Biologically Inspired Modular Neural Networks

Faroog Azam

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in
Electrical and Computer Engineering

Dr. Hugh F. VanLandingham, Chair
Dr. William T. Baumann
Dr. John S. Bay
Dr. Peter M. Athanas
Dr. William R. Saunders

May, 2000
Blacksburg, Virginia

Keywords: Biologically inspired neural networks, modular neural networks, principle of divide
and conquer, a priori expert knowledge, artificial neural networks, robustness, accuracy, and
generalization.

(©Farooq Azam, 2000

Biologically Inspired Modular Neural Networks
Faroog Azam

(ABSTRACT)

This dissertation explores the modular learning in artificial neural networks that mainly driven
by the inspiration from the neurobiological basis of the human learning. The presented modu-
larization approaches to the neural network design and learning are inspired by the engineering,
complexity, psychological and neurobiological aspects. The main theme of this dissertation is
to explore the organization and functioning of the brain to discover new structural and learning
inspirations that can be subsequently utilized to design artificial neural network.

The artificial neural networks are touted to be a neurobiologicaly inspired paradigm that emulate
the functioning of the vertebrate brain. The brain is a highly structured entity with localized
regions of neurons specialized in performing specific tasks. On the other hand, the mainstream
monolithic feed-forward neural networks are generally unstructured black boxes which is their
major performance limiting characteristic. The non explicit structure and monolithic nature of
the current mainstream artificial neural networks results in lack of the capability of systematic
incorporation of functional or task-specific a priori knowledge in the artificial neural network
design process. The problem caused by these limitations are discussed in detail in this disserta-
tion and remedial solutions are presented that are driven by the functioning of the brain and its
structural organization.

Also, this dissertation presents an in depth study of the currently available modular neural net-
work architectures along with highlighting their shortcomings and investigates new modular ar-
tificial neural network models in order to overcome pointed out shortcomings. The resulting
proposed modular neural network models have greater accuracy, generalization, comprehensi-
ble simplified neural structure, ease of training and more user confidence. These benefits are
readily obvious for certain problems, depending upon availability and usage of available a priori
knowledge about the problems.

The modular neural network models presented in this dissertation exploit the capabilities of the
principle of divide and conquer in the design and learning of the modular artificial neural net-

works. The strategy of divide and conquer solves a complex computational problem by dividing
it into simpler sub-problems and then combining the individual solutions to the sub-problems into
a solution to the original problem. The divisions of a task considered in this dissertation are the
automatic decomposition of the mappings to be learned, decompositions of the artificial neural
networks to minimize harmful interaction during the learning process, and explicit decompaosition

of the application task into sub-tasks that are learned separately.

The versatility and capabilities of the new proposed modular neural networks are demonstrated by

the experimental results. A comparison of the current modular neural network design techniques

with the ones introduced in this dissertation, is also presented for reference. The results presented
in this dissertation lay a solid foundation for design and learning of the artificial neural networks

that have sound neurobiological basis that leads to superior design techniques. Areas of the future
research are also presented.

Acknowledgments

This document would never have been complete without the support, encouragement, guidance
of my mentor and Ph.D. committee chair, Professor Hugh F. VanLandingham. He was always the
voice of reason and inspiration; and knew just what to say to make me believe in myself. | would
like to express my deep gratitude and thanks to him for the freedom he provided me throughout
the course of my Ph.D. studies to explore different areas of my academic interest. He was a
source of guidance, support and help throughout my stay at Virginia Tech. He was the one who
introduced me to the area of soft computing. His encouragement and advise always provided me
with new prospectives in the field of my research. The expertise that he shared me will remain a
tremendous source of professional growth to me.

| am thankful to all of the members of my Ph.D. committee: Dr. John S. Bay, Dr. William T.
Baumann, Dr. Peter M. Athanas and Dr. William R. Saunders. Their expertise and assistance
played an important role in the progress of my research. Specially, | would like to thank to
Dr. Bay, Dr. Athanas and Dr. Baumann, with whom | had invaluable discussions on academic
matters or otherwise. Their advice and guidance has tremendous influence on my professional
and personal growth.

Foremost, my parents have always encouraged me to follow my dreams and deserve special
thanks. | wish to thank them who always provided me with invaluable guidance and without
whose tangible and intangible support my dream of Ph.D. degree would not have come true and
my academic endeavors would not have been as fulfilling. | dedicate this work to them.

Last, but not the least, | want to thank both the DuPont Office of Education and the Office of
Naval Research (Grant No. N00014-98-1-0779) for partial support during the progress of my
work.

Contents

1

Introduction 1
1.1 Brief History of Artificial Neural Networks 2
1.2 Artificial Neural Networks 3
1.3 Properties of Artificial Neural Networks 7
1.4 Motivationand Scope 8
1.5 Dissertation Organization 10
Modular Artificial Neural Networks 12
21 TheBrain e 12
2.2 TheConceptof Modularity 15
2.3 Modular Artificial Neural Networks 16
2.4 Motivations for Modular Artificial Neural Networks 18
2.4.1 Model Complexity Reduction 18
2.4.2 Robustness e 18
2.4.3 Scalability. 18
244 Learning i e e e e e 19
2.4.5 Computational Efficiency 19
246 LearningCapacity e 19
2.4.7 EconomyoflLearning 19
2.4.8 Knowledge Integration Lo 20
249 ImmunitytoCrosstalk 20
2.4.10 Insightinto Neural Network Models 20
2.4.11 Biological Analogy 21
2.5 Literature ReView. 21
2.6 Hierarchical Mixture of Experts 25
2.7 Modular Neural Network DesignIssues 27
2.7.1 TaskDecomposition 30
2.7.2 Structural Modularization. L oo 31
2.7.3 Training Algorithm 31
2.7.4 Combination of SpecialistModules 32

Laterally Connected Neural Network Models 33

3.1 Motivation e e 33
3.2 Laterally Connected Neural Network Model 34
3.3 LCNN Model Learning Algorithm 36
3.4 Anlllustrative Example 41
3.5 Conclusions e 47

Evidence Maximization Framework for

Modular Neural Networks 48
4.1 Introduction e 49
4.2 Motivation L e 51
4.3 Modified Hierarchical Mixture of Experts Model 54
4.4 MHME Model Learning Algorithm 60
4.5 lllustrative Examples 73
451 Examplel e 73
452 Example2 e 78
453 Example3 e 80
454 Exampled e 82
455 Example5. 84
456 Example6 85
4.6 CoNnCluSIONS e 87
Self-Scaling Modular Neural Network Models 89
51 Motivation e 90
5.2 Model Selectionin Neural Networks 91
5.3 Constructive Neural Network Methods. 92
5.4 Self-Scaling Modular Neural Network Models 94
5.5 Hierarchically Self-Scaling Modular Neural Network Model 95
5.6 Iterative Divide and Conquer Algorithm | 99
5.7 lllustrative Example e 102
5.8 \Vertically Self-Scaling Modular Neural Network Model 104
5.9 lterative Divide and Conquer Algorithm Il 107
5.10 lllustrative Example 109
5.11 Conclusions 111
Conclusions 113
6.1 Summaryo e e e 113
6.2 Summary of Contributions 114
6.3 FutureWork 115
Hierarchical Mixture of Experts Network Training Algorithms 117

Vi

A.1 Gradient Descent Learning Algorithm 118

A.2 The Expectation Maximization Algorithm 119

A.3 Applying EM to the HME Architecture 120
B List of Publications 123
Bibliography 125

Vita 138

Vil

List of Figures

11
1.2
1.3
1.4

21

3.1
3.2
3.3

3.4

3.5

Biological processing element (neuron). 4
An artificial neuron. L 4
A typical multi layered perceptronmodel. 5

(a) Comparison of publications related to modular, relative to other artificial neu-

ral networks (white area indicates the publications related to modular artificial
neural networks) (b) Publication related only to the modular artificial neural net-

WOTKS. . . e e 10
Hierarchical mixture of experts network. 26
Laterally connected neural network model. 35
Plot of the function to be approximated. 42

(a) Plot of the tansigmoidal and the alternate sigmoidal squashing functions. (b)
Plot of the derivatives of the tansigmoidal and the alternate sigmoidal squashing
functions. (solid and dotted line plots are for tansigmoidal and alternate sigmoidal
functionsrespectively.) 44
(a) Function approximation by conventional monolithic neural network (solid line

plot is the actual function and dotted line indicates the approximation by neural
network). (b) Plot of the sum squared trainingerror.. 45
(a) Function approximation by conventional monolithic neural network (solid line

plot is the actual function and dotted line indicates the approximation by neural
network). (b) Plot of the sum squared trainingerror.. 45

3.6 (@) Function approximation by LCNN model (solid line plot is the actual function
and dotted line indicates the approximation by LCNN model). (b) Plot of the sum
squared training error for LCNNmodel. 47

4.1 Proposed modified hierarchical mixture of expertsmodel. 55

4.2 Proposed alternate gating network. 0L 57

4.3 (a) Plot of two the sigmoidal functiorgg and ¢! and their product (sigmoidal
functions are represented by the dotted lines and solid line depicts their product).
(b) Plot of a one dimensional ARBF wiflh= 0,6 = 2,andg =1. 58

4.4 Plot of a two dimensional ARBF with = [0 07,6 = [22]" and3 =[11]".. . 58

viii

4.5 The learning scheme for the proposed modified hierarchical mixture of experts
model. 64

4.6 (a) Plots of the MHME model approximation and the actual test data. (b) Plots of
the HME model approximation and the actual test data. (solid line plot is for the
actual test data and -. line indicates the MHME and HME approximations of test

datarespectively). 77
4.7 (a) Plot of the sum of the squared errors for MHME training phase. (b) Plot of

the outputs of the gatingnetwork. 77
4.8 (a) Plot of the sum of the squared errors for HME training phase. (b) Plot of the

outputs of the gatingnetwork. o 78
4.9 Plot of the nonlinear function of Equation4.50. 79

4.10 (a) Plots of the MHME model approximation and the actual test data. (b) Plots of

the HME model approximation and the actual test data. (solid line plot is for the

actual test data and -. line indicates the MHME and the HME approximation of

the testdatarespectively). L L e 80
4.11 (a) Plot of the sum of the squared errors for the MHME training phase. (b) Plot

of the outputs of the gatingnetwork. 81
4.12 (a) Plot of sum of squared errors for HME training phase. (b) Plot of the outputs

ofthe gatingnetwork. 81
4.13 Plots of the MHME model approximation and the actual test data (solid line plot

is for the actual test data and -. line indicates the MHME and HME approximation

of test data respectively). 83
4.14 (a) Plot of the sum of the squared errors for MHME training phase. (b) Plot of
the outputs of the gatingnetwork. L. 83

4.15 Plots of the MHME model approximation and the actual test data (solid line plot

is for the actual test data and -. line indicates the MHME and HME approximation

of test data respectively). 84
4.16 (a) Plot of the sum of the squared errors for the MHME training phase. (b) Plot

of the outputs of the gatingnetwork. 85
4.17 Plot of the features of the Iris data. The features are plotted two by two for better

presentation. (a) Feature 1 vs feature 2 (b) Feature 3 vs feature 4. 86
4.18 (a) Plot of the sum of the squares error. (b) Plot of the gating network outputs. . 86
4.19 Plots of the MHME model approximation and the actual test data (solid line plot

is for the actual test data and dotten line indicates the MHME model approxima-

toN). . . . 87
4.20 (a) Plot of the mean sum of the squares error. (b) Plot of the gating network outputs. 88

5.1 HSMNN model with one level hierarchy before an expert neural network model
ISSplit. . . . 97

5.2

5.3

5.4

5.5

5.6
5.7

HSMNN model with two levels of hierarchy after an expert neural network model

is split into two expert neural networks. A gating network is introduced in place

of the old expert neural neural network to mediate the output of the newly added
expert neural networks. e 98
Plot of the two interlocked spiralgy and] represent spiral 1 and 2 respectively. 104
(a) Plot of sum squared training error for IDCA-I algorithm. (b) Classification
boundaries generated by the HSMNN model that was trained using IDCA-I algo-

rthm. . . 105
The proposed hybrid neural network architecture. The filled circles indicate neu-
rons with nonlinear squashing functions. 107
VSMNN model after addition of the first hybrid neural network module. 108

(a) Plot of sum squared training error for IDCA-II algorithm. (b) Function ap-
proximation by the HSMNN model that was trained using IDCA-II algorithm. 111

List of Algorithms

3.1
3.2

4.1

5.1
5.2

Laterally connected neural network model learning algorithm 42
RPEM algorithm incorporating exponential resetting and forgetting 43
Evidence maximization learning algorithm for the proposed MHME model . .. 74
lterative Divide and Conquer Algorithm | 103
lterative Divide and Conquer Algorithm Il 110

Xi

Chapter 1

Introduction

Artificial intelligence is the study of intelligent behavior and how computer programs can be
made to exhibit such behavior. There are two categories of artificial intelligence from the com-
putational point of view. One is based symbolismand the other is based connectionismin

the former approach intelligence is modeled using symbols, while the latter models intelligence
using network connections and associated weights. Although these approaches evolved via dif-
ferent routes, both have been successfully applied to many practical problems. In contrast to the
symbolic approach, the connectionist approach adopts the brain metaphor which suggests that
intelligence emerges through a large number of interconnected processing elements in which any
individual processing element performs a simple computational task. The weights of the connec-
tions between processing elements encode the long term knowledge of a network. The most pop-
ular and widely used connectionist networks are multi-layered perceptrons. The artificial neural
network approach is synonymous with the connectionist approach. In the connectionist approach
there is no separation between knowledge and inference mechanism, in contrast to the symbolic
approach in which knowledge acquisition is separate from the inference mechanism. In recent
years the artificial neural network approach has posed a serious challenge to the domination of
the symbolic approach in the field artificial intelligence due to the ease of knowledge acquisition
and manipulation mechanisms. Motivation for neural network research is multi-faceted. Some of
these inspirations are biological and others are due to human ambition of understanding the prin-
ciples of intelligent behavior for constructing artificially intelligent systems. The goal of artificial
neural network research is to study how various types of intelligent behavior can be implemented
in systems made up of neuron-like processing elements and brain-like structures.

1.1 Brief History of Artificial Neural Networks

The origins of the concept of artificial neural networks can be traced back more than a century as
a consequence of man’s desire for understanding the brain and emulating its behavior. A century
old observation by William James that tamount of activity at any given pointin the brain cortex

is the sum of the tendencies of all other points to discharge inta# been reflected subsequently

in the work of many researchers exploring the field of artificial neural networks. About half a
century ago the advances in neurobiology allowed researchers to build mathematical models of
the neurons in order to simulate the working model of the brain. This idea enabled scientists to
formulate one of the first abstract models of a biological neuron, reported in 1943. The formal
foundation for the field of artificial neural networks was laid down by McCoulloch and Pitts
[1]. In their paper the authors proposed a computational model based on a simple neuron-like
logical element. Later, a learning rule for incrementally adapting the connection strength of these
artificial neurons was proposed by Donald Hebb [2]. The Hebb rule became the basis for many
artificial neural network research models.

The main factor responsible for the subsequent decline of the field of artificial neural networks
was the exaggeration of the claims made about the capabilities of early models of artificial neural
networks which cast doubt on the validity of the entire field. This factor is frequently attributed
to a well known book by Minsky and Papert [3] who reported that perceptrons were not capable
of learning moderately difficult problems like the XOR problem. However, theoretical analyses
of that book were not alone responsible for the decline of research in the field of artificial neural
networks. This fact, amplified by the frustration of researchers, when their high expectations re-
garding artificial neural network based artificial intelligent systems were not met, contributed to
the decline and discrediting of this new research field. Also, at the same time logic based intelli-
gent systems which were mostly based on symbolic logic reached a high degree of sophistication.
Logic based systems were able to capture certain features of human reasoning, like default logic,
temporal logic and reasoning about beliefs. All these factors lead to the decline of research in the
field of artificial neural network to a point where it was almost abandoned.

Since the early 1980s there has been a renewed interest in the field of artificial neural networks
that can be attributed to several factors. The shortcomings of the early simpler neuron network
models were overcome by the introduction of more sophisticated artificial neural network models
along with new training techniques. Availability of high speed desktop digital computers made
the simulation of complex artificial neural network models more convenient. During the same
time frame significant research efforts of several scientists helped in restoring the lost confidence
in this field of research. Hopfield [4] with his excellent research efforts is responsible for revi-
talization of ANN field. The term connectionist was made popular by Feldman and Ballard [5].
Confidence in the artificial neural network field was greatly enhanced by the research efforts of
Rumelhert, Hinton and Williams [6] who developed a generalization of Widrow’s delta rule [7]

which would make multi-layered artificial neural network learning possible. This was followed
by demonstrations of artificial neural network learning of difficult tasks in the fields of speech
recognition, language development, control systems and pattern recognition, and others.

Since the mid 1980s research in the area of artificial neural networks has experienced an ex-
tremely rapid growth for different reasons which is evident by its interdisciplinary nature. These
disciplines range from physics and engineering to physiology and psychology. In recent years
there has been a lot of progress in the development of new learning algorithms, network structures
and VLSI implementations for artificial neural networks.

1.2 Artificial Neural Networks

Artificial neural networks, sometimes in context referred to only as neural networks, are infor-
mation processing systems that have certain computational properties analogous to those which
have been postulated for biological neural networks. Artificial neural networks generalize the
mathematical models of the human cognition and neural biology. The emulation of the principles
governing the organization of human brain forms the basis for their structural design and learning
algorithms. Artificial neural networks exhibit the ability to learn from the environment in an in-
teractive fashion and show remarkable abilities of learning, recall, generalization and adaptation
in the wake of changing operating environments.

Biological neural systems are an organized and structured assembly of billions of biological
neurons. A simple biological neuron consists of a cell body which has a number of branched
protrusions, calledlendrites and a single branch called thgonas shown in Figure 1.1. Neu-

rons receive signals through the dendrites from neighboring connected neurons. When these
combined excitations exceed a certain threshold, the neuron fires an impulse which travels via an
axon to the other connected neurons. Branches at the end of the axons form the synapses which
are connected to the dendrites of other neurons. The synapses act as the contact between neurons
and can be excitatory or inhibitory. An excitatory synapse adds to the total of signals reaching a
neuron and an inhibitory synapse subtracts from this total. Although this description is very sim-
ple, it outlines all those features which are relevant to the modeling of biological neural systems
using artificial neural networks. Generally, artificial neuron models ignore detailed emulation
of biological neurons and can be considered as a unit which receives signals from other units
and passes a signal to other units when its threshold is exceeded. Many of the key features of
artificial neural network concepts have been borrowed from biological neural networks. These
features include local processing of information, distributed memory, synaptic weight dynamics
and synaptic weight modification by experience. An artificial neural network contains a large
number of simple neuron-like processing units, cattedronsor nodes along with their connec-

tions. Each connection generally “points” from one neuron to another and has an associated set

Cell Body

Dendrite

Figure 1.1: Biological processing element (neuron).

of weights. These weighted connections between neurons encode the knowledge of the network.
Figure 1.2 illustrates a mathematical model of an artificial neuron corresponding to the biolog-
ical neuron of Figure 1.1. The simplest neural network model is callger@ptronwhich can

1
Wi
2

. wi2 > ® Yi /
o / . \

W Neuron

im

Tm

Figure 1.2: An artificial neuron.

be trained to discriminate between linearly separable classes using any of the sigmoidal nonlin-
earities as an output function. However, for more complex tasks of classification or regression,
models with multiple layers of neurons are necessary. This artificial neural network model is gen-
erally referred to as a multi-layer perceptron (MLP). This architecture consists mainly of three
types of neuron layers, namely input layer, hidden layer(s) and an output layer. The nodes in an
input layer are called input neurons or nodes; they encode the data presented to the network for
processing. These nodes do not process the information, but simply distribute the information to
other nodes in the next layer. The nodes in the middle layers, not directly visible from input or
output, are called hidden nodes. These neurons provide the nonlinearities for the network and
compute an internal representation of the data. The nodes in the output layer are referred to as

output neurons: they encode possible desired values assigned to the input data. A typical multi-
layer perceptron neural network model is shown in Figure 13node output is determined

Hidden layer

\ Output layer

/

/// \
ZIH > 411/2 <\\“' Q—’ v1 = f(z1, @2, ,an)
=7~ “"; LS
o

Input layer

Figure 1.3: A typical multi layered perceptron model.

by
yi(t+1) = SO(Z wiz(t) — 0;)

wherez; is the " component of the input vector to the neuron. It consists of an activation

functionz = ¥(z1,---,x,) : R" — R and a possibly non-linear output or transfer function
©(z) : R — R. The most commonly used activation function/ige,, - - - , z,) = S, w;z;.

Output functions which are widely used in the neural networks communityrexar, sigmoidal
andtansigmoidal

Associated with each neuron is a weight veetgrwhich represents the strength of the synapse
connecting neuronto neuroni. A positive synaptic weight corresponds to an excitatory synapse;

a negative weight corresponds to an inhibitory synapse and a zero-valued synaptic weight indi-
cates no connection between the two neurons. Sometimes an additional constant is used as a part
of the weight vector, this weight is calledbaas with a fixed input value oft or —1 in order

to extend the model from linear to an affine transformation. Learning algorithms estimate these
weights iteratively by minimizing a given cost function, defined in terms of the error between the
desired and neural network model outputs.

An artificial neural network model is determined by three basic attributes; namely, types of neu-
rons, types of synaptic interconnections and structure, and the type of learning rule used for

updating neural network weights.

The types of neurons determine the appropriateness of an artificial neural network model for a
given task. Neurons performs two major tasks, i.e., processing of inputs to a neuron and cal-
culation of the output. Input processing is basically the combination of the inputs to form the
neural network input. This combination could be linear, quadratic or spherical in nature. The
second part of a neuron is responsible for generation of the activation level for the neuron as a
linear or nonlinear output function of its net input. Commonly used output functions are step,
hard limiting, unipolar sigmoidal and bipolar sigmoidal.

An artificial neural network is comprised of a set of highly interconnected nodes. The connec-
tions between nodes, called weights, carry activation levels from one neuron to another or to
itself. According to the interconnection scheme used for a neural network, it can be categorized
as a feed forward or a recurrent neural network. In the feed forward model all the interconnect-
ing weights point in only one direction, i.e., strictly from input layer to the output layer. The
multi-layered feed forward neural networks and self-organizing networks, competitive learning
networks, Kohonen networks, principal component analysis networks, adaptive resonance net-
works and reinforcement learning networks are examples of this large class of networks. On
the other hand in recurrent neural network models, there are feedback connections. Hopfield
networks and Boltzmann machines are major networks belonging to this category of artificial
neural networks. Also, the layout of the neural network weights determine whether the weights
of a given neural networks are symmetrical or asymmetrical. In symmetrical configurations, the
interconnecting weights between the two neurons are the same and in asymmetrical configura-
tion these weights are not necessarily the same. The sparsity of interconnection weight arrays
determines whether a neural network is a fully connected neural network, or not.

Learning in artificial neural networks refers to a search process which aims to find an optimal
network topology and an appropriate set of neural network weights to accomplish a given task.
After a successful search process, the final topology, along with the associated weights constitutes
a network of the desired utility for a given task. The process of learning is equivalent to a
search for an appropriate candidate neural network model from a search space comprising all
topologies and corresponding weights. The process of searching for a sets of network weights
for a given topology is typically far simpler than searching for a topology. For this reason,

it is common for trial topologies to be chosen either randomly or using a rule-of-thumb. The
more conventional learning process in artificial neural networks can be distinctly divided into
supervised, reinforcement and unsupervised learning methods. Moreover, the use of evolutionary
computation in neural network optimization is steadily gaining popularity because of the global
search capabilities of evolutionary computation.

In the supervised learning paradigm, the desired output values are known for each input pattern.
At each instant of time, when an input pattern is applied to an artificial neural network, the

parameters of the neural network are adapted according to the difference between the desired
value and the neural network output. The most commonly used supervised training algorithm
for the update of weights of a multi-layer perceptron model is an iterative algorithm called error
back-propagation which is an error correction rule. This algorithm is based on the chain rule
for the derivative of continuous functions. The algorithm consists of a forward pass, in which
training examples are presented to the network and activations of output neurons are computed.
This is followed by a backward error propagation pass in which weights of neurons are updated
using the gradient of a cost function, such as the sum-squared error between network outputs and
desired target outputs.

Unsupervised learning, sometimes referred to as self-organized learning, is used to determine
regularities, correlations or categories inherent in the input data set. In this learning scheme there
is no feedback from the environment indicating what the outputs should be or whether the output
of the neural network is a correct, or not.

Reinforcement learning is a combination of supervised and unsupervised learning schemes. In
reinforcement learning, after the presentation of each pattern to the artificial neural network,
the neural network model is provided with information about its performance in a supervised
manner, but this information is very restricted in form. It consists of a qualitative evaluation
of the neural network response and indicates whether the performance of the neural network to
a particular pattern was “good” or “bad”. The learning algorithm has to make the best of this
information during the search process for an optimal set of weights, typically by simply making
good associations more probable.

Artificial neural networks have already found applications in a wide variety of areas. They are
used in automatic speech recognition [8], handwritten character recognition [9], optimization
[4, 10], robotics [11, 12], financial expert systems [13], system identification and control [14],
statistical modeling [15], and other artificial intelligence problems.

1.3 Properties of Artificial Neural Networks

Some of the important inherent properties of artificial neural network models which make them
an attractive tool for artificial intelligence and other interdisciplinary tasks are briefly described
below.

1. Generalization: For real world data some type of continuous representation and/or infer-
ence systems are required such that for similar inputs or situations, outputs or inferences
are also similar. This is an inherent property of neural networks with continuous activation
functions. Statistically speaking discrete neural networks with a sufficient number of units

can exhibit the same behavior. This neural network property assures a smooth generaliza-
tion from already learned cases to new ones.

2. Graceful degradation: The problems associated with generalization become worse if the
data are incomplete or inaccurate and is usually refers to the failure of the weights. Due to
the existence of theimilarity conceptn neural networks, if a small portion of the input data
is missing or distorted, performance deteriorates only slightly. Performance degradation is
proportion to the extent of data inaccuracy or incompleteness.

3. Adaptation and learning: Learning and adaptation in neural networks inherently exist
because knowledge is indirectly encoded into most neural network models by the data that
are specific to a particular situation under study; and, neural network models try to maintain
that knowledge under changing operating conditions.

4. Parallelism: Virtually all of the neural network algorithms exhibit inherent parallelism. In
most cases connecting weights associated with all neurons, or at least large groups of them
can be updated simultaneously. This is an important property of neural networks from an
implementation point of view. Since it is difficult to speed up single processing units, the
alternative is to distribute computationally expensive tasks to large numbers of such units
working in parallel.

1.4 Motivation and Scope

The main goal of research in the field of artificial neural networks is to understand and emulate
the working principles of biological neural systems. Biological neural systems consist of billions
of biological neurons interconnected via sets of individual synaptic weights. Recent advances
in neurobiological sciences have given more insight into the structure and the workings of the
brain. Research has also substantiated the fact that the brain is modular in nature with at least
three hierarchical levels. At the fundamental level of the hierarchy are the individual neurons, the
next level in ascending order is the micro-structural level and the top level is the macrostructure
of the brain. Also, researchers believe that the brain is a system of interacting modules at the
macro-structural level. Each module at the macro-structural level has its own micro-structure of
various cell types and connectivity [16]. A sub-division of complex tasks into simpler tasks is
also evident in human and animal brains [17].

Although the most commonly used monolithic architectures of artificial neural networks show in-
herent modularity at the microlevel with synaptic weights, neurons and layers of neurons forming
the modular hierarchy, respectively, these architectures negate the fundamental structural organi-
zation of animal or human brain by not exhibiting modularity at the macro level. The task de-
composition property is also non-existent in the prevalent commonly used global or monolithic

artificial neural network models, even though this property is considered to be a fundamental
property of biological neuronal systems.

The inherent modularity in the human and animal brains enables them to acquire new knowledge
without forgetting previously acquired knowledge. This “stability/plasticity” property is missing

in the currently used monolithic artificial neural networks and is well documented and understood
[18]. The modularity in brains makes knowledge retention possible in an environment where
some of the environmental characteristics are changing by modifying only the neural pathways
in a module that is responsible for responding to the changing environmental characteristics.
Modularity in the brain is also responsible for optimization of the information capacity in the
brain neural pathways. Also, researchers have indicated that the brain consists of a number of
repeating modules. This fact is also not utilized in the design and learning of present day existing
monolithic neural networks.

Artificial neural networks also suffer from the credit assignment problem. This problem arises
when the size of an artificial neural network is large and the appropriate learning information is
not made available effectively to the synaptic weights due to limitations of the existing learning
algorithms. The credit assignment problem can be avoided by modularizing the artificial neural
networks, thereby achieving individual neural networks which are simpler and of smaller size.

A monolithic artificial neural network can be viewed as an unstructured black box in which the
only states which are observable are the input and output states. This makes an artificial neural
network model void of any interpretability and generally renders it inappropriate for incorporat-
ing any functionah priori knowledge.

Considering the shortcomings of monolithic artificial neural networks mentioned above, mod-
ularization of artificial neural network design and learning seems to be an attractive alternative
to the existing artificial neural network design and learning algorithms. The modularization of
artificial neural networks helps to overcome certain problems mentioned in the previous para-
graphs. Modular neural network architectures are a natural way of introducing a structure to the
otherwise unstructured learning of neural networks. The incorporatiarpabri knowledge is
another major advantage of modular neural networks over monolithic artificial neural networks,
thus facilitating design of efficient artificial neural networks which are functionally interpretable.
Also, the reuse of already acquired knowledge leads modular neural networks to continual adap-
tation, thus economizing the re-learning process. Modular artificial neural network architecture
tends to have smaller learning time due to the fact that a complex task is decomposed into simpler
subtasks and each module has to learn only a part of the whole task. Also, this generally leads to
relatively smaller modules and reduces the overall artificial neural network complexity.

Unfortunately, modular neural networks have been relatively neglected by researchers working
in the field of artificial neural networks. All the books related to artificial neural networks seem

10

to mention modular neural networks only in a very brief fashion. Although there has been a
steady growth in research publications regarding modular artificial neural networks, these pub-
lications form only a minor percentage of the overall publications covering the field of artificial
neural networks. To support this fact, a search was carried out to locate keywords from the pub-
lished article titles, keywords, or abstracts and the publication data was generated using keywords
neural network cooperative neuralcompetitive neuralhierarchical neuraj structured neural
andmodular neural The data was gathered from the Science Citation Index Expanded citation
database provided by the Institute for Scientific Information (ISI), which contains information
about 17 million published documents. This data base indexes more than 5,700 major journals
across 164 scientific disciplines. The search data is shown graphically in Figure 1.4.

2500 T T T T T T T T T T 60

2000

1500

Number of publications
Number of publications

N
1)
1S3
=]

0
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
Year Year

(@) (b)

Figure 1.4: (a) Comparison of publications related to modular, relative to other artificial neural
networks (white area indicates the publications related to modular artificial neural networks) (b)
Publication related only to the modular artificial neural networks.

The numbers plotted in Figures 1.4(a) and (b) include publications regarding the keyword “mod-
ular” which may, or may not, be modular in the present context.

In light of the preceding discussion, there is a need to carry out research to explore the applicabil-
ity of modularity in the field of artificial neural networks. The research needs to cover exploration
for new modular artificial neural network architectures, along with their corresponding learning
algorithms. This dissertation is an attempt in that direction. In this dissertation an effort is made
to highlight the importance of modularity in the design and learning of artificial neural networks.
Also, along with suggesting some improvements in existing design and learning techniques for
modular artificial neural networks, new adaptive techniques for design and learning of modular

11

neural networks are introduced.

1.5 Dissertation Organization

This dissertation addresses the issue of the modularity in the design and learning of the artificial
neural networks. The remainder of the dissertation is organized as follows. Chapter 2 outlines
shortcomings of the existing mainstream monolithic neural networks and justifies the need for
modularity when designing artificial neural networks. Also, the advantages of using the modu-
lar approach to neural network design and learning over the exiting monolithic neural network
models is discussed. A review of the available research literature about the modular neural net-
works is also presented in Chapter 2. In Chapter 3, a biologically plausible monolithic network
model is presented that is inspired by the working of the brain and incorporates lateral inhibitory
connections to introduce a sense of structure in a monolithic neural network. A modified version
of a popular modular neural network model, the hierarchical mixture of experts model, is pre-
sented in Chapter 4 that draws its design and learning inspiration from the working principles of
the successful knowledge creating companies, Bayesian methods and flow of the information in
the brain. The shortcomings of the original hierarchical mixture of experts model and its vari-
ants are discussed. The proposed modified hierarchical mixture of experts model overcomes the
pointed out shortcomings of the hierarchical mixture of experts model and is more inline with
concepts well understood by the researchers in the field of artificial neural networks. Model se-
lection problem is discussed in Chapter 5 and self-scaling version of the modular neural networks
are described. The self-scaling models iteratively scale their structure to match the complexity
of the problem at hand in order to solve it successfully. The conclusions and summary of the
contributions of this dissertation are presented in Chapter 6.

Chapter 2

Modular Artificial Neural Networks

This chapter introduces and describes the concept of modularity and its applicability to the de-
sign and learning of artificial neural networks. The inspiration for modular design of neural
networks is mainly due to biological and psychological reasons, namely, the functioning of the
human and/or animal brain. Recent advances in neurobiological research have proven that the
modularity is key to the efficient and intelligent working of human and animal brains. Economy

of engineering design, psychological aspects and complexity issues in artificial neural network
learning are the other motivational factors for modular design of neural networks. Since biolog-
ical structure and functioning of animal and human brains form the basis of the artificial neural
network design and learning, a brief description of the structure and working of the human and
animal brains is presented. The motivations for the modularly designed artificial neural networks
are listed. Also, the literature review of existing modular artificial neural network architectures is
presented along with a discussion of pertinent issues related to the design and learning of modular
neural networks.

2.1 The Brain

Biological brains are essentially general purpose, complex and efficient problem solving systems
that provide living organisms with the trait of intelligence. The brain is generally viewed as a
black box that receives an input in the form of a certain stimulus from the environment and pro-
duces a corresponding appropriate output or response. The environmental information is coded
as neural signals in the brain. The brain uses this stored neural information in the form of pat-
terns of neural firing to generate the desired actions that are most likely to accomplish the goal at
hand. This type of behavior of the brain generally leads to a wrong conclusion that the brain is
working as a whole [19]. The evidence of modularity in brain function can be attributed to two

12

13

sources, neuropsychology and neurobiology. The experiments in neuropsychology indicate that
a circumscribed brain lesion could cause a specific disorder of language while leaving other cog-
nitive functions of brain intact. The neurobiologists on the other hand have long believed, and
appreciated the fact, that the regions of animal and human brains are organized into specialist
and functionally segregated modules [20, 21, 22, 23]. Recent advances in neurobiology indicate
that animal brains exhibit a modular structure. The research indicates that animal and human
brains are divided into major parts at the coarse-grain level. The human and animal brains are
not comprised of monolithic homogeneous biological neural networks within these major parts,
but instead, are comprised of specialized modules performing individual specialized tasks.

Neuroscience research also makes a strong case for the brain as a distributed, massively parallel
and self-organizing modular system. This research indicates that biological brains are a com-
bination of highly specialized, relatively independently working and hierarchically organized
modules. Coherent functioning of massively distributed brain function is achieved as a result of
the interconnecting reentrant signals which integrate different functional modules and different
hierarchical levels [24, 23].

The functional segregation of the brain into independent functional and anatomical modules can
be argued on the basis of a number of empirical evidences such as evolutionary process, economy
and complexity [25].

The first and the most important of these arguments is the evolutionary process argument accord-
ing to which the brain was developed into a complex modular system as a result of small and
random changes through the process of the natural evolution. If the brain was a single complex
and massively interconnected system of neurons, then a small change in a part of the this system
would have lead to a need for some corresponding necessary changes in the interconnections
through out the system to avoid any adverse effects of this change. This arrangement would not
have led to an improvement of the brain through small changes during the process of evolution.
On the other hand, if the brain was a modular system comprised of different independently work-
ing modules, then any change in the brain would be a local change and would keep the unaffected
specialist modules intact. Since nature works in an efficient and simplistic fashion, modular evo-
lution of brain approach seems to have occurred as compared to evolution of the brain as a single
monolithic complex system [26, 27]. Also, the problem of catastrophic forgetting, i.e., drastic
forgetting of old acquired knowledge while acquiring new knowledge, is not prevalent in higher
mammalian brains because of their development of a hippocampal-neocortical separation. It is
suggested that this was a result of evolution that two separate areas emerged in the brain, the
hippocampus and the neocortex. The assumption about the brain being modular can be justified
because of the following reasoning as well. Incremental acquisition of new knowledge is not
consistent with the gradual discovery of new structures in brain and can lead to catastrophic in-
terference with what has previously been learned. In view of this fact, it is concluded that the
neocortex may be optimized for the gradual discovery of the shared structure of events and expe-

14

riences, and that the hippocampal system is there to provide a mechanism for rapid acquisition of
new information without interfering with the previously discovered regularities. After this initial
acquisition, the hippocampal system serves as a teacher to the neocortex [28].

The second argument is economically driven. The different knowledge representations in the
brain are stored in different specialist brain modules comprised of neurons with the same type
of neuronal structures and interconnecting weights. This type of arrangement provides the brain
with a capability of information storage where learned environmental knowledge can only be
effectively stored and managed if the same types of neuron with similar interconnections are
grouped together based on their functionality [29].

The complexity argument also favors an integrated modular structure of the brain. Simulations
have shown that the behavioral complexity of globally integrated independent functional modules
in a brain is more comparable to the brain models in which either specialized modules are either
totally functionally independent or a brain model that has a homogenized set of interconnections
and neurons. This emphasizes the fact that, along with modularity of the brain, it is equally
important and necessity to have an effective integration mechanism among the specialized brain
modules. Functionally similar modules are bound together through synchronization, feedback
and lateral connections [30].

The observed modularity in brains is of two types. Structural modularity which is evident from
sparse connections between strongly connected neuronal groups (with the trivial example of the
two hemispheres of the brain) and/or functional modularity, which is indicated by the fact that
neural modules have different neural response patterns, are grouped together.

The modular behavior of the brain suggests that individual brain modules are domain specific,
autonomous, specific stimulus driven, unaware of the central cognitive goal to be achieved and
of fixed functional neural architecture. These modules also exhibit a property of knowledge

encapsulation, i.e., other modules cannot influence the internal working of an individual module.

The only information about a module available to other modules is its output [31].

Along with the brain having a modular structure, it also exhibits a functional and structural hi-
erarchy. Information in the brain is processed in a hierarchical fashion. First, the information
is processed by a set of transducers which transform the information into the formats that each
specialist modules can process. Specialist modules after processing the information, produce the
information which is suitable for central or domain general processing. The hierarchical rep-
resentation of the information is evident in the cortical visual areas where specialized modules
perform individual tasks to accomplish highly complex visual tasks. For example, in the visual
cortex of the macque monkey, there are over 30 specialized areas with each having some 300
interconnections [32]. Also, it is worth noting that the number of cortical areas increase as a
function of level in the animal hierarchy [33]. For example, mice have on the average 3 to 5

15

visual areas, while hand human beings have visual areas on the order of 100. Hence, it can be de-
duced that an increase in brain size does not necessarily increase the sophistication or behavioral
diversity, unless accompanied by a corresponding increase in specialized brain modules [34].

The functioning of the brain can be summarized as the cohesive co-existence of functional seg-
regation and functional integration with a specialized integration among and within functionally
segregated areas mediated by a specific functional connectivity.

2.2 The Concept of Modularity

In general, a computational system can be considered to have a modular architecture if it can be
split into two or more subsystems in which each individual subsystem evaluates either distinct
inputs or the same inputs without communicating with other subsystems. The overall output of
the modular system depends on an integration unit which accepts outputs of the individual sub-
systems as its inputs and combines them in a predefined fashion to produce the overall output
of the system. In a broader sense modularity implies that there is a considerable and visible
functional or structural division among the different modules of a computational system. The
modular system design approach has some obvious advantages, like simplicity and economy of
design, computational efficiency, fault tolerance and better extendibility. The most important ad-
vantage of a computational modular system is its close biological analogy. Recent advances in the
neurobiological sciences have strengthened the belief in the existence of modularity at the both
functional and structural levels in the brain - the ultimate biological learning and computational
system.

The concept of modularity is an extension of the principléiofde and conquerThis principle

has no formal definition but is an intuitive way by which a complex computational task can be
subdivided into simpler subtasks. The simpler subtasks are then accomplished by a number of the
specialized local computational systems or models. Each local computational model performs an
explicit, interpretable and relevant function according to the mechanics of the problem involved.
The solution to the overall complex task is achieved by combining the individual results of spe-
cialized local computational systems in some task dependent optimal fashion. The overall task
decomposition into simpler subtasks can be eitheofasubdivisioror hard-subdivision In the

former case, the subtask can be simultaneously assigned to two or more local computational sys-
tems, whereas in the later case only one local computational model is responsible for each of the
subdivided tasks.

As described earlier, a modular system in general is comprised of a number of specialist subsys-
tems or modules. In general, these modules exhibit the following characteristics.

16

1. The modules are domain specific and have specialized computational architectures to rec-
ognize and respond to certain subsets of the overall task.

2. Each module is typically independent of other modules in its functioning and does not
influence or become influenced by other modules.

3. The modules generally have a simpler architecture as compared to the system as a whole.
Thus a module can respond to given input faster than a complex monolithic system.

4. The responses of the individual modules are simple and have to be combined by some
integrating mechanism in order to generate the complex overall system response.

For example, the primate visual systems show a strong modularity and different modules are

responsible for tasks, such as motion detection, shape and color evaluation. The central nervous
system, upon receiving responses of the individual modules, develops a complete realization of
the object being processed by the visual system [32].

To summarize, the main advantages of a modular computational system design approach are ex-
tensibility, engineering economy (which includes economy of implementation and maintenance),
re-usability and enhanced operational performance.

2.3 Modular Artificial Neural Networks

The obvious advantages of modularity in learning systems, particularly as seen in the existence of
the functional and architectural modularity in the brain, has made it a main stream theme in cog-
nitive neuroscience research areas. Specifically, in the field of artificial neural network research,
which derives its inspiration from the functioning and structure of the brain, modular design tech-
niques are gaining popularity. The use of modular neural networks for the purpose of regression
and classification can be considered as a competitor to conventional monolithic artificial neural
networks, but with more advantages. Two of the most important advantages are a close neu-
robiological basis and greater flexibility in design and implementation. Another motivation for
modular neural networks is to extend and exploit the capabilities and basic architectures of the
more commonly used artificial neural networks that are inherently modular in nature. Monolithic
artificial neural networks exhibit a special sort of modularity and can be considered as hierar-
chically organized systems in which synapses interconnecting the neurons can be considered to
be the fundamental level. This level is followed by neurons which subsequently form the layers
of neurons of a multi layered neural network. The next natural step to extend the existing level
of hierarchical organization of an artificial neural network is to construct an ensemble of neural
networks arranged in some modular fashion in which an artificial neural network comprised of
multiple layers is considered as a fundamental component. This rationale along with the advances

17

in neurobiological sciences have provided researchers a justification to explore the paradigm of
modularity in design and training of neural network architectures.

A formal prevalent definition of a modular neural network is as folldws

Definition 2.1. A neural network is said to be modular if the computation performed by the
network can be decomposed into two or more modules (subsystems) that operate on distinct
inputs without communicating with each other. The outputs of the modules are mediated by an
integrating unit that is not permitted to feed information back to the modules. In particular, the
integrating unit decided both (1) how the modules are combined to form the final output of the
system, and (2) which modules should learn which training patterns.

Modular artificial neural networks are especially efficient for certain classes of regression and
classification problems, as compared to the conventional monolithic artificial neural networks.
These classes of problems include problems that have distinctly different characteristics in differ-
ent operating regimes. For example, in the case of function approximation, piecewise continuous
functions cannot in general be accurately modeled by monolithic artificial neural networks. But
on the other hand, modular neural networks have proven to be very effective and accurate when
used for approximating these types of functions [38]. Some of the main advantages of learn-
ing modular systems are extendibility, incremental learning, continual adaptation, economy of
learning and re-learning, and computational efficiency.

The modular neural networks are comprised of modules which can be categorized on the basis
of both distinct structure and functionality which are integrated together via an integrating unit.
With functional categorization, each module is a neural network which carries out a distinct
identifiable subtask. Also, using this approach different types of learning algorithms can be
combined in a seamless fashion. These algorithms can be neural network related, or otherwise.
This leads to an improvement in artificial neural network learning because of the integration of
the best suited learning algorithms for a given task (when different algorithms are available). On
the other hand, structural modularization can be viewed as an approach that deviates from the
conventional thinking about neural networks as non-parametric models, learning from a given
data set. In structural modularizatiarpriori knowledge about a task can be introduced into the
structure of a neural network which gives it a meaningful structural representation. Generally,
the functional and structural modularization approaches are used in conjunction with each other
in order to achieve an optimal combination of modular network structure and learning algorithm.

1This definition has been adopted from [35, 36, 37, 38]

18

2.4 Motivations for Modular Artificial Neural Networks

The following subsections highlight some of the important motivations which make the modular
neural network design approach more attractive than a conventional monolithic global neural
network design approach.

2.4.1 Model Complexity Reduction

The model complexity of global monolithic neural networks drastically increases with an increase
in the task size or difficulty. The rise in the number of weights is quadratic with respect to
the increase in neural network models size [39]. Modular neural networks on the other hand,
can circumvent the complexity issue, as the specialized modules have to learn only simpler and
smaller tasks in spite of the fact that the overall task is complex and difficult [40, 41].

2.4.2 Robustness

The homogeneous connectivity in monolithic neural networks may result in a lack of stability
of representation and is susceptible to interference. Modular design of neural network adds ad-
ditional robustness and fault tolerance capabilities to the neural network model. This is evident
from the design of the visual cortex system which is highly modular in design and is comprised
of communicating functionally independent modules. Damage to a part of visual cortex system
can result in a loss of some of the abilities of the visual system, but, as a whole the system can
still function partially [42].

2.4.3 Scalability

Scalability is one of the most important characteristics of modular neural networks are which
sets them apart form the conventional monolithic neural networks. In global or unitary neural
networks there is no provision for incremental learning, i.e., if any additional incremental infor-
mation is to be stored in a neural network, it has to be retrained using the data for which it was
trained initially along with the new data set to be learned. On the other hand, modular neural
networks present an architecture which is suitable for incremental addition of modules that can
store any incremental addition to the already exiting learned knowledge of the modular neural
network structure without having to retrain all of the modules.

19

2.4.4 Learning

Modular neural networks present a framework of integration capable of both supervised and
unsupervised learning paradigms. Modules can be pre-trained individually for specific subtasks
and then integrated via an integration unit or can be trained along with an integrating unit. In
the later situation, there is no indication in the training data as to which module should perform
which subtask and during training individual modules compete, or cooperate to accomplish the
desired overall task. This learning scheme is a combined function of both supervised as well as
unsupervised learning paradigms.

2.4.5 Computational Efficiency

If the processing can be divided into separate, smaller and possibly parallel subtasks, then the
computational effort will in general be greatly reduced [43]. A modular neural network can
learn a set of functional mappings faster than a corresponding global monolithic neural network
because each individual module in a modular neural network has to learn a, possibly simpler,
part of the overall functional mapping. Also, modular networks have an inherent capability of
decomposing the decomposable tasks into a set of simpler tasks, thus enhancing the learn-ability
and reducing the learning time.

2.4.6 Learning Capacity

Embedding modularity into neural network structures leads to many advantages compared to a
single global neural network. For example, introduction of integrated local computational mod-
els of neural networks increases the learning capacity of a modular neural network model, and
thus permits their use for more complex large-scale problems which ordinarily cannot be han-
dled by global neural network models. Also, a complex behavior may require different types of
knowledge and processing techniques to be integrated together which is not possible without any
structural or functional modularity.

2.4.7 Economy of Learning

To enable continued survival of biological systems, new functionalities are integrated into already
existing systems along with continued learning and adaptation to changing environments [44].
Using the same analogy, modularity enables learning economy in a way that if the operating
conditions change, then only those parts of the modular neural network need to be modified that
do not conform to the new environment, rather than the entire system. In addition, it is also

possible to reuse some of the existing specialist modules for different task of the same nature

20

instead of learning again the parts common to the two tasks.

2.4.8 Knowledge Integration

Modularity is a way of embedding priori knowledge in a neural network architecture that is
important to improve the neural network learning. The motivation for integratica fiori
knowledge about the task at hand is that it might be the optimal way to design an appropriate
neural network system for the available training data. This may include possibility to hybridize
the neural network architecture. In a modular neural network architecture it is possible to use
and integrate different neural functions, different neural structures or different kind of learning
algorithms, depending on the task at hand.

2.4.9 Immunity to Crosstalk

Unitary monolithic neural networks suffer from the phenomenon of interference or catastrophic
forgetting [18, 45] that does no affect modular neural networks. This interference can be divided
into two categories which are briefly described below.

e Temporal Crosstalk: The phenomenon of temporal crosstalk is basically the loss of al-
ready learned knowledge by a neural network about a task when it is retrained to perform
another task of a different type, or when two or more tasks have to be learned by a single
global neural network consecutively [35].

e Spatial Crosstalk: This phenomenon occurs in global monolithic neural networks when a
it has to learn two or more different tasks simultaneously [35].

The crosstalk phenomenon is attributed to the fact that the same set of weights of a neural network
has to learn different mappings, whether simultaneously or consecutively. Both temporal and
spatial crosstalk can be avoided by the use of modular structures of neural networks in which tasks
can be subdivided; and, each module, with separate set of interconnecting weights, is responsible
for its individual tasks.

2.4.10 Insightinto Neural Network Models

Modular neural networks can achieve a significant performance improvement because knowledge
about a task can be used to introduce a structure and a meaningful representation into their design.
By virtue of the fact that different modules perform different distinct tasks within a modular
neural network, and a mediating unit regulates their behavior, it is easy to obtain insight into

21

the workings of the modular neural network just by separately analyzing the output behavior of
individual modules and the mediating unit. This feature is non-existent and perhaps, is not even
possible in global monolithic neural networks.

2.4.11 Biological Analogy

The concept of modularity can be justified on neurobiological grounds. Vertebrate nervous sys-

tems operate on the principle of modularity; and, the nervous system is comprised of different

modules dedicated to different subtasks working together to accomplish complex nervous system
tasks. For example, highly complex visual tasks are broken down into small subtasks, so that
the visual tasks for different situations can be optimized [32]. Moreover, the same structures are
replicated many times, giving the visual cortex the much desired property of robustness.

2.5 Literature Review

In the early stages of neural networks research, it was believed that the monolithic or unitary
neural networks can solve difficult problems of varying difficulty when applied to classification
and regression problems. Continued research in the field of artificial neural networks indicated
that there are certain problems which cannot be effectively solved by the global monolithic neural
networks. This led to the conception of modular neural networks. Modular neural networks
present a new biologically inspired trend in artificial neural network design and learning. In
order to improve the performance of the unitary neural networks to solve complex problems, two
independent approaches were adopted, namely, ensemble-based and modular [46, 38].

The ensemble-based approach, which is sometimes referred to as the committee framework as
well, deals with determination of an optimal combination of already trained artificial neural net-
works. Each member neural network in the ensemble is trained to learn the same task; and,
the outputs of each member neural network are combined in an optimal fashion to improve the
performance, compared to each member individually. In this approach, the underlying assump-
tion is that an optimal combination of the ensemble output is better than the output of a single
neural network. The aim of the ensemble-based approach is to obtain a more reliable and accu-
rate estimate of a given functional mapping by combining individual neural networks estimates
rather than just selecting one of the best performing neural networks out of the ensemble [47].
The use of the ensemble-based approach to formulate a neural network design and learning strat-
egy is becoming more popular and has found application in the fields of classification, function
approximation, econometrics and machine learning [48, 49, 50, 51].

The main theme of the ensemble-based approach is the same as the modular approach, i.e., to
somehow improve the performance of monolithic neural networks. There are two main issues

22

of concern. Firstly, the issue of creation of a set of diverse neural networks, and secondly, the
determination of optimal methods to integrate the outputs of the individual neural networks in an
ensemble. The first issue is handled in a variety of ways. The neural networks in an ensemble
can be made different from each other by creating neural networks with randomly varying set
of initial weights, varying topology, employing different learning algorithms for the individual
members of the ensemble and/or different or disjoint the training data sets [46, 47]. Also, there
are some methods based on “boosting” algorithms which have proven to be quite effective in
training an ensemble of neural networks [52, 53].

After having obtained a trained ensemble of neural networks, the issue of finding effective ways to
combine the individual neural network outputs needs to be resolved. The primary factors which
need to be considered while choosing an ensemble combination method are bias and variance
in the functional mapping estimates. A number of ways have been reported in the literature to
handle this important issue [54, 55, 56, 57, 58, 59, 60, 61, 62]. The linear opinion polls or the
linear combination of the outputs of the individual neural networks in an ensemble is one of the
most widely used methods, with only one constraint, that the result of the combination of the
individual neural network distributions is itself a distribution [54]. Also, simple averaging or
weighted average of the outputs of the members of the ensemble to create the final output are
also commonly used [57, 56]. Nonlinear combination methods include Dempster-Shafer belief
based algorithms [60], rank based information [59] and a variety of voting schemes [58, 63, 64].
The probability based combination method of Bayesian with linear combination was proposed
in [54]. The methods of stacked generalization and regression are some of the other ways to
combine the members of an ensemble of neural networks [61, 62]. In these approaches the
classifier neural networks are stacked in a hierarchical fashion and the output of one level is fed
as the input to the higher level neural network which learns how to combine its inputs to generate
an optimal combination of the outputs of the ensemble of the neural networks at the lower level
of the hierarchy.

On the other hand, in contrast to the ensemble based approach, the underlying motivation of the
modular approach is to decompose a complex task into simpler subtasks using the principle of
divideandconquer This decomposition can be explicitly basedabpriori knowledge about the

task or can be automatically determined during the learning phase of a modular neural network.
The modular approach can lead to modular neural systems in which integration of specialist
modules can result in solving some problems which otherwise would not have been possible
using monolithic neural networks [46, 47]. The central issues of concern in this approach are
the same as those of the ensemble-based approach, i.e., how the task is to be decomposed using
an appropriate number of specialist modules and how to combine the individual outputs of each
expert module to accomplish the desired goal at hand.

There is a wide variety of literature available on modular neural networks in the broader sense.
Modular neural networks falling into broader category do not necessarily conform to the true

23

sense of modular neural networks, i.e., having distinct modules operating specifically on different
sub-regimes of the overall domain of operation. Modular neural network architectures that are
modular in the true sense of modularity, i.e., follow Definition 2.1 are very few, and are described
in the following paragraphs.

Decoupled modulearchitecture uses both unsupervised and supervised learning in two sequen-
tial stages [65]. In the first stage of the decoupled modules architecture, an adaptive resonant the-
ory (ART) network, as proposed in [66], is used for decomposing the input data into its inherent
clusters in an unsupervised fashion. After classification of the input data into its inherent classes,
each class is assigned to an individual module for learning. These modules are then trained in
parallel using a supervised learning paradigm; and, there is no communication between modules
during the training. The final classification is obtained using the absolute maximum of the activa-
tion of all the individual modules. Another modular architecture which is similar to the decoupled
modules architecture in structure, proposed in [67], is calteédr-outputmodel. The only differ-

ence between this architecture and the decoupled modules architecture is that each module along
with its classification output, has a binary output. The binary output indicates whether the current
input sample belongs to the sub-region of the input space that this module was intended to learn
and classify. A similar modular architecture proposed in the literature along the lines of the de-
coupled modules architecture and other-output architecture, is call&RR&P network68].

In this model, an ART network is used in an unsupervised fashion to classify the input data into
its respective clusters. The same number of modules as that of the number of clusters determined
by ART network are implemented. These modules are comprised of neural networks trained by
a supervised learning paradigm. The trained ART network has two functions in this architecture.
Firstly, to induce a sense of competition among the supervised modules; and, secondly, to direct
the input samples for learning and classification purposes to the supervised modules. The outputs
of the supervised neural networks is the final output of this type of architecture.

Another modular neural network architecture, calldgk hierarchical networkhas strong struc-

tural similarities to the previously discussed neural network models [69, 70]. This neural network
model has a two level hierarchy of neural network modules, trained in supervisory fashion. The
base level module acts as a supervisory module and performs a coarse partitioning of the input
space. The specialist modules at the higher level of hierarchy perform a fine-tuned learning and
classification of the already partitioned input space by the supervisory module. Another extension
of the already discussed neural models ishlezarchical competitive modular neural network

[71]. Instead of having one level of unsupervised ART modules, it has two levels of ART mod-
ules with increasing vigilance factor for partitioning of the input data space. The first level of
ART modules passes the coarse grain partitioned input space to the second level of ART modules
for fine tuned partitioning. The second level of ART modules feeds the partitioned input space
for learning and classification purposes to the neural network modules trained by a supervised
learning paradigm. The supervised modules learn and classify the individually assigned regions

24

of the input space without communicating with each other. Another extension of the hierarchical
competitive modular neural network in the literature is calleddbeperative modular neural
network[72]. This model is has the same learning concept as that of a hierarchical competitive
modular neural network, but has a three levels of ART neural networks with increasing vigilance
factor in a hierarchical manner, instead of two levels, as is the case in hierarchical competitive
modular neural network. A majority voting scheme is employed to determine the subclass of an
input sample. Then supervised modules are used learn and classify the individual partitions of
the input space partitioned by the 3-level ART hierarchy. Merge-and-glue networls an-

other modular neural model reported in the literature for classification and regression purposes
[73, 74]. The training of this neural network model is conducted in two phases. In the first phase,

a decomposition of the input data space is performed heuristically according the expert human
knowledge available about the target problem. The decomposed subclasses of the input space are
assigned to the individual neural networks which are trained using one of the available supervised
learning algorithms. Training of the individual neural network modules is carried out till a satis-
factory learning performance has been achieved and then the second phase of this neural network
model begins. In the second phase, a global neural network is formed by merging the already
trained individual neural network modules together, keeping their topology and set of weights
intact. Also, some new hidden layer neurons are then “glued” into the global neural network.
The new global neural network is trained again and the newly glued neurons try to compensate
for the misclassification of any of the data samples in the input data space.

Adaptive mixture of local experts is by far the most widely used modular neural network architec-
ture [75, 76] along with its variants [77, 78, 79]. This architecture is a widely accepted modular
neural model because of its close biological analogy and intuitive structure. This architecture has
origins in Gaussian mixtures and generalized local learning paradigms. Local learning algorithms
attempt to locally adjust the capacity of the training system to the properties of the training set in
each area of the input space [80]. There has been some amount of research carried out to prove
the convergence properties of this architecture [81, 82] and improve its performance [83]. In
this modular neural network model, an automatic nested partitioning of the input space is carried
out; and, a hierarchy of specialist modules, also called expert neural networks, tries to specialize
in learning and classifying each partition of the nested partitions in a competitive manner. The
overall output of this modular neural network is a weighted sum of the outputs of the nested ex-
pert neural networks, weighted by the corresponding gating networks outputs at each level of the
hierarchy. The resulting adaptive mixture of experts is a tree-like structure, referred to as a hierar-
chical mixture of experts [84, 35]. The primary training algorithm used for training a hierarchical
mixture of experts is the Expectation Maximization (EM) algorithm [85]. The most commonly
used training algorithms for hierarchical mixture of experts models are described in Appendix A.
This modular neural model suffers from a major disadvantage of being fixed and rigid in a sense
that its hierarchical structure must be deci@eplriori before starting the training phase. There

has been surprisingly little research effort in this respect to adapt the static and balanced hierar-

25

chical structure during the training of the neural model [86]. This hierarchical modular structure
has a wide variety of applications reported in research literature literature. These applications are
mainly of two types, i.e., classification and regression [87, 88, 89, 90, 41].

2.6 Hierarchical Mixture of Experts

The Hierarchical Mixture of Experts (HME) architecture consisting of modular and hierarchi-
cally stacked neural networks was presented by Jordan and Jacobs [84]. The hierarchical mixture
of experts architecture is a direct competitor to other widely used global non-modular mono-
lithic neural network architectures for the purposes of classification and regression, such as feed-
forward multi-layered perceptrons or the radial basis function networks. This architecture derives
its functional basis from the popular (and similar) hierarchically structdreide and conquer
models in the field of statistics. These models include “Classification and Regression Trees”
(CART) [91], “Multivariate Adaptive Regression Splines” (MARS) [92], and “Inductive Deci-
sion Trees” (ID3) [93]. These algorithms fit surfaces to data by explicitly dividing the input space
into a nested sequence of regions, and fitting simple surfaces within these regions. Convergence
times of these algorithms are often orders of magnitude faster than the gradient based neural
network algorithms. However, these algorithms solve function approximation or classification
problems by explicitlyhard splittingthe input space into sub-regions, such that only one sin-

gle “expert” is contributing to the overall output of the model. These “hard splits” of the input
space make CART, MARS and ID3 algorithms to be variance increasing, especially in the case
of higher dimensional input spaces where data is very sparsely distributed. In contrast, the hierar-
chical mixtures of experts architecture useso# splittingapproach to partition the input space,
instead ofhard splittingas is the case in statistical models, allowing the input data to be present
simultaneously in multiple sub regions. In this case, many experts may contribute to the overall
output of the network which has a variance decreasing effect.

The hierarchical mixture of experts architecture consists of comparatively simple experts or spe-
cialists neural and gating networks, organized in a tree like structure as shown in Figure 2.1.
The basic functional principle behind this structure is the well known technique hilete

and conquer Architectures of this type solve complex problems by dividing them into simpler
problems for which solutions can be obtained easily. These partial solutions are then integrated
to yield an overall solution to the whole problem. In the hierarchical mixture of experts architec-
ture, the leaves of the tree represent expert networks, which act as simple local problem solvers.
Their output is hierarchically combined by so called gating networks at the internal nodes of the
tree to form the overall solution. Consider the case of functional mapping learning of the type
Y = f(X) based on training data s&t= (z®,y®),t = 0,--- ,nwith X = {zy, 29, , x,}

and a corresponding desired respoﬁse {y1,92,- -+ ,yn}. All of the networks, both expert and
gating, receive the same input vector at thetime instantz(®, with the only difference being

26

that the gating networks use this input to compute confidence level values for the outputs of the
connected expert networks whereas the expert networks use the input to generate an estimate of
the desired output value. The outputs of the gating networks are scalar values and are a partition
of unity at each point in the input space, i.e., a probability set. Consider the two-layered binary

y

Node 0

g2
5 \— Gating
i Network 0

g1 92|12
Gating F—— A Gating
Network 1] } Network 2
921 91|2
T Y11 Y12 Y21 Y22 T
F Expert Expert Expert Expert z
Network (1,1) Network (1,2) Network (2,1) Network (2,2)

| | | |

T T x x

Figure 2.1: Hierarchical mixture of experts network.

branching HME as shown in Figure 2.1. Each of the expert neural networKsproduces an
outputsy;; from the input vector® according to the relationship

Yij = f(x(t)> Wz])

where is a neural network mapping using inpeit) and its corresponding weight matri;; .
The input vector:(*) is considered to have an additional constant value to allow for network bias.

The gating networks are generally linear. Since they perform multiway classification among
the expert networks, the output nonlinearity is chosen to be a “softmax” which short for soft
maximum. The outputs of the gating netwaglkat the top level are computed according to

Gi .
¢ with ¢ = Vz®

9i = A eSk

whereV is the weight matrix associated with gating netwgyk Due to the special form of the
softmax nonlinearly, the;’s are positive and sum up to one for each input veetr They can

27

be interpreted as the local conditional probability, that an input vegtbties in the affiliated
partitioned sub-region of the associated expert network. The lower level gating networks com-
pute their output activations similar to the top level gating network according to the following
expression

eCij
T T
The output activations of the expert networks are weighted by the gating networks output activa-

tions as they proceed up the tree to form the overall output vector. Specifically, the output of the
i*" internal node in the second layer of the tree is

Yi = Zgj\iyij
j
and the output at the top level node is
v =>"gwi

Since both the expert and the gating networks compute their activations as function of the input
X, the overall output of the architecture is a nonlinear function of the input.

The fundamental concept behind the probabilistic interpretation of this network is that a paralin-
guistic mapping of input vectors® to output vectorg® in the data set can be subdivided into
sequence of nested decisions. The architecture can be considered as generating a probabilistic
tree. For a particular input vectar?, values generated by the gating networks are assumed

to be multinomial probabilities selecting one of the connected expert networks. A sequence of
decisions starts from the top node influenced by the probability distributions of the intermediate
gating networks. The process eventually ends at a specific terminal expert network.

2.7 Modular Neural Network Design Issues

The most important issue in designing modular neural networks is the definition of the modular
neural architecture at the abstract level such that it does not lose its relevancy to the application
at hand, biological/cognitive adherence and theoretical analysis.

The task of designing a modular network can essentially be broken down into two major sub-
tasks; firstly, the determination of the optimal number and form of the operating regimes for task
subdivision and secondly, the implementation of a methodology by which the individual local
modules are integrated to produce an optimal neural global neural network structure. The advan-
tages of a modular structure of a neural network cannot achieved to the fullest if either of these
two steps is not implemented optimally.

28

Task decomposition is the most important step while implementing a modular neural network
design. This is because of a major drawback of monolithic connectionist neural networks known
ascatastrophic forgetting/remembering or interfereri@é, 95, 96] which is sometimes referred

to as crosstalk, as well [18, 35]. This is the loss of previously learned information when an

attempt is made to train a previously trained neural network for a new task, or a neural network
is forced to learn more than one task simultaneously.

In order to better understand this problem, consider the case of learning a relationship between
two variablesX € ® andY € R”. Let these variables be representedrbgbservations,

X = {x1, 29, - ,2,} and a corresponding desired respokise- {y1,y2, -+ ,yn}. These ob-
servations represent numerical values of some underlying phenomenon of interest. Assume that
these variables are related by an exact functional relationship which embodies all available infor-
mation describing the relationship betwegf andy® as follows;

y" = (=)

for some mapping : 8" — R? wherez® andy® represent numerical values of the variables
X andY at thet'" time instant, respectively.

Let i be the “environmental” probability law describing the manner in which numerical repre-
sentations of the two variables were generated. Define a joint probability at takes in
account the environmeptas well as the probabilistic relationship betwéélgiven)?. In neu-

ral network learning, the conditional probability lawis of interest in an abstract sense, but
the main objective is to find a neural network architecture that performs acceptably for a given
performance-based objective measure of interest. Let the goodness of relationship bétween
andy® be measured using performance function R x R — R. The neural network per-
forming a functional mapping from inplﬁr to output? can be expressed gs R" x w — R?,
wherew is the weight space appropriate to the neural network. Given the ifpand weights

w, the neural network output is given b{) = f(2®, w). Then given a target valug? and

the neural network model outpu®, the performance function(y®, 0®) = 7(y®, f(z®, w))

gives a numerical measure indicating how well the neural network performed on average for
given different values of inpuf . Average performance can be mathematically expressed as the
expectation of the random quantityY’, f(X,w)) described as in Equations 2.1 and 2.2

Aw) = / m(y®, f(@®, w)v(dy®, dz™) (2.1)

ExY,f(X,w)] wew (2.2)

The expected performance function of Equations 2.1 and 2.2 depends only on the wegynds
not on particular realizations &f and X which can be considered averaged out. In the context
of neural networks, the objective is to find the best possible set of weights that can deliver the

29

best average performance and can be specified as the solution to the problem

A

w e w (U})

The solution to this problem is an optimal set of weights, that is not necessarily unique, denoted
by w*.

Now, consider a specific case of artificial neural network learning using the most frequently
encountered performance measure, called the squared&6t, o) = (y® — o®)?2, using
backpropagation training algorithm. Then

Aw) = E([Y - f(X,w)]?) (2.3)

Usingg(X) = E(Y|X), Equation 2.3, after some mathematical manipulations, can be reduced
to the following form

Mw) = E([Y = g(X)]") + E([9(X) - f(X, w)]?) (2.4)

It follows that the optimal set of weights* which minimizes\(w) of Equation 2.4, but also
minimizes

—

E(lg(X) - f(X,w)]?) = / [9(2®) — F(2®,w)*u(da®) (2.5)

In other words,f(., w*) with optimal weight vectow* is a mean-squared approximation to the
conditional approximation function

The optimal weight vectow* that minimizes Equation 2.5 is highly dependent upon the envi-
ronmenty which plays an important role in the determination of the optimal weighitéor a

neural network. The neural network witlt weights on the average produces small approxima-
tion errors for the values ok that are likely to occur and large errors for the values which are
not likely to occur. This leads to the conclusion that for an operating environimehtu, the

neural network with an optimal set of weight$ will not perform optimally. A neural network

f(X', w*) with weightsw*, will perform optimally by construction as long as the environment
probability lawr governs the generation 6f andY. On the other hand, if realizations &f

andY are generated by a different environment probability fgwthat is not the same envi-
ronment probability laws for which optimal weightsv* were determined, the neural network
performance will degrade drastically because it is encountering unseen observations that were
not present during network training [97]. These assumptions are supported by results reported in

30

the literature through a series of experiments conducted on various error backpropagation trained
neural networks models of various types and sizes, for a variety of similar tasks and training
vectors of different sizes [98, 99]. It was observed that previously learned information can be
catastrophically forgotten by a trained neural network while attempting to learn a new set of pat-
terns. The conclusions drawn from these experiments were that the underlying reason for this
catastrophic forgetting was the single set of shared weights, and, that this behavior was a radical
manifestation of so called "stability-plasticity” dilemma [100].

In order to elaborate on the catastrophic forgetting behavior of monolithic neural networks, an
insight into the weight space is essential. When a unitary neural network has been trained to per-
form optimally in recognizing an initial set of patterns, it corresponds to finding a point in weight
spacew;,;; € w. If the same trained neural network now learns a new set of patterns, irrespec-
tive of the size of the new set of patterns, the neural network will move to a new solution point
in weight spacew,., € w. The set of weightsv,,.,, enables the neural network to recognize
new set of patterns. Catastrophic forgetting occurs when the new weight vector is completely
inappropriate as a solution for the originally learned patterns. The same can be concluded for the
case where a neural network is forced to learn two tasks simultaneously and is not able to find a
suitable point in the weight space at which an optimal solution to both learning tasks can be found
simultaneously. The very existence of catastrophic forgetting suggested the presence of so called
“weight cliffs”, i.e., areas where moving even small distances over the weight landscape would
radically disrupt prior learning [101]. The problem of catastrophic interference has long been
known to exist in neural networks by the connectionist community. However, this interference
is sometimes described as if it were mild and/or can readily avoided and, perhaps, for this rea-
son, the interference phenomenon has received surprisingly little attention [98]. The problem of
catastrophic forgetting is not common in higher mammalian brains because of the development
of a hippocampal-neocortical separation which indicates that common weight sharing is not an
ideal way to increase the learning capacity in neural network models [28].

In the light of the facts discussed in the previous paragraphs, the important issues related to
the design and implementation of modular neural networks can be broadly categorized in the
following subsections.

2.7.1 Task Decomposition

As mentioned earlier, task decomposition is the most important step in designing modular neural
networks. This step is necessary and crucial for many reasons, most importantly to determine
if the training set at hand is functionally or structurally divisible into a number distinct subsets.

Task decomposition is also imperative because it directly dictates the structure of the modular
neural network itself by deducing whether the problem at hand can be partitioned once, or must
be partitioned recursively. If the task decomposition is recursive, then the modular neural network

31

has to be recursive in nature too, otherwise a modular neural network with one level of structural
hierarchy of specialist modules will suffice to solve the given problem. Task decomposition plays
another important role in the subsequent training of the modular neural network by decomposing
the task, whenever possible, such that there is minimum overlap of the specialized modules in
the weight space.

Task decomposition can be explicitly defined usinganiori knowledge about the task at hand

or can be learned automatically during the modular neural network learning process. Also, levels
of hierarchy, if applicable, need to be determirggriori or automatically, in order to effectively
exploit the modularity of the neural network structure. To summarize, if the right task decom-
position is not employed with the global task in mind, all the advantageous characteristics of the
modular networks cannot be utilized optimally.

2.7.2 Structural Modularization

Structural modularization deals with determination of the number and size of individual specialist
modules within a modular neural network. The relative size of a specialized neural network
dictates the performance of a modular neural network. If one of the expert neural networks is
of relatively larger size, it may start dominating the other specialist modules, and the training
of the modular neural network might face the same problems as a monolithic neural network.
The number of expert modules plays an important role in efficient learning and operation of
a modular neural network because too many individual modules will result in longer training
times. On other hand, a modular neural network with too few specialist modules may not be able
accomplish the learning task. It is also in this step that the functionality of each expert module
is assigned according to the task at hand, i.e., the selecting architectures of individual specialist
modules and their corresponding function in a modular neural network framework.

2.7.3 Training Algorithm

The implementation of a training algorithm also plays an equally important role in design and
implementation of modular neural networks. The training algorithm should be comprehensive in
a sense that it should setup local goals for individual specialized modules so that the overall goal
of global training is accomplished satisfactorily.

The training algorithm should be the right algorithm for the right problem. Whenever it is nec-
essary, a training algorithm should be able to decompose the learning data set automatically. It
should be able to recognize, via expert knowledge or automatically, whether individual special-
ized modules of a modular neural network have to be trained independently of each other, in com-
petitive fashion or in a cooperative manner in order to accomplish the assigned local tasks. Also,

32

another important factor that a training algorithm should cater for is the decision of incremen-

tal or sequential learning based on the task decomposition information. Intra- and inter-module
communication during the training phase should also be an integral part of a training algorithm
in order to dynamically preserve the separation of new learning from old learning. Adaptation,

structural or functional, is another desirable characteristic of a training algorithm.

2.7.4 Combination of Specialist Modules

Combining the outputs of the individual expert modules in a modular neural network is another
crucial decision. Combination of expert modules can be competitive, cooperative or totally de-
coupled among the individual expert neural networks in a given modular neural network. In a
decoupled approach, individual specialist modules have no information about other modules in
the network and the output of the best performing special neural network is picked to be overall
output of the modular neural network according to some pre-specified criterion. Competitive
combination on the other hand, favors a communication and competition among the individual
expert neural networks. The output of the winner expert neural network among the individual
the expert modules is chosen to be the final output of the modular neural network. In cooperative
combination, outputs of the multiple individual expert modules are combined in proportion to
their degree of performance to form the final output of the modular neural network instead of just
choosing the best performing specialist neural network. The combination scheme can also be a
combination of cooperative and competitive schemes.

The steps and techniques outlined in the preceding paragraphs are by no means exhaustive, but
are meant to highlight some of the points that need to be considered while designing a modu-
lar neural network. The subsequent chapters of this dissertation describe some of the modular
neural architectures, demonstrating the use of the above mentioned techniques for regression and
classification problems.

Chapter 3

Laterally Connected Neural Network Models

The previous chapters described in detail the importance of modularity in design and training
of artificial neural networks. The modularity described earlier primarily dealt with the design
and implementation of a number of neural networks that were grouped together in some modular
fashion with non-existing modularity within an individual member neural network.

Many of the currently used feed-forward or recurrent neural network models have little, if any,
structurally constrained architecture which is contrary to the notion that the neural network mod-
els draw their inspiration from the structural and functional mechanism of the brain. The brain
is a highly structured entity in which a structured organizational and functional architecture is
induced among the different neurons and groups of neurons by a combination of both excitatory
and inhibitory connections. In light of these facts, it seems appropriate that before investigating
the implementation and implications of modularity in a group of neural networks connected to-
gether to accomplish a task, an effort should be made in order to instill some sort of modularity
and structure in a monolithic neural network using inhibitory and excitatory connections. This
chapter describes a new neural network architecture and learning algorithm towards incorporat-
ing structure in an otherwise unstructured monolithic neural network. An Illustrative example is
presented to prove the effectiveness of the proposed neural network architecture and its learning
algorithm.

3.1 Motivation

Many of the popular neural network models, such as the well known multi layered perceptron
model, are feed-forward networks without any feedback or inhibitory connections. For simplic-
ity or other reasons, the flow of information through the neural network model is considered

33

34

unidirectional such that outputs are calculated by feeding information only forward through the
network model. However, there is much evidence that neural networks in biological sensory and
nervous systems have lateral inhibition mechanisms. Using such connections, artificial neural
network models can be designed with very interesting and improved behaviors.

Anatomical and physiological evidence suggests that lateral connections constitute an important
part of local cortical circuitry [102]. The biological basis for these lateral connection is evident
in the central nervous system. For example, consider the general architecture of the neocortical
minicolumns modules. These modules extend through the entire human cortex. The modules
are(0.2 — 0.3 mm in width and an@.5 — 3 mm deep. These modules consist of pyramidal cells
that are excitatory in nature and constitute alf0¥ of a neocotrical minicolumn module. The

rest of the neocortical module consists of various types of inhibitory inter-neurons such as basket
cells [103].

The pyramidal cells in the upper layers of the cortex mainly are connected to the other cortical re-
gions in the same hemisphere. Deeper layers of the cortex have pyramidal cells that are connected
with the sub-cortical centers. The middle layers of the cortex have an abundance of inter-neurons
with short range inhibitory connections. A similar type of functional similarity exists in the
cerebellar cortex. Thus, given such a neurobiological model, the principle that governs intermod-
ule organization seems to be excitation and the principle governing intra-modular organization
seems to be inhibition. The architectural principle of intra-modular inhibition implies that the
main learning process within a neocortical module is competitive in nature [104, 105, 106].

The inference drawn from the description of neocortical minicolumns leads to the conclusion
that effective and neurobiologicaly plausible neural network models should have a mechanism of
elaborate inhibition embedded into their architectures. The next section outlines one such neural
network model which has the neocortical minicolumn architecture as the neural network design
inspiration. The learning algorithm for such a neural neural network model is also described in
the following sections.

3.2 Laterally Connected Neural Network Model

Fixed topology neural networks suffer from theoving targetproblem which leads to herd

effect The moving target problem arises from the fact that each hidden layer node is trying to
become a feature detector to contribute to the overall functioning of the neural network [107].
This fact becomes more complicated as all the hidden layer nodes are trying to evolve at the
same time without communicating with other nodes in the hidden layer. The only information
these hidden layer nodes have is their input and the error backpropagated from the output layer
nodes. This information is constantly changing throughout the training process of an artificial
neural network. The herd effect, which is a manifestation of the moving target problem, is the

35

evolution of the weights of an artificial neural network model to reduce the source of largest
training error in the training data. The herd effect becomes more pronounced in cases where each
training pattern does not contribute the same amount of error. This effect can be eliminated if
the hidden layer neurons receive different inputs and (backpropagated) error information. This
can be accomplished by the introduction of lateral inhibitory connections among the hidden layer
neurons of a neural network model. One such configuration is as shown in the Figure 3.1 and
is referred to as a laterally connected neural network (LCNN) model in this chapter. The neural

Figure 3.1: Laterally connected neural network model.

network bias connections are not shown in Figure 3.1 for the sake of simplicity, but are assumed
to be present in the LCNN model architecture like any other neural network model. The idea
of using lateral connections has not been explored by researchers in detail and as a consequence
the literature on this topic is very limited. Some references in this respect are [108, 109, 110]. A
more plausible concept on usage of lateral connections is discussed in [111]. In[111], the authors
use lateral connections to establish a communication mechanism among the nodes in the hidden
layer of a neural network. These lateral connections used in [111] are not, however, intended to
be inhibitory in nature. The research work presented in this chapter is a major improvement of
the concept presented in [111]. The idea presented and implemented in this chapter has sound
neurobiological basis as mentioned in the previous section. Also, this architecture derives its
inspiration from autonomous, unsupervised and self-organizing learning principles in that each

36

hidden layer neuron is learning in a competitive fashion by inhibiting the outputs of the other
hidden layer neurons which is the functionality of unsupervised and self-organizing learning
[112].

The LCNN model is essentially a feed-forward neural network model with additional lateral
connections among the hidden layer neurons. In the forward pass of the information through
the LCNN model, every hidden layer node inhibits the output activity of the other neurons in
the hidden layer. This process induces a sense of competition and communication amongst the
hidden layer nodes. In the backward pass of error during the training phase, the neural network
model output error is backpropagated through the lateral connections. The inhibitory effect is
more pronounced among the adjacent hidden layer neurons, and a hidden layer neuron activation
has a only remote effect on the neurons which are farther from it.

To summarize, the LCNN model combines seamlessly the supervised and unsupervised learning
schemes in that the overall training scheme of the LCNN model is a supervised one, but the
hidden layer nodes also implement a competitive learning mechanism.

3.3 LCNN Model Learning Algorithm

As standard popular artificial neural network models do not include lateral connections in the hid-
den layer, modification has to be made in the weight adaptation rules for gradient based learning
algorithms such as the standard backpropagation learning algorithm. The reason for this is that
the information flows through the lateral connections in the forward pass, and error propagates
back via the same lateral connections during the weight update phase. Also, new learning rules
have to be derived for updates of lateral inhibitory connections.

Consider the neural network model as shown in Figure 3.1. Let the net input gihtiedden
layer neuron bé; and its corresponding output be= ¢;(h;). Then

22:1 W; k Tk — 91,222 j=1
n .
hj =1 D ohey WikTk — Gjj1%-1— gj-152 1<j<m (3.1)
n .
Zkzl Wj kTk — Gm,m—12m—1]=m

wherez,, is thekth component of the input vectar Theith neuron in the output layer receives
a net inputs; = Z;”Zl v; j2; and produces an outpyt = ¢;(s;). ¢ andy, respectively, are the
hidden and output layers neurons squashing functions.

The weights of the neural network model are adjusted by minimizing the mean sum of squared

37

error (MSSE) objective function of Equation 3.2.

11 o
MSSE =J = - ;@k — i) (3.2)

whereq is the number of outputs ang is the desired output of the neural network model. The
weight update rules for the weights of the neural network models are obtained via the gradient
descent algorithm to minimize the objective functién

For the weights connecting the hidden to the output layer of the neural network model, the update
rule is straight forward. For the weight connecting ttienode in the output layer to thi¢h node
in the hidden layer, the weight update rules is given by the following relationship:

Avij

_778@)1 (98i (91)1']'
= 06z (3.3)

wheres? = ¢'(s;)(y; — ;) is thed (local gradient) for theéth neuron in the output layer.

For a lateral connectiog; ;_; that connects thej{1)th node to thgth node in the hidden layer,

the weight update equations can be derived using the standard gradient descent algorithm and
the chain rule of derivatives. Also, note the fact that connecfign, was responsible for the
information flow in the forward pass througj{)th throughmth hidden layer nodes, and hence
while backpropagating the output error, all of feecorresponding to the neuropshroughm

have to be taken into consideration. The derivation of the weight update equations is as described
in the following.

9
o agj,j—l

_ i g% 632- 6zm 6hm L 8hj+1 8hj
N g i1 6132 632- 6zm 6hm 8hm_1 6h] 6gj7j_1

N Zq: 0J 0§ 0si Ozmr \ Ohmoy Ohji Ohy
i1 6132 632- 6zm_1 6hm_1 6hm_2 6h] 89]'7]‘_1

+

Agj,j—l

|

4 i g% 88i 6zj+1 6hj+1 ah]
i1 6132 632- 6zj+1 6hj+1 8hj 89]'7]‘_1

38

1. 8J 8y; Os; 0z; Oh;
+ - 1 [dar's ¥l
{ (zzl Gyz 632- sz Gh] 89]'7]‘_1
The above equations reduce to the following simplified form.
q
Agj,j—l = TNy [{ (Z 6fvi,m¢/(hm)> (_gm,m—1¢/(hm—1))(_gm—l,m—2¢,(hm—2)) T
=1
(—gj+1,j¢'(hj))zjl}
q
+ { <Z 5§)Ui,m—1¢/(hm—1)> (=gm-1,m—20"(hn—2))(—gm-2,m—3¢'(Am—3)) - -+
=1

(—gj+1,j¢,(hj))zj—1}
+
N
+ { (Z 5§)Ui,j+1¢/(hj+1)> (_9j+1,j¢/(hj))zj—1}

{gren))

Further simplification of the above equation results in

[/ 4 m q B
Agjj1 = ng (Z 5fUi,j¢/(hj)) +{ Z (5§U¢,j¢l(hj)> H —ga,a1¢/(ha1)}] Zj-1
L \i=0 8 1

=j+1 \i= a=j+1

- N p
= 7, |8+ (> o 1] —ga,a_lgb'(ha_l)}] i1 (3.4)
L B

—j+1 a=j+1

Where6§l is the usuab for thejth hidden layer neuron that is used in the standard backpropagation
learning algorithm.

For a lateral connectiog;_, ; that connects thgth node to the {-1)th node in the hidden layer,
the weight update equations can be derived in a similar fashion as that for a lateral connection

39

g;,;—1 taking into account that this connection is responsible for feeding the informatigth of
through 1st hidden layer node.

o
s 8gj—l j

. Z oJ Gyz 682 621 8h1 o 6hj_2 8hj_1
N 8:% 881 821 8h1 th Ghj_l 6gj_17j

X Z ga]jz % 822 th ahj,Q 8]1]',1
i1 8@1 881' 82’2 8h2 (9h3 ahj,1 89]’*1,]’

+

Agj-1,;

+

Z oJ 8yz 88z 82’] 2 8]1]',2 ahj,1
8:% 881 82]_2 8hj_2 8hj_1 6gj_17j
Z oJ 8yz 881 82’] 1 (9hj,1
8y1 881 82’],1 8]1],1 893',17]'
The above equations reduce to the following simplified form.
q
Agj-1j = g H (Z 5§’v2-,1¢’(h1)> (=120 (h1))(—9g2,38'(h2)) - - - (—gj—2,j—1¢'(hj—2))zj}
=1

" { (Z 63“@'72¢'(h2)> (=9239'(h2))(—g3,4¢'(ha)) - - - (—912,jl¢/(hj2))zj}

+

+
+ { (Z 53%,;’—2@5'(’13‘)) (—gj—2,j—1¢,(hj—2))zj}
{(Eem)-f

Further simplification of the above equation results in

Agj—l,j = Ty [(Z(vai,j—lcb,(hj 1) {Z (Z%Uu 1¢)H —Ja- 1a¢ }]

B=1

40

Jj—2 B
Mg 6;’1—1 + {Z yﬁl H _ga—l,a¢,(ha)}] Zj (35)
B=1 =1

For the lateral connectionsg » andg,,..—1, the update equations are as given by Equation 3.6
and 3.7, respectively.

A91,2 = 7795?22 (3.6)

Agm,mfl = ngéglszl (37)

Similarly, the weights connecting the input layer neurons to the hidden layer neurons can be
updated using the update rules derived. Consider a weighthat connects thgth neuron in
the input layer to théth neuron in the hidden layer, then the update rules are derived as follows.

ij,k

oJ

(91()]'7]C

1. 8J 8y; 0s; Ozm

i

+

+ o+ 4+ 4
—— N —

+ o+

Ohm Ohp_y Ohjiy Ohy
Ghm_l ahm_g 6h] 8wj7k

07; 0s; Ozp—1 Ohy—q

(zq: 0J i Ds; Dzpyy
=1

) Ot Oy Ohjiy O, }

8hm,2 8hm,3 8h] 8wj,k

=1
1. 87 9y; Os; %
i—1 8gz 881' 8Zj 8]1]

1. 8J 8y; Bs; 0=

g oJ 8gz (98i 82j+1
07; 0s; 82’j+1 8hj+1

Oh,

8hj+1 (9hj
(9hj (91()]'7]C

8103'7

]

i1 6—@8—& 821 6h1
1. 0J 8y; Bs; Dz

i—1 8—@ 881' 82’2 8h2

(9h1 Ghj,g 8]1]',1
6h2 Ghj_l 6gj_17j
(9h2 Ghj,g 8]1]',1
(9h3 ahj,1 893'71,3'

41

Z aJ 6y2 682 82] 2 8hj_2 6hj_1
6y2 881 82]_2 6h]_2 8hj_1 6gj_17j
oJ 8gz (98i 823',1 (9hj,1

+ { (; 8gz 881' 823',1 (9hj1> 89]'71,]' }]

Finally, the above equation reduces to the following update rule:

q m q B
Awjj, = n[<25gvi,j¢’(hj)>+{ > (Zagvi,j(p'(hj)) 1T —ga,alqy(hal)}

B=j+1 \i=1 a=j+1

{Z(W RLEE

B=1 \j—2

B
{Z%Hﬁwww&

B=j+1 a=j+1
+ {Z 62 H _ga—l,a¢/(ha)}] Tk (38)
/=1 a=1

The learning algorithm for the proposed LCNN model is summarized below as Algorithm 3.1
that takes the number of hidden layer nodeand the error goa as the predefined parameters
along with the training data set as its input parameters.

3.4 An lllustrative Example

The effectiveness of the proposed algorithm for a class of function approximation problems is
demonstrated by an illustrative example. Consider the case of approximating a deceptively simple
function given by Equation 3.9.

f(z) = 26702 | sin(x)| (3.9)

with x ranging from0 to 2x. Figure 3.2 shows the plot of the function given in Equation 3.9.
This function is difficult to be approximated by a monolithic neural network because during the
training process the firshtumg of this function acts as the dominant error source over that of
the second smallehiumg. All the hidden layer nodes try to compensate for the larger error
source and thus do not learn the smaller hump properly. A simulation was carried out by training
a monolithic neural network fot000 epochs with10 hidden layer nodes to approximate the
function of Equation 3.9.

42

Algorithm 3.1 Laterally connected neural network model learning algorithm
Requires: Training data set’ = {z;,y;} fori=1,--- /N. e,m
e Initialize the neural network with one hidden layer compriseéhaiodes with associated
lateral connections.
t<=0
while e > e do
o Present the desired inputs to the neural networks and calculate the corresponding
outputs using Equation 3.1 and propagating information in the forward direction
through the network.
< Calculate the value of the MSSE objective functioh using Equation 3.2.
¢ Update the weights connecting the hidden layers to the output layer using Equation 3.3.
© Update the later connections using Equations 3.4, 3.5, 3.6, and 3.7.
© Update the weights connecting the input layer neurons to the hidden layer neurons using
Equation 3.8.
e<=JJ
end while

15

05

0 I I I I I I
0 1 2 3 4 5 6

Figure 3.2: Plot of the function to be approximated.

43

The training algorithm used for adapting the weights of the neural network model is a recursive
prediction error algorithm which belongs to a class of recursive Gauss-Newton methods. Recur-
sive least squares (RLS) type algorithms have been used for recursive parameter estimation in
the fields of system identification and adaptive filter design. This class of algorithms is charac-
terized by two updating equations; one for parameter update and the other for covariance update.
The stability and convergence of recursive least squares algorithms are heavily dependent upon
the way in which the covariance matrix is updated. There have been many modifications to the
basic recursive least squares algorithm to have bounded covariance matrix updates that include a
constant forgetting factor, constant trace adjustment, covariance resetting and covariance modifi-
cation. Considering these issues, a recursive prediction error method with exponential resetting
and forgetting factor is used to train the LCNN model [113]. The EFRA algorithm is outlined
below as Algorithm 3.2. In the EFRA algorithmi, «, A, 6 are the constant parameters and their
choice affects the performance of the algorithRy.andé, are the initial covariance matrix and

initial weight vector of the neural network model respectivelis the desired error goal for the
training error. It is very easy to implement this algorithm to train a neural network with some

Algorithm 3.2 RPEM algorithm incorporating exponential resetting and forgetting
Requires: T = {&,y;} fori=1,--- n. B,a, A, 6, Py, 00, ¢
while e > e do
e<=0
for k = 1ton do
€k <= Yk — zhOp_q

abp 1Tk
Qk = 9}671 + 71+$£Pk—1$k €L

1 aPy_qzpxl Py_
pk<:xpkil_M+ﬁ]_5pk2_l

1+l Py

e<e+eiey
end for
end while

necessary computational modifications. The results have been very encouraging when using this
algorithm for neural network training. The results indicate that by using the EFRA algorithm
instead of the standard backpropagation algorithm, training time was reduced considerably with
improved neural network generalization.

The squashing function used for the hidden layer neurons and its derivative, respectively, are
given by Equations 3.10 and 3.11. This function will be referred to aslteenate sigmoidal
squashing function with parametgicontrolling the slope of the squashing function. The output

of this function lies in the range-1, 1] [114].

Bh

o) = T3 1)

(3.10)

44

S = —L =5) (3.11)

(1+[hl)

The comparative plots of commonly used tansigmoidal and alternate sigmoidal squashing func-
tions and their derivatives shown in Figures 3.3(a) and (b), respectively. This function has

08f
06 08

041 071
02t 061
05+
—02k 0.4
—04l 03+
-061 0.2+

-0.8| 0.1t

@) (b)
Figure 3.3: (a) Plot of the tansigmoidal and the alternate sigmoidal squashing functions. (b) Plot
of the derivatives of the tansigmoidal and the alternate sigmoidal squashing functions. (solid and
dotted line plots are for tansigmoidal and alternate sigmoidal functions respectively.)

advantages over commonly used sigmoidal functions which are transcendental functions and are
time consuming to calculate on some computers. The alternate sigmoidal function has slower
asymptotic convergence compared to sigmoidal functions which is highly desirable in order to
avoid paralysis of the neural network model during training (due the saturation of sigmoidal type
squashing functions) [114]. Also, the alternate sigmoidal function takes half as many flops to
evaluate than the conventional sigmoidal squashing functions.

The training was carried out f&00 epochs. The weights were updated in an online fashion, i.e.,
the weight update was carried out after each training data pair presentation to the neural network.
After the training phase, the function approximation test results are as shown in Figure 3.4(a).
Figure 3.4(b) shows the sum squared error plot during the training phase. As s evident from the
plot of Figure 3.4(a), the neural network did not learn the function properly. To further investigate
the problem, the number of hidden layer nodes was increased with incrementSiafulation

results essentially had the same results as that of the neural network mod#) witlden layer

nodes but with slight improvements. The last of the simulation was carried out with a neural
network with20 hidden layer nodes. The simulation results are as shown in Figure 3.5(a). The
sum squared error plot is provided in Figure 3.5(b). The results point out that increasing the

45

L L L L L L I I I I I I I I I
1 2 3 4 5 6 0 100 200 300 400 500 600 700 800 900 1000

(a) (b)
Figure 3.4: (a) Function approximation by conventional monolithic neural networkiwitid-
den layer neurons (solid line plot is the actual function and dotted line indicates the approximation
by neural network). (b) Plot of the sum squared training error.

I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

(@) (b)
Figure 3.5: (a) Function approximation by conventional monolithic neural network2itid-
den layer neurons (solid line plot is the actual function and dotted line indicates the approximation
by neural network). (b) Plot of the sum squared training error.

46

number of hidden layer nodes does help in approximating the given function, but the sum of
squared error plot of training error does not smoothly decrease with an increase in the training
epochs. This isindicative of the fact that although the neural network was able to approximate the
function adequately, it was still difficult to adjust the weights so that the error history is smooth.

To verify the effectiveness of the proposed laterally connected neural network model, the same
function of Equation 3.9 was used as a test case. A series of simulations was carried out with
different topologies with varying number of hidden layer neurons in the LCNN architecture.
Simulations were carried out, starting with a LCNN model witthidden layer neurons and
appropriate lateral connections, and sequentially increasing the hidden layer notledtéry

each simulation run. A simulation run consisted of ten individual simulations. Consistent good
performance was achieved with a LCNN model withidden layer nodes. In order to report the
training performance, the details of the simulation vgithidden layer nodes are presented in this
section.

A neural network witt8 hidden layer nodes with lateral connections was used for this purpose.
The weights connecting input layer nodes to the hidden layer nodes and connecting hidden layer
nodes to the output layer nodes were chosen randomly from the [rahgg and lateral connec-

tion weights were chosen to be all positive from the rafige|. In the forward pass, inhibitory
information was only fed to the appropriate nodes after the outputs of the hidden layer nodes had
settled down. This precaution was taken to avoid any recurrent behavior in the outputs of the hid-
den layer neurons. Equations 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 were used to update the neural network
weights during the training phase. The training was carried ous@orepochs. The weights

were updated in an online fashion, i.e., the weight update was carried out after each training data
pair presentation to the neural network. The training and test simulation results are as depicted in
Figure 3.6. Figure 3.6(a) shows the test approximation results and Figure 3.6(b) shows the sum
of squared training error plot. This plot indicates that the training error was bilotvafter
about200 iterations of training algorithm. These simulation results prove the effectiveness of
the proposed laterally connected neural network model which was able to approximate a difficult
function with less number of hidden layer nodes than a monolithic conventional neural network.
Although, there were some extra lateral weights which needed to trained, but still the training
sum squared error plot indicates that the simulation reached an acceptable error limit in less than
0.2 of the training time of a monolithic neural network without lateral inhibitory connections
with 20 hidden layer nodes. The total number of weights to be trained in the monolithic neural
network model with20 hidden layer nodes 61 whereas for LCNN model witB hidden layer
neurons, the total number of adjustable weight¥is

47

(@) (b)

Figure 3.6: (a) Function approximation by LCNN model (solid line plot is the actual function and
dotted line indicates the approximation by LCNN model). (b) Plot of the sum squared training
error for LCNN model.

3.5 Conclusions

In this chapter a laterally connected neural network model was introduced which has lateral in-
hibitory connections among the hidden layer neurons. The LCNN model is biologically inspired
and the model of neocortical regions of central nervous system was used to derive its architecture.
Also, a gradient descent based learning algorithm was presented for the proposed LCNN model.
The proposed LCNN model is proven to have superior performance for function approximation
problems compared to monolithic neural networks without lateral connections. The proposed
LCNN model was able to learn a difficult function approximation problem with a smaller num-
ber of weights in a reduced learning time, and hence less computational effort.

The proposed LCNN model has consistent good performance when the network topology is cho-
sen optimally. However, the proposed LCNN model has a drawback at this point of time. The
lateral inhibitory connections, although initialized to positive values at the beginning of the train-
ing phase, can change their sign during the course of training as a consequence of the weight
updates. This problem can be resolved by an introduction of a more robust learning algorithm
which ensures that the lateral inhibitory weights do not change sign during the training phase.
One of the possibilities could be to replace the gradient descent learning algorithm with an expo-
nentiated gradient descent based training algorithm [115, 116, 117].

Chapter 4

Evidence Maximization Framework for
Modular Neural Networks

As stated in the previous chapters, modularity in neural network design is an emerging and a re-
vitalized concept. Modular decomposition of neural networks can be undertaken for the purposes
of simplifying a complex learning task or improving performance. In the latter case a task could
be accomplished with a monolithic neural network, but a better performance is achieved when the
neural network is broken down into a number of specialist modules. In addition to performance
improvement, there are other reasons for decomposing a problem. For example, it might not be
possible to accomplish a task in question unless the problem is first simplified by decomposing
it into simpler subtasks. The principle of divide and conquer, whereby a task is divided into a
number of subproblems, generally forms the basis for the modular neural network design and can
be used to extend the capabilities of a monolithic neural network. Each of the subproblems of a
complex overall learning task obtained by the application of the principle of divide and conquer,
could then be solved by a set of different specialist neural networks, which might employ differ-
ent or similar architectures or learning algorithms, making it possible to exploit their specialist
capabilities. Modular neural network architecture lends itself to a very important characteristic
in that each specialist component in a modular neural system can take the form of an artificial
neural network or any other non-neural network computing technique.

The objective of this chapter is to present a new hierarchically structured modular neural net-
work model and discuss a new associated learning algorithm. The new learning scheme is
calledmiddle-up-downhat draws its inspiration from the organizational models of the successful
Japanese companies and combines the features of biologically inbpttech-upandtop-down

neural network learning paradigms. This method of learning is also reminiscent of Bayesian
neural network learning in which learning takes place using message passing in a tree structured

48

49

architecture consisting of nodes representing different events. In the proposed learning scheme
the evidence maximization framework is adopted for training of the expert and the integrating
or gating neural network modules of the proposed modular model in which the performance of
an individual expert neural network module is treated as\atcience Better performing individ-

ual expert neural networks are rewarded according to their performance in regard to the task at
hand by maximizing their individual evidences. The same concept is followed for the training
of the gating neural network module as well. Considering the output of the gating neural net-
work module as théeliefin the performance of an expert neural network module, the outputs

of the integrating unit corresponding to the better performing expert neural network modules are
strengthened in order to increase belief in the better performing expert neural network modules.

The performance of the proposed modular neural network architecture and the associated learning
scheme is illustrated by its application to a number of system identification and classification
problems. The experimental results are encouraging and are included in the chapter for reference.

4.1 Introduction

Hierarchically structured modular neural networks are a class of neural networks in which a task
to be performed by neural networks is decomposed into two or more overlapping or distinct de-
composed subtasks. Each of the subtasks is then assigned to an individual expert neural network
which tries to learn its assigned subtask without communicating with other expert neural network
modules. The outputs of the expert neural network modules are mediated by an integrating or a
gating unit that is not permitted to feed any information directly back to the expert neural network
modules. In particular, the integrating unit decides how to combine the outputs of the individual
expert neural networks to form the overall output of the system and it also decides which expert
neural network module should learn which subset of the training data set patterns [46].

The possible motivations for adopting a modular approach to solve a problem using neural net-
works are numerous and have been outlined in the previous chapters. For example, potential
advantages of adopting a modular neural network approach are that of reducing model complex-
ity; and making the overall system easier to understand, modify, and extend which is a common
engineering design principle. Training times for the neural networks can be reduced as a result
of modular decomposition, and a priori knowledge task at hand can be incorporated in terms of
devising an appropriate task decomposition strategy.

The design process for the modular neural networks is comprised of two important phases,
namely the task decomposition and the combination of the partial representations of the over-
all task generated by the individual expert neural network modules. The decomposition of a
problem into modular components may be accomplished automatically or explicitly [118]. Ex-

plicit decomposition of a task relies on a strong understanding of the problem at hand. If the

50

division of a task into subtasks can be achieved based on a priori knowledge, an improved learn-
ing and subsequent neural network performance can result. Similarly, specialist modules can be
developed specifically for particular subtasks. An alternative approach is one in which automatic
decomposition of the task is undertaken [84]. This approach is characterized by a simultane-
ous application of a data partitioning technique and a learning scheme for the specialist neural
network modules. Automatic task decomposition is more likely to be carried out with a view to
improve performance; while explicit decomposition might be undertaken with the aim of improv-
ing performance, or that of accomplishing tasks which either could not be accomplished using a
monolithic neural network, or could not be accomplished either as easily or as naturally.

Another similar approach to problem decomposition could be to use disjoint or mutually exclu-
sive training sets, the there is no overlap between the data used to train different expert neural net-
works. The problem with this approach could be that the size of the training set is reduced which
may result in a deteriorated generalization and subsequent individual neural network expert mod-
ules performance. Another method for selection of the data sets on which expert neural networks
are trained is to use data from different input sources. This is possible under circumstances in
which, for instance, more than one sensor is used. This approach is particularly applicable where
the sensors are designed to generate different kinds of information. The data on which neural
networks are trained can also be generated by using different input preprocessing methods. For
example, different signal processing methods might be applied to the input data set, or different
feature sets can be extracted from the input data set for neural network training.

The second phase while designing modular neural networks is the combination of the outputs or
the partial representations of the overall complex task generated by expert neural network mod-
ules in a modular neural network model. Combination of specialist neural networks in a modular
neural network architecture can be broadly categorized into two categories, namely cooperative
and competitive. The main difference between cooperative and competitive combinations is that
in cooperative combination it is assumed that all of the expert neural networks to be combined
will make some contribution to solve the problem at hand; whereas in competitive combination, it
is assumed that the most appropriate specialist neural network module will be selected depending
on its performance which can either depend on its input or output. There are two main approaches
for accomplishing this selection. In the first approach, the modular neural network model learns
to allocate examples to the most appropriate module, like for example hierarchical mixture of ex-
perts architecture [84] and the second approach uses a predefined switching of specialist modules
that is accomplished by means of a more explicit mechanism [119, 120].

51

4.2 Motivation

There are a variety of modular neural networks reported in the literature but by far the hierar-
chical mixture of experts (HME) model is the most widely accepted and used model to design
modular neural networks. This model was initially proposed in [84], which has been described
earlier in Section 2.6, and is an extension of generalized linear models approach. The HME
model uses linear expert neural network modules and a linear gating network. The gating net-
work tries to decompose the input space into mutually exclusive hyper-planes or sub-spaces and
each sub-space is assigned to one or more expert neural networks. The learning algorithms for
HME model in order to minimize or maximize the objective function are mainly of two types.
The first approach consists of using standard gradient descent learning algorithm and has been
applied with some success to train HME architecture. The second approach is an instance of the
expectation maximization (EM) algorithm [85], which is often applied to unconditional mixture
models and has also been formulated for and applied to conditional mixtures of experts [84]. The
advantage of the EM algorithm as compared to the gradient descent approach lies in the fact that
the EM algorithm nicely decouples the parameter estimation process for the different individual
components of the HME model.

A potential drawback of using linear gating network in the HME model is that for complex
functional mapping tasks, it is very difficult for the linear gating network to devise an appropriate
partitioning of the complex input space to be assigned to the linear expert neural network modules
to accomplish the complex functional mapping learning tasks.

Also, the proposed learning algorithms for the HME architecture in their original formulation,
have to be changed according to a priori probability distribution assumption on the training data
set and essentially resulting in different formulations for different learning situations. This also
results in assuming a priori parameter values associated with the assumed probability distribu-
tions. For example, while training HME model for regression problems, Gaussian probability
distribution assumption is imposed on the training data set and in case of binary classification
problems, the probability distribution is assumed to be of Bernoulli type which results in two
different learning algorithms formulations for the two cases.

Also, the Gaussian assumption on the training data sets for the regression problems is not appro-
priate in most of the cases. It has been shown that in the limit of an infinite training data set, the
posterior distributions does, in fact, become Gaussian but with a finite number of patterns in a
training data set, however, this assumption breaks down [121].

The original HME architecture suffers from credit assignment problems as well. The log likeli-
hood objective function which is maximized is a function of the overall output of the HME model
and the desired training output and does not take into account the performance of the individual

52

expert neural network modules in respect to their individual outputs. Thus, even if an expert
neural network module has performed well for certain assigned subset of the training data set,
there is no guarantee that the parameters of that expert module will be updated accordingly.

There have been only few worth mentioning modifications to the originally proposed HME model
reported in the neural network literature since its initial introduction. The use of nonlinear neu-
ral network based gating and expert neural network modules was reported in [122]. A fuzzy
self-organizing feature map based gating network to replace the originally proposed linear gat-
ing network along with nonlinear neural network expert modules was proposed in [120]. The
proposed modification was based on the observation that the role of the gating network in the
hierarchal mixture of experts model is essentially the clustering of the input space into the soft
hyper-ellipsoids [120]. The same observation was made in [123] and a modification to the gating
network of the original HME architecture was proposed. The proposed modified HME model
used linear expert neural network modules along with a modified gating network. The modified
gating network used localized normalized Gaussian kernels as the basis functions that divided
the input space into soft hyper-ellipsoids.

Assuming that the training data set is distributed according to the Gaussian probability distribu-
tion, Equation 4.1 is used to obtain tjh outputg, for the modified gating network proposed in
[123].

o Pj(z|v;)

gi(z,v) = S anPi(elor) (4.1)

where
Py(zlv) = (2m) 3 |5| e 2@ TR @)
is the jth probability density function and

;>0 and > a;=1 Vi

Also, the outputs of the modified gating network sum to 1 and are non-negative. The use of
localized gating network ensures that tfte expert’s influence is localized to a region around

;. The gating network outputs are considered a priori probabilities for the expert neural network
modules.

The hierarchical mixture of experts model proposed in [123] has some serious problems. In
practice, special care has to be taken while training the hierarchical mixture of experts model with
localized gating network. Considering the expectation maximization formulation for estimating

the parameters of the proposed localized gating network, Equation 4.2 gives relationship for

53

the posterior probability¥(y*|*) at thekth iteration for thejth output of the localized gating
network as a consequence of the expectation step.

g;c (2, Uj)e{%(y—@j)T(y—@j)}

Zi gf (at, Ui)e{%(y_gi)T(y—qji)}

hE(ytlat) = (4.2)

wherez!, y andy; are the input vector at thi¢h time instant, desired output and output of jkie
expert neural network module respectively.

Then, Equations 4.3 through 4.5 outline the maximization step athhiteration for the localized
gating network parameters:

1
oftt = D R (4.3)
t
1
k+1 ki, t] b\ .t
7% = —_— hi(y'|x")x (4.4)
" S 2
1
E/?-‘rl — hk ot [t et 0T 4.5
J Zthéf(yql‘t); j(y ‘l‘)[l‘ /"L]][‘/L‘ lu]] ()

During the EM algorithm iterations for HME model with localized gating network, the expec-
tation step according to Equation 4.1 for the localized gating network requires inversion of the
covariance matrices;s obtained in the maximization step. Covariance matrices that are obtained
during the maximization step can turn out to be close to singular for some of the inputs. There is
no mention of this problem in [123] and hence no preventive remedial action is proposed. This
problem can be avoided at the cost of additional computational time. For example, one of the
solutions could be to consider only the diagonal elements of the covariance matrices after adding
some small positive number and make the off diagonal elements zeros. This means that only vari-
ance terms of the different inputs are considered as the cross terms are being ignored. Although,
this approach might not affect the learning capability of the hierarchical mixture of experts net-
work, but might require more experts neural networks to accomplish the same learning task.
Also, this problem can be avoided by imposing the lower bound on the diagonal elements of the
covariance matrices which prevents them from becoming too small. The lower bound threshold
for each entry can be selected in such a way that it reflects the variance of the individual inputs.
When the computed element values drop below the assigned threshold value at any time, it may
be replaced by the constant predefined threshold value.

Also, the expectation maximization algorithm which is used to train both of the HME architec-
tures proposed in [84, 123], is sensitive to initial random initializations of both gating and expert
neural networks. In the HME architecture of [84], there is no way of incorporating any prior
knowledge about the task at hand for initialization of gating or expert networks. In the localized
gating network model of [123], the means associated with each expert neural network can be

54

initialized using a priori knowledge about the task at hand but the proposed training algorithm
for the model does not take advantage of this fact.

In the light of above mentioned facts, it is desirable that prevalent hierarchical mixture of experts
models be modified to overcome the aforementioned drawbacks. Hence, a modified hierarchical
mixture of experts model is proposed in the Section 4.3 which addresses some of the issues
discussed earlier in this section.

4.3 Modified Hierarchical Mixture of Experts Model

The proposed modified hierarchical mixture of experts (MHME) model with two level hierarchy
is as shown in Figure 4.1. The proposed MHME model has a binary tree like structure and the
expert neural network modules constitute the last level of the hierarchy of the proposed model.
The proposed MHME model is more in line with the concepts well understood in the neural
network community, i.e., its formulation and learning algorithm is intuitive and is an extension
of commonly used monolithic neural network models. The MHME model does not impose any
a priori assumptions on the probability distribution of the training data set which results in no
need to alter the learning algorithm when switching from regression to classification problems
and vise versa. Also, in the MHME model the credit assignment is explicit, i.e., the expert
neural network module is reward for its better performance explicitly that results in an improved
modular neural network model. The proposed MHME model is essentially the combination of
the original HME model [84] and the alternate HME model [123] but is more robust, has better
initializing methodology and extends the idea proposed in [123] by introducing a mathematically
robust gating network. The MHME model also has two novel features, namely the input gates
and the input switching capability for the gating network.

The input gating mechanism is required in situations where a sound a priori knowledge about
the task at hand is available that can be utilized for the decomposition of the task at hand into
simpler sub-tasks. After having obtained the sub-tasks as the consequence of the process of task
decomposition using the a priori knowledge about the task, each expert neural network module is
assigned to a specific sub-task out of the set of simplified sub-tasks and the expert neural network
modules are only responsible for learning the assigned sub-tasks. The input gates facilitate the
assignment of the decomposed sub-tasks only to the specific expert neural networks by opening
the input gate for the appropriate expert neural network module when the assigned sub-task is
presented to the overall MHME model. The input gates are a function of the desired input to the
MHME model. These gates could simply be switches opening only for the specific expert neural
network modules to assign the desired inputs or could be a complex functions that can be used
for preprocessing the specific desired inputs for the specific expert neural network modules of
the proposed MHME model.

55

Gating
Network (1,1)

Y3

/.
Sl

Node (1,2)
QZ XYd
— Gating
} Network (2,2)
93
Y3 3
Expert Expert Expert Expert

i Network (2,1) Network (2,2) Network (2,3) Network (2,4) o
XYyd XYd

%l
[
%l
»l

Figure 4.1: Proposed modified hierarchical mixture of experts model.

The input to the gating network in the proposed MHME model could either be the desired input
or the output for the learning task at hand. This is to facilitate in accomplishing two types of
partitioning of the input or the output space for the task at hand, referred to as in this dissertation
as the horizontal and the vertical decomposition. This analogy is drawn from the way the x-y
plots are generally generated for the functions. The input variables are generally plotted in the
horizontal direction on the x-axis and the function output is plotted against input values on the
y-axis or the vertical direction. So whenever the input to the gating network is the desired input,
it is referred to as a horizontal decomposition and the vertical decomposition is achieved when
the desired output for the task at hand is fed as an input to the gating network. The reason for
introducing this functionality to switch between desired inputs or outputs is the rationale that
the gating network is merely a clustering network. Clustering networks and algorithms perform
well if the dimension of the space to be clustered is smaller. Also, if the dimension of the input
space for a clustering neural network is smaller, it translates into lesser number of parameters
to optimize during the learning phase. For the learning tasks accomplished by neural networks,

56

generally the dimension of the output space is less than that of the input space. As the desired
inputs and outputs are paired together during learning phase, if the gating network can recognize
and learn the clustering in either of the two spaces, it has accomplished its task. So to facilitate
in the training phase of the MHME model, in cases where the dimension of the output space is

smaller than that of the desired input space, the input to the gating network can be the desired
output otherwise the desired input can be fed to the gating network as its input.

The architecture of the gating network introduced in the MHME model is novel in itself due
to which it is referred to as an alternate gating network. The alternate gating network is as
shown in Figure 4.2. It is a radial basis function neural network that has the basis functions
comprised of the composite sigmoidal functions that are commonly used in neural networks as
squashing functions. The use of the composite sigmoidal functions to create a localized function
has been reported in the literature where in a localized basis function is formed by subtracting
two sigmoidal functions [124]. The shape and the width of these localized functions can be
controlled by a suitable selection of certain strictly positive parameters. The parameters that
control the width and shape of the resultant localized function have to be strictly positive for the
localized function to maintain its characteristics as a localized radial basis function. The idea of
localized functions presented in [124] was used in [125] to develop a robust radial basis function
neural network. It is worth noting that the derivation of the parameter update equations is not
relatively simple when using subtraction of two sigmoidal functions to generate a localized basis
function. The robust radial basis function network has a potential. The learning algorithm used in
[125] to optimize the basis function parameters like shapes, widths, and centers of the localized
basis functions is an unconstrained gradient-based algorithm. This can lead to some serious
potential problems, i.e., the parameter values that should remain positive during the training
phase can become negative and resulting localized function is not at all what it is expected to
be. In order to overcome the problems associated with localized gating network of HME model
[85], analternate radial basigunction (ARBF) neural network is proposed in this dissertation
that is used as the gating network for the proposed MHME mode. The ARBF neural network
based gating network is an extension of the robust radial basis function network but eliminates
the drawbacks associated with the robust radial basis function network. The proposed ARBF
neural network uses a composite product of sigmoidal functions to form localized radial basis
functions that are used as the hidden layer nodes. Ouffatitfor theith hidden layer node of

the proposed ARBF neural network for a one dimensional input case is as given by the following
relationship and is plotted in Figure 4.3(b).

1 1
zi(w) = (1 n eﬁi[(xui)wi]) (1 n @ﬁi[(wui)ei}) (4.6)

wherest > 0 controls the shape of the ARBE,is the real valued inpugy’ is the center of the
ARBF, and¢® is the bandwidth vector of thégh node. Similarly the multidimensional ARBF
is obtained by simply multiplying the individual one dimensional ARBFs in each dimension.

57

1

19 N
04\,7 :

g2

n

9q
gq U
Input nodes A Linear summation nodes Softmax activation nodes

Alternateradial basisfunction nodes

Figure 4.2: Proposed alternate gating network.

Equation 4.7 represents the mathematical relationship for the oyfgiiof theith hidden layer
node for a multidimensional input case in an ARBF neural network model and is as shown in

Figure 4.4.
=11 { <1 - eﬁu(wkuweﬂ) <1 + eﬁi[(’ck“@%]) })

k=1

The functionz;(¥) is multidimensional ARBF activation function for thith hidden layer node

with real Valuedi:i = [lea xéa U 7'1.’2],11’ gz = [ﬁi?ﬁé? e 7ﬁriz]T’ /'_I:Z = [:uzla /*”27 e 7:“%]’1—" and
6t =100, --- 0! being the input, the shape, the center, and the bandwidth vectors respec-
tively.

As indicated by the plots of Figures 4.3 and 4.4, the proposed localized alternate radial basis
function has all the desirable fundamental properties of a radial basis function commonly used
in the neural networks field, i.e., a unique maximunuatadial symmetry, and a local support

property.

The nodes in the output layer of the proposed gating network use a special squashing function
called softmax that is short for “soft maximum”. The softmax squashing function normalizes all

58

0.9+
0.7

0.8
0.6
0.7F

05
0.6

051

0.4
0.3F

031
0.2
021

0.1r

(@) (b)

Figure 4.3: (a) Plot of two the sigmoidal functiogisand&! and their product (sigmoidal func-
tions are represented by the dotted lines and solid line depicts their product). (b) Plot of a one
dimensional ARBF with, = 0, § = 2, and(= 1.

Figure 4.4: Plot of a two dimensional ARBF with= [0 0], 6 = [2 2|7 and3 = [1 1]%.

59

of the outputs of the gating network in such a way that they are a partition of unity and sumto 1
with maximum portion of the unity assigned to the largest input value. Thejthrautput of the
alternate gating networg; is

e29i
YT e @9
with
gj = Z VjiZi (4.9)

whereuv;; is the weight connecting thi¢h alternate radial basis function node in the hidden layer

to the jth summation nodey is the number of the outputs of the alternate gating network,
andz; is the output of theth alternate radial basis function hidden layer node. The number of
the outputs of an alternate gating network are the same as the number of expert neural network
modules at the bottom level of the hierarchy and the higher level alternate gating networks have
two outputs each. Parametercontrols the stiffness of the softmax squashing function. Softmax
squashing function approaches the maximum operater as oo and approaches to a softer
fuzzy maximum whem — e wheree > 0 is a small number.

The overall outpufj of the proposed MHME model is governed by the the following relationship:

2my 2my_q
= =1
y = Z 971711 Z gr2n2 U Z ginlyml ml =]‘7 2 (4'10)
mi mao=2mi—1 m;=2m;_1—1

whereginl is the output of the gating network at tht level correspondingy;th node at the same
R . .
level. g,,, is the output of then,th expert neural network at theh level in the hierarchy. The

=1 . .
outputg,,, for them,th expert neural network model at ttit level is obtained by the procedure
as described in the following.

Assuming that then,;th expert neural network model is aayered feed-forward neural network.
The activation input to théh node in thgk + 1)th layer is

ij

Sk
af =) whok + bt (4.11)
j=1

with wi™ 0%, andbf*! being interconnecting weights frogith node inkth layer toith node in

(k + 1)th layer, output ofjth node inkth layer and the bias of thih node in the(k + 1)th

60

layer, respectivelys, denotes the number of nodeskith layer of the neural network model. The
output of unit; in the (k 4 1)th layer is

ot = (e (4.12)

Wheregpgk“) is the squashing or transfer function for tile node in thgk + 1)th layer. For the
overall network, the Equations 4.11 and 4.12 can be combined and rewritten in matrix notation
as

o = 7% (4.13)
gl — gkl (Wk+15»k +gk+1> (4.14)
fork=0,1,--- ,n— 1 with £ is the input to the neural network model a@ljl =o"

4.4 MHME Model Learning Algorithm

The new learning scheme for the proposed modified hierarchical mixture of experts model is
called evidence maximizatioand is inspired by the top-down and bottom-up working model

of the central nervous system [100], a middle-up-down organizational model of the successful
Japanese companies [126, 127] and borrows some concepts and terminology from the Bayesian
learning paradigm.

Top-down and bottom-up metaphors are two common ways to explain the information processing
in the hierarchical learning systems that have lower and higher levels of information processing.
In such a hierarchy, lower levels of hierarchy are connected to the stimulus and are concerned
mainly with recognizing the invariances in the presented stimulus and constructing multiple par-
tial representation of the environment. Higher levels of processing are involved with integrating,
comprehending and constructing the meaning of partial representations of the environment gen-
erated as a result of the processing at the lower levels. Bottom-up models view information
processing proceeding linearly from the isolated units in the lower levels to the higher levels of
hierarchy. Top-down models stress the influence of the higher levels on information processing
carried out in the lower levels of the hierarchy.

From a neurobiological point of view, top-down and bottom-up metaphors are two different ways

to explain the working of the cortex model. In the working model of the cortical, data is taken

in at the bottom through primary sensory vortices and invariances are abstracted at successively
higher levels. Thus, the world model at the lower levels is constructed and activated in a bottom
up fashion and is constrained mostly by data from the real world. At the higher levels, the
abstracted invariances are transformed into objects, concepts, motor sequences and thoughts. The
nature of these invariances, i.e., the component lower order features, determines the behavior of

61

an individual. Thus, there must be a selection process based on behavioral relevance. In the
brain this selection process is instantiated by the basal ganglia. The basal ganglia selects the
high level plan or prediction that satisfies or will satisfy some behavioral goal, and imposes this
decision on the cortex. The decision is broadcast to the lower levels through cortico-cortical
feedback connections as a prediction state. This top-down feedback determines to a high degree
the activity of higher level cortex, and also the activity of lower levels, to a lesser degree. Thus,
the bottom-up processes influence top-down processing, and vice versa in a loop that determines
an individual’s interaction with the world.

Knowledge creating model of an intelligent organization, called middle-up-down model, pro-
posed in [126, 127], explains how have Japanese companies become the world leaders in auto-
motive and electronics industries and what their secret is for this success. In the middle-up-down
model of an organization, top management creates a vision for the organization, while middle
management develops more concrete concepts that front-line employees can understand and im-
plement. Middle managers try to solve the contradiction between what top management hopes
to create and what actually exists in the real world. The authors emphasize that "Simply put,
knowledge is created by middle managers, who are often leaders of a team or task force, through
a spiral conversion process involving both the top management and the front line employees. The
process puts middle managers at the intersection of the vertical and horizontal flows of informa-
tion within the company.” Also, the authors argue that the front line employees, the very bottom
of the organization tree, are mostly busy in carrying out the day-to-day operational aspects of
the various organizational processes and often may not be aware of the overall goal of the or-
ganization. The authors refer the front-line employees as the knowledge practitioners. These
employees generally have no means to communicate the importance of their insights even if
those are relevant to the improving the operation of the organization as a whole. In this situation,
middle managers, also some times referred to as knowledge engineers, convert this unstructured
insights into a structured organizationally purposeful knowledge by providing the subordinates
or front-line employees with a conceptual framework that makes sense of their own experiences.
Knowledge officers form the top level in the organizational hierarchy and are responsible for
managing the overall organizational knowledge creation process.

The authors point out that there are two types of knowledge in an organization, namely explicit
and tacit. The explicit knowledge is contained in the manuals and organizational procedures;
and the tacit knowledge is acquired only by experience and is communicated only indirectly.
The secret to the success of Japanese companies is their focus on the tacit knowledge and their
success in having learned how to transform the tacit knowledge into the explicit knowledge. So-
cialization, externalization, combination and internalization lie at the heart of the new knowledge
creation. Socialization is a way to share the tacit knowledge and the only effective way people can
exchange the tacit knowledge is by spending time together. In the externalization process, people
express and evaluate ideas of other members in a group, thus, translating tacit knowledge into an

62

understandable and usable explicit knowledge. The combination phase facilitates the collection
and organization of the newly generated explicit knowledge and disseminating it throughout the
organization. This explicit knowledge is then internalized through action and training. Internal-
ization enhances an individual’s knowledge base of tacit knowledge which then can be utilized
for a new round of knowledge creation cycle. Conversion from tacit to explicit knowledge is
clearly essential to the knowledge creating organization as it takes knowledge out of the private
space of the employees minds and into the organization.

Bayesian methods denote a decision strategy that minimizes the expectation of an objective func-
tion and a way to incorporate a priori knowledge into an inference and decision process. Bayesian
methods were conceived and introduced in [128] and were described later in greater detail in
[129]. The logical basis for utilizing Bayesian probabilities as measures of plausibility was sub-
sequently established in [130]. Initially the emphasis of Bayesian probability theory was to for-
mally utilize the prior knowledge. However, lately the area of Bayesian model comparison has
been gaining popularity which does not involve an emphasis on prior information but rather em-
phasizes acquiring maximum information form the data. Bayesian probability theory provides a
framework for inductive inference which essentially is the common sense translated and reduced
to a corresponding mathematical formulation. The fundamental concept of the Bayesian analysis
is that the plausibilities of alternative hypothesis are represented by probabilities, and inference
is performed by evaluating those probabilities.

Bayes rule provides a methodology to update beliefs in the hypothesis of models in the light
of the predictions made by different models given the same input data set. This concept has
been formalized and is referred to as the Bayesian networks [131]. Such networks consist of
several nodes whose parameters characterize a behavior and these parameters can be viewed
as a transformation of a continuous flow of information into a behavior. This transformation
produces decisions or actions based on the stimulus from the environment. The parameter update
mechanism is an instant of the belief revision theory. In a Bayesian network, evidence based
on the sensory or posteriori data flows from low-level behaviors to the high-level behaviors, and
expectation, or a priori data, flows in the other direction. The belief in the veracity of a particular
parameter value for each behavior is updated during every iteration. When each behavior is
optimized with respect to a global criterion, the desired global performance is achieved.

The middle-up-down model is well suited for deriving a training methodology for the modified
hierarchical mixture of experts model as a one to one correspondence can be drawn between the
different hierarchical levels of the MHME model and the middle-up-down organizational model
and is shown in Figure 4.5. The arrows with the solid lines in Figure 4.5 indicate the flow of
information during the normal operation of the MHME model whereas the flow of information
during the MHME model training phase is shown using arrows with the dashed lines. At the
lowest level of the hierarchy of the MHME model are the expert neural network models which
correspond to the front-line employees of the middle-up-down model. Like front-line employees,

63

these expert neural network models at the bottom of the MHME hierarchy act as the knowledge
specialists to gather information about the environment to create tacit knowledge about the task
at hand. The partial representations generated by expert neural network modules for the task at
hand are managed by the gating networks at the successive higher levels to generate the overall
representation of the task at hand by the MHME model. So it can said that the overall MHME
architecture is managed by the individual gating networks at different levels of the hierarchy.
The the gating networks can be considered as the knowledge managers in the MHME model.
Also, like in top-down learning model, the gating networks impose a structure on the MHME
architecture which determines its behavior. The performance of the individual expert neural net-
work models is evaluated by comparing the their outputs with the desired output of the task at
hand and expert neural network models are ranked according to their individual performances.
The performance of the individual expert neural networks is considered an evidence about the
stimulus presented as the desired input. The a priori belief about the performance of each expert
neural network models are updated based on their performances or the evidences. The principle
feature of this evidence framework is an elaborate strategy for the selection of better perform-
ing expert neural network module. The parameters of the corresponding gating networks are
updated according to the evaluated performances or evidences corresponding to the each of the
expert neural network modules. The parameters of the each individual expert neural network are
update in a way to minimize the localized individual generalization errors; in other words the
individual evidences are maximized. In other words, the best performing expert neural network
is rewarded by an increased belief in its evidence that is a feature of the Bayesian networks and
the bottom-up learning. In bottom-up learning, as stated earlier, low level abstractions change
the decision making abilities of the top levels in the hierarchy. This also corresponds to the mid-
dle management level in the middle-up-down organizational model and utilizes the features of
socialization amongst the expert neural network modules to gather more know how about their
hidden tacit knowledge. In this level of hierarchy in the MHME model, the tacit knowledge about
the performances of the expert neural network modules is converted into an explicit knowledge,
i.e., the error measures, which can then be consequently used by the MHME model to update its
parameters. The Bayesian evidence framework and middle-up-down organizational model pro-
vide a unified methodology for a learning algorithm for the MHME architecture. The behavioral
properties of the MHME model depend upon learned top-down expectations, matching bottom-
up data with these expectations and a mismatch-driven search for new representations. The main
advantage of using EM algorithm for the HME model is that it nicely decouples the parameters
of the HME model for optimization purposes during the learning phase. The evidence maximiza-
tion framework is also capable of doing so with the assumption that the parameter updates of
the gating and expert neural networks are independent of each other. The following paragraphs
describe the mathematical formulation of the learning algorithm for the MHME model.

Given a training data setr’, yi}f\il comprised ofN desired input and output patterns with
andy’ being the desired input and output at tiie time instant respectively. Then the global

64

<

Gating
Network (1,1)

Ya o
Error evaluation and expert neural networksranking module :
. . . . :Middle level
1 1 1 1 :
1 1 1 1
| Va Va—wl)1 | Va Va ()
| | | |
1 1 1 L
1 1 1 1
Y Y Y Yy oo
Expert Expert Expert Expert
Network (2,1) Network (2,2) Network (2,3) Network (2,4)
Bottom level
® @ @ @
X b X bd

Figure 4.5: The learning scheme for the proposed modified hierarchical mixture of experts model.

objective function for the MHME model can be defined as
1 ® ®
E=gu 2 GV -3)@Y -3") (4.15)
t=1

Where§ ® is the overall MHME model output at thi¢h time instant. In the proposed MHME
model, the overall objective functiafi is not minimized directly, instead local objective func-
tions corresponding to each of the expert neural network models are minimized. The associated

65

implicit local objective function to be minimized for the;th expert neural network module is
5 1 (t)
Em = 5 Z)G =G, (4.16)

Whereg;l ® is the output of then;th expert neural network module in thié level of hierarchy

at thetth time instant. Intuitively, minimizing the local objective functions of the type, as given
by Equation 4.16, is equivalent to the minimization of the global objective function of Equation
4.15. Noting the fact that the overall probability mass of the MHME model sums to 1, that is,

2my 2my_q
g Y. G D> g =1 mi=12 (4.17)
mi ma=2mj—1 m;=2m;_1—1
then, the Equation 4.15 for the scaler desired output case can be rewritten as
1 N 2my 2my_q
= 1 2. I 2@
£ = e (o X g Y b
t=1 mi mo=2m1—1 m;=2m;_1—1
2my 2my_q N 2
1 2
2 0m 2 Gme DL ndm,
m1 mo=2m1—1 my=2m;_1—1
Simplifying the above equation results in
1 N 2my 2my_q !
— 2 l = (t N
t=1 m2:2m1—1 ml:2ml_1—1
1 N 2my 2my_1
_ 2 Il ¢
o —N Z Z gml Z gm2 U Z gmlgml (4.18)
t=1 m2:2m1—1 ml:2ml_1—1

As gt > 0 Vi, 1 and the optimum minimum for each of the local implicit objective functiém
is a arbitrary small value,, > 0 for m = 1,---,2!. Then if the minimization of the localized
objective functions for each of the expert neural network modules dtittevel is successful; it
amounts to the minimization of the global objective funcitband results in improvement in the
overall MHME model learning performance.

Looking at the minimization of the global objective functiérfrom an alternate point of view,
consider the task of learning functional mapping which maps inp@sk” to outputsy € 1™

66

using the MHME model. The similarity measusg, of m;th expert neural network at thiéh
level for an inpute can then be defined as

-1

2 R 21 .
Sty = Uy — D) Gy — 9) (4.19)

Wheregjnil and§ are the outputs of theyth expert neural network at thénh level and overall
output of the MHME model respectively. Similarity, of the individual expert neural network
models quantifies the disagreement among the individual expert neural networks in regard to the
overall output of the MHME neural network model. The overall similarity of the MHME model
then can be expressed as

2my 2my_q
S=D g D G Y s, mi=12 (4.20)
mi mao=2mi—1 m;=2m;_1—1

which can be considered as the variance of the outputs of the individual expert neural networks.
The objective functions for a single input data pattern for the overall MHME neural network
model and an individuah;th expert neural network at ttith level are by can be defined as

E = (7-9)7 (4.21)
g, = (G —1)? (4.22)

respectively. Adding and subtractigggn Equation 4.20 and subsequent mathematical manipula-
tion and using the fact of the Equation 4.17, yields

£E=E-8 (4.23)
with
~ 2my 2my_q ~
E/’:Zg'}nl Z 9’3’12... Z g’llnl
mi mo=2m1—1 m;=2m;_1—1

The first term in Equation 4.23 is the sum of the weighted generalization errors of the individual
expert neural networks while the second term is the overall similarity of the MHME model.

The relationship of Equation 4.23 nicely decomposes the overall generalization error of the
MHME model for analysis purposes into two terms. First term that only depends on the gen-
eralization errors of the individual expert neural networks and the second term that takes into
account the correlations between the individual expert neural network models. The relationship
of Equation 4.23 in a way expresses the tradeoff between bias and variance of the MHME model.
If the MHME model is strongly biased, i.e., each expert neural network has specialized in a spe-
cific region of the input space, then the overall generalization error will only be the weighted

67

sum of the the generalization errors of individual expert neural network modules. Thus, if the
training process is successful in reducing the individual generalization errors, then the overall
generalization error for the MHME model will also reduce. Also, the Equation 4.23 leads to an

observation that the generalization error of the overall MHME architecture is always smaller than
the weighted sum of individual generalization errors of the expert neural network models, i.e.,
E<E.

The relationship of the Equation 4.23 also indicates that in order for the MHME model to be more
effective while learning a task, it should be employed in a competitive fashion, i.e., individual
expert neural networks should be more diverse and compete among each other to learn the task
at hand in order to reduce the overall similarity measure of the model that effectively reduces the
similarity among the expert neural network models and encourages diversity.

The implicit performance index for the,th expert neural network model as described before in
Equation 4.16 and is as given below

N
&= G G TGO i)

t=1
The above relationship gives the evidence about the performance of tih@xpert neural net-
work and is a form of the tacit knowledge. This tacit knowledge about the performance of the
individual performances of the individual neural networks need need to be converted into the
explicit knowledge or the posterior beliefs. As the posterior beliefs lie in the réngéand
sum to 1, the desired conversion can be accomplished by using the softmin operator on the set of
posterior evidences.

Softmin operator represents a smooth version of minimum operator. As a result of the softmin
operation, the input with the smallest value has the output as the largest portion of the unity
and largest input value has the smallest portion of the unity; and all of the outputs sum to 1.
Mathematically, softmin operation for conversion of tacit knowledge into an explicit knowledge
can be represented as follows

_afl
e atm,

>y €%
where k is the total number of expert neural network modules in the lovtestevel in the
hierarchy of the MHME model and the parametezontrols the stiffness of the softmin operator.

If « — oo, the softmin operator approaches the minimum operation aid-ase for a small
positivee > 0, softmin operator becomes even softer fuzzy minimum operator.

l
B, = (4.24)

The Equation 4.24 is the equivalent of the middle management in the middle-up-down organi-
zational model. The explicit knowledge or he posterior beliefs are created at this stage of the

68

learning process are propagated in the upward and downward directions in the hierarchy. In the
downward direction, this information is used to update expert neural network parameters and in
the other direction, the posterior beliefs are a source to update the appropriate gating network
parameters at the higher levels of the hierarchy.

Parameters of the individual expert neural network modules are updates by choosing the explicit
performance index for they,th expert neural network module as
= (t) 2 (t)

= QNZh ele, (4.25)

wherehl,! (” is posterior belief in then;th expert and. is the deviation of the output of the,th

expert neural network from the desired output values.

The update rules for the weights in the output and input layer of the network are derived using
the standard backpropagation algorithm by minimizing an approximation of Equation 4.25 by an
instantaneous performance measure by the following equation.

1
g = _pl eTe, (4.26)

my 2 m; e

where the total sum over all the training patterns is replaced by the sum squared of instantaneous
errors. Then the update rule for weighf; which connects thgth node in the(k — 1)th layer to

theith node in thekth layer is

Awk = w (4.27)
and the update rule for the bias term for itfenode in thdcth layer is
ADF = agl (4.28)
L abk '
with p,, being the learning rate. Defining
OE!
o = U 4.29
7 80/? ()

as the sensitivity of the performance index to changes in the network activation input of the node
17 in layerk. Using Equations 4.11, 4.26 and 4.29, it can be shown that

68,17” 85}7” 6@?

k i %
ow;; da; Owy;

Y (4.30)

69

and

ocl, OEL, dat
Gk~ aak ook O (4.31)

Also, sensitivities satisfy the following recurrence relation

gk _ Fk(c—ik)wk+ngk+1 (432)
where
@*(af) k0) 0
. 0 ’ 0
FR@ah) = o7 (.%) , . (4.33)
0 0 sbk(afk)
and
. de"(a)
k — 4.34
" (2) T (4.34)

This recurrence relationship is initialized at the output layer by the following relationship

=1

8™ = —hL, F™(@")(§ — Gy, (4.35)

To overall summary of backpropagation algorithm is as follows; inputs are propagated in the
forward direction, sensitivities which depend upon desired and network outputs are propagated
back and lastly weights and biases are updated depending backpropagated sensitivities.

Defining the performance index for thth output of gating network in th#h level of the hierar-
chy as

N

i 1 i, (t i, (t i, (t i, (t
g = Wz(hj ®) ' ())T(hj ® _ g, ()) (4.36)
t=1
with
2my 2my 1
TR WD SRF--I DR R
mi m2=2mi—1 m;=2m;_1—1

The gating network parameters are updated to minimize the objective function of the Equation
4.36. The weights connecting the ARBF basis functions to the output summation nodes are
updated according to following relationship:

99;

87]77”‘

Avp; = =1, (4.37)

70

wheren, is the learning rate, defining the step width for each of the iteration of the learning
algorithm on the error surface. The calculation/®f,,; can be calculated as presented in the
following:

Gt
Av,,; = J
U’H’LZ nvavmz
_0G: ag,
= "85 O
3 2~ 0G: dgi \ 07,
— M\ &850,) 0o
o dgt
= m{Z(hE—gé)ﬁ}% (4.38)
c=1 Im
c=1
= b2 (4.39)
with
99, . i i
a,w;én - ngm gmgc
and

dg
by, = Z €c (6mcg;n - %92)
c=1
wheresé,,. is the Kronekar delta defined as
5 = { 1 m=c
0 m#c
and thed?, is the local gradient aiith output unit situated before output the nodes.

Before deriving the update rules for the parameters of the ARBF basis functions, for simplifying
the notation, let

¢ = =)+ 0]
G =l —p)+ 0]
é—i,l _ 1 _ 1
1 + e B llz—p)+067] 1+ e—B¢H
i,r 1 1
5 b

1+ eFlle—m)=01 — 1 3 Bic

71

Then,z;(x), for one dimensional input case, the ARBF can be written as

B 1 1
4@ = \ e) \ T3 eplemo]

(@) 1 1
Zi X = — —
1 + 6_ﬂ7,<‘7.,l 1 + eﬁzcz,r

a@) = €e

Similarly, a multidimensional ARBE;(Z) becomes

1 1
{ <1 + e—ﬁi[(ﬂﬁk—%)-&-@ﬂ) (1 -+ eﬁi[(ﬂﬁk—ﬂk)_eﬂ> }
W) (o))
1 U1+ e fia! 1+ B

-
33

—: -

zi(z) =

—

z(Z) =

s

k=1

wheren is the dimension of the input space to the ARBF neural network. The parar@iters
and@;, which control the shape and bandwidth of the ARBF and for an ARBF to maintain its
characteristics of a radial basis function, these parameters should not become negative during the
training phase of the MHME architecture. Sirﬁ;’eand@j. should remain positive throughout the
learning phase, exponentiated gradient-based update rules are used for these two parameters.

Exponentiated gradient descent method was initially proposed as an alternative to gradient de-
scent algorithms for linear predictors [115]. Exponentiated gradient replaces the usual additive
updates of the parameters by multiplicative updates. Exponentiated gradient based algorithms
have been used for parameters optimization in regression and reinforcement learning problems
and results have indicate that exponentiated gradient based parameter optimization sometimes
outperforms gradient based parameter optimization along with some distinctive similarities in
their parameter updates [116, 117]. The exponentiated gradient method takes the same update
steps as that of gradient descent methods but in the space of the logarithm of the parameters that
yields multiplicative instead of additive updates in parameter space. These updates ensure that
the parameters being optimized always remain positive during the update process when initial-
ized with positive values. The updates ﬁ;’rand&;ﬁ as indicated in Equations 4.44 and 4.45 give

the ARBF learning algorithm much desired mathematical robustness during the learning phase.

The update rule for thé;i can be derived using the chain rule of derivatives coupled with standard
error back propagating formulation and is presented in the following.

NG

72

m=1

ng ng % % agm ﬁ gi,léiﬂ“ (gz lé-z l)
1o 094 OGm 0z Pl k Sk 8«9‘
k#j

g dg P T . no o . o |
" [Z{M—gﬂ%}% g | TTeer p {eeira - g+ e -)
m=1 qg=1 Im i l]z;}
5 | 2 8om glarrerar{a-gn+a-gh}
" Uz)
. dg [(n o o 1_ z:,T_i_l_ il
Mo/%; | D Srntoms {Héé’l&i’r}f}’lé}”{(bl Ut >H
mel L k=1 &'E
= w2 Shom Hffi’lg’?){ﬂ—f 40 -gh) (@.40
m=1 k=1

Following the same procedure as outlined above, the expressiofgf@ndA 3; can be derived
and are given below as Equations 4.41 and 4.42 respectively.

A = .8 (z mi) (Hg s;;) {a-gn-a-¢gH} @

AB; =15 (Z 6;vm¢) (Hs f;’”){ Gu-gh-¢gra-gnp @42
m=1

To summarize, the update rules for the alternate gating neural network parame@}r,sﬁ} and

73

/Lj. are given by the following Equations 4.43, 4.44, 4.45 and 4.46 respectively.

vji(n+1) = wvi(n)+ Avy (4.43)
In@i(n+1) = Inbi(n) + A@;i

Oi(n+1) = 6i(n)e® (4.44)
lnﬁ;(n+1) = lnﬁ (n +Aﬁ‘

Biln+1) = Bi(n)e™’s (4.45)

u;(n +1) = (n) + A,u] (4.46)

The evidence maximization algorithm for the proposed MHME model is described is concise
form as in Algorithm 4.1. Along with a training data set, it requires certain parameters to be
specified a priori which are; the number of expert neural netwoykise error goal to be achieved

¢, and the maximum number of the iteration of the algorithm to be carriedout

4.5 lllustrative Examples

In this section, the new features of the proposed MHME model and effectiveness of the new
associated learning scheme are demonstrated to prove their usefulness. Also, the performance
of the MHME model is compared with the conventionally used modular neural network HME
architecture [84] for reference.

45.1 Examplel

The first example deals with modeling of a highly nonlinear plant model [132]. The plant model
is of the form

where the unknown function is of the type

I11‘2173$5(I3 - 1) + x4
1+ a3 + 23

(4.48)

f(mla X2, T3, T4, ‘/L‘S) -

with
sin(2ZE) k < 500
u(k) =

0.8sin(2%) 4 0.2sin(%ZE) &k > 500

74

Algorithm 4.1 Evidence maximization learning algorithm for the proposed MHME model
Requires: Training data sel’ = {z;,y;} fori=1,--- | N. n,e,;m
e Initialize n expert neural networks with weights randomly chosen from the rangel |.
e Initialize an alternate gating network withoutput units.
o Initialize the alternate gating network parameters using ad hoc partition
algorithm of Section 4.5.1 for regression problems.
¢ Initialize the alternate gating network parameters using K-means clustering
algorithm for classification problems.
t<=0
while e > eandt < mdo

¢ Present desired inputs to the expert neural networks and calculate their respective outputs

using the procedure of Section 4.3.
o Implement the input gating scheme, if needed.
o Present inputs to the alternate gating network using appropriate input switching.
o Implement the vertical decomposition if the dimension of the output space
is considerably less than the input space dimensions.
o Implement the horizontal decomposition if the task decomposition of the
desired input space desired.
© Calculate the outputs of the alternate gating network using Equations 4.7 or 4.6, 4.9
and 4.8 respectively.
© Calculate the overall output of the MHME model neural network using Equation 4.10.
o Calculate the overall erro#, of the MHME model using Equation 4.15.
o Calculate the evidences of individual expert neural networks using Equations 4.16.
© Convert the tacit knowledge or evidences to the explicit knowledge or usable error
measures using Equation 4.24.

© Maximize the evidences of each individual expert neural networks by minimizing the error

measures of Equations 4.26, 4.27 and 4.28 respectively.
o Maximize the beliefs in better performing expert neural networks by updating the

parameters of the alternate gating networks using Equations 4.39, 4.43, 4.44, 4.45 and 4.46

respectively.
t<=t+1
end while

75

A modular one level neural network based on the proposed MHME model was implemented with
two expert neural networks. Each of the expert neural network model had a single hidden layer
with 5 hidden layer neurons. The output layer of the neural network had pure linear neurons
and the nonlinear squashing function for the hidden layer neurons was a modified sigmoidal
function which is more efficient to compute than the conventional transdental sigmoidal functions
like hyperbolic tangent that is commonly used in the neural network literature. The modified
sigmoidal function is used in all of the illustrative examples of this section is as defined as follows
1 2 4.49

plz) =1- ez 1 1 (4.49)
The gating network was an implementation of the ARBF neural network model proposed in
Section 4.3. The gating or ARBF neural network had two hidden layer neurons and with the
same number of outputs as that of the expert neural network<.i.€he number of outputs of
the gating network has to be the same as that of expert neural networks it is trying to mediate
as its outputs are the corresponding gating probabilities or mixing coefficients, one for the each
expert neural network modules. The centers and widths of the ARBF based gating network were
automatically decided by partitioning of the input space in equal partitions by using an ad hoc
partitioning algorithm. The ad hoc partitioning algorithm determines the maximum and minimum
of the the input data set values and divides the obtained range into as many sub-patrtitions as that
of the number of hidden nodes in the gating network. The centers for the gating network hidden
layer nodes are obtained by determining the center or middle point of each of the partitions.
Spreads for each of the hidden nodes of the gating network are obtained by calculating the spreads
of the each obtained sub-partitions. This method works best while assigning a priori parameters to
the gating network when MHME model is utilized to approximate a time series type of functions.
For classification problems, more advanced clustering algorithms, like K-means or fuzzy K-
means [133], can be utilized to better initialize the gating network. The expert neural network
models were initialized by choosing their weight values randomly from the rangd .

The HME model used for this example also had two expert neural networks and a gating network.
Both expert and gating neural networks had a single hidden layebwitdes each. The modified
sigmoidal function of Equation 4.49 was used as the nonlinear squashing function for the nodes
in the hidden layers of the expert neural networks. The weights of the expert and gating neural
networks were initialized randomly and were chosen from the réngiel]|. Two configurations

of the gating network were tried, one with nonlinear squashing function for the hidden layer
nodes as proposed in [122] and the other with purely linear squashing functions for the hidden
layer nodes as used in the originally proposed HME model [84]. The choice of any one of the
two configurations of the gating network did not had any noticeable effect on the performance of
the HME model learning.

As the HME model uses expectation maximization algorithm which is a batch mode or off line
training method, the training of the MHME model was also carried out in the batch mode, i.e.,

76

the parameters of the gating and expert neural networks were updated after the presentation of the
entire training data set to the MHME model. The Levenberg-Marquardt (LM) learning algorithm
was used to train the MHME model [134]. The parameters of gating and expert neural networks
were updated after each iteration of the LM algorithm. The minimum error goal for the training
phase was set te=% for both MHME and HME models and the maximum limit on the iterations

of the training algorithm was set 26)0.

The performance results of the proposed MHME model on the test data set are shown in Figures
4.6(a), 4.7(a) and 4.7(b) respectively. The approximation and generalization capabilities of the
proposed MHME model are evident from the plots of Figure 4.6(a). The MHME model approx-
imation of the test data is indistinguishable from the desired test data set output. The results of
the HME model are also of the same quality as ploted in Figure 4.6(b), its approximation is also
indistinguishable from the actual test data desired output. The HME model training error and
outputs of the corresponding gating network are ploted in Figures 4.8(a) and 4.8(b) respectively.

The training errors for both MHME and HME models are as ploted in Figures 4.7(a) and 4.8(a)
respectively. From these plots it obvious that although the approximation and generalization
performance of both the MHME and the HME models is equally good, but it took HME model
with expectation maximization learning algorithm an additiottalterations to reach the same
error goal. Also, partitioning of the input space in the case of HME model is not smooth or fuzzy
in nature. Transitions from one expert neural network to another are very sharp as is evident from
the plot of Figure 4.8(b). On the other hand, gating network outputs for the MHME model as
plotted in Figure 4.7(b), indicate a smooth transition from one input partition to another which is
more in line with the spirit of the modular neural networks, i.e., sharing of information between
expert neural network models whenever possible. As far as th training efforts are concerned, the
both MHME and HME training algorithms took almost the same amount of computing effort
when considered in terms of the floating point operations taken to reach the same training error
goal. The training simulations were repeat@édimes for both the HME and MHME models

and the results of all the simulations were consistent with the results presented in this section.

After having established that the proposed MHME model is better than the originally proposed
HME model as far training time, training algorithm and performance of the gating network is
concerned, the next few examples are used to demonstrate the additional features of the proposed
MHME model which have not been explored in any of the previous implementation of the HME
model.

45.2 Example 2

This example is used to demonstrate the usefulness of the input gating scheme which has been
introduced in the proposed MHME model. Considering another function approximation problem

77

- L L L L L L L L L I I I I I
0 100 200 300 400 500 600 700 800 [100 200 300 400 500 600 700 800

(@) (b)

Figure 4.6: (a) Plots of the MHME model approximation and the actual test data. (b) Plots of the
HME model approximation and the actual test data. (solid line plot is for the actual test data and
-. line indicates the MHME and HME approximations of test data respectively).

I I I I I I I I I L L L L L L L
0 10 20 30 40 50 60 70 80 90 100 0 100 200 300 400 500 600 700 800

(a) (b)

Figure 4.7: (a) Plot of the sum of the squared errors for MHME training phase. (b) Plot of the
outputs of the gating network.

78

0.8

0.6

0.4}

0.2

I I I I I I L L L L L L L
0 20 40 60 80 100 120 140 0 100 200 300 400 500 600 700 800

€Y (b)

Figure 4.8: (a) Plot of the sum of the squared errors for HME training phase. (b) Plot of the
outputs of the gating network.

for a function given by Equation 4.50 with its plot shown in Figure 4.9.
f(z) = |1Oe¢%sin(0.4wx1‘3)| (4.50)

This function is similar in nature as that of function discussed in the previous chapter and has
two distincthumps one larger than the other. The larger hump acts as the dominant source of
error as compared to the smaller hump when this function is presented to the neural networks for
training and hence making it a difficult function to be learnt effectively by the neural networks. A
one level MHME model with two expert neural networks and a gating network was implemented.
The expert neural networks each tsaldidden layer nodes aritinodes in the hidden layer of the
gating network. The weights of the expert neural networks and gating network were initialized
in the same fashion as for the example of the previous Section 4.5.1. Assuming that a priori
knowledge about this function is available in that it is known that it has two humps and where
they start and end. The input gates in the MHME model were designed in a way that the input gate
for the first expert neural network was open only for the duration of the first hump and the second
input gate was closed for the second expert neural network during the same time period. The
same arrangement was made for the second hump as well. The input gating network was open
for the second expert neural network for the duration of the second hump only and the first input
gate was closed for the first expert neural network for the same time duration. The input to the
gating network was the set of the desired input patterns from the training data set. The error goal
for the training phase was sette—¢ and the maximum number of training algorithm iterations

79

4 i

351 q

3+ N

25F q

2k N

151 q

1+ 4

0.5 B

0

| | | | | |
0 0.5 1 15 2 25 3

Figure 4.9: Plot of the nonlinear function of Equation 4.50.

was set ta200. After the training phase, the approximation capabilities of the MHME model
were tested on a test data set and the results are as shown in Figure 4.10(a). The approximation
capabilities of the proposed MHME model with the input gating scheme were exceptional and
the approximation of the test data set by MHME model was again indistinguishable from the
original desired output values in the test data set.

The same function was presented to the HME model with two expert neural networks and a gating
network. The expert neural networks had the same configuration as in MHME model used for
this example, i.e.3 hidden layer neurons, and the gating network hdddden layer neurons.

The learning phase did not prove to be effective and it could not reduce the training error to any
acceptable limits. The number of hidden layer neurons was increasefditohe expert neural
networks and the experiment was repeated again. The approximation results of the HME model
on the test data for the second experiment, after the end of training phase, are as shown in Figure
4.10(b). Comparing the plots of Figures 4.10(a) and 4.10(b), it is clear that the approximation
capabilities of MHME model are superior than those of HME model for a class of functions and
the difficulties faced by the HME model can be overcome by the introduction of an input gating
scheme as is the case in the MHME model. Also, the training time for the MHME model was
far less than that of HME model and is evident from the training error plots of MHME and HME
models which are shown as Figures 4.11(a) and 4.12(a) respectively. The MHME model was
able to achieve an accuracy in ab@utiterations which was achieved by the HME model in

200 iterations of the EM learning algorithm. The partitioning of the input space by the HME
model was also inadequate and inaccurate to solve this problem and the outputs of the gating

80

I I I h I I I I I h I I
0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3

(@) (b)

Figure 4.10: (a) Plots of the MHME model approximation and the actual test data. (b) Plots of
the HME model approximation and the actual test data. (solid line plot is for the actual test data
and -. line indicates the MHME and the HME approximation of the test data respectively).

network for HME model are plotted in Figure 4.12(b). The MHME model was able to partition
the problem into two perfect partitions with each partition corresponding to each of the humps
of the function to be approximated and is indicated by the plots of the gating network outputs
as shown in Figure 4.11(b). The expert neural network sizes were increased by introtucing
hidden layer neurons for the HME model and the simulation was carried out again. There was
only a slightimprovement in the of the HME model performance and the partitioning of the input
space still remained imperfect and hence resulted in degraded overall performance.

45.3 Example 3

Another feature that has been introduced in the proposed MHME model is the input switching to
the gating network. As described in the previous sections that this feature will be helpful in the
cases where the dimension of the input space is much larger than that of the output space. In this
type of function approximation problems, it is better to use the desired output as the input to the
gating network as the desired inputs and outputs are paired together in the training data set. The
next example demonstrate the effectiveness of stated assumption by a function approximation
problem. Consider again the problem of identifying a nonlinear system of Equations 4.47 and
4.48. It is a good example to demonstrate the input switching feature of the gating network
as the output of this function is only one dimensional and the dimension of the input space is
5. An MHME model was implemented with two expert neural networks and a gating network.

81

0.8

0.6

0.4

0.2

L L L L I I I I I L L L L L L
o 20 40 60 80 100 120 140 160 180 200] 05 1 15 2 25 3

(@) (b)

Figure 4.11: (a) Plot of the sum of the squared errors for the MHME training phase. (b) Plot of
the outputs of the gating network.

10°

L L L L I I I I I L L L L L L
o 20 40 60 80 100 120 140 160 180 200] 05 1 15 2 25 3
(@) (b)

Figure 4.12: (a) Plot of sum of squared errors for HME training phase. (b) Plot of the outputs of
the gating network.

82

The expert neural networks hadidden layer nodes and the gating network Bduidden layer

nodes. The input to the expert neural networks was ttienensional desired input patterns and

the input to the gating network was the one dimensional desired output. The initialization of
the MHME model was again carried out as descried earlier in the case of Example 1 of Section
4.5.1. As mentioned earlier that the parametaused in the softmax squashing function and
softmin operator represented by Equations 4.8 and 4.24 respectively, can be used to control the
level competition or cooperation among the expert neural networksae As oo, the MHME
becomes a competitive MHME model and decreasing the valueindtills cooperation among

the expert neural networks in the MHME model. In this example, a competitive MHME model
was implemented withk = 30. The error goal in this case was also set¢o® and the maximum
number of iterations for the training algorithm was se2@6. The training of the MHME model

was carried out in the similar fashion as before and the approximation results for the test data are
as shown in Figure 4.13. Again, the results are similar to those that were achieved while using
the desired inputs as the input to the gating network. The Figure 4.14(a) shows the training error.
It is worth noticing that by reducing the dimensions of input to the gating network, the overall
performance of the MHME model has improved. The competitive MHME model with desired
output as an input to the gating network as able to approximate the given function in2about
less iterations as compared to the case when the higher dimensional desired input was fed to the
gating network as in Section 4.5.1. The gating network outputs are shown in Figure 4.14(b). As
the MHME model in this example was implemented in a competitive fashion, the partitioning of
the desired output into different partitions is much sharper but still not as sharp as was the case
in HME model results for Example 1 of Section 4.5.1.

45.4 Example 4

This example is used to demonstrate the performance of the MHME model in a cooperative
environment in which all the expert neural networks are cooperating among each other instead
competing to learn the task at hand. In this casexthvas set t@).5 and the Example 3 of Sections

4.5.3 was repeated again. The approximation results on a test data are as shown in Figure 4.15
and the approximation results are again indistinguishable from the actual desired test data output.
The plot of Figure 4.16(a) indicate that the training time for the cooperative MHME model is
comparable with competitive MHME model as implemented in Section 4.5.3. The plots of the
gating network outputs as shown in Figure 4.16(b) indicate that the gating network induces a
competition among the expert neural networks which is evident from the partitioning boundaries
of the input space. At every desired test data point, the overall output of the MHME model is a
combination of the outputs of the two individual expert neural networks.

83

I I I I I I I
0 100 200 300 400 500 600 700 800

Figure 4.13: Plots of the MHME model approximation and the actual test data (solid line plot
is for the actual test data and -. line indicates the MHME and HME approximation of test data
respectively).

1hr——— —— SRRy —
1 1| Il I |
[i | i
[[I\
0.8 | q

0.6
0.4

0.2}

I I I I I I I I I I I L L L
0 10 20 30 40 50 60 70 0 100 200 300 400 500 600 700 800

(a) (b)

Figure 4.14: (a) Plot of the sum of the squared errors for MHME training phase. (b) Plot of the
outputs of the gating network.

I I I I I I I
0 100 200 300 400 500 600 700 800

84

Figure 4.15: Plots of the MHME model approximation and the actual test data (solid line plot
is for the actual test data and -. line indicates the MHME and HME approximation of test data

respectively).

0.7+
0.65- \ '
06 [I . [
055!

0.5

I I I I I I I
0 10 20 30 40 50 60 70 80 o 100 200 300 400 500 600 700

(@) (b)

Figure 4.16: (a) Plot of the sum of the squared errors for the MHME training phase
the outputs of the gating network.

800

. (b) Plot of

85

455 Example5

This example is used to demonstrate the classification capabilities of the proposed MHME model
using Iris plant database. Iris classic data is perhaps the best known database to be found in
the pattern recognition literature [135]. The data set containksses ob0 instances each,
where each class refers to a type of Iris plant. One class is linearly separable from the other two
classes; the later two or not linearly separable as as shown in Figures 4.17(a) and (b) respectively.
The classification prediction output is a class of Iris plant. The classification attributes are four
numeric values and contain information about the sepal length, sepal width, petal length, and
petal width. These values correspond tasses of Iris plants, namely Iris Setosa, Iris Versicolor,

and Iris Virginica.

A one level MHME model was implemented with three expert neural network, one for each of
the classes in the database. The gating network parameters were initialized using the results of
the K-means algorithm. K-means algorithm was used to obtain the centers and spreads of the
inherent classes in the Iris database and were consequently utilized as the spreads and centers of
the alternate gating network. The output weights of the alternate gating network were initialized
randomly to small values. The weights of the expert neural networks for chosen randomly from
the rangeg—1, 1]. As there are three classes to be classified in this classification problem, the
output units of the expert neural networks had a softmax squashing function because it is a better
squashing function for multi-way classification than the commonly used sigmoidal functions.

The training error is plotted in the Figure 4.18(a) and the class decomposition accomplished by
the gating network is as shown in Figure 4.18(b). The classification raté Wésand MHME
model was able to classify all the patterns correctly.

Also, this example demonstrate another feature of the modular neural networks, i.e., an insight
into the problem. Assuming that it were not known that one of the classes is linearly separable.
Then by evaluating the plots of the gating network outputs, it becomes evident that the two of
the classes are not linearly separable as two of the expert neural networks have to work in a
cooperative fashion to classify the patterns in those classes and one of the expert neural network
was able to learn it all by itself as the third class is linearly separable from the other two.

45.6 Example 6

This example deals with approximation of the puma robot dynamics. The data set used for this
example is generated through a realistic simulation of the dynamics of a Puma 560 robot arm.
The task is to predict the angular acceleration of one of the links of the robot arm, given angular
positions, velocities, torque and other dynamic parameters of the robot arm. The data set has
about 5% noise added to the output, so there is some irreducible squared error present in the data

86

.
B A Classl A Classl
A A A A % Class2 % Class2
A ¥ Class3 % Class3
75+ N H 7+ A H
A Aa D
A A IN A A
N
o . S ad o, 4 oa]
LW A A N A
s A A IN A gA N
N a8 A N %
s
651 s A A E sk §3¢Aﬁ§ = g
s & Aak “P%an b §§’3 é
o A% a B R
TN T & b
6F & EREEN & B 4t Boa8, —
P o B
YN * b P
A% snow * * b
G wlABg
55+ P * * E 3t & i
b * * %
*
b # A *
Py % kA kK
5t b b * koK kKA g 2F . s E
Py * % * *op ow
* % #* o
* ¥EEX
* kK x .
45t * g 1% % 4
w ok
*
4 : . 0
15 2 25 3 35 4 45 5 0 05 1 15 2 25 3

(a) (b)

Figure 4.17: Plot of the features of the Iris data. The features are plotted two by two for better
presentation. (a) Feature 1 vs feature 2 (b) Feature 3 vs feature 4

10 T T

vy‘\yHMH\HHH‘l ,\u‘“ymu‘
y‘uiv“u ,‘u“\nl' ‘vHH
o 1!
iy
iy
[
|

!

I

1511

0.8F \“”‘
| T

o

I

\ I
i

0.6

o2H !

(a) (b)
Figure 4.18: (a) Plot of the sum of the squares error. (b) Plot of the gating network outputs.

87

set. The data set has 8 inputs and one out, the acceleration of the joint.

Just like previous examples, a one level MHME model was constructed with two expert neural
networks and a gating neural network. The weights of the expert neural networks and gating
network were initialized in the same fashion as for the example of the previous Section 4.5.1.
The training of the MHME model was carried out 250 iterations and the sum of the squared
training error is plotted in Figure 4.20(a). The outputs of the gating networks are as shown in
Figure 4.20(b). The MHME model output for a test data set is shown in Figure 4.19. It is evident
the approximation from the plot that the approximation quality is not very good because of the
inherent nonlinearities and the noise present in the data set.

11
1.05F
1k
0.95

0.85

0.8

0.75

0.7r

0.65

06 L L L L L

0 50 100 150 200 250
Figure 4.19: Plots of the MHME model approximation and the actual test data (solid line plot is
for the actual test data and dotted line indicates the MHME model approximation).

4.6 Conclusions

In this chapter a modified hierarchical mixture of experts model is presented. This model, unlike
prevalent modular neural network models, is an extension of the commonly understood artificial
neural network concepts; is simple in nature and intuitive in its implementation. A novel and
mathematically robust gating network was also introduced to enhance the capabilities of the pro-
posed MHME model. The proposed model has proven to have very good initialization, learning,
classification, and generalization abilities as has been demonstrated by a number of illustrative
examples.

88

" o

I

|
07k | l H ﬂl m I| I |

10° |
061 I [I

051

|
| |
| P i
0.4 I 1 }
I TR K
I ‘ i
I (TR (0 [
|
I

|
J‘ | I
LI “‘\” Lt "‘ P
I T T \‘ ‘:“ ': ’\‘ i I 1! ‘IH\‘M o g
{0 TR TSt N R R
(‘w”‘ B B 1 T ST

Il IR SR A

-1 }‘
107

|
031 \‘u "\“‘ | i

0.2l i

Loy T gy 1

| it i

1l ey i ’\' 1“ i H‘”
(R [Tl

il ‘\‘H‘ v bt '\“‘ (1

.

A «'.‘MW\ \“‘ \h;!»‘

i I

o
=

i
107 L L L L I I I I I 0 L
o 20 40 60 80 100 120 140 160 180 200 0 50 100 150 200 250

(a) (b)
Figure 4.20: (a) Plot of the mean sum of the squares error. (b) Plot of the gating network outputs.

In this chapter the expert neural network models considered in the examples had the same config-
urations and topologies. Varying the topologies and configurations of the expert neural networks
could result in the better performance because of the reason that the divided sub tasks are not
same in nature so it makes sense to have a topologically different neural network for different
tasks.

Also, another venue of further research could be employing different learning rules for the dif-
ferent specialist modules in the MHME architecture. Like for example, one of the specialist
modules could be rules based system well suited for the portion of the overall task whereas rest
of modules could be artificial neural network based.

One of the essential problems with the MHME and the HME architectures, as is the case with
other neural network architectures, is the model selection. The MHME or the HME models, be-
fore they can be trained and applied to a classification or regression problem, require the choice
of optimal configuration and topology, i.e., the selection of appropriate number of experts and
depth of the hierarchy best suited to solve the problem at hand. This calls for a further investiga-
tion for a methodology by which either constructive or pruning approaches could be applied to
the proposed modified hierarchical mixture of experts architecture to achieve optimal topology.

Chapter 5

Self-Scaling Modular Neural Network Models

A practical issue that arises when applying neural network models to solve any problem is the
model selection. Model selection is a methodology for choosing the adequate size of a neural net-
work model to learn the task, yet not compromising the neural network performance. One of the
essential problems with the proposed modified hierarchical mixture of experts model presented
in this dissertation and the original hierarchical mixture of experts model is the model selection.
Applying HME or MHME models to classification or regression problems requires the choice of
structural parameters such as number of experts and the depth of the hierarchical neural network
model. These parameters are generally determined either by utilizing prior knowledge about the
task at hand or by some other ad hoc heuristic methods.

This chapter outlines biologically and evolutionary plausible motivations for modular neural net-
work architectures, calleself-scalingneural network models. The self-scaling neural networks
scale their topology in an incremental fashion so as to optimally match the complexity of the task.
The self-scaling neural network architectures are categorized into two broader types, namely hier-
archical and vertical, depending upon the way the growth of the neural network models proceeds.
The learning algorithms for the proposed self-scaling neural network models also presented in
this chapter. The proposed learning algorithms employ the principle of divide and conquer that is
used in an iterative fashion and hence are referred tie@give divide and conquealgorithms.

Also, illustrative examples are presented to prove the effectiveness of the proposed neural net-
work architectures and respective learning algorithms.

89

90

5.1 Motivation

In the recent past, artificial neural networks have emerged as powerful tools in the fields of
classification and complex nonlinear functional approximation. However, before an artificial
neural network can be used to accomplish any task, training or learning phase has to be carried
out during which an artificial neural network model parameters or weights are adjusted in a way
that the model performs the desired task as optimally as possible. Besides estimation of the
neural network model parameters, an equally important issue is the model selection, i.e., to select
a suitable neural network topology and configuration. As stated earlier, artificial neural networks
are a biologically inspired paradigm and their functioning, to an extent, emulates the functioning
of the vertebrate brain. Then in order to resolve the model selection issue, it makes sense to look
closely again at the structure and functioning of the brain and draw some inspirations for the
model selection methodology.

The basic organization of the human brain makes sense only if viewed in the context of evolution.
Evolution tends to be conservative in a sense that it continues to make use of what has been de-
veloped already and abolishes only the obsolete and non-essential entities. As the brain evolved,
additional structures developed that replaced or enhanced the older brain structures or regions. In
some cases the older regions did not essentially disappear but may have assumed different roles
[136].

In order to understand the functioning of the brain, it is important to understand the neuron, the
basic functional unit of the brain. The brain is what it is because of its structural and functional
organization, i.e., how the individual neurons are put together, how these neurons interact and
function together. In the brain, neurons can be found in a large varieties of shapes and sizes.
These neurons can be can be categorized into several basic categories like sensory neurons, prin-
cipal neurons and intra-neurons. Although the brain has specialized local regions, the neurons
within these specialized regions still differ from each other as far as their response to different
stimuli are concerned [137, 138].

Advances in neurophysiology have confirmed that the neurons in the vertebrate brains typically
have dendrites extending from neuron cell body that receive inputs form other neurons through
connections called synapses. The synapses operate by chemical transmission and when a synaptic
terminal receives an all or nothing action potential from the neuron of which it is a terminal, it
releases a transmitter which crosses the synaptic cleft and produces either depolarization or hyper
polarization in the post synaptic neuron, by opening a particular ionic channel. Summation of
such depolarization or excitatory inputs within the time constant of the receiving neuron, this is
typically 20 — 30 ms, produces sufficient depolarization that the neuron fires an action potential.
The firing rates of neurons need not to be the same in a localized region of brain and can be time
dependent as well. The activation function commonly used in artificial neural networks relates to

91

the output activity of a biological neuron and emulates its firing the rate [139].

The neural networks design inspirations that can be drawn from the preceding discussion are that
an efficient model selection procedure should cater for the structural additions or deletions to an

existing neural network model and the neurons in a neural network model need not to be of the

same type and/or functionality. The neural network architectures presented in this chapter are
primarily based on these neurobiologically motivated assumptions.

5.2 Model Selection in Neural Networks

Methods using back propagation of the output error to train an artificial neural network perform
gradient descent only in the weight space of an artificial network with fixed topology. In gen-
eral, this approach is useful and successful only when the network topology and configuration
is chosen correctly. Too small a network cannot learn a problem well and on the other hand an
oversized neural network will lead to an over fitting of the training data set and subsequent poor
generalization performance.

The problem of model selection for the artificial neural networks has been tackled in a variety of
ways. The simplest form of model selection for the neural networks is to train a number of neural
network models with different configurations and topologies simultaneously. Then by evaluating
the performance of each of the individually trained neural networks on an independent data set,
the best performing neural network that generalizes well is selected and is assumed to be the
optimal neural network, as far as the desired configuration and topology is concerned for a given
learning task.

The model selection problem can be handled in a better fashion when the process of neural
network parameter estimation is carried out simultaneously along with a neural network topology
altering methodology. Recently, many researchers have investigated different approaches that
alter the network architecture or topology as the learning of a neural network progresses.

One such approach involves using a larger than needed neural network and training it. The over-
sized architecture is evaluated to detect obsolete and ineffective weight connections or neurons in
the neural network model which then are removed before further evolution of architecture is con-
tinued. This process is repeated iteratively until a predetermined stopping criterion is achieved.
The algorithms following this approach are calf@diningalgorithms [140].

Another approach uses an opposite strategy to reach an optimal topology for a neural network
model. This approach attempts to search for an appropriate neural network topology by starting
with a small neural network model and successively adding hidden nodes or layers until reaching
a satisfactory topology that can optimally perform the given learning task. The basic idea of all of

92

the growing or constructive methods is to use some criterion to dynamically extend the existing
neural network model to improve its overall performance. The training algorithms falling into
this category are callecbnstructivealgorithms [141].

Constructive approaches to the neural network design and learning have some advantages over
the neural network pruning approach. Firstly, it is very easy to specify the initial neural network
configuration and topology, whereas while using a pruning algorithm based learning approach,

it is very hard to guess how large initial neural network is needed to solve a given problem.
Secondly, the constructive learning starts with a small neural network model and is thus more
computationally plausible than pruning based learning in which majority of the training time is
spent training an overly large neural network. Thirdly, constructive algorithms for neural network
design, generally tend to find smaller neural networks than that of the pruning algorithms [141].
Based on the aforementioned observations, a constructive approach is followed in this chapter in
order to design and implement the proposed self-scaling neural network models.

There are also some factors that need to be taken into consideration when following the construc-
tive approach to the neural network design and training. For example, one of the most important
factors is to determine when to stop further addition of the hidden nodes and layers or how many
hidden nodes or layers to add after the performance of the network does not improve significantly.
In addition, a decision has to be made about the selection of a training mechanism as well. For
example, whether to train the whole neural network after the addition of hidden nodes and layers
or only to train the newly added hidden nodes and layers.

5.3 Constructive Neural Network Methods

Effective constructive algorithms for monolithic neural network training and construction re-
ported in the literature are few and are briefly described in this section for reference. The most
widely used and referred to constructive method is cascade-correlation architecture [107] and its
variants [142, 143]. The cascade-correlation algorithm constructs a neural network that has mul-
tiple hidden layers by additions of a single hidden node at a time. This structural arrangement
allows the incremental development of powerful feature detectors. A major problem with the
cascade-correlation algorithm is that as the number of hidden layers increases, the computational
complexity increases as well. Also the network generalization capability decreases because some
of the neural network weights might be irrelevant to the optimal operation of the neural network.
As the neural network size increases, it give rise to propagation delays and ever increasing fan-in
of the hidden layer nodes as more nodes and layers are added.

Group Method of Data Handling (GMDH) and its variants are another widely accepted construc-
tive algorithm [144, 145, 146]. In GMDH type of algorithms, a neural network’s hidden layer
neurons accept a fixed number of connections. These connections come from a possible com-

93

bination of network inputs or other existing hidden layers nodes in the network. Thus, when a
new hidden layer neuron is added, it results in a number of candidate neural networks. Searching
for one effective neural network out of all possible combinations is accomplished by applying
one of the available learning algorithms for the neural networks and selecting a best performing
candidate neural network. Convergence properties of these types of algorithms are not still very
well established because of the ad hoc nature of these algorithms.

Dynamic node creation (DNC) category of algorithms [147, 148, 149] are variants of the origi-
nally proposed dynamic node creation algorithm [150]. In this approach, hidden layer neurons
are added one at a time and are always added to the same hidden layer. The whole network is
retrained after addition of each new hidden layer node. These algorithms have good convergence
properties, but computational efforts increase with an increase in the network size when dealing
with complex problems.

Projection pursuit regression algorithms are inspired from the statistical literature [151]. As with
DNC, a number of hidden layer nodes are always added to the same hidden layer. Instead of
retraining the entire neural network model and adding hidden layer nodes with sigmoidal squash-
ing functions, these algorithms use hidden nodes with squashing functions of more complicated
functional forms and train only the newly added hidden nodes.

As in the case of monolithic neural networks, the constructive methods for hierarchal mixture
of experts reported in literature are very few and are briefly described in this section. The HME
growing model presented in [152] is an extension of the adaptive growing tree concept used for
classification and regression trees (CART) [91]. In the presented model, a HME tree is initial-
ized with two experts and a gating network. During the training phase, at some point of time,
all the terminal nodes or the experts neural networks of the HME tree are split into two. The
corresponding gating networks are also split. The parameters of the new gating and expert neural
networks are generated by an addition of small randomly generated values to the original gating
and expert neural networks parameters before the splitting was carried out. Each of the splits are
evaluated on the training data set. The best performing split is the one that can maximize the
log likelihood of the overall HME architecture. Only the best performing split is incorporated
into the HME architecture and the remaining splits are discarded. This splitting rule is similar to
the splitting criterion used in CART model that uses the maximization of the entropy of a given
node in the tree. The problem with this approach is that all of the experts are split without taking
into consideration the performance of the individual expert neural network models. The best per-
forming expert neural network will be split in the same fashion as that of the worst performing
expert neural network. In addition, this approach can be susceptible to poor initialization of the
expert neural networks that are added to the HME architecture as a result of the splits, and may be
detrimental to the subsequent learning progress of the HME architecture. A similar constructive
approach to the HME model is presented in [153]. The only difference is that a second order pa-
rameter optimization approach is followed, as opposed to the EM algorithm that is used in [152].

94

A growing and pruning methodology for the HME model is presented in [154] for binary classi-
fication problems. In the presented model, the gating network is used to generate hyperplanes to
differentiate between different instances of the presented desired inputs.

Another pruning and growing approach for the HME model is presented in [86]. The pruning or
growing of the HME model is performed in an expert-dependent likelihood fashion along with
taking into consideration the data being processed, which in the presented case is the speech
context modeling. The expert with a minimum likelihood is pruned or split and replaced. The
model presented in this approach is a specialized modular network that is custom tailored for
speech recognition tasks and the splitting criterion is the task dependent. One drawback of the
presented growing and pruning framework is that it is not generalized enough that it can be
applied to any other learning task than speech context learning.

An alternate approach to modifying the topology of the mixture of experts model adaptively is
presented in [155] and follows similar approach presented for mixture of experts model in [156].
Both constructive and pruning methods for mixture of experts model are presented in [155]. The
presented approach does not consider the HME model in the traditional sense; the mixture of
experts model is trained for some iterations and if the existing model fails to reduce the mean
squared error on the validation data set, the network parameters are saved. A new expert neural
network is added to the region of influence of the worst performing expert neural network model
with the same weights as those of the already existing expert neural network model for the same
region of influence. The gating network used in the presented mixture of experts model is the
localized version of the gating network as proposed in [123]. The additional parameters for
the gating network corresponding to the newly added expert neural network model are chosen
such that the values of the correspondingarameter is reduced when compared with dhe
parameter value for an already existing expert neural network for the same region of influence.
The corresponding varianéeof the new expert neural network model is the same as that of the
old one for the same region of influence. As this approach does not consider the HME model, it
is not discussed or considered further in this dissertation.

5.4 Self-Scaling Modular Neural Network Models

Artificial neural network architectures, monolithic or otherwise, suffer from the pre-determination
of the topology and configuration problem before being trained to learn a specific task. To deal
with this problem, an alternative approach to the neural network design is presented in this chap-
ter, called self-scaling modular neural network models.

Self-scaling modular neural network models are a class of neural networks that scale their struc-
ture to match the complexity of the given learning task in an incremental fashion. Self-scaling
is a function of the neural network architecture whose structure can be automatically generated

95

by using an elaborate algorithm for a given task during the training phase. Self-scaling modular
neural network models belong to the category of constructive neural network models because the
structures of these neural network models grow incrementally according to a structure extension
criterion until a satisfactory neural network training performance is achieved.

Self-scaling modular neural network models are generated through an iterated application of
the divide and conquer principle. The individual components of a self-scaling modular neural
network can be any of the most prevalent feed forward neural network models and any existing
learning algorithm can be employed to train the individual component neural networks.

The self-scaling modular neural networks presented in this dissertation are further subdivided into
two categories, vertically and hierarchically self-scaling modular neural networks. The names
vertically and hierarchically self-scaling depict the way in which a neural network architecture
will grow. For example, if the additional hidden layers or neural network modules are added in a
fashion that the neural network structure grows in a vertical direction, then this type of neural net-
works are categorized as the vertically self-scaling modular neural networks. The hierarchically
self-scaling modular neural networks, on the other hand, refer to the neural network architec-
tures that expand their structure in an hierarchical fashion. These two types of self-scaling neural
network models are described in detail in the following sections.

5.5 Hierarchically Self-Scaling Modular Neural Network Model

As stated earlier the modified hierarchical mixture of experts model presented in this disserta-
tion suffers form the problem of the pre-determination of the structural parameters before it can
be applied to a specified learning task. A hierarchically self-scaling modular neural network

(HSMNN) model is presented in this section which overcomes the problem of the structure pre-

determination by automatically self-scaling itself to reach the preset desired learning performance
goals. The HSMNN model incorporates many desired improvements to the constructive HME

models presented in [152, 86].

The major drawback of the growing HME model described in [86] is that it is a highly specialized
neural network model designed only for the speech context learning. The growth criterion is
learning domain dependent and the presented growing HME model cannot be utilized for any
other task without incorporating any major changes in the presented learning algorithm. On the
other hand, the growing HME model presented in [152] has the drawback that all of the expert
neural networks are split into two, irrespective how well an individual expert neural network
has been performing, if the HME model performance has not improved after certain training
iterations. This can result into the loss of good expert neural network modules that have been
performing well on the training data set and a degraded subsequent learning performance of the
overall HME model.

96

The proposed HSMNN model overcomes the problems mentioned in the preceding paragraph by
a novel structure evolving learning scheme. The HSMNN model starts with an initial MHME
network with a gating network and two expert neural networks. The initial MHME network is
trained by evidence maximization, as described in the previous chapter, for a number of iterations,
related to a “patience” factor. When training iterations exceed the preset patience factor, the
overall performance of the MHME model at that iteration is evaluated against the performance
for the iteration at the start of the patience factor interval. If there has been a pre-determined
percentage increase in the performance of the MHME model, then the training is continued with
the same MHME structure.

On the other hand, if the training performance did not increase, or in other words there has
not been pre-determined percentage decrease in the overall MSSE error of the MHME model,
the belief in the performance of each of the expert neural network models is evaluated, called
belief factors. This is accomplished by multiplying the corresponding gating network outputs,
gj.s, by traversing up the tree structured MHME model, starting with the output of the gating
network directly connected to the expert neural network model for which the overall belief is
being calculated. The expert neural network with the lowest belief factor is split into two new
expert networks leaving the rest of the expert neural network models intact.

For example, considering the initial MHME model as shown in Figure 5.1 and assuming that after
carrying out the training of the initial MHME model using the evidence maximization algorithm
for certain iterations, the patience factor, the expert neural network raddvell is found to

have the lower belief factor compared to the other expert neural network model. The expert neural
network modell at levell is split into two expert neural networks and a new gating network is
created to combine the outputs of the newly created expert neural networks; thus adding a new
level of hierarchy to the existing MHME model. This is shown in Figure 5.2. As a result of
this learning scheme and the training phase, the final resultant HSMNN model is an asymmetric
hierarchical structure.

The newly created gating network to combine the new expert neural network models is a replica
of the gating network connected to the expert neural network being split, with a very small pertur-
bation of the output weights. The reason for this replication procedure is that the gating network
has already learned the partitioning information of the input space in that region. The knowledge
the gating network has, can be retained and utilized again by the new gating network instead of
starting with a completely random set of weights and learning how to partition the input space all
over again.

The new expert neural networks are thus said to be generated according to embryo-genetic prin-
ciples. In the embryo-genetic process for generation of the new expert neural network models,

the old expert neural network that has been earmarked to be split is cloned by a number of new
expert neural networks. The weights of the newly generated expert neural networks are the same

97

Gating
Network (1,1)

Y1 y%

Expert Expert
Network (1,1) Network (1,2)

/
il

%l
%l

Figure 5.1: HSMNN model with one level hierarchy before an expert neural network model is
split.

as the weights of the expert neural network model being split, but are perturbed with small ran-
dom values, thus, emulating the genetic mutation process. The process of generating the weights
for the new expert neural networks ensures that the knowledge possessed by the original expert
neural network about the task is not lost and can be used again by the newly created expert neural
networks. The newly generated expert neural networks are evaluated to determine an associated
performance index for each of the newly generated expert neural network models. The perfor-
mance indexp;, of a newly createdth expert neural network model is a convex combination of

the similarity and error indices and is given by the following relationship:

pi=1=X1—-e)+As; with 0<A<1 (5.1)

wheres; ande; are the normalized similarity and the error indices ofithenewly created expert
neural network, respectively, and range fdimo 1. The normalized values of the similarity and
error indices are obtained by dividing all of the individual error and similarities indices of the
newly created expert neural networks by the largest values off the respective index. The value of
A indicates the trade of between diversity and accuracy when evaluating the performance index
of a new expert neural network.

The un-normalized similarity index for thiéh newly generated expert neural network is given by

98

Yy
Level O
————————————————— Node 0
95
1 f Gating
} 91 Network (1,1)
yi Y3
Level 1 //Z N Expert
________ \) Node (1,1) Network (1,2)
~_ 7
oo _ g3 4> A XYa
| Gating = ----I /’ \\
I Network (2,1))I _____ ===\
e / 2 \
| / 92 \
/7\) __y_%L/__ ___\\E%__
\ 4 I Expert | I Expert |
1 I Network (2,1) | I'Network (2,2) |
R¥q oo [

o ,z\ e i\ X

\\f(_)/) \f(_)/) 6’9 : Input gates
7 ! 5
1 [
| |

X1
L0

Figure 5.2: HSMNN model with two levels of hierarchy after an expert neural network model is
split into two expert neural networks. A gating network is introduced in place of the old expert
neural neural network to mediate the output of the newly added expert neural networks.

Equation 5.2.
5= -9)" (- 4) (5.2)

wheregj is the overall output of the HSMNN model before an expert neural network model
was split and thej; is the output of theth newly created expert neural network model when
presented with the training data set. The similarity index is a measure of the similarity between
the output of theth newly created expert neural network and the overall output of the HSMNN
model before the split was carried out. As discussed in the previous chapter, the aim of designing
the HSMNN model based modular neural networks is to generate as many diverse expert neural
network models as possible, so the similarity index is made part of the selection criterion to select
a pair of expert neural networks to be added to the existing HSMNN model structure.

99

On the other hand the un-normalized error indgxmeasures the effect of the newly generated
ith expert neural network model on the overall performance of the new HSMNN model after
the inclusion of the new gating network and the newly gener#tedxpert neural networks; its
formulation is given by Equation 5.3.

—
A~ — ~

&= (¥ — yi)T(g_ i) (5.3)

S

where@- is the output ofith newly created expert neural network. The inclusion of the error
index in the performance index ensures that the performance aththeewly created expert
neural network model on the training data set is also taken into consideration when selecting a
suitable expert neural network to be included in the existing HSMNN Model.

The overall performance index ensures that only eligible newly created expert neural networks
are selected for inclusion into the existing HSMNN model by considering both their similarities
and the error contributions. The parameten the performance index can be used to emphasize
either of the two selection criteria. For example, if newly added expert neural networks are meant
to be diverse, without caring for their contribution to the overall error of the HSMNN madel,

can be set td. On the other hand, settingto 0 would ignore diversity and will only concentrate

on the error contributions of the newly created expert neural networks when added to the existing
HSMNN model.

As every expert neural network earmarked for splitting and to be replaced by two new expert

neural networks, that expert neural network with the highest performance index is selected from
the pool of newly generated candidate neural networks and removed from the pool of the available
expert neural networks. The remainder of the pool is searched again for another expert neural
network with the highest performance index to be included into the HSMNN model.

To ensure that there is no degradation in the learning performance of the overall HSMNN model,
if a suitable pair of the expert neural network models is not found in the first attempt, the embryo-
genetic process for creation of diverse and effective expert neural network models is carried out
again. This process is repeated until a suitable pair of expert neural network models is found that
when added to the existing HSMNN model will reduce the training error when HSMNN model
training is continued again. The training algorithm for the HSMNN model is formally described
and summarized in the following section.

5.6 Iterative Divide and Conquer Algorithm |

The training algorithm for the HSMNN model is based upon the iterative version of the principle
of divide and conquer and is referred to as iterative divide and conquer algorithm | (IDCA-I).
The main theme of the learning algorithm for the HSMNN model is inspired from cognitive

100

psychology and is based on the principles of the selective attention and continued goal-directed
learning.

Attention is defined as the taking possession of the mind, in clear and vivid form, of one of what
seem simultaneously possible objects or trains of thought [157]. Alternatively, attention is the
means by which a living organism focuses on a subset of the available information. Attention is
the ability of the living biological organisms to focus on a task, to concentrate and often refers
to the reallocation of available processing resources to accomplish a given task. Attention can
categorized into different categories like selective attention, divided attention and automated at-
tention. Selective attention is a process through which focus is placed on one of the aspects of
the input stimuli.

Living organisms have powerful natural learning mechanisms that allow them to master their
natural abilities to achieve their respective goals. Goal-directed learning uses the principles of
decision theory to choose and alter learning tasks [158]. Goal directed learning models the learn-
ing behavior of an intelligent agent as the process that results naturally from the fact that the agent
is situated in an environment where it must perform some tasks to satisfy some goals. Definition
of goals is central to the learning process, determining not only what is to be learned but how the
learned knowledge should be represented and how it may be used. Resource limitations are also
taken into account: since the agent may not be able to satisfy its goals with the limited compu-
tational power and training data available to it, prioritization and tradeoffs are essential parts of
goal-directed learning.

The HSMNN model incorporates the features of both selective attention and goal-directed learn-
ing. The selective attention feature used in the HSMNN model is the selection of the worst
performing expert neural network that is subsequently split; this procedure allows the HSMNN
model to selectively focus on the region of the input space where the expert neural network mod-
els are not able to learn properly. The HSMNN model utilizes the features of the goal-directed
learning in the sense that the overall goal of learning process of the HSMNN model is to learn
a specific task. This goal is accomplished by redefining the interim subgoals that are achieved
iteratively by finding and splitting the worst performing expert neural network models and the
subsequent recombination of the newly generated expert neural networks.

The HSMNN model is initialized with two expert neural networks and a gating network at the
beginning of the training phase. The outpytpf the initial HSMNN model is generated by the
following equation:

= 21
y = Zg}nlyml ml -]‘7 2 (5'4)
m1

The belief factors for each of the expert neural netwadrksd2 in the initial HSMNN model are
the same as the corresponding the gating network ougpusdg., respectively.

101

The overall outpuf of the proposed HSMNN model is governed by the following relationship:

2my 2my_q
= =1
=3 gh > G > G my = 1,2 (5.5)
mi mo=2mi—1 my=2m;_1—1

Wheregﬁnl is the output of the gating network at ttta level correspondingy,;th node at the same
-1, . .
level. g,,, is the output of then;th expert neural network at thiéh level in the hierarchy. The

outputgj,iZ for them,th expert neural network model at ttta level is obtained by the procedure
described in the Section 4.3. As the training procedure results in an asymmetric hierarchical tree
for which the overall output of the HSMNN model is not easy to describe in a nice mathematical
formulation, so for the sake of mathematical simplicity, the relationship of the Equation 5.5 is
followed to evaluate the overall output of the HSMNN model by assuming the outputs of the
non-existent expert neural network models to be zero.

The overall performance of the HSMNN model is evaluated using the usual mean sum of squared
error objective function as presented in the following:

N
1 - (8) = (1)
_ —t) _ 2O\ o)z
g QNE (Y o) (y g) (5.6)

t=1
wherej © is the overall HSMNN model output for théh training pattern.

After training the HSMNN Model for iterations equal to the patience factor, the performance of
the overall HSMNN model is evaluated. If the improvement in the HSMNN model is more than a
certain pre-set percentage value, then the training is continued with the same HSMNN structure.
If on the other hand, the improvement is below the pre-determined percentage value, then the
belief factor for each of the expert neural network is calculated. The belief factor;torexpert

neural network at théh level is calculated by following the relationship given by Equation 5.7.

r 111 2 1
Bml - gmlgml,l U gngml (5'7)

where at thdth levelm; = m,, at (I — 1)the levelm;_, = floor ("g“), and at first level
m, = floor (m2T+1); where thefloor being the usual mathematical operator that rounds a
number to the nearest integer value towards.

The expert neural network with lowest belief factor is earmarked to be split. A pool of candidate
expert neural networks is created according to embryo-genetic principles. The performance of
each newly created the expert neural network in the pool is evaluated utilizing individual normal-
ized similarity and error indices according to the relationship of Equation 5.1. A pair of expert
neural networks with high performance indices are chosen from the pool without replacement

102

and are included into the HSMNN structure along with a new gating network. The training of
the HSMNN model with the new structure is continued until a satisfactory training performance
is achieved by repeated application of splitting and addition of newly created expert neural net-
works to the HSMNN model. The training of the HSMNN model is carried out using the evidence
maximization framework as presented in the previous chapter.

The iterative divide and conquer algorithm | used for training of the HSMNNM model is sum-
marized below as the Algorithm 5.1. The presented algorithm takes, n, ande as some
predefined parameters that are the patience factor, the number of the hidden layer neurons of the
gating network, the number of the hidden layer neurons of the expert neural network models to
be added while extending the existing HSMNN model, and the desired error goal respectively.

5.7 lllustrative Example

A well known benchmark problem in neural network community is the so-called two-spiral prob-
lem. It consists 0fl 94 two-dimensional vectors lying into two interlocked spirals that represent
two separate classes. The plot of the two spirals is shown in Figure 5.3. It is a difficult problem
for simple monolithic feed-forward neural networks with simple structure. It has been reported
that the problem could not be solved with a standard monolithic feed-forward neural networks
and additional direct connections had to be used for achieving convergence [107]. Also, a special
constructive learning architecture cascade-correlation was used to solve two-spiral problem suc-
cessfully [107]. Another result report in literature used 2-5-5-5-1 feed-forward monolithic neural
network with direct connections from the input to the output and hidden layers to successfully
solve the two-spiral problem [159].

The same benchmark problem was used to evaluate the performance of the proposed HSMNN
model. The initial HSMNN model comprised of the new proposed alternate gating network and
two expert neural networks. The gating network and the expert neural networks had single hidden
layers with2 and4 hidden layer neurons respectively. The squashing log-sigmoidal function was
used as the transfer function for the neurons in the hidden and the output layers of the expert
neural networks. The patience factor was seltaterations and the performance improvement
factor was set ta0%. The gating network was initialized using K-means algorithm whereas the
weights of the expert neural networks were initialized with random values from the [rahgt.

The value of) in the performance index was etAd so that equal weight was given to both the
diversity and the performance of the newly created expert neural network model.

The initially created HSMNN model architecture was trained using the iterative divide and con-
qguer algorithm | (IDCA-I) as outlined in the Algorithm 5.1. The training phase was carried out
for 2000 iterations and the record of the MSSE is as shown in Figure 5.4(a). The decision bound-
aries generated by the final HSMNN model on a test data are as shown in Figure 5.4(b) that

103

Algorithm 5.1 Iterative Divide and Conquer Algorithm |
Requires: T = {Z;,y;} fori=1,--- |N. p,e,m,n
e Initialize the HSMNN model.
< An alternate gating network with one hidden layer comprisea ofeurons as described
in Section 4.3 and two expert neural networks with one hidden layer each comprised of
neurons.
t<=0
while e > e do
if ¢ < uthen
t<=t+1
else
t<=0
¢ Evaluate the belief in each expert neural network using Equation 5.7.
o Select the expert neural network with the least belief factor and mark it to be split.
s<=0
while s < 2 do
if FAILURE then
o Generate a pool of candidate expert neural networks by cloning the expert neural
network earmarked for split using embryo-genetic principles.
o Evaluate the performance index of all the candidate neural networks in the pool.
else
o Evaluate the eligibility of the best performing expert neural network in the pool to
be included into the existing HSMNN model.
if ELIGIBLE then
o Mark the expert neural network to be included in the HSMNN model and remove
it form the candidate pool.
s<=s5+1
o SUCCESS
else
o FAILURE
end if
end if
end while
o Create a new alternate gating network based upon the parameters of the gating network
that was associated with expert neural network that was spilit.
end if
e Add a new level of hierarchy and insert two selected expert neural networks and the new
alternate gating network into the HSMNN structure.
e Train the new HSMNN model with evidence maximization algorithm.
e Calculate overall MSSH using Equation 5.9.
e <— J]?Jk
end while

104

indicates that classification rate wa80%. There are no published results for this benchmark
problem using constructive hierarchical mixture of experts, so no comparative remarks could be
made about the performance of the proposed HSMNN model performance.

a A A
4 A
A - =} o 5
o A
o
A
o A DDA, o
o A A A
A 4 = - A o
A o o
A : A A
o A o AAAAAA a A [m]
A O A
A A A u] A
RN oA H00g A N
o & = INE
A =]
O A o A o A O A O A O A
o 4 SN
o 2 27, 7 =
A o O A A o
a A [m] DD A o
u] o u] A
A = Bopgoo A o a
g o A A
A A o A
A o AAnA O O
A
u] o u}
A o O
o o A o
o A ~ A
A O
a A A
O o
o o =

Figure 5.3: Plot of the two interlocked spirals.and] represent spiral 1 and 2 respectively.

5.8 \Vertically Self-Scaling Modular Neural Network Model

Vertically self-scaling modular neural network (VSMNN) model draws its inspiration from a
popular constructive neural network model, the cascade-correlation learning model [107] and
incorporates some conceptual and structural improvements to the constructive backpropagation
(CBP) architecture presented in [160, 161]. The VSMNN model get its name from the fact that
additions to the initial neural network structure are carried out in the vertical direction and the
neural network structure grows in the downward vertical direction. The cascade-correlation type
of learning algorithm has been found to be an efficient technique for its function approximation
and classification capabilities [162, 163, 164, 165]. The constructive backpropagation model is
another plausible constructive neural network model when dealing with complex learning tasks.

In the VSMNN model, an artificial neural network is constructed in a modular fashion by suc-

cessive addition and training of multiple hidden layer nodes or neural networks as opposed to
the cascade-correlation learning algorithm in which only one hidden layer node is added and
trained at a time. A common feature to both the VSMNN and the cascade-correlation models is

105

I I I I I I I I I
200 400 600 800 1000 1200 1400 1600 1800

(a) (b)

Figure 5.4: (a) Plot of sum squared training error for IDCA-I algorithm. (b) Classification bound-
aries generated by the HSMNN model that was trained using IDCA-I algorithm.

the freezing of the input and the output weights of the previously trained hidden layer nodes to
achieve a better computational efficiency during the training phase.

However, there are two main differences that set the VSMNN and the cascade-correlation mod-
els apart. Firstly, a much simpler objective function is minimized during the training phase of
the VSMNN model after an addition of the new multiple hidden layer neurons or new neural
network modules. This objective function is the most commonly used mean sum squared er-
ror (MSSE) function as opposed to the cascade-correlation model that switches between two
different objective functions during the training phase that calls for use of two different optimiza-
tion routines, thus increasing the complexity and practical implementation. On the other hand,
the VSMNN model uses only one objective function that makes the implementation of the con-
structive VSMNN model much simpler when trained using gradient-based learning methods like
backpropagation.

The second major difference between the VSMNN model and both the cascade-correlation and
the CBP models is the implementation of inhibitory lateral connections between neurons in the
hidden layer of the initial VSMNN model topology. As mentioned earlier, the one reason mono-
lithic neural networks do not learn difficult tasks properly is due to the herd effect that arises
because of the fact that all of the hidden layer neurons evolve independently of each other and
are trying to minimize the same source of error. The VSMNN model resolves the issue of the
herd effect by introducing lateral inhibitory connections between the hidden layer neurons of the
initial neural network model that makes these neurons dependent on each other and provides a

106

way of communication among them; thus providing a good initial starting point for the VSMNN
model.

One potential problem of the cascade-correlation model is due to the fact that it is restricted to
the addition of only one new neuron to the hidden layer of the neural network model at a time.
This leads to excessively large computational time when constructing a large neural network. A
remedy to this problem is the possibility of training several candidate neurons simultaneously and
picking the best trained neurons to be added to the neural network model. Moreover, training only
one hidden unit at a time to reduce the output residual error may not be a very logical choice as the
approximation capabilities of a single neuron are clearly limited. In other words, simultaneous
addition and training of multiple hidden layer neurons is potentially a much more well suited
solution to reduce the residual neural network model output error than many single independently
trained hidden layer neurons, as is the case in the cascade-correlation learning algorithm. Thus
both in terms of computational efficiency and modeling performance, it is desirable to add a
batch of new hidden layer neurons instead of only one new hidden layer neuron at a time. This
problem is also mentioned and addressed in the constructive backpropagation model as presented
in [160, 161].

Also, the VSMNN architecture and the corresponding learning algorithm lends itself to ease of
switching between online and batch mode learning types which is not the case with the cascade-
correlation algorithm that is restricted to use batch mode learning only.

A major drawback of the constructive backpropagation algorithm lies in the fact that the new
multiple hidden neurons added to the hidden layer of the existing neural network model are of
the same type and are the same in number as that of the previously added and trained hidden
layer nodes. This causes a serious problem while training a CBP algorithm based neural network
model because if the previously added neurons of the same type and the same number could not
reduce overall neural network model output error and could not learn the functional mapping or
classification task, the newly added hidden layer nodes will also not be able to learn the desired
functional mapping, and the overall neural network model output error will not be reduced. This
hypothesis was tested and was proven correct. The VSMNN model based learning overcomes
this problem by adding a hybrid neural network (HNN) model to the already existing neural
network model. The hybrid neural network model is comprised of a two hidden layer neural
network model with hidden layers that are comprised of a combination of linear or nonlinear
neurons that are randomly initialized. The hybrid neural network model is shown in the Figure
5.5. The weights connecting neural network inputs to the first hidden layer are initialized
at random and are not trained during the training phase. This training mechanism achieves the
computational efficiency of a single hidden layer neural network and functional efficiency of a
two hidden layered neural networks. Two hidden layered neural networks have proven to be
more efficient in learning complex functional mappings and classification tasks than the neural
networks with single hidden layer.

107

Figure 5.5: The proposed hybrid neural network architecture. The filled circles indicate neurons
with nonlinear squashing functions.

Also, the VSMNN model has one more potential advantage over the cascade-correlation learning
algorithm is that it lends itself to the applicability of the many well established faster and efficient
neural network learning algorithms. In addition, the neural network pruning learning paradigms
can be applied to the VSMNN architecture and as far as the cascade-correlation learning algo-
rithm is concerned, this is not the case. The learning algorithm for the cascade-correlation model
is primarily a growing algorithm. The learning algorithm for the VSMNN model is described
and summarized in the following section.

5.9 Iterative Divide and Conquer Algorithm |l

The learning algorithm for the VSMNN architecture is based on an iterative version of divide and
conquer principle as it tries to divide the problem iteratively into subproblems which then can be
conquered by the individual component neural networks. The VSMNN learning algorithm is re-
ferred to as iterative divide and conquer algorithm Il (IDCA-II). The IDCA-II learning algorithm
initially starts with a small neural network with inhibitory lateral connections among the hidden
layer neurons.

The initial neural network model is trained for a certain number of iterations, cpliédnce

108

9INPOIN NNO1

—_—_—_- - = =

Figure 5.6: VSMNN model after addition of the first hybrid neural network module.

factor. The learning algorithm used to train the initial neural network model is as described
in Section 3.3. If there is no substantial percentage drop in the modeling error of the VSMNN
model, a new batch of hybrid hidden layer neurons or a hybrid neural network module is added to
the exiting VSMNN model structure and the input and the output weights of the previously added
neurons are frozen and are not adjusted any further during the course of the VSMNN model train-
ing phase, as shown in Figure 5.6. The solid lines indicate the frozen weight connections and the
dashed lines depict the weight connections to be adapted during continued training process. The
neurons in the newly added batch all have different transfer functions that have slopes greater
than the slopes of the transfer function of the previously added batches of the hidden layer neu-
rons. The increase in the slopes of the squashing functions is motivated by the fact that different
neurons in the localized regions of the brain have different firing rates and time constants. The
increase in slopes of the squashing functions also results in a more localized performance of the
individual neurons.

The newly added batch of the hidden layer neurons are then trained to minimize the residual mean
sum of squared errors (RMSSE) objective function. Specifically, considering the case when the
jth HNN model is added to the existing VSMNN model, then the RMSSE objective function is:

N j—1 T j—1
RMSSE=J, ==Y (ka - > o - 6]“) (y*k - GF - @’f) for j >1 (5.8)

109

wherey,, is the desired output anfj is the output of the batch of the hidden layer nodes for the
kth training pattern. The residual error objective function can be minimized by the use of any of
the existing gradient-based learning methods for the neural networks.

The overall performance the VSMNN model is measured by the usual MSSE error objective
function:

N
1 — = T - =
MSSE:J:ﬁ;(Qk_yk) (yk—yk) (5.9)
whereﬁk is the overall output of the VSMNN model for th¢h training pattern and is given the
following relationship:

J
g =Y _0F (5.10)

wherej is the number of individual component neural networks in the VSMNN model.

The learning of the VSMNN model is continued by iteratively adding HNN modules to the ex-
iting neural network structure until a pre-determined error goal is achieved. This arrangement
makes the IDCA-II algorithm easier to implement because it easier to identify the outputs of the
individual batches of neurons and alleviates some of the computational issues.

Given a training data s&t = {z;,¢;} fori = 1,--- | N, the summary of the IDC-Il learning
algorithm is presented as Algorithm 5.2, wjthm, ande are the patience factor, the number of
the hidden layer neurons of the HNN module to be added while extending the existing VSMNN
model, and the desired error goal, respectively. The online version of the IDCA-II learning
algorithm can be derived easily following the conceptual framework presented in Algorithm 5.2.

5.10 [lllustrative Example

The performance of the proposed VSMNN model was evaluated by applying it to a function
approximation problem. The function chosen to be approximated is the same as used for the
evaluation of the LCNN model in Chapter 3 by Equation 3.9 and is given by the following rela-
tionship.

f(x) = 2e702) | sin(x)| (5.11)

The initial VSMNN model was a LCNN model that hachidden layer neurons with associated
inhibitory connection. The patience factor was sdfioiterations and the any subsequent hybrid

110

Algorithm 5.2 Iterative Divide and Conquer Algorithm II
Requires: T = {Z;,;} fori=1,--- |N. p,e,m
e Initialize the neural network model with one hidden layer comprised okurons with
lateral inhibitory connections.
t<=0
M<=1
while e > e do
if ¢ < uthen
t<=t+1
else
t<=0
M<M+1
© Freeze the existing batches of hidden layers neurons.
o Add a HNN model withm hidden layer neurons to the existing VSMNN structure with
incremented slope for squashing functions.
© Create input and output weights consisting of random values for the newly added HNN
model.
end if
e Apply input ¥ to the VSMNN model.
e Compute outputs of the entire existing individual neural network modules in the VSMNN
model.
e Compute the overall output of the VSMNN modé,i,, using Equation 5.10.
e Compute the residual RMSSE for théth component module using Equation 5.8.
if M > 1then
© Adjust the input and the output weights of the newly added HNN module to minimize
residual error objective function as given by Equation 5.8.
else
o Update the lateral connection weights as described in Section 3.3.
< Update the input to hidden layer weights as described in Section 3.3.
end if
¢ Calculate overall MSSH using Equation 5.9.
e <= J]?Jk
end while

111

neural network model to be added to the VSMNN model was forced to hdudden layer
neurons as well.

The initial VSMNN model was trained using the iterative divide and conquer algorithm Il (IDCA-

II) that was outlined in the Algorithm 5.2. The training results are shown in Figure 5.7. Figure
5.7(a) shows the training error record of the IDCA-II learning algorithm and the function approx-
imation results are plotted in Figure 5.7(b). The training error plot indicates that the VSMNN
model was able to reach the same error limit in slightly fewer training iterations than was the case
with the LCNN model.

10"

10° |

107

107

I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200

(@) (b)

Figure 5.7: (a) Plot of sum squared training error for IDCA-II algorithm. (b) Function approxi-
mation by the HSMNN model that was trained using IDCA-II algorithm.

5.11 Conclusions

In this chapter two self-scaling neural network models were presented to overcome the problem
of model selection. The proposed models are biologically motivated and the performance of the
proposed self-scaling neural network models have been shown to be satisfactory.

A novel methodology was introduced to search for a correct and diverse expert neural network
to be included in the HSMNN model is accomplished by collecting a set of candidate neural
networks and selecting a neural network that best fits the performance index that measures both
the accuracy of the network and the diversity among the candidate neural networks.

112

In this chapter, only a fixed value of was used in the performance index. Adaptive settings

of the value of\ needs to be explored, that is, the value\afan change according to changing
operating environments during the course of the training phase. Some ideas that relate to adapting
the parametel that have occurred to the author are described in the following. If the error of
the HSMNN is decreasing, the value dfshould not be changed. On the other hand, if the
performance of the HSMNN model does not improve and overall diversity of the of the HSMNN
model is decreasing, then value dfshould be increased. Also, if the overall diversity of the
HSMNN model is increasing, and still the overall performance of the HSMNN model is not
improving, then the diversity seems to be overemphasized. In this case the value ofidlyebe
decreased to improve overall performance of the HSMNN model.

Chapter 6
Conclusions

6.1 Summary

This dissertation has highlighted the potential of biologically motivated modularization of arti-
ficial neural network design and learning. The theoretical and experimental results of this dis-
sertation provide evidence supporting the fact that modularization of neural network learning
and design is an appropriate means of improving the learning performance, resulting in better
generalization and improved performance.

The modularization approaches to the artificial neural network design allow automatic or explicit
decomposition of a learning task into sub-tasks with localized performance evaluation criteria for
each of the member components of a modular neural network.

In addition, the modularization approaches investigated in this dissertation provide a way of
supporting supervised learning by means of the unsupervised learning that works on the principle
of automatic feature discovery. In a way, modularization of artificial neural networks provides a
means of seamlessly integrating the supervised and unsupervised learning paradigms.

Modularization of artificial neural networks minimizes the interactions between the weights of
the component neural networks, thus, resulting in increased robustness and reliability. Also, the
modularization approach helps in the modularization of the application task that can be auto-
matic or knowledge-based. Knowledge-based determination of the structure of modular neural
networks is another important feature of modularization by which it is possible to construct a
neural network model that reflects the structural dependencies of the application domain.

113

114

6.2 Summary of Contributions

The aim of this dissertation was to develop new biologically motivated modular artificial neural
network architectures and the associated learning algorithms. A review of the existing neural net-
work models, both monolithic and modular, indicated a need for a fresh look at the functioning
and the structural organization of the mammalian brain and other successful knowledge creat-
ing entities, in order to take steps toward design of more efficient and intuitive modular neural
network models.

A laterally connected neural network model was presented in this dissertation that introduced the
concept of modularity in a monolithic neural network by incorporating lateral inhibitory connec-
tions. The laterally connected neural network model was inspired by the findings in the field of
neurobiology that indicates that the lateral inhibitory connections constitute an important part of
the local cortical circuitry. The inference drawn from the local cortical circuitry leads to the con-
clusion that an effective and neurobiologically plausible neural network model should include an
elaborate mechanism of embedded inhibitory connections. This hypothesis was proven to be true
by the performance evaluation of the proposed laterally connected neural network model that was
able to solve a class of difficult problems for which a solution by the mainstream feed-forward
neural networks is not easily obtained.

A new modular neural network architecture was introduced that overcomes the shortcomings of
the hierarchical mixture of experts architecture that is by far the most widely accepted modular
neural network model. The new proposed modular neural network model is more in line with
the concepts that are well understood by the neural network research community and has a very
intuitive associated learning algorithm. The new modified hierarchical mixture of experts model
draws its design and learning inspirations from different sources like top-down and bottom-up
learning that is thought to be the basis of learning process in the brain, the model of successful
knowledge creating companies and Bayesian neural networks. The proposed modified hierarchi-
cal mixture of experts model demonstrated a good performance when compared with the original
hierarchical mixture of experts and its variants, but with a more simple and elegant learning
mechanism.

Also, a new alternative radial basis function based gating network was introduced for the mod-
ified hierarchical mixture of experts model. The proposed alternate radial basis function neural
network in itself is a novel neural network model. The proposed alternate radial basis function
based gating network adds to the capabilities of the modified hierarchical mixture of experts
model, allows a better initialization procedure, and introduces additional robustness to the modi-
fied hierarchical mixture of experts model.

The proposed self-scaling modular neural networks overcome the problem of model selectionin a

115

novel fashion. The self-scaling modular neural networks, as the name indicates, scale their archi-
tectures to solve a complex problem by adaptively scaling their respective structures to match the
complexity of the problem at hand. The horizontally self-scaling modular neural network model
uses a novel concept that is based upon embryo-genetic principles, to create new neural networks
to extend its structure adaptively and provides a new original methodology to iteratively divide a
complex problem into simpler problems to find an optimal solution. The vertically self-scaling
modular neural networks iteratively make use of a new concept, the hybrid neural network, to
solve complex problems.

6.3 Future Work

The performance of the proposed biologically inspired modular neural networks highlight the
powerful potential of these approaches in the fields of classification and function approximation.
However, there are still some aspects of these models that can be improved; some of these are
outlined in the following as suggested future research work:

1. The use of different learning algorithms for the different specialist modules in the modified
hierarchical mixture of experts architecture. One example would be in the case where a ma-
jor portion of a task can be learned offline and due to some change in the operating environ-
ments, a continuous adaptation of the weights of a module is required to compensate for the
change in the operating environment. Then, the offline training of the specialist modules
can be carried out using efficient offline learning algorithms like Levenberg-Marquardt,
whereas for the module for which a continuous adaptation is required, an online algorithm
like standard backpropagation can be used.

2. Another topic for investigation is the use of modules with different topology and config-
uration to accomplish different decomposed sub-tasks. This approach can be especially
advantageous in situations where the training data set might not be evenly distributed, so
for the regions of the input space that are densely populated, specialist modules with more
hidden layers and/or more hidden layer neurons may be used whereas in the regions where
the training data is sparse, an expert neural network module with simpler topology might
suffice to learn the desired mapping.

3. Another potential study is the use of more efficient combination/integration mechanism for
expert neural network modules. For example, if a sound prior knowledge about the task at
hand is available, then it might be appropriate to use a fuzzy logic based gating network to
combine the partial representations of the overall task generated by the individual expert
neural network modules that can eliminate the training time required to train the gating
network.

116

4. The employment of different configurations should be considered for the different special-
ist modules in the modified hierarchical mixture of experts architecture. For example, some
of the specialist modules could be fuzzy logic based systems that are well suited for that
portion of the overall task, whereas the remaining expert modules could be artificial neural
network based.

5. The modification of the existing learning algorithm for the laterally connected neural net-
work model to incorporate much desired robustness against the change of sign of the lateral
connections during the training phase of the neural network could be a valuable addition.

6. The introduction of the embryo-genetic principle could be made in the training phase to
generate new efficient hybrid neural networks for the vertically self-scaling modular neural
networks, as is already the case for the horizontally self-scaling modular neural networks.

7. It could be interesting to include the use of Bayesian weight regularization during the
training phase of all of the presented neural network models. The Bayesian regularization
minimizes a linear combination of squared errors and weights so that the resulting network
has good generalization qualities.

Appendix A

Hierarchical Mixture of Experts Network Train-
Ing Algorithms

The description of the training algorithms in this appendix follows closely the training algorithms
as described in [166, 167]. Consider the hierarchical mixture of experts neural network as shown
in Figure 2.1. The probabilitieg; andg;; are defined to be the prior probabilities, because they
are computed, based only on the inplit, without knowledge of the corresponding target output
y®. A posterior probability is defined once both the input and the target output are known. Using
Bayes’ rule, the posterior probabilities at the nodes of the tree are defined as as follows:

_ i > 9511 (y)
> i Gi Zj gj|ipij(y)

h; (A1)

and

hyjs = 95iP%(y)
3 95iPy ()

It is useful to define the joint posterior probability; as the product of; andh;;:

(A.2)

991 P (y)

N > Gi Zj gj|ipij(y)

This quantity is the probability that expert netwdk j) can be considered to have generated
the data, based on knowledge of both the input and the output. All of these probabilities are
conditional on the input at th&” time instant,z(®. In deeper trees, the posterior probability
associated with an expert network is simply the product of the conditional posterior probabilities
along the path from the root of the tree to that expert neural network.

hij (A.3)

117

118

A.1 Gradient Descent Learning Algorithm

A gradient descent learning algorithm for the hierarchical mixture of experts architecture is pre-
sented in [166]. This algorithm is based on the earlier work described in [75] in which the
problem of learning in mixture of experts architecture was treated as a maximum likelihood esti-
mation problem.

Given the assumptions and definitions earlier in this Appendix and in Section 2.6, the total prob-
ability of generating,®” from z(® is the mixture of the probabilities of generating from each

of the component densities, where the mixing proportions are multinomial probabilities, and can
be expressed as

(yV|z",6% = Zgz V) Zgh O V) PyY|z, 6Y) (A.4)

wheref® includes the expert neural network parameé@]rsas well the gating network parameters

V7 andV7,. Note that the probabilitieg; andg;;; are explicitly dependent on the inpuft) and
the parameters.

The log likelihood of a data set = {(z®,3®)}V is obtained by taking the log of the product
of N densities of the form of A.4, which yields the following log likelihood:

= Zng Zgﬂz (A.5)

Let us assume that the probability denditys Gaussian with an identity covariance matrix and
that the link function is the identity. In this case, by differentiatl\@; X) with respect to the
parameters, the following gradient descent learning rule for the weight n¥&fjxs obtained:

AW, = ,OZ RO RO (O — [0),(OT (A.6)

J\z

wherep is the learning rate. The gradient descent learning rule fof‘theeight vector in the
top level gating network is given by:

=X gl (A7)

and the gradient descent rule for tfi& weight vector in the* lower level gating network is
given by:

AV, = pz h J|l gj(.Tg)x(t) (A.8)

119

Also, updates can be obtained for the covariance matrices as well [166].

The algorithm given by Equations A.6, A.7 and A.8 is a batch learning algorithm. The corre-
sponding online algorithm can be obtained by simply dropping the summation sign and updating
the parameters after each stimulus presentation. Thus, for example,
D) _w® . ®p0
W, =W, +p'h

ili (y(t) - N(t))x(t)T (A.9)
is the stochastic update rule for the weights in(the)™" expert network based on t#é stimulus
pattern.

A.2 The Expectation Maximization Algorithm

In this and the following section, development of a learning algorithm for the HME architecture
is described which is based on the Expectation Maximization (EM) framework [85]. The EM
algorithm for the HME architecture, which consists of an iterative solution of a coupled set of
iteratively reweighted least squares problems, is discussed.

The EM algorithm is a general technique for maximum likelihood estimation. In practice EM
has been applied almost exclusively to unsupervised learning problems. This is true of the neural
network literature and machine learning literature, in which EM has appeared in the context
of clustering [168] and density estimation [169], as well as the statistics literature, in which
applications include missing data problems [170]. There is nothing in the EM framework that
precludes its application to regression or classification problems; however, such applications have
been few.

EM is an iterative approach to maximum likelihood estimation. Each iteration of an EM algo-
rithm is composed of two steps: an Estimation (E) step and a Maximization (M) step. The M
step involves the maximization of a likelihood function that is redefined at each iteration by the
E step. If the algorithm simply increases the likelihood function during the M step, rather than
maximizing the function, then the algorithm is referred to as a Generalized EM (GEM) algorithm.
GEM algorithms are often significantly slower to converge than EM algorithms.

An application of EM generally begins with the observation that the optimization of the likelihood
function £(0; X) would be simplified if only a set of additional variables, called “missing” or

“ hidden” variables, were known. In this context, the observable daia referred to as the
“incomplete data” and a “complete data” 9et= {X, Z} is assumed that includes the missing
variablesZ. Letting the probability model that links the missing variables to the actual data be
P(y, z|z,0). The logarithm of the density defines the “complete data likelihoodZ,.(0;Y)

120

and is given by
L.(0;Y)=InP(X, Z|0)

The original likelihood,L.(0; X), is referred to in this context as the “incomplete data likeli-
hood”. It is the relationship between these two likelihood functions that motivates the EM algo-
rithm. Note that the complete-data likelihood is a random variable, because the missing variables
Z are in fact unknown. An EM algorithm first finds the expected value of the complete-data
likelihood, given the observed data and the current model. This is the E step:

Q(6,6") = E[L.(6;Y)|X] (A.10)

whered® is the value of the parameters at & iteration and the expectation is taken with
respect t@®). This step yields a deterministic functich The M step maximizes this function
with respect td to find the new parameter estimatgs):

6P+ = arg maxQ (6, §)) (A.11)
0

The E step is then repeated to yield an improved estimate of the complete likelihood and the
process iterates.

An iterative step of EM chooses a parameter value that increases the valuéhefexpectation
of the complete likelihood. It has been proven that an increase in expectation of the complete
likelihood implies an increase in the incomplete likelihood [85].

LOPD; x) > £(0%); x) (A.12)

Equality for Equation A.12 is obtained only at the stationary points§ §f71]. Thus, the likeli-
hood L increases monotonically along the sequence of parameter estimates generated by an EM
algorithm. In practice this implies convergence to a local maximum.

A.3 Applying EM to the HME Architecture

To develop an EM algorithm for the HME architecture, appropriate “ missing data” has to be
defined so as to simplify the likelihood function. Defining the indicator variahlasdz;; to be

equal to one, with only one of the is equal to one, and one and only one oftheequal to one.

These indicator variables have an interpretation as the labels that correspond to the decisions
in the probability model. Also defining the indicator variaklg, which is the product ot;

andz;; and has an interpretation as the label that specifies the expert (the regressive process) in
the probability model. If the labels;, z;; and z;; were known, then the maximum likelihood
problem would decouple into a separate set of regression problems for each expert network and a

121

separate set of multi-way classification problems for the gating networks. These problems would
be solved independently of each other, yielding a rapid one pass learning algorithm. Of course,
the missing variables are not known, but we can specify a probability model that links them to
the observable data. Their probability model can be written in terms of tlas follows:

2 [2,6) = gft)gjﬁl%j(y“)) (A.13)
()
- HH{% m Py(y®™)7'} (A.14)

p(y()

using the fact thatzi(;) is an indicator variable. Taking the logarithm of this probability model
yields the following complete data likelihood:

L(0;Y) = ZZZ% In{g{" g} P (y)} (A.15)
= ZZZZU {Ing{” + Ing\{) + InP;;(y™)} (A.16)

Note the relationship of the complete-data likelihood in Equation A.16 to the incomplete-data
likelihood in Equation A.5. The use of the indicator variablgshas allowed the logarithm

to be brought inside the summation signs, substantially simplifying the maximization problem.
We now define the E step of the EM algorithm by taking the expectation of the complete-data
likelihood:

:ZZZ}# {Ing!” +Ing{[) + InP;;(y ")} (A.17)
t 7
where
BElP1X] = P =1]y®, 20, 6@) (A.18)
P(y®]29 = 1,20, 00 P(:H = 1|20, 9w
_ (y']2y; T)P (2 E) (A.19)
(y(t ‘l‘(t Q(P))
P (t) xt)’el g5 (t)
= (20,0099 = (A.20)
DORVSD S OIS
= h (A.21)

)

(Note also that[={" | X] = h{” and E[2{;)| X] = h)).

The M step requires maximizin@(6, 6®)) with respect to the expert network parameters and the
gating network parameters. Examining Equation A.17, it can be deduced that the expert network

122

parameters influence tlkigfunction only through the termé” InP,;(y®) and the gatlng network

parameters influence th@ function only through the termi; t)lng(” andh”Ing;(y®). Thus
the M step reduces to the following separate maximization problems:

0 = arg maxz h NPy (y™) (A.22)
0i;
VP = arg maxz Z h{PngH (A.23)

and

VPt = arg maxz Z hi? Z hy,Ing,) (A.24)

Vij

Each of these maximization problems are themselves maximum likelihood problems. Equation
A.22 is simply the general form of a weighted maximum likelihood problem in the probability
densityP;;. Cross entropy maximization between posterior probabiliﬁ%é,and g,(f) is carried

outin Equation A.23. Equation A.24 solves a weighted maximum likelihood problem with output

(t) i i t)
observations,; and observation weights”.

Appendix B

List of Publications

This chapter lists the publications by the author related to this dissertation.

1. F. Azam and H. F. VanLandingham. An efficient dynamic system identification technique
using modular neural networkgArtificial Neural Networks for Intelligent Engineering
7:225-230,1997.

2. F. Azam and H. F. VanLandingham. A modular neural network method for robust handwrit-
ten character recognitionArtificial Neural Networks for Intelligent Engineering:503-
508,1998.

3. F. Azam and H. F. VanLandingham. Generalized fuzzy adaptive control methodBlogy.
ceedings of the IEEE International Conference on Systems, Man and Cyberaa33-
2088,1998.

4. F. Azam and H. F. VanLandingham. A new approach for modular neural network design
and learning. 3rd International Conference on Computational Intelligence and Neuro-
sciences2:147-150,1998.

5. F. Azam and H. F. VanLandingham. Adaptive self-organizing feature map neuro-fuzzy
technique for dynamic system identificatid?roceedings of the 1998 IEEE ISIC/CIRA/ISAS
Joint conferenceg337-341,1998.

6. F. Azam and H. F. VanLandingham. Fuzzy adaptive genetic algoritAchsances in Sys-
tems, Signals, Control and Compute2s231-235,1998.

7. F. Azam and H. F. VanLandingham. Dynamic system identification: a comparative study.
Proceedings of the 3rd Annual Genetic Programming Confere&g1998.

123

124

8. F. Azam and H. F. VanLandingham. Dynamic system identification using genetic program-
ming. Proceedings of the 3rd Annual Genetic Programming Conferehd®98.

9. H. F. VanLandingham and F. Azam. Soft computing applications in the electric power
industry.IEEE workshop on Soft Computing Methods in Industrial Applications SMGCia/99
1-4,19909.

10. M. Abdallah, F. Azam and H. F. VanLandingham. A modular neural network approach
to the speech recognition proble#rtificial Neural Networks for Intelligent Engineering
9:1079-1083,1999.

11. F. Azam and H. F. VanLandingham. A laterally connected neural network miactedpted
for publication in IASTED Neural Networks 2000 Confere26€0.

12. F. Azam and H. F. VanLandingham. An evidence maximization framework for modular
neural networksAccepted for publication in 4th World Multi-conference on Systems, Cy-
bernetics and Informatics (SCI’20Q@P00.

Bibliography

[1] W. S. McCulloh and W. Pitts. A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysic5:115-133, 1943.

[2] D. O. Hebb.The Organization of of BehaviokViley, New York, 1949.
[3] M. Minsky and S. PapertThe PercptronsMIT Press, Cambridge, MA, 1968.

[4] J. J. Hopfield. Neural networks and physical systems with emergent collective computa-
tional abilities.Proceedings of National Academy of Scien@&s2554-2558, 1982.

[5] J.A. Feldman and D.H. Ballard. Connectionist models and their properGegnitive
Science6(3), 1982.

[6] D. E. Rumelhert, G. E. Hinton, and R. Williams. Learning internal representation by error
propagationNature 323:533-536, 1986.

[7] B. Widrow and M. E. Hoff. Adaptive switching circuits. 11960 IRE WESCON Conven-
tion Record pages 96—104, New York, 1960.

[8] R. Lippmann. Review of neural networks for speech recognitiNeural Computation
1:1-38, 1989.

[9] Y LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel.
Backpropagation applied to handwritten zip code recognitiddeural Computation
1:541-551, 1989.

[10] C Peterson, S. Redfield, J. Keeler, and E. Hartmen. An optoelectronic architecture for mul-
tilayer learning in a single photorefrective crystleural Computation2:25—-34, 1990.

[11] D. Pomerleau. Alvinn:an autonomous land vehicle in an neural network. In D. Touretzky,
editor, Advances in Neural Information Processing systempages 305-313, Denver,
CO, 1989. Morgan Kaufmann.

125

126

[12] M. I. Jordan. Motor learning and the degrees of freedom problem. In M. Jeannerod, editor,
Attention and Performance X|IHillsdale, NJ, 1990. Erlbaum.

[13] E. Gosh Collins and C. Scofield. An application of a multiple neural network learning
system to emulation of mortgage underwriting judgments. Technical report, Nestor Inc.,
Providence, RI, 1989.

[14] K. S. Narendra and K. Parthasarathy. Identification and control of dynamical systems
using neural networkdEEE Transactions on Neural NetworKs4—27, 1990.

[15] M. Smith. Neural Networks for Statistical Modelingyan Nostrand Reinhold, NY, 1993.

[16] G. M. ShepherdThe synaptic Organization of the Brai®©xford University Press, New
York, 1974.

[17] F. W. Rexrodt.Gehrin und PsycheHippokrates, Stuttgart, Germany, 1981.

[18] J. W. Boers and H. Kupier. Biological metaphors and the design of modular artificial
neural networks. Master’s thesis, Leiden University, Leiden, August 1992.

[19] K. S. LashleyBrain Mechanisms and IntelligencEniversity of Chicago Press, Chicago,
1929.

[20] D. H. Huble.Eye, brian, and visionScientific Ameircan Library, New York, 1988.

[21] V. B Montcastle. An organizing principle for cerebral function: The unit module and the
distributed system. In G. M. Edelman and V. B Mountcatke, editbhg mindful brain:
Cortical organization and the group selective theory of higher brain fun¢cpage 7. MIT
Press, Cambridge, MA, 1978.

[22] J. C Eccles. The cerebral neocortex: Atheory of its operation. In E. G Jones and A. Pe-
ters, editorsCerebral Cortex: Functional Properties of Cortical Celiolume 2. Plenum
Press, 1984.

[23] G. M. Edelman. Neural Darwinism: Theory of Neural Group SelectioBasic Books,
1987.

[24] G. M. Edelman. Group selection and phasic reentrant signaling: A theory of higher brain
function. In F. O. Schmitt and F. G Worden, editof$ie neurosciences: Fourth study
Program MIT Press, Cambridge, MA, 1979.

[25] R. S. J. Frackpwiak, K. J. Friston, C. D. Frith, R. J. Dolan, and J. C. Mazziblitgman
Brain Function Academic Press, San Diego, 1997.

[26] H. A. Simson.The Sciences of the ArtificiaMIT Press, Cambridge, MA, 1969.

127

[27] D. Marr. Early processing of visual informatioRhilosophical transactions of the Royal
Society of London, Series B75:483-524, 1976.

[28] J. McClelland, B. McNaughton, and R. O’'Reilly. Why there are complementary learning
systems in the hippocampus and neocortex: Insights from the successes and failures of
connectionist models of learning and memd?gychological Revieywl 02:419-457, 1995.

[29] A. Cowey. Sensory and non-sensory disorders in man and mofRkelpsophical trans-
actions of the Royal Society of London, Serie@®3:3—-13, 1982.

[30] G. Tononi, O. Sporns, and G. Edelman. A measure for brain complexity: Relating func-
tional segregation and integration in the nervous systéthroceedings of the National
Academy of Scienceg81:5033-5037, 1994.

[31] J. A. Fodor.The Modularity of Mind MIT Press, Cambridge, MA, 1983.

[32] D.C. VanEssen, C. H. Anderson, and D. J. Fellman. Information processing in the primate
visual systemScience255:419-423, 1992.

[33] J. H. Kaas. Why does the brain have so many visual ardasPnal of Cognitive Neuro-
sciencesl1(2):121-135, 1989.

[34] T. Bossomaier and N. Snoad. Evolution and modularity in neural networks. In I. Pitas,
editor,Proc. IEEE Workshop on Non-Linear Signal and Image Procespiages 289-292,
1995.

[35] M. I. Jordan and R. A. Jacobs. A competitive modular connectionist architecture. In
Advances in Neural Information Processing Systenssag8es 767—773, San Maeto, CA,
1991. Morgan Kaufmann Publisher Inc.

[36] D. N. Osherson, S. Weinstein, and M. Stoli. Modular learni@pmputational Neuro-
sciencepages 369-377, 1990.

[37] M. I. Jordan and R. A. Jacobs. Task decomposition through competition in a modular
connectionist architecture: The what and where vision taSkgnitive Sciencel5:219—
250, 1991.

[38] Haykins Simon. Neural Networks, A comprehensive Foundatiollacmillan College
Publishing Company, New York, NY, 1994.

[39] N. K. Perugini and W. E Engeler. Neural network learning time: Effects of network and
training set size.Proceedings of the International Joint conference on neural networks
2:395-401, 1989.

128

[40] H. Gomi and M. Kawato. Recognition of manipulated objects by motor learning with
modular architecture networkbleural Networks6:485-497, 1993.

[41] Farooq Azam and H. F. VanLandingham. A modular neural network method for robust
handwritten character recognition. Amtificial Neural Networks for Intelligent Engineer-
ing, ANNIE’98 volume 8, pages 503-508, 1998.

[42] T. Lee. Structure level adaptation for artificial neural networkiKluwer Academic Pub-
lishers, 1991.

[43] S. M. Kosslyn.Image and Brain MIT Press, Massachusits, 1994.

[44] B. G. Stork, B. Jackson, and S. Walksion-optimality via pre-adaptation in simple neural
systemsvolume 3, pages 409-429. Addison-Wesley, Redwood City, CA, 1991.

[45] R. M. French. Catastrophic forgetting in connectionist networkeends in Cognitive
Sciences3(4):128-135, 1999.

[46] A.J.Sharkey. On combining artificial neural networ€snnection Scien¢c&(3 & 4):299—
313, 1996.

[47] A. J. Sharkey. Modularity, combining and artificial nueral netSonnection Scienge
9(1):3-10, 1997.

[48] N. J. Nilsson.Learning Machines: Foundations of Trainable Pattern-Classifying Systems
McGraw Hill, New York, 1965.

[49] R. Clemen. Combining forecasts: A review and annotated bibliograpttgrnational
Journal of Forecasting5:559-583, 1989.

[50] J. A. Barnett. Computational methods for a mathematical theory of evidenBeodeed-
ings of IFCAI| pages 868-875, 1981.

[51] C. W. J. Granger. Combining forecasts-twenty years ldigernational Journal of Fore-
casting 8, 1989.

[52] R. E. Schapire. Strength of weak learnévkachine Learnability5:197-227, 1990.

[53] Y. Freund and R. Y. Schapire. Experiments with a new boosting algorithrMalchine
Learning: Proceedings of the Thirteenth International Conferepages 148-156, 1996.

[54] R. A. Jacobs. Methods of combining experts’ probability assessmietsral Computa-
tion, 7:867—-888, 1995.

129

[55] L. Xu, A. Krzyzak, and C. Y. Suen. Methods of combining multiple classifiers and their
applications to handwriting recognitiohEEE Transactions on Systems, Man and Cyber-
netics 22:418-435, 1992.

[56] S. Hashem and B. Schmeiser. Approximating a function and its derivatives using mse-
optimal linear combination of trained neural networks. Rroceedings of the World
Congress on Neural Netwrok#olume 1, pages 617-620, 1993.

[57] M. Perrone and L. N. Cooper. When networks disagree: Ensemble methods for hybrid
neural networks. INeural Networks for Speech and Image Processigapman and
Hall, London, 1993.

[58] L. K. Hansen and P. Salamon. Neural networks ensemltii&E Transactions on Pattern
Analysis ans Machine Intelligenc&2:993-1000, 1990.

[59] K. Al-Ghoneim and V. Kumar. Learning ranks with neural networks. Applications
and Science of Artificial Neural Networks, Proceedings of the SRIEEme 2492, pages
446-464, 1995.

[60] G Rogova. Combining results of several neural network classifisiesural Networks
7:771-781, 1994.

[61] D. H. Wolpert. Stacked generalizatioNeural Networks5:241-259, 1992.
[62] L. Breiman. Bagging predictorddachine Learning24:123-140, 1996.

[63] E. Alpaydin. Multiple networks for function learning. limternational Conference on
Neural Networksvolume 1, pages 9-14, 1993.

[64] R. Battiti and A. Colla. Democracy in neural nets: Voting schemes for classification.
Neural Networks7(4):691-707, 1994.

[65] G. Auda and M. Kamel. Modular neural networks classifiers: A comparative siody-
nal of Intelligent and Robotic Systen24:117-129, 1998.

[66] G. Bartfei. Hierarchical clustering with art neural networks World Congress on Com-
putational Intelligencevolume 2, pages 940-944, Florida, USA, 1994.

[67] M. De Bollivier, P. Gallinari, and S. Thiria. Cooperation of neural nets and task decompo-
sition. InInternational Joint conference on Neural Netwarkelume 2, pages 573-576,
1991.

[68] H. Tsai, H. Tai, and A. Reynolds. An art2-bp supervised neural n&/drid Congress on
Neural Networksvolume 3, pages 619—-624, San Diego, USA, 1994.

130

[69] H. Raafat and M. Rashwan. A tree structured neural networktémnational Conference
on Document Analysis and Recognition ICDARS&ges 939-942, 1993.

[70] E. Corwin, S. Greni, A. Logar, and K. Whitehead. A multi-stage neural network classifier.
In World Congress on Neural Network®lume 3, pages 198-203, San Diego, USA, 1994.

[71] G. Auda, M. Kamel, and H. Raafat. Modular neural network architecture for classification.
In IEEE International Conference on Neural Networks, ICNN'@@lume 2, pages 1279—
1284, Washington, DC, 1996.

[72] G. Auda, M. Kamel, and H. Raafat. Modular neural network architecture for classification.
In IEEE International Conference on Neural Networks, ICNN'@&lume 3, pages 1240—
1243, Perth, Australia, 1995.

[73] H. Hackbarth and J. Mantel. Modular connectionist structure for 100-word recognition. In
International Joint conference on Neural Netwarkelume 2, pages 845-849, 1991.

[74] A. Waibel. Modular construction of time-delay neural networks for speech recognition.
Neural Computation1989:39-46, 1989.

[75] R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton. Adaptive mixtures of local ex-
perts.Neural Computation3(1):79-87, 1991.

[76] R.A. Jacobs, M.I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local
experts.Neural Computation3(1):79-87, 1991.

[77] R.A. Jacobs, M.I. Jordan, and A. Barto. Task decomposition through competition in a
modular coo nist architecture: the what and where vision tadksural Computation
3:79-87, 1991.

[78] S. Becker and G. E. Hinton. Learning mixture-models of spatial coheré&earal Com-
putation 5(2):267-277, 1993.

[79] E. Alpaydin and M. I. Jordan. Local linear perceptrons for classificatiBEE Transac-
tions on Neural Networks(3):788—792, 1996.

[80] L. Bottou and V. Vapnik. Local learning algorithmileural Computation4(6):888—900,
1992.

[81] M.I. Jordan and L. Xu. Convergence results for the EM approach to mixtures of experts
architecturesNeural Networks8(9):1409-1431, 1995.

[82] L. Xu and M. I. Jordan. On convergence properties of the EM algorithm for Gaussian
mixtures.Neural Computation8(1):129-151, 1996.

131

[83] C. K. Tham. On-line learning using hierarchical mixtures of expertdEmR Conference
on Artificial Neural Networkspages 347-351, 1995.

[84] M. I. Jordan and R. A. Jacobs. Hierarchal mixtures of experts and em algoifitearal
Computation6:181-214, 1994.

[85] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society, Series3B:1-38, June
1977.

[86] J. Fritsch, M. Finke, and A. Waibel. Adaptively growing hierarchical mixtures of experts.
In Advances in Neural Information Processing Systenmmages 459-465, 1997.

[87] R. A.Jacobs and M. I. Jordan. A modular connectionist architecture for learning piecewise
control strategiesProceedings of the American Control Confererizel597-1602, 1991.

[88] A. Kehagias and V. Petridis. Predictive modular neural networks for time series classifica-
tion. Neural Networks10(1):31-49, 1997.

[89] D. Miller and S. Uyar. A mixture of experts classifier with learning based on both labelled
and unlabelled data. lAdvances in Neural Information Processing Systeppmfes 571—
578, 1997.

[90] Farooq Azam and H. F. VanLandingham. An efficient dynamic systems identification
technique using modular neural networks. Artificial Neural Networks for Intelligent
Engineering, ANNIE'97volume 7, pages 503-508, 1997.

[91] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. St&@lassification and Regression
Trees Wadsworth and Brooks/Cole, Monterey, CA, 1984.

[92] J. H. Friedman. Multivariate adaptive regression splidemals of Statisticsl9(1):1-67,
1991.

[93] J. R. Quinlan. Induction of decision treédachine Learning1:81-106, 1986.

[94] R. M. French. Semi-distributed representations and catastrophic forgetting in connection-
istic networks.Connection Sciencd(3-4):365-377, 1992.

[95] R. M. French. Pseudo-recurrent connectionist networks: An approach to the sensitivity-
stability dilemma.Connection Scien¢®(4):353-379, 1997.

[96] N. E. Sharkey and A. J. Sharkey. An analysis of catastrophic interfergBoanection
Science7(3-4):301-329, 1995.

132

[97] H. White. Artificial Neural Networks, Approximation and Learning Theorglackwell
Publishers, Cambridge, MA, 1992.

[98] M. McCloskey and N. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In G. H. Bower, editdhe Psychology of Learning and
Motivation volume 24, pages 109-164. Academic Press, New York, 1989.

[99] R. Ratcliff. Connectionist models of recognition memory: Constraints imposed by learn-
ing and forgetting functions?sychological Reviey®7:285-308, 1990.

[100] G.A. Carpenter and S. Grossberg. Art2: Self-organization of stable category recognition
codes for analog input pattern&pplied Optics26:4919-4930, 1987.

[101] J. Kolen and J. Pollack. Backpropagation is sensitive to initial conditiGosaplex Sys-
tems 4:269-280, 1990.

[102] Y. Amir, M. Harel, and R. Malach. Cortical hierarchy reflected in the organization of
intrinsic connections in macaque monkey visual cordaurnal of Comparative Neurobi-
ology, 334:19-46, 1993.

[103] R. Malach, Y. Amir, M. Harel, and A. Grinvald. Relationship between intrinsic connec-
tions and functional architecture,revealed by optical imaging and in vivo targeted biocytine
injections in primate striate cortefroceedings of the National Academy of Science USA
90:10469-10473, 1993.

[104] J Szentagothai. The module-concept in cerberal cortex architecBnan Research
95:475-496, 1975.

[105] E. R. Kandal and J. H. Schwartriciples of Neural ScienceElsevier, New York, 1985.

[106] J. D. Keeler. Comparision between kanerva’s sdm and hopfield-type neural networks.
Cognitive Sciencgel2:299-329, 1988.

[107] Scott E. Fahlman and Christian Lebiere. The Cascade-Correlation learning architecture.
In Advances in Neural Information Processing Systenmmges 524-532, 1990.

[108] F Palmieri, C Catello, and G. D’Orio. Inhibitory synapses in neural networks with sig-
moidal nonlinearitiesIEEE Transactions on Neural NetworKH0(3):635-644, 1999.

[109] F Palmieri, J. Zhu, and J. Chang. Anti-hebbian learning in topologically constrained linear
networks: A tutotrial.IEEE Transactions of Neural Network&748—761, 1993.

[110] A. Carlson. Anti-hebbian learning in nonlinear neural netwoiiglogical Cybernetics
64:171-176, 1990.

133

[111] R. Kothari and K. Agyepong. On lateral connections in feed-forward neural networks. In
IEEE International Conference on Neural Networks Conference Proceedinfisne 1,
pages 13-18, 1996.

[112] H. Yin and N. M. Allinson. Bayesian learning for self-organising mag&ectronics
Letters 33(4):304-305, 1997.

[113] M. E. Salgado, G. C. Goodwin, and R. H. Middleton. Modified least squares algorithm in-
corporating exponential resetting and forgettiimgernational Journal of Contrq47:477—
491, 1988.

[114] D. Elliott. A better activation function for artificial neural networks. Technical Report ISR
TR 93-8, Institute for Systems Research, University of Maryland, College Park, MD, June
1993.

[115] J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear
predictors.Information and Computatiqri32(1):1-63, 1997.

[116] B. N. Cesa. Analysis of two gradient-based algorithms for on-line regreskaomnal of
Computer and System Sciencgd(3):392—-411, 1999.

[117] D.Precup and R. S. Sutton. Exponentiated gradient methods for reinforcement learning. In
Proceedings of the 14th International Conference on Machine Learpiages 272-277.
Morgan Kaufmann, 1997.

[118] A. Waibel, H. Sawai, and K. Shikano. Modularity and scaling in large phonemic neural
networks.|IEEE Transactions on Acoustics, Speech, and Signal Proces:(12):1888—
97, December 1989.

[119] R. A. Brooks. A robust layered control system for a mobile roblEEE Journal of
Robotics and AutomatiQiRA-2:14-23, 1986.

[120] F. Azam and H. VanLandingham. A new approach for modular neural network design
and learning. Ir8rd Internatioanl Conference on Computational Intelligence and Neuro-
sciencespages 147-150, 1998.

[121] A. M. WIlaker. On the asymptotic behavior of posterior distributialmirnal of the Royal
Statistical Society B31:80—-88, 1969.

[122] A. S. Weigend, M. Mangeas, and A. N. Srivastava. Nonlinear gated experts for time series:
discovering regimes and avioding overfittingnternational Journal of Neural Systems
6:373-399, 1995.

[123] Lei Xu, Geoff Hinton, and Michael I.Jordan. An alternative model for mixtures of experts.
In Advances in Neural Information Processing Systenmages 633-640, 1995.

134

[124] S. Geva and J. Sitte. A constructive method for multivariate function approximation by
multilayer perceptrondEEE Transactions on Neural Network¥4), 1992.

[125] C. C. Lee, P. C. Chung, J. R. Tsai, and C. I. Chang. Robust radial basis function neu-
ral networks. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics
29(6):674—685, 1999.

[126] I. Nonaka. The dynamic theory of organizational knowledge creat@yganization Sci-
ence 5(1):14-37, 1994.

[127] 1. Nonaka and H. Takeuchl.he Knowledge-Creating Compar@xford University Press,
New York, NY, 1995.

[128] T. Bayes. An essay towards solving a problem in the doctrine of chaRte®esophical
Transactions of Royal Society of Lond&3:370-418, 1783.

[129] H. Jeffreys.Theory of Probability Oxford Univerosty Press, London, 1939.

[130] R. T. Cox. Probability, frequency, and reasonable expectatidmerican Journal of
Physics14:1-13, 1946.

[131] F. V. JensenAn introduction to Bayesian networkSpringer-Verlag, New York, 1996.

[132] K. S. Narendra and K. Parthasarathy. Identification and control of dynamic systems using
neural networkslEEE Transactions on Neural Networkg1):4-27, 1992.

[133] J. C. Bezdek and K. P. Sankar, editoFuzzy models for pattern recognition : methods
that search for structures in datdnstitute of Electrical and Electronics Engineers, New
York, 1992.

[134] M. T. Hagan and M. B. Menhaj. Training feedforward networks with the marquardt algo-
rithm. IEEE Transactions on Neural Networkg6):989-993, 1994.

[135] C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

[136] J. L. Davis, R. W. Newburg, and E. J. Wegman, editdBsain struture, learning, and
Memory Westview Press, Inc., Boulder, CO, 1988.

[137] E. T. Rolls and A. TreveNeural Networks and Brain Functioi®xford University Press,
Inc., New York, New York, 1998.

[138] E. R. Kandel, J. H. Schwartz, and T. H. Jessel, edité?anciples of Neural Science
Elsevier, Amsterdam, Holland, 3rd edition, 1991.

135

[139] F. Richard ThompsonThe Brain, A neuroscience primew. H. Freeman and Company,
New York, 1993.

[140] R. Reed. Pruning algorithms - a survlyEE Transactions on Neural Networl&5):740—
747, 1993.

[141] Tin-Yau Kwok and Dit-Yan Yeung. Constructive algorithms for structure learning in feed-
forward neural networks for regression probleh&EE Transactions on Neural Networks
8(3):630-645, 1997.

[142] Enno Littmann and Helge Ritter. Cascade network architectureBroceedings of the
International Joint Conference on Neural Networks, vglpages 398-404, Baltimore,
1992.

[143] Natalio Simon, Henk Corporaal, and Eugene Kerckhoffs. Variations on the Cascade-
Correlation learning architecture for fast convergence in robot controPrae. Neuro-
Nimes pages 455-464, Nimes, France, November 1992. EC2.

[144] A. G. Ivakhnenko. The group method of data handling - a rival of the method of stochastic
approximation.Soviet Automatic Contrpl3(3):43-55, 1968.

[145] S. J. Farlow, editor.Self-Organizing Methods in Modeling : GMDH Type Algorithms
volume 54. Marcel Dekker, Inc., New York, New York, 1984.

[146] M. F. Tenorio and T. W. Lee. Self-organizing network for optimum supervised learning.
IEEE Transactions on Neural NetworkiH1):100-110, 1990.

[147] John Moody. Prediction risk and architecture selection for neural networks. In
V. Cherkassky, J.H. Friedman, and H. Wechsler, editrsin Statistics to Neural Net-
works: Theory and Pattern Recognition Applicatiogpringer, NATO ASI Series F, 1994.

[148] Eric B. Bartlett. Dynamic node architecture learning: An information theoretic approach.
Neural Networks7(1):129-140, 1994.

[149] Yoshito Hirose, Koichi Yamashita, and Shimpei Hijiya. Back-propagation algorithm
which varies the number of hidden unitdeural Networks4(1):61-66, 1991.

[150] Timur Ash. Dynamic node creation in backpropagation netwofksnnection Science
1(4):365-375, 1989.

[151] J. H. Friedman and W. Stuetzle. Projection pursuit regressloarnal of the American
Statistical Association/6(376):817-823, 1981.

[152] S. R. Waterhouse and A. J. Robinson. Constructive algorithms for hierarchical mixtures of
experts. IPAdvances Inn Eural Information Processing Systenmges 584-590, 1996.

136

[153] K. Saito and R. Nakano. A constructive learning algorithm for an HMBEPrbteedings
of the IEEE International Conference on Neural Netwopages 1268-1273, 1996.

[154] K. Chen, L.P. Yang, X. Yu, and H.S. Chi. A self-generating modular neural network
architecture for supervised learningeurocomputingl6(1):33-48, 1997.

[155] V. Ramamurti and J. Ghosh. Structurally adaptive modular networks for nonstationary
environmentsIEEE Transactions on Neural NetworkK0(1):152—-160, 1999.

[156] J. L. Alba, L. Docio, D. Docampo, and O. W. Marquez. Growing gaussian mixtures
network for classification applicationSignal Processing/6(1):43—60, 1999.

[157] J. ReasonHuman error Cambridge University Press, New York, 1990.

[158] M. DesJardins. Goal-directed learning: A decision-theoretic model for deciding what to
learn next. InGoal-Driven LearningCambridge, Massachusetts, 1995. MIT Press.

[159] K. Lang and M. Witbrock. Learning to tell two spirals apdProceedings of the connec-
tionist Models summer Schoglages 52-59, 1988.

[160] M. Lehtokangas. Modeling with constructive backpropagatiohleural Networks
12(4):707-716, 1999.

[161] M. Lehtokangas. Constructive backpropagation learning algoritieural Network
World, 8(4):387-400, 1998.

[162] D. Phatak and I. Koren. Connectivity and performance tradeoffs in the cascade-
correlationn learning architecturlEEE Transactions on Neural Networks6):930-935,
1994.

[163] G. Drago and S. Ridella. Cascade-correlation: an incremental tool for function approx-
imation. InProceedings of the International Conference on Artificial Neural Networks
pages 750-754, 1993.

[164] S. Sjogaard. Generalization in cascade-correlation networkarobeedings of the IEEE
Signal Processing Workshppages 59-68, 1992.

[165] N. Simon, H. Corporaal, and E. Kerckhoffs. Variants on the cascade-correlation learning
architecture for fast convergence in robot controlPtnceedings of the Fifth International
Conference on Neural Networks and their Applicatipages 455-464, 1992.

[166] M. I. Jordan and R. A. Jacobs. Hierarchies of adaptive expert&.diances in Neural
Information Processing Systemsphges 985-992. Morgan Kaufmann, San Mateo, CA,
1992.

137

[167] M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.
Neural Computation6(2):181-214, 1994.

[168] P. Cheeseman, J. Stutz, J. Taylor, M. Self, and J. Kelley. Autoclass: A bayesian classi-
fication system.Proceedings of the 5th International Conference on Machine Learning
1988.

[169] D. F. Specht. A general regression neural netwdBEE Transactions on Neural Net-
works 2:568-576, 1991.

[170] R. J. A. Little and D. B. RubinStatistical Analysis with Missing Dataohn Willey, New
York, NY, 1987.

[171] C. F. J. Wu. On the convergence properties of the EM algoritAmnals of Statistics
11(1):95-103, 1983.

138

Vita

Farooq Azam was born in Gujranwala City, the fourth largest city in Pakistan. He showed a spe-
cial aptitude for the field of engineering at very young age, and decided to pursue an engineering
career. He received his Bachelor of Engineering degree, with distinction, with specialization in
Aviation Electronics (Avionics) in 1985 from the College of Aeronautical Engineering, Karachi.
He stood first in his graduating class and was honored with two gold medals. One for being
the best Avionics engineer of his class and the second one for being the best overall engineering
student among the students who graduated in different engineering disciplines in that year. After
finishing his bachelors degree, he worked for seven years as a research and evaluation engineer
for the research and development wing of the Pakistan Air Force. In 1992, he came to the United
States of America to pursue higher studies. He finished his Masters of Science in Electrical
Engineering from University Of Southern California in 1993. He transferred to Virginia Tech

to pursue his Ph.D. studies at Virginia Tech. He received 6 years of support from the Bradley
Department of Electrical engineering at Virginia Tech as departmental workstation laboratory
manager. His extracurricular interests include playing squash, listening to music and reading
about philosophy. He has served as the president of Pakistani Students Association at Virginia
Tech for past three years.

