LIST OF FIGURES

2. LITERATURE REVIEW

Figure 1 The Fringed-Micelle Model for Semicrystalline Polymers
 (Adopted from Ref. 3). ..9

Figure 2 Regularly folded lamellar structure (top) in comparison to a more random
 "switchboard" model (bottom) (Adopted from Ref. 10)..10

Figure 3 A polymer spherulite with chain folded lamellae. The branch points are also
 indicated (Adopted from Ref. 7). ..13

Figure 4 Schematic representation of (a) linear polyethylene and (b) ethylene/1-butene
 copolymer (Adopted from Ref. 2) ..16

Figure 5 The exclusion (top) and uniform inclusion (bottom) models as the extreme
 cases for crystalline random copolymers (Adopted from Ref. 40)24

Figure 6 Equilibrium distribution of crystalline sequences in a random ethylene/1-butene
 copolymer (Adopted from Ref. 36). ..36

Figure 7 Structure of cyclopentadienyl amide titanium catalyst used in the synthesis of
 ethylene/α-olefin copolymers (Adopted from Ref. 66) ..41

Figure 8 Classification of copolymer morphology (Adopted from Ref. 85)49

Figure 9 Orthorhombic crystal structure for polyethylene (Adopted from Ref. 2)68

Figure 10 The two allowed phase relationships of chain vibrations in the unit cell of
 polyethylene. The short arrows represent the direction of motion of the
 corresponding atoms. The long and broad arrows represent the direction of the
 instantaneous dipole moment (Adopted from Ref. 122)69

3. EXPERIMENTAL

Figure 1 The displacements corresponding to the baseline, sapphire and the copolymer,
 EB-912 during cooling from the melt (180°C) at 20°C/min84
Figure 2 Absolute heat capacities, the C_p baseline and the "final" heat capacities for EB-912 cooled from the melt at 20°C/min..86

Figure 3 Evolution of the low endotherm for EB-883 quenched from the melt (160°C) to -20°C and subsequently crystallized at $T_x = 40°C$ for various times. The Gaussian peaks used in the deconvolution are also shown (black lines). The red curve represents the low endotherm. (a) Quenched, (b) $t_x = 1$ min, (c) $t_x = 60$ min. ..88

4. MATERIALS CHARACTERIZATION

Figure 1 Numbering scheme for the identification of carbon atoms in the 13C NMR spectra of an ethylene/α-olefin copolymer (Adopted from Ref. 1).................100
Figure 2 Ethyl branches in the 1,3-position (Adopted from Ref. 1).100
Figure 3 Ethyl branches in the 1,2-position, indicating head-to-head addition.............100
Figure 4 Comparison of the densities of ethylene/1-butene copolymers from the present study (•) with the model hydrogenated polybutadienes from Krigas et al. (○). The value of comonomer content used is from Table 2.114
Figure 5 Effect of residence time at 23°C on the bulk density of EB-874 (from L. Richardson) ...116

5. DIFFERENTIAL SCANNING CALORIMETRY

Figure 1 Degrees of crystallinity at -20°C for ethylene/1-butene, ethylene/1-pentene and ethylene/1-hexene copolymers (after cooling from the melt at 5°C/min) as a function of comonomer content. The crystallinity data for HPBs6,7, are also included..122
Figure 2 Peak melting temperatures for ethylene/1-butene, ethylene/1-pentene and ethylene/1-hexene copolymers as a function of comonomer content. The peak melting temperatures for HPBs7 are also included. ..123
Figure 3 Corrected heat capacities for EB-912 during cooling from the melt at different rates .. 124

Figure 4 Degrees of crystallinity as a function of temperature obtained at different cooling rates from the melt for linear polyethylene (from Dr. A. Alizadeh). 127

Figure 5 Degrees of crystallinity as a function of temperature obtained at different cooling rates from the melt for ethylene/1-butene copolymers of various branch contents .. 128

Figure 6 Degrees of crystallinity as a function of temperature obtained at different cooling rates from the melt for ethylene/1-pentene copolymers of various branch contents .. 129

Figure 7 Degrees of crystallinity as a function of temperature obtained at different cooling rates from the melt for ethylene/1-hexene copolymers of various branch contents .. 130

Figure 8 Degrees of crystallinity as a function of temperature for EB-894 during cooling at 20°C/min from the melt and during subsequent heating at 20°C/min. 132

Figure 9 DSC thermograms for EB-883 after crystallization for various times at 20°C.. 135

Figure 10 Curves obtained by subtraction of heating traces after finite crystallization times at 20°C from that of the quenched sample for EB-883 .. 136

Figure 11 Relative positions of the low endotherms for EB-912 after crystallization for various times at 20°C .. 139

Figure 12 Relative positions of the low endotherms for ethylene/1-butene copolymers after crystallization for various times at 20°C .. 140

Figure 13 Relative positions of the low endotherms for ethylene/1-pentene copolymers after crystallization for various times at 20°C .. 141

Figure 14 Relative positions of the low endotherms for ethylene/1-hexene copolymers after crystallization for various times at 20°C .. 142

Figure 15 Relative positions of the low endotherms for ethylene/1-butene, ethylene/1-pentene and ethylene/1-hexene copolymers after crystallization for various times at 20°C .. 143
Figure 16 Typical Avrami plot for EB-912 after crystallization for various times at 20°C. The parameters corresponding to short (top) and long (bottom) times are also indicated ... 152

Figure 17 Crystallization rate constant, k as a function of branch concentration for ethylene/1-butene copolymers ... 154

Figure 18 DSC thermograms for EB-912 after crystallization for long times at different crystallization temperatures ... 157

Figure 19 DSC thermograms for EB-912 after crystallization for various times at 100°C .. 158

Figure 20 Peak positions of the endotherms for EB-912 after crystallization at various times for T_x ranging from 20 to 100°C... 159

Figure 21 Avrami plots for EB-912 (with ~5 mole % butene) crystallized at various temperatures. The numbers indicate $T_x/(n)$... 161

Figure 22 Normalized rate constant, k, for EB-912 as a function of crystallization temperature ... 164

Figure 23 Variation of B as a function of crystallization temperature for the ethylene/1-butene copolymers of various branch contents .. 165

Figure 24 Avrami exponents, n as a function of crystallization temperature for the ethylene/1-butene copolymers of various branch contents 166

Figure 25 Variation of the cross-over temperature, T^*, with comonomer content for the ethylene/1-butene copolymers ... 169

6. ATOMIC FORCE MICROSCOPY

Figure 1 Atomic Force Micrograph of EB-928 (~2 mole % 1-butene); Quenched sample (Cooling rate > 40°C/min) ... 184

Figure 2 Atomic Force Micrograph of EB-912 (~5 mole % 1-butene); Quenched sample (Cooling rate > 40°C/min) ... 185

Figure 3 Atomic Force Micrograph of EB-894 (~9 mole % 1-butene); Quenched sample (Cooling rate > 40°C/min) ... 186
Figure 4 Atomic Force Micrograph of EB-883 (~13 mole % 1-butene); Quenched sample (Cooling rate > 40°C/min) ...187
Figure 5 Atomic Force Micrograph of EB-879 (~14 mole % 1-butene); Quenched sample (Cooling rate > 40°C/min) ...188
Figure 6 Atomic Force Micrograph of EB-874 (~16 mole % 1-butene); Quenched sample (Cooling rate > 40°C/min) ...189
Figure 7 Atomic Force Micrograph of EP-910 (~ 5 mole % 1-pentene); Quenched sample (Cooling rate > 40°C/min) ...190
Figure 8 Atomic Force Micrograph of EH-910 (~ 4 mole % 1-hexene); Quenched sample (Cooling rate > 40°C/min) ...191
Figure 9 Atomic Force Micrograph of EB-912 (~5 mole % 1-butene) at a higher magnification; Quenched sample (Cooling rate > 40°C/min)......................192
Figure 10 Atomic Force Micrograph of EB-912 (~5 mole % 1-butene) (a) quenched sample (cooling rate > 40°C/min.) (b) slowly cooled sample (cooling rate = 1°C/min.)...197

7. FOURIER TRANSFORM INFRARED SPECTROSCOPY

Figure 1 Influence of temperature on the infrared spectrum of EB-883 (~ 13 mole % 1-butene) (Arrow indicates increasing temperature)202
Figure 2 Peak position and integrated intensity of the 775cm⁻¹ band as a function of comonomer content for the ethylene/1-butene copolymers205
Figure 3 Comparison of fitted melt with the experimentally obtained melt spectrum at 135°C for EB-883 with ~ 13 mole % 1-butene (● Experimental; — Fitted) .208
Figure 4 (a) The amorphous band estimated from mathematical modeling in comparison to the experimental semicrystalline spectrum (● Experimental spectrum; — Amorphous band from modeling), (b) the crystalline band after amorphous band subtraction with the fitted Voigt peaks (● Experimental Crystalline Band; — Fitted Voigt peaks) for EB-912 (~ 5 mole % 1-butene) at 30°C.....................209
Figure 5 Crystallinity as a function of temperature for the ethylene/1-butene copolymers
(○ First heating; • Cooling; △ Second heating cycles) ..212

Figure 6 (a) Infrared crystallinities of the ethylene/1-butene copolymers as a function of
comonomer content, (b) infrared spectra at 25°C for the ethylene/1-butene
copolymers with varying branch contents ...216

Figure 7 Infrared spectra of octacosane at various temperatures (as indicated)
(From Dr. A. Alizadeh) ...220

Figure 8 Ratios of I\textsubscript{730}/I\textsubscript{720} for linear polyethylene and an n-paraffin, octacosane at
various temperatures (from Dr. A. Alizadeh) ...221

Figure 9 Ratio of I\textsubscript{730}/I\textsubscript{720} for EB-912 (with ~ 5 mole % 1-butene) during (○) Heating of a
quenched sample () Slow Cooling (△) Heating of a slowly cooled sample (A
rate of 1.5°C/min was used for all three processes) ..222

Figure 10 Ratio of I\textsubscript{730}/I\textsubscript{720} for EB-894 (with ~ 9 mole % 1-butene) during (○) Heating
of a quenched sample () Slow Cooling (△) Heating of a slowly cooled
sample (A rate of 1.5°C/min was used for all three processes)223

Figure 11 Ratio of I\textsubscript{730}/I\textsubscript{720} for EB-883 (with ~ 13 mole % 1-butene) during (○) Heating
of a quenched sample () Slow Cooling (△) Heating of a slowly cooled sample (A
rate of 1.5°C/min was used for all three processes) ..224

Figure 12 Deconvolution of the crystalline portion of the infrared spectrum. The sample
indicated is EB-883 (~ 9 mole % 1-butene) at 25°C ..229

Figure 13 Variation of the integrated intensity of the second crystal structure as a
function of temperature for the copolymers, (○) EB-912 (~ 5 mole % 1-butene),
(△) EB-894 (~ 9 mole % 1-butene) and () EB-883 (~ 13 mole % 1-butene)
...231

Figure 14 Variation in the ratio, I\textsubscript{730}/I\textsubscript{720} with comonomer content for the ethylene/1-
butene copolymers ...238