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Experimental Design Optimization and Thermophysical Parameter Estimation
of Composite Materials Using Genetic Algorithms

Sandrine Garcia

(ABSTRACT)

Thermophysical characterization of anisotropic composite materials is extremely

important in the control of today fabrication processes and in the prediction of structure

failure due to thermal stresses. Accuracy in the estimation of the thermal properties can be

improved if the experiments are designed carefully. However, on one hand, the typically used

parametric study for the design optimization is tedious and time intensive. On the other hand,

commonly used gradient-based estimation methods show instabilities resulting in

nonconvergence when used with models that contain correlated or nearly correlated

parameters.

The objectives of this research were to develop systematic and reliable methodologies

for both Experimental Design Optimization (EDO) used for the determination of thermal

properties, and Simultaneous Parameter Estimation (SPE). Because of their advantageous

features, Genetic Algorithms (GAs) were investigated for use as a strategy for both EDO and

SPE. The EDO and SPE approaches used involved the maximization of an optimality

criterion associated with the sensitivity matrix of the unknown parameters, and the

minimization of the ordinary least squares error, respectively. Two versions of a general-

purpose genetic-based program were developed: one is designed for the analysis of any EDO /

SPE problems for which a mathematical model can be provided, while the other incorporates

a control-volume finite difference scheme allowing for the practical analysis of complex

problems. The former version was used to illustrate the genetic performance on the

optimization of a difficult mathematical test function.

Two test cases previously solved in the literature were first analyzed to demonstrate and

assess the genetic-based {EDO/SPE} methodology. These problems included the optimization

of one and two dimensional designs for the estimation at ambient temperature of two and

three thermal properties, respectively (effective thermal conductivity parallel and

perpendicular to the fibers plane and effective volumetric heat capacity), of anisotropic

carbon/epoxy composite materials. The two dimensional case was further investigated to



evaluate the effects of the optimality criterion used for the experimental design on the

accuracy of the estimated properties.

The general-purpose genetic-based program was then successively applied to three

advanced studies involving the thermal characterization of carbon/epoxy anisotropic

composites. These studies included the SPE of successively three, seven and nine

thermophysical parameters, with for the latter case, a two dimensional EDO with seven

experimental key parameters. In two of the three studies, the parameters were defined to

represent the dependence of the thermal properties with temperature. Eventually, the kinetic

characterization of the curing of three thermosetting materials (an epoxy, a polyester and a

rubber compound) was accomplished resulting in the SPE of six kinetic parameters.

Overall, the genetic method was found to perform extremely well despite the high

degree of correlation and low sensitivity of many parameters in all cases studied. This work

therefore validates the use of GAs for the thermophysical characterization of anisotropic

composite materials. The significance in using such algorithms is not only the solution to ill-

conditioned problems but also, a drastically cost savings in both experimental and time

expenses as they allow for the EDO and SPE of several parameters at once.

Keywords : Anisotropic Composite Materials - Experimental Design Optimization - Genetic

Algorithms - Kinetic Parameters - Parameter Estimation - Thermal Properties - Thermosetting

Materials.



Conception Optimale d’Expériences et Estimation de Paramètres Thermophysiques
de Matériaux Composites par Algorithmes Génétiques

Sandrine Garcia

(RESUME)

La caractérisation thermophysique de matériaux composites est un enjeu crucial. La

précision de l’estimation peut être améliorée si les expériences sont conçues avec pertinence.

Cependant, l’étude paramétrique traditionnellement employée pour l’optimisation

expérimentale est limitée, et les méthodes d’estimation basées sur le calcul d’un gradient sont

instables pour des problèmes mal conditionnés.

L’objectif de ce travail était de développer des méthodologies robustes pour la

Conception Optimale d’Expériences (COE) destinées à l’identification de propriétés

thermiques, et pour l’Estimation Simultanée de Paramètres (ESP). L’approche utilisée

s’appuie sur les spécificités avantageuses des Algorithmes Génétiques (AGs) et consiste en

COE à maximiser un critère d’optimisation basé sur la matrice de sensibilité des propriétés

recherchées et en ESP, à minimiser l’erreur des moindres carrés. Un programme général basé

sur les AGs a été développé sous deux versions, permettant l’analyse soit de modèles

analytiques soit de modèles numériques par volumes finis.

Les AGs de COE et d’ESP ont d’abord été testés sur des cas de la littérature, puis

appliqués sur des cas nouveaux. Ces études ont été menées selon une approche à la fois

numérique et expérimentale. Elles concernent la caractérisation thermique de composites

anisotropes carbone/époxy, avec des COE et ESP comportant respectivement jusqu’à sept

paramètres expérimentaux, et neufs paramètres thermophysiques. Enfin, la méthodologie

d’ESP a été étendue à la caractérisation de cinétiques chimiques de résines

thermodurcissables mettant en jeu six paramètres cinétiques.

Malgré de très fortes corrélations et faibles sensibilités de plusieurs paramètres dans

toutes les études, les résultats confirment la remarquable robustesse des AGs. L’intérêt de leur

utilisation réside non seulement dans la solution de problèmes mal posés, mais aussi dans la

réduction de temps et coûts expérimentaux, en permettant des estimations simultanées de

plusieurs paramètres.



Mots Clefs : Algorithmes Génétiques - Cinétiques Chimiques - Conception Optimale

d’Expériences - Matériaux Composites Anisotropes - Méthodes Inverses - Propriétés

Thermophysiques - Résines Thermodurcissables - Sensibilité et Corrélation.
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CHAPTER 1

Introduction

1.1 Motivation

Composite materials can offer superior performance over standard metals, including

higher strength-to-weight ratios and better corrosion and wear resistance. Because of these

improved characteristics the use of these materials has been growing rapidly in this past

quarter century. Composite technology prevails in a wide variety of fields, including the

aerospace, aeronautics, automotive, tooling and sporting goods industries, to name but a few.

In these high technology applications it is important that the properties of these advanced

materials be known for design purposes. Knowledge of the thermal properties is particularly

important in modeling composite fabrication processes and in predicting thermal stresses

developed when the materials are subjected to non-isothermal environments. On the one hand,

composite fabrication processes involve high coupling between heat transfer within the

material and exothermic chemical reactions. The control of these thermal phenomena is a

crucial aspect for improvement in productivity and quality of components. Such control

requires the ability to simultaneously predict both the temperature distribution within the

material and the rate of cure. This necessitates the knowledge of both the thermal properties

and the parameters of the kinetic model governing the curing process. On the other hand,

thermal stress analysis is essential in the design of aerospace structures and vehicles, as these

structures undergo extreme and dynamic thermal conditions. The thermal loads applied on the

materials induce large temperature gradients within the structure, which in turn result in the

development of thermal stresses and thus possible structural failure. To prevent this, the

temperature response of the structure to an applied heat flux must be investigated, which

necessitates knowledge of the thermal properties.



2

The thermal properties necessitated in both fields of study described above include the

effective conductivity and volumetric heat capacity. These properties are thermally dependent

and due to the anisotropic characteristic of composite materials the conductivity is also

directionally dependent. Composites with polymeric matrix and unidirectional fibers are

considered in this work. Two conductivity components, parallel and perpendicular to the fiber

plane, thus govern conduction within the material. Many experimental and analytical methods

have been proposed for determining these thermal properties. An alternative is to use a

parameter estimation procedure that consists of the minimization of an objective function, and

that allows for the simultaneous estimation of the thermal properties. The objective function

usually contains the sum of squared error between measured and calculated temperatures from

a mathematical model. Experiments are therefore required with this approach.

The accuracy of the estimated properties is directly related to the sensitivity of the

temperature distribution with respect to the thermal properties and can be increased if the

experiments are carefully designed (Beck and Arnold, 1977). Experimental parameters such

as sensor location, heating time, and heating area are important factors to be considered in the

design. Optimization of experimental designs used in the prediction of thermal properties is

therefore crucial in maximizing the amount of information that can be obtained from the

experiments. The optimal input conditions are typically found by maximizing a single

criterion associated with the sensitivity matrix of the unknown properties to be estimated.

Among the different design criteria, the D-optimality criterion is the most commonly used and

is often recommended because it allows thermal property estimates to be obtained with

minimum variances. Due to the complexity of an analytical scheme in most cases, the

optimization technique typically applied is a stepwise parametric study. However, because it

is an iterative process, this technique is tedious and time intensive and therefore restricts the

researchers from expanding their work to the optimization of a large number of design

variables (e.g. more than three) and to complex designs. In addition to its lack of efficiency,

the parametric study does not guarantee the determination of global optima.

The optimal designs are then used in a parameter estimation procedure. Commonly used

procedures involve the computation of the gradient. One recommended procedure (Beck and

Arnold, 1977) is the modified Box-Kanemasu method that has proven to be effective provided

there is sufficient information from the sensitivity coefficients of the unknown thermal

properties, and no correlation between the properties. Generally speaking, two parameters are

considered correlated when their sensitivity coefficients are nearly (more than 90% as a rule

of thumb) linearly dependent. The modified Box-Kanemasu method is a modification of the
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Gauss method, which is a first-order unconstrained descent method. However, when used

with models that contain correlated or nearly correlated properties, the modified Box-

Kanemasu method can show instabilities resulting in non-convergence. Indeed, correlation or

near-correlation among parameters is known to be a limiting factor for the converged

application of gradient-based estimation procedures. One difficulty in the simultaneous

estimation of both directional thermal conductivities of composite materials is that these

parameters are correlated. Typically, the approach is, therefore, to first determine the

component orthogonal to the fibers using measurements from a specific experimental design

and then to assume this property known to estimate the component in the transverse direction

using another design.

Correlation is also encountered among the parameters of the kinetic model governing

the curing during composite material processing. These parameters usually involve one or two

rate constant(s) which follow an Arrhenius law, and one or two exponent(s). Application of

gradient-based procedures for the simultaneous estimation of the kinetic parameters is

therefore restricted to the identification of the uncorrelated parameters assuming the others to

be known.

The need for systematic and reliable methodologies for both (1) Experimental Design

Optimization (EDO) used in the determination of thermal properties, and (2) Simultaneous

Parameter Estimation (SPE), provided the motivation for this research. The driving force was

on developing EDO and SPE procedures that overcome the limits of commonly used ones,

parametric studies and gradient-based methods, respectively. Primary efforts were focused on

selecting an optimization/estimation method that could efficiently search a multimodal

parametric space for a global optimum. The three main types of search methods include

calculus-based methods, enumerative techniques and random/probabilistic search algorithms.

The first and second type were eliminated as they involve methods that present the same

attributes (and therefore same limits) as gradient-based methods and parametric studies,

respectively. Methods from the third type, and more particularly those presenting the attribute

of probabilistic evolutionary search, have actually achieved increasing popularity as

researchers have recognized the shortcomings of the two previous types. Besides their non-

gradient nature, their main advantages encompass the ability to avoid local optima and to

handle complex non-linear objective functions while being straightforward to apply. Genetic

Algorithms (GAs), which belong to the field of evolutionary computation, are based on
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genetic and selection mechanisms of nature, and provide for the minimization of an objective

function using a probabilistic directed search without the use of derivatives. These algorithms

have been theoretically and empirically proven to provide robust searches in complex spaces

(Goldberg, 1981), and in this last decade, have shown their effectiveness and efficiency in the

engineering field. Because of their advantageous features, GAs were investigated for use in

this study as a strategy for both EDO and SPE. The motivation in using GAs was their

potential to overcome both the lack of efficiency of parametric studies, and the restriction to

the estimation of non-correlated parameters of gradient-based methods, as introduced earlier.

Note the originality of this research as there is no knowledge of previous work done with GAs

in the field of the thermophysical characterization of anisotropic composite materials.

This work is associated with a dual US-French PhD program between the Department

of Mechanical Engineering at Virginia Tech (VT), USA, and the Laboratoire de

Thermocinétique de l’ISITEM (LTI) of the University of Nantes, France. The project was

initiated at VT as part of a multi-year research cooperation with the Thermal Structures

Branch of NASA Langley Research Center, Hampton, VA, USA. The goal of this

cooperation, which started in 1993 and ended in 1998, was to develop methodologies for the

Thermal Characterization of Aerospace Structures. The strategy used in this multi-year

research effort was to first develop methodologies for relatively simple systems and then to

systematically modify these methodologies to analyze complex structures. This can be

thought of as a building block approach. This work was built upon the previous analysis

performed by Moncman (1994) and Hanak (1995). (Also note Moncman et al., 1995).

Moncman developed experimental designs for the estimation of thermal properties of

composites subjected to one-dimensional heat transfer. Hanak focused on two-dimensional

designs and on the experimental verification of these designs. This latter work emphasized the

limits of the traditionally used techniques in both design optimization and thermal property

estimation. By overcoming these limits, the contribution of this investigation will enable

instrumentation of a complex structure and simultaneous acquisition of meaningful property

data.

The second stage of this dual program was performed at the LTI in Nantes. The project

was incorporated into the applications of the research Group “Thermique des Matériaux et des

Procédés de Mise en Forme” (Thermal Analysis of Materials and of Fabrication Processes),

the goal of which is to analyze inverse problems associated with thermal effects in composite

material fabrication processes. The development of genetic-based EDO and SPE
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methodologies were thought here to contribute to both the thermal characterization of

composite materials and the kinetic characterization of curing processes for the control of

composite fabrication processes.

1.2 Goals and Objectives

The overall goals of this research were divided into two major areas:

I. the development of an Experimental Design Optimization methodology for thermal

property estimation,

and,

II. the development of a Simultaneous Parameter Estimation methodology for general use.

The emphasis was on formulating sufficiently general and robust approaches allowing for

practical applications of the methodologies. In order to achieve these goals, a generalized

genetic-based methodology was developed for both areas of interest.

Specific short-term objectives were formulated and are:

1. develop an optimization code based on GAs and validate the optimization methodology

on test problems;

2. expand the GA code to include an estimation procedure and validate the estimation

methodology on test problems, in particular problems involving correlations among the

properties to be estimated;

3. analyze the effects of the optimality criterion in terms of the consequent accuracy of the

thermal property estimates;

4. formulate the GA code as a general-purpose computer program for the analysis of any

mathematical model; demonstrate its performance on a mathematical test function given

in the literature and investigate the effects of genetic operators in terms of convergence of

the algorithm;

and,

5. extend the optimization/estimation methodology to a variety of optimal design and

simultaneous parameter estimation problems.
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The first two objectives were directed towards the appraisal of using GAs as both EDO

and SPE methodologies. First, a standard GA with real-number coding and featuring a Basic

Elitist strategy (BEGA) was developed for the optimization of experiments. The optimization

methodology was demonstrated and verified using two test cases previously solved in the

literature using a parametric study. The experiments investigated included one- and two-

dimensional optimal designs performed by Moncman (1994) and Hanak (1995), respectively,

for the estimation of thermal properties of composite materials. In the first case, sensor

location and heating time were optimized for the simultaneous estimation of the effective

thermal conductivity through the fiber plane and the volumetric heat capacity. In the second

case, four parameters involving sensor location, heating time and heating area, were

optimized in experiments used to simultaneously estimate both effective thermal

conductivities perpendicular and parallel to the fibers and the volumetric heat capacity. In

both cases, the experimental design was optimized by maximizing the objective function

based on the D-criterion. To improve the computational efficiency of the BEGA, particularly

for expensive objective functions, the algorithm was modified to form an Extended Elitist GA

(EEGA). The EEGA was applied to the two test cases discussed above, and the performance

of the EEGA was compared with the results from both the BEGA and parametric studies.

The EEGA was then applied towards the estimation of thermal properties. Here, the

algorithm was used to minimize an objective function based on the least squares error. Two

case studies involving nonlinear parameter estimation were used to demonstrate the

effectiveness of the EEGA. The first concerned the simultaneous estimation of two and three

thermal properties of an anisotropic composite material using the experimental designs

optimized in the optimization test problems described above. These estimation problems were

investigated previously by Hanak (1995). The second test case involved a one-dimensional

transient analysis of combined conduction and radiation heat transfer in an insulative foam

material (polystyrene) for the simultaneous estimation of four thermal and radiative

properties. These included the effective thermal conductivity, volumetric heat capacity and

extinction coefficient of the material, and the volumetric heat capacity of the heater. This

study was realized in cooperation with J. Guynn (1996) as part of his master’s thesis in

Mechanical Engineering at VT. The results are not reported in this dissertation however, but

can be found in the literature (Garcia et al., 1998). In both case studies, the properties were

estimated as constants at ambient temperature.
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Once the GA-based optimization/estimation methodologies were assessed, a study was

conducted to evaluate the effects of the optimality criterion used for the experimental design

on the accuracy of the estimated thermal properties. The one- and two-dimensional transient

heat transfer analyses associated with the simultaneous estimation of two and three thermal

properties of an anisotropic material (Hanak, 1995) and discussed previously, were also used

here. The experimental designs in both analyses were optimized using the A-, D-, and E-

optimality criteria, which are the three main criteria proposed for the design of experiments.

Based on these optimal designs, simulated data were generated using an analytical

mathematical model of the design. The thermal properties were then estimated from the

simulated data from each experimental design, and the confidence intervals of the resulting

estimates were compared. EEGA was used as both the optimization and estimation

methodologies.

The completion of the first three specific objectives concluded the first stage of this dual

Ph.D. program initiated at VT. The genetic-based optimization and estimation methodologies

developed at VT were used by Hanuska (1998; also in Hanuska et al., 1999) for the thermal

characterization of a complex aerospace structure (composite/honeycomb panel). This work

was performed as part of his master’s thesis in Mechanical Engineering at VT and concluded

the multi-year research cooperation sponsored by the Thermal Structure Branch of NASA

Langley Research Center.

The second stage of this dual program was performed at the LTI in Nantes. Efforts

focused on accomplishing the last two specific objectives. Prior to formulating a general-

purpose computer program, a third GA, GA_3, was developed built upon both the previous

work and the experience gained in the GA field. The algorithm was then constructed in two

parts, an invariant and an adaptation part, following the structure of the program CONDUCT

developed by Patankar (1991). The invariant part contains the general calculation scheme that

is common to all possible EDO/SPE problems within the overall restrictions of the program. It

is written without any knowledge or assumption about the particular details of the problem to

be solved. The user provides the problem specification in the adaptation part. Based on the

GA_3 structure, two versions were developed. The GAMAIN version was designed for the

analysis of any optimization/estimation problems for which a mathematical model can be

provided in the adapt part. In heat transfer analyses for which an analytical solution cannot be

obtained, the GACONDUCT version was used. The latter combines the feature of GA_3 with
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a finite difference program based on an extension of the program CONDUCT. Therefore, the

use of GACONDUCT allows for any EDO/SPE applications that deal with the computation of

conduction and duct flow heat transfer in two-dimensional rectangular or cylindrical

geometry.

To illustrate the performance of the GA_3, a mathematical function called f6 (Davis,

1991) was optimized using GAMAIN. This test case was also used as a basis for the

investigation of the effects of some genetic operator variants in terms of convergence of the

algorithm.

The general-purpose optimization/estimation GA_3 program was then applied to a

variety of EDO and SPE problems. The applications performed were in agreement with the

research environment at the LTI. As part of an industrial contract, the GACONDUCT was

used in the simultaneous estimation of the thermal properties of composite materials

(effective thermal conductivities perpendicular and parallel to the fibers and volumetric heat

capacity) over the temperature range [30-150°C]. To take into account the temperature

dependence in the properties, these latter were sought to be estimated as constant at six

different temperature levels that covered the required range. Taking advantage of the

estimation problem similarities with the two-dimensional transient heat transfer analysis

performed by Hanak (1995), experiments were based on the same basic experimental design,

and the same nondimensional optimal experimental parameters were used. Additionally, this

study required the use of an apparatus to control the initial temperature inside the samples. An

interesting personal aspect of this application was the opportunity to gain experience in

conducting experimental work. This study was then used as a basis to investigate the

optimization of the experimental design for the simultaneous estimation of parameters

describing the temperature dependence in the thermal properties. This dependence was

approximated by a piece-wise linear function with temperature. Nine parameters were used to

represent the thermal properties over the range [25-150°C]. The D-optimality criterion was

used to optimize seven experimental parameters. These latter included sensor location,

heating parameters, and heating area. The estimation methodology was then demonstrated on

simulated data generated from the optimal design.

The GACONDUCT was also applied to the simultaneous estimation of seven

thermophysical parameters associated with the processing of composite materials in a two-

dimensional RTM (Resin Transfer Molding) mold. This work was performed in cooperation

with D. Lecointe (1999) as part of his PhD project at the LTI. The parameters estimated
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included the temperature dependence of the material thermal properties over the range [100-

130°C]. The results obtained were compared with those from Lecointe who used a parametric

study to estimate the conductivity parallel to the fibers assuming both the orthogonal

component and the volumetric capacity to be known.

Finally, a study was conducted for the kinetic characterization of the curing of

composite matrix materials, namely thermosetting materials. Such characterization is an

important aspect in the control of the thermal phenomena during composite material

fabrication. This control involves modeling the coupling between heat transfer and

exothermic chemical reaction inside the matrix material and thus requires knowledge of the

dependence with temperature of not only the thermal properties but also the rate of cure. This

latter is described by a kinetic model governing the curing process. Because of its popularity

in the composite industrial world, the model from Kamal and Sourour (1973) was selected for

the prediction of the curing process of an epoxy, a polyester and a rubber. Furthermore, the

use of this model provided the investigation of a complex simultaneous estimation problem as

strong correlations are present among the kinetic parameters involved. The general-purpose

program GAMAIN was applied for the determination of these parameters. The experimental

data required in the estimation methodology were obtained from Differential Scanning

Calorimetry (DSC).
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CHAPTER 2

Literature Review

This chapter summarizes the present state of knowledge pertaining to the areas of

interest of this research. These are thermophysical characterization of composite materials,

experimental design optimization, and Genetic Algorithms (GAs). After a brief description of

composite materials in the first section, the second deals with both thermal characterization of

composite materials and kinetic characterization of the curing of composite matrix resins.

Particular attention is given to optimal experiments designed for the estimation of thermal

properties in the third section, while the review of previous uses of GAs in the last section

focuses on their application in engineering.

2.1 Composite Materials

A composite material is composed of two or more materials joined together to form a

new medium with properties superior to those of its individual components. Often, the term

composite is used for fiber-reinforced composites, although different reinforcement forms

exist. Fiber-reinforced composites (laminates) consist of several unidirectional layers

arranged at the same or different angles and, therefore, present heterogeneous, anisotropic

properties. These materials can be classified as continuous or discontinuous. The most

commonly used reinforced fibers are carbon/graphite and glass, while the major types of

matrix resins consist of thermosetting, elastomer and thermoplastic materials with the addition

of a curing agent. The composite materials and matrix resins focused on in this study consist

of continuous carbon fiber/epoxy matrix combinations (with unidirectional fibers), and epoxy,

polyester and rubber mixtures, respectively.

The use of composite materials is constantly increasing in modern industry. The main
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reasons are low weight, high performance in terms of both mechanical and thermal properties,

and relatively low cost. The study of the different aspects of physical and chemical

phenomena taking place during material production is therefore of intensifying interest. In

order to predict and control the fabrication/molding processes, thermophysical

characterization of these materials is required. Due to the high coupling between heat transfer

from conduction within the composite being cured and heat release from exothermal effects of

the reticulation reaction, such characterization is comprised of both thermal and kinetic

components. This necessitates that the thermal properties and the parameters of the kinetic

model governing the curing process are known.

On one hand, because a composite is made of at least two different materials each with

different thermal properties, effective thermal properties are usually needed and were

considered in this research, assuming the materials to be homogeneous in each direction.

Therefore, in the work presented here, the subscript “eff” was omitted. The thermal properties

estimated were the thermal conductivity and volumetric heat capacity. These properties

depend on temperature and as a result of fiber orientation, the thermal conductivity is also

directionally dependent. Both temperature and directional dependence make the determination

of the thermal properties a challenging task.

On the other hand, the kinetic parameters to be determined are associated with the

model selected to govern the curing of the matrix resin. Therefore, one difficulty in adequate

kinetic characterization is the selection of an appropriate model.

2.2 Thermophysical Characterization of Composite Materials

2.2.1 Thermal Characterization

Much work has been done for the accurate determination of the thermal properties of

isotropic and anisotropic materials. Parameter estimation techniques can be typically

classified as experimental and inverse. Experimental techniques are associated with a

particular experiment (the technique is actually referred to by the name of the experiment),

while inverse techniques include a wide variety of methods, all of which involve the use of

experimental data in conjunction with a mathematical model describing the thermal

phenomena. In the field of composite materials, a third class of techniques exists, which is
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commonly referred to as analytical (also called “micromechanical”). The following provides a

synopsis of the three classes.

• Analytical methods

Analytical methods are based on the mathematical analysis of the components of the

composite. Their use involves the assumption that the thermal properties of the individual

composite elements, namely the matrix and the fiber, are known, along with the volume

fraction of the fibers. Several such models for the effective thermal properties of composites

have been proposed. One very well known model is the Rule-of-Mixtures for which one can

write

( )k k V V kf f f m= + −1     and    ( ) ( )
k

C

V k V k

V C V Cp

f f m m

f p f m p m

ρ ρ ρ
=

+

+
(2.1)

where k is the thermal conductivity with heat flow parallel to the fibers, (ρCp) is the

volumetric heat capacity, kf and (ρCp)f and km and (ρCp)m are the properties of the fiber and

the matrix, respectively, and Vf and Vm are the fiber and matrix volume fraction, respectively.

Progeholf et al. (1976) indicated that none of the correlations developed accurately predicts

the thermal properties of all types of composites. Their work also provides a review of

additional models to predict the thermal conductivity of composite systems.

• Experimental Methods

Experimental methods can be further classified into steady-state and transient methods

(Degiovanni, 1994). Steady-state techniques are limited to the sole estimation of thermal

conductivity. The guarded hotplate method is a frequently used steady-state technique in

which the specimen is heated by a hot metal plate attached to it and the resulting temperature

is measured at the interface. The (effective) thermal conductivity is directly determined from

Fourier’s law. One disadvantage with this technique is that it is expensive and time

consuming due to the necessity for the experiment to be repeated at different temperature

levels, and for the material to reach steady state.
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Transient techniques allow for the estimation of several properties, such as the thermal

diffusivity, thermal conductivity and/or other groups incorporating the conductivity and

volumetric heat capacity. The most common transient method is the flash method in which the

front surface of a small cylindrical specimen is exposed to an energy pulse and the

temperature history is recorded on the back surface. The thermal diffusivity is identified from

adjusting the theoretical temperature history obtained from a mathematical model to the

measured temperature history. This can be achieved from the use of two different estimation

methodologies (André and Maillet, 1999):

1/ the solution from analytical expressions associated with the knowledge of the Fourier

number from either two partial times or two periods.

2/ the minimization of the least-squares error between calculated and measured data over

several observations. The definition of this error as well as the inverse estimation

procedure needed to minimize it are discussed later. Researchers at the Laboratoire

d’Energétique et de Mécanique Théorique et Appliquée (LEMTA, Nancy, France), for

instance, use successively both estimation methods (André and Maillet, 1999).

The heat capacity is typically determined using Differential Scanning Calorimetry

(DSC). This experimental method is based on the principal of differential enthalpic analysis

and involves providing heat both to a very small sample and to an inert reference sample at a

varying rate so as to maintain their temperatures equal. The calorimeter is employed in

scanning mode to determine the heat capacity as function of temperature. The product of the

heat capacity with density results in the volumetric heat capacity.

The guarded hotplate, the flash, and the DSC methods are the major experimental

techniques currently used to determine the thermal properties of composite materials. One

however realizes that these methods do not allow for either the simultaneous estimation of the

thermal properties, or the investigation of complex structures involving several materials

which cannot be disassembled. In addition, besides the DSC method, the other methods are

limited to the estimation of constant properties at a particular temperature level.
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• Inverse Methods

Definition

The limitations of the experimental methods have led to the increased use of inverse

parameter estimation techniques. Note that in the heat transfer area, one commonly refers to

parameter estimation problems as the problems of determining unknown thermal properties

based on known boundary and initial conditions, while inverse heat conduction problems are

associated with the finding of boundary and initial conditions (function estimation) given

known thermal properties. Parameter estimation methods are non-invasive techniques that

allow for the simultaneous estimation of the thermal properties of individual materials as well

as complex structures for any kind of appropriate experiments, provided these are feasible and

a mathematical model can be formulated. “Appropriate experiments” implies that information

is provided about the unknown properties. For instance, it is necessary for the experiments to

be transient to estimate the volumetric heat capacity and for one of the boundary conditions to

be a heat flux condition in order to estimate thermal conductivity and volumetric heat capacity

simultaneously.

Inverse parameter estimation methods are based on the minimization of an objective

function containing both calculated and measured temperatures (Beck and Arnold, 1977).

Depending on the amount of information available about the experimental data and the

parameters to be estimated, three main estimators are available to define the objective

function. These include:

1/ Ordinary Least Squares (OLS) estimator, in which no prior knowledge about either the

parameters estimated or the variances of the measurement errors is required.

2/ Maximum Likelihood (ML) estimator, in which prior knowledge about the variance of the

measurement errors can be implemented.

3/ Maximum A Posteriori (MAP) estimator, in which prior knowledge about the variance of

both the measurement errors and the estimated parameters is used.

All three estimators are described in detail by Beck and Arnold (1977). The OLS estimator is

by far the most frequently used for the estimation of thermal properties as no prior knowledge

is needed. This estimator was considered in this research. The associated objective function,

the least squares error S, is expressed by:
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where β is the true parameter vector containing the unknown thermal properties, ~x and ~t  are

position and time for the ith observation from the kth sensor, Nk and Ni are the numbers of

sensors and observations, respectively, T is the calculated temperature from the mathematical

model governing the heat transfer phenomena and ~T  is the measured temperature. In using

Eq. (2.2), the thermal properties are found by minimizing the sum of squared differences

between the measured and calculated data. It should be mentioned that if the parameters are to

be estimated from measurements of two dependent variables, say T and q, then the least

squares errors associated with each dependent variable should be nondimensionalized by

dividing by the respective measurement variance, allowing thus the addition of both errors to

form a global error. This was investigated by Robinson (1998). Note also that although

parameter and function estimation problems are both inverse problems, the ill-posedness of

the latter may require the addition of regularization terms in the objective function (Beck et

al., 1985).

Techniques

The minimization of Eq. (2.2) could conceivably be performed by any optimization

technique. However, parameter estimation has generally been performed with only a few

methods, none of them being a standard. Actually, the use of one method over another is often

specific to a certain field of study. The simplest parameter estimation method is the

parametric study, which is a numerical iterative method. This study is usually performed in

two phases: the first includes determining the general range of the properties optimal values,

while the second narrows this range to determine the values more precisely. If needed, the

process is repeated to converge to the final estimates. As one can easily guess, this technique

is tedious and time intensive and, in addition, the process does not guarantee that the global

minimum of S will be found. But, because it is so easy to implement, the parametric study is

often used to estimate one or two properties.

One commonly used gradient-based technique is the Gauss linearization method which

is a first unconstrained descent method. The minimization of S is realized by differentiating S

with respect to β, setting the resulting equation equal to zero, and then solving iteratively for

b, the estimated parameter vector for β using the Taylor series approach to linearize the
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equation. This method is described (Beck and Arnold, 1977) as one of the simplest and most

effective methods for seeking minima provided the initial estimates are in the neighborhood

of the minima, and this latter is reasonably well defined. In this last condition it is meant that,

on one hand, the dependent variable (usually T) is sufficiently sensitive to changes in the

properties, and on the other hand, the properties are far from being nearly correlated. Box and

Kanemasu (1972) modified the Gauss method by changing the step size used in seeking

minima with an aim to compensate for poor initial estimates or severe nonlinearity in the

model which could cause large oscillations to occur from one iteration to another, leading

then to non-convergence of the estimates. A further improvement involving the check that the

function S decreased from one iteration to another was realized by Bard (1974). This

consisted in reducing the step size by one-half if the function was not decreasing. The

modified Box-Kanemasu method, however, still required the minima to be reasonably well-

defined as explained above. Theoretical details on this method are given in Chapter 3.

Beck was the first to use the Gauss method to estimate the thermal diffusivity in 1963.

He then expanded the Gauss application to the estimation of the thermal conductivity

simultaneously with the volumetric heat capacity of nickel from one-dimensional transient

temperature measurements (1966). The simultaneous estimation of the thermal conductivity

perpendicular to the fiber plane and the volumetric heat capacity of composite materials has

been widely performed using both the Gauss and modified Box-Kanemasu methods. Scott and

Beck (1992a) estimated these thermal properties for carbon/epoxy composites as function of

temperature and fiber orientation. Their results show that the thermal properties increase with

temperature and that different stacking orientations result in significantly different thermal

conductivity values. These authors also developed a methodology for the estimation of these

two properties in the same composite materials during curing (1992b). Garnier et al. (1992)

were able to estimate these two properties using temperature measurements made with thin

resistance thermometers and surface thermocouples instead of internal temperature

measurements. The work from Moncman (1994) and Hanak (1995) show that the

simultaneous estimation of the thermal conductivity perpendicular to the fiber plane and the

volumetric heat capacity of composite materials has become successfully routine. The Gauss

method was also used by Jurkowski et al. (1992) for the simultaneous estimation of the

thermal conductivity of thermoplastic materials and thermal contact resistance, assuming the

volumetric heat capacity to be known. As in the work from Garnier et al. (1992), no

embedded sensors were used. One interesting conclusion from this study is that small
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sensitivity coefficients or the unbalance of the sensitivity matrix resulted in the instability of

the estimation procedure. This particular remark goes along with the fact that both the Gauss

and modified Box-Kanemasu methods have been found to show instabilities resulting in non-

convergence when used with models that contain correlated or nearly correlated thermal

properties. For instance, Hanak (1995) used the modified Box-Kanemasu method in

association with two-dimensional transient experimental data and was unable to

simultaneously estimate the thermal conductivities along two perpendicular planes and the

volumetric heat capacity of anisotropic composite materials because of correlation between

both thermal conductivities. Copenhaver (1996; also in Copenhaver et al., 1998) was also

faced with non-convergence of the modified Box-Kanemasu method when trying to

simultaneously estimate correlated radiative and conductive properties of a honeycomb

sandwich structure. A quantification of correlation is given in the next chapter (Section 3.1.3).

Several different approaches have been used to address this correlation-based non-

convergence problem. One approach is to modify the experimental design. For example, Loh

and Beck (1991) were able to simultaneously estimate both thermal conductivities and the

volumetric heat capacity of an anisotropic carbon/epoxy composite through the use of nine

thermocouples embedded at various locations within the sample. It is interesting to note that

the number and location of the sensors were fixed a priori by the authors and the potential

correlation problem was never detected. Correlation may have still been present but the use of

multiple sensors allowed it to be bypassed. Box has actually shown that high correlations

among the parameters can be due to a large extent to the nature of the model itself and thus no

experimental design could be expected to yield uncorrelated parameter estimates (Beck and

Arnold, 1977). Loh and Beck used the Gauss method and found the conductivity parallel to

the fiber plane to be about seven times larger and to increase more with temperature than

tranverse to the fiber plane. A similar approach was accomplished by Dowding et al. (1996)

for the simultaneous estimation of the thermal properties of anisotropic carbon/carbon

composites. Nevertheless, modifications of the experimental design, such as the use of

internal sensors, are not always feasible, especially when nondestructive testing is required. In

addition, the use of embedded thermocouples can be a source of important bias. In

characterizing this bias, Taktak (1991) reported that experiments showed higher dependence

of the temperature disturbance on errors in the embedded thermocouple locations than errors

in the thermal properties. Another approach used to address the correlation problem is to

modify the minimization method. For example, Copenhaver (1996) (note also Copenhaver et
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al., 1998) used a constrained parameter estimation procedure based on a penalty function

method, with limited success, to simultaneously estimate three nearly correlated thermal

properties of a honeycomb sandwich structure.

The approach investigated in the present work involves the use of a robust non-gradient

method, namely the Genetic Algorithm (GA) method, in the minimization procedure. The

motivation for using GAs was to circumvent difficulties of non-convergence in cases when

the parameters are correlated or nearly so. An overview of these algorithms is provided in the

last section of this chapter.

2.2.2 Kinetic Characterization

The curing of thermosetting materials is a complicated process, the main parts of which

are chemical transformation coupled with heat transfer. For the chemical transformation and

more particularly, the exothermic source term, to be characterized, a kinetic model is required.

Kinetic models can be divided into two general types: on one hand, the models based on the

knowledge of each elementary chemical reaction, and on the other hand, the empirical ones

that try to represent the kinetics of reactions when the reaction path is not well known. These

latter have the advantage of allowing for the analysis of complex transformations, which is the

case for the curing of elastomer or thermosetting compounds used in molding processes. They

provide relationships between reaction rate (dα/dt), degree of reaction (α) and temperature

(T). In the field of thermosetting polymers, several different empirical models have been

developed to characterize curing. They are often referred to as describing autocatalyzed

reaction rate mechanisms as the material contain substances (curing agents) that accelerate the

reaction rate. Figure 2.1 illustrates a typical reaction rate evolution versus time during curing

of a thermosetting material. For the complete representation, the kinetic model is preceded

v

ttind

Induction stage

Acceleration and
relaxation stage

Figure 2.1    Typical reaction rate evolution versus time
during curing of thermosetting polymers.
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with a model describing the induction stage, tind. This represents the time during which the

reaction is inhibited as a result of inhibition substances contained within the material.

The model from Kamal and Sourour (1973) is a very well known empirical kinetic

model, which has been found to provide a reasonable degree of accuracy for a variety of

thermosetting systems. It contains two rate constants K1 and K2 that are assumed to have an

Arrhenius temperature dependence and two kinetic exponents m and n to describe the order of

the curing mechanism as shown below.
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The parameters K1 and K2 represent the catalytic and the autocatalytic nature of the reaction,

respectively. When the parameter K1 is negligible, the terms containing the dependent

variables T and α can be mathematically separated. The model becomes then similar to that

suggested by Piloyan et al. (1966). Jarny et al. (1993) developed for that case a new model

expressed by the product of a rate constant K that follows the Arrhenius law and a polynomial

function of α expressed below:
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α
α= × (2.4)

The model from Jarny et al. has been successfully applied to the kinetic characterization of

the curing of a rubber (Amiaud, 1993), an epoxy (Bailleul, 1993; 1997; Bailleul et al., 1996),

and a polyester resin (Mouchnino, 1997).

Using the kinetic model from Kamal and Sourour (1973), one typically assumes a

known combined order mechanism (m+n), which is generally second order (Kamal et al.,

1973), and therefore the parameters estimated are the two rate constants K1 and K2. The most

commonly used method of determining them involves the use of linear regression and

isothermal Differential Scanning Calorimetry (DSC) which provides heat flux measurements.

The rate constants are identified at different temperatures from which the Arrhenius constants

can be deduced. One of the disadvantages with this approach is that the Arrhenius constants

cannot be estimated directly.

An alternate approach is to use an inverse parameter estimation method that can be used

for nonlinear models. As mentioned in the previous section, this involves the minimization of

an objective function, for instance the least squares error. Scott and Saad (1993a,b) studied the

model from Kamal and Sourour assuming a combined second-order, autocatalyzed reaction
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rate mechanism during the first portion of the cure to describe the curing of an amine epoxy

resin. Using the Box-Kanemasu method, they were able to perform the direct estimation of

the four Arrhenius constants from both isothermal DSC and dielectric data. They conducted

sensitivity analyses that showed that the degree of cure was most sensible to changes in the

parameters K1 and K2 than the rate of cure. Furthermore, Scott and Saad pointed out that the

use of the degree of cure as the dependent variable associated with isothermal data allowed

minimization of the correlation between the sensitivity coefficients of the parameters and

maximization of their magnitudes. On the contrary, strong linear dependence between the

coefficients of the parameters A1 and E1 and A2 and E2 was stressed when using dynamic data.

In comparison with the commonly used linear regression method, the work by Scott and Saad

is a great improvement in the curing characterization of epoxy systems. However, their study

assumed a known combined order mechanism, restricting thus the estimation procedure to the

four Arrhenius parameters. In addition, by limiting the estimation procedure proposed by

Scott and Saad to isothermal experiments, one cannot investigate materials that react very fast

and for which only dynamic data can be obtained.

For the cure modeling of a polyester resin, Guyonvarch (1995; also in Guyonvarch et

al., 1995) also used the model from Kamal and Sourour in association with isothermal DSC

data. To limit both the number of parameters to be estimated and the presence of correlation

among the sensitivity coefficients, he assumed the parameter m to be known, and set its value

arbitrarily to unity. His work involved the application of the Gauss-Newton method in two

steps: first, he tried to identify simultaneously the rate constants K1 and K2 along with the

parameter n; next, he fixed n to the average estimated value obtained previously (with an error

of ± 18 %), and determined the values of K1 and K2. Eventually, knowing K1 and K2 at each

different temperature investigated, the four Arrhenius constants could be found from a

graphical procedure. It is interesting to note that simulations using the completed kinetic

model fit isothermal DSC runs well, but were relatively far off when dynamic DSC data were

considered.

One can note the work of Bournez et al. (1999) who investigated the estimation of five

kinetic parameters associated with an equation derived from the Kamal and Sourour model,

simultaneously with the thermal properties (conductivity, heat capacity and density) of a

rubber modified epoxy resin. Their work presents a methodology to determine these

thermophysical parameters from a single dynamic experiment carried out in an experimental

mold. The Gauss method and the MAP estimator were used as the estimation procedure.
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However, because of significant magnitude differences between the sensitivity coefficients of

the parameters, the simultaneous estimation was restricted to a sequential estimation by

groups of parameters of similar influence (sensitivity) on the temperature response. The most

influential parameter was found to be the Arrhenius constant E of the kinetic model used, and

was identified alone first.

The limitations of the work of Scott and Saad (1993a,b), Guyonvarch (1995) and

Bournez et al. (1999) show that the investigation of nonlinear kinetic models, and in particular

the model from Kamal and Sourour, in association with the use of dynamic experimental data

remains a very difficult estimation problem. The difficulties come mainly because of strong

correlations and difference of influence (sensitivity) on the model among the parameters. The

ability to solve such estimation problems would be particularly significant in the field of

composite matrix resins as kinetic models are used to characterize curing during fabrication

processes which involve dynamic experiments. This was one of the objectives of the work

presented here.

It is relevant to note that with the use of the two kinetic models described in Eqs. 2.3

and 2.4, an induction period should be defined to represent the time during which the reaction

is inhibited, e.g., corresponding to null thermal effects, as illustrated in Fig. 2.1 (Garnier,

1990). This period is governed by its own kinetic model that depends both on temperature and

on the “thermal history” of the material being analyzed. Bailleul (1997; also in Bailleul et al.,

1996) used an integral function h(t,T) that is a function of time and which represents (in

absolute value) the time left before curing starts. The induction period, tind, is over when the

function h(t,T) becomes null.
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The inhibition model described by the function h(t,T) involves the selection of an arbitrary

reference temperature, Tref, within the range investigated and the determination of two

parameters, tref and B. This estimation is very difficult because of the correlation between the

sensitivity coefficients of the two parameters, and typically the values for tref and B are

obtained using a parametric study. The inhibition time model used in the current research for

the kinetic characterization of the curing of thermosetting materials (Chapter 6) is based on a

modification of Bailleuil’s integral function.
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Eventually, to obtain the experimental data required in the estimation procedure,

calorimeters such as Differential Scanning Calorimetry (DSC) apparatuses are usually used

because heat flux released by the chemical reaction is proportional to the rate of reaction

(Scott and Saad, 1993a,b, Garnier et al., 1993). As far as the evaluation of DSC apparatus is

concerned, three precision indicators have been proposed by Garnier and Danès (1994). These

indicators are based on isothermal operation of the DSC while empty, and include a time

constant from a constant slope increase to a constant level, a time drift and background noise.

Note however, that some recent work (Sommier, 1998) has shown for some thermosetting

materials the feasibility of using microdielectrometry for the online study of degree of cure

evolution during curing.

2.3 Experimental Design Optimization

This section deals with optimization in the service of design-of-experiments, that is

optimization employed to provide the maximum amount of insight and information on the

phenomena being analyzed. A review of optimization in relationship to experiments in four

aspects has been reported by Haftka et al. (1997). These aspects include the use of

optimization for designing efficient experiments (called “analytical optimization”, the subject

of this section), the use of experiments to perform optimization (called “experimental

optimization”), the use of techniques developed for experimental optimization in numerical

optimization and eventually, the importance of experimental validation of optimization. In

their review, Haftka et al. provide applications from a variety of fields.

Design-of-experiments for the estimation of parameters has been subject to numerous

studies. Most of the early publications deal with the field of statistical inference and data

analysis (Brown et al., 1985), while an increasing number of publications can be found over

the past two decades in the field of engineering design. When the purpose of the experiments

is to estimate properties, the objective of experimental design optimization is to improve the

accuracy of the predicted properties. The selected design variables are “sized” to minimize the

uncertainty in the resulting property estimates, thus providing the most accurate estimates

(Beck and Arnold, 1977; Walter and Pronzato, 1994). Design-of-experiments can be

performed simply by carefully examining the sensitivity coefficients of the parameters to be

estimated or, in a more rigorous methodology associated with optimal experimental design

theory, by applying an optimality criterion. In both cases, this procedure is an imperative step

prior to the implementation of the inverse parameter estimation procedure. Based on the book
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of Beck and Arnold (1977), the work of Raynaud (1999) illustrates with simple examples the

various steps that must be accomplished in the strategy for optimization of experimental

design and estimation of parameters.

2.3.1 Sensitivity Study

First of all, a careful sensitivity study can enable the distinction of which properties can

be correctly estimated (known as identifiability study). The sensitivity coefficients are the

derivatives of the experimental process variables, such as temperature, with respect to the

unknown parameters, for example, the thermal conductivity. Obviously, uncorrelated

parameters with the highest sensitivity coefficients should be chosen to be identified. In the

analysis of sublimation-dehydration within a porous medium, Scott (1994) conducted a

sensitivity study which examined the importance of the material properties on the solution.

Scott was able to conclude for which parameter temperature provided the most accurate

information. A similar study was performed by the current author (1994) in investigating the

simultaneous estimation of the thermal conductivities of individual components constituting

high temperature superconductive thermal bridges. She found that only the effective thermal

conductivity of the composite superconductive thermal bridges could be estimated.

Sensitivity studies also allow improvement of an experimental design to be used in the

determination of properties by selecting experimental conditions that minimize sensitivity to

parameters assumed known (set to nominal values) in the mathematical model. This ensures

that uncertainty from these supposedly known parameters does not greatly affect the accuracy

of the estimation of the unknown desired parameters. One example in which such a sensitivity

study is particularly adequate is in the investigation of the effect of convection heat transfer

coefficients used at boundary conditions. Usually, the sensitivity to these parameters is low at

the beginning of the experiments and then increases. The choice of the optimal total overall

experimental time should take into account that the sensitivity to the known convection heat

transfer coefficients must remain low.

Sensitivity studies can also be used to find the experimental conditions that maximize

the magnitude of the sensitivity coefficients of the unknown parameters. However, one can

easily guess that when two or more parameters are sought, the use of the magnitude of the

individual sensitivity coefficients as a reference becomes messy and, therefore, the design

activity needs to be posed in terms of an optimality criterion (objective function) to maximize.

The work of Totorelli and Michaleris (1994) that reviews the state of design sensitivity
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analysis is noted. This review shows that sensitivity applications in optimization are numerous

and gives many references, including those for thermal systems.

2.3.2 Optimality Criterion

• Definition

An optimality criterion can be interpreted as a measure of the goodness of the design.

Although its establishment should not be codified in terms of a single recipe, the optimality

criterion is usually associated with the Fisher information matrix of the design (named after R.

A. Fisher’s pioneering contributions to statistical inference, Kiefer, 1975a; Walter and

Pronzato, 1994). The Fisher information matrix is defined by XTX, where X is the sensitivity

matrix. The most often encountered optimality criteria include the maximization of the

determinant of XTX (D-optimality), maximization of the minimum eigenvalue of XTX (E-

optimality) and maximization of the trace of XTX (A-optimality). Theoretical details on these

criteria are given in Chapter 3. The first criterion is the most common. Note that Alifanov et

al. (1995) have shown that an optimality criterion based on the maximization of the inverse of

the condition number of the Fisher information matrix is the most appropriate for the study of

heat conduction, but that the use of D-optimality is nearly equivalent. The effect of D-

optimality is, in the normal case, to minimize the volume of the usual confidence ellipsoids of

the estimated values, providing the minimum variance estimators. D-optimality proponents

have also pointed out that this criterion is invariant under linear transformation of the

estimated vector. That is, the same design is D-optimum for estimating Zβ as for estimating β

if Z is a nonsingular matrix. However, this criterion has been found to weigh heavily on the

parameters with the highest sensitivity while sacrificing much in the accuracy of the

parameters with the least sensitivity in order to make the confidence volume small (Kiefer,

1975b; 1981). For instance, in the design of experiments for the thermal characterization of

honeycomb core structures (conductive and radiative properties), Copenhaver (1996) pointed

out that the use of the D-optimality criterion would increase the accuracy of the parameters

with high sensitivity at the expense of creating a large error in those with low sensitivity.

Other known criteria associated with the Fisher information matrix exist, for instance the C-,

L-, V- and G-optimality, with the latter two being more appropriate for response estimation

than parameter estimation. This family of criteria has been discussed in more details by Kiefer

(1974; 1975a) and Walter and Pronzato (1990).
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Another strategy in the selection of the objective function is to develop a compromise or

compound criterion (Kiefer, 1974; 1975b). This heading describes criteria “built-up” from

simpler criteria. Such a strategy has the effect of combining the features and/or of eliminating

some of the objections of the single criteria used to build up the compound criterion. Pronzato

and Walter (1989) defined the V-criterion, which is similar to the D-optimality criterion, but

which assumes that prior lower and upper bounds are available for the noise associated with

the measurements. Because of the shortcomings displayed by the D-optimality criterion,

Copenhaver (1996) used a combination of D-optimality with the minimization of the

maximum scaled length of the confidence intervals. This latter criterion was actually proposed

earlier by Lohman et al. (1992). The work from Nenarokomov et al. (1998) is a recent example

of the use of a compound criterion, in which not only measurement noise but also uncertainties

in the known model parameters have been incorporated in the D-criterion. Some previous

developments have also emphasized the use of multicriteria optimization as a strategy in the

design process (Eschenauer et al., 1990). This results from the fact that nowadays, in many

engineering applications, often several conflicting criteria have to be considered by the

designer. Such optimization problems for multiple criteria are called either Vector or

Multicriteria Optimization Problems and the output from the optimization process is called a

set of Pareto optimum. The utilization of multicriteria in the optimization of experimental

designs used to estimate thermal properties has not been thoroughly investigated yet.

• Optimization Techniques for the Design-of-Experiments

Following the selection of the optimality criterion, a mathematical optimization

procedure is needed to determine the optimal experimental parameters which satisfy the

selected criterion. In the general field of design-of-experiments for the estimation of

parameters, three classes of procedures have been distinguished. The first class contains

exhaustive search algorithms which generate and evaluate all possible designs. This is very

time consuming. Welch (1982) developed a variant called “branch and bound” in which a

binary tree of minimization problems is generated. Not all designs are generated and

evaluated. By exploiting bounds on the minimization, only the branches which might contain

the optimal design are created. Although such algorithms guarantee that the global optimal

design will be found, the computing costs are still extremely high. The second class includes

analytical procedures which consist of maximizing the objective function by differentiating it

with respect to each of the design variables and then solving the resulting set of equations
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simultaneously for the optimal values of the design variables. Due to the complexity of the

equations involved, this method is rarely chosen. Finally, the third class has usually been

concerned with the exchange algorithms, which are iterative combinatorial random

optimization procedures. Mitchell (1974) developed an efficient such algorithm called

DETMAX which has been extensively used for determining D-optimum designs in a variety

of engineering applications (Eschenauer et al., 1990). DETMAX is based on the notion of

sequence of excursions from an initial design, in which several points are added in one single

step and subsequently the same number of points that result in the smallest increase in the

determinant (D-optimality) are removed. This algorithm was found to generate high quality

D-optimal designs at relatively low computing costs but did not ensure that the global

optimum will be found. Note that the “simulated annealing” approach, introduced by

Kirkpatrick et al. (1983), was thought by Mitchell to be a potential optimization procedure to

be applied to exchange algorithms for deriving experimental designs. What is interesting with

this last remark is that simulated annealing and genetic algorithms, which were used in this

work, share some of their stochastic steps.

• Design-of-Experiment Applications for the Estimation of Thermal Properties

In the design-of-experiments for the estimation of thermal properties, a simple iterative

numerical approach, the parametric study, which belongs to the class of “exhaustive”

procedures, has typically been used for its simplicity (Beck and Arnold, 1977). As described

in Section 2.2.1, this methodology can get very confusing and time consuming for even a very

few design variables. In addition, if the increment size is too large, the maximum determinant

can be missed. Nevertheless, the parametric study has been extensively used with the D-

optimality criterion. This technique was applied by Beck (1966) to determine the optimal

conditions for the simultaneous estimation of the thermal conductivity and specific heat, and

to determine the optimum transient experiment for estimating the thermal contact conductance

(Beck, 1969). Taktak et al. (1991) used this procedure to estimate the thermal properties of

isotropic composite materials by optimizing the number of sensors, sensor placement, and the

duration of an imposed heat flux. A similar approach was performed by Garnier (1996) but

for an insulating material in a cylindrical geometrical form. Based on the work from Taktak et

al., one-and two-dimensional D-optimal experimental designs have also been developed by

Moncman (1994; also in Moncman et al., 1995) and Hanak (1995) using a parametric study

for the simultaneous estimation of thermal properties of anisotropic composite materials.
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These included both the in-plane and through-the-thickness thermal properties. The Moncman

and Hanak studies were used as test cases in the current work. Note that Hanak emphasized

that one of the disadvantages of performing a parametric study is the possibility of

overlooking the global optimum. Indeed, in studying the same two-dimensional design

optimization analysis that Moncman had performed previously, using smaller increments to

segment the design space, he found a design that produced a larger determinant than the

optimal design developed by Moncman.

Recently, Rigollet et al. (1998) used D-optimality to investigate the optimal temporal

domain for the most accurate estimation of the thermal diffusivity and effusivity of chromium

coatings on steel. They use a pulsed photothermal method to obtain the required experimental

data for the property estimation. From the estimates obtained, they could deduce the

conductivity and volumetric heat capacity of the chromium coatings. Confidence intervals for

these latter properties were calculated from classical logarithmic derivatives and comprised of

both confidence intervals associated with the diffusivity and effusivity estimates considering

measurement errors only, and those of supposedly known parameters (chromium effusivity

and thickness of the coatings). Rigollet et al. showed that the uncertainties in the supposedly

known parameters had by far the greatest effect on the accuracy of the calculated thermal

conductivity and volumetric heat capacity. This work points out that not only should one

focus on optimizing some critical design variables for the most accurate estimation of the

unknown properties, but also, when preparing and conducting the optimal experiments, one

should take care to minimize the uncertainties in other experimental parameters that are

supposed to be known, such as material thickness. Note that a review of the most important

sources of errors that can introduce bias in the final estimates can be found in Jarny and

Maillet (1999).

Discussion of the present state of knowledge should be concluded with the importance

for the optimal designs to be verified. This ensures that the best possible estimates have been

obtained and allows for the validation of not only the optimization procedure but also the

mathematical model used to describe the process. Hanak (1995) demonstrated that the optimal

design provided the most accurate combined thermal property estimates by testing the optimal

design along with two non-optimal designs. The non-optimal experimental parameters were

chosen so that they did not satisfy the D-optimal criterion used in the optimization technique.

Hanak's results showed that an individual property might be estimated with greater accuracy

at a non-optimal setting but the combination of properties reached a higher accuracy at the
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optimal setting. Validation of optimization through experiments is particularly relevant when

the system is based on an analytical model which is not valid in the entire design space

(Haftka et al., 1997).

2.4 Genetic Algorithms (GAs)

2.4.1 Description

Genetic Algorithms were developed by Holland (1975). Although these algorithms

emerged simultaneously with two other streams known as Evolution Strategies (ES) and

Evolutionary Programming (EP), GAs are today the most widely known type of evolutionary

algorithms (Back, 1994). Differing from conventional search techniques, the common feature

of these algorithms is to simulate the search process of natural evolution and take advantage

of the Darwinian survival-of-the fittest principle. In short, Evolutionary algorithms start with

an arbitrarily initialized population of coded individuals, each of which represents a search

point in the space of potential solution. The goodness of each individual is evaluated by a

fitness function which is defined from the objective function of the optimization problem.

Then, the population evolves toward increasingly better regions of the search space by means

of both random and probabilistic (or deterministic in some algorithms) biological operations.

The three main evolutionary algorithms (GAs, ES and EP) were developed independently

from each other as each emphasized different biological operators as being most important to

a successful evolution process. The basic operators used in GAs consist of selection (the

selection of parents for breeding), crossover (the exchange of parental information to create

children) and mutation (the changing of an individual). In addition, following the Darwinian

theory, an elitism operator (the protection of best individuals) is found in more elaborated

GAs. The fundamentals behind GAs are detailed in Chapter 4, along with the relevant

characteristics that differentiate these algorithms from conventional optimization methods.

Note however here that the ergodicity of the biological operators used in GAs makes them

potentially effective at performing global search (in probability) (Gen and Cheng, 1997).

Also, GAs have the attribute of a probabilistic evolutionary search (although it is most

commonly referred to as a randomized search), and are neither bound to assumptions

regarding continuity nor limited by required prerequisites. Citing Goldberg (1989), GAs are

blind.
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Note that some efforts have been directed towards building an analogy between the

representational mechanisms of GAs and their biological counterparts, thus producing a lingo

(Goldberg, 1989 and Mitchell, 1996). In this correspondence terminology, an individual is

thought of as a chromosome (chromosomal string) and the genotype is composed of the

collection of possible chromosomes. Each chromosome consists of genes which may take on

some number of values called alleles. Each gene has a particular locus, its position in the

chromosome. Eventually, the solution point encoded by the chromosome represents the

phenotype. This terminology, generally used within the GA field (artificial intelligence), was

not used in this dissertation.

The GA technique has been theoretically and empirically proven to provide robust

searches in complex spaces. Much of the early work of GAs used a universal internal

representation involving fixed-length binary chromosomes with binary genetic operators.

Consequently, most of the theory developed (which could fill several volumes!) is based on

binary coding. In developing the Fundamental Theorem of GAs, Holland (1975) focused on

modeling ideal Simple GAs (SGAs) to better understand and predict GA behavior [this

theorem, also called the Schema Theorem, states that short, low-order schemata (particular

genes sequences) with above-average fitness receive exponentially increasing trials in

subsequent generations]. Many properties in terms of the binary genetic operators

effectiveness were concluded from this theorem. However, Mitchell (1996) pointed out that

these properties give some limited insight into the GA behavior. Mitchell believes that a more

useful approach to understanding and predicting GA behavior would be analogous to that of

statistical mechanics in physics whose traditional goal is to describe the laws of physical

systems in terms of macroscopic quantities, such as pressure and temperature, rather than in

terms of the microscopic particles (molecules) making up the system. Such an approach will

aim at laws of GA behavior described by more macroscopic statistics such as “mean fitness in

the population” or “mean degree of symmetry in the chromosomes” rather than keeping track

of the huge number of individual components in the system (e.g., the exact genetic

composition of each population).

Regarding theoretical guidelines about which GA to apply, the real problems

encountered by GAs usually compel tailoring the GA at hand as the use of different encoding

and operator variants could provide different solutions (Davis, 1991; Michalewicz, 1996).

One realizes that there are therefore no rigorous guidelines for predicting which variants and

more particularly, which encoding, works the best. By addressing the binary/floating point
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debate, the work by Field (1996) confirms that there is no best approach and that the best

representation depends on the problem at hand. Davis (1991) also recommends a problem-

oriented approach, in which domain knowledge should be incorporated into the GA as much

as possible, and the GA should be hybridized with other local optimization methods that work

well. The current author believes hybrid GAs to be the most effective solution to complex

optimization.

As one can understand, there are many controversies in the GA community over the

approaches used, revealing that GA theory is by no means a closed book (indeed, there are

more open questions that solved ones). One final point worth mentioning about the GA theory

is that many of today’s algorithms show enormous differences to the original SGA.

2.4.2 Applications in Engineering

Although the evolution simulation implemented in GAs appears to be a crude

simplification of biological reality, over three decades of applications have clearly

demonstrated the robustness of the resulting non-gradient algorithms. GAs have been applied

to all (and more) of the areas Holland (1975) had indicated: optimization in engineering and

computer science, combinatorial optimization such as job-shop scheduling, automatic

programming and machine learning, biotechnology, economics and social sciences, financial

forecasting, art and music, game-playing, to name the most relevant. Because of the

complexity and the abstraction associated with the traditional binary coding generally used to

encode design variables, research on GAs has been slow to spread from computer science to

engineering. Over the past few years, however, application to real-world problems has

increased greatly as many researchers started to adapt the algorithm encoding to the most

natural representation of the search space. The Handbook of Genetic Algorithms (Davis,

1991) is a striking evidence of the possible real world GA applications in industry. Some

recent interesting demonstrations of the effectiveness of GAs with both integer and real-

number coding in the fields of structural optimization, and more particularly composite

structure optimization, parameter estimation and thermal sciences are outlined below. Note

that GAs have not been utilized very much in heat transfer.

In structural optimization, Furuya and Haftka (1993) determined optimal actuator

locations on large space structures using GAs with integer coding. They showed that the

performance of the algorithms with integer coding was at least as good as or better than the

performance with binary coding. Doyle (1995) illustrated GAs with real-number coding to
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efficiently locate the size and location of a crack in a frame structure. The inverse problem of

identifying the number, location and shape of holes to make in structural components with an

aim to optimizing their weight has been investigated by Nakamura and Taomoto (1996) using

successively a GA and the conjugate gradient method. The design was performed in two

steps: first, the total number of holes and their initial location and shape were estimated using

the GA; then, the optimal shape and location were identified by the gradient-based

optimization method.

For composite laminate design and optimization, Soremekum (1997) modified a basic

GA to include a second chromosome string so that composite laminates comprised of multiple

materials could be studied with greater efficiency. Using this modified GA, Soremekum

performed the minimization of both the cost and weight of a simply supported composite

plate under different combinations of axial loading, and obtained a Pareto-optimal set of

designs. Multi-objective optimization of laminated ceramic composites was also previously

performed by Belegundu et al. (1994) using GAs. Exploiting the GA property of implicit

parallelism for the design of composite laminate structures, McMahon (1998) developed a

distributed GA with migration which was aimed to operate on a parallel processor. The

migration algorithm was found to diminish the normalized cost and improve the reliability of

a GA optimization run.

Using GAs as a parameter estimation technique, Carroll (1996a and b) could

simultaneously estimate a set of unknown parameters that best matched a chemical laser

model prediction with experimental data. Jones et al. (1996) used GAs to determine the

optical properties and the particle size distribution function of propellant smoke from angular

light-scattering measurements. A combination of the gradient-based Gauss method and a GA

was applied by Wright (1996) to determine the specific acoustic admittance of the inlet and

outlet ports of a combustion chamber. By exploiting the advantages of both techniques,

Wright was able to arrive at accurate estimates of the acoustic boundary conditions for nearly

any candidate system. A similar procedure was conducted by Autrique and Souza de Cursi

(1997) who implemented a stochastic modification based on GAs into classical gradient-based

methods for the control of the vulcanization process. They showed that such an

implementation was efficient for global optimization. Raudensky et al. (1995) applied GAs in

solution of inverse heat conduction problems, while a GA for an inverse radiation problem

was used by Li and Yang (1997). Lorion et al. (1999) have just reported the use of GAs for

the successful estimation of thermal diffusivity in a multi-layer material. Their work also

involves a comparison of results obtained on a homogeneous material using both GAs and the
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Levenberg-Marquard method. In this comparison, GAs were found to provide more accurate

and stable results than the gradient-based method.

The feasibility of GAs to solving heat transfer problems was illustrated by Davalos and

Rubinsky (1996). In this work, two simple cases of conduction heat transfer were considered.

These included 1) conduction in a one-dimensional slab, with one side kept constant at the

temperature of zero which was also the initial temperature, while the other side temperature

changed with a constant rate; and 2) conduction in a two-dimensional square in which the

temperature of three sides was zero (also the initial temperature), while the temperature on the

fourth side changed with a constant rate. The temperature distribution was encoded as a string

of normalized temperatures (the parameters to determine) at discrete spatial and temporal

locations. The fitness function to evaluate the chromosomes was based on the conservation of

energy incorporating both local and global conservation. For both test cases, the accuracy of

the results obtained with the GA was remarkable.

In the field of thermosciences, the optimized cooling of electronic components is one

intractable optimization problem type that requires the use of GAs. Queipo et al.(1994) used

these algorithms to find optimal or nearly optimal arrangements of convectively cooled

components placed in-line on the bottom wall of a ventilated two-dimensional channel. They

concluded that GAs allow a cost effective approach for investigating highly complex

numerical and experimental thermoscience problems where it is desirable to obtain a family

of acceptable problem solutions, as opposed to a single optimum solution. This work showed

the adaptability of GAs. In the optimization of a chip design layout on a circuit board, Sakait

and Chang (1996) were also able to easily take heat source constraints into consideration

using GAs. These algorithms were used as well for the thermal design of finned surfaces

(Fabbri, 1997).

One industrial thermal area in which GAs are extensively used involves power systems,

e.g. power plant operation cycle management and cogeneration systems planning. The

thermoeconomic models used are typically highly nonlinear. Applications of GAs are sought

for the simultaneous optimization of the configuration, design and operation of the installation

over its entire economic lifetime by minimizing the time integral of total cost (Olsommer and

al., 1997). The GA that allows achievement of such a task combines binary, integer and real

encoding and is used on a parallel processor. This large scale optimization shows the

incredible possibilities and robustness of GAs.

On the basis of the applications reported above, GAs have been found to be very
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powerful optimization procedures. Therefore, in this research these algorithms were

investigated for use in designing optimal experiments to determine thermal properties, and in

the subsequent simultaneous estimation of the properties. The use of GAs in these areas was

particularly sought for the optimization of several experimental parameters and the

simultaneous estimation of multiple thermal properties regardless of the presence of

correlation among the properties. It is of interest to note that there is no knowledge of

previous attempts to use GAs in these areas. The GAs developed in this work were based on

real encoding. It should be mentioned here that for the task of optimizing functions of real

variables, Evolutionary Strategy approaches have shown some appreciable robustness.

However, although they have been around for about 30 years (Schwefel, 1995), these

algorithms are still unknown to many investigators and much less theory than for GAs has

been developed. Consequently, the ES approach was not investigated in this work.
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CHAPTER 3

Parameter Estimation and Design Optimization:

Theoretical Considerations

This chapter provides the theoretical tools needed in developing a genetic-based

methodology for both experimental design optimization and simultaneous parameter

estimation, and in performing the studies reported in Chapters 5 and 6. The inverse

methodology for parameter estimation is first introduced, including problem formulation, and

presentation and discussion of a popular gradient-based procedure, the modified Box-

Kanemasu method. Some important factors to examine are described, namely sensitivity

coefficients, correlation matrix, condition number, residuals, root-mean-square error and

confidence intervals of the parameter estimates. The second section deals with the

methodology for designing optimal experiments to be used for property estimation. The

optimization problem is formulated and the main optimality criteria are discussed.

3.1 Parameter Estimation Inverse Methodology

Parameter estimation typically involves the determination of one or more parameters

contained in a vector β. The parameters are inherent in a mathematical model of a measurable

(dependent/state) variable, η, of some physical process. In the following, general

considerations are provided based on such a variable η which is assumed to be a function of

known independent variables such as position and/or time, contained in the vector ~x . Note

that in the thermal characterization problems treated in Chapter 5, the dependent variable is

temperature, and the vector β contains for instance thermal conductivity and specific heat,

while in the kinetic characterization problems treated in Chapter 6, the dependent variable is

either the cure rate or the degree of cure of the reaction, and β contains kinetic parameters.
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3.1.1 Formulation

Parameter estimation can be seen as an optimization in which the objective is to select

the values of some unknown parameters in such a way that an objective function is

minimized. This latter is specified by the estimator scheme chosen to be applied. The three

main estimators, Ordinary Least Squares (OLS), Maximum Likelihood (ML) and Maximum a

posteriori (MAP) were introduced in Chapter 2. The objective functions associated with these

estimators are expressed by different sum-of-squares functions which contain calculated and

measured values of the state variables considered. It is however possible to give a sum-of-

squares that is suitable for OLS, ML and MAP estimation when appropriately specialized. In

matrix form, this function is (Beck and Arnold, 1977):

( ) ( )[ ] ( )[ ] [ ] [ ]S β η β η η β η β µ β µ= − − + − −, ~ ~ ,~ ~x x
T T
W U (3.1)

where β is the true parameter vector and η β( ,~x)  and ~η  are the modeled and observation

vector, which comprise of calculated and measured values of η at specific values of the

independent variables contained in ~x , respectively. Both W and U are symmetric and square

np×np matrices, where np is the number of unknown parameters. In MAP estimation, W is set

equal to the inverse of the covariance matrix of the measurement errors, U is the inverse of

the covariance matrix of the prior information parameters and µ is the prior information

parameter vector. In ML estimation, W is the same as in MAP but U is set to zero.

Eventually, in OLS estimation, no information is assumed and W is set to the matrix identity

while U is set to zero.

Independently of the inverse technique used to minimize S, the inverse methodology

can be schematized as shown in Fig. 3.1.

Experiment

S(β)
+

-

Model

Inverse Method

Figure 3.1    Schematic of parameter estimation inverse methodology.

η β( ,~x)

~η

Input



36

3.1.2 A Gradient-Based Procedure: the Modified Box-Kanemasu Method

• Description

Application of a gradient-based procedure as an inverse technique involves setting the

derivative of the function S with respect to the parameter vector equal to zero:

( )[ ] ( )[ ] [ ]∇ = − ∇ − − − =β β η β η β η β µS 2 2 0T ,~ ,~ ~x xW U (3.2)

The derivative of η with respect to β is called the sensitivity matrix and is denoted by X(β).

Each component of this matrix is a sensitivity coefficient which is associated with a parameter

and relates how the dependent variable changes with respect to that particular parameter.

Sensitivity coefficients will be discussed in the next section. For nonlinear-in-parameter

models (this is the case for all problems investigated in this work) the sensitivity matrix is a

function of the parameters, and Eq. (3.2) cannot be explicitly solved for the parameter vector

β. Note that linear estimation implies that the model investigated is of the form η β β( ,~x) = X ,

where X is independent of β. Therefore, two approximations are used to linearize Eq. (3.2).

The first involves replacing X(β) with X(b), where b is an estimate of β. The second uses the

first two terms of the Taylor series of η β( ,~x)  about b to approximate η β( ,~x) . These

simplifications, along with the use of an iterative scheme (in which the first estimate of β

could be µ) lead to the following solution for b:

( ) ( ) ( ) ( ) ( )[ ] ( )[ ][ ]b b P X W U bk k k k k+ = + − + −1 T η β η µ,~ ~x (3.3)

( )∆ g
kb

where    
( ) ( )[ ]P X WX U= +

−
T k k

1

(3.4)

Eq. (3.3) is known as the Gauss linearization equation. This method specifies a direction and

step size that the parameter vector should be changed in order for S to be a minimium. To

improve convergence, the Box-Kanemasu modification reduces the step size ( )∆ g
kb  by

implementing a scalar interpolation factor h which is a quadratic approximation of S. Eq. (3.3)

then becomes:
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( ) ( ) ( ) ( )b b bk k k
g

kh+ += +1 1 ∆ (3.5)

A further correction modifies h to ensure that S continuously decreases. The solution for the

estimates is obtained when the parameter values do not change significantly from iteration to

iteration. For a more in-depth description, refer to Beck and Arnold (1977).

• Discussion

Important points about the use of this gradient-based procedure can be made in

reference to Eqs. (3.3) and (3.5), and more particularly, regarding the direction of the step size

( )∆ g
kb . First, one can understand that the use of information (matrices W and U, and vector

µ) may help finding a better ( )∆ g
kb  provided this information is appropriate. If the prior

information is not in the neighborhood of the final estimates, its use may actually have the

opposite effect than its purpose and prevent the method from converging. For that reason, the

MAP estimator is usually not used (U=0). Using ML and OLS estimators, one can see that the

values of the initial estimates should be given great care as they are used to calculate ( )∆ g
kb .

Due to the implementation of the scalar factor h(k+1), the modified Box-Kanemasu method

offers a little more flexibility in the choice of the initial estimates than the Gauss-Newton

method which has been shown to require “good” initial values to be stable. Nevertheless,

experience has proven that even the use of the modified Box-Kanemasu method still requires

“correct” initial values, e.g. not too far from the neighborhood of the final values.

Two final points worth mentioning are related to the sensitivity matrix and the P matrix

[Eq. (3.4)]. Obviously, if the sensitivity coefficient of one parameter is negligible, it has some

effect on the associated direction and step size for that parameter and thus on the final

estimate. In addition, the P matrix may also be disrupted from a negligible sensitivity

coefficient, thus affecting the estimation of all other parameters. Eventually, unique

estimation of the parameters as independent variables is possible only if the P matrix exists,

e.g. in ML or OLS estimation (U=0), the Fisher information matrix defined by XTX is non-

singular (|XTX|≠0, known as the identifiability condition). This implies that the sensitivity

coefficients are linearly independent, in other words, not correlated. Note that the condition

|XTX|≠0 also requires that the number of measurements in ~η  be equal to or greater than the
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number of parameters. This requirement is usually always satisfied in the heat transfer field

and in order to minimize the measurement error, it is actually recommended to use a number

of measurements at least equal to 20 times the number of parameters (Raynaud, 1999).

In the light of this analysis, considering the use of OLS estimation, application of the

modified Box-Kanemasu method requires the following conditions:

1) “correct” initial estimates,

2) sufficient sensitivity information, and

3) uncorrelated parameters.

Note that quantification about conditions 2) and 3) are provided by two respective rules of

thumb detailed in the following section. When the three conditions above are fulfilled, then

the modified Box-Kanemasu method has been proven to be very effective. But in case these

conditions are not met, which characterizes ill-conditioning, the method has been shown to

oscillate with increasing amplitude and not converge (Garcia, 1994; Hanak, 1995; Guynn,

1996; and Copenhaver, 1996).

One area in which efforts must be focused prior to the actual implementation of the

estimation procedure is the optimization of the experimental design that is used to generate

the observation vector ~η . Based on an adequate optimality criterion related to conditions 2)

and 3), such optimization should facilitate the estimation of the parameters. Optimization of

experimental designs is the subject of Section 3.2. However, in the case of very ill-posed

estimation problems, it is possible that even after experimental optimization, not only is the

sensitivity information still insufficient, but also some parameters are still correlated (Hanak,

1995; Guynn, 1996; and Copenhaver, 1996). Note that Box has actually shown that high

correlations among the parameters can be due to a large extent to the nature of the model itself

and thus no experimental design could be expected to yield uncorrelated parameter estimates

(reported by Beck and Arnold, 1977). In that case, the modified Box-Kanemasu method (and

most probably any other gradient-based procedures) is simply ineffective. One solution

commonly applied is to follow the principle of parsimony (Beck and Arnold, 1977) that states

that the smallest possible number of parameters should be estimated. However, this

considerably restricts researchers to estimation of a few parameters by experimental design. In
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addition, if the same mathematical model is used, the unknown parameters that cannot be

estimated are usually set to nominal values that then introduce a bias in the final estimates.

The magnitude of this bias will be a direct consequence of the uncertainty contained in the

nominal values, the sensitivity to these values, and the degree of correlation between the

parameters to be estimated and the supposedly known one. Therefore, there is a need to

develop a methodology capable of solving such ill-defined simultaneous parameter estimation

problems. Genetic Algorithms were investigated in this research because they were thought to

have this potential. These algorithms are described in the next chapter.

3.1.3 Sensitivity, Correlation and Condition Number Analysis

Of particular interest before starting any estimation procedure is the careful analysis of

both sensitivity of the mathematical model to the unknown parameters, and degree of

correlation of the parameters. These concepts are important since small magnitudes of the

sensitivity coefficients and near-linear dependence among the coefficients are limiting factors

to the stability, and thus convergence, of gradient-based estimation procedures, as outlined

earlier. In addition, computation of the condition number of the Fisher information matrix

XTX can allow assessment of any ill-conditioning characteristic of the estimation problem. In

the following, expressions for the sensitivity coefficients and the correlation matrix are

detailed and then two rules of thumb that are useful to quantify sensitivity and correlation,

respectively, are provided. This section concludes with the mathematical definition of the

XTX matrix condition number and its physical signification.

• Sensitivity

A sensitivity coefficient, Xβ , is defined as the effect that a change in a particular

parameter β has on the state variable and is expressed by (Beck and Arnold, 1977):

X
i

β
γ β

∂η
∂β

=
≠

(3.6)

where γi are all parameters other than β that remain constant. The larger Xβ , the more sensible

η is to β and the easier the estimation of this parameter (provided the inverse method

converges). In addition, viewing the sensitivity coefficients can allow insight to be obtained
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into the adequacy of the mathematical model and that of the experimental design. When

performing a sensitivity study, it is meaningful to examine the dimensionless sensitivity Xβ
+

given by:

X
i

β
γ β

β
∂η
∂β

+
+

≠

= (3.7)

where η+ is the dimensionless dependent variable. One convenient and generally appropriate

expression for η+ is:

( )η
η

η
+ =

∆
∆

max

(3.8)

where ∆η η η= − min  and ( )∆η η η
max max min= − . The term ηmin is the minimum value of η

(which is also the initial value in all problems investigated in this work), while (∆η)max is the

maximum increase of η between the beginning and end of the experiment. Eq. (3.7) can then

be rewritten as:

( )X Xβ β

β
η

+ =
∆

max

(3.9)

Whenever the sensitivity coefficients can be solved for analytically, this solution must

obviously be selected. However, when no analytical expressions are available, such as when

using a numerical model, a numerical alternative must be applied. In this work, the convenient

finite difference method was implemented. Note that this method is the numerical alternative

recommended by Beck and Arnold. This choice was supported by the fact that on one hand,

the inverse estimation methodology developed in this work is based on genetic algorithms

which do not use sensitivity coefficients. On the other hand, the finite difference accuracy

obtained in computing these coefficients is generally acknowledged to be sufficient for the

experimental optimization.

A Taylor series expansion was used to approximate the derivative. To minimize the

computational cost, a forward difference approximation (first-order accurate) was chosen

which gave for Xβ :

( ) ( ) ( )X oβ

η β β η β
β

β β β=
+ −

+ = ×
∆
∆

∆ ∆, δ (3.10)
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where one can see that the truncation error of the approximation is of order o(∆β). Thus a

smaller δ (and thus a smaller ∆β) would yield a more accurate approximation. However, care

has to be taken so as not to make δ too small in order to avoid numerical round-off errors. The

work from Tortorelli and Michaleris (1994) indicates that when using single precision,

δ values of 10-3 and 10-4 would provide reasonable accuracy, while when using double

precision, accurate results were obtained for δ values of 10-4 to 10-10. In addition, the double-

precision computations were more reliable, as expected. Although these conclusions are based

on the study of a linear elliptic system (which for instance governs linear steady-state

conduction), they are nevertheless pertinent here since pertaining to numerical computation.

In this work, whenever the finite difference method was used to compute sensitivity

coefficients, several perturbation sizes, δ, were tested to verify that reliable results were

obtained. Generally, the perturbation sizes used were between 10-4 and 10-6 using double

precision.

• Correlation

As mentioned earlier, correlation between the parameters, e.g. linear dependence, plays

a critical role in gradient-based inverse methods. One way to investigate correlation is to

simply plot the sensitivity coefficients against each other. If they appear to be nearly linear

dependent the corresponding parameters are correlated and cannot be estimated

simultaneously (Beck and Arnold, 1977). Another way is to plot the sum-of-squares function

S. Contours that are long, narrow and curving are frequently associated with near-linear

dependence. Because plots can often be inconclusive, it is recommended to compute the

correlation coefficients, rij, defined by Walpole and Myers (1993):

( )
rij

i j

i j

=
cov ,β β

σ σ
(3.11)

where σi and σj are the standard deviations of parameters i and j, respectively. Assuming the

standard statistical assumptions apply, which involve uncorrelated, additive, normally

distributed errors with zero mean and constant variance σ2, errorless independent variables

and no prior information regarding the parameters, then the approximate (from linear OLS

estimation) covariance matrix of the estimation vector β is [XTX]-1σ2. Therefore, the
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correlation terms, rij, can be approximated using:

r
P

P P
i j nij

ij

ii jj
p= =, , , ...,1 (3.12)

where the Pij terms can be found from Eq. (3.4). The r matrix is symmetric with the diagonal

terms being unity (obviously, each parameter is completely correlated with itself) and the off-

diagonal terms being between –1 and 1. As the magnitude of these terms approaches unity,

the properties approach linear dependence. Beck and Arnold (1977) stated that this condition

of linear dependence is almost satisfied in the region of the minimum S in many more cases

than would be expected. However, because parameters are never completely correlated

(provided one uses an appropriate experimental design as defined in Section 2.2.1), the sum of

squares error S has a unique minimum point and thus a unique set of parameters. That

minimum point may not be very pronounced, however.

It is important to note that unlike linear estimation, Eq. (3.12) is an approximation for

nonlinear models, with the approximation being better for cases which are less nonlinear than

others. This comment, along with the standard statistical assumptions made above, also

applies for all subsequent expressions. Regarding the validity of these assumptions, the

residuals analysis (described in Section 3.1.4) is one convenient means to verifying it.

• Sensitivity and Correlation Quantification

Two rules of thumb can be used to quantify sensitivity and correlation. One would like:

- the magnitude of the dimensionless sensitivity coefficients to be greater than 0.1, and

- the magnitude of the off-diagonal correlation terms to be lower than 0.9.

Although those values are by no means “exact”, experience has proven that they were

pertinent. Indeed, when using traditional gradient-based estimation procedures, lower X+ than

0.1 and greater rij than 0.9 usually lead to problems with convergence and resolution of

accurate parameter estimates.
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• Condition Number

The condition number of the Fisher information matrix XTX can be defined as:

cond
np

=
λ

λ

1
(3.13)

where λ1 and λnp are the largest and smallest eigenvalues of the XTX matrix (which has a rank

np), respectively. From this definition, one can understand that a large condition number could

come from:

- a large difference between the largest and smallest eigenvalues, which is directly related

to a large difference between the highest and lowest sensitivity coefficient magnitudes,

− a very small value for the smallest eigenvalue, which is directly related to a very small

value for the lowest sensitivity coefficient magnitude, and

− the presence of linear dependence(s) between the parameter sensitivity coefficients.

The condition number of the XTX matrix can therefore be thought of as a quantification

of the illness of the estimation problem. It indicates that, in addition to sufficient sensitivity

information and uncorrelated parameters, one wishes to have sensitivity magnitudes on the

same order for all parameters. There is unfortunately no rule of thumb for this number.

However, the comparison between two condition numbers associated with two different XTX

matrices can allow assessment of which matrix, and therefore, which estimation conditions,

are the most stable. Notice here, that the condition number is independent of the measurement

error.

3.1.4 Residuals and Root-Mean-Square (RMS) Analysis

Two other very important factors in the parameter estimation are the examination of

both the residuals and Root-Mean-Square error after the final estimates have been obtained.
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• Residuals

The residuals are the differences between calculated and observed values of the state

variable, that is:

( )e i Ni i i i= − =η ηβ ~ , ,... ,1 (3.14)

where Ni is the number of observations taken at a specific sensor. Through the visual

inspection of the residuals, one can learn much about the validity of the estimation procedure

and of the model. In addition, this examination allows the testing of which assumptions made

in the computation of the correlation matrix, RMS, confidence intervals of the final estimates,

and in the determination of the optimal design (these concepts which have not yet been

discussed will be in the following) seem to be valid regarding the measurement errors. Draper

et al. (1981) present a thorough investigation into this subject, emphasizing that plots of the

residuals are very illustrative. One would like to have small, centered around zero, and

uncorrelated measurement errors. However, often the shape of the residuals contains a

“signature”, which means that the shape is the same for different experiments and presents

few sign changes. This indicates some bias or inconsistency in the mathematical model. Note

that the inconsistency may result from inaccurate values used for presumably known

parameters (thermocouple position, dimensions, material properties other than those

estimated, temperature and heat flux measurements, to name the most relevant). Uncertainties

in these latter can indeed have strong effects on the accuracy of the final estimates. Because

tests based on data that were used to derive the model can be deceptive and dangerous, of

interest is the model testing using a new set of data. That is, the examination of the residuals

from an additional sensor whose measurements were not used to compute the sum of squares

error S. However, this is not always possible, for instance in the case where a numerical

mathematical model is used and where measurements from all other sensors are implemented

to specify the boundary conditions.

Note that for transient models, the concept of sequential estimation (Beck and Arnold,

1977) in which the parameters are estimated at each time step is also a very convenient means

of evaluating the adequacy of the model and that of the design (in addition to the advantage of

observing the effects of additional data on the sequential estimates). However, this concept

was not utilized in the current work as its implementation into the genetic algorithm
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procedure developed was thought to increase the computation cost considerably.

• Root-Mean-Square (RMS) Error

The Root-Mean-Square error is defined by

( )
( )RMS=

−

S

N ntot p

β
, (3.15)

where Ntot is the total number of observations used to compute S; that is for instance, if there

are Ni observations from m thermocouples, Ntot=m×Ni, while if Nj experiments of Ni

observations from only one thermocouple are considered, then , Ntot=Nj×Ni. Ideally, the RMS

should be small, and usually, the larger Ntot, the smaller the RMS (and consequently, the

smaller the confidence intervals around the estimates which are discussed next).

When mean thermal property values are computed from a number of different

experiments investigated individually, it is common to look at both the RMSi, which is found

for each experiment using the thermal properties estimated for that experiment i, and the

RMSM, which is found using the mean values applied to a particular experiment.

3.1.5 Confidence Intervals (CIs)

Confidence Intervals (CIs) of estimated parameters are used to determine the accuracy

of the estimates. For a given nonlinear OLS estimation, assuming the only source of error is

the measurement error, the CIs of the individual estimates can be approximated using the

formula:

( )
β αk k tot p kk

tot p

b t N n P
S

N n
= ± −

−−1 2/ ( )
β

(3.16)

where βk is the predicted property, bk is an estimate for βk, Pkk represents the kth diagonal term

of the P matrix, S is the least squares error and t is the student t-distribution for Ntot-np degrees

of freedom and α/2 is the confidence range (Walpole and Meyers, 1993). For a large value of

Ntot-np and 95 % probability, t1 0 05 2− ∞. / ( )  is 1.96 and Eq. (3.16) can be rewritten as:
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βk k kkb P= ± 196. RMS (3.17)

The CIs indicated here basically describe the possible amount of variation in the estimates due

to, on one hand, the sensitivity of the model to the parameter and the condition number of the

Fisher information matrix (through the P matrix) and, on the other hand, the resulting RMS.

Therefore, inaccurate estimates may come from very small sensitivity of the model to the

parameters as well as an ill-defined Fisher information matrix (for instance due to correlation

between parameters; see the paragraph about the definition of the condition number and its

physical signification) or inadequacy to reproduce the experimental data (possible sources of

high residuals have been discussed in the previous section). Recall that this expression is

derived for linear-in-parameter models. It is, however, pertinent here to mention the work of

Grimstadt and Mannseth (1998) who reported a Monte Carlo analysis that aimed to check the

validity of using these approximate CIs for nonlinear estimation. These authors indicate that

use of such approximation was almost always justified even for the highly nonlinear model

they analyzed

It is advised to check that the CI magnitude agrees with the sensitivity analysis, that is

the parameter which has the largest sensitivity coefficient should have the smallest CI.

Because of the consideration of the measurement errors only, if the Fisher information matrix

is well-defined, the CIs may result in very small value. However, recall that uncertainties in

the presumably known parameters have also some effects on the accuracy of the final

estimates that may often be much larger than the effect of the measurement errors. For a true

measure of confidence in the estimates, uncertainties in the variables set as known should be

included (Jarny and Maillet, 1999). Because several different estimation problems were

investigated in this research, uncertainties besides the measurement errors were, however, not

analyzed and the parameter CIs were simply calculated from Eq. (3.17)

In the case of multiple estimates, the CIs of the mean values of n estimates, bk , can be

computed from two expressions which are (Walpole and Myers, 1993):

b t n
s

n
k ± −−1 2 1α / ( ) (3.18)
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b t n
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2
1

1α / ( ) (3.19)

In both equations, t is the value of the t-distribution for n-1 degrees of freedom and α/2 is the

confidence range. Equation (3.19) is expected to be more appropriate than Eq. (3.18) because

it includes the sample standard deviation si of each individual experiment [s Pi kk= RMS

from Eq. (3.17)], whereas Eq. (3.18) assumes the same standard deviation around the mean, s,

for the n experiments.

3.2 Design Optimization Methodology

Because all estimators (OLS, ML and MAP) require experimental measurements, the

acquisition of data with the most sensitivity for the unknown parameters entails experimental

design optimization. In the following, the optimization problem is first formulated. Then,

three optimality criteria are described and discussed with an emphasis on the well known D-

criterion. This section concludes with the need for a robust and reliable optimization

technique.

3.2.1 Formulation

In the specific case of optimizing experimental designs used for parameter estimation,

the objective is to obtain the greatest possible accuracy; that is, to minimize the variance of

the np estimated parameters. Consider for an exact (e.g. unbiased) experiment that some

observations ~ηi are taken and the seven standard statistical assumptions given in Section 3.1.3

(and denoted 11111-11 in Beck and Arnold, 1977) apply. The np×np Fisher information matrix

is XTX and the approximate (from linear OLS estimation) covariance matrix of the estimation

vector β is [XTX]-1σ2 (where σ2 is the assumed equal variance of the measurement error).

From this, one understands that the objective function, called the optimality criterion here,

should be based on inferential properties of the XTX matrix and, therefore, depends on the

sensitivity matrix X. Before describing the main optimality criteria proposed for the design of

experiments, one important factor to mention is the intelligent selection of the experimental

parameters that are anticipated to have a substantial effect on the model response, and more
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particularly on the magnitude of the sensitivity coefficients. The experimental parameters can

be associated with the experimental setup as well as with the experimental procedure. Usually

boundary conditions, time, and sensor location are the most critical experimental parameters.

In addition, one should keep in mind that the optimal experiment should be designed to be

experimentally reproduced. Therefore, feasibility of the experimental design (for instance, in

implementing particular boundary conditions) should be one priority. Clearly, the closer

experiments are to the optimal design, the more accurate the estimated properties will be. This

also implies that the standard statistical assumptions are respected as much as possible.

An additional relevant point pertains to the fact that the optimal values determined for

the experimental parameters with respect to an optimality criterion should also be appropriate

regarding the minimization of the model response sensitivity to the “supposedly” known

parameters. As outlined by Raynaud (1999), design-of-experiment should be formulated in

terms of two objectives: the maximization of an optimality criterion for the estimation of

unknown parameters as well as the minimization of the sensitivity to all other parameters.

3.2.2 Optimality Criterion

• Description

The three most often encountered optimality criteria proposed for the design of

experiments are the D-, A- and E-optimality criteria. These criteria provide various measures

of the size of the confidence region of the estimates. With the assumption that the

observations are normally distributed, the confidence region is described by ellipsoids in the

parameter space. In addition to the seven standard statistical assumptions, these criteria are

subject to some constraints such as maximum duration of the experiments, maximum range of

the dependent variable, and large number of observations with uniform spacing in time.

Following is a brief outline of their definition and simple geometrical meaning (Kiefer, 1981):

- the D-criterion, which is the most commonly used, involves the maximization of the

determinant of the Fisher information matrix XTX (or minimization of the determinant of

[XTX]-1). The determinant of [XTX]-1 being proportional to the square of the confidence

region hypervolume, D-optimality has the effect of minimizing this hypervolume. This

criterion therefore minimizes the generalized variance of the estimates.
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- the A-criterion involves the maximization of the trace of the XTX matrix (or minimization

of the trace of [XTX]-1). Because the trace of [XTX]-1 is proportional to the sum of squares

of lengths of the principal axis of the confidence region, A-optimality has the effect of

minimizing the quadratic average of principal axis lengths. This criterion therefore

minimizes the average variance of the estimates.

- the E-criterion involves the maximization of the minimum eigenvalue of the XTX matrix

(or minimization of the maximum eigenvalue of [XTX]-1). The maximum eigenvalue of

[XTX]-1 being proportional to the square of the maximum diameter of the confidence

region, E-optimality has therefore the effect of minimizing this maximum diameter.

Obviously, the geometrical and theoretical meaning given here for these optimality

criteria is not exact for real estimation problems (nonlinear estimation problems in which the

standard statistical assumptions are not satisfied and neither is the “equal spacing” constraint).

However, by solving the simpler analogue formulation, one can get an idea on how good (if

not optimum) the design can be in more complex form.

The analysis of the effect of these three criteria on the accuracy of the parameter

estimates was one of the specific objectives of this research (see Section 5.1.1.6). In

dimensionless terms, the maximization of these criteria can be defined as the maximization

of:

[ ]D dij
+ += (3.20)

E i
+ += minλ (3.21)

A dii
i

np

+ +

=
= ∑

1

(3.22)

where dij
+ and λi

+ are the ij th element and the i th eigenvalue of the dimensionless XTX matrix.

The dij
+ elements can be calculated from:

( )
( ) ( )d
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X t X t dt i j nij
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ik
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+

+

+ +

=
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12
01max

, , , ..., (3.23)

where Tmax
+ is the maximum dimensionless temperature being reached at steady state. Note

that time could also be dimensionless. The use of both dimensionless terms and the averaging
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over the squared maximum temperature allows, on one hand, comparison of competing

designs which, for instance, involve different boundary conditions and, on the other hand,

results to be obtained for a specific design that can be applicable to any material. When

performing the integration over time numerically, one should obviously use the same

computational time step to compare competing designs.

• Discussion

Now that these optimality criteria have been defined, it is important to stress that the

objective behind designing experiments with respect to either D-, A- or E-optimality is related

to the size of the confidence region of the estimates only. On no account is possible

correlation(s) between the estimated parameters to be minimized. While one wishes to design

experiments in which there is minimum correlation as well as maximum sensitivity of the

measured variable to changes in the parameters being estimated (which recall correspond to

conditions 2 and 3 in Section 3.1.2), this is not possible using one of the three optimality

criterion described here. D-optimality is recommended because, by minimizing the

generalized variance of the estimation vector, it allows the most accurate global estimation.

However, it is possible that a D-set of final estimates might be more correlated (while

globally more accurate) than a set of estimates obtained from a different design than the D-

optimal. This will actually be the result of the analysis performed in Section 5.1.1.5. Accuracy

and correlation are two different concepts which have been long associated because of the use

of gradient-based methods that cannot operate properly in the presence of correlation.

However, correlation is simply a characteristic between parameters and it is inherent to the

mathematical model investigated, as stressed by Box and reported by Beck and Arnold

(1977).

One criterion that one could think of as both maximizing the accuracy of the estimated

parameters (by maximizing their sensitivity coefficients) and minimizing the correlation

between them is the condition number of the Fisher information matrix XTX. However, there

is no mathematical proof that minimizing this number would guarantee such output. Besides,

Alifanov et al. (1995) have reported that D-optimality was nearly equivalent as an optimality

criterion based on the XTX condition number. Finally, results of Section 5.1.1.5, for instance,

will show that it is possible to obtain for a specific D-optimal design a globally more accurate
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set of estimated parameters which indicates higher correlation terms between the parameters

but, more important, a lower condition number than for a non-optimal design.

One important point to realize in design optimization is that as models are usually

nonlinear, the sensitivity coefficients depend on the unknown parameters. Therefore, an

iterative design optimization must be implemented. Such iterative scheme consists in 1)

performing the optimization using initial estimates for all unknown parameters, 2) conducting

the experiments as prescribed from the optimal design, and 3) generating estimates from the

parameter estimation inverse method. If the new estimates from the experiments are found to

be completely different than the previous values used, the optimal parameter settings have to

be redetermined. As one can easily guess, for time-consuming direct models, this iterative

procedure cannot be rigorously followed. One useful output that has been typically found is

that the optimal values for the design variables often lie within an optimal range. This means

that the use of initial estimates of the unknown properties different than their actual values

may allow for nearly the same optimal design variable values [provided the initial guesses

used are not much different than, say, 100 % of the actual final estimates (Moncman, 1994;

present study)]. Therefore, the initial estimate values do not have to be exactly the true

estimates.

One final point deals with the optimization of a particular parameter, the overall total

experimental time. A usual and convenient means to find the optimal setting for this

parameter is to calculate a modified value of the optimality criterion chosen once the other

experimental parameters have been optimized by maximizing the actual optimality criterion

(using an optimization technique). The modification considered consists of computing the

criterion without averaging the integral contained in Eq. (3.23) over time. When the modified

value of the criterion does not change any more in time, it indicates that little additional

information is being provided for the estimation of the parameters and thus the experiments

can be concluded. The corresponding time is the value for the overall total experimental time.

Note that usually a conservative value is selected.
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3.2.3 Optimization Technique

The determination of the optimal experimental variables which satisfy the optimality

criterion chosen for the objective function is performed through the application of an

optimization technique. As reported in Chapter 2, the typically used parametric study presents

drastic drawbacks. On this basis, the use of a robust and reliable method is necessary. The

development of an experimental design optimization methodology based on Genetic

Algorithms was one of the overall objectives of this work. These algorithms are described in

the next chapter.
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CHAPTER 4

Genetic Algorithms

This chapter focuses on an emerging evolutionary method called Genetic Algorithms

(GAs). After a brief introduction, as GAs were already introduced in Chapter 2, the following

section is devoted to presenting the fundamentals behind these algorithms. Next, the three

algorithms developed throughout this work are described and discussed. Eventually, this

chapter concludes with the demonstration of the robustness of the third GA developed on the

optimization of a mathematical test function.

4.1 Introduction

Traditionally, there are two major classes of optimization algorithms which are

classified into calculus-based and enumerative techniques (Goldberg, 1989). Calculus-based

optimization techniques employ the gradient-directed searching mechanism, starting from an

initial guessed solution, and therefore are local in scope. Although these techniques are well

developed, they maintain significant drawbacks. Indeed, for ill-defined or multimodal

objective functions, instability and/or local optima are usually obtained. In addition, because

the objective function is often problem-oriented, implementation of these techniques can be

very complex. Many enumerative schemes have been suggested to handle the local optima

problem but at the expense of computational inefficiency. A third class that has achieved

increasing popularity is the random/probabilistic search algorithm. More particularly, the

1970’s has seen the emergence of evolutionary algorithms which employ mechanisms of

natural selection to solve optimization problems (Michalewicz, 1996). These algorithms were

thought of as the answer to the question of how the search should be organized so that there is
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a high likelihood of locating a near-optimal solution. Genetic Algorithms are today the most

widely used evolutionary algorithms.

4.2 Fundamentals

The purpose here is not to give a thorough theoretical analysis of the GAs mechanism,

as there are excellent introductory tutorials in the literature (Goldberg, 1989; Davis, 1991;

Michalewics, 1996; and Mitchell, 1996). There is also The Hitch-Hicker’s Guide to

Evolutionary Computation available on the internet (Heitkoetter and Beasley, 1994). Instead,

the objective of this section is to provide some answers to explicit questions one may have

about GAs. In the following, the structure of a simple GA will be presented along with a

general overview of the main techniques/variants that are employed in the GA process. Then,

the most important features which differentiate GAs from conventional optimization

techniques are described. Eventually, the strengths and weaknesses of GAs are outlined and

the type of problems for which the use of these algorithms is pertinent is indicated.

4.2.1 What Are GAs?

Like all evolutionary algorithms, a GA is a search procedure modeled on the mechanics

of natural selection rather than a simulated reasoning process. Developed by Holland (1975),

these algorithms were originally used for the study of artificial systems. Since their inception

GAs have been subject to a growing interest as an optimization technique in nearly all kinds

of engineering applications. Today, there are so many different GAs that it turns out, as

Mitchell states (1996), that there is no rigorous definition of GAs accepted by all in the

evolutionary computation community that differentiate GAs from other evolutionary

computation methods. Indeed, some currently used GAs can be very far from Holland’s

original conception. However, it can be said that most methods called “GAs” have at least the

following elements in common: populations of individuals, selection according to the

individuals’ fitness, crossover to produce new individuals, random mutation of new

individuals, and replacement of the populations. These elements are illustrated next, in the

description of how a simple GA works. A typical GA flowchart appears in Fig. 4.1.
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4.2.2 How Do GAs Work?

GAs are based on the collective learning process within a population of individuals

(trial solutions called chromosomes), each of which represents a search point in the space of

potential solutions to a given problem. The chromosomes code a set of parameters (called

genes). The population (of size ns) is generally randomly initialized (at the generation ng=0) in

the parametric search space (see POP0 in Fig.4.1). The individuals are evaluated and ranked in

terms of a fitness function. Then, the population evolves towards fitter regions of the search

space by means of the sequential application of genetic operators. The basic operators of a

simple GA consist of selection (selection of parents for breeding), crossover (mating of

parents to create children) and mutation (random changing of a gene). Following the

Darwinian theory of survival of the fittest, an elitism operator is usually found in the

generational replacement. A generation is accomplished when the sequence defined by the

application of all operators to the individual parents is performed, as illustrated in Fig. 4.1.

Figure 4.1    Typical Genetic Algorithm flowchart.

INITIALIZATION
ng = 0, POP0 (ns)

EVALUATION
Evaluate & Rank POPng (ns)

SELECTION
Parents

CROSSOVER
selected Parents

MUTATION
Children

ELITISM
kept Parent + best Children

ng = ng + 1

Convergence criterion satisfied ?
no

yes
Results
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The GA produces as many generations as necessary until the convergence criterion is reached.

The goal, throughout this process of simulated evolution, is to obtain the best chromosome in

the final population to be a highly evolved solution to the problem.

The main techniques/variants that are employed in the GA process for encoding, fitness

evaluation, parent selection, crossover, mutation, replacement and convergence are reviewed

next.

4.2.3 What Are the Main Operator Variants Employed in the GA Process?

The genetic operators have all several variants which can be applied in a randomly

and/or probabilistic (sometimes deterministic for some algorithms) process. These variants

may be quite specific in single applications but a number of standard variants are used by

most GAs. The following paragraphs briefly review the main standard genetic operator

variants. Again, note that it is not intended to give descriptions of all variants mentioned, as

the literature cited earlier provides excellent details about all. However, when describing the

GAs developed (Section 4.3) the variants used will be explained. Figure 4.2 introduces the

general structure of a standard simple GA (based on Fig. 4.1). In addition, as an introductory

tutorial, the mechanisms behind the genetic operator variants of such a simple GA are

developed in Appendix A using a simple function optimization example.

• Description

Encoding Scheme

To enhance the performance of a GA, a chromosome representation that stores problem-

specific information is desired. Although GAs were developed to work on chromosomes

encoded as binary strings (Fig. 4.2), it is today common knowledge that for numerical

optimization problems, one should use a GA with floating point representation. One important

point that may, however, not be obvious when one starts to use GAs (which was my case) is

that the crossover variants used should be appropriate to the encoding used. There indeed

exist both conventional (binary) and arithmetical crossover techniques to fit the two different

representations. Note that when using the real representation, a chromosome is a vector of np

genes for the np parameters. It should be emphasized here that because much of the early work

of GAs used a universal coding involving abstract binary chromosomes (that needed to be
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Solutions

Binary
Encoding

0 1 1 0 1

1 1 0 0 0

0 1 0 0 0

1 0 0 1 1

INITIALIZATION

POP0 (ns = 4
Chromosomes)

EVALUATION

� Evaluate

� Rank POPng

Fitness function
computation

Decoding

SELECTION

Roulette Wheel

5 Genes

ELITISM

POPng+1 = 1ST_POPng + (ns-1)_Children

CROSSOVER

Single-point

P1 0 1 1 0 1 C1 0 1 1 0 0

P2 1 1 0 0 0 C2 1 1 0 0 1

MUTATION

0 1 1 0 0 0 1 1 0 1

ng = ng+1

Figure 4.2    General structure of a standard simple Genetic Algorithm.
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decoded), research on GAs has been slow to spread from computer science to engineering,

and very little theory exist in the literature on real-valued encoding.

Fitness Function

The fitness plays the role of the environment in which the chromosomes are to be evaluated

(Fig. 4.2). This is thus a crucial link between the GA and the system. This function can be

simply taken as the objective function to optimize or as a transformation (scaling) of it. It is

assumed that the fitness function to be optimized is positive. In cases where the objective

function happens to be negative, the fitness function will be a transformation of the objective

function.

Parent Selection

Basically, the selection operator determines which of the individuals in the current population

(of size ns) will be allowed to pass their genetic material to the next generation. Using the GA

language, one says that it builds up the mating pool by selecting ns individuals from the

current population. There are many ways to achieve effective selection, including

proportionate, ranking and tournament schemes. The key assumption is to give preference to

fitter individuals. Using fitness proportionate selection, the number of times an individual is

expected to reproduce is equal to its fitness divided by the average of fitnesses in the

population. The most popular and easiest mechanism is the roulette wheel selection (Fig. 4.2)

where each chromosome in the current population has a roulette wheel slot sized in proportion

to its fitness. However, depending on the environment (fitness), proportionate and ranking

selection schemes may lead to premature convergence or on the contrary, to a slow finishing.

Those are well-known severe technical problems of GAs. However, both problems can be

avoided if scaled fitness values are used instead of the original values. Another way to

circumvent these problems is to use a more adequate selection operator. In many applications,

tournament selection has proved to yield superior results to fitness rank selection. In the

simplest form, the so-called binary selection, two chromosomes are selected randomly from

the current population but only the one with the higher fitness value is inserted into the mating

pool with a probability pt. One interesting feature about this selection scheme is that one can

adjust the selection pressure directly from the tournament probability pt (typically larger than

0.5). Regardless of which selection technique is used, the selection operator produces an

intermediate population, the mating pool, which consists only of individuals that are members
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of the current population. The following two operators, crossover and mutation, are then

applied to this  mating pool in order to generate children.

Crossover

The crossover operator is the key operator to generate new individuals in the population. Note

that the fact that the use of crossover increases the performance of a GA has been proved by

two theories, namely the Holland’s Schema Theorem (1975) and the Goldberg’s Building

Block Hypothesis (1989). In addition, it has been shown that so-called “deceptive” problems

(Goldberg, 1989) can be made “easy” by the use of an appropriate definition of the crossover

function. This operator is applied to each pair of the mating pool with a crossover probability

pc, usually taken from [0.6,1], to produce one or two children. With probability 1-pc, no

changes are made to the parents (they are simply cloned), but with probability pc, genetic

material is exchanged between the two parents. In the simplest crossover, the single point

crossover (Fig. 4.2), a crossover point is randomly selected and the portions of the two

chromosomes beyond this point are exchanged. Multipoint crossover is similar except that

multiple cross points are chosen at random with no duplication. Uniform crossover

generalizes the scheme by making every gene a potential crossover point. Single, multipoint

and uniform crossovers are generally considered conventional binary techniques, and when

real encoding is used, arithmetic crossovers are the most suited.

Mutation

This operator should allow a GA the finding of solutions which contain genes that are non-

existent in the initial population. It can also prevent the GA from loosing some genetic

material without any chance of adopting it again. Often viewed as a background operator,

mutation modifies gene values according to a mutation probability. Using binary encoding,

this simply means changing a 1 to a 0 and vice versa with a small probability (Fig. 4.2). Using

real encoding, when a global modification called jump mutation is applied, each gene in any

chromosome is replaced with a random value (from the entire parametric search space) with

probability pmj. A “mutation-based” operator can also be applied locally with the creep variant

(not a pure mutation operator in the sense of GAs) which consists in the addition or

subtraction with probability pmc of a small value to the gene (1% of the actual gene value).

Whereas the crossover operator reduces the diversity in the population, the mutation operator

increases it again. The higher the mutation probability, the smaller is the danger of premature

convergence. A high mutation probability will however transform a GA into some kind of
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random search algorithm, which is of course not the intention of the algorithm! Mutation

probabilities are usually small (so as not to interfere with the combination of the best features

of parents made by the crossover operation), and range from 0.001 to 0.10, the higher values

being typically applied with real encoding.

Replacement Strategies

In the simplest form of GAs, when the operation of selection, crossover and mutation are

completed on the ns individuals of the current population, this entire population is replaced

with the children created. This is the traditional generational replacement. Variations where

not all individuals are replaced in each generation exist. The simplest case of such a strategy

is the elitist strategy where the individual with the highest fitness (according to the Darwinian

theory of survival of the fittest) is directly transferred from the old to the new generation and

only the other ns-1 children are generated by the application of genetic operators (Fig. 4.2).

Generational replacement with probability pr is often used in which ns×pr parents are replaced

with children while the ns×(1-pr) best parents are kept. An alternative to replacing an entire

population at once is to replace one organism in the population whenever a new organism is

created. This variant is known as a steady-state GA.

Convergence Criterion

The most widely used stopping conditions are either that a given number of generations have

been done already, or that the population has become uniform. When the first condition is

chosen, GAs are typically iterated for anywhere from 10 to 500 or more iterations. User-

defined convergence criterion that are better suited to the problem being solved should be

preferred (although most of the studies do not address this problem). It is however not easy to

define such a criterion, as it will be shown in this work.

Performance Criteria

What does it mean for a GA to perform well or poorly? Some performance criteria can

provide answers to this question. The best fitness reached (best-so-far) is a typical one. One

criterion for computational cost is the number of function evaluations. Indeed, in almost all

GA applications, the time to perform a function evaluation vastly exceeds the time required to

execute other parts of the algorithm (which are thus considered to take negligible time). Note

that because randomness plays a large role in each run (two runs with different random

number seeds will generally produce different output), often GA researchers report statistics
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(about the best fitness for instance) averaged over many different runs of the GA on the same

problem.

Besides the genetic operators presented here, there exist a number of different operators

(inversion, reordering), in addition to advanced features (diploid, dominant and recessive

genes, sharing fitness function) which are used in different applications but not yet widely.

GAs are still far from maturity.

• Discussion

Undoubtedly, GAs possess the attributes of a probabilistic search technique for the

global optimum, while it is unfortunately often referred to as a randomized search. It is

important to realize that the global optimum solution will not be found in one GA run. GAs

are however robust in producing near-optimal solutions, with a high degree of probability to

obtain the global optimum (Kroittmaier, 1993).

One may realize at this point that the main challenge in constructing a general-purpose

GA programming environment is the selection of the genetic operator variants from the

diversity of adaptive techniques that exist, as well as the settings of the genetic parameter

values (population size, selection, crossover and mutation probabilities, which could be called

“fine tune” parameters as they play a decisive role in the GA success). Indeed, GAs using

binary representation and single-point crossover and binary mutation are robust algorithms

but are never the best algorithms to use for any problem. There are unfortunately few

heuristics to guide a user in the selection of appropriate operators and genetic parameter

settings for a particular problem. What can be grasped from the literature is that good GA

performance requires the choice of a moderate population size, a high crossover probability

and a low mutation probability (for instance, inversely proportional to the population size in

using real encoding). This lack of heuristics is a well known problem in GAs. With some

experience, one may have an idea about which variants and “right” values to use. Note that

such a procedure could be compared with the choice of a numerical scheme and then the grid

discretization and number of iterations to apply when using a numerical formulation to solve,

for instance, a heat transfer problem.

There are, however, two important issues in GAs that one should use as a guide (this is

what I realized before developing the third GA): exploiting the best solutions and exploring

the search space. On one hand, the selection operator associated with the fitness function
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gives the tendency between exploitation and exploration and is therefore very important. It is

usually considered the evolution operator. On the other hand, crossover and mutation are

classified as search operators. The first allows both exploitation and exploration, while the

second concentrates on exploration. The elitism operator can be viewed as a preservation

operator which exploits the best solution(s). As one may guess, a GA efficiency consists of an

adequate balance between exploitation and exploration.

4.2.4 What Differentiates GAs From Conventional Techniques?

GAs differ from conventional optimization and search procedures in several

fundamental ways. Goldberg (1989) has summarized these as follows:

1. GAs work with a coding of solution set, not the solutions themselves; note that this

remark applies particularly more to binary encoding.

2. GAs search from a population of solutions, not a single solution.

3. GAs use payoff information (fitness function), not derivatives or other auxiliary

knowledge.

4. GAs use probabilistic transition rules, not deterministic rules.

4.2.5 What Are the Strengths and Weaknesses of GAs?

• Strengths

There are major advantages of applying GAs to optimization (or estimation) problems.

Easily programmed, GAs are derivative-free calculations and therefore, are neither bound to

assumptions regarding continuity, nor limited by required prerequisites. As Goldberg stated,

GAs are blind. They can handle any kind of objective function and any kind of constraints

(e.g., linear or nonlinear) defined on discrete, continuous or mixed search spaces. In addition,

as stated earlier, they are robust in producing near-optimal solutions, with a high degree of

probability to obtain the global optimum. Another strength of GAs is their flexibility to be

parallelizable and hybridized with other techniques. A parallel GA operates on multiple

population pools; whenever computer facilities offer the use of several processors, such a GA

can allow for powerful runs. A hybrid search combines local search with a GA. It is an

interesting alternative wherein a number of promising initial solutions generated during the

GA search are used as the starting point for a locally convergent optimization algorithm.
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Davis (1991) advocates hybridization of GAs with domain-specific techniques, usually the

ones that were typically used for the problem being investigated. Hybrid GAs are believed to

have potential for ill-conditioned inverse problems, and the development of such procedure is

actually one of the recommendations of this work (see Chapter 7). Note that hybrid GAs

however lose some of their general robustness as they become more specific to the problem at

hand.

• Weaknesses

Although the GA is a powerful optimization tool, it does have certain weaknesses in

comparison to other optimization techniques. A poorly designed GA can perform nearly as

badly as a random search. In short, because a GA’s performance is highly application-

specific, it must be adapted to the task on hand (Davis, 1991). Furthermore, a GA application

is sometimes more an art than a science. Besides, due to the randomness part of the GA

operations, it is difficult to predict its performance. The success of a GA and its effectiveness

in any application can only be determined by experimentation. Another significant drawback

is the high CPU cost involved.

4.2.6 For Which Type of Problems Should GAs be Used?

In the light of their strengths and weaknesses, one can guess that for unimodal functions

that are smooth, there is no sense in using GAs. Rather, the use of these algorithms seeks to

“solve” problems that are intractable with classical procedures. The mathematical function f6

described in Section 4.4.1 shows the kind of complicated problems a GA can be called upon

to solve. Typically for a GA to be used, the design space is large (for instance in the

optimization of complex experimental designs), multi-modal, noisy, and fraught with

discontinuities. Their use over traditional gradient-based optimization techniques also finds its

rationale for problems where the gradient information leads to instabilities (for instance in ill-

posed parameter estimation problems). Indeed, because GAs do not require gradient

information, but only the computation of values of the objective function to optimize, when

applied to parameter estimation problems these algorithms are therefore not limited by

correlations that may exist between the parameters. Consequently, GAs provide a general

powerful approach to inverse problem solving, in which a good numerical model of the direct

problem and a representation for potential solution are the only prerequisite. In addition, it is
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relevant to recall here that the use of gradient-based methods for nonlinear estimation

necessitates the linearization of the model (see Section 3.1.2). This is not the case when

applying GAs.

Note that because there are so many different GAs, many open questions exist about the

type of problems for which GAs are best suited and, in particular, the type of problems on

which they outperform other search algorithms.

To conclude this section, it should be mentioned that GAs and gradient-based methods

should not be considered competing approaches but instead, whenever possible, should work

together as these two types of techniques are believed to be complementary. This comment

goes along with the advocacy of Davis (1991) to hybridize them (refer to the previous section

for an explanation of hybrid GAs). Davis has shown that hybridization of these techniques can

lead to better performance than using any of them in isolation.

4.3 GAs Developed

With an aim toward overcoming the limitations of traditional techniques used in

experimental design optimization and simultaneous parameter estimation (described in

Chapter 3), the main features of Genetic Algorithms (with real encoding) were thought to be

exploited and applied to both fields. With very little theory on real encoding existing in the

literature, three “GAs” have been developed in this work, each time improving the last

version over the previous one. This research has started with a standard GA featuring a Basic

Elitist strategy (BEGA) and then it was improved by implementing an Extended Elitist

strategy (EEGA) following as much as possible the Darwinian principle of survival of the

fittest. Eventually, from the knowledge gained in the GA field, a third GA was developed in

which genetic operators more appropriate for real encoding were used, and a convergence

criterion was implemented. These three algorithms are successively described next.
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4.3.1 Basic Elitist GA (BEGA)

• Description

The first GA developed, which was modeled according to the algorithm described by

Furuya and Haftka (1993), was called Basic Elitist GA (BEGA) because it used a basic elitist

strategy. A detailed description of the BEGA is given here for the particular case of the

optimization test problems treated in Section 5.1.1. Note that a single chromosome thus

designates a vector of design variables. A simplified flowchart of the BEGA is shown in Fig.

4.3.

Initial Population
Size ns

Create ns-1 Children

Next Generation:
Children+Best Parent

Rank

Rank

Calculate Fitnesses
Select Parents

Stop

Yes

ng Generations Performed ?
No

Initial Population

Rank+Take nbest1

Initial Elitist Population
ns=nbest1xnpop

Create ns Children

Combine Parents+Children
Rank+Remove Twins+Take nbest2

Perform Statistics on nbest1

Calculate Fitnesses
Select Parents

Rank

No

Stop

Yes

ng Generations Performed ?

x npop

Next Generation:
nbest2+(ns-nbest2)Random

Analyze nbest3
Update Parameter Ranges

BEGA EEGA

Figure 4.3    Flowcharts of BEGA and EEGA.
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Design Coding

In the optimization of the one-dimensional experiment (Fig. 5.1), a chromosome describing a

particular design contained two genes for the sensor location xs
+ and the heating time th

+.

Along the same lines, in the optimization of the two-dimensional experiments (Fig. 5.2), each

chromosome contained four genes for the design variables xs
+, ys

+, Lp
+ and th

+. The ranges of

the real genes depended on the lower and upper bounds of the design variables which were

specified by the experiments. For instance, the chromosome xs
+ (dimensionless sensor

location perpendicular to the fibers) ranged from zero to one.

Initial Population

The optimization algorithm started by generating the initial parent population of ns candidate

chromosomes (designs). Each individual was created by randomly selecting np gene values

(design variable) from the design space. The chromosomes were then ranked in terms of the

value of the dimensionless determinant D+ using the D-criterion. Obviously, the best string

had the highest D+.

Selection

Parents were selected by pairs for breeding using a proportionate rank-based fitness

technique. The fitness of the i th ranked chromosome was defined as f n ii s= + −1  allowing

for the highest ranked chromosome to have the highest fitness parameter and thus to be most

likely to contribute to the determination of the next generation strings. The probability of the

i th ranked chromosome to be selected as a parent was given by p
f

n ni
s s

=
+

2

1( )
. The selection

process was then accomplished at random, according to the roulette wheel mechanism: the i th

ranked chromosome was selected if P R Pi i− ≤ ≤1 , where P pi j
j

i

=
=

−

∑
1

1

 and R was a uniformly

distributed random number between zero and one.

Crossover

The children were made by the mating of the (2ns) pairs of parents selected for breeding

according to the single-point crossover (with a crossover probability pc of 1.). Note that the

simplest crossover operation was chosen to be used because the primary goal using the BEGA

was to test the effectiveness of GAs comparatively to the parametric study in the optimization
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of experimental designs. This process began by generating a random integer k, the cut-off

point, between 1 and np-1, where np was the number of genes. A child was designed by using

the first k genes of parent 1 and the remaining ones came from parent 2 (see App. A). For

instance, consider in the one-dimensional analysis the chromosomes with xs
+=0.5, th

+=1.0 and

xs
+=0.7, th

+=1.5 as parents 1 and 2, respectively. As np=2 (recall that there are two design

variables in the one-dimensional analysis), the only possible child chromosome (one child per

pairs of parents) could be xs
+=0.5, th

+=1.5.

Mutation

Jump mutation was implemented by changing at random the value of a gene. This process

ensured that new genes were generated, thus preventing the solution from locking on a non-

optimum value. The mutation probability pm was taken arbitrarily as 0.05. If the gene was

mutated, it was replaced by another one randomly chosen from the allowable range of values

for that gene.

When the operations of selection, crossover and mutation were completed on the ns

parent population, a new generation was created from the ns-1 child chromosomes in addition

to the best parent chromosome. This addition denotes the basic elitist strategy of the BEGA.

Over the course of several generations, the algorithm tended to converge on the chromosome

giving the maximum determinant, which was hence considered as the predicted optimal

design. Note that the stopping criterion was simply to perform ng generations. The number of

function evaluations feval was calculated from ( )f n neval s g= × + 1 .

• Discussion

The results obtained using the BEGA (see Section 5.1.1.4) showed that this algorithm

was limited when the objective function was highly expensive to calculate (two-dimensional

design optimization case). More precisely, the optimization method using the BEGA tended

to be as time intensive as the parametric study, although it resulted in improved efficiency and

was less tedious to apply.
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4.3.2 Extended Elitist GA (EEGA)

• Description

The second algorithm was developed to improve the efficiency of the BEGA. It used the

same genetic operators as the BEGA but with an extended elitist strategy and was thus called

Extended Elitist GA (EEGA). Following is an outline of the five main differences between the

EEGA and the BEGA. These differences can also be viewed in the simplified flowcharts

shown in Fig. 4.3. The EEGA was applied to both the optimization and estimation test

problems treated in Section 5.1.1, in addition to the estimation of the thermal and radiative

properties of an insulative material (not reported in this dissertation but which can be found in

Garcia et al., 1998).

1. A pure random search was initially performed to obtain appropriate starting conditions for

the lower and upper bounds of each gene (parameter to be optimized/estimated). The

purpose of this seeding was, therefore, to help direct the GA search. Note that this initial

search was run separately from the EEGA run.

2. The EEGA started by a successive random search for a number of npop initial

subpopulations in which only the nbest1 first ranked chromosomes were kept within each

subpopulation. This produced an initial elitist population of size n n ns pop best= × 1 . (Note

that by carefully selecting the parameter space, steps 1 and 2 are comparable to the use of

a priori information).

3. ns children were created according to the BEGA and then combined with the parent

population. After ranking this combined population of size 2ns, the “twins” were removed

(usually a small number much lower than ns) and only the nbest2 first ranked chromosomes

were kept, where nbest2 < ns.

4. The parameter ranges were updated from the analysis of the nbest3 first ranked

chromosomes, where best3 best2n   n≤ . Additional random chromosomes numbering (ns-

nnest2) were then generated from the just updated parameter ranges and were added to the

nbest2 first ranked chromosomes to form the next generation. By allowing some “new

blood” to be brought into the population, population diversity is preserved, therefore

preventing, it is thought, the EEGA from premature convergence on a non-optimal

chromosome. This feature was also thought to compensate for the use of only the simple
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single point crossover which did not produce new gene values.

5. Steps 3 and 4 were repeated until ng generations had been achieved, and then the means

and the 95% confidence intervals [Eq. (3.18)] for each gene were determined for each of

these nbest1 chromosomes. These confidence intervals were a good means of evaluating the

convergence of the EEGA. Note that the number of function evaluations was now given

by ( ) ( )[ ]f n n n n n neval pop s s s best g= × + + − ×2 .

It is important to note that when EEGA was used as an estimation procedure, the output

for a particular experimental data set included the means of each gene (thermal property) and

the approximate 95% confidence intervals representing the ranges of values which the actual

properties lay within for that particular experiment. The calculation of this confidence interval

was described in Section 3.1.5 [Eq. (3.17)].

• Discussion

The results obtained using the EEGA on the test problems (see Section 5.1.1.4) showed

that this algorithm outperformed both the BEGA and the parametric study. However, when

applied to the estimation of the thermal properties of an insulative material (Garcia et al.,

1998) in which the objective function (least-squares error) presented a “local minimum plain”

and a “global minimum valley” on the same order of magnitude, the EEGA tended to direct

the search to the local plain at the expense of global perspective. This was the output from the

use of the extended elitism strategy which resulted in a strong forced evolution feature

preventing the GA from performing a good balance between exploitation and exploration. The

removing of twins and the addition of random “blood” were not sufficient to keep a diverse

population and prevent a super chromosome from dominating the population which then

caused premature convergence. In addition, the use of the simple single-point crossover

(originally designed for binary encoding) was simply too poor with real encoding as it could

not allow new genes to be created.

Based on both the BEGA and EEGA behavior analysis, a third GA was developed. Two

main prescriptions were taken into account which were:

1. Elitism should be used cautiously in adequacy with the objective function landscape.
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2. One cannot use a naïve simple GA and modify it by implementing all kinds of (elitism)

features to make it work properly. Rather, one should use from the beginning an adapted

GA to the problem being solved. In my case, this implied to use genetic operators adapted

to a real-number encoding.

4.3.3 Third GA (GA_3: GAMAIN and GACONDUCT)

• Description

Figure 4.4 illustrates a simplified flowchart of the GA_3. Some of the genetic operator

variants were defined in Section 4.2.3. Note that in the problems treated using the GA_3 in

Initial Population
Size ns

Calculate Fitnesses
Select Parents

Create ns Children
+ Apply Constraints

Rank

Rank

Combine Mutation Pool + Children
+ Rank

Next Generation:
10% Best Parents + 90% Best Children

Stopping Condition Met?

Stop

Yes

No

Figure 4.4    Simplified flowchart of GA_3.
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the current research (Sections 5.1.2, 5.2.1, 5.2.2 and Chapter 6), the values used for the setting

of the genetic parameters (pt, pc, pmj, pmc and pr) were determined from a performance analysis

described in Section 4.4. The major enhancements with the EEGA came from the use of:

1. binary tournament selection (see Paragraph selection in Section 4.2.4) which helps prevent

premature convergence (Goldberg, 1989). An elitist scheme was actually implemented in

which each chromosome of the top half of the current ranked population competes with a

second chromosome randomly chosen from the entire population (and which cannot be a

duplicate of the first chromosome). The chromosome with the higher fitness value is

inserted into the mating pool with a probability pt set to 0.9 (in 10% of the cases, the

parent selected is the less fit).

2. an arithmetic crossover (Doyle, 1994) well suited for real encoding and which allows for

the creation of new genes even outside the initial parameter ranges. Two children C1 and

C2 are created per pair of parents P1 and P2 with a probability pc taken as 0.9 (10% of the

parents are cloned) using: C
P P

P P R C
P P

P P R1
1 2

1 2 2
1 2

1 22 2
=

+



 + − × =

+



 − − ×, ,

where R is a random number uniformly distributed between 0 and 1.

3. both the jump mutation and the creep variant with probabilities pmj=1/ns and pmc= pmj/2,

respectively, where ns is the population size. The chromosome before mutation is copied

onto a “mutation pool” and when the elitist replacement is applied (see below), the

mutation pool is mixed with the resulting children pool. This means that good gene

information is not lost by applying mutation.

4. an elitist generational replacement with a probability pr=0.9, in which 10% of the top

ranked parent population was kept into the next generation while 90% were replaced with

the 90% best created chromosomes from the combined pool as described above.

5. a convergence criterion based on a small percentage change (1%) in both all gene values

and the objective function value of the best (so far) chromosome (recall that the objective

function is the optimality criterion, to be maximized, when performing experimental

design optimization, and the least-squares error, to be minimized, when performing

parameter estimation). The stopping condition is to first, execute MING generations

without checking the convergence criterion. Next, this latter is checked at the end of each

generation. If it is met during LASTCRITERG generations, then the run is stopped; if not,

then at most LASTG generations are executed. Note that if the convergence criterion is
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met for a number of generations less than LASTCRITERG and then the best-so-far

chromosome changes, then the generation counter for the convergence criterion is reset.

In addition to these five points that are related to genetic operations, some

improvements were made by using two types of nondimensionalization for the chromosomes.

When the parameter range to investigate [parmin-parmax] (in which the initial population is

defined) was less or equal than 2 orders of magnitude, e.g. 
parmax

parmin
≤ 100, then a linear

nondimensionalization was used; otherwise, a logarithmic nondimensionalization was

applied, allowing then for large ranges to be scanned. Regardless of which type was used, the

chromosomes were defined between zero and unity. In terms of the population size, a formula

for binary encoding (Carroll, 1996a,b) was thought to be applied for real representation. The

ideal population size was taken to be the product between the number of parameters to be

determined and the average number that the parameters could take. Therefore, with a

nondimensionalization between zero and unity, considering the case where the parameters

could take 100 values in that range, the ideal population size was defined as n ns p= ×100 .

A last improvement in developing the GA_3 is related to an important aspect of the

optimization (or estimation) process. This aspect deals with applying knowledge-based

control mechanisms to improve the solution. Constraints are a convenient means of

incorporating domain knowledge as much as possible. In the GA_3, such incorporation was

realized in two ways. First, into the fitness function (which is simply the objective function)

by assigning penalties for chromosomes whose raw fitnesses were known to be infeasible.

Those penalties made the chromosome be rejected when the elitism operator was applied.

Second, constraints were also applied directly on the genes so that the search focused on the

prescribed parameter ranges (note that these ranges were usually quite large for the first run).

In this second way, any created gene that was lower than zero or higher than unity (which

could happen with the use of the arithmetic crossover) were redefined as zero and unity,

respectively. Analyses of the final population would indicate whether the prescribed ranges

were adequate or not (for instance, if the genes were concentrated around zero or unity, then

the prescribed ranges were inadequate).
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Finally, note that in the GA_3 scheme, several EEGA features were removed, namely:

- the initial random search which resulted in an initial elitist population but was too

computationally costly;

- the dangerous (because concentrated the search on local optima) procedure that updated

the parameter ranges, and

- the procedure that eliminated the twins as no twins could be generated with the new

crossover (this also had the effect of removing the procedure that inserted random

chromosomes to replace the twins eliminated).

Also, note that, like with the EEGA, when the GA_3 was used as an estimation

procedure, the output for a particular experimental data set included the means of each gene

(thermophysical parameter) and the approximate 95% confidence intervals [Eq. (3.17)]

representing the ranges of values in which the actual properties lay for that particular

experiment.

• Discussion

With these attributes, the GA_3 algorithm was expected to show a better balance

between exploitation (of the current population) and exploration (of new good solutions) than

the EEGA. One very important point is that the number of evaluations performed with the

GA_3, which can be approximated by ( )f n neval s g= × + 1 , is, for the same population size ns

and number of generations ng, much lower than with the EEGA. Therefore, in terms of

computation cost, the GA_3 was a definitive improvement over the EEGA.

The results obtained using the GA_3 (Sections 5.1.2, 5.2.1, 5.2.2 and Chapter 6) showed

that this algorithm performed very well, especially as far as not directing the solution to local

optima. However, the weakness of the convergence criterion was highlighted in estimation

applications in which the sensitivity of the measured quantity to some parameters was very

small. Therefore, one of the recommendations of this work (Chapter 7) concerns the definition

of a more suitable convergence criterion, in direct relation with the sensitivity of the measured

quantity to the genes (parameters).

An issue when developing the GA_3 was the need for flexibility and adaptability so that

the algorithm could handle both the Experimental Design Optimization (EDO) and
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Simultaneous Parameter Estimation (SPE) of a problem since the direct solution is

unchanged. Therefore, some key constants (flags) were defined so that by changing their

default values and defining the appropriate genes (parameters), the GA_3 would perform

either EDO (according to D-, E- or A-optimality by setting the appropriate flag) or SPE. The

idea behind using such judicious default values (that are all specified in a default subroutine)

was taken from the structure of the excellent program CONDUCT developed by Patankar

(1991). Based on the GA_3 genetic features, and the flexibility for both EDO and SPE, two

algorithm versions, GAMAIN and GACONDUCT were developed. Both versions follow the

general structure of CONDUCT, e.g. they consist of an adaptation and an invariant part. The

invariant part contains the general calculation scheme that is common to all possible

EDO/SPE applications within the overall restrictions of the respective version used. The

adaptation part provides the problem specification. The GAMAIN version was written for the

analysis of problems for which a mathematical direct solution is to be provided by the user.

For heat transfer problems for which an analytical solution does not exist, the GACONDUCT

version was then developed by combining the general features of the GA_3 with those of an

extension of the program CONDUCT, which is based on a control-volume-based finite

difference numerical method. This extension involves modifications made by Dr. D. J.

Nelson1, which allow for the study of orthotropic properties in rectangular geometry (for

instance kx and ky). Note that by benefiting from the possibilities of the program CONDUCT,

the use of GACONDUCT allows for any EDO/SPE applications that deal with the

computation of conduction and duct flow heat transfer in two-dimensional rectangular or

cylindrical geometry.

Multiple comments are implemented throughout both versions and explain the meaning

and the possible setting (depending on the problem to be solved) of the different key flags.

Appendices B and C provide the listings (Fortran files) of GAMAIN.FOR and

GACOMMON_MAIN.FOR, and GACONDUCT.FOR and GACOMMON_CONDUCT.FOR,

respectively.

                                                
1 Professor of Mechanical Engineering at Virginia Tech.
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4.4 Performance Analysis of GAMAIN

To illustrate the performance of the GA_3 and to determine the “optimal” setting of the

genetic parameters (pt, pc, pmj, pmc, and pr), a mathematical test function was optimized using

GAMAIN. The following provides a brief description of this function along with the results

for the optimal setting.

4.4.1 Description of the Mathematical Test Function

The expression of the mathematical function f6 optimized is shown in Eq. (4.1). This

function was used by Schaffer et al. (1989) and Davis (1991) for the evaluation of different

GAs.

[ ]
( )[ ]f x y

x y

x y
x y6 05

05

10 0 001
100 100

2 2
2

2 2 2( , ) .
sin .

. .
, , [ , ]= −

+ −

+ × +
∈ − (4.1)

This function is symmetric in x and y. Note that the expression for f6 could have been

simplified using the norm r x y= +2 2 , but then, the complexity of this function would have

disappeared. Figure 4.5 illustrates the distribution of this function with y being held constant

at its optimal point while x ranges from –100 to 100 (the same graph would be obtained if x

and y were switched). The goal is to optimize f6, e.g. to find values of x and y which produce

the greatest possible value for f6. This function has several features that make it an interesting

test case:

1. f6 has a single global optimum (which is f6(x=0,y=0) = 1);

2. f6 shows strong oscillations with increased magnitudes until the global optimum is

reached; this is often called multimodality;

3. the global region occupies a tiny fraction of the total area

From this, one anticipates the output from the application of a gradient-based method to

become “stuck” on a local hill.
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4.4.2 Results

The listing of the adapt subroutine GADAVISF6.FOR (that works with the program

GAMAIN given in Appendix A) is provided in Appendix D. Only the results of the analysis

of the effects of the genetic parameter settings are reported here. The optimal setting for the

genetic parameters investigated is shown in Table 4.1. This setting was found to be superior to

any others as it allowed the global optimum of the function f6 to be found with a 100%

probability (on the basis of 20 runs).

Table 4.1    Genetic parameter optimal setting (np=2).

 (1) initial number of generations that must be performed without checking the convergence criterion.
  (2) number of generations during which the convergence criterion must be satisfied.

Figure 4.6 shows a typical increase of both the fitness (function f6) of the best

individual and the average fitness of the population, while Fig. 4.7 illustrates the population

evolution from the initial to the final state.

 ns  pt  pc  pmj  pmc  pr  MING (1)  LASTCRITERG (2)

 200
 =100np

 0.9  0.9  0.005
 =1/ns

 0.0025
 =pmc/2

 0.9  20  20

Figure 4.5    Function f6 vs. x with y set to 0. Figure 4.6    Fitness evolution vs. ng.

0 8 1 6 2 4 3 2 4 0 4 8 5 6 6 4

ng

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1 .0

F
itn

es
s 

=
 f

un
ct

io
n 

f6

b est so  fa r

f6 average 

-1 0 0 -7 5 -5 0 -2 5 0 2 5 5 0 7 5 1 0 0
x

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1 .0

f6 (x ,0 )



77

Because settings of genetic parameters can be a very difficult and time intensive task,

the optimal setting found for the optimization of the function f6 was used subsequently

(except for ns, MING, and LASTCRITERG that were problem dependent). Note that this

setting was probably not the best in all problems treated subsequently; however Davis has

reported that robust settings work well across a variety of problems.

Figure 4.7    Population evolution (initial to final generation).
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CHAPTER 5

Thermal Characterization of Anisotropic Composite Materials

This chapter is devoted to presenting the different analyses performed for the thermal

characterization of anisotropic composite materials. Two of the studies involved two stages.

First, the optimization of an experimental design to be used in the prediction of unknown

thermal properties; and then, the simultaneous estimation of the unknown properties from the

optimal experiments. The studies included the optimization of three, five and seven key

experimental parameters, and the simultaneous estimation of two, three, seven and up to nine

thermophysical parameters to represent the dependence of the thermal properties on

temperature. Recall that by thermal properties is meant effective thermal properties, as

introduced in Chapter 2. In addition, the effects of the choice of the criterion used to optimize

the experimental designs on the accuracy of the property estimates was analyzed for one of

the case studies. In all cases, genetic-based optimization/estimation methodologies were

applied.

The first section focuses on case studies involving constant property estimation,

whereas case studies of mixed temperature dependent and constant property estimation form

the subject of the second section. The first subsection provides the analyses performed on two

test cases (Moncman, 1994; and Hanak, 1995) towards the assessment of using genetic

algorithms as a strategy for both experimental design optimization and simultaneous

parameter estimation methodologies. The first two algorithms developed, the BEGA and the

EEGA, were successively applied. The test cases involved one- and two-dimensional transient

heat transfer for the simultaneous estimation at ambient temperature of two (the conductivity

perpendicular to the fiber plane, kx, and the volumetric heat capacity, C) and three thermal

properties (the conductivity parallel to the fiber plane, ky, in addition to the two previous) of a

composite material, respectively. In both the optimization and estimation stages, the GAs
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performance was compared with the results from Moncman and Hanak. The two-dimensional

case was further investigated with an aim to demonstrating the benefit from optimizing

experimental designs. Finally, both one- and two-dimensional test cases were used as a basis

for the investigation of the effects of the choice of the optimality criterion on the accuracy of

the property estimates.

Applications treated in the following subsections were solved using the general-purpose

GACONDUCT version of the third algorithm developed (GA_3). Here, the appraisal of the

GA strategy was not the primary issue, and the analyses concentrated on the physical

problems. The second and third subsections are both associated with two-dimensional

transient heat transfer for the simultaneous estimation of the thermal properties kx, ky and C of

composite materials over the temperature range [30-150°C]. The difference between the

studies was that in one the properties were constant at specific temperature levels (Section

5.1.2), and in the other were temperature-dependent using a piece-wise linear function in

temperature (Section 5.2.1). This latter case included the consideration of a contact resistance

between the sample and aluminum components used in the experimental mold. Finally, the

simultaneous estimation of the thermal properties kx, ky and C of a composite material from

two-dimensional transient experiments in RTM (Resin Transfer Molding) mold is described

in Section 5.2.2. The experimental temperatures ranged from 100 to 130°C. Both ky and C

were identified as temperature dependent while kx was determined as a constant over the

prescribed range. Here again, a contact resistance between the sample and a mold component

was considered. This study was based on the work of Lecointe (1999), who used a parametric

study to identify ky and Rc as constants assuming kx and C to be known.

5.1 Case Studies of Constant Property Estimation

5.1.1 One- and Two-Dimensional Analyses at Ambient Temperature

This subsection reports the initial steps performed in the development of genetic-based

optimization/estimation methodologies. The objectives were to test the proposed

methodologies on two problems previously analyzed in the literature (Moncman, 1994; and

Hanak, 1995), and consequently, the primary analyses focused on the performance of the

GAs. The problems investigated involved experimental design optimization and simultaneous

thermal property estimation. The BEGA and then the EEGA were demonstrated on the

optimization stage, while only the EEGA was applied in the estimation stage. Both algorithms
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are described in Chapter 4. A description of the test problems is first provided, followed by

the brief specification of the experimental data used in the estimation methodology. Then, the

mathematical models that allowed for the temperature distribution and the optimality criterion

to be calculated in the estimation and optimization stage, respectively, are formulated. The

fourth subsection shows and discusses the results obtained. Next, the benefit from optimizing

experimental designs is outlined and, eventually, the effects of three optimality design criteria

described in Chapter 3 are investigated.

5.1.1.1 Problem Descriptions

The test problems analyzed include one- and two-dimensional experimental designs

used to simultaneously estimate thermal properties of a composite material AS4 carbon

fiber/3502 epoxy matrix at ambient temperature.

In the one-dimensional experimental design shown in Fig. 5.1, the sides of a planar

sample were insulated while an imposed heat flux was applied across the entire top surface

and the bottom surface was held at constant temperature. Moncman (1994) sought to optimize

three design variables which were the (unique) sensor location xs
+, the duration of the heat

flux th
+ and the overall experimental time tn

+, for the simultaneous estimation of the thermal

conductivity through the fiber plane, kx, and the volumetric heat capacity, C.

The two-dimensional analysis was an extension of Moncman’s work for the estimation

of the thermal conductivity in the fiber plane, ky, simultaneously with the two properties kx

and C. Hanak (1995) investigated two different experimental configurations on planar

rectangular samples (Fig. 5.2). The purpose of using two different sets of boundary conditions

was to demonstrate the influence of these latter on the estimated properties. Both

configurations had a uniform heat flux applied over a portion of one boundary, with the

remainder of the boundary insulated. In addition, Configuration 1 had constant temperatures

at the remaining three boundaries, while Configuration 2 had a constant temperature boundary

opposite to the heat flux boundary, with the remaining two boundaries insulated. The (unique)

sensor location perpendicular and parallel to the fibers, xs
+ and ys

+ respectively, the duration

of the heat flux th
+, the heating length Lp

+ and the overall experimental time tn
+ were the five

design variables to be optimized.

Both Moncman and Hanak’s optimization analyses were performed using dimensionless

terms (+) so that their results could be applicable to any material. They used a parametric
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study to optimize the design variables according to D-optimality. Recall from Chapter 3 that,

in using the D-criterion, the time-averaged determinant of the dimensionless XTX matrix, D+,

is maximized. X stands for the sensitivity matrix. In the one- and two-dimensional test

problems, XTX was a 2-by-2 and a 3-by-3 matrix, respectively. The criterion D+ is expressed

as |[dij
+]|, where the coefficients dij

+ given by Eq. (3.23) are reported here for convenience

(using a unique sensor):

( )
( ) ( )d

t T
X t X t dt i j nij

n

i

t

j p

n

+

+ +

+ + += =
+

∫
1

12
0max

, , ,..., (5.1)

In Eq. (5.1), t is time, tn is the duration of the experiment, np is the number of parameters (β),

i.e. thermal properties to be estimated, Xi
+ are the dimensionless sensitivity coefficients

calculated from ( ) ( )
X t

T t
i i

i

+ +
+ +

= β
∂

∂β
, and Tmax

+ is defined as the maximum dimensionless

temperature reached at steady state (Moncman, 1994). The integration contained in the dij
+

coefficients is determined numerically.

Note that, as explained in Chapter 3 (Section 3.2.2), the optimal overall experimental

time, tn
+, of each specific design was determined by evaluating the modified determinant Dm

+

without time-averaging, using the optimal values of the other design variables. The optimal

overall experimental time corresponded to the time when no significant information about

Figure 5.1    One-dimensional boundary conditions.
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Dm
+ was provided. Consequently, in the one-dimensional analysis, the actual number of

design variables was two (xs
+ and th

+), and in the two-dimensional analysis, there were four

design variables (xs
+, ys

+, Lp
+ and th

+).

The one- and two-dimensional simultaneous estimation test problems considered in this

work were investigated by Hanak (1995). He used the modified Box-Kanemasu method with

an Ordinary Least Squares (OLS) approach in an attempt to estimate the properties for both

problems. The objective function to be minimized over Ni measurements was therefore the

simple sum-of-squares error expressed by:

( ) ( )[ ]S T t Ti i
i

Ni

β β= −
=
∑ ,~

~

1

2

(5.2)

where ( )T ti β,~  and ~Ti  are the calculated and measured temperatures obtained at the unique

optimal sensor location, respectively, and β is the parameter vector to be estimated. Although

the modified Box-Kanemasu method proved to be effective in the one-dimensional case, the

two-dimensional estimation resulted in non-convergence due to correlation between the

thermal properties. Hanak then restricted his two-dimensional analysis to the simultaneous

estimation of the thermal conductivity in the fiber plane, ky, and the volumetric heat capacity,

C, assuming the thermal conductivity through the fibers plane, kx, to be known from the one-

dimensional estimation.

5.1.1.2 Experimental Data

The measured temperature histories used in the estimation methodology were obtained

from the one- and two-dimensional (Configuration 1) optimal experiments conducted by

Hanak (1995). In-depth descriptions of both experimental set-ups can be found in his thesis.

The geometrical ratio of the composite sample (AS4 carbon fiber / 3502 epoxy matrix) was

Lxy=0.06. Note that the one- and two-dimensional experiments were repeated ten and nine

times, respectively, from three separate experimental set-ups.

5.1.1.3 Mathematical Model Formulations

In performing the optimization and estimation stages, mathematical models were

required. The term Tmax
+ and the dimensionless sensitivity coefficients were needed in the
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optimization procedure, while the temperature distribution at the optimal sensor location was

needed in the estimation procedure. Considering ideal conditions (which, recall from Chapter

3, is the regular procedure in designing optimal experiments), Moncman developed exact

models for all cases previously described. These models were thus used in the optimization

process. In conducting the experiments, Hanak however found that the “constant temperature”

boundary conditions were not exactly constant. Therefore, in the estimation process, he used a

finite element program in which the measurements from thermocouples placed at the location

of the “constant temperature” boundary conditions were incorporated. In applying the GAs to

the estimation problems, analytical models that were proved to be appropriate were developed

as they were much easier to implement in the estimation methodology. The following

provides brief descriptions of the ideal analytical models used in the optimization process in

both the parametric study and the GAs, and of the modified analytical models used in the

genetic-based estimation methodology.

• One-Dimensional Formulation

From the conservation of energy, the temperature distribution within the material in the

one-dimensional analysis is governed by the one-dimensional diffusion equation.

∂
∂

∂
∂

∂
∂x

k
T

x
C

T

tx





 = , 0 ≤ x ≤ Lx , t ≥ 0; (5.3)

where Lx is the thickness of the sample in the x-direction. The initial and boundary conditions

are described by:

( )− =
=

k
T

x
q tx

x
x

∂
∂ 0

x = 0 0 < t ≤ th (5.4a)

∂
∂
T

x x=

=
0

0 x = 0 t > th (5.4b)

( )T x t T x, ,= 0 x = Lx t > 0 (5.4c)

( )T x t Ti, = 0 < x < Lx t = 0 (5.4d)

where Ti and T0,x are the initial and known temperature boundary condition, respectively. The

ideal conditions considered in the optimization process are explained as follows. Since the

experiments were conducted at room temperature, the temperature at the boundary x = Lx was

assumed to be equal to the initial temperature, i.e. T0,x = Ti. In addition, the boundary

conditions were assumed to be constant. Since the composites had a simple geometry, exact
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temperature solutions could be developed for these ideal conditions. Using the Green’s

function method, the following distribution was derived (Moncman, 1994):
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where βm is an eigenvalue represented by β πm m= −





1

2
.

In dimensionless terms, this becomes:
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where T
T T

q L k
t

t

L
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CL
x

x x x
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x
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+ +=
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2 2

,

/
,

α
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x
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+ = .

The dimensionless temperature, T+, represents the ratio of the increase in temperature to

the maximum increase reached at steady state which is calculated using Fourier’s law. From

this, Tmax
+ was given by T+(x+=0, t+=th

+=∞) and the dimensionless sensitivity coefficients were

obtained by differentiating Eqs. (5.6a and b) with respect to kx and C and multiplying by the

respective properties. These equations can be found in Moncman (1994). This information

was then used in the optimization methodology (in both the parametric study and the GAs) to

determine the maximum value for D+ as given by Eq. (5.1), and the corresponding optimal

experimental parameters.

Ideal conditions were, however, not possible to achieve experimentally and the

experimental temperatures and heat fluxes at the ideally constant temperature and heat flux

boundaries, respectively, were found to vary slightly (Hanak, 1995). In the estimation stage,

Hanak therefore used a finite element program called Engineering Analysis Language

(Whetstone, 1983) because it could easily accommodate experimental variations in

temperature and heat flux at the ideal boundaries. Nevertheless, it was found through a careful

investigation that constant temperature and heat flux values calculated from averaged
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experimental values over the duration of the experiment could be used for the respective

boundary conditions in the model without significant bias. As the use of an analytical model

was much simpler and faster to implement into the genetic-based estimation methodology

than implementing this latter into the program EAL, the exact solutions given in Eqs. (5.5a

and b) were modified to take into account the new boundary conditions. The temperature

distribution became:
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where qx and T0,x stood then for the averaged experimental values over the duration of the

experiment. This solution was used in the GAs. One important point is that the determination

of both the experimental heating and total time, th and tn, from their respective dimensionless

optimized values required the knowledge of the thermal diffusivity in the x-direction, e.g.

αx=kx/C. Therefore an initial estimate of 4×10-7 m²/s based on previous known composites

was applied. Note that if the actual property was found to be completely different, the

experiments would have been repeated with a better estimate.

• Two-Dimensional Formulation

In the two-dimensional analysis, the temperature distribution within the material is

governed by the two dimensional diffusion equation obtained from the conservation of energy

and expressed as:
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
 +







= , 0 ≤ x ≤ Lx , 0 ≤ y ≤ Ly , t ≥ 0; (5.8)

where Ly and Lp are the thickness of the sample in the y-direction and the portion of the

sample where the heat flux is imposed, respectively. The initial and boundary conditions are
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described by:
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( )T x y t Ti, , = 0 < x < Lx 0 < y < Ly t = 0 (5.9d)

( )T x y t T x, , ,= 0 x = Lx 0 < y < Ly t > 0 (5.9e)

The boundary conditions along the y-axis for Configuration 1 are:

( )T x y t T y, , ,= 0 1 0 < x < Lx y = 0 t > 0 (5.9f)

( )T x y t T y, , ,= 0 2 0 < x < Lx y = Ly t > 0 (5.9g)

while the boundary conditions at the same locations for Configuration 2 are:
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∂
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T

y
y Ly=
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The terms T0,x, T0,y1 and T0,y2 are the known temperature boundary conditions. Again,

considering ideal conditions (e.g., constant boundary conditions where T0,x, = T0,y1 = T0,y2 = Ti

as experiments were conducted at room temperature), an exact solution could be derived

using the Green’s function method (Moncman; 1994).

For Configuration 1, the ideal model is:
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The dimensionless form is expressed by:
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For Configuration 2, the ideal dimensionless form is:
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As one can see, the two-dimensional temperature distribution resulted in a double series

containing both transient and steady-state terms. To increase computational efficiency, the

steady-state terms, which only needed to be determined once for each temperature distribution

computation, were determined separately. From this, Tmax
+ was given by T+(x+=0, y+=0.5,

t+=th
+=∞) with Lp

+=1 (heat flux over the entire sample top surface). Equations for the

dimensionless sensitivity coefficients associated with Configuration 1 were obtained by

differentiating Eqs. (5.10a and b) with respect to kx, ky and C and multiplying by the

respective properties. These equations, along with those for the dimensionless sensitivity

coefficients associated with Configuration 2, can be found in Moncman (1994). This

information was then used in the optimization methodology (in both the parametric study and

the GAs) to determine the maximum value for D+ as given by Eq. (5.1), and the

corresponding optimal experimental parameters. Note that unlike the optimization of the one-
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dimensional experiment, two-dimensional optimal designs do not completely present

dimensionless equations. Indeed, the ratio of both the sample dimensions (Lxy) and the thermal

conductivities (κxy) are required. Based on previously reported data for similar composites,

Hanak used an initial estimate of 5.0 for κxy. However, if this guess proved to be inaccurate,

the {optimization+estimation} procedure would have been repeated with a better estimate.

Again, for the estimation stage, the exact solutions were modified to take into account

constant average values for the temperature boundary conditions. This gave for the

temperature distribution of Configuration 1:
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where qx, T0,x, T0,y1 and T0,y2 stood then for the averaged experimental values over the duration

of the experiment. This solution was used in the genetic-based estimation methodology. Note

that the two-dimensional estimation problem based on the Configuration 2 design was not

investigated in the present research.

5.1.1.4 Results and Discussion

In this work, the D-optimization of the one-dimensional design and of both

configurations of the two-dimensional experiments was first analyzed using the BEGA. Then,

the EEGA was applied to the optimization of the one-dimensional design and Configuration 1

only of the two-dimensional design, and next, to the estimation problems associated with

these designs. In each application, the performance of the GAs was evaluated and compared



89

with the previous results obtained. In testing the algorithms, emphasis was placed on the

computing time (or number of function evaluations) used. One should refer to Chapter 4 to

better understand the result differences between applying the BEGA and the EEGA, which is

related to their different functioning characteristics. One important common feature was the

use of a prescribed number of generations, ng, as the convergence criterion. Optimization jobs

were run on the Virginia Tech College of Engineering’s Silicon Graphics Power Challenge

XL server, while estimation jobs were run on the Virginia Tech Mechanical Engineering

Department’s IBM RS6000 Model 560, because estimation was less costly in computing time.

• Optimization of Experimental Parameters

For ease and clearness in understanding the results, Figures 5.3 and 5.4 below provide

schematics of the one- and two-dimensional optimized experimental designs.

Figure 5.3    Schematic of the optimized one-dimensional experiments.

x
Constant Temperature

InsulatedInsulated

Heat Flux ON for th
+=2.2

Optimal Sensor Position
(xs

+=0)

(a) (b)

Figure 5.4    Schematic of the optimized two-dimensional experiments
(a) Configuration 1 and (b) Configuration 2.
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Application of the BEGA

With the use of the simplest crossover operation and a basic elitism feature in the

BEGA (see Chapter 4), a large population of designs was a priori anticipated to ensure the

generation of any good sets of design variables. Therefore, for each problem, an initial

investigation of the effect of the genetic parameters was carried out. The performance of the

algorithm was evaluated by averaging ten runs, with the means and their 95 % confidence

intervals calculated for the maximum determinant and each design variable. The means were

then compared to the optimal determinants and experimental parameters found by Moncman

(1994) and Hanak (1995).

One-Dimensional Optimal Experimental Design

Recall that the design variables to be optimized were the sensor location xs
+ and the

heating time th
+
. The ranges used for each design variable were identical to those used by

Moncman. The effect of population size, ns, and number of generations, ng, were first

analyzed to decide which combination of these parameters should be utilized in determining

the optimal design. In this analysis, the impact of the computing time (or the number of

function evaluations feval) was not investigated because the dimensionless determinant D+ was

found to be very inexpensive to calculate. From Table 5.1, one can see that the maximum D+

was obtained for the combination with both the largest ns and ng (case d), as logically

expected. Because the computing time was inexpensive, the combination chosen was the one

with the largest ns and ng that gave the maximum determinant.

Table 5.1    Effect of the population size, ns, and the number of generations, ng,
in the one dimensional experiment.

Case feval ns ng xs
+ th

+ D+
max(10+2)

a 2550 50 50 0.0054 2.13 1.9643

b 10200 200 50 0.0019 2.32 1.9856

c 10050 50 200 0.0017 2.44 1.9810

d 40200 200 200 0.0002 2.24 1.9899

Best 40200 200 200
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Table 5.2 shows the results of the ten optimization runs performed using the

combination of ns and ng discussed above. One result is particularly important: the mean of

the maximum D+ is higher than the maximum D+ found by Moncman using the parametric

study. This result ensures that optimal experimental parameters have been obtained and

allows for the validation of the optimization procedure based on GAs. The final optimal

experimental parameters should be taken as their respective mean values rounded to the most

physically possible values. This would give xs
+=0.0 and th

+=2.29 for the optimal experimental

design. These values are actually very close to the optimal parameters given by Moncman

(xs
+=0.0 and th

+=2.20). Table 5.2 also outlines a general feature of GAs, which is that in the

analysis, significant parameters cannot be distinguished from non-significant ones

(Kroittmaier, 1993). Consider experiments 4 and 5: even though the sensor locations are

almost equal, experiment 4 has still a comparatively much higher th
+. This indicates the

importance of the sensor location in the optimal design.

Table 5.2    Determination of the optimal design for the one-dimensional experiment
(ns=ng=200, feval=40200).

Exp. xs
+ th

+ D+
max(10+2)

1 0.0007 2.21 1.9877

2 0.0006 2.33 1.9896

3 0.0015 2.25 1.9838

4 0.0001 2.33 1.9919

5 0.0002 2.24 1.9899

6 0.0005 2.32 1.9911

7 0.0012 2.24 1.9853

8 0.0007 2.31 1.9899

9 0.0002 2.33 1.9914

10 0.0005 2.32 1.9909

Mean 0.0006 ∀ 0.0003 2.29 ∀ 0.04 1.9892 ∀ 0.0019

Moncman's 0.0000 2.20 1.9878

The demonstration of the BEGA on the one-dimensional problem provided a good basis

to gain confidence in the algorithm. It also showed that when the objective function is

inexpensive to calculate, the BEGA does not have any computation time restriction (relative

to the number of design variables to optimize). The parametric study, however, requires the

analysis of every point in the search space, and thus is generally time consuming even for

inexpensive objective functions.
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Two-Dimensional Optimal Experimental Design

In the two-dimensional analysis, recall that two configurations were investigated in

which four design variables needed to be optimized. These latter were the sensor location

parallel and perpendicular to the fibers, xs
+ and ys

+ respectively, the heating length Lp
+ and the

heating time th
+. The design variables were expected not to all have the same effect on D+.

Since xs
+ was anticipated to have the largest influence on D+, the two-dimensional analysis

was conducted in two phases. Phase one was performed with a coarse combination of

population size and number of generations (ns=25 and ng=25) which required a low CPU time

(~25 min) using the design variable ranges employed by Hanak. The objective was to obtain

some insight on the relative importance of each design variable. The first phase allowed for

both configurations to fix the optimal value of xs
+ to zero so that only three design variables

needed to be optimized in Phase two, and it also allowed to narrow the bounds of the

variables to Lp
+ ≥ 0.5 and 0.9 ≤ th

+ ≤ 3.1 for Configuration 1 (Table 5.3), and 1.0 ≤ th
+ ≤ 3.0

for Configuration 2 (Table 5.4).

Table 5.3    Investigation of the significance of each design variable in
Configuration 1 of the two-dimensional experiment (Phase 1, ns=ng=25, feval=650).

Exp. xs
+ ys

+ Lp
+ th

+ D+
max(10+7)

1 0.003 0.11 0.62 2.84 2.80

2 0.061 0.14 0.61 1.18 2.81

3 0.072 0.14 0.98 2.59 2.52

4 0.041 0.15 0.66 2.80 2.54

5 0.054 0.82 0.93 1.52 1.95

Conclusions 0.000 - ≥0.5 0.9≤ th
+≤3.1

Table 5.4    Investigation of the significance of each design variable in
Configuration 2 of the two-dimensional experiment (Phase 1, ns=ng=25, feval=650).

Exp. xs
+ ys

+ Lp
+ th

+ D+
max(10+7)

1 0.052 0.01 0.15 2.06 3.12

2 0.007 0.61 0.76 1.21 2.86

3 0.035 0.41 0.57 2.51 1.60

4 0.072 0.79 0.88 2.04 1.99

5 0.054 0.82 0.93 1.52 2.23

Conclusions 0.000 - - 1.0≤  th+≤3.0
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For Configuration 1, the second phase was managed in a similar manner as the analysis

carried out for the one-dimensional problem: first, the effect of ns and ng were studied (Table

5.5); then the combination chosen for these genetic parameters was used to perform ten

optimization runs (Table 5.6). For Configuration 2, Phase two corresponded directly to the

computation of ten optimization runs using the same combination of ns and ng chosen for

Configuration 1 (Table 5.7).

Table 5.5    Effect of the population size ns and the number of generations ng in
Configuration 1 of the two-dimensional experiment (Phase 2).

Case CPU
(min)

feval ns ng ys
+ Lp

+ th
+ D+

max(10+7)

a 80 2550 50 50 0.124 0.902 1.17 5.1121

b 250 6375 125 50 0.860 0.995 1.40 5.3817

c 250 6300 50 125 0.141 0.988 1.41 5.3798

d 590 15750 125 125 0.138 0.991 1.41 5.3977

Best 250 6375 125 50

Table 5.6    Determination of the optimal designs for Configuration 1 of the two-dimensional
experiment (Phase 2, ns=125, ng=50, feval=6375).

Exp. ys
+ * Lp

+ th
+ D+

max(10+7)

1 0.860 (0.140) 0.995 1.40 5.3817

2 0.141 (0.859) 0.994 1.40 5.3621

3 0.139 (0.861) 0.999 1.38 5.4076

4 0.857 (0.143) 0.992 1.39 5.3302

5 0.138 (0.862) 0.990 1.41 5.3888

6 0.143 (0.857) 0.989 1.40 5.3763

7 0.861 (0.139) 0.996 1.36 5.3983

8 0.138 (0.862) 0.999 1.38 5.4158

9 0.139 (0.861) 0.998 1.42 5.3663

10 0.861 (0.139) 0.997 1.40 5.4025

Mean 0.860 (0.140)
∀ 0.001

0.995
∀ 0.003

1.39
∀ 0.01

5.3830
∀ 0.0183

Hanak's 0.860 1.000 1.36 5.3782

* for Lp
+=1.0, the problem is symmetric (flux applied across the entire boundary)
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Table 5.7    Determination of the optimal design for Configuration 2 of the two-dimensional
experiment (Phase 2, ns=125, ng=50, feval=6375).

Exp. ys
+ Lp

+ th+ D+
max(10+7)

1 0.0009 0.142 1.39 5.2604

2 0.0011 0.139 1.40 5.2753

3 0.0019 0.137 1.39 5.2825

4 0.0005 0.141 1.41 5.2471

5 0.0002 0.138 1.40 5.2792

6 0.0012 0.140 1.40 5.2699

7 0.0007 0.137 1.43 5.2230

8 0.0015 0.139 1.38 5.2707

9 0.0004 0.140 1.39 5.2782

10 0.0001 0.141 1.40 5.2651

Mean 0.0008
∀ 0.0004

0.139
∀ 0.001

1.40
∀ 0.01

5.2651
∀ 0.0130

Hanak's 0.000 0.140 1.41 5.2570

In the investigation of the effects of the genetic parameters ns and ng for Configuration

1, two conflicting factors were taken into consideration: the genetic parameters and the CPU

time. Initially, as it is a fact that both the population size and number of generations should

increase proportionally with the number of parameters to optimize, the use of a population

size and number of generations at least as large as in the one-dimensional case was a priori

presumed. However, because the computation of D+ was found to be highly expensive, some

compromises needed be settled between the two conflicting factors mentioned above. From

Table 5.5, one can see that the increase in D+ from case b (ns=125 and ng=50) to case d

(ns=125 and ng=125) was only about 0.3% while the required CPU time (and consequently

feval) almost tripled. Therefore, the combination given by case b was chosen to determine the

optimal design for both Configuration 1 and 2.

The results of the ten optimization runs for Configuration 1 and 2, are provided in

Tables 5.6 and 5.7, respectively. Again, the means of the maximum D+ from this study are

higher than the maximum D+ found by Hanak using the parametric study. These results

definitely confirmed the assessment of the optimization procedure based GAs. Selecting the

optimal experimental parameters as their respective means rounded to the closest physically

possible values, the optimal design for Configuration 1 gave xs
+=0.0, ys

+=0.86, Lp
+=1.0 and

th
+=1.39; for Configuration 2, it gave xs

+=0.0, ys
+=0.0, Lp

+=0.14, and th
+=1.40. These values
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are very close to the optimal experimental parameters determined by Hanak (xs
+=0.0,

ys
+=0.86, Lp

+=1.0 and th
+=1.36 for Configuration 1; xs

+=0.0, ys
+=0.0, Lp

+=0.14 and th
+=1.41 for

Configuration 2).

Note, that even though care was taken to settle compromises between the population

size and number of generations, and the CPU time, and to conduct the analysis in two phases,

each optimization run still required about 200 min. This occurred because the objective

function was highly expensive to calculate. The large computing time was due to the

computation of the steady-state solution of the two thermal conductivity sensitivity

coefficients. Efforts were thus focused on ways to calculate those steady-state solutions faster.

It was found that the number of eigenvalues and eigenfunctions used in the double series

could not be much minimized as it affected the accuracy of the sensitivity coefficient

distribution. A study was then conducted to approximate the shape of these terms which were

found to be somewhat similar. Unfortunately, no approximate function was shown to be

effective.

Conclusion

For both test problems, the BEGA improved the maximization of the objective function

specified by the D-criterion. However, it was shown that when the objective function was

highly expensive to calculate, as in the two-dimensional analysis, the optimization

methodology using the BEGA posed two problems: first, two phases were required to reduce

the initial design space, and second, because of the need to average the results over several

runs, the procedure tended to be as time intensive as the parametric study although less

tedious to apply. From these conclusions, efforts were focused on improving the efficiency of

the genetic-based optimization methodology through the development of the EEGA.

Application of the EEGA

The performance of the EEGA was evaluated for the one-dimensional design problem

and for Configuration 1 of the two-dimensional design problem, and compared with the

results from both the BEGA and parametric studies. In the following, results for both

problems are jointly given.
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Table 5.8 summarizes the GA parameter values used for the EEGA. With an aim to

comparing the EEGA with the BEGA, the values used for this latter are also reported. The

selection of the population size, ns, and number of generations, ng, used in the EEGA was based

on the values used in the BEGA and on growing experience in the GA field. The elitist

parameters npop, nbest1, nbest2 and nbest3 (refer to the description of the EEGA in Chapter 4, Section

4.3.2) were chosen arbitrarily based on a population size of 50. Note that the logic applied to

select ns and ng was simply that since the EEGA was expected to perform much better than

the BEGA, it was anticipated that smaller population sizes and a smaller number of iterations

could be used with the EEGA, and thus, one does not intend to claim the “right” values for ns

and ng have been applied. Furthermore, the basis for the comparison between both GAs was to

show that the EEGA could find the global optimum more efficiently than the BEGA, e.g. in

only one phase run and in less CPU time. There was no priority in attempting to improve the

BEGA’s results as these were already found to improve those from the parametric study.

Therefore, no comparison was done between the BEGA and the EEGA for similar population

sizes and number of generations.

Table 5.8    Values for population size ns, number of generations ng, and EEGA elitist
parameters, nbest1, npop, nbest2, and nbest3 used in the one-dimensional and two-dimensional

Configuration 1 optimization problems with the BEGA and EEGA.

ns ng nbest1 npop nbest2 nbest3

BEGA 200 200 N/A N/A N/A N/A1D
EEGA 50 10 20% ns = 10 nbest1/ ns = 5 ns - nbest1 = 40 30
BEGA 125 50 N/A N/A N/A N/A2D
EEGA 50 20 20% ns = 10 nbest1/ ns = 5 ns - nbest1 = 40 30

The predicted optimal experimental designs for the two test problems obtained from the

EEGA are shown in Table 5.9. The results [means and 95 % confidence intervals, Eq.(3.18)]

from the BEGA and the parametric study are reported for convenience in comparison. One

can see that the objective to improve the efficiency of the BEGA was reached. Indeed, not only

was the two-dimensional optimization performed directly in one phase, but the CPU time was

also minimized. This is evident in the reduction of the number of function evaluations, feval, by a

factor of 4.4 due to the use of a smaller population size and fewer generations. Note that looking

at this reduction factor is actually the best way to compare the CPU time involved. The smaller

population size was a result of the selective procedure used by the EEGA to generate the initial

population; here, only two runs were performed to examine the effects of different random seeds.
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Furthermore, due to the benefit of the additional features implemented in the EEGA, particularly

updating the parameter ranges, it was observed that the most significant chromosome xs did not

predominate the effects of the other chromosomes; thus, the optimization did not present a slow

finishing, which allowed it to be performed in just one phase. Thus, the two problems which

limited the efficiency of the BEGA were circumvented with the EEGA.

Table 5.9    Optimal designs for the one-dimensional and two-dimensional
Configuration 1 optimization problems.

xs
+ ys

+ Lp
+ th

+ D+
max(10+7) feval

Moncman 0. N/A N/A 2.20 1.9878 N/A

BEGA
Mean

(6.0 ∀ 3.0)
× 10-4

N/A N/A 2.29
∀ 0.04

1.9892
∀ 0.0019

40200

EEGA
Run 1

(3.0 ∀ 1.0)
× 10-5

N/A N/A 2.32
∀ 0.00

1.9926
∀ 0.0000

850
1-D

EEGA
Run 2

(6.0 ∀ 1.0)
× 10-5

N/A N/A 2.33
∀ 0.00

1.9914
∀ 0.0000

850

Hanak 0. 0.860 1.0 1.36 5.3782 N/A

BEGA
Mean

0. 0.860
∀ 0.001

0.995
∀ 0.003

1.39
∀ 0.01

5.3830
∀ 0.0183

6375

EEGA
Run 1

(3.0 ∀ 0.3)
× 10-5

0.863
∀ 0.000

0.993
∀ 0.001

1.40
∀ 0.00

5.3890
∀ 0.0000

1450
2-D

EEGA
Run 2

(7.0 ∀ 4.0)
× 10-6

0.862
∀ 0.000

0.996
∀ 0.002

1.40
∀ 0.00

5.3913
∀ 0.0000

1450

In addition, the use of EEGA resulted in an increase of the value of D+ for both test

problems. As mentioned earlier, this result was not a priority in developing the EEGA as the

BEGA had already been shown to improve the maximization of D+ over the parametric study.

This is, however, the logical output from an enhanced optimization algorithm such as the

EEGA. The fact that the number of function evaluations was considerably reduced for the

one-dimensional experiment does not have any significance because the objective function in

this case was very inexpensive to compute.

Another significant point is that, as one may recall from the description of the EEGA in

Chapter 4, the output from this algorithm comprised of statistics performed on the nbest1 first

designs of the final population. The very small confidence intervals found around the means

therefore verified the convergence of the final population to the optimal design. This result
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also showed that there was no need to average the performance of the EEGA over ten runs as

was done for the BEGA. Thus, there was a considerable reduction in the CPU time required

for obtaining reliable results. It is nevertheless recommended that optimization be performed

at least twice to show reproduction in the results using different seeds. Table 5.9 indicates that

the two different random number seeds used with the EEGA had a negligible effect on the

optimal mean values obtained for the objective function and the design variables. They could,

however, have generated a difference in how quickly the EEGA found the optimal design

(e.g., in the value of feval), but this behavior was not investigated. Note, however, that the

number of function evaluations using the EEGA seemed still a little high and it was believed

that the EEGA could benefit from the use of different genetic operators more suitable to real-

valued encoding (this later led to the development of the GA_3 algorithm).

Conclusion

By keeping the best information generated throughout the search process, the EEGA

performed much more efficiently than the BEGA, and thus also outperformed the parametric

study both qualitatively and quantitatively. The elitist features implemented in the EEGA helped

direct the search for the optimal design, thus leading to more rapid convergence. In addition, the

use of the EEGA resulted in a richer final population (in terms of the value of the D-criterion)

which allowed for an assessment of convergence.

Before giving the results for the estimation of properties, it should be recalled that the

values found for the optimal dimensionless design variables of the two-dimensional

optimization problems depend on the ratio of both the sample dimensions (Lxy) and the

thermal conductivities (κxy). The former is fixed by geometrical consideration and was 0.06

here. The latter, however, is set as an initial guess. Based on previously reported data for

similar composites, an initial estimate of 5.0 was used for κxy.

• Estimation of Properties

As mentioned previously Hanak used the modified Box-Kanemasu method in an

attempt to estimate the properties for both the one- and two-dimensional problems. The

method proved to be effective in the one-dimensional case, but the two-dimensional

estimation resulted in non-convergence due to correlation between the thermal properties (see
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Table 5.10). From this, a preliminary analysis was performed in this work on applying the

modified Box-Kanemasu method to the two-dimensional Configuration 1 estimation problem

using multiple sensors adequately chosen, and “very good” initial guesses for the estimates

(nearly the same as the true estimates). The aim was to investigate if such additional

information would help the gradient-based procedure to properly converge. Note that this

analysis was conducted prior to investigating the use of GAs for the estimation of the thermal

properties. The following provides a summary of the study.

Table 5.10    Correlation matrices for the simultaneous estimation of three thermal properties
(kx, ky and C) with the two-dimensional Configuration 1 design

using the modified Box-Kanemasu method.

The use of three sensors was considered: the first satisfied D-optimality and the second

and third were chosen to maximize the sensitivity to the thermal conductivity in the fiber

plane, ky, and the sensitivity to the volumetric heat capacity, C, respectively. Simulated

temperature histories were generated from these sensors using specified estimates for the

three thermal properties (kx, ky and C) and the exact analytical model given by Eqs. (5.10a and

b). Note that with an aim to comparing with the results from Hanak, shown in Table 5.10, the

number of observations simulated was the same as the number of experimental observations

used. The simulated data were then used as the observation vector in the modified Box-

Kanemasu method. When exact data were used, all three original properties were recovered,

as expected, since it was also possible with only one sensor (Hanak, 1995). When uniform

random errors of deviation 0.1°C were added to the exact data, non-converged solutions were

obtained, again as with only one sensor. The use of initial values close to the specified

property values did not allow convergence either. The correlation matrix indicated in Table

5.10 showed, however, much lower correlation terms than when trying to estimate the

properties from one sensor only and without good knowledge for the initial guess, thus

indicating the benefit from the additional information. Nevertheless, the correlation term

between both thermal conductivities was still higher than 0.9, making it very difficult for the

Hanak (1995)
One sensor

Experimental data

Present study
Three sensors, good initial guess

Simulated data with noise (σ σ = 0.1°C)

kx

ky

C

kx           ky          C
1
-0.998    1
-0.986    0.985    1

kx           ky          C
1
-0.982    1
-0.537    0.492    1
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gradient-based method to converge with data containing noise. It became apparent from this

study that a more complex design with, for instance, additional embedded sensors was

probably necessary for the modified Box-Kanemasu method to become effective, compared to

the work performed by Loh and Beck (1991) discussed in Chapter 2. As nondestructive

testing was a requirement in the two-dimensional estimation problem presented here, this

design modification was not possible. The investigation of GAs as the estimation procedure

was then the logical following step.

The EEGA was first applied to the simple one-dimensional problem of estimating kx and C

of a composite material (AS4 carbon fiber / 3502 epoxy matrix) to gain confidence in using the

algorithm to perform simultaneous estimation in a case where correlation was insignificant.

These properties were estimated for each of the ten experiments performed, using the values for

the genetic and elitist parameters for the EEGA given in Table 5.11. The analytical solution

given in Eqs. (5.7a, b) was applied to obtain temperature histories at the optimal sensor location.

The means of the ten estimates, the associated 95% confidence intervals (CIs) obtained from Eq.

(3.18), and the mean value of the objective function, S, are compared to the corresponding results

from Hanak in Table 5.12. Note that the use of the EEGA resulted in a smaller mean value of S

and equal or smaller CIs than the use of the modified Box-Kanemasu method by Hanak [6].

Table 5.12 also indicates the 95% CIs obtained from Eq. (3.19) and which take into account the

CIs of the estimates for each of the ten experiments, as explained in Chapter 3. The small

magnitude of these 95% CIs reflects the reliability of the estimated parameters.

Table 5.11    Genetic parameters, ns, ng, and npop, elitist parameters, nbest1, nbest2, and nbest3, and
number of function evaluations, feval, used in the estimation problems with the EEGA.

ns ng npop nbest1 nbest2 nbest3 feval

1-D 50 10 5 10 40 30 850
2-D 50 15 5 10 40 30 1150

Table 5.12    Estimated mean thermal properties for the one-dimensional estimation
problem using both EAL and EEGA.

kx (W/mK) C (MJ/m3K) S (ΕC)²

Hanak (EAL) 0.62 ∀ 0.01 1.65 ∀ 0.01 1.28 ∀ 0.21

EEGA 0.63 ∀ 0.01 a

    ∀ 0.01 b
1.61 ∀ 0.01 a

        ∀ 0.03 b
0.71 ∀ 0.22

a and b obtained using Eq. (3.18) and (3.19), respectively.
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The residuals were also investigated; these are shown in Fig. 5.5 for the first experiment.

Note there is a slight bias in the model, particularly when the heater is turned on at t = 0 s and

when it is turned off at t = 130 s. The bias can be estimated from the difference between the total

RMS and the experimental variance which can be estimated from data before the heat flux is

applied (not shown). In this case, the total RMSi for this experiment is only 1.17% of the

maximum temperature rise; thus, both the bias and experimental variance are quite small, with

the variance being smaller than the bias error. Also from Fig. 5.5, the small difference between

the RMSi and the RMSM indicates the experiments were highly repeatable.

The one-dimensional solution provided the basis for the two-dimensional case

(Configuration 1). Once again, the analytical solution with constant heat flux and temperature

boundary conditions calculated from averaged experimental values was used [Eqs. (5.13a and

b)]. A sensitivity analysis was first conducted to gain insight into the problem. The

dimensionless sensitivity coefficients for kx, ky and C are shown in Fig. 5.6. Note that the

superscript (+) that denotes “dimensionless” is henceforth omitted for convenience. The

coefficient Xky is very small compared to Xkx, and these coefficients are linearly dependent, as

indicated by Fig. 5.7. This suggested that ky and C would be more difficult to estimate than kx,

with ky being the most difficult, and that kx and ky are correlated. These thermal properties were
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Figure 5.5    Temperature and residual distribution from the one-dimensional
model for the first experiment.
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then estimated for the nine experiments performed using the same experimental procedures.

These results, along with the associated 95% CIs of the estimates, the least squares error S, and

the Root-Mean-Square values for each of the experiments are given in Table 5.13 along with the

associated mean values over all of the experiments. The 95 % CIs for each experiment were

approximated from linear estimation [Eq. (3.17)] and are related to the sensitivity coefficients for

each property value shown in Fig. 5.6. Thus, the CIs for kx were the smallest, while those

associated with ky were the largest. The high correlation between the thermal conductivities

indicated in Fig. 5.7 is also shown in the off-diagonal term associated with kx and ky of the

correlation matrix calculated for the first experiment and equal to 0.995 (see Table 5.14 in

Section 5.1.1.5).

The residuals were also investigated; these are shown in Fig. 5.8 for the first experiment.

One can see that the residuals are small and centered around zero. Note again a slight bias in the

two-dimensional model, particularly when the heater is turned on and off. This bias seems to be

about the same order of magnitude as the bias shown in the one-dimensional model.

-0 .8 -0 .6 -0 .4 -0 .2 0 .0
X kx

-0 .1 2 5

-0 .1 0 0

-0 .0 7 5

-0 .0 5 0

-0 .0 2 5

0 .0 0 0

X k y

Figure 5.6    Dimensionless sensitivity
coefficients from the two-dimensional

(Configuration 1) model.

Figure 5.7    Linear dependence between
the dimensionless sensitivity coefficients

of kx and ky from the two-dimensional
(Configuration 1) model.
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Table 5.13    Estimated thermal properties, kx, ky and C, the least squares error, S, and the
Root-Mean-Square, RMSi and RMSM, for the two-dimensional Configuration 1

estimation problem using EEGA.

RMSi RMSM

Exp. kx

(W/mK)
ky

(W/mK)
C

(MJ/m 3K)
S

(ΕC)² (ΕC)
∆Tmax

a

(%) (ΕC)
∆Tmax 

a

(%)
1 0.63∀0.01 1.51∀0.28 1.64∀0.02 0.35 0.033 0.96 0.054 1.63
2 0.63∀0.01 1.48∀0.25 1.60∀0.02 0.38 0.032 0.90 0.054 1.52
3 0.64∀0.01 1.44∀0.30 1.58∀0.02 0.45 0.036 1.03 0.062 1.78
4 0.66∀0.02 1.30∀0.50 1.69∀0.04 1.08 0.054 1.58 0.058 1.71
5 0.65∀0.02 1.44∀0.48 1.68∀0.03 0.72 0.044 1.29 0.046 1.32
6 0.66∀0.03 1.30∀0.53 1.69∀0.05 1.25 0.058 1.72 0.060 1.79
7 0.66∀0.02 1.45∀0.50 1.68∀0.04 0.99 0.054 1.58 0.061 1.78
8 0.66∀0.03 1.63∀0.61 1.66∀0.04 1.61 0.068 2.05 0.083 2.47
9 0.66∀0.02 1.51∀0.43 1.67∀0.03 0.79 0.048 1.41 0.056 1.66

Mean 0.65
∀ 0.01 b

1.45
∀ 0.15 b

1.66
∀ 0.02 b

0.76
∀ 0.33 c

1.39 % 1.74 %

a %∆Tmax is the RMS as a percent of the maximum temperature rise, ∆Tmax.
b CIs calculated with Eq. (3.19).
c CIs calculated with Eq. (3.18).

The small magnitude of the mean value of S highlights the excellent behavior of the

estimation procedure although the thermal conductivities were highly correlated. In addition,

both the small 95 % CIs of the estimates and those placed around the means, and the RMS values

Figure 5.8    Temperature and residual distribution from the two-dimensional
(Configuration 1) model for the first experiment.
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demonstrated that experiments were very repeatable. Furthermore, the mean estimates for kx and

C are very close to those provided by the one-dimensional estimation, and their 95 % CIs

overlap. Thus, these results demonstrated that EEGA is an effective strategy for the simultaneous

estimation of correlated thermal properties.

• Conclusion

It should be mentioned that the elitist features implemented in the EEGA were suitable

here because the objective function presented one unique global optimum. However, as

explained in Chapter 4, a later application of the EEGA to a multimodal estimation problem [The

simultaneous estimation of the thermal properties of an insulated material, a study conducted in

cooperation with J. Guynn as part of his master-of-science thesis at Virginia Tech, which is not

reported in this dissertation but can be found in Garcia et al. (1998)] pointed out that these

features tended to direct the search to a local optimum.

Also, one important point to underline is the verification that the ratio of the two-

dimensional estimated thermal conductivities and the thermal diffusivity in the x-direction are

both in agreement with the initial guesses used in the optimization process and in the

determination of the experimental times, respectively. Recall that initial estimates of 5.0 for

κxy and of 4.×10-7 m²/s for αx, were used. On one hand, the ratio of the estimated mean

thermal conductivities presents a value of 2.23 which is about half the value of the initial

guess. However, it was found through a careful investigation using the EEGA, that the use of

geometrical ratio values between 0.04 and 0.08 (0.06 was used here), and conductivity ratio

values between 2 and 7 provided nearly the same optimal design variable values as those

obtained here. On the other hand, the thermal diffusivity αx (= kx,mean/Cmean) presents a value

of 3.91×10-7 m²/s, which is very close to the initial estimate. Therefore, a good agreement

between the optimization process and the estimation results was found.

5.1.1.5 Benefit From Optimizing Experimental Designs

The earlier analysis of the two-dimensional Configuration 1 problem was further

developed with an aim to illustrating the need for experimental optimization. It was intended

to show that observations taken with optimal (more particularly D-optimal) operating

conditions globally provide better information than others taken with non-optimal operating
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conditions, allowing then for globally more accurate estimates. Note that verification of

optimal designs has previously been experimentally investigated by Taktak (1992) and Hanak

(1995).

The non-optimal conditions were selected as follows. On one hand, the heating area was

chosen to completely cover the top surface and the thermocouple position was placed at half

sample length where the temperature is maximum. On the other hand, considering

[ ]T t+ + +∝ − −1 exp( / )τ  during the heating time [refer to Eq. (5.11a)], the non-optimal

heating time value chosen represents the double of the time constant τ+ defined by (B1,1)
-1.

Table 5.14 summarizes the optimal and non-optimal experimental conditions used, the

resulting determinant, eigenvalues and condition number of the dimensionless matrix XTX,

and the sensitivity magnitudes to the parameters.

Table 5.14    Experimental conditions, determinant D+, eigenvalues λ1-3
+, condition number

λ1
+/λ3

+
 and magnitude of the non-dimensional sensitivity coefficients corresponding to an

optimal and non-optimal design of the Configuration 1 of the two-dimensional problem.

First of all, notice how poor the information is with optimal conditions. Indeed, the

magnitude of the non-dimensional sensitivity coefficients Xky stays lower than 0.13 and the

matrix XTX indicates an important condition number of 2194. These features characterized an

ill-posed estimation problem that does not allow for an accurate estimation of the property ky

and also entails correlations between the sensitivity coefficients, as shown earlier. Now, the

results obtained for the non-optimal experiment display not only a negligible coefficient Xky

but also a condition number 21 times larger than in the optimal case, which implies a more

unfavorable global situation to consider the simultaneous estimation of the three properties.

The dimensionless sensitivity coefficients for the non-optimal experiment, which are to be

compared with the optimal coefficients illustrated in Fig. 5.6, are shown in Fig. 5.9. On one

hand, the magnitudes of the coefficients Xkx and XC are not disturbed by the non-optimal

conditions (XC has even slightly increased). This indicates that while the non-optimal

conditions used are inadequate for the simultaneous estimation of the three properties, they

xs
+ ys

+ Lp
+ th

+ D+
max λλ1

+ λλ2
+ λλ3

+ λλ1
+/λλ3

+ |Xkx| |Xky| |XC|
Opt. 0. 0.86 1. 1.36 5.38

× 10-7
0.219 2.5

× 10-2
1.

× 10-4
2194 < 0.67 < 0.13 < 0.24

Non-
opt.

0. 0.5 1. 0.8 2.63
× 10-7

0.177 3.9
× 10-2

3.9
× 10-6

45978 < 0.67 < 0.0081 < 0.30
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would be appropriate if one considers the estimation of kx and C only. On the other hand, Xkx

and Xky do not seem to be linearly dependent as shown in Fig. 5.10. This feature is discussed

below.

With an aim to demonstrating the relevance of D-experimental optimization, the

estimation results obtained using the EEGA and simulated experimental data with the

optimized and non-optimized design are reported in Table 5.15. The simulated data were

generated by adding uniform random errors (with a deviation of 0.1°C) to exact data obtained

from exact analytical models [Eq. (5.10a and b)] of the optimized and non-optimized design,

using kx=0.63 W/mK, ky=1.51 W/mK and C=1.64 MJ/m3K.

Table 5.15    Estimated thermal properties kx, ky and C, least-square error S and correlation
terms rkx/ky, rkx/C and rky/C for an optimal and non-optimal simulated two-dimensional

Configuration 1 experiment.

kx

(W/mK)
ky

(W/mK)
C

(MJ/m 3K)
S

(°C)2
rkx/ky rkx/C rky/C

Opt. 0.66 ± 0.03 1.38 ± 0.55 1.62 ± 0.05 4.95 0.995 0.916 0.913
Non-opt. 0.69 ± 0.02 1.91 ± 33.61 1.79 ± 0.04 39.94 0.68 0.58 0.66

Figure 5.9    Dimensionless sensitivity
coefficients from the two-dimensional

(Config. 1) non-optimal
experimental design.

Figure 5.10    Linear dependence between the
dimensionless sensitivity coefficients of kx

and ky from the two-dimensional (Config. 1)
non-optimal experimental design.
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The estimation performed with the optimal conditions resulted in a least square error S

one-eighth as large as with non-optimal conditions. Furthermore, note that the 95% CIs [Eq.

(3.16)] of properties estimated using the optimized design are globally smaller (more

homogenous) than those of properties estimated using the non-optimized design. The

individual properties kx and C may be estimated with slightly greater accuracy at the non-

optimal experimental setting, but the combination of the three properties maintain a higher

accuracy at the optimal setting. The value of the CI associated to ky is actually so large that

obviously, the non-optimal conditions do not allow for the simultaneous estimation of this

property with the two others. These results therefore illustrate a well-known property of the

D-optimality criterion which is to allow for the best possible simultaneous estimation of all

unknown properties using the experimental configuration investigated.

Table 5.15 indicates that using optimal conditions the thermal properties are all

correlated, with a strong correlation term of 0.995 between the two conductivity components.

Using non-optimal conditions however, no correlation is shown. These behaviors act along

the fact that the non-optimal conditions simply do not take into consideration the property ky

as anticipated from the nearly null sensitivity to that property. Therefore, the correlation

degrees obtained with the non-optimized experimental design have no value for the problem

of simultaneously estimating the three properties. Figures 5.11 and 5.12 represent iso-S curves

on which the disproportion between the sensibility to kx and C on one side, and to ky on the

other side, is outlined. Note the long and narrow contours which are synonymous of strong

near-linear dependence. These curves were constructed from exact data generated using the

property values as indicated above.

Conclusion

This study has illustrated some theoretical considerations about relationships between

sensitivity, correlation, condition number and optimality criteria, that were discussed in

Chapter 3. On one hand, the results confirm that D-optimization globally maximizes the

sensitivities to the parameters. In addition, the equivalence between the D-optimality criterion

and the condition number has been outlined. On the other hand, it has been shown that

minimum correlation does not imply maximum accuracy. Therefore, the use of an optimality

criterion based on minimizing parameter correlation(s) would not be adequate. One important

feature that has also been stressed is that one wishes uniform magnitude (about the same

order) for the parameter sensitivity coefficients. Large differences in sensitivity magnitude to
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Figure 5.11    Curves iso-S vs. ky and C with kx fixed. Figure 5.12    Curves iso-S vs. kx and ky with C fixed.

(from the two-dimensional Configuration 1 estimation problem)
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one (or more) parameter has indeed more effect on the condition number than correlation

between two (or more) parameters.

5.1.1.6 Effects of the Experimental Design Optimality Criterion

If the optimization of experimental designs according to D-optimality globally provides

better estimates as illustrated above, a pertinent question is then “what are the other optimality

criteria such as the E- and A- useful for?” (assuming one makes abstraction of their statistical

characteristics described in Chapter 3). The purpose of this analysis was to answer this

question, e.g. to evaluate the effects of the D-, E- and A-optimality criterion for the experimental

design on the accuracy of the estimated thermal properties. Recall from Chapter 3 that in using

the E- and A- criterion, the time-averaged minimum eigenvalue and trace of the dimensionless

matrix XTX, respectively, is maximized. This is defined in dimensionless terms as the

maximization of E i
+ += minλ  and A dii

i

np

+ +

=
= ∑

1

, where λι and dii are the ith eigenvalue and the

ii th diagonal element [defined in Eq. (5.1)] respectively, of the dimensionless matrix XTX. These

optimality criteria are subjected to the same experimental constraints as the D-criterion. In this

analysis, the experimental designs for the one- and two-dimensional (Configuration 1) problems

were first optimized using the three optimality criteria and using the exact dimensionless

sensitivity models developed by Moncman (1995) and explained previously. Then, once again,

uniform random errors were added to exact data generated from exact analytical models [Eqs.

(5.10a and b)] of the optimized designs to simulate actual experimental data. In order to generate

these data, kx and C were set equal to 0.6 W/mK and 1.5 MJ/m3K, respectively, for both

problems, and in addition, ky was set equal to 1.9 W/mK in the two-dimensional problem. These

simulated data were subsequently used to estimate the thermal properties and associated

confidence intervals [Eq. (3.16)]. The effect of the optimality criteria on the accuracy of the

estimated properties was then evaluated by comparing both the CIs associated with these

properties and the objective function, S. The EEGA was used for both the optimization and

estimation processes.

Recall that the experimental design variables optimized in the one-dimensional problem

were the sensor location perpendicular to the fibers, xs
+, and the duration of the heat flux, th

+. The

two-dimensional problem included these variables in addition to the sensor location parallel to

the fibers, ys
+, and the heating area, Lp

+. The same total dimensionless experimental time was
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used in each problem for all criteria. Here, values of 4.90 and 3.90 were used for the one- and

two-dimensional problems, respectively. These values were determined using the D-optimality

without time averaging and corresponded to the times when no significant additional information

was gained through the use of additional data, as explained previously. The results for the

optimized experimental designs using the A-, D-, and E-optimality criterion are shown in Table

5.16.

Table 5.16    Predicted optimal experimental designs using EEGA
for the one-dimensional and Configuration 1 of the two-dimensional experiments

according to D-, E- and A-optimality.

Opt. Crit. th
+ xs

+ ys
+ Lp

+

A- 4.90 0. N/A N/A
D- 2.32 0. N/A N/A1-D
E- 1.22 0.07 N/A N/A
E- 1.34 0. 0.91 1.
D- 1.40 0. 0.86 1.2-D
A- 3.90 0. 0.50 1.

Several key points should be noted here. First, the optimal sensor location, xs
+, was

approximately at the heated surface for all cases. This is where the sensitivity of kx is maximized,

suggesting that this property is dominant. Second, the A-optimality criterion resulted in the

heating times, th
+, equal to the values for the total experimental time, suggesting that less

information will be available for the transient related property C. Also, in the two-dimensional

design, the optimal sensor location, ys
+, for this criterion is at half the length of the composite,

which is the location where the temperature gradient perpendicular to the fiber plane is the

greatest for a heating area, Lp
+, of 1.0, and constant temperature boundary conditions at the

edges. The E-optimality, on the other hand, resulted in the shortest th
+, suggesting that more

information is available on C due to its transient nature, while less is available for kx due to its

dominance at steady-state conditions. The last criterion, the D-optimality, provided values for

both th
+ and ys

+ which fell between those found for the A- and E-optimality criteria, implying the

D-optimality balances the effects of these other criteria.

These optimal designs were then utilized in the estimation procedure using the simulated

data. The thermal property estimates and the associated 95 % CIs are shown in Table 5.17. Here,

the effects of the D-, E- and A-criteria on the accuracy of the estimates follow from the

discussion of the optimal designs given in Table 5.16.
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Table 5.17    Estimated thermal properties, kx, ky, and C, the least squares error, S, and
correlation terms rkx/ky, rkx/C and rky/C for the one-dimensional and Configuration 1 of the two-

dimensional experiments designed according to D-, E- and A- optimality.

Opt.
Crit.

kx

(W/mK)
ky

(W/mK)
C

(MJ/m3K)
S

(ΕC2)
rkx/ky rkx/C rky/C

A- 0.600∀0.002 N/A 1.49∀0.03 9.09 N/A 0.38 N/A
D- 0.599∀0.003 N/A 1.50∀0.02 9.09 N/A 0.12 N/A1-D
E- 0.598∀0.004 N/A 1.50∀0.02 9.10 N/A 0.12 N/A
A- 0.599∀0.008 1.74∀8.59 1.49∀0.05 7.50 0.97 0.84 0.80
D-* 0.573∀0.025 2.44∀0.64 1.52∀0.03 7.44 0.99 0.65 0.632-D
E- 0.585∀0.033 2.08∀0.41 1.50∀0.04 7.51 0.99 0.30 0.26

* more data points were simulated here than for the study shown in Table 5.15; therefore, when
comparing the estimation results associated with D-optimality, both the CIs and the correlation terms
are lower, while the least square error, S, is larger.

First, the A-optimality resulted in the highest accuracy for the property with the highest

sensitivity, i.e. kx, but did so at the expense of the other properties, particularly ky in the two-

dimensional problem. Looking at the off-diagonal terms in the correlation matrix (refer to

Section 3.1.3), the correlation between kx and ky was nearly the same for all criteria, while the

correlations between each of the thermal conductivities and C were the highest with the A-

optimality. The E-optimality had the opposite effects. Here, the accuracy of kx was the lowest,

while the accuracy of the property with the lowest sensitivity, i.e. ky, was the highest. Also, the

correlations between each of the thermal conductivities and C were the lowest with this criterion.

Finally, the D-optimality offered a slightly lower least-squares function, S, than the other two

criteria, and sought to compromise their opposite effects. Hence, the accuracy of kx was higher

than that found using the E-criterion, while lower than that from the A-criterion, and the opposite

trend was found for ky. Also, the correlations between the thermal conductivities and C were

lower than those for the A-criterion, while higher than those for the E-. From these features, the

D-criterion appears to minimize the variances of the estimates in the best global manner.

Note that the non-optimal conditions investigated in the previous section could

correspond to a combination between A-optimality (sensor located at half the length of the

sample which maximizes the accuracy on kx) and available transient information for the

accurate estimation of the property C (short heating time).

Conclusion

The results from this study can be concluded as follows:
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- D-optimality provides the highest accuracy overall.

- A-optimality provides the highest accuracy for the property with the highest sensitivity,

but does so at the expense of the accuracies of all other properties.

- E-optimality provides the highest accuracy for the property with the least sensitivity.

In terms of the comparative performance of the competing designs obtained applying these

three criteria, the results point out that A-optimality should not be used.

5.1.2 Two-Dimensional Analysis Performed at Different Temperature Levels

This section and the next one (Section 5.2.1) deal with two-dimensional heat transfer for

the simultaneous estimation of the thermal properties (kx, ky and C) of anisotropic composite

materials over the temperature range [30-150°C]. While here the properties are estimated as

constants at specific temperature levels using a design optimized previously, the optimal

experiment to identify the properties as temperature dependent is investigated in the next

Section. In the following, a description of the estimation problem is first provided. Then, the

experimental methods used to procure the measured temperature histories required in the

estimation process are presented, followed by the formulation of the mathematical model used

to generate the calculated temperature histories. Eventually, the estimation results obtained

applying the general-purpose GACONDUCT program are given and discussed.

5.1.2.1 Problem Description

The problem considered involved the simultaneous estimation over the temperature

range [30-150°C] of the thermal conductivities parallel and perpendicular to the fiber plane

and the volumetric heat capacity of anisotropic carbon/epoxy composites. This work was

conducted in the context of an industrial research contract with the LTI/Nantes, and was

sought to be a good application to confirm the robustness of the estimation methodology

implemented in the genetic method. Two different carbon/epoxy composites were considered.

The difference between the materials included the aspect ratio (Lx/Ly = Lxy), the fiber

orientation and the addition of an aluminum coating for one of the materials. Because the

analysis performed was the same for both materials, only one study is reported here. Note that

both studies were the subject of industrial reports.
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The materials were in a thin planar rectangular form with an aspect ratio of 0.047.

Because of the similarities found with the two-dimensional analysis performed in Section

5.1.1, the properties were sought to be estimated as constants at different temperature levels

using the basic D-optimal design of the Configuration 1. Recall that this optimal experimental

design, sketched in Fig. 5.4a, included a uniform heat flux over the top boundary and constant

temperature at the other three boundaries perpendicular to the xy plane, while those parallel to

the xy plane were insulated. This configuration with constant-temperature boundary

conditions on the sample sides was preferred over the insulated boundary conditions of

Configuration 2 as Hanak (1995) showed that it provides more information for the estimation

of the thermal conductivity in the fiber plane. Note that the use here of the same values for the

dimensionless optimal experimental parameters as for the carbon/epoxy composites

investigated by Hanak involved the assumption of a thermal conductivity ratio κxy of 7 (for an

aspect ratio of 0.047).

The required temperature range was split into six levels, thereby defining the

temperature levels to investigate as 30, 50, 75, 100, 125 and 150°C. An apparatus called ALIS

(Laboratory Apparatus from ISITEM) was used to control and monitor the initial temperature

inside the sample. The details of the experimental set-up are given in the next subsection.

As in the experiments performed at Virginia Tech by Hanak, a temperature rise

occurred at the “constant temperature” boundaries. Due to the physical limitations of the

experimental set up, the rise in this application was too significant to allow for the use of an

analytical solution with average experimental values for the boundary conditions. Therefore, a

numerical solution involving a control-volume-based finite difference method was applied

which could accommodate any experimental variations. The numerical code used consists of

an extension of the program CONDUCT developed by Patankar (1991). Its combination with

the third GA developed in this research formed the general-purpose program GACONDUCT

described in Chapter 4 and which was used for the estimation procedure.

5.1.2.2 Experimental Methods

• Experimental Set Up

The experimental set up was designed after the D-optimal Configuration 1 of the two-

dimensional experiments sketched in Fig. 5.4a. Recall that the critical experimental design

variables were the location of the sensor used in the estimation procedure (xs
+=0 and ys

+=0.14
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or 0.86), the heating length (Lp
+=1), the heating time (th

+=1.4) and the total experimental time

(tn
+=3.9). The carbon/epoxy composite planar samples had an average thickness of 3 mm and

an Area of 64×64 mm². Note that the term “average” is employed because when the samples

were received, they were found to be non-homogeneous in thickness presenting discrepancies

of up to 10% with respect to the average value. The optimal sensor location was then xs=0 and

ys=8.96 or 55.04 mm, and the heating length was Lp=64 mm (heater covering the entire top

surface). Assuming a diffusivity in the x-direction of 4×10-7 m²/s, the heating and total time

were taken as 35 s and 100 s, respectively, from t=t+×(Lx²/αx) (see Section 5.1.1.2). The

following summarizes the experimental apparatus used and then gives details about the major

components.

The apparatus consisted of two square composite plates, an electric resistance heater, an

aluminum mold made of four individual blocks, two aluminum plates and foils, thermal

grease, 16 thermocouples, and eventually the apparatus ALIS. Figure 5.13 illustrates ALIS,

which consists of an experimental press including two instrumented parallel plates. The plate

temperatures are controlled either electrically or using circulation of fluids which are

thermally regulated using “Lauda” type apparatuses. Note that in-depth description of ALIS

can be found in Bailleul (1993). The use of ALIS enabled the samples (two samples were

used for symmetry) to be placed under pressure (P=8 bars) and regulated their temperature via

their boundaries. In this study, electrical heating was used for the plates. The set up was

symmetric with respect to the heater, as shown in Fig. 5.13. The thermocouples placed on the

samples were attached to the thermocouple junction box of the apparatus ALIS using

thermocouple plug connectors. The junction box of ALIS was hardwired to an ice-bath to

provide the necessary reference temperature for the thermocouples. The ice bath was in turn

hardwired to the data acquisition system used. The heater was placed in series with a DC

power supply and a high resolution Keithley digital multimeter (model # 2000) which allowed

measurement of the current and voltage drop across the heater. Information from the

thermocouples and the multimeter readings was sent to the data acquisition system through

serial ports on a personal computer using RS-232. The system converted the thermocouple

voltages into temperatures.

The electric resistance heater (part # HK-913, Minco Products Inc.) of dimensions

64×64 mm was selected not to include internally attached leads, which would have required
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modification of the samples by adding a notch to allow space for the leads. The heater

however presented the disadvantage of having a high electric resistance (R=360 Ω ± 15%, and

was measured as 359.6 Ω). Variations of the resistance with temperature were neglected. In

order to negate the effects of non-uniform heat flux developed because the heater consisted of

a foil heating element covered by a thin layer of Kapton, aluminum plates of thickness equal

to the distance between the centers of two adjacent heating elements (1 mm) were placed

between the heater and each sample.

The sandwich composite-aluminum plate-heater-aluminum plate-composite was placed

in an aluminum mold made of four individual pieces. Two metal round-headed screws located

at the bottom of the mold (Fig. 5.13) were tightened a little to maintain the composite sides in

good contact with the mold. The resulting assembly was in turn placed between the two

heating plates of the press ALIS. An aluminum foil was actually put between the bottom and

Figure 5.13    Simplified schematic of the experimental set up and apparatus ALIS
(not to scale).
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top surfaces of the mold and the heating plates and thermal grease (based on alumina, k=7

W/mK) was applied to ensure good contact. The purpose of the mold was to provide the

temperature conditions imposed to the heating plates and to act as a thermal guard. Because of

the much larger dimensions of the heating plates than the mold (see Fig. 5.13 although not to

scale), and the fact that both the plates and mold were at the same temperature, convection

and radiation heat transfer were neglected around the mold and outside of the composite

samples and therefore no particular insulation was applied. Note that the aluminum plates

used to homogenize the heat flux were sized slightly smaller than the composite samples and

small pieces (spurs) of insulating material were afixed to their sides both to prevent them from

being in contact with the mold and to be sure they were adequately centered, as illustrated in

Fig. 5.14. It was important that the entire heat flux generated by the heater entered the

composite.

Figure 5.15 shows the location of the thermocouples used. Note that the number of

thermocouples was limited to sixteen because of the number of channels available in the data

acquisition system. Each sample was instrumented with eight type K (Chromel-Alumel)

thermocouples of diameter 80 µm (gage). The use of this thermocouple type and size allowed

for a good compromise between accuracy and time consumption in preparing the experiments.

Temperature rises occurred on all surfaces where a constant-temperature boundary condition

was implemented. Therefore, the purpose of the two thermocouples on each side of the

Figure 5.14    Detailed view of the sandwich structure inside the aluminum mold
(dimensions in mm - not to scale).
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samples (# 1,2,3,4 and 9,10,11,12) and the two on the bottom surface (#5,6 and 13,14) was to

record the temperature histories of the boundary conditions which were then implemented in

the numerical model. The implementation procedure is discussed later. The thermocouples

placed on the heated surfaces (# 7,8,15,16) corresponded to the optimal sensor position and

were used in the estimation methodology. The advantage of the symmetrical set-up was that it

allowed thermocouple readings of the same temperature history to be averaged. This not only

reduced the amount of measurement noise that existed in any thermocouple measurement, but

also enabled the bias due to the non-uniform thickness of the “planar” samples to be folded

into measurement noise.

• Experimental Procedure and Data

The assembly procedure which involved producing and installing the thermocouples

into the composite samples, and producing the aluminum mold and plates, was performed by

D. Letourneur1 (I participated in fabricating some thermocouples with the aim of learning and

monitoring the process of making them). Note that the development of high performance

experimental tools for accurate metrology has always been one of the priorities of the LTI.

The data acquisition program was written by N. Lefevre1 in Quick Basic following an IEEE

                                                
1 Technician at the LTI/Nantes.

Figure 5.15    Thermocouple position and numbering
(dimensions in mm - not to scale).
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communication protocol. The program allowed a set of experimental data to be recorded

approximately every 3 s. Experiments proceeded as follows:

- The power was adjusted once (at room temperature) to supply the selected heat flux value

(discussed later). The current I was adjusted to satisfy q=RI²/2A.

- The heating plates were set to a specified temperature level through the monitoring system

of the press ALIS; time was allowed for the apparatus to reach this temperature level.

- Data were taken for approximately 20 s, measuring the apparatus at steady-state at the

specified temperature level.

- The power supply of the electrical heater was turned ON manually (simultaneously with a

time watch).

- After completing the required heating time of 35 s, the power supply was turned OFF.

- After completing the required total experimental time of 100 s, the experiment was

terminated.

For each temperature level, experiments were repeated three times using the same

experimental set up. Experimental data consisted of the measured times, temperature histories

from the heated and constant temperature-boundary conditions and the specified heat flux.

Note that the thickness variations of the composite samples as the temperature level increased

were found to be negligible (viewing the records of the ALIS upper plate’s displacement).

Both the measured heat flux and temperature history from the constant-temperature

boundaries were used as the boundary conditions in the numerical model.

5.1.2.3 Finite Difference Modeling

• Geometrical Modeling

Due to the symmetry in the y-direction, only half of a composite sample was modeled.

The two-dimensional boundary conditions are sketched in Fig. 5.16. One can see that the

geometric modeling included the thin aluminum plate placed between the heater and the

sample. The little “hole” containing air and the piece of insulating material afixed to the plate

edge was however neglected. A contact resistance between the sample and the aluminum

plate was taken into consideration and given a value of 10-4 m²⋅K/W [based on reported data
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approximating the aluminum/composite interface (Incropera and DeWitt, 1996)]. The

resistance was then modeled as a layer with thickness 0.1 mm, thermal conductivity 1

W/m²⋅K (in the direction perpendicular to the layer only) and null thermal capacitance. The

thermal capacitance of the heater was neglected due to its very small thickness (0.15 mm).

Figure 5.17 shows the control-volume discretization performed using the scheme called

practice B which is inherent to the program CONDUCT. The faces are called I1, L1, J1 and M1

to refer to the nomenclature used in CONDUCT. The model consisted of 10 and 33 elements

(implying 12 and 35 nodes) in the x- and y-direction, respectively. One can see that the mesh

is not uniform, being more accurate at the optimal sensor location (node i = 4 and j = 11). The

average mesh size in the composite, ∆xav and ∆yav, were chosen to be homogeneous with the

ratio of the thermal conductivities (κxy), i.e. 
k

y

k

x
y

av

x

av∆ ∆2 2= . A value of seven for κxy

approximately provided a ∆xav of 0.4 mm (7.5 elements for 3 mm) using a ∆yav of 1 mm (33

elements for 32 mm). The time step, ∆t, was selected to satisfy the Fourier number 
α x

av

t

x

∆
∆ 2 1≤

Figure 5.17    Control-volume discretization (grid 10 × 33 elements)
from half-sandwich structure (not to scale).
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for stability in a control volume of the composite. The use of an initial estimate of 4×10-7 m2/s

for αx yielded ∆t ≤ 0.4 s.

A study was conducted to evaluate the convergence of the model. This included the

analysis of the grid size, the time step and the number of iterations used by the solver. It was

found that the grid refinement described above was adequate, and that a time step of 0.25 s

allowed for a good trade-off between numerical accuracy and the consideration of

computational resources. In addition, the number NTIMES which limits the number of inner

iterations, NTC, used by the solver in CONDUCT (Patankar, 1991), was set to 10 to allow

convergence of the solution, particularly when the heater was turned ON and OFF. Note that

this convergence study also permitted investigation of the temperature increase resulting from

specified heat flux values. From this, a heat flux value around 1200 W/m² was selected as it

enabled a maximum temperature increase of about 4°C at high temperature levels, and of

about 6°C at room temperature. This then allowed for the estimation of constant properties

while maintaining a relatively large signal-to-noise ratio.

• Specification of the Boundary Conditions

As discussed previously, the boundary conditions were specified from experimental

measurements. The data were treated as follows (refer to Fig. 5.15 for the thermocouple

numbering):

- T1, T2, T9, and T10, and t1, t2, t9 and t10 were averaged to provide a temperature and time

history, respectively, at the location xcomposite = 0.75 mm on face J1 of the geometrical

model [TJ1(xcomposite = 0.75)].

- T3, T4, T11, and T12, and t3, t4, t11 and t12 were averaged to provide a temperature and time

history, respectively, at the location xcomposite = 2.25 mm on face J1 of the geometrical

model [TJ1(xcomposite = 2.25)].

- T5, T6, T13, and T14, and t5, t6, t13 and t14 were averaged to provide a temperature and time

history, respectively, for the face L1 of the geometrical model [TL1].

The data associated with the optimal sensor location were subjected to the same

treatment, e.g. T7, T8, T15, T16, and t7, t8, t15 t16 were averaged to represent the measured

temperature and time (
~

,~T ti i ), respectively, at the optimal sensor. Figure 5.18 illustrates the

average experimental histories obtained from the third experiment performed at 50°C.
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Averaged temperatures used as boundary conditions and heat flux values were then all

interpolated in time from a linear regression between two successive data. This was necessary

to obtain data at each time step. Finally, a linear regression was realized for the node

temperatures on Face J1 using the known temperatures at the two locations xcomposite = 0.75

and 2.25 mm. The node temperatures on Face J1 were determined based on their xcomposite-

location.

Note that the initial offset generated while the sample was assumed to be at a uniform

temperature was slight (on the order of the thermocouple accuracy) and thus was not taken

into consideration.

5.1.2.4 Results and Discussion

The objective function to minimize in the estimation methodology implemented in the

GACONDUCT was based on simple OLS estimation and was the same as in Eq. (5.2). A

temperature history was predicted at the optimal sensor and compared with the measured

temperatures at the same location to simultaneously estimate the thermal properties. The

Figure 5.18    Experimental temperature and heat flux histories
from experiment #3 at 50°C.
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Fortran subroutine GA2DOPT.FOR, written to adapt GACONDUCT to solve this problem,

can be found in Appendix E. The properties were estimated for each of the three experiments

performed at each temperature level. Note that data from one experiment at 30°C could not be

used. The jobs were run on a personal computer P233. For all jobs, the same setting was used

for the genetic parameters associated with the convergence criterion and is given in Table

5.18. Recall from Section 4.4 that the setting for the different probabilities associated with the

genetic operators was established when analyzing the optimization of the mathematical

function f6 and can be found in Table 4.1. The CPU time was quite costly and therefore, the

ideal population size (ns = 100×np, see Section 4.3.3) could not be used and values for MING,

LASTCRITERG and LASTG were minimum. Nevertheless, all jobs were converged before

LASTG was reached.

Table 5.18    Genetic convergence parameters setting.

nS MING LASTCRITERG LASTG CRITERION

100 5 10 100 0.01 (1%)

Estimation jobs first proceeded at 30°C and 150°C with large ranges for the properties.

Then the results gained concerning the estimated properties at these temperature levels were

used as a basis for the ranges of study in performing the estimation process at other

temperature levels. Figure 5.19 illustrates the estimates obtained along with the linear

regressions associated with the properties. The means of the estimates obtained for the three

experiments performed at each temperature level and the percentage differences between

these means and the values given by the linear regressions were then computed. The 95%

confidence intervals associated with the predicted means were not calculated as they would

have been meaningless for only three experiments. These results, along with the associated

95% CIs of the estimates [Eq. (3.17)], the least-squares error S, and the Root-Mean-Square

values for each of the experiments are given in Table 5.19.

Overall, the small magnitude of S (Smax = 0.0717 °C2) and the small RMS percentages

(of maximum temperature rise; RMSmax = 0.83%) highlight the excellent behavior of the

GACONDUCT program. Note that the RMS increase with temperature comes from the fact

that the same heat flux was applied at every temperature level, therefore causing smaller

temperature rises at higher temperature levels. Figures 5.20 and 5.21 show the calculated and
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measured temperatures along with the resulting residuals for the experiment #3 at 50°C and

150°C, respectively. One can see that there is a small bias in the model when the heater is

turned on. Indeed, difficulty was encountered in implementing the initial temperature

distribution inside the sample. Nevertheless, it is striking that the residuals are small,

relatively centered around zero and do not seem to be correlated at different temperature

levels after the heater is turned on. Indeed, the shape of the residuals (after the heater is turned

on) do not contain a “signature” that would indicate bias or inconsistency in the numerical

model. This establishes that the model is satisfactory and provides confidence in the genetic-

based estimation methodology. In addition, this “validates” approximation of the standard

statistical assumptions (refer to Chapter 3).
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Table 5.19    Estimated thermal properties kx, ky and C, least square error S,
and Root Mean Square error RMS at six different temperature levels in the range [30-150°C].

T
(°C)

kX

(W/mK)
ky

(W/mK)
C

(MJ/m 3K)
S

(°C)²
RMSi

    (°C)    (% ∆Tmax)
30 0.443±0.029 2.034±1.696 1.435±0.010 0.0211 0.0214 0.37
30 0.442±0.037 1.979±2.202 1.427±0.013 0.0400 0.0291 0.50

Mean 0.443 2.007 1.431 0.0305 0.0252 0.44
Linear Regression 0.450 2.289 1.348 N/A N/A N/A

% error
Mean/LR

1.749 14.050 5.807 N/A N/A N/A

50 0.474±0.021 2.992±1.683 1.448±0.017 0.0129 0.0165 0.30
50 0.466±0.032 2.824±2.437 1.401±0.025 0.0340 0.0275 0.50
50 0.475±0.039 2.596±2.795 1.398±0.029 0.0446 0.0311 0.56

Mean 0.471 2.804 1.416 0.0305 0.0250 0.45
Linear Regression 0.464 2.723 1.446 N/A N/A N/A

% error
Mean/LR

1.504 2.890 2.129 N/A N/A N/A

75 0.479±0.041 3.457±3.408 1.529±0.030 0.0461 0.0313 0.58
75 0.475±0.039 3.883±3.438 1.522±0.027 0.0377 0.0283 0.53
75 0.472±0.039 4.006±3.441 1.517±0.026 0.0370 0.0280 0.52

Mean 0.476 3.782 1.523 0.0402 0.0292 0.55
Linear Regression 0.482 3.265 1.568 N/A N/A N/A

% error
Mean/LR

1.309 13.661 2.988 N/A N/A N/A

100 0.512±0.036 3.227±2.917 1.671±0.032 0.0462 0.0313 0.61
100 0.509±0.031 3.111±2.843 1.685±0.029 0.0324 0.0254 0.52
100 0.499±0.046 3.727±4.020 1.636±0.037 0.0660 0.0378 0.75

Mean 0.507 3.355 1.664 0.0482 0.315 0.63
Linear Regression 0.499 3.808 1.691 N/A N/A N/A

% error
Mean/LR

1.484 13.492 1.616 N/A N/A N/A

125 0.501±0.032 4.260±3.001 1.840±0.031 0.0430 0.0302 0.61
125 0.512±0.034 4.117±3.044 1.830±0.034 0.0589 0.0354 0.72
125 0.508±0.030 4.515±2.879 1.852±0.029 0.0323 0.0264 0.53

Mean 0.507 4.298 1.841 0.0447 0.0306 0.62
Linear Regression 0.517 4.350 1.813 N/A N/A N/A

% error
Mean/LR

1.964 1.224 1.497 N/A N/A N/A

150 0.532±0.028 5.503±2.377 1.924±0.035 0.0717 0.0394 0.83
150 0.535±0.026 5.044±2.630 1.947±0.029 0.0682 0.0385 0.83
150 0.539±0.025 4.443±2.269 1.963±0.029 0.0671 0.0382 0.82

Mean 0.535 4.997 1.945 0.0690 0.0387 0.83
Linear Regression 0.534 4.893 1.936 N/A N/A N/A

% error
Mean/LR

0.130 2.081 0.458 N/A N/A N/A
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Figure 5.20    Calculated and measured temperature and residual distributions
from experiment #3 at 50°C.
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Figure 5.21    Calculated and measured temperature and residual distributions
from experiment #3 at 150°C.
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Regarding the results of the estimated properties, more variability is observed in the

property ky than in the properties kx and C. This can be attributed to the much smaller

dimensionless sensitivity coefficient of ky (obtained from finite differences) as illustrated in

Fig. 5.22 and Fig. 5.23 for the experiment #3 at 50°C and 150°C, respectively. Indeed, very

little information is provided for this thermal property. From the estimation results obtained

from the two-dimensional Configuration 1 problem analyzed in the previous study, it was

expected that less information would be obtained for the property ky than for the other two.

However, here the sensitivity to ky is much lower than in the previous study. This comes from

the fact that much greater temperature increases at the ideally constant temperature

boundaries occurred in the present case (refer to Fig. 5.18). Therefore, the experimental

design used is farther from the ideal optimal experiment than in the previous study, causing

the higher thermal property variances. As outlined in Chapter 3, this effect stresses the logical

need to perform estimation using experimental conditions as close as possible to the ideal

ones considered in determining the optimal design. Figure 5.24 shows a typical temperature

distribution obtained with the numerical model when the heater is turned off. Obviously, the

large temperature variation on the sample sides (also shown in Fig. 5.18) prevent straight two-

dimensional heat transfer, therefore not allowing information to be obtained for the accurate

estimation of the property ky.

Figure 5.22    Dimensionless sensitivity Figure 5.23    Dimensionless sensitivity
coefficients from experiment #3 at 50°C. coefficients from experiment #3 at 150°C.
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Figure 5.24    Typical two-dimensional temperature distribution obtained when the heater is turned off (at t = th = 35 s).
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As far as correlation between the parameters is concerned, Table 5.20 shows the

correlation terms obtained from the estimation performed on the experiment #3 at 50°C and

150°C. One can see that about the same ill defined conditions are found here as in the two-

dimensional estimation problem investigated in the previous study.

Table 5.20    Correlation matrices for the simultaneous estimation of kx, ky and C
from experiment #3 at 50°C and 150°C.

In measuring the suitability of the experimental design, not only ideal experimental

conditions should be taken into account as much as possible, as stated above, but also the

initial values used for the variables αx and κxy (to determine the optimal values of the

experimental design variables) should be verified. The resulting values for the thermal

diffusivity, αx, ranged from 2.8 to 3.4×10-7 m²/s, which is not very different from the initial

value of 4×10-7 m²/s used. Note that the use of an αx of 3×10-7 m²/s would have given a

slightly higher dimensional heating time, allowing then to get closer to steady state.

Regarding the values obtained for the thermal conductivity ratio, κxy (= ky/kx), they ranged

from 4.5 at 30°C to 9.3 at 150°C. These values agree approximately with the value of 7 for κxy

that was applied (in association with the aspect ratio Lxy of 0.047 of the samples analyzed

here) to provide the dimensionless optimal experimental parameter values used.

Based on the linear regression obtained for each property, the thermal conductivity

perpendicular to the fibers, kx, was found to increase approximately 18.7% from 30°C to

150°C, while the thermal conductivity parallel to the fibers, ky, and the volumetric heat

capacity, C, increased approximately 113.8% and 43.6%, respectively, over the same

temperature range. The increases for ky and C are quite high. Table 5.21 shows a comparison

of the slopes with temperature obtained here for the properties with previously published

results (for carbon/epoxy composite type). The results associated with the present study seem

reasonable.

Exp. 50°C Exp. 150°C
kx              ky          C kx             ky          C

kx

ky

C

 1
-0.9997     1
 0.9459   –0.948     1

 1
-0.9979     1
 0.7974   –0.811    1
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Table 5.21    Comparison of temperature dependence slopes associated with linear regressions
for the properties kx, ky and C with previously published results

(carbon/epoxy composite type).

In terms of the error introduced from the use of linear regressions for the three

properties over the temperature range investigated (compared to the use of the corresponding

mean values), on one hand, the error remained below 2% and 6% for kx and C, respectively.

On the other hand, this error is relatively large for ky and ranges from 1.2% to 14%. One can

easily conclude that this is the result of a low magnitude for the sensitivity coefficient Xky. The

confidence intervals of the estimates are consistent from experiment to experiment. Those

associated with the property ky are the largest (in keeping with the variability for this

property), while those associated with the property kx are the smallest.

It is of interest to note all possible sources of errors. These include:

- the uncertainty in the presumably “known” parameters (whose large disruptive effect have

been emphasized both in Chapters 2 and 3), namely here the non-uniform thickness of the

samples (recall that a discrepancy of up to 10% was found with respect to the average

thickness value);

- the assumptions involved in the numerical model (known contact resistance between the

aluminum plate and the sample, negligible thermal capacitance of the heater, aluminum

property values, …);

- the procedure for the treatment of experimental data, more particularly of those used to

specify the numerical model boundary conditions; and last but not least,

- the data acquisition inaccuracy, the errors due to experimental manipulation and

inaccurate calibration of the thermocouples.

As one can see, some of these sources could not be controlled, while the minimization

of others was a difficult task.

It should be mentioned that the composite samples investigated in this study were also

subject to a one-dimensional analysis with an aim to estimating only the thermal conductivity

kx

(W/mK 2)
ky

(W/mK 2)
C

(MJ/m 3K 2)
Temperature
Range (°C)

Estimation
Method

Reference

0.0016×T 0.0320×T 0.0057×T [20-100] 2D, Gauss Loh (1989)
0.0009×T N/A 0.0045×T [30-135] 1D, Gauss Scott & Beck (1992a)
0.0007×T 0.0217×T 0.0049×T [30-150] 2D, GA Present Study
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perpendicular to the fiber plane, kx, over the same temperature range as in the two-

dimensional analysis. Values for the volumetric heat capacity, CDSC, were provided from a

Differential Scanning Calorimetry (DSC) study (CDSC was actually obtained from the product

of cp,DSC and the material density). The one-dimensional experiment was performed by Ph.

Grandet1 using the apparatus ALIS. Note that this type of experiment is well established at the

LTI and is often applied in the context of industrial contracts as was the case here. A gradient-

based procedure (Jurkowski et al., 1997) was used to estimate kx and it was found that the

predicted values from the two-dimensional estimation were in good agreement with the one-

dimensional results (see CDSC and kx,1D in Fig. 5.19). The one-dimensional analysis was a

good means to verify the validity of the two-dimensional results obtained using the GA-based

method.

5.1.2.5 Conclusion

On one hand, this study has stressed how relevant it is to perform experiments that

deviate as little as possible from the ideal conditions considered in optimizing the design. On

the other hand, the effect of temperature on the thermal properties has been shown to be of

great importance and to follow a linear functional relationship. Regarding the procedure

applied, estimating the properties as constants at different temperature levels has been

illustrated to be tedious, time intensive and experimentally costly. Furthermore, it introduced

additional errors between the value of the property estimated at a specific temperature and the

linear regression generated over the entire temperature range investigated (Table 5.19). From

this, one understands the need to estimate the temperature-dependent properties directly. This

is the subject of the following studies.

Another relevant concluding point from this investigation is that the robustness and

reliability of the GA-based estimation methodology has been confirmed. Indeed, despite

existing correlations between all properties and the little information available for the

property ky, the use of GAs has enabled the unknown thermal properties to be simultaneously

identified. Finally, the general-purpose program GACONDUCT has been found to be a

powerful algorithm allowing for many interesting applications, as will be shown in the next

two subsections.

                                                
1 Mr. Grandet performs measurements associated with industrial services at the LTI/Nantes.
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5.2 Case Studies of Mixed Temperature Dependent and Constant Property Estimation

In the following, efforts were undertaken for the characterization of the dependence of

the thermal properties on temperature. Both the GA-based optimization and estimation

methodologies were modified to include this dependence. Piece-wise linear functions of

temperature were used as the functional relationship. For instance, the volumetric heat

capacity was expressed as

( ) ( )C T C C C
T T

T Ti i i
i

i i

= + −
−
−+

+
1

1

, (5.14)

where Ci and Ci+1 were the parameters to be estimated, corresponding to the values of the

property at the temperatures Ti and Ti+1, respectively.

Two problems were investigated to demonstrate the performance of the GA-based

methodologies. The first was based on the work performed in Section 5.1.2 and involved the

optimization of a two-dimensional experimental design for the simultaneous estimation of the

thermal properties kx, ky and C, as temperature dependent over the range [25-150°C]. In the

second problem, the simultaneous estimation of the same properties over the range [100-

130°C] from two-dimensional transient experiments in an RTM mold was considered. These

problems are described in the next two subsections.

5.2.1 Two-Dimensional Analysis Over the Range [25-150°C]

As mentioned above, this study was built upon the work described previously. Here, the

investigation of the D-optimization of the experimental setup described in Section 5.1.2.2 is

reported. The objective was to maximize the experimental information for the simultaneous

estimation of the three thermal properties, kx, ky and C, of the carbon/epoxy composite sample

analyzed, directly as temperature dependent over the required range [25-150°C]. In addition,

the identification of the contact resistance, Rc, between the sample and the aluminum

components used in the setup was taken into consideration. In using D-optimality, the highest

accuracy overall for the thermophysical parameters involved was desired. Once the

optimization stage was realized, the estimation methodology was demonstrated on simulated

data generated from the optimal design.

Details about the estimation and optimization problem are first provided, followed by a

description of the control-volume-based finite difference modeling performed. Then, the
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results obtained applying the GACONDUCT program in both the optimization and simulated

estimation stages are presented and discussed.

5.2.1.1 Problem Description

• Estimation Problem Formulation

The dependence on temperature over the range [25-150°C] was characterized using two

parameters for both thermal conductivities and four parameters for the volumetric heat

capacity, while the contact resistance was assumed as constant. The three thermal properties

were expressed by:

( ) ( )k T k k k
T

Tx x x x= + −
−

≥ °25 150 25

25

125
25, C (5.15)

( ) ( )k T k k k
T

Ty y y y= + −
−

≥ °25 150 25

25

125
25. C (5.16)

( ) ( )C T C C C
T

T= + −
−

≤ < °25 75 25

25

50
25 75, C (5.17)

( ) ( )C T C C C
T

T= + −
−

≤ < °75 110 75

75

35
75 110, C (5.18)

( ) ( )C T C C C
T

T= + −
−

≥ °110 150 110

110

40
110, C (5.19)

Nine thermophysical parameters (kx25, kx150, ky25, ky150, C25, C75, C110, C150, and Rc) were

therefore to be simultaneously estimated by minimizing the least-squares error, S, given in Eq.

5.2. Note that information from only one sensor was considered in the estimation procedure.

• Optimization Problem Formulation

The same symmetrical experimental setup (with same dimensions) described in Fig.

5.13 and 5.14, was considered here. Experiments were designed to generate temperatures

from 25°C to at least 150°C. Therefore, the plates of the apparatus ALIS were assumed to be

maintained at a constant temperature of 25°C (using circulation of a fluid thermally regulated

inside the plates), while the increase in temperature to 150°C was sought to be provided from

the use of the electric heater (this is discussed later). Regarding the sides of the aluminum
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mold in the y-direction, insulation was considered based on the experimental ease of applying

and maintaining insulated boundary conditions. Insulation was necessary for the faces of the

setup in the z-direction (perpendicular to the page in Fig. 5.13) to meet the restriction of the

analysis to two-dimensional heat transfer. In this configuration, the experimental parameters

selected to be optimized were the location, xs and ys, of the sensor placed on the composite

surface, the heating length over the sample, Lp, the heating and cooling times according to a

specific heating law introduced next, and the total overall experimental time, tn. Figure 5.25

provides a schematic of the experimental design to be optimized.

The heating law was sought to be a double heat flux step, as sketched in Fig. 5.26. Two

heating times separated by a cooling period were anticipated to provide more information,

particularly for the estimation of the thermophysical parameters associated with the bracket

temperatures, 25 and 150°C. In considering such a heating law, the heating time of both heat

flux steps, th1 and th2, and the cooling period t12 were considered in the optimization process.

Note that integer values were used for these parameters to be consistent with a time step of

0.25 s.

Figure 5.26    Heating law considered in optimization process
(heat flux q imposed from the electrical heater).

q

t

th1 th2

t12
0

ALIS Plates
T=25°C

Insulation

Figure 5.25    Simplified schematic of the experimental setup to be optimized
(refer to Fig. 5.13 and 5.14, not to scale).

z y

x
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In using D-optimality, the six experimental parameters, xs, ys, Lp, th1, t12 and th2 were

optimized by maximizing the determinant D+ of the dimensionless XTX matrix, which was a

9×9 matrix. Then, using the optimal values found for these parameters, the optimal overall

experimental time, tn, was determined by evaluating the modified determinant Dm
+. In

calculating the coefficients dij
+ of D+ [refer to Chapter 3, Eq. (3.23) or Eq. (5.1)], the

dimensionless sensitivity coefficients and the term Tmax
+ were obtained numerically using the

control-volume-based finite difference method available in the GACONDUCT.

5.2.1.2 Finite Difference Modeling

In considering thermal properties as temperature dependent, nondimensionalization of

the optimization procedure, such as the one performed in Section 5.1.1, was not an easy task,

more particularly using a numerical model. Therefore, optimization of the experimental

design was performed in dimensional form, which required initial guesses for all unknown

thermophysical properties. One can understand that the more complex the estimation problem

is, the more iterative the procedure {optimization + estimation} becomes. Table 5.22 displays

the values used for the initial estimates. These values were chosen based on the results

obtained form the previous study (Section 5.1.2) and on previously reported data on

carbon/epoxy composites so that the optimization results could be valuable for similar types

of composites having the same dimensions of the sample analyzed here (recall Lx=3 mm and

Ly=64 mm).

Table 5.22    Initial guesses for the parameters to be estimated used in the optimization stage
[k in (W/mK), C in (MJ/m3K), and Rc in (10-4m²K/W)].

The geometrical discretization is represented in Fig. 5.27. The model included all

components of the experimental setup (e.g., including the mold). The two little “holes” on

each side of the aluminum plates (Fig. 5. 14) were modeled as air gaps. The resistance

between the sample and all aluminum components in contact with it was modeled as four

layers of individual thickness 0.1 mm, with thermal conductivity equal to the thickness

divided by the estimate for the contact resistance (in the direction perpendicular to the

respective layer only) and null thermal capacitance. The thermal capacitance of the heater was

kx25 kx150 ky25 ky150 C25 C75 C110 C150 Rc

0.5 0.6 2.0 4.0 1.5 1.8 2.0 2.25 1.0
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again neglected (due to its very small thickness). The average mesh size inside the composite

and the time step were initially selected on the same basis as in the previous study,

considering average values for the thermal conductivity ratio and the thermal diffusivity in the

x-direction. However, because the computation of the dimensionless (9×9) matrix XTX was

excessively time consuming, an important trade-off between numerical accuracy associated

with the mesh size in the y-direction and CPU time was realized. A convergence parameter

that could not be circumvented was the maximum number of inner iterations, NTIMES, that

had to be increased to 40 to account for the dependence on temperature of the thermal

properties.

The results from the first run indicated an optimal heating length, Lp, equal to the

composite length, Ly. The use of this optimal value for Lp in subsequent runs enabled only half

of the experimental design to be modeled, and required a finer mesh size allowing for more

confidence in the values for the optimal experimental parameters. Figure 5.28 shows the

geometrical discretization associated with the investigation of half of the experimental design.

The half-model consisted of 15 and 38 elements in the x- and y-directions, respectively, while

the complete model (Fig. 5.27) involved 15 and 45 elements in the same respective directions.

In terms of the optimization of the sensor position and the heating length, it was easier

to optimize these experimental parameters in terms of node position than actual location and

length, respectively. In doing this, the optimal node is, js of the sensor was sought, while the

0 8 1 6 2 4 3 2 4 0 4 8 5 6 6 4 7 2 8 0 8 8

Y  (m m )

-1 6

-1 2

-8

-4

0
-X

 (
m

m
)

F a ce  J1

F ace  I1

F ace  L 1

F ace  M 1

Sy m m etr ica l L in e

Figure 5.27    Control-volume discretization (grid 15 × 45 elements)
from the complete experimental design (not to scale).
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optimal position jp giving the extremity of the heating length on the composite surface (i=5)

was sought to be optimized. The ranges investigated for these parameters were given by the

mesh size; e.g. i fell between 5 and 11, while j fell between 7 and 41 in the complete model

and between 7 and 40 in the half-model.

Regarding the power supplied by the heater, its value was selected to provide a

maximum temperature reached at steady-state less than 10°C higher than 150°C. Based on

this requirement, a value of 28 kW/m² was chosen. Note that it was found to take about 150 s

to reach steady-state in these conditions. This value was thus used as the heating time limit in

the determination of both optimal heating times, th1 and th2.

One final point worth mentioning deals with the computation of the term Tmax
+. In this

numerical application, this term was defined to be the maximum temperature increase reached

at steady-state in the sample divided by the maximum temperature increase reached at steady-

state in the sample if the heat transfer was one-dimensional (allowing application of Fourier’s

law to the sample thickness and to write ∆Tmax,1D = qxLx/kx). This definition was found to be in

good agreement with the nondimensionalization performed analytically in Section 5.1.1.

Figure 5.28    Control-volume discretization (grid 15 × 38 elements)
from half-experimental design (not to scale).
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5.2.1.3 Results and Discussion

Both optimization and estimation problems were run on a personal computer P400. The

Fortran subroutine GA2DTOPT.FOR was written as the adaptation subroutine of the program

GACONDUCT to solve these problems, and can be found in Appendix F.

• Optimization of Experimental Parameters

Because of the excessive computing cost associated with the 9×9 XTX matrix, the

genetic parameters setting relative to the convergence criterion was taken as minimal as

possible. The setting applied was similar to the one given in Table 5.18 with the population

size (ns) and maximum allowable number of generations (LASTG) decreased to 50 and 15,

respectively. The parameter ranges investigated were the same for the four runs performed

and are indicated in Table 5.23 along with the results obtained for the optimal experimental

parameter values. Different seeds for the random number generator were however used in

each run, thus creating different initial genetic populations. As mentioned earlier, the first run

was performed using the complete model shown in Fig. 5.27, while the half-model (Fig. 5.28)

was used in the three other runs. Note that the value of D+ obtained using the complete and

half-model cannot be compared since the mesh size was different.

Table 5.23    Optimal experimental parameters for the two-dimensional experiment
designed for the simultaneous estimation of the thermal properties

as temperature dependent over the range [25-150°C].

* Parameter ranges used to generate the initial population.
a xs, ys and Lp designate dimensions in mm with respect to the composite size.
b The maximum value for the range of the node position j was 41 and 40 for the
complete and half-model, respectively.

is (= xs)
a

[5-11]*
js (= ys)

a

[7-41]*
[7-40]b

jp (= Lp)
a

[7-41]*
[7-40]b

th1 (s)
[0-150]*

t12 (s)
[0-100]*

th2 (s)
[0-150]*

D+

(10+37)
ITERG f

run 1
complete model

5
(=0)

12
(=8)

41
(=Ly)

109 42 28 1.12 15

run 2
half model

5
(=0)

15
(=7.5)

Lp set to
32 mm

101 41 27 1.09 15

run 3
half model

5
(=0)

15
(=7.5)

Lp set to
32 mm

101 41 27 1.09 12

run 4
half model

5
(=0)

15
(=7.5)

Lp set to
32 mm

101 41 27 1.09 13
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Overall, an excellent reproducibility was found in determining the optimal experimental

parameters. Note the similarity of the optimal node location with the optimized position found

in the study analyzed in Section 5.1.1 (xs
+ = 0, ys

+ = 0.14). Figure 5.29 shows the resulting

dimensionless sensitivity coefficients and temperature history from the optimal sensor. One

can see that the optimal conditions provide more information for the property kx than for all

other properties. This was expected from the experimental configuration used. Sensitivity to

the properties C and ky is low (less than 0.1), with slightly more information for C than for ky.

Very little information is shown for the contact resistance Rc. Notice that sensitivity

coefficients associated with the thermal conductivity parameter values at 25°C present higher

slopes when the experiment starts than the coefficients associated with the parameter values at

150°C. This is a logical behavior which is also illustrated in the sensitivity coefficients

associated with the different volumetric heat capacity parameters. Among these latter, the

coefficient of the parameter value at 75°C has the largest magnitude, as one might expect.

The results for the optimal experimental parameters seem reasonable. However, to

verify the goodness of the optimal design, the output from two non-optimal designs defined in

Table 5.24 was investigated. Figure 5.30 illustrates the two non-optimal determinants D+

obtained along with the optimal D+. The sensitivity coefficients from the non-optimal design

#1 and #2 are shown in Figs. 5.31 and 5.32, respectively. When comparing with Fig. 5.29, one

can notice that D-optimization of the experimental design allowed for a global maximization

of the sensitivity to all unknown thermophysical parameters.

Table 5.24    Non-optimal experimental designs investigated.

is js Lp

(mm)
th1

(s)
t12

(s)
th2

(s)
D+

(10+37)
# 1

half-model
5

(opt.)
15

(opt.)
32

(opt.)
150

(non-opt.)
100

(non-opt.)
150

(non-opt.)
0.046

# 2
half-model

5
(opt.)

15
(opt.)

32
(opt.)

101
(opt.)

0
(non-opt.)

0
(non-opt.)

0.035

Having confidence in the optimized values for the six experimental parameters, the total

overall experimental time, tn, was then determined by evaluating the modified determinant

Dm
+. Figure 5.33 indicates that after a tn of 435 s, Dm

+ no longer varies, and thus little

additional information is being provided for the estimation of the thermophysical parameters

(anticipated in Fig. 5.29). Therefore, the experiments can be concluded after this time.
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Figure 5.29    Dimensionless sensitivity coefficients and temperature evolution
as a function of time from the two-dimensional optimal design for the estimation of

temperature-dependent thermal properties.
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Figure 5.30    Dimensionless determinant and temperature evolution for the
optimal and two non-optimal designs.
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Figure 5.31    Dimensionless sensitivity coefficients from the non-optimal design #1
(same legend as in Fig. 5.32 below).

Figure 5.32    Dimensionless sensitivity coefficients from the non-optimal design #2.
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• Estimation of Properties

To establish the viability of the optimized experimental design for the simultaneous

estimation of the np = 9 thermophysical parameters, simulated data were utilized as the

observation vector in the least-squares error S. These data were generated over the time range

0-450 s by adding some uniformly distributed random errors with a standard deviation 0.1°C

to nominal data obtained using the parameter values given in Table 5.24. The overall

experimental time value of 450 s was chosen to be a conservative value over the optimal tn of

435 s. The nominal data were initially used to assess the estimation methodology (common

procedure). Then two runs were performed using the data simulated in the time range 0-450 s.

A third run was investigated in which data from the time period 130-300 s were used only.

This period was chosen to correspond to the interval during which the determinant D is

maximized, as one can see from Fig. 5.30. The purpose of this third run was to analyze the

effect of restricting to the minimum the experimental data used in the estimation process.

Therefore, in the first two runs, 450 data points from the entire time period were used, while

in run #3, 170 data point from the time period 130-300 s were employed. Table 5.25 shows

the estimates and their 95% CIs [Eq. (3.17)] obtained for these three runs, along with the

parameter ranges used to generate the initial population. Note that the minimization of S was

not as time intensive as the maximization of D+, allowing thus for the use of a population size

of 300 (still less than the ideal population size for that problem, which would have been

Figure 5.33    Modified dimensionless determinant for the optimal design.
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100×np = 900, as discussed in Section 4.3.3). Different seeds for the random number

generator were used in each run.

Table 5.25    Predicted thermophysical parameters, least squares and root mean squares errors,
obtained from simulated data using the two-dimensional optimal experiment

designed on the temperature range [25-150°C]
[k in (W/mK), C in (MJ/m3K), Rc in (10-4m²K/W), S in (°C)² and RMS in (°C) and (%∆Tmax)].

* Parameter ranges used to generate the initial population.
a 450 simulated data points from 0-450 s used in the estimation procedure.
b 170 simulated data points from 130-300 s used in the estimation procedure.

One can see that for the three runs, the results are consistent with the sensitivity

coefficient analysis (Fig. 5.29), with the CIs associated with the most variable thermophysical

parameters, ky25 and ky150, being the largest. One interesting point is that despite the very small

sensitivity to the parameter Rc observed in the optimization stage, this parameter is however

very well recovered from the GA. The CIs associated with the thermal conductivities kx and

ky, and with the contact resistance Rc generally consist of the exact data used, but not those

associated with the volumetric heat capacity. The approximate formula taken from linear OLS

estimation [Eq. (3.17)] gives too small CIs around the four C parameter estimates. Finally,

one very relevant result here deals with the output from the third run which allows the same

overall accuracy as for runs 1 and 2 in which nearly three times more data points were used

for the estimation procedure. This result stresses the benefit of the adequate choice of the time

period for accurate parameter estimation. Figures 5.34 and 5.35 show the calculated and

simulated temperatures along with the resulting residuals for the second and third run,

respectively. The small size of the residuals is noted.

kx25

[0.3-
0.7]*

kx150

[0.3-
0.9]*

ky25

[1.4-
2.5]*

ky150

[1.8-
6.0]*

C25

[1.3-
1.8]*

C75

[1.5-
2.2]*

C110

[1.6-
2.5]*

C150

[1.8-
2.6]*

Rc

[0.1-
10.0]*

S RMSi

1a 0.500
±0.012

0.615
±0.013

1.98
±0.42

3.44
±0.74

1.53
±0.02

1.76
±0.01

2.07
±0.03

2.26
±0.05

0.82
±0.21

6.31 0.118
0.090%

2a 0.500
±0.013

0.588
±0.016

1.93
±0.49

4.62
±0.90

1.45
±0.02

1.85
±0.01

1.97
±0.03

2.23
±0.05

0.94
±0.19

6.71 0.122
0.092%

3b 0.499
±0.011

0.622
±0.014

1.99
±0.40

3.29
±0.67

1.47
±0.01

1.81
±0.01

1.93
±0.02

2.41
±0.05

1.02
±0.17

2.18 0.113
0.086%
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Figure 5.34    Calculated and simulated temperature and residual distributions
from run #2 (refer to Table 5.25).
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Figure 5.35    Calculated and simulated temperature and residual distributions
from run #3 (refer to Table 5.25).
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To illustrate the good behavior of the GA-based estimation methodology, Fig. 5.36

displays the minimization of the least-squares error for the second run. Note, however, that for

the three runs, the convergence criterion was not satisfied after the 15 generations were

performed. This indicates that the estimates for the parameters with low sensitivity would

probably need a larger stopping criterion than 1% of their actual value (refer to the description

of the convergence criterion used in the GA_3 in Section 4.3.3) and also, that 15 generations

were simply not sufficient for this problem which involves the simultaneous estimation of 9

thermophysical parameters.

5.2.1.4 Conclusion

The GA-based optimization methodology has been demonstrated here to be a powerful

tool for the optimization of an experimental design to be used for the simultaneous estimation

of temperature-dependent thermal properties of an anisotropic composite material. The ability

Figure 5.36    Minimization of the least-squares error S
from run #2 (refer to Table 5.25).
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to optimize such designs is of great importance as their use allows for a drastic decrease in the

time spent on both getting experimental data and exploiting those data. In addition, the GA-

based estimation methodology has been shown to be valuable for the simultaneous estimation

of the nine thermophysical parameters involved. The good results obtained using simulated

data give confidence in the capability of GACONDUCT to simultaneously estimate the nine

parameters using experimental data. It is however recommended to perform the estimation

from several experimental data sets to provide means and associated 95% confidence intervals

for the final estimate values.

5.2.2 Two-Dimensional Analysis in RTM Mold Over the Range [100-130°C]

The study presented here was performed in cooperation with D. Lecointe (1999) as part

of his PhD project at the LTI. His research work deals with the thermal characterization of

composite materials from Resin Transfer Molding (RTM) processing. Here, the application of

the GACONDUCT for the simultaneous estimation of the thermal properties (kx, ky and C)

over the range [100-130°C] along with a contact resistance parameter (Rc) was investigated

from a two-dimensional experiment conducted in an RTM mold. The purpose of this

complementary study was two-fold. On one hand, it was desired to verify the estimates found

by Lecointe who used a parametric study to estimate ky and Rc assuming both kx and C to be

known. On the other hand, the successful application of the GA-based estimation

methodology would definitely establish the use of GAs for complex simultaneous estimation

problems.

In the following, the estimation problem is first introduced. Next, the finite difference

modeling is described and the experimental data are specified. The results are then shown and

compared with those obtained by Lecointe.

5.2.2.1 Problem Description

• Introduction

The problem analyzed involves a two-dimensional experimental RTM mold used for the

thermal characterization of carbon/epoxy composite materials (Fig. 5.37 discussed later).

RTM process consists in the injection of thermosetting resin (epoxy here) inside a closed
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mold including a fibrous reinforcement (carbon here). Improvement in productivity and

quality of processed composites requires the control of the thermal phenomena and thus,

knowledge of the thermal properties. Typically, these latter are determined independently by

performing separate and successive analyses. These include the use of:

- Differential Scanning Calorimetry (DSC) to measure the material heat capacity;

- one-dimensional analysis (Jurkowsky et al., 1997) to measure the thermal conductivity

perpendicular to the fiber plane, kx, using the cp values obtained from DSC (and the

material density) (this step can also be performed from hot guarded plate experiments),

and finally,

- temperature measurements from an experimental RTM mold instrumented with a set of

embedded thermocouples to measure the thermal conductivity parallel to the fiber plane,

and other specific heat transfer coefficient such as the contact resistance between the

material and a mold component; in this last analysis, the values obtained previously for cp

and kx are used.

These successive analysis have been performed by Lecointe. For different material

configurations including fibrous reinforcements alone and with raw and cured resin, Lecointe

determined the thermal conductivities, kx and ky, and the contact resistance between the

sample and a copper duct inside the mold. Both thermal conductivities were estimated as

constants. Note that from the results of the one-dimensional analysis mentioned earlier,

Lecointe found that the property kx could indeed be assumed as constant over the temperature

range [100-130°C] which was planned to be investigated in the RTM mold.

The focus of the present study was to use experimental data from the RTM mold with

the GACONDUCT to simultaneously estimate all unknown thermophysical parameters, e.g.

kx, ky, C and Rc. The significance of the capability of solving such an estimation problem is

that it would allow for considerable time and cost savings by combining the three analysis

reviewed previously into one. Because the objective was not to investigate all material

configurations and experimental data analyzed by Lecointe, only one configuration involving

a non reticulated composite (e.g. fibrous reinforcement with raw resin) and one data set was

considered. The volume fraction of the composite was 60%. Note that this material

configuration and the associated experimental data were adequately selected by Lecointe as

they had shown to provide him with good results regarding the estimation of ky and Rc.

Therefore, the comparison with the results from the GACONDUCT would allow application

of the algorithm to other material configurations and experimental data sets with confidence.
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• Estimation Problem Formulation

Because the experimental temperatures inside the sample ranged from 100 to 130°C, the

dependence on temperature for the properties ky and C was taken into account. The property kx

was assumed as constant since Lecointe showed that this assumption was appropriate, as

discussed earlier. The contact resistance between the sample and the copper duct inside the

mold was also considered as constant. The dependence on temperature was characterized

using two and three parameters for ky and C, respectively. These properties were thus

expressed by:

( ) ( )k T k k k
T

Ty y y y= + −
−

≥ °100 130 100

100

30
100, C (5.20)

( ) ( )C T C C C
T

T= + −
−

≤ ≤ °100 115 100

100

15
100 115, C (5.21)

( ) ( )C T C C C
T

T= + −
−

> °115 130 115

115

15
115, C (5.22)

Seven thermophysical parameters (kx, ky100, ky130, C100, C115, C130 and Rc) were therefore

to be simultaneously estimated. The estimation procedure was based on the minimization of

the least-squares error, S, over the same experimental data used by Lecointe when estimating

ky and Rc. Data from 4 thermocouples were involved, which gave for the mathematical

expression of S:

( ) ( )[ ]S T t Tik ik
i

N

k

i

β β= −
==
∑∑ ,~

~

11

4 2

(5.23)

5.2.2.2 Experimental Design and Data

With an aim to accurately estimating the property ky, the experimental mold was

designed to emphasize heat transfer in the composite in the direction parallel to the fiber

plane. The sample was subject to cooling from 130°C to approximately 100°C. In the

following, only a brief description of both the experimental mold and methods used, and the

boundary conditions applied, is provided. More in-depth details can be found in the

dissertation work of Lecointe (1999).
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The experimental mold represented Fig. 5.37 was symmetrical with respect to the x-

axis. The mold was made of teflon (PTFE) and was coated with an aluminum thermal guard

to favor initial isothermal conditions. The necessary components for RTM injection were

included in the mold, namely ducts for the resin input and exit as well as a seal. The

temperature gradient was generated from circulation of oil through a copper duct. The fluid

was thermally regulated at 80°C using a “Lauda” type apparatus. Therefore, on the contrary to

the three previous estimation studies, no heat flux measurements were used here. The

composite sample to characterize consisted of two (nearly) identical 5 mm-thick and 60 mm-

long planar and rectangular reinforcing phases (carbon fibers). The top center of one of the

reinforcing phase was instrumented with five type K thermocouples of diameter 80 µm. The

thermocouples (TC1 to TC5) were placed approximately equally apart in the direction of heat

transfer, as shown in Fig. 5.38. An additional thermocouple (TC0) was located underneath the

copper duct. Once the mold was assembled, it was placed between the two heating plates of

the experimental press ALIS (described in Section 5.1.2.2) and insulation material (Kerlane)

was wrapped around the sides to minimize thermal losses. The use of ALIS enabled, on one

hand, the RTM mold to be put under pressure and thus ensured the mold to be closed and, on

the other hand, the bottom and top surfaces of the mold to be set to the temperature of 130°C

specified by the thermally regulated plates. The complete setup was equipped with a vacuum

pump required for RTM injection.

Aluminum
Resin Exit

Oil
Circulation

Seal Joint
Copper

Teflon

Injection Duct

x

z

y

Figure 5.37    Experimental RTM mold.
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A preliminary numerical study was performed by Lecointe using thermophysical

parameters values reported in the literature for the mold components. This study first allowed

him determination of the time period during which a two-dimensional analysis was adequate

(over a three-dimensional model). Based on this, a total overall experimental time of 500 s

was chosen. Then, by comparing the numerical and experimental temperatures obtained on

the mold sides (y-direction) before the experiment started, two convective heat transfer

coefficients, h1 and h2, were defined to account for the small heat losses observed, as sketched

in Fig. 5.39. Finally, the coefficient hf, was determined to account for the convective heat

transfer between the copper duct and the fluid inside (oil). The value for this coefficient was

approximated by also comparing numerical and experimental temperatures from the

thermocouple TC0 during cooling. The results from this preliminary numerical study are

summarized in Table 5.26.

Table 5.26    Results of the preliminary numerical analysis.

The initial temperature field inside the mold was found to be considerably

nonhomogeneous. (∆Tx > 5°C while ∆Ty ~ 1°C). Therefore, in order to best retrieve the initial

tn (s) h1 (W/m2K) h2 (W/m2K) hf (W/m2K)
500 1 0.2 3000

Teflon
Thermocouples

Oil
Circulation Copper

Seal Joint

Resin
Input

Resin Exit

Insulation

Composite

TC1 TC2 TC3 TC4 TC5

TC0

Figure 5.38    Detailed view of the x-symmetrical RTM mold
placed between both plates of the experimental press ALIS.
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state, measurements from the thermocouples TC1 to TC5 before the experiment started, were

used to specify the top boundary condition. In doing this, the temperature on this boundary

was defined using a linear functional in the y-position. The same conditions were kept for the

other boundaries. The steady-state reached from these conditions was taken as the initial state.

The temperature histories from thermocouples TC1 to TC4 were used in the estimation

procedure. Lecointe used a numerical method based on finite differences (with the nodes

located at the mesh interfaces) to generate the required calculated histories. In using

GACONDUCT, however, the discretization equations are solved following a control-volume

technique in which the node temperatures prevail over the entire control volumes. Therefore,

in this study, the same numerical modeling as the one from Lecointe could not be used.

However, nearly the same mesh size and the same time step were applied. This is developed

next.

5.2.2.3 Finite Difference Modeling

The geometrical discretization is represented in Fig. 5.40. The contact resistance was

modeled on the same basis as in previous studies (Sections 5.1.2 and 5.2.1). Here, three layers

of thickness 0.5 mm were defined, with thermal conductivity equal to the thickness divided by

the estimate for the contact resistance (in the direction perpendicular to the respective layer

only) and null thermal capacitance. The convective heat flux inside the copper component

Composite

Copper Aluminum

Teflon

Tp

h2, Ta
h1, Ta

Rc

kx, ky, C

hf, Tf
q = 0 (from Symmetry)

Figure 5.39    Two-dimensional boundary conditions
associated with the RTM mold analysis

(Ta, Tf and Tp are the ambient, oil fluid and ALIS plate temperatures, respectively).

x

z y



151

was set into the near-boundary-control volumes via the source terms (Patankar, 1991). The

conductivity and thermal capacitance inside the duct were both set to zero. Eventually, the

resin injection duct was considered to be full of raw resin (for the particular non reticulated

material configuration studied here). The grid included 27 and 71 elements in the x- and y-

directions, respectively, while Lecointe used 26 and 68 elements in the same directions. The

mesh size and time step (∆t = 0.1 s) were verified to be adequate for numerical accuracy.

5.2.2.4 Results and Discussion

Two estimation runs with different seeds for the random number generator were

performed using a personal computer P233. The genetic parameters setting relative to the

convergence criterion was the same as given in Table 5.18, but with a population size of 100.

Here again, the investigation of the time-consuming two-dimensional numerical model did

not allow for the use of the ideal population size, which would be 700 for seven parameters to

be simultaneously estimated. The Fortran subroutine GA2DRTM.FOR was written as the

adaptation subroutine of the program GACONDUCT to solve this problem and is provided in

Appendix G.

Table 5.27 shows the predicted estimates and their 95% CIs [Eq. (3.17)] from both two

genetic runs and the parametric study from Lecointe. Recall that Lecointe identified ky and Rc

assuming kx and C to be known. Both GA runs were converged before the maximum number
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Figure 5.40    Control-volume discretization (grid 27 × 71 elements)
from half-RTM mold (not to scale).
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of generations was reached. First of all, notice the adequacy between the thermophysical

parameter values predicted by the GA runs and those predicted by Lecointe. Both GA runs

gave (nearly) the same estimates. A difference between the GA and parametric study results

can be observed in the contact resistance. This difference may be the output from both

estimating the property ky as temperature-dependent and obtaining slightly different

volumetric capacity estimates with the GACONDUCT. Note, however, that the confidence

intervals of the predicted C (nearly) consist of the C values used by Lecointe. The

temperature-dependence of the predicted C is shown in Fig. 5.41. One can see that the

predicted linear regressions approximate the theoretical C relatively closely. The theoretical C

was obtained applying the Rule-of-Mixtures [see Eq. (2.1)] with DSC results.

Table 5.27    Predicted thermophysical parameters obtained from
experimental data from a non reticulated carbon/epoxy sample in an RTM mold

[k in (W/mK), C in (MJ/m3K), Rc in (10-3m²K/W), S in (°C)² and RMS in (°C) and (%∆Tmax)].

a obtained from a one-dimensional analysis (Jurkowsky et al., 1997).
b obtained from applying the Rule-of-Mixtures [Eq. (2.1)] with DSC results.

kx ky100 ky130 C100 C115 C130 Rc S RMS
Run1 0.596

±0.06
3.39

±0.18
3.88

±0.11
2.068
±0.12

2.130
±0.09

2.274
±0.07

1.40
±0.25

37.6 0.274
0.86%

Run2 0.594
±0.06

3.34
±0.17

3.91
±0.11

2.060
±0.11

2.122
±0.09

2.276
±0.07

1.36
±0.26

36.3 0.269
0.84%

L
(1999)

0.6a 3.4
±0.06

2.143b 2.220b 2.278b 3.40
±0.04

105.8 0.460
1.44%

Figure 5.41    Predicted linear regressions for the volumetric heat capacity, C,
over the range [100-130°C].
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The property ky was found to increase 14.5% from 100 to 130°C. This is similar as the

increase found from 100 to 125°C using the linear regression obtained for the reticulated

carbon/epoxy material analyzed in Section 5.1.2. Note that, even though the material

considered here was not reticulated, the evolution with temperature of the thermal

conductivity parallel to the fibers can be compared with the results for a reticulated material

(provided there are both carbon/epoxy composite type), because the value of the property ky

depends mainly on the fiber type. This result gives confidence in the predicted parameters

obtained here for ky.

One important result is that the RMS errors for the two GA runs are about half the RMS

error obtained using the parametric study. The use of GACONDUCT allowed for a lower S

and, thus a better fit of the experimental temperatures. This is illustrated in Fig. 5.42, which

shows the measured temperature histories from the thermocouples TC1 to TC5 and the

corresponding calculated histories obtained using both the estimates and numerical model

from Lecointe and those from this study (second run). More particularly, one can observe that

the set of thermophysical parameters predicted from the GA method enabled the correct

modeling of the experimental temperature history from the thermocouple TC5, although

information from this sensor was not used in the estimation methodology.

The dimensionless sensitivity coefficients of the seven thermophysical parameters are

shown in Fig. 5.43 to 5.46 for the thermocouples TC1 to TC4, respectively. One can see that

the coefficient associated with the parameter ky130 presents a higher initial slope than the

coefficient associated with ky100. The same comment applies when comparing C130 with C115

or C100. This is a logical ouput since the initial state is about 130°C. Another consistent result

is that the thermocouple TC1 (the closer to the cold copper block) is much more sensitive to

both parameters kx and Rc than the thermocouple TC4 (the further in the y-direction from the

cold copper block), while the opposite occurs for both parameters of the thermal property ky.

All thermocouples provide information for the parameters of the volumetric capacity. The

appreciable overall sensitivity to the property ky explains the lower confidence intervals

(around the estimates ky100 and ky130) obtained in this study compared to the results of the

studies described in the previous sections. The CIs obtained for all thermophysical parameters

seem consistent with the magnitude of the associated sensitivity coefficients.
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Figure 5.42    Temperature distributions from the five thermocouples
embedded in the RTM mold.
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Figure 5.43    Dimensionless sensitivity coefficients from thermocouple TC1.
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Figure 5.45    Dimensionless sensitivity coefficients from thermocouple TC3.
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Figure 5.44    Dimensionless sensitivity coefficients from thermocouple TC2.
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Before concluding this section, it should be recalled from theoretical considerations

discussed in chapter 3, that the setting of presumably known parameters to nominal values

involves a bias in the estimation procedure (this bias being obviously function of the accuracy

of the nominal values and the correlation between the known parameters and the unknown

ones to be estimated). From the results presented here, one may conclude that the setting of

the property kx and C to known nominal values did generate a small bias on the final

estimates, which resulted in a larger least-squares error than if the properties were taken into

account in the estimation procedure (refer to Fig. 5.42 and Table 5.27). Note that the

restriction of the estimation of the property ky as a constant can be considered as a form of

“nominal value knowledge” and is also thought to have generated bias in the present case.

5.2.2.5 Conclusion

This study allows for the definitive assessment of the use of GAs for the simultaneous

estimation of several thermophysical parameters. Both the robustness and reliability of the
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GA method have been demonstrated. The tremendous capabilities of GAs are relevant here as

their use are associated with considerable experimental and time cost savings. In addition, it

has been shown that, by enabling the simultaneous estimation of several parameters, the use

of GAs thus allows bias induced by setting presumably known parameters to nominal values

to be avoided.
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CHAPTER 6

Kinetic Characterization of the Curing of Thermosetting Materials

This chapter is dedicated to presenting the analysis performed for the kinetic

characterization of the curing process of composite matrix materials, namely thermosetting

resins. The model from Kamal and Sourour (K&S) (1973) was used in the prediction of the

curing of an epoxy, a polyester and a rubber mixture. This model involves six kinetic

parameters which were simultaneously estimated applying the general-purpose program

GAMAIN.

The first section provides an overview of the K&S model and the motivation for

studying it. In the following section, the estimation problem is formulated according to three

strategies. For the kinetic characterization to be complete, a model for the determination of

the inhibition time was constructed based on the model described by Bailleul (1997; also in

Bailleul et al., 1996), and is detailed in the third section. Then, the three thermosetting resins

investigated and the experimental data obtained from Differential Scanning Calorimetry

(DSC) and used in the estimation procedure are described. Finally, the results of the analysis

are presented and discussed in the last section.

6.1 Kamal and Sourour (K&S) Model

6.1.1 Description

The model from K&S (1973) is referred to as describing an autocatalyzed reaction rate

mechanism. It is a very well known empirical model that allows for the analysis of complex

substances. Its mathematical form is:

( )( )v
d

dt
K K m n= = + × −

α
α α1 2 1 (6.1)
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where v is the cure (reaction) rate, α, the degree of cure and K1 and K2, the two rate constants

that represent the catalytic and autocatalytic nature of the cure mechanism, respectively. The

order of curing for each mechanism is given by the two exponents m and n. The rate constants

depend on absolute temperature from the Arrhenius law, then involving each two Arrhenius

parameters Ai and Ei according to:

K A
E

RT
ii i

i= −






=exp , ,1 2 (6.2)

The mathematical form of the K&S model can be generalized into v=F(T,α,β). The true

parameter vector β to be estimated here involves the six parameters (A1, E1, A2, E2, m and n)

inherent to the K&S model.

6.1.2 Motivation for Using the K&S Model

A question then comes: why use the K&S model for the kinetic study of thermoset

resins while some of these materials have been shown to either be well characterized with a

simpler model (Bailleul, 1993 and 1997; Amiaud, 1993; and Mouchnino, 1997) or follow a

three phase law (Garnier, 1990)? The following outlines the two main points that have

provided the motivation for studying this model.

- Its simplicity and its intensive use in kinetic analysis of the curing of thermosetting

materials. This model is generally the one available in software packages that simulate the

coupling between exothermal effects from autocatalyzed curing and conduction heat

transfer within the material. Recall that such simulation is necessary to control the thermal

phenomena during composite fabrication processes.

- There is no knowledge in the literature of methods capable of solving the simultaneous

estimation of the six K&S parameters without setting assumptions regarding the

parameters m and n. Therefore, the study of the K&S model is an excellent test of

robustness for the GA-based estimation methodology developed in this work.

6.2 K&S Estimation Problem Formulation

The estimation methodology implemented in the GAMAIN program is based on

Ordinary Least-Squares (OLS). The objective function is the sum-of-squares function simply

defined by the error between experimental and calculated data, as introduced in Chapter 3.
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Differential Scanning Calorimetry (DSC) data are to be used in the kinetic analysis. Because

the rate of heat generation is measured directly in DSC experiments, one can logically think

of using cure rate information in the estimation procedure. Two strategies (I and II) were then

considered for the computation of v:

- In Strategy I, illustrated in Fig. 6.1, it is assumed that the degree of cure and temperature

are known at each observation and Eq. (6.1) is used to directly compute the cure rate.

- The cure rate is calculated in two steps in Strategy II, assuming time and temperature to be

the known data; first, the degree of cure is determined [using a numerical procedure to

solve the first order differential equation given by Eq. (6.1); this is discussed later] and

then, its value is used in Eq. (6.1) to find the cure rate. Figure 6.2 displays a schematic of

Strategy II (see Fig. 3.1 as a reference).

Considering the cure rate, v, as the measured quantity, two estimation Strategies, I and II,

were thus investigated for the identification of the true parameter vector β. The mathematical

expressions for the two objective functions S1 and S2 associated with Strategy I and II,

respectively, are for Ni measurements and Nj experiments:

( ) ( )[ ]S v T vij ij ij ij
j

N

i

N ji

1
11

2

β β= −
==

∑∑ , ~ ,
~ ~α (6.3)

( ) ( )[ ]S v t T vij ij ij ij
j

N

i

N ji

2
11

2

β β= −
==

∑∑ ,~ ,
~ ~ (6.4)

Furthermore, a third estimation strategy, Strategy III, was analyzed assuming that the

measured quantity is now the degree of cure α. The determination of α is similar to the first

step of Strategy II. The schematics of this strategy is provided in Fig. 6.3. This third strategy

was defined after the work from Scott and Saad (1993) who indicated that in their study, the

degree of cure provided more information than the cure rate. The mathematical expression for

the objective function S3 associated with estimation Strategy III is:

( ) ( )[ ]S t Tij ij ij ij
j

N

i

N ji

3

2

11

β β= −
==

∑∑ α α,~ ,
~ ~ (6.5)

To perform the three estimation strategies, one therefore needs the set { }~ , ~ ,~ ,
~

t v Tij ij ij ijα of

experimental data where t is time, i=1,…,Ni measurements, and j=1,…,Nj experiments. These

data can be either isothermal or dynamic.
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Figure 6.1    Schematic of estimation Strategy I.

F(T,α,β)

GA

DSC data

Input ~, ~t T
v

∫
α

DSC
∫ ~α

~v

S2(β)
+

-

Figure 6.2    Schematic of estimation Strategy II.
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Figure 6.3    Schematic of estimation Strategy III.
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As mentioned previously, the computation of the degree of cure α requires the use of a

numerical method to solve a first order differential equation assuming time and temperature

are given. Two schemes were initially investigated and included a second-order Runge-Kunta

analysis and a Crank-Nicholson technique. In short, to determine a solution at the iteration

i+1, the qth order Runge Kutta method is based on the evaluation of a function q times

between the successive time iterations ti and ti+1. In the Crank-Nicholson scheme, a central

finite-difference analysis is realized. Both schemes requires an initial value for the degree of

cure. The detailed mathematical foundation and the Fortran coding translation for both

procedures can be found in Numerical Recipes (Press et al., 1990). These schemes were

selected because they provide good compromise between accuracy and convergence speed.

They both gave similar convergent results on simulated data. Because of its ability to

converge a little faster, the second-order Runge Kunta technique was retained and

subsequently applied. Note that the work of Sommier (1998) also advised for the use of this

scheme.

Analytical expressions were obtained for the sensitivity coefficients of the parameters

associated with estimation Strategy I by differentiating Eq. (6.1) with respect to each kinetic

parameter. The resulting equations are given below:

( )X
E

RTA
i n

1
1= −





−exp α (6.6)

( )X
E

RTA
m n

2

2 1= −





−exp α α (6.7)

( )X
K

RTE
i n

1
1= − − α (6.8)

( )X
K

RTE
m n

2

2 1= − −α α (6.9)

( ) ( )X Km
m n= −2 1α α αln (6.10)

[ ]( ) ( )X K Kn
m n= + − −1 2 1 1α α αln (6.11)

In the case of both Strategies II and III, sensitivity coefficients were evaluated

numerically using the simple, but adequate, finite-differences, as described in Chapter 3.

Recall that the estimation methodology based on GAs does not use sensitivity information.

Nevertheless, it is meaningful to analyze the coefficients to obtain some insight in the

estimation procedure.
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The program GAMAIN, described in Chapter 4, was used to estimate the true parameter

vector β. The choice for the GA method was supported by the presence of strong correlations

between the sensitivity coefficients of the parameters, as it is shown in the results section. The

Fortran subroutine GAKINETIC.FOR, written as the adaptation subroutine of the program

GAMAIN, is provided in Appendix H along with its dependent subroutines.

6.3 Inhibition Time Estimation Problem Formulation

The K&S characterization is sought to start at a null degree of cure value. The induction

period tind represents the time during which the reaction is inhibited, that is while ~vij  = 0. This

occurs because the materials contain inhibition substances. The determination of this period

must take into account the material “thermal history” before curing actually starts, that is T(t)

for t < tind. The procedure used here for such determination is based on a model applied by

Bailleul (1997) in which the inhibition period is considered over when the function h(T),

defined next, becomes null.

( )h T t B
T

T t
dtref

ref
tind

= − − × −


















∫ exp

( )

~

1
0

(6.12)

In Bailleul’s work, the reference temperature Tref is arbitrarily selected within the range

investigated. Then, knowing the experimental induction time ~tind  and the thermal history T(t)

for t < ~tind , the objective is to identify the two parameters tref and B that best minimize the

function [h(T)]² for all experiments. Note that these parameters are strongly correlated and in

his study, Bailleul used a parametric graphical procedure to provide true estimates. The test of

this objective function with the estimation methodology based on GAs resulted in an unstable

behavior. Indeed, using different initial parameter ranges, the estimate for tref would always be

the smallest value available from the range investigated, thus giving different estimates for B.

Therefore, even though the function [h(T)]² was nearly null using the final estimates, it was

clear the procedure was not stable. From the results obtained in this test the estimation

criterion was modified to be based on the error between the calculated and measured

inhibition times. This gives a new sum-of-squares Stind for the objective function:

( )[ ]S t ttind ind j ind
j

N

j

j

= −
=

∑ β ~
1

2

(6.13)

where the inhibition time for each experiment j, tind j, can be obtained from the numerical

solution of:
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t B
T

T t
dtref
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= − × −
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









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1
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where Tj(t) is known for t < tind j. Even though the estimation criterion has changed, the goal is

still to minimize the function h(T) given in Eq. (6.12). One method to perform this is to set tref

to the average value of the integrals calculated for the Nj experiments, as shown below.

t
N

B
T

T t
dtref

j

ref

j

t

j

N ind jj

= − × −




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

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


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




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1
1

01

exp
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The parameter vector β involves now the unknown Tref and B. As seen in the results

section, the estimation methodology still conducted to different estimates for these two

parameters due to the non-uniqueness of the solution. However, all solutions resulted to the

same value for Stind, thus stressing the stability of the procedure.

The adaptation subroutine to solve this estimation problem with the program GAMAIN

is also GAKINETIC. FOR, with some slight changes (from its use in the K&S model study).

These changes obviously include a different data input file, number of parameters to estimate,

…, but also the setting of the key parameter KTIMEINHI to 1 (instead of 0 if the K&S

estimation is desired). The functioning of GAKINETIC.FOR along with the possibilities of

analysis are detailed through several explanative comments in the subroutine.

6.4 Materials and Experimental Procedures

6.4.1 Description of Materials

Three thermoset resins were investigated. These include an epoxy, a polyester and a

rubber mixture. The epoxy mixture consists of an epoxy resin with a DGEBA/3DCM

prepolymer system and about 60% unidirectional glass fiber. The elastomer is a complex

mixture with 58% (in weight) natural rubber of SMR type, 32% black carbon, 2% sulfur and

8% of accelerating/inhibiting/protecting agents. No specific details about the polyester can be

provided here based on confidentiality considerations.

Differential Scanning Calorimetry (DSC) was selected as the experimental procedure

and it is described in the next subsection. It is relevant to recall here that while epoxy and

polyester resins present strong exothermal reticulation transformations (300 to 600 J/g), the

exothermal effects from the vulcanization of rubber compounds is relatively small (~ 20 J/g)
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(Garnier, 1990), making calorimetric measurements more difficult for these latter. Therefore,

it is anticipated that the kinetic parameter estimation for the characterization of the rubber be

more sensible to experimental errors than for the characterization of the two other resins.

6.4.2 DSC Experimental Procedures

• Fundamentals

The Perkin-Elmer DSC-7 apparatus was used for the analysis of both the epoxy and the

rubber samples. The device consists of two identical temperature-regulated furnaces, as

simplified in Fig. 6.4. One contains the sample to be characterized and the other an empty

reference pan. The fundamental principle behind DSC is based on power compensation; that

is, the apparatus records the heat flux difference (in heating or cooling) between both furnaces

that are assumed to be isothermal. The difficulty in using DSC is that small samples are

required to validate the main assumptions of isothermal conditions and negligible contact

resistance between the pan and the sample. A detailed description of general DSC theory and

the possibilities of application are given by McNaughton and Mortimer (1975). Several

studies have also been conducted with the DSC-7 to define experimental methodologies that

minimize the effects of perturbing parameters such as the contact resistances between the pan

and the sample and the pan and the furnace (Garnier, 1990; Ollivier, 1991; and Lalouana,

1992, to name a few).

(Ambient Temperature)

Ts

Tr=TsPan

Sample

Sample Furnace Reference Furnace

Thermistance

Heater
φs φr

Figure 6.4    Simplified schematic of DSC-7 apparatus.
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This paragraph briefly summarizes the principles associated with DSC. Considering the

thermal losses to be identical from each furnace and the sample temperature to rigorously

follow the prescribed temperature, the differential heat flow between both furnaces can then

be expressed by:

∆ ∆φ ϕ ϕ
α

= − = − + =s r pmc
dT

dt
m

dh

dt

dh

dt
H

d

dt
, , (6.16)

where m is the sample mass, cp, the specific heat, h(t), the enthalpy function represented in

Fig. 6.5, ∆H, the total heat of reaction and 
d

dt

α
 (or v), the reaction rate. The total heat

generated (also total enthalpy of the reaction) is given by ∆H
dh

dt
dt

t f

= 



∫

0

, where tf is the total

curing time. The reaction rate, 
d

dt

α
, is the ratio of the rate of heat generated to the total heat

generated. The determination of ∆H and v is possible by total and partial numerical

integration of the exothermal peak recorded by DSC. In doing this, one must properly define

the bound points (m1 and m2) of the reaction, as illustrated in Fig. 6.5. Then, by selecting a

sigmoidal curve for the baseline of the exothermal peak, the variations of specific heat with

curing in the case of dynamic experiments are taken into account (Hemminger and Hohne,

1984). The calculation procedure to determine the sigmoid is an iterative process which

computes the baseline so that the variation of specific heat due to the transformation ends up

to be proportional to the degree of cure. This procedure is usually implemented in DSC

softwares. Eventually, the degree of cure α is obtained from numerical integration of the rate

of cure.

m1
m2

∆H
dh(t)

t

φ

h(t)

m1
m2

∆H
dh(t)

t

φ

h(t)

Sigmoidal Baseline

Figure 6.5    Numerical integration of the exothermal peak measured with DSC.
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After treatment of the experimental heat fluxes recorded by DSC, one ends up with the

set { }~ , ~ ,~ ,
~

,t v Tij ij ij ijα  where t is time, and i and j are the number of measurements and

experiments recorded, respectively. In this work, data obtained by DSC before the cure started

were used for the determination of the two parameters associated with the inhibition time

model, while the rest of the data were used in the three estimation Strategies, I, II and III. The

cure starting point corresponding to the experimental inhibition time was taken as the time

preceding the first degree of cure value different than zero and followed by a consistent

increase. This point selection method obviously depends on the precision of the DSC data

acquisition system. Note that the use of a small percentage of the maximum value reached by

the cure rate as the value of the cure starting point would have allowed for the kinetic analysis

to be performed independently of the apparatus bias level.

• Experiments Performed

Because curing started quickly for the three resins (in the time period corresponding to

the apparatus response), isothermal experiments were not feasible. Therefore, estimation was

proceeded using dynamic experimental data only. For each resin, several cycles for which the

temperature increased linearly with time and at different rates, VT, were realized. The upper

temperature value was chosen to ensure that the curing process was complete but still

remaining below a temperature level which could cause material degradation. As part of a

collaboration project, Dr. B. Garnier1 performed the experiments on both the epoxy and

rubber samples using the Perkin Elmer DSC-7. Data associated with the polyester resin were

provided by another doctoral student of the LTI/Nantes as part of an industrial contract. Table

6.1 summarizes the number (Nj) and conditions of experiments for each resin. One can see

that six cycles were realized on both the epoxy and rubber samples and, sixteen on the

polyester compound. Also, note that the smaller the temperature rate VT, the larger the number

of recorded data points Ni. The maximum increase in cure rate for each cycle is given by

∆vmax (min-1) and, [∆vmax]av designates the corresponding averaged-maximum increase for

each resin.

                                                
1 CNRS Researcher at the LTI/Nantes.
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Table 6.1    Conditions of experiments performed using DSC.

Epoxy

Nj =6, T ∈ [40-220 °C]

Rubber

Nj =6, T ∈ [40-200 °C]

Polyester

Nj =16, T ∈ [40-200 °C]

VT

(°C/min)
Ni ∆vmax

(min-1)
VT

(°C/min)
Ni ∆vmax

(min-1)
VT

(°C/min)
Ni ∆vmax

(min-1)
2.5 447 0.1248 2.5 212 0.4374 3 2186 0.2259
5 270 0.2325 5 474 0.8237 5 1470 0.3060

7.5 186 0.3278 7.5 89 0.9024 7 1044 0.4271
10 140 0.4165 10 195 1.2337 10 675 0.5380

12.5 118 0.4962 12.5 49 1.2721 12 547 0.6659
15 93 0.5692 15 82 1.2652 15 471 0.7666

Ntot = 1254 [∆vmax]av

= 0.3612
Ntot = 1101 [∆vmax]av

= 0.9891
17 425 0.8684

20 329 1.001
25 234 1.2134
30 207 1.4008
35 190 1.5837
40 169 1.2324
45 136 1.8552
50 131 2.0179
55 117 2.1766
60 106 2.3846

Ntot = 8437 [∆vmax]av

= 1.1665

6.5 Results and Discussion

6.5.1 K&S Estimation

In the following, the estimation procedure is described. Next, the results are discussed in

terms of first, the individual analysis of each estimation strategy and, then, the comparison

between the three strategies.

6.5.1.1 Estimation Procedure

Recall that three procedures were investigated as defined by Eq. 6.3, 6.4 and 6.5. Using

Strategy I, one considers the measured quantity to be the cure rate and assumes the degree of

cure and temperature to be known at each observation (independent variables). With Strategy

II, one also considers the measured quantity to be the cure rate, but assumes time and
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temperature to be the known data. Finally, in Strategy III, the measured variable is the degree

of cure, and time and temperature are assumed to be the independent variables. For these three

methods, the estimation of the kinetic parameters was carried out as follows. Using large

ranges for the kinetic parameters, two estimations were run for each of the three procedures,

considering six (run 1) and four parameters (run 2 without K1), successively. The second run

thus corresponded to the study of the simplified K&S model, which has a similar form to the

equation suggested by Piloyan et al. (1966). Note that the computation of the degree of cure

without the rate constant K1 in the model required an initial value (very small number) to be

input in the numerical scheme.

The objective function values obtained for these two initial runs (runs 1 and 2) were

compared and the setting (6 or 4 parameters) which provided the smallest sum-of-squares

error was retained for subsequent trials. Note that even though the improvement of studying

the complete K&S model (6 parameters) over the simplified model (4 parameters) was very

small, the simultaneous estimation of the six parameters was further investigated. Although

such decision was “against” the principle of parsimony which states that one should employ

the smallest number of parameters (Beck and Arnold, 1977), this was in agreement with the

motivation behind this work, which was the analysis of the complete K&S model.

Following the choice between the complete and simplified model, four additional trials

were conducted with the GA method (run # 3, 4, 5 and 6 in the result tables introduced later),

decreasing each time the parameter ranges used to generate the initial population. This insured

convergence towards the global minimum of the objective functions associated with the three

estimation strategies. Finally, the last run was considered to provide the best possible

estimates, e.g. to provide a model close to the optimal model that can be reached with the

K&S form.

For all estimation trials performed, the same setting, given in Table 6.2, was used for

the genetic parameters associated with the convergence criterion (refer to Chapter 4). All jobs

were run on a personal computer P233. As the CPU time requirement was not costly, the ideal

population size could, therefore, be investigated, in association with substantial values for

MING, LASTCRITERG and LASTG.
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Table 6.2    Genetic convergence parameters setting.

NS MING LASTCRITERG LASTG CRITERION

Np × 100 100 100 500 0.01 (1%)

6.5.1.2 Results and Discussion

The results obtained from application of the three estimation Strategies, I, II and III, are

introduced beforehand for convenience.

Tables 6.3 to 6.5 show the detailed results obtained for the three strategies applied on

the experimental data recorded for the epoxy, rubber and polyester compound, respectively. In

order to gain insight into the estimation problems, the dimensionless sensitivity coefficients

associated with each set of final estimate values were carefully examined. Recall from

Chapter 3 that a dimensionless coefficient represents the product of the coefficient by its

parameter value and scaled with respect to the measured variable by dividing by the

maximum increase in the variable (∆vmax, given in Table 6.1, or ∆αmax = 1). Note that the

superscript (+) that usually denotes “dimensionless” was omitted for convenience. The

experiments performed at 15°C/min were used as the basis for the sensitivity analysis. Figures

6.6 to 6.11 are associated with the sensitivity study realized on the epoxy sample (using

estimates obtained with Strategy I, II and III), while Figs. 6.12 to 6.14 and 6.15 to 6.17 are

related to the polyester and rubber mixture, respectively. As an alternative to appreciate the

relative linear-dependence between the sensitivity coefficients, the correlation matrices were

computed for the experiments at 15°C/min. The correlation matrices are shown in Table 6.6,

for the three compounds. This table also includes the condition number of the XTX matrix

associated with each estimation problem. The condition number which represents the largest

eigenvalue of the XTX matrix divided by the smallest, was also calculated with an aim to

measuring the ill-conditioness of the estimation problems.

Finally, to illustrate the physical significance of the final estimate values (run 6)

obtained with each strategy, simulated isothermal cure rate data were generated as a function

of degree of cure. Note that the goal was to simulate cure rate data of magnitude

approximately similar to that encountered in the experiments (∆vmax). The simulated plots are

represented in Figs. 6.18 to 6.20 for the epoxy, 6.21 to 6.23 for the polyester and 6.24 to 6.26

for the rubber compound.
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Table 6.3    K&S detailed estimation results - Epoxy resin.

Run
1 2 3 4 5 6

A1

(min-1)
6.74
×1027

E1

(kJ/mol)
4569.7

N/A

A2 ×10-8

(min-1)
9.41 9.60 9.59 9.59 9.57 9.54

E2

(kJ/mol)
71.45 71.52 71.51 71.52 71.51 71.50

m 0.653 0.653 0.653 0.653 0.653 0.653
n 1.567 1.567 1.567 1.567 1.567 1.567

S1 (min-1)² 0.0714 0.0708 0.0708 0.0708 0.0707 0.0707

E
st

im
at

io
n 

S
tr

at
eg

y 
I

ITERG f 500 218 235 267 226 396
A1

(min-1)
3.20
×1014

9.57
×106

1.35
×1020

7.84
×1010

1.37
×1015

E1

(kJ/mol)
148.29 N/A 84.74 192.35 111.20 144.03

A2 ×10-8

(min-1)
80.8 116.3 76.9 51.4 62.8 58.9

E2

(kJ/mol)
78.61 80.00 78.35 76.94 78.12 77.40

m 0.673 0.647 0.686 0.689 0.694 0.694
n 1.774 1.771 1.790 1.787 1.786 1.786

S2 (min-1)² 0.0734 0.0825 0.0730 0.0717 0.0708 0.0707

E
st

im
at

io
n 

S
tr

at
eg

y 
II

ITERG f 500 261 500 500 500 500
A1

(min-1)
4.71
×1045

1.00
×1040

0.92
×1037

1.00
×1037

1.05
×1037

E1

(kJ/mol)
406.31 N/A 358.6 350.00 334.47 338.24

A2 ×10-8

(min-1)
137 149 136 135 135 135

E2

(kJ/mol)
80.68 80.95 80.66 80.64 80.66 80.66

m 0.651 0.659 0.652 0.652 0.651 0.651
n 1.586 1.594 1.586 1.586 1.584 1.584
S3 0.0954 0.0984 0.0953 0.0953 0.0952 0.0952

E
st

im
at

io
n 

S
tr

at
eg

y 
III

ITERG f 500 446 500 500 500 500
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Table 6.4    K&S detailed estimation results - Polyester resin.

Run
1 2 3 4 5 6

A1

(min-1)
9.7

×1012

E1

(kJ/mol)
6.83
×109

N/A

A2 ×10-13

(min-1)
6.18 6.15 6.18 6.2 6.21 6.21

E2

(kJ/mol)
98.35 98.33 98.35 98.36 98.36 98.37

m 0.575 0.575 0.575 0.574 0.574 0.574
n 2.373 2.373 2.373 2.372 2.373 2.373

S1 (min-1)² 18.87 18.87 18.87 18.87 18.87 18.87

E
st

im
at

io
n 

S
tr

at
eg

y 
I

ITERG f 500 284 312 254 217 246
A1

(min-1)
2.65
×1045

3.26
×1050

1.90
×1047

1.92
×1047

1.92
×1047

E1

(kJ/mol)
352.79 N/A 394.17 376.02 367.92 368.10

A2 ×10-13

(min-1)
50.1 47.1 42.4 37.2 24.4 24.9

E2

(kJ/mol)
104.02 103.80 103.44 102.96 101.57 101.63

m 0.703 0.696 0.704 0.711 0.715 0.715
n 2.980 2.971 2.886 2.931 2.927 2.927

S2 (min-1)² 16.68 16.87 16.28 16.19 16.13 16.13

E
st

im
at

io
n 

S
tr

at
eg

y 
II

ITERG f 500 452 500 500 500 500
A1

(min-1)
8.21
×1058

5.90
×1062

4.73
×1062

1.00
×1062

1.37
×1062

E1

(kJ/mol)
467.09 N/A 491.07 489.04 484.80 485.93

A2 ×10-13

(min-1)
1080 1726 1130 1120 1110 1100

E2

(kJ/mol)
114.37 115.87 114.04 114.01 113.94 113.94

m 0.658 0.652 0.691 0.691 0.693 0.693
n 2.605 2.631 2.806 2.807 2.812 2.812
S3 2.585 2.962 2.300 2.300 2.298 2.298

E
st

im
at

io
n 

S
tr

at
eg

y 
III

ITERG f 500 250 500 500 500 500
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Table 6.5    K&S detailed estimation results - Rubber compound.

Run
1 2 3 4 5 6

A1

(min-1)
4.37
×108

E1

(kJ/mol)
302.67

N/A

A2 ×10-6

(min-1)
93.6 64.9 64.8 64.6 64.7 64.8

E2

(kJ/mol)
61.10 59.71 59.70 59.69 59.69 59.70

m 0.966 0.975 0.975 0.975 0.975 0.975
n 1.623 1.630 1.630 1.630 1.630 1.630

S1 (min-1)² 4.716 4.706 4.706 4.706 4.706 4.706

E
st

im
at

io
n 

S
tr

at
eg

y 
I

ITERG f 500 211 458 446 498 362
A1

(min-1)
8.68
×1049

4.93
×1051

2.40
×1052

4.95
×1052

4.96
×1052

E1

(kJ/mol)
439.4 N/A 457.27 462.64 465.66 465.76

A2 ×10-6

(min-1)
1000 5.52

×107
1050 821 800 802

E2

(kJ/mol)
71.16 111.43 70.41 69.39 69.20 69.16

m 0.888 0.818 0.919 0.929 0.932 0.934
n 1.548 2.072 1.667 1.825 1.861 1.868

S2 (min-1)² 16.12 20.6 15.16 14.62 14.55 14.55

E
st

im
at

io
n 

S
tr

at
eg

y 
II

ITERG f 500 270 500 500 500 500
A1

(min-1)
2.9

×1062
8.11
×1067

9.93
×1067

7.98
×1067

8.50
×1067

E1

(kJ/mol)
543.90 N/A 590.00 590.22 589.40 589.62

A2×10-6

(min-1)
8.32 36000 3.42 1.25 1.01 1.00

E2

(kJ/mol)
53.27 85.40 49.64 45.86 45.04 45.02

m 0.918 0.764 0.934 0.945 0.949 0.949
n 1.462 1.205 1.551 1.572 1.583 1.582
S3 2.260 7.13 2.105 2.061 2.058 2.058

E
st

im
at

io
n 

S
tr

at
eg

y 
III

ITERG f 500 252 500 500 500 500
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Figure 6.8    Dimensionless sensitivity
coefficients with respect to the cure rate
for the epoxy experiment at 15°C/min
and using estimates obtained with
Strategy II.
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Figure 6.6    Dimensionless sensitivity
coefficients with respect to the cure rate
for the epoxy experiment at 15°C/min
and using estimates obtained with
Strategy I.
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Figure 6.7    Dimensionless sensitivity
coefficients with respect to the degree
of cure for the epoxy experiment at
15°C/min and using estimates obtained
with Strategy III.
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Figure 6.9    Linear dependence
between dimensionless sensitivity
coefficients with respect to the cure rate
for the epoxy experiment at 15°C/min and
using estimates obtained with Strategy I.
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Figure 6.12    Dimensionless sensitivity
coefficients with respect to the cure rate for
the polyester experiment at 15°C/min and
using estimates obtained with Strategy I.
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Figure 6.10    Linear dependence between
dimensionless sensitivity coefficients with
respect to the degree of cure for the epoxy
experiment at 15°C/min and using
estimates obtained with Strategy III.
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Figure 6.11    Linear dependence between
dimensionless sensitivity coefficients with
respect to the cure rate for the epoxy
experiment at 15°C/min and using
estimates obtained with Strategy II.
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Figure 6.13    Dimensionless sensitivity
coefficients with respect to the degree
of cure for the polyester experiment at
15°C/min and using estimates obtained
with Strategy III.
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Figure 6.14    Dimensionless sensitivity
coefficients with respect to the cure rate
for the polyester experiment at 15°C/min
and using estimates obtained with
Strategy II.
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Figure 6.17    Dimensionless sensitivity
coefficients with respect to the cure rate
for the rubber experiment at 15°C/min
and using estimates obtained with
Strategy II.
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Figure 6.15    Dimensionless sensitivity
coefficients with respect to the cure rate
for the rubber experiment at 15°C/min and
using estimates obtained with Strategy I.
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Figure 6.16    Dimensionless sensitivity
coefficients with respect to the degree
of cure for the rubber experiment at
15°C/min and using estimates obtained
with Strategy III.
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Table 6.6    Correlation matrices for the experiment at 15°C/min using the final estimates
for A2, E2, m and n obtained with Strategy I,

and for A2, E2, m, n, A1 and E1 obtained with Strategies III and II.

Correlation Matrices
    A2                 E2                m                    n              A1             E1

(same parameter order in successive rows)

XTX
Condition
Number

E
po

xy

 1
 0.99999987      1
-0.99952504     -0.99953946      1
 0.99976909       0.99975897     -0.99877226      1

2.2 ×1025

R
ub

be
r  1

 0.99993299      1
-0.85545951     -0.86100699      1
 0.31595407      0.30575324       0.12948831      1

1.3 ×1021

S
tr

at
eg

y 
I

P
ol

ye
st

er  1
 0.99998703      1
-0.84328080     -0.84578450      1
 0.99279303      0.99222073      -0.78687505      1

5.1 ×1033

E
po

xy

 1
 0.99999985      1
-0.99956251    -0.99957820      1
 0.99975756      0.99974559     -0.99872098      1
 0.98760610      0.98767961     -0.99155235      0.98468336     1
 0.98754912      0.98762392     -0.99155332      0.98456435     0.99997955    1

1.5 ×1086

R
ub

be
r

 1
 0.99999978      1
-0.96573745     -0.96575413      1
 0.45631421      0.45619001     -0.21787876      1
 0.83250834      0.83247622     -0.94089368     -0.34664105     1
 0.82178858      0.82176005     -0.93563001     -0.58837947     0.99969320    1

5.3 ×10145

S
tr

at
eg

y 
III

P
ol

ye
st

er

 1
 0.99999841      1
-0.99771348     -0.99783054      1
 0.99775175      0.99764037     -0.99150643      1
 0.93441283      0.93462117     -0.94011339      0.92132442     1
 0.92960404      0.92982551     -0.93579450      0.91590186     0.99989531    1

2.5 ×10133

E
po

xy

 1
 0.99999889      1
-0.99292060     -0.99295367     1
 0.98725702      0.98722365     -0.96308618      1
-0.97647893     -0.97636123      0.99062039     -0.93522729    1
-0.97662716     -0.97650803      0.99059672     -0.93553850    0.99999848    1

1.2 ×1042

R
ub

be
r

 1
 0.99997263      1
-0.37566816     -0.38216480      1
 0.91963533       0.91686833     -0.41734366     1
-0.55217443     -0.54658623     -0.52979213     -0.76562909    1
-0.54297776     -0.53731499     -0.54594706     -0.76011437    0.99949438    1

6.0 ×10114

S
tr

at
eg

y 
II

P
ol

ye
st

er

 1
 0.99999652      1
-0.99440854     -0.99467224      1
 0.98503697      0.98465311     -0.96395214      1
 0.86643686      0.86695768     -0.89091614      0.81518906     1
 0.85752856      0.85807330     -0.88325712      0.80489092     0.99974650    1

9.1 ×10102
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Figure 6.19    Simulation of isothermal cure rates using estimates obtained with Strategy III
– Epoxy compound.
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Figure 6.18    Simulation of isothermal cure rates using estimates obtained with Strategy I
– Epoxy compound.
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Figure 6.20    Simulation of isothermal cure rates using estimates obtained with Strategy II
– Epoxy compound.
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Figure 6.21    Simulation of isothermal cure rates using estimates obtained with Strategy I
– Polyester compound.
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Figure 6.22    Simulation of isothermal cure rates using estimates obtained with Strategy III
– Polyester compound.
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Figure 6.23    Simulation of isothermal cure rates using estimates obtained with Strategy II
– Polyester compound.
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Figure 6.24    Simulation of isothermal cure rates using estimates obtained with Strategy I
– Rubber compound.
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Figure 6.25    Simulation of isothermal cure rates using estimates obtained with Strategy III
– Rubber compound.
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Figure 6.26    Simulation of isothermal cure rates using estimates obtained with Strategy II
– Rubber compound.
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• Strategy I

In all first runs conducted according to the estimation Strategy I, the rate constant K1

appeared to take a null value and the second and further runs concentrated on the estimation

of A2, E2, m and n provided the same or slightly smaller sum-of-squares errors. This indicates

a negligible effect of K1 which was supported by the imperceptible sensibility of the cure rate

computed using Strategy I to the parameters A1 and E1 during a preliminary sensitivity

analysis (prior to the implementation of the estimation procedure). The dimensionless

sensitivity coefficients show a much higher magnitude for the parameter E2 for the three

mixtures (Figs. 6.6, 6.12 and 6.15), but sufficient information is provided for the estimation of

the three other parameters with magnitudes much greater than the rule-of-thumb limit 0.1. The

correlation matrices (Table 6.6) reveal a strong linear dependence between the two parameters

of the rate constant K2, which is illustrated Fig. 6.9 in the epoxy case. This behavior can

actually be understood if Eq. (6.2) is rewritten as:

( )K A
E

RT
A A ii i

i
i= −





= =exp ' , exp ' , ,1 2 (6.17)

Eq. 6.17 obviously indicates that if temperature does not vary much, the values of Ai and Ei

are not unique. From Table 6.1, one can see that the temperature range investigated for each

material was quite large.

The high condition numbers of the XTX matrices obtained for the three mixtures (Table

6.6) are another means for stressing how ill-conditioned the estimation is. Indeed, both the

correlations and the large magnitude difference between the sensitivity coefficients of the

parameters E2 and m result in a large magnitude difference between the largest and smallest

eigenvalue. Note that this sensitivity difference and the predominance of the Arrhenius

constant E was reported by Bournez et al. (1999), as mentioned in Chapter 2. One can see that

despite these conditions, the GA method demonstrates excellent convergence (Table 6.3).

This is possible because GAs do not use derivative information. In addition, sufficient

information is provided by the smallest sensitivity coefficient. The final estimates resulting

from run 6 can be considered to be the best estimates that can be obtained with Strategy I.

• Strategy III

Regarding estimation Strategy III, the presence of the rate constant K1 resulted in better

modeling of the degree of cure. The improvement was considerable for the rubber and
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worthwhile for the polyester sample, but it was minor in the epoxy case. The sensitivity

coefficients corroborate these results. Indeed, the sensibility of the degree of cure to the

parameter E1 is nearly negligible for the epoxy compound (Fig. 6.7), while substantial for the

polyester (Fig. 6.13), and larger than the corresponding sensitivity coefficients of E2 for the

rubber mixture (Fig. 6.16). Note that the parameter A1 shows a negligible sensitivity

coefficient for all mixtures. Correlations are present (among the six parameters in both the

epoxy and polyester cases), as shown in Table 6.6 and illustrated in Fig. 6.10 for the epoxy

case. Combined with the negligible sensitivity of the measured variable to the parameter A1,

this makes the GA method unable to converge before 500 generations, which is the value for

LASTG, the fixed maximum number of generations An important point related to

convergence should be outlined here. Recall from Chapter 4 that the convergence criterion

implemented in the GA_3 algorithm (and, thus, the GAMAIN version) is based on a small

percentage change (1%) in both all gene values and the objective function value of the best-

so-far chromosome. In extreme cases where very little sensitivity of the measured quantity to

some parameters is observed, large variations in these parameters do not affect the objective

function (least-squares error). Therefore, one can understand that in those extreme cases,

which correspond to the present case, the best-so-far chromosome may involve parameters

that vary greatly and, thus, no convergence, according to the criterion used, can be achieved.

The results obtained here are an illustration of the weakness of the convergence criterion

defined for the GA_3. Consequently, it is believed that the solution achieved using Strategy

III is “converged” towards a solution close to the global minimum of the function S3.

The huge condition number of the XTX matrices show how ill-defined the estimation

problem is when the complete K&S model is investigated. Note that the much larger

condition number values obtained here than when applying Strategy I must result from the

increase in magnitude difference between the largest and smallest sensitivity coefficients.

Indeed, the smallest sensitivity coefficient, which is associated with the parameter A1, is

nearly null for the three thermosetting materials.

A comparison of the simulated isothermal cure rate data illustrates the differences

between the sets of final estimates obtained using Strategies I and III (Figs. 6.18 and 6.19,

6.21 and 6.22, and 6.24 and 6.25, for the epoxy, polyester and rubber compound,

respectively). For the three mixtures, one notices that Strategy III provides higher maximum

cure rate values (at the same temperature). In addition, the relative effect of the rate constant

K1 can be seen. The deviation observed in the initial cure rate values as temperature increases

(which is typically encountered when this constant has some effect) is considerable for the
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rubber, significant for the polyester and negligible for the epoxy compound. This is in good

agreement with the information provided by the sensitivity coefficients.

• Strategy II

As with Strategy III, the use of the complete K&S model with Strategy II allowed a

better minimization of the sum-of-squares error. The improvement is mostly significant for

the rubber compound for which the sensitivity of the cure rate to the parameter E1 (Fig. 6.17)

is, indeed, much larger than for the two other compounds (Fig. 6.8 and 6.14). The sensitivity

to the parameter A1 is still very small for the three mixtures, but not negligible any more (Figs.

6.11, 6.14 and 6.17). The sensitivity coefficients are actually all magnified compared to the

plots obtained with the two previous strategies. Note that since the independent variable used

here (v) is the derivative of the one used in Strategy III (α ), the sensitivity coefficients here

are likewise derivatives of the sensitivity coefficient curves shown for Strategy III.

Correlations are still present, as illustrated in Table 6.6 and in Fig. 6.11 for the epoxy case as

an example. One again notices the inability of the GA method to converge, which is due to the

very small sensitivity to the parameter A1. This results in different combinations of the

parameters that provide similar values for the sum-of-squares error. As seen with Strategy III,

this effect illustrates again the weakness of the convergence criterion defined for the GA_3.

Therefore, one should understand that the nonconvergence shown here is related to the

definition of the convergence criterion used for the stopping condition of the GA run. It is

believed that the solution achieved in run 6 for the objective function is near the global

minimum of the function S2.

The ill-conditioness of the estimation problem indicated by the condition number of the

XTX matrices (Table 6.6) is slightly improved compared with Strategy III, apparently because

the magnitudes of the smallest sensitivity coefficient (associated to the parameter A1) are

higher.

In terms of the physical significance of the sets of final estimates obtained using

Strategy II, the simulated isothermal cure rate data show two different behaviors. On one

hand, in both the epoxy and polyester case (Figs. 6.20 and 6.23, respectively), the maximum

values are comprised between the maximum values produced (at the same temperature) by the

simulated data using the two other estimation strategies. On the other hand, in the rubber case

(Fig. 6.26), the maximum values are smaller than when using the two other strategies. Note in

this latter case the larger effect of the rate constant K1 using estimates obtained with Strategy
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III (Fig. 6.25) than with those obtained with Strategy II. Regarding the relevance of using the

constant K1 in the model when applying Strategy II, Fig. 6.20 confirms that it could have been

neglected for the epoxy mixture.

• Comparison of the Three Estimation Strategies

From the analysis conducted previously for the three estimation strategies, one can

observe the following points:

- There is no best strategy regarding correlation. Indeed, sensitivity coefficients were

shown to be linearly dependent for all strategies used.

- With the estimation restricted to four parameters, Strategy I led to better condition

numbers of the XTX matrices and to converged final estimates. However, this approach

could be dangerous because it seems to hide any possible effect of the rate constant K1

although this latter could be needed in the kinetic model. The results obtained for the

rubber mixture supports this conclusion. On the contrary, the use of the two other

strategies enhanced the fact whether the constant K1 should or not appear in the model by,

for instance, showing sensitivity coefficient of the parameter E1 of magnitude

proportional to the effect of K1. In addition, simulated isothermal cure rate data obtained

with both Strategies II and III enable confirmation of the relative effect of K1.

- When estimating for the six parameters, Strategy II magnifies all sensitivity coefficients

compared to Strategy III. Besides, it resulted in a decrease in the magnitude difference

between the largest and smallest coefficient, thus decreasing the condition number.

- Estimates from Strategy III provided higher magnitudes for the simulated isothermal cure

rate data than those from Strategy I (at equal temperatures). Using estimates from

Strategy II, the magnitudes reached by the simulated isothermal cure rate data depended

on the mixture investigated.

These observations provide some insight into the three estimation strategies. In addition,

one may deduce that Strategy I should be avoided. However, these conclusions do not allow

for the determination of the procedure that reproduces experimental data most accurately.

Therefore, with an aim of recommending which estimation strategy should be used, for each

set of final estimates (run 6) obtained for each of the three strategies, the sum-of-squares

errors S1, S2 and S3 (associated with each of the three strategies) were computed, along with

the associated Root-Mean-Square errors. A summary of the results is given in Table 6.7. Note
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that the RMSs are also given as a percent of the maximum increase in the measured variable.

The best estimation strategy is the one that globally minimizes the three objective functions,

e.g. minimizes the sum of RMSs defined by ∑RMS in Table 6.7.

Table 6.7    K&S estimation results – Summary (S1, S2 and S3 are the OLS errors resulting
from application of Strategies I, II, and III, respectively).

* Values of the errors S1, S2 and S3 shown in bold were the output of the runs # 6 in Tables 6.3 to 6.5.

Comparing the values of the sum of RMSs among each other, one can distinguish that

the kinetic parameter values estimated applying Strategy II globally allow for the best errors

in the case of the epoxy and polyester samples. The RMS errors generated are all below four

percent of the corresponding maximum increase in the measured variable. Those values

indicate that the models simulate experimental cures relatively well for both materials.

Figures 6.27 to 6.30 illustrate for these two thermosetting materials the reaction rate and

degree of cure simulated using the K&S estimates obtained applying Strategy II. As one can

see, the K&S model (which could have been simplified in the epoxy case, as discussed in the

results associated with Strategy II) is an appropriate choice for the kinetic characterization of

both resin compounds. The model is not as suitable for the polyester than for the epoxy

compound due to the much higher increase in cure rate developed during curing in that case.

Epoxy Rubber PolyesterUsing
estimates

obtained with
Strategies: →

I II III II II III I II III

S1

(min-1)²
0.07* 0.19 0.24 4.71* 8.52 8.35 18.87* 17.24 380

RMS1

(min-1)
0.0075 0.0123 0.0138 0.0654 0.0880 0.0871 0.0473 0.0452 0.2122

RMS1

(% [ ∆vmax]av)
2.07 3.41 3.81 6.61 8.89 8.80 4.05 3.88 18.19

S2

(min-1)²
0.201 0.07* 0.147 112 14.55* 10.50 35.5 16.13* 22.1

RMS2

(min-1)
0.0127 0.0075 0.0108 0.3189 0.1150 0.0978 0.0649 0.0437 0.0512

RMS2

(% [ ∆vmax]av)
3.51 2.07 3.00 32.25 11.62 9.87 5.56 3.75 4.39

S3 0.85 0.35 0.10* 434 6.74 2.06* 22.9 5.57 2.3*

RMS3 0.0261 0.0167 0.0087 0.6278 0.0782 0.0433 0.0521 0.0257 0.0165

RMS3

(% ∆αmax=1)
2.61 1.67 0.87 62.78 7.82 4.33 5.21 2.57 1.65

∑RMS (%) 8.19 7.15 7.68 101.64 28.33 23.00 14.82 10.20 24.23
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For the rubber compound, the use of estimates from Strategy III gives smaller errors

than the use of those from Strategy II. The RMS errors are substantially larger than for the

epoxy and polyester mixtures and go up to nearly 10% of the maximum increase in cure rate

when considering Strategy II to compute the dependent variable. This confirms the fact that

the K&S model is generally inappropriate for the curing characterization of rubber mixtures

(Garnier, 1990). Note that the results from Strategy II are consistent for the three sum-of-

squares errors, which is not the case for those from Strategy I. The maximum error generated

from using estimates obtained with Strategy II reaches 12% of the maximum increase in the

measured quantity. The reaction rate and degree of cure simulated using both sets of estimates

obtained applying Strategy III and II are compared with the experimental data in Figs. 6.31

and 6.32. One can see in the rubber case the larger discrepancies between simulated and

experimental data than in the epoxy or polyester case.

• Conclusion

This work shows that the estimation strategy associated with the study of the K&S

model should be based on the rate of cure as the measured quantity and on the assumption that

only time and temperature are known (Strategy II). This strategy has demonstrated its

efficiency on the curing characterization of both the epoxy and polyester mixtures, for which

the K&S model seems adequate. Note that when the goal is to perform a numerical simulation

of thermal fields inside a composite material being cured, the procedure used to resolve the

kinetic equation (which is coupled to the energy equation) also follows Strategy II. The

estimation strategy recommended here is, therefore, in good agreement with the latter use of

the estimated kinetic parameters.

In the case of the kinetic characterization of the rubber mixture, the recommended

procedure provided consistent but higher errors than the estimation strategy based on the

degree of cure measurements. This might indicate that the K&S model is not appropriate.

Regarding the significance of using the complete K&S model, this study reveals that the

rate constant K1 could have been neglected with nearly no lost in accuracy for the epoxy

compound. In other words, a model based on the separation of the dependent variables T and

α could have been used for this compound. In this particular type of model, the one from

Jarny et al. (1993) has been shown to take into account small deviations encountered in cure

rate initial values as temperature increases. As this was the case for the polyester compound,
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the model from Jarny et al. is therefore anticipated to be suitable for both the epoxy and the

polyester kinetic characterization. Because this is a simpler model than the K&S form, it is

thought to be a potential alternative.

6.5.2 Inhibition Time Estimation

Recall that the objective here was to minimize the sum-of-squares, Stind, defined in Eq.

(6.13) for the determination of the parameters Tref and B governing the inhibition time model.

In performing the minimization of Stind several combinations of Tref and B provided the same

optimal value for the objective function. One GA run was performed only to generate a set of

optimal solutions. Figures 6.33 to 6.35 show for the three thermosetting materials the linear

regressions obtained between the two parameters. Then, using one possible solution,

simulations of inhibition time and temperature were generated and are illustrated in Figs. 6.36

to 6.38. The values for the inhibition times calculated for all experiments associated with the

three resins are given in Table 6.8. One can see that the inhibition models are quite good for

both the epoxy and the polyester compounds. The average error between experimental and

calculated induction periods is only 6.6 s and 12.6 s for the first and second resin,

respectively. In the case of the rubber compound, this error attains an average value of 44.4 s.

The major source of error is the difference between the experimental and calculated inhibition

time for the experiment at 15°C/min. It is believed that the experimental data contains a large

bias. Furthermore, in all experiments, it is possible that several chemical reactions are taking

place within the sample before curing actually starts, causing then the model not to be

adequate and thus inducing biases attached to the determination of the experimental inhibition

time. Those effects have been underlined by Garnier (1990).
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Figure 6.33    Linear regression between the inhibition time model parameters
- Epoxy compound.
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Figure 6.34    Linear regression between the inhibition time model parameters
- Polyester compound.
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Figure 6.35    Linear regression between the inhibition time model parameters
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Figure 6.36    Simulation of inhibition time vs. temperature – Epoxy compound.
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Figure 6.37    Simulation of inhibition time vs. temperature – Polyester compound.
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Figure 6.38    Simulation of inhibition time vs. temperature – Rubber compound.
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Table 6.8    Inhibition time estimation results.

Epoxy Rubber Polyester
VT

(°C/min)
tind exp.

(min)
tind calc.

(min)
VT

(°C/min)
tind exp.

(min)
tind calc.

(min)
VT

(°C/min)
tind exp.

(min)
tind calc.

(min)
2.5 24.99 24.98 2.5 36.27 36.26 3 12.97 11.88
5 14.42 14.17 5 19.77 19.94 5 7.65 7.70

7.5 10.22 10.13 7.5 13.33 14.02 7 5.08 5.79
10 8.05 7.96 10 11.3 10.92 10 4.02 4.27

12.5 6.44 6.60 12.5 9.27 8.98 12 3.37 3.65
15 5.60 5.66 15 5.40 7.66 15 2.77 3.01
(∆tind)average (min)

(s)
0.11
6.6

(∆tind)average (min)
(s)

0.74
44.4

17 2.52 2.70

20 2.27 2.35
25 2.10 1.93
30 1.72 1.65
35 1.48 1.44
40 1.19 1.28
45 1.20 1.15
50 1.05 1.05
55 1.00 0.97
60 0.93 0.90

(∆tind)average (min)
(s)

0.21
12.6

6.5.3 Conclusion

Overall, the results illustrate that the proposed GAMAIN program is an effective tool in

the simultaneous determination of kinetic parameters involved in both the K&S model and the

associated inhibition time model. The fact that the GA did not converge when the six kinetic

parameters of the K&S model were simultaneously estimated (Strategies II and III) should be

taken care of by defining a more suitable convergence criterion; that is, a criterion adapted to

the extreme cases of very small magnitude for the lowest sensitivity coefficient, and large

magnitude difference between the highest and lowest sensitivity coefficients. The definition

of such adapted convergence criterion is one of the recommendations of this research.

An important advantage for the use of GAs in the application presented here is its

attribute to overcome difficulties due to correlation(s) inherent to the models investigated.
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CHAPTER 7

Conclusions and Recommendations

The focus of this study was on the development of systematic and reliable

methodologies for both Experimental Design Optimization (EDO) for thermal property

estimation, and Simultaneous Parameter Estimation (SPE) for thermophysical characterization

of composite materials. With an aim to overcoming the limits of commonly used techniques

in EDO and SPE, parametric studies and gradient-based methods, respectively, Genetic

Algorithms (GAs) were investigated for use as a strategy for both areas of interest. The

overall objectives were on developing a robust GA-based methodology allowing for practical

applications and general use of EDO and SPE. This work was associated with a dual US-

French PhD program between the Mechanical Engineering Department of Virginia Tech

(VT), USA, and the Laboratoire de Thermocinétique de l’ISITEM (LTI) of the University of

Nantes, France.

Note that it is not intended to assert that the applications reported in this dissertation

were thoroughly analyzed in terms of EDO and SPE theoretical considerations. Rather, the

emphasis was on illustrating the potential of GAs on various applications. All optimization

and estimation problems treated involved the maximization of the D-optimality criterion, and

the minimization of the Ordinary Least-Squares (OLS) estimator, respectively. The following

provides summary and conclusions of the work accomplished for this dual program in terms

of the Genetic Algorithms developed and the thermophysical characterizations performed for

different composite materials. Then, other thermophysical characterizations of various

material types, which have been performed using the Genetic Algorithms developed in the

current work, are reported. Finally, the overall conclusions are specified, and some

recommendations are suggested.
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7.1 Genetic Algorithms

Three different real-encoding GAs were developed over the course of this work, each

time improving the last version over the previous one. The first algorithm developed was a

standard GA featuring a Basic Elitist strategy (BEGA). The second algorithm implemented an

Extended Elitist strategy (EEGA). Finally, the third algorithm (GA_3) benefited from the

knowledge gained in the GA field, as, for instance, more appropriate genetic operators

(particularly for the real-encoding used) were applied. GA_3 was designed as a general-

purpose computer program constructed in two parts, an invariant and an adaptation part,

following the structure of the program CONDUCT developed by Patankar (1991). Two

versions were developed. The GAMAIN version was written for the analysis of any

optimization/estimation problems for which a mathematical direct model is to be provided by

the user. Its performance were illustrated on the optimization of a highly multimodal

mathematical function. The second version, GACONDUCT, combines the GA_3 with a

finite-difference program based on an extension of the program CONDUCT. This version

allows for any optimization/estimation problems in the field of conduction and duct flow heat

transfer in two-dimensional rectangular or cylindrical geometry.

The results obtained using the GA_3 showed that this algorithm performed very well.

However, the weakness of the convergence criterion was stressed in estimation applications in

which the sensitivity to some parameters was very small.

7.2 Thermophysical Characterization of Composite Materials

Towards the appraisal of using GAs as both EDO and SPE methodologies, two

optimization/estimation test problems previously solved in the literature were first

investigated, using successively the BEGA and EEGA (Garcia and Scott, 1998; Garcia et al.,

1998). These problems involved the thermal characterization of anisotropic carbon/epoxy

composite materials. The experiments analyzed included one- and two-dimensional optimal

designs performed by Moncman (1994) and Hanak (1995), respectively. In the one-

dimensional design (Moncman, 1994), sensor location and heating time were optimized for

the simultaneous estimation at ambient temperature of the thermal conductivity through the

fiber plane, kx, and the volumetric heat capacity, C. In the two-dimensional design (Hanak,

1995), four parameters involving sensor location, heating time and heating area, were
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optimized in experiments used to simultaneously estimate at ambient temperature both

thermal conductivities perpendicular and parallel to the fibers, kx and ky, and the volumetric

heat capacity, C. In both EDOs, the BEGA and EEGA were found to outperform the

traditionally used parametric study. The simple one-dimensional estimation problem provided

a good basis to gain confidence in using the EEGA to perform SPE. The following conclusion

can be made regarding the two-dimensional estimation results: because of strong correlations

between the thermal conductivities kx and ky, the modified Box-Kanemasu method was found

not to converge (even though three sensors and initial estimates of the unknown properties

very close to their “true” values were used); whereas the EEGA allowed the simultaneous

estimation of the three thermal properties, kx, ky and C, from the use of one sensor.

A study was also conducted to evaluate the effects of the optimality criterion used for

the experimental design on the accuracy of the estimated thermal properties. The one- and

two-dimensional experimental designs were optimized using the A-, D-, and E-criteria. Based

on these optimal designs, simulated data were generated using an analytical mathematical

model of the design. The thermal properties were then estimated from the simulated data from

each experimental design, and the confidence intervals of the resulting estimates were

compared. Based on the obtained results, D-optimality was confirmed to provide the highest

accuracy overall. A further analysis was performed to show the benefit from optimizing

experimental designs. From this analysis, the following conclusions were drawn: 1) optimality

criteria based on the D-criterion and on the condition number of the Fisher information matrix

(XTX) are equivalent; 2) minimum correlation does not imply maximum accuracy; and 3)

large magnitude difference between the sensitivity coefficients has more negative effect on

the accuracy of the estimates than correlation between the parameters

A variety of advanced EDO and SPE problems for the thermal characterization of

anisotropic carbon/epoxy composite materials were then investigated using the

GACONDUCT general-purpose program. As part of an industrial contract, the thermal

properties kx, ky and C, were simultaneously estimated over the temperature range [30-150°C]

(Garcia et al., 1999a). Taking advantage of the estimation problem similarities with the two-

dimensional transient heat transfer analysis performed by Hanak (1995), the experimental

setup was based on the same basic experimental design, and the same nondimensional optimal

experimental parameters were used. The experiments were conducted at different initial

temperatures ranging from 30 to 150°C. The properties were estimated as constants and linear
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regressions were generated to express the properties as functions of temperature. The results

agreed very well with both a one-dimensional analysis performed apart on the same materials,

and previous published results for similar composites.

This study was then used as a basis to investigate the optimization of the experimental

design for the simultaneous estimation over the range [25-150°C] of the thermal properties kx,

ky and C, as temperature-dependent, and the contact resistance between the composite sample

and the aluminum components used in the setup (Rc). The dependence on temperature was

characterized by piece-wise linear functions with temperature, using two parameters for both

thermal conductivities and four parameters for the volumetric heat capacity. Nine

thermophysical parameters (kx25, kx150, ky25, ky150, C25, C75, C110, C150, and Rc) were therefore

defined to be simultaneously estimated. The experimental parameters optimized were the

location of the sensor placed on the composite, the heating length over the sample, the heating

and cooling times according to a specific heating law, which was designed as a double heat

flux step, and the overall total experimental time. The optimal setting was verified to provide

the best information against two non-optimal designs. The nine thermophysical parameters

were then simultaneously estimated from simulated data with noise generated from the

optimal design. The estimates were found to be in adequacy with the initial values used to

generate the simulated data.

The last application dealing with the thermal characterization of anisotropic

carbon/epoxy composites involved the simultaneous estimation over the range [100-130°C] of

seven thermophysical parameters (kx, ky100, ky130, C100, C115, C130, and Rc) associated with the

processing of composite materials in two-dimensional RTM (Resin Transfer Molding) mold

(Garcia et al., 1999b). This work was performed in cooperation with D. Lecointe (1999) as

part of his PhD project at the LTI. The dependence on temperature for both the thermal

conductivity parallel to the fibers, ky, and the volumetric heat capacity, C, was characterized

by piece-wise linear functions with temperature using two and three parameters for ky and C,

respectively. The results obtained were compared with those from Lecointe who used a

parametric study to estimate ky and Rc, assuming both kx and C to be known. The

simultaneous estimation of the seven thermophysical parameters was found to provide a set of

estimates that allowed for a better fit of all experimental data from the different

thermocouples than using the set of estimates from the parametric study.

From the applications described above, the following general conclusions can be drawn:

1) the properties kx, ky and C, were found to increase with temperature; and 2) the thermal
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conductivity parallel to the fiber plane, ky, was found to be larger and to increase more with

temperature than the transverse to the fiber plane, kx.

The analysis of SPE problems dealing with the kinetic characterization of the curing of

composite matrix materials, namely thermosetting materials, was another specific objective of

this research. The model from Kamal and Sourour (1973) was investigated for the prediction

of the curing process of three thermosetting resins, an epoxy, a polyester and a rubber mixture

(Garcia et al., 1999c). The GAMAIN general-purpose program was used for the simultaneous

estimation of the six parameters involved in the kinetic model. Such an estimation has not

previously been attempted. The estimation problem was formulated according to three

strategies that differed from the measured quantity considered (rate of cure or degree of cure)

and/or the experimental input (time and temperature or degree of cure and temperature). For

the kinetic characterization to be complete, a model for the determination of the inhibition

time was constructed based on the model described by Bailleul (1997). The following

conclusion was drawn from the obtained results: the estimation strategy associated with the

study of the Kamal and Sourour model should be based on the rate of cure as the measured

quantity and on the assumption that only time and temperature are known.

7.3 Other Thermophysical Characterizations Using GAs

The GAs developed in this work have been applied to various thermophysical

characterizations in cooperation with other researchers. In these studies, the use of GAs was

necessitated from the existence of strong correlations that were found to make gradient-based

methods not to converge. Note that these studies were not described in this dissertation. Only

brief overviews are given below and references are provided for more in-depth descriptions.

The EEGA was used for the simultaneous estimation of four thermal and radiative

properties of an insulative foam material (polystyrene) (Guynn, 1996; Garcia et al., 1998).

This study was realized in cooperation with J. Guynn as part of his master’s thesis in the

Mechanical Engineering Department at VT. The properties included the (effective) thermal

conductivity, volumetric heat capacity and extinction coefficient of the material, and the

volumetric heat capacity of the heater. The properties were estimated as constants at ambient
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temperature from a one-dimensional transient analysis of combined conduction and radiation

heat transfer.

The EEGA was also used for the thermal analysis of a complex aerospace structure

which involved composite/honeycomb panels (Hanuska, 1998; Hanuska et al., 1999). One-

and two-dimensional models were optimized for the simultaneous estimation of up to eight

thermal properties of the different components forming the structure. The properties were

estimated as constants at different temperature levels.

The estimation methodology featured in GAMAIN is currently being used for the

thermophysical characterization of thin layers (Orain et al., 1999). Here, the coating material

thermal conductivity as well as two contact resistances are to be estimated for different values

of the coating thickness. This study is realized in cooperation with S. Orain as part of his PhD

at the LTI.

7.4 Overall Conclusions

This study has provided demonstrative examples that showed that both areas of interest

in this research, EDO and SPE, can definitely benefit from the robustness and efficiency of

GAs. In the EDO field, the use of GAs allows for a reliable approach that outperforms the

parametric study as the number of design variables increases. In the SPE field, the most

tangible artifact of this work is the successful simultaneous estimation of correlated

parameters. The use of GAs actually finds all its rationale for such ill-conditioned estimation

problems. In addition, by enabling the SPE of several parameters, the use of GAs implies

considerable experimental and time cost savings, along with the possibility to avoid bias

induced by setting presumably known parameters to nominal values. However, compared to

traditional parameter estimation inverse methods, GAs present a highly time consuming

nature, stressing thus the use of these algorithms as the alternative when the traditional inverse

methods do not work.
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7.5 Recommendations

This research represents a large step forward using a probabilistic GA-based method for

the thermophysical characterization of composite materials. The following recommendations

are made to improve and broaden the scope of this research.

• In SPE applications, when there was very little sensitivity of the measured quantity to one

parameter, the GA run would generally not converge, e.g. the run would terminate

because the maximum allowable number of generations was reached. It is therefore

necessary to define a convergence criterion that is appropriately weighted by the

sensitivity to the parameters. This could also apply for EDO applications.

• The Confidence Intervals (CIs) of the final estimates should include uncertainties in all

other “presumably” known parameters that are set to nominal values. The subroutine that

computes the CIs according to Eq. (3.16), could be adequately modified to translate such

uncertainties (which, for instance, could be given by the user as a percentage of the

nominal value) into uncertainties in the unknown parameters. If no functional between

unknown and known parameters exist, then, an approximate mathematical relation could

be defined.

• Efforts could be taken for the analysis of EDO for the most accurate estimation of kinetic

parameters. Ultimately, the goal would be to be capable of performing the unique EDO

that would allow for the most accurate simultaneous estimation of both the thermal

properties and the kinetic parameters.

• The GA_3 genetic scheme is by no means exhaustive. Other GAs could be used but more

particularly, it is believed that the combination of the GA_3 scheme with a local approach

could be very powerful. The local approach could be performed using either a gradient-

based method or a zeroth-order method like, for instance, the sequential simplex method

[which is also derivative free calculation and is therefore not limited by correlated

parameters (Haftka and Gurdal, 1992)]. The use of such hybrid GA would exploit the
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advantages of both the GA and the local methods and seems a promising strategy for

solving complex SPE problems with interesting computation cost. The hybridization

between both methods could be either sequentially or in batch.
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APPENDIX A

Mechanisms of a Standard Simple Genetic Algorithm

This appendix provides, as an introductory tutorial, a step-by-step description of the
mechanisms behind the genetic operator variants of the standard simple GA presented in Fig.
4.2. For this purpose, a simple function optimization example is used. One will see that the
mechanisms of such a standard simple GA are simple, involving nothing more complex than
copying chromosomal strings and swapping partial strings. This example is an extension of an
example found in Goldberg’s book (1989).

Function optimization example: maximizing the function g(x) = x2, where x is an integer
and 0 ≤ x ≤ 31.

Figure A.1    Function g vs. x.

Encoding Scheme
To obtain numbers between 0 and 31, a 5-bit binary chromosome is used to code the integer x
(ngene = 5). (Recall that in base 2 arithmetic, 00000 and 11111 decodes to the base 10 number
0 and 31, respectively; for instance, 11111 is decoded to 1⋅24+1⋅23+1⋅22+1⋅21+1⋅20 = 31.)

Initialization
The initial population of arbitrary size ns = 4 is randomly generated through 20 successive
flips of an unbiased coin (head = 1, tail = 0):

⇒  01101          11000          01000          10011

Evaluation
The chromosome are decoded to base 10 numbers in the solution space. The fitness fi is
chosen as the objective function value given by g(x). Results of the evaluation and ranking
processes are summarized in Table A.1. The average fitness of the initial population is 293.

Table A.1    Summary of evaluation and ranking processes over the initial population.

String # Chromosome x g(x) Rank Selection probability
1 01101 13 169 3 5.5 %
2 11000 24 576 1 49.2 %
3 01000 8 64 4 14.4 %
4 10011 19 361 2 30.9 %

0 3 1x

0

5 0 0

1 0 0 0

g(x)
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Selection
Four parents are selected by pairs for breeding using the proportionate selection scheme. The
selection probability of a chromosome is equal to its fitness divided by the total fitness of the
population. The selection probabilities of the chromosomes in the current population are: p1 =
49.2 %, p2 = 30.9 %, p3 = 14.4 % and p4 = 5.5 %, as given in Table A.1. The mating pool of
the next generation is selected by spinning the weighted roulette wheel shown in Fig. A.2,
where each chromosome has a roulette wheel slot sized in proportion to its selection
probability.

Figure A.2    Weighted roulette wheel with slots sized according to
the chromosomes’ fitness of the initial population.

To “numerically” spin the roulette wheel, one calculates the cumulated probability, qi, defined

by q pi i

i

= ∑
1

. Then, one draws a random number, R, uniformly distributed in [0,1]. The

chromosome j is selected if qj-1 < R ≤ qj.

Actual simulation of this process results in selecting successively the chromosomes 3 and 1
(1st pair), and 1 and 2 (2nd pair); e.g. chromosomes 2 and 3 receiving one copy in the mating
pool, chromosome 1 receiving two copies, and chromosome 4 receiving no copy, as shown in
Fig. A.2. Note that comparing this with the expected number of copies (ns⋅pi), one obtains
what one should expect: the best get more copies, the average stay even, and the worst die off.

Crossover
Both pairs of parents are crossed according to the single-point crossover with a probability of
1 (no parent can be cloned). First, a crossover point is randomly chosen in [1, ngene-1] and the
partial strings of the two chromosomes are swapped. Say the crossing site is 4 for the first pair
and 2 for the second, and the resulting children can be checked in Table A.2.

Table A.2    Summary of crossover process over the parent population, and mutation,
evaluation and ranking processes over the children population.

Current
Rank #

Parents Crossing site Children Mutation x g(x) Rank

3 P1 = 01101 4 C1 = 01100 01101 13 169 4
1 P2 = 11000 4 C2 = 11001 - 25 625 2
1 P3 = 11000 2 C3 = 11011 - 27 729 1
2 P4 = 10011 2 C4 = 10000 - 16 256 3

 1
× 2

49.2%

14.4%
 3
× 130.9%

 2
× 1

5.5%

4
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Mutation
This operator is performed on a bit-by-bit basis, with a low probability (usually between
0.001 and 0.01 for binary encoding). Actual simulation of this process indicates that the 5th bit
of Parent 1 is changed from 0 to 1 (Table A.2).

Replacement
Basic elitism is applied and the new population consists of the 1st chromosome of the previous
generation, e.g. chromosome 11000, and the (ns-1) best children, e.g. C3, C2, and C4. Table
A.3 displays the new ranked population.

Table A.3    New ranked population at generation 1.

The average fitness of the generation 1 population is 546.5. One can note how both the
maximal and average fitness have improved in the new population. From this, one start to see
how the mechanics behind this standard simple genetic algorithm can allow achievement of
better performance through generations.

Remarks
1) Standard simple GAs using binary encoding, single-point crossover and binary mutation

are robust algorithms, but they are almost never the best algorithms to use for any
problem.

2) Using real-number encoding, a chromosome would only consist of one gene for the
variable x. Crossover and mutation operators adapted to real-number encoding should be
applied (such as the arithmetic crossover and the jump mutation used in the GA_3 which
was defined in Chapter 4).

String # Chromosome x g(x) Rank
1 11000 24 576 3
2 11011 27 729 1
3 11001 25 625 2
4 10000 16 256 4



219

APPENDIX B

GAMAIN.FOR Program and GACOMMON_MAIN.FOR Subroutine

This program is based on the genetic algorithm GA_3 described in Chapter 4. It is structured in
analogy with the program CONDUCT developed by Patankar (1991), e.g. it consists of an adapt
and an invariant part. The following provides the invariant part that contains the general calculation
scheme. The GAMAIN version was written for the analysis of experimental design optimization
and/or simultaneous parameter estimation problems for which a mathematical direct solution is to
be provided by the user. The default values of the key parameters that control the program are
specified in the subroutine DEFAULT.
Appendices C and G provide two adapt subroutines that work with GAMAIN.
The GACOMMON_MAIN subroutine includes all variable declaration. It is provided at the end of
GAMAIN.

c******************************************************
PROGRAM GAMAIN

c  Numerical optimizer based on GAs
c
c  Needs a user subroutine (adaptation part)
c  - Sandrine Garcia,
c  Laboratoire de Thermocinetique de l'ISITEM, France, 29/9/98
c
c  HP77 or PC
c******************************************************
INCLUDE 'gacommon_main.for'
c******************************************************

CALL DEFLT
CALL INIT
CALL SETVAR
CALL READY   !start calculations

c --- Generate initial generation + compute OF
CALL INIGEN

10 CONTINUE

c ------ Generation (= parent population) analysis ----------------------
CALL GENANA
IF (KSTOPF.NE.0) GOTO 20

c ------ Breeding process ------------------------------------------
CALL BREED

c ------ Elitism process + compute OF of new generation --------------
CALL ELITISM

GOTO 10

20 CONTINUE

c ----- Results analysis ------------------------------------------
1000  CALL RESULT

STOP 'GAMAIN done'
END

C______________________________________________________
C______________________________________________________

SUBROUTINE DEFAULT

c Default subroutine SG 29/09/98
c HP77 or PC

c******************************************************
INCLUDE 'gacommon_main.for'
c******************************************************

ENTRY DEFLT

COME HERE TO SET THE DEFAULT VALUES

c set initial clock time at start of run
TIME0=SECNDS(0.0)
c set cpu time for each generation loop to 0
CPUG=TIME0
KCPU=0

c set parameter adimensionalization marker
DO J=1,NPMAX
FACTADIM(J)='LIN'
ENDDO

c set iteration and convergence markers to 0
NCRITERG=0
ITERG=0
KSTOPF=0
NFEVAL=0
OFFLINE=0.D0
ONLINE=0.D0
KCONT=0  !=1 or 2 to apply constraints (to be defined by the user)
NCONTMIN=0 !# of times parmin constraint is applied
NCONTMAX=0 !# of times parmax constraint is applied

c set user markers to 0 (!associated w/ ...)
KPAR=0    !=1 to calculate OF for a particular parameter
KXPRINT=0 !=1 to print sensitivity coefficient; (to be used w/
KPAR=1)
KPRINT=0  !=1 to print T; to be used w/ KPAR=1
KSENS=0   !becomes 1 when sensof called for sensitivity analysis
!or when KETA=2
KMINMAX=0 !=0/1 associated w/ min/max of the OF
KETA=0    !compute ETA only.
c If KETA>1 : iterations on ETA and compute RES=ETA-YARR
!KETA=1 to perform estimation (OLS)
SIGMA=1.D0 !standard deviation for OLS estimation
DO I=1,NEXPMAX
IDATA0(I)=1   !number of the first data to use for OLS estimation
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ENDDO
NEXP=1     !number of experiments analyzed for OLS estimation
JEXPCI=1   !experiment # chosen as a basis to compute the Xi & CI
c in estimation run
!KETA=2 to perform Optimization (D,A or E); HAVE TO define
NPEST in INIT
OPTCRIT='D' !D-opt, max OF=determinant of the Fisher
information matrix
!A-opt, max OF=trace of the Fisher information matrix
!E-opt, max OF=min eigenvalue of the Fisher information matrix
KSS=0   !=1 to study the steady state ETA distribution; to be
used w/ KPAR=1
!   to determine the SS ETAmax required to adimensionalize the XI
w/" & KETA=2
ETAMAX=1.D0
ETAMAXP=1.D0 !ratio ETAMAX/correct adim -
!to be used in COMPXTXOPT to compute the OPTCRIT w/ KETA=2
KTN=0     !=1 to determine the total optimal experimental time
when Dm+ becomes ~const.
KYSIM=0   !=1 to generate simulated data

c if KPRINT=1, the following applies:
HEADER='USE THE CHARACTER VARIABLE HEADER TO
SPECIFY A PROBLEM TITLE'
TITLE='                  '
PRINTF='ETAPRINT.DAT'
KOUT =1
c if KOUT=3 IU1=6,IU2=7 both on PRINTF and screen
c if KOUT=2 IU1=IU2=7=PRINTF
c if KOUT=1 IU1=IU2=6=on screen
KSCREEN=0 !=1 to print 'ITERG=...' on screen

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

ENTRY READY
c
IF(KOUT.NE.1.AND.KETA.NE.0) OPEN(UNIT=7,FILE=PRINTF)
IU1=6
IF(KOUT.EQ.2) IU1=7
IU2=7
IF(KOUT.EQ.1) IU2=6
IUXI=8
IF (KXPRINT.EQ.1.AND.KETA.NE.0)
OPEN(UNIT=IUXI,FILE='XIPRINT.DAT')
IUEIG=9
IF (KXPRINT.EQ.1.AND.KETA.EQ.2)
1 OPEN(UNIT=IUEIG,FILE='EIGPRINT.DAT')

create initial output
KSTOP=0
DO 20 IUNIT=IU1,IU2
WRITE(IUNIT,5) HEADER
5 FORMAT(1X,64('-')/1X,A64/1X,64('-')//)

IF (NS.GT.NSMAX.OR.NP.GT.NPMAX.OR.
1 NEXP.GT.NEXPMAX) THEN WRITE(IUNIT,10)
10 FORMAT(1X,'EXECUTION TERMINATED DUE TO
ONE(OR MORE) OF THE FOLLOWING REASON(S)'/2X,
2'1) NS GREATER THAN NSMAX'/2X,
3'2) NP GREATER THAN NPMAX'/2X,
4'3) NEXP GREATER THAN NEXPMAX'/2X)
KSTOP=1
ENDIF

DO JEXP=1,NEXP
IF (LASTETA(JEXP).GT.LASTETAMAX) THEN
WRITE(IUNIT,11)
11 FORMAT(1X,'EXECUTION TERMINATED DUE TO THE
FOLLOWING REASON'/2X,
2'LASTETA(JEXP) GREATER THAN LASTETAMAX'/)
KSTOP=1
ENDIF
ENDDO
20 CONTINUE

IF(KSTOP.NE.0) STOP 'Error in READY'

RETURN
C*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY PRINT

create printout for the values of dependent variables
DO 100 IUNIT=IU1,IU2
IF (KPRINT.NE.0) THEN
WRITE(IUNIT,40) TITLE
40 FORMAT(//1X,6(1H*),3X,A18,3X,6(1H*)/9X,20(1H-))
IBEG=1
JBEG=1
IEND=1
JEND=1
IREP=(IEND-IBEG+8)/8  !print 8 i data columns;
careful, also need to change line (MIN:7)+line (7I9)+line (P8E9.2)
DO 70 K=1,IREP
INCR =MIN(7,IEND-IBEG)
ISTOP=IBEG+INCR
DO 60 J=JBEG,JEND,1
WRITE(IUNIT,50)(ETA,I=IBEG,ISTOP)
50 FORMAT(1X,2X,3X,1P8E12.4)
60 CONTINUE
IBEG=ISTOP+1
70 CONTINUE
ENDIF
100 CONTINUE

RETURN
END
C______________________________________________________

SUBROUTINE COMPOF(N,ARR)

c compute the Objective Functions of an array of individuals
c OF=arr(iterid,np+1)
c HP77 or PC - SG 29/09/98

c******************************************************
INCLUDE 'gacommon_main.for'
c******************************************************
DIMENSION
ARR(NSMAX,NPMAX+1),XTXOPT(NPMAX,NPMAX),
EIG(NPMAX)
c------------------------------------------------------------------------------

DO 100 ITERID=1,N

IF (KPAR.EQ.1) THEN
WRITE(*,*)'PAR(J)?, NP=',NP
WRITE(*,*)
READ(*,*)(PAR(J),J=1,NP)
WRITE(*,*)
WRITE(*,*)'KADIM? Note that 0=w/o dimensions and 1=w/ dim.'
WRITE(*,*)
READ(*,*)KADIM
IF (KADIM.EQ.1) THEN
GOTO 15
ELSE
DO J=1,NP
ARR(1,J)=PAR(J)
ENDDO
ENDIF
ENDIF

c denormalize the genes = dimensionalize the parameters
DO 10 J=1,NP
IF (FACTADIM(J).EQ.'LIN') THEN
PAR(J)=(PARMAX(J)-PARMIN(J))*
ARR(ITERID,J)+PARMIN(J)
ELSE
PAR(J)=10.D0**(DLOG10(PARMAX(J)/PARMIN(J))*ARR(ITER
ID,J)+DLOG10(PARMIN(J)))
ENDIF
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10 CONTINUE

c if OLS estimation (KETA=1) or experimental design optimization
(KETA=2) then
c reset OF value and iteration on experiment #
15 PAR(NP+1)=0.D0
JEXP=1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
IF (KETA.EQ.1) THEN
ITERETA=0
c start the iteration or time-step loop
20 CONTINUE
CALL MODELETA
IF (KSS.EQ.1.OR.ITERETA.EQ.0) GOTO 30
IF (ITERETA.GE.IDATA0(JEXP)) THEN
c compute residu at ITERETA associated w/ time t
RES=YARR(JEXP,ITERETA)-ETA
c compute S=sum of least-square errors
PAR(NP+1)=PAR(NP+1)+(RES/SIGMA)**2
ENDIF
30 ITERETA=ITERETA+1
IF (ITERETA.GT.LASTETA(JEXP)) THEN
JEXP=JEXP+1
IF (JEXP.GT.NEXP) GOTO 80
ITERETA=0
ENDIF
GOTO 20

ELSE
IF (KETA.EQ.2) THEN
JEXP=JEXPCI
KSENS=1
CALL MODELXI
ITERETA=1
IF (KTN.EQ.1) OPTOFMOD=0.D0 !searching for the total exp time
40 CONTINUE
CALL COMPXTXOPT(XTXOPT)
CALL JACOBI(XTXOPT,NPEST,NPEST,EIG)
CALL RANGER(NPEST,EIG)
SUMEIG=0.D0
PRODEIG=1.D0
DO 50 J=1,NPEST
SUMEIG=SUMEIG+EIG(J)
PRODEIG=PRODEIG*EIG(J)
50 CONTINUE

IF (OPTCRIT.EQ.'D') THEN
OPTOF=PRODEIG
ELSE
IF (OPTCRIT.EQ.'A') THEN
OPTOF=SUMEIG
ELSE
OPTOF=EIG(1)
ENDIF
ENDIF

IF (KTN.EQ.0) THEN
IF (OPTOF.GT.PAR(NP+1)) PAR(NP+1)=OPTOF
ELSE
RATIO=ABS((OPTOF-OPTOFMOD)/(OPTOFMOD+1.D-30))
IF (ITERETA*PASDT(JEXP).GT.TIMEHEAT.AND.
RATIO.LE.1.D-4) THEN
PAR(NP+1)=ITERETA*PASDT(JEXP)  !optimal total exp time
GOTO 80
ELSE
OPTOFMOD=OPTOF
ENDIF
ENDIF

IF (KXPRINT.EQ.1) WRITE(IUEIG,60)ITERETA*PASDT(JEXP),
OPTOF,(EIG(J),J=1,NPEST)
60 FORMAT(F16.3,11(1X,E16.8))

70 ITERETA=ITERETA+1

IF (ITERETA.GT.LASTETA(JEXP)) THEN
IF (KTN.EQ.1) PAR(NP+1)=ITERETA*PASDT(JEXP)
GOTO 80
ENDIF

GOTO 40

ELSE  !KETA=0
CALL MODELETA
PAR(NP+1)=ETA
ENDIF
ENDIF
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

80 ARR(ITERID,NP+1)=PAR(NP+1)
NFEVAL=NFEVAL+1
ONLINE=ONLINE+ARR(ITERID,NP+1)

c come here only for a particular chromosome
IF (KPAR.EQ.1) THEN
IF (KSS.EQ.1) THEN
WRITE(99,'(A8,F13.6)')'ETAMAX=',ETA
WRITE(*,'(A8,F13.6)')'ETAMAX=',ETA
STOP 'ETAMAX calculated w/ KSS=1 & KETA=1'
ENDIF
c results of the particular set of thermal properties
JBEG=1
JEND=NP+1
JREP=(JEND-JBEG+10)/10
DO 90 JWRITE=1,JREP
INCRJ=MIN(9,JEND-JBEG)
JSTOP=JBEG+INCRJ
WRITE(99,'(/10(1X,E16.8)/)')(PAR(J),J=JBEG,JSTOP)
WRITE(*,'(/10(1X,E10.3)/)')(PAR(J),J=JBEG,JSTOP)
JBEG=JSTOP+1
90 CONTINUE
IF (KETA.EQ.1) CALL COMPCI
WRITE(*,*)
STOP 'Particular set of genes analyzed'
ENDIF

100 CONTINUE

RETURN
END
C______________________________________________________

SUBROUTINE COMPYSIM(STDDV)

c generate simulated temperatures by adding random normal errors
to calculated ETA
c HP77 or PC - SG 11/3/98

c******************************************************
INCLUDE 'gacommon_main.for'
c******************************************************
REAL*8 DATA(20000)
COMMON NDAT
c------------------------------------------------------------------------------
c CAREFUL, if NEXP>1 is used, the user must define for which
experiment J(=1) the Yarr(1,i), timeexp(1,i) and Xi(i,np) must be
determined

CALL RANDOM(DATA,LASTETA(1),STDDV)

ITERETA=0

c start the iteration or time-step loop
10 CONTINUE
CALL MODELETA
IF (ITERETA.EQ.0) THEN
WRITE(1,20)
20 FORMAT(//2X,'ITERETA',8X,'TIME',9X,'ETA',8X,
'YARR(1,ITERETA)',/)
ENDIF
IF (ITERETA.GT.LASTETA(1)) GOTO 30



222

c  Addition of random errors to calculated numerical Temperatures
YARR(1,ITERETA)=ETA+DATA(ITERETA)
TIMEEXP(1,ITERETA)=TIME
WRITE(2,'(2X,I4,3(3X,F11.5))')ITERETA,TIME,ETA,YARR(1,IT
ERETA)
ITERETA=ITERETA+1
GOTO 10
30 RETURN
END
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

SUBROUTINE RANDOM(DATA,NETAEND,STDDV)

c  See Numerical Recipes by Press, Flannery, Teukolsky and
Vetterling, Cambridge Press, 1986 about page 192
c  Modified by J.V. Beck, Michigan State University

c******************************************************
PARAMETER(PI=3.14159265,NBIN=1000)
REAL*8 STDDV,DATA(20000)
COMMON NDAT
c------------------------------------------------------------------------------

WRITE(*,*)'enter the seed number (-)'
READ(*,*)idum
NDAT=NETAEND+NBIN

rhon=0.0
rhod=0.0
do 20 idumi=1,1
data(1)=gasdev(idum)*STDDV
do 10 i=2,NETAEND
data(i)=gasdev(idum)*STDDV
rhon=rhon+data(i-1)*data(i)
rhod=rhod+data(i)*data(i)
10 continue
rho=rhon/rhod
call moment(data,i-1,ave,adev,sdev,var,rho)
20 continue

write(*,*)'                     Values of quantities'
write(*,'(1x,T29,A,T42,A/)')' Sample  ',' Expected'
write(*,'(1x,A,T25,2F12.4)')'Mean :',ave,0.0
write(*,'(1x,A,T25,2F12.4)')'Average Deviation :',adev,STDDV
write(*,'(1x,A,T25,2F12.4)')'Standard Deviation :',sdev,STDDV
varth=stddv*stddv
write(*,'(1x,A,T25,2F12.4)')'Variance :',var,varth
write(*,'(1x,A,T25,F12.4)')'Est. Correlation Coeff.',rho
write(*,*)'Average deviation comes from use of absolute values'

write(2,*)'                     Values of quantities'
write(2,'(1x,T29,A,T42,A/)')' Sample  ',' Expected'
write(2,'(1x,A,T25,2F12.4)')'Mean :',ave,0.0
write(2,'(1x,A,T25,2F12.4)')'Average Deviation :',adev,STDDV
write(2,'(1x,A,T25,2F12.4)')'Standard Deviation :',sdev,STDDV
varth=stddv*stddv
write(2,'(1x,A,T25,2F12.4)')'Variance :',var,varth
write(2,'(1x,A,T25,F12.4)')'Est. Correlation Coeff.',rho
write(2,*)'Average deviation comes from use of absolute values'

return
END
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

SUBROUTINE MOMENT(DATA,N,AVE,ADEV,SDEV,VAR,RHO)

c******************************************************
REAL*8 DATA(20000)
c------------------------------------------------------------------------------

If (n.le.1) pause 'n must be at least 2'
s=0.
sd=0.
sn=0.

do 10 j=1,n
s=s+data(j)
if (j.eq.1) goto 10
sn=sn+data(j)*data(j-1)
sd=sd+data(j)+data(j)
10 continue
ave=s/n
adev=0.
var=0.
do 20 j=1,n
s=data(j)-ave
adev=adev+abs(s)
p=s*s
var=var+p
20 continue
adev=adev/n
var=var/(n-1)
sdev=sqrt(var)
rho=sn/sd

return
END
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

FUNCTION RAN1(IDUM)

c  Returns uniformly distributed numbers between 0 and 1

c******************************************************
DIMENSION R(97)
PARAMETER(M1=259200,IA1=7141,IC1=54773,RM1=3.8580247E-6)
PARAMETER(M2=134456,IA2=8121,IC2=28411,RM2=7.4373773E-6)
PARAMETER(M3=243000,IA3=4561,IC3=51349)
DATA IFF/0/
c------------------------------------------------------------------------------

if (idum.lt.0.or.IFF.eq.0) then
IFF=1
IX1=MOD(IC1-idum,M1)
IX1=MOD(IA1*IX1+IC1,M1)
IX2=MOD(IX1,M2)
IX1=MOD(IA1*IX1+IC1,M1)
IX3=MOD(IX1,M3)
do 10 j=1,97
IX1=MOD(IA1*IX1+IC1,M1)
IX2=MOD(IA2*IX2+IC2,M2)
R(j)=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RM1
10 continue
idum=1
endif

IX1=MOD(IA1*IX1+IC1,M1)
IX2=MOD(IA2*IX2+IC2,M2)
IX3=MOD(IA3*IX3+IC3,M3)
j=1+(97*IX3)/M3

if (j.gt.97.or.j.lt.1) pause
ran1=R(j)
R(j)=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RM1

return
END
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

FUNCTION GASDEV(IDUM)

c  Uses Box-Muller transformation fron uniform distribution to
normal distribution with unit standard deviation

c******************************************************
DATA ISET/0/
c------------------------------------------------------------------------------

if (ISET.eq.0) then
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10 v1=2.*ran1(idum)-1.
v2=2.*ran1(idum)-1.
R=v1**2+v2**2
if (R.ge.1..or.R.eq.0.) goto 10
fac=sqrt(-2.*LOG(R)/R)
gset=v1*fac
gasdev=v2*fac
ISET=1
else
gasdev=gset
ISET=0
endif

return
END
C______________________________________________________

SUBROUTINE GABODY

c HP77 or PC - SG 25/09/98

c******************************************************
INCLUDE 'gacommon_main.for'
c******************************************************
DIMENSION CHILDRAND(NSMAX,NPMAX+1)
C------------------------------------------------------------------------------

ENTRY INIGEN

c initialize the random generator
CALL RMARIN(ISEED1,ISEED2)

c create the initial normalized population
CALL INITPOP

c if the rank-based selection is applied, determine
c the fitness and probability of breeding of each parent
IF (SELECT.EQ.'R') CALL RANKFIT

c compute OF of initial pop
CALL COMPOF(NS,CP)

RETURN
c******************************************************

ENTRY GENANA

c rank the population at generation iterg
CALL RANKNS

c compute OFavg of the population at generation iterg
CALL OFAVE

c check if convergence criterion is met
CALL CHECKCONV

RETURN
c******************************************************

ENTRY BREED

c make ns children
DO 20 ICHILD=1,NS/2

IF (SELECT.EQ.'R') THEN
c select 2 parents according to rank selection
CALL SELRANK(ICHILD)
ELSE
c select 2 parents according to tournement selection
CALL SELTOURMT
ENDIF

c make 2 children by crossing the 2 selected parents
CALL CROSS

c mutate the child according to jump mutation

CALL MUTJUMP

c mutate the child according to jump AND creep mutations
IF (MUT.EQ.'JC') CALL MUTCREEP

DO 10 J=1,NP
CC(ICHILD,J)=CHILD(1,J)
CC(ICHILD+NS/2,J)=CHILD(2,J)
10 CONTINUE

20 CONTINUE

IF (KCONT.NE.0) CALL CHECKCONT(NS,CC)

RETURN
c******************************************************

ENTRY ELITISM

c compute OF of children population
CALL COMPOF(NS,CC)

c apply basic elitism
IF (ELIT.EQ.'B') THEN

c keep best parent by destroying last child made -arbitrarily
DO 30 I=2,NS
DO 30 J=1,NP+1
CP(I,J)=CC(I-1,J)
30 CONTINUE

ELSE
IF (ELIT.EQ.'SS') THEN

c apply SS elitism
c  1. compute OF of children population that mutated
IF (MUT.EQ.'J') THEN
NMUT=NMUTJUMP
ELSE
NMUT=NMUTJUMP+NMUTCREEP
ENDIF

IF (KCONT.NE.0) CALL CHECKCONT(NMUT,CHILDMUT)

CALL COMPOF(NMUT,CHILDMUT)

c  2. combine both children populations and rank the combined
children population
NTOT=NS+NMUT
DO 60 J=1,NP+1
DO 40 I=1,NS
CHILDTOT(I,J)=CC(I,J)
40 CONTINUE
DO 50 I=1,NMUT
CHILDTOT(I+NS,J)=CHILDMUT(I,J)
50 CONTINUE
60 CONTINUE
CALL RANK2NS

c  3. keep the best parents
NPKEPT=INT(NS*(1.D0-PR))
IF (NPKEPT.EQ.0) NPKEPT=1 !to preserve at least the best parent
~ B elitism

IF (KILLTWIN.EQ.'N') THEN

c  4. replace a fraction of the parent population with ns*pr children
70 CONTINUE
DO 80 I=NPKEPT+1,NS
DO 80 J=1,NP+1
CP(I,J)=CHILDTOT(I-NPKEPT,J)
80 CONTINUE

ELSE
c  5. kill the twins; note that NTOT will change
CALL KTWINS
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IF (NTWINS.LE.(NPKEPT+NMUT)) THEN
GOTO 70
ELSE

NCHILDRAND=NS-NPKEPT-NTOT
WRITE(99,'(A25,I3/)')'!!!Need random children: ',NCHILDRAND
DO 100 I=1,NCHILDRAND
DO 90 J=1,NP
CHILDRAND(I,J)=URAND()
90 CONTINUE
CHILDRAND(I,NP+1)=0.D0
100 CONTINUE

CALL COMPOF(NCHILDRAND,CHILDRAND)

DO 110 I=NPKEPT+1,NPKEPT+NTOT
DO 110 J=1,NP+1
CP(I,J)=CHILDTOT(I-NPKEPT,J)
110 CONTINUE
DO 120 I=NPKEPT+NTOT+1,NS
DO 120 J=1,NP+1
CP(I,J)=CHILDRAND(I-NPKEPT-NTOT,J)
120 CONTINUE
ENDIF

ENDIF
ELSE
WRITE(*,*)'SR elitism is not set up yet!'
ENDIF
ENDIF

RETURN
c******************************************************

ENTRY RESULT

c list the final parent population and measure the GA performance
WRITE(99,130)
130 FORMAT(/75('=')/,2X,'RESULTS'/50('-')/)

WRITE(99,'(/A36)')'Elapsed CPU time since start of run:'
WRITE(99,'(1X,A8,F10.1/)')'CPU (s)=',KCPU*86400-
TIME0+SECNDS(0.0)

IF (KSTOPF.EQ.2) THEN
WRITE(99,'(A28)')'Stopped because iterg=lastg!'
ELSE
WRITE(99,'(A34,I4)')'Convergence criterion met @ iterg=',iterg
ENDIF

c denormalize all genes
DO 150 I=1,NS
DO 150 J=1,NP
IF (FACTADIM(J).EQ.'LIN') THEN
CP(I,J)=(PARMAX(J)-PARMIN(J))*CP(I,J)+PARMIN(J)
ELSE
CP(I,J)=10**(DLOG10(PARMAX(J)/PARMIN(J))*
1 CP(I,J)+DLOG10(PARMIN(J)))
ENDIF
150 CONTINUE

c write the final population to the ouput file
JEND=NP+1
JBEG=1
JREP=(JEND-JBEG+10)/10
DO 160 I=1,NS
JBEG=1
DO 160 JWRITE=1,JREP
INCRJ=MIN(9,JEND-JBEG)
JSTOP=JBEG+INCRJ

WRITE(10,'(I4,2X,10(E16.8,1X))')I,(CP(I,J),J=JBEG,JSTOP)
JBEG=JSTOP+1
160 CONTINUE

WRITE(99,170)

170 FORMAT(//2X,'*** Measure of the GA performance ***')

WRITE(99,'(//A28/)')'1) "BEST SO FAR" cp(1,np+1):'
JBEG=1
DO 180 JWRITE=1,JREP
INCRJ=MIN(9,JEND-JBEG)
JSTOP=JBEG+INCRJ
WRITE(99,'(10(1X,E16.8)/)')(CP(1,J),J=JBEG,JSTOP)
WRITE(*,'(/10(1X,E10.3)/)')(CP(1,J),J=JBEG,JSTOP)
JBEG=JSTOP+1
180 CONTINUE

c EST run: calculate 95% CI of best design+compute correlation
matrix
IF (KETA.EQ.1) THEN
DO 200 J=1,NP+1
PAR(J)=CP(1,J)
200 CONTINUE
CALL COMPCI
ENDIF

WRITE(99,'(//A26/)')'2) "OFF LINE" convergence:'
WRITE(99,*)'=moyenne courante des bests sur ITERG+1
generations'
WRITE(99,*)'~limite de la convergence'
OFFLINE=OFFLINE/(ITERG +1)
WRITE(99,'(/1X,E16.8,2X,A8,I4)')OFFLINE,'ITERG+1=',ITERG+1
WRITE(99,'(//A25/)')'3) "ON LINE" convergence:'
WRITE(99,*)'=moyenne de toutes les evaluations sur NFEVAL eval.'
WRITE(99,*)'~facon dont la convergence est atteinte'
ONLINE=ONLINE/NFEVAL
WRITE(99,'(/1X,E16.8,2X,A7,I6)')ONLINE,'NFEVAL=',NFEVAL

WRITE(99,'(/A18,2(1X,I4))')'NCONTMIN/NCONTMAX=',NCON
TMIN,NCONTMAX

WRITE(99,210)
210   FORMAT(//2X,'*** Statistical analyses on final Nst ***'/)
c perform statistical calculations on 5 best
IF (NS.GE.5) CALL STATIST(5)
c perform statistical calculations on 10 best
IF (NS.GE.10) CALL STATIST(10)
c perform statistical calculations on NS best
CALL STATIST(NS)

WRITE(99,'(/A45)')'4a) Elapsed CPU time since gen. loop stopped:'
IF (SECNDS(0.0).GT.CPUG) THEN
WRITE(99,'(/1X,A24,F10.1)')'CPU (s) /Sub. RESULT/ =',
SECNDS(CPUG)
ELSE
WRITE(99,'(/1X,A24,F10.1)')'CPU (s) /Sub. RESULT/ =',
86400.-CPUG+SECNDS(0.0)
KCPU=KCPU+1
ENDIF

WRITE(99,'(/A40)')'4b) Elapsed CPU time since start of run:'
WRITE(99,'(/1X,A8,F10.1)')'CPU (s)=',KCPU*86400-
TIME0+SECNDS(0.0)

CLOSE(99)
CLOSE(10)
CLOSE(11)
CLOSE(12)

RETURN
END
C______________________________________________________

SUBROUTINE GAINV

c includes invariant "entry subroutines"  dealing with a GA
c HP77 or PC - SG 11/3/98

c******************************************************
INCLUDE 'gacommon_main.for'
c******************************************************
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COMMON/PROBGA/P(NSMAX),IPARENT(2)
DIMENSION IPLACE(2)
c------------------------------------------------------------------------------

ENTRY RANKFIT

c determine the probability of breeding of a population of size ns
c based on a ranked fitness
P(1)=2.D0/(NS*1.D0+1.D0)

DO 10 I=2,NS
FI=(NS+1-I)*1.D0
PROBI=2.D0*FI/(NS*1.D0*(NS*1.D0+1.D0))
P(I)=P(I-1)+PROBI
10 CONTINUE

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY SELRANK(ICHILD)

c select a pair of parents according to a modified rank selection
c P1 comes from the top half
c P2 is selected applying the roulette wheel mechanism

IPARENT(1)=ICHILD
PLACE=URAND()

DO 20 J=2,NS
IPARENT(2)=J-1
IF (PLACE.LT.P(J-1)) GOTO 30
20 CONTINUE

IPARENT(2)=NS

30 RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY SELTOURMT

c select a pair of parents according to the tournament selection

DO 60 I=1,2

DO 50 J=1,2
IPLACE(J)=INT(URAND()*NS)+1
50 CONTINUE

IF (URAND().LE.PT) THEN
IPARENT(I)=MIN(IPLACE(1),IPLACE(2))
ELSE
IPARENT(I)=MAX(IPLACE(1),IPLACE(2))
ENDIF

60 CONTINUE

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY CROSS

c create two complement children according to a modified crossover
operator with probability pc
c this arithmetic crossover operator takes into account the distance
between both parents

DO 70 J=1,NP

IF (URAND().LE.PC) THEN
CHILD(1,J)=0.5D0*(CP(IPARENT(1),J)+CP(IPARENT(2),J))
+DABS(CP(IPARENT(1),J)-CP(IPARENT(2),J))*URAND()
+0.001D0*URAND()
ELSE
CHILD(1,J)=CP(IPARENT(1),J)
ENDIF

IF (URAND().LE.PC) THEN
CHILD(2,J)=0.5D0*(CP(IPARENT(1),J)+CP(IPARENT(2),J))
-DABS(CP(IPARENT(1),J)-CP(IPARENT(2),J))*URAND()
-0.001D0*URAND()
ELSE
CHILD(2,J)=CP(IPARENT(2),J)
ENDIF

70 CONTINUE

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY MUTJUMP

c mutate each child according to jump mutation with the probabiblity pm

DO 90 I=1,2
DO 90 J=1,NP

IF (URAND().LE.PMJ) THEN
NMUTJUMP=NMUTJUMP+1

c store current child version
IF (ELIT.EQ.'SS') THEN
DO 80 K=1,NP
CHILDMUT(NMUTJUMP+NMUTCREEP,K)=CHILD(I,K)
80 CONTINUE
ENDIF
CHILD(I,J)=URAND()
ENDIF

90 CONTINUE
RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY MUTCREEP

c mutate each child according to creep mutation with probabiblity pm

DO 110 I=1,2
DO 110 J=1,NP

IF (URAND().LE.PMC) THEN
NMUTCREEP=NMUTCREEP+1

c store current child version
IF (ELIT.EQ.'SS') THEN
DO 100 K=1,NP
CHILDMUT(NMUTJUMP+NMUTCREEP,K)=CHILD(I,K)
100 CONTINUE
ENDIF

IF (URAND().LE.0.5D0) THEN
CHILD(I,J)=CHILD(I,J)*1.05D0
ELSE
CHILD(I,J)=CHILD(I,J)*0.95D0
ENDIF
ENDIF

110 CONTINUE

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY KTWINS

c kill any twins in the total children population

NTOTI=NTOT
DO 140 J=1,NTOT-1
REF=CHILDTOT(J,NP+1)
DO 140 I=J+1,NTOT
120 CONTINUE

IF (CHILDTOT(I,NP+1).EQ.REF) THEN
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IF (I.EQ.NTOT) THEN
NTOT=NTOT-1
IF (J.EQ.NTOT) GOTO 150
ELSE
DO 130 K=1,NTOT-1
DO 130 L=1,NP+1
CHILDTOT(K,L)=CHILDTOT(K+1,L)
130 CONTINUE
NTOT=NTOT-1
GOTO 120
ENDIF
ENDIF
140 CONTINUE

NTWINS=NTOTI-NTOT
150 CONTINUE

RETURN
END
C______________________________________________________

SUBROUTINE JACOBRANG

c HP77 or PC

c******************************************************
INCLUDE 'gacommon_main.for'
c******************************************************
PARAMETER (nmax=10)
DIMENSION
a(npmax,npmax),d(npmax),v(npmax,npmax),b(nmax),z(nmax)
c------------------------------------------------------------------------------

ENTRY JACOBI(A,N,NPP,D)

c See Numerical recipes p 460
c Computes all eigenvalues and eigenvectors of a real symmetric
matrix a, which is of size c n by n, stored in a physical npp by npp
(npp=n) array. On output, elements of a above the diagonal are
c destroyed. d returns the eigenvalues of a in its first n elements. v is
a matrix with the same c logical and physical dimensions as a,
whose columns contain, on output, the normalized c eigenvectors of
a. nrot returns the number of Jacobi rotations that were required.

do 12 ip=1,n
do 11 iq=1,n
v(ip,iq)=0.
11 continue
v(ip,ip)=1.
12 continue
do 13 ip=1,n
b(ip)=a(ip,ip)
d(ip)=b(ip)
z(ip)=0.
13 continue
nrot=0
do 24 i=1,50
sm=0.
do 15 ip=1,n-1
do 14 iq=ip+1,n
sm=sm+abs(a(ip,iq))
14 continue
15 continue
if (sm.eq.0.) return
if (i.lt.4) then
tresh=0.2*sm/n**2
else
tresh=0.
endif
do 22 ip=1,n-1
do 21 iq=ip+1,n
g=100.*abs(a(ip,iq))
if ((i.gt.4).and.(abs(d(ip))+g.eq.abs(d(ip))).and.
+ (abs(d(iq))+g.eq.abs(d(iq)))) then
a(ip,iq)=0.
else if (abs(a(ip,iq)).gt.tresh) then

h=d(iq)-d(ip)
if (abs(h)+g.eq.abs(h)) then
t=a(ip,iq)/h
else
theta=0.5*h/a(ip,iq)
t=1./(abs(theta)+sqrt(1.+theta**2))
if (theta.lt.0.) t=-t
endif
c=1./sqrt(1+t**2)
s=t*c
tau=s/(1.+c)
h=t*a(ip,iq)
z(ip)=z(ip)-h
z(iq)=z(iq)+h
d(ip)=d(ip)-h
d(iq)=d(iq)+h
a(ip,iq)=0.
do 16 j=1,ip-1
g=a(j,ip)
h=a(j,iq)
a(j,ip)=g-s*(h+g*tau)
a(j,iq)=h+s*(g-h*tau)
16 continue
do 17 j=ip+1,iq-1
g=a(ip,j)
h=a(j,iq)
a(ip,j)=g-s*(h+g*tau)
a(j,iq)=h+s*(g-h*tau)
17 continue
do 18 j=iq+1,n
g=a(ip,j)
h=a(iq,j)
a(ip,j)=g-s*(h+g*tau)
a(iq,j)=h+s*(g-h*tau)
18 continue
do 19 j=1,n
g=v(j,ip)
h=v(j,iq)
v(j,ip)=g-s*(h+g*tau)
v(j,iq)=h+s*(g-h*tau)
19 continue
nrot=nrot+1
endif
21 continue
22 continue
do 23 ip=1,n
b(ip)=b(ip)+z(ip)
d(ip)=b(ip)
z(ip)=0.
23 continue
24 continue
pause 'too many iterations in jacobi'

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY RANGER(N,D)

c Sort eigenvalues by straight insertion

DO 33 J=2,N
RX=D(J)
DO 31 K=J-1,1,-1
IF (D(K).LE.RX) GOTO 32
D(K+1)=D(K)
31 CONTINUE
K=0
32 D(K+1)=RX
33 CONTINUE

RETURN
END
C______________________________________________________

SUBROUTINE POPINV
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c includes invariant "entry subroutines" dealing with a population
c HP77 or PC - SG 11/3/98; update 4/06/98
c******************************************************
INCLUDE 'gacommon_main.for'
c******************************************************
COMMON/PROBPOPINV/OFAVG
DIMENSION ARRMIN(NPMAX+1),ARRMAX(NPMAX+1),
ARRINT(NPMAX+1),
RMEAN(NPMAX+1),DEV(NPMAX+1),CI(NPMAX+1)
c------------------------------------------------------------------------------

ENTRY INITPOP

c create an initial normalized [0,1] parent population
DO 20 I=1,NS
DO 10 J=1,NP
CP(I,J)=URAND()
10 CONTINUE
CP(I,NP+1)=0.D0
20 CONTINUE

c set children arrays in gacommon to 0.d0
DO 40 J=1,NP+1
BEST(J)=0.D0
DO 30 I=1,NS
CHILDTOT(I,J)=0.D0
CHILDTOT(I+NS,J)=0.D0
CHILDMUT(I,J)=0.D0
30 CONTINUE
40 CONTINUE

NCRITERG=0

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY RANKNS

c sort the array CP(NS,NP+1) into numerical order, by straight insertion
c EST run: 1st = OFmin (searching for the smallest value of the least
square error)
c OPT run: 1st = OFmax (searching for the largest value of the
optimality criterion)

DO 90 I=2,NS

IF (KMINMAX.EQ.0) THEN   !associated w/ OF minimization
DO 50 J=1,NP+1
ARRMIN(J)=CP(I-1,J)
50  CONTINUE
IMIN=I-1
DO 70 J=I,NS
IF (CP(J,NP+1).LT.ARRMIN(NP+1)) THEN
DO 60 K=1,NP+1
ARRMIN(K)=CP(J,K)
60 CONTINUE
IMIN=J
ENDIF
70 CONTINUE
DO 80 K=1,NP+1
ARRINT(K)=CP(I-1,K)
CP(I-1,K)=ARRMIN(K)
CP(IMIN,K)=ARRINT(K)
80 CONTINUE

ELSE  !associated w/ OF maximization
DO 51 J=1,NP+1
ARRMAX(J)=CP(I-1,J)
51 CONTINUE
IMAX=I-1
DO 71 J=I,NS
IF (CP(J,NP+1).GT.ARRMAX(NP+1)) THEN
DO 61 K=1,NP+1
ARRMAX(K)=CP(J,K)
61 CONTINUE
IMAX=J

ENDIF
71  CONTINUE
DO 81 K=1,NP+1
ARRINT(K)=CP(I-1,K)
CP(I-1,K)=ARRMAX(K)
CP(IMAX,K)=ARRINT(K)
81 CONTINUE
ENDIF
90 CONTINUE

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY OFAVE

OFAVG=0.D0
DO 100 I=1,NS
OFAVG=OFAVG+CP(I,NP+1)
100 CONTINUE

OFAVG=OFAVG/(NS*1.D0)

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY RANK2NS

c sort the array CHILDTOT(2NS,NP+1) into numerical order, by
straight insertion / SEE RANKNS

DO 160 I=2,NTOT

IF (KMINMAX.EQ.0) THEN   !associated w/ OF minimization
DO 120 J=1,NP+1
ARRMIN(J)=CHILDTOT(I-1,J)
120 CONTINUE
IMIN=I-1
DO 140 J=I,NTOT
IF (CHILDTOT(J,NP+1).LT.ARRMIN(NP+1)) THEN
DO 130 K=1,NP+1
ARRMIN(K)=CHILDTOT(J,K)
130 CONTINUE
IMIN=J
ENDIF
140 CONTINUE
DO 150 K=1,NP+1
ARRINT(K)=CHILDTOT(I-1,K)
CHILDTOT(I-1,K)=ARRMIN(K)
CHILDTOT(IMIN,K)=ARRINT(K)
150  CONTINUE

ELSE   !associated w/ OF maximization
DO 121 J=1,NP+1
ARRMAX(J)=CHILDTOT(I-1,J)
121 CONTINUE
IMAX=I-1
DO 141 J=I,NTOT
IF (CHILDTOT(J,NP+1).GT.ARRMAX(NP+1)) THEN
DO 131 K=1,NP+1
ARRMAX(K)=CHILDTOT(J,K)
131 CONTINUE
IMAX=J
ENDIF
141 CONTINUE
DO 151 K=1,NP+1
ARRINT(K)=CHILDTOT(I-1,K)
CHILDTOT(I-1,K)=ARRMAX(K)
CHILDTOT(IMAX,K)=ARRINT(K)
151 CONTINUE
ENDIF

160 CONTINUE

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
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ENTRY CHECKCONV

c reset ncriter enabling to check convergence between the previous
and c actual generation

NCRITER=0

IF (ITERG.EQ.0) THEN
c write the initial population to the ouput file
JEND=NP
JBEG=1
JREP=(JEND-JBEG+10)/10
DO 166 I=1,NS
DO J=1,NP
IF (FACTADIM(J).EQ.'LIN') THEN
PAR(J)=(PARMAX(J)-PARMIN(J))*CP(I,J)+PARMIN(J)
ELSE
PAR(J)=10**(DLOG10(PARMAX(J)/PARMIN(J))*CP(I,J)+
DLOG10(PARMIN(J)))
ENDIF
ENDDO
JBEG=1
DO 165 JWRITE=1,JREP
INCRJ=MIN(9,JEND-JBEG)
JSTOP=JBEG+INCRJ
WRITE(10,'(I4,2X,10(E16.8,1X))')I,
(PAR(J),J=JBEG,JSTOP),CP(I,NP+1)
JBEG=JSTOP+1
165 CONTINUE
166 CONTINUE
ENDIF

IF (ITERG.LE.MING) GOTO 175

c compare first chromosome with ex-best
DO 170 J=1,NP+1
IF ((DABS(CP(1,J)-BEST(J))/(DABS(CP(1,J))+10.D0**(-10.))).
LE.CRITERION) NCRITER=NCRITER+1
170 CONTINUE

c copy new best
175 DO 180 J=1,NP+1
BEST(J)=CP(1,J)
180 CONTINUE
OFFLINE=OFFLINE+BEST(NP+1)

c write GA performance
DO 190 J=1,NP
IF (FACTADIM(J).EQ.'LIN') THEN
PAR(J)=(PARMAX(J)-PARMIN(J))*BEST(J)+PARMIN(J)
ELSE
PAR(J)=10**(DLOG10(PARMAX(J)/PARMIN(J))*BEST(J)+
DLOG10(PARMIN(J)))
ENDIF
190 CONTINUE
PAR(NP+1)=BEST(NP+1)

JBEG=1
JEND=NP+1
JREP=(JEND-JBEG+10)/10
DO 191 JWRITE=1,JREP
INCRJ=MIN(9,JEND-JBEG)
JSTOP=JBEG+INCRJ
WRITE(10,'(I4,10(1X,E15.8)/)')ITERG,(PAR(J),J=JBEG,JSTOP)
IF (KSCREEN.EQ.1)
WRITE(*,'(10(1X,E15.8)/)')(PAR(J),J=JBEG,JSTOP)
JBEG=JSTOP+1
191 CONTINUE

OFFL=OFFLINE/(ITERG+1)
ONL=ONLINE/NFEVAL

IF (SECNDS(0.0).GT.CPUG) THEN
RCPUG=SECNDS(CPUG)
ELSE
RCPUG=86400.-CPUG+SECNDS(0.0) !86400.sec/day

KCPU=KCPU+1
ENDIF
CPUG=SECNDS(0.0)

WRITE(11,195)ITERG,OFAVG,PAR(NP+1),OFFL,ONL,NFEVAL
,RCPUG
195 FORMAT(I4,4(1X,E15.6),2X,I10,1X,F10.1)

WRITE(12,'(6(1X,I7))')ITERG,NMUTJUMP,NMUTCREEP,NTWINS,
NCONTMIN,NCONTMAX

c if convergence reached for the best chromosome, increment criterg
c which enables to check convergence for the following lastcriterg e.
IF (NCRITER.EQ.NP+1) THEN
NCRITERG=NCRITERG+1

c if lastcriterg is satisfied, run is complete
IF (NCRITERG.EQ.LASTCRITERG) THEN
KSTOPF=1
GO TO 220
ENDIF

ELSE
c if convergence not reached for the best chromosome, reset ncriterg
NCRITERG=0
ENDIF

200 IF (ITERG.EQ.LASTG) THEN
KSTOPF=2
ELSE

c if convergence not reached for the best chromosome, reset other
parameters
ITERG=ITERG+1
IF (KSCREEN.EQ.1) PRINT*,'ITERG=',ITERG

NMUTJUMP=0
NMUTCREEP=0
NTWINS=0
ENDIF

220 RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY STATIST(N)

c perform some statistical calculations on n final chromosomes

RN=N*1.D0

DO 230 J=1,NP+1
RMEAN(J)=0.D0
DEV(J)=0.D0
230 CONTINUE

WRITE(99,'(A2,I4)')'N=',N

c determine the range of the final values taken by each chromosome
DO 240 J=1,NP
PARMIN(J)=CP(1,J)
PARMAX(J)=CP(1,J)
240 CONTINUE

DO 250 I=2,N
DO 250 J=1,NP
IF (CP(I,J).LT.PARMIN(J)) PARMIN(J)=CP(I,J)
IF (CP(I,J).GT.PARMAX(J)) PARMAX(J)=CP(I,J)
250 CONTINUE

WRITE(99,260)
260 FORMAT(/'minimum PARMIN(1:NP) and maximum
PARMAX(1:NP) values:')
DO 270 J=1,NP
WRITE(99,'(2(1X,E16.8))')PARMIN(J),PARMAX(J)
270 CONTINUE
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c compute the means of the n optimal chromosomes:
DO 290 J=1,NP+1
DO 280 I=1,N
RMEAN(J)=RMEAN(J)+CP(I,J)
280 CONTINUE
RMEAN(J)=RMEAN(J)/RN
290 CONTINUE

WRITE(99,300)
300 FORMAT(/'RMEAN(CP(1:N,NP+1)):')
JBEG=1
JEND=NP+1
JREP=(JEND-JBEG+10)/10
DO 310 JWRITE=1,JREP
INCRJ=MIN(9,JEND-JBEG)
JSTOP=JBEG+INCRJ
WRITE(99,'(10(1X,E16.8))')(RMEAN(J),J=JBEG,JSTOP)
JBEG=JSTOP+1
310 CONTINUE

c compute the standard deviations:
DO 330 J=1,NP+1
DO 320 I=1,N
DEV(J)=DEV(J)+(CP(I,J)-RMEAN(J))**2
320 CONTINUE
DEV(J)=SQRT(DEV(J)/(RN-1.D0))
330 CONTINUE

WRITE(99,340)
340 FORMAT(/'STANDARD DEVIATIONS:')
JBEG=1
DO 350 JWRITE=1,JREP
INCRJ=MIN(9,JEND-JBEG)
JSTOP=JBEG+INCRJ
WRITE(99,'(10(1X,E16.8))')(DEV(J),J=JBEG,JSTOP)
JBEG=JSTOP+1
350 CONTINUE

c compute the 95% confidence intervals for the mean values:
IF (N.LE.5)  TCOEF=2.776D0
IF (N.EQ.10) TCOEF=2.262D0
IF (N.EQ.25) TCOEF=2.064D0
IF (N.EQ.30) TCOEF=2.045D0
IF (31.LE.N.AND.N.LE.41) TCOEF=2.042D0-0.0021D0*(RN-31.D0)
IF (41.LT.N.AND.N.LE.61) TCOEF=2.021D0-0.00105D0*
(RN-41.D0)
IF (61.LT.N.AND.N.LE.121) TCOEF=2.D0-3.333D-4*(RN-61.D0)
IF (N.GT.121) TCOEF=1.96D0

DO 360 J=1,NP+1
CI(J)=TCOEF*DEV(J)/SQRT(RN)
360 CONTINUE

WRITE(99,370)
370 FORMAT(/'95% CONFIDENCE INTERVALS:')
JBEG=1
DO 380 JWRITE=1,JREP
INCRJ=MIN(9,JEND-JBEG)
JSTOP=JBEG+INCRJ
WRITE(99,'(10(1X,E16.8)//)')(CI(J),J=JBEG,JSTOP)
JBEG=JSTOP+1
380 CONTINUE

RETURN
END
C______________________________________________________

SUBROUTINE RMARIN(IJ,KL)

c HP77 or PC

C This is the initialization routine for the random number generator
RANMAR(). NOTE: The seed variables can have values between:    0
<= IJ <= 31328
0 <= KL <= 30081

The random number sequences created by these two seeds are of
sufficient length to complete an entire calculation with. For example,
if several different groups are working on different parts of the same
calculation, each group could be assigned its own IJ seed. This
would leave each group with 30000 choices for the second seed.
That is to say, this random number generator can create 900 million
different subsequences – with each subsequence having a length of
approximately 10^30.
C
Use IJ = 1802 & KL = 9373 to test the random number generator.
The subroutine RANMAR should be used to generate 20000 random
numbers. Then display the next six random numbers generated
multiplied by 4096*4096. If the random number generator is
working properly, the random numbers should be:
6533892.0  14220222.0  7275067.0
6172232.0  8354498.0   10633180.0

c******************************************************
INCLUDE 'gacommon_main.for'
c******************************************************
DIMENSION u(97)
LOGICAL TEST
COMMON/RASET1/U,C,CD,CM,I97,J97,TEST
c------------------------------------------------------------------------------
c
TEST = .FALSE.

IF( IJ .LT. 0  .OR.  IJ .GT. 31328  .OR.
KL .LT. 0  .OR.  KL .GT. 30081 ) THEN
WRITE (*, *) ' The first random number seed must have a'
WRITE (*, *) ' value between 0 and 31328.'
WRITE (*, *)
WRITE (*, *) ' The second seed must have a value between 0'
WRITE (*, *) ' and 30081.'
STOP
ENDIF

I = MOD(IJ/177, 177) + 2
J = MOD(IJ    , 177) + 2
K = MOD(KL/169, 178) + 1
L = MOD(KL,     169)

DO 2 II = 1, 97
S = 0.0
T = 0.5
DO 3 JJ = 1, 24
M = MOD(MOD(I*J, 179)*K, 179)
I = J
J = K
K = M
L = MOD(53*L+1, 169)
IF (MOD(L*M, 64) .GE. 32) THEN
S = S + T
ENDIF
T = 0.5 * T
3 CONTINUE
U(II) = S
2 CONTINUE

C = 362436.0 / 16777216.0
CD = 7654321.0 / 16777216.0
CM = 16777213.0 /16777216.0

I97 = 97
J97 = 33

TEST = .TRUE.

RETURN
END
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

c Random number generator proposed by George Marsaglia
c in Florida State University Report: FSU-SCRI-87-50

REAL*8 FUNCTION URAND()
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c******************************************************
IMPLICIT REAL*8 (a-h, o-z)
REAL*8 U(97),C,CD,CM
INTEGER I97,J97
LOGICAL TEST
COMMON /RASET1/U,C,CD,CM,I97,J97,TEST
c------------------------------------------------------------------------------

IF(.NOT.TEST) THEN
WRITE (*, *) 'urand error #1: must call the initialization
+ routine rmarin before calling urand.'
STOP
ENDIF

UNI = U(I97) - U(J97)
IF( UNI .LT. 0.0 ) UNI = UNI + 1.0
U(I97) = UNI
I97 = I97 - 1
IF(I97 .EQ. 0) I97 = 97
J97 = J97 - 1
IF(J97 .EQ. 0) J97 = 97
C = C - CD
IF( C .LT. 0.0 ) C = C + CM
UNI = UNI - C
IF( UNI .LT. 0.0 ) UNI = UNI + 1.0

URAND = UNI

RETURN
END
C______________________________________________________

SUBROUTINE SENSOF

c HP77 or PC - SG modified 29/09/98

c******************************************************
INCLUDE 'gacommon_main.for'
c******************************************************
COMMON/PROBMATP/XTX(NPMAX,NPMAX)
DIMENSION P(NPMAX,NPMAX),RI(NPMAX,NPMAX),
AUG(NPMAX,NPMAX+1),XTXOPT(NPMAX,NPMAX),SUMXT
X(NPMAX,NPMAX),EIG(NPMAX),XTXMAT(NPMAX,NPMAX)
c------------------------------------------------------------------------------

ENTRY COMPXTXOPT(XTXOPT)

c called in OPT run only for optimality criterion computation
c compute matrix SUMXTX

IF (ITERETA.EQ.1) THEN
DO 10 J=1,NPEST
DO 10 K=1,NPEST
SUMXTX(J,K)=0.D0
10 CONTINUE
ENDIF

DO 20 J=1,NPEST
DO 20 K=1,NPEST
SUMXTX(J,K)=SUMXTX(J,K)+XI(ITERETA,J)*XI(ITERETA,K)
20 CONTINUE

DO 30 K=1,NPEST
DO 30 J=1,NPEST
IF (KTN.EQ.0) THEN
XTXOPT(J,K)=SUMXTX(J,K)*1.D0/(ETAMAXP**2*ITERETA)
!OF+
ELSE
XTXOPT(J,K)=SUMXTX(J,K)*1.D0/(ETAMAXP**2/PASDT(JEX
P)) !OF+modified to find tn+
ENDIF
30 CONTINUE

RETURN
C*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY COMPXTX

c called in EST run only (KETA=1) to determine the confidence
intervals; compute matrix XTX

DO 50 J=1,NPEST
DO 50 K=1,NPEST
XTX(J,K)=0.D0
50 CONTINUE

DO 70 I=1,LASTETA(JEXP)
DO 60 J=1,NPEST
DO 60 K=1,NPEST
XTX(J,K)=XTX(J,K)+XI(I,J)*XI(I,K)
60 CONTINUE
70 CONTINUE

c write the eigenvalues to the output file
WRITE(99,75)
75 FORMAT(/2X,'Eigenvalues:'/)
DO 76 J=1,NPEST
DO 76 K=1,NPEST
XTXMAT(J,K)=XTX(J,K)
76 CONTINUE
CALL JACOBI(XTXMAT,NPEST,NPEST,EIG)
CALL RANGER(NPEST,EIG)
WRITE(99,77)(EIG(J),J=1,NPEST),EIG(NPEST)/EIG(1)
77 FORMAT(11(1X,E16.8))

RETURN
C*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY INVMAT(P)

c solve XTX*P=RI for P using the gaussian elimination method

c define the matrix identity RI(NPEST,NPEST)
DO 80 J=1,NPEST
DO 80 K=1,NPEST
IF (K.EQ.J) THEN
RI(J,K)=1.D0
ELSE
RI(J,K)=0.D0
ENDIF
80 CONTINUE

c solve successively each column of P
DO 180 L=1,NPEST

c   *form the NPEST*(NPEST+1) augmented matrix AUG by
adjoining RI to XTX
DO 90 I=1,NPEST
DO 90 J=1,NPEST
AUG(I,J)=XTX(I,J)
90 CONTINUE

DO 100 I=1,NPEST
AUG(I,NPEST+1)=RI(I,L)
100 CONTINUE

DO 150 I=1,NPEST

c   *locate nonzero diagonal entry
IF (AUG(I,I).EQ.0.D0) THEN
IPIVOT=0
J=I+1

110 IF ((IPIVOT.EQ.0).AND.(J.LE.NPEST)) THEN
IF (AUG(J,I).NE.0.D0) IPIVOT=J
GOTO 110
ENDIF

IF (IPIVOT.EQ.0) THEN
STOP 'matrix is singular in INVMAT'
ELSE
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c   *interchange rows i and Ipivot
DO 120 J=1,NPEST+1
TEMP=AUG(I,J)
AUG(I,J)=AUG(IPIVOT,J)
AUG(IPIVOT,J)=TEMP
120  CONTINUE

ENDIF
ENDIF

c   *eliminate ith unknown from equations i+1,...,NPEST
DO 140 J=I+1,NPEST
RMULT=-AUG(J,I)/AUG(I,I)
DO 130 K=I,NPEST+1
AUG(J,K)=AUG(J,K)+RMULT*AUG(I,K)
130 CONTINUE
140 CONTINUE

150 CONTINUE

c   *find the solutions
P(NPEST,L)=AUG(NPEST,NPEST+1)/AUG(NPEST,NPEST)

DO 170 J=NPEST-1,1,-1

P(J,L)=AUG(J,NPEST+1)

DO 160 K=J+1,NPEST
P(J,L)=P(J,L)-AUG(J,K)*P(K,L)
160 CONTINUE

P(J,L)=P(J,L)/AUG(J,J)

170 CONTINUE

180 CONTINUE

RETURN
END
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

SUBROUTINE COMPCI

c HP77 or PC - SG modified 03/09/98
c compute the 95% CI of the best design and also determines the
correlation matrix

c******************************************************
INCLUDE 'gacommon_main.for'
c******************************************************
DIMENSION
P(NPMAX,NPMAX),CINL(NPMAX),RR(NPMAX,NPMAX)
c------------------------------------------------------------------------------

KSENS=1

JEXP=JEXPCI
WRITE(99,190)JEXP
190 FORMAT(/,2X,'SENSITIVITY ANALYSIS USING
JEXP=',I2/)

c determine matrix XTX
CALL MODELXI
CALL COMPXTX

c determine matrix P(NPEST,NPEST) =inv[XTX(NPEST,NPEST)]
CALL INVMAT(P)

c compute the 95% Non Linear CI of the opt estimates
DO 200 J=1,NPEST
CINL(J)=SQRT(P(J,J))*1.96D0
200 CONTINUE

c write the NLCI to the output file

WRITE(99,210)
210 FORMAT(/2X,'95% CI for Non Linear estimation:'/)
JBEG=1
JEND=NPEST
JREP=(JEND-JBEG+10)/10
DO 220 JWRITE=1,JREP
INCRJ=MIN(9,JEND-JBEG)
JSTOP=JBEG+INCRJ
WRITE(99,'(10(1X,E16.8))')(CINL(J),J=JBEG,JSTOP)
WRITE(*,'(/A5,10(1X,E10.3))')'CI: ',(CINL(J),J=JBEG,JSTOP)
JBEG=JSTOP+1
220 CONTINUE

c compute the correlation matrix
DO 230 J=1,NPEST
DO 230 K=1,J
AR=P(J,J)*P(K,K)
RR(J,K)=P(J,K)/SQRT(AR)
230 CONTINUE

c write the correlation matrix to the output file
WRITE(99,240)
240 FORMAT(/2X,'Correlation matrix:'/)
DO 250 K=1,NPEST
JBEG=1
DO 250 JWRITE=1,JREP
INCRJ=MIN(9,JEND-JBEG)
JSTOP=MIN(K,JBEG+INCRJ)
WRITE(99,'(10(1X,E16.8)/)')(RR(K,J),J=JBEG,JSTOP)
WRITE(*,'(/A5,10(1X,E10.4))')'CR: ',(RR(K,J),J=JBEG,JSTOP)
JBEG=JSTOP+1
250 CONTINUE

RETURN
END

c******************************************************
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c COMMON include file for GAMAIN
c SG 1998

IMPLICIT DOUBLE PRECISION (a-h,o-z)
IMPLICIT INTEGER*4 (i-n)

REAL*4 TIME0,CPUG

PARAMETER (BIG=1.d+52,SMALL=1.d-52)
!if too high use 1.d+/-32
PARAMETER (NSMAX=1000,NPMAX=10,
LASTETAMAX=2200,NEXPMAX=16)

CHARACTER*18 TITLE
CHARACTER*64 HEADER,PRINTF
CHARACTER*4
SELECT,MUT,KILLTWIN,ELIT,OPTCRIT,FACTADIM

COMMON /OFCHARAC/
TITLE,HEADER,PRINTF,OPTCRIT,FACTADIM(NPMAX)

COMMON /OFINT/
ITERETA,NPEST,NEXP,JEXPCI,JEXP,KPAR,KETA,KXPRINT,
KYSIM,KOUT,IU1,IU2,KPRINT,KMINMAX,KSCREEN,KCONT,
KSS,KTN,KSENS,NCONTMIN,NCONTMAX,IUXI,IUEIG

COMMON /OFINARR/
LASTETA(NEXPMAX),IDATA0(NEXPMAX)

COMMON /OFREAL/
ETA,SIGMA,TIME,TIMEHEAT,ETAMAX,ETAMAXP

COMMON /OFREARR/ PARMIN(NPMAX),PARMAX(NPMAX),
PAR(NPMAX+1),XI(LASTETAMAX,NPMAX),
TIMEEXP(NEXPMAX,LASTETAMAX),
YARR(NEXPMAX,LASTETAMAX),PASDT(NEXPMAX)

COMMON /GACHARAC/ SELECT,MUT,KILLTWIN,ELIT

COMMON /GAINT/ ITERG,MING,LASTG,NMUT,NMUTJUMP,
NMUTCREEP,NTWINS,NTOT,NCHILDRAND,NPKEPT,
NCRITERG,LASTCRITERG,NFEVAL,NS,NP,
KSTOPF,ISEED1,ISEED2,KCPU

COMMON /GAREAL/ PC,PMJ,PMC,PR,PT,CRITERION,
OFFLINE,ONLINE,TIME0,CPUG

COMMON /GAREARR/
CP(NSMAX,NPMAX+1),CC(NSMAX,NPMAX+1),
CHILD(2,NPMAX),CHILDMUT(NSMAX,NPMAX+1),
CHILDTOT(2*NSMAX,NPMAX+1),BEST(NPMAX+1)
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APPENDIX C

GACONDUCT.FOR Program and GACOMMON_CONDUCT.FOR Subroutine

This program combines the features of the genetic algorithm GA_3 described in Chapter 4 with
those of an extension of the program CONDUCT developed by Patankar (1991). The extension
consists in modifications that allow for the analysis of orthotropic properties in rectangular
geometry. These modifications were made by Prof. D. J. Nelson (Virginia Tech, Mechanical
Engineering Department). The structure of the GACONDUCT follows the one from CONDUCT,
e.g. it consists of an adapt and an invariant part. The following provides the invariant part that
contains the general calculation scheme. The GACONDUCT version allows for the analysis of
experimental design optimization and/or simultaneous parameter estimation problems that deal
with the computation of conduction and duct flow heat transfer in two-dimensional rectangular and
cylindrical geometry. The default values of the key parameters that control the program are
specified in the subroutine DEFRD.
Appendices D, E and F provide three adapt subroutines that work with GACONDUCT.
The GACOMMON_CONDUCT subroutine includes all variable declaration. It is provided at the
end of GACONDUCT.

c******************************************************

PROGRAM GACONDUCT

c  Control Volume Method solution of 2D heat conduction combined
with a GA tool for optimization/estimation analysis
c
c Needs a user subroutine (adaptation part)
c  - Sandrine Garcia,
c  Laboratoire de Thermocinetique de l'ISITEM, France, 11/3/98
c
c  2D heat conduction solution similar to the computer program
'conduct' detailed in "Computation of Conduction and Duct Flow
Heat Transfer", Suhas V. Patankar, Maple Grove, MN:  Innovative
Research, Inc., 1991.

c  Orthotropic Gamma version, double precision
c  - Doug J. Nelson, Virginia Tech, USA, 7/12/93
c  <can also use for isotropic gamma/ single precision - see
gacommon_conduct.for>

c  HP77 or PC

c******************************************************
INCLUDE 'gacommon_conduct.for'
SAVE
c******************************************************

CALL DEFLT
CALL INIT
CALL GRID
CALL READY1
CALL SETVAR
CALL READY2

c --- Generate initial generation + compute OF
CALL INIGEN

10 CONTINUE

c ------ Generation (= parent population) analysis ----------------------
CALL GENANA

IF (KSTOPF.NE.0) GOTO 20
c ------ Breeding process ------------------------------------------
CALL BREED

c ------ Elitism process + compute OF of new generation --------------
         CALL ELITISM

GOTO 10

20 CONTINUE

c ----- Results analysis ------------------------------------------
1000  CALL RESULT

STOP 'GACONDUCT done'
END
C______________________________________________________

SUBROUTINE DEFRD

c 2D version, dp - DJN 7/7/93 + additions SG 11/3/98; update 4/06/98
c HP77 or PC

c******************************************************
INCLUDE 'gacommon_conduct.for'
SAVE
c******************************************************
c
ENTRY DEFLT

COME HERE TO SET THE DEFAULT VALUES

c set initial clock time at start of run
TIME0=SECNDS(0.0)
c set cpu time for each generation loop to 0
CPUG=TIME0
KCPU=0

c set parameter adimensionalization marker
DO J=1,NPMAX
FACTADIM(J)='LIN'
ENDDO
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c set iteration and convergence markers to 0
NCRITERG=0
ITERG=0
KSTOPF=0
KSTOP=0
ITERT =0
NFEVAL=0
OFFLINE=0.D0
ONLINE=0.D0

c set marker to check the constraints; =1 or 2 for constraints to be
applied
KCONT=0
NCONTMIN=0 !# of times parmin constraint is applied
NCONTMAX=0 !#          parmax

c set GRID marker;
c KXYGRID turns 1 if X(I) & Y(J) provided by the user
c KPRGRID turns 1 to print the grid only
KXYGRID=0
KPRGRID=0

c to look at a particular set of thermal properties:
c================================================
c set parameter marker to 0;
c use 1 only to study a particular chromosome (promp gene values in
BEGIN)
KPAR=0
KPARSTOP=0

c set marker to print the XI for a particular chromosome to 0;
associated w/ KPAR=1
KXPRINT=0
KXADIM=0  !use 1 to print dimensionless X even w/ KESTOPT=0

c set marker for the sensor position(s) determination;
c use 1 to evaluate the sensor position for each chromosome;
(associated w/ KESTOPT=1)
c use 2 to evaluate the sensor position in Ready1; (associated w/
KESTOPT=0)
c leave to 0 if grid is fixed and sensor node (isensor, jsensor) is/are
searched or fixed
KSENSOR=0

c set the number of experiment
NEXP=1

c set the experiment number for which to compute the XI
JEXPCI=1

c set XTX computation marker to 0; turns 1 to compute the XI
KXTX=0

c set the number of sensor to 1
NSENSOR=1

c set marker for estimation/optimization (0/1) to estimation
c ESTimation:
c   min OF=sum of squares S for ML estimator (or OLS: sigma=1)
c   set SIGMA (standard deviation for OLS estimation) in SETVAR
c   set the thermocouple position(s) in GRID
c OPTimisation: use KSENSOR=1 in "GRID" if sensor's position is
unknown in terms of lenght
c define NPEST in INIT
c   max OF=determinant of the Fisher information matrix for D-opt:
use OPTCRIT='D'
c   max OF=trace of the Fisher information matrix for A-opt: use
OPTCRIT='A'
c   max OF=min eigenvalue of the Fisher information matrix for E-
opt: use OPTCRIT='E'
KESTOPT=0
OPTCRIT='D'
SIGMA=1.D0

c set the number of the first data to use for S computation
(KESTOPT=0) to 1
IDATA0=1
TI=0.d0

c set marker to study the steady state T distribution and to determine
the SS Tmax; works w/ KPAR=1
KSS=0
TMAX=1.d0
TMAXP=1.D0 !ratio TMAX/correct adim; required in COMPXTXOPT
when KESTOPT=1

c set marker to plot the Tdist at a particular t; turns 1 when time~t in
OUTPUT; works w/ KPAR=1
KTHPRINT=0

c set marker to determine the optimal total experimental time TN
c associated w/ KESTOPT=1 and requires to know TIMEHEAT
(TN>TIMEHEAT)
KTN=0
TIMEHEAT=0.d0

c set marker to simulate data to 0
KYSIM=0

c set marker to use DT
c TIMEEXP ARRAY used: KDT=0; read measured T in SETVAR
c DT used           : KDT=1; set DT in SETVAR
c if KESTOPT=0 and KDT=1 generate simulated T in SETVAR
c (if KSS=1 KDT=1 and DT=BIG)
KDT=0

HEADER='USE THE CHARACTER VARIABLE HEADER TO
SPECIFY A PROBLEM TITLE'
PRINTF='PRINT.DAT'
PLOTF='PLOT.OUT'
KORD =2
MODE =1  !for cartesian coordinate system
KPGR =1
KOUT =2
c if KOUT=3 IU1=6,IU2=7 both on PRINTF and screen
c if KOUT=2 IU1=IU2=7=PRINTF
c if KOUT=1 IU1=IU2=6=on screen
KSCREEN=0 !=1 to print 'ITERG=...' on screen

C______________________________________________________
TIME   = 0.0d0
DT     = BIG
R(1)   = 0.0d0
POWERX = 1.0d0
POWERY = 1.0d0

DO 10 NZ=1,NZMAX
POWRX(NZ)=1.0d0
10 POWRY(NZ)=1.0d0

DO 20 N=1,NFMAX
CRIT(N)=1.d-5
KSOLVE(N)=0
NTIMES(N)=40
KBLOC(N)=1
RELAX(N)=1.0d0
TITLE(N)='    '
KPRINT(N)=0    !to print temperature in PRINTF when PRINT
called at a particular t
KPLOT(N)=0     !to plot "               PLOTF       PLOT

DO 30 I=2,NI
FLUXJ1(I,N)=0.0d0
30 FLUXM1(I,N)=0.0d0

DO 40 J=2,NJ
FLUXI1(J,N)=0.0d0
40 FLUXL1(J,N)=0.0d0

20 CONTINUE
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DO 50 J=1,NJ
DO 50 I=1,NI
CON(I,J) = 0.0d0
AP(I,J) = 0.0d0
ALAM(I,J) = 0.0d0
c
c Orthotropic Gamma 2D
GAMX(I,J) = 0.0d0
GAMY(I,J) = 0.0d0

IBLOCK(I,J)= 0

DO 60 N=1,NFMAX
60 F(I,J,N) = 0.0d0

50 CONTINUE

DO 70 I=2,NI
KBCJ1(I)  = 1
KBCM1(I)  = 1
FLXCJ1(I) = 0.0d0
FLXCM1(I) = 0.0d0
FLXPJ1(I) = 0.0d0
FLXPM1(I) = 0.0d0
70 CONTINUE

DO 80 J=2,NJ
KBCI1(J)  = 1
KBCL1(J)  = 1
FLXCI1(J) = 0.0d0
FLXCL1(J) = 0.0d0
FLXPI1(J) = 0.0d0
FLXPL1(J) = 0.0d0
80 CONTINUE
C
RETURN
C*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY READY1
C
IF(KOUT.NE.1.AND.KPAR.EQ.1) OPEN(UNIT=7,FILE=PRINTF)
IU1=6
IF(KOUT.EQ.2) IU1=7
IU2=7
IF(KOUT.EQ.1) IU2=6
IUXI=8
IF (KXPRINT.EQ.1.AND.KSS.EQ.0)
OPEN(UNIT=IUXI,FILE='XIPRINT.DAT')
IUEIG=9
IF (KXPRINT.EQ.1.AND.KESTOPT.EQ.1.AND.KSS.EQ.0)
OPEN(UNIT=IUEIG,FILE='EIGPRINT.DAT')

CREATE INITIAL OUTPUT
DO 100 IUNIT=IU1,IU2
C
IF (KPAR.EQ.1) THEN
IF(MODE.EQ.1) WRITE(IUNIT,1)
1 FORMAT(/1X,'RESULTS FOR CARTESIAN COORDINATE
SYSTEM'/1X,50(1H*)/)
IF(MODE.EQ.2) WRITE(IUNIT,2)
2 FORMAT(/1X,'RESULTS FOR AXISYMMETRIC
COORDINATE SYSTEM'/1X,53(1H*)/)
IF(MODE.EQ.3) WRITE(IUNIT,3)
3 FORMAT(/1X,'RESULTS FOR POLAR COORDINATE
SYSTEM'/1X,46(1H*)/)
WRITE(IUNIT,5) HEADER
5 FORMAT(1X,64('-')/1X,A64/1X,64('-')/)
ENDIF
IF(L1.GT.NI.OR.M1.GT.NJ.OR.L1.LT.4.OR.M1.LT.4) THEN
WRITE(IUNIT,6)
6 FORMAT(1X,'EXECUTION TERMINATED DUE TO ONE(OR
MORE) OF THE FOLLOWING REASON(S)'/2X,'1) L1
GREATER THAN NI'/2X,'2) M1 GREATER THAN NJ
2'/2X,'3) L1 LESS THAN 4'/2X,'4) M1 LESS THAN 4'/)
KSTOP=1

ENDIF
100 CONTINUE
IF(KSTOP.NE.0) STOP 'Error in READY1'

CALCULATE GEOMETRICAL QUANTITIES
L2=L1-1
L3=L2-1
M2=M1-1
M3=M2-1

c calculate node positions
IF (KXYGRID.EQ.0) THEN
X(1)=XU(2)
DO 110 I=2,L2
110 X(I)=0.5d0*(XU(I+1)+XU(I))
X(L1)=XU(L1)

Y(1)=YV(2)
DO 120 J=2,M2
120 Y(J)=0.5d0*(YV(J+1)+YV(J))
Y(M1)=YV(M1)
ENDIF

c calculate CV lengths
DO 130 I=2,L2
130 XCV(I)=XU(I+1)-XU(I)

DO 140 J=2,M2
140 YCV(J)=YV(J+1)-YV(J)

IF(MODE.EQ.1) THEN
DO 150 J=1,M1
RV(J)=1.0d0
150 R(J)=1.0d0

ELSE
RY1=R(1)-Y(1)
DO 160 J=2,M1
160 R(J)=Y(J)+RY1
RV(2)=R(1)
DO 170 J=3,M2
170 RV(J)=RV(J-1)+YCV(J-1)
RV(M1)=R(M1)
ENDIF

IF(MODE.EQ.3) THEN
DO 180 J=1,M1
180 SX(J)=R(J)
ELSE
DO 190 J=1,M1
SX(J)=1.0d0
190 CONTINUE
ENDIF

DO 200 J=2,M2
YCVR(J)=R(J)*YCV(J)
IF(MODE.EQ.3) THEN
ARX(J)=YCV(J)
ELSE
ARX(J)=YCVR(J)
ENDIF
200 CONTINUE

c if xs and ys are known, fix the thermocouple position(s)
IF (KSENSOR.EQ.2) THEN
NSENS=1
210 CONTINUE
I=1
J=1
XS=XSENSOR(NSENS)
YS=YSENSOR(NSENS)
IF (X(I).LE.XS.AND.XS.LE.X(I+1)/2.D0) THEN
IS=I
ELSE

I=I+1
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IF (X(I)/2.D0.LT.XS.AND.XS.LE.XU(I+1)) THEN
IS=I
ELSE

220 I=I+1
IF (XU(I).LT.XS.AND.XS.LE.XU(I+1)) THEN
IS=I
ELSE
IF (I.LT.L3) GOTO 220

I=I+1
IF (XU(I).LT.XS.AND.XS.LT.(X(I)+(X(I+1)-X(I))/2)) THEN
IS=I
ELSE
IS=I+1
ENDIF
ENDIF
ENDIF
ENDIF

IF (Y(J).LE.YS.AND.YS.LE.Y(J+1)/2.D0) THEN
JS=J
ELSE

J=J+1
IF (Y(J)/2.D0.LT.YS.AND.YS.LE.YV(J+1)) THEN
JS=J
ELSE

230 J=J+1
IF (YV(J).LT.YS.AND.YS.LE.YV(J+1)) THEN
JS=J
ELSE
IF (J.LT.M3) GOTO 230

J=J+1
IF (YV(J).LT.YS.AND.YS.LT.(Y(J)+(Y(J+1)-Y(J))/2)) THEN
JS=J
ELSE

JS=J+1
ENDIF
ENDIF
ENDIF
ENDIF

ISENSOR(NSENS)=IS
JSENSOR(NSENS)=JS
NSENS=NSENS+1
IF (NSENS.LE.NSENSOR) GOTO 210

WRITE(99,'(/A36/)')'Thermocouple number and position(s):'
WRITE(99,'(A8,I2)')'NSENSOR=',NSENSOR
DO 250 I=1,NSENSOR
WRITE(99,240)'Thermocouple #',I,'xs=',XSENSOR(I),
1 'ys=',YSENSOR(I),'node:',ISENSOR(I),JSENSOR(I)
240 FORMAT(A14,I2,2(A6,F8.3,2X),A7,2(I3,1X))
250 CONTINUE
ENDIF

c initialize DB(NPMAX)and set DELTAB increments;
c (par. variation used to compute the Sensitivity Coefficients)
DO I=1,NPEST
DB(I)=0.D0
ENDDO
DELTAB=1.D-4

RETURN
C*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY READY2

DO 270 IUNIT=IU1,IU2
IF
(NS.GT.NSMAX.OR.NP.GT.NPMAX.OR.NEXP.GT.NEXPMAX)
THEN

WRITE(IUNIT,260)
260 FORMAT(1X,'EXECUTION TERMINATED DUE TO
ONE(OR MORE) OF THE FOLLOWING REASON(S)'/2X,'1) NS
GREATER THAN NSMAX'/2X,
2'2) NP GREATER THAN NPMAX'/2X,
3'3) NEXP GREATER THAN NEXPMAX'/2X)
KSTOP=1
ENDIF
DO JEXP=1,NEXP
IF (LASTT.GT.LASTTMAX) THEN

  WRITE(IUNIT,11)
11 FORMAT(1X,'EXECUTION TERMINATED DUE TO THE
1FOLLOWING REASON'/2X,'LASTT GREATER THAN
LASTTMAX'/)
KSTOP=1
ENDIF
ENDDO
270 CONTINUE

IF(KSTOP.NE.0) STOP 'Error in READY2'

RETURN
END
c******************************************************

SUBROUTINE HEART

c 2D version, dp - DJN 7/7/93
c HP77 or PC

c******************************************************
INCLUDE 'gacommon_conduct.for'
SAVE
c******************************************************

IF (KDT.EQ.0) DT=TIMEEXP(1,ITERT+1)-TIME

CONSTRUCT LOOP FOR ALL EQUATIONS
DO 100 N=1,NFMAX
NF=N
IF(KSOLVE(NF).EQ.0) GO TO 100

CALL PHI

CALCULATE COEFFICIENTS IN THE DISCRETIZATION EQ.
BETA=4.0d0/3.0d0
IF(KORD.EQ.1) BETA=1.0d0
RLX=(1.0d0-RELAX(NF))/RELAX(NF)

CONSIDER VOLUMETRIC TERMS
DO 10 J=2,M2
DO 10 I=2,L2
VOL=YCVR(J)*XCV(I)
APT=ALAM(I,J)/DT
CON(I,J)=(CON(I,J)+APT*F(I,J,NF))*VOL
AP(I,J)=(APT-AP(I,J))*VOL
10 CONTINUE

COEFFICIENTS FOR X-DIRECTION DIFFUSION
DO 20 J=2,M2
DO 20 I=2,L3
DIFF=ARX(J)*2.0d0*GAMX(I,J)*GAMX(I+1,J)/((XCV(I)*GAMX
(I+1,J)+
1 XCV(I+1)*GAMX(I,J)+SMALL)*SX(J))
AIP(I,J)=DIFF+SMALL
AIM(I+1,J)=AIP(I,J)
20 CONTINUE

DO 30 J=2,M2
CONSIDER I=1 BOUNDARY
DIFF=GAMX(2,J)/(0.5d0*XCV(2)*SX(J))+SMALL
AIM(2,J)=BETA*DIFF
AIP(1,J)=AIM(2,J)
AIM(2,J)=AIM(2,J)*ARX(J)
AIM(1,J)=(BETA-1.0d0)*AIP(2,J)/ARX(J)
AIP(2,J)=AIP(2,J)+AIM(1,J)*ARX(J)
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IF(KBCI1(J).EQ.1) THEN
CON(2,J)=CON(2,J)+AIM(2,J)*F(1,J,NF)
ELSE
AP(1,J)=AIP(1,J)-FLXPI1(J)
CON(1,J)=FLXCI1(J)
TEMP=AIM(2,J)/AP(1,J)
AP(2,J)= AP(2,J)-AIP(1,J)*TEMP
AIP(2,J)=AIP(2,J)-AIM(1,J)*TEMP
CON(2,J)=CON(2,J)+CON(1,J)*TEMP
ENDIF
AP(2,J)=AP(2,J)+AIM(2,J)
AIM(2,J)=0.0d0
CONSIDER I=L1 BOUNDARY
DIFF=GAMX(L2,J)/(0.5d0*XCV(L2)*SX(J))+SMALL
AIP(L2,J)=BETA*DIFF
AIM(L1,J)=AIP(L2,J)
AIP(L2,J)=AIP(L2,J)*ARX(J)
AIP(L1,J)=(BETA-1.0d0)*AIM(L2,J)/ARX(J)
AIM(L2,J)=AIM(L2,J)+AIP(L1,J)*ARX(J)
IF(KBCL1(J).EQ.1) THEN
CON(L2,J)=CON(L2,J)+AIP(L2,J)*F(L1,J,NF)
ELSE
AP(L1,J)=AIM(L1,J)-FLXPL1(J)
CON(L1,J)=FLXCL1(J)
TEMP=AIP(L2,J)/AP(L1,J)
AP(L2,J)= AP(L2,J)-AIM(L1,J)*TEMP
AIM(L2,J)=AIM(L2,J)-AIP(L1,J)*TEMP
CON(L2,J)=CON(L2,J)+CON(L1,J)*TEMP
ENDIF
AP(L2,J)=AP(L2,J)+AIP(L2,J)
AIP(L2,J)=0.0d0
30 CONTINUE

COEFFICIENTS FOR Y-DIRECTION DIFFUSION
DO 40 J=2,M3
DO 40 I=2,L2
AREA=RV(J+1)*XCV(I)
DIFF=AREA*2.0d0*GAMY(I,J)*GAMY(I,J+1)/(YCV(J)
*GAMY(I,J+1)+
1 YCV(J+1)*GAMY(I,J)+SMALL)
AJP(I,J)=DIFF+SMALL
AJM(I,J+1)=AJP(I,J)
40 CONTINUE

DO 50 I=2,L2
CONSIDER J=1 BOUNDARY
AREA=RV(2)*XCV(I)
DIFF=GAMY(I,2)/(0.5d0*YCV(2))+SMALL
AJM(I,2)=BETA*DIFF
AJP(I,1)=AJM(I,2)
AJM(I,2)=AJM(I,2)*AREA
AJM(I,1)=(BETA-1.0d0)*AJP(I,2)/(RV(3)*XCV(I))
AJP(I,2)=AJP(I,2)+AJM(I,1)*AREA
IF(KBCJ1(I).EQ.1) THEN
CON(I,2)=CON(I,2)+AJM(I,2)*F(I,1,NF)
ELSE
AP(I,1)=AJP(I,1)-FLXPJ1(I)
CON(I,1)=FLXCJ1(I)
TEMP=AJM(I,2)/AP(I,1)
AP(I,2)= AP(I,2)-AJP(I,1)*TEMP
AJP(I,2)=AJP(I,2)-AJM(I,1)*TEMP
CON(I,2)=CON(I,2)+CON(I,1)*TEMP
ENDIF
AP(I,2)=AP(I,2)+AJM(I,2)
AJM(I,2)=0.0d0
CONSIDER J=M1 BOUNDARY
AREA=RV(M1)*XCV(I)
DIFF=GAMY(I,M2)/(0.5d0*YCV(M2))+SMALL
AJP(I,M2)=BETA*DIFF
AJM(I,M1)=AJP(I,M2)
AJP(I,M2)=AJP(I,M2)*AREA
AJP(I,M1)=(BETA-1.0d0)*AJM(I,M2)/(RV(M2)*XCV(I))
AJM(I,M2)=AJM(I,M2)+AJP(I,M1)*AREA
IF(KBCM1(I).EQ.1) THEN
CON(I,M2)=CON(I,M2)+AJP(I,M2)*F(I,M1,NF)
ELSE

AP(I,M1)=AJM(I,M1)-FLXPM1(I)
CON(I,M1)=FLXCM1(I)
TEMP=AJP(I,M2)/AP(I,M1)
AP(I,M2)= AP(I,M2)-AJM(I,M1)*TEMP
AJM(I,M2)=AJM(I,M2)-AJP(I,M1)*TEMP
CON(I,M2)=CON(I,M2)+CON(I,M1)*TEMP
ENDIF
AP(I,M2)=AP(I,M2)+AJP(I,M2)
AJP(I,M2)=0.0d0
50 CONTINUE

COME HERE TO INTRODUCE UNDERRELAXATION
CONSTRUCT AP(I,J) AND CON(I,J) IN THEIR FINAL FORM
DO 60 J=2,M2
DO 60 I=2,L2
ANB=AIP(I,J)+AIM(I,J)+AJP(I,J)+AJM(I,J)
AINR=ANB*RLX
AP(I,J)=AP(I,J)+ANB+AINR
CON(I,J)=CON(I,J)+AINR*F(I,J,NF)
60 CONTINUE

CALL THE SOLVE ROUTINE TO OBTAIN THE SOLUTION OF
THE DISCRETIZATION EQUATIONS
CALL SOLVE
100 CONTINUE

ITERT=ITERT+1
IF(ITERT.GE.LASTT) KSTOP=1  !also exists in OUTPUT if used
IF (KDT.EQ.0) THEN
TIME=TIMEEXP(1,ITERT)
ELSE
TIME=TIME+DT
ENDIF

RETURN
END
c******************************************************

SUBROUTINE SOLVE

c 2D version, dp - DJN 7/7/93
c HP77 or PC

c******************************************************
INCLUDE 'gacommon_conduct.for'
c******************************************************
DIMENSION RT(6)
SAVE
C-----------------------------------------------------------------------

BIG1=1.d+10
SMALL1=1.0d-5
LL2=2*L2
LL=LL2-2
MM2=2*M2
MM=MM2-2
N=NF
NTM=NTIMES(N)

DO 200 NT=1,NTM
NTT=NT
ICON=1
COME HERE TO PERFORM THE I-DIRECTION BLOCK
CORRECTION
C-----------------------------------------------------------------------
PTX(1)=0.0d0
QTX(1)=0.0d0

DO 10 I=2,L2
BL=SMALL
BLP=0.0d0
BLM=0.0d0
BLC=0.0d0

DO 20 J=2,M2
IF(AP(I,J).LT.BIG1) THEN
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BL=BL+AP(I,J)
IF(AP(I,J+1).LT.BIG1) BL=BL-AJP(I,J)
IF(AP(I,J-1).LT.BIG1) BL=BL-AJM(I,J)
IF(AP(I+1,J).LT.BIG1) BLP=BLP+AIP(I,J)
IF(AP(I-1,J).LT.BIG1) BLM=BLM+AIM(I,J)
CONVERGENCE CRITERION FOR THE SOLUTION ROUTINE
RT(1)=AIP(I,J)*F(I+1,J,N)
RT(2)=AIM(I,J)*F(I-1,J,N)
RT(3)=AJP(I,J)*F(I,J+1,N)
RT(4)=AJM(I,J)*F(I,J-1,N)
RT(5)=-AP(I,J)*F(I,J,N)
RT(6)=CON(I,J)
RES=0.0d0
TERM=1.0d-8

DO 30 IRT=1,6
RES=RES+RT(IRT)
30 TERM=MAX(TERM,ABS(RT(IRT)))

IF(ABS(RES/TERM).GT.CRIT(N))ICON=0
BLC=BLC+RES

ENDIF
20 CONTINUE

DENOM=BL-PTX(I-1)*BLM
IF(ABS(DENOM/BL).LT.SMALL1) DENOM=BIG
PTX(I)=BLP/DENOM
QTX(I)=(BLC+BLM*QTX(I-1))/DENOM
10 CONTINUE

IF(NTT.NE.1.AND.ICON.EQ.1) GO TO 210
IF(KBLOC(NF).EQ.0) GO TO 80
BL=0.0d0

DO 40 I=L2,2,-1
BL=BL*PTX(I)+QTX(I)
DO 40 J=2,M2
IF(AP(I,J).LT.BIG1) F(I,J,N)=F(I,J,N)+BL
40 CONTINUE

COME HERE TO PERFORM THE J-DIRECTION BLOCK
CORRECTION
C-----------------------------------------------------------------------
PTY(1)=0.0d0
QTY(1)=0.0d0

DO 50 J=2,M2
BL=SMALL
BLP=0.0d0
BLM=0.0d0
BLC=0.0d0

DO 60  I=2,L2
IF(AP(I,J).LT.BIG1) THEN
BL=BL+AP(I,J)
IF(AP(I+1,J).LT.BIG1) BL=BL-AIP(I,J)
IF(AP(I-1,J).LT.BIG1) BL=BL-AIM(I,J)
IF(AP(I,J+1).LT.BIG1) BLP=BLP+AJP(I,J)
IF(AP(I,J-1).LT.BIG1) BLM=BLM+AJM(I,J)
BLC=BLC+CON(I,J)+AIP(I,J)*F(I+1,J,N)+AIM(I,J)*F(I-1,J,N)
1 +AJP(I,J)*F(I,J+1,N)+AJM(I,J)*F(I,J-1,N)-AP(I,J)*F(I,J,N)
ENDIF
60 CONTINUE

DENOM=BL-PTY(J-1)*BLM
IF(ABS(DENOM/BL).LT.SMALL1) DENOM=BIG
PTY(J)=BLP/DENOM
QTY(J)=(BLC+BLM*QTY(J-1))/DENOM
50 CONTINUE

BL=0.0d0

DO 70 J=M2,2,-1
BL=BL*PTY(J)+QTY(J)
DO 70 I=2,L2

IF(AP(I,J).LT.BIG1) F(I,J,N)=F(I,J,N)+BL
70 CONTINUE

80 CONTINUE

CARRY OUT THE I-DIRECTION TDMA
C-----------------------------------------------------------------------
DO 90 JJ=2,MM
J=MIN(JJ,MM2-JJ)
PTX(1)=0.0d0
QTX(1)=0.0d0

DO 100 I=2,L2
DENOM=AP(I,J)-PTX(I-1)*AIM(I,J)
PTX(I)=AIP(I,J)/DENOM
TEMP=CON(I,J)+AJP(I,J)*F(I,J+1,N)+AJM(I,J)*F(I,J-1,N)
QTX(I)=(TEMP+AIM(I,J)*QTX(I-1))/DENOM
100 CONTINUE

DO 110 I=L2,2,-1
110 F(I,J,N)=F(I+1,J,N)*PTX(I)+QTX(I)

90 CONTINUE

CARRY OUT THE J-DIRECTION TDMA
C-----------------------------------------------------------------------
DO 120 II=2,LL
I=MIN(II,LL2-II)
PTY(1)=0.0d0
QTY(1)=0.0d0

DO 130 J=2,M2
DENOM=AP(I,J)-PTY(J-1)*AJM(I,J)
PTY(J)=AJP(I,J)/DENOM
TEMP=CON(I,J)+AIP(I,J)*F(I+1,J,N)+AIM(I,J)*F(I-1,J,N)
QTY(J)=(TEMP+AJM(I,J)*QTY(J-1))/DENOM
130 CONTINUE

DO 140 J=M2,2,-1
140 F(I,J,N)=F(I,J+1,N)*PTY(J)+QTY(J)

120 CONTINUE
C-----------------------------------------------------------------------
200 CONTINUE

NTC(N)=NTT
GO TO 220
210 NTC(N)=NTT-1
220 CONTINUE

CALCULATE THE UNKNOWN BOUNDARY VALUES AND
FLUXES
C-----------------------------------------------------------------------
DO 160 I=2,L2
TEMP=AJM(I,1)*(F(I,3,N)-F(I,2,N))
IF(KBCJ1(I).EQ.2)
1 F(I,1,N)=(AJP(I,1)*F(I,2,N)-TEMP+CON(I,1))/AP(I,1)
FLUXJ1(I,N)=AJP(I,1)*(F(I,1,N)-F(I,2,N))+TEMP
TEMP=AJP(I,M1)*(F(I,M3,N)-F(I,M2,N))
IF(KBCM1(I).EQ.2)
1 F(I,M1,N)=(AJM(I,M1)*F(I,M2,N)-
TEMP+CON(I,M1))/AP(I,M1)
160 FLUXM1(I,N)=AJM(I,M1)*(F(I,M1,N)-F(I,M2,N))+TEMP

DO 170 J=2,M2
TEMP=AIM(1,J)*(F(3,J,N)-F(2,J,N))
IF(KBCI1(J).EQ.2)
1 F(1,J,N)=(AIP(1,J)*F(2,J,N)-TEMP+CON(1,J))/AP(1,J)
FLUXI1(J,N)=AIP(1,J)*(F(1,J,N)-F(2,J,N))+TEMP
TEMP=AIP(L1,J)*(F(L3,J,N)-F(L2,J,N))
IF(KBCL1(J).EQ.2)
1 F(L1,J,N)=(AIM(L1,J)*F(L2,J,N)-TEMP+CON(L1,J))/AP(L1,J)
170 FLUXL1(J,N)=AIM(L1,J)*(F(L1,J,N)-F(L2,J,N))+TEMP

COME HERE TO RESET CON,AP,KBC,FLXC, AND FLXP
C-----------------------------------------------------------------------
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DO 180 J=2,M2
KBCI1(J) =1
KBCL1(J) =1
FLXCI1(J)=0.0d0
FLXCL1(J)=0.0d0
FLXPI1(J)=0.0d0
FLXPL1(J)=0.0d0

DO 180 I=2,L2
CON(I,J)=0.0d0
AP(I,J)=0.0d0
180 CONTINUE

DO 190 I=2,L2
KBCJ1(I) =1
KBCM1(I) =1
FLXCJ1(I)=0.0d0
FLXCM1(I)=0.0d0
FLXPJ1(I)=0.0d0
FLXPM1(I)=0.0d0
190 CONTINUE

RETURN
END
c******************************************************

SUBROUTINE TOOLS

c 2D version, dp - DJN 7/7/93 – SG /3/98
c HP77 or PC

c******************************************************
INCLUDE 'gacommon_conduct.for'
SAVE
c******************************************************

ENTRY EZGRID

CONSTRUCT THE X-DIRECTION GRID
L1=NCVLX+2
XU(2) =0.0d0
XU(L1)=XL
L2=L1-1
FCVLX =FLOAT(NCVLX)

DO 20 I=3,L2
DD=FLOAT(I-2)/FCVLX
IF(POWERX.GT.0.d0) THEN
XU(I)=XL*DD**POWERX
ELSE
XU(I)=XL*(1.d0-(1.d0-DD)**(-POWERX))
ENDIF
20 CONTINUE

CONSTRUCT THE Y-DIRECTION GRID
M1=NCVLY+2
YV(2) =0.0d0
YV(M1)=YL
M2=M1-1
FCVLY =FLOAT(NCVLY)

DO 30 J=3,M2
DD=FLOAT(J-2)/FCVLY
IF(POWERY.GT.0.d0) THEN
YV(J)=YL*DD**POWERY
ELSE
YV(J)=YL*(1.d0-(1.d0-DD)**(-POWERY))
ENDIF
30 CONTINUE

RETURN
C*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY ZGRID

CONSTRUCT THE GRID ZONE-BY-ZONE

CONSIDER THE X DIRECTION
XU(2)=0.0d0
I2=2

DO 40 NZ=1,NZX
FCVLX=FLOAT(NCVX(NZ))
ILAST=I2
I1   =ILAST+1
I2   =ILAST+NCVX(NZ)

DO 40 I=I1,I2
DD=FLOAT(I-ILAST)/FCVLX
IF(POWRX(NZ).GT.0.) THEN
XU(I)=XU(ILAST)+XZONE(NZ)*DD**POWRX(NZ)
ELSE
XU(I)=XU(ILAST)+XZONE(NZ)*(1.d0-(1.d0-DD)**(-
POWRX(NZ)))
ENDIF
40 CONTINUE

L1=I2

CONSIDER THE Y DIRECTION
YV(2)=0.0d0
J2=2

DO 50 NZ=1,NZY
FCVLY=FLOAT(NCVY(NZ))
JLAST=J2
J1   =JLAST+1
J2   =JLAST+NCVY(NZ)

DO 50 J=J1,J2
DD=FLOAT(J-JLAST)/FCVLY
IF(POWRY(NZ).GT.0.) THEN
YV(J)=YV(JLAST)+YZONE(NZ)*DD**POWRY(NZ)
ELSE
YV(J)=YV(JLAST)+YZONE(NZ)*(1.d0-(1.d0-DD)**(-
POWRY(NZ)))
ENDIF
50 CONTINUE

M1=J2

RETURN
C*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY XYGRID

CONSTRUCT THE GRID KNOWING THE NODE POSITIONS

CONSIDER THE X DIRECTION
XU(2)=X(1)
DO 60 I=3,L1
XU(I)=XU(I-1)+2.D0*(X(I)-XU(I-1))
60 CONTINUE

CONSIDER THE Y DIRECTION
YV(2)=Y(1)
DO 70 J=3,M1
YV(J)=YV(J-1)+2.D0*(Y(J)-YV(J-1))
70 CONTINUE

RETURN
C*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY PRINT

DO 199 IUNIT=IU1,IU2

COME HERE TO ARRANGE THE PRINTOUT OF TWO-
DIMENSIONAL FIELDS

IF(KPGR.NE.0) THEN
CREATE PRINTOUT FOR GRID
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c modified to also print the cv face locations - DJN
WRITE(IUNIT,1)
1 FORMAT(' ')
IBEG=1
IEND=L1
c use 8 below to print 8 i data columns;
c also need to change line (MIN:7) + line (7I9) + line (P8E9.2)
IREP=(IEND-IBEG+73)/73
DO 100 K=1,IREP
INCR   =MIN(72,IEND-IBEG)
ISTOP  =IBEG+INCR
istopu = istop + 1
if (istop .eq. l1) istopu = l1
WRITE(IUNIT,2) (I,I=IBEG,ISTOP)
2 FORMAT(/2X,'I =',2X,73(I4,6X))
IF(MODE.EQ.3) THEN
WRITE(IUNIT,3) (X(I),I=IBEG,ISTOP)
3 FORMAT(1X,'TH =',1P73E10.3)
WRITE(IUNIT,33) (XU(I),I=IBEG+1,ISTOPU)
33 FORMAT(4X,'THU = ',1P73E10.3)
ELSE
WRITE(IUNIT,4) (X(I),I=IBEG,ISTOP)
4 FORMAT(2X,'X =',1P73E10.3)
WRITE(IUNIT,44) (XU(I),I=IBEG+1,ISTOPU)
44 FORMAT(5X,'XU = ',1P73E10.3)
ENDIF
IBEG=ISTOP+1
100 CONTINUE

WRITE(IUNIT,1)
JBEG=1
JEND=M1
JREP=(JEND-JBEG+29)/29
DO 110 K=1,JREP
INCR=MIN(28,JEND-JBEG)
JSTOP  =JBEG+INCR
jstopv = jstop + 1
if (jstop .eq. m1) jstopv = m1
WRITE(IUNIT,5) (J,J=JBEG,JSTOP)
5 FORMAT(/2X,'J =',2X,29(I4,6X))
WRITE(IUNIT,6) (Y(J),J=JBEG,JSTOP)
6 FORMAT(2X,'Y =',1P29E10.3)
WRITE(IUNIT,66) (YV(J),J=JBEG+1,JSTOPV)
66 FORMAT(5X,'YV = ',1P29E10.3)
JBEG=JSTOP+1
110 CONTINUE
ENDIF

CREATE PRINTOUT FOR THE VALUES OF DEPENDENT
VARIABLES
DO 140 N=1,NFMAX
IF(KPRINT(N).NE.0) THEN
WRITE(IUNIT,7) TITLE(N)
7 FORMAT(//1X,6(1H*),3X,A18,3X,6(1H*)/9X,20(1H-))
IBEG=1
JBEG=1
IEND=L1
JEND=M1
c use 8 below to print 8 i data columns;
c also need to change line (MIN:7) + line (7I9) + line (P8E9.2)
JREP=(JEND-JBEG+52)/52
DO 130 K=1,JREP
INCR =MIN(51,JEND-JBEG)
JSTOP=JBEG+INCR
WRITE(IUNIT,8) (J,J=JBEG,JSTOP)  !print title J
8 FORMAT(/'  J =',I6,51I11)
WRITE(IUNIT, 9)
9 FORMAT('  I')                    !print title I

DO 120 I=IBEG,IEND
WRITE(IUNIT,10) I,(F(I,J,N),J=JBEG,JSTOP)
10 FORMAT(1X,I2,3X,1P52E11.4)
120 CONTINUE
JBEG=JSTOP+1
130 CONTINUE
ENDIF

140 CONTINUE
199 CONTINUE
RETURN
C*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY PLOT

OPEN(UNIT=10,FILE=PLOTF)

COME HERE TO CREATE DATA FOR PLOTTING

KFLOW=2
WRITE(10,200) HEADER
200 FORMAT(A64)
WRITE(10,210)
KFLOW,L1,M1,NFMAX,MODE,(KPLOT(I),I=1,NFMAX)
210 FORMAT(18I5)
IBLOK=0

DO 220 J=2,M2
DO 220 I=2,L2
IF(IBLOCK(I,J).EQ.1) THEN
IBLOK=1
GO TO 230
ENDIF
220 CONTINUE
230 CONTINUE

WRITE(10,210) IBLOK
WRITE(10,240) (TITLE(N),N=1,NFMAX)
240 FORMAT(4A18)
WRITE(10,250) (X(I),I=1,L1),(Y(J),J=1,M1),(XU(I),I=2,L1),
1 (YV(J),J=2,M1),(R(J),J=1,M1)
250 FORMAT(5E12.6)

DO 260 N=1,NFMAX
IF(KPLOT(N).NE.0) THEN
c the following sets approx. corner values for use with CONPLOT.
c        if you have set corner values, comment this out - DJN
F( 1, 1,N) = (F( 1, 2,N) + F( 2, 1,N))*0.5d0
F( 1,M1,N) = (F( 1,M2,N) + F( 2,M1,N))*0.5d0
F(L1, 1,N) = (F(L1, 2,N) + F(L2, 1,N))*0.5d0
F(L1,M1,N) = (F(L1,M2,N) + F(L2,M1,N))*0.5d0

WRITE(10,250) ((F(I,J,N),I=1,L1),J=1,M1)
ENDIF
260 CONTINUE

IF(IBLOK.EQ.1) THEN
WRITE(10,210) ((IBLOCK(I,J),I=1,L1),J=1,M1)
ENDIF

CLOSE(10)
RETURN
END
c******************************************************

SUBROUTINE COMPOF(N,ARR)

c compute the Objective Functions of an array of individuals
c OF=arr(iterid,np+1)
c HP77 or PC - SG 11/3/98; update 25/09/98

c******************************************************
INCLUDE 'gacommon_conduct.for'
c******************************************************
DIMENSION ARR(NSMAX,NPMAX+1),
XTXOPT(NPMAX,NPMAX),EIG(NPMAX)
SAVE
c------------------------------------------------------------------------------

DO 100 ITERID=1,N

IF (KPAR.EQ.1) THEN
WRITE(*,*)'PAR(J)?, NP=',NP
WRITE(*,*)
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READ(*,*)(PAR(J),J=1,NP)
WRITE(*,*)
WRITE(*,*)'KADIM? Note that 0=w/o dimensions and 1=w/ dim.'
WRITE(*,*)
READ(*,*)KADIM
IF (KADIM.EQ.1) THEN
GOTO 15
ELSE
DO J=1,NP
ARR(1,J)=PAR(J)
ENDDO
ENDIF
ENDIF

c denormalize the genes = dimensionalize the parameters
DO 10 J=1,NP
IF (FACTADIM(J).EQ.'LIN') THEN
PAR(J)=(PARMAX(J)-PARMIN(J))*ARR(ITERID,J)+PARMIN(J)
ELSE
PAR(J)=10.D0**(DLOG10(PARMAX(J)/PARMIN(J))
*ARR(ITERID,J)+DLOG10(PARMIN(J)))
ENDIF
10 CONTINUE

c reset OF value to 0
15 PAR(NP+1)=0.D0

c*****************************************************
IF (KESTOPT.EQ.0) THEN
c EST run: reset statements for new T and S computation
CALL BEGIN
c start the iteration or time-step loop
20 CONTINUE
CALL OUTPUT
IF (ITERT.EQ.0.OR.ITERT.GT.LASTT.OR.KSS.EQ.1) GOTO 40
IF (ITERT.GE.IDATA0) THEN
DO 30 NSENS=1,NSENSOR
IF (KTS(NSENS).EQ.1) THEN
c compute residu at time t
RES=YARR(NSENS,KDATA(NSENS))-TSENSOR(NSENS)
c compute S=sum of least-square errors
PAR(NP+1)=PAR(NP+1)+(RES/SIGMA)**2
KTS(NSENS)=0
!desactivate S comp. (KTS=1 when time=timeexp)
KDATA(NSENS)=KDATA(NSENS)+1
ENDIF
30 CONTINUE
ENDIF
40  IF (KSTOP.NE.0) GOTO 80
CALL HEART
GOTO 20

c*****************************************************
ELSE
c OPT run: determine sensitivity coefficients and matrix XTX for
OPTCRIT computation
CALL COMPXI
DO 60 IXTX=1,LASTT
IF (IXTX.EQ.1.AND.KTN.EQ.1) OPTOFMOD=0.D0    !searching
for the total exp time
CALL COMPXTXOPT(IXTX,XTXOPT)
CALL JACOBI(XTXOPT,NPEST,NPEST,EIG)
CALL RANGER(NPEST,EIG)
SUMEIG=0.D0
PRODEIG=1.D0
DO 50 J=1,NPEST
SUMEIG=SUMEIG+EIG(J)
PRODEIG=PRODEIG*EIG(J)
50 CONTINUE
c compute optimality criterion:
c     D- = det. XTX matrix  = -a(1)/a(4) = product of eigenvalues
c     E- = max the min eigenvalue
c     A- = trace XTX matrix = -a(3)/a(4) = sum of eigenvalues
IF (OPTCRIT.EQ.'D') THEN
OPTOF=PRODEIG
ELSE

IF (OPTCRIT.EQ.'A') THEN
OPTOF=SUMEIG
ELSE
OPTOF=EIG(1)
ENDIF
ENDIF
IF (KTN.EQ.0) THEN
IF (OPTOF.GT.PAR(NP+1)) PAR(NP+1)=OPTOF
ELSE
RATIO=ABS((OPTOF-OPTOFMOD)/(OPTOFMOD+1.D-30))
IF (IXTX*DT.GT.TIMEHEAT.AND.RATIO.LE.1.D-4) THEN
PAR(NP+1)=IXTX*DT
GOTO 70
ELSE
OPTOFMOD=OPTOF
ENDIF
ENDIF
IF (KXPRINT.EQ.1) WRITE(IUEIG,55)IXTX*DT,OPTOF,
(EIG(J),J=1,NPEST)
55 FORMAT(F16.3,11(1X,E16.8))
60 CONTINUE

IF (KTN.EQ.1) PAR(NP+1)=IXTX*DT
70 CONTINUE
ENDIF
c*****************************************************

80 ARR(ITERID,NP+1)=PAR(NP+1)
NFEVAL=NFEVAL+1
ONLINE=ONLINE+ARR(ITERID,NP+1)

c come here only for a particular chromosome
IF (KPARSTOP.EQ.1) THEN
c results of the particular set of thermal properties
JBEG=1
JEND=NP+1
JREP=(JEND-JBEG+11)/11
DO 90 JWRITE=1,JREP
INCRJ=MIN(10,JEND-JBEG)
JSTOP=JBEG+INCRJ
WRITE(*,'(11(1X,E16.8)/)')(PAR(J),J=JBEG,JSTOP)
WRITE(99,'(11(1X,E16.8)/)')(PAR(J),J=JBEG,JSTOP)
JBEG=JSTOP+1
90 CONTINUE
IF (KESTOPT.EQ.0) THEN
KPARSTOP=0
CALL COMPCI
ENDIF
WRITE(*,*)
STOP 'Particular set of genes analyzed'
ENDIF

100 CONTINUE

RETURN
END
c******************************************************

SUBROUTINE RMARIN(IJ,KL)

c HP77 or PC

C This is the initialization routine for the random number generator
RANMAR(). C NOTE: The seed variables can have values between:
0 <= IJ <= 31328
0 <= KL <= 30081
C The random number sequences created by these two seeds are of
sufficient length to complete an entire calculation with. For example,
if several different groups are working on different parts of the same
calculation, each group could be assigned its own IJ seed. This
would leave each group with 30000 choices for the second seed. That
is to say, this random number generator can create 900 million
different subsequences -- with each subsequence having a length of
approximately 10^30.
Use IJ = 1802 & KL = 9373 to test the random number generator.
The subroutine RANMAR should be used to generate 20000 random
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numbers. Then display the next six random numbers generated
multiplied by 4096*4096 If the random number generator is working
properly, the random numbers should be:
6533892.0  14220222.0  7275067.0
6172232.0  8354498.0   10633180.0

c******************************************************
INCLUDE 'gacommon_conduct.for'
c******************************************************
DIMENSION u(97)
LOGICAL TEST
COMMON/RASET1/U,C,CD,CM,I97,J97,TEST
SAVE
c------------------------------------------------------------------------------
c
TEST = .FALSE.

IF( IJ .LT. 0  .OR.  IJ .GT. 31328  .OR.
KL .LT. 0  .OR.  KL .GT. 30081 ) THEN
WRITE (*, *) ' The first random number seed must have a'
WRITE (*, *) ' value between 0 and 31328.'
WRITE (*, *)
WRITE (*, *) ' The second seed must have a value between 0'
WRITE (*, *) ' and 30081.'
STOP
ENDIF

I = MOD(IJ/177, 177) + 2
J = MOD(IJ    , 177) + 2
K = MOD(KL/169, 178) + 1
L = MOD(KL,     169)

DO 2 II = 1, 97
S = 0.0
T = 0.5
DO 3 JJ = 1, 24
M = MOD(MOD(I*J, 179)*K, 179)
I = J
J = K
K = M
L = MOD(53*L+1, 169)
IF (MOD(L*M, 64) .GE. 32) THEN
S = S + T
ENDIF
T = 0.5 * T
3 CONTINUE
U(II) = S
2 CONTINUE

C = 362436.0 / 16777216.0
CD = 7654321.0 / 16777216.0
CM = 16777213.0 /16777216.0

I97 = 97
J97 = 33

TEST = .TRUE.

RETURN
END
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

c Random number generator proposed by George Marsaglia
c in Florida State University Report: FSU-SCRI-87-50

REAL*8 FUNCTION URAND()

c******************************************************
IMPLICIT REAL*8 (a-h, o-z)
REAL*8 U(97),C,CD,CM
INTEGER I97,J97
LOGICAL TEST
COMMON /RASET1/U,C,CD,CM,I97,J97,TEST
SAVE
c------------------------------------------------------------------------------

IF(.NOT.TEST) THEN
WRITE (*, *) 'urand error #1: must call the initialization
+ routine rmarin before calling urand.'
STOP
ENDIF

UNI = U(I97) - U(J97)
IF( UNI .LT. 0.0 ) UNI = UNI + 1.0
U(I97) = UNI
I97 = I97 - 1
IF(I97 .EQ. 0) I97 = 97
J97 = J97 - 1
IF(J97 .EQ. 0) J97 = 97
C = C - CD
IF( C .LT. 0.0 ) C = C + CM
UNI = UNI - C
IF( UNI .LT. 0.0 ) UNI = UNI + 1.0

URAND = UNI

RETURN
END
c******************************************************

SUBROUTINE COMPYSIM(STDDV)

c generate simulated temperatures by adding random normal errors
to calculated temp.
c HP77 or PC - SG 11/3/98

c******************************************************
INCLUDE 'gacommon_conduct.for'
c******************************************************
REAL*8 DATA(20000)
COMMON NDAT
SAVE
c------------------------------------------------------------------------------

CALL RANDOM(DATA,LASTT,STDDV)

c reset statements for new T computation
CALL BEGIN

c start the iteration or time-step loop
10 CONTINUE
CALL OUTPUT
IF (ITERT.EQ.0) THEN
WRITE(2,20)
20  FORMAT(//2X,'ITERT',8X,'TIME',9X,'TSENSOR(1)',8X,
1 'YARR(1,ITERT)',/)
GOTO 30
ENDIF

c  Addition of random errors to calculated numerical Temperatures
YARR(1,ITERT)=TSENSOR(1)+DATA(ITERT)
TIMEEXP(1,ITERT)=TIME
WRITE(2,'(2X,I4,3(3X,F11.5))')ITERT,TIME,TSENSOR(1),
1 YARR(1,ITERT)
IF (ITERT.EQ.LASTT) GOTO 40
30 CALL HEART
GOTO 10

40 RETURN
END
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

SUBROUTINE RANDOM(DATA,LASTT,STDDV)

c  See Numerical Recipes by Press, Flannery, Teukolsky and
Vetterling, Cambridge Press, 1986 about page 192
c  Modified by J.V. Beck, Michigan State University

c******************************************************
PARAMETER(PI=3.14159265,NBIN=1000)
REAL*8 STDDV,DATA(20000)
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COMMON NDAT
SAVE
c------------------------------------------------------------------------------

WRITE(*,*)'enter the seed number (-)'
READ(*,*)idum
NDAT=LASTT+NBIN

rhon=0.0
rhod=0.0
do 20 idumi=1,1
data(1)=gasdev(idum)*STDDV
do 10 i=2,LASTT
data(i)=gasdev(idum)*STDDV
rhon=rhon+data(i-1)*data(i)
rhod=rhod+data(i)*data(i)
10 continue
rho=rhon/rhod
call moment(data,i-1,ave,adev,sdev,var,rho)
20 continue

write(*,*)'                     Values of quantities'
write(*,'(1x,T29,A,T42,A/)')' Sample  ',' Expected'
write(*,'(1x,A,T25,2F12.4)')'Mean :',ave,0.0
write(*,'(1x,A,T25,2F12.4)')'Average Deviation :',adev,STDDV
write(*,'(1x,A,T25,2F12.4)')'Standard Deviation :',sdev,STDDV
varth=stddv*stddv
write(*,'(1x,A,T25,2F12.4)')'Variance :',var,varth
write(*,'(1x,A,T25,F12.4)')'Est. Correlation Coeff.',rho
write(*,*)'Average deviation comes from use of absolute values'

write(2,*)'                     Values of quantities'
write(2,'(1x,T29,A,T42,A/)')' Sample  ',' Expected'
write(2,'(1x,A,T25,2F12.4)')'Mean :',ave,0.0
write(2,'(1x,A,T25,2F12.4)')'Average Deviation :',adev,STDDV
write(2,'(1x,A,T25,2F12.4)')'Standard Deviation :',sdev,STDDV
varth=stddv*stddv
write(2,'(1x,A,T25,2F12.4)')'Variance :',var,varth
write(2,'(1x,A,T25,F12.4)')'Est. Correlation Coeff.',rho
write(2,*)'Average deviation comes from use of absolute values'

return
END
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

SUBROUTINE
MOMENT(DATA,N,AVE,ADEV,SDEV,VAR,RHO)

c******************************************************
REAL*8 DATA(20000)
SAVE
c------------------------------------------------------------------------------

If (n.le.1) pause 'n must be at least 2'
s=0.
sd=0.
sn=0.
do 10 j=1,n
s=s+data(j)
if (j.eq.1) goto 10
sn=sn+data(j)*data(j-1)
sd=sd+data(j)+data(j)
10 continue
ave=s/n
adev=0.
var=0.
do 20 j=1,n
s=data(j)-ave
adev=adev+abs(s)
p=s*s
var=var+p
20 continue
adev=adev/n
var=var/(n-1)
sdev=sqrt(var)

rho=sn/sd
return
END
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

FUNCTION RAN1(IDUM)

c  Returns uniformly distributed numbers between 0 and 1

c******************************************************
DIMENSION R(97)
SAVE
PARAMETER(M1=259200,IA1=7141,IC1=54773,RM1=3.8580247E-6)
PARAMETER(M2=134456,IA2=8121,IC2=28411,RM2=7.4373773E-6)
PARAMETER(M3=243000,IA3=4561,IC3=51349)
DATA IFF/0/
c------------------------------------------------------------------------------

if (idum.lt.0.or.IFF.eq.0) then
IFF=1
IX1=MOD(IC1-idum,M1)
IX1=MOD(IA1*IX1+IC1,M1)
IX2=MOD(IX1,M2)
IX1=MOD(IA1*IX1+IC1,M1)
IX3=MOD(IX1,M3)
do 10 j=1,97
IX1=MOD(IA1*IX1+IC1,M1)
IX2=MOD(IA2*IX2+IC2,M2)
R(j)=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RM1
10 continue
idum=1
endif

IX1=MOD(IA1*IX1+IC1,M1)
IX2=MOD(IA2*IX2+IC2,M2)
IX3=MOD(IA3*IX3+IC3,M3)
j=1+(97*IX3)/M3

if (j.gt.97.or.j.lt.1) pause
ran1=R(j)
R(j)=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RM1

return
END
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

FUNCTION GASDEV(IDUM)

c  Uses Box-Muller transformation fron uniform distribution to
normal distribution with unit standard deviation

c******************************************************
SAVE
DATA ISET/0/
c------------------------------------------------------------------------------

if (ISET.eq.0) then
10 v1=2.*ran1(idum)-1.
v2=2.*ran1(idum)-1.
R=v1**2+v2**2
if (R.ge.1..or.R.eq.0.) goto 10
fac=sqrt(-2.*LOG(R)/R)
gset=v1*fac
gasdev=v2*fac
ISET=1
else
gasdev=gset
ISET=0
endif

return
END
c******************************************************
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SUBROUTINE GABODY

c HP77 or PC - SG 25/9/98

c******************************************************
INCLUDE 'gacommon_conduct.for'
c******************************************************
DIMENSION CHILDRAND(NSMAX,NPMAX+1)
CHARACTER*24 FDATE
SAVE
C------------------------------------------------------------------------------

ENTRY INIGEN

c initialize the random generator
CALL RMARIN(ISEED1,ISEED2)

c create the initial normalized population
CALL INITPOP

c if the rank-based selection is applied, determine
c the fitness and probability of breeding of each parent
IF (SELECT.EQ.'R') CALL RANKFIT

c compute OF of initial pop
CALL COMPOF(NS,CP)

RETURN
c******************************************************

ENTRY GENANA

c rank the population at generation iterg
CALL RANKNS

c compute OFavg of the population at generation iterg
CALL OFAVE

c check if convergence criterion is met
CALL CHECKCONV

RETURN
c******************************************************

ENTRY  BREED

c make ns children
DO 20 ICHILD=1,NS/2

IF (SELECT.EQ.'R') THEN
c select 2 parents according to rank selection
CALL SELRANK(ICHILD)
ELSE
c select 2 parents according to tournement selection
CALL SELTOURMT
ENDIF

c make 2 children by crossing the 2 selected parents
CALL CROSS

c mutate the child according to jump mutation
CALL MUTJUMP

c mutate the child according to jump AND creep mutations
IF (MUT.EQ.'JC') CALL MUTCREEP

DO 10 J=1,NP
CC(ICHILD,J)=CHILD(1,J)
CC(ICHILD+NS/2,J)=CHILD(2,J)
10 CONTINUE

20 CONTINUE

IF (KCONT.NE.0) CALL CHECKCONT(NS,CC)

RETURN

c******************************************************

ENTRY ELITISM

c compute OF of children population
CALL COMPOF(NS,CC)

c apply basic elitism
IF (ELIT.EQ.'B') THEN

c keep best parent by destroying last child made -arbitrarily
DO 30 I=2,NS
DO 30 J=1,NP
CP(I,J)=CC(I-1,J)
30 CONTINUE

ELSE
IF (ELIT.EQ.'SS') THEN

c apply SS elitism
c  1. compute OF of children population that mutated
IF (MUT.EQ.'J') THEN
NMUT=NMUTJUMP
ELSE
NMUT=NMUTJUMP+NMUTCREEP
ENDIF

IF (KCONT.NE.0) CALL CHECKCONT(NMUT,CHILDMUT)

CALL COMPOF(NMUT,CHILDMUT)

c  2. combine both children populations and rank the combined
children population
NTOT=NS+NMUT
DO 60 J=1,NP+1
DO 40 I=1,NS
CHILDTOT(I,J)=CC(I,J)
40 CONTINUE
DO 50 I=1,NMUT
CHILDTOT(I+NS,J)=CHILDMUT(I,J)
50 CONTINUE
60 CONTINUE
CALL RANK2NS

c  3. keep the best parents
NPKEPT=INT(NS*(1.D0-PR))
IF (NPKEPT.EQ.0) NPKEPT=1   !to preserve at least the best
parent ~ B elitism

IF (KILLTWIN.EQ.'N') THEN

c  4. replace a fraction of the parent population with ns*pr children
70 CONTINUE
DO 80 I=NPKEPT+1,NS
DO 80 J=1,NP+1
CP(I,J)=CHILDTOT(I-NPKEPT,J)
80 CONTINUE

ELSE
c  5. kill the twins; note that NTOT will change
CALL KTWINS
IF (NTWINS.LE.(NPKEPT+NMUT)) THEN
GOTO 70
ELSE

NCHILDRAND=NS-NPKEPT-NTOT
WRITE(99,'(A25,I3/)')'!!!Need random children: ',
+NCHILDRAND
DO 100 I=1,NCHILDRAND
DO 90 J=1,NP
CHILDRAND(I,J)=URAND()
90 CONTINUE
CHILDRAND(I,NP+1)=0.D0
100 CONTINUE

CALL COMPOF(NCHILDRAND,CHILDRAND)
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DO 110 I=NPKEPT+1,NPKEPT+NTOT
DO 110 J=1,NP+1
CP(I,J)=CHILDTOT(I-NPKEPT,J)
110 CONTINUE
DO 120 I=NPKEPT+NTOT+1,NS
DO 120 J=1,NP+1
CP(I,J)=CHILDRAND(I-NPKEPT-NTOT,J)
120 CONTINUE
ENDIF

ENDIF
ELSE
WRITE(*,*)'SR elitism is not set up yet!'
ENDIF
ENDIF

RETURN
c******************************************************

ENTRY RESULT

c list the final parent population and measure the GA performance
WRITE(99,130)
130 FORMAT(/75('=')//2X,'RESULTS'/50('-')/)

WRITE(99,'(/A36)')'Elapsed CPU time since start of run:'
WRITE(99,'(1X,A8,F10.1/)')'CPU (s)=',KCPU*86400-
TIME0+SECNDS(0.0)

IF (KSTOPF.EQ.2) THEN
WRITE(99,'(A28)')'Stopped because iterg=lastg!'
ELSE
WRITE(99,'(A34,I3)')'Convergence criterion met @ iterg=',iterg
ENDIF

DO 150 I=1,NS
DO 150 J=1,NP
IF (FACTADIM(J).EQ.'LIN') THEN
CP(I,J)=(PARMAX(J)-PARMIN(J))*CP(I,J)+PARMIN(J)
ELSE
CP(I,J)=10**(DLOG10(PARMAX(J)/PARMIN(J))
*CP(I,J)+DLOG10(PARMIN(J)))
ENDIF
150 CONTINUE

c write the final population to the ouput file
JEND=NP+1
JBEG=1
JREP=(JEND-JBEG+11)/11
DO 160 I=1,NS
JBEG=1
DO 160 JWRITE=1,JREP
INCRJ=MIN(10,JEND-JBEG)
JSTOP=JBEG+INCRJ
WRITE(10,'(I3,2X,11(G16.8,1X))')I,(CP(I,J),J=JBEG,JSTOP)
JBEG=JSTOP+1
160 CONTINUE

WRITE(99,170)
170 FORMAT(//2X,'*** Measure of the GA performance ***')

WRITE(99,'(//A28/)')'1) "BEST SO FAR" cp(1,np+1):'
JBEG=1
DO 180 JWRITE=1,JREP
INCRJ=MIN(10,JEND-JBEG)
JSTOP=JBEG+INCRJ
WRITE(99,'(11(1X,G16.8)/)')(CP(1,J),J=JBEG,JSTOP)
PRINT*, (CP(1,J),J=JBEG,JSTOP)
JBEG=JSTOP+1
180 CONTINUE

c EST run: calculate 95% CI of best design + compute correlation matrix
c OPT run: calculate total experimental time (when Dmod+ unchanged)
IF (KESTOPT.EQ.1) THEN

KTN=1
CALL COMPOF(1,BEST)
WRITE(99,190)
190 FORMAT(/2X,'Nondimensional total experimental time:'/)
WRITE(99,'(G16.8/)')BEST(NP+1)
ELSE
DO 200 J=1,NP+1
PAR(J)=CP(1,J)
200 CONTINUE
CALL COMPCI
ENDIF

WRITE(99,'(//A26/)')'2) "OFF LINE" convergence:'
WRITE(99,*)'=moyenne courante des bests sur ITERG+1 generations'
WRITE(99,*)'~limite de la convergence'
OFFLINE=OFFLINE/(ITERG +1)
WRITE(99,'(/1X,G16.8,2X,A8,I3)')OFFLINE,'ITERG+1=',ITERG+1
WRITE(99,'(//A25/)')'3) "ON LINE" convergence:'
WRITE(99,*)'=moyenne de toutes les evaluations sur NFEVAL eval.'
WRITE(99,*)'~facon dont la convergence est atteinte'
ONLINE=ONLINE/NFEVAL
WRITE(99,'(/1X,G16.8,2X,A7,I6)')ONLINE,'NFEVAL=',NFEVAL

WRITE(99,210)
210 FORMAT(//2X,'*** Statistical analyses on final Nst ***'/)
c perform statistical calculations on 5 best
IF (NS.GE.5) CALL STATIST(5)
c perform statistical calculations on 10 best
IF (NS.GE.10) CALL STATIST(10)
c perform statistical calculations on NS best
CALL STATIST(NS)

WRITE(99,'(/A45)')'4a) Elapsed CPU time since gen. loop stopped:'
IF (SECNDS(0.0).GT.CPUG) THEN
WRITE(99,'(/1X,A24,F10.1)')'CPU (s) /Sub. RESULT/ =',
1 SECNDS(CPUG)
ELSE
WRITE(99,'(/1X,A24,F10.1)')'CPU (s) /Sub. RESULT/ =',
1 86400.-CPUG+SECNDS(0.0)
KCPU=KCPU+1
ENDIF

WRITE(99,'(/A40)')'4b) Elapsed CPU time since start of run:'
WRITE(99,'(/1X,A8,F10.1)')'CPU (s)=',KCPU*86400-
TIME0+SECNDS(0.0)

CLOSE(99)
CLOSE(10)
CLOSE(11)
CLOSE(12)
CLOSE(8)
CLOSE(9)

RETURN
END
c******************************************************

SUBROUTINE GAINV
c includes invariant "entry subroutines" dealing with a GA
c HP77 or PC - SG 11/3/98

c******************************************************
INCLUDE 'gacommon_conduct.for'
c******************************************************
COMMON/PROBGA/P(NSMAX),IPARENT(2)
DIMENSION IPLACE(2)
SAVE
c------------------------------------------------------------------------------

ENTRY RANKFIT

c determine the probability of breeding of a population of size ns
c based on a ranked fitness

P(1)=2.D0/(NS*1.D0+1.D0)
DO 10 I=2,NS
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FI=(NS+1-I)*1.D0
PROBI=2.D0*FI/(NS*1.D0*(NS*1.D0+1.D0))
P(I)=P(I-1)+PROBI
10 CONTINUE

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
ENTRY SELRANK(ICHILD)

c select a pair of parents according to a modified rank selection
c P1 comes from the top half
c P2 is selected applying the roulette wheel mechanism

IPARENT(1)=ICHILD
PLACE=URAND()
DO 20 J=2,NS
IF (PLACE.GT.P(J-1)) GOTO 30
IPARENT(2)=J-1
GOTO 40
20 CONTINUE

30 CONTINUE
40 IPARENT(2)=NS

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY SELTOURMT

c select a pair of parents according to the tournament selection

DO 60 I=1,2
DO 50 J=1,2
IPLACE(J)=INT(URAND()*NS)+1
50 CONTINUE
IF (URAND().LE.PT) THEN
IPARENT(I)=MIN(IPLACE(1),IPLACE(2)) !choose better ranked
ELSE
IPARENT(I)=MAX(IPLACE(1),IPLACE(2))
ENDIF
60 CONTINUE

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY CROSS

c create two complement children according to a modified crossover
operator with probability pc
c this modified crossover operator takes into account the distance
between both parents

DO 70 J=1,NP
IF (URAND().LE.PC) THEN
CHILD(1,J)=0.5D0*(CP(IPARENT(1),J)+CP(IPARENT(2),J))
+DABS(CP(IPARENT(1),J)-CP(IPARENT(2),J))*URAND()
+0.001D0*URAND()
ELSE
CHILD(1,J)=CP(IPARENT(1),J)
ENDIF
IF (URAND().LE.PC) THEN
CHILD(2,J)=0.5D0*(CP(IPARENT(1),J)+CP(IPARENT(2),J))
-DABS(CP(IPARENT(1),J)-CP(IPARENT(2),J))*URAND()
-0.001D0*URAND()
ELSE
CHILD(2,J)=CP(IPARENT(2),J)
ENDIF
70 CONTINUE

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY MUTJUMP

c mutate each child according to jump mutation with probabiblity pmj

DO 90 I=1,2
DO 90 J=1,NP
IF (URAND().LE.PMJ) THEN
NMUTJUMP=NMUTJUMP+1
c store current child version
IF (ELIT.EQ.'SS') THEN
DO 80 K=1,NP
CHILDMUT(NMUTJUMP+NMUTCREEP,K)=CHILD(I,K)
80 CONTINUE
ENDIF
CHILD(I,J)=URAND()
ENDIF
90 CONTINUE

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY MUTCREEP

c mutate each child according to creep mutation with probabiblity pmc

DO 110 I=1,2
DO 110 J=1,NP
IF (URAND().LE.PMC) THEN
NMUTCREEP=NMUTCREEP+1
c store current child version
IF (ELIT.EQ.'SS') THEN
DO 100 K=1,NP
CHILDMUT(NMUTJUMP+NMUTCREEP,K)=CHILD(I,K)
100 CONTINUE
ENDIF
IF (URAND().LE.0.5D0) THEN
CHILD(I,J)=CHILD(I,J)*1.05D0
ELSE
CHILD(I,J)=CHILD(I,J)*0.95D0
ENDIF
ENDIF
110 CONTINUE

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY KTWINS

c kill any twins in the total children population

NTOTI=NTOT
DO 140 J=1,NTOT-1
REF=CHILDTOT(J,NP+1)
DO 140 I=J+1,NTOT
120 CONTINUE
IF (CHILDTOT(I,NP+1).EQ.REF) THEN
IF (I.EQ.NTOT) THEN
NTOT=NTOT-1
IF (J.EQ.NTOT) GOTO 150
ELSE
DO 130 K=1,NTOT-1
DO 130 L=1,NP+1
CHILDTOT(K,L)=CHILDTOT(K+1,L)
130 CONTINUE
NTOT=NTOT-1
GOTO 120
ENDIF
ENDIF
140 CONTINUE

150 CONTINUE
NTWINS=NTOTI-NTOT
WRITE(99,'(A13,I3/)')'Twins killed:',NTWINS

RETURN
END
c******************************************************

SUBROUTINE POPINV
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c includes invariant "entry subroutines" dealing with a population
c HP77 or PC - SG 11/3/98; update 4/06/98

c******************************************************
INCLUDE 'gacommon_conduct.for'
c******************************************************
DIMENSION ARRMIN(NPMAX+1),ARRMAX(NPMAX+1),
ARRINT(NPMAX+1),RMEAN(NPMAX+1),
DEV(NPMAX+1),CI(NPMAX+1)
SAVE
c------------------------------------------------------------------------------

ENTRY INITPOP

c create an initial normalized [0,1] parent population
DO 20 I=1,NS
DO 10 J=1,NP
CP(I,J)=URAND()
10 CONTINUE
CP(I,NP+1)=0.D0
20 CONTINUE

c set children arrays to 0.d0
DO 40 J=1,NP+1
BEST(J)=0.D0
DO 30 I=1,NS
CHILDTOT(I,J)=0.D0
CHILDTOT(I+NS,J)=0.D0
CHILDMUT(I,J)=0.D0
30 CONTINUE
40 CONTINUE

NCRITERG=0

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY RANKNS

c sort the array CP(NS,NP+1) into numerical order, by straight
insertion
c EST run: 1st = OFmin (searching for the smallest value of the least
square error)
c OPT run: 1st = OFmax (searching for the largest value of the
optimality criterion)

DO 90 I=2,NS
IF (KESTOPT.EQ.0) THEN
DO 50 J=1,NP+1
ARRMIN(J)=CP(I-1,J)
50 CONTINUE
IMIN=I-1
DO 70 J=I,NS
IF (CP(J,NP+1).LT.ARRMIN(NP+1)) THEN
DO 60 K=1,NP+1
ARRMIN(K)=CP(J,K)
60 CONTINUE
IMIN=J
ENDIF
70 CONTINUE
DO 80 K=1,NP+1
ARRINT(K)=CP(I-1,K)
CP(I-1,K)=ARRMIN(K)
CP(IMIN,K)=ARRINT(K)
80 CONTINUE

ELSE
DO 51 J=1,NP+1
ARRMAX(J)=CP(I-1,J)
51 CONTINUE
IMAX=I-1
DO 71 J=I,NS
IF (CP(J,NP+1).GT.ARRMAX(NP+1)) THEN
DO 61 K=1,NP+1
ARRMAX(K)=CP(J,K)
61 CONTINUE

IMAX=J
ENDIF
71 CONTINUE
DO 81 K=1,NP+1
ARRINT(K)=CP(I-1,K)
CP(I-1,K)=ARRMAX(K)
CP(IMAX,K)=ARRINT(K)
81 CONTINUE
ENDIF
90 CONTINUE

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY OFAVE

OFAVG=0.D0
DO 100 I=1,NS
OFAVG=OFAVG+CP(I,NP+1)
100 CONTINUE
OFAVG=OFAVG/(NS*1.D0)

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY RANK2NS

c sort the array CHILDTOT(2NS,NP+1) into numerical order, by
straight insertion / SEE RANKNS

DO 160 I=2,NTOT
IF (KESTOPT.EQ.0) THEN
DO 120 J=1,NP+1
ARRMIN(J)=CHILDTOT(I-1,J)
120 CONTINUE
IMIN=I-1
DO 140 J=I,NTOT
IF (CHILDTOT(J,NP+1).LT.ARRMIN(NP+1)) THEN
DO 130 K=1,NP+1
ARRMIN(K)=CHILDTOT(J,K)
130 CONTINUE
IMIN=J
ENDIF
140 CONTINUE
DO 150 K=1,NP+1
ARRINT(K)=CHILDTOT(I-1,K)
CHILDTOT(I-1,K)=ARRMIN(K)
CHILDTOT(IMIN,K)=ARRINT(K)
150 CONTINUE

ELSE
DO 121 J=1,NP+1
ARRMAX(J)=CHILDTOT(I-1,J)
121 CONTINUE
IMAX=I-1
DO 141 J=I,NTOT
IF (CHILDTOT(J,NP+1).GT.ARRMAX(NP+1)) THEN
DO 131 K=1,NP+1
ARRMAX(K)=CHILDTOT(J,K)
131 CONTINUE
IMAX=J
ENDIF
141 CONTINUE
DO 151 K=1,NP+1
ARRINT(K)=CHILDTOT(I-1,K)
CHILDTOT(I-1,K)=ARRMAX(K)
CHILDTOT(IMAX,K)=ARRINT(K)
151 CONTINUE
ENDIF
160 CONTINUE

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY CHECKCONV



248

c reset ncriter enabling to check convergence between the previous
and actual generation

NCRITER=0

IF (ITERG.EQ.0) THEN
c write the initial population to the ouput file
JEND=NP
JBEG=1
JREP=(JEND-JBEG+10)/10
DO 166 I=1,NS
DO J=1,NP
IF (FACTADIM(J).EQ.'LIN') THEN
PAR(J)=(PARMAX(J)-PARMIN(J))*CP(I,J)+PARMIN(J)
ELSE
PAR(J)=10**(DLOG10(PARMAX(J)/PARMIN(J))*CP(I,J)
+DLOG10(PARMIN(J)))
ENDIF
ENDDO
JBEG=1
DO 165 JWRITE=1,JREP
INCRJ=MIN(9,JEND-JBEG)
JSTOP=JBEG+INCRJ
WRITE(10,'(I4,2X,10(E16.8,1X))')I,(PAR(J),J=JBEG,JSTOP),
CP(I,NP+1)
JBEG=JSTOP+1
165 CONTINUE
166 CONTINUE
ENDIF

IF (ITERG.LE.MING) GOTO 175

c compare first chromosome with ex-best
DO 170 J=1,NP+1
IF ((DABS(CP(1,J)-BEST(J))/(DABS(CP(1,J))+10.D0**(-10.))).
1 LE.CRITERION) NCRITER=NCRITER+1
170 CONTINUE

c copy new best
175 DO 180 J=1,NP+1
BEST(J)=CP(1,J)
180 CONTINUE
OFFLINE=OFFLINE+BEST(NP+1)

c write GA performance
DO 190 J=1,NP
IF (FACTADIM(J).EQ.'LIN') THEN
PAR(J)=(PARMAX(J)-PARMIN(J))*BEST(J)+PARMIN(J)
ELSE
PAR(J)=10**(DLOG10(PARMAX(J)/PARMIN(J))*BEST(J)
+DLOG10(PARMIN(J)))
ENDIF
190 CONTINUE
PAR(NP+1)=BEST(NP+1)

JBEG=1
JEND=NP+1
JREP=(JEND-JBEG+10)/10
DO 191 JWRITE=1,JREP
INCRJ=MIN(9,JEND-JBEG)
JSTOP=JBEG+INCRJ
WRITE(10,'(I4,10(1X,E15.8)/)')ITERG,(PAR(J),J=JBEG,JSTOP)
IF (KSCREEN.EQ.1)
WRITE(*,'(10(1X,E15.8)/)')(PAR(J),J=JBEG,JSTOP)
JBEG=JSTOP+1
191 CONTINUE

OFFL=OFFLINE/(ITERG+1)
ONL=ONLINE/NFEVAL

IF (SECNDS(0.0).GT.CPUG) THEN
RCPUG=SECNDS(CPUG)
ELSE
RCPUG=86400.-CPUG+SECNDS(0.0) !86400.sec/day
KCPU=KCPU+1
ENDIF

CPUG=SECNDS(0.0)

WRITE(11,195)ITERG,OFAVG,PAR(NP+1),OFFL,ONL,NFEVAL,
RCPUG
195 FORMAT(I4,4(1X,E15.6),2X,I10,1X,F10.1)

WRITE(12,'(6(1X,I7))')ITERG,NMUTJUMP,NMUTCREEP,NTWI
NS,NCONTMIN,NCONTMAX

c if convergence reached for the best chromosome, increment criterg
c which enables to check convergence for the following lastcriterg
IF (NCRITER.EQ.NP+1) THEN
NCRITERG=NCRITERG+1

c if lastcriterg is satisfied, run is complete
IF (NCRITERG.EQ.LASTCRITERG) THEN
KSTOPF=1
GO TO 220
ENDIF

ELSE
c if convergence not reached for the best chromosome, reset ncriterg
NCRITERG=0
ENDIF

200 IF (ITERG.EQ.LASTG) THEN
KSTOPF=2
ELSE

c if convergence not reached for the best chromosome, reset other
parameters
ITERG=ITERG+1
IF (KSCREEN.EQ.1) PRINT*,'ITERG=',ITERG

NMUTJUMP=0
NMUTCREEP=0
NTWINS=0
ENDIF

220 RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY STATIST(N)

c perform some statistical calculations on n final chromosomes

RN=N*1.D0

DO 230 J=1,NP+1
RMEAN(J)=0.D0
DEV(J)=0.D0
230 CONTINUE

WRITE(99,'(A2,I3)')'N=',N

c determine the range of the final values taken by each chromosome
DO 240 J=1,NP
PARMIN(J)=CP(1,J)
PARMAX(J)=CP(1,J)
240 CONTINUE

DO 250 I=2,N
DO 250 J=1,NP
IF (CP(I,J).LT.PARMIN(J)) PARMIN(J)=CP(I,J)
IF (CP(I,J).GT.PARMAX(J)) PARMAX(J)=CP(I,J)
250 CONTINUE

WRITE(99,260)
260 FORMAT(/'minimum PARMIN(1:NP) and maximum
PARMAX(1:NP) values:')
DO 270 J=1,NP
WRITE(99,'(2(1X,G18.8))')PARMIN(J),PARMAX(J)
270 CONTINUE

c compute the means of the n optimal chromosomes:
DO 290 J=1,NP+1
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DO 280 I=1,N
RMEAN(J)=RMEAN(J)+CP(I,J)
280 CONTINUE
RMEAN(J)=RMEAN(J)/RN
290 CONTINUE

WRITE(99,300)
300 FORMAT(/'RMEAN(CP(1:N,NP+1)):')
JBEG=1
JEND=NP+1
JREP=(JEND-JBEG+11)/11
DO 310 JWRITE=1,JREP
INCRJ=MIN(10,JEND-JBEG)
JSTOP=JBEG+INCRJ
WRITE(99,'(11(1X,G16.8))')(RMEAN(J),J=JBEG,JSTOP)
JBEG=JSTOP+1
310 CONTINUE

c compute the standard deviations:
DO 330 J=1,NP+1
DO 320 I=1,N
DEV(J)=DEV(J)+(CP(I,J)-RMEAN(J))**2
320 CONTINUE
DEV(J)=SQRT(DEV(J)/(RN-1.D0))
330 CONTINUE

WRITE(99,340)
340 FORMAT(/'STANDARD DEVIATIONS:')
JBEG=1
DO 350 JWRITE=1,JREP
INCRJ=MIN(10,JEND-JBEG)
JSTOP=JBEG+INCRJ
WRITE(99,'(11(1X,G16.8))')(DEV(J),J=JBEG,JSTOP)
JBEG=JSTOP+1
350 CONTINUE

c compute the 95% confidence intervals for the mean values:
IF (N.LE.5) TCOEF=2.776D0
IF (N.EQ.10) TCOEF=2.262D0
IF (N.EQ.25) TCOEF=2.064D0
IF (N.EQ.30) TCOEF=2.045D0
IF (31.LE.N.AND.N.LE.41) TCOEF=2.042D0-0.0021D0*(RN-31.D0)
IF (41.LT.N.AND.N.LE.61) TCOEF=2.021D0-0.00105D0
*(RN-41.D0)
IF (61.LT.N.AND.N.LE.121) TCOEF=2.D0-3.333D-4*(RN-61.D0)
IF (N.GT.121) TCOEF=1.96D0

DO 360 J=1,NP+1
CI(J)=TCOEF*DEV(J)/SQRT(RN)
360 CONTINUE

WRITE(99,370)
370 FORMAT(/'95% CONFIDENCE INTERVALS:')
JBEG=1
DO 380 JWRITE=1,JREP
INCRJ=MIN(10,JEND-JBEG)
JSTOP=JBEG+INCRJ
WRITE(99,'(11(1X,G16.8)//)')(CI(J),J=JBEG,JSTOP)
JBEG=JSTOP+1
380 CONTINUE

RETURN
END
c******************************************************

SUBROUTINE SENSOF

c includes invariant "entry subroutines" dealing with an OF
c HP77 or PC - SG modified 25/09/98

c******************************************************
INCLUDE 'gacommon_conduct.for'
c******************************************************
COMMON/PROBMATP/
XI(LASTTMAX,NPMAX),XTX(NPMAX,NPMAX)
DIMENSION P(NPMAX,NPMAX),RI(NPMAX,NPMAX),

AUG(NPMAX,NPMAX+1),T1(LASTTMAX),T2(LASTTMAX),
SUMXTX(NPMAX,NPMAX),XTXOPT(NPMAX,NPMAX)
SAVE
c------------------------------------------------------------------------------

ENTRY COMPXI

c compute sensibility coefficients of parameters to be estimated

KXTX=1
KDB=0

c reset statements for new T computation
10 CALL BEGIN

IF (KDB.EQ.0.AND.KSENSOR.EQ.1) THEN
c define the sensor(s') position(s) with the design parameters xs and ys
NSENS=1
11 CONTINUE
I=1
J=1
XS=XSENSOR(NSENS)
YS=YSENSOR(NSENS)
IF (X(I).LE.XS.AND.XS.LE.X(I+1)/2.D0) THEN
IS=I
ELSE

I=I+1
IF (X(I)/2.D0.LT.XS.AND.XS.LE.XU(I+1)) THEN
IS=I
ELSE

12 I=I+1
IF (XU(I).LT.XS.AND.XS.LE.XU(I+1)) THEN
IS=I
ELSE
IF (I.LT.L3) GOTO 12

I=I+1
IF (XU(I).LT.XS.AND.XS.LT.(X(I)+(X(I+1)-X(I))/2)) THEN
IS=I
ELSE

IS=I+1
ENDIF
ENDIF
ENDIF
ENDIF

IF (Y(J).LE.YS.AND.YS.LE.Y(J+1)/2.D0) THEN
JS=J
ELSE

J=J+1
IF (Y(J)/2.D0.LT.YS.AND.YS.LE.YV(J+1)) THEN
JS=J
ELSE

13 J=J+1
IF (YV(J).LT.YS.AND.YS.LE.YV(J+1)) THEN
JS=J
ELSE
IF (J.LT.M3) GOTO 13
J=J+1
IF (YV(J).LT.YS.AND.YS.LT.(Y(J)+(Y(J+1)-Y(J))/2)) THEN
JS=J
ELSE
JS=J+1
ENDIF
ENDIF
ENDIF
ENDIF

ISENSOR(NSENS)=IS
JSENSOR(NSENS)=JS
IF (KXPRINT.EQ.1) THEN
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WRITE(99,15)'Node (IS,JS) of sensor#:',NSENS,IS,JS
15 FORMAT(/A24,3(I3,1X))
ENDIF
NSENS=NSENS+1
IF (NSENS.LE.NSENSOR) GOTO 11
ENDIF

c come here to start the iteration or time-step loop
20 CONTINUE
CALL OUTPUT
IF (ITERT.EQ.0) GOTO 25
IF (KXTX.EQ.1) THEN  !actual par. values used to get T
T1(ITERT)=TSENSOR(1)
IF (ITERT.EQ.LASTT) KXTX=2
ELSE
T2(ITERT)=TSENSOR(1)      !(1.+ DB)*(est.par.) values used to get T
ENDIF
IF (KSTOP.NE.0) GOTO 30
25 CALL HEART
GOTO 20

30 IF (KDB.EQ.0) THEN
DB(KDB+1)=DELTAB
ELSE
DO 40 I=1,LASTT  !comp XI(npest) =SC matrix
IF (KESTOPT.EQ.0.AND.KXADIM.EQ.0) THEN
XI(I,KDB)=(T2(I)-T1(I))/(PAR(KDB)*DB(KDB))     !dim SC
ELSE
XI(I,KDB)=(T2(I)-T1(I))/((TMAX-TI)*DB(KDB))    !nondim SC
ENDIF
40 CONTINUE
DB(KDB)=0.D0
IF (KDB.EQ.NPEST) GOTO 50
DB(KDB+1)=DELTAB
ENDIF
KDB=KDB+1

GOTO 10

50 CONTINUE

c if KXPRINT=1, print sensitivity coefficients in file
IF (KXPRINT.EQ.1) THEN
DO 55 I=1,LASTT
IF (KDT.EQ.1) THEN
WRITE(IUXI,'(F6.2,9(1X,E10.4))')I*DT,(XI(I,J),J=1,NPEST)
ELSE
WRITE(IUXI,'(F6.2,9(1X,E10.4))')TIMEEXP(1,I),
(XI(I,J),J=1,NPEST)
ENDIF
55 CONTINUE
ENDIF

RETURN
C*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY COMPXTXOPT(IXTX,XTXOPT)

c called in OPT run only for optimality criterion computation
c compute matrix SUMXTX

IF (IXTX.EQ.1) THEN
DO 61 J=1,NPEST
DO 61 K=1,NPEST
SUMXTX(J,K)=0.D0
61 CONTINUE
ENDIF

DO 62 J=1,NPEST
DO 62 K=1,NPEST
SUMXTX(J,K)=SUMXTX(J,K)+XI(IXTX,J)*XI(IXTX,K)
62 CONTINUE

DO 63 K=1,NPEST
DO 63 J=1,NPEST
IF (KTN.EQ.0) THEN

XTXOPT(J,K)=SUMXTX(J,K)*1.D0/(TMAXP**2*IXTX)  !OF+
ELSE
XTXOPT(J,K)=SUMXTX(J,K)*1.D0/(TMAXP**2/DT)
!OF+modified to find tn+
ENDIF
63 CONTINUE

RETURN
C*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY COMPXTX

c called in EST run only for confidence intervals computation
c compute matrix XTX

DO 86 J=1,NPEST
DO 86 K=1,NPEST
XTX(J,K)=0.D0
86 CONTINUE

DO 88 I=1,LASTT
DO 87 J=1,NPEST
DO 87 K=1,NPEST
XTX(J,K)=XTX(J,K)+XI(I,J)*XI(I,K)
87 CONTINUE
88 CONTINUE

RETURN
C*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY INVMAT(P)

c solve XTX*P=RI for P using the gaussian elimination method

c define the matrix identity RI(NPEST,NPEST)
DO 89 J=1,NPEST
DO 89 K=1,NPEST
IF (K.EQ.J) THEN
RI(J,K)=1.D0
ELSE
RI(J,K)=0.D0
ENDIF
89 CONTINUE

c solve successively each column of P
DO 180 L=1,NPEST

c   *form the npest*(npest+1) augmented matrix AUG by adjoining
RI to XTX
DO 90 I=1,NPEST
DO 90 J=1,NPEST
AUG(I,J)=XTX(I,J)
90 CONTINUE

DO 100 I=1,NPEST
AUG(I,NPEST+1)=RI(I,L)
100 CONTINUE

DO 150 I=1,NPEST

c   *locate nonzero diagonal entry
IF (AUG(I,I).EQ.0.D0) THEN

IPIVOT=0
J=I+1

110 IF ((IPIVOT.EQ.0).AND.(J.LE.NPEST)) THEN
IF (AUG(J,I).NE.0.D0) IPIVOT=J
GOTO 110
ENDIF

IF (IPIVOT.EQ.0) THEN
STOP 'matrix is singular in INVMAT'
ELSE

c   *interchange rows i and Ipivot
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DO 120 J=1,NPEST+1
TEMP=AUG(I,J)
AUG(I,J)=AUG(IPIVOT,J)
AUG(IPIVOT,J)=TEMP
120 CONTINUE

ENDIF
ENDIF

c   *eliminate ith unknown from equations i+1,...,NPEST
DO 140 J=I+1,NPEST

RMULT=-AUG(J,I)/AUG(I,I)

DO 130 K=I,NPEST+1
AUG(J,K)=AUG(J,K)+RMULT*AUG(I,K)
130 CONTINUE

140 CONTINUE

150 CONTINUE

c   *find the solutions
P(NPEST,L)=AUG(NPEST,NPEST+1)/AUG(NPEST,NPEST)

DO 170 J=NPEST-1,1,-1

P(J,L)=AUG(J,NPEST+1)

DO 160 K=J+1,NPEST
P(J,L)=P(J,L)-AUG(J,K)*P(K,L)
160 CONTINUE

P(J,L)=P(J,L)/AUG(J,J)

170 CONTINUE
180 CONTINUE

RETURN
END
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

SUBROUTINE COMPCI

c HP77 or PC - SG modified 03/09/98
c compute the 95% CI of the best design and also determines the
correlation matrix

c******************************************************
INCLUDE 'gacommon_conduct.for'
c******************************************************
DIMENSION
P(NPMAX,NPMAX),CINL(NPMAX),RR(NPMAX,NPMAX)
SAVE
c------------------------------------------------------------------------------

c determine matrix XTX
CALL COMPXI
CALL COMPXTX

c determine matrix P(NPEST,NPEST) =inv[XTX(NPEST,NPEST)]
CALL INVMAT(P)

c compute the 95% Non Linear CI of the opt estimates
DO 200 J=1,NPEST
CINL(J)=SQRT(P(J,J))*1.96D0
200 CONTINUE

c write the CINL to the output file
WRITE(99,210)
210 FORMAT(2X,'95% CI for Non Linear estimation:'/)
JBEG=1
JEND=NPEST
JREP=(JEND-JBEG+4)/4
DO 220 JWRITE=1,JREP

INCRJ=MIN(3,JEND-JBEG)
JSTOP=JBEG+INCRJ
WRITE(99,'(4(1X,G18.8)/)')(CINL(J),J=JBEG,JSTOP)
PRINT*, (CINL(J),J=JBEG,JSTOP)
JBEG=JSTOP+1
220 CONTINUE

c compute the correlation matrix
DO 230 J=1,NPEST
DO 230 K=1,J
AR=P(J,J)*P(K,K)
RR(J,K)=P(J,K)/SQRT(AR)
230 CONTINUE

c write the correlation matrix to the output file
WRITE(99,240)
240 FORMAT(/2X,'Correlation matrix:'/)
DO 250 K=1,NPEST
JBEG=1
DO 250 JWRITE=1,JREP
INCRJ=MIN(3,JEND-JBEG)
JSTOP=MIN(K,JBEG+INCRJ)
WRITE(99,'(4(1X,G18.8)/)')(RR(K,J),J=JBEG,JSTOP)
PRINT*, (RR(K,J),J=JBEG,JSTOP)
JBEG=JSTOP+1
250 CONTINUE

RETURN
END
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

SUBROUTINE JACOBRANG

c HP77 or PC

c******************************************************
INCLUDE 'gacommon_conduct.for'
c******************************************************
PARAMETER (nmax=10)
DIMENSION
a(npmax,npmax),d(npmax),v(npmax,npmax),b(nmax),z(nmax)
c------------------------------------------------------------------------------

ENTRY JACOBI(A,N,NPP,D)

c See Numerical recipes p 460
c Computes all eigenvalues and eigenvectors of a real symmetric
matrix a, which is of size n by n, stored in a physical npp by npp
(npp=n) array. On output, elements of a above the diagonal are
c destroyed. d returns the eigenvalues of a in its first n elements. v is
a matrix with the same logical and physical dimensions as a, whose
columns contain, on output, the normalized eigenvectors of a. nrot
returns the number of Jacobi rotations that were required.

do 12 ip=1,n
do 11 iq=1,n
v(ip,iq)=0.
11 continue
v(ip,ip)=1.
12 continue
do 13 ip=1,n
b(ip)=a(ip,ip)
d(ip)=b(ip)
z(ip)=0.
13 continue
nrot=0
do 24 i=1,50
sm=0.
do 15 ip=1,n-1
do 14 iq=ip+1,n
sm=sm+abs(a(ip,iq))
14 continue
15 continue
if (sm.eq.0.) return
if (i.lt.4) then
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tresh=0.2*sm/n**2
else
tresh=0.
endif
do 22 ip=1,n-1
do 21 iq=ip+1,n
g=100.*abs(a(ip,iq))
if ((i.gt.4).and.(abs(d(ip))+g.eq.abs(d(ip))).and.
(abs(d(iq))+g.eq.abs(d(iq)))) then
a(ip,iq)=0.
else if (abs(a(ip,iq)).gt.tresh) then
h=d(iq)-d(ip)
if (abs(h)+g.eq.abs(h)) then
t=a(ip,iq)/h
else
theta=0.5*h/a(ip,iq)
t=1./(abs(theta)+sqrt(1.+theta**2))
if (theta.lt.0.) t=-t
endif
c=1./sqrt(1+t**2)
s=t*c
tau=s/(1.+c)
h=t*a(ip,iq)
z(ip)=z(ip)-h
z(iq)=z(iq)+h
d(ip)=d(ip)-h
d(iq)=d(iq)+h
a(ip,iq)=0.
do 16 j=1,ip-1
g=a(j,ip)
h=a(j,iq)
a(j,ip)=g-s*(h+g*tau)
a(j,iq)=h+s*(g-h*tau)
16 continue
do 17 j=ip+1,iq-1
g=a(ip,j)
h=a(j,iq)
a(ip,j)=g-s*(h+g*tau)
a(j,iq)=h+s*(g-h*tau)
17 continue
do 18 j=iq+1,n
g=a(ip,j)
h=a(iq,j)
a(ip,j)=g-s*(h+g*tau)
a(iq,j)=h+s*(g-h*tau)
18 continue
do 19 j=1,n
g=v(j,ip)
h=v(j,iq)
v(j,ip)=g-s*(h+g*tau)
v(j,iq)=h+s*(g-h*tau)
19 continue
nrot=nrot+1
endif
21 continue
22 continue
do 23 ip=1,n
b(ip)=b(ip)+z(ip)
d(ip)=b(ip)
z(ip)=0.
23 continue
24 continue
pause 'too many iterations in jacobi'

RETURN
c*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

ENTRY RANGER(N,D)

c Sort eigenvalues by straight insertion

DO 40 J=2,N
RX=D(J)
DO 30 K=J-1,1,-1
IF (D(K).LE.RX) GOTO 59
D(K+1)=D(K)

30 CONTINUE
K=0
59 D(K+1)=RX
40 CONTINUE

RETURN
END

c******************************************************
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c COMMON include file for GACONDUCT
c SG 3/11/98; update 4/06/98

IMPLICIT DOUBLE PRECISION (a-h,o-z)
IMPLICIT INTEGER*4 (i-n)

REAL*4 TIME0,CPUG

PARAMETER (BIG=1.d+52, SMALL=1.d-52)  !double precision
PARAMETER (NI=102,NJ=102,NFMAX=1,NZMAX=15)
PARAMETER (NSMAX=500,NPMAX=9,LASTTMAX=10001,
NEXPMAX=5,NSENSORMAX=1)

CHARACTER*18 TITLE
CHARACTER*64 HEADER,PRINTF,PLOTF
CHARACTER*4 SELECT,MUT,KILLTWIN,ELIT,OPTCRIT,
FACTADIM

C______________________________________________________

COMMON F(NI,NJ,NFMAX),ALAM(NI,NJ),
GAM(NI,NJ),  !Isotropic gamma
GAMX(NI,NJ),GAMY(NI,NJ),  !Orthotropic gamma
CON(NI,NJ),AP(NI,NJ),AIP(NI,NJ),
AIM(NI,NJ),AJP(NI,NJ),AJM(NI,NJ),
FLUXI1(NJ,NFMAX),FLUXJ1(NI,NFMAX),
FLUXL1(NJ,NFMAX),FLUXM1(NI,NFMAX),
X(NI),XU(NI),XCV(NI),ARX(NJ),Y(NJ),YV(NJ),
YCV(NJ),YCVR(NJ),R(NJ),RV(NJ),SX(NJ),
PTX(NI),QTX(NI),PTY(NJ),QTY(NJ)

COMMON/BCarray/
FLXCI1(NJ),FLXCL1(NJ),FLXCJ1(NI),FLXCM1(NI),
FLXPI1(NJ),FLXPL1(NJ),FLXPJ1(NI),FLXPM1(NI),
KBCI1(NJ),KBCL1(NJ),KBCJ1(NI),KBCM1(NI)

COMMON/GENL/NF,L1,L2,L3,M1,M2,M3,ITERT,LASTT,
MODE,KORD,KOUT,IU1,IU2,KPGR,KSTOP,
IBLOCK(NI,NJ),TIME,DT

COMMON/NFF/RELAX(NFMAX),CRIT(NFMAX),
KPRINT(NFMAX),KSOLVE(NFMAX),KBLOC(NFMAX),
KPLOT(NFMAX),NTIMES(NFMAX),NTC(NFMAX)

COMMON/TTL/TITLE(NFMAX),HEADER,PRINTF,PLOTF

COMMON/EZG/XL,YL,POWERX,POWERY,NCVLX,NCVLY

COMMON/ZG/XZONE(NZMAX),YZONE(NZMAX),
POWRX(NZMAX),POWRY(NZMAX),
NCVX(NZMAX),NCVY(NZMAX),NZX,NZY
C______________________________________________________

COMMON/OFCHARAC/OPTCRIT,FACTADIM(NPMAX)

COMMON/OFINT/KPAR,KPARSTOP,KXADIM,
KESTOPT,KSS,KTHPRINT,KXPRINT,KDT,KXTX,
KSENSOR,KTN,NPEST,NEXP,JEXP,JEXPCI,KYSIM,
KCONT,NCONTMIN,NCONTMAX,IUXI,IUEIG,KSCREEN,
KPRGRID,KXYGRID

COMMON/OFINARR/NSENSOR,IDATA0,KTS(NSENSORMAX),
KDATA(NSENSORMAX),ISENSOR(NSENSORMAX),
JSENSOR(NSENSORMAX)

COMMON/OFREAL/SIGMA,TMAX,TMAXP,TI,TIMEHEAT,
DELTAB

COMMON/OFREARR/PARMIN(NPMAX),PARMAX(NPMAX),
PAR(NPMAX+1),DB(NPMAX),
TIMEEXP(NSENSORMAX,LASTTMAX),
YARR(NSENSORMAX,LASTTMAX),
TSENSOR(NSENSORMAX),XSENSOR(NSENSORMAX),
YSENSOR(NSENSORMAX)

COMMON/GACHARAC/SELECT,MUT,KILLTWIN,ELIT

COMMON/GAINT/ITERG,MING,LASTG,NMUT,NMUTJUMP,
NMUTCREEP,NTWINS,NTOT,NCHILDRAND,NPKEPT,
NCRITERG,LASTCRITERG,NFEVAL,NS,NP,
KSTOPF,ISEED1,ISEED2,KCPU

COMMON/GAREAL/PC,PMJ,PMC,PR,PT,CRITERION,
OFFLINE,ONLINE,TIME0,CPUG

COMMON/GAREARR/CP(NSMAX,NPMAX+1),
CC(NSMAX,NPMAX+1),CHILD(2,NPMAX),
CHILDMUT(NSMAX,NPMAX+1),
CHILDTOT(2*NSMAX,NPMAX+1),BEST(NPMAX+1)

DIMENSION SC(NI,NJ), SP(NI,NJ)
EQUIVALENCE (CON,SC), (AP,SP)

c  To use as an isotropic gamma version, uncomment the next 2 lines
c   and change the commented-out line in the first COMMON block.
CCC      DIMENSION    GAMX(NI,NJ), GAMY(NI,NJ)
CCC      EQUIVALENCE (GAMX,GAM),  (GAMY,GAM)
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APPENDIX D

GADAVISF6.FOR Subroutine

This subroutine was written as the adapt part of the program GAMAIN given in Appendix A.
It was used to solve the mathematical test function f6 (Section 4.4).

SUBROUTINE GAPROBLEM

c HP77 or PC - SG 1998

C ATTENTION: THE USER MUST DEFINE VARIABLES
USED THROUGHOUT GAPROBLEM (BETWEEN ENTRY
STATEMENTS) IN THE COMMON/PROB/.
VARIABLES THAT ARE USED ELSEWHERE THAN
GAPROBLEM MUST BE DEFINED IN THE FILE
GACOMMON_MAIN.FOR.
DEFAULT VALUES FOR USER MARKERS ARE SET IN
DEFLT (KPAR,KYSIM,KXPRINT,KEST, ...)

c***************************************************
INCLUDE 'gacommon_main.for'
c***************************************************
CHARACTER*24 FDATE
COMMON/PROB/DELTAB,DB(NPMAX)
DIMENSION ARR(NSMAX,NPMAX+1)
c-----------------------------------------------------------------------------

ENTRY INIT

c give printing informations
!iunit=output file PRINTF only (dependent variable output
file='ETAPRINT.DAT' in DEFLT)
!main title for file PRINTF
HEADER='GA test using F6 evaluation function'

c come here to change the default values of the following key
parameters [KSCREEN, KMINMAX, KETA, NPEST, OPTCRIT,
KTN, KSS, ETAMAX, KCONT, KYSIM, SIGMA, IDATA0,
NEXP?]
KMINMAX=1  !OF maximization
KSCREEN=1
NPEST=2

c to look at a particular set of properties:
c=============================================
cKPAR=1

c general output file:
c======================
OPEN(UNIT=99,FILE='df6.out')    !general GAoutput file
WRITE(99,20)
20 FORMAT(2X,'GA test using F6 evaluation
function'/50(1H*)//)     !GAoutput file title!
IF (KPAR.NE.1) THEN
OPEN(UNIT=10,FILE='POPPRINT.dat')
OPEN(UNIT=11,FILE='OFPRINT.dat')
OPEN(UNIT=12,FILE='MTCPRINT.dat')
ENDIF
IF (KSCREEN.EQ.1) THEN
PRINT *,'GAMAIN running ...'
PRINT *,'ITERG=',ITERG
ENDIF
WRITE(99,'(2X,A24)') FDATE() !initial date and time

RETURN
c-----------------------------------------------------------------------------

ENTRY SETVAR

c set GA variables:
c===================
OPEN(UNIT=25,FILE='INPUT.DAT')
READ(25,*)ISEED1
READ(25,*)ISEED2
IF (KETA.EQ.2) THEN
NP=1 != Number of parameters optimized
ELSE
NP=NPEST  != Number of parameters estimated
ENDIF
READ(25,*)NS
READ(25,*)SELECT
READ(25,*)PT
READ(25,*)PC
READ(25,*)MUT
READ(25,*)PMJ
READ(25,*)PMC
READ(25,*)ELIT
READ(25,*)PR
READ(25,*)KILLTWIN
READ(25,*)CRITERION
READ(25,*)LASTCRITERG
READ(25,*)MING
READ(25,*)LASTG
CLOSE(25)

c set OF variables:
c===================
c set initial ranges + adimensionalization factor of unknown
parameters to be determined
PARMIN(1)=-100.D0
PARMAX(1)=100.D0
FACTADIM(1)='LIN'

PARMIN(2)=-100.D0
PARMAX(2)=100.D0
FACTADIM(2)='LIN'

LASTETA(NEXP)=1

c output:
c=========
WRITE(99,30)
30 FORMAT(//2X,'GA VARIABLES:'/30('-')/)
WRITE(99,'(A7,I5)')'iseed1=',ISEED1
WRITE(99,'(A7,I5)')'iseed2=',ISEED2
WRITE(99,'(A3,I4)')'ns=',NS
WRITE(99,'(A3,I3)')'np=',NP
WRITE(99,'(A3,F15.6)')'pmj (jump)=',PMJ
WRITE(99,'(A3,F15.6)')'pmc (creep)=',PMC
WRITE(99,'(A3,F15.6)')'pc=',PC
WRITE(99,'(A3,F15.6)')'pr=',PR
WRITE(99,'(A3,F15.6)')'pt=',PT
WRITE(99,'(A10,F15.6)')'criterion=',CRITERION
WRITE(99,'(A12,I3)')'lastcriterg=',LASTCRITERG
WRITE(99,'(A5,I3)')'ming=',MING
WRITE(99,'(A6,I4/)')'lastg=',LASTG
IF (SELECT.EQ.'R')  WRITE(99,'(A14)')'rank selection'
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IF (SELECT.EQ.'T')  WRITE(99,'(A20)')'tournament selection'
IF (MUT.EQ.'J')     WRITE(99,'(A13)')'jump mutation'
IF (MUT.EQ.'JC')    WRITE(99,'(A21)')'jump + creep mutation'
IF (KILLTWIN.EQ.'Y')WRITE(99,'(A8)')'killtwin'
IF (ELIT.EQ.'SS')   WRITE(99,'(A20)')'steady state elitism'

WRITE(99,40)
40 FORMAT(//2X,'OF VARIABLES:'/30('-')/)
DO I=1,NP
WRITE(99,'(2(A7,I2,A3,E14.3,1X),A9,A3)')
1 'parmin(',I,')=',PARMIN(I),
2 'parmax(',I,')=',PARMAX(I),
3 'Factadim=',FACTADIM(I)
ENDDO
IF (KCONT.EQ.0) THEN
WRITE(99,'(/A18)')'PAS DE CONTRAINTES'
ELSE
IF (KCONT.EQ.1) WRITE(99,'(/A26)')'CONTRAINTES 0/1
appliquées'
IF (KCONT.EQ.2) WRITE(99,'(/A26)')'CONTRAINTES 1/2
appliquées'
ENDIF

WRITE(99,*)'---------------------------------------------------'
RETURN
c-----------------------------------------------------------------------------

ENTRY MODELETA

IF (ITERETA.EQ.0.AND.KETA.EQ.1) RETURN

c find x and y that optimizes ETA
X=PAR(1)
Y=PAR(2)
ETA=0.5D0-((SIN(SQRT(X**2+Y**2)))**2-0.5D0)
/(1.D0+0.001D0*(X**2+Y**2))**2
RETURN
c-----------------------------------------------------------------------------

ENTRY MODELXI  !USE NPEST

c find NONDIMENSIONAL XI

RETURN
c-----------------------------------------------------------------------------

ENTRY CHECKCONT(N,ARR)

c check that the children generation satisfy the constraints
inherent to the model (subroutine MODELETA).
c this procedure can also be used to force the children to stay
within the ranges defined

DO 100 I=1,N
DO 100 J=1,NP
IF (ARR(I,J).LT.0.D0) THEN
IF (KCONT.EQ.1) ARR(I,J)=0.D0
IF (KCONT.EQ.2) ARR(I,J)=0.5D0
NCONTMIN=NCONTMIN+1
ENDIF
IF (ARR(I,J).GT.1.D0) THEN
IF (KCONT.EQ.1) ARR(I,J)=1.D0
IF (KCONT.EQ.2) ARR(I,J)=0.5D0
NCONTMAX=NCONTMAX+1
ENDIF
100 CONTINUE

RETURN
END
c***************************************************
c include main program
INCLUDE 'gamain.for'
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APPENDIX E

GA2DOPT.FOR Subroutine

This subroutine was written as the adapt part of the program GACONDUCT given in
Appendix B. It was used to determine the thermophysical parameters kx, ky and C as constant
at six different temperature levels in the range [30-150°C] of a carbon/epoxy composite
material analyzed in Section 5.1.2.

SUBROUTINE GAPROBLEM

c HP77 or PC - SG 1998

C ATTENTION: THE USER MUST DEFINE VARIABLES
USED THROUGHOUT GAPROBLEM.FOR (BETWEEN
ENTRY STATEMENTS) IN THE COMMON/PROB/
NOTE THAT VARIABLES THAT ARE USED ELSEWHERE
THAN GAADAPT MUST BE DEFINED IN THE FILE
GACOMMON_CONDUCT.FOR

C THE USER SHOULD REMEMBER TO CHECK FOR
VALIDITY OF CONVERGENCE:
- REASONABLE ASPECT RATIO DX/DY
- GRID REFINEMENT DX, DY OK (GOOD COMPROMISE
WITH COMPUTATION COST)
- FOR TRANSIENT ANALYSIS: TIME STEP DT OK
- FOR STEADY STATE ANALYSIS: EBAL=0
- NTC SMALLER THAN NTIMES (10 BY DEFAULT) AT EACH
ITERATION

c***************************************************
INCLUDE 'gacommon_conduct.for'
c***************************************************
CHARACTER*24 FDATE
COMMON/PROB/CDX,CDY,RHOCP,XP,CDP,RHOCPP,THK,
CDTHK,RHOCPTHK,KBC12,KBC34,KBC5,KBCV,KQAV,
RHEATER,QAV,YHEAT,LASTDATA,DTINIT,TI12,TI34,TI5,
YARRI,TIME12(100),T12(100),TIME34(100),T34(100),
TIME5(100),T5(100),TIMEV(100),VOLT(100),
TIMEARR(1,100),XSAMPLE,YSAMPLE
c-----------------------------------------------------------------------------
DIMENSION T(NI,NJ),ARR(NSMAX,NPMAX+1)
EQUIVALENCE (F(1,1,1),T(1,1))
SAVE
c-----------------------------------------------------------------------------

ENTRY INIT

c give printing informations
HEADER='Transient 2D Cond. [25-150C] w/ Tconst / Matra
sample1'
PRINTF='run.pr'
TITLE(1)='TEMPERATURE'
KSOLVE(1)=1  ! enable to solve for the T

c come here to change the default values of the following key
parameters (KCONT?KSCREEN?KESTOPT?TI?TMAX?
NPEST?OPTCRIT?KSENSOR?NSENSOR?KSS?KTN?
TIMEHEAT?MODE?)
possible to define TIMEHEAT in BEGIN
KCONT=1
KSCREEN=1
KESTOPT=0
TMAX=53.88d0  !max found at symmetry
NPEST=3

KSENSOR=2

c to look at a particular set of thermal properties:
c=============================================
KPAR=1
KPRINT(1)=1  ! enable to print T; open PRINTF
KXPRINT=1
KXADIM=1
KOUT=2
KPLOT(1)=1   ! enable to plot T; open PLOTF

c general output file:
c======================
IF (KESTOPT.EQ.0) THEN
OPEN(UNIT=99,FILE='Estrun.out')
WRITE(99,1)
FORMAT(2X,'MATRA1 ESTIMATION using the 2D1-opt
design'/50(1H*)/)   !EST title!
PRINT *,'MATRA1 ESTIMATION using the 2D1-opt design'
IF (KSS.EQ.0.AND.KPAR.EQ.1)
OPEN(UNIT=199,FILE='TYrun.dat')
!TSENSOR(s) & YARR(s) file output
ENDIF

IF (KPAR.NE.1) THEN
OPEN(UNIT=10,FILE='POPPRINT.dat')
OPEN(UNIT=11,FILE='OFPRINT.dat')
OPEN(UNIT=12,FILE='MTCPRINT.dat')
ENDIF
IF (KSCREEN.EQ.1) THEN
PRINT *,'GAMAIN running ...'
PRINT *,'ITERG=',ITERG
ENDIF

c write initial date and time
WRITE(99,'(2X,A24)') FDATE()

RETURN
c-----------------------------------------------------------------------------

ENTRY GRID

c come here to change the default value for KXYGRID

THK=0.1D-3
XP=1.D-3
XSAMPLE=3.D-3
YSAMPLE=32.D-3

NZX=3
NCVX(1)=1
XZONE(1)=XP-THK/2.D0
NCVX(2)=3
XZONE(2)=3.D0*THK
NCVX(3)=6
XZONE(3)=XSAMPLE-1.5D0*THK
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NZY=3  !only half studied because of symmetry
NCVY(1)=8
YZONE(1)=8.D-3
NCVY(2)=3
YZONE(2)=1.8D-3
NCVY(3)=22
YZONE(3)=22.2D-3
CALL ZGRID  !refine grid for homogeneous orthotropic material

c give info about thermocouple position if the node(s) # (IS,JS) is
(are) to be found
IF (KESTOPT.EQ.0) THEN
XSENSOR(1)=0.D0*XSAMPLE+XP+THK
!SENSORS POSITION DETERMINED IN READY1
YSENSOR(1)=0.14D0*(2.D0*YSAMPLE)
ENDIF

RETURN
c-----------------------------------------------------------------------------

ENTRY SETVAR

c come here to change the default values of the following key
parameters
c (KYSIM?KDT?DELTAB?SIGMA?IDATA0?KPRGRID?)
KDT=0
DELTAB=1.d-6
KPRGRID=1

c print grid if asked
IF (KPRGRID.EQ.1) THEN
OPEN(UNIT=299,FILE='GRIDTEST.DAT')
DO I=1,L2
WRITE(299,'(4(F15.6))')X(I)*1000.,Y(1)*1000.,XU(I+1)*1000.,
1 Y(M1)*1000.
ENDDO
WRITE(299,'(2(F15.6))')X(L1)*1000.,Y(1)*1000.
DO J=1,M2
WRITE(299,'(4(F15.6))')X(1)*1000.,Y(J)*1000.,X(L1)*1000.,
1 YV(J+1)*1000.
ENDDO
WRITE(299,'(2(F15.6))')X(1)*1000.,Y(M1)*1000.
STOP
ENDIF

c set GA variables:
c===================
ISEED1=492    !random number seeds
ISEED2=27
NS=50          !CHOOSE NS EVEN TO MAKE NS/2 CHILDREN
IF (KESTOPT.EQ.0) THEN
NP=NPEST
ENDIF
PMJ=2.D0/(1.D0*NS)
PMC=PMJ/2.D0
PC=0.9D0
PR=0.9D0
PT=0.9D0
CRITERION=0.01D0
LASTCRITERG=5   !at least (MING + LASTCRITERG)
MING=5
LASTG=20
SELECT='T'      !rank (R) or tournament (T) selection
MUT='JC'        !Jump mutation alone (J) or {Jump+Creep}
mutation (JC)
KILLTWIN='N'    !kill or not the twins (Y/N)
ELIT='SS'       !steady state (SS) or basic (B) or "similar
replacement" (SR) elitism NOT SET UP yet

c set OF variables:
c===================
PARMIN(1)=0.3
PARMAX(1)=0.8
FACTADIM(1)='LIN'

PARMIN(2)=1.5

PARMAX(2)=6.0
FACTADIM(2)='LIN'

PARMIN(3)=1.2D6
PARMAX(3)=2.3D6
FACTADIM(3)='LIN'

CDTHK=1.D0
CDP=177.D0  !alu alloy plate thermal property values @ 300K
RHOCPP=2.42375D6  !(pure alu. @ 300K: 237. & 2.439906d6)
RHEATER=359.6D0
YHEAT=YSAMPLE

IF (KESTOPT.EQ.0) THEN
IF (KYSIM.EQ.0) THEN
OPEN(UNIT=1,FILE='matra2d_0598_150b3.in')
READ(1,*)LASTDATA,YARRI,TI12,TI34,TI5,TIMEHEAT
TI=(YARRI+TI12+TI34+TI5)/4.d0
DO I=1,LASTDATA
READ(1,10)TIMEARR(1,I),YARR(1,I),TIME12(I),T12(I),
1 TIME34(I),T34(I),TIME5(I),T5(I),TIMEV(I),VOLT(I)
ENDDO
READ(1,'(I3)')LASTT
DO I=1,LASTT
READ(1,'(F6.2)')TIMEEXP(1,I)
ENDDO
CLOSE(1)
10 FORMAT(5(F6.2,1X,F7.3,2X))

ELSE
PAR(1)=0.6D0                !define thermal properties for simulation
PAR(2)=3.0D0
PAR(3)=1.6D6
KDT=1
DT=0.2D0
LASTT=500

STDDV=0.1D0 !normal error standard deviation of
simulated data
OPEN(UNIT=2,FILE='Ysim.in')  !Tsimulated file output
WRITE(2,15)
15 FORMAT('Simulated T /2D1-opt design/ for MATRA EST
'/50(1H*)//)  !title!
WRITE(2,'(1X,A4,3(1X,F15.3)/)')'PAR=',PAR(1),PAR(2),PAR(3)
WRITE(2,'(1X,A6,F4.2/)')'STDDV=',STDDV
CALL COMPYSIM(STDDV)            !generate simulated T
CLOSE(2)
STOP 'Ysim.dat generated'
ENDIF
ENDIF

c write in general output file:
c===============================
WRITE(99,20)
20 FORMAT(2X/,'GEOMETRICAL DIMENSIONS AND
GRID:'/30('-'))
WRITE(99,'(A3,F12.5)')'XL=',X(L1)
WRITE(99,'(A3,F12.5)')'YL=',Y(M1)
WRITE(99,'(A5,I3,A1,I2)')'GRID=',L1,'x',M1
WRITE(99,'(A12)')'ZGRID called'

WRITE(99,30)
30 FORMAT(//2X,'GA VARIABLES:'/30('-')/)
WRITE(99,'(A7,I5)')'iseed1=',ISEED1
WRITE(99,'(A7,I5)')'iseed2=',ISEED2
WRITE(99,'(A3,I3)')'ns=',NS
WRITE(99,'(A3,I3)')'np=',NP
WRITE(99,'(A3,F12.5)')'pmj (jump)=',PMJ
WRITE(99,'(A3,F12.5)')'pmc (creep)=',PMC
WRITE(99,'(A3,F12.5)')'pc=',PC
WRITE(99,'(A3,F12.5)')'pr=',PR
WRITE(99,'(A3,F12.5)')'pt=',PT
WRITE(99,'(A10,F12.5)')'criterion=',CRITERION
WRITE(99,'(A12,I3)')'lastcriterg=',LASTCRITERG
WRITE(99,'(A5,I3)')'ming=',MING
WRITE(99,'(A6,I3/)')'lastg=',LASTG
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IF (SELECT.EQ.'R')  WRITE(99,'(A14)')'rank selection'
IF (SELECT.EQ.'T')  WRITE(99,'(A20)')'tournament selection'
IF (MUT.EQ.'J')     WRITE(99,'(A13)')'jump mutation'
IF (MUT.EQ.'JC')    WRITE(99,'(A21)')'jump + creep mutation'
IF (KILLTWIN.EQ.'Y')WRITE(99,'(A8)')'killtwin'
IF (ELIT.EQ.'SS')   WRITE(99,'(A20)')'steady state elitism'

WRITE(99,40)
40 FORMAT(//2X,'OF VARIABLES:'/30('-')/)
DO I=1,NP
WRITE(99,'(2(A7,I2,A3,E14.3,1X),A9,A3)')
'parmin(',I,')=',PARMIN(I),
'parmax(',I,')=',PARMAX(I),
'Factadim=',FACTADIM(I)
ENDDO
IF (KESTOPT.EQ.0) THEN
WRITE(99,'(/A28)')'2D1- optimal design variables:'
WRITE(99,'(A3,G18.8)')'xs=',XSENSOR(1)
WRITE(99,'(A3,G18.8)')'ys=',YSENSOR(1)
WRITE(99,'(A6,G18.8)')'yheat=',YHEAT
WRITE(99,'(A9,G18.8)')'timeheat=',TIMEHEAT
IF (KYSIM.EQ.0) THEN
WRITE(99,50)
50 FORMAT(/'Arrays read: timearr and Yarr')
!EXPERIMENTAL ARRAYS READ!
WRITE(99,'(A9,I4)')'lastdata=',LASTDATA
WRITE(99,'(A6,I4)')'lastt=',LASTT
ELSE
WRITE(99,60)
60 FORMAT(/'Arrays(lastt) simulated: Yarr')
!ARRAYS SIMULATED!
ENDIF
ENDIF

WRITE(99,'(A7,E10.1)')'DELTAB=',DELTAB

IF (KDT.EQ.1) WRITE(99,'(A3,F10.5)')'DT=',DT

WRITE(99,65)
65 FORMAT(2X,'SAMPLE DIMENSIONS AND GRID:
'/30('-')/)
WRITE(99,'(A13,G10.3)')'XP ALU PLATE=',XP
WRITE(99,'(A37,G10.3)')'THK to model the contact resist.=', THK
WRITE(99,'(A8,G10.3)')'XSAMPLE=',XSAMPLE
WRITE(99,'(A8,G10.3)')'YSAMPLE=',YSAMPLE
WRITE(99,'(2(A4,I2,1X))')'NZX=',NZX,'NZY=',NZY
WRITE(99,66)'NCVX(1)=',NCVX(1),'XZONE(1)=',XZONE(1)
WRITE(99,66)'NCVX(2)=',NCVX(2),'XZONE(2)=',XZONE(2)
WRITE(99,66)'NCVX(3)=',NCVX(3),'XZONE(3)=',XZONE(3)
WRITE(99,66)'NCVY(1)=',NCVY(1),'YZONE(1)=',YZONE(1)
WRITE(99,66)'NCVY(2)=',NCVY(2),'YZONE(2)=',YZONE(2)
WRITE(99,66)'NCVY(3)=',NCVY(3),'YZONE(3)=',YZONE(3)
66 FORMAT(A8,I2,2X,A9,G10.3)
WRITE(99,'(A12)')'ZGRID called'

IF (KCONT.EQ.0) THEN
WRITE(99,'(/A18)')'PAS DE CONTRAINTES'
ELSE
IF (KCONT.EQ.1) WRITE(99,'(/A26)')'CONTRAINTES 0-1
appliquées'
IF (KCONT.EQ.2) WRITE(99,'(/A26)')'CONTRAINTES 1/2
appliquées'
ENDIF

RETURN
c-----------------------------------------------------------------------------

ENTRY BEGIN

IF (KPAR.EQ.1) THEN
KPAR=0
KPARSTOP=1   !set to 1 to stop the run after compof is performed
ENDIF

c TO OBTAIN THE NONDIM SS SOLUTION TMAX+
REQUIRED IN OPT RUN

OR THE INITIAL SS TEMPERATURE FIELD REQUIRED IN
EST RUN
IF (KSS.EQ.1) THEN
KDT=1
DT=BIG
LASTT=50
ENDIF

c reset statements before starting loop for T calculations
TIME=0.0D0     !reset markers
ITERT=0
KSTOP=0
KQAV=0
KBC12=1
KBC34=1
KBC5=1
KBCV=1

c EST run
IF (KESTOPT.EQ.0) THEN
DO 70 I=1,NSENSOR
KTS(I)=0
KDATA(I)=1
70 CONTINUE

c set thermal properties to the chromosome gene values in EST run
c  use actual parameter values when DB=0.
c  or apply a par. variation of 0.1% when DB=DELTAB=0.0001
by default
c (IN EITHER EST OR OPT RUN, THE SENSITIVITY
COEFFICIENTS ARE CALCULATED USING A PARAMETER
VARIATION W/ B=(1+DB)*B IN COMPXI)
CDX=PAR(1)*(1.d0+DB(1))
CDY=PAR(2)*(1.d0+DB(2))
RHOCP=PAR(3)*(1.d0+DB(3))
ENDIF

c reset Ti
DO 75 I=1,L2  !reset Ti
DO 75 J=1,M1
T(I,J)=TI
75 CONTINUE

DO 80 I=1,L1     !sample J1 face
IF (X(I).GE.1.1D-3) T(I,1)=(TI12-TI34)/1.5D-3*(1.85D-3-X(I))
+TI12
80 CONTINUE

DO 85 J=1,M1  !L1 face
T(L1,J)=TI5
85 CONTINUE

RETURN
c-----------------------------------------------------------------------------

ENTRY OUTPUT

IF (ITERT.EQ.0) GOTO 91
IF (ABS(TIME-TIMEHEAT).LE.DT/2.D0) KQAV=1

c temperature(s) corresponding to the sensor(s') position(s)
c Recall: if xsensor and ysensor used ISENSOR and JSENSOR
are determined
in DEFRD2D if KSENSOR=2
in COMPXI if KESTOPT=1 and KSENSOR=1 in INIT
DO 90 I=1,NSENSOR
TSENSOR(I)=T(ISENSOR(I),JSENSOR(I))
IF (KESTOPT.EQ.0) THEN
IF (ABS(TIME-TIMEARR(1,KDATA(I))).LE.DT/2.D0)
KTS(I)=1 !compute S in compof
ENDIF
90 CONTINUE

91 IF (TIME.LE.TIMEHEAT) THEN
IF (TIME.GT.TIMEV(KBCV)) KBCV=KBCV+1
IF (KBCV.EQ.1) THEN
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VOLTAGE=VOLT(KBCV)
ELSE
VOLTAGE=VOLT(KBCV)-(VOLT(KBCV)-VOLT(KBCV-1))
/(TIMEV(KBCV)-TIMEV(KBCV-1))*(TIMEV(KBCV)-TIME)
ENDIF
QAV=RHEATER*(VOLTAGE*1.D-3)**2/(2*(2*YSAMPLE)**2)
ENDIF

IF (TIME.GT.TIME12(KBC12)) KBC12=KBC12+1
IF (KBC12.EQ.1) THEN
TEMP12=T12(KBC12)-(T12(KBC12)-TI12)
/TIME12(KBC12)*(TIME12(KBC12)-TIME)
ELSE
TEMP12=T12(KBC12)-(T12(KBC12)-T12(KBC12-1))
/(TIME12(KBC12)-TIME12(KBC12-1))*(TIME12(KBC12)-
TIME)
ENDIF

IF (TIME.GT.TIME34(KBC34)) KBC34=KBC34+1
IF (KBC34.EQ.1) THEN
TEMP34=T34(KBC34)-(T34(KBC34)-TI34)
/TIME34(KBC34)*(TIME34(KBC34)-TIME)
ELSE
TEMP34=T34(KBC34)-(T34(KBC34)-T34(KBC34-1))
/(TIME34(KBC34)-TIME34(KBC34-1))*(TIME34(KBC34)-
TIME)
ENDIF

DO 95 I=1,L1    !sample J1 face
IF (X(I).GE.1.1D-3) T(I,1)=TEMP12+
(TEMP12-TEMP34)/1.5D-3*(1.85D-3-X(I))
95 CONTINUE

IF (TIME.GT.TIME5(KBC5)) KBC5=KBC5+1
IF (KBC5.EQ.1) THEN
TEMP5=T5(KBC5)-(T5(KBC5)-TI5)
/TIME5(KBC5)*(TIME5(KBC5)-TIME)
ELSE
TEMP5=T5(KBC5)-(T5(KBC5)-T5(KBC5-1))
/(TIME5(KBC5)-TIME5(KBC5-1))*(TIME5(KBC5)-TIME)
ENDIF

DO 96 J=1,M1    !L1 face
T(L1,J)=TEMP5
96 CONTINUE

C THE FOLLOWING IS COMPUTED FOR A PARTICULAR
SET OF THERMAL PROPERTIES ONLY
C ATTENTION, KPARSTOP=1 to compute OF and then turns 0
(see COMPOF) and KXTX=1 to compute CI

IF (KPARSTOP.EQ.0.OR.KXTX.EQ.1) GOTO 170

QINI1=0.D0
DO J=2,M2
QINI1=QINI1+FLUXI1(J,1)*YCV(J)    !(J,1) for independent
variable 1 = T
ENDDO

IF (KSS.EQ.1) THEN             !find TMAX+ @ SS required in
COMPXTXOPT or TI
DO 120 IUNIT=IU1,IU2
IF (ITERT.EQ.0) WRITE(IUNIT,100)
100 FORMAT(2X,'ITERT',4X,'TMAX',4X,'QINI1',4X,
'NTC(1)',/)
WRITE(IUNIT,110)ITERT,TSENSOR(1),QINI1,NTC(1)
110 FORMAT(2X,I4,3X,1PE11.4,3X,1PE11.4,3X,I2)
120 CONTINUE
IF (ITERT.EQ.LASTT) THEN
CALL PRINT
STOP 'TMAX calculated and SS done'
ENDIF

ELSE

c write TSENSOR(NSENSOR) to files

IF (KESTOPT.EQ.0.AND.KTS(1).EQ.1)
WRITE(199,'(3F10.3)')
TIME,TSENSOR(1),YARR(1,KDATA(1))
IF (KESTOPT.EQ.1)
WRITE(199,'(2F15.3)')TIME,TSENSOR(1)

c set title (@ ITERT=0) and data (@ each ITERT) to print in iunit
DO 150 IUNIT=IU1,IU2
IF (ITERT.EQ.0) WRITE(IUNIT,130)
130 FORMAT(2X,'ITERT',6X,'TIME',9X,'TSENSOR(1)',
9X,'QINI1',7X,'NTC(1)',/)
WRITE(IUNIT,140)ITERT,TIME,TSENSOR(1),QINI1,NTC(1)
140 FORMAT(2X,I4,3(3X,1PE11.4),3X,I2)
150 CONTINUE

c print and plot the Tdistribution when time~th
IF (KQAV.EQ.1.AND.KTHPRINT.EQ.0) THEN
CALL PRINT
CALL PLOT
KTHPRINT=1
ENDIF
ENDIF

170 RETURN
c-----------------------------------------------------------------------------

ENTRY PHI

c set properties (conductivities and volumetric capacities) of
main elements
c OPT or EST run
DO 180 I=2,L2
DO 180 J=2,M2
IF (X(I).LE.XP) THEN
GAMX(I,J)=CDP
GAMY(I,J)=CDP
ALAM(I,J)=RHOCPP
ELSE
IF (X(I).GT.XP.AND.X(I).LE.(XP+THK)) THEN
GAMX(I,J)=CDTHK
GAMY(I,J)=CDTHK
ELSE
GAMX(I,J)=CDX
GAMY(I,J)=CDY
ALAM(I,J)=RHOCP
ENDIF
ENDIF
180 CONTINUE

c set BCs (1 for cst T -BY DEFAULT- and 2 for fluxes)
DO 200 J=2,M2
KBCI1(J)=2
IF (Y(J).LE.YHEAT.AND.TIME.LE.TIMEHEAT)
FLXCI1(J)=QAV
200 CONTINUE
DO 210 I=2,L2
KBCM1(I)=2
IF (X(I).LE.XP) THEN
KBCJ1(I)=2
ENDIF
210 CONTINUE

RETURN
c-----------------------------------------------------------------------------

ENTRY CHECKCONT(N,ARR)

c check that the children generation satisfy the constraints
inherent to the model (subroutine MODELETA).
c this procedure can also be used to force the children to stay
within the ranges defined

DO 220 I=1,N
DO 220 J=1,NP
IF (ARR(I,J).LT.0.D0) THEN
IF (KCONT.EQ.1) ARR(I,J)=0.D0
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IF (KCONT.EQ.2) ARR(I,J)=0.5D0
NCONTMIN=NCONTMIN+1
ENDIF
IF (ARR(I,J).GT.1.D0) THEN
IF (KCONT.EQ.1) ARR(I,J)=1.D0
IF (KCONT.EQ.2) ARR(I,J)=0.5D0
NCONTMAX=NCONTMAX+1
ENDIF
220 CONTINUE

RETURN
END

c***************************************************
c include main program of invariant part
INCLUDE 'gaconduct.for'
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APPENDIX F

GA2DTOPT.FOR Subroutine

This subroutine was written as the adapt part of the program GACONDUCT given in
Appendix B. It was developed for the thermophysical characterization of a carbon/epoxy
composite material in the range [30-150°C] (Section 5.2.1). More particularly, it was used to
optimize seven experimental design variables (xs, ys, Lp, th1, t12, th2 and tn) from a two-
dimensional transient experiment for the simultaneous estimation of 9 thermophysical
parameters (kx25, kx150, ky25, ky150, C25, C75, C110, C150, and Rc), and then perform the
simultaneous estimation.

SUBROUTINE GAPROBLEM

c HP77 or PC - SG 1998

C ATTENTION: THE USER MUST DEFINE VARIABLES
USED THROUGHOUT GAPROBLEM.FOR (BETWEEN
ENTRY STATEMENTS) IN THE COMMON/PROB/
NOTE THAT VARIABLES THAT ARE USED ELSEWHERE
THAN GAADAPT MUST BE DEFINED IN THE FILE
GACOMMON_CONDUCT.FOR

C THE USER SHOULD REMEMBER TO CHECK FOR
VALIDITY OF CONVERGENCE:
- REASONABLE ASPECT RATIO DX/DY
- GRID REFINEMENT DX, DY OK (GOOD COMPROMISE
WITH COMPUTATION COST)
- FOR TRANSIENT ANALYSIS: TIME STEP DT OK
- FOR STEADY STATE ANALYSIS: EBAL=0
- NTC SMALLER THAN NTIMES (10 BY DEFAULT) AT EACH
ITERATION

c***************************************************
INCLUDE 'gacommon_conduct.for'
c***************************************************
CHARACTER*24 FDATE
COMMON/PROB/KQAV,LASTDATA,Tp,QAV,CDAL,
RHOCPAL,CDAIR,RHOCPAIR,KSYM,JHEAT,YHEAT,
th1,time12,th2,CDX(2),CDY(2),RHOCP(4),RC,
TIMEARR(1,500),TCi(8)
DIMENSION T(NI,NJ),ARR(NSMAX,NPMAX+1)
EQUIVALENCE (F(1,1,1),T(1,1))
SAVE
c-----------------------------------------------------------------------------

ENTRY INIT

c give printing informations
HEADER='Transient 2D Conduction, [25-150C] / Matra sample1'
PRINTF='run.pr'
TITLE(1)='TEMPERATURE'
KSOLVE(1)=1  ! enable to solve for the T

c come here to change the default values of the following key
parameters (KCONT?KSCREEN?KESTOPT?TI?TMAX?
NPEST? OPTCRIT?KSENSOR?NSENSOR?KSS?KTN?
TIMEHEAT?MODE?)
c possible to define TIMEHEAT in BEGIN
OPTCRIT='D'
KCONT=1
KSCREEN=1
KESTOPT=1
c KSS=1

c KTN=1
TI=25.d0
TMAX=161.71d0  !TO BE FOUND FROM SS ANALYSIS
NPEST=9

c to look at a particular set of thermal properties:
c=============================================
KPAR=1
KPRINT(1)=1  ! enable to print T; open PRINTF
KXPRINT=1
KXADIM=1
KOUT=2
c KPLOT(1)=1   ! enable to plot T; open PLOTF

c general output file:
c======================
IF (KESTOPT.EQ.0) THEN
OPEN(UNIT=99,FILE='Estrun.out')
WRITE(99,1)
1 FORMAT(2X,'MATRA1(T) ESTIMATION'/50(1H*)/)   !EST title!
PRINT *,'MATRA1(T) ESTIMATION'
IF (KSS.EQ.0.AND.KPAR.EQ.1)
OPEN(UNIT=199,FILE='TYrun.dat')   !TSENSOR(s) &
YARR(s) file output
ELSE
OPEN(UNIT=99,FILE='Optrun.out')
WRITE(99,2)
2 FORMAT(2X,'2D MATRA1(T) OPTIMIZATION W/
DIMENSIONS'/50(1H*)/)  !OPT title!
PRINT *,'2D MATRA(T) IDEAL OPTIMIZATION W/
DIMENSIONS'
PRINT *,'TO BE USED W/ ORTHOTROPIC PROPERTIES'
IF (KSS.EQ.0.AND.KPAR.EQ.1)
OPEN(UNIT=199,FILE='Trun.dat')    !TSENSOR(1) file output
ENDIF

IF (KPAR.NE.1) THEN
OPEN(UNIT=10,FILE='POPPRINT.dat')
OPEN(UNIT=11,FILE='OFPRINT.dat')
OPEN(UNIT=12,FILE='MTCPRINT.dat')
ENDIF
IF (KSCREEN.EQ.1) THEN
PRINT *,'GAMAIN running ...'
PRINT *,'ITERG=',ITERG
ENDIF

c write initial date and time
WRITE(99,'(2X,A24)') FDATE()

RETURN
c-----------------------------------------------------------------------------
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ENTRY GRID

c come here to change the default value for KXYGRID

c specify whether the complete or half model is to be studied
KSYM=1

c set up the mesh
NZX=8
NCVX(1)=1
XZONE(1)=0.84d-3
NCVX(2)=2
XZONE(2)=0.12d-3
NCVX(3)=2
XZONE(3)=0.16d-3
NCVX(4)=4
XZONE(4)=2.88d-3
NCVX(5)=1
XZONE(5)=0.2d-3
NCVX(6)=1
XZONE(6)=0.1d-3
NCVX(7)=1
XZONE(7)=0.2d-3
NCVX(8)=3
XZONE(8)=12.d-3

IF (KSYM.EQ.1) THEN
NZY=    !USE W/ SYMMETRICAL MODEL
ELSE
NZY=11
ENDIF
NCVY(1)=3
YZONE(1)=12.d-3
NCVY(2)=1
YZONE(2)=0.2d-3
NCVY(3)=1
YZONE(3)=0.1d-3
NCVY(4)=1
YZONE(4)=0.2d-3
NCVY(5)=1
YZONE(5)=0.8d-3
IF (KSYM.EQ.1) THEN
NCVY(6)=31          !USE W/ SYMMETRICAL MODEL
YZONE(6)=31.d-3     ! "
ELSE
NCVY(6)=31 !...AND COMMENT THE FOLLOWING
YZONE(6)=62.d-3
NCVY(7)=1
YZONE(7)=0.8d-3
NCVY(8)=1
YZONE(8)=0.2d-3
NCVY(9)=1
YZONE(9)=0.1d-3
NCVY(10)=1
YZONE(10)=0.2d-3
NCVY(11)=3
YZONE(11)=12.d-3
ENDIF

CALL ZGRID     !refine grid for homogeneous orthotropic
material

c give info about thermocouple position if the node(s) # (IS,JS) is
(are) to be found

RETURN
c-----------------------------------------------------------------------------

ENTRY SETVAR

c come here to change the default values of the following key
parameters
c (KYSIM?KDT?DELTAB?SIGMA?IDATA0?KPRGRID?)
c KYSIM=1
KDT=1
DELTAB=1.d-6

KPRGRID=1

c print grid if asked
IF (KPRGRID.EQ.1) THEN
OPEN(UNIT=299,FILE='GRIDTEST.DAT')
DO I=1,L2
WRITE(299,'(4(F15.6))')X(I)*1000.,Y(1)*1000.,XU(I+1)*1000.,
1 Y(M1)*1000.
ENDDO
WRITE(299,'(2(F15.6))')X(L1)*1000.,Y(1)*1000.
DO J=1,M2
WRITE(299,'(4(F15.6))')X(1)*1000.,Y(J)*1000.,X(L1)*1000.,
1 YV(J+1)*1000.
ENDDO
WRITE(299,'(2(F15.6))')X(1)*1000.,Y(M1)*1000.
STOP
ENDIF

c set GA variables:
c===================
ISEED1=6812    !random number seeds
ISEED2=581
NS=300          !CHOOSE NS EVEN TO MAKE NS/2
CHILDREN
IF (KESTOPT.EQ.0) THEN
NP=NPEST
ELSE
NP=5
ENDIF
PMJ=2.D0/(1.D0*NS)
PMC=PMJ/2.D0
PC=0.9D0
PR=0.9D0
PT=0.9D0
CRITERION=0.01D0
LASTCRITERG=5   !at least (MING + LASTCRITERG)
MING=5
LASTG=15
SELECT='T'      !rank (R) or tournament (T) selection
MUT='JC'        !Jump mutation alone (J) or {Jump+Creep}
mutation (JC)
KILLTWIN='N'    !kill or not the twins (Y/N)
ELIT='SS'       !steady state (SS) or basic (B) or "similar
replacement" (SR) elitism NOT SET UP yet

c set OF variables:
c===================
IF (KESTOPT.EQ.1) THEN     !initial ranges of unknown
parameters to be optimized
PARMIN(1)=0            !th1 - range chosen so that
PARMAX(1)=150 !th1=int(par(2))*DT
FACTADIM(1)='LIN'

PARMIN(2)=0             !time12 - "
PARMAX(2)=100
FACTADIM(2)='LIN'

PARMIN(3)=0             !th2 - "
PARMAX(3)=150
FACTADIM(3)='LIN'

PARMIN(4)=7             !JSENSOR(1)
PARMAX(4)=40.5          !from 7 to 41(.5) / 40(.5) if KSYM=1
FACTADIM(4)='LIN'

PARMIN(5)=5 !ISENSOR(1)
PARMAX(5)=11.5         !from 5 to 11(.5)
FACTADIM(5)='LIN'

PARMIN(6)=7 !JHEAT
PARMAX(6)=41.5          !from 7 to 41.5
FACTADIM(6)='LIN'

ELSE
!initial ranges of unknown parameters to be estimated
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PARMIN(1)=0.3
PARMAX(1)=0.7
FACTADIM(1)='LIN'

PARMIN(2)=0.3
PARMAX(2)=0.9
FACTADIM(2)='LIN'

PARMIN(3)=1.4
PARMAX(3)=2.5
FACTADIM(3)='LIN'

PARMIN(4)=1.8
PARMAX(4)=6.0
FACTADIM(4)='LIN'

PARMIN(5)=1.d-5
PARMAX(5)=1.d-3
FACTADIM(5)='LOG'

PARMIN(6)=1.3d6
PARMAX(6)=1.8d6
FACTADIM(6)='LIN'

PARMIN(7)=1.5d6
PARMAX(7)=2.2d6
FACTADIM(7)='LIN'

PARMIN(8)=1.6d6
PARMAX(8)=2.5d6
FACTADIM(8)='LIN'

PARMIN(9)=1.8d6
PARMAX(9)=2.6d6
FACTADIM(9)='LIN'
ENDIF

c EST run
IF (KESTOPT.EQ.0) THEN
DT=0.25D0
TNMAX=480.D0
LASTT=TNMAX/DT
Tp=25.D0
QAV=28.D3
th1=101.D0
time12=41.D0
th2=27.D0
YHEAT=32.D-3
ISENSOR(1)=5
JSENSOR(1)=15
CDAIR=0.031d0
RHOCPAIR=1.d3
CDAL=177.d0   !alu alloy plate thermal property values @ 300K
RHOCPAL=2.42375d6  !(pure alu. @ 300K: 237. & 2.439906d6)

IF (KYSIM.EQ.0) THEN             !use simulated or experimental
data
OPEN(UNIT=1,FILE='Ysimin.dat')
READ(1,*)LASTDATA
DO I=1,LASTDATA
READ(1,*)J,TEMPS,TEXACT,TSIMUL
READ(1,*)J,TIMEARR(1,I),TEXACT,YARR(1,I)
ENDDO
CLOSE(1)

ELSE    !generate simulated data
PAR(1)=0.5D0                !define thermal properties
PAR(2)=0.6D0
PAR(3)=2.0D0
PAR(4)=4.0D0
PAR(5)=1.0D-4
PAR(6)=1.50D6
PAR(7)=1.80D6
PAR(8)=2.00D6
PAR(9)=2.25D6

STDDV=0.1D0 !normal error standard deviation

OPEN(UNIT=2,FILE='Ysim.dat')  !Tsimulated file output
WRITE(2,15)
15 FORMAT('Simulated T / 2D design / for GAMATRAT EST
'/50(1H*)//)  !title!
WRITE(2,'(1X,A4,9(1X,F15.3)/)')'PAR=',PAR(1),PAR(2),PAR(3),
PAR(4),PAR(5),PAR(6),PAR(7),PAR(8),PAR(9)
WRITE(2,'(1X,A6,F4.2/)')'STDDV=',STDDV

CALL COMPYSIM(STDDV)            !generate simulated T

CLOSE(2)
STOP 'Ysim.dat generated'
ENDIF

ELSE
c OPT run
DT=1.D0
TNMAX=700.D0
LASTT=TNMAX/DT
Tp=25.D0
QAV=28.D3
YHEAT=32.d-3
TMAX1D=181.19D0
TMAXP=(TMAX-TI)/(TMAX1D-TI)
CDAIR=0.031d0
RHOCPAIR=1.d3
CDAL=177.d0
RHOCPAL=2.42375d6
ENDIF

c write in general output file:
c===============================
WRITE(99,20)
20 FORMAT(2X/,'GEOMETRICAL DIMENSIONS AND
GRID:'/30('-'))
WRITE(99,'(A3,F12.5)')'XL=',X(L1)
WRITE(99,'(A3,F12.5)')'YL=',Y(M1)
WRITE(99,'(A5,I3,A1,I2)')'GRID=',L1,'x',M1
WRITE(99,'(A12)')'ZGRID called'

WRITE(99,30)
30 FORMAT(//2X,'GA VARIABLES:'/30('-')/)
WRITE(99,'(A7,I5)')'iseed1=',ISEED1
WRITE(99,'(A7,I5)')'iseed2=',ISEED2
WRITE(99,'(A3,I3)')'ns=',NS
WRITE(99,'(A3,I3)')'np=',NP
WRITE(99,'(A3,F12.5)')'pmj (jump)=',PMJ
WRITE(99,'(A3,F12.5)')'pmc (creep)=',PMC
WRITE(99,'(A3,F12.5)')'pc=',PC
WRITE(99,'(A3,F12.5)')'pr=',PR
WRITE(99,'(A3,F12.5)')'pt=',PT
WRITE(99,'(A10,F12.5)')'criterion=',CRITERION
WRITE(99,'(A12,I3)')'lastcriterg=',LASTCRITERG
WRITE(99,'(A5,I3)')'ming=',MING
WRITE(99,'(A6,I3/)')'lastg=',LASTG
IF (SELECT.EQ.'R')  WRITE(99,'(A14)')'rank selection'
IF (SELECT.EQ.'T')  WRITE(99,'(A20)')'tournament selection'
IF (MUT.EQ.'J')     WRITE(99,'(A13)')'jump mutation'
IF (MUT.EQ.'JC')    WRITE(99,'(A21)')'jump + creep mutation'
IF (KILLTWIN.EQ.'Y')WRITE(99,'(A8)')'killtwin'
IF (ELIT.EQ.'SS')   WRITE(99,'(A20)')'steady state elitism'

WRITE(99,40)
40 FORMAT(//2X,'OF VARIABLES:'/30('-')/)
DO I=1,NP
WRITE(99,'(2(A7,I2,A3,E14.3,1X),A9,A3)')
'parmin(',I,')=',PARMIN(I),
'parmax(',I,')=',PARMAX(I),
'Factadim=',FACTADIM(I)
ENDDO
IF (KESTOPT.EQ.0) THEN
IF (KYSIM.EQ.0) THEN
WRITE(99,50)
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50 FORMAT(/'Arrays read: timearr and Yarr')
!EXPERIMENTAL ARRAYS READ!
WRITE(99,'(A9,I4)')'lastdata=',LASTDATA
WRITE(99,'(A6,I4)')'lastt=',LASTT
ELSE
WRITE(99,60)
60 FORMAT(/'Arrays(lastt) simulated: Yarr')         !ARRAYS
SIMULATED!
ENDIF
ELSE
WRITE(99,'(/A36)')'2D design variables to be optimized:'
WRITE(99,'(A26)') 'ys,xs,yheat,th1,time12,th2,tn'
WRITE(99,'(/A6,I4)')'lastt=',LASTT
WRITE(99,'(A5,G10.5)')'TMAX=',TMAX
ENDIF

WRITE(99,'(A7,E10.1)')'DELTAB=',DELTAB

IF (KDT.EQ.1) WRITE(99,'(A3,F10.5)')'DT=',DT

IF (KSYM.EQ.1) WRITE(99,'(A19)')'HALF MODEL
STUDIED'

IF (KCONT.EQ.0) THEN
WRITE(99,'(/A18)')'PAS DE CONTRAINTES'
ELSE
IF (KCONT.EQ.1) WRITE(99,'(/A26)')'CONTRAINTES 0-1
appliquées'
IF (KCONT.EQ.2) WRITE(99,'(/A26)')'CONTRAINTES 1/2
appliquées'
ENDIF

RETURN
c-----------------------------------------------------------------------------

ENTRY BEGIN

IF (KPAR.EQ.1) THEN
KPAR=0
KPARSTOP=1   !set to 1 to stop the run after compof is performed
ENDIF

c TO OBTAIN THE NONDIM SS SOLUTION TMAX+
REQUIRED IN OPT RUN OR THE INITIAL SS
TEMPERATURE FIELD REQUIRED IN EST RUN
IF (KSS.EQ.1) THEN
KDT=1
DT=BIG
LASTT=50
ENDIF

c reset statements before starting loop for T calculations
TIME=0.0D0          !reset markers
ITERT=0
KSTOP=0
KQAV=0

c EST run
IF (KESTOPT.EQ.0) THEN
DO 70 I=1,NSENSOR
KTS(I)=0
KDATA(I)=1
70 CONTINUE

c set thermal properties to the chromosome gene values in EST run
use actual parameter values when DB=0.
or apply a par. variation of DELTAB=0.0001 by default
 (IN EITHER EST OR OPT RUN, THE SENSITIVITY
COEFFICIENTS ARE CALCULATED USING A PARAMETER
VARIATION W/ B=(1+DB)*B IN COMPXI)
CDX(1)=PAR(1)*(1.d0+DB(1))
CDX(2)=PAR(2)*(1.d0+DB(2))
CDY(1)=PAR(3)*(1.d0+DB(3))
CDY(2)=PAR(4)*(1.d0+DB(4))
RC=PAR(5)*(1.d0+DB(5))
RHOCP(1)=PAR(6)*(1.d0+DB(6))

RHOCP(2)=PAR(7)*(1.d0+DB(7))
RHOCP(3)=PAR(8)*(1.d0+DB(8))
RHOCP(4)=PAR(9)*(1.d0+DB(9))

c OPT run
ELSE
CDX(1)=0.5d0*(1.d0+DB(1)) !@25C
CDX(2)=0.6d0*(1.d0+DB(2)) !@150C
CDY(1)=2.d0*(1.d0+DB(3)) !@25C
CDY(2)=4.d0*(1.d0+DB(4)) !@150C
RC=1.d-4*(1.d0+DB(5)) !CST
RHOCP(1)=1.50d6*(1.d0+DB(6)) !@25C
RHOCP(2)=1.80d6*(1.d0+DB(7)) !@75C
RHOCP(3)=2.00d6*(1.d0+DB(8)) !@110C
RHOCP(4)=2.25d6*(1.d0+DB(9)) !@150C
th1=int(PAR(1))*DT
time12=int(PAR(2))*DT
th2=int(PAR(3))*DT
TIMEHEAT=th1+time12+th2
JSENSOR(1)=int(PAR(4))
ISENSOR(1)=int(PAR(5))
JHEAT=int(PAR(6))
ENDIF

c reset Ti
DO 85 J=1,M1
T(L1,J)=Tp
DO 80 I=1,L1
T(I,J)=Tp
80 CONTINUE
85 CONTINUE

RETURN
c-----------------------------------------------------------------------------

ENTRY OUTPUT

IF (ABS(TIME-th1).LE.DT/2.D0) THEN
KQAV=1
ELSE
IF (ABS(TIME-(th1+time12)).LE.DT/2.D0) KQAV=0
IF (ABS(TIME-(th1+time12+th2)).LE.DT/2.D0) KQAV=2
ENDIF

c temperature(s) corresponding to the sensor(s') position(s)
Recall: if xsensor and ysensor used ISENSOR and JSENSOR are
determined in DEFRD2D if KSENSOR=2 OR in COMPXI if
KESTOPT=1 and KSENSOR=1 in INIT
DO 90 I=1,NSENSOR
TSENSOR(I)=T(ISENSOR(I),JSENSOR(I))
IF (KESTOPT.EQ.0) THEN
IF (KYSIM.EQ.0.AND.ABS(TIME-
TIMEARR(1,KDATA(I))).LE.DT/2.D0)
THEN
KTS(I)=1         !compute S in compof
ELSE
IF (KYSIM.EQ.1) KTS(I)=1
ENDIF
ENDIF
90 CONTINUE

C THE FOLLOWING IS COMPUTED FOR A PARTICULAR
SET OF THERMAL PROPERTIES ONLY
C ATTENTION, KPARSTOP=1 to compute OF and then turns 0
(see COMPOF) and KXTX=1 to compute CI

IF (KPARSTOP.EQ.0.OR.KXTX.EQ.1) GOTO 170

QINI1=0.D0
DO J=2,M2
QINI1=QINI1+FLUXI1(J,1)*YCV(J)    !(J,1) for independent
variable 1 = T
ENDDO

IF (KSS.EQ.1) THEN             !find TMAX+ @ SS required in
COMPXTXOPT or TI
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DO 120 IUNIT=IU1,IU2
IF (ITERT.EQ.0) WRITE(IUNIT,100)
100 FORMAT(2X,'ITERT',4X,'TMAX',4X,'QINI1',4X,
'NTC(1)',/)
WRITE(IUNIT,110)ITERT,TSENSOR(1),QINI1,NTC(1)
110 FORMAT(2X,I4,3X,1PE11.4,3X,1PE11.4,3X,I2)
120 ONTINUE
IF (ITERT.EQ.LASTT) THEN
CALL PRINT
STOP 'TMAX calculated and SS done'
ENDIF

ELSE
c write TSENSOR(NSENSOR) to files
IF (KESTOPT.EQ.0.AND.KTS(1).EQ.1)
WRITE(199,'(3F10.3)')
TIME,TSENSOR(1),YARR(1,KDATA(1))
IF (KESTOPT.EQ.1)
WRITE(199,'(2F15.3)')TIME,TSENSOR(1)

c set title (@ ITERT=0) and data (@ each ITERT) to print in iunit
DO 150 IUNIT=IU1,IU2
IF (ITERT.EQ.0) WRITE(IUNIT,130)
130 FORMAT(2X,'ITERT',6X,'TIME',9X,'TSENSOR(1)',
9X,'QINI1',7X,'NTC(1)',/)
WRITE(IUNIT,140)ITERT,TIME,TSENSOR(1),QINI1,NTC(1)
140 FORMAT(2X,I4,3(3X,1PE11.4),3X,I2)
150 CONTINUE

c print and plot the Tdistribution when time~th1
IF (KQAV.EQ.1.AND.KTHPRINT.EQ.0) THEN
CALL PRINT
CALL PLOT
KTHPRINT=1
ENDIF
c print and plot the Tdistribution when time~th2
IF (KQAV.EQ.2.AND.KTHPRINT.EQ.1) THEN
CALL PRINT
KTHPRINT=2
ENDIF
ENDIF

170 RETURN
c-----------------------------------------------------------------------------

ENTRY PHI

c set properties (conductivities and volumetric capacities) of
main elements
c OPT or EST run
DO 180 I=2,L2
DO 180 J=2,M2
GAMX(I,J)=CDAL
GAMY(I,J)=CDAL
ALAM(I,J)=RHOCPAL
IF (KSYM.EQ.1) THEN
IF (X(I).GE.0.99d-3.AND.X(I).LE.4.2d-3.AND.Y(J).
GE.12.3d-3) GOTO 175
ELSE
IF (X(I).GE.0.99d-3.AND.X(I).LE.4.2d-3.AND.
Y(J).GE.12.3d-3.AND.Y(J).LE.76.3d-3) GOTO 175
ENDIF
GOTO 180
175 GAMX(I,J)=CDX(1)+(CDX(2)-CDX(1))*(T(I,J)-
25.D0)/125.D0
GAMY(I,J)=CDY(1)+(CDY(2)-CDY(1))*(T(I,J)-
25.D0)/125.D0
IF (T(I,J).LT.75.D0) THEN
ALAM(I,J)=RHOCP(1)+
(RHOCP(2)-RHOCP(1))*(T(I,J)-25.D0)/50.D0
ELSE
IF (T(I,J).GE.75D0.AND.T(I,J).LT.110.D0) THEN
ALAM(I,J)=RHOCP(2)+
(RHOCP(3)-RHOCP(2))*(T(I,J)-75.D0)/35.D0
ELSE
ALAM(I,J)=RHOCP(3)+

(RHOCP(4)-RHOCP(3))*(T(I,J)-110.D0)/40.D0
ENDIF
ENDIF
180 CONTINUE

c set air properties
DO I=2,4
DO J=7,8
GAMX(I,J)=CDAIR
GAMY(I,J)=CDAIR
ALAM(I,J)=RHOCPAIR
ENDDO
IF (KSYM.EQ.0) THEN
DO J=40,41 !COMMENT W/ SYMMETRICAL MODEL
GAMX(I,J)=CDAIR    ! "
GAMY(I,J)=CDAIR    ! "
ALAM(I,J)=RHOCPAIR   ! "
ENDDO
ENDIF
ENDDO

c take RC into account
IF (KSYM.EQ.1) THEN
DO J=9,L2                   !USE W/ SYMMETRICAL MODEL
GAMX(4,J)=0.1d-3/RC
GAMY(4,J)=0.d0
ENDDO
ELSE
DO J=9,39
GAMX(4,J)=0.1d-3/RC
GAMY(4,J)=0.d0
ENDDO
ENDIF

IF (KSYM.EQ.1) THEN
DO J=7,L2                   !USE W/ SYMMETRICAL MODEL
GAMX(12,J)=0.1d-3/RC
GAMY(12,J)=0.d0
ENDDO
ELSE
DO J=7,41
GAMX(12,J)=0.1d-3/RC
GAMY(12,J)=0.d0
ENDDO
ENDIF

DO I=5,11
GAMX(I,6)=0.d0
GAMY(I,6)=0.1d-3/RC
IF (KSYM.EQ.0) THEN
GAMX(I,42)=0.d0   !COMMENT W/ SYMMETRICAL
MODEL
GAMY(I,42)=0.1d-3/RC ! "
ENDIF
ENDDO

c set BCs (1 for cst T -BY DEFAULT- and 2 for fluxes) - OPT
or EST run
DO 200 J=2,M2
KBCI1(J)=2
IF (KSS.EQ.1) THEN
IF (Y(J).GE.12.3d-3.AND.Y(J).LE.(12.3d-3+YHEAT))
FLXCI1(J)=QAV
ELSE
IF (Y(J).GE.12.3d-3.AND.J.LE.JHEAT.AND.KQAV.EQ.0)
!Use w/ JHEAT
IF (Y(J).GE.12.3d-3.AND.Y(J).LE.(12.3d-3+YHEAT).    !Use if
YHEAT set
AND.KQAV.EQ.0) FLXCI1(J)=QAV
ENDIF
200 CONTINUE

DO 210 I=2,L2
KBCJ1(I)=2
KBCM1(I)=2
210 CONTINUE
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RETURN
c-----------------------------------------------------------------------------

ENTRY CHECKCONT(N,ARR)

c check that the children generation satisfy the constraints
inherent to the model (subroutine MODELETA).
c this procedure can also be used to force the children to stay
within the ranges defined

DO 220 I=1,N
DO 220 J=1,NP
IF (ARR(I,J).LT.0.D0) THEN
IF (KCONT.EQ.1) ARR(I,J)=0.D0
IF (KCONT.EQ.2) ARR(I,J)=0.5D0
NCONTMIN=NCONTMIN+1
ENDIF
IF (ARR(I,J).GT.1.D0) THEN
IF (KCONT.EQ.1) ARR(I,J)=1.D0
IF (KCONT.EQ.2) ARR(I,J)=0.5D0
NCONTMAX=NCONTMAX+1
ENDIF
220 CONTINUE

RETURN
END

c***************************************************
c include main program of invariant part
INCLUDE 'gaconduct.for'
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APPENDIX G

GA2DRTM.FOR Subroutine

This subroutine was written as the adapt part of the program GACONDUCT given in
Appendix B. It was developed for the thermophysical characterization of a carbon/epoxy
composite material from RTM experimental data in the range [100-130°C] (Section 5.2.2).
More particularly, it was used to simultaneously estimate 7 thermophysical parameters (kx,
ky100, ky130, C100, C115, C130, and Rc).

SUBROUTINE GAPROBLEM

c HP77 or PC - SG 1998

C ATTENTION: THE USER MUST DEFINE VARIABLES
USED THROUGHOUT GAPROBLEM.FOR (BETWEEN
ENTRY STATEMENTS) IN THE COMMON/PROB/
NOTE THAT VARIABLES THAT ARE USED ELSEWHERE
THAN GAADAPT MUST BE DEFINED IN THE FILE
GACOMMON_CONDUCT.FOR

C THE USER SHOULD REMEMBER TO CHECK FOR
VALIDITY OF CONVERGENCE:
- REASONABLE ASPECT RATIO DX/DY
- GRID REFINEMENT DX, DY OK (GOOD COMPROMISE
WITH COMPUTATION COST)
- FOR TRANSIENT ANALYSIS: TIME STEP DT OK
- FOR STEADY STATE ANALYSIS: EBAL=0
- NTC SMALLER THAN NTIMES (10 BY DEFAULT) AT EACH
ITERATION

c***************************************************
INCLUDE 'gacommon_conduct.for'
c***************************************************
CHARACTER*24 FDATE
COMMON/PROB/LASTDATA,h1,h2,hf,Tf,Tp,Tamb,TC5(125),
CDAL,RHOCPAL,CDCU,RHOCPCU,CDTE,RHOCPTE,
CDRE,RHOCPRECRUE(3),CDX(2),CDY,RHOCPCOMP(3),RC,
TIMEARR(1,150),TIARR(NI,NJ),TIMEPRINT
DIMENSION T(NI,NJ),TC0(2,125),ARR(NSMAX,NPMAX+1)
EQUIVALENCE (F(1,1,1),T(1,1))
SAVE
c-----------------------------------------------------------------------------

ENTRY INIT

c give printing informations
HEADER='Conduction transitoire 2D resine crue / Damien
Lecointe'
PRINTF='crue1.pr'
TITLE(1)='TEMPERATURE'
KSOLVE(1)=1  ! enable to solve for the T

c come here to change the default values of the following key
parameters (KCONT?KSCREEN?KESTOPT?TI?TMAX?
NPEST?OPTCRIT?KSENSOR?NSENSOR?KSS?KTN?
TIMEHEAT?MODE?)
KCONT=1
KSCREEN=1
c KSS=1
NPEST=7
NSENSOR=4
KSENSOR=2
!TMAX is defined after Tp

c to look at a particular set of thermal properties:
c=============================================
KPAR=1
KPRINT(1)=1  ! enable to print T; open PRINTF
KXPRINT=1
KXADIM=0
KOUT=2
KPLOT(1)=1   ! enable to plot T; open PLOTF

c general output file:
c======================
IF (KESTOPT.EQ.0) THEN
OPEN(UNIT=99,FILE='Estrun.out')
WRITE(99,1)
1 FORMAT(2X,'DAMIEN ESTIMATION'/50(1H*)/)   !EST title!
PRINT *,'DAMIEN ESTIMATION'
IF (KSS.EQ.0.AND.KPAR.EQ.1)
OPEN(UNIT=199,FILE='TYrun.dat')       !TSENSOR(s) &
YARR(s) file output
ELSE
OPEN(UNIT=99,FILE='Optrun.out')
WRITE(99,2)
2 FORMAT(2X,'2D1 DAMIEN OPTIMIZATION W/
DIMENSIONS'/50(1H*)/)  !OPT title!
PRINT *,'2D1 DAMIEN IDEAL OPTIMIZATION W/
DIMENSIONS'    
PRINT *,'TO BE USED W/ ORTHOTROPIC PROPERTIES'
IF (KSS.EQ.0.AND.KPAR.EQ.1)
OPEN(UNIT=199,FILE='Trun.dat')    !TSENSOR(1) file output
ENDIF

IF (KPAR.NE.1) THEN
OPEN(UNIT=10,FILE='POPPRINT.dat')
OPEN(UNIT=11,FILE='OFPRINT.dat')
OPEN(UNIT=12,FILE='MTCPRINT.dat')
ENDIF
IF (KSCREEN.EQ.1) THEN
PRINT *,'GAMAIN running ...'
PRINT *,'ITERG=',ITERG
ENDIF

c write initial date and time
WRITE(99,'(2X,A24)') FDATE()

RETURN
c-----------------------------------------------------------------------------

ENTRY GRID

c come here to change the default value for KXYGRID

c set up the mesh
NZX=16
NCVX(1)=1
XZONE(1)=1.d-3
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NCVX(2)=5
XZONE(2)=13.75d-3
NCVX(3)=7
XZONE(3)=8.75d-3
NCVX(4)=2
XZONE(4)=2.d-3
NCVX(5)=1
XZONE(5)=0.5d-3
NCVX(6)=4
XZONE(6)=3.d-3
NCVX(7)=3
XZONE(7)=4.d-3
NCVX(8)=3
XZONE(8)=3.d-3
NCVX(9)=1
XZONE(9)=1.34d-3
NCVX(10)=7
XZONE(10)=17.82d-3/13.d0*7.d0
NCVX(11)=7
XZONE(11)=9.331d-3
NCVX(12)=8
XZONE(12)=10.7025d-3
NCVX(13)=7
XZONE(13)=4.007d-3/3.d0*7.d0
NCVX(14)=9
XZONE(14)=10.8916d-3
NCVX(15)=5
XZONE(15)=151.688d-3/11.d0
NCVX(16)=1
XZONE(16)=1.d-3

NZY=8          !only half studied because of symmetry
NCVY(1)=1
YZONE(1)=1.d-3
NCVY(2)=5
YZONE(2)=15.25d-3
NCVY(3)=3
YZONE(3)=5.25d-3
NCVY(4)=3
YZONE(4)=4.1d-3
NCVY(5)=3
YZONE(5)=3.4d-3
NCVY(6)=1
YZONE(6)=1.d-3
NCVY(7)=3
YZONE(7)=1.5d-3
NCVY(8)=8
YZONE(8)=4.5d-3

CALL ZGRID     !refine grid for homogeneous orthotropic
material

c give thermocouple position(s)
XSENSOR(1)=36.67d-3
YSENSOR(1)=36.d-3
XSENSOR(2)=46.25d-3
YSENSOR(2)=36.d-3
XSENSOR(3)=55.60d-3
YSENSOR(3)=36.d-3
XSENSOR(4)=66.30d-3
YSENSOR(4)=36.d-3

RETURN
c-----------------------------------------------------------------------------

ENTRY SETVAR

c come here to change the default values of the following key
parameters (KYSIM?KDT?DELTAB?SIGMA?IDATA0?
KPRGRID?NEXP?JEXPCI?)
KDT=1
DELTAB=1.D-7
JEXPCI=1

c print grid if asked
IF (KPRGRID.EQ.1) THEN

OPEN(UNIT=299,FILE='GRIDTEST.DAT')
DO I=1,L2
WRITE(299,'(4(F15.3))')X(I)*1000.,Y(1),
1 XU(I+1)*1000.,Y(M1)*1000.
ENDDO
WRITE(299,'(2(F15.3))')X(L1)*1000.,Y(1)
DO J=1,M2
WRITE(299,'(4(F15.3))')X(1),Y(J)*1000.,
1 X(L1)*1000.,YV(J+1)*1000.
ENDDO
WRITE(299,'(2(F15.3))')X(1),Y(M1)*1000.
STOP
ENDIF

c set GA variables:
c===================
ISEED1=10496    !random number seeds
ISEED2=04517
NS=50     !CHOOSE NS EVEN TO MAKE NS/2 CHILDREN
IF (KESTOPT.EQ.0) THEN
NP=NPEST
ELSE
NP=4
ENDIF
PMJ=2.D0/(1.D0*NS)
PMC=PMJ/2.D0
PC=0.9D0
PR=0.9D0
PT=0.9D0
CRITERION=0.01D0
LASTCRITERG=3   !at least 3
MING=2                !+ 2 =5 generations
LASTG=10
SELECT='T'      !rank (R) or tournament (T) selection
MUT='JC'        !Jump mutation alone (J) or {Jump+Creep}
mutation (JC)
KILLTWIN='N'    !kill or not the twins (Y/N)
ELIT='SS'       !steady state (SS) or basic (B) or "similar
replacement" (SR) elitism NOT SET UP yet

c set OF variables:
c===================
IF (KESTOPT.EQ.0) THEN !initial ranges of unknown
parameters to be estimated
PARMIN(1)=3.0D0  !
PARMAX(1)=3.5D0
FACTADIM(1)='LIN'

PARMIN(2)=3.3D0
PARMAX(2)=4.5D0
FACTADIM(2)='LIN'

PARMIN(3)=0.50D0 !
PARMAX(3)=0.66D0
FACTADIM(3)='LIN'

PARMIN(4)=0.8D-3 !
PARMAX(4)=10.D-3
FACTADIM(4)='LIN'

PARMIN(5)=2.00D6 !
PARMAX(5)=2.20D6
FACTADIM(5)='LIN'

PARMIN(6)=2.10D6 !
PARMAX(6)=2.40D6
FACTADIM(6)='LIN'

PARMIN(7)=2.10D6 !
PARMAX(7)=2.50D6
FACTADIM(7)='LIN'
ENDIF

c EST run
IF (KESTOPT.EQ.0) THEN
IF (KYSIM.EQ.0) THEN             !use experimental data
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LASTDATA=125 
OPEN(UNIT=1,FILE='crue1.dat')
READ(1,*)TIME,TC01i,TC02i,TC1i,TC2i,TC3i,TC4i,TC5i
DO I=1,LASTDATA
READ(1,*)TIMEARR(1,I),TC0(1,I),TC0(2,I),YARR(1,I),
YARR(2,I),YARR(3,I),YARR(4,I),TC5(I)
ENDDO
CLOSE(1)
DT=0.1D0
LASTT=LASTDATA*4/DT
TIMEPRINT=180.D0
h1=1.D0
h2=2.D0
hf=3000.D0
Tf=82.45D0
Tp=133.7D0
Tmax=Tp
Tamb=15.5D0
CDAL=232.D0
RHOCPAL=2600.D0*879.D0
CDCU=401.D0
RHOCPCU=8933.D0*385.D0
CDTE=0.26D0
RHOCPTE=2200.D0*1000.D0
CDRECRUE=0.11D0
RHOCPRECRUE(1)=1117.D0*1208.16D0
RHOCPRECRUE(2)=1117.D0*15.197D0
RHOCPRECRUE(3)=1117.D0*(-4.99758D-2)
IF (KSS.NE.1) THEN
OPEN(UNIT=3,FILE='crue1_2810.in')       !initial SS
distribution found from previous SS analysis
DO 10 J=M1,1,-1
READ(3,*)(TIARR(I,J),I=1,L1)
10 CONTINUE
ENDIF
ENDIF
c no OPT run performed in this study
ENDIF

c write in general output file:
c===============================
      WRITE(99,20)
20    FORMAT(2X/,'SAMPLE DIMENSIONS AND
GRID:'/30('-'))
WRITE(99,'(A8,G10.3)')'XSAMPLE=',X(L1)
WRITE(99,'(A8,G10.3)')'YSAMPLE=',Y(M1)
WRITE(99,'(A5,I3,A1,I2)')'GRID=',L1,'x',M1
WRITE(99,'(A12)')'ZGRID called'

WRITE(99,30)
30 FORMAT(//2X,'GA VARIABLES:'/30('-')/)
WRITE(99,'(A7,I5)')'iseed1=',ISEED1
WRITE(99,'(A7,I5)')'iseed2=',ISEED2
WRITE(99,'(A3,I3)')'ns=',NS
WRITE(99,'(A3,I3)')'np=',NP
WRITE(99,'(A3,F12.5)')'pmj (jump)=',PMJ
WRITE(99,'(A3,F12.5)')'pmc (creep)=',PMC
WRITE(99,'(A3,F12.5)')'pc=',PC
WRITE(99,'(A3,F12.5)')'pr=',PR
WRITE(99,'(A3,F12.5)')'pt=',PT
WRITE(99,'(A10,F12.5)')'criterion=',CRITERION
WRITE(99,'(A12,I3)')'lastcriterg=',LASTCRITERG
WRITE(99,'(A5,I3)')'ming=',MING
WRITE(99,'(A6,I3/)')'lastg=',LASTG
IF (SELECT.EQ.'R')  WRITE(99,'(A14)')'rank selection'
IF (SELECT.EQ.'T')  WRITE(99,'(A20)')'tournament selection'
IF (MUT.EQ.'J')     WRITE(99,'(A13)')'jump mutation'
IF (MUT.EQ.'JC')    WRITE(99,'(A21)')'jump + creep mutation'
IF (KILLTWIN.EQ.'Y')WRITE(99,'(A8)')'killtwin'
IF (ELIT.EQ.'SS')   WRITE(99,'(A20)')'steady state elitism'

WRITE(99,40)
40 FORMAT(//2X,'OF VARIABLES:'/30('-')/)
DO I=1,NP
WRITE(99,'(2(A7,I2,A3,E14.3,1X),A9,A3)')
1 'parmin(',I,')=',PARMIN(I),

2 'parmax(',I,')=',PARMAX(I),
3 'Factadim=',FACTADIM(I)
ENDDO
IF (KESTOPT.EQ.0) THEN
IF (KYSIM.EQ.0) THEN
WRITE(99,50)
50 FORMAT(/'Arrays(lastm) read: timearr and Yarr')
!EXPERIMENTAL ARRAYS READ!
WRITE(99,'(A9,I4)')'lastdata=',LASTDATA
WRITE(99,'(A6,I4)')'lastt=',LASTT
ELSE
WRITE(99,60)
60 FORMAT(/'Arrays(lastm) simulated: Yarr')  !ARRAYS
SIMULATED!
ENDIF
ENDIF

IF (KDT.EQ.1) WRITE(99,'(A3,F10.5)')'DT=',DT

IF (KCONT.EQ.0) THEN
WRITE(99,'(/A18)')'PAS DE CONTRAINTES'
ELSE
IF (KCONT.EQ.1) WRITE(99,'(/A26)')'CONTRAINTES 0-1
appliquées'
IF (KCONT.EQ.2) WRITE(99,'(/A26)')'CONTRAINTES 1/2
appliquées'
ENDIF

RETURN
c-----------------------------------------------------------------------------

ENTRY BEGIN

IF (KPAR.EQ.1) THEN
KPAR=0
KPARSTOP=1   !set to 1 to stop the run after compof is
performed
ENDIF

c TO OBTAIN THE NONDIM SS SOLUTION TMAX+
REQUIRED IN OPT RUN OR THE INITIAL SS TEMPERATURE
FIELD REQUIRED IN EST RUN
IF (KSS.EQ.1) THEN
KDT=1
DT=BIG
LASTT=300
ENDIF

c reset statements before starting loop for T calculations
TIME=0.0D0          !reset markers
ITERT=0
KSTOP=0

c EST run
IF (KESTOPT.EQ.0) THEN
DO 70 I=1,NSENSOR
KTS(I)=0
KDATA(I)=1
70 CONTINUE

c set thermal properties to the chromosome gene values in EST run
c use actual parameter values when DB=0. or apply a par.
variation when DB=DELTAB=0.0001 by default
(IN EITHER EST OR OPT RUN, THE SENSITIVITY
COEFFICIENTS ARE CALCULATED USING A PARAMETER
VARIATION W/ B=(1+DB)*B IN COMPXI)
CDX(1)=PAR(1)*(1.d0+DB(1))
CDX(2)=PAR(2)*(1.d0+DB(2))
CDY=PAR(3)*(1.d0+DB(3))
RC=PAR(4)*(1.d0+DB(4))
RHOCPCOMP(1)=PAR(5)*(1.d0+DB(5))
RHOCPCOMP(2)=PAR(6)*(1.d0+DB(6))
RHOCPCOMP(3)=PAR(7)*(1.d0+DB(7))
ENDIF

c reset Ti
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DO 80 I=1,L1
IF (KSS.EQ.1) THEN   !to get SS TIARR(I,J)
T(I,1)=Tp
T(I,M1)=0.0224671D0*X(I)*1.D3+127.361D0
DO 85 J=2,M2
T(I,J)=128.3D0   !use same as Damien
85 CONTINUE
ELSE
DO 86 J=1,M1
T(I,J)=TIARR(I,J)
86 CONTINUE
ENDIF
80 CONTINUE

RETURN
c-----------------------------------------------------------------------------

ENTRY OUTPUT

c temperature(s) corresponding to the sensor(s') position(s)
c Recall: ISENSOR and JSENSOR are determined in DEFRD2D
if KESTOPT=0 / in COMPXI if KESTOPT=1
DO 90 I=1,NSENSOR
TSENSOR(I)=T(ISENSOR(I),JSENSOR(I))
IF (KESTOPT.EQ.0) THEN
IF (KYSIM.EQ.0.AND.ABS(TIME-
TIMEARR(1,KDATA(I))).LE.DT/2.D0)
1 THEN
KTS(I)=1         !compute S in compof
ELSE
IF (KYSIM.EQ.1) KTS(I)=1
ENDIF
ENDIF
90 CONTINUE

C THE FOLLOWING IS COMPUTED FOR A PARTICULAR
SET OF THERMAL PROPERTIES ONLY
C ATTENTION, KPARSTOP=1 to compute OF and then turns 0
(see COMPOF) and KXTX=1 to compute CI

IF (KPARSTOP.EQ.0.OR.KXTX.E.1) GOTO 170

RA=(CDCU*YCV(8))/(CDTE*YCV(9))
TCZERO=(RA*T(17,9)+T(17,8))/(RA+1.D0)

IF (KSS.EQ.1) THEN             !find TMAX+ @ SS required in
COMPD or TI
DO 120 IUNIT=IU1,IU2
IF (ITERT.EQ.0) WRITE(IUNIT,100)
100   FORMAT(2X,'ITERT',4X,'TSENSOR(1-4)',4X,'NTC(1)',/)
WRITE(IUNIT,110)ITERT,(TSENSOR(I),I=1,NSENSOR),T(57,29),
1 TCZERO,NTC(1)     !format to change w/ I              
110 FORMAT(2X,I4,6(3X,1PE11.4),3X,I2)
120 CONTINUE
IF (ITERT.EQ.LASTT) THEN
CALL PRINT
STOP 'SS done'
ENDIF

ELSE
c write TSENSOR(NSENSOR) to files
IF (KESTOPT.EQ.0.AND.ITERT.EQ.0)
WRITE(199,'(14F10.3)')     !format to change
TIME,TSENSOR(1),TC1i,TSENSOR(2),TC2i,TSENSOR(3),
TC3i,TSENSOR(4),TC4i,T(57,29),TC5i,TCZERO,TC01i,TC02i
IF (KESTOPT.EQ.0.AND.KTS(1).EQ.1)
WRITE(199,'(19F10.3)')    !format to change w/ I
TIME,(TSENSOR(I),YARR(I,KDATA(I)),I=1,NSENSOR),
T(57,29),
TC5(KDATA(1)),TCZERO,TC0(1,KDATA(1)),
TC0(2,KDATA(1)),
(TSENSOR(I)-YARR(I,KDATA(I)),I=1,NSENSOR),
T(57,29)-TC5(KDATA(1))

c set title (@ ITERT=0) and data (@ each ITERT) to print in iunit
DO 150 IUNIT=IU1,IU2

IF (ITERT.EQ.0) WRITE(IUNIT,130)
130 FORMAT(2X,'ITERT',6X,'TIME',9X,'TSENSOR(1-4+1)',
7X,'NTC(1)',/)
WRITE(IUNIT,140)ITERT,TIME,(TSENSOR(I),I=1,
NSENSOR),T(57,29),NTC(1)      !format to change w/ I
140 FORMAT(2X,I4,6(3X,1PE11.4),3X,I2)
150 CONTINUE

c print and plot the Tdistribution when time~timeprint
IF (TIME.GE.TIMEPRINT.AND.KTHPRINT.EQ.0) THEN
CALL PRINT
CALL PLOT
KTHPRINT=1
ENDIF

ENDIF

170 RETURN
c-----------------------------------------------------------------------------

ENTRY PHI

c set conductivity and volumetric capacity
DO 180 I=2,L2   !EST or OPT run
DO 180 J=2,M2
GAMX(I,J)=CDTE
GAMY(I,J)=CDTE
ALAM(I,J)=RHOCPTE
IF (X(I).LE.1.d-3.OR.X(I).GE.101.d-3.OR.Y(J).LE.1.d-3)
THEN
GAMX(I,J)=CDAL
GAMY(I,J)=CDAL
ALAM(I,J)=RHOCPAL
ENDIF
IF (X(I).GE.16.d-3.AND.X(I).LE.36.d-3.AND.Y(J).GE.18.d-3)
THEN
GAMX(I,J)=CDCU
GAMY(I,J)=CDCU
ALAM(I,J)=RHOCPCU
ENDIF
IF (X(I).GE.26.d-3.AND.X(I).LE.86.d-3.AND.Y(J).GE.31.d-3)
THEN
GAMX(I,J)=CDX(1)+(CDX(2)-CDX(1))*(T(I,J)-100.D0)/30.D0
GAMY(I,J)=CDY
IF (T(I,J).LE.115.D0) THEN
ALAM(I,J)=RHOCPCOMP(1)+(RHOCPCOMP(2)-
RHOCPCOMP(1))*(T(I,J)-100.D0)/15.D0
ELSE
IF (T(I,J).GT.115.D0) ALAM(I,J)=RHOCPCOMP(2)+
(RHOCPCOMP(3)-RHOCPCOMP(2))*(T(I,J)-115.D0)/15.D0
ENDIF
ENDIF
IF (X(I).GE.29.d-3.AND.X(I).LE.33.d-3.AND.Y(J).GE.29.d-3.
AND.Y(J).LE.31.d-3) THEN
GAMX(I,J)=CDRECRUE
GAMY(I,J)=CDRECRUE
ALAM(I,J)=RHOCPRECRUE(1)+RHOCPRECRUE(2)*T(I,J)+
RHOCPRECRUE(3)*T(I,J)**2
ENDIF
180 CONTINUE

c set the duct (inactive zone containing oil) properties to 0.
DO 190 I=11,14
DO 190 J=11,13
GAMX(I,J)=0.D0
GAMY(I,J)=0.D0
ALAM(I,J)=0.D0
190 CONTINUE

c set the convective heat flux into the near-boundary control
volumes via the source term
IF (KSS.NE.1) THEN
DO I=11,14
SC(I,10)=Tf/(YCV(10)*(1.D0/hf+.5D0*YCV(10)/GAMY(I,10)))
SP(I,10)=-1.D0/(YCV(10)*(1.D0/hf+.5D0*YCV(10)/GAMY(I,10)))
SC(I,14)=Tf/(YCV(14)*(1.D0/hf+.5D0*YCV(14)/GAMY(I,14)))
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SP(I,14)=-1.D0/(YCV(14)*
(1.D0/hf+.5D0*YCV(14)/GAMY(I,14)))
ENDDO
DO J=11,13
SC(10,J)=Tf/(XCV(10)*(1.D0/hf+.5D0*XCV(10)/GAMX(10,J)))
SP(10,J)=-1.D0/(XCV(10)*
(1.D0/hf+.5D0*XCV(10)/GAMX(10,J)))
SC(15,J)=Tf/(XCV(15)*(1.D0/hf+.5D0*XCV(15)/GAMX(15,J)))
SP(15,J)=-1.D0/(XCV(15)*
(1.D0/hf+.5D0*XCV(15)/GAMX(15,J)))
ENDDO
ENDIF

c take RC into account
DO J=20,28
GAMX(17,J)=XCV(17)/RC
GAMY(I,J)=0.D0
ALAM(17,J)=RHOCPCU
ENDDO
DO I=18,21
GAMX(I,J)=0.D0
GAMY(I,19)=YCV(19)/RC
ALAM(I,19)=RHOCPCU
ENDDO
DO I=25,27
GAMX(I,J)=0.D0
GAMY(I,19)=YCV(19)/RC
ALAM(I,19)=RHOCPCU
ENDDO

c set BCs (1 for cst T -BY DEFAULT- and 2 for fluxes)
DO 200 J=2,M2
KBCI1(J)=2
FLXCI1(J)=h1*Tamb
FLXPI1(J)=-h1
KBCL1(J)=2
FLXCL1(J)=h2*Tamb
FLXPL1(J)=-h2
200 CONTINUE

IF (KSS.NE.1) THEN
DO 210 I=2,L2
KBCM1(I)=2
210 CONTINUE
ENDIF

RETURN
c-----------------------------------------------------------------------------

ENTRY CHECKCONT(N,ARR)

c check that the children generation satisfy the constraints
inherent to the model (subroutine MODELETA).
c this procedure can also be used to force the children to stay
within the ranges defined

DO 220 I=1,N
DO 220 J=1,NP
IF (ARR(I,J).LT.0.D0) THEN
IF (KCONT.EQ.1) ARR(I,J)=0.D0
IF (KCONT.EQ.2) ARR(I,J)=0.5D0
NCONTMIN=NCONTMIN+1
ENDIF
IF (ARR(I,J).GT.1.D0) THEN
IF (KCONT.EQ.1) ARR(I,J)=1.D0
IF (KCONT.EQ.2) ARR(I,J)=0.5D0
NCONTMAX=NCONTMAX+1
ENDIF
220 CONTINUE

RETURN
END

c***************************************************

c include main program of invariant part

INCLUDE 'gaconduct.for'
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APPENDIX H

GAKINETIC.FOR Subroutine and its Dependencies

The GAKINETIC.FOR subroutine was written as the adapt part of the program GAMAIN
given in Appendix A. It was used to determine the kinetic parameters of the Kamal and
Sourour model for the kinetic characterization of the curing of three different thermosetting
compounds analyzed in Chapter 6.
This subroutine calls five other subroutines:
- ALPHARK2.FOR, to compute the degree of cure using the order 2 Runge Kunta method.
- ALPHACN.FOR, to compute the degree of cure using the Crank-Nicholson scheme.
- DALPHAFCTALPHA.FOR, to compute the rate of cure according to strategy S1 or S2

(see Section 6.2).
- XDALPHAFCTALPHA.FOR, to compute the sensitivity coefficients of the kinetic

parameters using the estimation strategy S1.
- TIREFNI.FOR, to determine the parameters of the inhibition time model.
These five subroutines are provided at the end of the GAKINETIC.

SUBROUTINE GAPROBLEM

c HP77 or PC - SG 1998

C ATTENTION: THE USER MUST DEFINE VARIABLES
USED THROUGHOUT GAPROBLEM.FOR (BETWEEN
ENTRY STATEMENTS) IN THE COMMON/PROB/.
VARIABLES THAT ARE USED ELSEWHERE THAN
GAPROBLEM MUST BE DEFINED IN THE FILE
GACOMMON_MAIN.FOR.
C DEFAULT VALUES FOR USER MARKERS ARE ZERO IN
DEFLT (KPAR,KYSIM,KXPRINT,KEST, ...)

c***************************************************
INCLUDE 'gacommon_main.for'
c***************************************************
CHARACTER*15 WHICHMETHOD,WHICHTIMODEL
CHARACTER*24 FDATE
COMMON/PROB/KTIMEINHI,KRK1,RK1I,KALPHA,
NTCMAX,DELTAB,WHICHMETHOD,WHICHTIMODEL,
TIMEI(NEXPMAX),ALPHAI(NEXPMAX),
DALPHAI(NEXPMAX),TI(NEXPMAX),PASDT1(NEXPMAX),
ALPHA(NEXPMAX,LASTETAMAX),DALPHA(NEXPMAX,
LASTETAMAX),T(NEXPMAX,LASTETAMAX),
DALPHAMAX(NEXPMAX),NDATA(NEXPMAX),
DB(NPMAX),V(NEXPMAX)
DIMENSION ARR(NSMAX,NPMAX+1),
ETA1(LASTETAMAX),ETA2(LASTETAMAX)

c-----------------------------------------------------------------------------

ENTRY INIT

c give printing informations
!iunit=output file PRINTF only (dependent variable output
file='ETAPRINT.DAT' in DEFLT)
c come here to change the default values of the following key
parameters [KSCREEN, KMINMAX, KETA, NPEST, OPTCRIT,
KTN, KSS, ETAMAX TIMEHEAT, KCONT, KYSIM, SIGMA,
IDATA0, NEXP, JEXPCI?]
KSCREEN=1
KETA=1
KCONT=1

NEXP=6
JEXPCI=6

c the following is problem dependent
KTIMEINHI=0  !1 to find the parameters of the inhibition time
model
KRK1=1
RK1I=1.d-300
NTCMAX=20     !to be used w/ the method 'ALPHACN'

c choice for solving ALPHA=f(t) : 'ALPHARK2' or 'ALPHACN'
c or solve DALPHA=f(ALPHA) : 'DALPHAFCTALPHA'
WHICHMETHOD='ALPHARK2'

c choice for which ALPHA to use if DALPHAFCTALPHA is to
be compared
c KALPHA=1 to first reconstruct ALPHA
c       =0 to use experimental ALPHA
cATTENTION, if WHICHMETHOD='ALPHARK2' then
KALPHA=0
KALPHA=0
DELTAB=1.D-6
DO I=1,NPEST  ! used to numerically compute the XI
DB(I)=0.D0
ENDDO

c choice of inhibition time model: 'TIISOTHERME' or 'TIREFNI'
WHICHTIMODEL='TIREFNI'
IF (KTIMEINHI.EQ.0) THEN
IF (KRK1.EQ.1) THEN
NPEST=6
ELSE
NPEST=4
ENDIF
ELSE
NPEST=2
ENDIF

c to look at a particular set of properties:
c=============================================
KPAR=1
KPRINT=1
 KXPRINT=1
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KOUT=2
c general output file:
c======================
OPEN(UNIT=99,FILE='output.out')    !general GAoutput file
WRITE(99,20)
20 FORMAT(2X,'kinetic parameter estimation'/50(1H*)//)
!GAoutput file title!
IF (KPAR.NE.1) THEN
OPEN(UNIT=10,FILE='POPPRINT.dat')
OPEN(UNIT=11,FILE='OFPRINT.dat')
OPEN(UNIT=12,FILE='MTCPRINT.dat')
ENDIF
IF (KSCREEN.EQ.1) THEN
PRINT *,'GAMAIN running ...'
PRINT *,'ITERG=',ITERG
ENDIF
WRITE(99,'(2X,A24)') FDATE() !initial date and time

RETURN
c-----------------------------------------------------------------------------

ENTRY SETVAR

c set GA variables:
c===================
ISEED1=57
ISEED2=4831
IF (KETA.EQ.2) THEN
NP=NPEST   != Number of parameters optimized
ELSE
NP=NPEST   != Number of parameters estimated
ENDIF
NS=NPEST*100   !CHOOSE NS EVEN TO MAKE NS/2 CHILDREN
SELECT='T'        !modified rank (R) or tournament (T) selection
PT=0.9D0
PC=0.9D0
MUT='JC'   !Jump mutation alone (J) or {Jump+Creep}
mutation (JC)
PMJ=10.D0/(NS*1.D0) !1/NS
PMC=PMJ/5.D0        !PMJ/5
ELIT='SS'         !steady state (SS) or basic (B) or "similar
replacement" (SR) elitism NOT SET UP yet
PR=0.9D0
KILLTWIN='N'      !kill or not the twins (Y/N)
CRITERION=0.01D0
LASTCRITERG=100
MING=100           !at least (MING+LASTCRITERG) generations
LASTG=500        !at most LASTG generations

c set OF variables:
c===================
c set initial ranges + adimensionalization factor of unknown
parameters to be determined
IF (KTIMEINHI.EQ.0) THEN
PARMIN(1)=1.D5
PARMAX(1)=1.D9
FACTADIM(1)='LOG'

PARMIN(2)=30.D3
PARMAX(2)=80.D3
FACTADIM(2)='LIN'

PARMIN(3)=0.8D0
PARMAX(3)=1.2D0
FACTADIM(3)='LIN'

PARMIN(4)=1.5D0
PARMAX(4)=2.0D0
FACTADIM(4)='LIN'

IF (KRK1.EQ.1) THEN
PARMIN(5)=1.D3
PARMAX(5)=1.D60
FACTADIM(5)='LOG'

PARMIN(6)=50.D3

PARMAX(6)=600.D3
FACTADIM(6)='LOG'
ENDIF

ELSE
PARMIN(1)=40.D0
PARMAX(1)=160.D0
FACTADIM(1)='LIN'

PARMIN(2)=1.D0
PARMAX(2)=100.D0
FACTADIM(2)='LOG'
ENDIF

IF (KETA.EQ.1.OR.KETA.EQ.2) THEN
IF (KTIMEINHI.EQ.1) THEN
OPEN(UNIT=1,FILE='Ctirefni.dat')
DO JEXP=1,NEXP
LASTETA(JEXP)=1
IF (WHICHTIMODEL.EQ.'TIISOTHERME') THEN
READ(1,*)YARR(JEXP,1),TI(JEXP)
ELSE
YARR(JEXP,1)=0.D0
READ(1,*)NDATA(JEXP),PASDT(JEXP),PASDT1(JEXP),V(JEXP)
DO I=1,NDATA(JEXP)+1
READ(1,*)TIMEEXP(JEXP,I),T(JEXP,I)
ENDDO
ENDIF
ENDDO
CLOSE(1)
ELSE
IF (KYSIM.EQ.0) THEN         !use experimental data
OPEN(UNIT=1,FILE='Cniref.dat')
DO JEXP=1,NEXP
READ(1,*)LASTETA(JEXP),PASDT1(JEXP),PASDT(JEXP),
DALPHAMAX(JEXP)
READ(1,*)TIMEI(JEXP),ALPHAI(JEXP),DALPHAI(JEXP),
TI(JEXP)
DALPHAI(JEXP)=DALPHAI(JEXP)/100.D0
ALPHAI(JEXP)=ALPHAI(JEXP)/100.D0
DO I=1,LASTETA(JEXP)
IF (WHICHMETHOD.EQ.'DALPHAFCTALPHA') THEN
READ(1,*)TIMEEXP(JEXP,I),ALPHA(JEXP,I),
YARR(JEXP,I),T(JEXP,I)
ALPHA(JEXP,I)=ALPHA(JEXP,I)/100.D0
YARR(JEXP,I)=YARR(JEXP,I)/100.D0
ELSE
READ(1,*)TIMEEXP(JEXP,I),YARR(JEXP,I),
DALPHA(JEXP,I),T(JEXP,I)
YARR(JEXP,I)=YARR(JEXP,I)/100.D0
DALPHA(JEXP,I)=DALPHA(JEXP,I)/100.D0
ENDIF
ENDDO
ENDDO
CLOSE(1)
ENDIF
ENDIF
ENDIF

c output:
c=========
WRITE(99,30)
30 FORMAT(//2X,'GA VARIABLES:'/30('-')/)
WRITE(99,'(A7,I5)')'iseed1=',ISEED1
WRITE(99,'(A7,I5)')'iseed2=',ISEED2
WRITE(99,'(A3,I4)')'ns=',NS
WRITE(99,'(A3,I3)')'np=',NP
WRITE(99,'(A3,F15.6)')'pmj (jump)=',PMJ
WRITE(99,'(A3,F15.6)')'pmc (creep)=',PMC
WRITE(99,'(A3,F15.6)')'pc=',PC
WRITE(99,'(A3,F15.6)')'pr=',PR
WRITE(99,'(A3,F15.6)')'pt=',PT
WRITE(99,'(A10,F15.6)')'criterion=',CRITERION
WRITE(99,'(A12,I3)')'lastcriterg=',LASTCRITERG
WRITE(99,'(A5,I3)')'ming=',MING
WRITE(99,'(A6,I4/)')'lastg=',LASTG
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IF (SELECT.EQ.'R')  WRITE(99,'(A14)')'rank selection'
IF (SELECT.EQ.'T')  WRITE(99,'(A20)')'tournament selection'
IF (MUT.EQ.'J')     WRITE(99,'(A13)')'jump mutation'
IF (MUT.EQ.'JC')    WRITE(99,'(A21)')'jump + creep mutation'
IF (KILLTWIN.EQ.'Y')WRITE(99,'(A8)')'killtwin'
IF (ELIT.EQ.'SS')   WRITE(99,'(A20)')'steady state elitism'

WRITE(99,40)
40 FORMAT(//2X,'OF VARIABLES:'/30('-')/)
DO I=1,NP
WRITE(99,'(2(A7,I2,A3,E14.3,1X),A9,A3)')
'parmin(',I,')=',PARMIN(I),
'parmax(',I,')=',PARMAX(I),
'Factadim=',factadim(I)
ENDDO
IF (KTIMEINHI.EQ.1) THEN
WRITE(99,'(/,A31)')'Find the tinhi model parameters'
WRITE(99,'(A12,A14)')'WHICHTIMODEL=',WHICHTIMODEL

ELSE
WRITE(99,'(/,A40)')'Find the kinetic model parameters using:'
IF (KRK1.EQ.1) THEN
WRITE(99,'(A30)')'COMPLETE KAMAL & SOUROUR
MODEL'
ELSE
WRITE(99,'(A40)')'SIMPLIFIED KAMAL & SOUROUR
MODEL w/ K1=0'
ENDIF
WRITE(99,'(A12,A14)')'WHICHMETHOD=',WHICHMETHOD
ENDIF

WRITE (99,'(/A8,E10.2)')'DELTAB=',DELTAB
WRITE (99,'(/A6,I2)')'NEXP=',NEXP

IF (KCONT.EQ.0) THEN
WRITE(99,'(/A18)')'PAS DE CONTRAINTES'
ELSE
IF (KCONT.EQ.1) WRITE(99,'(/A26)')'CONTRAINTES 0/1
appliquées'
IF (KCONT.EQ.2) WRITE(99,'(/A26)')'CONTRAINTES 1/2
appliquées'
ENDIF

IF (KYSIM.EQ.1) THEN
WRITE(99,50)
50 FORMAT(/'Arrays(lastm) simulated: Yarr'//)  !ARRAYS
SIMULATED!
ENDIF

WRITE(99,*)'---------------------------------------------------'

RETURN
c-----------------------------------------------------------------------------

ENTRY MODELETA

c run to determine the parameters of the kinetic model
IF (KTIMEINHI.EQ.0) THEN   

! find ETA using the method defined by WHICHMETHOD
IF (WHICHMETHOD.EQ.'DALPHAFCTALPHA') THEN
IF (KALPHA.EQ.0) THEN
CALL DALPHAFCTALPHA(DB,KRK1,PASDT1,TIMEI,
ALPHAI,DALPHAI,TI,ALPHA,T)
ELSE
CALL
ALPHARK2(KALPHA,DB,KRK1,RK1I,PASDT1,TIMEI,
ALPHAI,TI,T,ALPHA)
IF (ETA.GT.1.) RETURN
CALL DALPHAFCTALPHA(DB,KRK1,PASDT1,
TIMEI,ALPHAI,DALPHAI,TI,ALPHA,T)
ENDIF

ELSE
IF (WHICHMETHOD.EQ.'ALPHARK2') THEN
CALL ALPHARK2(KALPHA,DB,KRK1,RK1I,ASDT1,TIMEI,

ALPHAI,TI,T,ALPHA)
ELSE
CALL
ALPHACN(NTCMAX,KRK1,RK1I,PASDT1,TIMEI,ALPHAI,
TI,T)
ENDIF
ENDIF

c run to determine the parameters of the inhibition time model
ELSE
IF (WHICHTIMODEL.EQ.'TIISOTHERME') THEN
CALL TIISOTHERME(TI)
ELSE
CALL TIREFNI(NDATA,PASDT1,T,V)
ENDIF
ENDIF

RETURN
c-----------------------------------------------------------------------------

ENTRY MODELXI

IF (KTIMEINHI.EQ.1) STOP 'Particular set of genes analyzed'

IF (KXPRINT.EQ.1) WRITE(IUXI,'(/,A5,I2,/)')'JEXP=',JEXP

c find NONDIMENSIONAL XI
IF (WHICHMETHOD.EQ.'ALPHARK2') THEN
ITERETA=0
60 CALL
ALPHARK2(KALPHA,DB,KRK1,RK1I,PASDT1,TIMEI,
ALPHAI,TI,T,ALPHA)
IF (ITERETA.NE.0) ETA1(ITERETA)=ETA
ITERETA=ITERETA+1
IF (ITERETA.LE.(LASTETA(JEXP)-1)) GOTO 60

DO J=1,NPEST
DB(J)=DELTAB
ITERETA=0
70 CALL ALPHARK2(KALPHA,DB,KRK1,RK1I,PASDT1,
TIMEI,ALPHAI,TI,T,ALPHA)
IF (ITERETA.NE.0) THEN
ETA2(ITERETA)=ETA
XI(ITERETA,J)=(ETA2(ITERETA)-ETA1(ITERETA))
/(PAR(J)*DELTAB)
ENDIF
ITERETA=ITERETA+1
IF (ITERETA.LE.(LASTETA(JEXP)-1)) GOTO 70
DB(J)=0.D0
ENDDO
ELSE

IF (KALPHA.EQ.0) THEN
ITERETA=1
80 CALL XDALPHAFCTALPHA(KRK1,ALPHA,T)
ITERETA=ITERETA+1
IF (ITERETA.LE.(LASTETA(JEXP)-1)) GOTO 80
ELSE

ITERETA=0
90 CALL
ALPHARK2(KALPHA,DB,KRK1,RK1I,PASDT1,TIMEI,
ALPHAI,TI,T,ALPHA)
IF (ETA.GT.1.) RETURN
CALL DALPHAFCTALPHA(DB,KRK1,PASDT1,TIMEI,
ALPHAI,DALPHAI,TI,ALPHA,T)
IF (ITERETA.NE.0) ETA1(ITERETA)=ETA
ITERETA=ITERETA+1
IF (ITERETA.LE.(LASTETA(JEXP)-1)) GOTO 90

DO J=1,NPEST
DB(J)=DELTAB
ITERETA=0
100 CALL ALPHARK2(KALPHA,DB,KRK1,RK1I,PASDT1,
TIMEI,ALPHAI,TI,T,ALPHA)
IF (ETA.GT.1.) RETURN
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CALL DALPHAFCTALPHA(DB,KRK1,PASDT1,TIMEI,
ALPHAI,DALPHAI,TI,ALPHA,T)
IF (ITERETA.NE.0) THEN
ETA2(ITERETA)=ETA
XI(ITERETA,J)=(ETA2(ITERETA)-ETA1(ITERETA))
/(PAR(J)*DELTAB)
ENDIF
ITERETA=ITERETA+1
IF (ITERETA.LE.(LASTETA(JEXP)-1)) GOTO 100
DB(J)=0.D0
ENDDO
ENDIF
ENDIF

c if KXPRINT=1, print nondimensional sensitivity coefficients in
file
IF (KXPRINT.EQ.1) THEN
ITERETA=1
TIME=TIMEI(JEXP)+PASDT1(JEXP)
110 IF (WHICHMETHOD.EQ.'ALPHARK2') THEN
WRITE(IUXI,'(F11.4,6(3X,E10.4))')TIME,
(XI(ITERETA,J)*PAR(J),J=1,NPEST)
ELSE
WRITE(IUXI,'(F11.4,6(3X,E10.4))')TIME,
(XI(ITERETA,J)*PAR(J)/DALPHAMAX(JEXP),J=1,NPEST)
ENDIF
ITERETA=ITERETA+1
TIME=TIME+PASDT(JEXP)
IF (ITERETA.LE.(LASTETA(JEXP)-1)) GOTO 110
ENDIF

DO I=1,NPEST
XI(LASTETA(JEXP),I)=XI(LASTETA(JEXP)-1,I)
ENDDO

RETURN
c-----------------------------------------------------------------------------

ENTRY CHECKCONT(N,ARR)

c check that the children generation satisfy the constraints
inherent to the model (subroutine MODELETA).
c this procedure can also be used to force the children to stay
within the ranges defined

DO 120 I=1,N
DO 120 J=1,NP
IF (ARR(I,J).LT.0.D0) THEN
IF (KCONT.EQ.1) ARR(I,J)=0.D0
IF (KCONT.EQ.2) ARR(I,J)=0.5D0
NCONTMIN=NCONTMIN+1
ENDIF
IF (ARR(I,J).GT.1.D0) THEN
IF (KCONT.EQ.1) ARR(I,J)=1.D0
IF (KCONT.EQ.2) ARR(I,J)=0.5D0
NCONTMAX=NCONTMAX+1
ENDIF
120 CONTINUE

RETURN
END
c***************************************************
c include main program et problem specific subroutines
INCLUDE 'gamain.for'
INCLUDE 'dalphafctalpha.for'
INCLUDE 'alphark2.for'
INCLUDE 'alphaCN.for'
INCLUDE 'tirefni.for'
INCLUDE 'xdalphafctalpha.for'
c***************************************************

SUBROUTINE ALPHARK2(KALPHA,DB,KRK1,RK1I,
PASDT1,TIMEI,ALPHAI,TI,T,ALPHA)

c HP77 or PC -

c***************************************************
INCLUDE 'gacommon_main.for'
c***************************************************
DIMENSION PASDT1(NEXPMAX),TI(NEXPMAX),
TIMEI(NEXPMAX),ALPHAI(NEXPMAX),
T(NEXPMAX,LASTETAMAX),DB(NPMAX),
ALPHA(NEXPMAX,LASTETAMAX)
C----------------------------------------------------------------------------

RCST=8.31D0
RK1=0.D0      !takes a value if KRK1=1
RM=PAR(3)*(1.D0+DB(3))
RN=PAR(4)*(1.D0+DB(4))

IF (ITERETA.EQ.0) THEN
TEMP=TI(JEXP)+273.15D0
ETA=ALPHAI(JEXP)
IF (KRK1.EQ.0.AND.ETA.EQ.0.) ETA=RK1I
ELSE
IF (KALPHA.EQ.1) THEN      !when alphark2 used to reconstruct
IF (ITERETA.EQ.1) THEN  !alpha before computing dalphafctalpha
ETA=ALPHAI(JEXP)
IF (KRK1.EQ.0.AND.ETA.EQ.0.) ETA=RK1I
ELSE
ETA=ALPHA(JEXP,ITERETA-1)
ENDIF
ENDIF
IF (KRK1.EQ.1)
RK1=PAR(5)*(1.D0+DB(5))*EXP(-
PAR(6)*(1.D0+DB(6))/(RCST*TEMP))
RK2=PAR(1)*(1.D0+DB(1))*EXP(-
PAR(2)*(1.D0+DB(2))/(RCST*TEMP))

c apply penalty
IF ((1.D0-ETA).LT.0.D0) THEN
!stop the calculation for this chromosome and assign it a BIG S
ETA=DSQRT(BIG)
ITERETA=LASTETA(JEXP)
JEXP=NEXP
GOTO 50
ENDIF

IF (ITERETA.EQ.1) THEN
R1=PASDT1(JEXP)*((RK1+RK2*ETA**RM)*(1.D0-
ETA)**RN)
ELSE
R1=PASDT(JEXP)*((RK1+RK2*ETA**RM)*(1.D0-
ETA)**RN)
ENDIF

c apply penalty
IF ((1.D0-(ETA+R1/2.D0)).LT.0.D0) THEN
!stop the calculation for this chromosome and assign it a BIG S
ETA=DSQRT(BIG)
ITERETA=LASTETA(JEXP)
JEXP=NEXP
GOTO 50
ENDIF

IF (ITERETA.EQ.1) THEN
R2=PASDT1(JEXP)*((RK1+RK2*(ETA+R1/2.D0)**RM)*
(1.D0-(ETA+R1/2.D0))**RN)
ELSE
R2=PASDT(JEXP)*((RK1+RK2*(ETA+R1/2.D0)**RM)*
 (1.D0-(ETA+R1/2.D0))**RN)
ENDIF

ETA=ETA+R2
TEMP=T(JEXP,ITERETA)+273.15D0
ENDIF
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IF (KALPHA.EQ.1) THEN
IF (ITERETA.NE.0) ALPHA(JEXP,ITERETA)=ETA
ELSE

IF (KPAR.EQ.1.AND.KSENS.EQ.0) THEN
IF (ITERETA.EQ.0) THEN
TIME=TIMEI(JEXP)
ELSE
IF (ITERETA.EQ.1) THEN
TIME=TIME+PASDT1(JEXP)
ELSE
TIME=TIME+PASDT(JEXP)
ENDIF
ENDIF
c set title (@ ITERT=0) and data (@ each ITERT) to print in iunit
DO 40 IUNIT=IU1,IU2
IF (ITERETA.EQ.0) THEN

     WRITE(IUNIT,20)
20 FORMAT(2X,'JEXP',1X,'ITERETA',6X,'TIME',
13X,'ETA',15X,'YARR',16X,'RES',/)
WRITE(IUNIT,30)JEXP,ITERETA,TIME,ETA,
ALPHAI(JEXP),ETA-ALPHAI(JEXP)
ELSE
WRITE(IUNIT,30)JEXP,ITERETA,TIME,ETA,
YARR(JEXP,ITERETA),ETA-YARR(JEXP,ITERETA)
30 FORMAT(2X,I2,2X,I4,2X,1PE13.6,2X,1PE16.9,
2X,1PE16.9,2X,1PE16.9)
ENDIF
40 CONTINUE
ENDIF
ENDIF

50 RETURN
END

SUBROUTINE ALPHACN(NTCMAX,KRK1,RK1I,PASDT1,
TIMEI,ALPHAI,TI,T)

c HP77 or PC -

c***************************************************
INCLUDE 'gacommon_main.for'
c***************************************************
DIMENSION PASDT1(NEXPMAX),TI(NEXPMAX),
TIMEI(NEXPMAX),ALPHAI(NEXPMAX),
T(NEXPMAX,LASTETAMAX)
C----------------------------------------------------------------------------

RCST=8.31D0

IF (ITERETA.EQ.0) THEN
TIME=TIMEI(JEXP)
ETA=ALPHAI(JEXP)
Tkp1=TI(JEXP)
ELSE
IF (ITERETA.EQ.1) THEN
RDT=PASDT1(JEXP)
ELSE
RDT=PASDT(JEXP)
ENDIF
TIME=TIME+RDT
Tk=Tkp1
Tkp1=T(JEXP,ITERETA)
IF (KRK1.EQ.1) THEN
RK1k=PAR(5)*EXP(-PAR(6)/(RCST*(Tk+273.15D0)))
RK1kp1=PAR(5)*EXP(-PAR(6)/(RCST*(Tkp1+273.15D0)))
ELSE
RK1k=RK1I
RK1kp1=RK1I
ENDIF
RK2k=PAR(1)*EXP(-PAR(2)/(RCST*(Tk+273.15D0)))
RK2kp1=PAR(1)*EXP(-PAR(2)/(RCST*(Tkp1+273.15D0)))
RM=PAR(3)
RN=PAR(4)
ALPHAk=ETA
NTC=1

10 ALPHAkp1=ETA
c apply penalty : stop the calculation for a bad chromosome and
assign it a BIG S
IF ((1.D0-ALPHAkp1).LT.0.D0) THEN
ETA=DSQRT(BIG)
ITERETA=LASTETA(JEXP)
JEXP=NEXP
GOTO 50
ENDIF
ETA=ALPHAk+RDT/2.D0*
(((RK1k+RK2k*ALPHAk**RM)*(1.D0-ALPHAk)**RN)+
((RK1kp1+RK2kp1*ALPHAkp1**RM)*(1.D0-ALPHAkp1)**RN))
IF ((DABS(ETA-ALPHAkp1)/(ETA+10.D0**(-10.))).GT.
CRITERION) THEN
NTC=NTC+1
IF (NTC.GT.NTCMAX) THEN   !apply penalty
ETA=DSQRT(BIG/2.D0)
ITERETA=LASTETA(JEXP)
JEXP=NEXP
GOTO 50
ENDIF
GOTO 10
ENDIF
ENDIF

IF (KPAR.EQ.1) THEN
c set title (@ ITERT=0) and data (@ each ITERT) to print in iunit
DO 40 IUNIT=IU1,IU2
IF (ITERETA.EQ.0) THEN
WRITE(IUNIT,20)
20 FORMAT(2X,'JEXP',1X,'ITERETA',6X,'NTC',6X,
'TIME',13X,'ETA',15X,'YARR',16X,'RES',/)
WRITE(IUNIT,30)JEXP,ITERETA,NTC,TIME,ETA,ALPHAI(
JEXP),
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ETA-ALPHAI(JEXP)
ELSE
WRITE(IUNIT,30)JEXP,ITERETA,NTC,TIME,ETA,
YARR(JEXP,ITERETA),ETA-YARR(JEXP,ITERETA)
30 FORMAT(2X,I2,2X,I4,1X,I2,1X,1PE13.6,1X,1PE16.9,
1X,1PE16.9,1X,1PE16.9)
ENDIF
40 CONTINUE
ENDIF

50 RETURN
END

SUBROUTINE DALPHAFCTALPHA(DB,KRK1,PASDT1,
TIMEI,ALPHAI,DALPHAI,TI,ALPHA,T)

c HP77 or PC -

c***************************************************
INCLUDE 'gacommon_main.for'
c***************************************************
DIMENSION PASDT1(NEXPMAX),TIMEI(NEXPMAX),
TI(NEXPMAX),ALPHAI(NEXPMAX),
DALPHAI(NEXPMAX),DB(NPMAX),
T(NEXPMAX,LASTETAMAX),
ALPHA(NEXPMAX,LASTETAMAX)
C----------------------------------------------------------------------------

RCST=8.31D0
RK1=0.D0        !takes a value if KRK1=1
RM=PAR(3)*(1.D0+DB(3))
RN=PAR(4)*(1.D0+DB(4))

IF (ITERETA.EQ.0) THEN
IF (KRK1.EQ.1) RK1=PAR(5)*(1.D0+DB(5))*
EXP(-PAR(6)*(1.D0+DB(6))/(RCST*(TI(JEXP)+273.15D0)))
RK2=PAR(1)*(1.D0+DB(1))*
EXP(-PAR(2)*(1.D0+DB(2))/(RCST*(TI(JEXP)+273.15D0)))
ETA=(RK1+RK2*ALPHAI(JEXP)**RM)
*(1-ALPHAI(JEXP))**RN
ELSE
IF (KRK1.EQ.1) RK1=PAR(5)*(1.D0+DB(5))*
EXP(-PAR(6)*(1.D0+DB(6))/(RCST*(T(JEXP,ITERETA)
+273.15D0)))
RK2=PAR(1)*(1.D0+DB(1))*
EXP(-PAR(2)*(1.D0+DB(2))/(RCST*(T(JEXP,ITERETA)
+273.15D0)))
ETA=(RK1+RK2*ALPHA(JEXP,ITERETA)**RM)
*(1-ALPHA(JEXP,ITERETA))**RN
ENDIF

IF (KPAR.EQ.1) THEN
IF (ITERETA.EQ.0) THEN
TIME=TIMEI(JEXP)
ELSE
IF (ITERETA.EQ.1) THEN
TIME=TIME+PASDT1(JEXP)
ELSE
TIME=TIME+PASDT(JEXP)
ENDIF
ENDIF

c set title (@ ITERT=0) and data (@ each ITERT) to print in
iunit
DO 40 IUNIT=IU1,IU2
IF (ITERETA.EQ.0) THEN
WRITE(IUNIT,20)
20 FORMAT(2X,'JEXP',1X,'ITERETA',5X,'TIME',9X,
'ETA',10X,'YARR',12X,'RES',10X,'ALPHA'/)
WRITE(IUNIT,30)JEXP,ITERETA,TIME,ETA,DALPHAI(JEXP),
ETA-DALPHAI(JEXP),ALPHAI(JEXP)
ELSE
WRITE(IUNIT,30)JEXP,ITERETA,TIME,ETA,YARR(JEXP,I
TERETA),ETA-YARR(JEXP,ITERETA),
ALPHA(JEXP,ITERETA)
30 FORMAT(2X,I2,2X,I4,3X,1PE12.5,3X,1PE13.6,
3X,1PE13.6,3X,1PE12.5,3X,1PE12.5)
ENDIF
40 CONTINUE
ENDIF

RETURN
END
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SUBROUTINE XDALPHAFCTALPHA(KRK1,ALPHA,T)

c HP77 or PC -

c***************************************************
INCLUDE 'gacommon_main.for'
c***************************************************
DIMENSION T(NEXPMAX,LASTETAMAX),
ALPHA(NEXPMAX,LASTETAMAX)
C----------------------------------------------------------------------------

RCST=8.31D0
A2=PAR(1)
E2=PAR(2)
RM=PAR(3)
RN=PAR(4)
IF (KRK1.EQ.1) THEN
A1=PAR(5)
E1=PAR(6)
ENDIF

RALPHA=ALPHA(JEXP,ITERETA)
TEMP=T(JEXP,ITERETA)+273.15D0
RK2=A2*EXP(-E2/(RCST*TEMP))

IF (KRK1.EQ.1) THEN
RK1=A1*EXP(-E1/(RCST*TEMP))
XI(ITERETA,5)=EXP(-E1/(RCST*TEMP))*(1.D0-
RALPHA)**RN !XA1
XI(ITERETA,6)=-RK1/(RCST*TEMP)
*(1.D0-RALPHA)**RN !XE1
ELSE
RK1=0.D0
ENDIF

XI(ITERETA,1)=EXP(-E2/(RCST*TEMP))*RALPHA**RM
*(1.D0-RALPHA)**RN !XA2
XI(ITERETA,2)=-RK2/(RCST*TEMP)*RALPHA**RM
*(1.D0-RALPHA)**RN !XE2
XI(ITERETA,3)=RK2*RALPHA**RM
*(1.D0-RALPHA)**RN*DLOG(RALPHA) !Xm
XI(ITERETA,4)=(RK1+RK2*RALPHA**RM)
*(1.D0-RALPHA)**RN* DLOG(1.D0-RALPHA) !Xn

RETURN
END

SUBROUTINE TIREFNI(NDATA,PASDT1,T,V)

c HP77 or PC -

c***************************************************
INCLUDE 'gacommon_main.for'
c***************************************************
DIMENSION NDATA(NEXPMAX),PASDT1(NEXPMAX),
T(NEXPMAX,LASTETAMAX),V(NEXPMAX),
ADDSUM(NEXPMAX),SUMINT(NEXPMAX)
C----------------------------------------------------------------------------

IF (ITERETA.EQ.0.OR.ITERETA.GT.LASTETA(JEXP))
GOTO 100
TREF=PAR(1)
B=PAR(2)
PASTIME=0.01D0

IF (JEXP.EQ.1) SUMSUMINT=0.D0
SUMINT(JEXP)=0.D0
DO 10 IDATA=1,NDATA(JEXP)
TEMP=(T(JEXP,IDATA)+T(JEXP,IDATA+1))/2.D0
FACTB=(TREF+273.15D0)/(TEMP+273.15D0)-1.D0
IF (IDATA.NE.NDATA(JEXP)) THEN
ADDSUM(JEXP)=PASDT(JEXP)*EXP(-B*FACTB)
ELSE
ADDSUM(JEXP)=PASDT1(JEXP)*EXP(-B*FACTB)
ENDIF
SUMINT(JEXP)=SUMINT(JEXP)+ADDSUM(JEXP)
10 CONTINUE
SUMSUMINT=SUMSUMINT+SUMINT(JEXP)

IF (JEXP.NE.NEXP) THEN
ETA=0.D0
ELSE
IF (KPAR.EQ.1) THEN
OPEN(UNIT=98,FILE='Ctirefni.ind')
WRITE(98,15)
15 FORMAT(2X,'TREF',4X,'B',8X,'SUMINT(JEXP=1,NEXP)',
4X,'SUMSUMINT/NEXP',/)
WRITE(98,20)TREF,B,(SUMINT(JEXP),JEXP=1,NEXP),SUM
SUMINT/NEXP
20 FORMAT(8(1X,1F11.5),/)
ENDIF

DO 60 J=1,NEXP
IF (KPAR.EQ.1) WRITE(98,30)
30 FORMAT(2X,'TIME',4X,'SUMI',4X,'TIMEREF',
4X,'TEMP',/)

TEMP=T(J,1)
TIME=0.D0
SUMI=0.D0
40 IF (TIME.EQ.0.D0) THEN
TEMP=TEMP+V(J)*PASTIME/2.D0
ELSE
TEMP=TEMP+V(J)*PASTIME
ENDIF
TIME=TIME+PASTIME
FACTB=(TREF+273.15D0)/(TEMP+273.15D0)-1.D0
ADDS=PASTIME*EXP(-B*FACTB)
SUMI=SUMI+ADDS
IF (SUMI.GT.SUMSUMINT/NEXP) THEN
ETA=ETA+ABS(TIME-TIMEEXP(J,NDATA(J)+1))
IF (KPAR.EQ.1) THEN
WRITE(98,'(A4,F10.3)')'RES=',
ABS(TIME-TIMEEXP(J,NDATA(J)+1))
PAUSE
ENDIF
GOTO 60
ENDIF

IF (KPAR.EQ.1) THEN
WRITE(98,50)TIME,SUMI,SUMSUMINT/NEXP,
(TEMP+V(J)*PASTIME/2.D0)
WRITE(*,50)TIME,SUMI,SUMSUMINT/NEXP,
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(TEMP+V(J)*PASTIME/2.D0)
50 FORMAT(4(3X,1F11.4))
ENDIF

GOTO 40
60 CONTINUE

IF (KPAR.EQ.1) CLOSE(98)
ENDIF

100 RETURN
END
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