
φi(X)

−
∂

∂x

[
(N−

DE
− I)∇u(X) · (Ãi −X

(i)

DE
)
]
φi(X)

−
∂

∂x

[
(N−(Ãi) − I)∇u(X) · (Ai − Ãi)

]
φi(X)

+(N−
DE

− I)P · (Ai − Ãi)φi(X) + (N−
DE

− I)P · (Ãi −X
(i)

DE
)φi(X)

= −
∂

∂x

[
(N−

DE
− I)∇u(X) · (Ai − Ãi)

]
φi(X)

−
∂

∂x

[
(N−

DE
− I)∇u(X) · (Ãi −X

(i)

DE
)
]
φi(X) + (N−

DE
− I)P · (Ai −X

(i)

DE
)φi(X)

= −
∂

∂x

[
(N−

DE
− I)∇u(X) · (Ai −X

(i)

DE
)
]
φi(X) + (N−

DE
− I)P · (Ai −X

(i)

DE
)φi(X)

= −(N−
DE

− I)P · (Ai −XDE)φi(X) + (N−
DE

− I)P · (Ai −X
(i)

DE
)φi(X)

= 0. (4.44)

Plugging (4.43) and (4.44) into (4.42),we finish the proof of (4.40).
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Theorem 4.1.16 For any u ∈ PC3
int(T ) and X = (x, y)T ∈ T̃− ∩ T−, we have

∂2(Ih,Tu(X) − u(X))

∂x∂y

=
2∑

i=1

[
(N−(Ãi) −N−

DE
)∇u(X) · (Ai − Ãi)

∂2φi(X)

∂x∂y

−(N−
DE

− I)∇u(X) · (Ãi −X
(i)

DE
)
∂2φi(X)

∂x∂y

]

−
∂2u(X)

∂x∂y

[ 2∑

i=1

N−
DE

(X
(i)s

DE
−Xs) · (Ai −X

(i)

DE
)
∂2φi(X)

∂x∂y

+N−
DE

(−1, 0)T · (Ai −X
(i)

DE
)
∂φi(X)

∂x
+N−

DE
(0,−1)T · (Ai −X

(i)

DE
)
∂φi(X)

∂y

+(xi − x̄i)(yi − ȳi)
∂2φi(X)

∂x∂y
+ φi(X) − (ȳi − y)

∂φi(X)

∂y
− (x̄i − x)

∂φi(X)

∂x

+(x̄i − x)(ȳi − y)
∂2φi(X)

∂x∂y

]
+

4∑

i=3

[
φi(X) − (yi − y)

∂φi(X)

∂y
− (xi − x)

∂φi(X)

∂x

+(xi − x)(yi − y)
∂2φi(X)

∂x∂y

]]
+

4∑

i=1

Ii
∂2φi(X)

∂x∂y
, (4.45)

where X
(i)

DE
= (x̄i, ȳi)

T , i = 1, 2 are arbitrary points on DE.
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Proof. Taking derivative for y on both sides of (4.40), we can get

∂2(Ih,Tu(X) − u(X))

∂x∂y

=
2∑

i=1

{
∂

∂y

[
(N−(Ãi) −N−

DE
)∇u(X) · (Ai − Ãi)

] ∂φi(X)

∂x

+(N−(Ãi) −N−
DE

)∇u(X) · (Ai − Ãi)
∂2φi(X)

∂x∂y

−
∂

∂y

[
(N−

DE
− I)∇u(X) · (Ãi −X

(i)

DE
)
] ∂φi(X)

∂x

−(N−
DE

− I)∇u(X) · (Ãi −X
(i)

DE
)
∂2φi(X)

∂x∂y

}

−
∂3u(X)

∂x∂y2

{ 2∑

i=1

[
N−

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)
∂φi(X)

∂x

+N−
DE

(0,−1)T · (Ai −X
(i)

DE
)φi(X) + (xi − x̄i)(yi − ȳi)

∂φi(X)

∂x

−(ȳi − y)φi(X) + (x̄i − x)(ȳi − y)
∂φi(X)

∂x

]

+

4∑

i=3

[
− (yi − y)φi(X) + (xi − x)(yi − y)

∂φi(X)

∂x

]}

−
∂2u(X)

∂x∂y

{ 2∑

i=1

[
N−

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)
∂2φi(X)

∂x∂y

+N−
DE

(−1, 0)T · (Ai −X
(i)

DE
)
∂φi(X)

∂x
+N−

DE
(0,−1)T · (Ai −X

(i)

DE
)
∂φi(X)

∂y

+(xi − x̄i)(yi − ȳi)
∂2φi(X)

∂x∂y
+ φi(X) − (ȳi − y)

∂φi(X)

∂y

−(x̄i − x)
∂φi(X)

∂x
+ (x̄i − x)(ȳi − y)

∂2φi(X)

∂x∂y

]

+

4∑

i=3

[
φi(X) − (yi − y)

∂φi(X)

∂y
− (xi − x)

∂φi(X)

∂x
+ (xi − x)(yi − y)

∂2φi(X)

∂x∂y

]}

+

4∑

i=1

∂Ii
∂y

∂φi(X)

∂x
+

4∑

i=1

Ii
∂2φi(X)

∂x∂y
. (4.46)
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Taking the derivative with respect to y on both sides of (4.36) and (4.37), then we can get

∂Ii
∂y

= −P · (Ai −X), i = 3, 4,

∂Ii
∂y

= −P · (Ai −X) −
∂

∂x

[
(N−(Ãi) − I)∇u(X)(Ai − Ãi)

]
, i = 1, 2,

where

P =
∂

∂y
∇u(X) = (

∂2u(X)

∂x∂y
,
∂2u(X)

∂y2 )T .

Hence,

4∑

i=1

∂Ii
∂y

∂φi(X)

∂x
= −P ·

4∑

i=1

(Ai −X)
∂φi(X)

∂x

−
2∑

i=1

∂

∂y

[
(N−(Ãi) − I)∇u(X)(Ai − Ãi)

]∂φi(X)

∂x
. (4.47)

Taking the derivative for x on both sides of (4.34), we get

q ·
4∑

i=1

(Ai −X)
∂φi(X)

∂x

=

2∑

i=1

[
− (N−

DE
− I)q · (Ai − Ãi)

∂φi(X)

∂x
− (N−

DE
− I)q · (Ãi −X

(i)

DE
)
∂φi(X)

∂x

]

−d−
[ 2∑

i=1

[
N−

DE
(0,−1)T · (Ai −X

(i)

DE
)φi(X) +N−

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)
∂φi(X)

∂x

+(xi − x̄i)(yi − ȳi)
∂φi(X)

∂x
− (ȳi − y)φi(X) + (x̄i − x)(ȳi − y)

∂φi(X)

∂x

]

+

4∑

i=3

[
− (yi − y)φi(X) + (xi − x)(yi − y)

∂φ1(X)

∂x

]]
. (4.48)

Applying (4.48) to the first term on the right hand side of (4.47) and letting

q = P, d− =
∂3u(X)

∂x∂y2 ,
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we have

4∑

i=1

∂Ii
∂y

∂φi(X)

∂x

=

2∑

i=1

{
−

∂

∂y

[
(N−(Ãi) − I)∇u(X)(Ai − Ãi)

]∂φi(X)

∂x
+ (N−

DE
− I)P · (Ai − Ãi)

∂φi(X)

∂x

+(N−
DE

− I)P · (Ãi −XDE)
∂φi(X)

∂x

}

−
∂3u(X)

∂x∂y2

{ 2∑

i=1

[
N−

DE
(0,−1)T · (Ai −X

(i)

DE
)φi(X) +N−

DE
(X

(i)s

DE
−Xs) · (Ai −XDE)

∂φi(X)

∂x

+(xi − x̄i)(yi − ȳi)
∂φi(X)

∂x
− (ȳi − y)φi(X) + (x̄i − x)(ȳi − y)

∂φi(X)

∂x

]

+
4∑

i=3

[
− (yi − y)φi(X) + (xi − x)(yi − y)

∂φi(X)

∂x

]}
. (4.49)

For i = 1, 2, by direct calculations similar to (4.44), we also have

∂

∂y
(N−(Ãi) −N−

DE
)∇u(X) · (Ai − Ãi)

∂φi(X)

∂x

−
∂

∂y

[
(N−

DE
− I)∇u(X) · (Ãi −X

(i)

DE
)
]∂φi(X)

∂x

−
∂

∂y

[
(N−(Ãi) − I)∇u(X)(Ai − Ãi)

]∂φi(X)

∂x

+(N−
DE

− I)P · (Ai − Ãi)
∂φi(X)

∂x
+ (N−

DE
− I)P · (Ã1 −X

(i)

DE
)
∂φ1(X)

∂x
= 0. (4.50)

Plugging (4.49) and (4.50) into (4.46), we finish the proof of (4.45).

Based on the above expansions, we get the following theorem.

Theorem 4.1.17 There exits a constant C independent of interface and mesh such that

‖Ih,Tu− u‖0,T̃−∩T−
≤ Ch2

(
|u|1,T̃−∩T− + |u|2,T̃−∩T−

)
≤ Ch2 ‖u‖2,T , (4.51)

|Ih,Tu− u|1,T̃−∩T− ≤ Ch
(
|u|1,T̃−∩T− + |u|2,T̃−∩T−

)
≤ Ch ‖u‖2,T , (4.52)

|Ih,Tu− u|2,T̃−∩T− ≤ C
(
|u|1,T̃−∩T− + |u|2,T̃−∩T−

)
≤ C ‖u‖2,T , (4.53)

for any u ∈ PH2
int(T ) where T is a Type II interface element.
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Proof. Because of (H6), we need only show that this is true for any u ∈ PC3
int(T ). For

(4.51), the result follows by letting X
(i)s

DE
= Ã⊥

i (i = 1, 2) in (4.35) and applying arguments
similar to those used in the proof of Theorem 4.1.2. For (4.52), the result follows by letting

X
(i)s

DE
= Ã⊥

i (i = 1, 2) in (4.40) and (4.41) and applying arguments similar to those used
in the proof of Theorem 4.1.2. Note that (3.12) in Theorem 3.4.2 is used here. Finally,

since
∂2(Ih,T u)

∂x2 =
∂2(Ih,T u)

∂y2 = 0, then we complete the proof of (4.53) by applying the same

techniques of Theorem 4.1.2 to (4.45). Note that (3.13) in Theorem 3.4.2 is used here.

The estimate on T̃+ ∩ T+ is rather similar to that on T̃− ∩ T−, so we only state the results
in this section. Let X = (x, y)T be a point in T̃+ ∩ T+. Without loss of generality, we
assume that line segments XAi, i = 1, 2 do not intersect with the interface and DE, while
line segment XAi, i = 3, 4 meet Γ at Ãi, i = 3, 4, see Figure 4.4. Also, we assume that
Ai = (xi, yi)

T , i = 1, 2, 3, 4 and

Ãi = t̃iAi + (1 − t̃i)X = (x̃i, ỹi)
T , i = 3, 4.

ΓX

A1

A2 A3

A4

D

E

T+

T−

Ã3

Ã4

Figure 4.4: A point X ∈ T̃+ ∩ T+ is connected to the four vertices by line segments in a
Type II interface element

Lemma 4.1.12 Given a two-dimensional vector q, a point X ∈ T̃+ and two real numbers

r, d+, then there exists a function v ∈ Sh(T ) such that ∇v(X) = q, v(X) = r,
∂2v+(X)
∂x∂y

= d+
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and

q(X) ·
4∑

i=1

(Ai −X)φi(X)

=

4∑

i=3

[
− (N+

DE
− I)q · (Ai − Ãi)φi(X) − (N+

DE
− I)q · (Ãi −X

(i)

DE
)φi(X)

]

−d+
[ 4∑

i=3

[
N+

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)φi(X) + (xi − x̄i)(yi − ȳi)φi(X)

+(x̄i − x)(ȳi − y)φi(X)
]

+
2∑

i=1

[
(xi − x)(yi − y)φi(X)

]]
,

where X
(i)

DE
= (x̄i, ȳi)

T , i = 3, 4 are arbitrary points on DE.

Theorem 4.1.18 For any u ∈ PC2
int(T ) and X = (x, y)T ∈ T̃+ ∩ T+, we have

Ih,Tu(X) − u(X)

=
4∑

i=3

[
(N+(Ãi) −N+

DE
)∇u(X) · (Ai − Ãi)φi(X) − (N+

DE
− I)∇u(X) · (Ãi −X

(i)

DE
)φi(X)

]

−
∂2u(X)

∂x∂y

[ 4∑

i=3

[
N+

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)φi(X) + (xi − x̄i)(yi − ȳi)φi(X)

+(x̄i − x)(ȳi − y)φi(X)
]

+

2∑

i=1

(xi − x)(yi − y)φi(X)
]

+

4∑

i=3

[
(N+(Ãi) − I)

∫ 1

0

d[∇u+(tÃi + (1 − t)X)]

dt
· (Ai − Ãi) dt φi(X)

+

∫ t̃i

0

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt φi(X) +

∫ 1

t̃i

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt φi(X)

]

+

2∑

i=1

∫ 1

0

(1 − t)
d2u(tAi + (1 − t)X)

dt2
dt φi(X), (4.54)

where X
(i)

DE
= (x̄i, ȳi)

T , i = 3, 4 are arbitrary points on DE.
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Let Ii, i = 1, 2, 3, 4 be the integral terms involving vertices Ai, i = 1, 2, 3, 4 in (4.54).

Theorem 4.1.19 For any u ∈ PC3
int(T ) and X = (x, y)T ∈ T̃+ ∩ T+, we have

∂(Ih,Tu(X) − u(X))

∂x

=

4∑

i=3

[
(N+(Ãi) −N+

DE
)∇u(X) · (Ai − Ãi)

∂φi(X)

∂x

−(N+

DE
− I)∇u(X) · (Ãi −X

(i)

DE
)
∂φi(X)

∂x

]

−
∂2u(X)

∂x∂y

[ 4∑

i=3

[
N+

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)
∂φi(X)

∂x

+N+
DE

(0,−1)T · (Ai −X
(i)

DE
)φi(X) + (xi − x̄i)(yi − ȳi)

∂φi(X)

∂x

−(ȳi − y)φi(X) + (x̄i − x)(ȳi − y)
∂φi(X)

∂x

]

+

2∑

i=1

[
− (yi − y)φi(X) + (xi − x)(yi − y)

∂φi(X)

∂x

]]
+

4∑

i=1

Ii
∂φi(X)

∂x
,

∂(Ih,Tu(X) − u(X))

∂y

=

4∑

i=3

[
(N+(Ãi) −N+

DE
)∇u(X) · (Ai − Ãi)

∂φi(X)

∂y

−(N+
DE

− I)∇u(X) · (Ãi −X
(i)

DE
)
∂φi(X)

∂y

]

−
∂2u(X)

∂x∂y

[ 4∑

i=3

[
N+

DE
(X

(i)s

DE
−Xs) · (Ai −X

(i)

DE
)
∂φi(X)

∂y

+N+
DE

(−1, 0)T · (Ai −X
(i)

DE
)φi(X) + (xi − x̄i)(yi − ȳi)

∂φi(X)

∂y

−(x̄i − x)φi(X) + (x̄i − x)(ȳi − y)
∂φi(X)

∂y

]

+
2∑

i=1

[
− (xi − x)φi(X) + (xi − x)(yi − y)

∂φi(X)

∂y

]]
+

4∑

i=1

Ii
∂φi(X)

∂y
,

where X
(i)

DE
= (x̄i, ȳi)

T , i = 3, 4 are arbitrary points on DE.
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Theorem 4.1.20 For any u ∈ PC3
int(T ) and X = (x, y)T ∈ T̃+ ∩ T+, we have

∂2(Ih,Tu(X) − u(X))

∂x∂y

=
4∑

i=3

[
(N+(Ãi) −N+

DE
)∇u(X) · (Ai − Ãi)

∂2φi(X)

∂x∂y

−(N+
DE

− I)∇u(X) · (Ãi −X
(i)

DE
)
∂2φi(X)

∂x∂y

]

−
∂2u(X)

∂x∂y

[ 4∑

i=3

N+
DE

(X
(i)s

DE
−Xs) · (Ai −X

(i)

DE
)
∂2φi(X)

∂x∂y

+N+
DE

(−1, 0)T · (Ai −X
(i)

DE
)
∂φi(X)

∂x
+N+

DE
(0,−1)T · (Ai −X

(i)

DE
)
∂φi(X)

∂y

+(xi − x̄i)(yi − ȳi)
∂2φi(X)

∂x∂y
+ φi(X) − (ȳi − y)

∂φi(X)

∂y
− (x̄i − x)

∂φi(X)

∂x

+(x̄i − x)(ȳi − y)
∂2φi(X)

∂x∂y

]
+

2∑

i=1

[
φi(X) − (yi − y)

∂φi(X)

∂y
− (xi − x)

∂φi(X)

∂x

+(xi − x)(yi − y)
∂2φi(X)

∂x∂y

]]
+

4∑

i=1

Ii
∂2φi(X)

∂x∂y
,

where X
(i)

DE
= (x̄i, ȳi)

T , i = 1, 2 are arbitrary points on DE.

Theorem 4.1.21 There exits a constant C independent of interface and mesh such that

‖Ih,Tu− u‖0,T̃+∩T+ ≤ Ch2
(
|u|1,T̃+∩T+ + |u|2,T̃+∩T+

)
≤ Ch2 ‖u‖2,T ,

|Ih,Tu− u|1,T̃+∩T+ ≤ Ch
(
|u|1,T̃+∩T+ + |u|2,T̃+∩T+

)
≤ Ch ‖u‖2,T ,

|Ih,Tu− u|2,T̃+∩T+ ≤ C
(
|u|1,T̃+∩T+ + |u|2,T̃+∩T+

)
≤ C ‖u‖2,T ,

for any u ∈ PH2
int(T ) where T is a Type II interface rectangle.

Following the idea of Theorem 4.1.11, we can obtain the following two lemmas.

Theorem 4.1.22 If T̃+ ∩ T− is not empty, then there exits a constant C independent of
interface and mesh such that

‖Ih,Tu− u‖0,T̃+∩T− ≤ Ch2
(
|u|1,T̃+∩T− + |u|2,T̃+∩T−

)
≤ Ch2 ‖u‖2,T ,

|Ih,Tu− u|1,T̃+∩T− ≤ Ch
(
|u|1,T̃+∩T− + |u|2,T̃+∩T−

)
≤ Ch ‖u‖2,T ,

|Ih,Tu− u|2,T̃+∩T− ≤ C
(
|u|1,T̃+∩T− + |u|2,T̃+∩T−

)
≤ C ‖u‖2,T ,
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for any u ∈ PH2
int(T ), where T is a Type II interface element.

Theorem 4.1.23 If T̃−∩T+ is not empty, there exits a constant C independent of interface
and mesh such that

‖Ih,Tu− u‖0,T̃−∩T+ ≤ Ch2
(
|u|1,T̃−∩T+ + |u|2,T̃−∩T+

)
≤ Ch2 ‖u‖2,T ,

|Ih,Tu− u|1,T̃−∩T+ ≤ Ch
(
|u|1,T̃−∩T+ + |u|2,T̃−∩T+

)
≤ Ch ‖u‖2,T ,

|Ih,Tu− u|2,T̃−∩T+ ≤ C
(
|u|1,T̃−∩T+ + |u|2,T̃−∩T+

)
≤ C ‖u‖2,T ,

for any u ∈ PH2
int(T ), where T is a Type II interface element.

Finally, combining Theorems 4.1.17, 4.1.21, 4.1.22 and 4.1.23, we have the following theorem
for the interpolation error on each Type II interface element.

Theorem 4.1.24 There exits a constant C independent of interface and mesh such that

‖Ih,Tu− u‖0,T ≤ Ch2
(
|u|1,T + |u|2,T

)
≤ Ch2 ‖u‖2,T ,

|Ih,Tu− u|1,T ≤ Ch
(
|u|1,T + |u|2,T

)
≤ Ch ‖u‖2,T ,

|Ih,Tu− u|2,T ≤ C
(
|u|1,T + |u|2,T

)
≤ C ‖u‖2,T ,

for any u ∈ PH2
int(T ), where T is a Type II interface element.

4.1.4 Interpolation error on Ω

We now ready to derive the error estimates for the interpolation Ihu in Sh(Ω).

Theorem 4.1.25 There exists a constant C independent of interface and mesh such that

‖Ihu− u‖0,Ω ≤ Ch2 ‖u‖2,Ω , (4.55)

|Ihu− u|1,Ω ≤ Ch ‖u‖2,Ω , (4.56)

|Ihu− u|2,Ω ≤ C ‖u‖2,Ω , (4.57)

for any u ∈ PH2
int(Ω) and h > 0 small enough.

Proof. First we have

‖Ihu− u‖2
0,Ω =

∑

T∈Th

‖Ih,Tu− u‖2
0,T .
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If T is a Type I interface element, by Theorem 4.1.13, we have

‖Ih,Tu− u‖2
0,T ≤ Ch4 ‖u‖2

2,T .

Similarly, if T is a Type II interface element, by Theorem 4.1.24, we have

‖Ih,Tu− u‖2
0,T ≤ Ch4 ‖u‖2

2,T .

If T is a non-interface element, by the standard finite element interpolation error theory, we
can get

‖Ih,Tu− u‖2
0,T ≤ Ch4 ‖u‖2

2,T

Therefore, we have

‖Ihu− u‖2
0,Ω ≤

∑

T∈Th

Ch4 ‖u‖2
2,T = Ch4 ‖u‖2

2,Ω ,

which leads to (4.55). Similar derivation can be carried out to obtain (4.56) and (4.57).

4.2 Numerical examples

We now present a group of numerical results to illustrate the approximation features of the
bilinear IFE space.

For simplicity, we only present results obtained by using the bilinear IFE space based on
uniformly rectangular Cartesian partitions in the rectangular domain Ω = (−1, 1)× (−1, 1).
The interface curve Γ is a circle with radius r0 = π/6.28 which separates Ω into two sub-
domains Ω− and Ω+ with Ω− = {(x, y) | x2 + y2 ≤ r2

0}. Here we show numerical results
for the bilinear IFE interpolation Ihu of the following function

u(x, y) =





rα

β− , if r ≤ r0,

rα

β+ +

(
1
β− − 1

β+

)
rα
0 , otherwise,

with α = 5, r =
√
x2 + y2. In the following tables, ‖·‖0 represents the usual L2 norm, |·|1

is the usual semi-H1 norm, and of course, they are computed numerically according to the
mesh used.

Table 4.1 contains actual errors of the IFE interpolation Ihu with various partition sizes h
for β− = 1, β+ = 10 which represents a moderate discontinuity in the coefficient. By simple
calculations, we can easily see that the data in this table satisfy

‖Ihu− u‖0 ≈
1

4
‖Iĥu− u‖0 , |Ihu− u|1 ≈

1

2
|Iĥu− u|1 ,
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for h = ĥ/2. Using linear regression, we can also see that the data in this table obey

‖Ihu− u‖0 ≈ 0.3750 h1.996, |Ihu− u|1 ≈ 0.9405 h1.002,

which clearly indicates that the interpolation converges to u with convergence rates O(h2)
and O(h) in the L2 norm and H1 norm, respectively, as predicted by Theorem 4.1.25.

Table 4.2 contains actual errors of the IFE interpolation Ihu with various partition size h for
β− = 1, β+ = 10000 which represents a large discontinuity in the coefficient. Using linear
regression again, we can see that

‖Ihu− u‖0 ≈ 0.09557 h1.954, |Ihu− u|1 ≈ 0.3582 h1.030,

which are also in agreement with the error estimates given in Theorem 4.1.25. From Figure
4.5 for the linear regressions above, we can see that the data in Table 4.1 and 4.2 match the
linear regression lines very well.

h ‖Ihu− u‖0 |Ihu− u|1
1/16 0.001479 0.05848
1/32 3.715×10−4 0.02918
1/64 9.321×10−5 0.01453
1/128 2.334×10−5 0.007264
1/256 5.840×10−6 0.003635

Table 4.1: Errors in the interpolation Ihu when β− = 1, β+ = 10

h ‖Ihu− u‖0 |Ihu− u|1
1/16 4.159×10−4 0.02089
1/32 1.104×10−4 0.01011
1/64 2.878×10−5 0.004832
1/128 7.323×10−6 0.002401
1/256 1.848×10−6 0.001209

Table 4.2: Errors in the interpolation Ihu when β− = 1, β+ = 10000

Remark 4.2.1 When we compute the errors in L2 norm and H1 semi-norm in the tables
above, we use Gauss quadratures. Because the integrands of these errors usually lack the
smoothness which is required by Gauss quadratures, some extra errors are caused by the lack
of smoothness. However, in each local interface element, these extra errors only exist in the
parts bounded by the original interface Γ and its approximation DE, whose area is O(h3).
Since the integrands are usually bounded, then the extra error in that area is O(h3), which
doesn’t change the interpolation error order. All the errors calculated for the numerical
examples in this dissertation have similar situation.
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Figure 4.5: The plot on the left is for the linear regression of the data in Table 4.1 and the
plot on the right is for the linear regression of the data in Table 4.2.



Chapter 5

Galerkin method with bilinear IFE

In Chapter 3 and Chapter 4, we construct the bilinear IFE space Sh(Ω) and analyze its
approximation capability. Now we start to apply bilinear IFE to different numerical methods
and discuss the corresponding convergence analysis. In this chapter, we will first discuss the
Galerkin method based on the bilinear IFE space Sh(Ω), which was originally introduced in
[149]. Then we will analyze its convergence [110].

5.1 Galerkin method based on bilinear IFE

In this section we recall the Galerkin method based on the bilinear IFE space Sh(Ω) from
[149]. Let Th, h > 0 be a family of rectangular meshes of the solution domain Ω that can be
a union of rectangles. Let

H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω}.

We multiply the differential equation (1.1) by any v ∈ H1
0 (Ω) and integrate it over Ωs(s =

+,−) to have

−

∫

Ωs

∇ ·
(
βs∇u)v dxdy =

∫

Ωs

fv dxdy, ∀ v ∈ H1
0 (Ω).

Then a straightforward application of the Green’s formula leads to
∫

Ωs

βs∇u · ∇v dxdy −

∫

∂Ωs

β
∂u

∂n
v ds =

∫

Ωs

fv dxdy, s = +,−, ∀ v ∈ H1
0 (Ω). (5.1)

Summing (5.1) over s, we get the weak formulation

∫

Ω

β∇u · ∇v dxdy =

∫

Ω

fv dxdy, ∀ v ∈ H1
0 (Ω). (5.2)

88
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Here we have used the flux jump condition (1.4) and v ∈ H1
0 (Ω).

Let Sh,0(Ω) ⊂ Sh(Ω) consist of functions of Sh(Ω) vanishing on Nh ∩ ∂Ω. The bilinear IFE
Galerkin method can be described as follows: find uh ∈ Sh(Ω) satisfying

∑

T∈Th

∫

T

β∇uh · ∇vh dxdy =

∫

Ω

fvh dxdy, ∀ vh ∈ Sh,0(Ω). (5.3)

5.2 Numerical Examples

Since this bilinear IFE space has an O(h2) (in L2-norm) and an O(h) (in H1-norm) approx-
imation capability, we naturally expect the finite element method based on this IFE space
to perform accordingly, which is confirmed numerically in [112, 149]. In this section, for
the comparison among different numerical methods with bilinear IFE in Section 8.2.2, we
will present some numerical results about the convergence of the IFE-Galerkin method for
solving the following model interface problem

−∇ ·
(
β∇u

)
= f, (x, y) ∈ Ω,

u|∂Ω = g,

together with the jump conditions on the interface Γ:

[u] |Γ = 0,[
β
∂u

∂n

]
|Γ = 0.

Here Ω = [−1, 1] × [−1, 1]. The interface curve Γ is a circle with radius r0 = π/6.28 that
separates Ω into two sub-domains Ω− and Ω+ with Ω− = {(x, y) | x2 + y2 ≤ r2

0}. The
coefficient function is

β(x, y) =

{
β−, (x, y) ∈ Ω−,
β+, (x, y) ∈ Ω+.

The boundary condition function g(x, y) and the source term f(x, y) are chosen such that
the following function u is the exact solution.

u(x, y) =





rα

β− , if r ≤ r0,

rα

β+ +

(
1
β− − 1

β+

)
rα
0 , otherwise,

with α = 3, r =
√
x2 + y2. For simplicity, we only use the simple rectangular Cartesian

meshes in our numerical experiments. In the following tables, ‖·‖0 represents the usual L2

norm, |·|1 is the usual semi-H1 norm, and of course, they are computed numerically according
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to the mesh used. The quantity ‖·‖∞ is the discrete infinity norm which is the maximum of
the absolute values of the given function at all the nodes of a mesh.

Table 5.1 contains actual errors of the bilinear IFE solutions uh with various partition size
h for the interface problem with β− = 1, β+ = 10. We can easily see that the data in the
second and third columns of this table satisfy

‖uh − u‖0 ≈
1

4
‖uĥ − u‖0 , |uh − u|1 ≈

1

2
|uĥ − u|1 ,

for h = ĥ/2. Using linear regression, we can also see that the data in this table obey

‖uh − u‖0 ≈ 0.2789 h2.0204, |uh − u|1 ≈ 0.6855 h0.9525,

which indicates that the bilinear IFE solution uh converges to the exact solution with conver-
gence rates O(h2) and O(h) in the L2 norm and H1 norm, respectively. This is in agreement
with those error estimates for the bilinear IFE interpolation obtained in Chapter 4.

However, numerical experiments indicate that the bilinear IFE solution does not always have
the second order convergence in the L∞ norm because the data in the fourth column of Table
5.1 obey

|uh − u|∞ ≈ 0.0179 h0.7643,

which clearly shows that the rate at which uh converges to u is not O(h2). The question
under what conditions the bilinear IFE solution can have a second order convergence in the
L∞ norm is still open.

The bilinear IFE method also works well for the case in which the coefficient function has a
large jump, see Table 5.2, which contains actual errors of the bilinear IFE solutions uh with
various partition size h for the interface problem with β− = 1, β+ = 10000. The errors in
this group of computations obey

‖uh − u‖0 ≈ 0.2123 h1.9582, |uh − u|1 ≈ 0.8855 h1.0802,

which again are in agreement with those error estimates for the bilinear IFE interpolation.
From Figure 5.1 for the linear regressions above, we can see that the data points match the
linear regression lines very well.

5.3 The convergence of Galerkin method based on bi-

linear IFE

From the numerical experiments published up to now, we have observed that all of the
IFE methods converge and can generate approximate solutions to interface problems with
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h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/8 4.2061 × 10−3 9.6080 × 10−2 −2.9687 × 10−3

1/16 1.0652 × 10−3 4.9346 × 10−2 −2.7375 × 10−3

1/32 2.4680 × 10−4 2.4517 × 10−2 −1.2725 × 10−3

1/64 5.8112 × 10−5 1.2633 × 10−2 −8.0369 × 10−4

1/128 1.6384 × 10−5 6.9959 × 10−3 −3.8749 × 10−4

Table 5.1: Errors of the IFE solutions for the case when β− = 1, β+ = 10.

h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/8 3.4231 × 10−3 9.1187 × 10−2 −2.4971 × 10−3

1/16 9.5498 × 10−4 4.5672 × 10−2 −8.6241 × 10−4

1/32 2.5688 × 10−4 2.1478 × 10−2 −4.6777 × 10−4

1/64 6.1961 × 10−5 9.6034 × 10−2 −1.6250 × 10−4

1/128 1.5168 × 10−5 4.7067 × 10−3 −6.6273 × 10−5

Table 5.2: Errors of the IFE solutions for the case when β− = 1, β+ = 10000.

the same optimal convergence rates as the corresponding standard finite element spaces.
For example, the Galerkin methods with the bilinear or linear IFE spaces have the O(h2)
convergence rate for L2 norm and O(h) convergence rate for H1 norm [112, 143, 144, 149].
However, to our knowledge, the convergence analysis for IFE methods has been carried out
only for 1D problems [3, 150] where the IFE methods are conforming methods. The analysis
for 2D and 3D IFE methods is more complicated because of the discontinuity in the functions
of the involved IFE spaces. Since the 2D and 3D interface problems are much more important
from the point of view of applications, the theoretical analysis on the convergence of the 2D
and 3D IFE methods demands immediate attentions.

In this section, we will analyze the convergence of the bilinear Galerkin IFE solution for the
model interface problem (1.1)-(1.4). The core effort of our analysis is to derive error bounds
in which the constants C are independent of interface and mesh.

5.3.1 Some preliminaries and notations

In this section, we will introduce some preliminaries and notations which will be used for
the convergence analysis. We will use the same definitions and notations defined at the
beginning of Chapter 3 and Chapter 4. We will also use Th to denote the collection of all
elements in a mesh with size parameter h. We note that when h is small enough, most of
elements in Th are non-interface elements not intersecting with the interface Γ. Only those
elements in the vicinity of Γ have the possibility to be cut through by Γ and become the
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Figure 5.1: The plot on the left is for the linear regression of the data in Table 5.1 and the
plot on the right is for the linear regression of the data in Table 5.2.

so-called interface elements. We will use Tint to denote the collection of all interface elements
of Th and let Ωint = ∪T∈Tint

T .

In all the discussions from now on, we assume that the usual hypothesis (H1)-(H5) used in
Chapter 3 and Chapter 4 are also hold. In addition, we also assume that

(H6): The boundary of Ω and the interface Γ are such that the following Sobolev embedding
inequality holds:

‖v‖0,p,Ω ≤ Cp1/2 ‖v‖1,Ω , ∀p > 2, ∀v ∈ PH1
int(Ω). (5.4)

We would like to point out that when Ω has a smooth boundary, the lemma 2.1 in [180]
states that (5.4) is true for v ∈ H1

0 (Ω). Using the extension technique, see Section 6.5 of
[162] for example, we can see that this inequality is also true for v ∈ H1(Ω).

For the convergence analysis, we will use the following notations to differentiate the regular
bilinear finite elements and the bilinear IFE. On each element T , we first let Snon

h (T ) be
spanned by the 4 regular bilinear nodal basis functions ψi(x, y), i = 1, 2, 3, 4 on T . On each
of the interface rectangular element T , we assume that the vertices of an interface element
T are Ai, i = 1, 2, 3, 4, with Ai = (xi, yi)

t. We define φi(X) to be the bilinear IFE function
described by (3.4) such that

φi(xj , yj) =

{
1, if i = j,
0, if i 6= j,

for 1 ≤ i, j ≤ 4. We then let Sint
h (T ) = span{φi, i = 1, 2, 3, 4}.
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5.3.2 Bilinear interpolation of bilinear IFE functions

In this section, we present several lemmas about the bilinear interpolation of bilinear IFE
functions. We will discuss both Type I and Type II interface elements configured as in
Figure 3.1 for the local bilinear IFE space. Some notations introduced in Chapter 3 will be
used. We use C to represent a generic constant whose value might be different from line to
line. Unless otherwise specified, all the generic constants C in the presentation below are
independent of interface and mesh.

We now consider the relationship between Snon
h (T ) and Sint

h (T ). Consider the following
mappings:

Īh : C(T ) −→ Snon
h (T ), Īhφ(X) =

4∑

i=1

φ(Ai)ψi(X),

Ĩh : C(T ) −→ Sint
h (T ), Ĩhφ(X) =

d∑

i=1

φ(Ai)φi(X).

By direct verification, we can easily see that

ĪhĨhūh = ūh, ∀ūh ∈ Snon
h (T ), ĨhĪhũh = ũh, ∀ũh ∈ Sint

h (T ),

and
∥∥ũh − Īhũh

∥∥
k,T

=
∥∥∥ūh − Ĩhūh

∥∥∥
k,T

,

where

k = 0, 1, ūh ∈ Snon
h (T ), ũh ∈ Sint

h (T ) such that ūh = Īhũh or ũh = Ĩhūh.

In fact, our interpolation operator Ih for the bilinear IFE space can be locally described by

Ih =





Īh, on non-interface elements,

Ĩh, on interface elements.

Lemma 5.3.1 There exists a constant C such that
∥∥Īhũh

∥∥
0,T

≤ C ‖ũh‖0,T , ∀ũh ∈ Sint
h (T ). (5.5)

Proof. Here we will use the notations and conclusions of Lemma 3.4.4 and Lemma 3.4.5.
Let

ūh = Īhũh =

4∑

i=1

ũh(Ai)ψi(X). (5.6)



Xiaoming He Chapter 5. Galerkin method with bilinear IFE space 94

By the shape regular assumption, there exist two positive constants C1 and C2 independent
of interface and mesh such that C1h

2
T ≤ |JF | ≤ C2h

2
T . Then using (3.17) and (5.6), we get

‖ūh‖
2
0,T =

∫

T

ū2
h(X)dX =

∫

T̂

̂̄uh
2
(X̂) |JF | dX̂ ≤ Ch2

T

∫

T̂

̂̄uh
2
(X̂)dX̂

≤ Ch2
T ‖~u‖2 ≤ Ch2

T (
∥∥~u−

∥∥2
+
∥∥~u+

∥∥2
)

≤ Ch2
T ‖~us‖2 , s = +,−. (5.7)

Let s be such that T1/t ⊂ T s for t = 2 or 4 depending on the type of T , then using
representation (3.15) and (3.16) for ũh, we have

‖ũh‖
2
0,T =

∥∥ũ−h
∥∥2

0,T−
+
∥∥ũ+

h

∥∥2

0,T+ ≥ ‖ũs
h‖

2
0,T s =

∫

T s

[ũs
h(X)]2 dX

=

∫

T̂ s

̂̃us
h

2
(X̂) |JF | dX̂ ≥ Ch2

T

∫

T̂ s

̂̃us
h

2
(X̂)dX̂

≥ Ch2
T

∫

T̂1/t

̂̃us
h

2
(X̂)dX̂ = Ch2

T (~us)tÂ1/2~u
s

≥ Ch2
T ‖~us‖2 (5.8)

for some positive constant C where we have used the fact that matrix

Â1/2 =

(∫

T̂1/t

ψ̂iψ̂jdX̂

)4

i,j=1

is positive definite. Combining the two inequalities (5.7) and (5.8) leads to (5.5).

Lemma 5.3.2 There exits a constant C such that
∥∥ũh − Īhũh

∥∥
0,T

≤ Ch ‖ũh‖1,T , ∀ũh ∈ Sint
h (T ). (5.9)

Proof. Let ˆ̄Ih denote the interpolation Īh defined on T̂ . Applying the result in Lemma 5.3.1
on T̂ , we have

∥∥∥̂̃uh −
̂̄Ihũh

∥∥∥
0,T̂

=
∥∥∥̂̃uh − c−

(
ˆ̄Iĥ̃uh −

ˆ̄Ihc
)∥∥∥

0,T̂

≤
∥∥∥̂̃uh − c

∥∥∥+
∥∥∥ ˆ̄Ih

(
̂̃uh − c

)∥∥∥
0,T̂

≤ C
∥∥∥̂̃uh − c

∥∥∥
0,T̂

≤ C
∥∥∥ˆ̃uh − c

∥∥∥
1,T̂
,
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for any constant c and this leads to
∥∥∥̂̃uh −

̂̄Ihũh

∥∥∥
0,T̂

≤ C inf
c

∥∥∥̂̃uh − c
∥∥∥

1,T̂

≤ C
∣∣∣̂̃uh

∣∣∣
1,T̂
.

Then (5.9) follows from the standard scaling argument.

For those interface elements as configured in Figures 3.1, we have the following lemma.

Lemma 5.3.3 Assume f is a continuous piecewise bilinear function and its two pieces on
A1A2 is separated by E ∈ A1A2. If f(A1) = f(A2) = 0 and ‖A1A2‖ = h, then

|f(E)| ≤
1

2

∣∣[∇f(E)] · ~vA1A2

∣∣h. (5.10)

Proof. For any continuous piecewise linear function f on A1A2 with f(A1) = f(A2) = 0, we
can use the Taylor expansion to obtain the following:

0 = f(A1) = f(E−) + ∇f(E−) · (A1 − E) = f(E) + ∇f(E−) · (A1 − E),

0 = f(A2) = f(E+) + ∇f(E+) · (A2 − E) = f(E) + ∇f(E+) · (A2 − E).

Hence

f(E) =
1

2
[−∇f(E−) · (A1 − E) −∇f(E+) · (A2 −E)]

Let ~vA1A2
denote the unit vector pointing from A1 to A2, then

f(E) =
1

2
[∇f(E−) · ~vA1A2

‖E −A1‖ − ∇f(E+) · ~vA1A2
‖A2 −E‖]

Since f(A1) = f(A2) = 0 and f is continuous, then

∇f(E−) · ~vA1A2
> 0, ∇f(E+) · ~vA1A2

< 0 if f(E) > 0,

∇f(E−) · ~vA1A2
< 0, ∇f(E+) · ~vA1A2

> 0 if f(E) < 0.

Because ‖E − A1‖ ≤ h and ‖A2 −E‖ ≤ h, we get

f(E) ≤
1

2
[∇f(E−) · ~vA1A2

h−∇f(E+) · ~vA1A2
h] ≤

1

2

∣∣[∇f(E)] · ~vA1A2

∣∣h if f(E) > 0,

f(E) ≥
1

2
[∇f(E−) · ~vA1A2

h−∇f(E+) · ~vA1A2
h] ≥ −

1

2

∣∣[∇f(E)] · ~vA1A2

∣∣h if f(E) < 0,

which lead to (5.10).
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We derive an estimate for the difference ũh − Īhũh on ∂T in the following lemma.

Lemma 5.3.4 There exits a constant C such that

∥∥ũh − Īhũh

∥∥
0,∂T

≤ Ch1/2 |ũh|1,T , ∀ũh ∈ Sint
h (T ). (5.11)

Proof. Without loss of generality, we consider those interface elements as configured in
Figures 3.1. First we discuss interface elements of Type I. We note that ũh is a C0 piecewise
bilinear function and Īhũh is its bilinear interpolation. Hence

∥∥ũh − Īhũh

∥∥
0,A2A3

=
∥∥ũh − Īhũh

∥∥
0,A3A4

= 0.

In addition, since ũh(X) − Īhũh(X) is piecewise linear on A1A2 and vanishes at A1 and A2,
we can show that

max
X∈A1A2

∣∣ũh(X) − Īhũh(X)
∣∣ ≤

∣∣ũh(E) − Īhũh(E)
∣∣ . (5.12)

Since Īhũh is continuous on T , by applying (5.10) to f(X) = ũh(X) − Īhũh(X), we have

∣∣ũh(E) − Īhũh(E)
∣∣ ≤

1

2

∣∣[∇(ũh(E) − Īhũh(E))
]
· ~vA1A2

∣∣hx

=
1

2

∣∣[∇ũh(E)] · ~vA1A2

∣∣hx

≤ C
∥∥∇ũ+

h (E)
∥∥hx

≤ C |ũh|1,T , (5.13)

where we have applied Lemma 4.1.1 and the inverse inequality (3.19) to obtain the last two
inequalities above, respectively. Then, the inequalities (5.12) and (5.13) lead to

∥∥ũh − Īhũh

∥∥
0,A1A2

=

[∫

A1A2

[
ũh(x) − Īhũh(x)

]2
dx

]1/2

≤

[[
ũh(E) − Īhũh(E)

]2
∫

A1A2

dx

]1/2

≤ h1/2
x

∣∣ũh(E) − Īhũh(E)
∣∣

≤ Ch1/2 |ũh|1,T .

Similar estimate can be derived for
∥∥ũh − Īhũh

∥∥
0,A4A1

and these estimates yield (5.11) for

interface elements of Type I.
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Similarly, for interface elements of Type II, we have
∥∥ũh − Īhũh

∥∥
0,A2A3

=
∥∥ũh − Īhũh

∥∥
0,A4A1

= 0,
∥∥ũh − Īhũh

∥∥
0,A1A2

≤ Ch1/2 |ũh|1,T ,∥∥ũh − Īhũh

∥∥
0,A3A4

≤ Ch1/2 |ũh|1,T ,

which yield (5.11) for rectangular interface elements of Type II.

5.3.3 Error bounds for the bilinear IFE solution in H1 norm

We now consider the error bound for the immersed finite element solution of the interface
(1.1)-(1.4). Assuming the exact solution u of the interface problem (1.1)-(1.4) has the PH2

int

regularity, then the general Berger-Scott-Strang lemma [28] implies that the error in the IFE
solution generated by (5.3) have the following error bound:

|u− uh|1,h ≤ C

(
inf

vh∈Sh(Ω)
|u− vh|1,h + sup

vh∈Sh(Ω)

|ah(u, vh) − (f, vh)|

|vh|1,h

)
, (5.14)

where

ah(w, v) =
∑

T∈Th

∫

T

β∇w∇vdX, |v|21,h =
∑

T∈Th

|v|21,T .

and (w, v)Λ denotes the L2 inner product of w and v on a set Λ and we often omit its set
symbol when Λ = Ω.

Using Theorem 4.1.25, the first term on the right hand side of (5.14) has the following bound:

inf
vh∈Sh(Ω)

|u− vh|1,h ≤ |u− Ihu|1,h ≤ Ch ‖u‖2 . (5.15)

Therefore, we will focus on the estimation of the consistency error term on the right hand
of (5.14).

We first derive some preparation estimates. The following trace inequality is similar to the
regular trace inequality on H2(T ) [7], but we need to prove it on PH2

int(T ). For each element
T = �A1A2A3A4 ∈ Th, we let

E1(∂T ) = A1A2, E2(∂T ) = A2A3, E3(∂T ) = A3A4, E4(∂T ) = A4A1.

Lemma 5.3.5 We have the following trace inequality on T ∈ Th:
∥∥∥∥β

∂v

∂n

∥∥∥∥
2

0,Ei(∂T )

≤ C

(
1

hT
|v|21,T + hT |v|22,T

)
, ∀v ∈ PH2

int(T ), 1 ≤ i ≤ 4. (5.16)
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Proof. Without loss generality, we assume that T ∈ Tint. For any v ∈ PH2
int(T ), we let

~q = β

[
vx

vy

]
, w = β(vxx + vyy).

Then for any φ ∈ C∞
0 (T ), we can easily see that

∫

T

wφdX = −

∫

T

~q · ∇φdX.

This implies that ~q ∈ H(div, T ) and div(~q) = β(vxx + vyy). On the reference element, we

recall the following standard inequality for functions in H(div, T̂ ) [76]:

∥∥∥~̂q · n
∥∥∥

2

1/2,Ei(∂T̂ )
≤ C

(∥∥∥~̂q
∥∥∥

2

0,T̂
+
∥∥∥div(~̂q)

∥∥∥
2

0,T̂

)
.

Then, we can obtain (5.16) by using the above trace inequality on the reference element and
the usual scaling procedure.

Lemma 5.3.6 There exists a constant C such that for h small enough, we have

( ∑

T∈Tint

4∑

i=1

∥∥∥∥β
∂v

∂n

∥∥∥∥
2

0,Ei(∂T )

)1/2

≤ C |log(h)|1/2 ‖v‖2 , ∀v ∈ PH2
int(Ω). (5.17)

Proof. Using Hölder’s inequality, we have

‖f‖0,r,Ω ≤

[∫

Ω

f rdxdy

]1

r

≤

[[∫

Ω

(f r)
p
r dxdy

] r
p

] 1

r
[[∫

Ω

1
r

r−pdxdy

]1− r
p

] 1

r

= |Ω|
1

r
− 1

p ‖f‖0,p,Ω .

Then letting f = vx, vy and using the assumption (H6) and the fact that |Ωint| ≤ Ch, we
get

|v|1,Ωint
≤ |Ωint|

1/2−1/p |v|1,p,Ωint
≤ Ch1/2−1/pp1/2 ‖v‖2 .
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Then, using Lemma 5.3.5, we can obtain (5.17) as follows:

( ∑

T∈Tint

d∑

i=1

∥∥∥∥β
∂v

∂n

∥∥∥∥
2

0,Ei(∂T )

)1/2

≤ C

[ ∑

T∈Tint

(
1

hT
|v|21,T + hT |v|22,T

)]1/2

≤ C

(
1

h
|v|21,Ωint

+ h |v|22,Ωint

)1/2

≤ C
(
ph−2/p ‖v‖2

2 + h ‖v‖2
2

)1/2

= C
(
ph−2/p + h

)1/2
‖v‖2

= Cp1/2
(
h−2/p + h/p

)1/2
‖v‖2

≤ C |log(h)|1/2 ‖v‖2 .

In the last inequality, we let p = |log(h)| for h small enough and use h1/log(h) = e.

Now, we are ready to derive an error bound in the discrete H1 norm for the bilinear IFE
solution.

Theorem 5.3.1 There exists a constant C such that

|u− uh|1,h ≤ Ch1/2 |log(h)|1/2 ‖u‖2,Ω . (5.18)

Proof. First, we multiply the differential equation (1.1) by any vh ∈ Sh,0 and integrate it
over T ∈ Th to have

−

∫

T

∇ ·
(
β∇u)vh dxdy =

∫

T

fvh dxdy, ∀ vh ∈ Sh,0.

Then a straightforward application of the Green’s formula leads to
∫

T

β∇u · ∇vh dxdy −

∫

∂T

β
∂u

∂n
vh ds =

∫

T

fvh dxdy, ∀ vh ∈ Sh,0. (5.19)

Summing (5.19) over T ∈ Th, we get

∑

T∈Th

∫

T

β∇u · ∇vh dxdy −
∑

T∈Th

∫

∂T

β
∂u

∂n
vh ds =

∑

T∈Th

∫

T

fvh dxdy, ∀ vh ∈ Sh,0.

Hence we have

ah(u, vh) − (f, vh) =
∑

T∈Th

(
β
∂u

∂n
, vh

)

∂T

, ∀vh ∈ Sh,0.
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Since Īhvh and β ∂u
∂n

are continuous and the unit normal vectors of an edge in its two neighbor
elements have opposite directions, then we can show

∣∣∣∣∣
∑

T∈Th

4∑

i=1

(
β
∂u

∂n
, Īhvh

)

Ei(∂T )

∣∣∣∣∣ = 0, ∀vh ∈ Sh,0.

Hence

|ah(u, vh) − (f, vh)| =

∣∣∣∣∣
∑

T∈Th

4∑

i=1

(
β
∂u

∂n
, vh − Īhvh

)

Ei(∂T )

∣∣∣∣∣ , ∀vh ∈ Sh,0.

Then, by Lemma 5.3.4 and Lemma 5.3.6, we have

|ah(u, vh) − (f, vh)| ≤
∑

T∈Tint

4∑

i=1

∥∥∥∥β
∂u

∂n

∥∥∥∥
0,Ei(∂T )

∥∥vh − Īhvh

∥∥
0,Ei(∂T )

≤ Ch1/2
∑

T∈Tint

4∑

i=1

∥∥∥∥β
∂u

∂n

∥∥∥∥
0,Ei(∂T )

|vh|1,T

≤ Ch1/2

( ∑

T∈Tint

4∑

i=1

∥∥∥∥β
∂u

∂n

∥∥∥∥
2

0,Ei(∂T )

)1/2( ∑

T∈Tint

4∑

i=1

|vh|
2
1,T

)1/2

≤ Ch1/2 |log(h)|1/2 |vh|1,h ‖u‖2,Ω . (5.20)

Finally, the result of this theorem follows from applying the Berger-Scott-Strang inequality
(5.14), the bound for the interpolation error (5.15) and (5.20).

The error bound obtained in Theorem 5.3.1 clearly indicates that the bilinear IFE solution
converges to the exact solution of the interface problem when the mesh size h tends to zero.
On the other hand, we note that the error bound in this theorem has a O(h1/2) convergence
rate which is sub-optimal from the point of view of the approximation capability of the
bilinear IFE space. Recall that the H1-norm error bound for the interpolation in the bilinear
IFE space is O(h), see Theorem 4.1.25 and [112]. In addition, all the numerical examples
in [112, 149] indicate that the bilinear IFE Galerkin method can generate approximated
solutions to the interface problem with the optimal convergence rate. The analysis to show
that the bilinear IFE methods have the optimal convergence rate is still an elusive and
interesting research topic.



Chapter 6

Bilinear immersed finite volume
element method

Conservation law is important in physics since it governs energy, momentum, angular mo-
mentum, mass, electric charge and so on. It states that a particular measurable property of
an isolated physical system does not change as the system evolves. Meanwhile, finite volume
element (FVE) method, which is also called box method [19] or generalized difference method
[139], plays an important role in the numerical methods for PDEs because it possesses the
well known local conservation property. Therefore, it has been widely studied, extended and
applied for numerous problems, such as flow problems [38, 83, 90, 94, 154, 160, 192, 193],
conservation law [124, 153], parabolic and hyperbolic equations [81, 198], and elliptic prob-
lems [29, 82, 159], to name just a few. Recently some literatures also discussed the analysis
of this method, see [5, 30, 31, 36, 37, 46, 53, 59, 79, 80, 85, 203] and related reference therein.
We believe that the combination of the FVE’s local conservation property and IFE’s flex-
ibility to handle interface jump conditions without using complicated meshes can generate
competitive numerical methods for solving interface problems. Therefore, in this chapter we
will follow the idea in [84] to apply the bilinear IFE space to solve the interface problem of
the diffusion equation in the finite volume element formulation [113].

6.1 Implementation of finite volume element method

with bilinear IFE

In this section, we will discuss the finite volume element method with the bilinear IFE space
Sh(Ω) introduced in Chapter 3. The following set-up is well known for the finite volume
element method [139], but we still repeat it here for the basic idea and the notations used in

this chapter. To describe the method, for each mesh Th of Ω, we introduce a dual mesh T̂h by
connecting the nearby centers of the elements in Th in the vertical and horizontal directions,

101
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Figure 6.1: A mesh of Ω and the dual mesh for an interface problem. Elements in the mesh
are solid rectangles and elements in the dual mesh are dash rectangles.

see the illustration in Figure 6.1 where the dual mesh T̂h is sketched by the dash lines while
Th is sketched by solid lines.

First, we derive a weak form on each element of the dual mesh. Assume that the source
term f(X) is smooth enough so that the exact solution has the required smoothness in the
discussion below. Let Nh be the set of all nodes of Th and N ◦

h be the set of all interior

nodes of Th. Let K̂i be an element of T̂h containing a node Xi ∈ N ◦
h . First, we integrate the

differential equation (1.1) over K̂i to have

−

∫

K̂i

∇ ·
(
β∇u) dxdy =

∫

K̂i

f dxdy.

If K̂i is not an interface element, then a straightforward application of the Green’s formula
leads to

−

∫

∂K̂i

β
∂u

∂n
ds =

∫

K̂i

f dxdy. (6.1)

If K̂i is an interface element, then by applying the Green’s formula piecewisely, we have

−

∫

K̂−

i

∇ ·
(
β∇u) dxdy −

∫

K̂+

i

∇ ·
(
β∇u) dxdy =

∫

K̂i

f dxdy,

−

∫

∂K̂−

i

β
∂u

∂n
ds−

∫

∂K̂+

i

β
∂u

∂n
ds =

∫

K̂i

f dxdy,

−

∫

∂K̂i

β
∂u

∂n
ds−

∫

∂K̂∩Γ

[
β
∂u

∂n

]

Γ

ds =

∫

K̂i

f dxdy,

which leads to (6.1) again because of the flux jump condition (1.4). Hence, we conclude that

the weak form (6.1) holds for any element K̂i ∈ T̂h. This weak form enables us to introduce
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the bilinear immersed finite volume element method as follows: find uh ∈ Sh,E(Ω) such that

−

∫

∂K̂i

β
∂uh

∂n
ds =

∫

K̂i

f dxdy, ∀Xi ∈ N ◦
h . (6.2)

Here, Sh,E(Ω) = {vh ∈ Sh(Ω) : vh(X) = g(X), ∀X ∈ Nh ∩ ∂Ω}. We would like to point
out that (6.2) indicates that the immersed FVE solution also have the local conservation
property.

We now discuss some details in the implementation of the bilinear immersed FVE method.
The key issue is the integrals used in this method. On each non-interface element K̂i,
standard Gaussian quadratures can be applied because we can assume that all the integrands
involved are smooth enough. If K̂i is an interface element, both the line integral and the
area integral in the bilinear immersed FVE method need to be treated carefully because of
the discontinuity across the interface.

First, let us consider the area integral
∫

K̂i
f dxdy on the right hand side of (6.2). Under the

assumption that f(X) is piecewise smooth with respect to the interface Γ, we can approxi-

mate its integration over K̂i piecewisely by suitably partitioning K̂i into several sub-triangles.
Assume that K̂i has vertices X̂j, j = 1, 2, 3, 4 and interface Γ intersects with the boundary

of K̂i at D and E on two adjacent edges, see Figure 6.2. We can then use points D and E

to partition K̂i into 4 triangles by adding 3 line segments: DE, DX̂3, EX̂3. Note that
the last two line segments are formed by connecting D and E to the vertex of K̂i not on the
edges containing D and E. Hence,

∫

K̂i

f dxdy =

∫

△
X̂1ED

f− dxdy +

∫

△EX̂2X̂3

f+ dxdy

+

∫

△DX̂3X̂4

f+ dxdy +

∫

△DEX̂3

f dxdy.

Gaussian quadratures with enough degree of precision can be applied straightforwardly to
handel integrations on those sub-triangles within either Ω− or Ω+. A little extra care is
need to handle the sub-triangles whose interiors intersect both Ω− and Ω+. For the case
illustrated in Figure 6.2, when applying a Gaussian quadrature to compute

∫
△DEX̂3

f dxdy,

we can replace the value of f at a quadrature node outside Ω+ by the value of f at a point
on Γ so long as this replacement has an O(h2) accuracy which can be achieved if Γ is smooth

enough within K̂i [54]. Another way is to replace the value of f at a quadrature node outside
Ω+ by the value of f+ at that quadrature node. That is, we use

∫
△

DEX̂3

f+ dxdy to replace
∫
△DEX̂3

f dxdy. A similar procedure can be developed for handling the case in which the

interface Γ intersect with the boundary of K̂i at D and E on two opposite edges.

For an interface element K̂i, the line integral on the left hand side of (6.2) also needs to
be treated piecewisely to handle the discontinuity. Again, let us consider a dual element
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ΓΩ−

Ω+

X̂1 X̂2

X̂3X̂4

D

E

Figure 6.2: A dual element K̂ = �X̂1X̂2X̂3X̂4 ∈ T̂h sketched by dash lines and 4 adjacent
elements of Th. This element can be partitioned into 4 sub-triangles for the area integrals in
the immerse FVE method.

K̂i = �X̂1X̂2X̂3X̂4, see Figure 6.3. Since K̂i has 4 edges, we have

−

∫

∂K̂i

β
∂uh

∂n
ds = −

∫

X̂1X̂2

β
∂uh

∂n
ds−

∫

X̂2X̂3

β
∂uh

∂n
ds

−

∫

X̂3X̂4

β
∂uh

∂n
ds−

∫

X̂4X̂1

β
∂uh

∂n
ds.

Note that the flux β ∂uh

∂n
on the boundary of K̂i is discontinuous at the points where ∂K̂i

intersects either the edges of Th or the interface Γ. Therefore, the line integrals on the right
hand side above need to be computed on the small line segments between these discontinuous
points. For the example demonstrated in Figure 6.3, we have

∫

X̂1X̂2

β
∂uh

∂n
ds =

∫

X̂1A

β−∂uh

∂n
ds+

∫

AE

β−∂uh

∂n
ds+

∫

EX̂2

β+∂uh

∂n
ds,

∫

X̂2X̂3

β
∂uh

∂n
ds =

∫

X̂2B

β+∂uh

∂n
ds+

∫

BX̂3

β+∂uh

∂n
ds,

∫

X̂3X̂4

β
∂uh

∂n
ds =

∫

X̂3C

β+∂uh

∂n
ds+

∫

CX̂4

β+∂uh

∂n
ds,

∫

X̂4X̂1

β
∂uh

∂n
ds =

∫

X̂4D

β+∂uh

∂n
ds+

∫

DF

β−∂uh

∂n
ds+

∫

FX̂1

β−∂uh

∂n
ds.

We note that all the integrands in the line integrals on the right hand sides above are
polynomials; hence, a Gaussian quadrature with enough degree precision can be used to
compute all of them precisely. As a consequence, this leads to another interesting fact that
the matrix in the immersed FVE can be assembled exactly even if the interface Γ is a general
curve. On the contrary, the matrices in the immersed finite element methods discussed in
Section 5.1 and [112, 130, 143, 144, 149] cannot be formed precisely unless the interface Γ is
trivial. In assembling the matrix in any of these immersed finite element methods over an
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interface element K ∈ Th, assuming that the interface Γ intersects the edges of K at D and
E, the error in the computation of the area integral over the region enclosed by DE and Γ
is inevitable if Γ is a general curve.

Finally, we would like to point out that, for any given rectangular mesh Th of Ω, the algebraic
system of this bilinear immersed FVE method has the same structure as the algebraic system
in the usual bilinear finite element method for the Dirichlet boundary value problem of the
Poisson equation. The matrix in its algebraic system is guaranteed to be symmetric positive
definite.

Γ

X̂1 X̂2

X̂3X̂4

A

B

C

D

E

F

Figure 6.3: A dual element K̂i = �X̂1X̂2X̂3X̂4 ∈ T̂h sketched by dash lines and 4 adjacent
elements of Th. The edges of K̂i is partitioned by the discontinuous points of the flux for the
line integrals in the immersed FVE method.

6.2 Numerical examples

In this section, we present numerical examples for the bilinear immersed finite volume element
method to illustrate its features. We consider the same example as in Section 5.2.

Table 6.1 contains the errors of the bilinear immersed FVE solution uh with various mesh size
h and β− = 1, β+ = 10. Table 6.2 contains the errors of the bilinear immersed FVE solution
uh with β− = 1, β+ = 10000 representing a large jump. Table 6.3 contains the errors of the
bilinear immersed FVE solution uh with various mesh size h and β− = 10, β+ = 1. Table
6.4 contains the errors of the bilinear immersed FVE solution uh with β− = 10000, β+ = 1.
In these tables, ‖·‖0 represents the usual L2 norm, |·|1 is the usual semi-H1 norm, and of
course, they are computed numerically according to the mesh used. The quantity ‖·‖∞ is
the discrete infinity norm which is the maximum of the absolute values of the given function
at all the nodes of a mesh.
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h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/8 7.7394 × 10−3 1.1705 × 10−1 2.5110 × 10−3

1/16 1.9658 × 10−3 5.8644 × 10−2 6.5026 × 10−4

1/32 4.8127 × 10−4 2.9255 × 10−2 1.6598 × 10−4

1/64 1.2173 × 10−4 1.4550 × 10−2 4.1413 × 10−5

1/128 3.0115 × 10−5 7.2699 × 10−3 1.0611 × 10−5

1/256 7.5436 × 10−6 3.6362 × 10−3 2.6485 × 10−6

Table 6.1: Errors of the FV-IFE solution for the case with β− = 1, β+ = 10

h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/8 1.8420 × 10−3 4.1025 × 10−2 1.4562 × 10−3

1/16 4.0555 × 10−4 2.1051 × 10−2 4.2813 × 10−4

1/32 7.6016 × 10−5 1.0193 × 10−2 2.5606 × 10−4

1/64 2.4890 × 10−5 4.8512 × 10−3 5.0649 × 10−5

1/128 5.1332 × 10−6 2.4100 × 10−3 1.8048 × 10−5

1/256 1.1050 × 10−6 1.2110 × 10−3 4.7363 × 10−6

Table 6.2: Errors of the FV-IFE solution for the case with β− = 1, β+ = 10000.

We can easily see that the data in the second and third columns of these tables satisfy

‖uh − u‖0 ≈
1

4
‖uĥ − u‖0 , |uh − u|1 ≈

1

2
|uĥ − u|1 ,

for h = ĥ/2. Using linear regression, we can see that the data in Table 6.1 obey

‖uh − u‖0 ≈ 0.5008h2.0024, |uh − u|1 ≈ 0.9427 h1.0025, ‖uh − u‖∞ ≈ 0.1559 h1.9788,

and the data in Table 6.2 obey

‖uh − u‖0 ≈ 0.1422 h2.1154, |uh − u|1 ≈ 0.3514 h1.0246, ‖uh − u‖∞ ≈ 0.0486 h1.6390,

h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/8 7.6119 × 10−2 1.0927 × 100 2.6593 × 10−2

1/16 1.9110 × 10−2 5.4809 × 10−1 6.6274 × 10−3

1/32 4.7894 × 10−3 2.7425 × 10−1 1.6796 × 10−3

1/64 1.1967 × 10−3 1.3715 × 10−1 4.1590 × 10−4

1/128 2.9946 × 10−4 6.8576 × 10−2 1.0489 × 10−4

1/256 7.4846 × 10−5 3.4288 × 10−2 2.6144 × 10−5

Table 6.3: Errors of the FV-IFE solution for the case with β− = 10, β+ = 1.
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h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/8 7.6026 × 10−2 1.0927 × 100 2.6270 × 10−2

1/16 1.9119 × 10−2 5.4813 × 10−1 6.7172 × 10−3

1/32 4.7613 × 10−3 2.7425 × 10−1 1.6608 × 10−3

1/64 1.1930 × 10−3 1.3714 × 10−1 4.0496 × 10−4

1/128 2.9813 × 10−4 6.8575 × 10−2 1.0940 × 10−4

1/256 7.4494 × 10−5 3.4288 × 10−2 2.6902 × 10−5

Table 6.4: Errors of the FV-IFE solution for the case with β− = 10000, β+ = 1.

and the data in Table 6.3 obey

‖uh − u‖0 ≈ 4.8643 h1.9983, |uh − u|1 ≈ 8.7375 h0.9990, ‖uh − u‖∞ ≈ 1.6923 h1.9974,

and the data in Table 6.4 obey

‖uh − u‖0 ≈ 4.8715 h1.9995, |uh − u|1 ≈ 8.7379 h0.9990, ‖uh − u‖∞ ≈ 1.6301 h1.9861.

For the linear regressions above, we obtain similar figures to Figure 5.1, which mean that
the data points match the linear regression lines very well.

These results further indicate that the bilinear immersed FVE solution uh converges to
the exact solution with convergence rates O(h2) and O(h) in the L2 norm and H1 norm,
respectively. However, the actual computational results show that the solution does not
always have the second order convergence in the L∞ norm even though the mesh is fine
enough. Similar phenomenon has been observed for IFE Galerkin method, see the numerical
examples in Section 5.2. We guess this is mainly due to the non-conforming feature of the
IFE space, and we plan to investigate this issue in our future research.

For a given rectangular mesh of Ω, we note that the linear system in this bilinear immerse
FVE method has the same structure as that in the FVE method based on the standard
bilinear finite elements for the Poisson’s equation, especially from the point view of the
number of non-zero entries and their locations in the matrix of the related linear system.
This suggests that, on any given computer, the CPU time needed to solve the bilinear
immerse FVE method should be comparable to that needed to solve the linear system in
the standard bilinear FVE for simple Poisson’s equation. Since it has become more and
more difficult to obtain the precise CPU time usage of a computational procedure on a
modern computer because of the complexity of the CUP unit (multi cores, cache, hardware
parallelization, etc.) and the software (operating system, fire-wall, virus scan, etc.), we
choose the number of iterations needed to make the preconditioned conjugate gradient (PCG)
method to converge for a given error tolerance to illustrate the above observation, see Table
6.5. For the Ω specified at the beginning of this section, we use a rectangular mesh with
h = 1/128, the incomplete Cholesky preconditioner, and the error tolerance tol = 10−10 in all
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the computations. From this table, we can see that, while the linear system in the bilinear
FVE method for the Poisson’s equations uses 221 PCG iterations, the the linear system
in the bilinear immersed FVE method uses a 222 PCG iteration for the interface problem
described in this section with β+ : β− = 1 : 1.1. We have also observed that the number
of PCG iterations needed by the bilinear immersed FVE method gradually increases as the
ratio β+ : β− becomes larger. This increase is due to the fact that the interface problem is
essentially more difficult than the simple boundary value problem of the Poisson’s equation
and will inevitably cost more time to solve by any method.

bilinear FVE β+ : β− = 1 : 1.1 β+ : β− = 1 : 2 β+ : β− = 1 : 10
# of iterations 221 222 279 299

Table 6.5: Comparison of the computational costs for solving linear systems in both the
bilinear FVE method and the bilinear immersed FVE method.



Chapter 7

Immersed discontinuous Galerkin
(IDG) method

The discontinuous Galerkin (DG) method was originally introduced for neutron transport
equation [179] in 1973. Later on, the stability and convergence analysis was carried out
[126, 127, 134, 176, 182]. Because of its high order accuracy, flexibility for mesh refine-
ment, localizability, stability, parallelizability and less numerical diffusion/dispersion, the
DG method has been widely extended and used to solve different kinds of partial dif-
ferential equations, such as the total variation bounded(TVB) Runge-Kutta discontinu-
ous Galerkin(RKDG) method [64, 65, 68, 69, 70, 72, 73, 177], the local discontinuous
Galerkin(LDG) method [35, 44, 45, 47, 66, 67, 71, 104, 105, 131, 202], and many others,
see [1, 20, 21, 88, 89, 92, 96, 99, 106, 107, 135, 140, 155, 172, 197] and reference therein.

In parallel, different discontinuous Galerkin finite element methods have also been developed
for elliptic problems, including the interior penalty DG method [7, 10, 122, 128, 169, 183, 200]
and the mixed DG method [48, 49, 50, 51]. Other related applications and analysis can be
found in [43, 52, 78, 101, 102, 103, 132, 133, 190] and reference therein. For more details, we
refer readers to the survey papers [8, 50].

The inclusion of penalty terms in the variational form defining a finite element method for
elliptic equations is not new [9, 11, 18, 128, 200]. In 1979, M. Delves and C. A. Hall [77]
developed a method called global element method, which is actually a DG method. The
advantage of the method is that the linear system arising from the method is symmetric.
However, it is not guaranteed to be positive semi-definite. In order to overcome the disad-
vantage, J. Douglas Jr. and T. Dupont [128], M. F. Wheeler [200] and D. N. Arnold [7] added
some penalty terms which are some weighted L2 inner products of the jumps in the function
values across element edges. They also proved the continuity and coercivity of the penalty
variational form and the optimal convergence rate. In 1998, J. T. Oden, I. Babuska and
C. E. Baumann [10, 169] introduced a nonsymmetric DG method for the diffusion problem.
After that, B. Riviere, M. F. Wheeler and V. Girault [183] added the same penalty terms

109
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as above to the method. In 2000, T. J. R. Hughes, G. Engel, L. Mazzei and M. G. Larson
[122] did many numerical experiments to analyze these interior penalty DG method. Other
applications and analysis of the interior penalty DG method can be found in [100, 164] and
reference therein.

Since the interior penalty DG method was successfully implemented to solve general elliptic
problems, it is natural to extend it to elliptic interface problems. Because DG methods
don’t require the inter-element continuity of functions, they allow more flexible meshes than
those permitted by conventional finite element methods. In a word, it is more efficient to
implement local mesh refinement in DG methods. Additionally, because the IFE method
allows the elements to be cut through by the interfaces, a structured mesh independent of
interface, such as a Cartesian mesh, can be used for solving interface problems. Therefore,
the combination of DG methods and IFE allows adaptive structured mesh to be used for
solving interface problems. That is, a structured mesh can be refined wherever needed, such
as around the interface and the singular source. In this chapter, we will discuss the immersed
discontinuous Galerkin(IDG) method which combines the interior penalty DG method with
IFE.

7.1 IDG method with bilinear IFE

In this section, we will introduce the IDG method with bilinear IFE. First we recall a well
known discontinuous weak formulation from [51] with a slight modification in the definition
of the involved space. Second, we follow [7, 10, 51, 77, 128, 169, 183, 200] to introduce
the symmetric and nonsymmetric discontinuous weak formulations. Third, we introduce a
bilinear IFE space and apply it to the discontinuous weak formulations. Finally, we compare
the symmetric and nonsymmetric formulations. Even though the set-up in this section is
well known [51], we will repeat it here in order to introduce the notations that will be used.

7.1.1 A well known discontinuous weak formulation

In this section, we will recall a well known discontinuous weak formulation [51]. Assume the
solution u of the model interface problem (1.1)-(1.4) is in PH2

int(Ω). For a given mesh Th of
Ω, a discontinuous weak formulation is formed on

PH1(Th) = {v : ∀T ∈ Th, v|T ∈ C(T );

v|T ∈ H1(T ) if T ∈ Th is a non-interface element;

v|T̃ s ∈ H1(T̃ s) if T ∈ Th is an interface element , s = +,−}

as follows [51].
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First, multiplying (1.1) by v ∈ PH1(Th) and integrating over each element T ∈ Th, we have

−(∇ ·
(
β∇u

)
, v)T = (f, v)T . (7.1)

Applying Green’s formula to the first term of (7.1), we have

−(β∇u · n, v)∂T + (β∇u,∇v)T = (f, v)T , (7.2)

where n is the unit outer normal vector of ∂T . Then we sum (7.2) over T ∈ Th to obtain

−
∑

T∈Th

(β∇u · n, v)∂T +
∑

T∈Th

(β∇u,∇v)T =
∑

T∈Th

(f, v)T . (7.3)

Now we analyze the first term in (7.3). First, let εD
h denote the edges of mesh Th on the

Dirichlet boundary of the problem, εo
h denote the interior edges of mesh Th and εh = εD

h

⋃
εo

h.
Second, ∀e ∈ εo

h, let T1, T2 be the two elements in Th such that e = ∂T1 ∩ ∂T2. For a vertical
edge e, we define the element on its left side to be T1 and for a horizontal edge e, we define
the element below it to be T1. Let ν be the unit normal vector of e exterior to T2, see Figure
7.1. Finally, ∀e ∈ εD

h , let ν be the unit normal vector of e exterior to Ω. Then the first term
in (7.3) can be rewritten as

∑

T∈Th

(β∇u · n, v)∂T

=
∑

e∈εD
h

(β∇u · n, v)e +
∑

e∈εo
h

[(β∇u · n, v)∂T1∩e + (β∇u · n, v)∂T2∩e]

=
∑

e∈εD
h

(β∇u · ν, v)e +
∑

e∈εo
h

[(β∇u · ν, v)∂T2∩e − (β∇u · ν, v)∂T1∩e]. (7.4)

νT1 T2

ν

T2

T1

Figure 7.1: A sketch of T1, T2 and ν.

Now we use the jump and average terms to rewrite (7.4). First, for a function v, we define
its jump and average on e ∈ εo

h as follows.

[v] = (v|T2
)|e − (v|T1

)|e,

{v} =
1

2
((v|T2

)|e + (v|T1
)|e).
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∀e ∈ εD
h , the jump and average functions are just the function itself. Second, by using the

algebraic identity

ab− cd =
1

2
(a+ c)(b− d) +

1

2
(a− c)(b+ d),

∀e ∈ εo
h, we can get

(β∇u · ν)|∂T2∩ev|∂T2∩e − (β∇u · ν)|∂T1∩ev|∂T1∩e = {β∇u · ν}[v] + [β∇u · ν]{v}.

Therefore, we have

∑

e∈εo
h

[(β∇u · ν, v)∂T2∩e − (β∇u · ν, v)∂T1∩e]

=
∑

e∈εo
h

[({β∇u · ν}, [v])e + ([β∇u · ν], {v})e]. (7.5)

In addition, if the fluxes β∇u · ν are continuous almost everywhere in Ω, then we have

∑

e∈εo
h

([β∇u · ν], {v})e = 0. (7.6)

Finally, using (7.3), (7.4), (7.5) and (7.6), we get

∑

T∈Th

(β∇u,∇v)T −
∑

e∈εo
h

({β∇u · ν}, [v])e −
∑

e∈εD
h

(β∇u · ν, v)e =
∑

T∈Th

(f, v)T .

Define

b(u, v) =
∑

T∈Th

(β∇u,∇v)T ,

J(u, v) =
∑

e∈εo
h

({β∇u · ν}, [v])e +
∑

e∈εD
h

(β∇u · ν, v)e,

a(u, v) = b(u, v) − J(u, v),

L(v) =
∑

T∈Th

(f, v)T .

Then a discontinuous weak formulation of (1.1) is to find a u ∈ PH2
int(Ω) such that

a(u, v) = L(v), ∀v ∈ PH1(Th). (7.7)
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7.1.2 The symmetric and nonsymmetric discontinuous weak for-
mulations

Note that the bilinear form of the above weak formulation is nonsymmetric, hence M. Delves
and C. A. Hall [77] introduced a symmetric discontinuous weak formulation as follows. Con-
sider

J(v, u) =
∑

e∈εo
h

({β∇v · ν}, [u])e +
∑

e∈εD
h

(β∇v · ν, u)e.

If u is continuous almost everywhere in Ω, then
∑

e∈εo
h
({β∇v · ν}, [u])e = 0. Additionally, we

have u = g on εD
h , so we get

J(v, u) =
∑

e∈εD
h

(β∇v · ν, g)e.

Define

a−(u, v) = b(u, v) − J(u, v) − J(v, u),

L−(v) = L(v) −
∑

e∈εD
h

(β∇v · ν, g)e.

Then, the weak formulation is to find a u ∈ PH2
int(Ω) such that

a−(u, v) = L−(v), ∀v ∈ PH1(Th).

Here a−(·, ·) is symmetric. However, the linear system of algebraic equations arising from
this weak form is not guaranteed to be semi-definite. Hence J. Douglas Jr. and T. Dupont
[128], M. F. Wheeler [200] and D. N. Arnold [7] added a penalty to the weak form as follows.
Consider the following penalty term

Jθ(u, v) =
∑

e∈εo
h

θe([u], [v])e +
∑

e∈εD
h

θe(u, v)e,

where θe is the penalty parameter. If u is continuous almost everywhere in Ω, then we can
get

Jθ(u, v) =
∑

e∈εD
h

θe(g, v)e.

Define

a−θ (u, v) = b(u, v) − J(u, v) − J(v, u) + Jθ(u, v),

L−
θ (v) = L(v) −

∑

e∈εD
h

(β∇v · ν, g)e +
∑

e∈εD
h

θe(g, v)e.
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Then, the symmetric discontinuous weak formulation is to find a u ∈ PH2
int(Ω) such that

a−θ (u, v) = L−
θ (v), ∀v ∈ PH1(Th). (7.8)

Now we recall the work of J. T. Oden, I. Babuska, C. E. Baumann [10, 169] and B. Riviere,
M. F. Wheeler, V. Girault [183] to generate a nonsymmetric discontinuous weak formulation.
Define

a+
θ (u, v) = b(u, v) − J(u, v) + J(v, u) + Jθ(u, v),

L+
θ (v) = L(v) +

∑

e∈εD
h

(β∇v · ν, g)e +
∑

e∈εD
h

θe(g, v)e.

Then, the nonsymmetric discontinuous weak formulation is to find a u ∈ PH2
int(Ω) such that

a+
θ (u, v) = L+

θ (v), ∀v ∈ PH1(Th). (7.9)

7.1.3 Bilinear immersed discontinuous Galerkin formulations

By using the local bilinear immersed finite element basis functions formed in Chapter 3,
we construct a new bilinear immersed finite element(IFE) space Sh,D(Ω). We note that for
each element T in a mesh Th, we have four nodal basis functions φi, i = 1, 2, 3, 4. For a
non-interface element T , they are the standard bilinear nodal basis functions; otherwise,
they are the immersed bilinear basis functions. Then, we define a piecewise bilinear global
nodal basis function ψN(x, y) from each φi such that ψN |T = φi and ψN is zero everywhere
else. Finally, we define Sh,D(Ω) as the span of all these global nodal basis functions.

Now we use the discontinuous bilinear IFE space Sh,D(Ω) ⊂ PH1(Th) and the weak formu-
lations mentioned above to construct the IDG method as follows: find uh ∈ Sh,D(Ω) such
that

a−θ (uh, vh) = L−
θ (vh), ∀vh ∈ Sh,D(Ω), (7.10)

or find uh ∈ Sh,D(Ω) such that

a+
θ (uh, vh) = L+

θ (vh), ∀vh ∈ Sh,D(Ω). (7.11)

Remark 7.1.1 The IDG method is actually a special case of the selective immersed DG
method which will be discussed in Chapter 8, see Remark 8.1.2. Therefore, the convergence
conclusion in Section 8.4 is also true for the IDG method.
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7.1.4 Comparison of the symmetric and nonsymmetric formula-
tions

In this section, we will compare the symmetric and nonsymmetric formulations for their
sensitivity to the penalty. According to [7, 51, 183], in order to obtain the stability and the
optimal error estimate for the finite element solution of the interior penalty DG method, we
need to choose the penalties as follows.

For the symmetric formulation, we should choose

θe =
C∗

h
, (7.12)

where C∗ is a constant such that C∗ > C0 for some positive constant C0. On the other hand,
for the nonsymmetric formulation, we should choose

θe =
C∗∗

h
, (7.13)

where C∗∗ is any positive constant.

We can see that the symmetric formulation leads to a symmetric system, but its penalty
depends on a large enough positive number C∗. Therefore, the stability and convergence
rates depend on the unknown penalty constant C∗, and it is not a trivial problem to choose
a proper penalty parameter. On the other hand, the nonsymmetric formulation leads to a
nonsymmetric system, but we can choose any penalty in the form (7.13) as long as C∗∗ > 0.
Therefore, the choice of penalty is straightforward. We emphasize that a small penalty
may not work for symmetric formulation, but for nonsymmetric formulation. For the IDG
method, we will observe the similar property.

7.2 Adaptive mesh

In this section, we will first point out a limitation of Galerkin finite element method for using
adaptive Cartesian mesh. Then we will explain how the combination of the IDG method
and bilinear IFE allows us to form an efficient numerical method with adaptive Cartesian
mesh for solving interface problems.

In a Galerkin method based on Lagrange type finite elements, the involved finite element
space can be described by the global nodal basis functions. These global basis functions
usually are often required to have certain continuity at each node in the mesh. When a
global basis function is restricted to an element, it is either the zero function or becomes one
of the local basis function in that element. If we refine the mesh, new nodes usually need to
be introduced in order to maintain this continuity. A new node becomes a so called hanging
node if it is not a vertex of an element but it is on an edge of that element in the new mesh.



Xiaoming He Chapter 7. IDG method 116

At a hanging node, the global basis function of the original type usually cannot be defined
and the original Galerkin finite element method cannot be continued over the new mesh.

For example, let us consider a mesh formed by the four large rectangles in Figure 7.2. If
we refine this mesh by cutting the lower left rectangular element into four small rectangles,
then hanging nodes will be introduced at A and C. Assume that we want to use the bilinear
finite elements. We note that node C belongs to three elements in the refined mesh. The
global bilinear basis function corresponding to node C can be defined by local nodal basis
functions in elements �ABCD and �DCEF , but not in element �BGHE. Hence, when a
refined mesh is introduced, we need to make sure that there are no hanging nodes. However,
this restriction usually decreases the efficiency because we have to use sufficient number of
new nodes in the refined mesh so that none of new nodes becomes a hanging node and this
will also increase the number of elements. For example, consider the mesh formed by the
large rectangles in Figure 7.3. Assume that we want to refine element 1 because it contains
the interface. To avoid hanging nodes, we have to refine elements 1, 2, 4, or element 1, 3, 5,
or elements 1, 2, 3, 4, and 5 even though we only want to refine element 1.

A

H

G

EF

C

B

D
���
���
���
���
���

���
���
���
���
���

Figure 7.2: A sketch of a hanging node. The local basis functions are defined on the two
elements on the left side, but not on the element on the right side. Therefore, the global
basis function is not defined at the hanging node.

However, DG methods do not have this drawback because they don’t require the inter-
element continuity. According to the construction of the space Sh,D(Ω), we can see that each
of the global basis function only consists of one local basis in one element and is zero zero
everywhere else. Hence, for a hanging node, we can find the element in which this hanging
node is a vertex and use the corresponding local nodal basis to introduce a global basis at
this hanging node. For example, for the hanging node C in Figure 7.2, we only define a
global basis from the local basis at C in the element �ABCD and another global basis from
the local basis at C in the element �DCEF . Because there is no local basis at the C in the
element �BGHE, no global basis is introduced at C with respect to this element. This is
why a DG method does not have the drawback of hanging nodes and can allow us to employ
the mesh refinement locally at the places needed.
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1

5

4

3

2

Figure 7.3: A sketch of an adaptive mesh allowed by standard Galerkin method.

Meanwhile, IFE allows us to use structured mesh for interface problems, so the IDG method
allows us to use locally adaptive structured meshes for solving interface problems with non-
trivial interfaces. That is, in a structured mesh, we can refine any region again and again
while keeping the mesh of the rest region coarse. In particular, we can repeatedly refine only
the interface elements along the interface, see Figure 7.4. This is very important for improv-
ing the efficiency of the algorithm. In addition, fast algebraic solvers, such as multigrid, can
be easily applied because the meshes are structured.

Figure 7.4: The left plot is the uniform mesh without refinement. In the middle plot, each
interface element in the left mesh is refined into four congruent elements. In the right plot,
each interface element in the middle graph is refined into four congruent elements.

7.3 Implementation of Gauss quadratures

In a DG method, we need to compute some integrals on the elements and the element edges,
which involve the finite element basis functions and their derivatives. Usually we use Gauss
quadratures, which require the continuity of the integrands, to compute these integrals. For
non-interface elements, we can treat the corresponding integrals as usual. However, on the
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interface elements, the derivative of the local bilinear IFE basis functions are discontinuous.
In addition, on the edges of interface elements, the local bilinear IFE basis functions and
their derivatives may also be discontinuous. Therefore, we need to treat the corresponding
integrals carefully. In the following, we will discuss both area and line integrals separately.

(1) The integrals on interface elements:

Here we only discuss the Type I interface elements. The discussion for the Type II interface
elements can be carried out similarly. Suppose we have a Type I interface element �ABCF .
We first connect the two end points D and E of the interface in the element by the segment
DE, see Figure 7.5. By using this segment and two other segments DC, EC, we can divide
the interface element into four triangles △ADE, △ECB, △DFC and △CDE. In each
triangle, we specify one piece of the piecewise bilinear local IFE basis. Since each piece of
the local bilinear IFE basis is continuous, the integrands are continuous on each triangle.
Then we can apply Gauss quadratures to each triangle one by one. Finally, we add the four
integrals on the four triangles together to get the integral on the whole interface element.
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Figure 7.5: A sketch of the division of an interface element into 4 triangles.

(2) The integrals on the element edges which intersect the interface:

Suppose we have an element edge AC intersecting the interface at B. We first use the
intersection point B to separate the edge AC into 2 segments AB and BC, see Figure 7.6.
On each segment, we can specify one piece of the local bilinear local IFE basis. Because each
piece of the local bilinear IFE basis is continuous, the integrands are continuous on each
of AB and BC. Then we can apply the 1D Gauss quadratures them one by one. Finally,
we add both of the two integrals on AB and BC together to get the integral on the whole
element edge AC.

Another implementation issue is about the line integrals on the interior edges for stiffness
matrix. Consider an interior edge which has two neighboring elements. Each neighboring
element has four local basis functions and two of them correspond to the two end points
of this edge. Therefore, the two elements have eight local basis functions and four of them
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A CB

Figure 7.6: A sketch of the division of an interface edge into 2 segments AB and BC.

correspond to the two end points. Not only the four local basis functions corresponding to
the two end points and their normal derivatives are nonzero on the edge, but also all the
eight local basis functions and their normal derivatives may be nonzero on this edge. That
is, if we arbitrarily choose one of the eight local basis functions as a trial function and one
of the eight local basis functions as a test function, the line integral on this edge may be
nonzero. Therefore, when we assemble the stiffness matrix, we need to compute the line
integrals on this edge for all possible combinations of a trial function and a test function.

7.4 Numerical examples

In this section, we will present some numerical examples for the IDG method with the bilinear
IFE space Sh,D. Since large error usually appears in interface elements, we will refine only
the interface elements to construct the adaptive meshes as follows. First we construct a
Cartesian mesh without mesh refinement, see the left plot of the Figure 7.4. Second we
only refine the interface elements by using half of the step size of the original mesh, i.e., we
refine each interface element in the left mesh into four congruent elements. Then we get the
first-level refined mesh, see the middle plot of the Figure 7.4. Third, we refine the interface
elements in the first-level refined mesh by using 1

4
of the step size of the original mesh, i.e.,

we refine each interface element in the middle mesh into four congruent elements. Then we
get the second-level refined mesh, see the right plot of Figure 7.4. Finally, if we continue
this process, we can get nth-level refined mesh.

We consider the same example as in Section 5.2 with β− = 1 and β+ = 10. In the following
tables, ‖·‖0 represents the usual L2 norm, |·|1 is the usual semi-H1 norm, and of course, they
are computed numerically according to the mesh used. The quantity ‖·‖∞ is the discrete
infinity norm which is the maximum of the absolute values of the given function at all the
nodes of a mesh. We call the constant C∗ in (8.2) and C∗∗ in (7.13) as penalty constants.
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7.4.1 Numerical results for the symmetric IDG method with bi-
linear IFE

In order to illustrate the convergence, we will show the numerical errors in L2, H1 and discrete
infinity norm for the symmetric IDG method on the original rectangular mesh without mesh
refinement, see the left plot of the Figure 7.4. Table 7.1 contains the errors of the solutions
uh with various partition sizes h and the penalty constant C∗ = 1000.

h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/16 9.2701 × 10−4 4.6957 × 10−2 1.9307 × 10−3

1/32 2.2250 × 10−4 2.2329 × 10−2 5.0574 × 10−4

1/64 5.8475 × 10−5 1.0566 × 10−2 1.3518 × 10−4

1/128 1.4442 × 10−5 5.2157 × 10−3 3.4613 × 10−5

1/256 3.6768 × 10−6 2.6167 × 10−3 8.6282 × 10−6

Table 7.1: Errors of the symmetric IDG solutions on the original mesh with C∗=1000.

Using linear regression, we can also see that the data in Table 7.1 obey

‖uh − u‖0 ≈ 0.2269 h1.9901, |uh − u|1 ≈ 0.8310 h1.0429, ‖uh − u‖∞ ≈ 0.4342 h1.9481,

which indicates that the IDG solution uh converges to the exact solution with convergence
rates O(h2) in the L2 norm, O(h) in the H1 norm and O(h2) in the discrete infinity norm.

For the global effect of the local mesh refinement, we will compare the numerical errors in
L2, H1 and discrete infinity norms on different meshes with the step sizes h = 1

8
, 1

16
, 1

32
and

C∗ = 1000000. Table 7.2 to 7.4 contain numerical results generated on the original mesh
and the refined meshes from the first-level to the fourth-level. Table 7.2 contains the L2

norm errors. Table 7.3 contains the H1 norm errors. Table 7.4 contains the discrete infinity
norm errors. Note that the h is the the step size of the corresponding original mesh. From
the three tables, we can see that local refinement of the first-level and second-level refined
meshes dramatically reduces the global errors. Because the error in the non-interface area
basically stays the same and becomes more and more dominant during the local refinement
in interface elements, the third-level and fourth-level refined meshes don’t reduce the global
error much.

Finally, we would like to compare the discrete infinity norm errors on all interface elements in
this section to see the local effect of the local mesh refinement. Table 7.5 contains the discrete
infinity norm errors of the solutions uh on different meshes with the step sizes h = 1

8
, 1

16
, 1

32

and the penalty constant C∗ = 1000000. When we refine the interface elements, the error
around interface decreases quickly. Therefore, the combination of the DG method and IFE
generates a numerical method that can efficiently control the error across the interface where
interesting physics happen in many applications.
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h 1
8

1
16

1
32

original mesh 2.1357 × 10−2 4.7946 × 10−3 7.2152 × 10−4

first-level adaptive mesh 5.5170 × 10−3 1.0046 × 10−3 1.7156 × 10−4

second-level adaptive mesh 2.2593 × 10−3 5.8151 × 10−4 1.5645 × 10−4

third-level adaptive mesh 1.9584 × 10−3 5.6831 × 10−4 1.5215 × 10−4

fourth-level adaptive mesh 1.9469 × 10−3 5.6389 × 10−4 1.5117 × 10−4

Table 7.2: L2 norm Errors of the symmetric IDG solutions on different meshes with
C∗=1000000.

h 1
8

1
16

1
32

original mesh 1.7407 × 10−1 7.2427 × 10−2 2.7358 × 10−2

first-level adaptive mesh 8.7645 × 10−2 4.1428 × 10−2 1.9983 × 10−2

second-level adaptive mesh 6.7158 × 10−2 3.7169 × 10−2 1.9738 × 10−2

third-level adaptive mesh 6.5053 × 10−2 3.7000 × 10−2 1.9663 × 10−2

fourth-level adaptive mesh 6.4952 × 10−2 3.6939 × 10−2 1.9650 × 10−2

Table 7.3: H1 norm Errors of the symmetric IDG solutions on different meshes with
C∗=1000000.

h 1
8

1
16

1
32

original mesh 3.0811 × 10−2 8.0046 × 10−3 3.2532 × 10−3

first-level adaptive mesh 1.0102 × 10−2 3.0655 × 10−3 4.8067 × 10−4

second-level adaptive mesh 5.2750 × 10−3 1.4920 × 10−3 4.2755 × 10−4

third-level adaptive mesh 4.6491 × 10−3 1.4413 × 10−3 3.7831 × 10−4

fourth-level adaptive mesh 4.6198 × 10−3 1.4123 × 10−3 3.7746 × 10−4

Table 7.4: Discrete infinity norm Errors of the symmetric IDG solutions on different meshes
with C∗=1000000.

h 1
8

1
16

1
32

uniform mesh 2.7755 × 10−2 8.0046 × 10−3 3.2532 × 10−3

first-level adaptive mesh 7.3569 × 10−3 3.0655 × 10−3 3.2676 × 10−4

second-level adaptive mesh 2.7734 × 10−3 6.3936 × 10−4 1.7824 × 10−4

third-level adaptive mesh 3.9052 × 10−4 2.0124 × 10−4 8.3156 × 10−5

fourth-level adaptive mesh 2.4619 × 10−4 9.9134 × 10−5 2.8141 × 10−5

Table 7.5: Comparison of the discrete infinity norm errors of the symmetric IDG solutions
on interface elements with C∗=1000000.
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7.4.2 Numerical results for the nonsymmetric IDG method with
bilinear IFE

Since the penalty constant C∗∗ of the non-symmetric DG formulation doesn’t depend on
the problem, we would like to first show its convergence numerically in this section. We will
compare the sensitivity of the symmetric and non-symmetric formulation in the next section.
Table 7.6 contains the errors of the solutions uh on the original rectangular mesh without
mesh refinement with various partition sizes h and the penalty constant C∗∗ = 1000.

h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/16 9.0251 × 10−4 4.6957 × 10−2 1.9093 × 10−3

1/32 2.1617 × 10−4 2.2328 × 10−2 5.0047 × 10−4

1/64 5.6864 × 10−5 1.0566 × 10−2 1.3394 × 10−4

1/128 1.4036 × 10−5 5.2157 × 10−3 3.4292 × 10−5

1/256 3.5747 × 10−6 2.6167 × 10−3 8.5475 × 10−6

Table 7.6: Errors of the nonsymmetric IDG solutions on the original mesh with C∗∗=1000.

Using linear regression, we can also see that the data in Table 7.6 obey

‖uh − u‖0 ≈ 0.2210 h1.9905, |uh − u|1 ≈ 0.8309 h1.0429, ‖uh − u‖∞ ≈ 0.4287 h1.9474,

which indicates that the bilinear IDG solution uh converges to the exact solution with con-
vergence rates O(h2) in the L2 norm, O(h) in the H1 norm and O(h2) in the discrete infinity
norm.

Similar to the symmetric IDG method, we would like to compare the discrete infinity norm
error on all interface elements to see how the local mesh refinement reduces the errors around
the interface. Table 7.7 contains the discrete infinity norm errors of the solutions uh with
the step sizes h = 1

8
, 1

16
, 1

32
and the penalty constant C∗∗ = 1000000. From this table, we can

see that the error decreases quickly during the local mesh refinement.

h 1
8

1
16

1
32

uniform mesh 2.7752 × 10−2 8.0042 × 10−3 3.2527 × 10−3

first-level adaptive mesh 7.3559 × 10−3 3.0647 × 10−3 3.2675 × 10−4

second-level adaptive mesh 2.7720 × 10−3 6.3935 × 10−4 1.7825 × 10−4

third-level adaptive mesh 3.9047 × 10−4 2.0124 × 10−4 8.3093 × 10−5

fourth-level adaptive mesh 2.4621 × 10−4 9.9122 × 10−5 2.8147 × 10−5

Table 7.7: Comparison of the discrete infinity norm errors of the nonsymmetric IDG solutions
on interface elements with C∗∗=1000000.
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7.4.3 The effect of the penalty parameters on symmetric and non-
symmetric IDG formulations

From Section 7.1.4, we can see that the symmetric interior penalty DG method requires a
large enough positive constant C∗ for the penalty while the nonsymmetric interior penalty
DG method only requires a positive constant C∗∗ for the penalty. While a small penalty
parameter works for the nonsymmetric method, it may cause the symmetric method to fail.
Actually, we observe the similar performance for the IDG method. In this section, we will
use two examples to show this phenomenon.

For the numerical results in Table 7.8 and Table 7.9, we use the original rectangular mesh
without refinement. Table 7.8 contains the errors of the solutions uh with various partition
sizes h and the penalty constant C∗ = 1 for the symmetric IDG method. Table 7.9 contains
the errors of the solutions uh with various partition sizes h and the penalty constant C∗∗ = 1
for the nonsymmetric IDG method.

h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/16 6.2958 × 10−2 1.6052 × 100 1.1989 × 10−1

1/32 4.3967 × 10−3 2.8605 × 10−1 1.1677 × 10−2

1/64 7.3712 × 10−4 1.1320 × 10−1 3.2727 × 10−3

1/128 1.3069 × 10−3 3.9426 × 10−1 5.6696 × 10−3

1/256 1.5683 × 10−4 9.6793 × 10−2 5.1739 × 10−4

Table 7.8: Errors of the nonsymmetric IDG solutions on the original mesh with C∗=1.

h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/16 2.2230 × 10−3 4.8928 × 10−2 4.4368 × 10−3

1/32 5.0232 × 10−4 2.2835 × 10−2 1.1160 × 10−3

1/64 1.1751 × 10−4 1.0707 × 10−2 2.7990 × 10−4

1/128 2.8279 × 10−5 5.2514 × 10−3 7.0089 × 10−5

1/256 6.9225 × 10−6 2.6257 × 10−3 1.7537 × 10−5

Table 7.9: Errors of the nonsymmetric IDG solutions on the original mesh with C∗∗=1.

The the data in Table 7.8 shows that the IDG solution uh for symmetric formulation does
not converge with the rate expected. However, using linear regression, we can also see that
the data in Table 7.9 obey

‖uh − u‖0 ≈ 0.6913 h2.0805, |uh − u|1 ≈ 0.8930 h1.0560, |uh − u|∞ ≈ 1.1252 h1.9959,

which indicates that the nonsymmetric IDG solution uh with bilinear IFE converges to the
exact solution with convergence rates O(h2) in the L2 norm, O(h) in the H1 norm and O(h2)
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in the discrete infinity norm. For all the linear regressions in this chapter, we obtain similar
figures to Figure 5.1, which mean that the data points match the linear regression lines very
well.



Chapter 8

Selective immersed discontinuous
Galerkin (SIDG) method

In Chapter 7, we introduced the immersed DG method. One important advantage of this
method is the local mesh refinement, which allows us to use finer meshes locally for some
interesting parts of a problem domain. However, the immersed DG method is based on the
interior penalty DG method [7, 10, 122, 128, 169, 183, 200], which needs much more finite
element basis functions than Galerkin method on the same mesh. Hence much larger alge-
braic systems need to be solved by significantly more computational cost. This contradiction
leads to a challenge about how to take advantage of the local refinement feature of the DG
methods while keeping the computational cost as close to that of Galerkin method as pos-
sible. Coupling [60, 97, 173] or hybridization [61, 62, 63] of DG methods and conforming
finite element methods is one efficient way to resolve this challenge. Following this idea, in
this chapter, we will introduce a selective immersed discontinuous Galerkin(SIDG) method,
which nicely resolves this challenge. Its basic idea is to use the discontinuous Galerkin formu-
lation wherever local refinement is needed, such as around an interface or a singular source,
but the regular Galerkin formulation everywhere else.

8.1 Formulations of the SIDG method

In this section, we will use our model interface problem to introduce the SIDG method. The
same idea can be extended to other problems.

First we introduce some conventions. Assume Th, h > 0 is a mesh of the solution domain
Ω. The mesh consists of interface elements whose interiors are cut through by the interfaces
and the rest called non-interface elements. Let εS denote the collection of selected element
edges where discontinuity will be allowed by the discontinuous Galerkin formulation, and
let ΩS the union of the elements in Th having at least one of its edges in εS. The key

125



Xiaoming He Chapter 8. SIDG method 126

point of the SIDG method is to properly select these two sets based on the features of the
problem to be solved. For our model interface problem, because of the discontinuity of the
coefficient, the error around interface is usually much larger than the error on the rest of
the domain. In order to apply local mesh refinement around the interface to improve the
accuracy efficiently, one of our choice of ΩS is the union of all interface elements and εS to
be the set of all the edges of the elements in ΩS. Let εD

h denote the element edges of Th on
the Dirichlet boundary of the problem and εo

h denote the interior element edges of Th. We
first introduce the following space for the weak formulation:

PH1
S(Th) = {v : ∀e ∈ εo

h/εS, [v]|e = 0; ∀T ∈ Th, v|T ∈ C(T );

v|T ∈ H1(T ) if T ∈ Th is a non-interface element;

v|T̃ s ∈ H1(T̃ s) if T ∈ Th is an interface element, s = +,−}.

Now we recall the following definition. For a set Λ ⊂ Ω whose interior is cut through by Γ,
we define

PH2
int(Λ) =

{
u ∈ C(Λ), u|Λs ∈ H2(Λs), s = −,+,

[
β
∂u

∂nΓ

]
= 0 on Γ ∩ Λ

}
.

Similar to Section 7.1, we can formulate the selective discontinuous weak formulations for
our model interface problem as follows.

∑

T∈Th

(β∇u,∇v)T −
∑

e∈εS

({β∇u · ν}, [v])e −
∑

e∈εD
h

(β∇u · ν, v)e =
∑

T∈Th

(f, v)T

Define

b(u, v) =
∑

T∈Th

(β∇u,∇v)T

L(v) =
∑

T∈Th

(f, v)T

JS(u, v) =
∑

e∈εS

({β∇u · ν}, [v])e +
∑

e∈εD
h

(β∇u · ν, v)e

JSθ(u, v) =
∑

e∈εS

θe([u], [v])e +
∑

e∈εD
h

θe(u, v)e

a−Sθ(u, v) = b(u, v) − JS(u, v) − JS(v, u) + JSθ(u, v)

L−θ(v) = L(v) −
∑

e∈εD
h

(β∇v · ν, g)e +
∑

e∈εD
h

θe(g, v)e

Then, following the idea in [7, 77, 128, 200], the symmetric selective discontinuous weak
formulation is to find a u ∈ PH2

int(Ω) such that

a−Sθ(u, v) = L−
θ (v), ∀v ∈ PH1

S(Th) (8.1)
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Based on the convergence analysis in [7, 51, 128, 200] and Section 8.4, we choose

θe =
C∗

h
, (8.2)

where C∗ is a penalty constant such that C∗ > C0 for some positive constant C0.

Even though the above discontinuous weak formulation is symmetric and positive definite,
its penalty constant must be large enough, which means the choice of C∗ depends on the
problem. In order to remove this limitation, we follow the idea in [10, 169, 183] to generate
a nonsymmetric selective discontinuous weak formulation as follows. Find a u ∈ PH2

int(Ω)
such that

a+
Sθ(u, v) = L+

θ (v), ∀v ∈ PH1
S(Th) (8.3)

where

a+
Sθ(u, v) = b(u, v) − JS(u, v) + JS(v, u) + JSθ(u, v)

L+
θ (v) = L(v) +

∑

e∈εD
h

(β∇v · ν, g)e +
∑

e∈εD
h

θe(g, v)e

Based on [10, 169, 51, 183], we usually choose

θe =
C∗∗

h
, (8.4)

where C∗∗ is a just positive penalty constant.

Now we use a selective immersed finite element space SS
h (Ω) ⊂ PH1

S(Th) and the weak
formulations introduced above to construct the SIDG method as follows: find uh ∈ SS

h (Ω)
such that

a−Sθ(uh, vh) = L−
θ (vh), ∀vh ∈ SS

h (Ω), (8.5)

or find uh ∈ SS
h (Ω) such that

a+
Sθ(uh, vh) = L+

θ (vh), ∀vh ∈ SS
h (Ω), (8.6)

Remark 8.1.1 The SIDG method depends on two key components: εS and SS
h (Ω). We

choose εS and/or ΩS based on the features of the problem and our desire to use the DG
formulation at the places we are interested in. The selective immersed finite element space
SS

h (Ω) can then be defined according to εS,ΩS and our desire to include other features, such
as the need to control the computational cost. As we can see later, a suitable choice of
these components can generate a convergent method that can solve an interface problem on a
rectangular mesh with the local mesh refinement capability at a reduced computational cost.

Remark 8.1.2 If we choose εS to be the set of all interior edges, then ΩS is the union of
all the elements in Th and the SIDG method becomes the immersed DG method discussed in
Chapter 7.
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8.2 SIDG method with bilinear IFE

In this section, we will first use the bilinear IFE functions introduced in [110, 111, 112, 149]
to form a selective bilinear immersed finite element space SSb

h (Ω). Then we apply this space
to the SIDG method and discuss its advantages and implementation.

8.2.1 Selective bilinear immersed finite element space

First, we briefly recall the piecewise bilinear immersed finite element function introduced in
Section 3.1. Consider a typical rectangle element T ∈ Th. Assume that the four vertices
of T are Ai, i = 1, 2, 3, 4, with Ai = (xi, yi)

t. If T is an interface element, then we use
D = (x

D
, y

D
)T and E = (x

E
, y

E
)T to denote the interface points on its edges. Then we

define the piecewise bilinear IFE functions as follows:

φ(x, y) =





φ−(x, y) = a−x+ b−y + c− + d−xy, (x, y) ∈ T̃−,

φ+(x, y) = a+x+ b+y + c+ + d+xy, (x, y) ∈ T̃+,
φ−(D) = φ+(D), φ−(E) = φ+(E), d− = d+,
∫

DE

(
β− ∂φ−

∂nDE
− β+ ∂φ+

∂nDE

)
ds = 0.

(8.7)

We let φi(X) be the piecewise bilinear IFE function such that

φi(xj , yj) =

{
1, if i = j,
0, if i 6= j

for 1 ≤ i, j ≤ 4, and we call them the bilinear IFE nodal basis functions on an interface
element T . For every element T ∈ Th, we let Sh(T ) = span{φi, i = 1, 2, 3, 4}, where φi,
i = 1, 2, 3, 4 are the standard bilinear nodal basis functions for a non-interface element T ;
otherwise, φi, i = 1, 2, 3, 4 are the immersed bilinear basis functions defined above.

We need to introduce a few terminologies for describing the selective bilinear immersed finite
element space. Assume that we start from a usual rectangular mesh T 0

h of Ω without any
hanging nodes, and we call its elements the 0-th level elements. We refine T 0

h once by dividing
each of a set of selected elements in T 0

h into 4 congruent sub-rectangles to generate a new
mesh T 1

h . We call those new smaller rectangles in in T 1
h the 1st level elements. Repeating this

procedure to the n-th level, we can generate a refined mesh Th which can contain elements
from level 0 to level n.

For each node (xN , yN)t in a mesh Th, we define its associated elements to be those elements
in which (xN , yN)t is a vertex. For example, the associated elements of the node K in Figure
8.1 are �NKIL and �JEKN , but �EBFI is not an associated element of node K even
though it is a neighboring element of K. The associated elements of node I in Figure 8.1
are �NKIL, �EBFI, �IFCG and �HIGD. We then use Th,N ⊂ Th to represent the
collection of all the associated elements of a node (xN , yN)t.



Xiaoming He Chapter 8. SIDG method 129

I

K

J

G

E

D C

BA

M N

LH F

Figure 8.1: A sketch for the associated elements, coarsenable sets and hanging nodes.

At each node (xN , yN)t of Th, we also define a coarsenable set to be a subset Th,N,c ⊂ Th,N

such that

(1) |Th,N,c| ≥ 2, i.e., Th,N,c must contain at leat two associated elements of (xN , yN)t.

(2) All the elements in Th,N,c are in the same level.

(3) Each element in Th,N,c shares at least one element edge with another element in Th,N,c.

For example, for the node I in Figure 8.1,

{�EBFI,�IFCG,�HIGD}, {�EBFI,�IFCG}, {�IFCG,�HIGD}

are coarsenable sets, but {�EBFI, �HIGD} is not a coarsenable set. For node I, there is
no coarsenable set containing �NKIL.

For each coarsenable set Th,N,c at a node (xN , yN)t, we can defined a piecewise bilinear
function ΨN,c as follows:

ΨN,c|T∈Th,N,c
∈ Sh(T ), ΨN,c(xN , yN) = 1 but ΨN,c is zero at other nodes,

ΨN,c|T 6∈Th,N,c
= 0, ΨN,c|∪Th,N,c

is continuous at all nodes in Th,N,c.

Then, we define the selective global bilinear IFE basis functions associated with each node
(xN , yN)t ∈ Th as follows:

Step 1: For each associated element TN,i ∈ Th,N , we define a piecewise bilinear function ΨN,i

associated with (xN , yN)t by the zero extension of the local bilinear IFE or FE nodal basis
function φ(x, y) on TN,i such that ΨN,i(xN , yN) = 1.

Step 2: We select a collection of coarsenable sets Th,N,cj
, j = 1, 2, · · · , mN and introduce

piecewise bilinear functions ΨN,cj
, j = 1, 2, · · · , mN .

Step 3: We discard every ΨN,i defined above if TN,i is contained in one of the selected coarsen-
able sets Th,N,cj

, j = 1, 2, · · · , mN , and call all the remaining piecewise bilinear functions the
selective global bilinear IFE basis functions associated with the (xN , yN)t.
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Finally, we define the selective bilinear immersed finite element (IFE) space SSb
h (Ω) to be

the space spanned by the selective global bilinear IFE basis functions associated with all the
nodes in Th.

Remark 8.2.1 We note that in forming the global nodal basis functions associated with a
node (xN , yN)t, the Step 3 actually replaces those functions ΨN,i with smaller supports by
a function function ΨN,cj

with a larger support provided that TN,i ∈ Th,N,cj
. This makes it

possible to form SSb
h (Ω) of a lower dimension. Also, this step is very similar to the coarsen

step in an adaptive mesh refinement procedure.

The selection of coarsenable sets at each node in the Step 2 is up to the user of this method.
A user can use this opportunity to include desirable features in the method. One necessary
requirement is to make sure that the global bilinear IFE basis functions associated with each
node are linearly independent. We describe two specific rules for selecting coarsenable sets
at each node so that this necessary requirement is fulfilled.

Selective rule 1: At each node (xN , yN)t, we select only the largest coarsenable set that
doesn’t include any interface element.

For example, in Figure 8.1, suppose �AJNM is the only interface element around node
N , then the coarsenable set to be used N is {�JEKN,�NKIL,�MNLH} according to
Selective rule 1.

Selective rule 2: At each node (xN , yN)t of Th, if (xN , yN)t is also a node of T 0
h , then

we select only the largest coarsenable set which doesn’t include any interface element. If
(xN , yN)t is not a node of T 0

h , we don’t select any coarsenable set.

For example, suppose the T 0
h consists of elements �AEIH,�EBFI,�IFCG and �HIGD

in Figure 8.1 and we refine �AEIH into four congruent rectangular elements to form the
mesh Th. If �AJNM is the only interface element, then we don’t select any coarsenable set
for nodes J,K, L,M,N , but select the coarsenable set {�EBFI,�IFCG,�HIGD} for the
node I.

Now we use the selective bilinear IFE space SSb
h (Ω) ⊂ PH1

S and the selective discontinuous
Galerkin formulations introduced in the previous section to construct the SIDG method with
bilinear IFE as follows: find uh ∈ SSb

h (Ω) such that

a−Sθ(uh, vh) = L−
θ (vh), ∀vh ∈ SSb

h (Ω), (8.8)

or find uh ∈ SSb
h (Ω) such that

a+
Sθ(uh, vh) = L+

θ (vh), ∀vh ∈ SSb
h (Ω). (8.9)
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8.2.2 Advantages of the SIDG method

As discussed in Section 7.2, Galerkin method doesn’t allow any hanging nodes in the meshes,
which leads to some strict restrictions of mesh refinement. However, there is no such a
restriction for the SIDG method. Meanwhile, IFE allows us to use structured meshes for
interface problems, so the SIDG method with IFE spaces will allow us to use adaptive
structured meshes with flexible local mesh refinement. That is, in a structured mesh, we
can refine any region again and again while keeping the mesh in the rest region coarse. For
example, we can refine only the interface elements along the interface. Of course, we can
refine the interface elements as many times as needed, see Figure 7.4.

We would like to note that local refinement is a common advantage for all DG methods.
Therefore, the immersed DG method discussed in Chapter 7 also has this advantage. How-
ever, as mentioned in the introduction section, the immersed DG method increases the
computational cost by significant amount. In the following, we will explain how the selective
feature in the SIDG method can help to keep the the computational cost low while retaining
the local mesh refinement with structured mesh.

At each node outside of ΩS, there is only one global nodal basis function, which is the same
as that of regular Galerkin method. Therefore, the SIDG method only increases the number
of global nodal basis functions at those nodes inside ΩS. If the nodes inside ΩS are much less
than those outside of ΩS, the SIDG method doesn’t increase the number of global nodal basis
functions much. Consider the model interface problem with Dirichlet boundary condition,
suppose we have a uniform rectangular mesh Th on a square with N ×N nodes and L nodes
in ΩS. For Galerkin method, we use (N−2)2 global nodal basis functions. For the immersed
DG method, we need 4N2 − 8N global nodal basis functions. For the SIDG method, the
number of global nodal basis functions is at most (N − 2)2 + 3L. When L is much smaller
than N2, the SIDG method have much less global nodal basis functions than the immersed
DG method, hence reduces the computationally cost dramatically. For example, in a mesh
Th fine enough for the numerical example in Section 8.3, most of its nodes are non-interface
nodes, hence most of the global nodal basis functions of SS

h (Ω) are just the usual bilinear
global nodal basis functions except for few nodes in the vicinity of the interface Γ. Without
loss of generality, we can assume L = 2N for the numerical example in Section 8.3, then
the number of global nodal basis functions for the SIDG method is at most (N − 2)2 + 6N ,
which is much closer to (N − 2)2 than 4N2 − 8N when N is large.

Now we will use an example to compare the computation cost for Galerkin method, the im-
mersed DG method and the SIDG method based on comparable accuracy. Tables 5.1, 7.1,
7.6, 8.2, and 8.10 present the IFE solution errors for Galerkin method, the symmetric im-
mersed DG method, the nonsymmetric immersed DG method, the symmetric SIDG method
and the nonsymmetric SIDG method for the same example as in Section 5.2 with β− = 1
and β+ = 10. From these tables, we can see that all of these methods achieve comparable
accuracy on the same mesh.
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Note that the number of global basis functions used in a finite element method determines
the number of unknowns and the size of the algebraic system, hence reflects the computation
cost. In Table 8.1, for different mesh sizes, we compare the number of global basis functions
used by the numerical methods mentioned above. Note that a rectangular Cartesian mesh
on [−1, 1] × [−1, 1] with a step size h has ( 2

h
+ 1)2 nodes. Let ♯1, ♯2, ♯3 denote the number

of global basis functions used by Galerkin method, the immersed DG method and the SIDG
method separately. Then we get the following table.

h ♯1 ♯2 ♯3
1/16 961 4092 1357
1/32 3721 16380 4749
1/64 15625 65532 17681
1/128 64009 262140 68113
1/256 259081 1048572 267281

Table 8.1: Comparison of the number of global basis functions used by Galerkin method,
the immersed DG method and the SIDG method.

Table 8.1 shows that ♯1
♯3

is closer and closer to 1 when the mesh size h becomes smaller
and smaller, but ♯2 stays around four times of ♯1. Therefore, the computation cost of the
SIDG method is much less than that of the immersed DG method while keeping the local
refinement feature. Even though Galerkin method uses less number of global basis functions
than the SIDG method, it does have much more strict requirement on mesh refinement.

Additionally, the SIDG method only computes the jump terms for all the edges in εS but
the regular interior penalty DG method needs to compute the jump terms for all the interior
element edges. Hence the SIDG method dramatically reduces the computation cost for the
jump terms.

8.2.3 Some Implementation issues

In this section, we will discuss some implementation issues for the SIDG method with bilinear
IFE under Selective rule 2 and illustrate them by some examples.

As usual, finite element methods need three matrices T, P , and E to store the information
of a mesh. The nth column of matrix T stores the global nodal indices of the vertices of the
nth element. The nth column of matrix P stores the coordinates of the nth node. The nth of
matrix E stores the information of the nth element edge. Because the SIDG method needs
more information to be implemented, we introduce two new matrices HT and HE as follows.
Basically we use HT to store the index of the global nodal basis functions corresponding to
the nodes of all elements and the interface element index for IFE. We use HE to store the
information of all element edges in εS.
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First, we number all the global nodal basis functions in SS
h (Ω). This index is different

from that of all nodes since one node may be corresponding to more than one global basis
functions, see Figure 8.2 for an example. The restriction of each global nodal basis function
in SS

h (Ω) on an element must be either 0 or a local nodal basis function. For the second
case, we say that the global basis function corresponds to that local nodal basis function.
Now we use the first four entries of the nth column of matrix HT to store the indices of
the global nodal basis functions corresponding to the four local nodal basis functions of the
nth element. These information will be used to assemble the global stiffness matrix from
the local stiffness matrices. Note that the computation of the local stiffness matrices from
b(u, v) and the local load vectors from L(v) on all elements is the same as that of Galerkin
method.

Second, we number all the interface elements and call this index as interface element index.
For those elements completely in Ω−, we define their interface indices to be −1. For those
elements completely in Ω+, we define their interface indices to be 0. The left plot in Figure
8.2 gives an example of the interface element index. Then we use the fifth entry of the nth

column of matrix HT stores the interface element index of the nth element. These interface
information is for IFE.

Third, we number all the element edges in εS, see the right plot in Figure 8.3 for an example.
Recall that in Section 7.1.1, for each interior edge e, we defined its two neighboring elements
T1, T2 and the unit normal vector ν of e exterior to its T2. For the nth element edge e ∈ εS,
we use the nth column of matrix HE to store its information as follows. The first two entries
store the global nodal indices of the two end points of this edge. The third and fourth entries
store the two components of ν. The fifth and sixth entries store the indices of the elements
T1 and T2 separately. These information are used for computing the line integrals on edges
in εS and assemble them into the global stiffness matrix.

Now we use the following example to illustrate the above definitions. The left plot in Figure
8.2 is a mesh with indices of its elements and nodes. The number (i), i = 1, · · · , 16 at the
center of each element is the index of that element and the number i, i = 1, · · · , 25 beside
each node is the index of that node. The curve is the interface Γ. As usual, we can use the
information in this graph to form the regular matrices T and P . The right plot in Figure 8.2
shows the indices of all elements and global basis functions. The number i, i = 1, · · · , 36
beside each node is the index of one global nodal basis function corresponding to that node.
The formation of those global nodal basis functions can be found in the previous section.
The left plot Figure 8.3 shows the interface element index for all elements. The right plot
Figure 8.3 shows the index of all element edges in εS.

For the partition introduce above, we get the matrices T , HT and HE as follows.

T =




1 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19
6 7 8 9 11 12 13 14 16 17 18 19 21 22 23 24
7 8 9 10 12 13 14 15 17 18 19 20 22 23 24 25
2 3 4 5 7 8 9 10 12 13 14 15 17 18 19 20


 ,
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Figure 8.2: The left plot shows the indices of all elements and nodes. The right plot shows
the indices of all elements and global nodal basis functions.
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Figure 8.3: The left plot shows the interface element index. The right plot shows the index
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HT =




1 2 3 4 6 7 8 9 26 28 13 14 16 33 18 19
6 7 8 9 11 12 13 14 30 32 18 19 21 36 23 24
7 8 9 10 12 13 14 15 31 34 19 20 22 37 24 25
2 3 4 5 7 8 9 10 27 29 14 15 17 35 19 20
0 0 0 0 0 0 0 0 1 2 0 0 −1 3 0 0



,

HE =




16 17 12 17 18 13 17 23
17 12 11 18 13 12 22 18
−1 0 −1 −1 0 −1 0 0
0 −1 0 0 −1 0 −1 −1
9 9 5 10 10 6 13 14
13 10 9 14 11 10 14 15



.

Now we use two examples to show how we use the matrices above to generate a local stiffness
matrix and assemble its entries to the global stiffness matrix. Suppose we are working on
the 10th element which is an interface element.

We first use T (:, 10) to obtain the information of this element. Then we can use the infor-
mation to compute the area integrals in (8.8) on this element, which form the local stiffness
matrix of this element. This process is very similar to that of Galerkin method. However,
we need to use matrix HT instead of T to assemble the entries in the local stiffness matrix
into the global stiffness matrix. Assume B = [bij ]

4
i,j=1 is the local stiffness matrix and A is

the global stiffness matrix. Then we should assemble bij to A(HT (i, 10), HT (j, 10)).

As for the line integrals, suppose we are working on the 2nd element edge in εS. HE(:, 2)
tells us all the information we need to compute the line integrals in (8.8) on this edge. Then
we use HE(5, 2) = 9 and HE(6, 2) = 10 to get the indices of the two neighboring elements of
this edge. Using them together with HT , we can assemble the results of these line integrals
on the 2nd element edge in εS into the global stiffness matrix A. For example, if the test
function and trial function are the ith and jth local basis function of the 9th element, then we
assemble the corresponding line integral to A(HT (i, 9), HT (j, 9)). If the test function is the
ith local basis function of the 10th element and the trial function is the jth local basis function
of the 9th, then we assemble the corresponding line integral to A(HT (i, 10), HT (j, 9)).

Remark 8.2.2 HT and HE introduced above provide basic information for the SIDG method.
They are not necessarily most efficient. On the other side, we may add more information to
HT and HE if necessary.

Remark 8.2.3 The immersed DG method and the interior penalty DG method with regular
finite elements also need some matrices similar to the matrices HT and HE. However,
since the SIDG method only use discontinuous formulation on part of the domain. The
matrix HE for the SIDG method can be much smaller than that of the immersed DG method
and the regular interior penalty DG method, depending how much we want to use the DG
formulation, and this leads to reduction of memory and and computation time.
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8.3 Numerical examples

In this section, we will show some numerical examples for the SIDG method based on the
selective bilinear IFE space. Consider the same example as in Section 5.2 with β− = 1. The
way to construct the refined meshes is the same as in Section 7.4 and we also call the original
rectangular mesh without refinement in Section 7.4 0-level refined mesh. We will present
numerical results for two cases with β+ = 10 and β+ = 1000000 separately.

Under the selective rule 2 in Section 8.2.1, at each node of the nth-level (n ≥ 0) refined
mesh, if the node is still a node of the 0-level refined mesh, then we select only the largest
coarsenable set which doesn’t include any interface element. If the node is not a node of the
0-level refined mesh, then we don’t select any coarsenable set. In this case ΩS is actually
the union of all interface elements of the 0-level refined mesh and εS is the set of all element
edges of the nth-level (n ≥ 0) refined mesh in ΩS.

8.3.1 Numerical results for the symmetric SIDG method with bi-
linear IFE

We will first numerically show the the convergence in L2, H1 and discrete infinity norms
for the symmetric SIDG method with bilinear IFE on the original rectangular mesh with-
out mesh refinement, see the left plot of Figure 7.4. Table 8.2 contains the errors of the
solutions uh with various partition sizes h, β+ = 10 and C∗ = 1000. Table 8.3, 8.4 and
8.5 contain the errors of the solutions uh with various partition sizes h, β+ = 1000000 and
C∗ = 1000, 0.0001, 0 separately.

h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/16 9.3598 × 10−4 4.6983 × 10−2 1.9320 × 10−3

1/32 2.2376 × 10−4 2.2336 × 10−2 5.0699 × 10−4

1/64 5.8624 × 10−5 1.0568 × 10−2 1.3541 × 10−4

1/128 1.4462 × 10−5 5.2162 × 10−3 3.4717 × 10−5

1/256 3.6792 × 10−6 2.6168 × 10−3 8.6371 × 10−6

Table 8.2: Errors of the symmetric SIDG method with bilinear IFE on the original mesh for
β+ = 10 and C∗=1000.

Using linear regression, we can also see that the data in Table 8.2 obey

‖uh − u‖0 ≈ 0.2309 h1.9933, |uh − u|1 ≈ 0.8318 h1.0431, ‖uh − u‖∞ ≈ 0.4347 h1.9479,

and the data in Table 8.3 obey

‖uh − u‖0 ≈ 0.2460 h1.9996, |uh − u|1 ≈ 0.8720 h1.0726, ‖uh − u‖∞ ≈ 0.1488 h1.5585.
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h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/16 9.5450 × 10−4 4.5462 × 10−2 2.3301 × 10−3

1/32 2.4804 × 10−4 2.1547 × 10−2 7.5253 × 10−4

1/64 5.9188 × 10−5 9.5477 × 10−3 1.6324 × 10−4

1/128 1.4644 × 10−5 4.6827 × 10−3 5.5396 × 10−5

1/256 3.8419 × 10−6 2.3697 × 10−3 3.8733 × 10−5

Table 8.3: Errors of the symmetric SIDG method with bilinear IFE on the original mesh for
β+ = 1000000 and C∗=1000.

h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/16 7.0060 × 10−3 2.2073 × 100 1.0925 × 10−1

1/32 1.0443 × 10−2 3.0078 × 100 5.7371 × 10−1

1/64 3.0155 × 10−4 3.6226 × 10−1 7.8894 × 10−2

1/128 2.3456 × 10−3 6.1921 × 10−1 8.1909 × 10−2

1/256 5.4700 × 10−5 2.8866 × 10−1 2.8750 × 10−2

Table 8.4: Errors of the symmetric SIDG solutions on the original mesh for β+ = 1000000
and C∗=0.0001.

h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/16 7.0081 × 10−3 2.2085 × 100 1.0931 × 10−1

1/32 1.3363 × 10−1 2.8799 × 100 5.6452 × 10−4

1/64 3.1109 × 10−4 3.7472 × 10−1 8.2323 × 10−2

1/128 2.9876 × 10−3 2.9423 × 100 4.2683 × 10−1

1/256 6.4373 × 10−5 3.3041 × 10−1 3.5378 × 10−2

Table 8.5: Errors of the symmetric SIDG solutions on the original mesh for β+ = 1000000
and C∗=0.
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From the linear regressions, we can see that the SIDG solution uh converges to the exact
solution with convergence rates O(h2) in the L2 norm, O(h) in the H1 norm when the
penalty constant C∗ is large enough. However, Table 8.5 shows that it doesn’t converge
as expected with penalty constant C∗ = 0. Therefore, the non-trivial penalty terms are
necessary in order to guarantee the convergence. Our theoretic analysis also requires a large
enough penalty constant C∗ for convergence and the oscillating errors in Table 8.4 and 8.5
confirm this requirement numerically. Additionally, we can see that the solution uh doesn’t
always converge to the exact solution with convergence rate O(h2) in the discrete infinity
norm, which was also observed for Galerkin method and finite volume element method with
IFEs before [112, 113, 144, 149]. The corresponding analysis leads to some interesting future
research work.

In order to illustrate the global effect of the local mesh refinement, we will compare the
numerical errors in L2, H1 and discrete infinity norms on different meshes with the step sizes
h = 1

8
, 1

16
, 1

32
. Table 8.6 to 8.8 contain numerical errors in L2, H1 and discrete infinity norm

on the original mesh and the refined meshes from the first-level to the fourth-level. Note
that the h is the the step size of the corresponding original mesh. From the three tables,
we can see that the effect of the first-level and second-level refined meshes are dramatic, but
the effect of the third-level and fourth-level refined meshes is not much. That’s because the
error of the non-interface area is not reduced as much as that of the interface area.

h 1
8

1
16

1
32

original mesh 2.1366 × 10−2 4.7971 × 10−3 7.2254 × 10−4

first-level adaptive mesh 4.3277 × 10−3 8.2111 × 10−4 1.7169 × 10−4

second-level adaptive mesh 2.2492 × 10−3 5.9412 × 10−4 1.5710 × 10−4

third-level adaptive mesh 2.0740 × 10−3 5.8111 × 10−4 1.5364 × 10−4

fourth-level adaptive mesh 2.0634 × 10−3 5.7744 × 10−4 1.5281 × 10−4

Table 8.6: L2 norm errors of the symmetric SIDG solutions on different meshes.

h 1
8

1
16

1
32

original mesh 1.7413 × 10−1 7.2458 × 10−2 2.7376 × 10−2

first-level adaptive mesh 7.8639 × 10−2 3.9678 × 10−2 1.9964 × 10−2

second-level adaptive mesh 6.6543 × 10−2 3.7186 × 10−2 1.9708 × 10−2

third-level adaptive mesh 6.5186 × 10−2 3.7008 × 10−2 1.9664 × 10−2

fourth-level adaptive mesh 6.5084 × 10−2 3.6968 × 10−2 1.9656 × 10−2

Table 8.7: H1 norm errors of the symmetric SIDG solutions on different meshes.

To illustrate the local effect of the local mesh refinement around the interface for the symmet-
ric SIDG method, we compare error deduction in the discrete infinity norm on the interface
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h 1
8

1
16

1
32

original mesh 3.0810 × 10−2 8.0050 × 10−3 3.2539 × 10−3

first-level adaptive mesh 8.3872 × 10−3 1.9109 × 10−3 4.6486 × 10−4

second-level adaptive mesh 5.0352 × 10−3 1.4862 × 10−3 4.0208 × 10−4

third-level adaptive mesh 4.6433 × 10−3 1.4302 × 10−3 3.7831 × 10−4

fourth-level adaptive mesh 4.6150 × 10−3 1.4105 × 10−3 3.7724 × 10−4

Table 8.8: Discrete infinity norm errors of the symmetric SIDG solutions on different meshes.

elements in Table 8.9. Note that the h is the the step size of the original mesh without
refinement. From the data in this table, we can see that the local refinement reduce the
error around interface efficiently.

h 1
8

1
16

1
32

uniform mesh 2.7754 × 10−2 8.0050 × 10−3 3.2539 × 10−3

first-level adaptive mesh 5.4905 × 10−3 1.7120 × 10−3 3.1164 × 10−4

second-level adaptive mesh 1.7126 × 10−3 6.2751 × 10−4 1.6193 × 10−4

third-level adaptive mesh 3.7265 × 10−4 1.9026 × 10−4 8.3144 × 10−5

fourth-level adaptive mesh 2.5030 × 10−4 9.3606 × 10−5 3.1081 × 10−5

Table 8.9: Comparison of the discrete infinity norm errors of the symmetric SIDG solutions
on interface elements.

8.3.2 Numerical results for the nonsymmetric SIDG method with

bilinear IFE

Comparing the symmetric SIDG’s dependence of the penalty constant on the problem, one
important advantage of the non-symmetric SIDG method is that its penalty constant needs
only to be positive. In this section, we will illustrate this feature by presenting the errors of
the non-symmetric SIDG method with different penalty constants on the original rectangular
mesh. Table 8.10 and 8.11 contain the errors of the solutions uh with various partition sizes
h, β+ = 10 and the penalty constant C∗∗ = 1000, 0.0001, 0 separately. Table 8.12 and 8.13
contain the errors of the solutions uh with various partition sizes h, β+ = 1000000 and the
penalty constant C∗∗ = 1000, 0.0001 separately.

Using linear regression, we can also see that the data in Table 8.10 obey

‖uh − u‖0 ≈ 0.3056 h1.9817, |uh − u|1 ≈ 0.8244 h1.0412, ‖uh − u‖∞ ≈ 0.4361 h1.9260,

the data in Table 8.11 obey

‖uh − u‖0 ≈ 0.3083 h2.0443, |uh − u|1 ≈ 0.8337 h1.0430, ‖uh − u‖∞ ≈ 0.3937 h1.9213,
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h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/8 4.8417 × 10−3 9.4182 × 10−2 7.4548 × 10−3

1/16 1.2938 × 10−3 4.6984 × 10−2 2.1715 × 10−3

1/32 3.1571 × 10−4 2.2336 × 10−2 5.6652 × 10−4

1/64 8.1634 × 10−5 1.0568 × 10−2 1.5057 × 10−4

1/128 2.0260 × 10−5 5.2162 × 10−3 3.8429 × 10−5

1/256 5.1259 × 10−6 2.6168 × 10−3 9.5583 × 10−6

Table 8.10: Errors of the nonsymmetric SIDG solutions on the original mesh for β+ = 10
and C∗∗=1000.

h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/8 5.5721 × 10−3 9.4791 × 10−2 8.4884 × 10−3

1/16 9.2221 × 10−4 4.7363 × 10−2 1.7588 × 10−3

1/32 2.1135 × 10−4 2.2414 × 10−2 4.4750 × 10−4

1/64 6.0943 × 10−5 1.0606 × 10−2 1.1981 × 10−4

1/128 1.5797 × 10−5 5.2267 × 10−3 3.9623 × 10−5

1/256 4.0357 × 10−6 2.6197 × 10−3 9.6156 × 10−6

Table 8.11: Errors of the nonsymmetric SIDG solutions on the original mesh for β+ = 10
and C∗∗=0.0001.

h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/8 3.3558 × 10−3 9.0901 × 10−2 7.0848 × 10−3

1/16 9.4698 × 10−4 4.5722 × 10−2 2.4746 × 10−3

1/32 2.4617 × 10−4 2.1560 × 10−2 7.4044 × 10−4

1/64 5.8874 × 10−5 9.5491 × 10−3 1.6587 × 10−4

1/128 1.4523 × 10−5 4.6839 × 10−3 5.4856 × 10−5

1/256 3.7641 × 10−6 2.3559 × 10−3 2.0259 × 10−5

Table 8.12: Errors of the nonsymmetric SIDG solutions on the original mesh for β+ =
1000000 and C∗∗=1000.
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h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/8 4.1938 × 10−3 8.9981 × 10−2 7.5690 × 10−3

1/16 5.6185 × 10−4 4.5020 × 10−2 1.6592 × 10−3

1/32 1.1305 × 10−4 2.0943 × 10−2 4.2071 × 10−4

1/64 5.4539 × 10−5 9.5756 × 10−3 1.3950 × 10−4

1/128 1.2871 × 10−5 4.6820 × 10−3 3.8574 × 10−5

1/256 3.0983 × 10−6 2.3497 × 10−3 1.0579 × 10−5

Table 8.13: Errors of the nonsymmetric SIDG solutions on the original mesh for β+ =
1000000 and C∗∗=0.0001.

h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/8 4.1942 × 10−3 8.9981 × 10−2 7.5696 × 10−3

1/16 5.6183 × 10−4 4.5020 × 10−2 1.6592 × 10−3

1/32 1.1306 × 10−4 2.0943 × 10−2 4.2074 × 10−4

1/64 5.4551 × 10−5 9.5756 × 10−3 1.3952 × 10−4

1/128 1.2874 × 10−5 4.6820 × 10−3 3.8579 × 10−5

1/256 3.0990 × 10−6 2.3497 × 10−3 1.0580 × 10−5

Table 8.14: Errors of the nonsymmetric SIDG solutions on the original mesh for β+ =
1000000 and C∗∗=0.
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the data in Table 8.12 obey

‖uh − u‖0 ≈ 0.2176 h1.9756, |uh − u|1 ≈ 0.8532 h1.0682, ‖uh − u‖∞ ≈ 0.2778 h1.7398,

and the data in Table 8.13 obey

‖uh − u‖0 ≈ 0.1753 h1.9831, |uh − u|1 ≈ 0.8303 h1.0634, ‖uh − u‖∞ ≈ 0.3172 h1.8653,

and the data in Table 8.14 obey

‖uh − u‖0 ≈ 0.1753 h1.9830, |uh − u|1 ≈ 0.8303 h1.0634, ‖uh − u‖∞ ≈ 0.3172 h1.8653.

From the tables and linear regressions, we can see that the solution uh converges to the
exact solution with convergence rates O(h2) in the L2 norm, O(h) in the H1 norm for
penalty constant C∗∗ = 1000, 0.0001, 0. This numerically confirms that the penalty constant
C∗∗ needs to be only a positive constant or even 0. The corresponding analysis leads to some
future work. For all the linear regressions in this chapter, we obtain similar figures to Figure
5.1, which mean that the data points match the linear regression lines very well.

8.4 Convergence of the symmetric SIDG method with

bilinear IFE

In this section, we will follow the framework in [7] to analyze the convergence of the symmetric
SIDG method with bilinear IFE and prove the optimal convergence rate of the solutions in
energy norm. As before, we use C to represent a generic constant whose value might be
different from line to line. Unless otherwise specified, all the generic constants C in the
presentation below are independent of interface and mesh.

Consider a mesh Th with step size h. We first recall the following definitions. For any
function u ∈ PH2

int(Λ), we define

‖u‖2
s,Λ = ‖u‖2

s,Λ+ + ‖u‖2
s,Λ−, s = 0, 1, 2,

|u|2s,Λ = |u|2s,Λ+ + |u|2s,Λ−, s = 0, 1, 2.

Consider an interface element T ∈ Th. For any function wh ∈ Sh(T ) which will be recalled
from [112, 149], we define

‖wh‖
2
s,T = ‖u‖2

s,T̃+ + ‖u‖2
s,T̃−

, s = 0, 1, 2,

|wh|
2
s,T = |u|2

s,T̃+ + |wh|
2
s,T̃−

, s = 0, 1, 2.

For any function wh ∈ Sh(T ) and u ∈ PH2
int(T ), we define

‖wh + u‖2
s,T = ‖wh + u‖2

s,T̃+∩T+ + ‖wh + u‖2
s,T̃+∩T−

+ ‖wh + u‖2
s,T̃−∩T+ + ‖wh + u‖2

s,T̃−∩T−
,

|wh + u|2s,T = |wh + u|2
s,T̃+∩T+ + |wh + u|2

s,T̃+∩T−
+ |wh + u|2

s,T̃−∩T+ + |wh + u|2
s,T̃−∩T−

,

s = 0, 1, 2.
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Here note that one of T̃+∩T− and T̃−∩T+ might be empty. In that case we can remove the
norm and semi-norm on the empty set from the above definitions. For a set Λ ⊂ Ω whose
interior is not cut through by Γ, we define ‖u‖s,Λ and |u|s,Λ to be the usual Hs norm and
Hs semi-norm on Λ (s = 0, 1, 2) separately. Let εSD = εD

h

⋃
εS, then we define

‖u‖2
s,Th

=
∑

T∈Th

‖u‖2
s,T , s = 0, 1, 2,

‖‖u‖‖2 = ‖u‖2
1,Th

+
∑

e∈εSD

(
h−1‖[u]‖2

0,e + h‖{β∇u · ν}‖2
0,e

)
. (8.10)

Applying the same argument in Lemma 5.3.5, we obtain a similar trace inequality on Sh(T ).

Lemma 8.4.1 For each element T = �A1A2A3A4 ∈ Th, define

E1(∂T ) = A1A2, E2(∂T ) = A2A3, E3(∂T ) = A3A4, E4(∂T ) = A4A1.

Then we have the following trace inequality on every T ∈ Th:

∥∥∥∥β
∂wh

∂n

∥∥∥∥
2

0,Ei(∂T )

≤ C
(
h−1 |wh|

2
1,T + h |wh|

2
2,T

)
, ∀wh ∈ Sh(T ), 1 ≤ i ≤ 4. (8.11)

If |β| ≥ b1 > 0, then

∥∥∥∥
∂wh

∂n

∥∥∥∥
2

0,Ei(∂T )

≤ C
(
h−1 |wh|

2
1,T + h |wh|

2
2,T

)
, ∀wh ∈ Sh(T ), 1 ≤ i ≤ 4. (8.12)

The following two lemmas are similar to (2.2) and (2.8) in [7], but we need to show the
constants C1 and C2 are independent of interface and mesh. Even though our space here is a
little bit different from that in [7], the whole proof for Lemma 2.1 in [7] is still true because
we have wh ∈ L2(Ω) for each wh ∈ SSb

h (Ω).

Lemma 8.4.2 There exists a constant C1 independent of interface and mesh such that

‖wh‖
2
0,Th

≤ C1

(
‖∇wh‖

2
0,Th

+
∑

e∈ESD

h−1‖[wh]‖
2
0,e

)
, ∀wh ∈ SSb

h (Ω)

Proof. Define ψ ∈ H2(Ω)
⋂
H1

0 (Ω) by −∆ψ = wh. By the regularity of the elliptic problem,
we have

‖ψ‖2,Th
≤ C ‖wh‖0,Th

.
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By trace theorem [7], we get

‖∇ψ · ν‖2
0,e ≤ C(h−1|ψ|21,T + h|ψ|22,T ),

which leads to

‖∇ψ‖2
0,Th

+
∑

e∈εSD

h ‖∇ψ · ν‖2
0,e ≤ C ‖ψ‖2

2,Th
≤ C ‖wh‖

2
0,Th

.

Then

‖wh‖
2
0,Th

= (wh, wh) = (wh,−∆ψ)

=
∑

T∈Th

(∇wh,∇ψ)T −
∑

e∈εSD

([wh],∇ψ · ν)e

≤ C

(
‖∇wh‖

2
0,Th

+
∑

e∈εSD

h−1 ‖[wh]‖
2
0,e

)1/2(
‖∇ψ‖2

0,Th
+
∑

e∈εSD

h ‖∇ψ · ν‖2
0,e

)1/2

≤ C

(
‖∇wh‖

2
0,Th

+
∑

e∈εSD

h−1 ‖[wh]‖
2
0,e

)1/2

‖wh‖0,Th
,

which completes the proof.

Lemma 8.4.3 There exists a constant C2 such that
∑

e∈ESD

h‖{∇wh · ν}‖
2
0,e ≤ C2‖∇wh‖

2
0,Th

, ∀wh ∈ SSb
h (Ω).

Proof. From (3.20), we have

|wh|
2
1,T ≥ Ch2|wh|

2
2,T .

This inverse inequality is also obviously true for any non-interface element T since we use
standard bilinear finite element functions on them. Combining this with the trace inequality
(8.12), we get

‖∇wh · ν‖
2
0,e ≤ C(h−1|wh|

2
1,T + h|wh|

2
2,T ) ≤ Ch−1|wh|

2
1,T ≤ Ch−1 ‖∇wh‖

2
0,T ,

which completes the proof.
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Now we start to show the convergence for the symmetric SIDG method in the following
theorem. Without loss of generality, we only prove for the case with homogeneous Dirichlet
condition. In this case, we have

b(u, v) =
∑

T∈Th

(β∇u,∇v)T ,

JS(u, v) =
∑

e∈εS

({β∇u · ν}, [v])e,

JSθ(u, v) =
∑

e∈εS

θe([u], [v])e,

a−Sθ(u, v) = b(u, v) − JS(u, v) − JS(v, u) + JSθ(u, v),

L−
θ (v) =

∑

T∈Th

(f, v)T .

It is easy to show that a−Sθ(u, v) is bounded:

a−Sθ(u, v) ≤ C‖‖u‖‖‖‖v‖‖. (8.13)

The following lemma establishes the lower bound of a−Sθ.

Lemma 8.4.4 If 0 < b1 ≤ |β| ≤ b2 <∞, θe = C∗

h
and C∗ ≥

4C2b2
2

b1
+ b1

2
, then

a−Sθ(wh, wh) ≥ α‖‖wh‖‖
2 +

1

2
JSθ(wh, wh), ∀wh ∈ SSb

h (Ω). (8.14)

Proof. Since θe = C∗

h
and C∗ ≥

4C2b2
2

b1
+ b1

2
, then

1

2
JSθ(wh, wh) ≥

(
2C2b

2
2

b1
+
b1
4

)∑

e∈εS

h−1‖[wh]‖
2
0,e.



Xiaoming He Chapter 8. SIDG method 146

Therefore, ∀wh ∈ SSb
h (Ω), we have

a−Sθ(wh, wh) =
∑

T∈Th

(β∇wh,∇wh)T − 2
∑

e∈εS

({β∇wh · ν}, [wh])e + JSθ(wh, wh)

≥ b1‖∇wh‖
2
0,Th

− 2b2
∑

e∈εS

‖{∇wh · ν}‖0,e‖[wh]‖0,e + JSθ(wh, wh)

≥ b1‖∇wh‖
2
0,Th

− 2b2

(∑

e∈εS

h‖{∇wh · ν}‖
2
0,e

) 1

2
(∑

e∈εS

h−1‖[wh]‖
2
0,e

) 1

2

+ JSθ(wh, wh)

= b1‖∇wh‖
2
0,Th

− 2

(
b1

2C2

∑

e∈εS

h‖{∇wh · ν}‖
2
0,e

)1

2
(

2C2b
2
2

b1

∑

e∈εS

h−1‖[wh]‖
2
0,e

) 1

2

+JSθ(wh, wh)

≥
b1
2
‖∇wh‖

2
0,Th

+
b1
2
‖∇wh‖

2
0,Th

−
b1

2C2

∑

e∈εS

h‖{∇wh · ν}‖
2
0,e

−
2C2b

2
2

b1

∑

e∈εS

h−1‖[wh]‖
2
0,e + JSθ(wh, wh). (8.15)

Applying Lemma 8.4.3, we get

a−Sθ(wh, wh) ≥
b1
2
‖∇wh‖

2
0,Th

−
2C2b

2
2

b1

∑

e∈εS

h−1‖[wh]‖
2
0,e + JSθ(wh, wh)

=
b1
4
‖∇wh‖

2
0,Th

+
b1
4
‖∇wh‖

2
0,Th

−
2C2b

2
2

b1

∑

e∈εS

h−1‖[wh]‖
2
0,e + JSθ(wh, wh)

≥
b1
4
‖∇wh‖

2
0,Th

+
b1

4C2

∑

e∈εS

h‖{∇wh · ν}‖
2
0,e −

2C2b
2
2

b1

∑

e∈εS

h−1‖[wh]‖
2
0,e + JSθ(wh, wh).

Then using Lemma 8.4.2, we have

a−Sθ(wh, wh) ≥
b1
8
‖∇wh‖

2
0,Th

+
b1
8
‖∇wh‖

2
0,Th

+
b1

4C2

∑

e∈εS

h‖{∇wh · ν}‖
2
0,e

−
2C2b

2
2

b1

∑

e∈εS

h−1‖[wh]‖
2
0,e + JSθ(wh, wh)

≥
b1
8
‖∇wh‖

2
0,Th

+
b1

8C1
‖wh‖

2
0,Th

+
b1

4C2

∑

e∈εS

h‖{∇wh · ν}‖
2
0,e

−

(
2C2b

2
2

b1
+
b1
8

)∑

e∈εS

h−1‖[wh]‖
2
0,e + JSθ(wh, wh).
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Finally, combining this with (8.15), we get

a−Sθ(wh, wh) ≥
b1
8
‖∇wh‖

2
0,Th

+
b1

8C1
‖wh‖

2
0,Th

+
b1

4C2

∑

e∈εS

h‖{∇wh · ν}‖
2
0,e

−

(
2C2b

2
2

b1
+
b1
8

)∑

e∈εS

h−1‖[wh]‖
2
0,e +

1

2
JSθ(wh, wh) +

1

2
JSθ(wh, wh)

≥
b1
8
‖∇wh‖

2
0,Th

+
b1

8C1
‖wh‖

2
0,Th

+
b1

4C2

∑

e∈εS

h‖{∇wh · ν}‖
2
0,e

−

(
2C2b

2
2

b1
+
b1
8

)∑

e∈εS

h−1‖[wh]‖
2
0,e +

(
2C2b

2
2

b1
+
b1
4

)∑

e∈εS

h−1‖[wh]‖
2
0,e +

1

2
JSθ(wh, wh)

=
b1
8
‖∇wh‖

2
0,Th

+
b1

8C1
‖wh‖

2
0,Th

+
b1

4C2

∑

e∈εS

h‖{∇wh · ν}‖
2
0,e

+
b1
8

∑

e∈εS

h−1‖[wh]‖
2
0,e +

1

2
JSθ(wh, wh)

≥ α‖‖wh‖‖
2 +

1

2
JSθ(wh, wh).

In the last inequality we pick α = min{ b1
8
, b1

8C1
, b1

4C2
}.

Now we recall the definition of bilinear IFE interpolation. For a function u ∈ PH2
int(T ), T ∈

Th, we let Ih,Tu ∈ Sh(T ) be its interpolation such that Ih,Tu(X) = u(X) when X is a vertex
of T . In general, For an element T with vertices A1, A2, A3, A4, we have

Ih,Tu(X) = u(A1)φ1(X) + u(A2)φ2(X) + u(A3)φ3(X) + u(A4)φ4(X).

Accordingly, for a function u ∈ PH2
int(Ω), we let Ihu be its interpolation such that Ihu|T =

Ih,T (u|T ) for any T ∈ Th.

If we select the coarsenable sets such that the supports of the global nodal basis functions in
SSb

h (Ω) are not overlapped, then it’s easy to verify that Ihu ∈ SSb
h (Ω). This is a usual way to

construct global basis functions in order to reduce the computational cost. Note that both
the Selective Rule 1 and the Selective Rule 2 in Section 8.2.1 satisfy this requirement.

The following lemma provides an upper bound for the difference between the SIDG solution
and the bilinear IFE interpolation of the analytic solution. For the convergence analysis
here, we only need the boundedness, but this lemma may lead to some future work about
superconvergence of the SIDG solution.

Lemma 8.4.5 If 0 < b1 ≤ |β| ≤ b2 < ∞, θe = C∗

h
and C∗ ≥

4C2b2
2

b1
+ b1

2
, then there exists a

constant C such that

‖‖Ihu− uh‖‖
2 ≤ C‖‖Ihu− u‖‖2. (8.16)
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Proof. It’s easy to verify that SSb
h (Ω) ⊂ PH1

S(Th). Then (7.8) and (7.10) lead to

a−Sθ(u− uh, vh) = 0, ∀vh ∈ SSb
h (Ω). (8.17)

Using (8.14), we get

α‖‖Ihu− uh‖‖
2 ≤ a−Sθ(Ihu− uh, Ihu− uh)

= a−Sθ(Ihu− u, Ihu− uh) + a−Sθ(u− uh, Ihu− uh).

Then by (8.17), we get

α‖‖Ihu− uh‖‖
2 ≤ a−Sθ(Ihu− u, Ihu− uh).

Combining this with (8.13), we have

α‖‖Ihu− uh‖‖
2 ≤ C‖‖Ihu− u‖‖‖‖Ihu− uh‖‖

≤
C2

2α
‖‖Ihu− u‖‖2 +

α

2
‖‖Ihu− uh‖‖

2,

which leads to (8.16).

Finally, the following theorem establishes the optimal convergence of the symmetric SIDG
solution uh in energy norm.

Theorem 8.4.1 Assume the solution u of the model interface problem (1.1)-(1.4) is in

PH2
int(Ω). If 0 < b1 ≤ |β| ≤ b2 < ∞, θe = C∗

h
and C∗ ≥

4C2b2
2

b1
+ b1

2
, then there exists a

constant C such that the symmetric immersed DG solution uh has the following error bound

‖‖u− uh‖‖
2 ≤ Ch‖u‖2,Th

(8.18)

Proof. Using (8.16), we have

‖‖u− uh‖‖
2 ≤ ‖‖u− Ihu‖‖

2 + ‖‖Ihu− uh‖‖
2

≤ (1 + C)‖‖Ihu− u‖‖2. (8.19)

Also, we have the following regular trace inequality [7]

‖v‖2
0,e ≤ C(h−1‖v‖2

0,T + h|v|21,T ), ∀v ∈ H1(T ), e ⊂ ∂T, (8.20)

and it is easy to verify that SSb
h (Ω) ⊂ H1(T ). Applying the same arguments in Lemma 5.3.5

to Ihu− u, we get

‖∇(Ihu− u) · ν‖2
0,e ≤ C

(
h−1|Ihu− u|21,T + h|Ihu− u|22,T

)
. (8.21)
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Then using Theorem 4.1.13, Theorem 4.1.24, (8.10), (8.19), (8.20), and (8.21), we get

‖‖u− uh‖‖
2

≤ (1 + C)

(
‖Ihu− u‖2

1,Th
+
∑

e∈εS

h−1‖[Ihu− u]‖2
0,e +

∑

e∈εS

h‖{∇(Ihu− u) · ν}‖2
0,e

)

≤ C

[
‖Ihu− u‖2

1,Th
+
∑

T∈Th

(
h−2‖Ihu− u‖2

0,T + |Ihu− u|21,T

)
+

∑

T∈Th

(
|Ihu− u|21,T + h2|Ihu− u|22,T

)
]

≤ Ch2‖u‖2
2,Th

.

which completes the proof.



Chapter 9

Bilinear IFE for the non-homogeneous
flux jump condition

Most of the previous articles about IFE are developed for solving the model interface prob-
lem with the homogeneous flux jump condition. Y. Gong, B. Li and Z. Li [98] present a
homogenization using level set method to deal with the nonhomogeneous jump conditions.
In this chapter, we will construct a new bilinear IFE space to deal with the following model
interface problem with non-homogeneous flux jump condition.

−∇ ·
(
β∇u

)
= f(x, y), (x, y) ∈ Ω, (9.1)

u|∂Ω = g(x, y) (9.2)

together with the jump conditions on the interface Γ:

[u] |Γ = 0, (9.3)[
β
∂u

∂n

]
|Γ = Q(x, y). (9.4)

This equation is critical to many applications, such as the charging problem for a conductor
with induced charge. The basic idea is to add more basis functions, that can capture the non-
homogeneous flux jump, to the original bilinear IFE space for homogeneous jump condition.

9.1 The bilinear IFE space for the non-homogeneous

flux jump condition

In this section, we will construct a new IFE space over Ω which satisfies the non-homogeneous
flux jump condition in a weak sense. We will use the notations introduced in Chapter 3.

150
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Let Th be a rectangular mesh of Ω. For a typical interface element T ∈ Th, we introduce the
following new basis function:

φJ(x, y) =





φ−
J (x, y) = a−x+ b−y + c− + d−xy, (x, y) ∈ T̃−,

φ+
J (x, y) = a+x+ b+y + c+ + d+xy, (x, y) ∈ T̃+,
φJ(xj , yj) = 0, j = 1, 2, 3, 4,
φ−

J (D) = φ+
J (D), φ−

J (E) = φ+
J (E), d− = d+,

∫
DE

(
β− ∂φ−

J
∂nDE

− β+ ∂φ+
J

∂nDE

)
ds = 1,

(9.5)

See Figure 9.1 for two typical bilinear IFE basis functions of Type I and Type II for nonho-
mogeneous flux jump condition. Their two pieces are separated by DE.
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Figure 9.1: The plot on the left is a φJ on a Type I interface element and the plot on the
right is a φJ on a Type II interface element. Both of them use DE to separate the two
pieces.

Now we use this new basis function and the bilinear immersed finite element basis functions
introduced in Section 3.1 to to define the new bilinear immersed finite element (IFE) space
SJ

h (Ω). First, for every non-interface element T ∈ Th, we let Sh(T ) = span{φi, i = 1, 2, 3, 4},
where φi, i = 1, 2, 3, 4 are the standard bilinear nodal basis functions. For an interface
element T , we let Sh(T ) = span{φJ , φi, i = 1, 2, 3, 4} where φi, i = 1, 2, 3, 4 are the
immersed bilinear basis functions defined by (3.4). Suppose there are N nodes and M
interface elements in Th. Then, we define a continuous piecewise bilinear global nodal basis
function ψj(x, y) (j = 1, · · · , N) for each node (xj , yj)

t of Th such that ψj(xj , yj) = 1 but ψj

is zero at other nodes, and ψj |T ∈ Sh(T ) for any element T ∈ Th. Additionally, we define a
piecewise bilinear global nodal basis function ψJk(x, y) (k = 1, · · · ,M) for the kth interface
element T of Th such that ψJk|T = φJ and ψJ is zero everywhere else. Finally, we define
SJ

h (Ω) = span{ψj , j = 1, · · · , N, ψJk, k = 1, · · · ,M}.
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9.2 Finite element interpolation on SJh (Ω)

In this section, we define the finite element interpolation on the new space SJ
h (Ω) and inves-

tigate its approximation capability numerically. For any subset Λ ⊂ Ω whose interior is cut
through by the interface Γ, we define

PH2
int,J(Λ) =

{
u ∈ C(Λ), u|Λs ∈ H2(Λs), s = −,+,

[
β
∂u

∂nΓ

]
= Q on Γ ∩ Λ

}
.

Note that this is not a linear space. For a function u ∈ PH2
int,J(T ), we define

Ih,Tu(X) = u(A1)φ1(X) + u(A2)φ2(X) + u(A3)φ3(X) + u(A4)φ4(X) + qφJ ,

where

q =

∫

DE

Qds. (9.6)

For a non-interface element T , we define

Ih,Tu(X) = u(A1)φ1(X) + u(A2)φ2(X) + u(A3)φ3(X) + u(A4)φ4(X).

Accordingly, for a function u ∈ PH2
int(Ω), we let IJ

hu ∈ SJ
h (Ω) be its interpolation such that

IJ
hu|T = Ih,T (u|T ) for any T ∈ Th.

Based on the conclusions in Chapter 4, we naturally expect this new bilinear immersed finite
element space has the optimal approximation capability as follows.

‖Ihu− u‖0,Ω ≤ Ch2 ‖u‖2,Ω ,

|Ihu− u|1,Ω ≤ Ch ‖u‖2,Ω .

In the following, we use a numerical example to verify it numerically. For simplicity, we
only present results obtained by using the bilinear IFE space based on uniformly rectangular
Cartesian partitions in the rectangular domain Ω = (−1, 1)× (−1, 1). The interface curve Γ
is a circle with radius r0 = π/6.28 which separates Ω into two sub-domains Ω− and Ω+ with
Ω− = {(x, y) | x2 + y2 ≤ r2

0}. Here we choose

u(x, y) =
(x2 + y2)5/2

β− ,

which gives

Q(x, y) = 5(β+ − β−)
(x2 + y2)5/2

r0
.
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Table 9.1 contains actual errors of the IFE interpolation IJ
hu with various partition sizes h

for β− = 1, β+ = 10 and β− = 1, β+ = 10000 separately. Using linear regression, we can also
see that the data in this table obey

∥∥IJ
hu− u

∥∥
0
≈ 3.6279 h1.9998,

∣∣IJ
hu− u

∣∣
1
≈ 8.7742 h0.9998,∥∥IJ

hu− u
∥∥

0
≈ 3.6288 h1.9998,

∣∣IJ
hu− u

∣∣
1
≈ 8.8116 h1.0005,

which clearly indicate that the interpolation converges to u with convergence rates O(h2)
and O(h) in the L2 norm and H1 norm, respectively.

h ‖Ihu− u‖0 |Ihu− u|1
1/16 1.4172 × 10−2 5.4838 × 10−1

1/32 3.5460 × 10−3 2.7443 × 10−1

1/64 8.8666 × 10−4 1.3724 × 10−1

1/128 2.2167 × 10−4 6.8620 × 10−2

1/256 5.5418 × 10−5 3.4310 × 10−2

1/512 1.3855 × 10−5 1.7155 × 10−2

1/1024 3.4636 × 10−6 8.5773 × 10−3

Table 9.1: Errors in the interpolation IJ
hu when β− = 1, β+ = 10

h ‖Ihu− u‖0 |Ihu− u|1
1/16 1.4173 × 10−2 5.4848 × 10−1

1/32 3.5468 × 10−3 2.7578 × 10−1

1/64 8.8677 × 10−4 1.3756 × 10−1

1/128 2.2169 × 10−4 6.8659 × 10−2

1/256 5.5420 × 10−5 3.4316 × 10−2

1/512 1.3855 × 10−5 1.7156 × 10−2

1/1024 3.4637 × 10−6 8.5775 × 10−3

Table 9.2: Errors in the interpolation IJ
hu when β− = 1, β+ = 10000

Our numerical examples above indicate that the bilinear IFE space SJ
h (Ω) has the opti-

mal approximation capability expected from bilinear polynomials. The interpolation error
estimation leads to some interesting future work.
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9.3 Galerkin method for solving the model interface

problem with nonhomogeneous jump

In this section, we will introduce the Galerkin method for solving the model interface problem
with non-homogeneous flux jump condition.

First, we multiply the differential equation (9.1) by any v ∈ H1
0 (Ω) and integrate it over

Ωs(s = +,−) to have

−

∫

Ωs

∇ ·
(
βs∇u)v dxdy =

∫

Ωs

fv dxdy, ∀ v ∈ H1
0 (Ω).

Then a straightforward application of the Green’s formula leads to

∫

Ωs

βs∇u · ∇v dxdy −

∫

∂Ωs

β
∂u

∂n
v ds =

∫

Ωs

fv dxdy, s = +,−, ∀ v ∈ H1
0 (Ω). (9.7)

Summing (9.7) over s, we get the weak formulation

∫

Ω

β∇u · ∇v dxdy =

∫

Ω

fv dxdy −

∫

Γ

Qvds, ∀ v ∈ H1
0 (Ω). (9.8)

Here we use the flux jump condition (9.4) and v ∈ H1
0 (Ω).

Let SJ
h,0(Ω) ⊂ SJ

h (Ω) consist of functions of SJ
h (Ω) vanishing on Nh ∩ ∂Ω. The IFE Galerkin

method can be described as follows: find uh ∈ SJ
h (Ω) satisfying

∑

T∈Th

∫

T

β∇uh · ∇vh dxdy =

∫

Ω

fvh dxdy −

∫

Γ

Qvhds, ∀ vh ∈ SJ
h,0(Ω). (9.9)

Suppose there are N nodes and M interface elements in Th. Let qk denote the quantity q
defined in (9.6) for the kth interface element. Let uh =

∑N
j=1 ujψj +

∑M
k=1 qkψJk. As usual,

uj is the value of uh at the jth node. Finally, we get the linear system arising from the
Galerkin IFE method as follows.

N∑

j=1

uj

(∑

T∈Th

∫

T

β∇ψj · ∇ψi dxdy

)

=

∫

Ω

fψi dxdy −

∫

Γ

Qψids−
M∑

k=1

qk

(∑

T∈Th

∫

T

β∇ψJk · ∇ψi dxdy

)
, (9.10)

i = 1, · · · , N.

We note that the term on left side of this system and the first term on the right side are
the same as the immersed Galerkin method for homogeneous jump condition discussed in
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Section 5.1. Therefore, the only extra work here is to compute the second and third terms
on the right side.

Since this bilinear IFE space has an O(h2) (in L2-norm) and an O(h) (in H1-norm) approxi-
mation capability, we naturally expect the finite element method based on this IFE space to
perform accordingly. To confirm this numerically, we consider the interface problem defined
by (9.1)-(9.4) in which the boundary condition function g(x, y) and the source term f(x, y)

are chosen such that the function u(x, y) =
(x2 + y2)5/2

β− is the exact solution. We use the

same domain Ω and interface curve Γ as in the example of Section 9.2.

Table 9.3 contains actual errors of the bilinear IFE solutions uh with various partition size
h for the interface problem with the coefficient function β(x, y) with β− = 1, β+ = 10.

Using linear regression, we can easily see that the data in this table obey

‖uh − u‖0 ≈ 4.1440 h1.9806, |uh − u|1 ≈ 8.5601 h0.9906,

which indicate that the bilinear IFE solution uh converges to the exact solution with con-
vergence rates O(h2) and O(h) in the L2 norm and H1 norm, respectively.

Table 9.4 contains actual errors of the bilinear IFE solutions uh with various partition size
h for the interface problem with the coefficient function β(x, y) with β− = 1, β+ = 10000.
The errors in this group of computations obey

‖uh − u‖0 ≈ 28.5181 h1.8124, |uh − u|1 ≈ 35.1895 h0.8820.

For all the linear regressions in this chapter, we obtain similar figures to Figure 5.1, which
show that the data points match the linear regression lines very well.

h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/16 1.8523 × 10−2 5.5089 × 10−1 1.2984 × 10−2

1/32 3.9352 × 10−3 2.7578 × 10−1 3.2897 × 10−3

1/64 1.0293 × 10−3 1.3888 × 10−1 2.4211 × 10−3

1/128 3.0337 × 10−4 6.9828 × 10−2 1.0082 × 10−3

1/256 6.9673 × 10−5 3.5349 × 10−2 4.9377 × 10−4

Table 9.3: Errors of the IFE solutions for the case when β− = 1, β+ = 10.
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h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/16 3.1037 × 10−1 3.1940 × 100 8.5700 × 10−1

1/32 2.5783 × 10−2 1.6276 × 100 1.3191 × 10−1

1/64 1.6276 × 10−2 8.3037 × 10−1 1.2329 × 10−1

1/128 4.4398 × 10−3 4.9857 × 10−1 4.1561 × 10−2

1/256 1.3994 × 10−3 2.7143 × 10−1 −1.8584 × 10−2

Table 9.4: Errors of the IFE solutions for the case when β− = 1, β+ = 10000.



Chapter 10

Conclusions, applications and future
works

10.1 Conclusions

In this dissertation we carry out a systematic study of the bilinear immersed finite ele-
ment(IFE) for interface problems. We have discussed all the three fundamental aspects for a
new finite element method, including the development of the bilinear immersed finite element
spaces, the implementation of numerical methods with these spaces, and the corresponding
convergence analysis.

First, we construct a bilinear IFE space whose functions satisfy homogeneous jump condi-
tions. Then we investigate basic properties for this space. Second, we use multi-variable
Taylor expansion to carry out the error estimation for the bilinear IFE interpolation of a
Sobolev function. The interpolation error estimates indicate that this space has the usual
approximation capability expected from bilinear polynomials, which is O(h2) in L2 norm
and O(h) in H1 norm. Third, we implement several numerical methods with bilinear IFE,
including Galerkin, finite volume element and discontinuous Galerkin (DG) methods. From
all the numerical examples, we can see that all these methods with bilinear IFE have the
same optimal convergence rates as those with standard bilinear finite element. We have also
done some theoretical analysis for the convergence of these methods. For the symmetric
immersed DG method and the selective immersed DG method with bilinear IFE, we prove
its optimal convergence in energy norm. In addition, the convergence of Galerkin method
with bilinear IFE is proved.

The selective immersed DG method only applies the DG formulation wherever necessary.
The computational cost of this method can be maintained almost the same as that of the
regular Galerkin method if the DG formulation is used only around the interface, but flexible
local mesh refinement around the interface can still be carried out, which is not allowed by

157
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regular Galerkin method. Finally, in order to deal with the nonhomogeneous jump condition,
we add special basis functions to the bilinear IFE space to form a nonhomogeneous bilinear
IFE space.

10.2 Future works

In fact, in this dissertation we haven’t completely finished the research on bilinear IFE.
Even though we have finished some convergence analysis, we still need to prove the optimal
convergence for Galerkin method, the finite volume element method, and the nonsymmetric
selective immersed DG method with bilinear IFE. Also, we need to carry out the analysis
about the bilinear IFE for nonhomogeneous flux jump conditions.

Based on the immersed finite elements for the popular second order elliptic interface problem,
we plan to extend the current immersed finite elements to more sophisticated problems, such
as elasticity equation, Maxwell equation and Navier-Stokes equation with variable discon-
tinuous coefficients and nonhomogeneous jump conditions. Additionally, trilinear immersed
finite element is in our future plan since it is very useful for 3D simulations. As for higher
order finite element space, we plan to study the bi-quadratic and tri-quadratic immersed
finite elements.

The spitting extrapolation is one of the efficient techniques for accelerating the convergence
of approximations [41, 42, 114, 115, 116, 121, 145, 146, 147, 148, 156, 157, 158, 168, 184, 185,
204]. This method can be naturally parallelized with a high degree of parallelism. It im-
proves the accuracy with less computational complexity than Richardson extrapolation and
requires only piecewise smoothness for the analytic solutions. The design of the independent
parameters also gives us flexibility in choosing different kinds of meshes. These advantages
of splitting extrapolation become more clear and powerful when the size of the problem is
large and more independent meshes sizes are designed with domain decomposition. We plan
to apply splitting extrapolation to IFE to accelerate its convergence and implement parallel
algorithms. In addition, the extension to more intricate cases and the corresponding analysis
for both finite volume and finite element methods are also in our future plan, especially for
the finite volume method.

10.3 Application: simulation for charging in space

As mentioned in Chapter 1, there are many applications for the model interface problem
and immersed finite elements, including electromagnetic problems, flow problems, topol-
ogy/shape optimization, multiscale finite elements, bio-molecular problems, and the model-
ing of nonlinear phenomena, etc. What we have been working on is charging in space, which
includes a series of important problems in aerospace engineering, such as spacecraft charging
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under different types of solar winds, ion propulsion and lunar dust levitation, to name just
a few. It involves the calculation of the electromagnetic environment, interaction between
the environment and the spacecraft, effect of the solar winds on lunar dust and so on.

We present a simulation model on electrostatic levitation of lunar dust using the Particle-
In-Cell(PIC) method [195, 196]. One time-consuming simulation step is to solve a 2D or
3D elliptic interface equation for the electric potential, so we apply the bilinear IFE or the
3D linear IFE in this step. For some simple cases, we also use a finite difference scheme
to deal with the interface problems. Full particle PIC simulation are carried out to obtain
plasma sheath and wake, surface charging, the transition point of surface electric field and
the floating potential of lunar lander in the lunar terminator region. Test particle simulations
and dust-in-plasma simulations are carried out to simulate the levitation of dust from lunar
surface and dust transport around lunar lander. Results show that the dust levitation
condition in the terminator region is sensitively influenced by ambient plasma and surface
charging, and the levitation altitude varies significantly even for small changes of the sun
elevation angle. In addition, the plasma sheath profiles and particle density distributions
satisfy the theoretical analysis.

Based on these encouraging results, we are improving our simulation model and numerical
methods to simulate more sophisticated cases, in which the lunar surface is concave up
and down, the spacecraft and astronauts consists of different materials with complicated
geometric structures, and some objects are moving.

We also plan to apply IFEs to other applications such as topology/shape optimization,
multiscale finite element methods, the Navier-Stokes equation, and bio-molecular problems.
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[78] V. Dolej̆śı. Semi-implicit interior penalty discontinuous Galerkin methods for viscous
compressible flows. Commun. Comput. Phys., 4(2):231–274, 2008.

[79] O. Drblikova and K. Mikula. Convergence analysis of finite volume scheme for nonlinear
tensor anisotropic diffusion in image processing. SIAM J. Numer. Anal., 46(1):37–60,
2007/08.

[80] M. Dumbser, D. S. Balsara, E. F. Toro, and C. D. Munz. A unified framework for the
construction of one-step finite volume and discontinuous Galerkin schemes on unstruc-
tured meshes. J. Comput. Phys., 227(18):8209–8253, 2008.
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1. Change the Lemma 5.3.5 and its proof on pages 97-98 to be an assumption as follows:

Now we assume the following trace inequality is true on T ∈ Th:

∥∥∥∥β
∂v

∂n

∥∥∥∥
2

0,Ei(∂T )

≤ C

(
1

hT

|v|21,T + hT |v|22,T

)
, ∀v ∈ PH2

int(T ), 1 ≤ i ≤ 4.

This assumption is satisfied by v ∈ H2(T ) according to the standard trace inequality.
A function v ∈ PH2

int(T ) can also satisfy this assumption, but the difficulty is to prove
that the constant C is independent of the interface, which leads to some interesting
future work.

2. Change the Lemma 8.4.1 and the line above it on page 143 to be an assumption as
follows:

For each element T = ¤A1A2A3A4 ∈ Th, define

E1(∂T ) = A1A2, E2(∂T ) = A2A3, E3(∂T ) = A3A4, E4(∂T ) = A4A1.

Then we assume the following trace inequality is true on every T ∈ Th:

∥∥∥∥β
∂wh

∂n

∥∥∥∥
2

0,Ei(∂T )

≤ C
(
h−1 |wh|21,T + h |wh|22,T

)
, ∀wh ∈ Sh(T ), 1 ≤ i ≤ 4.

If |β| ≥ b1 > 0, then

∥∥∥∥
∂wh

∂n

∥∥∥∥
2

0,Ei(∂T )

≤ C
(
h−1 |wh|21,T + h |wh|22,T

)
, ∀wh ∈ Sh(T ), 1 ≤ i ≤ 4.

This assumption is satisfied by wh ∈ H2(T ) according to the standard trace inequality.
A function wh ∈ Sh(T ) can also satisfy this assumption, but the difficulty is to prove
that the constant C is independent of the interface, which leads to some interesting
future work.
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