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Ancestral Genome Reconstruction in Bacteria

Kuan Yang

ABSTRACT

The rapid accumulation of numerous sequenced genbaseprovided a golden
opportunity for ancestral state reconstruction isicespecially in the whole genome
reconstruction area. However, most ancestral gemeomstruction methods developed
so far only focus on gene or replicon sequencasadsof whole genomes. They rely
largely on either detailed modeling of evolutionakents or edit distance computation,
both of which can be computationally prohibitive farge data sets. Hence, most of these
methods can only be applied to a small numberattifes and species. In this
dissertation, we describe the design, implementatiad evaluation of an ancestral
genome reconstruction system (REGEN) for bact#ria.the first bacterial genome
reconstruction tool that focuses on ancestral séatenstruction at the genome scale
instead of the gene scale. It not only reconstractestral gene content and contiguous
gene runs using either a maximum parsimony or ammanx likelihood criterion but also
replicon structures of each ancestor. Based orettenstructed genomes, it can infer all
major events at both the gene scale, such asimsedeletion, and translocation, and the
replicon scale, such as replicon gain, loss, angj@&EGEN finishes by producing a
visual representation of the entire evolutionastdry of all genomes in the study. With a
model-free reconstruction method at its core, ttraputational requirement for ancestral
genome reconstruction is reduced sufficiently Far tool to be applied to large data sets

with dozens of genomes and thousands of featuceachieve as accurate a



reconstruction as possible, we also develop a hogools gene family prediction tool for
preprocessing. Furthermore, we build our in-housédyote Genome Evolution
simulator (PEGsim) for evaluation purposes. The dlogous gene family prediction
refinement module can refine homologous gene faprigictions generated by third
partyde novo prediction programs by combining phylogeny andilaene synteny. We
show that such refinement can be accomplishedddo 80% of homologous gene

family predictions with ambiguity (mixed familiesfhe genome evolution simulator,
PEGsim, is the first random events based high leaeleria genome evolution simulator
with models for all common evolutionary eventsha gene, replicon, and genome scales.
The concepts of conserved gene runs and horizgeted transfer (HGT) are also built in.
We show the validation of PEGsim itself and theleaton of the last reconstruction
component with simulated data produced by it. REGEBRconstruction of GENomes, is
an ancestral genome reconstruction tool basedeocahcept of neighboring gene pairs
(NGPs). Although it does not cover the reconstarctf actual nucleotide sequences, it

is capable of reconstructing gene content, contiguenes runs, and replicon structure

of each ancestor using either a maximum parsimomymaximum likelihood criterion.
Based on the reconstructed genomes, it can inferagbr events at both the gene scale,
such as insertion, deletion, and translocation,thadeplicon scale, such as replicon gain,
loss, and merge. REGEN finishes by producing aaVisepresentation of the entire

evolutionary history of all genomes in the study.
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Chapter 1

Introduction and Background

Ancestral genome reconstruction can be underste@dphiylogenetic study of species of
interest with more details than what is providedaldyaditional phylogenetic tree. It may
include information about ancestor species su¢hesgene content, the order of these
genes in the genome, the replicon architecturefl@ducleotide sequence itself. Such
information, when reliable, can help us better ustdad the evolutionary history of a set
of organisms and thereby shed light on the gentarses of phenotypes. Ancestral

genome reconstruction is the topic of this disserta

Boussalet al. [1] reconstructed ancestral gene sets for a numfeproteobacteria and
guantified the flux of genes along the branchehefspecies tree. They inferred that the
common ancestor of theproteobacteria was a free-living, aerobic, andilmbiacterium
with pili and surface proteins for host cell andieonmental interactions. However, the
authors inferred only the gene content of ancespeties. Slatest al. [2] inferred more
detailed evolutionary histories for some memberheRhizobiales, Vibrionales, and
Burkholderiales. Their scenario for thBhizobiales, based on extensive comparative
genomic analysis, hypothesizes that the last comsnoastral genome of members of
this order had one chromosome and one plasmid. Briznancestor, several paths
followed, some in the direction of enlarging thigastral plasmid until it became a
second chromosom@grobacterium tumefaciens C58 andAgrobacterium vitis $4), and
some in the direction of incorporating the plasinic the chromosomeM. loti, B.
japonicum), with other intermediary cases. However, Slatex & reconstruction was

1



qualitative and did not provide a detailed recargion of gene content and genomic

order. Moreover, their approach was not automated.

Automated methods for ancestral state reconstrudaibinto two main categories,
phylogeny based methods and genome rearrangemsed-beethods. Two of the best
known phylogeny-based methods are the Sankoff ighgoi3] and the Fitch algorithm
[4]. Although both algorithms are designed for asti nucleotide sequence inference,
they can be adapted for gene order inference Wghtsnodifications. For example, an
ancestral gene reconstruction method based onbwigly gene pairs (NGPs) has been
proposed [5]. An NGP is a pair of genes physicatljacent to each other on a replicon.
Their method [5] extracts NGPs from genomes ofreddaecies. The method then
determines the occurrence of these NGPs in thesaatgenomes and outputs a list of
conserved blocks assembled from the NGP contemgfoi ancestor. The fundamental
assumption of the method is that if adjacent hogals genetic loci are observed in both
child species, then it is highly likely that thengalso adjacent in the parent species.
NGP-based methods can reconstruct ancestral geneithethousands of genetic loci

and have no limitation on allowed evolutionary egen

Compared to phylogeny based methods, genome-regament-based methods usually
start by simplifying genomes into strings of synth@ach of which represents a gene.
Homologous genes are represented with the sameosyNd duplications are allowed in
most of these methods and different heuristicsiaesl to ensure it. This group of
methods is extremely computationally intensiveseg®nstructing a phylogeny from gene

order data is NP-hard [6-8]. Although various hsticimethods have been developed [9],



they are still only applicable to small to mediuizesl data sets [5]. Furthermore, it has
been suggested that this category of methods riegbsr study before they can yield

reliable results in ancestral genome reconstru¢iion11].

The rapid accumulation of numerous sequenced genderaands detailed ancestral
genome reconstruction methods that not only tateeancount all kinds of information
but also are scalable to large genomes. Here wael@®a computational system named
REGEN (REconstruction of GENomes) for ancestrabges reconstruction. REGEN
can cover most gene, replicon, and genome scalésg\geich as gene content
reconstruction, contiguous gene run reconstructiad, replicon architecture

reconstruction. However, it does not support nuaessequence reconstruction.

The performance of genome reconstruction at ttakeselies heavily on the amount of
available information, which consists of the genenmethe extant species represented as

orthologs, a group of homologs.

Orthologs are related genes resulting from a speniavent in a single ancestral gene in
the last common ancestor (LCA), while paralogsganees that result from a duplication
event [12]. The orthology concept is one of theneostones of genomics study, including
gene function prediction [13]. Accurate orthologedgiction is essential to any study in
the comparative genomics field, including anceggemdome reconstruction, gene
function annotation, gene function prediction byoozurrence of genes [14] ,and even
mutation effect prediction [15]. Much work has bekme in this field, and many
algorithms/software tools have been developeddntity orthologs [13, 16-24]. These

methods have been categorized into three growgeshtased methods, graph-based



methods and hybrid methods; a detailed review eafolnd in [25]. OrthoMCL [22] and
InParanoid [17] are two of the most popular progdan ortholog identification and
OrthoMCL is used in our study. A performance congmar of these tools has been done,
but the results are inconsistent [26]. Despiterthepularity, neither of these two
methods uses information about local synteny duthegortholog prediction process.
Moreover, they both can output both orthologousegeand paralogous genes. When
such genes are present in a family, it means tbare@ unsure which ones are true
orthologs of the other genes in the family. Becaw®irate orthology prediction is a key
evolutionary technique for most comparative genamstadies [25] and only orthologs
can be used in our reconstruction, we decided derake the problem of refinement of

ortholog families using synteny information.

We have developed a systematic methodology togefitholog identification generated
by third partyde novo prediction programs. Our methodology targets tireethfamilies

to obtain more orthologous families. Although gsegeteny has already been used to
confirm orthology prediction in prokaryotes [27]famal methodology that combines
synteny and phylogeny to refine orthologs predrcisstill lacking. With an assumed
reliable tree, this refinement method has essénttambined the strength of graph-based
algorithms, phylogenetic information, and local &y in the ortholog identification
process. We show in Chapter 4 that our refinemathaus can successfully turn almost
80% of the mixed families produced by orthoMCL intvhologous families with p <

0.05.



Another important area involved in ancestral genoraeeonstruction is validation.
Simulated data are usually employed for this pugpthse to the nature of the study. To
this purpose, we developed a random events-baseklanyote genome evolution
simulator that we call Prokaryote Evolution@gnomics Simulator (PEGsim) [28]. It is
capable of simulating medium- to large-scale evohary events, an area in which good
simulators are lacking. Species-, replicon-, andegevel events, such as speciation,
replicon fission and fusion, replicon gain and |Jagplicon merge and split, gene gain
and loss, gene transposition and translocationge géwmplication and reversal, and
horizontal gene transfer are implemented in PEGSMAGSsIim also implements the
concept of conserved gene runs, which can be mappdte biological concept of

operon.

An important principle in the design of PEGsim imglicity and efficiency of use. The

program runs in linear time the total number of ggeim the entire group of species.
Running time can vary depending on parameter gsttifdowever, a simulation with one
starting chromosome of 3000 genes and a plasmid@d genes and resulting in 10-15
extant species with reasonable settings of otheanpeters finishes within minutes. To
our knowledge, existing evolution simulation totist are comparable to PEGsim are
dawg [29], evolsimulator [30], and GSIMULATOR [31lowever, they all lack models

for gene- and replicon-scale evolutionary evenEG&Im is the first simulator designed
to fill these gaps. It has probability-based modeisall general gene- and replicon-scale

events in prokaryotes. PEGsim is described in Ginépt



With both of the previous components developed, ame able to perform accurate
ancestral genome reconstruction with REGEN and igeomeasures of confidence in
regard to obtained results. Furthermore, we alsduated its performance by comparing

with previous studies.

There are a few things we can try to improve REGE&t of all, REGEN is built based
on NGPs, which are dimers of genes. A reasonalémsion is to increase the number of
genes to three so the reconstruction is carriedooutrimers. Second, general graph
algorithms are used in the gene run reconstrugirosess and take the majority of the
running time consumed by REGEN. More refined althoms designed with the
consideration of the nature of gene run graphs ldheeduce the running time

substantially.

Our work is the first to perform model-free NGP-basncestral genome reconstruction
in a fully automated fashion, while supporting bothximum parsimony and maximum
likelihood criteria. We apply REGEN to a groupRifizobiales species that vary
significantly in life styles (e.g., plant pathogeasimal pathogens, mutualists, and free-
living bacteria), genome architecture (e.g., sirgfi;pbmosome, pair of chromosomes,

with and without plasmids, and large and smallpids), and genome size.

In the remainder of the dissertation, we first defsome of the important concepts
involved in this work (Chapter 2). Then, we provalérmal definition of the targeted
problem (Chapter 3). Finally, we show the detallsdevelopment and application of
each component involved in the reconstruction udicig homology refinement (Chapter

4), PEGsim (Chapter 5), and REGEN (Chapter 6).



Chapter 2

Concepts and Definitions

Our model of a prokaryotic genome is that it camsaa main chromosonand zero or
more additional replicons. These other replicomslmaadditional chromosomes and/or
plasmids. It is worth pointing out that additiocromosomes in prokaryotes are the
exception and not the norm, at least in speciese/lgenomes have been sequenced.

Some important concepts used in this dissertatietisted below.

Soeciation: the splitting of lineages. One ancestor split® itwo child species. It can

happen at most once per generation for each species

Replicon: a self-replicating DNA unit in a genome, such afhi@dmosome or a plasmid.

Replicon merge: Two replicons are merged into a new replicoreither of the original
replicons is the main chromosome, then the newo@plremains the main chromosome,
otherwise a new name is created. It can happenoat once per generation for each

replicon.

Replicon split: A single replicon is split into two new replicoriEthe original replicon is
the main chromosome, then the larger of the two regMicons will be named the main

chromosome. It can happen at most once per gemeffati each replicon.

Replicon loss: A replicon is lost. Main chromosome cannot be.ltigakes place at most

once per generation for each replicon.



Replicon gain: A species gains a new replicon. It takes placa@gt once per generation

for each species.

Gene gain: A single gene or consecutive run of genes iseaghiit takes place at most

once per position per generation for each replafogvery species.

Gene loss: A single gene or consecutive run of genes is lbsakes place at most once

per position per generation for each replicon argspecies.

Gene reversal: A single gene or consecutive run of genes isreaek It takes place at

most once per position per generation for eacha@plof every species.

Gene duplication: A single gene or consecutive run of genes isidaf@d and inserted

into a random location on the same replicon.

Gene tranglocation: A single gene or consecutive run of genes issteared from one

replicon to another in the same species.

Gene transposition: A single gene or consecutive run of genes issteaned from one

position to another on the same replicon.

Horizontal gene transfer: A single gene or consecutive run of gene is feansd from

one species to another that is evolving at the damee

Homologous gene family: A group of structural and/or functional similarerges

descended from the same ancestor.



Orthologous gene family: A homologous gene family with only orthologousngs,

namely one gene in each species. Each orthologmesfgmily is assigned a unique ID.

Paralogous gene family: A homologous gene family with all genes comingnir one

single taxon.

Mixed gene family: A homologous gene family with orthologous genesmf some

species and paralogous genes from other species.

Core gene: A gene that occurs on the main chromosome dhalkpecies in a study.

Sngleton gene: A gene that does not have a homologous countarpany other

genome in the study and is represented by *’ enrconstruction.

Gene family alphabet Y’ : the set of all orthologous gene family IDs ptus

Gene run: A chain of genes located consecutively on a ceplirepresented by a finite

sequence over, from a genome without interruption by *.

Conserved blocks: A conserved gene run across a group of speciessetved blocks

will be affected by evolutionary events much maeely than other blocks.

Phylogenomic tree: a species tree built based on concatenated aljgroéein sequences

of thousands of genes appearing exactly once mealbmes of interest.

Neighbor Gene Pair (NGP): a pair of genes physically adjacent to eattter on a

replicon.



Chapter 3

Problem Statement

Given a group of complete genomes from closelytedldacterial species (usually
species in the same order, such as family, or gemgsa rooted species tree of these
genomes (which define their phylogenetic relatigps)) infer gene set, gene order, and

replicon architecture for each internal node inttee.

Note that nucleotide-scale evolutionary reconsiouacis not considered in this project.
Models for nucleotide evolution form their own raseh area and have been intensively

studied [32-35].

Input

1. Complete annotated genomes of a group of bactérinterest and of a certain
number of outgroup genomes. Only protein-codingegaare included. For each gene,
the following information is required: GeneBank ession number or ID, product,

strand, and genome coordinates.

2. Orthologous gene families across these genomks information can be
obtained by running an ortholog family computatmgram. In this work, we have

used for this purpose the program OrthoMCL [22].

3. Atrusted rooted phylogenetic tree of the irgpgcies.

10



Output

For each ancestral genome (internal node in thet ispecies tree):

1. A hypothesis about genome architecture (numbegpicons, type of replicons).
2. The overall set of genes.

3. Relative location of each gene to each otherstnaeshd information of each gene
when possible.

4. Replicon assignment for each gene when possible.

5. Annotation of the tree branches with genome-weidautionary events, including
reversal, translocation, replicon acquisition/lasglicon split, duplication, and

lateral gene transfer.

11



Chapter 4

Homology Prediction Refinement

Homology designates the relationship of entitieg #hare a common ancestor,
regardless to the possible evolutionary eventsléaato the current situation [36]. Genes
that share such a relationship are referred tma®logs. Homologs can be further
classsified into two groups, orthologs and paraldgg genes are said to be orthologs
when the evolutionary event that gave rise to thexs a speciation event. Two genes are
said to be paralogs when the evolutionary everitghee rise to them was a duplication

event.

OrthoMCL [22] and InParanoid [17] are two of theshpopular programs for ortholog
identification. Here we describe the developmerd sfstematic methodology to refine
the ortholog identification generated by such paogg. We also show the improvement
made by the refinement using a pilot reconstruatiora small group drhizobiales

species with and without homology refinement.

4.1  System and Methods

The refinement method assumes a reliable speeiesttr be provided as input. It also
assumes results fromda novo homologous gene family prediction program, such as

OrthoMCL.

12



We consider each genome to be a collection ofageps. In theRhizobiales order, most
fully sequenced genomes have more than one replégegn one chromosome and several

plasmids).

4.1.1 Genome preprocessing

Each replicon is represented by an array, with eacty element representing a gene
present in the replicon. When a gene belongs trtfwelogous family, the family ID is
used to represent the gene; when the gene doégloog to any family the symbol *' is
used. The process ends with a list of replicomtaining only orthologous gene family

IDs.

4.1.2 Homology refinement

The refinement consists of four main steps: bugdginofiles for the extant species,
profile comparison and merging, ortholog familyigement, and statistical confidence

assessment.

4.1.3 Profile building for extant species

The refinement is carried out in a family-by-fami&shion. For each member of the
family, we take 10 genes upstream and downstredorroa profile for this gene. The
gene order is ignored during profile building tmplify the profile merging process. For
each of these ten genes, the profile containstatien and replicon location information
with an initial weight. Currently, we only distingh whether a gene is on the main

chromosome or on a plasmid. Genes on differentptissare considered to be in the

13



same replicon location. We compensated for this bijaassigning lower weight when
two genes are both on plasmids instead of chromeso/species with two paralogous
genes in the same family will have two profilese gmofile for each gene, after this

process. A simple example is shown in Figure 4.1.

=+ () I+ o

!

— F341
Occurrence 21
F351{ + 0.5
|I> ~ F36 i >0
F374{ OnChromosome =21
OnPlasmid -0
— F384

Figure 4.1. The profile built for the genegl. It includes occurrence, strand, and
localization (either on a chromosome or plasmid)génes around gl. In this
particular example, the profile shows the statusfoie genes, F34, F35, F36, F37, and
F38. Occurrence is set to 1 to simply show F36’sweence. ‘+' is assigned 0.5
because the gene is on the plus strand. The gemeisuwon chromosome so

onChromosome is also set to 1. All values are défand can be customized.

4.1.4 Profile comparison and merging

Using the input species tree, we will compare ttediles and merge them when
appropriate. This process proceeds in a bottonasipidn, namely it starts from the most

recent ancestors of two leaves in the tree angh@s at the root of the tree. The level of

14



each ancestor (how many speciation events awaytfieraxtant species) is determined
by a simple traversal of the tree. From the louesl, for each ancestor in that level,
we identify its children and perform an all-by-edimparison for all the profiles
contained in both children. In each comparisonmaf profiles, we check the number of
shared orthologous genes, whether they are inatime ®rientation and located on the
same replicon or not. A comparison score for eaohlg pair is calculated based on
these three criteria and stored in a list. Theilerpiir that achieves the highest score will
be merged and removed from the list. This mergnoggss is repeated until the highest
remaining score drops to 0. Any unmerged profitesfchildren are directly assigned to
the ancestor as well. Each profile can only be ednce. If it is already merged, the
profile pair is simply ignored and removed. Thddwling pseudocode gives a better

view of the entire process.

Pseudocode

1. Determine levels (L)of thetree
2.foreachl ¢ L
3. do ANC €& ancestorsin |

4. for each a ¢ ANC

5. doidentify offspring A and B
6. Pa € profilesin A

7. Pg € profilesin B

8. for each je Pa

9. for each k e Pg

15



10.

11.

12.

13.

14.

15.

16.

17.

do compute score
sort the scores in descending order (S
for eachse S
if s# 0 and contributing profiles(ps) still available
dopn € mergethe ps
mark ps unavailable
Assignpnto a

Assign all remaining unmerged profilesto a

During the merging process, the scores for theesharthologous families are summed to

increase their weight in the profile. Orthologoamilies that do not have a match in the

other profile are also kept in the new profile,iwthe consideration that they may match

other profiles in future comparisons. A simple epéaris shown in Figure 4.2.
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— F34 F33
F35 Occurrence =21 2€<0ccurrence F35
+ =20.5 1€ +
(gi]— F36 - >0 0€ - F36 [ (92]
1 OnChromo =21 1< OnChromo J
F37 OnPlasmid 20 0€< OnPlasmid F39
— F38 @ -
—F33
F34
F35 Occurrence =3
+ 2>1.5

OnChromo =2
F37 OnPlasmid =20

F38

F39

Figure 4.2. Profile comparison and mergingFor simplicity only the comparison and
merging process for F36 are shown. The processis carried out for all matched
orthologous families, such as F35 in this case. In the merging process, corresponding
values are summed. For example, the Occurrence value for F36 in the profileof gl g2 is

the sum of occurrence values in the previous two profiles for g1 and g2.

4.1.5 Orthologous family assignment

When the comparison and merging process is finiglhdae root of the tree, the genes in
each of the profiles at the root are assignednevaorthologous gene family. Since gene

synteny alone is not a sufficient criterion for a@te orthology prediction, we respect the

17



original decision made by the previous softwardring to merge these new
orthologous families, as long as the merging prede®s not create paralogs. We show
an example to clarify this issue. Suppose thatlhomologous family identified by
OrthoMCL there are the following gen&g:andg, from specied\, gz andg, from
speciedB, and finallygs from specie€. Suppose further that our method determines that
01 andgs should be in an orthologous family;§ andg, andg, should be in another
orthologous family ), andgs is left out of both new families. In this case, wd try to
putgs back in either For . The priority for an orthologous gene family t@amporate
other genes increases with its size, namely theoeuwf members already in the family.
In the cases where several paralogs from the spattes can be added to the same
newly identified family, the one with the lowestvalue by BLASTP [37] with any
existing member of the family is added (all-aga@tBLASTP e-values are available as

inputs to orthoMCL).

4.1.6 Statistical confidence assessment

We used a randomization approach to assess theleonoé for each refined orthologous
gene family. To make the gene order as similah¢éoréal data set as possible, we only
randomized the order of genes on each repliconntingber of species and their replicon
configuration are not changed. The confidence ohdamily is reflected by summation

of all scores in the final profile at the root. Tpercentage distribution of the scores in the
real dataset and the one from the randomized dasasieown in Figure 4.3. The

randomization is run for 100 times and the averaggven as the result. Over 92% of the
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identified orthologous gene families are statistyceonfident at a p-value of 0.05. All

statistically insignificant families are removedrin further analysis.

Percentage
w
o

— Real
20
Random
10
0 —r—r®

1 11 21 31 41 51

Group Score

Figure 4.3. Distribution of group scores in real ad randomized dataset.

4.2 Results and Discussion

We applied our method to a collection of 10 Rhiatds speciesAgrobacterium
radiobacter K84, Agrobacterium tumefaciens str. C58, Agrobacterium vitis $4,
Bradyr hizobium japonicum USDA 110, Brucella suis 1330, Mesor hizobium sp. BNC1,
Mesor hizobium loti MAFF303099, Rhizobium etli CFN 42, Rhizobium leguminosarum

bv. viciae, Snorhizobium meliloti 1021, with Bradyrhizobium japonicum USDA 110 as
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the outgroup to the other nine Rhizobiales spe@esiome sequences were downloaded
from Genbank database release 176.0. OrthoMCL astused to identify homologous
families. The species tree that we used to testrmihodology was the one presented by
Slater et al. [2], which was obtained by a supetrimapproach [38]. This tree was

generated using 423 orthologous sequences.

In total, OrthoMCL returned 9,237 homologous fagsli6,939 orthologous families with
34,643 genes, 1,698 mixed families with 13,047 geaerd 600 single species paralog
families with 1,530 genes. Single species paradmgjlfes were not taken into
consideration for this study. The refinement metiuwhtified 1764 orthologous families

with p-value = 0.05. Detailed information is shoimrirable 4.1.

Table 4.1. Result of the refinement process and agkd information.

OrthoMCL Refinement Used for
reconstruction

C1 C2 I O
F|16,939 | 1,698 | 1,320| 1,764 8,703
G| 34,643| 13,047 11,320 9,150 41,354

*C1: orthologous gene family; C2: mixed homologous gene family; 1: mixed homologous
gene families that can be processed by the refinement method, some of the mixed families
cannot be processed; O: output from the refinement; F: number of gene families; G:

number of genes,

In Table 4.1, the OrthoMCL column specifies the ens of orthologous families and
mixed families identified by orthoMCL, as well deettotal number of genes included in

all these families. The refinement column shows haany of the mixed families could
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be processed by the refinement method and how nelidyorthologous families are
identified (the refinement column). The used-fazengstruction column shows the
merged orthologous gene families from both OrthoMfDHd the refinement, which

serves as input for the next step, genome recatistnu

As shown by Table 4.1, ~77% of all the mixed fansil{87% of all genes in these
families) can be refined by our method and resuteld 764 orthologous families (70%
of all genes in mixed families). It increased thenter of orthologous families and genes

used for reconstruction by ~25%, from 6939 to 8703.

This kind of improvement significantly helps theoastruction of ancestral conserved
syntenic blocks. We have successfully reconstrué88&dconserved blocks for the last
common ancestor of nirkéhizobiales species withBradyr hizobium japonicum USDA 110
as outgroup. This number drops to 393 when refordtblogous families are not used in
the reconstruction. More importantly, includingineid orthologous families increased
the size of the longest conserved blocks from 2f2géo 31 genes. The distribution of
lengths of conserved blocks with the minimum siz8 genes from both datasets is
shown in Figure 4.4. Conserved block reconstruotias carried out for all internal

nodes in the species tree, and we obtained cortkbloeks for all ancestral genomes.
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Figure 4.4. Distribution of blocks reconstructed fo the last common ancestorThe
red bars are from the reconstruction with refined orthologous families and the green bars

without refined orthologous families.

It is easy to see that the refinement not only fiedreconstruct more conserved blocks,
but also increases the length of the conservedksbldthe longest reconstructed
conserved blocks contains 31 genes with refindabtogous families, in constrast to 22
genes without refined orthologous families. Thisuteis at least comparable to the ones
reported in [5] for the eukaryof@rosophila, considering the difference in the number of
orthologous genes among the Rhizobiales here cenesicaind th®rosophila species

considered in [5]. This shows that it is possibl@hdertake genome reconstruction in
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prokaryotes, at least for groups of genomes tletkse enough, such as those from the

Rhizobiales that we have used.

4.3 Additional Remarks

We have formalized a systematic methodology to neefiortholog identification
predictions generated by third parg novo prediction programs by combining local
synteny and phylogeny. More than three quartersllothe mixed homologous gene
families can be processed by this method, and 9R#eonewly identified orthologous
gene families are statistically significant at agtue of 0.05. These numbers are expected

to grow when the method is applied to eukaryoticogees.

This is the first computational method that carteystically refine the result from other
de novo orthology identification programs with statisticalpport by combining local
synteny and phylogeny. It is also the first methwat can reconstruct conserved blocks
for ancestral genomes with fully resolved strarfdrimation in bacteria. However, there
are several important assumptions and simplifiaatimade by the program. First of all,
the entire reconstruction algorithm is a maximunmspaony based method, which has
proven to be less accurate as the branch lengtbases. The parsimony criterion
assumes that the presence of more events to expé&asame present-day situation is a
less likely occurrence than one that uses fewentewe explain the same situation. It
also assumes that after a gene duplication evengene that remains at the original
location will retain its original function and hents the functional ortholog of the family.

This might be true in most cases, but not in athein. A true functional ortholog among
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paralogs can only be determined by wet-lab experisn@nd/or gene expression data. On
the other hand, these very simplifications maks théthod possible and make the
reconstruction taking ~8500 ortholog families fraen species practical. For the
Rhizobiales genomes, the refinement took less thmmute and the reconstruction took

less than 10 minutes on a standard desktop computer

A version of this chapter was published as Yan&é&tubal JC: Homology prediction
refinement and reconstruction of gene content addraf ancestral bacterial genomes.
In: Proceedings of the 2010 ACM International Conference on Bioinformatics and

Computational Biology: 2010; Niagara Falls, New York, U.S.A (full pap39].
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Chapter 5

A Whole Genome Simulator of Prokaryote Genome Evohion

Here we present the development and performancieiagicn of PEGSim, a random
events-based genome evolution simulator. The goRE&Gsim is to simulate medium- to
large-scale evolutionary events, species-, replicamd gene-level events, such as
speciation, replicon fission and fusion, replicaingand loss, replicon merge and split,
gene gain and loss, gene transposition and traatgdo¢ gene duplication and reversal,
and horizontal gene transfer (see definitions eséhconcepts in Chapter 2). Nucleotide

sequence scale events, such as substitution, tanechaled.

Parameter setting has always been a challenge idetvelopment of simulation tools.
We derived some of the default parameter valu&EGsim from a recent extensive

survey of prokaryotic genome evolution [40].

5.1  System and Methods

The following subsections describe the featuredampnted in PEGsim and the

underlying model.

5.1.1 Defining the genome of the last common ances{LCA)

The genome of the LCA can have any number of chemmes and plasmids of any size.

Genes are represented by numbers and orientatiefr bihe distribution of genes on the



plus strand and the minus strand is customizabRa @f the genes are assigned to the

plus strand in this simulation.

5.1.2 The global simulation

Users can define the number of generations andabe rate of each evolutionary event.
The actual evolutionary rate will fluctuate fromeospecies to another. Each species can
have at most one species-scale event in a singlera@on, each replicon one replicon-
scale event and each position on a replicon one-geale event. The strength of
conservation for conserved blocks can also be migaa, with a default value set at 0.8,
meaning 80 percent of the gene level events tieasgpposed to happen at a conserved
position are rejected. Chromosomes and plasmidaaa different values for the
strength of conservation. End users can also dednilegh scale events shall occur in the
simulation. We found this feature very useful wiies study is focused on a specific

kind of event. All events are allowed to occur lefalilt.

The species that are evolving at any generatioalacerecorded. This list is used to
determine the source and target species for hdakzgene transfers, which can only

happen between species that are evolving at the sara.

Two separate streams of pseudorandom numberseataruBREGsim, one to control the
speciation events and the other the rest of theiBepnary events. The number of genes
involved in each evolutionary event is also recdrohethe order of occurrence. Given
this information, PEGsim can repeat any simulatwwhen desired, or reproduce a given

phylogenetic topology with different sets of genad replicon-scale events.
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5.1.3 Probabilistic model for evolutionary events

In the beginning of each generation, every evolhdpgcies has a certain probability to
have a speciation event. If a speciation eventstakace, two child species with identical
genomes as the parent species are born, and thet pareliminated from the currently

evolving species list.

Each replicon in each species has a certain priitlyatbi have at most one replicon-scale
event, such as a replicon split, at each generafionexample, if a replicon has already
gone through a replicon split event, then it wibbtrhave any other event for the

generation. Chromosomes have a lower evolutioragythan other replicons by default.

Each position in a replicon has a certain probighiiti have at most one gene-scale event,
such as a gene reversal. For example, if a posili@ady had a gene reversal, it will not

have any other gene-scale event for the generation.

A species can have at most one event from any smadny generation. The priority for
the events is: species-scale, replicon-scale, and-gcale. For example, if a species goes
through a speciation event, it will not be consadiefor any other events. If a species does
not go through a speciation event but does go fir@ureplicon-scale event, it will not

be considered for any gene-scale event.

5.1.4 Gene Content

The gene content change in PEGsim is achieved g bieth and gene loss. In PEGsim,

gene birth can be achieved through different evemisluding gene duplication,
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endogenous HGT, and exogenous HGT. Gene duplicdteze means that after the

duplication, the duplicated genes still have thigional function, so they are represented
by the same gene id. Endogenous HGT can trangfeougp of genes from one species to
another, thus changing the gene content of theettasgecies. Exogenous HGT can
happen at any position with some genes that haver fien seen in the group of species

before, i.e., these genes come from a donor spaes not part of the simulation.
5.1.5 Power law distribution based length

All gene-scale events in PEGsim can involve ongeteeral genes, with the exact number
determined by a power-law distribution. Such @sttions are ubiquitous in both natural
and artificial phenomena, including physics, bigioggeography, and even Internet
ecology [41, 42]. To fit the real world, the numhsrgenes involved in each event is
drawn from customizable power-law distributionseTgower-law number generator used

in the simulator follows the following formula:

X = [(an+1 _ bn+1)x y + bn+1] 1/(n+1)

wherea andb are the maximum and minimum values of the distriloy respectivelyy
is a uniformly distributed variable on [0,1], ands a constant that affects the shape of

the curve [43, 44].

5.1.6 Conserved blocks

Conserved blocks are created when the genometialized for the LCA of all the

species in the simulation. The percentage of ac@picovered by conserved blocks and
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the length of the conserved blocks are both custabhe. By default, 15% of the main
chromosome and 5% of any plasmid are covered byetvad blocks. The lengths of the

conserved blocks are also drawn from power-lawidigtions.

The preservation of conserved blocks is achievedwia ways. First, any mutation
scheduled to happen to genes located in consetweellsbcould be rejected according to
a certain probability (mentioned above). Secondttie events that have passed the first
rule, they could be adjusted to affect the entmeserved block instead of breaking it. For
example, if a part of a conserved block is to kersed, the event could be replaced by a

reversal of the entire conserved block. The catésir both methods are customizable.

5.1.7 Simulation flow overview

The following pseudocode gives a general overviéth® method and explains the
priority of different events. Every step in the@lighm also includes necessary updates of
related information, such as the list of evolvipgaes and the conserved blocks. Every
simulated event takes place following its own @téistribution; this is implicit in the

conditional statements below of the form “if <evetdkes place”.

Pseudocodet

1. LCA genome initialization with conserved blocks
2.for generation (2..end)
3. for each speciesthat is evolving

4. if speciation takes place

s = replicon split; rl = replicon loss; rm = rig@n merge; ra = replicon acquisition; gl = gensstagi =
gene insertion; gtr = gene transfer; gtl = genedi@cation; gr = gene reversal,
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

do speciation and end loop
for each replicon the species has
if rstakes place
dorsand end loop
if rl takes place
dorl and end loop
if rm takes place
dormand loop
if ratakes place
doraand end loop
for each position on the replicon
if gl takes place
do gl and move to the next available position
if gi takes place
do gi and move to the next available position
if gtl takes place
do gtl and move to the next available position
if gtr takes place
do gtr and move to the next available position
if gr takes place
do gr and move to the next available position

if HGT takes place
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27. do HGT and move to the next available position

28. return genomes and tree

5.1.7 Output

After a simulation is completed, PEGsim provides ¢lutput described in the next four

paragraphs.

Genomes of the extant species and the ancestors

The genomes of all species that ever existed isithalation are recorded. The file is in
a FASTA-like format, where, instead of DNA sequene list the gene IDs with plus

(+) or minus (=) signs representing orientations.

A phylogenetic tree

A phylogenetic tree that describes the evolutiomasyory of all the species involved in

the simulation is output in the NEWICK format.

Conserved blocks

This file contains the conserved blocks for all@es. For ancestors, it contains the
conserved blocks when the ancestor encountereelcaatipn event and stopped evolving.

For extant species, it contains the conserved Blagien the simulation ends.
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Events log

The output also includes a detailed log of evegnéthat happened during the
simulation in the order of occurrence. This loghis true history of the simulated

evolution and can be used to benchmark differealytio methods and algorithms.

5.1.8 Simulator behavior evaluation

We generated a large amount of simulated datagereé the behavior of the simulator.
A group of 22 fully sequenced species from the orBhizobiales in the alpha-
proteobacteria were selected to compare to simulated data innabeu of situations to
guide the parameter setting. TRbizobiales order is known to have bacteria with very
different lifestyles (plant pathogens, animal pats, free living mutualists), varying
genome architectures (single chromosome, pair obnsbsomes, with and without
plasmids, and large and small plasmids), and & leagge of genome sizes (from 1 Mb to
9 Mb). The selected species akgrobacterium radiobacter K84, Agrobacterium
tumefaciens C58 Cereon, Agrobacterium vitis $4, Azorhizobium caulinodans ORS 571,
Azospirillum B510 uid32551, Bartonella henselae Houston-1, Beijerinckia indica
ATCC 9039, Bradyrhizobium japonicum, Brucela suis 1330, Hyphomicrobium
denitrificans ATCC_51888 uid33261, Mesorhizobium BNC1, Methylobacterium
chloromethanicum CM4, Methylocella silvestris BL2, Nitrobacter hamburgensis X14,
Ochrobactrum anthropi  ATCC 49188, Oligotropha carboxidovorans OMD5,
Parvibaculum lavamentivorans DS1, Rhizobium etli CFN_42, Rhodomicrobium
vannieliit ATCC_17100_uid38253, Rhodopseudomonas palustris BisA53, Snorhizobium

meliloti, Starkeya novella DSM_506 uid37659, andXanthobacter autotrophicus Py2.
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Since duplicated genes in the real data set amangted using the method described in
[39], we disabled gene duplication in all the siatidns shown below. The LCA of all
the following simulations has a chromosome of 3@@des and a plasmid with 500
genes, and the simulations are set to run for 3erations. The power-law variant
generators used in the simulation are customizeth@sn in Table 5.1. The constamis

set to 20 in all the generators.

Table 5.1. Properties of the power-law number genators used.

Event Max (a) Min (b)
Insertion 50 1
Loss 50 1
Transposition 50 1
Translocation 50 1
Reversal 500 1
HGT 50 1
Conserved Blocks 40 2

Genome Size evaluation

The genome size of the simulated genomes can bitated by adjusting any one of or
combinations of the following parameters: gene la$s, gene insert rate, and horizontal
gene transfer rate. As expected, a high gene iosadte will increase the genome sizes
while a high loss rate will decrease them. Incregabioth parameters leads to larger

differences among the size of the genomes. Byimdi¢he parameters, we were able to
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obtain simulations with similar mean and standadation as the real data. We
randomly selected ten such simulations and pldtieoh with the real data in Figure 5.1.

The real data is shown in red.

7500
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5500
5000 - $ X
4500 +
4000 {

3500

Genome Size

3000
0 1 2 3 4 5 6 7 8 9 10

Simulations

Figure 5.1. Genome size mean and standard deviatiarf ten simulations and the
Rhizobialesdata set (red cross on the right)* Gene loss, gene insertion and HGT rate

are 9e-5, 8e-5, and 6e-5 respectively.

This result shows that PEGsim can generate sintutidta sets with properties similar to
real genomes. Users can modify the related parasnetgenerate simulations according

to their needs.
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As can be observed, the simulated data sets hstighély smaller standard deviation
compared to the real data set. We believe the nefasahis difference is the random
events-based model used in PEGsim. Genome evolstioot a random process [45, 46],
and genome expansions or contractions can be tedd® the change of environment.
These changes can be highly directional. For examyien a certain bacterial species
moves into a new environment with different nuttisources, it may have to pick up a
large number of genes through HGT to survive, thuspid genome expansion is
expected. An opposite scenario would be free-lilaagteria that adopt an intracelullar
lifestyle, so that a significant part of their gerage not needed anymore, leading to
genome contraction [1]. As we have pointed outiearthe ordeRhizobiales contains
bacteria with very different life styles and genoanehitectures, leading to a large
standard deviation. In order to demonstrate PEGsaapacity to generate more
conserved simulated data, we compared another grfogsimulations with the available
genomes of thBrucella genus in the Genbank database. The genomes wsBdiesl|a
abortus bv. 1 str.9-941 (uid58019),Brucella abortus S19 (uid58873),Brucella canis

ATCC 23365 (uid59009), Brucella melitensis ATCC 23457 (uid59241), Brucella
melitensis biovar Abortus 2308 (uid62937), Brucella melitensis bv. 1 str. 16M

(uid57735), Brucella microti CCM 4915 (uid59319), Brucella ovis ATCC 25840
(uid58113), Brucella suis 1330 (uid57927), and Brucella suis ATCC 23445 (uid59015).

The result is shown in the Figure 5.2.
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Figure 5.2. Genome size mean and standard deviatiaf ten simulations and the
Brucella data set (red cross)* Gene loss, geneinsertion and HGT rate are 1e-4, 9e-5,
and 1e-4 respectively. The number of genesin LCA is set to 3500 (3000 on the main

chromosome, 500 on one plasmid). The simulations have run for 1000 generations.

The above results are evidence that PEGsim is tapéproducing a simulated data set

with basic properties that are close to thoseremaadata set.
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Replicon number evaluation

The genome architecture of the simulated genomebeadjusted by modifying any one
or combinations of the following parameters: chrgormoe split rate, chromosome merge
rate, plasmid loss rate, plasmid merge rate, plhspiit rate, plasmid gain rate. As
expected, lower plasmid gain and split rates waligrate genomes with fewer replicons,
and higher plasmid split and gain rates will geteegenomes with more replicons. With
some parameters properly set, we were able torobit@iulations with the number of
replicons similar to th&hizobiales data set. Ten randomly selected such simulatinds a

the Rhizobiales data set were plotted in Figure Bh@ real data point is shown in red.
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Figure 5.3. The mean and standard deviation of theumber of replicons in ten
simulations and theRhizobialesdata set (red cross)* Chromosome split rate,
chromosome mergerate, plasmid loss rate, plasmid merge rate, plasmid split rate and

plasmid gain rate are set to 1e-13, 5e-11, 2e-10, 1e-10,1e-9, and 1e-9 respectively.

Conserved blocks length evaluation

In addition to homologous genes, related specieallysshow a higher level of genome
conservation in conserved blocks. The length adetmnserved blocks roughly follows
power-law distributions with long tails [47, 48]hweh are due to the occurrence of a few
long conserved blocks. For example, in Figure Sedstow the distribution of conserved
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blocks at different lengths shared Barvibaculum lavamentivorans DS-1 and
Azospirillum B510 uid32551. Although there are no conserved blocks of lengttaieen

17 and 27, there is one of length 28.
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Figure 5.4. Number of conserved blocks shared byarvibaculum lavamentivorans

DS-1and Azospirillum B510 uid3255Aht different lengths.

These long tails are difficult to simulate if wesjwse random events, since the long
conserved blocks are of course not random evergsd&¥l with this by creating the
concept osimulated conserved block, which is implemented by rejecting a certain

fraction of evolutionary events that would haveulged existing blocks of genes. This
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allows a few long conserved blocks to “survive” otlee course of the simulation, thus
replicating what is observed in real genomes. gufg 5.5 we show the average numbers
of conserved blocks at different lengths from temuations generated by two different
models, one with simulated conserved blocks tuorednd one not. All simulations only
include two species for simplicity reasons. Itasgto see that the long tail phenomenon
is not present in the model without simulated core blocks. By customizing the
parameters initial conserved gene percentagesiétiad conserved blocks distribution,

different conservation levels can be achieved.
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Figure 5.5. Comparison of distribution of the numbe of syntenic blocks between the

model with conserved blocks and the one without.
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5.2 Additional Remarks

We have developed the first whole genome simulatoprokaryotes that focuses on
gene-scale, replicon-scale, and species-scalesewethave shown that the simulator is
capable of producing data with vastly differentgeies (such as genome size and
number of replicons among extant species), mimgkibserved properties of real life
genomes. By the implementation of conserved bloskshave managed to overcome the
problem that almost no long contiguous gene rugsioia simulated data produced with
pure probability models. We have used recentlyiphbt literature as guidance to set
default parameters so that non-expert users carobtsin high quality simulation.
PEGsim is also highly customizable for users whih necessary expertise. Together with
the simulator code, we also provide various sctipa$ measure different properties of
the simulated data to assist parameter settingdogmd users, if they choose to do so. A

master script that enables running multiple simaihet in parallel is also included.

By using two separate streams of random numbegssithulator separates events that
affect the tree topology from all other eventstleend user can have simulations with
the same phylogenetic tree but different gene-rapticon- scale events. A typical use
case is for the user to first disable all othemgsyexcept for speciation events to get a
satisfactory (according to some criterion) treeth/dll other events disabled, this process
is extremely fast. Then, the user can rerun thellsitor with the seed that determined the

tree topology and all other evolutionary eventsbégto produce multiple simulations.

It is also possible to obtain simulations with egeat all scales by combining PEGsim

with other existing sequence-scale simulators, sischawg [29], SIMULATOR [30], or
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SIMGRAM [31]. PEGsim can be run first to provide@affold of simulated genomes
and then specialized sequence-scale simulatorseeam according to the property of
the region, such as genic or intergenic. A competaulation can be achieved by

merging these two pieces of information.

PEGsim as here described is a first version. AR,stican be improved in a number of
ways. We are working on PEGsim in an iterative ii@slso we can make sure that the
basic structure of the simulator is always stadnel more features can be added in a

controlled fashion.

A version of this chapter was published as Yan&é&tubal JC: A Whole Genome
Simulator of Prokaryote Genome Evolution. Rnoceedings of the 2011 ACM
Conference on Bioinformatics, Computational Biology and Biomedicine: 2011 (extended

abstract) [28].
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Chapter 6

REGEN: Ancestral Genome Reconstruction for Bacteria

In this chapter, we describe the ancestral gen@e@nstruction system that we

developed, called REGEN, and we evaluate it usmglated and real data sets.

6.1 System and Methods

6.1.1 System overview

REGEN has several components. Figure 6.1 showiseathajor components and their
relationships to each other. The assumed inputshendutputs were described in

Chapter 3.
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Figure 6.1. Overview of all major components in REGN

6.1.2 Species tree reconstruction

REGEN needs a reliable species tree as input.desocahere such a tree is not available,
a phylogenomic tree based on the multiple sequaligement of the concatenated
sequences from thousands of protein sequencesedaumilb Here we briefly describe the

methodology used to build this tree, which follaiwve supermatrix approach [49].

An all-against-all BLAST [37] search between alb{@in sequences annotated in the
input genomes is performed. The BLAST output isitfel to OrthoMCL [22] to identify

orthologous gene families. Families with at most arember in all the species are
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selected for the tree reconstruction. MUSCLE [SQJsed to perform multiple sequence
alignment for each family, and Gblocks [51] is usadalignment trimming. Trimmed
alignments are concatenated and fed to RaxML [&2iihal species tree reconstruction

evaluation with bootstrap scores.

6.1.3 Homologous gene family identification and rgiement

We used OrthoMCL for homologous gene family idecdfion, and the result is further
refined by the program described in Chapter 4. Wéhepecies tree needs to be built (see
previous section) we can use the results of OrthbN&€ both tree construction and

homologous gene family refinement.

6.1.4 Genome preprocessing

All genomes are preprocessed so that each repBcamordered array of genes, which
are represented by the orthologous gene familyoisisting of both the original
orthologous gene families identified by OrthoMCldahe ones produced by the

refinement module.

6.1.5 Ancestral genome reconstruction

Our ancestral genome reconstruction method is basélde concept of neighboring gene
pairs (NGPs), first proposed in [5]. An NGP is & o genes that are physically adjacent
to each other on a replicon. The key idea is 81 fdentify NGPs in input genomes. Then

we infer the occurrence of these NGPs in the aradegtnomes. The basic assumption of
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the method is that if adjacent homologous geneticdre observed in both child species,

then it is highly likely that they are also adjacenthe parent species.

The reconstruction is done by a maximum likelih@ll) method as implemented in
BayesTraits [53]. The gene pair occurrence likedthoutoff that determines what gene
pairs are present in an ancestral genome is arriamigarameter and directly
determines the number and length of the reconsiugpéne runs. On the other hand, the
gene occurrence likelihood cutoff that determindsatgenes are present in an ancestral
genome has less impact on the results, since samgienes cannot be placed in
reconstructed gene runs. A maximum parsimony (Mi8ed reconstruction is also

possible by a slightly modified version of the nathdescribed in [5].

In our implementation, each gene is representdavbysymbols, one for each end. This
notation allows us to encode both the adjacencyoaiedtation information for each
gene. This two-node notation also reduces the caxiiplof the assembly process as
described later. Each adjacent gene pair is trestedfeature for a genome, and the
status of such features on the ancestral genomesdastructed using the same method
as described in the gene content reconstructiaier &fe successful reconstruction of all
the NGPs, the following algorithm is designed toorestruct gene runs for each ancestral

genome.

The algorithm starts from a random pair, identibiother pairs that may be connected
through an iterative fashion, and builds an undé@connected graph with all these
pairs. Each edge was weighted as the reciprodakgbrobability of having the particular

NGP in the ML based reconstruction and 1 in theldBed reconstruction. All edges
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connecting the ends of a single gene have weigb sein both cases. Then, the
algorithm identifies the minimum spanning tree (M8Tthis graph by Kruskal’s
algorithm [54] to obtain a subgraph without cycl€se Bellman-Ford algorithm [55] is
then run on the MST to calculate scores for padteéen all node pairs. A legitimate
path connecting two outer nodes with the lowestesthen identified and recorded as a
reconstructed gene run. A path is legitimate if anly if inter-gene edges and intra-gene
edges interleave. All nodes included in the paghramoved following the identification
and the original MST is reduced and may split imto or more fragments. The Bellman-
Ford algorithm is run on each fragment and the ggscepeats recursively until all nodes

are removed or a new fragment consists of onlygame.

The establishment of replicon inheritance relatgmss based on the following graph-
based algorithm, designed to utilize the concejat gfoup, which is defined as a
collection of genes that share the same inheritpattern. Genes are considered co-
inherited if they reside together on a single @piiin both genomes. For example, if
genesa, b, andc are on one replicon in both specieandy, then they are considered to
be in the same group. The reconstruction assumaésahinherited genes are more likely
to be on the same replicon in the ancestral germoause the probability of having
multiple genes relocating to the same repliconughoindependent evolutionary events is
low. The idea behind the algorithm is first to dieithe genes on the replicons in the
extant species into co-inherited groups and théeraene which groups are likely to be
on the same replicon in the ancestral speciesiaallyfmerge the groups back into

replicons according to the linkages establisheihduhe reconstruction process.
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Essentially, only genes that share some inheritpattern in both the out-group and in-

group species are merged into a replicon, whiahstout to be a quite stringent criterion.

The algorithm is explained with the following exampgn which the four extant species
are named S1, S2, S3, and S4 and the ancestr@spdc A2 and A3 respectively (see
Figure 6.2). For simplicity, all main chromosomeshe four extant species are named C
and the plasmids are named P1 and P2. Here, wdeuiidle the genome architecture of
A2, using A3 as outgroup. Notice that the genonclitacture of A1 cannot be
determined without adding more species as outgroups algorithm starts by computing
co-inherited gene groups for each ancestral specibe tree in a bottom-up fashion. In
our example, four groups are identified for A2 &awad for A3. Group graphs GA2 and
GA3 are created for the two ancestral species, ®dth group as a vertex. Edges are
added if two groups share a replicon in their deentance pattern such as G1(C C) and
G2(P1 C) (shared C in S2). Then, the relationskig/een groups in GA2 and GA3 is
computed, and edges are added if the number cédlg@nes exceeds a certain cutoff,
denoted by dark red edges. For each connected ecwnpm the outgroup group graph,
which is GA3 in the example, we identify all vedsin the target species group graph.
For these identified vertices, we will merge the®sthat are connected back into
replicons. Any unmerged group will form its own liepn, such as R2. Final genome

architecture for A2 is shown by green ovals.

After replicon reconstruction, all genes are taggét their own replicon information.

6.1.6 Reconstructed replicon merge
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Figure 6.2. Replicon architecture reconstruction eample. Blue circles represent main

chromosomes, green circles plasmids, and purple ovals gene groups. Red boxes represent

identified connected components in the group graph and green box final replicon

architecture reconstruction result.
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During the application of the above algorithm tdhoeal and simulated data, we noticed
that it tends to produce more replicons than theadly are. We also noticed that many
long reconstructed gene runs contain genes that @en assigned to different replicons.
Based on these observations, we designed an ¢sgréhat merges replicons based on

the discrepancy of replicon information for geneghie gene runs.

The algorithm starts by selecting a set of recoietdd gene runs with a length limit,
which is set to 4 genes for the data shown indhasertation. Then it checks for
discrepancies of the gene location informatiorhia set of gene runs. Discrepancy is
defined as genes on the same gene run that agmeddo different replicons. From each
reconstructed gene run in this selected collectienevaluate the relative signal strength

of replicon merging, which is defined as

. . N
relative signal strength = N—b :

a

whereN, is the number of genes assigned to the most frelyugccurring replicon and

Ny is the number of genes assigned to another replico

Gene runs with extremely low signals are ignoreé.t¥Aén assign the length of the gene
run as the strength of the merging proposal supddy this specific gene run. The
strength of all gene runs for merging the same gfaieplicons are summed and the result
is defined as the absolute signal strength of tamgmg proposal at the species level. All
merging proposals are gathered together for akstnal species, and a K-means
clustering is performed on both absolute and nedatignal strength, wit = 2. The

values that divide the result clusters are chosehealine between accepting or rejecting
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merging proposals. The algorithm proceeds in aobotip fashion and ends when all

merging proposals are either accepted or rejected.

6.1.7 Chromosome restoration

With the replicons for each ancestral genome begngnstructed, it is time to distinguish
chromosomes from plasmids. The notion of chrom@] [§ not considered here. This
process is carried out using core genes. The nmonmsome is assigned to the replicon

with the most core genes.

For secondary chromosome assignment, a minimum euaflzore genes (5% of the

total number of core genes by default) have taleesn the replicon.

6.1.8 Ancestral evolutionary event reconstruction

By comparing the gene runs and gene content betpaemt and child species, we can
infer a large number of different evolutionary etgeon both the gene and replicon
scales, such as gene loss, gene gain, replicoremrangd replicon loss. We can even infer

gene reversal events, if they happened within engcucted gene run.

6.1.9 Ancestral gene run and genome functional antagion

Kyoto Encyclopedia of Genes and Genomes (KEGG) 4 used as the source of
functional annotation. To determine the potenttemotypic features of an ancestral
species, we need to first determine the functioasoany of the genes that it possesses
as possible. To achieve this, we assign the meguéntly occurred functional annotation

among all family members to the function annotatmrthe orthologous gene family.
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Multiple functions are assigned when there is althee determined function is later
transferred to the gene in the ancestral genonter &fe completion of annotating as
many genes in the ancestral genome as possibléeteemine possible ancestral
phenotypic features by examining the gene contdéhtitg functional annotations in the

ancestral genome.

Due to the close resemblance between reconstraotestcutive gene runs and operons
in bacterial genomes, not only did we use the atadtgenes to infer the functional roles
played by some gene runs, but we also validates ttegnstructed gene runs by

checking the consistency among the members thegicon

6.1.10 Genomes

The group of Rhizobiales species was chosen ngthmdause of their complex genome
architecture, as shown in Table 6.1, but also bexafithe fact that they contain
secondary chromosomes, which is not common amocigiitea The 22 species from the
Rhizobiales order includ&grobacterium tumefaciens C58 Cereon, Agrobacteriumvitis

A4, Agrobacterium radiobacter K84, Azor hizobium caulinodans ORS 571, Bartonella
henselae Houston- 1, Beijerinckia indica ATCC 9039, Bradyr hizobium japonicum,

Brucella suis 1330, Mesor hizobium BNC1, Hyphomicrobium denitrificans ATCC 51888
uid33261, Methyl obacterium chloromethanicum CM4, Methylocella silvestris BL2,
Nitrobacter hamburgensis X14, Ochrobactrum anthropi ATCC 49188, Oligotropha
carboxidovorans OMS5, Parvibaculum lavamentivorans DS-1, Rhizobium etli CFN 42,
Rhodomicrobium vannieliit ATCC 17100 uid38253, Rhodopseudomonas palustris BisA53,

Snorhizobium meliloti, Starkeya novella DSM 506 uid37659, andXanthobacter
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autotrophicus Py2. Azospirillum B510 uid32551 is chosen as an outgroup. The choice of
the outgroup species was made based on the phgtgéme presented in [58]. All

genome sequences were downloaded from the NCBI&&nbTP site.

Table 6.1. Genome architecture for Rhizobiales anihteger ID assigned to each

genome

Species Name Integer | # of # of .
ID chromosomes| plasmids
Agrobacterium_tumefaciens C58 Cereon 1 2 2
Agrobacterium radiobacter K84 2 2 3
Agrobacterium vitis 4 3 2 5
Azorhizobium caulinodans ORS 571 4 1 0
Azospirillum B510 uid32551 5 1 6
Bartonella_henselae Houston-1 6 1 0
Beijerinckia_indica ATCC 9039 7 1 2
Bradyrhizobium japonicum 8 1 0
Brucella_suis 1330 9 2 0
Mesorhizobium BNC1 10 1 3
Hyphomicrobium_denitrificans ATCC 51888 11 1 0
_uid33261
Methylobacterium chloromethanicum CM4 12 1 2
Methylocella silvestris BL2 13 1 0
Nitrobacter _hamburgensis X14 14 1 3
Ochrobactrum anthropi_ ATCC 49188 15 2 4
Oligotropha_carboxidovorans OM5 16 1 0
Parvibaculum lavamentivorans DS-1 17 1 0
Rhizobium etli CFN_42 18 1 6
Rhodomicrobium vannielii ATCC 17100 uid 19 1 0
38253
Rhodopseudomonas _palustris BisA53 20 1 0
Snorhizobium meliloti 21 1 2
Sarkeya novella DSM_506 uid37659 22 1 0
Xanthobacter autotrophicus Py2 23 1 1
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6.2 Results and Discussion

6.2.1 Results based on Simulation

With the simulator described in Chapter 5, we dnle o compare results with different

settings and make an informed choice on the pamamettings for the real data set.

Due to the amount of time required to generate ksited data and to perform
reconstructions, we set the LCA with a small geneoresisting of a main chromosome
of 1000 genes and a plasmid of 200 genes. Twemiylations were conducted with the

same phylogeny, which contains 19 extant speci@gerfest and 2 out-groups.

We compared reconstruction produced by the MP ahardthods with gene pair cutoff
setto 0.75, 0.8, 0.85, 0.9, 0.95, and 0.97. Siaglgene occurrence cutoff is set to 0.9 in

all ML reconstructions.

All the numbers shown below are averages calculated all of the same-setting
reconstructions of the 20 simulated data sets.uatan with simulated data includes
genome coverage, longest reconstructed gene rgthlezonserved block reconstruction,
gene pair precision versus recall measure, anttogpteconstruction accuracy. Based on
all the benchmarks we obtained using simulated, daaset the gene pair cutoff to 0.9

for the system.
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Genome Coverage

By comparing the reconstructed gene runs of the k&Cthe true genome, we are able to
calculate how much of the genome is covered bydbenstructed gene runs. The result

is shown in Figure 6.3.
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Figure 6.3. Genome coverage achieved by reconstriarits at different gene pair

cutoff.

Setting the gene pair occurrence cutoff to a lovedue naturally results in more gene
pairs, which then cover more of the genome. Itastivnoticing that the significant
coverage decrease is not observed until the settanthes 0.95 and MP achieves the least

genome coverage.

55



Longest reconstructed gene run length

We then looked into the length of the longest retarcted gene runs. With a similarity

to genome assembly problem, the longest gene rofnpiarticular interest. Figure 6.4
shows the length of the longest reconstructed gemat different settings. We also show
the length of the longest subrun that can be dntin@apped to the reference genome as a

comparison.
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Figure 6.4. Longest gene run length and correct Igest gene run length in the

reconstructions at different cutoff.
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Conserved Blocks Reconstruction

Conserved blocks are conserved gene runs of tremgethat carry important functions
and thus are more conserved than other parts gfgheme. We are interested in
determining how many of the conserved blocks carebevered by the reconstructed
gene runs in the ancestral genome. Although coeddrlocks and gene runs are different
concepts, it is reasonable to assume that if aeceed block exists in most if not all the
extant species, there should be a gene run witbahserved block in the genome of the

LCA of this group.

Figure 6.5 shows the comparison of the percentafgesnserved blocks that have been
completely reconstructed or missed in differenbrestructions as well as the distribution

on the percentage of conserved blocks that migle baen partially reconstructed.

0.75 0.80 0.85 0.90
0.95 0.97 MP

Figure 6.5 partially reconstructed conserved blockgercentage distribution 0%

u 0%

W <20%
m <40%
W <60%
H <80%
M <100%
1 100%

means complete absent in the reconstruction. <x%: less than x% of the conserved block
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(measured in number of genes) was reconstruction. 100%: the conserved block is entirely

reconstructed.

One striking observation here is that even thoudghtMsed reconstructions have shown
lower performance in other categories, such asdsingene run length and genome
coverage, it appears to be able to reconstructeceed blocks fairly well. We hypothesis
that the reason is conserved blocks underwent few@utionary events. Other studies
also suggested that MP based reconstruction/phy&tigetree construction performs well
with closely relate species and ML based methodallysperform better with more

distant species [59].

Gene Pair Precision and Recall

The final gene-scale assessment we performed aedtbastructions is the gene pair
reconstruction precision and recall test. We comgbaitl the reconstructed gene pairs for
each ancestral genome to the actual genomes geth@raghe simulation and calculated

the precision and recall as:

. tp
recision =
P tp + fp
t
recall = p
tp+ fn

wheretp represents the true positive couptrepresents the false positive count, &imd
represents the false negative counts. The reseltslatted in Figure 6.6. The figure

shows that setting the gene pair cutoff too lovultesn low precision, while setting it
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too high severely affects recall. A good balancpretision and recall is achieved for
gene pair cutoff between 0.85 and 0.9. Since reaatgn confidence is an important
factor to judge a given reconstruction, 0.9 is&el@ as the gene pair cutoff for the rest of

the study.
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Figure 6.6. Precision and recall for different recastructions.

Replicon reconstruction accuracy

As the first ancestral genome reconstruction systeinding replicon scale
reconstruction, determining the accuracy of suchmstructions is important. With the
simulated data, we are able to accurately meakaerpdrformance of the system with the
following metrics. For an ancestral genome, werdsfia replicomatched if there is a
reconstructed replicon that shares a large nun@®86) of genes with it, otherwise

missed. For a reconstructed ancestral genome, we deéimegliconextra if it cannot be
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mapped to any replicon in the corresponding anglegémome opartial if it is mapped

to an already matched replicon.

The four measures are plotted in Figure 6.7. Gaecptoff and gene cutoff were set to

0.9 with the consideration of all the informatiairieved from simulation tests above.
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Figure 6.7. Fraction of different scenarios for reficon reconstruction evaluation for

different reconstructions.

Figure 6.7 clearly shows that the fraction of mattheplicons starts to drop when the
gene pair cutoff approaches 0.95, with a corresjpgridcrease in the fraction of missing

replicons (the fractions of missed and matchedaep$ sum to 1). The other two
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measures showed inconsistency but are relativablesacross all different settings.
Based on all the results generated from simulattal, dve believe 0.9 is the best cutoff to

adopt.

6.2.3 Results on real genome data

Phylogenomic tree

The phylogenomic tree reconstructed with 109272g4A751 orthologous gene families
in 23 genomes) for thighizobiales data set is shown in Figure 6.8. Phylogenomicstree
are usually considered more reliable than phylogetees, which are usually
constructed using one gene or a very small numbgeres, but they can be difficult to
build due to the large amount of data involved higth computational cost. Each extant
species is assigned an integer ID, which is themrg@d integer in the species name in
the tree, so we can assign an easy and self-exptgrB for each ancestor species. The
ancestor ID reflects both child species. For examghcestor 14 8 20 is the LCA of

species 14, 8, and 20. The complete species t@ent® mapping is given in Table 6.1.
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Figure 6.8. Phylogenomic species tree for tHehizobialesdataset.The number shown
at each branching point is the bootstrap score computed by RAXML (100 runs). In this

case, all numbers are 100, suggesting that the tree is robust.

Orthologous gene identification and refinement

OrthoMCL identified 8,563 orthologous gene familisxluding 53,677 genes that could
be used directly for reconstruction. Gene familied are present in only one species
were omitted. OrthoMCL also reported 3,125 mixedeglamilies defined as
homologous gene families containing paralogous geoéaling 38,396 genes. These
families underwent a refinement process (Chaptand) at a conservative p-value of

0.01, 3,892 orthologous gene families containing@8 genes are obtained. In total,
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12,455 orthologous gene families with 72,283 gem&® used as input for the

reconstruction process.

Ancestral gene content reconstruction

To be consistent with the gene-pair reconstruatiaoff, all genes tagged with < 0.9
probability are removed from further analysis. Olstaf the gene content reconstruction

for each ancestor can be found in Table 6.2.

Table 6.2. Gene content reconstruction

Ancestor ID Gene on Genes on| total
chromosomes| plasmids
11 19 21 31 18 2 10 6 15 9 14 8 20 16435 219 1654
23 4 22 12 13 7 17
11 19 21 31 18 2 10 6 15 9 14 8 20 16446 569 2015
23 4 22 12 13 7
21 3118 2 10 6 15 9 14 8 20 16 23 413457 760 2217
2 12 13 7
14 8 20 16 23 4 22 12 13 7 1272 988 2260
21 3118 2 10 6 15 9 1955 863 2818
14 8 20 16 23 4 22 1287 1082 2360
21 3118 2 2549 1627 4176
31182 2464 1888 4352
14 8 20 16 2560 480 3040
10 6 15 9 1754 257 2011
12 13 7 1245 557 1802
23 4 22 2603 211 2814
6 15 9 2146 98 2244
14 8 20 2940 431 3371
14 8 2479 390 2869
31 3507 660 4167
18 2 4941 642 5583
13 7 1636 247 1883
23 4 2271 263 2534
15 9 3358 462 3820
11 19 1221 136 1357
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Ancestral gene run reconstruction

The ancestral genome reconstructions are achiévedgh the use of gene runs and
singleton genes. Compared to singleton genes, rgeisgorovide information on the

order of a certain number of genes.

Local synteny or conserved block information isrextely useful in genomics studies,
due to their correspondence to operons or modulatse 6.3 lists the status of the
reconstructed gene runs in tRieizobiales data set. The last two columns show the
absolute number of genes in gene runs and theatdgpeercentage. It is easy to see that
the quality of the reconstruction for the ancestgroves with the similarity between the
genomes of child species. Higher similarity resuitionger gene runs, which cover more
genes, leaving fewer genes to be singleton gentbgeigenome. For example, the
ancestral species 15_9 has its longest gene rinl&it genes and about 95% of its genes
are in gene runs. On the other hand, the longes ga in the ancestral species 13_7

only reaches 28 genes and about 33% of all itsgyareesingleton genes.

Table 6.3. Contiguous gene run reconstruction oversw of the Rhizobialesgroup.
Length of the gene runs is measured in genes. imber-of-genes column shows the
total number of genes on all gene runs and theepgage column shows the coverage of

the gene runs.

Ancestor # of longest | # of gene | percentage
gene gene of gene | of genes of
runs run runs gene runs

11 19 21 31 18 2 10 6_15 9 14 305 32 1321 79.87%

8 20 16 23 4 22 12 13 7 17

11 19 21 31 18 2 10 6_15 9 14 409 33 1716 85.16%
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"8 20 16 23 4 22 12 13 7
21 3 1 18 2 10 6_15 9 14 8 20 457 33 1894  85.43%
16 _23 4 22 12 13 7

14 8 20 16 23 4 22 12 13 7 461 33 1869  82.70%
21 3 1 18 2 10 6_15_9 510 49 2394|  84.95%
14 8 20 16 23 4 22 497 35 2019|  85.23%
21 3 1 18 2 685 44 3688| 88.31%
31182 681 47 3918|  90.03%
14_8 20 16 509 47 2775  91.28%
10 6_15 9 352 33 1561  77.62%
12_13 7 333 17 1024|  56.83%
23 4 22 556 35 2336|  83.01%
6_15 9 402 36 2153| 95.94%
14_8 20 525 31 2513|  74.55%
14 8 339 40 2638|  91.95%
3.1 483 75 3863| 92.70%
18_2 589 136 5280| 94.57%
13 7 384 28 1272|  67.55%
23 4 502 16 1933  76.28%
15_9 353 121 3615|  94.63%
11_19 260 31 821|  60.50%

Functional annotation of gene runs

Functional annotation of one particular gene rutheroot of théRhizobiales s listed in
Table 6.4 as an example, and all other annotatanse found in the supplemental

material, along with functional annotation for detgn genes.
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Table 6.4. Functional annotation of a particular reonstructed contiguous gene run
in the LCA of the Rhizobialesgroup. Consensus column shows the number of genes

that have been assigned with the correspondingtainm as well as the total number of

genes in the family.

Gene KEGG Function class Definition consensus

family Entry

ID

1719| KO2387 | Cellular Processes; Cell Matility; | flagellar 17/17
Bacterial motility basal-body
proteins,[BR:ko02035],Cellular rod protein
Processes; Cell Motility; Flagellar | FIgB
assembly [PATH:ko02040]

9901747 KO2388 | Cellular Processes; Cell Motility; | flagellar 17/17
Bacterial motility basal-body
proteins,[BR:ko02035],Cellular rod protein
Processes; Cell Motility; Flagellar | FIgC
assembly [PATH:ko02040]

9901380 K02408 | Cellular Processes; Cell Motility; | flagellar 17/17
Bacterial motility hook-basal
proteins,[BR:ko02035],Cellular body
Processes; Cell Motility; Flagellar | complex
assembly [PATH:ko02040] protein FliE

9901964| K02392 | Cellular Processes; Cell Motility; | flagellar 17/17
Bacterial motility basal-body
proteins,[BR:ko02035],Cellular rod protein
Processes; Cell Motility; Flagellar | FIgG
assembly [PATH:ko02040]

1718| K02386 | Cellular Processes; Cell Matility; | flagella 16/17
Bacterial motility basal body
proteins,[BR:ko02035],Cellular P-ring
Processes; Cell Motility; Flagellar | formation
assembly [PATH:ko02040] protein

FIgA

9903288| K02394 | Cellular Processes; Cell Motility; | flagellar P- | 16/17
Bacterial motility ring protein
proteins,[BR:ko02035],Cellular precursor
Processes; Cell Motility; Flagellar | FIgl
assembly [PATH:ko02040]

1717 not N/A N/A N/A

annotated

9904536 K02393 | Cellular Processes; Cell Motility; flagellar | 16/17
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Bacterial motility ring protein
proteins,[BR:ko02035],Cellular precursor
Processes; Cell Motility; Flagellar | FIgH
assembly [PATH:ko02040]
1828 | K02415 | Cellular Processes; Cell Matility; | flagellar 16/16

Bacterial motility FliL protein
proteins,[BR:ko02035]

9904106 K02419 | Environmental Information flagellar 17/17
Processing; Membrane Transport; biosynthetic
Secretion,system protein FliP

[BR:ko02044],Cellular Processes;
Cell Motility; Bacterial motility
proteins,[BR:ko02035],Cellular
Processes; Cell Motility; Flagellar
assembly [PATH:ko02040]

Evolutionary history of ancestral gene runs

With the completion of the reconstruction of altastral gene runs, it is possible to infer
a hypothesis on what has happened to each gemiring a specific evolutionary path
by analyzing the shared genes in the gene runstingarent and child species. One

example is shown in Figure 6.9.
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LCA of Agrobacterium tumefaciens str. C58 and Agrobacterium vitis S4

.[._498+_499+_9902912+_4088+_500+J_9903926-_4635+_340-_4636-

{._498+_499+_9902912+_4088+_500+] 5340-_4636-| 11791+_9903059-_...

Agrobacterium vitis S4

Figure 6.9. A long gene run on the main chromosonsplit into two smaller
fragments during the evolutionary path from the LCA of Agrobacterium Vitis S4
and Agrobacterium Tumefaciens C5® Agrobacterium vitis S4Each number
represents a gene and the under scor e represents adjacency. +/- symbols represent the
gene orientation determined during the reconstruction. Some genes on both ends are

omitted for simplicity.

All reconstructed scenarios for all evolutionaryhsain the tree can be found in the

supplemental material.

Replicon reconstruction

Replicon reconstruction is the centerpiece of shisly. We reconstructed the genome
architecture of all ancestral species through amalyf the gene content of the child
species and the outgroup. Based on the recongirtepécons, replicon-scale
evolutionary events can be predicted based on casgpeof the genomes along each
branch in the tree.

Only two ancestral genomes contain replicons gedlifo be secondary chromosomes.
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These two ancestors are 15-9 (the ancestBrugdella suis andOchrobactrum anthropi),
and 6-15-9 (the ancestor of 15-9 @attonella henselae). In the path from 10-6-15-9 to
6-15-9, a chromosomal split event divided the ntdimomosome into two chromosomes
and the new secondary chromosome carries a nurhbereogenes. This property may
have ensured the survival of this secondary chromeso the extant species. The
distribution of the core genes in all ancestralagees and secondary chromosome
assignment and the distribution of core genesarefttant Rhizobiales species genomes

can be found in Table 6.5.

Table 6.5. The distribution of the core genes in Bancestral genomes and secondary

chromosome assignment

ancestor replicon No. of CG
6_15 9

cl 524
c2 51
U 0

10 6_15 9

cl 579
L2
U 0

o

21 3 1 18 2

cl 575
L3
L5
L6
L7
L9
L10
L11
L12
L14
L16
L18

O O|lOo|w|ojo|0o|o|lo|o
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U 0
21 3118 2 10 6 15 9
cl 574
L3 0
L4 0
L5 0
L7 0
L8 0
L10 0
U 2
14 8 20 16 23 4 22 12 13 7
cl 546
L5 0
L6 0
U 0
14 8 20 16
cl 577
L3 0
L4 0
L5 0
U 0
13 7
cl 577
U 0
23 4
cl 585
L4 0
15 9
cl 532
c2 55
L4 0
L5 0
L6 0
U 0
11 19
cl 420
12 13 7
cl 501
R2 0
L4 0
U 0
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31

cl 580
R1 0
L6 1
U 0
31182
cl 580
R1 0
R2 0
R3 0
R4 0
L8 0
L9 0
U 0
L7 0
23 4 22
cl 558
U 0
14 8 20
cl 560
R2 0
L3 0
U 0
14 8
cl 584
L2 0
U 0
21 3118 2 10 6 15 9 14 8 20 16 23 4 22 12
13 7
cl 557
R1 0
L5 0
L7 0
U 0
18 2
cl 584
R4 0
L6 0
L7 0
U 0

14 8 20 16 23 4 22
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cl 542
R1 0
R2 4
R3 1
L5 0
L6 0
U 0
11 19 21 3 1 18 2 10 6 15 9 14 8 20 16 _23 4
22 12 13
cl 551
R4 4
U 0
11 19 21 3 1 18 2 10 6 15 9 14 8 20 16 _23 4
22 12 13 7 17
cl 545
U 0

It is also worth noticing that given the definiteoadopted in this study, the second largest
replicons ofAgrobacterium radiobacter K84 andAgrobacterium vitis $4 do not qualify
as a secondary chromosome, because they do naircenbugh core genes, as shown in

Table 6.6.

Table 6.6. The distribution of core genes in thRhizobialesdata set

Sinorhizobium_meliloti
cl 584
pSymA 0
pSymB 3
Azospirillum_B510_uid32551
cl 527
pAB510a 18
pAB510b 0
pAB510c 16
pAB510d 17
pAB510e 9
pAB510f 0
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Rhodopseudomonas_palustris_BisA53

cl 587
Beijerinckia_indica_ ATCC_9039

cl 587

pBINDO1 0

pBINDO2 0
Azorhizobium_caulinodans_ ORS 571

cl 587
Oligotropha_carboxidovorans_OM5

cl 587
Parvibaculum_lavamentivorans_DS-1

cl 587
Bartonella_henselae_Houston-1

cl 587
Xanthobacter_autotrophicus_Py2

pXAUTO1 0

cl 587
Methylocella_silvestris_BL2

cl 587
Rhizobium_etli CFN_42

cl 585

p42a 0

p42b 0

p42c 0

p42d 1

p42e 0

p42f 1
Bradyrhizobium_japonicum

cl 587
Ochrobactrum_anthropi_ ATCC 49188

cl 549

c2 38

pOANTO1 0

pOANTO02 0

pOANTO3 0

pOANTO4 0
Starkeya_novella_ DSM_506_uid37659

cl 587
Methylobacterium_chloromethanicum_CM4

cl 587

pMCHLO1 0
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pMCHLO02 0
Nitrobacter_hamburgensis_X14

cl 587

pl 0

p2 0

p3 0
Agrobacterium_tumefaciens_C58_ Cereon

cl 523

c2 64

At 0

Ti 0
Brucella_suis 1330

cl 533

c2 54
Hyphomicrobium_denitrificans_ ATCC_ 51888 uid33261

cl 587
Rhodomicrobium_vannielii ATCC 17100 uid38253

cl 587
Agrobacterium_radiobacter_K84

cl 587

c2 0

pAgK84 0

pAtK84b 0

pAtK84c 0
Mesorhizobium_BNC1

cl 586

pl 1

p2 0

p3 0
Agrobacterium_vitis_S4

cl 580

c2 7

pAtS4a 0

pAtS4e 0

pAtS4c 0

pTiS4 0

pAtS4b 0
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Genome architecture evolution reconstruction

The overview of the reconstruction iizobiales species with the complete
reconstruction process described above is sumndanzeigure 6.10, which was
automatically generated by REGEN using the dotuage in the Graphviz package [60].
It shows that this group &hizobiales species constantly underwent plasmid split and
plasmid merge, which could be true for most baatergnomes due to the high frequency
of recombination. A chromosome can easily pick epes from a plasmid, which could
be a result of a previous lateral gene transfentev¢owever, it is uncommon for a
chromosome to undergo a replicon split and haveesmre genes migrate away from the

main chromosome.

N

| N\,
/ esorhiz\{ium_BNCl(lO)
6_15.9

‘ @l e e @ cl

Bartonella_hens¢

L ‘ cl L6 s el

1000 >= L >=500
L <500

G <500

Ochrobactrum_gnthropi_ATCC_497.88(15)

Bfucella suis_1330(9
1000 >= G >= 500

g

gz pogroroeodor €2 T c2 cl

Figure 6.10. A look at the complete reconstructedvelutionary history of the

Rhizobiales group.Circles within nondotted rectangles represent the input genomes,
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while circles within dotted rectangles represent ancestral genomes. Chromosomes are
shown in light blue, plasmids in green. The reconstructed secondary chromosomes are
shown in red. Circle size corresponds to the number of genes it contains, except that
small plasmids are kept at the same size. Edge width corresponds to the strength of the
inheritance relationships between replicons, and color (given in the figure key) shows the
gain (G) or loss (L) of genes on chromosomes. Edges connected with plasmids are all
marked black. A part of the overview is zoomed in to give readable details. A file
containing a fully zoomable version of thisfigureis available in the supplemental

material.

Evaluation with operon structure information

To obtain a measurable evaluation for non-simuldtgd, we used operon structure
information [61] to validate the reconstructed gemes for ancestral genomes.
Conveniently, the operon information is storedne tormat of gene pairs in [63], which

will be referred to as operon gene pairs from now o

We assume that the percentage of operon genequaiicd all gene pairs in the
reconstructed gene runs in an ancestral genomédshesimilar to the percentage in the
gene runs in input genomes. We also expect thggd¢heentage will increase as the
reconstruction approaches the root of the treeesnghly conserved gene pairs are more
likely to be reconstructed as present in the analegenomes. Of the 23 Rhizobiales
genomes, 19 of them have operon gene pair predsctive divided all operon gene pairs
into three groups by the number of genomes theyraac The highly conserved (HC)

group contains 184 operon gene pairs occurrin@iarlmore genomes, the moderately
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conserved (MC) group contains 688 operon gene paasrring in between 6 and 9
genomes and the less conserved (LC) group cor@@®@ operon gene pairs occurring in
between 2 and 5 genomes. Operon gene pairs oggumronly a single genome are not
considered due to the lack of conservation. Thewew of the occurrence of all operon

gene pairs is shown in Figure 6.11.

The number of operon gene pairs in MC and LC frbenancestral genomes is similar to
the correspondence from the extant genome. Howaseve expected, the number in HC
from ancestral genomes is significantly higher (taited t-testp value = 2.693E-05).

The number of HC operon gene pairs is also coeelat=0.81, correlation test) with the
level of the ancestor, which is defined as the nemalb edges the ancestor species is

away from the extant species. Results support diodlir expectations.

We also examined the status of the reconstructed pairs and gene runs in the LCA of
Rhizobiales in terms of operon gene pair support. We saydlggne run is supported if
60% or more of the gene pairs involved are opermregairs. By using this criterion,
228 out of the total 305 reconstructed gene runser.CA genome are supported.
Furthermore, out of the total 1016 reconstructedhimring gene pairs in the LCA

genome, 770 are operon gene pairs, which also sugmoexpectation.
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1200

1000

M ancestral

Figure 6.11. Operon gene pairs quantity comparisobetween extant and ancestral

genomes pairs involved are operon gene pairs.

By using this criterion, 228 out of the total 3@sonstructed gene runs in the LCA
genome are supported. Furthermore, out of the 1@Hb reconstructed neighboring gene

pairs in the LCA genome, 770 are operon gene pahigh also support our expectation.

Leave-one-out test

We carried out a series of leave-one-out testgamée the stability of our

reconstruction method.

We performed 22 different ancestral reconstructmfrtteRhizobiales data set at gene

pair cutoff = 0.85 and 0.9 with each one of Riezobiales genomes left out. To simplify
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the analysis process, we focus on the reconstrgeted runs with at least four genes for

the LCA of allRhizobiales species.

For each of the selected reconstructed gene runscan through all 22 leave-one-out
reconstructions and determine if a similar enougiiegrun has also been produced,
which is defined as sharing at least 80% of itsegemith the original. If 18 or more
(~82%) leave-one-out reconstructions produce a aireihough gene run, we mark the
original recovered, otherwisemissed. During the analysis of the missed gene runs, we
quickly realized that many gene runs are markededisimply because they are broken
into two or more fragments in the leave-one-oubnstructions by missing only a few
gene pairs. We then loosened our criteria by mgrkigene run recovered even if it has
been broken into several fragments as long asotigekt two fragments contains at least

80% of the genes in the original. The result issgho Table 6.7.

Table 6.7. Leave-one-out stability test resuliThe table shows the difference in the

number of gene runs as well as percentage underatit cutoffs.

Number of 1 2
Fragments

gene pair cutoff 0.85 0.9 0.85 0.9
recovered 77 103 107 118
missed 80 31 50 16
total 157 134 157 134
percentage 49.04% 76.87%| 68.15%| 88.06%

As we can see from the table, regardless of howyrfragments we allow, reconstruction

with 0.9 as gene pair cutoff achieve higher recestgrercentage compared with the less
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stringent 0.85 cutoff, meaning that missing oneoge® has less impact on the more

conserved reconstruction.

It also shows that when gene-pair cutoff is s€t. 8y we recover 88% of the gene runs.
This number should not be taken directly as anraogumeasure, since removing one
genome from the data set will inevitably lead te lick of information to successfully
reconstruct some of the original gene runs. It &hbe treated as a lower bound on the

accuracy in the worst case.

Comparison to previous work

We compare our results with those in Slateal. [2] and Boussaet al. [1]. The
reconstruction shown in Slatetral. [2] is more closely related to this study, becahss
also reconstructed Rhizobiales ancestors and bethey attempted reconstruction of
conserved blocks and replicon evolution. Bousgal. [1] is a more general
computational inference of gene content and funaelicomposition of genomes,

focusing on the alpha-proteobacterial genomesaailat the time of that study (2004).

Using a manual reconstruction, Slageal. identified a few conserved gene runs that are
shared by a group éthizobiales species. We mapped the species onto our tree and
compared the identified conserved gene runs imgbenstructed genome of the
corresponding ancestor. After the mapping, theistat a conserved block identified by
Slateret al. can be one of the following: identical, meaning an identical gene run is
also reconstructed in our study;ejended, meaning the mapped reconstructed gene run

is longer than the original conserved gene rurfr&@ymented, meaning the gene run is
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mapped to more than one reconstructed gene rung istudy; 4)nconsistent, meaning
there is some difference between the conservedrmgeneith the reconstructed gene run
in our study, and Snissing, meaning it failed to be mapped to any reconstdigene

run. Out of the 31 conserved gene runs in theikpeight are identical, 13 extended,
four missing, five fragmented, and one inconsistaittcases of discrepancy, including
missing, fragmented, and inconsistent, are dukdalifference in the genomes used in

the studies. Details can be found in the suppleah@ematerial.

The chromosomal size gain and loss have shownagpement and difference with the
reconstruction made Boussau et al. For example, the genome ®fmeliloti

experienced a mild gain from its LCA with tumefaciens C58. However, the sizes of
ancestral genomes are generally smaller in thdy/stuhich we suspect resulted from the

stringent probability cutoff.

Upon close examination of the genome functionabgation file, we noticed that the root
species for these members of Riézobiales order contains genes vital for survival, as
expected. Overall, more than 500 genes are camsgbais involved in metabolism in the
KEGG Orthology. There are 54 genes in the A-polyaserpathway (ko03010 KEGG
entry), and 24 genes in Aminoacyl-tRNA biosynth€k®0970). Boussagt al. pointed
out that their reconstructed ancestor has geneagyoolysis and a complete system for
aerobic respiration system. A similar result isrfdun this study, in that the ancestral
genome contains 22 genes in the Glycolysis/Glucgaeesis pathway, covering 18

different KEGG Orthology functional annotations.
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One other prediction we can make in regard to dradgshenotypic features is the
mobility of the ancestor. The ancestor possessggids in the bacterial chemotaxis
pathway and 47 genes in the flagella assembly @athwhich strongly suggests that it is

capable of moving and sensing the chemical signdlse surrounding environment.

6.3 Additional Remarks

This is the first automated computational methad tan systematically perform
ancestral genome reconstruction at both gene gidae scales without prior
assumptions on the ancestral genome replicon aothie. It is also the first method that
can reconstruct gene runs for ancestral genomésfwiy resolved strand information in
bacteria with functional annotation using extemfatabases. We have also modified and
improved the original NGP-based model-free methoid does not require a reference
genome, reconstructs all possible conserved bliocke situation of uncertainty,
correctly handles strand information, and employ®astep occurrence uncertainty
resolution process. Based on the reconstructednges\(REGEN can also propose
possible scenarios on the evolutionary eventsdtin gene runs and replicons along the

branches in the species tree.

In the functional annotated gene runs reconstructethe LCA of all Rhizhobiales
species, we noticed a small number of genes witlumction assigned. With most genes
on the same gene run are annotated with simileglated functional and the fact that the
genes reconstructed at the root of the tree akelikety to be functionally conserved, we
propose possible functional annotation of thes&fiomwn” genes with the functions of

their neighboring genes.
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One significant limitation of REGEN is that sin¢etreconstructions are performed on
identified orthologous genes and gene families gead by & party programs,
OrthoMCL in our case, the amount of informationttt@n be reconstructed is directly
limited by the output of these programs. For exanisle genes in the repABC systems
of Agrobacterium organisms are not reconstructed because OrthoM{4dfto group
them into orthologous gene families. Theoreticatlys possible to add genes with
known orthologous relationships into the recongiouc just as the refinement module
does, but it involves both necessary expertisharspecies of interests and manual

editing of the program’s output file.

There are also several important assumptions amalifications made by the program.
First of all, the replicon reconstruction algorit@®sumes that in the two child species
groups sharing more genes are more likely to binesame replicon in the ancestral
genome. This could be unrealistic if some largdeseaolutionary events affected a large
number of genes in an uneven fashion. Secondy#tters will only work with
bifurcating trees by design. Third, there is nocapt of time in the current project. Due
to the lack of data to determine mutation ratesveits at all different scales, including
gene-, replicon-, and genome-scale, we decideghteelthe concept of time out of the
scope of the current study. Without it, we canreiednine which ancestral species
actually co-existed at the same point in time. lk@emnore, we cannot reconstruct
evolutionary events that involved more than oneeatral species, such as horizontal
gene transfer from one ancestral species to andiimethe other hand, these very

simplifications make this method feasible and makeestral genome reconstruction for
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about 13,000 orthologous gene families in 23 sgeathievable in a few hours on a

regular desktop (time for all-against-all BLASTnist counted).

In summary, our research has, for the first timagdenautomated bacterial ancestral

genome reconstruction with replicon structure gaesi

A version of this chapter is under review as aasdearticle in the journdbenes (Yang
K, Heath LS, and Setubal JC: REGEN: Ancestral GenBconstruction for Bacteria,
2012). Referees have asked for modifications, ameyiged version has been submitted

as of this writing.
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Chapter 7

Conclusion

In this dissertation, we have described a new sy$be ancestral genome reconstruction
for prokaryotes, which we have called REGEN. Twohaf components of REGEN

deserved special attention and were describedcoarate chapters.

In Chapter 4 we described a systematic methoddimggfine ortholog identification
predictions generated by third padsgnovo prediction programs by combining local

synteny and phylogeny.

In Chapter 5 we described the development and atrafuof the first whole genome
simulator for prokaryotes, which we called PEGsIREGsim can simulate the evolution
of prokaryotic genomes at the gene and replicolescd#e have shown that PEGsim is
capable of producing data with tunable properisesii as genome size and number of

replicons among extant species), mimicking obsepregerties of actual genomes.

In Chapter 6 we described REGEN, the first autothatenputational method that can
systematically perform ancestral genome reconstrueit both gene and replicon scales
without prior assumptions on the ancestral genapkaon architecture. We applied
REGEN to simulated data produced by PEGsim andabdata from members of the
Rhizobiales bacterial order. Ideas for extensiothefwork are outlined in the conclusion

of Chapter 6.
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With the continued accumulation of genome datauiplip repositories, including an
effort to cover gaps in the phylogenetic coveraigerokaryotic species [58], we can
expect that REGEN has the potential of becomingrgoortant tool in the study of
prokaryote evolution. That same accumulation shaldd allow refinements of PEGsim
and improvements of various aspects of REGEN basettiditional tests on both

simulated data and real genomes.

In addition to the work presented here, the auditer contributed to the following

publications while doing his doctoral work:

Mining for Meaning: Visualization Approaches to D@weringArabidopsis Stress
Responses in Roots and Shoots

Lecong Zhou, Christopher Franck, Kuan Yang, GuiiaewPilot, Lenwood S.
Heath, and Ruth Gren®MICS. A Journal of Integrative Biology. April 2012,

16(4): 208-228. d0i:10.1089/0mi.2011.0111.

Next-generation phage display: integrating and canmg available molecular
tools to enable cost-effective high-throughput gsial

Emmanuel Dias-Neto, Diana Nunes, Ricardo Giordaledsica Sun, Gregory
Botz, Kuan Yang, Joao Setubal, Renata PasqualiadilVArap

PL0S One, 2009,4(12):e8338.

Performance comparison of gene family clusteringhos with expert-curated

gene family dataset iArabidopsis thaliana.
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Kuan Yang, Liging Zhang

Planta. DOI: 10.1007/s00425-008-0748-7

Performance comparison between k-tuple distancdaamdnodel-based
distances in phylogenetic tree reconstruction
Kuan Yang, Liging Zhang

Nucleic Acids Research, 2008, Vol. 36, No. 5 e33
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