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Ancestral Genome Reconstruction in Bacteria 

Kuan Yang 

ABSTRACT 

The rapid accumulation of numerous sequenced genomes has provided a golden 

opportunity for ancestral state reconstruction studies, especially in the whole genome 

reconstruction area. However, most ancestral genome reconstruction methods developed 

so far only focus on gene or replicon sequences instead of whole genomes. They rely 

largely on either detailed modeling of evolutionary events or edit distance computation, 

both of which can be computationally prohibitive for large data sets. Hence, most of these 

methods can only be applied to a small number of features and species. In this 

dissertation, we describe the design, implementation, and evaluation of an ancestral 

genome reconstruction system (REGEN) for bacteria. It is the first bacterial genome 

reconstruction tool that focuses on ancestral state reconstruction at the genome scale 

instead of the gene scale. It not only reconstructs ancestral gene content and contiguous 

gene runs using either a maximum parsimony or a maximum likelihood criterion but also 

replicon structures of each ancestor. Based on the reconstructed genomes, it can infer all 

major events at both the gene scale, such as insertion, deletion, and translocation, and the 

replicon scale, such as replicon gain, loss, and merge. REGEN finishes by producing a 

visual representation of the entire evolutionary history of all genomes in the study. With a 

model-free reconstruction method at its core, the computational requirement for ancestral 

genome reconstruction is reduced sufficiently for the tool to be applied to large data sets 

with dozens of genomes and thousands of features. To achieve as accurate a 
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reconstruction as possible, we also develop a homologous gene family prediction tool for 

preprocessing. Furthermore, we build our in-house Prokaryote Genome Evolution 

simulator (PEGsim) for evaluation purposes. The homologous gene family prediction 

refinement module can refine homologous gene family predictions generated by third 

party de novo prediction programs by combining phylogeny and local gene synteny. We 

show that such refinement can be accomplished for up to 80% of homologous gene 

family predictions with ambiguity (mixed families). The genome evolution simulator, 

PEGsim, is the first random events based high level bacteria genome evolution simulator 

with models for all common evolutionary events at the gene, replicon, and genome scales. 

The concepts of conserved gene runs and horizontal gene transfer (HGT) are also built in. 

We show the validation of PEGsim itself and the evaluation of the last reconstruction 

component with simulated data produced by it. REGEN, REconstruction of GENomes, is 

an ancestral genome reconstruction tool based on the concept of neighboring gene pairs 

(NGPs). Although it does not cover the reconstruction of actual nucleotide sequences, it 

is capable of reconstructing gene content, contiguous genes runs, and replicon structure 

of each ancestor using either a maximum parsimony or a maximum likelihood criterion. 

Based on the reconstructed genomes, it can infer all major events at both the gene scale, 

such as insertion, deletion, and translocation, and the replicon scale, such as replicon gain, 

loss, and merge. REGEN finishes by producing a visual representation of the entire 

evolutionary history of all genomes in the study. 

  



iv 
 

ACKNOWLEDGEMENT 

I would like to thank Dr. Joao Setubal for his guidance during the years. I would like to 

thank Dr. Lenwood Heath especially for being my co-advisor and pushing me through the 

last stages of this dissertation. I would also like to thank all my other committee members, 

Drs. Allan Dickerman, Boris A. Vinatzer, Brett Tyler, for all their help and 

encouragement. 

I would like to thank Dr. Ruth Grene for supporting me through the last year of my Ph.D 

and giving me the opportunity to work with the iPlant group. 

I would also like to thank members in Dr. Joao Setubal’s group, Andrew Warren, Chris 

Lasher, and Steven Mason for their interesting and good-spirited discussions relating to 

this research. Finally, thanks also go to Kelly Williams for making some scripts available.  

  



v 
 

Table of Contents 

Chapter 1: Introduction and Background ...........................................................................1 

Chapter 2: Concepts and Definitions .................................................................................7 

Chapter 3: Problem Statement  ........................................................................................10 

Chapter 4: Homology Prediction Refinement  .................................................................12 

4.1 System and Methods.............................................................................................12 

4.2 Results and Discussion .........................................................................................19 

4.3 Additional Remarks ..............................................................................................23 

Chapter 5: A Whole Genome Simulator of Prokaryote Genome Evolution  ...................25 

5.1 System and Methods  ............................................................................................26 

5.2 Additional Remarks ..............................................................................................41 

Chapter 6: REGEN: Ancestral Genome Reconstruction for Bacteria  ............................43 

6.1 System and Methods  ............................................................................................43 

6.2 Results and Discussion .........................................................................................54 

6.3 Additional Remarks ..............................................................................................82 

Chapter 7: Conclusion  .....................................................................................................85 

References ..........................................................................................................................88 

 

 

 

  



vi 
 

List of Figures 

Figure 4.1 The profile built for the gene g1 .......................................................................14 

Figure 4.2 Profile comparison and merging  .....................................................................17 

Figure 4.3 Distribution of group scores in real and randomized dataset  ..........................19 

Figure 4.4 Distribution of blocks reconstructed for the last common ancestor  ................22 

Figure 5.1 Genome size mean and standard deviation of ten simulations and the 

Rhizobiales dataset  ............................................................................................................34 

Figure 5.2 Genome size mean and standard deviation of ten simulations and the Brucella 

data set  ..............................................................................................................................36 

Figure 5.3 The mean and standard deviation of the number of replicons in ten simulations 

and the Rhizobiales dataset  ...............................................................................................38 

Figure 5.4 Number of conserved blocks shared by Parvibaculum lavamentivorans DS-1 

and Azospirillum B510 uid32551 at different lengths........................................................39 

Figure 5.5 Comparison of distribution of the number of syntenic blocks between the 

model with conserved blocks and the one without  ...........................................................40 

Figure 6.1. Overview of all major components in REGEN ...............................................44 

Figure 6.2. Replicon architecture reconstruction example ................................................49 

Figure 6.3 Genome coverage achieved by reconstructions at different gene pair cutoff ..55 

Figure 6.4. Longest gene run length and correct longest gene run length in the 

reconstructions at different cutoff  .....................................................................................56 

Figure 6.5. Partially reconstructed conserved blocks percentage distribution ...................57 

Figure 6.6 Precision and recall for different reconstructions .............................................59 



vii 
 

Figure 6.7 Fraction of different scenarios for replicon reconstruction evaluation for 

different reconstructions  ...................................................................................................60 

Figure 6.8 Phylogenomic species tree for the Rhizobiales dataset  ...................................62 

Figure 6.9 A long gene run on the main chromosome split into two smaller fragments 

during the evolutionary path from the LCA of Agrobacterium Vitis S4 and Agrobacterium 

Tumefaciens C58 to Agrobacterium vitis S4  .....................................................................68 

Figure 6.10. A look at the complete reconstructed evolutionary history of the Rhizobiales 

group ..................................................................................................................................75 

Figure 6.11. Operon gene pairs quantity comparison between extant and ancestral 

genomes pairs involved are operon gene pairs ..................................................................78 



viii 
 

List of Tables 

Table 4.1 Result of the refinement process and related information. ................................20 

Table 5.1. Properties of the power-law number generators used. ......................................33 

Table 6.1. Genome architecture for Rhizobiales and integer ID assigned to each genome.

............................................................................................................................................53 

Table 6.2. Gene content reconstruction .............................................................................63 

Table 6.3. Contiguous gene run reconstruction overview of the Rhizobiales group .........64 

Table 6.4. Functional annotation of a particular reconstructed contiguous gene run in the 

LCA of the Rhizobiales group ...........................................................................................66 

Table 6.5. The distribution of the core genes in all ancestral genomes and secondary 

chromosome assignment ....................................................................................................69 

Table 6.6. The distribution of core genes in the Rhizobiales data set ...............................72 

Table 6.7. Leave-one-out stability test result .....................................................................79 

 

 

 

 

 

 



1 
 

Chapter 1 

Introduction and Background  

 

Ancestral genome reconstruction can be understood as a phylogenetic study of species of 

interest with more details than what is provided by a traditional phylogenetic tree. It may 

include information about ancestor species such as their gene content, the order of these 

genes in the genome, the replicon architecture, and the nucleotide sequence itself. Such 

information, when reliable, can help us better understand the evolutionary history of a set 

of organisms and thereby shed light on the genomic basis of phenotypes. Ancestral 

genome reconstruction is the topic of this dissertation. 

Boussau et al. [1] reconstructed ancestral gene sets for a number of α-proteobacteria and 

quantified the flux of genes along the branches of the species tree. They inferred that the 

common ancestor of the α-proteobacteria was a free-living, aerobic, and motile bacterium 

with pili and surface proteins for host cell and environmental interactions. However, the 

authors inferred only the gene content of ancestral species. Slater et al. [2] inferred more 

detailed evolutionary histories for some members of the Rhizobiales, Vibrionales, and 

Burkholderiales. Their scenario for the Rhizobiales, based on extensive comparative 

genomic analysis, hypothesizes that the last common ancestral genome of members of 

this order had one chromosome and one plasmid. From this ancestor, several paths 

followed, some in the direction of enlarging this ancestral plasmid until it became a 

second chromosome (Agrobacterium tumefaciens C58 and Agrobacterium vitis S4), and 

some in the direction of incorporating the plasmid into the chromosome (M. loti, B. 

japonicum), with other intermediary cases. However, Slater et al.’s reconstruction was 
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qualitative and did not provide a detailed reconstruction of gene content and genomic 

order. Moreover, their approach was not automated. 

Automated methods for ancestral state reconstruction fall into two main categories, 

phylogeny based methods and genome rearrangement-based methods. Two of the best 

known phylogeny-based methods are the Sankoff algorithm [3] and the Fitch algorithm 

[4]. Although both algorithms are designed for ancestral nucleotide sequence inference, 

they can be adapted for gene order inference with slight modifications. For example, an 

ancestral gene reconstruction method based on neighboring gene pairs (NGPs) has been 

proposed [5]. An NGP is a pair of genes physically adjacent to each other on a replicon. 

Their method [5] extracts NGPs from genomes of extant species. The method then 

determines the occurrence of these NGPs in the ancestral genomes and outputs a list of 

conserved blocks assembled from the NGP content for each ancestor. The fundamental 

assumption of the method is that if adjacent homologous genetic loci are observed in both 

child species, then it is highly likely that they are also adjacent in the parent species. 

NGP-based methods can reconstruct ancestral genomes with thousands of genetic loci 

and have no limitation on allowed evolutionary events. 

Compared to phylogeny based methods, genome-rearrangement-based methods usually 

start by simplifying genomes into strings of symbols, each of which represents a gene. 

Homologous genes are represented with the same symbol. No duplications are allowed in 

most of these methods and different heuristics are used to ensure it. This group of 

methods is extremely computationally intensive, as reconstructing a phylogeny from gene 

order data is NP-hard [6-8]. Although various heuristic methods have been developed [9], 
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they are still only applicable to small to medium sized data sets [5]. Furthermore, it has 

been suggested that this category of methods needs further study before they can yield 

reliable results in ancestral genome reconstruction [10, 11]. 

The rapid accumulation of numerous sequenced genomes demands detailed ancestral 

genome reconstruction methods that not only take into account all kinds of information 

but also are scalable to large genomes. Here we develop a computational system named 

REGEN (REconstruction of GENomes) for ancestral genome reconstruction. REGEN 

can cover most gene, replicon, and genome scale events, such as gene content 

reconstruction, contiguous gene run reconstruction, and replicon architecture 

reconstruction. However, it does not support nucleotide sequence reconstruction.  

The performance of genome reconstruction at this scale relies heavily on the amount of 

available information, which consists of the genomes in the extant species represented as 

orthologs, a group of homologs.  

Orthologs are related genes resulting from a speciation event in a single ancestral gene in 

the last common ancestor (LCA), while paralogs are genes that result from a duplication 

event [12]. The orthology concept is one of the cornerstones of genomics study, including 

gene function prediction [13]. Accurate orthology prediction is essential to any study in 

the comparative genomics field, including ancestral genome reconstruction, gene 

function annotation, gene function prediction by co-occurrence of genes [14] ,and even 

mutation effect prediction [15]. Much work has been done in this field, and many 

algorithms/software tools have been developed to identify orthologs [13, 16-24]. These 

methods have been categorized into three groups: tree-based methods, graph-based 
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methods and hybrid methods; a detailed review can be found in [25]. OrthoMCL [22] and 

InParanoid [17] are two of the most popular programs for ortholog identification and 

OrthoMCL is used in our study. A performance comparison of these tools has been done, 

but the results are inconsistent [26]. Despite their popularity, neither of these two 

methods uses information about local synteny during the ortholog prediction process. 

Moreover, they both can output both orthologous genes and paralogous genes. When 

such genes are present in a family, it means that we are unsure which ones are true 

orthologs of the other genes in the family. Because accurate orthology prediction is a key 

evolutionary technique for most comparative genomics studies [25] and only orthologs 

can be used in our reconstruction, we decided to undertake the problem of refinement of 

ortholog families using synteny information. 

We have developed a systematic methodology to refine ortholog identification generated 

by third party de novo prediction programs. Our methodology targets the mixed families 

to obtain more orthologous families. Although gene synteny has already been used to 

confirm orthology prediction in prokaryotes [27], a formal methodology that combines 

synteny and phylogeny to refine orthologs prediction is still lacking. With an assumed 

reliable tree, this refinement method has essentially combined the strength of graph-based 

algorithms, phylogenetic information, and local synteny in the ortholog identification 

process. We show in Chapter 4 that our refinement methods can successfully turn almost 

80% of the mixed families produced by orthoMCL into orthologous families with p < 

0.05. 
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Another important area involved in ancestral genome reconstruction is validation. 

Simulated data are usually employed for this purpose due to the nature of the study. To 

this purpose, we developed a random events-based prokaryote genome evolution 

simulator that we call Prokaryote Evolutionary Genomics Simulator (PEGsim) [28]. It is 

capable of simulating medium- to large-scale evolutionary events, an area in which good 

simulators are lacking. Species-, replicon-, and gene-level events, such as speciation, 

replicon fission and fusion, replicon gain and loss, replicon merge and split, gene gain 

and loss, gene transposition and translocation, gene duplication and reversal, and 

horizontal gene transfer are implemented in PEGsim. PEGsim also implements the 

concept of conserved gene runs, which can be mapped to the biological concept of 

operon. 

An important principle in the design of PEGsim is simplicity and efficiency of use.  The 

program runs in linear time the total number of genes in the entire group of species. 

Running time can vary depending on parameter settings. However, a simulation with one 

starting chromosome of 3000 genes and a plasmid of 1000 genes and resulting in 10-15 

extant species with reasonable settings of other parameters finishes within minutes. To 

our knowledge, existing evolution simulation tools that are comparable to PEGsim are 

dawg [29], evolsimulator [30], and GSIMULATOR [31]. However, they all lack models 

for gene- and replicon-scale evolutionary events. PEGsim is the first simulator designed 

to fill these gaps. It has probability-based models for all general gene- and replicon-scale 

events in prokaryotes. PEGsim is described in Chapter 5. 
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With both of the previous components developed, we are able to perform accurate 

ancestral genome reconstruction with REGEN and provide measures of confidence in 

regard to obtained results. Furthermore, we also evaluated its performance by comparing 

with previous studies.  

There are a few things we can try to improve REGEN. First of all, REGEN is built based 

on NGPs, which are dimers of genes. A reasonable extension is to increase the number of 

genes to three so the reconstruction is carried out on trimers. Second, general graph 

algorithms are used in the gene run reconstruction process and take the majority of the 

running time consumed by REGEN. More refined algorithms designed with the 

consideration of the nature of gene run graphs should reduce the running time 

substantially.  

Our work is the first to perform model-free NGP-based ancestral genome reconstruction 

in a fully automated fashion, while supporting both maximum parsimony and maximum 

likelihood criteria. We apply REGEN to a group of Rhizobiales species that vary 

significantly in life styles (e.g., plant pathogens, animal pathogens, mutualists, and free-

living bacteria), genome architecture (e.g., single chromosome, pair of chromosomes, 

with and without plasmids, and large and small plasmids), and genome size.  

In the remainder of the dissertation, we first define some of the important concepts 

involved in this work (Chapter 2). Then, we provide a formal definition of the targeted 

problem (Chapter 3). Finally, we show the details for development and application of 

each component involved in the reconstruction, including homology refinement (Chapter 

4), PEGsim (Chapter 5), and REGEN (Chapter 6). 
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Chapter 2 

Concepts and Definitions 

 

Our model of a prokaryotic genome is that it contains a main chromosome and zero or 

more additional replicons. These other replicons can be additional chromosomes and/or 

plasmids. It is worth pointing out that additional chromosomes in prokaryotes are the 

exception and not the norm, at least in species whose genomes have been sequenced. 

Some important concepts used in this dissertation are listed below.  

Speciation: the splitting of lineages. One ancestor splits into two child species. It can 

happen at most once per generation for each species. 

Replicon: a self-replicating DNA unit in a genome, such as a chromosome or a plasmid. 

Replicon merge: Two replicons are merged into a new replicon. If either of the original 

replicons is the main chromosome, then the new replicon remains the main chromosome, 

otherwise a new name is created. It can happen at most once per generation for each 

replicon. 

Replicon split: A single replicon is split into two new replicons. If the original replicon is 

the main chromosome, then the larger of the two new replicons will be named the main 

chromosome. It can happen at most once per generation for each replicon. 

Replicon loss: A replicon is lost. Main chromosome cannot be lost. It takes place at most 

once per generation for each replicon. 
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Replicon gain: A species gains a new replicon. It takes place at most once per generation 

for each species. 

Gene gain: A single gene or consecutive run of genes is gained. It takes place at most 

once per position per generation for each replicon of every species. 

Gene loss: A single gene or consecutive run of genes is lost. It takes place at most once 

per position per generation for each replicon of every species. 

Gene reversal: A single gene or consecutive run of genes is reversed. It takes place at 

most once per position per generation for each replicon of every species. 

Gene duplication: A single gene or consecutive run of genes is duplicated and inserted 

into a random location on the same replicon. 

Gene translocation: A single gene or consecutive run of genes is transferred from one 

replicon to another in the same species. 

Gene transposition: A single gene or consecutive run of genes is transferred from one 

position to another on the same replicon. 

Horizontal gene transfer: A single gene or consecutive run of gene is transferred from 

one species to another that is evolving at the same time. 

Homologous gene family: A group of structural and/or functional similar genes 

descended from the same ancestor. 
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Orthologous gene family: A homologous gene family with only orthologous genes, 

namely one gene in each species. Each orthologous gene family is assigned a unique ID. 

Paralogous gene family: A homologous gene family with all genes coming from one 

single taxon.  

Mixed gene family: A homologous gene family with orthologous genes from some 

species and paralogous genes from other species. 

Core gene: A gene that occurs on the main chromosome of all the species in a study. 

Singleton gene:  A gene that does not have a homologous counterpart in any other 

genome in the study and is represented by ‘*’ in the reconstruction.  

Gene family alphabet ∑ : the set of all orthologous gene family IDs plus *. 

Gene run: A chain of genes located consecutively on a replicon represented by a finite 

sequence over ∑ from a genome without interruption by *. 

Conserved blocks: A conserved gene run across a group of species. Conserved blocks 

will be affected by evolutionary events much more rarely than other blocks. 

Phylogenomic tree: a species tree built based on concatenated aligned protein sequences 

of thousands of genes appearing exactly once in all genomes of interest. 

Neighbor Gene Pair (NGP): a pair of genes physically adjacent to each other on a 

replicon. 
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Chapter 3 

Problem Statement 

 

Given a group of complete genomes from closely related bacterial species (usually 

species in the same order, such as family, or genus) and a rooted species tree of these 

genomes (which define their phylogenetic relationships), infer gene set, gene order, and 

replicon architecture for each internal node in the tree. 

Note that nucleotide-scale evolutionary reconstruction is not considered in this project. 

Models for nucleotide evolution form their own research area and have been intensively 

studied [32-35].  

Input 

1. Complete annotated genomes of a group of bacteria of interest and of a certain 

number of outgroup genomes. Only protein-coding genes are included. For each gene, 

the following information is required: GeneBank accession number or ID, product, 

strand, and genome coordinates.  

2. Orthologous gene families across these genomes. This information can be 

obtained by running an ortholog family computation program. In this work, we have 

used for this purpose the program OrthoMCL [22]. 

3. A trusted rooted phylogenetic tree of the input species. 
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Output 

For each ancestral genome (internal node in the input species tree): 

1. A hypothesis about genome architecture (number of replicons, type of replicons). 

2. The overall set of genes. 

3. Relative location of each gene to each other and strand information of each gene 

when possible. 

4. Replicon assignment for each gene when possible. 

5. Annotation of the tree branches with genome-wide evolutionary events, including 

reversal, translocation, replicon acquisition/loss, replicon split, duplication, and 

lateral gene transfer. 
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Chapter 4 

Homology Prediction Refinement  

 

Homology designates the relationship of entities that share a common ancestor, 

regardless to the possible evolutionary events that led to the current situation [36]. Genes 

that share such a relationship are referred to as homologs. Homologs can be further 

classsified into two groups, orthologs and paralogs. Two genes are said to be orthologs 

when the evolutionary event that gave rise to them was a speciation event. Two genes are 

said to be paralogs when the evolutionary event that gave rise to them was a duplication 

event.  

OrthoMCL [22] and InParanoid [17] are two of the most popular programs for ortholog 

identification. Here we describe the development of a systematic methodology to refine 

the ortholog identification generated by such programs. We also show the improvement 

made by the refinement using a pilot reconstruction on a small group of Rhizobiales 

species with and without homology refinement.  

4.1   System and Methods 

The refinement method assumes a reliable species tree, to be provided as input. It also 

assumes results from a de novo homologous gene family prediction program, such as 

OrthoMCL.  
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We consider each genome to be a collection of replicons. In the Rhizobiales order, most 

fully sequenced genomes have more than one replicon (e.g., one chromosome and several 

plasmids). 

4.1.1 Genome preprocessing 

Each replicon is represented by an array, with each array element representing a gene 

present in the replicon. When a gene belongs to an orthologous family, the family ID is 

used to represent the gene; when the gene does not belong to any family the symbol '*' is 

used.  The process ends with a list of replicons containing only orthologous gene family 

IDs. 

4.1.2 Homology refinement 

The refinement consists of four main steps: building profiles for the extant species, 

profile comparison and merging, ortholog family assignment, and statistical confidence 

assessment. 

4.1.3 Profile building for extant species 

The refinement is carried out in a family-by-family fashion. For each member of the 

family, we take 10 genes upstream and downstream to form a profile for this gene. The 

gene order is ignored during profile building to simplify the profile merging process. For 

each of these ten genes, the profile contains orientation and replicon location information 

with an initial weight. Currently, we only distinguish whether a gene is on the main 

chromosome or on a plasmid. Genes on different plasmids are considered to be in the 
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same replicon location. We compensated for this bias by assigning lower weight when 

two genes are both on plasmids instead of chromosomes. A species with two paralogous 

genes in the same family will have two profiles, one profile for each gene, after this 

process. A simple example is shown in Figure 4.1. 

 

 Figure 4.1. The profile built for the gene g1. It includes occurrence, strand, and 

localization (either on a chromosome or plasmid) of genes around g1. In this 

particular example, the profile shows the status of five genes, F34, F35, F36, F37, and 

F38. Occurrence is set to 1 to simply show F36’s occurrence. ‘+' is assigned 0.5 

because the gene is on the plus strand. The gene run is on chromosome so 

onChromosome is also set to 1. All values are default and can be customized. 

4.1.4 Profile comparison and merging 

Using the input species tree, we will compare the profiles and merge them when 

appropriate. This process proceeds in a bottom-up fashion, namely it starts from the most 

recent ancestors of two leaves in the tree and finishes at the root of the tree. The level of 
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each ancestor (how many speciation events away from the extant species) is determined 

by a simple traversal of the tree.  From the lowest level, for each ancestor in that level, 

we identify its children and perform an all-by-all comparison for all the profiles 

contained in both children. In each comparison of two profiles, we check the number of 

shared orthologous genes, whether they are in the same orientation and located on the 

same replicon or not. A comparison score for each profile pair is calculated based on 

these three criteria and stored in a list. The profile pair that achieves the highest score will 

be merged and removed from the list. This merging process is repeated until the highest 

remaining score drops to 0. Any unmerged profiles from children are directly assigned to 

the ancestor as well. Each profile can only be merged once. If it is already merged, the 

profile pair is simply ignored and removed. The following pseudocode gives a better 

view of the entire process. 

Pseudocode 

1. Determine levels (L)of  the tree 

2. for each l ϵ L 

3. do ANC � ancestors in l 

4. for each a ϵ ANC 

5.  do identify offspring A and B 

6.      PA � profiles in A 

7.      PB � profiles in B  

8.     for each jϵ PA  

9.    for each k ϵ PB 
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10.    do compute score 

11.    sort the scores in descending order(S) 

12.    for each s ϵ S 

13.   if s ≠ 0 and contributing profiles(ps) still available 

14.    do pn � merge the ps 

15.        mark ps unavailable 

16.       Assign pn to a 

17.    Assign all remaining unmerged profiles to a 

During the merging process, the scores for the shared orthologous families are summed to 

increase their weight in the profile. Orthologous families that do not have a match in the 

other profile are also kept in the new profile, with the consideration that they may match 

other profiles in future comparisons. A simple example is shown in Figure 4.2. 
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Figure 4.2. Profile comparison and merging. For simplicity only the comparison and 

merging process for F36 are shown. The process is carried out for all matched 

orthologous families, such as F35 in this case. In the merging process, corresponding 

values are summed. For example, the Occurrence value for F36 in the profile of g1_g2 is 

the sum of occurrence values in the previous two profiles for g1 and g2. 

4.1.5 Orthologous family assignment 

When the comparison and merging process is finished at the root of the tree, the genes in 

each of the profiles at the root are assigned to a new orthologous gene family. Since gene 

synteny alone is not a sufficient criterion for accurate orthology prediction, we respect the 
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original decision made by the previous software by trying to merge these new 

orthologous families, as long as the merging process does not create paralogs. We show 

an example to clarify this issue.  Suppose that in a homologous family identified by 

OrthoMCL there are the following genes: g1 and g2 from species A, g3 and g4 from 

species B, and finally g5 from species C. Suppose further that our method determines that 

g1 and g3 should be in an orthologous family (F1) and g2 and g4 should be in another 

orthologous family (F2), and g5 is left out of both new families. In this case, we will try to 

put g5 back in either F1 or F2. The priority for an orthologous gene family to incorporate 

other genes increases with its size, namely the number of members already in the family. 

In the cases where several paralogs from the same species can be added to the same 

newly identified family, the one with the lowest e-value by BLASTP [37] with any 

existing member of the family is added (all-against-all BLASTP e-values are available as 

inputs to orthoMCL).  

4.1.6 Statistical confidence assessment  

We used a randomization approach to assess the confidence for each refined orthologous 

gene family. To make the gene order as similar to the real data set as possible, we only 

randomized the order of genes on each replicon. The number of species and their replicon 

configuration are not changed. The confidence of each family is reflected by summation 

of all scores in the final profile at the root. The percentage distribution of the scores in the 

real dataset and the one from the randomized dataset is shown in Figure 4.3. The 

randomization is run for 100 times and the average is given as the result. Over 92% of the 
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identified orthologous gene families are statistically confident at a p-value of 0.05. All 

statistically insignificant families are removed from further analysis.  

 

 

Figure 4.3. Distribution of group scores in real and randomized dataset. 

4.2   Results and Discussion 

We applied our method to a collection of 10 Rhizobiales species: Agrobacterium 

radiobacter K84, Agrobacterium tumefaciens str. C58, Agrobacterium vitis S4, 

Bradyrhizobium japonicum USDA 110, Brucella suis 1330, Mesorhizobium sp. BNC1, 

Mesorhizobium loti MAFF303099, Rhizobium etli CFN 42, Rhizobium leguminosarum 

bv. viciae, Sinorhizobium meliloti 1021, with Bradyrhizobium japonicum USDA 110 as 
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the outgroup to the other nine Rhizobiales species. Genome sequences were downloaded 

from Genbank database release 176.0. OrthoMCL 1.4 was used to identify homologous 

families. The species tree that we used to test our methodology was the one presented by 

Slater et al. [2], which was obtained by a super matrix approach [38]. This tree was 

generated using 423 orthologous sequences.  

In total, OrthoMCL returned 9,237 homologous families: 6,939 orthologous families with 

34,643 genes, 1,698 mixed families with 13,047 genes, and 600 single species paralog 

families with 1,530 genes. Single species paralog families were not taken into 

consideration for this study. The refinement method identified 1764 orthologous families 

with p-value = 0.05. Detailed information is shown in Table 4.1. 

Table 4.1. Result of the refinement process and related information. 

 OrthoMCL Refinement Used for 
reconstruction 

 C1 C2 I O  

F 6,939 1,698 1,320 1,764 8,703 

G 34,643 13,047 11,320 9,150 41,354 

 

*C1: orthologous gene family; C2: mixed homologous gene family; I: mixed homologous 

gene families that can be processed by the refinement method, some of the mixed families 

cannot be processed; O: output from the refinement; F: number of gene families; G: 

number of genes; 

In Table 4.1, the OrthoMCL column specifies the numbers of orthologous families and 

mixed families identified by orthoMCL, as well as the total number of genes included in 

all these families. The refinement column shows how many of the mixed families could 
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be processed by the refinement method and how many valid orthologous families are 

identified (the refinement column). The used-for-reconstruction column shows the 

merged orthologous gene families from both OrthoMCL and the refinement, which 

serves as input for the next step, genome reconstruction. 

As shown by Table 4.1, ~77% of all the mixed families (87% of all genes in these 

families) can be refined by our method and resulted in 1,764 orthologous families (70% 

of all genes in mixed families). It increased the number of orthologous families and genes 

used for reconstruction by ~25%, from 6939 to 8703. 

This kind of improvement significantly helps the reconstruction of ancestral conserved 

syntenic blocks. We have successfully reconstructed 439 conserved blocks for the last 

common ancestor of nine Rhizobiales species with Bradyrhizobium japonicum USDA 110 

as outgroup. This number drops to 393 when refined orthologous families are not used in 

the reconstruction. More importantly, including refined orthologous families increased 

the size of the longest conserved blocks from 22 genes to 31 genes. The distribution of 

lengths of conserved blocks with the minimum size of 8 genes from both datasets is 

shown in Figure 4.4. Conserved block reconstruction was carried out for all internal 

nodes in the species tree, and we obtained conserved blocks for all ancestral genomes. 
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Figure 4.4. Distribution of blocks reconstructed for the last common ancestor. The 

red bars are from the reconstruction with refined orthologous families and the green bars 

without refined orthologous families.  

It is easy to see that the refinement not only helps to reconstruct more conserved blocks, 

but also increases the length of the conserved blocks. The longest reconstructed 

conserved blocks contains 31 genes with refined orthologous families, in constrast to 22 

genes without refined orthologous families. This result is at least comparable to the ones 

reported in [5] for the eukaryote Drosophila, considering the difference in the number of 

orthologous genes among the Rhizobiales here considered and the Drosophila species 

considered in [5]. This shows that it is possible to undertake genome reconstruction in 
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prokaryotes, at least for groups of genomes that are close enough, such as those from the 

Rhizobiales that we have used. 

4.3   Additional Remarks 

 

We have formalized a systematic methodology to refine ortholog identification 

predictions generated by third party de novo prediction programs by combining local 

synteny and phylogeny. More than three quarters of all the mixed homologous gene 

families can be processed by this method, and 92% of the newly identified orthologous 

gene families are statistically significant at a p-value of 0.05. These numbers are expected 

to grow when the method is applied to eukaryotic genomes.  

This is the first computational method that can systematically refine the result from other 

de novo orthology identification programs with statistical support by combining local 

synteny and phylogeny. It is also the first method that can reconstruct conserved blocks 

for ancestral genomes with fully resolved strand information in bacteria. However, there 

are several important assumptions and simplifications made by the program. First of all, 

the entire reconstruction algorithm is a maximum parsimony based method, which has 

proven to be less accurate as the branch length increases. The parsimony criterion 

assumes that the presence of more events to explain the same present-day situation is a 

less likely occurrence than one that uses fewer events to explain the same situation. It 

also assumes that after a gene duplication event, the gene that remains at the original 

location will retain its original function and hence is the functional ortholog of the family. 

This might be true in most cases, but not in all of them. A true functional ortholog among 
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paralogs can only be determined by wet-lab experiments and/or gene expression data. On 

the other hand, these very simplifications make this method possible and make the 

reconstruction taking ~8500 ortholog families from ten species practical. For the 

Rhizobiales genomes, the refinement took less than 1 minute and the reconstruction took 

less than 10 minutes on a standard desktop computer. 

A version of this chapter was published as Yang K, Setubal JC: Homology prediction 

refinement and reconstruction of gene content and order of ancestral bacterial genomes. 

In: Proceedings of the 2010 ACM International Conference on Bioinformatics and 

Computational Biology: 2010; Niagara Falls, New York, U.S.A (full paper) [39]. 

  



 
 

Chapter 5 

A Whole Genome Simulator of Prokaryote Genome Evolution  

 

Here we present the development and performance evaluation of PEGSim, a random 

events-based genome evolution simulator. The goal of PEGsim is to simulate medium- to 

large-scale evolutionary events, species-, replicon-, and gene-level events, such as 

speciation, replicon fission and fusion, replicon gain and loss, replicon merge and split, 

gene gain and loss, gene transposition and translocation, gene duplication and reversal, 

and horizontal gene transfer (see definitions of these concepts in Chapter 2). Nucleotide 

sequence scale events, such as substitution, are not included. 

Parameter setting has always been a challenge in the development of simulation tools. 

We derived some of the default parameter values in PEGsim from a recent extensive 

survey of prokaryotic genome evolution [40].  

5.1   System and Methods 

The following subsections describe the features implemented in PEGsim and the 

underlying model. 

5.1.1 Defining the genome of the last common ancestor (LCA)  

The genome of the LCA can have any number of chromosomes and plasmids of any size. 

Genes are represented by numbers and orientation by +/-. The distribution of genes on the 
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plus strand and the minus strand is customizable. 70% of the genes are assigned to the 

plus strand in this simulation. 

5.1.2 The global simulation 

Users can define the number of generations and the base rate of each evolutionary event. 

The actual evolutionary rate will fluctuate from one species to another. Each species can 

have at most one species-scale event in a single generation, each replicon one replicon-

scale event and each position on a replicon one gene-scale event. The strength of 

conservation for conserved blocks can also be customized, with a default value set at 0.8, 

meaning 80 percent of the gene level events that are supposed to happen at a conserved 

position are rejected. Chromosomes and plasmids can have different values for the 

strength of conservation. End users can also decide which scale events shall occur in the 

simulation. We found this feature very useful when the study is focused on a specific 

kind of event. All events are allowed to occur by default. 

The species that are evolving at any generation are also recorded. This list is used to 

determine the source and target species for horizontal gene transfers, which can only 

happen between species that are evolving at the same time. 

Two separate streams of pseudorandom numbers are used in PEGsim, one to control the 

speciation events and the other the rest of the evolutionary events. The number of genes 

involved in each evolutionary event is also recorded in the order of occurrence. Given 

this information, PEGsim can repeat any simulations when desired, or reproduce a given 

phylogenetic topology with different sets of gene- and replicon-scale events.  
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5.1.3 Probabilistic model for evolutionary events 

In the beginning of each generation, every evolving species has a certain probability to 

have a speciation event. If a speciation event takes place, two child species with identical 

genomes as the parent species are born, and the parent is eliminated from the currently 

evolving species list.  

Each replicon in each species has a certain probability to have at most one replicon-scale 

event, such as a replicon split, at each generation. For example, if a replicon has already 

gone through a replicon split event, then it will not have any other event for the 

generation. Chromosomes have a lower evolutionary rate than other replicons by default.  

Each position in a replicon has a certain probability to have at most one gene-scale event, 

such as a gene reversal. For example, if a position already had a gene reversal, it will not 

have any other gene-scale event for the generation. 

A species can have at most one event from any scale for any generation. The priority for 

the events is: species-scale, replicon-scale, and gene-scale. For example, if a species goes 

through a speciation event, it will not be considered for any other events. If a species does 

not go through a speciation event but does go through a replicon-scale event, it will not 

be considered for any gene-scale event. 

5.1.4  Gene Content 

The gene content change in PEGsim is achieved by gene birth and gene loss. In PEGsim, 

gene birth can be achieved through different events, including gene duplication, 
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endogenous HGT, and exogenous HGT. Gene duplication here means that after the 

duplication, the duplicated genes still have the original function, so they are represented 

by the same gene id. Endogenous HGT can transfer a group of genes from one species to 

another, thus changing the gene content of the target species. Exogenous HGT can 

happen at any position with some genes that have never been seen in the group of species 

before, i.e., these genes come from a donor species that is not part of the simulation.  

5.1.5 Power law distribution based length 

All gene-scale events in PEGsim can involve one to several genes, with the exact number 

determined by a power-law distribution.  Such distributions are ubiquitous in both natural 

and artificial phenomena, including physics, biology, geography, and even Internet 

ecology [41, 42]. To fit the real world, the number of genes involved in each event is 

drawn from customizable power-law distributions. The power-law number generator used 

in the simulator follows the following formula: 

X = [(an+1 – bn+1)× y + bn+1]1/(n+1)  

where a and b are the maximum and minimum values of the distribution, respectively, y 

is a uniformly distributed variable on [0,1], and n is a constant that affects the shape of 

the curve [43, 44]. 

5.1.6 Conserved blocks 

Conserved blocks are created when the genome is initialized for the LCA of all the 

species in the simulation. The percentage of a replicon covered by conserved blocks and 
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the length of the conserved blocks are both customizable. By default, 15% of the main 

chromosome and 5% of any plasmid are covered by conserved blocks. The lengths of the 

conserved blocks are also drawn from power-law distributions. 

The preservation of conserved blocks is achieved in two ways. First, any mutation 

scheduled to happen to genes located in conserved blocks could be rejected according to 

a certain probability (mentioned above). Second, for the events that have passed the first 

rule, they could be adjusted to affect the entire conserved block instead of breaking it. For 

example, if a part of a conserved block is to be reversed, the event could be replaced by a 

reversal of the entire conserved block. The criteria for both methods are customizable. 

5.1.7 Simulation flow overview  

The following pseudocode gives a general overview of the method and explains the 

priority of different events. Every step in the algorithm also includes necessary updates of 

related information, such as the list of evolving species and the conserved blocks. Every 

simulated event takes place following its own rate or distribution; this is implicit in the 

conditional statements below of the form “if <event> takes place”. 

Pseudocode1 

1. LCA genome initialization with conserved blocks 

2.for generation (2..end) 

3.  for each species that is evolving 

4.    if  speciation takes place 

                                                 
1 rs = replicon split; rl = replicon loss; rm = replicon merge; ra = replicon acquisition; gl = gene loss; gi = 
gene insertion; gtr = gene transfer; gtl = gene translocation; gr = gene reversal;  
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5.      do speciation and end loop 

6.        for each replicon the species has 

7.          if  rs takes place  

8.            do rs and end loop 

9.          if  rl takes place  

10.           do rl and end loop 

11.         if  rm takes place 

12.           do rm and loop 

13.         if  ra takes place 

14.           do ra and end loop 

15.         for each position on the replicon 

16.           if  gl takes place 

17.             do gl and move to the next available position 

18.           if  gi takes place 

19.             do gi and move to the next available position 

20.           if  gtl takes place 

21.             do gtl and move to the next available position 

22.           if  gtr takes place 

23.             do gtr and move to the next available position 

24.           if  gr takes place 

25.             do gr and move to the next available position 

26.           if  HGT takes place 
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27.             do HGT and move to the next available position 

28. return genomes and tree 

5.1.7 Output 

After a simulation is completed, PEGsim provides the output described in the next four 

paragraphs. 

Genomes of the extant species and the ancestors 

The genomes of all species that ever existed in the simulation are recorded. The file is in 

a FASTA-like format, where, instead of DNA sequence, we list the gene IDs with plus 

(+) or minus (–) signs representing orientations. 

A phylogenetic tree  

A phylogenetic tree that describes the evolutionary history of all the species involved in 

the simulation is output in the NEWICK format. 

Conserved blocks 

This file contains the conserved blocks for all species. For ancestors, it contains the 

conserved blocks when the ancestor encountered a speciation event and stopped evolving. 

For extant species, it contains the conserved blocks when the simulation ends.   
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Events log 

The output also includes a detailed log of every event that happened during the 

simulation in the order of occurrence. This log is the true history of the simulated 

evolution and can be used to benchmark different analytic methods and algorithms.   

5.1.8 Simulator behavior evaluation 

We generated a large amount of simulated data to observe the behavior of the simulator. 

A group of 22 fully sequenced species from the order Rhizobiales in the alpha-

proteobacteria were selected to compare to simulated data in a number of situations to 

guide the parameter setting. The Rhizobiales order is known to have bacteria with very 

different lifestyles (plant pathogens, animal pathogens, free living mutualists), varying 

genome architectures (single chromosome, pair of chromosomes, with and without 

plasmids, and large and small plasmids), and a large range of genome sizes (from 1 Mb to 

9 Mb). The selected species are Agrobacterium radiobacter K84, Agrobacterium 

tumefaciens C58 Cereon, Agrobacterium vitis S4, Azorhizobium caulinodans ORS 571, 

Azospirillum B510 uid32551, Bartonella henselae Houston-1, Beijerinckia indica 

ATCC_9039, Bradyrhizobium japonicum, Brucella suis 1330, Hyphomicrobium 

denitrificans ATCC_51888_uid33261, Mesorhizobium BNC1, Methylobacterium 

chloromethanicum CM4, Methylocella silvestris BL2, Nitrobacter hamburgensis X14, 

Ochrobactrum anthropi ATCC_49188, Oligotropha carboxidovorans OM5, 

Parvibaculum lavamentivorans DS-1, Rhizobium etli CFN_42, Rhodomicrobium 

vannielii ATCC_17100_uid38253, Rhodopseudomonas palustris BisA53, Sinorhizobium 

meliloti, Starkeya novella DSM_506_uid37659, and Xanthobacter autotrophicus Py2. 
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Since duplicated genes in the real data set are eliminated using the method described in 

[39], we disabled gene duplication in all the simulations shown below. The LCA of all 

the following simulations has a chromosome of 3000 genes and a plasmid with 500 

genes, and the simulations are set to run for 3000 generations. The power-law variant 

generators used in the simulation are customized as shown in Table 5.1. The constant n is 

set to 20 in all the generators.  

Table 5.1. Properties of the power-law number generators used. 

Event Max (a) Min (b) 

Insertion 50 1 

Loss 50 1 

Transposition 50 1 

Translocation 50 1 

Reversal 500 1 

HGT 50 1 

Conserved Blocks 40 2 

 
 

Genome Size evaluation 

The genome size of the simulated genomes can be regulated by adjusting any one of or 

combinations of the following parameters: gene loss rate, gene insert rate, and horizontal 

gene transfer rate. As expected, a high gene insertion rate will increase the genome sizes 

while a high loss rate will decrease them. Increasing both parameters leads to larger 

differences among the size of the genomes. By altering the parameters, we were able to 
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obtain simulations with similar mean and standard deviation as the real data. We 

randomly selected ten such simulations and plotted them with the real data in Figure 5.1. 

The real data is shown in red. 

 

Figure 5.1. Genome size mean and standard deviation of ten simulations and the 

Rhizobiales data set (red cross on the right). *Gene loss, gene insertion and HGT rate 

are 9e-5, 8e-5, and 6e-5 respectively.  

This result shows that PEGsim can generate simulated data sets with properties similar to 

real genomes. Users can modify the related parameters to generate simulations according 

to their needs. 



35 
 

As can be observed, the simulated data sets have a slightly smaller standard deviation 

compared to the real data set. We believe the reason for this difference is the random 

events-based model used in PEGsim. Genome evolution is not a random process [45, 46], 

and genome expansions or contractions can be triggered by the change of environment. 

These changes can be highly directional. For example, when a certain bacterial species 

moves into a new environment with different nutrient sources, it may have to pick up a 

large number of genes through HGT to survive, thus a rapid genome expansion is 

expected. An opposite scenario would be free-living bacteria that adopt an intracelullar 

lifestyle, so that a significant part of their genes are not needed anymore, leading to 

genome contraction [1]. As we have pointed out earlier, the order Rhizobiales contains 

bacteria with very different life styles and genome architectures, leading to a large 

standard deviation. In order to demonstrate PEGsim’s capacity to generate more 

conserved simulated data, we compared another group of simulations with the available 

genomes of the Brucella genus in the Genbank database. The genomes used are Brucella 

abortus bv. 1 str.9-941 (uid58019),Brucella abortus S19 (uid58873),Brucella canis 

ATCC 23365 (uid59009), Brucella melitensis ATCC 23457 (uid59241), Brucella 

melitensis biovar Abortus 2308 (uid62937), Brucella melitensis bv. 1 str. 16M 

(uid57735), Brucella microti CCM 4915 (uid59319), Brucella ovis ATCC 25840 

(uid58113), Brucella suis 1330 (uid57927), and Brucella suis ATCC 23445 (uid59015). 

The result is shown in the Figure 5.2.  

 



36 
 

 

Figure 5.2. Genome size mean and standard deviation of ten simulations and the 

Brucella data set (red cross). *Gene loss, gene insertion and HGT rate are 1e-4, 9e-5, 

and 1e-4 respectively. The number of genes in LCA is set to 3500 (3000 on the main 

chromosome, 500 on one plasmid). The simulations have run for 1000 generations. 

The above results are evidence that PEGsim is capable of producing a simulated data set 

with basic properties that are close to those in a real data set. 
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Replicon number evaluation 

The genome architecture of the simulated genomes can be adjusted by modifying any one 

or combinations of the following parameters: chromosome split rate, chromosome merge 

rate, plasmid loss rate, plasmid merge rate, plasmid split rate, plasmid gain rate. As 

expected, lower plasmid gain and split rates will generate genomes with fewer replicons, 

and higher plasmid split and gain rates will generate genomes with more replicons. With 

some parameters properly set, we were able to obtain simulations with the number of 

replicons similar to the Rhizobiales data set. Ten randomly selected such simulations and 

the Rhizobiales data set were plotted in Figure 5.3. The real data point is shown in red. 
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Figure 5.3. The mean and standard deviation of the number of replicons in ten 

simulations and the Rhizobiales data set (red cross). *Chromosome split rate, 

chromosome merge rate, plasmid loss rate, plasmid merge rate, plasmid split rate and 

plasmid gain rate are set to 1e-13, 5e-11, 2e-10, 1e-10,1e-9, and 1e-9 respectively. 

Conserved blocks length evaluation 

In addition to homologous genes, related species usually show a higher level of genome 

conservation in conserved blocks. The length of these conserved blocks roughly follows 

power-law distributions with long tails [47, 48], which are due to the occurrence of a few 

long conserved blocks. For example, in Figure 5.4 we show the distribution of conserved 
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blocks at different lengths shared by Parvibaculum lavamentivorans DS-1 and 

Azospirillum B510 uid32551. Although there are no conserved blocks of lengths between 

17 and 27, there is one of length 28. 

  

Figure 5.4. Number of conserved blocks shared by Parvibaculum lavamentivorans 

DS-1 and Azospirillum B510 uid32551 at different lengths. 

These long tails are difficult to simulate if we just use random events, since the long 

conserved blocks are of course not random events. We deal with this by creating the 

concept of simulated conserved block, which is implemented by rejecting a certain 

fraction of evolutionary events that would have disrupted existing blocks of genes. This 
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allows a few long conserved blocks to “survive” over the course of the simulation, thus 

replicating what is observed in real genomes. In Figure 5.5 we show the average numbers 

of conserved blocks at different lengths from ten simulations generated by two different 

models, one with simulated conserved blocks turned on and one not. All simulations only 

include two species for simplicity reasons. It is easy to see that the long tail phenomenon 

is not present in the model without simulated conserved blocks. By customizing the 

parameters initial conserved gene percentages and initial conserved blocks distribution, 

different conservation levels can be achieved. 

 

Figure 5.5. Comparison of distribution of the number of syntenic blocks between the 

model with conserved blocks and the one without.  
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5.2 Additional Remarks 

We have developed the first whole genome simulator for prokaryotes that focuses on 

gene-scale, replicon-scale, and species-scale events. We have shown that the simulator is 

capable of producing data with vastly different properties (such as genome size and 

number of replicons among extant species), mimicking observed properties of real life 

genomes. By the implementation of conserved blocks, we have managed to overcome the 

problem that almost no long contiguous gene runs occur in simulated data produced with 

pure probability models. We have used recently published literature as guidance to set 

default parameters so that non-expert users can also obtain high quality simulation. 

PEGsim is also highly customizable for users with the necessary expertise. Together with 

the simulator code, we also provide various scripts that measure different properties of 

the simulated data to assist parameter setting by the end users, if they choose to do so. A 

master script that enables running multiple simulations in parallel is also included. 

By using two separate streams of random numbers, the simulator separates events that 

affect the tree topology from all other events, so the end user can have simulations with 

the same phylogenetic tree but different gene- and replicon- scale events. A typical use 

case is for the user to first disable all other events except for speciation events to get a 

satisfactory (according to some criterion) tree. With all other events disabled, this process 

is extremely fast. Then, the user can rerun the simulator with the seed that determined the 

tree topology and all other evolutionary events enabled to produce multiple simulations. 

It is also possible to obtain simulations with events at all scales by combining PEGsim 

with other existing sequence-scale simulators, such as Dawg [29], SIMULATOR [30], or 
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SIMGRAM [31]. PEGsim can be run first to provide a scaffold of simulated genomes 

and then specialized sequence-scale simulators can be run according to the property of 

the region, such as genic or intergenic. A complete simulation can be achieved by 

merging these two pieces of information. 

PEGsim as here described is a first version. As such, it can be improved in a number of 

ways. We are working on PEGsim in an iterative fashion so we can make sure that the 

basic structure of the simulator is always stable, and more features can be added in a 

controlled fashion. 

A version of this chapter was published as Yang K, Setubal JC: A Whole Genome 

Simulator of Prokaryote Genome Evolution. In: Proceedings of the 2011 ACM 

Conference on Bioinformatics, Computational Biology and Biomedicine: 2011 (extended 

abstract) [28]. 

 

  



 
 

Chapter 6 

REGEN: Ancestral Genome Reconstruction for Bacteria 

 

In this chapter, we describe the ancestral genome reconstruction system that we 

developed, called REGEN, and we evaluate it using simulated and real data sets. 

6.1 System and Methods 

6.1.1 System overview 

REGEN has several components. Figure 6.1 shows all the major components and their 

relationships to each other. The assumed inputs and the outputs were described in 

Chapter 3. 
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Figure 6.1. Overview of all major components in REGEN 

6.1.2 Species tree reconstruction 

REGEN needs a reliable species tree as input. In cases where such a tree is not available, 

a phylogenomic tree based on the multiple sequence alignment of the concatenated 

sequences from thousands of protein sequences can be built. Here we briefly describe the 

methodology used to build this tree, which follows the supermatrix approach [49]. 

An all-against-all BLAST [37] search between all protein sequences annotated in the 

input genomes is performed. The BLAST output is then fed to OrthoMCL [22] to identify 

orthologous gene families. Families with at most one member in all the species are 
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selected for the tree reconstruction. MUSCLE [50] is used to perform multiple sequence 

alignment for each family, and Gblocks [51] is used for alignment trimming. Trimmed 

alignments are concatenated and fed to RaxML [52] for final species tree reconstruction 

evaluation with bootstrap scores. 

6.1.3 Homologous gene family identification and refinement 

We used OrthoMCL for homologous gene family identification, and the result is further 

refined by the program described in Chapter 4. When a species tree needs to be built (see 

previous section) we can use the results of OrthoMCL for both tree construction and 

homologous gene family refinement. 

6.1.4 Genome preprocessing 

All genomes are preprocessed so that each replicon is an ordered array of genes, which 

are represented by the orthologous gene family ID consisting of both the original 

orthologous gene families identified by OrthoMCL and the ones produced by the 

refinement module. 

6.1.5 Ancestral genome reconstruction 

Our ancestral genome reconstruction method is based on the concept of neighboring gene 

pairs (NGPs), first proposed in [5]. An NGP is a pair of genes that are physically adjacent 

to each other on a replicon. The key idea is to first identify NGPs in input genomes. Then 

we infer the occurrence of these NGPs in the ancestral genomes. The basic assumption of 
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the method is that if adjacent homologous genetic loci are observed in both child species, 

then it is highly likely that they are also adjacent in the parent species. 

The reconstruction is done by a maximum likelihood (ML) method as implemented in 

BayesTraits [53]. The gene pair occurrence likelihood cutoff that determines what gene 

pairs are present in an ancestral genome is an important parameter and directly 

determines the number and length of the reconstructed gene runs. On the other hand, the 

gene occurrence likelihood cutoff that determines what genes are present in an ancestral 

genome has less impact on the results, since singleton genes cannot be placed in 

reconstructed gene runs. A maximum parsimony (MP) based reconstruction is also 

possible by a slightly modified version of the method described in [5]. 

In our implementation, each gene is represented by two symbols, one for each end. This 

notation allows us to encode both the adjacency and orientation information for each 

gene. This two-node notation also reduces the complexity of the assembly process as 

described later. Each adjacent gene pair is treated as a feature for a genome, and the 

status of such features on the ancestral genomes is reconstructed using the same method 

as described in the gene content reconstruction. After the successful reconstruction of all 

the NGPs, the following algorithm is designed to reconstruct gene runs for each ancestral 

genome.  

The algorithm starts from a random pair, identifies all other pairs that may be connected 

through an iterative fashion, and builds an undirected connected graph with all these 

pairs. Each edge was weighted as the reciprocal of the probability of having the particular 

NGP in the ML based reconstruction and 1 in the MP based reconstruction. All edges 
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connecting the ends of a single gene have weight set to 1 in both cases. Then, the 

algorithm identifies the minimum spanning tree (MST) in this graph by Kruskal’s 

algorithm [54] to obtain a subgraph without cycles. The Bellman-Ford algorithm [55] is 

then run on the MST to calculate scores for paths between all node pairs. A legitimate 

path connecting two outer nodes with the lowest score is then identified and recorded as a 

reconstructed gene run. A path is legitimate if and only if inter-gene edges and intra-gene 

edges interleave. All nodes included in the path are removed following the identification 

and the original MST is reduced and may split into two or more fragments. The Bellman-

Ford algorithm is run on each fragment and the process repeats recursively until all nodes 

are removed or a new fragment consists of only one gene.  

The establishment of replicon inheritance relationship is based on the following graph-

based algorithm, designed to utilize the concept of a group, which is defined as a 

collection of genes that share the same inheritance pattern. Genes are considered co-

inherited if they reside together on a single replicon in both genomes. For example, if 

genes a, b, and c are on one replicon in both species X and Y, then they are considered to 

be in the same group. The reconstruction assumes that co-inherited genes are more likely 

to be on the same replicon in the ancestral genome because the probability of having 

multiple genes relocating to the same replicon through independent evolutionary events is 

low. The idea behind the algorithm is first to divide the genes on the replicons in the 

extant species into co-inherited groups and then determine which groups are likely to be 

on the same replicon in the ancestral species and finally merge the groups back into 

replicons according to the linkages established during the reconstruction process. 
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Essentially, only genes that share some inheritance pattern in both the out-group and in-

group species are merged into a replicon, which turns out to be a quite stringent criterion. 

The algorithm is explained with the following example, in which the four extant species 

are named S1, S2, S3, and S4 and the ancestral species A1, A2 and A3 respectively (see 

Figure 6.2). For simplicity, all main chromosomes in the four extant species are named C 

and the plasmids are named P1 and P2. Here, we will decide the genome architecture of 

A2, using A3 as outgroup. Notice that the genome architecture of A1 cannot be 

determined without adding more species as outgroups. The algorithm starts by computing 

co-inherited gene groups for each ancestral species in the tree in a bottom-up fashion. In 

our example, four groups are identified for A2 and two for A3. Group graphs GA2 and 

GA3 are created for the two ancestral species, with each group as a vertex. Edges are 

added if two groups share a replicon in their co-inheritance pattern such as G1(C C) and 

G2(P1 C) (shared C in S2). Then, the relationship between groups in GA2 and GA3 is 

computed, and edges are added if the number of shared genes exceeds a certain cutoff, 

denoted by dark red edges. For each connected component in the outgroup group graph, 

which is GA3 in the example, we identify all vertices in the target species group graph. 

For these identified vertices, we will merge the ones that are connected back into 

replicons. Any unmerged group will form its own replicon, such as R2. Final genome 

architecture for A2 is shown by green ovals. 

After replicon reconstruction, all genes are tagged with their own replicon information. 

6.1.6 Reconstructed replicon merge 
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Figure 6.2. Replicon architecture reconstruction example. Blue circles represent main 

chromosomes, green circles plasmids, and purple ovals gene groups. Red boxes represent 

identified connected components in the group graph and green box final replicon 

architecture reconstruction result. 
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During the application of the above algorithm to both real and simulated data, we noticed 

that it tends to produce more replicons than there really are. We also noticed that many 

long reconstructed gene runs contain genes that have been assigned to different replicons. 

Based on these observations, we designed an extra step that merges replicons based on 

the discrepancy of replicon information for genes in the gene runs.  

The algorithm starts by selecting a set of reconstructed gene runs with a length limit, 

which is set to 4 genes for the data shown in this dissertation. Then it checks for 

discrepancies of the gene location information in this set of gene runs. Discrepancy is 

defined as genes on the same gene run that are assigned to different replicons. From each 

reconstructed gene run in this selected collection, we evaluate the relative signal strength 

of replicon merging, which is defined as 

��������		�
���		����
�ℎ =
��

��

 , 

where Na is the number of genes assigned to the most frequently occurring replicon and 

Nb is the number of genes assigned to another replicon. 

Gene runs with extremely low signals are ignored. We then assign the length of the gene 

run as the strength of the merging proposal supported by this specific gene run. The 

strength of all gene runs for merging the same pair of replicons are summed and the result 

is defined as the absolute signal strength of the merging proposal at the species level. All 

merging proposals are gathered together for all ancestral species, and a K-means 

clustering is performed on both absolute and relative signal strength, with K = 2. The 

values that divide the result clusters are chosen as the line between accepting or rejecting 
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merging proposals. The algorithm proceeds in a bottom-up fashion and ends when all 

merging proposals are either accepted or rejected. 

6.1.7  Chromosome restoration 

With the replicons for each ancestral genome being reconstructed, it is time to distinguish 

chromosomes from plasmids. The notion of chromid [56] is not considered here. This 

process is carried out using core genes. The main chromosome is assigned to the replicon 

with the most core genes. 

For secondary chromosome assignment, a minimum number of core genes (5% of the 

total number of core genes by default) have to reside on the replicon. 

6.1.8  Ancestral evolutionary event reconstruction 

By comparing the gene runs and gene content between parent and child species, we can 

infer a large number of different evolutionary events on both the gene and replicon 

scales, such as gene loss, gene gain, replicon merge, and replicon loss. We can even infer 

gene reversal events, if they happened within a reconstructed gene run. 

6.1.9 Ancestral gene run and genome functional annotation  

Kyoto Encyclopedia of Genes and Genomes (KEGG) [57] was used as the source of 

functional annotation. To determine the potential phenotypic features of an ancestral 

species, we need to first determine the function of as many of the genes that it possesses 

as possible. To achieve this, we assign the most frequently occurred functional annotation 

among all family members to the function annotation for the orthologous gene family. 
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Multiple functions are assigned when there is a tie. The determined function is later 

transferred to the gene in the ancestral genome. After the completion of annotating as 

many genes in the ancestral genome as possible, we determine possible ancestral 

phenotypic features by examining the gene content with its functional annotations in the 

ancestral genome. 

Due to the close resemblance between reconstructed consecutive gene runs and operons 

in bacterial genomes, not only did we use the annotated genes to infer the functional roles 

played by some gene runs, but we also validate these reconstructed gene runs by 

checking the consistency among the members they contain. 

6.1.10 Genomes  

The group of Rhizobiales species was chosen not only because of their complex genome 

architecture, as shown in Table 6.1, but also because of the fact that they contain 

secondary chromosomes, which is not common among bacteria. The 22 species from the 

Rhizobiales order include Agrobacterium tumefaciens C58 Cereon, Agrobacterium vitis 

S4, Agrobacterium radiobacter K84, Azorhizobium caulinodans ORS 571, Bartonella 

henselae Houston- 1, Beijerinckia indica ATCC 9039, Bradyrhizobium japonicum, 

Brucella suis 1330, Mesorhizobium BNC1, Hyphomicrobium denitrificans ATCC 51888 

uid33261, Methylobacterium chloromethanicum CM4, Methylocella silvestris BL2, 

Nitrobacter hamburgensis X14, Ochrobactrum anthropi ATCC 49188, Oligotropha 

carboxidovorans OM5, Parvibaculum lavamentivorans DS-1, Rhizobium etli CFN 42, 

Rhodomicrobium vannielii ATCC 17100 uid38253, Rhodopseudomonas palustris BisA53, 

Sinorhizobium meliloti, Starkeya novella DSM 506 uid37659, and Xanthobacter 
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autotrophicus Py2. Azospirillum B510 uid32551 is chosen as an outgroup. The choice of 

the outgroup species was made based on the phylogenetic tree presented in [58]. All 

genome sequences were downloaded from the NCBI Genbank FTP site. 

Table 6.1. Genome architecture for Rhizobiales and integer ID assigned to each 

genome 

Species Name 
Integer 
ID 

# of 
chromosomes 

# of 
plasmids 

Agrobacterium_tumefaciens_C58_Cereon 1 2 2 
Agrobacterium_radiobacter_K84 2 2 3 
Agrobacterium_vitis_S4 3 2 5 
Azorhizobium_caulinodans_ORS_571 4 1 0 
Azospirillum_B510_uid32551 5 1 6 
Bartonella_henselae_Houston-1 6 1 0 
Beijerinckia_indica_ATCC_9039 7 1 2 
Bradyrhizobium_japonicum 8 1 0 
Brucella_suis_1330 9 2 0 
Mesorhizobium_BNC1 10 1 3 
Hyphomicrobium_denitrificans_ATCC_51888
_uid33261 

11 1 0 

Methylobacterium_chloromethanicum_CM4 12 1 2 
Methylocella_silvestris_BL2 13 1 0 
Nitrobacter_hamburgensis_X14 14 1 3 
Ochrobactrum_anthropi_ATCC_49188 15 2 4 
Oligotropha_carboxidovorans_OM5 16 1 0 
Parvibaculum_lavamentivorans_DS-1 17 1 0 
Rhizobium_etli_CFN_42 18 1 6 
Rhodomicrobium_vannielii_ATCC_17100_uid
38253 

19 1 0 

Rhodopseudomonas_palustris_BisA53 20 1 0 
Sinorhizobium_meliloti 21 1 2 
Starkeya_novella_DSM_506_uid37659 22 1 0 
Xanthobacter_autotrophicus_Py2 23 1 1 
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6.2 Results and Discussion 

6.2.1 Results based on Simulation 

With the simulator described in Chapter 5, we are able to compare results with different 

settings and make an informed choice on the parameter settings for the real data set. 

Due to the amount of time required to generate simulated data and to perform 

reconstructions, we set the LCA with a small genome consisting of a main chromosome 

of 1000 genes and a plasmid of 200 genes. Twenty simulations were conducted with the 

same phylogeny, which contains 19 extant species of interest and 2 out-groups. 

We compared reconstruction produced by the MP and ML methods with gene pair cutoff 

set to 0.75, 0.8, 0.85, 0.9, 0.95, and 0.97. Singleton gene occurrence cutoff is set to 0.9 in 

all ML reconstructions.  

All the numbers shown below are averages calculated from all of the same-setting 

reconstructions of the 20 simulated data sets. Evaluation with simulated data includes 

genome coverage, longest reconstructed gene run length, conserved block reconstruction, 

gene pair precision versus recall measure, and replicon reconstruction accuracy. Based on 

all the benchmarks we obtained using simulated data, we set the gene pair cutoff to 0.9 

for the system.  

 

 



55 
 

Genome Coverage 

By comparing the reconstructed gene runs of the LCA to the true genome, we are able to 

calculate how much of the genome is covered by the reconstructed gene runs. The result 

is shown in Figure 6.3. 

 

 

Figure 6.3. Genome coverage achieved by reconstructions at different gene pair 

cutoff. 

Setting the gene pair occurrence cutoff to a lower value naturally results in more gene 

pairs, which then cover more of the genome. It is worth noticing that the significant 

coverage decrease is not observed until the setting reaches 0.95 and MP achieves the least 

genome coverage. 
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Longest reconstructed gene run length 

We then looked into the length of the longest reconstructed gene runs. With a similarity 

to genome assembly problem, the longest gene run is of particular interest. Figure 6.4 

shows the length of the longest reconstructed gene run at different settings. We also show 

the length of the longest subrun that can be entirely mapped to the reference genome as a 

comparison.  

 

 

Figure 6.4. Longest gene run length and correct longest gene run length in the 

reconstructions at different cutoff. 
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Conserved Blocks Reconstruction 

Conserved blocks are conserved gene runs of the genome that carry important functions 

and thus are more conserved than other parts of the genome. We are interested in 

determining how many of the conserved blocks can be recovered by the reconstructed 

gene runs in the ancestral genome. Although conserved blocks and gene runs are different 

concepts, it is reasonable to assume that if a conserved block exists in most if not all the 

extant species, there should be a gene run with the conserved block in the genome of the 

LCA of this group. 

Figure 6.5 shows the comparison of the percentages of conserved blocks that have been 

completely reconstructed or missed in different reconstructions as well as the distribution 

on the percentage of conserved blocks that might have been partially reconstructed. 

 

Figure 6.5 partially reconstructed conserved blocks percentage distribution. 0% 

means complete absent in the reconstruction. <x%: less than x% of the conserved block 
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(measured in number of genes) was reconstruction. 100%: the conserved block is entirely 

reconstructed.  

One striking observation here is that even though MP-based reconstructions have shown 

lower performance in other categories, such as longest gene run length and genome 

coverage, it appears to be able to reconstruct conserved blocks fairly well. We hypothesis 

that the reason is conserved blocks underwent fewer evolutionary events. Other studies 

also suggested that MP based reconstruction/phylogenetic tree construction performs well 

with closely relate species and ML based methods usually perform better with more 

distant species [59]. 

Gene Pair Precision and Recall 

The final gene-scale assessment we performed on the reconstructions is the gene pair 

reconstruction precision and recall test. We compared all the reconstructed gene pairs for 

each ancestral genome to the actual genomes generated in the simulation and calculated 

the precision and recall as:  

precision =
��

�� + ��
 

recall =
��

�� + ��
 

where tp represents the true positive count, fp represents the false positive count, and fn 

represents the false negative counts. The results are plotted in Figure 6.6. The figure 

shows that setting the gene pair cutoff too low results in low precision, while setting it 
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too high severely affects recall. A good balance of precision and recall is achieved for 

gene pair cutoff between 0.85 and 0.9. Since reconstruction confidence is an important 

factor to judge a given reconstruction, 0.9 is selected as the gene pair cutoff for the rest of 

the study.  

 

Figure 6.6. Precision and recall for different reconstructions. 

 

Replicon reconstruction accuracy 
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mapped to any replicon in the corresponding ancestral genome or partial if it is mapped 

to an already matched replicon.  

The four measures are plotted in Figure 6.7. Gene pair cutoff and gene cutoff were set to 

0.9 with the consideration of all the information retrieved from simulation tests above. 

 

 

Figure 6.7. Fraction of different scenarios for replicon reconstruction evaluation for 

different reconstructions. 

Figure 6.7 clearly shows that the fraction of matched replicons starts to drop when the 
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measures showed inconsistency but are relatively stable across all different settings. 

Based on all the results generated from simulated data, we believe 0.9 is the best cutoff to 

adopt.  

6.2.3 Results on real genome data 

Phylogenomic tree 

The phylogenomic tree reconstructed with 109273 genes (4751 orthologous gene families 

in 23 genomes) for the Rhizobiales data set is shown in Figure 6.8. Phylogenomic trees 

are usually considered more reliable than phylogenetic trees, which are usually 

constructed using one gene or a very small number of genes, but they can be difficult to 

build due to the large amount of data involved and high computational cost. Each extant 

species is assigned an integer ID, which is the appended integer in the species name in 

the tree, so we can assign an easy and self-explanatory ID for each ancestor species. The 

ancestor ID reflects both child species. For example, ancestor 14 8 20 is the LCA of 

species 14, 8, and 20. The complete species to integer ID mapping is given in Table 6.1. 
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Figure 6.8. Phylogenomic species tree for the Rhizobiales dataset. The number shown 

at each branching point is the bootstrap score computed by RAxML (100 runs). In this 

case, all numbers are 100, suggesting that the tree is robust. 

Orthologous gene identification and refinement 

OrthoMCL identified 8,563 orthologous gene families, including 53,677 genes that could 

be used directly for reconstruction. Gene families that are present in only one species 

were omitted. OrthoMCL also reported 3,125 mixed gene families defined as 

homologous gene families containing paralogous genes, totaling 38,396 genes. These 

families underwent a refinement process (Chapter 4) and, at a conservative p-value of 

0.01, 3,892 orthologous gene families containing 18,606 genes are obtained. In total, 
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12,455 orthologous gene families with 72,283 genes were used as input for the 

reconstruction process. 

Ancestral gene content reconstruction 

To be consistent with the gene-pair reconstruction cutoff, all genes tagged with < 0.9 

probability are removed from further analysis. Details of the gene content reconstruction 

for each ancestor can be found in Table 6.2. 

Table 6.2. Gene content reconstruction 

Ancestor ID  Gene on 
chromosomes 

Genes on 
plasmids 

total 

11_19_21_3_1_18_2_10_6_15_9_14_8_20_16_
23_4_22_12_13_7_17 

1435 219 1654 

11_19_21_3_1_18_2_10_6_15_9_14_8_20_16_
23_4_22_12_13_7 

1446 569 2015 

21_3_1_18_2_10_6_15_9_14_8_20_16_23_4_2
2_12_13_7 

1457 760 2217 

14_8_20_16_23_4_22_12_13_7 1272 988 2260 
21_3_1_18_2_10_6_15_9 1955 863 2818 
14_8_20_16_23_4_22 1287 1082 2369 
21_3_1_18_2 2549 1627 4176 
3_1_18_2 2464 1888 4352 
14_8_20_16 2560 480 3040 
10_6_15_9 1754 257 2011 
12_13_7 1245 557 1802 
23_4_22 2603 211 2814 
6_15_9 2146 98 2244 
14_8_20 2940 431 3371 
14_8 2479 390 2869 
3_1 3507 660 4167 
18_2 4941 642 5583 
13_7 1636 247 1883 
23_4 2271 263 2534 
15_9 3358 462 3820 
11_19 1221 136 1357 
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Ancestral gene run reconstruction 

The ancestral genome reconstructions are achieved through the use of gene runs and 

singleton genes. Compared to singleton genes, gene runs provide information on the 

order of a certain number of genes. 

Local synteny or conserved block information is extremely useful in genomics studies, 

due to their correspondence to operons or modulons. Table 6.3 lists the status of the 

reconstructed gene runs in the Rhizobiales data set. The last two columns show the 

absolute number of genes in gene runs and the respective percentage. It is easy to see that 

the quality of the reconstruction for the ancestor improves with the similarity between the 

genomes of child species. Higher similarity results in longer gene runs, which cover more 

genes, leaving fewer genes to be singleton genes in the genome. For example, the 

ancestral species 15_9 has its longest gene run with 121 genes and about 95% of its genes 

are in gene runs. On the other hand, the longest gene run in the ancestral species 13_7 

only reaches 28 genes and about 33% of all its genes are singleton genes. 

Table 6.3. Contiguous gene run reconstruction overview of the Rhizobiales group. 

Length of the gene runs is measured in genes. The number-of-genes column shows the 

total number of genes on all gene runs and the percentage column shows the coverage of 

the gene runs. 

Ancestor # of 
gene 
runs 

longest 
gene 
run 

# of gene 
of gene 
runs 

percentage 
of genes of 
gene runs 

11_19_21_3_1_18_2_10_6_15_9_14 
_8_20_16_23_4_22_12_13_7_17 

305 32 1321 79.87% 

11_19_21_3_1_18_2_10_6_15_9_14 409 33 1716 85.16% 
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_8_20_16_23_4_22_12_13_7 
21_3_1_18_2_10_6_15_9_14_8_20_ 
16_23_4_22_12_13_7 

457 33 1894 85.43% 

14_8_20_16_23_4_22_12_13_7 461 33 1869 82.70% 
21_3_1_18_2_10_6_15_9 510 49 2394 84.95% 
14_8_20_16_23_4_22 497 35 2019 85.23% 
21_3_1_18_2 685 44 3688 88.31% 
3_1_18_2 681 47 3918 90.03% 
14_8_20_16 509 47 2775 91.28% 
10_6_15_9 352 33 1561 77.62% 
12_13_7 333 17 1024 56.83% 
23_4_22 556 35 2336 83.01% 
6_15_9 402 36 2153 95.94% 
14_8_20 525 31 2513 74.55% 
14_8 339 40 2638 91.95% 
3_1 483 75 3863 92.70% 
18_2 589 136 5280 94.57% 
13_7 384 28 1272 67.55% 
23_4 502 16 1933 76.28% 
15_9 353 121 3615 94.63% 
11_19 260 31 821 60.50% 

 

Functional annotation of gene runs 

Functional annotation of one particular gene run in the root of the Rhizobiales is listed in 

Table 6.4 as an example, and all other annotations can be found in the supplemental 

material, along with functional annotation for singleton genes. 

 

 

 



66 
 

Table 6.4. Functional annotation of a particular reconstructed contiguous gene run 

in the LCA of the Rhizobiales group. Consensus column shows the number of genes 

that have been assigned with the corresponding annotation as well as the total number of 

genes in the family. 

Gene 
family 
ID 

KEGG  
Entry 

Function class Definition consensus 

1719 K02387 Cellular Processes; Cell Motility; 
Bacterial motility 
proteins,[BR:ko02035],Cellular 
Processes; Cell Motility; Flagellar 
assembly [PATH:ko02040] 

flagellar 
basal-body 
rod protein 
FlgB 

17/17 

9901747 K02388 Cellular Processes; Cell Motility; 
Bacterial motility 
proteins,[BR:ko02035],Cellular 
Processes; Cell Motility; Flagellar 
assembly [PATH:ko02040] 

flagellar 
basal-body 
rod protein 
FlgC 

17/17 

9901380 K02408 Cellular Processes; Cell Motility; 
Bacterial motility 
proteins,[BR:ko02035],Cellular 
Processes; Cell Motility; Flagellar 
assembly [PATH:ko02040] 

flagellar 
hook-basal 
body 
complex 
protein FliE 

17/17 

9901964 K02392 Cellular Processes; Cell Motility; 
Bacterial motility 
proteins,[BR:ko02035],Cellular 
Processes; Cell Motility; Flagellar 
assembly [PATH:ko02040] 

flagellar 
basal-body 
rod protein 
FlgG 

17/17 

1718 K02386 Cellular Processes; Cell Motility; 
Bacterial motility 
proteins,[BR:ko02035],Cellular 
Processes; Cell Motility; Flagellar 
assembly [PATH:ko02040] 

flagella 
basal body 
P-ring 
formation 
protein 
FlgA 

16/17 

9903288 K02394 Cellular Processes; Cell Motility; 
Bacterial motility 
proteins,[BR:ko02035],Cellular 
Processes; Cell Motility; Flagellar 
assembly [PATH:ko02040] 

flagellar P-
ring protein 
precursor 
FlgI 

16/17 

1717 not 
annotated 

N/A N/A N/A 

9904536 K02393 Cellular Processes; Cell Motility; flagellar L- 16/17 
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Bacterial motility 
proteins,[BR:ko02035],Cellular 
Processes; Cell Motility; Flagellar 
assembly [PATH:ko02040] 

ring protein 
precursor 
FlgH 

1828 K02415 Cellular Processes; Cell Motility; 
Bacterial motility 
proteins,[BR:ko02035] 

flagellar 
FliL protein 

16/16 

9904106 K02419 Environmental Information 
Processing; Membrane Transport; 
Secretion,system 
[BR:ko02044],Cellular Processes; 
Cell Motility; Bacterial motility 
proteins,[BR:ko02035],Cellular 
Processes; Cell Motility; Flagellar 
assembly [PATH:ko02040] 

flagellar 
biosynthetic 
protein FliP 

17/17 

 

Evolutionary history of ancestral gene runs 

With the completion of the reconstruction of all ancestral gene runs, it is possible to infer 

a hypothesis on what has happened to each gene run during a specific evolutionary path 

by analyzing the shared genes in the gene runs in both parent and child species. One 

example is shown in Figure 6.9. 
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Figure 6.9. A long gene run on the main chromosome split into two smaller 

fragments during the evolutionary path from the LCA of Agrobacterium Vitis S4 

and Agrobacterium Tumefaciens C58 to Agrobacterium vitis S4. Each number 

represents a gene and the underscore represents adjacency. +/- symbols represent the 

gene orientation determined during the reconstruction. Some genes on both ends are 

omitted for simplicity. 

All reconstructed scenarios for all evolutionary paths in the tree can be found in the 

supplemental material. 

Replicon reconstruction 

Replicon reconstruction is the centerpiece of this study. We reconstructed the genome 

architecture of all ancestral species through analysis of the gene content of the child 

species and the outgroup. Based on the reconstructed replicons, replicon-scale 

evolutionary events can be predicted based on comparison of the genomes along each 

branch in the tree. 

Only two ancestral genomes contain replicons qualified to be secondary chromosomes. 
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These two ancestors are 15-9 (the ancestor of Brucella suis and Ochrobactrum anthropi), 

and 6-15-9 (the ancestor of 15-9 and Bartonella henselae). In the path from 10-6-15-9 to 

6-15-9, a chromosomal split event divided the main chromosome into two chromosomes 

and the new secondary chromosome carries a number of core genes. This property may 

have ensured the survival of this secondary chromosome to the extant species. The 

distribution of the core genes in all ancestral genomes and secondary chromosome 

assignment and the distribution of core genes in the extant Rhizobiales species genomes 

can be found in Table 6.5. 

Table 6.5. The distribution of the core genes in all ancestral genomes and secondary 

chromosome assignment 

ancestor replicon No. of CG 
6_15_9   
 c1 524 
 c2 51 
 U 0 
10_6_15_9   
 c1 579 
 L2 0 
 U 0 
21_3_1_18_2   
 c1 575 
 L3 0 
 L5 0 
 L6 0 
 L7 0 
 L9 0 
 L10 0 
 L11 0 
 L12 3 
 L14 0 
 L16 0 
 L18 0 
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 U 0 
21_3_1_18_2_10_6_15_9   
 c1 574 
 L3 0 
 L4 0 
 L5 0 
 L7 0 
 L8 0 
 L10 0 
 U 2 
14_8_20_16_23_4_22_12_13_7   
 c1 546 
 L5 0 
 L6 0 
 U 0 
14_8_20_16   
 c1 577 
 L3 0 
 L4 0 
 L5 0 
 U 0 
13_7   
 c1 577 
 U 0 
23_4   
 c1 585 
 L4 0 
15_9   
 c1 532 
 c2 55 
 L4 0 
 L5 0 
 L6 0 
 U 0 
11_19   
 c1 420 
12_13_7   
 c1 501 
 R2 0 
 L4 0 
 U 0 
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3_1   
 c1 580 
 R1 0 
 L6 1 
 U 0 
3_1_18_2   
 c1 580 
 R1 0 
 R2 0 
 R3 0 
 R4 0 
 L8 0 
 L9 0 
 U 0 
 L7 0 
23_4_22   
 c1 558 
 U 0 
14_8_20   
 c1 560 
 R2 0 
 L3 0 
 U 0 
14_8   
 c1 584 
 L2 0 
 U 0 
21_3_1_18_2_10_6_15_9_14_8_20_16_23_4_22_12
_13_7 

  

 c1 557 
 R1 0 
 L5 0 
 L7 0 
 U 0 
18_2   
 c1 584 
 R4 0 
 L6 0 
 L7 0 
 U 0 
14_8_20_16_23_4_22   
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 c1 542 
 R1 0 
 R2 4 
 R3 1 
 L5 0 
 L6 0 
 U 0 
11_19_21_3_1_18_2_10_6_15_9_14_8_20_16_23_4
_22_12_13_7 

  

 c1 551 
 R4 4 
 U 0 
11_19_21_3_1_18_2_10_6_15_9_14_8_20_16_23_4
_22_12_13_7_17 

  

 c1 545 
 U 0 

 

It is also worth noticing that given the definitions adopted in this study, the second largest 

replicons of Agrobacterium radiobacter K84 and Agrobacterium vitis S4 do not qualify 

as a secondary chromosome, because they do not contain enough core genes, as shown in 

Table 6.6.  

Table 6.6. The distribution of core genes in the Rhizobiales data set 

Sinorhizobium_meliloti   
 c1 584 
 pSymA 0 
 pSymB 3 
Azospirillum_B510_uid32551   
 c1 527 
 pAB510a 18 
 pAB510b 0 
 pAB510c 16 
 pAB510d 17 
 pAB510e 9 
 pAB510f 0 
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Rhodopseudomonas_palustris_BisA53   
 c1 587 
Beijerinckia_indica_ATCC_9039   
 c1 587 
 pBIND01 0 
 pBIND02 0 
Azorhizobium_caulinodans_ORS_571   
 c1 587 
Oligotropha_carboxidovorans_OM5   
 c1 587 
Parvibaculum_lavamentivorans_DS-1   
 c1 587 
Bartonella_henselae_Houston-1   
 c1 587 
Xanthobacter_autotrophicus_Py2   
 pXAUT01 0 
 c1 587 
Methylocella_silvestris_BL2   
 c1 587 
Rhizobium_etli_CFN_42   
 c1 585 
 p42a 0 
 p42b 0 
 p42c 0 
 p42d 1 
 p42e 0 
 p42f 1 
Bradyrhizobium_japonicum   
 c1 587 
Ochrobactrum_anthropi_ATCC_49188   
 c1 549 
 c2 38 
 pOANT01 0 
 pOANT02 0 
 pOANT03 0 
 pOANT04 0 
Starkeya_novella_DSM_506_uid37659   
 c1 587 
Methylobacterium_chloromethanicum_CM4   
 c1 587 
 pMCHL01 0 
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 pMCHL02 0 
Nitrobacter_hamburgensis_X14   
 c1 587 
 p1 0 
 p2 0 
 p3 0 
Agrobacterium_tumefaciens_C58_Cereon   
 c1 523 
 c2 64 
 At 0 
 Ti 0 
Brucella_suis_1330   
 c1 533 
 c2 54 
Hyphomicrobium_denitrificans_ATCC_51888_uid33261   
 c1 587 
Rhodomicrobium_vannielii_ATCC_17100_uid38253   
 c1 587 
Agrobacterium_radiobacter_K84   
 c1 587 
 c2 0 
 pAgK84 0 
 pAtK84b 0 
 pAtK84c 0 
Mesorhizobium_BNC1   
 c1 586 
 p1 1 
 p2 0 
 p3 0 
Agrobacterium_vitis_S4   
 c1 580 
 c2 7 
 pAtS4a 0 
 pAtS4e 0 
 pAtS4c 0 
 pTiS4 0 
 pAtS4b 0 
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Genome architecture evolution reconstruction 

The overview of the reconstruction of Rhizobiales species with the complete 

reconstruction process described above is summarized in Figure 6.10, which was 

automatically generated by REGEN using the dot language in the Graphviz package [60]. 

It shows that this group of Rhizobiales species constantly underwent plasmid split and 

plasmid merge, which could be true for most bacterial genomes due to the high frequency 

of recombination. A chromosome can easily pick up genes from a plasmid, which could 

be a result of a previous lateral gene transfer event. However, it is uncommon for a 

chromosome to undergo a replicon split and have some core genes migrate away from the 

main chromosome.  

 

Figure 6.10. A look at the complete reconstructed evolutionary history of the 

Rhizobiales group. Circles within nondotted rectangles represent the input genomes, 
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while circles within dotted rectangles represent ancestral genomes. Chromosomes are 

shown in light blue, plasmids in green. The reconstructed secondary chromosomes are 

shown in red. Circle size corresponds to the number of genes it contains, except that 

small plasmids are kept at the same size. Edge width corresponds to the strength of the 

inheritance relationships between replicons, and color (given in the figure key) shows the 

gain (G) or loss (L) of genes on chromosomes. Edges connected with plasmids are all 

marked black. A part of the overview is zoomed in to give readable details. A file 

containing a fully zoomable version of this figure is available in the supplemental 

material.  

Evaluation with operon structure information 

To obtain a measurable evaluation for non-simulated data, we used operon structure 

information [61] to validate the reconstructed gene runs for ancestral genomes. 

Conveniently, the operon information is stored in the format of gene pairs in [63], which 

will be referred to as operon gene pairs from now on. 

We assume that the percentage of operon gene pairs out of all gene pairs in the 

reconstructed gene runs in an ancestral genome should be similar to the percentage in the 

gene runs in input genomes. We also expect that the percentage will increase as the 

reconstruction approaches the root of the tree, since highly conserved gene pairs are more 

likely to be reconstructed as present in the ancestral genomes. Of the 23 Rhizobiales 

genomes, 19 of them have operon gene pair predictions. We divided all operon gene pairs 

into three groups by the number of genomes they occur in. The highly conserved (HC) 

group contains 184 operon gene pairs occurring in 10 or more genomes, the moderately 
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conserved (MC) group contains 688 operon gene pairs occurring in between 6 and 9 

genomes and the less conserved (LC) group contains 3792 operon gene pairs occurring in 

between 2 and 5 genomes. Operon gene pairs occurring in only a single genome are not 

considered due to the lack of conservation. The overview of the occurrence of all operon 

gene pairs is shown in Figure 6.11. 

The number of operon gene pairs in MC and LC from the ancestral genomes is similar to 

the correspondence from the extant genome. However, as we expected, the number in HC 

from ancestral genomes is significantly higher (two tailed t-test, p value = 2.693E-05). 

The number of HC operon gene pairs is also correlated (r=0.81, correlation test) with the 

level of the ancestor, which is defined as the number of edges the ancestor species is 

away from the extant species. Results support both of our expectations. 

We also examined the status of the reconstructed gene pairs and gene runs in the LCA of 

Rhizobiales in terms of operon gene pair support. We say that a gene run is supported if 

60% or more of the gene pairs involved are operon gene pairs. By using this criterion, 

228 out of the total 305 reconstructed gene runs in the LCA genome are supported. 

Furthermore, out of the total 1016 reconstructed neighboring gene pairs in the LCA 

genome, 770 are operon gene pairs, which also support our expectation. 
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Figure 6.11. Operon gene pairs quantity comparison between extant and ancestral 

genomes pairs involved are operon gene pairs.  

By using this criterion, 228 out of the total 305 reconstructed gene runs in the LCA 

genome are supported. Furthermore, out of the total 1016 reconstructed neighboring gene 

pairs in the LCA genome, 770 are operon gene pairs, which also support our expectation. 

Leave-one-out test 

We carried out a series of leave-one-out tests to examine the stability of our 

reconstruction method. 

We performed 22 different ancestral reconstructions of the Rhizobiales data set at gene 

pair cutoff = 0.85 and 0.9 with each one of the Rhizobiales genomes left out. To simplify 



79 
 

the analysis process, we focus on the reconstructed gene runs with at least four genes for 

the LCA of all Rhizobiales species. 

For each of the selected reconstructed gene runs, we scan through all 22 leave-one-out 

reconstructions and determine if a similar enough gene run has also been produced, 

which is defined as sharing at least 80% of its genes with the original. If 18 or more 

(~82%) leave-one-out reconstructions produce a similar enough gene run, we mark the 

original recovered, otherwise missed. During the analysis of the missed gene runs, we 

quickly realized that many gene runs are marked missed simply because they are broken 

into two or more fragments in the leave-one-out reconstructions by missing only a few 

gene pairs. We then loosened our criteria by marking a gene run recovered even if it has 

been broken into several fragments as long as the longest two fragments contains at least 

80% of the genes in the original. The result is shown in Table 6.7. 

Table 6.7. Leave-one-out stability test result. The table shows the difference in the 

number of gene runs as well as percentage under different cutoffs. 

Number of 
Fragments 

1 2 

gene pair cutoff 0.85 0.9 0.85 0.9 

recovered 77 103 107 118 

missed 80 31 50 16 

total 157 134 157 134 

percentage 49.04% 76.87% 68.15% 88.06% 

 

As we can see from the table, regardless of how many fragments we allow, reconstruction 

with 0.9 as gene pair cutoff achieve higher recovered percentage compared with the less 
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stringent 0.85 cutoff, meaning that missing one genome has less impact on the more 

conserved reconstruction. 

It also shows that when gene-pair cutoff is set to 0.9, we recover 88% of the gene runs. 

This number should not be taken directly as an accuracy measure, since removing one 

genome from the data set will inevitably lead to the lack of information to successfully 

reconstruct some of the original gene runs. It should be treated as a lower bound on the 

accuracy in the worst case. 

Comparison to previous work 

We compare our results with those in Slater et al. [2] and Boussau et al. [1]. The 

reconstruction shown in Slater et al. [2] is more closely related to this study, because they 

also reconstructed Rhizobiales ancestors and because they attempted reconstruction of 

conserved blocks and replicon evolution. Boussau et al. [1] is a more general 

computational inference of gene content and functional composition of genomes, 

focusing on the alpha-proteobacterial genomes available at the time of that study (2004). 

Using a manual reconstruction, Slater et al. identified a few conserved gene runs that are 

shared by a group of Rhizobiales species. We mapped the species onto our tree and 

compared the identified conserved gene runs in the reconstructed genome of the 

corresponding ancestor. After the mapping, the status of a conserved block identified by 

Slater et al. can be one of the following: 1) identical, meaning an identical gene run is 

also reconstructed in our study; 2) extended, meaning the mapped reconstructed gene run 

is longer than the original conserved gene run; 3) fragmented, meaning the gene run is 
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mapped to more than one reconstructed gene runs in our study; 4) inconsistent, meaning 

there is some difference between the conserved gene run with the reconstructed gene run 

in our study, and 5) missing, meaning it failed to be mapped to any reconstructed gene 

run. Out of the 31 conserved gene runs in their work, eight are identical, 13 extended, 

four missing, five fragmented, and one inconsistent. All cases of discrepancy, including 

missing, fragmented, and inconsistent, are due to the difference in the genomes used in 

the studies. Details can be found in the supplemental material.  

The chromosomal size gain and loss have shown both agreement and difference with the 

reconstruction made by Boussau et al. For example, the genome of S. meliloti 

experienced a mild gain from its LCA with A. tumefaciens C58. However, the sizes of 

ancestral genomes are generally smaller in this study, which we suspect resulted from the 

stringent probability cutoff. 

Upon close examination of the genome functional annotation file, we noticed that the root 

species for these members of the Rhizobiales order contains genes vital for survival, as 

expected. Overall, more than 500 genes are categorized as involved in metabolism in the 

KEGG Orthology. There are 54 genes in the A-polymerase pathway (ko03010 KEGG 

entry), and 24 genes in Aminoacyl-tRNA biosynthesis (ko00970). Boussau et al. pointed 

out that their reconstructed ancestor has genes for glycolysis and a complete system for 

aerobic respiration system. A similar result is found in this study, in that the ancestral 

genome contains 22 genes in the Glycolysis/Gluconeogenesis pathway, covering 18 

different KEGG Orthology functional annotations. 
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One other prediction we can make in regard to ancestral phenotypic features is the 

mobility of the ancestor. The ancestor possesses 14 genes in the bacterial chemotaxis 

pathway and 47 genes in the flagella assembly pathway, which strongly suggests that it is 

capable of moving and sensing the chemical signals in the surrounding environment.  

6.3 Additional Remarks 

This is the first automated computational method that can systematically perform 

ancestral genome reconstruction at both gene and replicon scales without prior 

assumptions on the ancestral genome replicon architecture. It is also the first method that 

can reconstruct gene runs for ancestral genomes with fully resolved strand information in 

bacteria with functional annotation using external databases. We have also modified and 

improved the original NGP-based model-free method so it does not require a reference 

genome, reconstructs all possible conserved blocks in the situation of uncertainty, 

correctly handles strand information, and employs a two-step occurrence uncertainty 

resolution process. Based on the reconstructed genomes, REGEN can also propose 

possible scenarios on the evolutionary events for both gene runs and replicons along the 

branches in the species tree.  

In the functional annotated gene runs reconstructed for the LCA of all Rhizhobiales 

species, we noticed a small number of genes with no function assigned. With most genes 

on the same gene run are annotated with similar or related functional and the fact that the 

genes reconstructed at the root of the tree are very likely to be functionally conserved, we 

propose possible functional annotation of these “unknown” genes with the functions of 

their neighboring genes. 
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One significant limitation of REGEN is that since the reconstructions are performed on 

identified orthologous genes and gene families generated by 3rd party programs, 

OrthoMCL in our case, the amount of information that can be reconstructed is directly 

limited by the output of these programs. For example, the genes in the repABC systems 

of Agrobacterium organisms are not reconstructed because OrthoMCL failed to group 

them into orthologous gene families. Theoretically, it is possible to add genes with 

known orthologous relationships into the reconstruction, just as the refinement module 

does, but it involves both necessary expertise in the species of interests and manual 

editing of the program’s output file. 

There are also several important assumptions and simplifications made by the program. 

First of all, the replicon reconstruction algorithm assumes that in the two child species 

groups sharing more genes are more likely to be on the same replicon in the ancestral 

genome. This could be unrealistic if some large-scale evolutionary events affected a large 

number of genes in an uneven fashion. Second, the system will only work with 

bifurcating trees by design. Third, there is no concept of time in the current project. Due 

to the lack of data to determine mutation rates of events at all different scales, including 

gene-, replicon-, and genome-scale, we decided to leave the concept of time out of the 

scope of the current study. Without it, we cannot determine which ancestral species 

actually co-existed at the same point in time. Furthermore, we cannot reconstruct 

evolutionary events that involved more than one ancestral species, such as horizontal 

gene transfer from one ancestral species to another. On the other hand, these very 

simplifications make this method feasible and make ancestral genome reconstruction for 
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about 13,000 orthologous gene families in 23 species achievable in a few hours on a 

regular desktop (time for all-against-all BLAST is not counted). 

In summary, our research has, for the first time, made automated bacterial ancestral 

genome reconstruction with replicon structure possible. 

A version of this chapter is under review as a research article in the journal Genes (Yang 

K, Heath LS, and Setubal JC: REGEN: Ancestral Genome Reconstruction for Bacteria, 

2012). Referees have asked for modifications, and a revised version has been submitted 

as of this writing. 
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Chapter 7 

Conclusion 

In this dissertation, we have described a new system for ancestral genome reconstruction 

for prokaryotes, which we have called REGEN. Two of the components of REGEN 

deserved special attention and were described in separate chapters. 

In Chapter 4 we described a systematic methodology to refine ortholog identification 

predictions generated by third party de novo prediction programs by combining local 

synteny and phylogeny.  

In Chapter 5 we described the development and evaluation of the first whole genome 

simulator for prokaryotes, which we called PEGsim.  PEGsim can simulate the evolution 

of prokaryotic genomes at the gene and replicon scales. We have shown that PEGsim is 

capable of producing data with tunable properties (such as genome size and number of 

replicons among extant species), mimicking observed properties of actual genomes.  

In Chapter 6 we described REGEN, the first automated computational method that can 

systematically perform ancestral genome reconstruction at both gene and replicon scales 

without prior assumptions on the ancestral genome replicon architecture. We applied 

REGEN to simulated data produced by PEGsim and to real data from members of the 

Rhizobiales bacterial order. Ideas for extension of the work are outlined in the conclusion 

of Chapter 6. 



86 
 

With the continued accumulation of genome data in public repositories, including an 

effort to cover gaps in the phylogenetic coverage of prokaryotic species [58], we can 

expect that REGEN has the potential of becoming an important tool in the study of 

prokaryote evolution. That same accumulation should also allow refinements of PEGsim 

and improvements of various aspects of REGEN based on additional tests on both 

simulated data and real genomes. 

In addition to the work presented here, the author also contributed to the following 

publications while doing his doctoral work: 

Mining for Meaning: Visualization Approaches to Deciphering Arabidopsis Stress 

Responses in Roots and Shoots  

Lecong Zhou, Christopher Franck, Kuan Yang, Guillaume Pilot, Lenwood S. 

Heath, and Ruth Grene. OMICS: A Journal of Integrative Biology. April 2012, 

16(4): 208-228. doi:10.1089/omi.2011.0111. 

Next-generation phage display: integrating and comparing available molecular 

tools to enable cost-effective high-throughput analysis 

Emmanuel Dias-Neto, Diana Nunes, Ricardo Giordanol, Jessica Sun, Gregory 

Botz, Kuan Yang, Joao Setubal, Renata Pasqualini, Wadih Arap 

PLoS One, 2009,4(12):e8338. 

Performance comparison of gene family clustering methods with expert-curated 

gene family dataset in Arabidopsis thaliana.  
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Kuan Yang, Liqing Zhang 

Planta. DOI: 10.1007/s00425-008-0748-7 

Performance comparison between k-tuple distance and four model-based 

distances in phylogenetic tree reconstruction 

Kuan Yang, Liqing Zhang 

Nucleic Acids Research, 2008, Vol. 36, No. 5 e33 
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