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(ABSTRACT) 

 

This research is concerned with the modeling and development of algorithmic approaches for 

solving airport operational problems that arise in Air Traffic Control (ATC) systems within the 

terminal area at hub airports. Specifically, the problems addressed include the Aircraft 

Sequencing Problem (ASP) for runway operations, the Network Assignment Problem (NAP) for 

taxiway operations, and a simulation model for the evaluation of current or proposed ATC system 

in detail. 

For the ASP, we develop a mathematical model and apply the Reformulation-Linearization-

Technique (RLT) of Sherali and Adams to construct an enhanced tightened version of the 

proposed model. Since ASP is NP-Hard and in fact, it is a variation of the well-known Traveling 

Salesman Problem with time-windows, sub-optimal solutions are usually derived to 

accommodate the real-time constraints of ATC systems. Nevertheless, we exhibit a significant 

advancement in this challenging class of problem. Also for the purpose of solving relatively large 

sized problems in practice, we develop and test suitable heuristic procedures. 

For the NAP, we propose a quasi-dynamic assignment scheme which is based on the incremental 

assignment technique. This quasi-dynamic assignment method assumes that the current aircraft 

route is influenced only by the previous aircraft assigned to the network. This simplified 

assumption obviates the need for iterative rerouting procedures to reach a pure equilibrium state 

which might not be achievable in practical taxiway operations. To evaluate the overall system, we 

develop a microscopic simulation model. The simulation model is designed to have the capability 

for reproducing not only the dynamic behavior of aircraft, but also incorporates communication 

activities between controllers and pilots. These activities are critical in ATC operations, and in 

some instances, might limit the capacity of the facility. 

Finally, using the developed simulation model named Virginia Tech Airport Simulation Model 

(VTASM) in concert with ASP and NAP, we compare the overall efficiencies of several control 

strategies, including that of the existing control system as well as of the proposed advanced 

control system. 
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Chapter 1. Introduction  
 

1.1 Motivation and Purpose 

 

According to Federal Aviation Administration (FAA) statistics, there were 27 airports in U.S. 

having more than 20,000 hours of total annual delay in 1997. These delays represent a cost 

exceeding 2.4 billion dollars. By the year 2003, the number of airports having annual delays 

exceeding 20,000 hours could be 31, unless capacity improvements are made [FAA, 1998]. 

Efforts to augment current capacity –by building new airports, or expanding existing ones- are 

expensive, time consuming, and environmentally controversial. On the other hand, proposals to 

change the demand for the Air Traffic Control (ATC) operations by, for example, imposing 

higher landing fees can lead to legal proceedings. Hence there is great interest in using existing 

capacity more efficiently by improving air traffic control procedures.  

The critical bottleneck in an ATC system is the capacity inside a radius of about 50 nautical miles 

(nm) around an airport (i.e., airport terminal area). There are three types of air traffic control 

activities in this terminal area: aircraft sequencing operations which control the traffic inside the 

airport terminal area, runway operations which control aircraft landings and departures, and 

taxiway operations which guide aircraft from the gate to the runway for departures or vice versa 

for arrivals. For these activities, three types of air traffic controllers are involved: Final approach 

controllers who are responsible for the aircraft sequencing operations, local controllers who are 

responsible for runway operations, and ground controllers who are responsible for taxiway 

operations. 

To achieve more efficient operations, it is desirable that those three operational components be 

coordinated as one task, rather than be considered as three separate ones. The purpose of this 

research project is to design an efficient method to model aircraft operations around the airport 

terminal area using an open system architecture. It is believed that this operational scheme could 

help alleviate the congestion around the airport terminal area, that is frequently observed at major 

airports in the United States and abroad. The underlying philosophy of this research project is 

reflected by Dear’s remark [Dear, 1976]: 

 

“By utilizing today’s computer power and instrument sophistication, the controller 
workload can be reduced and system performance improved through the use of computer-
assisted decision-making, without affecting the controller’s autonomy.” 
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1.2 Problem Description 

 

This dissertation focuses on the operation of aircraft inside the airport terminal area (or airfield) 

which is a 3-dimensional air space usually having 50 nautical miles of radius around airport 

runways. Once an arriving aircraft passes an entry point of airport terminal area, it approaches 

towards a runway. For the convenience of air traffic control, all arriving aircraft are required to 

pass the final approach fix (FAF) just before it touch down. The airspace between the FAF and 

runway is called final approach path (FAP) or final. In the FAP, aircraft are controlled to be 

spaced in certain amount of distance based on the minimum separation rules enforced by FAA. 

The minimum separation between arriving aircraft depends on the aircraft types involved. This 

separation rule is designed to minimize the leading aircraft's vortex effect to the following 

aircraft. Generally speaking, the separation is bigger when an aircraft follows a larger one than 

when it follows a smaller one. Once the arriving aircraft touchdowns and exits from the runway, 

it start to taxi to the gate.  

On the ground, aircraft parking at gates load and unload either passengers or freight. After 

completing the loading and unloading processes, the aircraft begins to taxi to the runway along 

the designated taxiing path. Once the aircraft arrives at the end of runway, it starts to roll for 

takeoff. Figure 1.1 illustrates the configuration of airport terminal area. 

Fundamentally speaking, the delays in any transportation facility occur when the demand for 

services exceeds its capacity. This basic rule can be applied to facilities around the airport 

terminal area, such as runways, taxiways and gates. For example, when there are more aircraft 

moving on a taxiway network than its capacity, some of taxiing aircraft would experience certain 

amounts of delay due to network congestion. 

In this dissertation, we consider an airport terminal area as a combination of various resources 

having limited capacities. In our analysis, runway, taxiway and communication channels are 

considered and accordingly this research focuses mainly on the analysis of air traffic operations 

on the airfield facilities. (Aspects related to the gate facilities are not included in research, but 

could be the subject of future studies.) 

In short, this dissertation deals with the following three sub-problems: the Aircraft Sequencing 

Problem (ASP) to model runway operations, the Network Assignment Problem (NAP) to model 

taxiway operations, and the Simulation Model (SM) for addressing communication activities. 
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Figure 1.1 Configuration of Airport Terminal Area 

 

 

The Aircraft Sequencing Problem (ASP) handles the runway operations and is developed under 

the guiding principle that if the arrivals and departures are sequenced intelligently, then an 

enhanced system efficiency will accrue. The ASP problem considers minimum separation rules 

enforced by FAA to protect consecutive aircraft from the dangers of wake-vortex effects.  

To illustrate this point, note that during the final approach, air traffic controllers try to maintain a 

minimum of 5 nm when a heavy aircraft leads a small one. This distance is equivalent to about 

196 seconds in time. If this sequence is switched so that the small aircraft leads the heavy one, the 

required distance between the two aircraft reduces to 3 nm, or about 75 seconds. Thus a saving of 

more than 100 seconds could occur by switching the sequence, assuming that this process is 

feasible to the individual aircraft time-window restrictions, and does not appreciably affect 

delays. 

Previous studies conducted on this topic have mainly focused on the sequencing problem for 

arriving aircraft. Since many airports in the U.S. have dependent arrival and departure stream 

operations, consideration is given here to both these operations simultaneously. This makes the 
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problem more realistic, yet at the same time, more challenging. In order to manage aircraft traffic 

in congested airport terminal areas, an aircraft sequencing procedure can be used in conjunction 

with advanced Air Traffic Control (ATC) automation tools. Problem ASP can be stated more 

succinctly as follows: 

 

Given a set of aircraft data involving both arrivals and departures, including aircraft type, 

original (nominal or desired) schedule, a maximum delay time to be absorbed by each 

aircraft, minimum separation rules among aircraft, and the runway occupancy time (ROT) 

for each aircraft type. 

Find an optimal sequence of aircraft which minimizes the total operation time/cost to finish all 

operations while satisfying both the minimum separation rule and the maximum delay 

constraints. 

 

Given the time recommendations prescribed by ASP, which include the exit times from the 

runway and the takeoff times at the runway, the next step is to solve Network Assignment 

Problem (NAP) to decide the taxiing route for all aircraft so as to minimize the congestion on the 

taxiway network. The NAP which deals with taxiing operations is defined as follows. 

 

Given a network configuration (a directed graph G(N,A)) of runways and taxiways, including a 

set of origin nodes, O; and a set of destination nodes, D; and time-dependent taxiing 

demands from each origin to each destination for a certain period. Also, given are 

prescribed landing and takeoff times at the runway for the aircraft, as obtained from model 

ASP. 

Find a set of optimal routes for the departing aircraft to lead them from the gate to the departure 

queue, and for the arriving aircraft to lead them from the runway exit to the gate, in order to 

minimize total travel or fuel costs. 

 

In this analysis, we adopt the results of ASP as initial conditions for solving the NAP problem. In 

regular airport operations, landing aircraft have higher priority over departing and taxiing aircraft. 

This is because arrivals are both costly and safety-critical from a fuel consumption and 

operational point of view. For the same reason, the runway operation has a priority over ground 

taxiing. Hence, in the case where a conflict arises between an aircraft crossing a runway during 

Taxiing and an aircraft departing or landing on the runway, the latter has a priority. Based on 

view, we solve the ASP first and obtain the optimal runway operational sequence. We then solve 
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the NAP using the ASP optimal sequence. Figures 1.1 and 1.2 illustrate the relationship between 

the ASP and NAP problems for a single data horizon, including the required data and information 

flows.  

 

At many busy airports, it is frequently observed that flights are delayed by communication 

congestion (due to controller workload). For instance, even after a departing flight is ready to 

taxi, the flight would be delayed at the gate until it obtains a taxiing clearance from the ground 

controller. In previous analyses for ASP and NAP problems, no consideration has been given to 

the communication process between controllers and pilots, although this is an important source of 

delay. Indeed, there is a distinct possibility that due to the communication delays, the prescribed 

ASP sequence and the suggested taxiing route obtained from NAP might not be achievable for 

some flights. 

In order to portray the pilot-controller communication process, a Simulation Model (SM) is 

developed in this research. A continuous, microscopic simulation model provides very detailed 

information about the dynamic status of all relevant entities, i.e., flights, local controllers, and 

ground controllers. The dynamic status includes not only controllers' communication status but 

also aircraft dynamic behaviors such as speed, acceleration, position, etc., at every time interval 

of simulation. These microscopic features are embedded in the Virginia Tech Airport 

Simulation Model (VTASM), and distinguish separate this model from existing air traffic 

simulation models such as SIMMOD, TAMMS, etc., which employ disctere-event simulation 

instead. VTASM includes airport facilities such as runways, taxiways, and gates. (Runway 

thresholds play the role of a souce node for arriving flights and a sink node for departing flights.) 

The main tasks in the development of VTASM can be described as follows: 

 

Given a network configuration (a directed graph G(N,A)) of runways and taxiways, prescribed 

landing and takeoff times at the runway for the aircraft, as obtained from model ASP, and a 

set of optimal routes for both the  departing and arriving aircraft from NAP. 

Find, considering communication activities and aircraft dynamic movements, the aircraft status 

such as speed, acceleration, position, etc., and delays on the network.  

 

1.3. Organization of this Document 

 

This dissertation is organized into six chapters. Chapter 2 is devoted to review previous studies 

pertinent to ASP problem. The proposed ASP is a version of the asymmetric traveling salesman 
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problem with time-windows (ASP-TW), and is NP-complete in terms of computational 

complexity. Because of this complexity, we develop two approaches for this problem, 

respectively geared toward finding an exact solution and an approximate solution via a heuristic 

method. In Chapter 3, the formulation of Problem ASP and the development of an effective 

approach to solve this problem are presented along with some computational results for both the 

exact and heuristic approach. 

The NAP problem on the taxiway network is discussed in Chapter 4. We focus on proposing a 

network assignment strategy which is appropriate for our case. Even though the taxiway network 

is  somewhat different from urban transportation networks, it is still helpful to review the state-of-

art of both static and dynamic network assignment methods applied to urban transportation 

planning processes. Various types of shortest path algorithms which play an important role in 

NAP are also discussed along with their associated data structures. Two types of network 

assignment strategies are considered in this research. 

In Chapter 5, we present procedures relevant to the development of a continuous, microscopic 

simulation model. The details of each component of the simulation model are provided in the 

context of an Object-Oriented Design (OOD) and an Object-Oriented Programming (OOP) 

approach.  Computational results and a verification of the simulation model are also presented in 

this chapter. 

Chapter 6 provides results for a case study using hypothetical flight schedules at the Reagan 

National Airport (DCA). A total of 12 scenarios are studied for several sequencing, network 

assignment and pilot-controller communication methods. Each scenario is tested using 90 flight 

schedule replications representing various demand levels. 

Chapter 7 presents a summary of this research and conclueds with a discussuion on some possible 

research extentions. 
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Figure 1.2 Problem Structure and Data Flow for the ASP and NAP Problem Framework  (Single 
Data Horizon). 
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Figure 1.3 Data Flow in the ASP/NAP Framework for Sample Problem                                             
(Single Data Horizon). 

 

<Original schedule from flight-plan> 

Flight No. Aircraft  
type 

Desired 
pushback Time 

NW122 B747 12:37 
NW123 B757 12:43 

…….. …. …. 

<Original Schedule from data link> 

Flight No. Aircraft  
type 

Desired  
touchdown Time 

US322 B727 12:39 
US321 B737 12:41 

…. …. …. 

Assumption: Aircraft start taxiing at the recommended 
                       pushback times/expected exit times  

< Original Sequence> 
max. delay =10 min. 

Departures Arrivals 

Flight no. Aircraft type Ready-time  
to takeoff 

Due-time 
to takeoff Flight No. Aircraft type Ready-time 

to touchdown 
Due-time 

to touchdown 
NW122 B747 12:47 12:57 US322 B727 12:39 12:49 
NW123 B757 12:53 13:03 US321 B737 12:41 12:51 

…. …. …. …. …. …. …. …. 

 

Ready-time to takeoff =  
desired pushback time + taxiing time (T1) 

Expected time to exit from the runway = 
   Optimal touchdown time + Runway Occ. Time  (ROT)

Recommended push-back time from the gate = 
   Optimal takeoff time – Taxiing time – Buffer time

ASP Min. Separation Rule 

<Optimal Sequence> 
Departure Arrival 

Flight No. Aircraft type Opt. Time  
to takeoff 

Delay Flight No. Aircraft type Opt. time 
to touchdown 

Delay 

NW123 B757 12:53  US321 B737 12:41  
NW122 B747 12:55  US321 B727 12:46  

…. ……. …. …. …. …. …. …. 

Minimize the completion time 
for all aircraft to be operated 

<Time-dependent taxiing demand> 
Departures Arrivals 

Flight No. Aircraft type Rec. time to 
pushback 

Origin 
gate 

Destination 
runway   

Flight No. Aircraft type Exp. time to exit 
from runway 

Origin runway 
exit  

Destination 
gate 

NW123 B757 12:49 Gate # 3 22R US321 B737 12:41 Exit 2 on 22R Gate # 9 
NW122 B747 12:45 Gate # 5 22L US321 B727 12:46 Exit 3 on 22L Gate # 6 

…. …. …. …. …. …. …. …. …. …. 

NAP 

<Time-dependent taxiing demand> 
Departures Arrivals 

Flight No. Origin gate Routes (links)  Destination 
runway   Flight No. Origin runway-

exit  Routes (links)  Destination 
gate 

NW123 Gate # 3 B12-> B23-> ….-> 22R US321 Exit 2 on 22R E1->E3-> ….-> Gate # 9 
NW122 Gate # 5 C1-> B4-> ….-> 22L US321 Exit 3 on 22L F5->E3-> ….-> Gate # 6 

…. …. …. …. …. …. …. …. 
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Chapter 2. Literature Reviews 
 

2.1 Literature Review on Aircraft Sequencing Problems (ASP) 

 

The Aircraft Sequencing Problem (ASP) is a combinatorial problem for which no efficient 

algorithm (i.e., with computational time bounded by a polynomial in the size of the problem) is 

known. When faced with such a computationally hard (formally classified as NP-hard–see Garey 

and Johnson, 1979) problems, two approaches are possible: 

 

1)  Branch-and-bound methods applied with efficient procedures to evaluate lower/upper bound 

at every nodes, which reduce the effort from that of exhaustive enumeration. These methods 

are certain to produce an optimal solution, but in the worst-case scenario, they may require an 

exponential number of calculations.  

2)  Heuristic methods which provide an approximate solution in fast (polynomial) time. These 

methods may not produce an optimal solution, but generate sub-optimal solutions that are 

close to an optimum for most cases. 

 

In this review, we survey 1) the previous studies on Aircraft Sequencing Models (ASP), 2) a 

dynamic programming method along with branch-and-bound scheme, and 3) various types of 

heuristic methods for solving traveling salesman problems (TSP). 

 

2.1.1 Previous Studies on ASP 

 

The most straightforward sequencing strategy for arrivals is to assign the flights on a first-come-

fist-serve (FCFS) basis, which is largely applied in air traffic control these days. In this method, 

the aircraft are scheduled in the order of preferred landing/departure times (or sometimes termed 

nominal landing/departure times). The second sequencing method is the so-called time advance 

(TA) technique which is used to minimize the average delay (or maximize throughput) without 

changing the order of the aircraft. In this method, the runway utilization is improved by speeding 

up aircraft during periods of heavy traffic so as to reduce the gaps that occur otherwise [Neuman 

and Erzberger, 1990]. The FCFS sequencing procedure is most effective in the sense of  

implementation, but it is subject to the randomness of the arrival process, and consequently, may 

create undesirable delays which can be reduced by an optimized sequence.  
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ASP problems are combinatorial problems where n aircraft have to be sequenced optimally. To 

enumerate all possible cases involves evaluating n! solutions. Since the computations for a total 

enumeration increases drastically as n increases, we need to consider more constructive 

enumeration methods. Due to the nature of the problem, previous research efforts have focused 

on methods to reduce the computational complexity without losing the capability to obtain an 

optimal solution.  

Attempts to optimize ASP-type problems date back to the late 60’s. A first investigation of the 

ASP problem is made by Dear (1976). The main scope of his study is to determine the landing 

order of arriving aircraft considering all the aircraft currently in the system. As this number can 

be large (20 or even more simultaneous aircraft), Dear realizes the difficulty in attaining an 

optimal solution in real-time. To solve this problem, a Constrained Position Shifting (CPS) 

strategy is used instead of a FCFS strategy. That is, no aircraft may be sequenced forward or 

backward more than a pre-specified number of positions (Maximum Position Shifting) from its 

FCFS position. The method examines a window of (2 × the maximum position shift – 1) 

positions, optimizes it (exhaustively) for a single position shift, moves the window down one 

position, and repeats the process.  

Considering Dear’s CPS management concept, Psaraftis (1980) develops a dynamic 

programming approach for sequencing a given set of jobs on a single machine to minimize the 

total processing cost. In this paper, Psaraftis assumes that there are n distinct groups of jobs, 

where the jobs within each group are identical. Taking advantage of this grouping assumption, he 

suggests a more practical algorithm which can save some computational effort as compared to the 

classical dynamic programming approach for the job sequencing problem. He illustrates this 

method by optimally sequencing aircraft arrivals at an airport. 

Using an integer programming approach, Bianco et al. (1987, 1997) determine an optimal 

sequence for arriving aircraft inside the Terminal Management Area (TMA). The authors point 

out the static nature of Psaraftis’ study where all aircraft are supposed to wait to land at a given 

time. Based on this concept, this paper presents a formulation which takes into account the 

dynamic nature of the problem in which every aircraft entering the TMA has a Nominal Landing 

Time (NLT) depending on the characteristics of the TMA, the aircraft speed, and so on. The 

formulation developed by Bianco et al. (1987) is as follows. 

 

Minimize  s + ∑ ∑
∈ ∈0 0Ji Jj

ijijxp  

subject to  
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where,  

J = {1,...,n} : a set of n jobs to be processed on a single runway 

ri  : ready-time for job i 

pij  : processing time of job i if job j is the successor of i in sequence,  

       i, j∈J0, J0=J∪{0} 

p0i : setup time of the machine when the sequence starts with job i 

xij = 1 if job i directly precedes job j, and otherwise 0 

ti = start time of job i 

s = machine idle time 

Tij = sufficiently large value to make constraints (4) redundant whenever xij=0. 

 
This problem is NP-Hard and in the case of zero ready-times it reduces to the Asymmetric 

Traveling Salesman Problem (ATSP). Here, Constraint (3) secures the minimum separation 

between two consecutive flights and also prevents subtours. The authors suggest a branching 

strategy based on the characteristics of the subsequences obtained in the solution process, and  a 

Lagrangean lower bounding strategy. Heuristic upper bounds are also computed. Using their 

branch-and-bound approach, they find an exact optimal solution for the problems having up to 44 

aircraft in 1,956 seconds, and show that an optimal solution could save up to 20 % on the runway 

utilization. Perhaps the major weaknesses in this formulation is the lack of due-time constraints 

for each flight, resulting in potentially unacceptable air delays, and the neglecting of non-

consecutive separation restrictions. 
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One thing which should be noted here is that previous studies have mainly focused on the arrival 

operations. In Dear’s study, an extension to mixed operations (i.e., departures and arrivals) is 

given, with one critical assumption. For simplicity of computation, Dear assumes a slightly 

relaxed separation in order not to create difficulties when the resulting sequence has two different 

types of consecutive operations, which may otherwise violate the separation rules. (More details 

of this issue will be discussed later.)  

 

2.1.2 Dynamic Programming Approach 

 

Sequencing and scheduling problems arise in a wide range of economic activities. The field of 

sequencing and scheduling theory has originated from the endeavor to solve mainly job-machine 

problems which involve accomplishing a number of tasks (jobs) that need to be processed by 

various resources (machines) according to certain specified rules over a period of time. If we 

view aircraft operations as jobs and a runway as a machine, we can apply job scheduling theory to 

our problem, which is to minimize the total delay time or completion time of all aircraft. In this 

problem, each aircraft has a ready-time, namely, the preferred time to land or depart.  

Among the first analytical methods applied to solve sequencing problems was Dynamic 

Programming, which originated from the work of Richard Bellman in the fifties. Held and Karp 

(1962) applied Dynamic Programming to solve sequencing problems. Their approach is based on 

Bellman’s “Principle of Optimality”. Roughly, this says that in an optimal sequence, the first k  

aircraft (for any k  = 1,..., n) must form an optimal sequence for the reduced problem based on 

these k  aircraft alone. Dynamic Programming solves the problem in stages via a sequence of 

recursive computations in a manner that yields an optimal solution to the entire problem which is 

represented by the final stage. 

To apply dynamic programming, we can divide our ASP into two sub-problems. First, for a single 

aircraft problem, it is necessary to consider simply the preferred landing/departing time 

(PLT/PDT) and the runway occupancy time. Second, for more than one aircraft, we need to 

consider a recursive equation. If we have n aircraft to be sequenced, {j1, j2, …, jk, … jn}, the 

equations for Dynamic Programming to minimize the completion time are as follows:  

 

Let   

      J      : the subset of n aircraft 
      j(J)   : last aircraft in sequence of subset J 
      j*(J) : optimal last aircraft in sequence of subset J 
      j**    : optimal second-to-last aircraft in subset J, given that aircraft j is last 
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               ( = j*(J-{j}) )  
      ROTi   : the runway occupancy time of aircraft i  
      pij  : minimum separation time between aircraft i and j when aircraft j immediately follows i 
 
     C(J, j) : optimal completion time for subset J, given that the last aircraft is j 
     C(J)   : optimal completion time for subset J      
      f j(Cj) : cost such as delay time for aircraft j, given its completion time (Cj) 
      G(J) : optimal cost such as total delay time for subset J. 

 

If J contains a single aircraft, i.e. J = { jk } 

C(J, j) = G(jk) 
          = PLT (or PDT) + ROTk, 
G(J) = C(J, jk) 
        = G(jk), 
j(J) = jk, 
j*(J) = jk. 

else if J contains more than one aircraft (recursive equations) 

C(J, j) = C(J-{j}) + pj**j  + ROTj, 
G(J) = min j in J [G(J-{j}) + f j(C(J, j))] 
        = [G(J-{j*}) + f j*(C(J, j*))], 
C(J) = C(J, j*(J)). 

 

The branch-and-bound approach is a preferred solution technique over Dynamic Programming. 

As its name implies, the method consists of two fundamental features: 1) branching: this is the 

process of partitioning a large problem into two or more subproblems, and 2) bounding: this is the 

process of calculating a lower bound on the optimal solution value of a given subproblem. 

As an example of a branching procedure, let P denote our ASP containing n jobs. The problem P 

can be solved by solving n related subproblems, P1, P2,…, Pn (subproblem Pj means job j has 

been constrained to come first, but all other aircraft are open for future assignments). The set of 

subproblems Pj is a mutually exclusive and exhaustive partition of P in the sense that if each Pj is 

solved, the best of these n solutions will represent an optimal solution to P. 

Next, each of the subproblems can be partitioned, for instance, P1 can be partitioned into P12, P13, 

… , P1n. (In P12, jobs 1 and 2 occupy the first two positions in the sequence). Therefore the 

second-level partition P1j bears the same relation to P1 as the first-level partition Pj bears to P. At 

level k , each subproblem contains k  fixed positions and can be further partitioned into (n-k) 

subproblems. If this branching were to be carried out completely, there would be n! subproblems 

at level n. Clearly, evaluating all n! cases is not practical, and so, a fathoming or curtailing of this 

enumeration tree needs to be devised.    
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Suppose that at some intermediate stage, a complete solution has been obtained that has an 

associated performance measure (called incumbent solution) Z. Also, suppose that a subproblem 

encountered in the branching process has an associated lower bound lb > Z. Then that subproblem 

need not be considered any further. To find a lower bound at a certain node A at level k  (i.e., for 

the subproblem P12...k), we can use the following equation: 

 

lb(A) = ROT1 + P12 + … + P(k-1)k + (n-k)⋅Pmin
(A)

 

where,  

  ROT1: the runway occupancy time of aircraft 1 if this is the first in the processing 
sequence  

  Pij  : the processing time (minimum separation) of aircraft j if it immediately follows 
aircraft i  

  Pmin
(A)

 = min∀ (i,j )∉{(1,2),…,(k-1,k)}{Pij}. 
 

 
Generally, the efficiency of the Branch-and-Bound method is strongly dependent on the trial 

solution and the tightness of the lower bound computed at each node. Unfortunately using Pmin
(A) 

makes it difficult to obtain a sharp lower bound at earlier nodes in the tree, implying that the 

method might require considerable computational time.  

The Dynamic Programming method reduces the number of computations required to find an 

optimal sequence when compared to exhaustive enumeration. It is also true that the larger the 

problem, the more dramatic is the gain in speed. However, because Dynamic Programming must 

keep all the information at each and every stage and none of this information is redundant until 

the final identification of an optimal sequence, the storage requirements grow rapidly with the 

number of jobs. Considering the real-time requirements of our ASP problem, we need to devise 

more efficient solution methods. For this reason, this research suggests an Integer Programming 

approach as well as a heuristic approach to solve the aircraft scheduling and sequencing problem.  

 

2.1.3 Reformulation-Linearization Technique (RLT) 

 

RLT was developed by Sherali and Adams (1989, 1990, 1994), and is an automatic reformulation 

technique that can be used to derive tight LP representations as well as strong valid inequalities 

[Sherali and Adams, 1999]. Consider a mixed-integer zero-one programming problem whose 

feasible region X is defined as follow: 

0} binary, ,0 ,:){( ≥≤≤≥+×∈= yxexbDyAxRRx,yX n
mn

, 
      where en is a vector of ones in Rn. 
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Here, x = (x1,…, xn) is a set of binary variables and y = (y1,…, ym) is a set of continuous variables. 

RLT consists of essentially two steps: 1) a reformulation step in which additional non-linear valid 

inequalities are automatically generated, and 2) a linearization step in which each product term is 

replaced by a single continuous variable.  

In the reformulation step, given }{1,...,nd ∈ , the RLT procedure constructs so-called “bound-

factors (Fd) of degree d” comprised of the product of some d binary variables or their 

complements. These factors are then used to multiply each of the constraints defining X 

(including the variable bounding restrictions) to create a nonlinear polynomial mixed-integer 

zero-one programming problem. The bound-factors are defined as follow: 
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In the linearization step, using the relationship jj xx =2
 for each binary variable xj, j = 1,…,n, 

substituting a variable wJ and vJk, respectively, in the place of each nonlinear term of the type 

∏
∈Jj

jx NJ ⊆∀  and ∏
∈Jj

jk xy kN, J ∀⊆∀ , and relaxing integrality, the nonlinear polynomial 

problem is re-linearized into a higher dimensional polynomial set Xd defined in terms of the 

original variables (x, y) and the new variables (w, v). Sherali and Adams show that the projection 

of Xd onto the space of the original variables (x, y), XPd, yields the hierarchy of relaxations. 

 

conv(X)X.......XXXX PnPPP =⊇⊇⊇⊇≡ 2100  

where, 00 XX P ≡ (for d=0) is the ordinary LP relaxation, and  

            conv(X) is the convex hull of X. 

 

The hierarchy of higher-dimensional representations produced in this manner markedly 

strengthen the usual relaxations, as is evidenced by the fact that the convex hull representation is 

obtained at the highest level. In fact, in computational studies on many classes of problems, even 

the first-level representation helps design algorithms that significantly dominate existing 

procedures. 

Applications of RLT to specific problems include zero-one quadratic problems; zero-one 

quadratic assignment problems (Adams and Sherali, 1986); continuous and discrete bilinear 
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programming problems (Adams and Sherali, 1993, Sherali and Alameddine, 1992); continuous 

and discrete location-allocation problems (Sherali and Tuncbilek, 1995); polynomial 

programming problems (Sherali and Tuncbilek, 1995, 1997a, 1997b); factorable nonlinear 

problems (Sherali and Wang, 1999): 0-1 mixed integer problems with application to some 

specially structured problems (Sherali, et al., 1998): Miller-Tucker-Zemlin formulations for 

asymmetric traveling salesman problems (Sherali and Driscoll, 1999), among many others. 

 

2.1.4 Heuristic Approaches for the Traveling Salesman Problem (TSP) 

 

The ASP problem can be seen as a variation of Traveling Salesman Problem (TSP) for which no 

efficient algorithm (i.e., with computational time bounded by a polynomial in the size of the 

problem) is known. In this section, we present several heuristic methods to solve the TSP. Over 

past two decades, there have been several heuristic techniques developed that bear importance to 

our original problem. 

 

2.1.4.1 Definitions of Various Types of Traveling Salesman Problems 

 

Depending on the characteristics of the edge weight, wij (or tij), and time constraints on customer 

service times, traveling salesman problems are classified as Symmetric (henceforth abbreviated 

TSP), Asymmetric (ATSP), Symmetric with time-windows (TSP-TW), and Asymmetric with 

time-windows (ATSP-TW) traveling salesman problem. The definitions of various types of TSP 

problems are summarized in Table 2.1  

 

2.1.4.2 Heuristic Approaches for the Traveling Salesman Problem (TSP) 

 

Heuristic methods for TSP can be conveniently divided into two procedures: 1) tour construction 

procedures which construct a initial feasible solution, and 2) Tour improvement procedures 

which try to improve a given initial solution in a systematical way [Lawler, 1985]. 

 

2.1.4.2.1 Tour Construction Procedures for TSP 

 

Reinelt (1994) classifies various types of construction heuristics suggested for TSP into four 

groups: nearest neighbor heuristics, insertion heuristics, heuristics using spanning trees, and 
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saving heuristics. Among the construction heuristics, the insertion method is known as one of the 

most efficient approximate algorithms for the initial tour construction [Syslo, 1983]. In general, 

 

Table 2.1 Definitions of Various Types of TSP Problems. 

Problem Definition 

TSP 1) Given a complete weighted digraph G=(V, E) and symmetric weights wij (or 

tij) for all directed edges (i, j) ∈V × V in E. 

Find a minimal Hamiltonian tour (or circuit) of G, i.e., a cycle which visits 

each vertex exactly once, having minimum total weight. 

(Most TSPs assume that a given vertex, say vertex 0, will serve as the first 

and last vertex of any route and that the weight matrix (wij) satisfies the 

triangle inequality.) 

ATSP 2) Same as TSP except that G=(V, E) is defined having asymmetric weights wij 

and wji for the directed edges (i, j) and (j, i) respectively. (i.e., wij is not 

necessarily equal to wji.) 

TSP -T W3) Given a complete weighted digraph G=(V, E) with symmetric weights wij for 

all directed edges (i, j) ∈V × V in E, and a time-window on the departure 

time for each vertex i denoted by [ei, li] where ei specifies the earliest service 

time and li the latest service time. 

Find a minimal Hamiltonian tour of G satisfying the time-window 

restrictions. 

ATSP -T W2) Same as TSP-TW except that G=(V, E) has asymmetric weights wij and wji 

for the directed edges (i, j) and (j, i) respectively.  

1) Kanellakis (1980), Savelsberg (1990) 
2) Acheuer (1999) 
3) Savelsberg (1992) 

 

 

an insertion method starts with a subtour comprising of one or two nodes, and extends the tour by 

selecting a node from currently unvisited nodes and then inserting the selected node to the current 

subtour in such a way that the incremental tour cost is as small as possible.  

Let V be the entire node set where |V| = N and VT be the set of nodes included in the current 

subtour.  The k th iteration (1 ≤ k ≤ N-1) of an insertion algorithm enlarges the tour of size k  to one 

of size k+1 by applying the following two steps: 
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Selection step: In the set V-VT of the unvisited nodes, determine which node is to be 

added to the cycle next. 

Insertion step: Determine where the newly selected node is to be inserted to enlarge the 

current subtour. 

 

For the selection step, a number of heuristics have been suggested and investigated. Some of 

these are:  

arbitrary insertion: pick any unvisited node at random, 

nearest insertion: pick the unvisited node that is nearest to the current subtour, 

cheapest insertion: compare the cost of insertions of all unvisited nodes (in all insertion 

positions) and pick the one having the smallest cost, 

farthest insertion: pick the unvisited node that is farthest from the current subtour. 

 

In addition to the above methods, the convex hull insertion method, and the greatest insertion 

procedure can be applied, especially in an Euclidean space. (For more details, see Bodin (1983), 

Golden and Stewart (1985), and Laporte (1992a).) 

Of the insertion heuristics mentioned above, the farthest insertion appears to be the best overall 

strategy (Golden et al., 1980). The underlying intuition behind the farthest insertion method is 

that if a rough outline of the tour can be constructed through the widely-spread nodes, then the 

finer details of the tour resulting from the incursion of the nearest nodes can be filled in without 

greatly increasing the total length of the tour.  

The farthest insertion algorithms are described as follows [Syslo et al., 1983]: in order to find the 

farthest unvisited node, the array dist(⋅) of size N is maintained such that, for all unvisited nodes 

v, dist(v) is the distance from the node v to the node in the current tour which is closest. The node 

f denotes the farthest node from the current tour. Each time a new node is inserted into the cycle, 

the dist array is updated. To find the best insertion position which is the closest edge from the 

node f, the insertion cost of node f between node i and j (ICij ) is examined for all edges in the 

current subtour. The insertion cost is expressed as  

 

    ICij = wif + wfj  - wij. 

 

Once the closest edge is obtained, state variables such as the total cost, the array dist(⋅) and the 

node/edge sets corresponding to the current tour are updated. Below is the pseudo-code for the 
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farthest insertion algorithm. Here, s denotes an arbitrary node for an initial tour, and ET is the 

edge set for the current subtour. 

 

 
Initialization: VT = {s}; ET = {(s,s)}; wss ← 0; totalCost ← 0;  

for all u∈V-VT, dist(u) ← wsu; 
Iteration: 
while |VT | < n 
 (Selection):  

f ← node in V-VT with largest value of dist(f); 
 (Insertion):  

for every edge (i, j)∈ET,  ICij ← wif + wfj  - wij; // examine insertion costs 
   (i*, j*) ← edge in ET with smallest values of cij; // find the closest edge 
 (update):  

ET ← ET ∪ {(i*, f), (f, j*)}-{(i*, j*)}; // update the visited edge list 
 VT ← VT ∪ {f}; // update the visited vertex list 

  totalCost ← totalCost + ci*j*; // update the total tour cost 
  for all x∈V-VT, dist(x) ←min{dist(x), wfx} //update the array dist 
end 

 

2.1.4.2.2 Improvement Procedures for TSP 

 

There is a wealth of previous studies on heuristic approaches to improve solutions to the traveling 

salesman problem. The best-known improvement heuristic procedures are edge-exchange (or 

sometimes called edge-interchange) methods. Lin (1965) proposed the r-opt algorithm in which r 

edges in a feasible tour are exchanged for other r edges in that tour as long as the result remains a 

feasible tour and the length of the exchanged tour is less than the length of the previous tour. 

Here, r is the number of edges exchanged at each iteration. The r-opt procedure is said to be r-

optimal if there is no feasible exchange that improves the current solution. The larger the value of 

r, the more likely it is that the final solution is optimal. However, the computational requirements 

increase rapidly as the value of r increases. As a result, r = 2 or r = 3 are the ones most commonly 

used [Golden and Stewart (1985)]. 

A 2-exchange shown in Figure 2.1 involves the substitution of two edges, (i, i+1) and (j, j+1) with 

two other edges (i, j) and (i+1, j+1). Such an exchange results in a local improvement if and only 

if  

wi,j + wi+1,j+1 < wi,i+1 + wj,j+1 . 
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Testing this improvement involves only local information and can be done in a constant time. The 

total number of possible 2-exchanges is equal to NC2, which implies a time complexity of O(N2) 

for the verification of 2-optimality. 

 

 

i

j+1 j

i+1
i

j+1 j

i+1

 

Figure 2.1 Example of 2-exchange. 

 

It should be noted that the orientation of the path (i+1,…, j) is reversed in the proposed 2-

exchange tour. In a TSP having side-constraints such as time-windows, it is of importance to be 

able to efficiently check the feasibility of the nodes in the reversed path. (This will be discussed 

later.) 

In a 3-exchange, where three edges are removed, there are several ways to construct a new route. 

Two 3-exchanges shown in Figures 2.2(b) and (c) make an important difference: In Figure 2.2(c) 

the orientation of the original tour is preserved whereas in Figure 2.2(b) this orientation is 

reversed. The time to verification of 3-optimality is O(N3). 
 

i

j+1

j

i+1

kk+1

i

j+1

j

i+1

kk+1

i

j+1

j

i+1

kk+1
 

 
                         (a)                   (b)        (c) 
 

Figure 2.2 Example of 3-exchange. 
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Lin and Kernighan (1973) propose a variable r-opt algorithm which decides at each iteration how 

many edges to exchange. The variable r-opt requires considerably more effort in coding than the 

standard r-opt procedure. But the variable r-opt procedure outperforms the standard 2-opt or 3-

opt approach in finding near-optimal solutions. Because of this advantage, variable r-opt 

procedure is frequently used to produce tighter upper bounds for the TSP. 

With an intention to reduce the computational burden to verify r-optimality, proposals have been 

made to take only a subset of all possible r-exchanges into account. Or (1976) proposes a method 

that considers only those r-exchanges that would result in a string of s (= 2, 3..) consecutive 

nodes being inserted between two other nodes. This reduces the time complexity required for the 

verification of Or-optimality to O(N2). Figure 2.3 shows an example of Or-exchange (s=2) where 

a string of (i1, i2) is removed from its position and inserted between j and j+1. 

 

i1-1

i2i1

i2+1

jj+1

i1-1

i2i1

i2+1

jj+1

 

 

Figure 2.3 Example of an Or-exchange (s = 2). 

 

2.1.4.3 Heuristic Approaches for the Traveling Salesman Problem with Time-windows (TSP-

TW) 

 

Due to time-window restrictions at each node (or customer location), an arrival earlier than the 

earliest service time ei introduces a waiting time at node i.  On the other hand, the tour is 

infeasible if the arrival time at node i is later than the latest service time li. Taking the time-

window into consideration, there are two types of objectives for TSP-TW [Savelsbergh, 1985]: 

Minimizing the total travel time, ∑
=

+

n

k
kkt

0
1, , which does not consider any possible waiting times at 

the nodes. 
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Minimizing the route duration, An+1-D0, i.e., the time difference between the arrival time at the 

depot (An+1) and the departure time at the depot (D0).  

 

If the departure time at the initial node  (node zero) is assumed to be set at its earliest time (i.e., 

D0=e0), the objective of minimizing the route duration becomes that of minimizing the 

completion time of the tour. This is suitable for our ASP problem which minimizes the total 

completion time of runway operations for a given set of flights. In this review, we focus on the 

procedures for the objective of minimizing the total route duration. 

Most procedures for TSP can be successfully extended to TSP-TW. However, one difficulty in 

applying heuristics designed for TSP to TSP-TW is testing the feasibility of a candidate tour 

produced by any exchange scheme. For example, testing the feasibility of a k-exchange tour in 

TSP with time-windows (or other side-constraints) requires O(N) time which results in a time 

complexity of O(Nk+1) for the verification of k-optimality. Various types of researchers have 

focused on devising more efficient techniques to test this feasibility. 

By adopting the GENIUS (Generalized Insertion and Unstring and String) method for TSPs, 

Gendreu et al. (1998) proposed a generalized insertion heuristics for TSP-TW in which the 

objective is the minimization of travel time. The tour building algorithm produces a feasible route 

by inserting a vertex in its neighborhood on the current route, and performing a local 

optimization. Then, the feasible tour is post-optimized based on the successive removal and 

reinsertion of all vertices. 

Since the early eighties, TSP-TW has drawn additional attention due to the fact that procedures 

for TSP-TW  provide basic methods to solve vehicle routing problem with time-windows (VRP-

TW). These are very important and practical problems faced by the industries. The vehicle 

routing problem (VRP) is a problem to design a set of minimum cost vehicle routes for a fleet of 

vehicles of known capacity which service a set of customers with known demands [Solomon et 

al., 1988]. All routes must originate and terminate at a common depot. Each customer is served 

exactly once. In addition, all N customers must be assigned to vehicles such that the total demand 

on any route does not exceed the capacity of the vehicle assigned to that route. The vehicle 

routing problem with time-windows (VRP-TW) is a generalization of the VRP. In the VRP-TW, a 

number of customers have one or more time-windows during which service must be scheduled. 

Most VRP-TWs assume that the number of vehicles used is unlimited, i.e., the fleet size is 

determined simultaneously.  

Similar to TSP-TW, of primary importance to the effectiveness and efficiency of heuristics for 

VRP-TW is the way in which the time-window constraints are incorporated in the solution 
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process [Solomon, 1987]. (In VRP, it is true that we should consider the vehicle capacity  

constraint as well as time-windows. But, here we will skip discussions about the capacity 

constraints. For more details about capacity constraint, see Savelsbergh, 1990a). 

If we have a single vehicle to be scheduled (i.e. single VRP-TW), the problem then becomes the  

same as TSP-TW. For this reason, it is worth reviewing previous studies on VRP-TW. These 

studies include Psaraftis (1983a, 1983b), Savelsbergh (1985, 1990a, 1990b, 1992), Solomon 

(1986, 1987) Solomon et al. (1988), Sexton and Bodin (1985), Baker and Schaffer (1986), 

Desrosiers et al. (1986), Dumas et al. (1991, 1995), Desrochers et al. (1992), and Laporte 

(1992b).  Several of these procedures are reviewed below. 

 

2.1.4.3.1 Psaraftis 's Procedure  

 

A. Tour Building Procedures 

 

Psaraftis (1983a) suggests an O(N2) heuristic for the dial-a-ride problem (DARP) which is a 

special type of TSP with precedence constraints. In the DARP, a vehicle is located at a point A, 

and is called to service N customers, each of whom wishes to travel from a distinct origin to 

distinct destination, and then returns to A so that total length of the route is minimized. Here, the 

precedence among nodes should be considered because no destination can be visited before the 

corresponding customer has been picked up. The problem is static in the sense that all N 

customers’ requests are given and no new customer requests are considered until all of these N 

customers are serviced. 

Due to the complexity of the DARP, it is extremely hard to find an exact solution in reasonable 

time for practical size problems (usually having more than 100 customers for a vehicle). For 

instance, using Dynamic Programming to solve the DARP requires O(N23N) time, and this 

approach limits the tractable problem size to no more than 8-10 customers [Psaraftis, 1980]. 

The tour building procedure proposed by Psaraftis  is based on the minimum spanning tree (MST) 

approach that is defined for N origins and N destinations. First, an initial TSP tour T0 through the 

2N nodes is constructed. Then subsequent steps produce a feasible tour by traversing T0 in such a 

way that precedence constraints are satisfied. The heuristic proceeds as follows. 

 

Step 1 (Generate a TSP tour, T0): Without distinguishing origins and destinations, construct a 

TSP tour T0 through 2N points based on their MST. 
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Step 2 (Generate a dial-a-ride tour, T1): Choose any customer’s origin on T0 as a first pick-up 

point P1 around the starting point A. Construct a dial-a-ride tour T1, by traversing T0 

clockwise from P1 until all points are visited and then return to A. While doing this, do not 

visit any point that has been previously visited or any destination whose origin has not 

been visited yet.  

Step 3 (Improve T1: optional): Improve T1 by a sequence of a local exchanges.  

Step 4  (Generate a dial-a-ride tour T2: optional): Generate another tour by repeating Step 2 and 

Step 3 but moving counterclockwise. Pick the shortest tour in T1 and T2. 

Step 5 (Optional): Repeat Step 2 (optionally 3 and 4) N times, each time choosing a different 

customer origin as P1. Pick the tour that has the minimum length. 

 

For Step 3, Psaraftis proposes a local improvement scheme in the sense that the exchange 

involves four adjacent nodes such as i, j, k , and m shown in Figure 2.4. Assuming that the edge 

weights, wij, are symmetric and that the triangle inequality holds, the conditions for feasibility and 

profitability of the exchange shown in Figure 2.4 are as follow: 

 

 wij + wkm < wik + wjm (condition for profitability), 

           where, k  is not the destination of the customer whose origin is j (condition for feasibility). 

 

 

i

j

k

m i

j

k

m

 

Figure 2.4 A local exchange [Psaraftis, 1983a]. 

 

The computational complexity of the heuristic is O(N2) since finding MST, along with Step 3 and 

5 each require O(N2) time. (Even though the MST in Euclidean plane can be found in O(NlogN) 

time, still the heuristic is O(N2).) 

 

B. Improvement Procedures 
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In the context of DARP, Psaraftis (1983b) develops k-exchange procedures to perform local 

search in a precedence-constrained vehicle routing problem. Similar to the k-opt procedure of Lin 

(1965), and Lin and Kernighan (1973), a DARP tour is said to be k-optimal if it is impossible to 

obtain another DARP tour of shorter length by replacing any k  of its links by any other set of k  

links. 

Figure 2.5 depicts a 2-exchange. Such an exchange is profitable in a local tour improvement if 

and only if wi,i+1+wj,j+1> wi,j+wi+1,i+1 under the assumption that the triangle inequality holds. In 

contrast with the TSP where each individual exchange takes O(1) time, checking whether each 

DARP exchange satisfies the origin-destination precedence constraints requires O(N2) time. (This 

is so, because checking for precedences needs an examination of all pairs of nodes in the section 

(i+1, j) and to ascertain if there is any customer who has the corresponding origin and destination 

in the segment.) If the feasibility check is executed at every 2-inerchange, the procedure to find a 

2-opt DRAP tour from a feasible DRAP tour will take O(N4) time. 

Psaraftis proposes a method which finds the best 2-iterchange DARP tour out of a given feasible 

tour in O(N2) time, which is the same as in the TSP where no feasibility checks are needed. 

Suppose that we have an initial feasible DARP tour having N customers (labeled n=1,…,N). A 

DARP tour can be represented in one of following two ways.  

Either using an array for a sequence counter S(i), i=0,…,2N+1, representing the ith stop of the tour 

given by following definition: 

 

                     0    if i =0 and 2N+1 (i.e., the starting and ending point of the tour), 

        S(i) =    +n  if the vehicle picks up customer n at stop i, 

        -n   if the vehicle delivers customer n at stop i. 

 

Or using a matrix [m(n,i)] in which m(n,i) represents the status of customer n at the end of the ith 

stop of the tour: 

 

                         3  if customer n has not been picked up so far, 

        m(n,i) =    2   if customer n is on board the vehicle, 

            1   if customer n has been delivered. 

 

Let us consider a 2-exchange of (i, i+1) and (j, j+1) as shown in Figure 2.5. Checking the 

precedence feasibility of the 2-exchange can be done by simply examining if there is any 

customer n for whom m(n, i+1) = 3 and m(n, j) = 1. If there exists such a customer, the proposed 
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2-exchange will violate the precedence constraint. The matrix [m(n, i)] can be constructed from 

array S(i) in O(N2) time. Having this matrix, we can check the precedence feasibility of a 

proposed 2-exchange in O(N) time. Hence, the best 2-exchange DARP tour from a given initial 

tour can be obtained in O(N3) time.  

 

i

j+1 j

i+1
i

j+1 j

i+1

 

Figure 2.5 An example of 2-exchange. 

 

In order to reduce the computational complexity further, Psaraftis introduces a screening 

procedure to determine the feasibility of every possible 2-intercange. This screening process is 

performed at the beginning of the algorithm, and the information is stored in a matrix to be used 

in the tour improvement procedure.  

Given a DARP tour and a stop i (0 ≤ i ≤ 2N-2), let FIRSTDEL(i) denote the position (or stop) of 

the first delivery remaining beyond i+1, for which the corresponding customer has not been 

picked up until stop i. The FIRSTDEL(i) is expressed as follows: 

 

                    x   if x is the smallest position above i+1 for which there exists a     

customer n so that m(n, i) =3 and m(n, x) =1, 

          2N+1, otherwise. 

 

Then, the precedence feasibility of a 2-exchange can be checked by applying the following 

theorem. 

 

Theorem (Psaraftis (1983b)): The substitution of links (i, i+1) and  (j, j+1) with  (i, j) and  (i+1, 

j+1) is feasible if and only if j < FIRSTDEL(i). 

 

FIRSTDEL(i) = 
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Using the array of FIRSTDEL(⋅) and the Theorem, the feasibilities of all possible 2-exchanges are 

stored in the matrix [FE(i, j)] with values of true or false. The pseudo-code for the screening 

process is presented below: 

 

Step 1(Calculate the values of FIRSTDEL(i)): Using array S(i) and the matrix [m(n, i)], calculate 

the values of FIRSTDEL(i) for all i, 0 ≤ i ≤ 2N-2. 

Do i = 0 to 2N-2  
     Do x = i+2 to 2N+1 

 If (S(x) < 0)            // check if x is delivery 
   If m(-S(x), i) = 3) // check if x has already been picked up util the end of stop i 
        FIRSTDEL(i) = x; 
   End if 
End if 
If (x = 2N+1) then FIRSTDEL(i) = x; 

      End do i 
            End do x 
 
Step 2 (Create a feasibility matrix [FE(i, j)] for all possible 2-exchanges): 

 Do i = 0 to 2N-2  
     Do j = i+2 to 2N 
  FE(i, j) = false; 
  If j < FIRSTDEL(i), then FE(i, j) = true; 
     End do i 
 End do j 
 

The above screening process can be executed in O(N2) time. As a result, the best 2-exchange  tour 

out of a given DARP tour can be found in O(N2) time since checking feasibility of any proposed 

2-exchange can be performed in O(1) time. It should be emphasized that what we have found so 

far is not the find 2-opt tour but the best 2-interchange tour of a given DARP tour. To search for a 

2-opt tour, the procedure should be applied a number of times. To facilitate this process, Psaraftis 

introduces two search algorithms: Breath-first and depth-first search (see Psaraftis (1983b) for a 

complete discussion of this).  

 

 

2.1.4.3.2 Solomon's Procedures 

 

A.  Tour Building Procedures 
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By extending the known VRP heuristics, Solomon (1987) proposes several tour-building 

algorithms for VRP-TW. The novelty of the proposed approach is the incorporation of distance 

and time dimensions in the heuristic process. The cost (for the objective function) of direct travel 

from customer i to j is assumed to be given by ci j= ρ1wij + ρ2 (bj - bi), where ρ1 ≥ 0, ρ2 ≥ 0 and wij 

is the direct travel time between i and j, and bj is the time to begin service for customer j.  If ρ1 = 

0, then the problem is to minimize the total travel time.  

Solomon proposes necessary and sufficient conditions for time feasibility when inserting a 

customer, u,  between the customers ip-1 and ip, 1 ≤ p ≤ m, on a partially constructed feasible 

route, (i0, i1, i2,…, im), i0 = im = 0 for which the times to begin service, rib for 1 ≤ r ≤ m, are known. 

Initially, the vehicle is assumed to leave the depot at the earliest possible time, e0. (Later, the 

depot departure time is adjusted to eliminate any unnecessary waiting time after the complete 

vehicle schedule has been created.)  The necessary and sufficient condition for feasibility of the 

insertion is as follows: 

bu ≤ lu and rrr iii lb ≤+ PF , p ≤ r ≤ m, 

where, riPF : the push-forward for customer ir is defined as 
new
ip

b - pib ≥ 0, if r = 

p, and }PF,0max{
1+

−
rr ii W ,  if p ≤ r ≤ m – 1, 

  and where, 1+riW is the waiting time at ir+1. 

 

It should be noticed that if piPF > 0, some of the customers ir, p ≤ r ≤ m, could become infeasible. 

Hence, we need to examine these customers sequentially for time feasibility until we find a 

customer, ir, for which 0
PFi = 0, or ir is time infeasible. 

It should also be noticed that, the aforementioned condition assumes that the triangle inequality 

holds for travel distance and times. If non-Euclidean travel distances and times are used, then it is 

possible that piPF < 0, which leaves all the customers time feasible . Solomon proposes several 

types of heuristic methods for the tour building methods. 

 

Saving heuristics:  

This approach is an extension of the savings heuristic originally proposed by Clarke and Wright 

(1964). The procedure begins with n distinct routes in which each customer is served by a 

dedicated vehicle. The tour-building heuristic is performed by the addition of a link of distinct 

partially formed routes between two end customers, i and j, guided by a measure of cost savings 

given by Sij = di0 + d0j - µdij, µ ≥ 0. In the VRP-TW, the route orientation must be considered 
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when two partial routes (see Figure 2.6) with end customers, l(ast) and f(irst), respectively, are 

combined according to the savings value. Here, testing for time feasibility can be accelerated by 

using the push-forward generated at f. 

 

0

a) Before the addition c) Addition 2b) Addition 1

f

l

0

f

0

l

 

Figure 2.6 Two-addition procedures in a savings heuristic. 

 

A time-oriented, nearest-neighbor heuristic: 

This procedure initializes every route by finding the unrouted customer closest to the depot. The 

heuristic searches for the customer closest to the last customer added to the route. Let the last 

customer on the current partial route be customer i, and let j denote any unrouted customer. The  

closeness of any two customers, i and j, denoted by cij, is the combination of the distance between 

two customers dij, the time difference between the completion of service at i and the beginning of 

service at j, Tij, and the urgency of delivery to customer j, vij, given by the following equations: 

 

  Tij = Aj - (Ai + si), 

  vij = lj - (Ai + si + wij) and 

  cij = δ1wij + δ2Tij +δ3vij, where δ1 + δ2 + δ3 = 1, δ1, δ2, δ3≥0, 

  where, Ai: arrival time at customer i, 

sj: service time for customer i, 

 

B. Improvement Procedures  
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Suppose that we have a 2-exchage tour as shown in Figure 2.5. Similar to Psarsftis’s procedure, 

Solomon (1988) considers two conditions to be satisfied for a substitution of (i, j) and (i+1, j+1) 

with (i, i+1) and (j, j+1) to be favorable: 

 

local improvement condition: wij+wi+1, j+1 < wi, j+1 + wi+1, j,  

feasibility condition: The time-window constraints of the customers affected by the exchange 

need to be satisfied. 

 

To check the feasibility of the 2-exchange, time-windows for all customers from i+1 to the end of 

the route should be examined. Since this additional checking procedure requires O(N) time, the 

total computational effort for 2-opt would result in a O(N3) time process. 

By adopting the work of Psaraftis (1983b), Solomon et al. (1988) develop an acceleration method 

for improvement heuristics for VRP-TW. This method is used as a preprocessor, which makes it 

possible to handle the time-window constraints without an increase in running time of the 

algorithm. Checking the feasibility of a 2-exchnage can be accelerated by examining the 

precedence relationship between all pairs of customers. If Ai+si+wij (=Di+wij) > lj, then customer i 

should precede customer j in the tour. The precedence information between all pairs of customers 

are stored in a matrix VP(i, j) in the following way: 

 

      +1 if customer i must precede customer j, 
VP(i, j) =     0 if no precedence relationship exists,  
                   -1 if customer j must precede customer i. 
 
 

Similar to Psaraftis' method, it is possible to define a node precedence value, NP(i), for all 

customers on the route which reflects the precedence dependence at that point with regard to 

customers to be visited later in the route.  

 

NP(i) = the smallest number k , k > i+1, such that VP(j, k) = +1, j ≥ i+1. If no such k  
exists, then NP(i) = N+1,  

where, N is the number of customers. 
  

Given NP(i) for all i, a necessary condition for the time feasibility of a 2-exchange is stated as 

follows: 

 

 A necessary condition for the feasibility of the 2-exchange of arcs (i, i+1) and (j, j+1) 
with (i, j) and (i+1 and j+1) is that j < NP(i).  

 



  

 31

It is noted that VP(i, j) may be examined in O(N2) time, and NP(i) may be obtained from the 

VP(i,j) in O(N2) time. It should also be noted that, unlike Psaraftis’s procedure (1983b) for dial-a 

ride problem, the aforementioned condition is not a sufficient condition but only a necessary 

condition for feasibility of time-windows. Although the use of the NP(i) array does not eliminate 

the need for further checking of the feasibility of a 2-exchage, Solomon et al. suggest that it may 

be used as an effective filter to reduce the number of complete feasibility checks to obtain 2-

optimal solution for the VRP-TW. (For 3-exchanges and some examples, see Solomon et al. 

(1988).) 

 

2.1.4.3.3 Savelsbergh's Procedure 

 

A. Tour Building Procedure  

 

Savelsbergh (1990) introduce the forward-time slack at node i, Fi, to indicate how far the 

departure time of the node can be shifted in time without causing the route to become infeasible 

along the current path. The goal of the procedure is to check feasibility of the insertion of an 

unrouted customer u between two routed customers i and i+1. Taking the departure time at the 

initial node as the earliest service time (i.e., D0= e0), Fi is defined as follows: 

 

   






















+−= ∑
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nki
i wDlF 1,min . 

 

Then, the feasibility of the insertion u will be secured if 

 

   max{Di +wi,u, eu} + wu,i+1 - Di+1 ≤ Fi. 

 

Using the following backward recursion, Fk
  for all customers k  can be computed in O(n). 

 

  inn DlF −= ++ 11 , 

  }  ,min{ 11 kkkkk DlWFF −+= ++  for k  = n,…1, 

  where, Wi: waiting time at node i defined as max{0, ei-Ai}. 
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For the profitability of the insertion, Savelsbergh uses the measure of savings given by the 

following equation:  

 

   sav = 2w0,u + wi,i+1 – wi,u  - wu,i+1. 

 

 

B. Tour Improvement Procedures  

 

The basic idea of Savelsbergh's tour improvement procedure (1990b) is to use a specific search 

strategy in combination with a set of global variables such that testing the feasibility of a single 

exchange and maintaining the set of global variables requires no more than a constant time, O(1). 

The set of global variables is defined such that: 1) this set of variables makes it possible to test the 

feasibility of a proposed exchange in constant time, and 2) the lexicographic search strategy 

makes it possible to update the values of these variables in constant time. Savelsbergh suggests 

three types of lexicographical search strategies for VRP-TW as shown in Figure 2.7.  

 

Lexicographic search for 2-change: In the outer loop, choose the edge (i, i+1) in the order in 

which they appear in the current tour starting at (0,1). For the inner loop, choose the edge (j, 

j+1) to be (i+2, i+3), (i+3, i+4), …, (n-1, n) (see Figure 2.7(a)). 

Lexicographic search for backward Or-exchange: Choose the path (i1,…,i2) in the order of the 

current route starting with i1 equal to 2. Choose the edge (j, j+1) to be (i1-2, i1-1), (i1-3, i1-2), 

…, (0, 1) (see Figure 2.7(b)). 

Lexicographic search for forward Or-exchange: Choose the path (i1,…,i2) in the order of the 

current route starting with i1 equal to 1. Choose the edge (j, j+1) to be (i2+1, i2+2), (i2+2, 

i2+3), …, (n-1, n) (see Figure 2.7(c)). 
 

A general framework for the 2-exchange procedure is roughly described by the following pseudo-

code: 

{ input: a route given as (0,1,2,…,n)} 
{ output: a route that is 2-optimal} 
Start: 
for i=0 to n{ 

initGlobal(i,G); 
 for j=i+2,n{ 

if(wi,j + wi+1,j+1 < wi,i+1 + wj,j+1  and FeasibleExchange(i,j,G)) 
{ 
     PerformExchange(i,j); 
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     Goto Start; 
} 

  UpdateGlobal(i,j,G); 
 }// end for j  

}// end for i 

 

 

Comparing this procedure with the straightforward implementation, the suggested idea guarantees 

that only constant time is spent on a single exchange, which implies an O(n2) method for 

verifying 2-optimality. On the other hand, in the straightforward implementation, the time spent 

on a single exchange depends on the effort needed to establish either its feasibility or its 

infeasibility, which implies an O(n3) method for verifying 2-optimality. 

Generally, the forward-time slack at node i related to the path (i,…, j) and to the departure times 

Di,…, Dj is expressed as: 
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Savelsbergh (1992) proves that if two feasible path (i1,…, j1) and (i2,…, j2), with associated 

forward time slacks 
),...,( 11

1

ji
iF and 
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iF for the initial nodes are concatenated, the forward-

time slack for the first node of the resulting path is given by: 
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Using the above equation, we can compute the forward-time slack at the depot, 
),...,0(

0
nF , using 

one of the following two ways: 

 

forward recursion: } ,min{ 1011
),...,0(

0
)1,,...,0(

0 +≤<++
+ ++−= ∑ iip pii

iii WWDlFF . 

backward recursion: } ,min{ 1
),...,1(

1
),...,1,(

0 +
+

+
+ +−= i

ni
iii

nii WFDlF . 

 

Another issue in improvement procedures is how efficiently the objective function associated 

with a given exchange can be evaluated. Since our objective is to minimize the route duration, 

Dn+1-D0, the efficiency of evaluation actually depends on the efficiency of the computation of 
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Dn+1. Given a path (i,…, j), a departure time Di and D0=e0, the departure time Dj can be computed 

as  

 

∑∑ ≤<<≤ + ++= jki kjki kkij WwDD   1, . 

 

As such, the computation of waiting times, Wk,  in a constant time is the real issue in checking for 

profitability. Savelsbergh (1992) suggests an approach to compute the waiting time on the 

concatenation of paths  (i1,…, j1) and (i2,…, j2) by distinguishing four different cases on ∆ which 

denotes 2211 , ijjj DwD −+ , and W2 which is the sum of the waiting time on the path (i2,…, j2). 

Table 2.2 summarizes the results. Here B2, which is the backward-time slack at node i relative to 

the path (i,…, j) indicates how far the departure time of the node can be shifted backward in time 

without introducing any waiting time, and is computed as follows:  

.}{min),...,( ∑ ≤≤ −= jki kk
ji

i eDB  

 

Table 2.2 Computation of Waiting Time on a Concatenated Path. 

 ∆ ≥ 0 ∆ < 0 

W2 = 0 W1 W1+max{0, -∆ -B2} 

W2 > 0 W1+max{0, W2-∆} W1+ W1 + ∆ 

 

 

Savelsbergh shows that on the concatenated path, both the forward-time slack at each node that is 

used for the checking feasibility, and the sum of the waiting times used for checking the 

profitability can be computed in constant time. Hence, it is possible to implement the testing of 

feasibility and profitability in O(1) time. 
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Figure 2.7 Lexicographic search strategies. 
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2.1.4.4 Heuristic Approaches to the Asymmetric Traveling Salesman Problems (ATSP) 

 

In principle, if an asymmetric TSP is translated into a symmetric TSP, we can now apply any 

heuristic devised for symmetric TSP to solve ATSP. As pointed out by Kanellakis and 

Papadimitriou (1980), this approach increases the problem size considerably. For example, a 100-

city ATSP is transformed into a 300-city symmetric TSP. They also remarked that not all 

approaches to the symmetric TSP can be adopted to solve the ATSP (for example, the class of 

techniques based on spanning trees). The power of Lin-Kernighan’s (1973) heuristic is the fact 

that all primary changes are potentially searched. Kanellakis and Papadimitriou (1980) present an 

extension of  Lin-Kernighan’s local search algorithm for the solution of ATSP: the sequential 

primary change in which the creation of a new cycle (by primary change as described below) is 

immediately followed by a breaking of the cycle. They also suggest that the so-called quad 

change which is nonprimary can substantially enrich the neighborhood structure. A quad change 

is illustrated in Figure 2.8(d). 

It is pointed out that Lin-Kernighan’s heuristic which uses a definite favorable λ-change (see the 

definition given below) requires excessive computation for ATSPs. Without having any definite 

favorable λ-change, the algorithm is designed to be able to stop if there is no favorable change at 

every pair of steps. The computational results show that 90-city ATSPs can be solved in 4.43 

minutes on a PRIME 400 minicomputer.  

Below, we present the definitions of the λ-change and the primary change for a given tour τ, 

which are related to the sequential primary change. 
 

Definition (λ-change of a tour τ):  

Let τ and τ′  be ATSP tours, X and Y be disjoint sets of edges such that τ′ =(τ-X)∪Y. If 

|X|=|Y|=λ, we say that τ′ is a λ-change of τ. A graph G(τ,τ′) is defined in such a way that, 

given the nodes of G(τ,τ′) corresponding to edges in X, if xi=(k , l) and xj=(p, q), xi, xj∈X, 

then there is an arc (xi, xj) in G(τ,τ′) iff (k , q)∈Y. For example, a tour τ′ in Figure 2.8(b) is 

a 5-change of the tour τ of Figure 9(a), and Figure 9(c) displays the graph G(τ,τ′). 

 

Definition (Primary change):  

A tour τ′ is a primary change if G(τ,τ′) consists of a single cycle. Figure 2.8(b), for 

instance, shows a primary change for the tour of Figure 2.8(a), but Figure 2.8(d) displays 

a non-primary change. 
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Figure 2.8 Definition of primary changes. 

 

 

There are two ways to gradually construct a primary change τ:  

Decide x1 to be removed (see Figure 2.9(a)). 

The choice of y1
 (or generally y2i+1) uniquely determines an x2i+2 and a closed cycle C1 (Figure 

2.9(b)).  

Here we have two alternatives. 

3-1) Choose y2 to break the cycle C1 and end up where the tour started (Figure 2.9(c)). 

3-2) Choose y2 to generate a new cycle C2 (Figure 2.9(d)) and later break both cycles C1 and 

C2 (Figure 2.9(e)). 
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Accordingly, we can define the sequential primary change as follows: 

 

Definition (Sequential primary change):  

If a primary change can be applied in a sequence, each immediately followed by the 

breaking of a cycle, it is called a sequential primary change (see Figure 2.9(c)). 
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x1
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Figure 2.9 Construction of primary changes. 

 

 

The heuristic for ATSP starts with an initial feasible tour τ. It picks an edge x1 of τ, and tries to 

find a sequential primary change. If it fails, it backtracks with respect to the same x1, and 

considers all possible y1’s in increasing order and y2’s. (Here, all y2’s that break the cycle created 

by y1 are searched and the one that produces the most favorable 3-change is selected.) If it fails 

again, it backtracks with respect to all possible x1’s which it examines in decreasing order. This 

part of the procedure is detailed as follows: 
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Step 1 (Initialization): Set G0=0, G*=0, i*=0, and i=1. Pick x1=(k , l) as the largest cost edge.  
Step 2 (Pair of sub-steps):  

Sub-step 1 (pick yi and create a new cycle Ci):  
Let xi=(k , l). Pick yi=(k , q) subject to F and Gi. This determines xi+1 and 
generate a cycle Ci. If no such choice, stop. 

Sub-step 2 (pick yi+1 and break the cycle Ci):  
Let xi=(p, q). Pick yi+1=(p, r) subject to F and Gi+1. This determines xi+2 and 
a y* closing the tour, and it breaks Ci. If no such choice, stop. 

Step 3 (Update): SP = G*. If Gτ
*> G* then, G*=Gτ

*, delete xi*+1, …, xi+1 from current tour τ, and 
add yi*+1, …, yi+1 to the tour τ and set i*=i+1. 

Step 4 (Stopping Criteria): If SP<Gi+1, then set i=i+1, start a new pair of steps, else stop. 
 

Where, F (Feasibility): The x’s have not been y’s in previous steps of the current search, and yi+1 
breaks Ci. 

Gi (working gain) = Gi-1 + c(xi) - c(yi). 
Gi+1 = Gi + c(xi+1) - c(yi+1). 

Gτ
* = )()()( *

1

1

2

1
ycycxc

i

j
j

i

j
j ∑∑

+

=

+

=
−− >0. 

G* (the best definite gain achieved so far at the step i*). 
 

 

2.1.4.5 Heuristic Approaches to the Asymmetric Traveling Salesman Problem with Time-

windows (ATSP-TW) 

As part of a branch-and-cut algorithm to solve ATSP-TW, Ascheuer et al. (1999) apply a series of 

heuristics. A sorting heuristic, a nearest-feasible-neighbor heuristic, and an insertion heuristic are 

applied for constructing an initial feasible tour. A swap heuristic, a two-node-exchange heuristic, 

a node-reinsertion heuristic, an arc-reinsertion heuristic, an arc-reversal heuristic, and the Or-

exchange heuristic are applied for improving a current tour. For the convenience of 

implementation, an additional dummy node n+1 which denotes the depot is created such that 

i p n+1 ∀i∈V. (Here, “ p ” denotes the precedence relationship. For example, i p j means that i 

has to precede j.) Ascheuer et al. also suggest an efficient order to implement these heuristics as 

follows:  

Do{ construction heuristics with following order: 
Sorting heuristic  
Nearest-feasible-neighbor heuristic  
Insertion heuristic 1 
Insertion heuristic 2 

} 
If no feasible sequence found Stop. 
Do{ improvement heuristics with following order: 

Or-exchange heuristic  
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Arc-reversal heuristic  
Swap heuristic  
Arc-reinsertion heuristic  
Node-reinsertion heuristic  
Two-node exchange heuristic  

} until no further improvement is achieved. 
 
 
 
A. Tour Building Procedures  

 

The various types of heuristics used for tour building are as follows: 

 

1) Sorting heuristic: 

Check if the trivial sequence (0, 1,…, n-1, n, n+1) is feasible. 

Sort the nodes according to increasing ri and check whether this sequence is feasible.  

Sort the nodes according to increasing dj and check whether this sequence is feasible.  

Sort the nodes according to the midpoints of the time-windows mj = ej+(ej+lj)/2 and check 

whether this sequence is feasible.  

 

2) Nearest-feasible-neighbor heuristic:  

For each feasible arc (0, i)∈A, 

Enlarge the current subtour  (0, v1, v2,…,vk) by an arc (vk, vl) resulting in the smallest increase in 

the objective value and guaranteeing feasibility. 

 

3) Insertion heuristic: 

Construct the initial subtour P′=(0, v1,…, vk, n+1) by finding the shortest path from 0 to n+1. 

Enlarge the current subtour P′ by choosing a node j satisfying one of following criteria. 

b1) Among all unsequenced nodes V′=V\{v1,…, vk}, choose the node j∈ V′ that yields the 

lowest increase in the path length, i.e., dmin(j)=min{dmin(i)|i∈ V′}, where dmin(i) = min 

{ 11 ++
−+

llll vviviv www | i∈ V′, vl∈P′ and subtour (0, v1,…, vl, i, vl+1,…, vk, n+1) is 

feasible}. 

b2) Among all unsequenced nodes V′=V\{v1,…, vk}, choose the node j∈W that has the lowest 

number of feasible insertion positions and insert this nodes at the cheapest of these 

positions. 
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B. Improvement Heuristics 

 

The details of the improvement heuristics are as follows: 

 

1) Swap heuristic:  

Given a feasible tour T=(v0, v1,…, vn+1), construct a new tour T by scanning through the current 

tour and checking whether swapping two subsequent nodes vi and vi+1, i =1,..,n-1, results in a 

feasible solution with a better objective value. If a better solution is found, this new tour is 

accepted. The procedure is repeated until no further improvement is achieved. 

 

2) Two-node-exchange heuristic:  

Given a feasible tour T=(v0, v1,…, vn+1), construct a new tour T by exchanging any two nodes (not 

only subsequent nodes) in the current tour. If a better solution is found, this new tour is accepted. 

This procedure is repeated until no further improvement is achieved. 

 

3) Node-reinsertion heuristic:  

Given a feasible tour T=(v0, v1,…, vi, vj, vk,…, vn+1), construct a subtour T ′=(v0, v1,…, vi, vk,…, 

vn+1) by eliminating an inner node vj. Try to reinsert vj in the best position in T ′ such that the new 

tour T is feasible. If a better solution is found, this new tour is accepted. This procedure is 

repeated until no further improvement is achieved. 

 

4) Arc-reinsertion heuristic:  

Given a feasible tour T=(v0, v1,…, vi, vj, vk, vl,…, vn+1), construct a subtour T ′=(v0, v1,…, vi, vl,…, 

vn+1) by eliminating two consecutive nodes vj and vk. Try to reinsert the arc (vj, vk) at any position 

in T ′ such that the new tour T is feasible. If a better solution is found, this new tour is accepted. 

This procedure is repeated until no further improvement is achieved. 

 

5) Arc-reversal heuristic:  

Given a feasible tour T=(v0,…, vj, vk,…,vl, vm,…, vn+1), construct a tour T=(v0,…, vj, vl,…,vk, 

vm,…, vn+1) by reversing the subpath (vk,…,vl) such that the new tour T is feasible. If a better 

solution is found, this new tour is accepted. This procedure is repeated until no further 

improvement is achieved. 

 

6) Or-exchange heuristic:  
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Given a feasible tour T=(v0, v1,…, vi,,…, vj,…, vn+1), remove the subpath (vi,…,vj) from the 

current tour T, and try to reinsert it between any two subsequent nodes vl and vl+1 such that the 

new tour T is feasible. If a better solution is found, this new tour is accepted. This procedure is 

repeated until no further improvement is achieved.  

 

2.2 Literature Review on Network Assignment Problem (NAP) 

 

The NAP problem on the taxiway has many similarities with urban transportation network 

problems. In urban networks, NAP solutions provide the best routes for drivers traveling to their 

own destinations so that the system (or drivers) can reach an optimal (or equilibrium) state. In 

solving urban transportation network problems, three types of sub-components are generally 

involved:  

 

Network assignment algorithm which, using the shortest path information, allocates traffic 

demand, i.e., vehicles, on the routes,  

Shortest path algorithm which, using the link travel times, provides the shortest paths for a 

given O-D pairs on the network, and  

Link performance function(s) which represent the relationship between the traffic volume on 

a link and the travel time along the link.  

 

Finding an adequate link performance function is considered as a difficult task, and is still a 

controversial issue. The difficulty arises from the dynamic feature of traffic conditions. Some 

research groups [Leonard et al. 1978, Van Aerde 1985, 1999] use a simplified version of link 

performance function having two components: free running times along the link and delays at 

junction [Rakha, 1990]. Other groups [Peeta and Mahmassani 1995, Mahmassani, 1998] use 

simulation models as a tool for measuring link travel time rather than using a closed-formed link 

performance function. Some researches [Ran et al. 1997] suggest more sophisticated functions 

which are capable of capturing the dynamic characteristic of  vehicle behaviors. In this research, 

we assume that the link travel time is a function of only delays at a junction. It is further assumed 

that the delays at taxiway junctions are proportional to the number of  conflicting vehicles.  

Among those three sub-components, we review the previous studies on the network assignment 

algorithm and the shortest path algorithm which have been well defined and successfully studied.  
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2.2.1 Literature Review on Network Assignment Algorithms 

 

Depending on the time-dependency, network assignment algorithms can be classified into two 

types: 1) static network assignment algorithm, and 2) dynamic network assignment algorithms.  

 

2.2.1.1 Static Assignment Algorithm 

 

In 1952, Wardrop established two mutually independent network assignment principles for the 

static assignment problem. According to the first principle, users on the network choose a route 

that minimizes their own travel time. In the second principle, users distribute themselves on the 

network in such a way that the average (or marginal) travel time for all users for each route from 

origin to destination is equal so that the aggregate vehicle -hours spent in traveling is minimized.  

These two assignment principles are also-called “User Equilibrium (UE)” and “System optimal 

(SO)” respectively. Two critical conditions arise from two static network assignment principles 

[Papacostas and Prevedouros, 1993]:  

 

1) User equilibrium (UE) is the state where no traveler can improve his/her travel time by 

unilaterally changing routes. (In other words, for each O-D pair, the travel time on all used 

paths is equal, and also less than or equal to the travel time that would be experienced by a 

single vehicle on any unused path.)  

2) System optimal (SO) is the state where the travelers cannot improve the total system travel 

time by jointly changing routes in any fashion. (In other words, for each O-D pair, the 

marginal travel time on all used paths is equal, and also less than or equal to the marginal 

travel time that would be experienced by a single vehicle on any unused path.) 

 

Finding UE (or SO) solutions is a well-researched problem and various techniques are commonly 

used in urban transportation studies [Sheffi, 1985]. The basic notation adopted in this research 

project is shown below: 

 

xa
n: flow on link a at nth iteration, 

ta: travel time on link a at nth iteration, 

qrs: trip rate between origin r and destination s, 

ta(): link travel time function for link a.  
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A) All-or-nothing assignment 

 

The all-or-nothing assignment method is one in which the entire flow for any given O-D pair r-s, 

qrs, is assigned to the minimum-travel-time path connecting this pair. The usual steps for the all-

or-nothing assignment are: 

 

Step 0: initialization. Perform all or nothing assignment based on the shortest paths for all 

trips obtained by using ta
0 = ta(0) for all the links. Obtain link flows {xa

0} for all the 

links. Set n = 1. 

Step 1: update the link travel times. Set ta
n = ta(xa

n-1). 

Step 2: network loading. Assign all the trips to their shortest paths on the network using the 

all-or-nothing strategy based on the travel times {ta
n}. Obtain the link flows {xa

n} 

for all the links.  

Step 3: convergence test. If maxa{| xa
n - xa

n-1 |} ≤ k , then stop. Otherwise, set n ← n + 1 and 

go to Step 1. 

 

Considering how all-or-nothing assigns all of qrs to the shortest path, the algorithm is not 

successful at converging to the state of user equilibrium. To overcome this problem, the following 

algorithms have been devised by the Federal Highway Administration (FHWA).  

 

Step 0: initialization. Perform all-or-nothing assignment based on the shortest paths for all 

trips obtained by using ta
0 = ta(0) for all the links. Obtain the link flows {xa

0} for all 

the links. Set n = 1. 

Step 1: update and smooth the link travel times. Set τa
n = ta(xa

n-1) and ta
n

 = 0.75 ta
n-1 + 

0.25τa
n for all the links. 

Step 2: network loading. Perform an all-or-nothing assignment based on the travel times 

{ta
n}. Obtain the link flows {xa

n} for all the links.  

Step 3: stopping rule. If n = N, go to Step 4. Otherwise, set n ← n + 1 and go to Step 1.  

Step 4: averaging. Set ∑ =

−=
3

0

*

4
1

i

in
aa xx , find the link travel times, ta

* = ta(xa
*) for all the 

links and stop. (Here, { xa
*} approximate the link flows at equilibrium.) 
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There are two modifications used above. First, the link travel times are updated by smoothing the 

link travel times from both the current and the previous iterations using certain weighting factors. 

Second, the final link flows are obtained by averaging link flows from the last four iterations. 

These modifications have proven to be somewhat helpful in obtaining solutions that are closer to 

a true equilibrium state. 

 

B) Incremental Assignment 

 

In the incremental assignment method, the flows for a given O-D pair are assigned as a packet 

which represents a portion of the origin-destination matrix at each iteration. The travel times are 

updated based on the total traffic flows assigned to the links. The stepwise procedure for this 

approach is outlined below. 

 

Step 0: initialization. Divide each origin-destination demand into N equal portions (i.e. set 

qrs
n = qrs/N).  Perform an all-or-nothing assignment based on ta

0 = ta(0). Obtain a set 

of link flows {xa
0}. Set n = 1 and xa

0=0. 

Step 1: update link travel times. Set ta
n = ta(xa

n-1). 

Step 2: incremental network loading. Assign qrs
n to the network based on the travel times 

{ta
n} for all origin-destination (i.e. rs) pairs. Obtain a set of link flows {wa

n} from 

this assignment, where wa
n is the flow on link a resulting from the assignment of the 

nth increment of O-D matrix on to the network. 

Step 3: flow summation. Set xa
n = xa

n-1 + wa
n for all the links. 

Step 4: stopping rule. If n = N, stop with the current link flows as the prescribed solution. 

Otherwise, set n ← n + 1 and go to Step 1.  

 

One important fact in the incremental assignment procedure is that as the number of increments, 

N, grows, the condition for UE can be achieved more closely. This point provides us with the 

rationale for using an incremental assignment strategy in microscopic simulation models. In 

microscopic simulation models, the vehicles are treated as individual objects, which means that 

each vehicle is assigned one by one rather than as a packet of size qrs/N on the network. In this 

case, the number of increments (N) is the same as the total number of vehicles, and this might 

tend to produce the UE state.  
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C) Method of Successive Averages (MSA) 

 

The MSA uses the following basic algorithm step of most minimization procedures.  

 

x n+1= x n + αn⋅d n  

where,  xn is the link flows at nth iteration,  

αn is a step size and 

d n is a descent direction vector computed at xn. 

 

In MSA, the step size αn (n=1,2,…) is not determined on basis of some characteristics of the 

current solution but determined a priori. For this method to converge, some conditions of the 

objective function and αn have to be satisfied. These conditions include twice differentiability of 

the objective function, ∞=∑
∞

=1n

nα  and ∞=∑
∞

=1

2

n

nα  (see Sheffi (1985) for a complete discussion). 

The method is outlined below. 

  

Step 0: initialization. Perform an all-or-nothing assignment based on ta
0 = ta(0). Obtain a set 

of link flows {xa
1}. Set n = 1. 

step 1: update. Set ta
n = ta(xa

n). 

Step 2: direction finding. Assign all the trips to the network based on the travel times {ta
n}. 

Obtain a set of auxiliary link flows {ya
n} from this assignment. 

Step 3: move. Find the new flow pattern for all the links by setting xa
n+1= xa

n + (1/n)(ya
n -  

xa
n). 

Step 4: convergence test. If a convergence criterion is met, stop  with the current solution, 

{xa
n+1}, as the set of prescribed (near equilibrium) link flows. Otherwise, set n ← n 

+ 1 and go to Step 1. 

 

D) Convex Combination Method 

 

Without using a predefined step size αn, the convex combination method finds αn at each iteration 

by solving a Non-linear Programming (NLP) problem which is subject to linear constraints. The 

resulting NLP problem can be replaced by a much simpler linear approximation, and solved using 

the Frank-Wolfe (1956) algorithm. The method is outlined below. 
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Step 0: initialization. Perform an all-or-nothing assignment based on ta
 = ta(0). Obtain a set 

of link flows {xa
1}. Set n = 1. 

Step 1: update link travel times. Set ta
n = ta(xa

n). 

Step 2: direction finding. Assign all the trips to the network based on the travel times {ta
n}. 

Obtain a set of auxiliary link flows {ya
n} from this assignment.  

Step 3: line search. Find αn by solving ∑∫
−+

≤≤
a

xyx

a dt
n
a

n
a

n
a ωω

α

α
 )(min

)( 

0 10
. 

Step 4: move. Set xa
n+1= xa

n + αn(ya
n -  xa

n) for all the links. 

Step 5: convergence test. If a convergence criterion is met, stop  with the current solution, 

{xa
n+1} as the set of prescribed (near equilibrium) link flows. Otherwise, n ← n + 1 

and go to Step 1. 

 

Methods A) and B) are called heuristic (or sometimes called non-equilibrium) assignment 

methods in the sense that these may not converge to the equilibrium solution. On the other hand, 

method D) is formulated as a mathematical programming technique to achieve either UE and SO. 

It can be shown that solutions of mathematical formulations are consistent with to the conditions 

of UE and SO defined by Wardrop. 

 

2.2.1.2 Dynamic Assignment Algorithm 

 

Similar to the static assignment problem, there are two types of dynamic assignment problems: 1) 

dynamic system optimal assignment problem (DSO) which seeks to minimize the total system 

travel time over the planning horizon, and 2) dynamic user equilibrium assignment problem 

(DUE) which seeks time-dependent user path assignments that satisfy the temporal extension of 

Wardrop’s UE condition [Peeta and Mahmassani, 1995]. 

Janson and Robles (1995) define the DUE as follows: Given a set of zone-to-zone trip tables 

containing the number of vehicle trips from each origin zone in successive time intervals of 1 to 

10 minutes each, determine the volumes of vehicles on each link in each time interval such that, 

for each O-D pair of zones, no path has a lower travel time than any used path for trips departing 

within a given time interval. Janson (1991) proves that the DUE condition for fixed departure 

times is a temporal generalization of Wardrop’s condition for a static user equilibrium.  

Using optimal control theory, Friesz et al. (1989) and Wie (1989) present formulations for 

dynamic traffic assignment in continuous time, in which the equilibrium condition is stated that 
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no used path between any two nodes must have a higher travel time than any other path at any 

instant. Ran et al. (1993) refine and extend optimal control models to include elastic demand and 

departure time choice in user equilibrium or system optimal forms. Friesz et al. (1993) formulate 

the simultaneous route choice and departure time problem in continuous time as a variational 

inequality problem. Ran et al. (1997) propose the time-dependent travel time functions for 

dynamic assignment on signalized network links which can be used to solve discrete-time 

dynamic assignment problems. 

Peeta and Mahmassani (1995) point out that virtually all of previous DUE models have link flows 

as the decision variables, and that path flows obtained from link-based formulations are not 

always unique. They suggest a formulation for the path-based assignment problem which 

involves a non-explicit function of path travel times.  Instead of defining the extremely 

complicated path travel time function, a simulator called “DYNASMART” is developed and used 

to evaluate experienced path travel times. By applying Lagrangian multipliers, Peeta and 

Mahmassani derive the conditions for a Dynamic System Optimal (DSO) state. At a DSO state, 

the time-dependent marginal travel times for all used paths connecting a given O-D pair are 

equal, and less than or equal to the time-dependent marginal travel times on any unused routes. In 

order to find marginal link travel times, a curve fitting method is suggested. As a solution 

algorithm, the method of successive averages (MSA) is used to determine the new path flows for 

the next iteration. Using time-dependent experienced link travel times measured by the simulator,  

the time-dependent shortest paths for all O-D pairs  are computed. The complete algorithm is 

depicted in Figure 2.10.  

In the context of the simulation model named INTEGRATION, Van Aerde (1985) suggests that a 

minimum path tree table indirectly constitutes a traffic assignment function, and forms the basis 

upon which vehicles make route selection decisions. Specifically, the minimum path tree table 

provides a list of the turning movements which correspond to the minimum paths for each 

destination. These minimum path turning movements identify all downstream links 

corresponding to a vehicle’s minimum cost path, given the current location of the vehicle and its 

eventual destination. As drivers re-check these minimum path trees at each node, they 

automatically reselect new paths if previous paths become congested and/or competing 

alternative paths become faster. This path selection (and re-selection) process is based on real-

time information and attempts to reproduce a continuous dynamic equilibrium. 
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Figure 2.10 Algorithmic Framework for Time-Dependent System Optimal Assignment Problem 
[Peeta and Mahamassani, 1995]. 

 

Legend: 

 Tta: travel time on link a during time interval t 

xta: number of vehicles on link a during time interval t  

tta: marginal travel time on link a during time interval t 

τ
ijkr : number of vehicles departing from i to j in period τ that are

assigned to path k 

τ
*ijky : auxiliary number of  vehicles on paths departing from i to j

in period τ  that are assigned to path k 

 i: iteration counter. 

 

no yes 

Network Simulator 
(continuous/micro simulation) 

itax ,
,

itaT ,
 

Computation of the time-
dependent marginal link travel times

All-or-nothing 
assignment 

Time-dependent 
least marginal time path

itat ,

i
ijky ,

*
τ

 

Method of Successive Averages (MSA) 

])[
)1(

1
1(][

)1(
1 ,,1, i

ijk
i

ijk
i

ijk r
i

y
i

r τττ

+
−+

+
=+

 

i,j,k,rr i
ijk

i
ijk εττ ∀≤−+   ,,1,

STOP 

i←i+1 

Path 

0,τ
ijkr



   

50  

2.2.2 Shortest Path (SP) Algorithms 

 

2.2.2.1 Importance of SP Algorithm in Transportation Studies 

 

Finding shortest paths is a classical problem in the field of Operations Research. Recently, with 

the development of Integrated Transportation System (ITS), the time-dependent assignment 

problem for real-time traveler information system has captured some renewed attention. It is 

widely accepted that the successful implementation of real-time traffic network control system 

depends on the efficiency of SP algorithms. The following comments show the importance of the 

SP problem [Gallo, 1985]. 

 

If there is one routine that is never absent from any computer code used in transportation 

analysis, it is certainly the SP routine. About 80 percent of computation time in traffic 

assignment is consumed in finding shortest paths. 

 

2.2.2.2 Definitions of SP Problems 

 

Depending on the time-dependency of link travel times and number of shortest paths to be found, 

SP problems are categorized into static SP, static k-SP, time-dependent SP, and time-dependent k-

SP problems. In the static SP problem, the link costs (or travel times) are assumed to be 

independent of time. In the time-dependent SP problem, on the contrary, the link costs change 

over time. Instead of finding a single path for a given origin-destination (O-D) pair, the k-SP 

problem deals with multiple shortest paths. The k-SP problems are also classified as being either 

static or time-dependent. The definition of various SP problems are summarized in Table 2.3 

[Subramanian, 1997].  The basic notation used in this section is shown below: 

 N: node set of a given graph G(A, N), 
 A: arc set of a given graph G(A, N). 
 AT: arc set of a directed spanning tree T. 

FS(i): forward star of node i, 
RS(i): reverse star of node i, 

 cij: the travel cost (or travel time) of link (i, j)∈A, 
 cij(t): the travel cost (or travel time) of link (i, j)∈A departing node i at time t, 

s: source node, 
 tn: terminal node, 
 i, j: intermediate node. 
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Table 2.3 Various Definitions of SP Problems. 

Problem Given Find 

Static SP  A graph G(N, A) having |N| nodes and 
|A| arcs, and a distinguished source 
node s and a destination node t, and a 
set of link costs, cij, associated with 
each arc (i, j).  

The shortest path from s to t. 

Static k-SP  Same as static SP problem. The first, second,…, k th shortest  
paths from s to t, for any user-
specified k∈1,2,... 

Time-dependent 

SP  

A graph G(N, A) having |N| nodes and 
|A| arcs, and a distinguished source 
node s and a destination node t, and a 
set of time-dependent link delays, 
cij(t), associated with each arc (i, j). 

The shortest path from s to t, 
starting from s at time t=t0. 
 

Time-dependent 

k-SP 

 Same as time-dependent SP problem. The first, second,…, k th shortest  
paths from s to t, starting from s at 
time t=t0, for any user-specified 
k∈1,2,... 

 

 
2.2.2.3 Static SP Algorithm 

 

2.2.2.3.1 Network Flow Programming Approach 

 

The static SP problem can be formulated as a minimum-cost network flow problem (Bazaraa et 

al., 1990).  

∑
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and where, ss, stn, si: supply of node s, tn, i, respectively.  

 

Due to the unimodularity property of this network structure, optimal extreme point solutions take 

only integral values.  
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2.2.2.3.2 Bellman's Principle of Optimality 

 

Bellman introduced the well-known "Principle of Optimality" which provides the basic 

foundation for recursive algorithms including Dynamic Programming. Using the "Principle of 

Optimality", Bellman (1966) developed the following equation. Let us denote  

 

   




∞+
=

otherwise. ,  

arc.an such  is  thereif ), ,( arc oflength  (finite)  the jk
ckj  

  f j = the length of a shortest path from the origin to node j. 

  

If there are no directed cycles with negative length, it is clear that fs = 0, where the node s is the 

origin node. For each node j, j ≠ s, there must be some final arc (k , j) in a shortest path from node 

s to j. Whatever the identity of k , it is certain that kjkj cff += . This follows from the fact that 

the part of the path which extends to node k  must be a shortest path from 1 to k . If this is not true, 

the overall path to j would not be as short as possible (this is the “Principle of Optimality”). The 

relationship between nodes s, k  and j is shown in Figure 2.11. 

 

 

Figure 2.11 Bellman's Principle of Optimality. 

 

The shortest path length must satisfy the following system of equations (called Bellman’s 

equations): 

0=sf , 

njcff kjk
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2.2.2.3.3 Labeling Algorithm  

 

Labeling algorithms are known as the most popular and efficient methods to solve the shortest 

path problem. The label in the algorithm represents the tentative shortest path length from the 

source node to that node. There are two types of labeling algorithms: label setting (LS) and label 

correcting (LC).  

The LS algorithm sets the label of one node permanently at each iteration, thus increasing the 

shortest path vector by one component at each iteration. The LC algorithm does not set any label 

permanently. Instead, all the components of the shortest path vector are obtained simultaneously 

after the algorithm terminates. Some features of these two SP algorithms are summarized in Table 

2.4. 

Table 2.4 Comparison of LS and LC Algorithm (1). 

Label setting (LS) algorithm Label correcting (LC) algorithm 

Designate one label as permanent at each 
iteration 

Applicable only to Acyclic networks and Non-
negative arc lengths problem 

All labels are temporary until the final step 
when all become permanent 

Applicable to all classes of problems  

Both are iterative 
Assign tentative labels to nodes at each step 
(Label = the upper bound on the shortest path cost) 

Algorithm LC  Algorithm LS ⊆  
 

The LC method always exchanges (augments, or updates) arcs in AT in a manner that replaces or 

shortens the unique path from the source node s to v in T, where T is the directed spanning tree 

and AT is the in T. However the LC method does not guarantee that the new path is a shortest path 

until termination occurs.  

The LS algorithm has become known as Dijkstra’s algorithm since Dijkstra was one of the first to 

discover it independently. This algorithm finds the shortest paths from the source node s to all 

other nodes in a network with nonnegative arc lengths. Table 2.5 shows generic pseudocodes for 

the LS and LC algorithms.  

 
Let, f i: travel distance (or travel time or label) to node i from source node s (which is an upper 

bound on the shortest length to node i), 
cij: the (finite) length of arc (i,j), 
S : permanent label set, 
S : temporary label set. 
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Table 2.5 Comparison of LS and LC Algorithm (2).  

LS Algorithm (Dijkstra’s Algorithm) LC Algorithm 
Node-based selection. 
Using permanent and temporary label. 

Arc-based selection 

S={},S =N; 

fs= 0 and predecessor(s) = 0; 
f i = ∞  for each node i∈N; 

 

while nS ≤  where n=|N| do 

   select node Si∈  which f i = min{f j: Sj ∈ }; 
   }{iSS ∪= ; 

   }{iSS −= ; 
   for each (i, j), j∈FS(i) do 

   if ijij cff +>  then  
                      f j = f i + cij; 

        predecessor(j) = i; 
            end  
   end 
end 

 

fs = 0, predecessor(s)=0; 
f i = ∞  for each i∈N-{s}; 
 
while some arc(i,j) satisfies f j > f i + cij 

do 
     f j = f i + cij; 
     predecessor(j) = i; 
end 
 

 

 

2.2.2.4 Time-dependent SP Algorithm 

 

Assuming that the time-dependent link costs for all links, cij(t), are positive integer values, Cook 

and Halsey (1966) have extended Bellman’s Principle of Optimality to solve a time-dependent SP 

algorithm. According to Cook and Halsey, the minimum time of travel to node tn starting from 

node i at time t, f i(t), is defined by the following functional equation and shown in Figure 2.12: 
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where, S: the discrete time set; S={t0, t0+1, t0+2,…, t0+T}, 
            T: the fixed upper-bound of travel time from node i to tn. 
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j ti

cji(t) fi(t+cji(t))

fj(t)  

Figure 2.12 Time-dependent SP Algorithm [Cook and Halsey, 1985]. 

 

Dreyfus (1969) has suggested the use of Dijkstra’s algorithm to determine time-dependent 

shortest paths where the link costs are any real-valued times. The minimum time of travel to node 

j starting from node s at time 0,  f j, is defined as follow: 
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Figure 2.13 Time-dependent SP Algorithm [Dreyfus, 1969]. 

 
While Cook and Halsey's method applies the Principle of Optimality in forward form, Dreyfus’s 

algorithm is implemented in backward fashion. Dreyfus’s main algorithm is exactly the same as 

that of the LS algorithm except that time-dependent link costs are used in the optimality 

constraint. The following procedure finds the minimum path tree from node s to all nodes starting 

at 0. 

 

S={},S =N; f i = ∞  for each node i∈N; fs= 0 and predecessor(s) = 0; 

while nS ≤  do 

     select Si∈  which f i = min{f j : Sj∈ }; 
    }{iSS ∪= ; 

    }{iSS −= ; 
    for each (i, j), j∈FS(i) do 

 if )( iijij fcff +>  then  
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f j = f i + cij; 
  predecessor(j) = i; 
            end 
    end 
end 
 

Harpern (1977) first noted the limitation of Dreyfus’ approach and showed that if there exists a 

y>0 such that )()( tcytcy ijij <++ , then the departure from node i must be delayed, or the 

optimal path might include cycles. Kaufman and Smith (1993) studied the assumptions under 

which the existing TDSP algorithms would work. To illustrate the point, consider the simple 

network shown in Figure 2.14. The resulting SP from 1 to 4 starting at time 0 is 1-3-4, with the 

total path cost f4 = 15. 

 

1 4

2

3

C12 (0) = 10 C23 (10) = 10

C34 (20) = 5

C13 (0) = 10 C34 (10) = 5
 

Figure 2.14 Example of TDSP (1). 

 

Now, let us assume that as shown in Figure 2.15, the travel time for link (3,4) at time 10 increases 

to 20. Then the shortest path for the trip from 1 to 4 starting at time 0 is 1-2-3-4 with a travel cost 

of 25. Here, it should be noticed that the driver who enters link (3,4) at time 20 can finish the trip 

at 25 but another one who enters the same link at time 10 cannot finish the trip until 30. This 

result is unreasonable in general transportation networks because the first-in-first-out (FIFO) 

condition is violated. 

 

1 4

2

3

C12(0) = 10 C23(10) = 10

C34(20) = 5

C13(0) = 10 C34(10) = 20
 

Figure 2.15 Example of TDSP (2). 
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Kaufman and Smith make a consistency assumption preventing the time-dependent link cost to 

indicate passing as follow. 

 

For any arc (i,j)∈A, t1+cij(t1) ≤ t2+cij(t2) for all t1, t2 ∈ T such that t1≤ t2. 

i.e., 1
)()(

12

21 ≤
−
−

tt

tctc ijij
 for t1≤ t2. 

 

They also show that under the assumption that the link-delay function follows the first-in-first-out 

(FIFO) rule or consistency assumption, any static LS or LC algorithm can be extended to the 

time-dependent case (using the time-space network formulation).  

Orda and Rom (1990) studied various types of waiting-at-nodes scenarios and proposed 

algorithms for these different cases. They showed that if waiting is allowed at nodes (UW), then 

the consistency assumption is not required. They prescribed an algorithm for identifying optimal 

waiting times at the source node if waiting is not allowed elsewhere in the network. Furthermore, 

they demonstrated that for the forbidden waiting case, the paths obtained without the consistency 

assumption may not be simple, and showed that the continuous-time version of the problem is 

NP-Hard. Table 2.6 shows the three cases of time-dependent SP algorithms studied by Orda and 

Rom. Sherali, Ozbay, and Subramanian (1998) prove NP-Hardness of various versions of time-

dependent shortest path problems, and develop efficient solution algorithms. 

 

Table 2.6 Three Types of Time-dependent SP Algorithms.  

UW (Unrestricted Waiting) Vehicles may wait an unlimited duration at any nodes 

SW (Source Waiting) Vehicles may wait an unlimited duration only at source  nodes 

 FW (Forbidden Waiting) Vehicles are not permitted to wait at any nodes 

 

For the UW case, the suggested solution algorithm matches that of Dreyfus’, except that Dij(t) is 

defined as follows.  

Dij(t) = w + cij(w+t) 
 
where, Dij(t) : total link travel time from i to j 
            w : waiting time at node i 
            cij(w+t): travel cost from node i to j starting at (w+t) 
 
 

 



   

58  

Figure 2.16 illustrates the graphical derivation of Dij(t).  

 

 

 

 

 

 

 

 

 

Figure 2.16 Total Link Travel Time for the UW Problem. 

 

 

2.2.2.5 Implementation Issues 

 

Gallo and Pallottino (1985) point out that the traditional classification of shortest path algorithms 

into LC and LS is somewhat unsatisfactory because of its dependence on the behavior of the 

algorithm rather than on their data structure. Dijkstra’s algorithm is a type of LS algorithm where 

the arc lengths are non-negative, while it becomes a LC algorithm if there are some negative arc 

lengths in the graph. Gallo and Pallottino suggest that it is more desirable to classify the SP 

algorithms based on the data structure which is the way to keep so-called “candidate nodes” for 

next iteration. Let T be a directed spanning tree of G rooted at node s, and dv be the length of the 

unique path in T from s to v, v∈G. Then T is a shortest path tree with origin s (T = T(s)) if and 

only if the following condition holds: 

 

f i + cij – f j ≥0                         for all (i, j)∈A                   (2.1) 

 

Then all the arc-based shortest path algorithms (i.e., LC SP algorithms) can be stated as having 

the following procedures: 

 

Step 1: Initiate a directed tree T rooted at r and for each v∈N, let fv be the length of the path 

from s to v in T. 

Dij(t1) = w + cij(t1+w) 

t2+cij(t2) t1+cij(t1) t2 t1 

Dij(t) 

cij(t) 

45o 

Dij(t) 

cij(t) 

time 

Waiting 
time(w) 

cij(t1+w) 
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Step 2: Let (i, j)∈A be an arc for which condition (2.1) is not satisfied, then adjust the vector 

f by setting f j = f i + cij, and update the tree T replacing the current arc incident into node j 

by the new arc (i,j). 

Step 3: Repeat Step 2 until condition (3.1) is satisfied for all (i, j)∈A. 

 

The important point in the implementation of this procedure is how to select an arc at Step 2 in 

order to check whether condition (2.1) is satisfied. Since n < m (n = |N|, and m = |A|), it seems 

reasonable to select nodes rather than arcs. Once a node i is selected, condition (3.1) is checked 

on one or more (possibly all) arcs of forward stars of i, FS(i). (In the majority of the algorithms, 

all the arcs corresponding to the selected node’s forward stars are checked once.) A general 

implementation of procedure for node-based LC SP algorithms is as follows: 

 

Step 1: (Initialize) fs = 0, predecessor(s)=0; f i = ∞ for each i∈N-{s}; Q = {s}; 
Step 2: (Select and update) 
 Select i ∈ Q; Q = Q - {i}; 

  For each (i,j), j ∈ FS(i) such that f j >f i + cij, do 
f j = f i + cij;  
predecessor(j) = i;  
Q = Q + {j}; 

Step 3:  (Iteration) if Q ≠ ∅ then go to Step 2, else stop.  
 
where, Q: a set of candidates nodes (or a list of scan eligible (SE)). 

 

The initial tree at Step 1 is a star-shaped tree, with one dummy arc (s,i) for each i∈N-{s}.  These 

dummy arcs are assigned a length equal to ∞. It is very important how to select the node i from 

the set of candidate nodes Q. In fact, almost all the practical shortest path algorithms are derived 

by properly defining the rule of selection and the particular data structure which is used to 

implement the set Q.  Theoretically speaking, the time for node selection is bounded by O(n2) and 

the time for distance updates is bounded by O(m). If the network is sparse (i.e., n2 >> m), then the 

former time dominates the later. So, we need to reduce the node selection time without 

substantially increasing the time for updating the distances.   

Figure 2.17 shows several types of data structures relevant to the selection schemes. Internal 

operations for each type of Queue is summarized in Table 2.7. A sorted queue is used for the LS 

SP algorithm in which a sorting method is imbedded so that the node having the least label can be 

selected from the set of candidate nodes. However, it should be noted that if the problem size is 

large, the sorting algorithm is not inexpensive in terms of computational cost.  
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d) Output-restricted
    double-ended queue

[x1, x2, ...., xn]

[x1, x2, ...., xn]

a) Stack

e) Double-ended queue

[x1, x2, ...., xn]
b) Sorted queue
    (Dijkstra algorithm)

[x1, x2, ...., xn]

[x1, x2, ...., xn]

c) FIFO queue

sorted cotents

 

Figure 2.17 Types of Queues for Node Selection Schemes [reproduced from Tarjan, 1983]. 

 

To revise this drawback, the so called double-ended queue (DEQueue, see Figure 2.17 (d)) has 

been developed, which combines the properties of both the queue and the stack. In the DEQueue 

structure, the first time a node is to be inserted into the tail of the queue. When, later on, the same 

node again becomes a candidate node after being removed from the queue, it is inserted at the 

head of the queue.  

 

Table 2.7 Operations for Various Queue Types. 

 Sorted 
Queue 

FIFO 
Queue 

Output-restricted 
double-ended Queue 

Double-ended 
Queue 

enqueueFirst (=push) × × � � 

enqueueLast (=inject) � � � � 

dequeueFirst (=pop)  � � � � 

dequeueLast (=eject)  × × × � 

SortContents � × × × 
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On the other hand, the candidate nodes are always removed from the head of the queue. The 

rationale for using the DEQueue is that every time f j is updated, except the first time, it is worth 

trying to decrease the labels of the successors of j in current tree. Table 2.8 summarizes the 

details of LC algorithms according to the data structures employed. Maintaining the DEQueue to 

handle the candidate nodes, Ziliakopoulos and Mahmassani (1993) devise the time-dependent 

shortest path algorithm. Figure 2.18 presents the pseudo code for this algorithm. 
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Call CREATE; 

Call INSERT(N); 
Current_Node = N; // to-node i 
 
Do 1, While (SE list is not empty) 
 
 Call DELETE(Current_Node);  
  
 Do 2, for (All nodes J that can be directly reach Current_Node)  
     // J is the reverse star of node i 
   
  Next_Node = J; 
  In_SE_List? = No; 
   
  Do 3, for(t=1,M) 
 

//Travel Time (j,i) starting at t  
Current_Travel_Time = TRAVEL_TIME(Next_Node, Current_Node, t);  

 
   // TT(j,N) at t = TT(i,N) at (t+TT (j,i)) + TT(i,N) at t  
   New_Label = Label(Current_Node, t+Current_Travel_Time)  

       + Current_Travel_Time; 
 

   If( Label(Next_Node,t)≤ New_Label ) then 
    Label(Next_Node, t) = New_Label;  
    In_SE_List? = Yes; 
    Path_Pointer(Next_Node, t, 1) = Current_Node; 
    Path_Pointer(Next_Node, t , 2) = t + Current_travel_Time; 
   Endif 
 
3  Continue    
   
  If (In_SE_List? = Yes) Call INSERT(Next_Node);  
2 Continue 
1 Continue 
 
Procedure CREATE 
 Do, for(Node=1,N-1), Deque(Node) = 0;  
 Deque(N) = 999999;  
 First = N; 
 Last = N; 
 
Procedure INSERT(Node) 
 If(Deque(Node) = 0) then 
  Deque(Last) = Node; 
  Last = Node; 
  Deque(Node) = 999999; 
 Else if (Deque(Node) = -1) then 
  Deque(Node) = First; 
  First = Node; 
 Endif 
 
Procedure DELETE(Current_Node) 
 Current_Node = First; 
 First = Deque(Current_Node);  
 Deque(Current_Node) ;  
 

Figure 2.18 Pseudo Code for a Time-dependent SP Algorithm  

[Adapted from Ziliakopoulos and Mahmassani, 1993]. 
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Table 2.8 Comparison of Data Structures for LC Algorithms. 

 

Modified LC Algorithm  
(Node-based Selection) 

 
Using FIFO Queue Using Double Ended Queue 

Generic LC Algorithm  
(Arc-based Selection) 

 
 

Rationale:  number of nodes << number of arcs. 
Rationale: Every time f j is updated, except the first 
time, it is worth trying to decrease the labels of the 
successors of j in current tree. 

fs = 0, pred(s)=0; 
f j = ∞  for each j∈N-{s}; 
 
while some arc(i,j) satisfies  f j > f i + cij do 
     f j = f i + cij; 
     pred(j) = i; 
end 
 

fs = 0, pred(s)=0; 
f j = ∞  for each j∈N-{s}; 
FIFOQueue={s} 
 
While FIFOQueue ≠ {} do 
    Remove i from the head of FIFOQueue; 
    For any (i,j), j∈FS(i) do 
        If f j > f i + cij then{ 
              f j = f i + cij; 
             pred(j) = i; 
             if j∉FIFOQueue  
                then add node i to the tail of FIFOQueue; 
        }    
     end 
end 

fs = 0, pred(s)=0; 
f j = ∞  for each j∈N-{s}; 
DEQueue={s} 
 
While DEQueue ≠{} do 
    Remove i from the head of DEQueue; 
    For any (i,j), j∈FS(i) do 
        If f j > f i + cij then{ 
              if j∉FIFOQueue{  
                     if f j=∞ then                   
                            insert j into the tail of DEQueue; 
                     else insert j into the head of DEQueue;  
               }            
              f j = f i + cij; 
              pred(j) = i; 
        }         
    end 
end 
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2.3 Literature Review on Simulation Model 

 

2.3.1 Types of Simulation Models 

 

Simulation models can be classified according to the following general categories [Lieberman 

and Rathi, 1992]: 

 

Discrete and continuous simulation models, 

Microscopic, mesoscopic, and macroscopic simulation models, and 

Deterministic and stochastic simulation models. 

 

Discrete simulation models represent a system by asserting that the states of the system elements 

change abruptly at points in time. In contrast, continuous simulation models represent the system 

by changing state variables continuously over time [Law and Kelton, 1991]. Typically, 

continuous simulation models involve differential equations giving relationships for the rates of 

change of the state variables with time. If the differential equation is simple enough to be solved 

analytically, the solution provides the values of the state variables at any given time as a function 

of the values of the state variables at time zero. Because continuous models frequently are not 

tractable using an analytical approach, numerical analysis techniques, e.g., Runge-Kutta 

integration, are used to integrate the differential equations.  For this reason, regardless of the 

nature of the real system which might be either discrete or continuous, two types of discrete 

simulation models are applied in practice: 1) discrete time simulation and 2) discrete event 

simulation models. For systems of limited size entities whose states change infrequently, discrete 

event simulation models are more appropriate in the sense of computational execution time. 

However, for systems where most entities experience a continuous change in state and where the 

model objectives require very detailed descriptions, discrete time models are likely to be the 

better choice [Lieberman and Rathi, 1992]. 

Traffic simulation models may be classified according to the level of detail with which they 

represent the system to be studied: 1) Microscopic, 2) Mesoscopic and 3) Macroscopic. A 

microscopic model deals with both system entities and their interactions at a high level of detail. 

A mesoscopic model generally represents entities at a higher level of detail but describes their 

activities and interactions at a much lower level of detail. On the other hand, a macroscopic 

model describes entities and their activities at a low level of detail. In a mesoscopic model, for 

example, the lane-changing maneuver could be represented for individual vehicles as an 
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instantaneous event with the decision based on the relative lane densities, rather than on detailed 

vehicle interactions. In macroscopic models, however, the traffic stream may be represented in 

some aggregate manner such as speed, flow, and density, and lane change maneuvers would 

probably not be represented. 

In deterministic models, there are no random variables. In other words, all interactions between 

entities are fixed in the sense that relationships are defined by mathematical, statistical or logical 

equations. Stochastic models involve processes which include probability functions. The car-

following model, for instance, may be modeled either as a deterministic or a stochastic problem 

by defining the driver’s reaction time as a constant estimated value or as a random variable, 

respectively. 

 

2.3.2 Previous Air Traffic Simulation Models 

 

Since the early seventies, the FAA has developed computer simulation models to analyze airport 

operations. Contrasting with the analytic models which consist of a series of equations using 

fixed input parameters, most aviation and airport simulation models are discrete event, stochastic 

models which emulate the movements of aircraft on the airfield as well as in the airspace. In 

general, the simulation models produce the following statistics:  

 • Hourly runway, taxiway, and gate capacity 

 • Hourly and daily delays, travel times, flow rates, and queueing data etc. 

 • Annual delay and annual delay costs 

 • Annual delay savings computed from annual delay costs 

 

 

ADSIM (Airfield Delay Simulation Model, 1976)  

ADSIM is a microscopic, discrete event, stochastic simulation model, and known as one of the 

most detailed models to evaluate the operations and sources of delay on the airport's surface 

http://www.tc.faa.gov/act500/capacity/modelsq.htm]. ADSIM simulates the movement of aircraft 

on the airport surface and in the immediate airspace. An airport is composed of a common 

approach and departure corridors. The principal inputs to the model include aircraft routings, 

runway and taxiway usage, runway occupancy times and exit probabilities, aircraft approach and 

taxiing velocities, aircraft separations, gate service times, aircraft demand and mix, and ATC 

rules and procedures. Outputs of the model are hourly arrival and departure flow rates, travel 

times, and arrival and departure delays for each runway. Also provided are total delays for each 
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link on the airfield, departure queue lengths, and individual aircraft delays. ADSIM has a 

capability to represent the movements in animation mode. 

 

RDSIM (Runway Delay Simulation Model)  

Developed mainly for runway capacity and delay analyses, RDSIM simulates operations on 

runways and generates information on both capacities and delays [http://www.tc.faa.gov/ 

act500/capacity/modelsq.htm]. This model is a discrete event, stochastic simulation model. 

During the simulation, it is assumed that arrival and departure demands are uniformly distributed. 

The model simulates runway operations with arrival-priority, departure-priority, or balanced 

arrivals and departures. This model can be used to compute runway capacity at an acceptable 

level of delay and maximum runway throughput. Compared with ADSIM, RDSIM requires less 

detailed inputs and less computational effort. The inputs consist of runway usage, runway 

occupancy times, exit probabilities, aircraft demand and mix, aircraft approach velocities, aircraft 

separations, and ATC rules and procedures. The outputs include delay statistics with graphics 

showing delay versus demand along with other operational details.  

 

SIMMOD (The airspace and airfield model) 

SIMMOD is the first model to analyze the complex airspace interactions between airports. 

SIMMOD satisfies the need to analyze delays, capacity and fuel consumption resulting from 

changes in airspace utilization and operational procedures beyond an airport's immediate airspace 

[SIMMOD3 Simulation Module, 1993]. In SIMMOD, each aircraft's movement is traced 

individually and ATC required the actions for aircraft operations are also simulated. Inputs for 

SIMMOD are traffic demand and fleet mix, route structures (both in the airspace and on the 

airport surface), runway use configurations, separation rules and control procedures, aircraft 

performance characteristics in airspace and airfield links, airspace sectorization, interactions 

among multiple airports, and weather conditions. SIMMOD uses a link-node structure to 

represent the gate/taxiway and runway/airspace route system. Input parameters depending on 

aircraft type include the permissible airborne speed ranges for use by ATC, runway occupancy 

times, safety separations, landing roll and takeoff characteristics, taxi speeds, and runway/taxiway 

utilization. Gate utilization depends on aircraft type and airline. The output from SIMMOD 

reports statistics about individual aircraft delay, travel time, and fuel consumption as well. A 

simulation log containing information on various simulated events are also generated at the user’s 

request. 
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2.3.3 Aircraft-Following Models 

 

If there is more than one aircraft moving on the same taxiing path and the vehicles are close 

enough to interact with each other, the leading aircraft behavior affects the following aircraft. To 

represent this situation, aircraft-following models are introduced. The main concepts governing 

aircraft-following models are borrowed from well-researched issues in transportation studies 

concerning car-following models. There are several types of car-following models readily 

applicable to simulation practices. It should be noticed that there is an important assumption 

about the speed-acceleration relation applied to all types of vehicle -following models. In this 

analysis, the vehicle’s ability to accelerate is assumed to decreases linearly as a function of speed. 

 

Distance-controlled vehicle -following model: The distance-controlled logic for vehicle-

following models is based on the assumption that the acceleration of the following vehicle at time 

t+∆t is decided by the distance between the leading and the following vehicle. The acceleration 

for the following vehicle is decided by the equation given below (Starfield, 1990). 
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D = safety distance. 
 

Speed-controlled vehicle -following model: In the speed-controlled logic, the acceleration of the 

following vehicle at time t+∆t is modeled by the speed difference between the leading and the 

following vehicle. Mathematically this can be expressed as, 
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Generalized vehicle -following model: The generalized car-following model proposed by Gazis 

et al. (1961) assumes that the acceleration of the following vehicle at time t+∆t is influenced by 

three dependent variables: the differences in both distance and the speed between the leading and 

the following vehicles, and following vehicle’s speed. The generalized car-following model can 

be expressed as follows: 
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where, α, m, l: design parameters. 

 
It should be noted that by integrating the equation (2.2) and applying the boundary conditions at 

the steady state, the generalized vehicle -following model can be related to the traffic stream 

model. Also, the resulting macroscopic models are diverse depending on the values of l and m. 

For example, in the case that l =0, m =0, which is the speed-controlled car-following model, the 

resulting macroscopic model is q = α (1 - k /k j), α = qm, where q = flow, k = density, k j = jam 

density and qm = maximum flow. The various macroscopic models are shown in Table 2.9.  

 

2.3.4 Data Structures for Network Representation 

 

The performance of a network algorithm depends not only on the algorithm itself, but also on the 

manner used to represent the network within a computer. By representing a network more 

cleverly and by using improved data and list structures, we can often improve the running time of 

an algorithm [Ahuja et al., 1993]. 

Table 2.9 Macroscopic Models from Vehicle -following Models (Gerlough and Huber, 1975). 

 m = 0 m = 1 

l = 0 q = α (1 - k /k j) 
*i) α = qm

 *ii) - - 

     1 q = α k ln(k j/k ) *iii) α = um *iv) - - 

    3/2 q = α (1 – (k /k j)
1/2 ) *v) α = uf - - 

     2 q = α k (1 - k /k j) 
*vi) α = uf q = α k e(k/k0) *vii) α = uf, k0= km 

     3  - - q = α k e(k/k0) – ½ ( k /k0) 
*viii) α = qm 

*i) Chandler, Herman, and Montroll (1958), *ii) Pipes (1953), *iii) Greenberg (1959) 
*iv) Gazis (1961), *v) Drew (1965), *vi) Greenshiled (1934), *vii) Edie (1961) 
*viii) Drake, Schoefer, and May (1961) 
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In representing a network, we need to store two types of information: (1) the network topology; 

that is, the network’s node and arc structures, and (2) attribute data such as costs (Cij) and 

capacities associated with arcs. There are several ways to represent a weighted graph G=(N,A), 

|N|=n, |A|=m. Various graph representation methods including their advantages and disadvantages 

are reviewed with a simple network shown in Figure 2.19. 
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Figure 2.19 An Example Graph with 5 Nodes and 9 Arcs (i.e., n=5, m=9). 

 

(Node -Arc) Incident matrix: Construct an n×m matrix which contains one row for each node 

and one column for each arc. The column corresponding to each arc (i,j) has only two non-zero 

elements: It has a +1 in the row corresponding to node i and a -1 in the row corresponding to 

node j (see the Figure 2.20). Separate n×m matrices should be generated for data storage.  

Advantages: An incident matrix can be used as a constraint matrix of the minimum cost flow 

problem. This matrix possesses several important theoretical properties such as total 

unimodularity, etc. (see Bazaraa et al. (1990) for details). 

Disadvantages: The incident matrix which has (n×m-2m) zeros is inefficient in storage space.  
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Figure 2.20 Node-Arc Incident Matrix for the Example Network. 
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Node -node adjacency matrix: Construct an n×n matrix which has a row and column 

corresponding to every node. The ij th entry of the matrix equals 1 if arc (i,j)∈A and equals 0 

otherwise.  

Advantages: This matrix is space efficient if the network is sufficiently dense and the simplicity 

of the matrix allows us to implement the network algorithm easily.  

Disadvantages: Needs another n×n matrix for data representation. An identification of 

outgoing/emanating  arcs of a node is in time proportional to n. In sparse networks this may 

be a bottleneck operation for an algorithm. 
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Figure 2.21 Node-Node Adjacency Matrix for the Example Network. 

 

Adjacency lists: The arc adjacency list A(i) of a node i is defined as the set of arcs emanating 

from that node, that is, the set of arcs (i,j)∈A obtained as j ranges over the nodes of the network. 

Similarly, the node adjacency list of node i is defined as the set of nodes j for which (i,j)∈A. The 

adjacency list representation stores the node adjacency list of each node as a singly linked list. To 

implement this list, n linked lists, one for each node, should be generated. Array pointers that 

point to the first cell of each linked list, pt(i), are also constructed. 

Advantages : Adjacency list representations are relatively efficient in storage. Deletion and 

addition of nodes can be done in constant time.   

 

pt(i)  j cij pt           

               

1  2 3   3 3   NULL     

2  1 4   3 6   NULL     

3  NULL             

4  1 5   5 1   NULL     

5(=n)  2 7   3 2   4 2   NULL 

Figure 2.22 Adjacency List Representations for the Example Network. 
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Forward/reverse star representation: The forward star representation of a network is similar to 

the adjacency list representation in the sense that it also stores the node adjacency list for each 

node. However, instead of maintaining these lists as linked lists, it stores them in several arrays: 

tail(.), head(.), and cost(.). Pointers pointing to the first element of the corresponding arc list are 

stored in the pointer array pt(.). By convention: a) if the forward star of a node i is empty pt(i) = 

pt(i+1); b) pt(n+1) = m+1. Thus, information related to the emanating arcs (i.e., forward star) of a 

node i is stored in tail(.), head(.) and cost(.) from position pt(i) to pt(i+1)-1. 

Advantages: This representation is more space efficient than the adjacency list representations 

and can be applied in general computer languages like FORTRAN.  

Disadvantages: Addition/deletion of a node requires time proportional to m which can be time 

consuming. 
i 1) Pt(i) 2)  corr. arcs tail head Cost 
1 1  1 1 2 3 
2 3  2 1 3 4 
3 5  3 2 1 3 
4 5  4 2 3 6 
5 7  5 4 1 5 
6 10  6 4 5 1 

   7 5 2 7 
   8 5 3 2 
   9 5 4 2 

  1)  i is the from nodes, the pointer array contains pointers to the first elements of the corresponding arc lists. 

Figure 2.23 Forward Star Representation for the Example Network. 
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Chapter 3. Model Development for ASP 
 

3.1 Assumptions for Ready-times 

 

In order to obtain a sequence from ASP, we need to make some assumptions regarding the 

departing aircraft ready-times. In fact, there are two types of ready-times: the ready-time to 

pushback from a gate, and the ready-time for takeoff on the runway. The first one is the time 

when the aircraft completes its boarding process, and waits for taxiing-out instructions from a 

ground (or a ramp) controller. Initially, this time can be obtained from the flight schedule. 

However, as airport operations progress over time, flight delays appear and new ready-times can 

be obtained from the airline operations center.  

The second ready-time is the instance at which the aircraft can begin the takeoff roll on the 

runway. The earliest ready-time for takeoff (or so called "nominal takeoff time") is estimated as 

the ready-time to pushback from the gate plus the taxiing time from the gate to the runway 

departure queue. In our formulation, the ready-times to takeoff, ri, are used as one set of the input 

data to solve the ASP problem. 

One interesting aspect of the problem is that once we have the takeoff times as prescribed by 

ASP, we can suggest pushback times from the gates in a manner that  reduces congestion both on 

the taxiway network and around departure queues. The recommended push-back times can be 

computed as depicted in Figure 3.1. Mathematically, the relationship between ready-time 

instances for a departing aircraft within the time horizon is given by, 

  

      Recommended pushback time from the gate  

 = Optimal takeoff time – (Taxiing time + Buffer time).  

 (Here, buffer time includes expected communication time and estimated waiting time in 

the departure queue.) 

  

As seen in Figure 3.1, we can make different uses of the taxiing time (T), depending on the type 

of computation being performed. T1 is the taxiing time interval that estimates the earliest takeoff 

ready-time (ri) required for ASP. Initially, this time can be obtained from historical data. (This 

data can be found in the Consolidated Operations and Delay Analysis System (CODAS) database 

which includes estimated taxiing times on ground networks at busy airports.) On the other hand, 

T2 is the actual taxiing time to reach the takeoff ready-time from the recommended pushback time 
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(rpbi). This time can be obtained from a Network Assignment Problem (NAP) which computes 

the optimal route and taxiing time for each aircraft after model ASP prescribes the optimal 

takeoff times (ti).  

 

 

 

 

 

 

 

 

 

 
Where,   

 rgi : ready-time at gate 
 ri : earliest ready-time to takeoff 
 rpbi : recommended ready-time to push-back 
 ti : optimal time for takeoff 
 tofi : finishing time for takeoff 

  T1 : regular taxiing time from the gate to the departure queue 
 T2: taxiing time to obtain the recommend push-back time 
 B : buffer time (i.e., waiting time in departure queue) 
 ROTd: runway occupancy time 
 WTAGi: waiting time at gate. 
 
 

Figure 3.1 Time Relationships for the Departing Aircraft. 
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3.2 First-come-first-serve (FCFS) Approaches 

 

When air traffic controllers in the control tower direct landing and departing aircraft, they 

generally use a first-come-first-serve (FCFS) strategy, giving priority to landing aircraft. This 

strategy provides a sequencing of the aircraft along with completion times, total delays, and so 

on. This solution can be used to compare the performance of manual (FCFS) and optimal 

sequencing methods. 

To consider both arrival and departure operations simultaneously, minimum separation rules 

should be defined for all possible aircraft group combinations. Table 3.1 shows the minimum 

separation rules for all the cases considered in our analysis. 

 

Table 3.1 Minimum Separation (seconds). 

departure→ departure case. 

Leading  \ Following Heavy Large Small 
Heavy 60 90 120 
Large 60 60 90 
Small 60 60 60 

 

departure→ arrival case. 

Leading \ Following Heavy Large Small 
Heavy 50 53 65 
Large 50 53 65 
Small 50 53 65 

 

arrival → departure case. 

Leading \ Following Heavy Large Small 
Heavy 40 40 40 
Large 35 35 35 
Small 30 30 30 

 

arrival → arrival case. 

Leading \ Following Heavy Large Small 
Heavy 99 133 196 
Large 74 107 131 
Small 74 80 98 

 

The runway occupancy time (ROT) is computed for every operation in order to assess the 

processing times. ROT is defined as the time between the instance when an aircraft crosses the 
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runway threshold and the instance when the same aircraft clears the imaginary plane of the 

runway at a turnoff. These times are specified in Table 3.2. 

 

Table 3.2 Runway Occupancy Times (seconds). 

Operation \ Aircraft Type Heavy Large Small 
Arriving 40 35 30 

Departing 50 40 30 
 

 

Using the foregoing data set, the FCFS sequence delays can be calculated for all aircraft 

operations. An illustrative example using a randomly generated flight schedule  is shown in Table 

3.3. In this example, a due-time is obtained by adding a maximum delay of 600 seconds to all 

ready-times. 

Table 3.3 Aircraft Schedule  (Randomly Generated). 

                       Max Delay: 600 (seconds) 

Arrival Departure 
Nominal  

Touchdown Time 
Nominal  

Takeoff Roll 
Time 

 
 

Order 
 

Flight 
ID 

 
Aircraft 

Type 
Ready Due 

 
Flight  

ID 

 
Aircraft 

Type 
Ready Due 

1 A1 S 98 698 D1 H 32 632 
2 A2 L 164 764 D2 H 364 964 
3 A3 L 205 805 D3 L 409 1009 
4 A4 L 268 868 D4 H 542 1142 
5 A5 H 494 1094 D5 S 571 1171 
6 A6 H 550 1150 D6 S 643 1243 
7 A7 L 643 1243 D7 L 744 1344 
8 A8 L 834 1434 D8 L 881 1481 
9 A9 L 962 1562 D9 S 955 1555 
10 A10 L 973 1573 D10 H 996 1596 

 

 

In FCFS with a full landing priority strategy, arriving aircraft should not be delayed by departing 

flights. In other words, the arriving aircraft can be delayed only to resolve arrival conflicts. The 

first step for FCFS sequencing is to obtain the arrival times by checking if there is any conflicting 

arrival. The following steps show how to calculate the times for arrivals to cross runway 

threshold, considering the minimum separation rules between two consecutive landing aircraft in 

the FCFS sequence.  

fcfs touchdown time for 1st landing aircraft = nominal ready-time for 1st landing aircraft 
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for i = 2 to (total number of arriving aircraft) 
if [  (fcfs touchdown time for (i-1)th aircraft + minimum separation time between the 

(i-1)th and ith aircraft )  >   nominal ready-time of ith aircraft  ]  
               fcfs touchdown time for ith aircraft =  
                              fcfs touchdown time for (i-1)th aircraft 
                           + min. separation time between the (i-1)th and ith aircraft 

else 
              fcfs touchdown time for ith aircraft =  
                              nominal ready-time for ith aircraft 

 end  

 

The resulting schedule for arrivals is shown in Table 3.4. 

Table 3.4 First-come-first-serve Sequence for Landing Aircraft. 

Arrival 
Nominal 

Touchdown 
Time 

 
 

Order 
 

Flight 
Number 

 
Aircraft 

Type 
Ready Due 

FCFS 
Touchdown 

Time 

1 A1 S 98 698 98 
2 A2 L 164 764 178 
3 A3 L 205 805 285 
4 A4 L 268 868 392 
5 A5 H 494 1094 523 
6 A6 H 550 1150 621 
7 A7 L 643 1243 701 
8 A8 L 834 1434 834 
9 A9 L 962 1562 962 
10 A10 L 973 1573 1069 

 

 

If the inter-arrival time between two consecutive aircraft is sufficient for one or more departures, 

these are scheduled. Otherwise, departing aircraft are delayed until a slot having a sufficient time 

to allow a departure is found. Table 3.5 presents the final result of the FCFS sequence with 

landing priority. 
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Table 3.5 First-come-first-serve1) Sequence (with Landing Priority). 

 (Seconds) 
Arrival Departure 

   
Seq 

FLT 
No. 

Acft  
Type S_T 2) ROT3) C_T 4) Delay 5) 

 
Seq 

FLT 
No. 

Acft  
Type S_T ROT C_T Delay 

       1 D1 H 32 40 72 0 
2 A1 S 98 30 128 0        
3 A2 L 178 40 218 14        
4 A3 L 285 40 325 80        
5 A4 L 392 40 432 124        
       6 D2 H 432 40 472 68 
7 A5 H 523 30 553 29        
8 A6 H 621 30 651 71        
9 A7 L 701 40 741 58        
       10 D3 L 736 35 771 327 

11 A8 L 834 40 874 0        
       12 D4 H 874 40 914 332 

13 A9 L 962 40 1002 0        
       14 D5 S 992 30 1022 421 

15 A10 L 1069 40 1109 96        
       16 D6 S 1109 30 1139 466 
       17 D7 L 1164 35 1199 420 
       18 D8 L 1224 35 1259 343 
       19 D9 S 1319 30 1349 364 
       20 D10 H 1369 40 1409 373 

Total Delay:   3586 (sec), Completion Time: 1408 (Sec.) 
1) In FCFS with landing priority, the landing aircraft should not be delayed later than its FCFS ready-
time. 
2) S_T: Starting time 
3) ROT: Runway Occupancy Time 
4) C_T: Completion Time 
5) Delay = FCFS operation time – Nominal Ready-time. 
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3.3 Integer Programming Approaches 

 

3.3.1 Formulation 

 

Starting with known preliminary information about the aircraft such as aircraft types, nominal  

arrival/departure times, maximum delay times, minimum separation rules, etc., the problem can 

be formulated as a combinatorial optimization problem. The following is a mixed-integer 

programming model for a single runway or closely spaced runways where arrivals and departures 

are dependent. 

 

Minimize  z 

subject to  

zxpt

Jj
ij

ijiji ≤+ ∑
∈
≠

0

    J i ∈∀     (3.1) 

0≤− ii tr                                                     J i ∈∀                         (3.2) 

0≤− ii dt                                                     J i ∈∀                         (3.3) 

))(1( ijjiijijij p-rd-x-ptt ++≥                 i, jJ, jJ i ≠∈∈∀ 00       (3.4) 

∑
∈
≠

=

0

1

Jj
ij

ijx                                                      0 Ji ∈∀                         (3.5) 

∑
∈
≠

=

0

1

Ji
ji

ijx                                                     0 Jj ∈∀                         (3.6) 

1≤+ jiij xx      i, jJ, jJ i ≠∈∈∀ 00   (3.7) 

00 =t , 0≥it                Ji ∈∀                                                                     (3.8) 

}1,0{∈ijx      i, jJ, jJ i ≠∈∈∀ 00        (3.9) 

 

where,  
J ={1,…,n}    : A set of n aircraft operating (i.e., landing or departing) on a single runway 

}0{0 ∪= JJ  : Aircraft 0 is an imaginary aircraft which has 0 ready-time (i.e., r0=0)       
and 0 due-time (i.e., d0=0) 

ijx           : 1 if aircraft i directly precedes aircraft j, and 0 otherwise 

ix0                   : 1, if aircraft i is the first in the sequence, and 0 otherwise 

0ix                              : 1, if aircraft i is the last in the sequence, and 0 otherwise 

it                                 : the start time of aircraft i (i.e., time for touchdown or takeoff) 
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id                     : the due-time for aircraft i 

ir                                  : the ready-time for aircraft i,  

ijp                      :  pi0= runway occupancy time of aircraft i (i.e., ROTi)  for J i∈∀ . 
p0j= setup time for the first aircraft j. 
else if i≠j, i≠0, j≠0, then pij = minimum separation time between the 

leading aircraft i and the following aircraft j.  
if i=j, pij=0. 

 

Constraint (3.1) states that the objective function value is no less than the last aircraft's 

completion time. Ready and due-times constraints are considered in constraints (3.2) and (3.3). 

The minimum separation rules are enforced by constraint (3.4). Two types of assignment 

constraints are represented by (3.5) and (3.6). Constraint (3.7) is a (two-city) sub-tour elimination 

constraint which prevents the resulting sequence from having any sub-tour consisting of two 

cities. (Constraints (3.4) serve as the full set of Miller-Tucker-Zemlin subtour elimination 

constraints.) Constraint (3.8) represents the non-negativity requirement for each aircraft's start 

time for each aircraft. Constraint (3.9) restricts the sequencing variables to take the value of 0 or 

1.  

As imbedded component of the ASP model is a Traveling Salesman Problem with time-windows 

which renders the problem NP-Hard. A tighter formulation that yields improved lower bounds is 

designed in the sequel using the Reformulation-Linearization Technique (RLT) of Sherali and 

Adams (1990, 1994) and Sherali et al. (1998).  

 

3.3.2 Valid Inequalities 

 

As a preliminary, we first develop a tighter lower bound LB(j) on the conditional start time of 

aircraft j’s operation, given that it is last in the sequence.  

 

Proposition 1. The maximum of the following three components can be used as a lower bound 

on the start time of aircraft j’s operation, given that it is last in the sequence. 
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Proof. The first term in LB(j), merely states that the start time of aircraft j should be greater than 

its ready-time (rj). For the second term, since ik p
Jkir ∈

+ min  represents the earliest completion time 

of aircraft i regardless of the next aircraft, this term asserts that the last aircraft j should begin 

later than any other aircraft’s earliest completion time. For the third term, if we assume that any 

particular aircraft i≠j is the first in the sequence, then the earliest start time of the la st aircraft j is 

greater than or equal to the minimum of the total sum of processing times for all aircraft 

following i. This lower bound is given by the sum of the following events:  

 

(i)   the start time of the first aircraft i, ipi r 0+  ,  

(ii) the minimum separation time between the first two aircraft,  ik p

i,jk
Jk

≠
∈

min , 

(iii) the minimum separation time between the last two aircraft,  tj p

i,jt
Jt

≠
∈

min ,  

(iv) the minimum of the remaining (n-3) separation times from the array of  mn p

mi,jn
Jn

,

min

≠
∈

for 

m∈J, m≠i,j. 

  

Taking the smallest of this sum (i)-(iv) over i∈J, i≠j yields a valid value for LB(j). This completes 

the proof.  

 

A set of valid inequalities to replace constraints (3.4) can be generated as in (3.4.1) and (3.4.2) of 

Proposition 2 and 3 below, in order to achieve tighter lower bounds on the problem. 

 

Proposition 2 (Valid Inequality I for Constraint (3.4)). For Jj, i ∈∀= 0 , the following 

inequality is valid and tighter than the corresponding constraint (3.4). 

         ])([} 0max{)1(  } max{ 0000 jjjjjjjj -rjLBx-rp,-x-p,rt +≥    Jj ∈∀    (3.4.1) 

where, LB(j) ≥ rj is a lower bound on the start time for the aircraft j, given that it is the last aircraft 

in the sequence (see Proposition 1). 

Proof. When 10 =jx , we have 00 =jx  and then } max{ 0 jjj p,rt ≥  is valid. When 00 =jx  and 

00 =jx , regardless of the values of jp0  and jr , } 0max{} max{ 00 jjjjj -rp,p,rt −≥  is valid, 

since the resulting inequality is always jj rt ≥ . When 00 =jx  and 10 =jx , aircraft j is last in the 

sequence. From above, the inequality (3.4.1) reduces to tj ≥  rj + [LB(j) – rj] which imposes the 
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valid inequality tj ≥ LB(j). Moreover, noting that for i = 0, (3.4) is tj ≥  p0j – (1- x0j )(p0j- rj) = rj + 

x0j(p0j- rj) while (3.4.1) implies via its first two terms that tj ≥  rj + x0j max{0, p0j- rj}, we have that 

(3.4.1) dominates (3.4) in the continuous sense. This completes the proof.  

 

Proposition 3 ( Valid Inequality II for Constraint (3.4) ) For jiJ,i,j ≠∈  , the following 

inequality is valid and tighter than the corresponding constraint (3.4). 

jiijjiijijij x è p-rd-x-ptt  ))(1( +++≥            jJ,ii,j ≠∈∀      (3.4.2) 

      where, }]max{0max[ jijiji r,rpr,dè −−−= . 

Proof.  When 1=ijx , we have 0=jix  and then ijij ptt +≥  is valid. When 0=ijx  and 0=jix , 

then (3.4.2) is again valid since (tj-rj) ≥ 0 ≥ (ti-di). Finally to make (3.4.2) valid whenever 0=ijx  

and 1=jix , 0≥θ  should be chosen so that èrdtt jiji −−≤−  is true under this condition. Note 

that when 1=jix , we have }max{ ijiji ,rptt +=  and therefore 

}max{}max{)( jijijijiji r,r pt,r ptt −≤−=− . Hence, for (3.4.2) to be valid, we can set 

}max{ jijiji r,rpèrd −=−−  and since 0≥θ , we can compute 

}]max{0max[ jijiji r,rpr,dè −−−= . Moreover, because of the additional nonnegative term θ⋅xji, 

(3.4.2) is tighter than (3.4) in the continuous sense. This completes the proof. 

 

3.3.3 Enhanced Model Representation via an Application of RLT 

 

1) Reformulation Phase  

Using xij
2=xij, xijxik=0 ∀j≠k , xijxkj=0 ∀i≠k , and xijxji = 0 000 J, kJ, jJ i ∈∈∈∀ , we can construct 

additional sets of constraints via (R1)-(R5) stated below. 

 

(R1) Multiply the assignment constraint (3.5) for each Ji ∈  by its corresponding ti. Similarly, 

multiply the assignment constraint (3.6) for each Jj∈  by its corresponding tj.  Note that 

constraints resulting from multiplying (3.2) and (3.3) by these assignment constraints (3.5) 

and (3.6) are then redundant. 

 

∑
≠∈

=
i,jJj

iiji txt

0

                                         J i∈∀       (R1.1) 
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∑
≠∈

=
j,iJi

jijj txt

0

                                      J j ∈∀ .      (R1.2) 

 

 

(R2) Multiply the inequality constraints (3.2) and (3.3) by the bound-factors 0≥ijx  and 0≥jix  

for J i,j ∈∀ : 

 

Multiplication by 0≥ijx : 

 

 0)( ≥− ijjj xrt     jJ, iJ, j i ≠∈∈∀   (R2.1) 

 0)( ≥− ijjj xtd     jJ, iJ, j i ≠∈∈∀ .  (R2.2) 

 

Multiplication by 0≥jix : 

 

 xrt jijj 0)( ≥−     jJ, iJ, j i ≠∈∈∀   (R2.3) 

 xtd jijj 0)( ≥−     jJ, iJ, j i ≠∈∈∀ .  (R2.4) 

 

Note that we can tighten the constraints (R2.1) and (R2.4), by using conditional logic as 

follows, noting that the factors multiplied by the variables xij and xji, respectively, are 

relevant only when these variables take on a value of 1. 

 

 xp,rrt ijijijj 0}]max{[ ≥⋅+−     jJ, iJ, j i ≠∈∈∀              (R2.1′) 

 xtp,dd jijjiij 0]}[min{ ≥⋅−−    jJ, iJ, j i ≠∈∈∀ .            (R2.4′) 

 

If we consider similar products with x0j and xj0, we can tighten these constraints further. 

 

 xrt jjj 0)( 0 =−     J j ∈∀               (R2.5) 

 xjLBt jj 0))(( 0 ≥−     J j ∈∀               (R2.6) 

 xtd jjj 0)( 0 ≥−     J j ∈∀ .              (R2.7) 

 

Remark 1: In (R2.6), rj has been validly replaced by any lower bound LB(j) on the start 

time for aircraft j’s operation, given that j is the last aircraft. For this lower bound, we can 
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use any reasonable conditional completion time which can be computed with relative ease. 

Also, note that (R2.5) is written as an equality since either x0j = 0, or if x0j = 1, then we can 

begin the first aircraft j’s operation at tj = rj. Furthermore, because of this, the constraint (dj- 

tj) x0j ≥ 0 is redundant and has hence been omitted. 

 

(R3) Multiply constraints (3.2), (3.3) by two-aircraft subtour elimination constraint, 

 xx jiij 0)1( ≥−− . 

 

 xxrt jiijjj 0)1)(( ≥−−−     jJ, iJ, j i ≠∈∈∀   (R3.1) 

 0)1)(( ≥−−− jixijxjtjd     jJ, iJ, j i ≠∈∈∀ .  (R3.2) 

 

Also, we can write similar constraints for the 0-index, while tightening these further using 

logical tests. Noting that the following are relevant only under the condition x0j = xj0 = 0 (else 

the left-hand-side is zero below), we can tighten the bounds rj and dj on tj to derive the 

following valid product constraints. 

 

 pr,rt-x-x iji
ji
Ji

jjjj 0)}](minmax{)[1( 00 ≥+−
≠
∈

   Jj ∈∀       (R3.1′) 

 tp(d,d -x-x jjii
ji
Ji

jjj 0])}max{)[min1( 00 ≥−−
≠
∈

   Jj ∈∀ .              (R3.2′) 

(R4) Multiply (3.4.1) by the bound factors 00 ≥jx , 00 ≥jx  and the two-aircraft subtour 

elimination constraint 0)1( 00 ≥−− jj xx  Jj ∈∀ . 

 

          Multiplication by 00 ≥jx : 

0}max{ 000 ≥− jjjjj ,prxxt     Jj ∈∀ .               (R4.1) 

Multiplication by 00 ≥jx : 

0])([},0max{}max{ 000000 ≥−−−+− jjjjjjjjjj rjLBxrpx,prxxt  Jj ∈∀            

i.e. 0)(00 ≥− jLBxxt jjj       Jj ∈∀ .   (R4.2) 

Multiplication by 0)1( 00 ≥− jj x-x : 

0)1()1( 0000 ≥−− jjjjjj -xxr-x-xt    Jj ∈∀ .            (R4.3) 
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(R5) Multiply (3.4.2) by the bound factors 0≥ijx , 0≥jix  and the two-aircraft subtour 

elimination constraint  xx jiij 0)1( ≥−−  for jJ,ii,j ≠∈∀ .  

 

Multiplication by 0≥ijx : 

0≥−− ijijijiijj xpxtxt      jJ,ii,j ≠∈∀ .             (R5.1) 

Multiplication by 0≥jix : 

0)( ≥−−+− jijijiijij xèrdxtxt     jJ,ii,j ≠∈∀ .           (R5.2) 

where, }]max{0max[ jijiji r,rpr,dè −−−=  

Multiplication by the two-aircraft subtour elimination constraint  xx jiij 0)1( ≥−− : 

)1)((1()1( jiijijjiijijiijj xxdr)xxtxxt −−−≥−−−−−  jJ,ii,j ≠∈∀ .           (R5.3) 

 

(R6) For computational convenience, we can rewrite the objective function and constraint (3.1) as 

(3.1') and (3.1′′) given below.  

 

Minimize z 

subject to  

zxpt

Jj
ij

ijiji ≤+ ∑
∈
≠

0

     0J i ∈∀   (3.1′) 

∑
∈

+=
Ji

iii xptz 00 )(         (3.1′′) 

Let us now multiply (3.1′) by 0≥ikx  and 0)1( ≥− ikx , i, kJ k ≠∈∀ 0 . This gives the 

following.  

ikikikiik xpxtzx +≥     k, iJ, kJ i ≠∈∈∀ 00   (R6.1) 

)()(

0

ikikikiik

Jj
ij

ijiji xpxtxzxptz −−++≥ ∑
∈
≠

  k, iJ, kJ i ≠∈∈∀ 00   (R6.2)  

Similarly, the multiplication of (3.1′′) by 00 ≥kx , J k ∈∀ , yields  

000 )( kkkk xptzx +=     J k ∈∀ .   (R6.3) 
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In the RLT context, when zxik is substituted by a single (independent) variable, (R6.1) will 

likely hold as an equality and hence return (R6.2) to (3.1′). To make (R6.1)-(R6.3) more 

useful, we can also multiply the assignment constraints (3.5) and (3.6) by z.  

 

Multiplication of z by the assignment factor (3.5) yields, using (R6.3), 

∑
∈
≠

++=
Jj
ij

ijiii zxxptz 00 )(    0J i ∈∀ .   (R6.4)  

Multiplication of z by (3.6) gives the following, using (R6.3). 

    ∑
∈

+=
Ji

iii xptz 00 )(     for j = 0, and               (R6.5) 

∑
∈
≠

=

0
Ji
ji

ijzxz      J j∈∀ .   (R6.6)  

 

Note that constraint (R6.5) is the same constraint as (3.1′′) and can therefore be deleted. 

However, (R6.6) can be retained. The resulting reformulation is stated below. 

 
Minimize z 

subject to  

 ikikikiik xpxtzx +≥     k, iJ k,J i ≠∈∀∈∀ 00   (R6.1) 

)()(

0

ikikikiik

Jj
ij

ijiji xpxtxzxptz −−++≥ ∑
∈
≠

  k, iJ k,J i ≠∈∀∈∀ 00   (R6.2)  

000 )( kkkk xptzx +=     J k ∈∀    (R6.3) 

∑
∈
≠

++=
Jj
ij

ijiii zxxptz 00 )(    J i ∈∀     (R6.4)  

∑
∈

+=
Ji

iii xptz 00 )(                     (R6.5) 

∑
∈
≠

=

0
Ji
ji

ijzxz      J j∈∀     (R6.6)  

 
 xrt jjj 0)( 0 =−     J j ∈∀                (R2.5) 

 xp,rr t ijijijj 0)](max[ ≥+−     jJ, iJ, j i ≠∈∈∀            (R2.1′) 
 xrt jijj 0)( ≥−     jJ, iJ, j i ≠∈∈∀    

        (R2.3) 
 xjLBt jj 0))(( 0 ≥−     J j ∈∀                (R2.6) 

 xxrt jiijjj 0)1)(( ≥−−−     jJ, iJ, j i ≠∈∈∀   (R3.1) 

 pr,r t-x-x iji
ji
Ji

jjjj 0))](min(max)[1( 00 ≥+−
≠
∈

  J j ∈∀     (R3.1′) 
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 xtd ijjj 0)( ≥−     jJ, iJ, j i ≠∈∈∀   (R2.2) 
 0)xt(d j0jj ≥−     J j ∈∀                (R2.7) 

 xtp,dd jijjiij 0])([min ≥−−    jJ, iJ, j i ≠∈∈∀                         (R2.4′) 
 xxtd jiijjj 0)1)(( ≥−−−     jJ, iJ, j i ≠∈∈∀   (R3.2) 

 tjipid,d -x-x j

ji
Ji

jjj 0]))(max()[min1( 00 ≥−−
≠
∈

  J j ∈∀     (R3.2′) 

 

0}max{ 000 ≥− jjjjj ,prxxt ,   Jj ∈∀                 (R4.1) 

0)(00 ≥− jLBxxt jjj ,    Jj ∈∀                  (R4.2) 

0)1()1( 0000 ≥−−−− jjjjjj xxr-xxt ,  Jj ∈∀              (R4.3) 

0)( ≥−−+− èrdxxtxt jijijiijij    jJ,ii,j ≠∈∀             (R5.2) 

)())(()1()1( ijjiijijjiijijiijj drxxdrxxtxxt −≥+−+−−−−−     

    jJ,ii,j ≠∈∀                   (R5.3) 

 

∑
≠

=
ij

iiji txt                                          J i∈∀       (R1.1) 

∑
≠

=
ji

jijj txt                                          J j ∈∀       (R1.2) 

∑
∈
≠

=

0

1

Jj
ij

ijx                                                      0 Ji ∈∀                         (3.5) 

∑
∈
≠

=

0

1

Ji
ji

ijx                                                     0J j ∈∀                         (3.6) 

1≤+ jiij xx      i, jJ, jJ i ≠∈∈∀ 00   (3.7) 

 
00 =t , 0≥it                                                          J j ∈∀    (3.8) 

}10{ ,xij ∈      i, jJ, jJ i ≠∈∈∀ 00    (3.9) 
 

where, LB(j) is given by Preposition 1, and where }]max{0max[ jijiji r,rpr,dè −−−=  (see 

Proposition 3). 

 
 
 
 
 
 
 
 
 



   

87  

2) Linearization Phase 
 
Let tixij = uij, tjxij = vij, zxij = zij.  The linearization of the reformulated constraints can be represented 

as follows (we state the identity of the corresponding constraint from the reformulation phase on 

the left of each of the following linearized restrictions.) 

 
 
Minimize z 

subject to  

(R6.1) : ikikikik xpuz +≥      kJ, iJ, k i ≠∈∈∀  (L6.1) 

(R6.2) : )()(

0

ikikik

Jj
ij

ikijiji xpuzxptz −−++≥ ∑
∈
≠

   kJ, iJ, k i ≠∈∈∀  (L6.2) 

(R6.3) : 0000 kkkk xpuz +=      J k ∈∀   (L6.3)  

(R6.4) : ∑
∈
≠

++=
Jj
ij

ijiii zxpuz 000      J i ∈∀    (L6.4)  

(R6.5) : ∑
∈

+=
Ji

iii xpuz )( 000                     (L6.5)  

(R6.6) : ∑
∈
≠

=

0
Ji
ji

ijzz       J j∈∀    (L6.6) 

  
(R2.5) :  xrv jjj 000 =−       J j ∈∀    (L2.5)   
(R2.1′)  xp,rr v ijijijij 0)(max ≥+−      jJ, iJ, j i ≠∈∈∀           (L2.1′)  
(R2.3) :  xru jijji 0≥−      jJ, iJ, j i ≠∈∈∀  (L2.3) 
(R2.6) :  xjLBu jj 0)( 00 ≥−      J j ∈∀    (L2.6)   
(R3.1) :  xxruvt jiijjjiijj 0)1( ≥−−−−−     jJ, iJ, j i ≠∈∈∀  (L3.1) 
(R3.1’) :  xxpr,r uvt jjiji

ji
Ji

jjjj 0)1)}((min{max 0000 ≥−−+−−−
≠
∈

 J j ∈∀               (L3.1′) 

 
(R2.2) :  vxd ijijj 0≥−      jJ, iJ, j i ≠∈∈∀  (L2.2) 
(R2.7) :  uxd jjj 000 ≥−      J j ∈∀    (L2.7) 
(R2.4′) :  uxp,dd jijijiij 0)(min ≥−−     jJ, iJ, j i ≠∈∈∀             (L2.4′)  
(R3.2) :  uvtxxd jiijjjiijj 0)1( ≥++−−−     jJ, iJ, j i ≠∈∈∀  (L3.2)  
(R3.2′) :  jujvjtjxjxjipid

ji
Ji

,jd 000)001)}((max{min ≥++−−−−

≠
∈

 J j ∈∀    (L3.2′) 

 

(R4.1): 0}max{ 000 ≥− jjjj ,prxv           J j ∈∀     (L4.1) 

(R4.2): jjjjjjjj rxrxruvt ≥++−− 0000     J j ∈∀    (L4.2) 

(R4.3): 0)(00 ≥− jLBxu jj      Jj ∈∀                  (L4.3) 

 
(R5.2) : 0)( ≥−−−− jijijiji xrdvu θ     jJ, iJ, j i ≠∈∈∀  (L5.2) 
(R5.3) : )()()( ijjiijijijjiijijiijj drxdrxdrvutuvt −≥−+−+++−−−    (L5.3) 
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        jJ, i, jJ i ≠∈∈∀ 0  
 

(R1.1) : ∑
≠∈

=
i,jJj

iij tu
0

                                          J i∈∀      (L1.1) 

(R1.2) : ∑
≠∈

=
j,iJi

jij tv
0

                                          J j ∈∀    (L1.2) 

 ∑
∈
≠

=

0

1

Jj
ij

ijx                                                       0J i ∈∀                        (3.5) 

 ∑
∈
≠

=

0

1

Ji
ji

ijx                                                       0J j ∈∀                        (3.6) 

 1≤+ jiij xx       i, jJ, jJ i ≠∈∈∀ 00  (3.7) 

 
00 =t , 0≥it                                                              J j ∈∀    (3.8) 

}10{ ,xij ∈       i, jJ, jJ i ≠∈∈∀ 00   (3.9) 
000 ≥≥≥ ijijij ,  v,  uz      jJ, iJ, j i ≠∈∈∀  

  
 

where, LB(j) is given by Preposition 1, and where }]max{0max[ jijiji r,rpr,dè −−−=  (see 

Proposition 3). 
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3.3.4 Modifying the Formulation 

 

3.3.4.1 Consideration of More Than Two Consecutive Aircraft 

 

Up to now, our minimum separation constraint assumes that we only need to maintain an 

adequate separation between two consecutive aircraft. However, even though this constraint is 

satisfied, the resulting solution can violate the minimum separation rule between certain 

operations belonging to a common class in the context of mixed operations. Figure 3.2 illustrates 

this difficulty. In this case, the minimum separation between consecutive operations (i.e., arrival i 

and departure k , departure k  and arrival j) are satisfied, but the required separation between the 

two arriving aircraft (i.e., arrival i and arrival j) may be violated.   

 

 

 

 

 

 

 

 

 

Figure 3.2 Checking Minimum Separation Constraints. 

 

To protect against this event, we need another constraint set to enforce the minimum separation 

between the same types of operations as follows:  

 

)1()1( ijjiijijijijjiijij xpxmttxmxp
)))) −−≤−≤−− ,    same classi,jj,  i ∈<∀ )(     (3.10) 

where,  

1=ijx
)

 if  ij tt > , and 0=ijx
)

 if ji tt >  

jiij mm  ,  : upper bounds on the separations between ji →  and ij →  , respectively,  

same classi,jj,  i ∈<∀ )( . We can define ijm = ( ij - rd ), and jim = ( ji -rd ). 

 

tk – ti ≥ pik 

time 

tj - ti < pij 

tj - tk ≥ pkj 

 

tj ti 

tk 
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When jiji dpr >+ , then it is clear that 0=ijx
)

. (Note that in this case, we have ijij mp >  and (3.10) 

leads to a contradiction when 1=ijx
)

, hence also implying that 0=ijx
)

.). In this case, we need to 

include the constraint jiji ptt +≥ . Similarly, if ijij dpr >+  (i.e., jiji mp > ), then we can fix 

1=ijx
)

 in (3.10) and include the relevant constraint ijij ptt +≥ . Additionally, in order to tighten 

the representation of this modified model, we can further relate the binary variable ijx
)

 to the 

original model’s variables kjikjiij xxxx   ,  , ,  via the valid inequalities given in Proposition 4 below.  

 

Proposition 4.  The following constraints are valid inequalities. 

jiijij xxx −≤≤ 1
)

,    same classjiwithji ∈<∀ ),(         (3.11) 

jikijkijkjikij xxxxxxx 2212 −−−≤≤−++ )
, jiksame classjiwithji ,  ,),(    ≠∀∈<∀  (3.12.1) 

)1( 00 iijj xxx −≤≤ )
   same classjiwithji ∈<∀ ),(                   (3.12.2) 

)1( 00 jiji xxx −≤≤ )
   same classjiwithji ∈<∀ ),(    .   (3.12.3) 

Proof. If ijx = 1, which means 0=== jikjik xxx , and (xki+xjk) ≤ 1, (3.11) becomes 11 ≤≤ ijx
)

, and 

(3.12.1) becomes )(21 jkkiij xxx +−≤≤ )
. Hence, both (3.11) and (3.12.1) are valid in this case. If 

ijx = 0, then equation (3.11) is clearly valid in both cases when jix = 0 (whence we get 

10 ≤≤ ijx
)

), and jix = 1 (whence we get 0≡ijx
)

). Furthermore, in this case (xij=0), (3.12.1) 

becomes  

ijkjik xxx
)≤−+ 1 , and                                             (3.12.1.1)  

             jikijkij xxxx 22 −−−≤)
.                        (3.12.1.2) 

Consider (3.12.1.1). If 1== kjik xx , then since ijx
)

 must be 1, this is valid. Else, 01 ≤−+ kjik xx  

and so (3.12.1.1) is implied by ijx
)

≥0. Next, consider the inequality (3.12.1.2). If jix = 1, then 

0== kijk xx  and since we must have ijx
)

=0, (3.12.1.2) is valid. On the other hand, suppose that 

jix =0. Then, if 1== kijk xx , we must have ijx
)

=0, and therefore (3.12.1.2) is valid. Otherwise, 

we must have 12 ≥−− kijk xx  and so (3.12.1.2) is implied by ijx
)

≤1. This validates (3.12.1).  

For (3.12.2), note that 0ix =1 and 0jx =1, is impossible and so, the possible values of ( 0ix , 0jx ) 

are (0,0), (1,0) and (0,1). It is readily verified that each of these cases implies a valid set of 

bounds on ijx
)

. Hence, (3.12.2) is valid. With the same argument, (3.12.3) is also valid for all 

possible cases. This completes the proof.  
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Note that if the triangular inequality for the separation among aircraft triplets holds true, i.e., if  

ijkjik ppp ≥+  jiksame classjiwithji ,  ,),(    ≠∀∈<∀ , then we do not need to apply (3.10). As 

shown below, by successive applications of these triangular inequalities, if the separation between 

consecutive aircraft is enforced, then it holds between non-consecutive aircraft in the same class 

as well. 

 
 

Proposition 5. If the triangular inequality is satisfied for all triplets of aircraft in J involving i in 

which i is first or last, or for all such triplets involving j, for any i and j∈same class, then for any 

solution that satisfies the separation constraints for consecutive aircraft, we will also have that i 

and j satisfy their particular separation constraint. 

 

 

 

 

 

 

Figure 3.3 Triangular Inequality. 

 

Proof. Without loss of generality, let ti < tj (the case of tj < ti is similar) and suppose that aircraft i 

and j are separated by some n ≥ 1 aircraft k1, … , kn. Then, we have by the feasibility of 

consecutive separation constraints that  

∑ ∑
+

=

+

=
−−

≥−=−
1

1

1

1
,11

)()(
n

r

n

r
kkkkij rrrr

ptttt ,     (P5.1) 

where ik tt ≡
0

 and jk tt
n

≡
+1

. Now, suppose that all triangular inequalities involving i are satisfied 

as stated in the Proposition (the case of j is similar). Then from (P5.1), we get   

jkkkkkkkkiij nnn
ppppptt ,,,,, 132211

....)( +++++≥−
−  

jkkkkkki nnn
pppp ,,,, 1322

.... ++++≥
−  

jkkkki nnn
ppp ,,, 13

.... +++≥
− ≥ ….. jip ,≥ .  

This completes the proof. 

 

)(
1 jk tt

n
=

+

2112 ,2 )( kkkk pttt ≥−=∆  

time 

1kt

t
nkt

1−nkt0
3kt

t
2kt

t
1kt

t
)(

0 ik tt =

11 ,1 )( kiik pttt ≥−=∆  

22112 ,,, )()( kikkkiik ppptt ≥≥− +  
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To enforce separation between all pairs of aircraft in the same class, we need to impose the 

following constraints. Let V={i: some triangular inequalities are violated for a triplet involving i 

in which i is last or first}. The following is a summary of the constraint set generated to enforce 

aircraft separations. 

jiji ptt +≥              same classi,jj,  i ∈<∀ )(  in  V and jiji dpr >+  

ijij ptt +≥              same classi,jj,  i ∈<∀ )(  in V and ijij dpr >+ . 

 

Also,  

for all same classi,jj,  i ∈< )(  in V and jiji dpr ≤+ , ijij dpr ≤+ ,  (P5.2) 

impose the following set of constraints, where, ijm = ( ij-rd ), jim =( ji-rd )  

 

)1()1( ijjiijijijijjiijij xpxmttxmxp
)))) −−≤−≤−−      

jiijij xxx −≤≤ 1
)

      

jikijkijkjikij xxxxxxx 2212 −−−≤≤−++ )
   ∀k∈J,  k≠i,j  

)1( 00 iijj xxx −≤≤ )
    

)1( 00 jiji xxx −≤≤ )
.    

 
 
 

3.3.4.2 Applying RLT 

 

Reformulation: 

(R7) Multiply (3.10) by the bound factors 0≥ijx , 0≥jix  and  0)1( ≥−− jiij xx  for 

jJ,ii,j ≠∈∀ .  

 

 Multiplication by 0≥ijx : 

0)( ≤−+−+ ijjijiijjiijijjiij xtxtxmxxmp
)

 

0)( ≤++−− ijjiijijijjiijiijj xpxxmpxtxt
)

. 

 Multiplication by 0≥jix :  

0)( ≤+−−+ jiijijjijiijjijiij xtxtxmxxmp
)

 

0)( ≤++−− jijiijjiijjijiijij xpxxmpxtxt
)

. 
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 Multiplication by  0)1( ≥−− jiij xx : 

jijiijijjijiijjijiij

ijjijiijjiijijjiijjiijjiij

mxtxtxmxxmp

xtxtxmxxmpttxmp

≤+−−+−

−+−+−−++

])[(                                 

])[()(
)

))

 

jijijiijjiijjijiijij

ijjiijijijjiijiijjijijjiij

pxpxxmpxtxt

xpxxmpxtxtxmptt

−≤++−−−

++−−−+−−

])([                                 

])([)(
)

))

. 

 

Linearization: 

Let ijiji uxt =  and ijijj vxt =  ji,∀ . Also note that ijijij xxx ≡)
 and 0=ijjixx

)
. 

 

ijijijijijij xmuvxp ≤−≤         (3.10.1) 

jijijijijiji xpvuxm −≤−≤−        (3.10.2) 

)()()()1()( jijiijijijjiijjiijijij vuuvttxxmxxp −−−−−≤−−−− ))
             

                                                      )1()( jiijjiijijij xxpxxm −−−−≤ ))
.   (3.10.3) 

 

Proposition 6. }10{)}10.3{(}  , )10.3(:),,{( ≤≤∩≡ ijijijji xbinaryxholdsxttConv
)))

 for each (i,j) ∈ 

same class, i<j such that ijij mp ≤  and jiji mp ≤  (i.e., for each (i, j) such that (P5.2) holds true). 

Proof. Given any j isame classi,j <∈   ,)( , consider the following linear program for any 

ijji ccc  , , . 

     LP : )(max
,, ijijjjii
xtt

xctctc 
ijji

)
) ++         (3.13.1) 

subject to  

  )1()1( ijjiijijijijjiijij xpxmttxmxp
)))) −−≤−≤−−      (3.13.2) 

  10 ≤≤ ijx
)

.         (3.13.3) 

It is sufficient to show that if LP defined by (3.13) has an optimal solution then it has an optimum 

at which ijx
)

=0 or 1. Denoting nonnegative slacks s1 and s2 in the two inequalities in (3.13.2), 

respectively, and eliminating tj by substitution using the first equality, say, yields the following 

equivalent linear program 

max{(ci + cj) ti + (cij + cjpij + cjmji) ijx
)

 + cjs1 - cjmji:  

ijx
)

(pij + mji - pji - mij) + s1 + s2 = (mji - pji),  s1≥0, s2≥0, 0≤ ijx
)

≤1}. 
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Note that for an optimum to exist, we must have (ci + cj) = 0. Also, we then have that either ijx
)

 is 

nonbasic at 0 or 1 at an optimal vertex, or if it is basic, then it must equal  

1
)()(

)(
≥

−−−
−

ijijjiji

jiji

pmpm

pm
. 

Hence, in this case, we must have (mij-pij)=0 and ijx
)

=1 by feasibility. This completes the proof.  

 

Remark 2.  Note that if we include the constraints iii dtr ≤≤  and jjj dtr ≤≤  with (3.10), then 

the continuous relaxation can indeed have fractional extreme points. For example, we could have 

a vertex determined by the right-hand inequality in (3.13.2) binding along with ii dt =  and 

jj dt =  as three linearly independent constraints yielding the solution (where we have used 

)ijij rdm −=  

 

ii dt = , jj dt = , 
jiij

jiij
ij prd

pdd
x

+−
+−

=)
.      (3.14) 

 

If jii ddr << , this yields 10 << ijx
)

. Also, this solution (3.14) is feasible to the left-hand 

inequality in (3.13.2) since this inequality is redundant whenever the right-hand inequality holds 

as an equality because of the hypothesis pij≤mij and pji≤mji. Hence, this yields (3.14) as a 

fractional vertex. 

 

Motivated by Remark 2, we now present a tightened representation of (3.10). Consider the 

representation of (3.10) given by the following polynomial set of constraints 

 

ijijijij xpxtt
)) ≥− )(         (3.15.1) 

)1()1)(( ijjiijji xpxtt
)) −≥−−        (3.15.2) 

iii dtr ≤≤          (3.15.3) 

jjj dtr ≤≤          (3.15.4) 

ijx
)

 binary.           (3.15.5) 
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By Sherali and Adams (1994), a polyhedral convex hull representation can be given by 

multiplying the inequalities in (3.15.1) - (3.15.4) by ijx
)

, and )1( ijx
)− , and substituting ijij xx

)) =2
,  

ijiji rxt =)
 and  ijijj sxt =)

. This gives (3.16) below as the convex hull of (3.15). 

 

ijijijij xprs
)≥− )(         (3.16.1) 

)1()()( ijjiijijji xpsrtt
)−≥−−−        (3.16.2) 

ijiijiji xdrxr
)) ≤≤ , )1()()1( ijiijiiji xdrtxr

)) −≤−≤−     (3.16.3) 

ijjijijj xdsxr
)) ≤≤ , )1()()1( ijjijjijj xdstxr

)) −≤−≤−     (3.16.4) 

10 ≤≤ ijx
)

.         (3.16.5) 

 

Now, suppose that we further include within (3.15) the restrictions  

 

jiijij xxx −≤≤ 1
)

,   ijx , jix  binary.       (3.11) 

 

Note that by Sherali et al. (1996), the Special Structured RLT (SSRLT) factors are given by 

 

}0-1 ,0 ,0 ,0{1 ≥−≥−≥≥= ijjiijijjiij xxxxxxS
))

     (3.17) 

 

which collectively imply bounds of 0 and 1 on all the three binary variables as well as imply the 

2-city DFJ subtour elimination constraint 1≤+ jiij xx  (via the sum of the last two factors in S1.) 

Using the fact that 

 

  ijijij xxx =)
, 0=ijjixx

)
, and 0=jiij xx ,      (3.18) 

 

the second-order factors obtained by pairwise (including self) products in (3.17) are given by S1 

itself, and hence, so are the third-order product factors. This means that we can generate 

conv{(3.15), (3.11)} by multiplying each of (3.15.1), (3.15.2), (3.15.3) and (3.15.4) by each 

factor defining S1 in (3.17), including these factors (3.17) within the resulting constraint set, and 

substituting (3.18) along with  
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  ijiij xtu = , ijjij xtv = , ijiij xtr
)= , ijjij xts

)= , ijij xx
)) =2

, ijij xx =2
, jiji xx =2

.  (3.19) 

 

The resulting constraint sets are, 

conv{(3.15), S1}: 

(3.15.1) ijx⋅ : 0≥−− ijijijij xpuv             (3.15.1.11) 

(3.15.1) jix⋅ : redundant.  

(3.15.1) )( ijij xx −⋅ )
: )()()( ijijijijijijij xxpuvrs −≥−−− )

         (3.15.1.12) 

(3.15.1) )1( ijji xx
)−−⋅ : redundant. 

 

(3.15.2) ijx⋅ : redundant. 

(3.15.2) jix⋅ : 0≥−− jijijiji xpuv .           (3.15.2.11)  

(3.15.2) )( ijij xx −⋅ )
: redundant. 

(3.15.2) )1( ijji xx
)−−⋅ : )1()()( ijjijiijjijijjii xxpsutrvt

)−−≥−−−−− .      (3.15.2.12) 

 

(3.15.3) ijx⋅ : ijiijiji xduxr ≤≤ .            (3.15.3.11) 

(3.15.3) jix⋅ : jiijijii xdvxr ≤≤ .             (3.15.3.12) 

(3.15.3) )( ijij xx −⋅ )
: )()( ijijiijijijiji xxdurxxr −≤−≤− ))

.         (3.15.3.13) 

(3.15.3) )1( ijji xx
)−−⋅ : )1()1( ijjiiijjiiijjii xxdrvtxxr

)) −−≤−−≤−− .       (3.15.3.14) 

 

(3.15.4) ijx⋅ : ijjijijj xdvxr ≤≤ .            (3.15.4.11) 

(3.15.4) jix⋅ : jijjijij xduxr ≤≤ .             (3.15.4.12) 

(3.15.4) )( ijij xx −⋅ )
: )()( ijijjijijijijj xxdvsxxr −≤−≤− ))

.         (3.15.4.13) 

(3.15.4) )1( ijji xx
)−−⋅ : )1()1( ijjijijjijijjij xxdsutxxr

)) −−≤−−≤−− .       (3.15.4.14) 

 

For all same classi,jj,  i ∈< )(  and i∈ V, j∈ V, jiji dpr ≤+ , ijij dpr ≤+ , the above constraint 

set will be imposed. 

 

We can also consider the convex hull representation for {(3.15), (3.12.2)}, {(3.15), (3.12.3)} 

using the special structured factors for (3.12.2) and (3.12.3) as follows: 
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}0-1 ,0 ,0 ,0{ 00002 ≥−≥−≥≥= ijijijji xxxxxxS
))

,    (3.20) 

}0-1 ,0 ,0 ,0{ 00003 ≥−≥−≥≥= ijjiijji xxxxxxS
))

.    (3.21) 

 

Reformulation 

Using 00 jijj xxx =)
, 00 =iji xx

)
, iiji xxx 00 =)

, and 00 =ijjxx
)

, the reformulated constraint sets are,  

conv{(3.15), S2}: 

(3.15.1) 0jx⋅   : 00)( jijjij xpxtt ≥−  

(3.15.1) 0ix⋅   : redundant.  

(3.15.1) )( 0jij xx −⋅ )
 : )())(( 00 jijijjijij xxpxxtt −≥−− ))

 

(3.15.1) )1( 0 iji xx
)−−⋅  : redundant. 

 
(3.15.2) 0jx⋅   : redundant 

(3.15.2) 0ix⋅   : 00)( ijiiji xpxtt ≥− .  

(3.15.2) )( 0jij xx −⋅ )
 : redundant 

(3.15.2) )1( 0 iji xx
)−−⋅  : )1()1)(( 00 ijijiijiji xxpxxtt

)) −−≥−−− . 
 

(3.15.3) 0jx⋅   : 000 jijiji xdxtxr ≤≤ . 

(3.15.3) 0ix⋅   : 000 iiiiii xdxtxr ≤≤ .  

(3.15.3) )( 0jij xx −⋅ )
 : )()( 000 jijijiijijiji xxdxtxtxxr −≤−≤− )))

. 

(3.15.3) )1( 0 iji xx
)−−⋅  : )1()1( 000 ijiiijiiiiijii xxdxtxttxxr

))) −−≤−−≤−− . 
 

(3.15.4) 0jx⋅   : 000 jjjjjj xdxtxr ≤≤ . 

(3.15.4) 0ix⋅   : 000 ijijij xdxtxr ≤≤ .  

(3.15.4) )( 0jij xx −⋅ )
 : )()( 000 jijjjjijjjijj xxdxtxtxxr −≤−≤− )))

. 

(3.15.4) )1( 0 iji xx
)−−⋅  : )1()1( 000 ijijijjijjijij xxdxtxttxxr

))) −−≤−−≤−− . 
 
conv{(3.15), S3}: 

(3.15.1) ix0⋅   : iijiij xpxtt 00)( ≥−  

(3.15.1) jx0⋅   : redundant.  

(3.15.1) )( 0iij xx −⋅ )
 : )())(( 00 iijijiijij xxpxxtt −≥−− ))

 

(3.15.1) )1( 0 ijj xx
)−−⋅  : redundant. 

 
(3.15.2) ix0⋅   : redundant. 

(3.15.2) jx0⋅   : jjijji xpxtt 00)( ≥− .  

(3.15.2) )( 0iij xx −⋅ )
 : redundant. 

(3.15.2) )1( 0 ijj xx
)−−⋅  : )1()1)(( 00 ijjjiijjji xxpxxtt

)) −−≥−−− . 
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(3.15.3) ix0⋅   : iiiiii xdxtxr 000 ≤≤ . 

(3.15.3) jx0⋅   : jijiji xdxtxr 000 ≤≤ .  

(3.15.3) )( 0iij xx −⋅ )
 : )()( 000 iijiiiijiiiji xxdxtxtxxr −≤−≤− )))

. 

(3.15.3) )1( 0 ijj xx
)−−⋅  : )1()1( 000 ijjiijijiiijji xxdxtxttxxr

))) −−≤−−≤−− . 
 

(3.15.4) ix0⋅   : ijijij xdxtxr 000 ≤≤ . 

(3.15.4) jx0⋅   : jjjjjj xdxtxr 000 ≤≤ .  

(3.15.4) )( 0iij xx −⋅ )
 : )()( 000 iijjijijjiijj xxdxtxtxxr −≤−≤− )))

. 

(3.15.4) )1( 0 ijj xx
)−−⋅  : )1()1( 000 ijjjijjjjjijjj xxdxtxttxxr

))) −−≤−−≤−− . 

 

Linearization 

Using ijiij xtr
)= , ijjij xts

)= , ijiij xtu = , ijjij xtv = , jiij xtf 0= , 0jiij xtl = , the linearized 

constraint sets are as follows: 

conv{(3.15), S2}: 

(3.15.1) 0jx⋅   : 00 jijijj xplu ≥−            (3.15.1.21) 

(3.15.1) 0ix⋅   : redundant.  

(3.15.1) )( 0jij xx −⋅ )
 : )()()( 00 jijijijjijij xxplurs −≥−−− )

         (3.15.1.22) 

(3.15.1) )1( 0 iji xx
)−−⋅  : redundant. 

 
(3.15.2) 0jx⋅   : redundant       

(3.15.2) 0ix⋅   : 00 )( ijijii xplu ≥− .             (3.15.2.21) 

(3.15.2) )( 0jij xx −⋅ )
 : redundant 

(3.15.2) )1( 0 iji xx
)−−⋅  : )1()()( 00 ijijiijjijijii xxpsltrut

)−−≥−−−−− .   (3.15.2.22) 
 

(3.15.3) 0jx⋅   : 00 jiijji xdlxr ≤≤ .            (3.15.3.21) 

(3.15.3) 0ix⋅   : 000 iiiii xduxr ≤≤ .             (3.15.3.22) 

(3.15.3) )( 0jij xx −⋅ )
 : )()( 00 jijiijijjiji xxdlrxxr −≤−≤− ))

.                  (3.15.3.23) 

(3.15.3) )1( 0 iji xx
)−−⋅  : )1()1( 000 ijiiijiiijii xxdrutxxr

)) −−≤−−≤−− .         (3.15.3.24) 
 

(3.15.4) 0jx⋅   : 000 jjjjj xduxr ≤≤ .            (3.15.4.21) 

(3.15.4) 0ix⋅   : 00 ijjiij xdlxr ≤≤ .             (3.15.4.22) 

(3.15.4) )( 0jij xx −⋅ )
 : )()( 000 jijjjijjijj xxdusxxr −≤−≤− ))

.          (3.15.4.23) 

(3.15.4) )1( 0 iji xx
)−−⋅  : )1()1( 00 ijijijjijijij xxdsltxxr

)) −−≤−−≤−− .    (3.15.4.24) 
 

conv{(3.15), S3}: 
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(3.15.1) ix 0⋅   : iijiji xpvf 00 ≥−             (3.15.1.31) 

(3.15.1) jx0⋅   : redundant.  

(3.15.1) )( 0iij xx −⋅ )
 : )()()( 00 iijijiijjiij xxpvrfs −≥−−− )

          (3.15.1.32) 

(3.15.1) )1( 0 ijj xx
)−−⋅  : redundant. 

 
(3.15.2) ix 0⋅   : redundant. 

(3.15.2) jx0⋅   : jjijij xpvf 00 ≥− .            (3.15.2.31) 

(3.15.2) )( 0iij xx −⋅ )
 : redundant. 

(3.15.2) )1( 0 ijj xx
)−−⋅  : )1()()( 00 ijjjiijjjijiji xxpsvtrft

)−−≥−−−−− . (3.15.2.32) 
 

(3.15.3) ix 0⋅   : iiiii xdvxr 000 ≤≤ .            (3.15.3.31) 

(3.15.3) jx0⋅   : jiijji xdfxr 00 ≤≤ .            (3.15.3.32) 

(3.15.3) )( 0iij xx −⋅ )
 : )()( 000 iijiiijiiji xxdvrxxr −≤−≤− ))

. (15.3-33) 

(3.15.3) )1( 0 ijj xx
)−−⋅  : )1()1( 00 ijjiijijiijji xxdrftxxr

)) −−≤−−≤−− .    (3.15.3.34) 
 

(3.15.4) ix0⋅   : ijjiij xdfxr 00 ≤≤ .           (3.15.4.31) 

(3.15.4) jx0⋅   : jjjjj xdvxr 000 ≤≤ .            (3.15.4.32) 

(3.15.4) )( 0iij xx −⋅ )
 : )()( 00 iijjjiijiijj xxdfsxxr −≤−≤− ))

.        (3.15.4.33) 

(3.15.4) )1( 0 ijj xx
)−−⋅  : )1()1( 000 ijjjijjjijjj xxdsvtxxr

)) −−≤−−≤−− .(3.15.4.34) 
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3.3.4.3 Comparison of Constraints Sets  

 

Let us defined constraint Set I as  [(3.10), (3.11), (3.15.3), (3.15.4)]. Again, using ijijij xxx =)
, 

0=ijjixx
)

, and 0=jiij xx , the application of SSRLT factor S1 to constraint set I, SSRLT(I), yield 

the following. 

 

SSRLT(I): 

(3.10)⋅S1:  

(3.10) ijx⋅ : ijijijijijij xmuvxp ≤−≤       (3.10.4)  

(3.10) jix⋅ : jijijijijiji xpvuxm −≤−≤−      (3.10.5)  

(3.10) )( ijij xx −⋅ )
: )( )()()( ijijijjijiijijijijij xxmurvsxxp −≤−−−≤− ))

   (3.10.6)  

             (3.10) )1( ijji xx
)−−⋅ : )()()()1( jijiijijijjiijji vursttxxm −−−−−≤−−− )

  

            )1( jiijji xxp −−−≤ )
   (3.10.7) 

  
(3.11)⋅S1: same to (3.11). 

(3.11) ijx⋅ : redundant.  

(3.11) jix⋅ : redundant. 

(3.11) )( ijij xx −⋅ )
: ijij xx

)≤      

             (3.11) )1( ijji xx
)−−⋅ : jiij xx −≤1

)
   

         

(3.15.3) ⋅S1: same to (3.15.3.1), (3.15.3.2), (3.15.3.3), (3.15.3.4). 

(3.15.3) ijx⋅ : ijiijiji xduxr ≤≤ .                (3.15.3.1) 

(3.15.3) jix⋅ : jiijijii xdvxr ≤≤ .                 (3.15.3.2) 

(3.15.3) )( ijij xx −⋅ )
: )()( ijijiijijijiji xxdurxxr −≤−≤− ))

.             (3.15.3.3) 

(3.15.3) )1( ijji xx
)−−⋅ : )1()1( ijjiiijjiiijjii xxdrvtxxr

)) −−≤−−≤−− .           (3.15.3.4) 
 

(3.15.4) ⋅S1: same to (3.15.4.1), (3.15.4.2), (3.15.4.3), (3.15.4.4). 

 

(3.15.4) ijx⋅ : ijjijijj xdvxr ≤≤ .                (3.15.4.1) 

(3.15.4) jix⋅ : jijjijij xduxr ≤≤ .                 (3.15.4.2) 

(3.15.4) )( ijij xx −⋅ )
: )()( ijijjijijijijj xxdvsxxr −≤−≤− ))

.             (3.15.4.3) 

(3.15.4) )1( ijji xx
)−−⋅ : )1()1( ijjijijjijijjij xxdsutxxr

)) −−≤−−≤−− .           (3.15.4.4) 
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Similarly, let us define Constraint Set II≡[(3.15.1), (3.15.2), (3.11), (3.15.3), (3.15.4)] and let us 

denote the application of SSRLT factor S1 to this constraint as SSRLT(II). 

Up to now, we have formulated two sets of constraints (i.e., Constraint Sets I and II) to enforce 

the separation rules for the same class operations. By applying RLT to Set I, and SSRLT to both 

Sets I and II, we have derived three sets of tightened constraints, RLT(I), SSRLT(I) and 

SSRLT(II) (see Table 3.6). 

Table 3.6 Original and SSRLT Constraint Sets.  

Constraint Set (I): (3.10), (3.11), (3.15.3), (3.15.4) Constraint Set (II):  
 (3.15.1), (3.15.2), (3.11), (3.15.3), (3.15.4) 

)1()1( ijjiijijijijjiijij xpxmttxmxp
)))) −−≤−≤−− (3.10) 

 
plus the following constraints: 

ijijijij xpxtt
)) ≥− )(                        (3.15.1) 

)1()1)(( ijjiijji xpxtt
)) −≥−−         (3.15.2) 

   plus the following constraints: 

 

                 jiijij xxx −≤≤ 1
)

                                                                 (3.11)     

                                   iii dtr ≤≤                                 (3.15.3) 

                                   jjj dtr ≤≤                                                         (3.15.4) 
SSRLT(I) SSRLT(II) 

 ijijijijijij xmuvxp ≤−≤            (3.10.4) 

jijijijijiji xpvuxm −≤−≤−    (3.10.5)  
)( )()()( ijijijjijiijijijijij xxmurvsxxp −≤−−−≤− ))
            

                                                             (3.10.6) 
)()()()1( jijiijijijjiijji vuuvttxxm −−−−−≤−−− )

        )1( jiijji xxp −−−≤ )
        (3.10.7)  

 
plus the following constraints: 

ijijijij uvxp −≤   (3.15.1.11) 
)()()( ijijijijijijij uvrsxxp −−−≤−)

 
                                         (3.15.1.12) 

 

jijijiji xpvu −≤−   (3.15.2.11)  
)()()( jijiijijij vurstt −−−−−  

     )1( ijjiji xxp
)−−−≤  (3.15.2.12) 

plus the following constraints: 

 

  jiijij xxx −≤≤ 1
)

            (3.11) 

ijiijiji xduxr ≤≤                     (3.15.3.11) 

jiijijii xdvxr ≤≤         (3.15.3.12) 
)()( ijijiijijijiji xxdurxxr −≤−≤− ))
                   (3.15.3.13) 

)1()1( ijjiiijjiiijjii xxdrvtxxr
)) −−≤−−≤−−                             (3.15.3.14) 

 

ijjijijj xdvxr ≤≤        (3.15.4.11) 

jijjijij xduxr ≤≤         (3.15.4.12) 
)()( ijijjijijijijj xxdvsxxr −≤−≤− ))
                 (3.15.4.13) 

)1()1( ijjijijjijijjij xxdsutxxr
)) −−≤−−≤−−                                 (3.15.4.14) 
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Let us now investigate the various implications among these constraint sets. As mentioned earlier, 

the RLT factor 01 ≥−− jiij xx  is implied by summing the last two factors 0≥− ijij xx
)

 and 

0-1 ≥− ijji xx
)

 defining S1 in (3.18). Hence, since the other RLT factors xij≥0 and xji≥0 are also 

implied by S1, we have that RLT(I) is implied by SSRLT(I).  

For SSRLT(I) and SSRLT(II), the right-hand side (RHS) of (3.10.4) and (3.10.6) and the left-

hand side (LHS) of (3.10.5) and (3.10.7) can be represented by (3.15.3.11)-(3.15.3.14) and 

(3.15.4.11)-(3.15.4.14) in the following way, noting that ijm = ( ij-rd ) and jim =( ji-rd ). 

 

(3.15.4.11) – (3.15.3.11) = RHS of (3.10.4) 
(3.15.4.12) – (3.15.3.12) = LHS of (3.10.5) 
(3.15.4.13) – (3.15.3.13) = RHS of (3.10.6) 
(3.15.4.14) – (3.15.3.14) = LHS of (3.10.7). 

 

Consequently, all the inequalities having mij or mji in (3.10.4)-(3.10.7) can be eliminated. This 

reduces SSRLT(I) to SSRLT(II), thereby establishing their equivalence. Figure 3.4 presents the 

relationships among these various constraint sets. In practical terms, the aforementioned 

constraints can be generated by the following procedure. 

 

For i∈V 

   For j>i, j∈V, (i,j)∈same class 

 

If ( ri + pij > dj), then jiji ptt +≥  

Else if ( rj + pji > di), then ijij ptt +≥  

Else if ( ri + pij ≤  dj and rj + pji ≤  di), then 

 jikijkijkjikij xxxxxxx 2212 −−−≤≤−++ )
     ∀k∈J, k ≠ i,j 

 (3.15.1.11), (3.15.1.12), (3.15.2.11), (3.15.2.12),  

(3.15.3.11), (3.15.3.12), (3.15.3.13), (3.15.3.14),  

(3.15.4.11), (3.15.4.12), (3.15.4.13), (3.15.4.14). 

 

     (3.15.1.21), (3.15.1.22), (3.15.2.21), (3.15.2.22), 

(3.15.3.21), (3.15.3.22), (3.15.3.23), (3.15.3.24),  

(3.15.4.21), (3.15.4.22), (3.15.4.23), (3.15.4.24). 
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      (3.15.1.31), (3.15.1.32), (3.15.2.31), (3.15.2.32), 

(3.15.3.31), (3.15.3.32), (3.15.3.33), (3.15.3.34), 

(3.15.4.31), (3.15.4.32), (3.15.4.33), (3.15.4.34). 

   

Endif 

   End for j 

End for i  
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Figure 3.4 Relationships among the Constraint Sets. 

.

Imply 

Constraint Set (I): 
(3.10), (3.11), (3.15.3), (3.15.4). 

Constraint Set (II): 
(3.15.1), (3.15.2), (3.11), (3.15.3), (3.15.4). 

RLT Factors: 
0≥ijx , 0≥jix , 01 ≥−− jiij xx . 

SSRLT Factors: 
}0-1 ,0 ,0 ,0{1 ≥−≥−≥≥= ijjiijijjiij xxxxxxS

))
. 

RLT I SSRLT(I) 

(3.10.4), (3.10.5),(3.10.6), (3.10.7), 
(3.11), 
(3.15.3.11), (3.15.3.12), (3.15.3.13), (3.15.3.14), 
(3.15.4.11), (3.15.4.12), (3.15.4.13), (3.15..4.14) 

 

SSRLT(II) 

(3.15.1.11), (3.15.1.12), 
(3.15.2.11), (3.15.2.12), 
(3.15.3.11), (3.15.3.12), (3.15.3.13), (3.15.3.14), 
(3.15.4.11), (3.15.4.12), (3.15.4.13), (3.15.4.14). 

Imply (Equivalent) 
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3.3.4.4 Prefix and Probe Tests 

 

Proposition 7. Let I={1,…,t} be a collection of identical aircraft from the same class such that 

r1≤ r2≤… ≤ rt and d1≤ d2≤… ≤ dt. Then we may fix ijx
)

=1 ∀ i, j∈I, i<j, and yet preserve optimality 

in ASP. 

Proof. Consider any optimal solution to ASP and examine the sequence positions of aircraft from 

the set I. If these appear in the same order as in I, we are done. Otherwise, processing from the 

left in I, let the first out-of-sequence aircraft be in position p (possibly, p=1)and let the aircraft in 

this position be q. Note that q>p, and so, rp≤rq and dp≤dq. Since rp≤rq≤tq<tp≤dp≤dq by scheduling 

aircraft q at time tp and aircraft p at time tq, we would obtain a feasible solution having the same 

objective value. Continuing in this fashion, we would obtain an optimum with the aircraft in I 

sequenced in order 1,…,t. This completes the proof.  

Remark 3. Whenever we fix ijx
)

=1,we automatically also have xji≡0. 

 

We can also perform probing tests on the xij variables based on the following concept. Suppose 

that we tentatively fix xij=1. If this results in an infeasible problem ASP, then we can permanently 

fix xij=0. Similarly, if fixing xij=0 renders the problem infeasible, then we can assert that we must 

have xij=1. To simplify the notation in this development, for each aircraft r, let  

}{minimum rs
s

r p=∆  

and let s
rsp

p
r

rs
rs aircraft               

otherwise 

 as class same in the is  if 
ˆ ∀





∆
= . 

 

Proposition 8 (Probing on xij=1). Consider the pair of aircraft i and j associated with the (defined 

and not as yet fixed) variable xij. If either (a) ri+pij>dj, or (b) there exists an aircraft k  for which 

the following two conditions hold: 
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rk+ kip̂ >di, or rk + kip̂ +pij > dj, 

 max{ri+pij, rj}+ jkp̂ >dk, 

then we can optimally fix xij=0, assuming that an optimum exists. 

Proof. Suppose that we consider any feasible solution in which xij=1. Clearly, if (a) holds true 

then we have a contradiction, and so we must have xij=0. Hence, suppose that (b) holds true. If the 

first part of condition (i) holds true, then k  cannot precede i or else aircraft i cannot be feasibly 

scheduled, and similarly, if the second part of condition (i) holds true then again k  cannot precede 

i or else aircraft j cannot be feasibly scheduled (given xij=1). On the other hand, condition (ii) 

asserts that aircraft k  cannot be feasibly scheduled after i and j are consecutively scheduled. 

Together, these conditions imply that if xij=1, then there exists an aircraft k  which cannot be 

feasibly scheduled, and so, we may fix xij=0. This completes the proof. 

 

Proposition 9 (Probing on xij=0). Consider the pair of aircraft i and j associated with the (defined 

and not as yet fixed) variable xij. If 

rj+ jip̂ >di, and  

jkjkiki

dpr
jik

dprpr

kiki

>++
≤+

≠
]ˆ},[max{min

,
,  

then we may optimally fix xij=1, assuming that an optimum exists. 

Proof. Suppose that we consider any feasible solution in which xij=0. Condition (i) asserts that j 

cannot precede i, and condition (ii) asserts that for any possible aircraft k≠i,j that immediately 

follows i, it would not be feasible to subsequently schedule aircraft j. Hence, aircraft j would 

remain unscheduled unless it immediately succeeds aircraft i, i.e., xij=1. This completes the proof.  

Remark 4. Naturally, if i and j belong to the same class and we fix xij=1 then we can also fix 

ijx
)

=1. 
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Figure 3.5 presents the scheme to prefix certain ijx
)

 variables based on symmetry using the 

Proposition 7, 8 and 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Prefixing Variables. 

no 
VIOLR = 0 

Order the aircraft as they appear in I by setting 

))( ),(( IqIpx
)

= 1, ∀p, q= 1,.., |I|, p < q 

where 






<

<
≡

ijx

jix
x

ji

ij

i, j  if 

 if 
)( )

)
)

 

Remove r(I) from I  

yes 

Let I be a set of identical aircraft in the same 
class, where |I| ≥ 2. Arrange the aircraft indices 
in I in nondecreasing lexicographic order of 
(ri, dj). 

Denote r(I) as the rth ranked index in I, for r=1,…,|I|. 
For each r = 1,…, |I|, compute the violation function. 
VIOLr = [# of indices q(I), q<r for which dq(I) > dr(I)] 
            + [# of indices q(I), q>r for which dq(I) < dr(I)]. 
Note that VIOLr counts how many aircraft pairs (q(I), r(I)), 
q≠r, violate the nondecreasing ordering in I w.r.t. d values. 
Find R∈argmaxr{VIOLr} 
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3.3.5 Computational Results  

 

Figure 3.6 illustrates computational result of a simple case having 10 flights. As seen in the 

figure, the completion time of the first-come-first-served (FCFS) sequence and the optimal 

sequence are 624 seconds and 518 seconds, respectively. Hence by changing the traditional FCFS 

sequence intelligently, about 17% of the overall operational time can be saved. 

We consider 12 problem instances having specified hypothetical flight schedules. The results 

given in Tables 3.7 and 3.8 indicate that the linear programming relaxation of the original 

traditional model seems to yield a significant gap from optimality that needs to be resolved. On 

the other hand, the proposed reformulated ASP problems yield tighter representations, producing 

significantly improved lower bounds. As a result, several previously unsolvable instances are now 

computationally tractable within the set limits. Nevertheless for real-time implementation, the 

CPU times (seconds) measured on an HP workstation indicate that we need to devise suitable 

heuristics as an alternative for deriving good quality solutions.  

Various types of problems are defined as below according to the application of RLT and SSRLT. 

Problem O is an original problem without applying RLT. RLT1 is a problem resulted from 

applying RLT to problem O. Problem RLT2 involves additional constraints set generated by 

applying SSRLT factor S1 to constraints set (3.15). In problem RLT3, SSRLT factor S1, S2 and S3 

are applied to constraints set (3.15). Among the problems, O, RLT1 and RLT2 are implemented 

in this research. 

 

O: Minimize z 

subject to  

(3.1), (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), (3.10), (3.11), (3.12), 

jiji ptt +≥     same classi,jj,  i ∈<∀ )(  in V and jiji dpr >+        

ijij ptt +≥     same classi,jj,  i ∈<∀ )(  in V and ijij dpr >+   

ijx
)

 binary.                     

 

RLT1: Minimize z 

subject to  

(L2.5), (L2.1′), (L2.3), (L2.6), (L3.1), (L3.1′), (L2.2), (L2.7), (L2.4′), (L3.2), (L3.2′),  

(L4.1), (L4.2), (L4.3), (L5.2), (L5.3), (L1.1), (L1.2), (3.5), (3.6), (3.7), (3.8), (3.9), 

(3.10), (3.11), (3.12), 
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jiji ptt +≥     same classi,jj,  i ∈<∀ )(  in V and jiji dpr >+        

ijij ptt +≥     same classi,jj,  i ∈<∀ )(  in V and ijij dpr >+   

00 ≥≥ ijij ,  vu    jJ, iJ, j i ≠∈∈∀  
ijx

)
 binary. 

                 

RLT2: Minimize z 

subject to  

(L2.5), (L2.1′), (L2.3), (L2.6), (L3.1), (L3.1′), (L2.2), (L2.7), (L2.4′), (L3.2), (L3.2′),  

(L4.1), (L4.2), (L4.3), (L5.2), (L5.3), (L1.1), (L1.2), (3.5), (3.6), (3.7), (3.8), (3.9), 

(3.10), (3.11), (3.10), (3.11), (3.12), 

SSRLT[conv{(3.15), S1}], 

jiji ptt +≥     same classi,jj,  i ∈<∀ )(  in V and jiji dpr >+        

ijij ptt +≥     same classi,jj,  i ∈<∀ )(  in V and ijij dpr >+   

00 ≥≥ ijij ,  vu    jJ, iJ, j i ≠∈∈∀  

           00 ≥≥ ijij ,  sr  same classi,jj,  i ∈<∀ )( , i∈ V, j ∈ V and jiji dpr ≤+ , ijij dpr ≤+   
ijx

)
 binary. 

 

RLT3: Minimize z 

subject to  

(L2.5), (L2.1′), (L2.3), (L2.6), (L3.1), (L3.1′), (L2.2), (L2.7), (L2.4′), (L3.2), (L3.2′),  

(L4.1), (L4.2), (L4.3), (L5.2), (L5.3), (L1.1), (L1.2), (3.5), (3.6), (3.7), (3.8), (3.9), 

(3.10), (3.11), (3.10), (3.11), (3.12), 

SSRLT[conv{(3.15), S1}], 

SSRLT[conv{(3.15), S2}], 

SSRLT[conv{(3.15), S3}], 

jiji ptt +≥     same classi,jj,  i ∈<∀ )(  in V and jiji dpr >+        

ijij ptt +≥     same classi,jj,  i ∈<∀ )(  in V and ijij dpr >+   

00 ≥≥ ijij ,  vu    jJ, iJ, j i ≠∈∈∀  

 00 ,00 ,00 ≥≥≥≥≥≥ jijiijijijij , lf, lf,  sr    
                same classi,jj,  i ∈< ∀ )( , i∈ V, j∈ V and jiji dpr ≤+ , 

ijij dpr ≤+   

ijx
)

 binary. 
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Figure 3.6 Illustrative Example. 
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Table 3.7 Computational Results (without using Prefixing Constraints). 

 

O RLT1 
LP MIP LP MIP 

 
Prob. 
Id 

 
# acft 

Data 
Intrvl 
(sec) 

 
FCFS 
sol. 

 
MIP 
value Value time nodes Time Value Time nodes time 

5_0 5 2000 1558 1558 1558.0 0.01 7 .02 1558 .12 0 .01 
5_1 5 100 288 256 85.0 0.01 98 .11 230 .09 26 .23 
5_2 5 100 263 234 79.0 0.02 223 .31 231 .12 34 .26 
5_3 5 100 266 266 92.1 0.02 245 .31 238 .14 36 .40 
5_4 5 100 260 260 84.9 0.01 199 .26 232 .11 59 .57 
5_5 5 100 380 263 84.0 0.01 72 .09 262 .13 32 .35 

10_0 10 2000 1883 1883 1871.0 0.03 46932 127.00 1873 3.30 47 32.14 
10_3 10 600 750 686 500.0 0.06 27152 143.72 531 2.90 7806 784.51 
10_4 10 600 626 492 305.0 0.03 300,000 1250.36 464 1.43 22147 2006.78 
10_5 10 300 634 518 243.0 0.03 300,000 1275.90 479 2.42 22615 3646.54 
10_6 10 200 715 524 185.0 0.03 300,000 *1283.90 489 1.12 45320 3612.37 

15_0 15 2000 2095 2095 2046.0 0.04 300,000 1286.99 2077 19.67 1657 299.57 
15_1 15 500 948          
15_3 15 500 967          

 
 

RLT2  

LP MIP   

 
Prob. 
id 

 
# acft 

Data 
Intrvl 
(sec) 

 
FCFS 
sol. 

 
MIP 
value Value Time nodes Time     

5_0 5 2000 1558 1558 1558 .11 0 .01     
5_1 5 100 288 256 230 .12 32 .33     
5_2 5 100 263 234 231 .14 21 .18     
5_3 5 100 266 266 238 .15 42 .50     
5_4 5 100 260 260 232 .16 65 .66     
5_5 5 100 380 263 262 .21 24 .35     

10_0 10 2000 1883 1883 1883 3.39 0 .02     
10_3 10 600 750 686 531 5.49 2878 573.50     
10_4 10 600 626 492 464 2.21 20542 2878.87     
10_5 10 300 634 518 479 2.73 17413 2774.44     
10_6 10 200 715 524 489 2.15 48953 4791.63     

15_0 15 2000 2095 2095 2077 11.53 60 218.30     
15_1 15 500 948          
15_3 15 500 967          

                  *not optimal (due to the maximum nodes limit). 
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Table 3.8 Computational Results (using Prefixing Constraints). 

 

O RLT1 

LP MIP LP MIP 

 
Prob. 
Id 

 
# acft 

Data 
Intrvl 
(sec) 

 
FCFS 
sol. 

 
MIP 
value 

Value time nodes Time Value Time nodes time 

5_0 5 2000 1558 1558         
5_1 5 100 288 256         
5_2 5 100 263 234         
5_3 5 100 266 266         
5_4 5 100 260 260         
5_5 5 100 380 263         

10_0 10 2000 1883 1883 1871.6 0.02 3792 9.80 1873 2.51 50 29.57 
10_3 10 600 750 686 551.0 0.04 6721 31.50 551 1.87 5299 1183.42 
10_4 10 600 626 492 305.0 0.02 120518 442.98 464 1.22 2973 262.96 
10_5 10 300 634 518 271.0 0.03 33793 127.77 479 1.23 4113 379.53 
10_6 10 200 715 524 264.0 0.03 173046 660.00 489 1.22 8277 758.40 

15_0 15 2000 2095          
15_1 15 500 948          
15_3 15 500 967          

 
 

RLT2  

LP MIP   

 
Prob. 
id 

 
# acft 

Data 
Intrvl 
(sec) 

 
FCFS 
sol. 

 
MIP 
value Value Time nodes Time     

5_0 5 2000 1558 1558         
5_1 5 100 288 256         
5_2 5 100 263 234         
5_3 5 100 266 266         
5_4 5 100 260 260         
5_5 5 100 380 263         

10_0 10 2000 1883 1883 1883 1.90 14 18.22     
10_3 10 600 750 686 551 2.42 9358 3258.65     
10_4 10 600 626 492 464 1.48 3097 401.98     
10_5 10 300 634 518 479 1.40 3774 439.92     
10_6 10 200 715 524 489 1.38 9835 1263.82     

15_0 15 2000 2095          
15_1 15 500 948          
15_3 15 500 967          
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3.4 Heuristics for the Aircraft Sequencing Problem (ASP) 

 

Note that the aircraft sequencing decisions need to be made in real-time within a rolling horizon 

framework. As such, the computational time required to solve reasonably sized instances of ASP 

is of paramount importance. In such a context, both dynamic and integer programming 

approaches are not likely to be appropriate for implementation, especially when the problem size 

is relatively large. Hence, we propose the use of heuristic methods which provide solutions in a 

reasonable time. Although these solutions might be sub-optimal, they are motivated by partial or 

relaxed optimality considerations and are likely to be near-optimal. 

 

3.4.1 Tour Building Process 

 

3.4.1.1 FCFS Sequence 

 

For the tour building procedure, instead of devising a new tour building procedure, the FCFS 

sequence (with landing priority) can be used as an initial tour. The motivation of this is that the 

FCFS sequence is the strategy currently applied in air traffic control, and we are seeking to 

improve the solution provided by it.  

 

3.4.1.2 LP-based Heuristic  

 

Having determined an LP-RLT solution x  for an ASP, we can use this solution to construct an 

initial tour via a rounding process. (Among various types of RLT formulations shown in section 

3.3.6, the RLT1 can be used for this purpose. This is because comparing with other RLTs, the 

computation time for LP of RLT1 is relatively small without losing the tightness of LP solution. 

See Table 3.7.) To do this, we develop two sequential rounding heuristics for the obtained LP 

solution. 

 

Method 1: Round x  based on FCFS or cost/delay considerations. 

Method 2: Suppose that x  is fractional. Solve minΣ iΣ j ijij xx , subject to assignment constraints, 

and hence obtain the solution x̂ . If x̂  is a tour, then use this as the rounded tour. If x̂  has 

subtours, construct a complete tour by using a FCFS-based strategy. 
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For Method 1, the following steps are performed: 

 

Step 0 (Selection of variables from the solution): From the LP solution x , for each i, find 

j(i)∈argmaxj{ ijx }. Initialize the set of subtours as null.  

Step 1 (Sort and store the selected variables): Sort the selected values )(, ijix  ∀i in nonincreasing 

order, and store the corresponding ordered list of variables in an array X(⋅) of size N.  

Step 2 (Insert nodes in the current set of subtours): Remove the first element xi,j (i) from X(⋅), and 

reduce the size of X(⋅) by one. Insert the nodes i and j(i) in a current subtour by applying 

one of following rules. 

Rule 1: If both i and j(i) are currently included in the current set of subtours, go to Step 3. 

Rule 2: If both i and j(i) are not included in any current subtour, generate a new subtour 

by connecting nodes 0 → i → j(i) → 0. 

Rule 3: If only i is included in some current subtour, i≠0, insert j(i) between node i and 

the node following i in this subtour. 

Rule 4: If only j(i) is included in some current subtour, j(i)≠0, insert i between node j(i) 

and its predecessor node in this subtour. 

Rule 5: In case the selected variable is of the type x0j (i.e., i = 0 with j≡j(0) not included 

in any subtour), calculate the savings obtained by connecting j to node 0 in each 

of the current subtours. The savings are given by the following expression: 

   mmm jfjfjf ppp −+= 00saving , 

where, fm is the first node after node 0 in the mth subtour. 

Connect j as the immediate successor to node 0 in the subtour which yields the 

largest savings. 

Rule 6: In case the selected variable is of the type xi0 (i.e., j(i)=0), with i not included in 

any subtour, calculate the savings obtained by connecting i to node 0 in each of 

the current subtours. The savings are given by the following expression: 

ililil mmm
ppp −+= 00saving , 

where, lm is the last node before node 0 in the mth subtour. 

Connect i as the immediate predecessor of node 0 in the subtour which yields the 

largest savings. 

Step 3 (Repeat): If the array X(⋅) is not empty, go to Step 2. Else, go to Step 4. 
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Step 4 (Connect subtours): If the current solution is a complete tour, stop. Else (i.e., the current 

solution has more than one subtour), compute all savings by connecting the last node in a 

subtour to the first node in another for all pairs of subtours. The savings for connecting 

the last node lm in the mth subtour and the first node fn in the nth subtour is given by the 

following expression. 

savingmn = nmnm flfl ppp −+ 00 ,       ∀ m, n∈{the index set for subtours}, m≠n. 

Join the pair of  subtours that yields the highest savings into a single subtour according to 

the corresponding connection. Repeat Step 4 until a complete tour is obtained.  

 

Table 3.9 shows an example of this initial tour building procedure for the case having 10 aircraft. 

The first two columns in the table present the sorted LP-solution values, and the rules applied to 

insert the nodes are shown in the third column.  

 

Table 3.9 An Example of Heuristic Method for ASP. 

Variable  LP-solution Rule for insertion 

x3,10 0.93 rule 2 

x7,3 0.91 rule 4 

x4,9 0.84 rule 2 

x9,5 0.81 rule 3 

x8,4 0.78 rule 4 

x0,6 0.70 rule 5 

x1,0 0.66 rule 6 

x5,8 0.57 rule 1 

x6,2 0.54 rule 3 

x10,2 0.45 rule 1 

 

 

Figure 3.7 depicts the stepwise process for this example. For instance, Figure 3.7(6) illustrates 

two choices of connecting flight 6 to node 0, and  the best resulting sequence after applying Rule 

4 is shown in Figure 3.7(7). Figures 3.7(11) and 3.7(12) illustrate two possible ways to connect 

the current pair of subtours, and Figure 3.7(13) depicts the final selected sequence after joining 

these subtours. 
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Figure 3.7 LP-based tour building procedure for ASP. 
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3.4.2 Improvement Heuristic  

 

3.4.2.1 2-exchange Heuristic  

 

The 2-exchange scheme developed by Lin (1965) can be applied as an improvement routine for 

ASP. Associated with a proposed exchange, the new schedule can be tested against the minimum 

separation rules by considering each affected flight and its three previous flights. This is 

necessary because the triangle inequality does not necessarily hold for the given edge weights. 

The data for the minimum separation rule has a largest separation of 196 seconds, which is 

required when a small aircraft follows a heavy one in an arrival sequence. In this case, two 

departing operations can successively intervene between these two arrivals without delaying (or 

pushing forward) the small aircraft schedule. Even though the separations between the small 

aircraft arrival and the two departures are adequate, there is still a chance that the separation rule 

between the heavy aircraft arrival and the small aircraft arrival is violated. Hence the foregoing 

three-previous-flight rule. 

Given that a 2-exchange involves the substitution of two edges, (i, i+1) and (j, j+1) with two other 

edges (i, j) and (i+1, j+1) as shown previously in Figure 2.5, the profitability of a proposed 

sequence is checked at the (j+1)th aircraft using the following condition:  

 

If the start time of the (j+1)st aircraft's operation in the suggested 2-exchange 

sequence is earlier than that in the current sequence, the new sequence is profitable. 

 

In fact, this condition is not sufficient but is only a necessary condition for the improvement of 

the current sequence. The reason for this is that there still exists a possibility for some flight 

following the (j+1)st flight to be further delayed because of the separation constraints with respect 

to the revised two predecessors of the (j+1)st flight. This relaxed condition sometimes results in a 

non-monotone decreasing sequence of completion times. However, from computational 

experience, it is observed that in some cases, this relaxed condition is very helpful to attain 

improved solutions. The entire improvement process is repeated from the beginning whenever a 

profitable sequence is obtained, and is continued until no feasible and profitable sequence is 

found. The pseudo-code for this heuristic is shown in Figure 3.8. 
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iter = 0; 
heurSeq = initial sequence from tour building; 
prepareVP(); 
reduceTimeWindow(); 
 
do{ 

findBetterTwoExchange = false; 
findBetterTwoExchange = heuristicASP (); 
iter++; 

}while(findBetterTwoExchange is not found); 

 

heuristicASP() 
{ 

int i, j, k; 
findBetterTwoExchange = false; 
for(i = 0 to totFlights –1){  
 for(j = i+2 to totFlights){ 
        initialize tempSeq; 
        for (k = 0 to tot + 1){ 
  if(k <= i) tempSeq[k] = heurSeq[k]; 
  else if (k > i  and k <= j){  // reversed sequence 
         tempSeq[k] = heurSeq[j - (k - i) + 1]; 
         update tempSeq; 

 
       if(tempSeq is infeasible){ 

initialize tempSeq; 
   break; 
                           } 
               } 
  else if (k == j + 1){  // check feasibility and profitability 

       tempSeq[k] = heurSeq[k]; 
         update tempSeq; 
         if(tempSeq is infeasible or not profitable){ 

initialize tempSeq; 
   break; 
         } 
  } 
  else if(k < totFlights + 1){ 
         tempSeq[k] = heurSeq[k]; 
         update tempSeq; 

       if(tempSeq is infeasible){ 
initialize tempSeq; 

   break; 
                   } 
  } 
  else{ // i.e., k = tot + 1; 
         tempSeq[k] = heurSeq[k]; 
         update tempSeq; 

       if(tempSeq is infeasible){ 
 initialize tempSeq; 

   break; 
                   } 
         else{// i.e., tempSeq is feasible 

 for (m = 0 to tot + 1)  heurSeq[m] = tempSeq[m]; // update heurSeq 
              return findBetterTwoExchange = true; 
                 }     
  }//end if 
 
        }//for k 
    }//for j 
    }//for i 
 return  findBetterTwoExchange = false; 

} 
 

update tempSeq{ 
// decide and update the current flight's start time considering the minimum separation rules between            
//  this flight and three previous flights. 

} 

checkFeasiblity of tempSeq(){ 
// if the tempSeq’s start time is later than due-time then the tempSeq is not feasible. 
} 
 

checkProfitablity of tempSeq(curr, tSeq, hSeq){ 
// if the tempSeq’s start time is less than the heurSeq’s start time, then the tempSeq is profiable.  

} 

Figure 3.8 Pseudo-code for the ASP heuristic. 
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3.4.2.2 2-swap Heuristic  

 

Besides the 2-exchange procedure, we can apply the 2-node swapping method which swaps a 

node with one of its local neighbors that reside within some n nodes adjacent to the current node. 

Let us consider swapping an ith with a j th flight for j>i. The 2-swap heuristic would check 

feasibility for all the flights after the j th flight, and would also check the profitability of this 

exchange at the i+1st flight. If the new starting time for the i+1st flight is earlier than the previous 

starting time, this swapped sequence is considered as profitable.  

 

3.4.2.3 Enhancing Improvement Heuristics 

 

For expediting the improvement procedure, two additional methods may be applied: 1) Exploiting 

a precedence relationship, and 2) reduction of time-windows. 
  

Method 1 (Exploiting precedence relationship): In ASP, the precedence relations among the 

flights can be found by applying the following rules: 

 

Rule 1: The sequence is symmetrically identical by feasibly interchanging the same types 

of operations involving the same aircraft type. As such, the FCFS rule could be 

applied to such flights. In other words, restrict flighti p  flightj, if operationi = 

operationj, (aircraft type)i = (aircraft type)j , and ei ≤ ej. 

 

Rule 2: Let [ei, li] and [ej, lj] denote time-windows for flights i and j, respectively. If li  ≤ 

ej, then flight i should precede flight j in the final sequence.  

 

Adopting Solomon’s (1988) approach, the precedence information among the flights are stored in 

a matrix VP(i, j), where VP(i, j) is defined as follows. 

 

   +1 if flight i must precede flight j, 
       VP(i, j) =      0 if no precedence relationship exists,  
                   -1 if flight j must precede flight i, 
        where, i and j are indices for flight identification. 

 

Once VP(i, j) is available, a node precedence value, NP(i), for the ith flight in the current 

sequence, is defined as follows:  
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NP(i) = the smallest number k , k > i+1, such that VP(j, k) = +1, for some j ≥ i+1. If no 
such k  exists, then NP(i) = N+1,  

where, i is a position for the ith flight in the current sequence, and N is the number of 
flights. 

 

The NP(i) array can be obtained from VP(i, j) in O(N2) time by applying the following procedure, 

where N is the number of flights in the current sequence. 

 

 current_i = 1; 
 for(k = 2 to k < N + 1){ 
         for(j = current_i to j < k){ 
  NP(j – 1) = k; 
  j_id = id of currSeq(j); 
  k_id = id of currSeq(k);     
  if(VP(j_id - 1, k_id - 1) = 1){ 
         current_i = j + 1; 
         break; 

  } 

       }//end for 
 }//end for 
 NP(N) = N+1; 

NP(N+1) = N+1; 
 

Henceforth, the improvement procedure can be expedited by adopting the following necessary 

condition for the feasibility of a 2-exchange as suggested by Psaraftis (1983b): 

 

A necessary condition for the feasibility of a 2-exchange of arcs (i, i+1) and (j, j+1) with (i, 
j) and (i+1, j+1) is that j < NP(i).  

 

Let us consider an example case having 10 flights with the following current sequence. 

  

Sequence 0 1 2 3 4 5 6 7 8 9 10 11 

Flight Id. f0 f6 f7 f8 F1 f2 f9 f10 f3 f4 f5 f0 

 

Assuming that the precedence relations among the flights are f1 p f4, f1 p f5, f2 p f3, f4 p f5, f6 p f7, 

f6 p f8, and f7 p  f8, the resulting NP(i) values for the current sequence are given as follows:  
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i NP(i) 
0 2 
1 2 
2 3 
3 8 
4 8 
5 10 
6 10 
7 10 
8 10 
9 11 
10 11 

 

Method 2 (Reduction of time-windows): Exploiting the precedence rela tions imposed in the 

previous step, certain time-windows can be reduced as follows: Let [ei, li] and [ej, lj] be 

time-windows for flights i and j, respectively. If flight i precedes flight j, then their time-

windows can be reduced by letting li = min{li, lj-tij} and ej = max{ej, ei+tij}. 

 

The overall steps included in Methods 1 and 2 are depicted in Figure 3.9.  

 

Read the initial sequence

Perform admissible
2-exchanges

Generate NP(i) for all flights

Generate VP(i,j)

Reduce time-windows

Better sequence found? StopNo

Yes

 

Figure 3.9 Flowchart of Improvement Procedure for ASP. 
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3.4.3 Computational Results 

 

To test suggested heuristic methods, we performed computations using a set of randomly 

generated problems. For the tour building process, the FCFS sequences are used. The results 

obtained from 2-exchange improvement procedure are summarized in Table 3.10. In the problems 

15_0 and 50_7, the time-windows for flights appearing later in the schedule dominate the overall 

completion time. Results show that 2-exchage heuristic method provides sequences very close to 

exact solutions in a reasonable time. 

 

Table 3.10 Computational Results (2-exchange improvement procedure). 

2-exchange Sequence 
Problem # Number 

of aircraft 

FCFS 
Completion 
Time (sec.)  

Optimal  
Completion 
Time (sec.)  

Completion 
Time (sec.)  

Computation 
Time (sec.)* 

10_0 10 1883 (100) 1883 (100.0) ** 1883 (100.0) 0.010 
10_3 10 750 (100) 686 (91.5) 691 (92.1) 0.050 
10_4 10 626 (100) 492 (78.6) 492 (78.6) 0.060 
10_5 10 644 (100) 518 (80.4) 541 (84.0) 0.050 
10_6 10 715 (100) 524 (73.3) 545 (76.2) 0.060 
15_0 15 2095 (100) 2095 (100.0) 2095 (100.0) 0.030 
15_1 15 1006 (100) n.a. 956 (95.0) 0.080 
15_2 15 948 (100) n.a. 848 (89.5) 0.110 
50_2 50 4670 (100) n.a. 4602 (98.5) 0.030 
50_7 50 3086 (100) n.a. 3086 (100.0) 6.519 

*Computation times do not include times for tour building process. The reported times are CPU seconds on 
a PC having Pentium Pro 166Mhz CPU and a 64Mega-byte RAM. 
**The numbers in parentheses denote the percentage of completion time comparing with FCFS sequence. 
 

 

From computational experience, it turns out that Rule 1 in Method 1 for enhancement of  

improvement heuristic does not always provide favorable results. The reason for this is likely that 

restricting the chances of flipping a segment of the current sequence because of this rule might 

reduce the possibility for generating a better solution. In fact, the precedence imposed on flights 

having the same operation type and involving the same aircraft type is not a “hard” constraint but 

a “soft” constraint in the sense that these precedences may be violated without losing feasibility. 

While it is advantageous to add these relations to combat symmetry in a mathematical 

optimization model, in the present context, it is preferable to drop this restriction. 

In contrast, the reduction of time-windows is evidently effective in saving computational effort. 

The computational performance before and after applying the time-window reduction to the same 
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data set used for Table 3.10 are compared in Table 3.11. In some cases, the computational time 

increases slightly after applying this reduction. This increase is mainly due to the additional effort 

for performing this reduction, and appears to be negligible. On the other hand, the number of 

iterations is reduced significantly in some cases. 

 

Table 3.11 Comparison of Computational Efforts. 

Problem # Before reduction of TW After reduction of TW 
10_0 1 (0.010)* 1 (0.020) 
10_3 3 (0.050) 3 (0.050) 
10_4 6 (0.060) 7 (0.080) 
10_5 10 (0.050) 7 (0.060) 
10_6 7 (0.060) 4 (0.040) 
15_0 1 (0.030) 1 (0.040) 
15_1 5 (0.080) 5 (0.110) 
15_2 4 (0.110) 4 (0.130) 
50_2 19 (6.519) 17 (6.018) 
50_7 1 (0.030) 1 (0.040) 

*iterations (CPU time, seconds). 

 

For the purpose of comparison, we also tested the 2-swap heuristic using the same data set that 

was used for the 2-exchange heuristic. Computational results obtained are summarized in Table 

3.12. Compared with the 2-exchange heuristic results (see Table 3.10), the 2-swap heuristic 

requires much less computation time. It, however, shows that in some cases, the resulting 

solutions are relatively further from optimality.  

Table 3.12 Computational Results  (2-swap improvement procedure, n=10). 

2-swap Sequence Problem # Number 
of aircraft 

FCFS 
Completion 
Time (sec.)  

Optimal  
Completion 
Time (sec.)  

Completion 
Time (sec.)  

Computation 
Time (sec.)* 

10_0 10 1883 1883 (100.0) ** 1883 (100.0) 0.020 
10_3 10 750 686 (91.5) 691 (92.1) 0.090 
10_4 10 626 492 (78.6) 568 (90.7) 0.040 
10_5 10 644 518 (80.4) 562 (87.3) 0.050 
10_6 10 715 524 (73.3) 604 (84.5) 0.040 
15_0 15 2095 2095 (100.0) 2095 (100.0) 0.020 
15_1 15 1006 n.a. 995 (98.9) 0.040 
15_2 15 948 n.a. 905 (95.5) 0.100 
50_2 50 4670 n.a. 4602 (98.5) 0.220 
50_7 50 3086 n.a. 3086 (100.0) 0.971 

* Computation times do not include times for tour building process. The reported times are CPU seconds on 
a PC having Pentium Pro 166Mhz CPU and a 64Mega-byte RAM. 
**The numbers in parentheses denote the percentage of completion time comparing with FCFS sequence. 
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Chapter 4. Network Assignment Problem  
 

The main purpose of the Network Assignment Problem (NAP) is to provide air traffic controllers 

with efficient taxiing plans that can reduce taxiing delays at the airport under consideration. The 

plans involve taxiing routes from a gate to a runway (or more precisely, to the departure queue) 

for departing aircraft, or from the runway exit to a gate for arriving aircraft. At large airports 

having complex taxiway configurations, taxiing routing is an important task for ground 

controllers. Even for small airports, this might be important if automated conflict resolution is 

desired. The simplest way to assign taxiing paths is to establish routes based on shortest paths. 

Shortest paths are usually static in the sense that the paths are independent of any changes in 

traffic conditions on the taxiway structure. This approach is relatively easy to implement but is 

likely to produce more delays. Another option is to apply a time-dependent network assignment 

strategy which considers changes in traffic conditions over time. In this chapter, network 

assignment and shortest path algorithms for solving NAP are presented along with computational 

results.  

 

4.1 Network Assignment Strategies 

 

4.1.1 Network Assignment Algorithm 

 

There are several drawbacks in adopting static assignment techniques as a solver for NAP 

problems. This mainly because there are differences between urban transportation networks and 

airfields with respect to the network operations. Most urban transportation links are directed in 

that they are used in one direction for all days. In contrast, almost all links in airfields are bi-

directional in that each link’s operational direction can change over time. Whereas urban 

transportation networks are directed graphs, airfield networks are undirected graphs in their 

network representation. In order to consider time-dependent characteristics of airfield links, 

dynamic (or time-dependent) network assignment strategies which have a look-ahead function for 

each link’s operational direction should be introduced.  

In a time-dependent network assignment strategy, all aircraft interact as long as they overlap 

within the time horizon. By rerouting all vehicles iteratively, a dynamic user equilibrium (UE) (or 

system optimal (SO)) state can be achieved. The general condition describing a dynamic UE can 

be expressed as follows [Ghali, 1995]: 
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If, at each instant in time, for each origin-destination pair, the unit costs of flow on 

utilized paths are identical and equal to the minimum instantaneous unit path cost, the 

corresponding flow pattern is said to be user optimized. 

 

In this research, the tentatively named quasi-dynamic network assignment strategy is proposed. In 

a quasi-dynamic network assignment strategy, it is assumed that the current aircraft route is 

influenced only by the previous aircraft assigned to the network. This simplified assumption rules 

out the necessity of iterative rerouting procedures, thereby reducing the number of computations. 

Besides the computational aspect, there is another theoretical rationale behind using the quasi-

dynamic network assignment strategy. In the UE (or SO) framework, it is assumed that vehicle 

drivers select their best paths in such a way that their own travel times (or marginal travel time) 

are minimized. It is also assumed that all drivers have equal priorities in the sense that the rule of 

first-come-first-served is maintained during travel. At an airport, however, ground controllers 

often provide higher priorities to certain taxiing aircraft over others to facilitate traffic flows. This 

is a non-systematic situation where it might be impossible to achieve a pure dynamic UE (or SO) 

state. 

Figure 4.1 depicts the flowchart for a quasi-dynamic network assignment method. The method is 

based on the incremental assignment technique which decides the aircraft path in a one by one 

fashion. After an aircraft is routed, the links on the taxiing path are loaded by that aircraft over 

time slices (see Figure 4.2). As mentioned earlier, once any aircraft is assigned to taxi on a link in 

one direction, the opposite direction of the link should be blocked during the time slice occupied 

by the aircraft to prevent any conflict on the taxiway. This can be done by increasing the travel 

time of the conflicting link to an artificially large number to avoid being selected as a time-

dependent shortest path for any other flight. In practice, all the information about the loaded 

aircraft is maintained in an fixed size array, called a time-dependent aircraft flow table . Figure 4.2 

shows the resulting time-dependent link flows and the time-dependent link travel times for the 

case that a flow v1 traverses from O to D along the path O→1→2→D. 

The time-dependent travel times for all links can be computed by applying any known link 

performance function link traffic volumes. Once the time-dependent link travel times are updated, 

the time-dependent shortest paths between all nodes are recomputed for next flight to be assigned 

using a time-dependent shortest path algorithm. 
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n = 1

Assign the nth
aircraft on the

links involved in
the TDSP over
time intervals

Update
link travel times

n = last vehicle?

Find TDSP
for the nth aircraft

(by using
TDSP algorithm)

n = n+1

End

No

Yes

 

Figure 4.1 Quasi-dynamic Assignment Algorithm (1). 
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Time-dependent vehicle flow 
                          Links 
Time slices LO1 L1O LO3 L3O L12 L21 L34 L43 L24 L42 L2D LD2 L4D LD4 

1 v1 - - - - - - - - - - - - - 
2 - - - - v1 - - - - - - - - - 
3 - - - - - - - - - - v1 - - - 

 

Time-dependent link travel times 
                       Links 
Time slices LO1 L1O LO3 L3O L12 L21 L34 L43 L24 L42 L2D LD2 L4D LD4 

1 tO1
1 ∞ - - - - - - - - - - - - 

2 - - - - t12
2 ∞ - - - - - - - - 

3 - - - - - - - - - - t2D
3 ∞ - - 

Figure 4.2 Quasi-dynamic Assignment Algorithm (2).  
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4.1.2 Shortest Path Algorithms 

 

The time-dependent shortest path algorithm suggested by Ziliakopoulos and Mahmassani is 

designed to provide time-dependent shortest paths for all O-D pairs every time slices. In terms of 

problem size, the NAP on taxiway system is much smaller than the NAP on the urban 

transportation network. For example, the number of nodes and links on taxiway system at a large 

airport is much less than that on a typical urban network. Also the number of aircraft considered 

in the airport is smaller than the number of cars in the urban network. Motivated by this point, we 

employ a TDSP algorithm based on the Dijkstra’s algorithm having the following characteristics: 

1)  

The TDSP provides a time-dependent shortest paths from a single root node to all other nodes 

starting at time t. 

The TDSP algorithm uses the sorted-queue as a data structure for candidate nodes, which makes 

the algorithm as LS algorithm rather than LC algorithm. (Even though the size of candidate 

nodes set (i.e., SE list) is small, size are big, fast sorting algorithm such as "quick sort" can be 

applied for the facilitating the sorting procedure.) 

 

Figure 4.3 shows the suggested TDSP algorithm for time-dependent paths from a node, r, to all 

other nodes starting at time t. 

 

Compute CurrentTimeSlice.  
 
Call Initialize 
 
while(SE list is not empty) 
 u = deQueueMin(r); 
 for(v = all forward star of u){ 
  d_u = shortTime(r, u);         // travel time from r to u. 
  d_v = shortTime(r, v);   // travel time from r to v. 
  Compute timeSliceFor_l_uv;//compute the time slice for travel time from u to v. 
  l_uv = Find travelTime(u, v, timeSliceFor_l_uv)  

            // find the travel time from u to v for timeSliceFor_l_uv 
  if(d_v > d_u + l_uv){ 
   shortTime(r, v) = d_u + l_uv; // update the short time from r to v 
   enQueue(v); 
  } 
 } //end for 
}// end while 

 
Procedure Initialize: 
 for (i = all nodes){ 
                    predecessor(i) = 0; 
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     for (j = all node){  
                         if(i ≠j) Label(i, j) = inf.; 
                         else Label(i, j) = 0; 
                    }  
                 } 
 predecessor(r) = r; 
 

Procedure deQueueMin(): // find the closet node from the SE list. 

Procedure enQueueMin(x): // insert node x into the SE list. 

 

Figure 4.3 Pseudo Code for Suggested Time-dependent SP Algorithm. 

 

4.2 Computational Results 

 

To compare static and time-dependent assignment strategies, let us consider a hypothetical flight 

schedule for DCA airport. (For the airport configuration, see Figure 5.3. The details of this airport 

are described in Chapter 5.) As shown in Table 4.1, the schedule has only two flights but it is 

designed to have a conflict during taxiing to their own destinations.  

 

Table 4.1 Hypothetical Flight Schedule. 

Schedule Time Flight # Aircraft 
Type 

Operation  
Type Hour Minute Second 

Gate Runway 

DEP_1 B727-100 Departure 0 0 27 1 36 
DEP_2 B727-100 Departure 0 0 44 11 16 

 
 

Figure 4.4 shows the paths resulting from two different assignment strategies. Since no flight is 

on the taxiway when the flight "DEP_1" is assigned, it can taxi to its destination at unimpeded (or 

free-flow) speed. Therefore there is no difference in static and time-dependent shortest paths for 

flight "DEP_1".  

In the static assignment strategy, "DEP_2" taxis and approaches "DEP_1" on the link (1020, 

1024). On the other hand, for the time-dependent assignment case, "DEP_2" is assigned to make 

a detour so as to avoid the conflict with "DEP_1". This is obvious because, when "DEP_2" is 

assigned on the network, link (1024, 1020) has been blocked by "DEP_1", and the time-

dependent SP algorithm detects this blockage. The difference of two paths for "DEP_2" are  

clearly illustrated in Figure 4.5. 
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Figure 4.4 Static vs. Time-dependent Path (1). 

 

 

 

 

 

 

Paths from Static Network Assignment 

Flight "DEP_1": 1 (27') - 1009 (44') - 1011 (49') - 1014 (54') - 1016 (65') - 1017 (77') -

1019 (83') - 1020 (90') - 1024 (117') - 1027 (126') - 1031 (143') - 2018 (171') -

2021(202'). 

Flight "DEP_2": 11 (44') - 1029 (52') - 1030 (61') - 1026 (70') - 1024 (78') - 1020 (105') -

1021 (111') - 1018 (122') - 1015 (140') - 1012 (149') - 1010 (157') - 1008 (182') -

1005 (196') - 1002 (235') - 1001 (250') - 2001(261'). 

 

Paths from Time-dependent Network Assignment 

Flight "DEP_1": Same as Static Path. 

Flight "DEP_2": 11 (4') - 1029 (52') - 1030 (61') - 1026 (70') - 1024 (78') - 1027 (87') -

1025 (94') - 1022 (105') - 1021 (119') - 1018 (130') - 1015 (148') - 1012 (157') -

1010 (165') - 1008 (190') - 1005 (204') - 1002 (244') - 1001 (258') - 2001(269'). 

  

Legend: Node (Seconds). 
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Figure 4.5 Static vs. Time-dependent Path (2).
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Chapter 5. Virginia Tech Airport Simulation Model 
 

In this research, the simulation model plays an important role as a supplement to the analytical 

models developed for ASP and NAP.  This is because the simulation model makes it possible to 

portray the dynamic behavior of entities that are difficult to examine by analytical models. In this 

Chapter, methodologies pertinent for developing our simulation model are reviewed along with 

previous simulation models. We also present detailed procedures to develop a simulation model 

named Virginia Tech Airport Simulation Model (VTASM).  

 

5.1 Framework of the Proposed Simulation Model 

 

The primary purpose of a simulation model in the NAP is to evaluate the current state of aircraft 

in the taxiway and runway systems. Several measures of network performance can also be 

estimated using the simulation model. These include the estimation of delays and a general 

assessment of the network congestion.  

Since the number of entities (aircraft and air traffic controllers) considered in airport simulation 

models is relatively small, a discrete time, microscopic and deterministic simulation model is 

considered appropriate for this research problem. Even though the current prototype model is 

developed as a deterministic model, the model design permits the inclusion of random variables 

to reflect the stochastic behavior observed at airport networks. 

The development of the simulation model is based on standard object-oriented methods 

commonly used in software engineering. The most prominent qualities of an object-oriented 

model are: 1) an easier understanding of the system, and 2) modifications to the model tend to be 

local as they often result from an individual item, which is represented by a single object 

[Jacobson, 1992]. 

Object-oriented methods have been improved in the past decade with the development of many 

new object-oriented programming languages. The number of object-oriented methods increased 

from less than 10 to more than 50 during the period between 1989 and 1994. Among the methods, 

the most notable include Booch and Jacobson’s OOSE (object-oriented software engineering), 

Rumbaugh’s OMT (object model technique), Shaer-Mellor’s method, and the Coad-Yourdan’s 

method. Recently the “Unified Modelling Language (UML)” has been developed by Booch, 

Jacobson and Rumbaugh to unify various object-oriented methods [Booch et al., 1998]. 
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The simulation model devised in this research project has been developed by following an 

extension of the OMT originally applied to the design of SIMMOD 3 [ATAC, 1993]. In general, 

the object-oriented modeling process is decomposed into three phases: 1) Object-oriented 

Analysis (OOA), 2) Object-oriented Design (OOD) and 3) Object-oriented Programming (OOP).  

Figure 5.1 describes the general procedures of the OMT methodology [Weijers, et. al, 1995 and 

Derr, 1995]. 
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Figure 5.1 Processes of OMT [reproduced from Weijers et. al, (1995) and Derr (1995)]. 
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5.2 Object-oriented Analysis (OOA) of the Simulation Model 

 

OOA can be defined as a method of analysis that examines requirements from the perspective of 

the classes and objects found in the vocabulary of the problem domain [Booch, 1994]. OOA 

begins with the verbal description of a  problem statement. Then three types of models are 

constructed: an object model, a dynamic model, and a functional model.  

The object model describes the static, structural, and data-aspects of objects in the system, along 

with their inter-relationships. The object model is represented by object diagrams. An object 

diagram is a graph whose nodes are object classes and whose arcs reflect the relationships among 

classes. The dynamic model describes the interactions among objects in the system in terms of 

state diagrams. These represent the temporal, behavioral, and control-aspects of the system 

changing over time. In a state diagram, nodes represent states, and arcs represent transitions 

between states.  

The data value transformation within a system is described in the functional model. Functional 

models include data-flow diagrams where nodes represent processes and arcs represent data flows 

[Weijers, et. al, 1995]. In the end, the three models come together during implementation, which 

involve data (object model), sequencing (dynamic model), and operational (functional model) 

manipulations [Bakker et. al, 1995].  

 

5.2.1 Object Model 

 

The main focus of the object model is to construct an object diagram that describes the data-

oriented static structures of the problem domain. The following steps are used in the object model 

analysis according to the OMT method [Rumbaugh et al., 1991, and Derr, 1995]: 

 

Step 1. Develop a problem statement. 

Step 2: Identify the object classes which represent all the physical and conceptual objects                    

from the problem statement. 

Step 3. Prepare a data dictionary giving a short description of various entities in the model. 

Step 4. Identify associations (including aggregations) between object classes. 

Step 5. Identify attributes of the object classes. 

Step 6. Use inheritance to share common structures. 

Step 7. Traverse access paths using scenarios to identify deficiencies. 
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The candidates of objects or classes may be found by identifying noun or noun phrases from the 

problem description. Association is a relationship and represents dependencies between classes, 

being usually denoted by verb or verb phrases in the problem statement. Attributes are the data 

values that are held by the objects, and are usually imbedded in a noun followed by possessive 

phrases [Derr, 1995]. 

The arrow in the object diagram shows an aggregation/association relationship. An object at the 

tail of arrow has an object at the head of arrow. The airport network, for instance, has n nodes and 

m links and each link consists of two nodes defined as the from-node and the to-node. A gate is 

represented by a node, and each node can hold one aircraft (or n aircraft in the case of an 

aggregate gate). A link can have at most n taxiing flights at the same time.  

Each flight has a taxiing path which consists of a series of links from the gate to the runway  for 

departing flights (or vice versa for arriving ones). Aircraft can have n flight schedules. 

Controlling flights at an airport is carried cooperatively by two types of air traffic controllers: 1) a 

ground controller, and 2) a local controller. Air traffic controllers evaluate various flight requests 

to pushback, taxi,  takeoff, or land, and try to maintain a smooth flow on the taxiway and runway 

infrastructure while minimizing delays. Even though the final decisions for the ground and local 

controllers are different, they share common attributes and behavioral characteristics. For 

example, both controllers have the same information on flights, airport configuration, and use the 

same communication procedures etc. For this reason, the ground and the local controllers are 

inherited from the common class called controller. 

Clock  object is of importance in the simulation model as it is used in scheduling the next event for 

such entities as controllers and flights. The object diagram is illustrated in Figure 5.2. The various 

class definitions are described in Appendix C.  

 

5.2.2 Dynamic Model 

 

The time-dependent aspect of each entity is represented in the so called state diagram (or state 

transition diagram) which consists of states and events. A change of state caused by an event is 

called a transition. Whereas an object model describes the possible patterns of objects, attributes, 

and links in a system, a dynamic model represented by the state diagram highlights the time-

dependent behavior of a system [Weijers, et. al, 1995]. According to Rambaugh (1991), the 

general steps for constructing state diagrams are as follows: 
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Figure 5.2 Object Diagram. 

 

 

Step 1: Prepare scenarios for typical interaction sequences. 

Step 2: Identify events between objects and prepare an event diagram for each scenario. 

Step 3: Build a state diagram. 

Step 4: Match events between objects to verify consistency and completeness of events shared 

among the state diagrams. 

 

5.2.2.1 Arriving Flights 

 

Arriving aircraft are introduced to the simulation at discrete times prescribed by the original flight 

schedule. If a flight scheduled landing time violates the minimum separation headway criteria, the 

flight is delayed at the entry node (the runway interface). This procedure models implictly the 

fina; airspace corridor leading to the active runway. 
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A. State Diagram for Ground Movement  

 

Once an arriving flight obtains landing clearance from the local controller, it begins its landing 

roll procedure which is composed of four phases: flaring out, free rolling, braking, and coasting 

[Trani et. al, 1993]. After the completion of these four phases, the pilot decides which exit to use 

by considering both the current speed and the location of neighboring exits. (A more detailed 

landing procedure will be discussed later). Once a flight starts to exit from the runway, it will 

contact the ground controller for taxiing clearance instructions.  

The aircraft movement on the taxiway system is modeled regulating the vehicle acceleration to 

accomplish a smooth and safe movement to the gate. This procedure is executed in an 

autonomous fashion as the aircraft moves along the given path, keeping a safe spacing with other 

taxiing flights. For example, the leading aircraft movements are modeled by a second-order 

feedback control system to be discussed later in this chapter. The state transition diagram for an 

arriving flight is depicted in Figure 5.3.  

 

B. State Diagram for Communication 

 

A unique aspect of VTASM is that air traffic controllers are modeled as explicit resources. If the 

corresponding controller is busy communicating with another flight when the current flight tries 

to contact the controller, the current flight waits for a certain period of time until the controller 

state turns to standby.  

Here, the waiting process varies depending on the communication system. In this research model, 

two types of communication systems are considered: 1) a voice channel system which has been 

widely used in aviation for seventy years, and 2) a data link system which is an advanced system 

using electronic data transmission so the time required for either sending requests or receiving 

command is considered to be negligible.  

Regardless of communication system type, the flight’s communication state is initially set to 

“readyToCommunication”. Once the flight finds the need to communicate with a controller, then 

it tries to send a request, which will be accepted by the controller unless the controller is busy.  

If the controller is busy, it happens under the voice channel system that the flight’s state is set to 

“waitNextCommunication” and the flight is required to wait for the next contact for a certain 

amount of time. The operation of the data link system follows smilar principles. The flight’s state 

changes to "waitContactFromController" and the flight waits controller's contact.  
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Figure 5.3 State Diagram for an Arriving Flight. 
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If the controller is in a state of "standby" when the flight attempts a contact, the controller’s state 

is set to “busy”. Once a flight succeeds in contacting the controller, it communicates exclusively 

with the controller until the entire communication phase is completed. After the flight confirms 

the command, the flight’s and controller’s state are set to “readyToComm” and “standby”, 

respectively.  

Depending on the traffic congestion levels on the taxiway system, it is possible for the flight to be 

delayed even after communicating with a controller. In this case, the flight communication state is 

set to "wait for controller's contact". The state transition diagrams for both communication 

systems are depicted graphically in Figures 5.9 and 5.10. 

 

5.2.2.2 Departing Flight 

 

A. State Diagram for Movement 

 

A departing flight stays in the “parked” state until the scheduled departure time arrives. During 

the last one or more hours of this state, a departing flight files a flight-plan with the FAA flight 

service station (FSS) and loads passengers or freight. Having finished all required routines, the 

flight contacts the ground controller for the pushback clearance. The pushback clearance is 

frequently given to the flight along with a taxiing clearance by a local controller. However, in 

some large-sized and busy airports, the pushback process is controlled by  the gate manager. The 

pushback is the initial process of departure in which the flight trespasses the apron area from the 

gate to the taxiway. 

Once the aircraft arrives at the taxiway from the gate with a taxiing clearance, a flight starts 

taxiing to the designated runway. (The flight needs to contact the ground controller if it has not  

acquired a taxiing clearance.) The taxiing procedure is almost the same, but in reverse, to the 

taxiing process for an arrival. The flight autonomously traverses the taxiing path given by a 

ground controller. Usually, the (ground) controller does not interrupt a flight taxiing schedule, 

unless there is some new expected congestion or conflict. If a controller anticipates congestion, he 

or she can give the flight a command to slow, stop, or change the taxiing path. The goal of this 

interruption is to reduce the congestion on the taxiway network and, at the same time, maximize 

the  utilization of the runway. 
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Figure 5.4 State Diagram for Communication (Voice Channel). 
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Figure 5.5 State Diagram for Communication  (Data Link). 
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When the flight approaches the active runway, it is required to reduce its speed and contact the 

local controller to obtain takeoff clearance. Note that the previous taxiing clearance is not a 

clearance to enter onto the runway. If there is a queue of flights waiting for takeoff, the local 

controller gives the takeoff clearance based on a first-come-first-served policy, ensuring a 

particular airborne separation by spreading out the aircraft departure intervals [Luffsey, 1990]. 

The takeoff process is composed of two processes: 1) rolling process in which the flight gains the 

speed required for lift-off, and 2) the lift-off process in which the aircraft starts to climb and 

clears the far end runway threshold. In the simulation model, the departing flight is traced until it 

reaches the runway threshold. The state diagram for a departing flight is illustrated in Figure 5.6. 

 

 

B. State Diagram for Communication 

 

Basically, the departing flight state diagram for communication is same as that of an arriving  

flight.  
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Figure 5.6 State Diagram for a Departing Flight. 



   

143 

  

5.2.2.3 Controller 

 

Depending on who initiates the communication, air traffic controlling processes can be divided 

into two classes: 1) passive control in which the controller renders control messages to various 

flight requests, and 2) active control in which the controller makes decisions mainly for 

controlling the overall traffic flow. In the process of air traffic controlling, flight progress strips 

(or flight strips for short) are used to store critical flight information such as flight number, 

aircraft type, origin, destination or arriving route, etc. This information is printed in a rectangular 

piece of paper, and stored in a plastic holder while the flight is under supervision of an air traffic 

controller. In the simulation model, three type of flight strips are modeled: pending, processing 

and completed flight strips (See Figure 5.7). 

 

 

Figure 5.7 Flight Progress Strip. 

 

Initially, the controller’s state starts with “standby” and all flight strips are in the pending box.  

Receiving a request from a flight in the passive control mode, the controller places the 

corresponding flight strip in the processing state and begins to judge the situation. The 

controller’s judgement depends on the flight’s current  state. For example, if a flight is at the final 

stage in the arrival process and it requests landing clearance, the controller needs to check the 

flight’s relative position around other flights, and then make a decision on whether or not to allow 
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this flight to proceed (checking for minimum separation rules between flights). The controller 

sends control messages to the flight and waits for confirmation. Once a confirmation is received 

from the flight, the controller returns to the "standby" state and waits for another request. The 

state transition diagram for the controller is depicted in Figure 5.8. 
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Figure 5.8 State Diagram for a Controller. 

 

When the flight finishes its operation completely, the controller moves the flight strip from the 

processing to the completed state. If a flight is still performing some activity but passes the limits 

of a controller's custody (control boundary), then the current controller hands the fight strip over 

another controller's processing state bin. For instance, if a flight exits the runway taxiing after 

completion of the runway landing roll and starts taxiing to gate, then the flight strip moves from 

the local controller's processing bin to the ground controller's processing bin. 

If any traffic congestion or conflict is expected, controllers can intervene during aircraft taxiing, 

issuing control messages to slow-down, speed-up, or even to stop aircraft at the current position. 

This active control decision making process is largely based on the controller’s experience, 

subject to ATC rules enforced by the FAA. It is difficult to devise a single comprehensive traffic 

management rule that is applicable to all ground control cases. For the simulation purpose, it 

might be more practical to develop a rule -based decision making process for the active control 

process.  

A controller also initiates an active control process when the controller is in "standby" and there 

is some flight in the state of "wait for controller's contact". In fact a controller realizes the 

existence of flights awaiting controller's contact by checking the strips in the processing bin. The 

communication process initiated  by controller is shown in Figure 5.9. 
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Figure 5.9 Communication Process Initiated by the Controllers. 

 

5.2.3 Functional Model 

 

The functional model consists of Data Flow Diagrams (DFDs) and defines processes within a 

system, describing how output values of the program are derived from the input values. Later, 

DFD is used to determine which objects send messages to other objects. DFD is composed of 

three components: process, data flows actors, and data stores which are represented in the OMT 

methodologies by ellipsess, rectangles and pairs of parallel lines, respectively. The OMT 

specifies the following steps for constructing a functional model [Rumbaugh et al., 1991]. 

 

Step 1: Identify input and output values. 

Step 2: Build data flow diagrams for each input to output transformation. 

Step 3: Develop descriptions for each process in the DFDs. 

Step 4: Identify constraints between objects. 
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Step5: Specify any optimization criteria, e.g., values to be maximized or minimized.   

 

Figure 5.10 illustrates the input and output values of the simulation model at the highest level of 

abtraction. Here, the user interface which is devised for users to control the program progress is 

not included. This is consistent with the research nature of this model. The main goal of this 

research poject is to develop a comuptational engine that drives the simulation model. There are 

two kinds of inputs for the simulation model: 1) scenario data including the flight’s schedule, 

aircraft types, gate information, etc., and 2) static data including the airport configuration, an 

aircraft model data with aircraft dimensions, performance, etc. All these parameters remain 

unchanged throughout the simulation.  
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Figure 5.10 Input and Output Values for the Simulation Model. 

 

The top-level DFD for the simulation model is shown in Figure 5.11. The flight schedule 

information provided by the user serves as the input data for generating the flight objects along 

with the aircraft model data. The link and node data pertinent to the airport configuration is used 

to generate the airport network graph, which in turn is used to define the flight taxi path 

information. The controller objects are created internally, which means that no explicit input data 

is involved in generating the controller object. Instead, the objects belonging to the airport graph 

class and the flight class are imbeded in the controller objects.  

The  DFDs are typically shown as layered sets of diagrams because they are generally too large to 

be shown on a single piece of paper. The decomposition of DFD continues until the processes 

cannot be partitioned any further. Because of their complexity, lower-layered  DFDs are omitted 

here.  
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Figure 5.11 Top-Level of Data Flow Diagram (DFD) for VTASM. 
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5.3 Object-oriented Design (OOD) of Simulation Model  

 

5.3.1 System Design 

 

In system design, the strategic decisions are made at a high level about how the problem will be 

solved. The system design includes finding answers to the following questions: 1) what 

components libraries, database, networking mechanisms, windowing systems will be used, and 

how should they be used; 2) how will tasks communicate; 3) how will tasks be allocated to 

processors; 4) what is the target environment for the application; 5) will the application need to 

run on multiple platforms, and 6) what programming language will be used to implement the 

design [see Derr, 1995]. 

The main objective of this research is to develop the backbone of a simulation model that 

considers decisions in response to questions 1, 2, and 3 which are directly related to the software 

implementation. For code portability, the American National Standards Institute (ANSI) C++ is 

used to address truly muti-platform compatibility. From the same reason, wxWindows is 

preferable windowing libraries to any commercial ones such as MFC (Microsoft Foundation 

Classes).  

 

5.3.2 Object Design  

 

Object design is concerned with a full specification of the classes, associations, attributes, and 

methods necessary for implementing a solution to the problem. Algorithms and data structures are 

also fully defined along with any internal objects needed for the implementation. The following 

steps are typical in an object design phase [Rumbaugh et al., 1991 and Derr, 1995]. 

 

Step 1: Identify methods for each class which define all the required types of functions. 

Step 2: Design algorithms to implement methods by choosing efficient ways of coding 

algorithms, selecting appropriate data structures, and defining new internal classes and methods. 

Step 3: Optimize access paths to data by adding association classes to minimize access time, 

rearranging the processing order of algorithms for efficiency, and saving calculated data to avoid 

re-calculations. 

Step 4: Design a method for dynamic control by refining the methods for implementing the flow 

of events in the dynamic model. 
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Step 5: Adjust class structures to increase inheritance. 

Step 6: Design object associations. 

Step 7: Represent object data. 

Step 8: Hide data and package classes into modules. 

 

For Step 2, standard flow charts are adopted to present the relevant algorithms. Traditionally, 

three types of diagrams are used in some applications of OMT. These are the message hierarchy, 

events trace, and object interaction diagrams (Derr, 1995) which are not considered in this 

research. During the implementation, the design is translated into code using an object-oriented 

programming language such as C++. 

 

5.3.2.1 Algorithms  

 

5.3.2.1.1 An Algorithm for Aircraft-following Behavior 

 

As previously reviewed, the generalized vehicle -following model presented in Equation (2.2) can 

be used to predict the acceleration (or deceleration) at time t for a following vehicle that considers 

the kinematic state of a leading vehicle. The application of vehicle -following equations yields 

various types of macroscopic traffic flow models (see Table 2.9).  

A well-known car-following model used in transportation studies is described in Equation (5.1), 

where the coefficient m and l are 0 and 2, respectively. The macroscopic version of this model is 

known as the Greenshields’ model, and is one of the most frequently used models in traffic 

engineering studies. Greenshields’ model has significant advantages, namely, that it is simple to 

use and has shown good correlation between the model and field data. 
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where 
tt

na ∆+
+1  : n+1th  vehicle’s acceleration at t+∆t 

           
t
nv  : n

th  vehicle’s speed at t+∆t 

           
t
nx  : n

th  vehicle’s position at t+∆t 
 α = uf, (uf = free flow speed). 

 

Greenshields’ model results in the following equations, establishing relationships among three 

fundamental traffic parameters: speed, density and traffic flow.  
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u = uf (1- k  / k j) 

q = uf k  (1- k  / k j) 

k  = k j (1- u / uf), 

                    where,  u: speed (km/hour) 
            uf : free flow speed 

k : density (vehicles/km) 
k j: jam density 
q: flow (vehicle/hour). 
 

It should be remarked that the model’s appropriateness in traffic studies does not necessarily 

guarantee its goodness in representing aircraft behavior on the airfield. In fact, the parameters in 

generalized vehicle-following model should be calibrated with field data to warrant its use in 

airport studies. This is an open area of research for now. 

If we assume that the Greenshield's model adequately represents the aircraft-following logic, then 

another approach for aircraft-following model can be devised. [Van Aerde, 1998] Using the 

Greenshields’ basic speed-headway relationship, the method first determines the so called  

desired speed of the following aircraft at time t which is the desired to be reached at time t+∆t. 

Then the acceleration (or deceleration) is determined considering the current speed and other 

exogenous constraints related to  the maximum permissible acceleration (or deceleration). The 

procedure is outlined below. 
 

Step 1: Determine the following aircraft desired speed to be reached at time t+∆t using 

Greenshields’ basic speed-headway relationship. 

 

)1(
t

jfd
tt H

H
vv −=∆+ ,       (5.2) 

where  
d

ttv ∆+  : following aircraft’s desired speed at (t+∆t) 
 vf

 : free flow speed 
Hj : headway at jam density 
Ht : headway between the leading vehicle and the following vehicle at  

time t. 
 

Step 2: Obtain the following aircraft acceleration for the time interval from t to t+∆t using the 

simple kinematic equation. 
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n ∆−= ∆+
∆+

+ /)(1 ;  if max1 aa tt
n >∆+

+ then max1 aa tt
n =∆+

+ ,  (5.3) 

      if max1 da tt
n <∆+

+ then max1 da tt
n =∆+

+ . 
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Here, 
tt

na ∆+
+1  : following aircraft acceleration during the period from t to t+∆t 
d

ttv ∆+  : following aircraft desired speed at (t+∆t) 
 

vt : following aircraft’s current speed at time t 
∆t: the predefined time interval 
amax/dmax: maximum acceleration/deceleration. 

 

In order to limit the kinematic behavior of the aircraft within a reasonable range, a non-uniform 

acceleration model is employed. This model assumes that the vehicle’s maximum ability to 

accelerate (amax) decreases linearly as a function of speed (see Figure 5.12). Another 

consideration for maximum deceleration (dmax) is based on passenger comfort.  

 

 

Maximum
Acceleration

(a)

k1=amax

vmax

Speed (v)
vcurr

acurr max

acurr max= amax - amax / vmax * vcurr

 

Figure 5.12 Speed-Acceleration Relationship. 

 

 

The non-uniform acceleration model is considered to be reasonable because it adopts a thrust 

lapse rate with respect to aircraft speed.  The same behavior has been adopted to describe the 

aircraft kinematic behavior on taxiways and taxilanes except that the values of amax and vmax are 

adjusted accordingly to reflect lower speeds on these links. The equation for the non-uniform 

acceleration model is expressed as follows.  
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vkk
dt

dv
a 21 −=






=        (5.4) 

where, k1, k2: constants 
v: speed 
a: acceleration.  

 

The equations for the speed-time relation can be deduced by separation of variables and 

integration of Equation (5.4).  
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The equation for the distance-time relationship is obtained in analogous way, 
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By substituting (5.5) into (5.6), we obtain the acceleration-time relationship. 
 

tkevkk
dt

dv
a 2

021 )( −−== .      (5.7) 

 

The resulting equations are summarized in Table 5.1. (In the case that amax and vmax are given, 

Equation (5.5) is of the form kvaa −= max , where, k  = amax / vmax.) It should be remarked that the 

analytical solutions presented are only applicable to the leading vehicle. This is because these 

analytical solutions explain the behavior of a vehicle starting from an initial speed and 

accelerating as rapidly as possible in uninterrupted traffic flow. In fact, it is difficult to derive a 

closed-form solution to explain the following vehicle behavior. To overcome this shortcoming, 

the vehicle-following equations are implemented as a “continuous” simulation model using 

standard numerical integration techniques.  
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Table 5.1 Equations for the Non-Uniform Acceleration Model. 

Analytical Solution  Numerical 
Solution not given amax and vmax given amax and vmax 

at = 1max −− tkva  tkevkk 2
021 )( −−  )exp()( 0max ktvvk −− *1) 

Vt = tav tt ∆+ −− 11  
tktk eve

k

k
22

0
2

1 )1( −− +−  ))exp(1)(( 0max0 ktvvv −−−+  

xt = t
vv

x tt
t ∆++ −
− 2

1
1  )1()1( 22

2

1
2

2

1

2

1 tktk e
k

k
e

k

k
t

k

k −− −+−−  )/)exp()(( 0max00 kkttvvtvx −−−+⋅+  
     kvv /)( 0max −−  

*1)  k  = amax / vmax 

 

In order to compare the models resulting from Equations (5.1) and (5.3), consider the following 

simple example. At a taxiway-runway intersection, four aircraft are waiting for advisories from a 

local controller. Using the aircraft performance values shown below, we construct the resulting 

time-space diagrams according to the vehicle -following models described by Equations (5.1) and 

(5.3). 

 

vf = 60 kph 
vmax = 120 kph 
amax = 2 m/s2 
aemergency = -.6g ≈ -6 m/s2 
Hj = 5 m. 

 

The time-space diagram for the vehicle -following model described by Equation (5.1) is displayed 

in Figure 5.13 (a). This plot corresponds to a classical Greenshields’ model (i.e., m=0 and l=2). 

Figure 5.13 (b) illustrates the vehicle -following behavior using Van Aerde’s model. As seen in 

the graphs, there is a substantial difference in vehicle behavior. The two methods exhibit a 

disagreement in the headway parameter. The second vehicle in the generalized car-following 

model, in fact, does not seem to follow the first one. (The same outcome results even if dt is 

changed to as small a number as 0.02 sec.) The behavioral patterns observed persist even for 

small step sizes (dt = 0.02). Consequently, the modeling approach adopted in this research 

follows Equation (5.2) and (5.3). Figure 5.14 illustrates a flowchart showing the necessary steps 

to implement the aircraft-following models adopted in VTASM. 

 



   

154 

  

 

 

 

 

Figure 5.13 Comparison of Aircraft-following Models. 
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Aircraft-Following Module

diffDist (H) = LeadingFlight->traveledDistInLink -
       ThisFlight->traveledDistInLink

diffSpeed = LeadingFlight->currSpeed -
                        ThisFlight->currSpeed

which control algorithm?

Control algorithm
based on headway

Control algorithm
based on speed

Control algorithm
based on headway-speed

(GM model)

Control algorithm
based on headway-speed

(Van Aerde's Model)

currAccel = k*(diffDist - SD)
SD: Safety distance

currAccel = k*diffSpeed
 currAccel
   = k (diffSpeed / diffDist)
if m = 1 then
 currSpeed
   = prevSpeed/ (1-k (diffSpeed /
      diffDist))
  k = alpha*dt

des'dSpeed
      = max(0, Sf (1 - Hj / diffDist))
currAccel
      = (currSpeed - des'dSpeed )/dt

currAccel > a_max

currAccel = a_max

currAccel = a_min

currAccel < a_min

yes

yes
no

no

Next
 

 

Figure 5.14 Flowchart of Aircraft Following Module. 
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5.3.2.1.2 An Algorithm for Conflict Detection and Resolution 

 

A. Algorithm for Conflict Detection. 

In the simulation model developed, explicit checks for potential ground collisions are 

implemented only for the first aircraft on a taxiway link crossing a check-point upstream of an 

intersection. All other following aircraft on the same link are not directly affected by any 

potential conflicts since they just follow the leading aircraft according to the aircraft-following 

logic explained in the previous section. For the first aircraft, the conflict detection method 

examines if there are any opposing aircraft on the adjacent links. One of following three 

circumstances could potentially result in a conflict between two aircraft. (See Figure 5.15.) 

Case 1) The next taxiway link for aircraft 1 (current aircraft) is open and the next taxiway 

link for aircraft 2 (conflicting aircraft) is also open. 

Case 2) The next taxiway link for aircraft 1 is blocked by aircraft 2 and the next taxiway link 

for aircraft 2 is open. 

Case 3) The next taxiway links for both aircraft 1 and 2 are blocked by another aircraft. 

 

case 1)

case 2)

case 3)

aircraft 2aircraft 1

aircraft 1 aircraft 2

aircraft 2

aircraft 1

 

Figure 5.15 Cases of Potential Ground Conflicts. 
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For Case 2, there is no alternative for aircraft 1 except to wait until aircraft 2 crosses the 

intersection. In this case, the current aircraft needs to reduce its speed (or stop if necessary) 

allowing the other aircraft to pass the intersection without a substantial speed reduction. If Case 3 

is triggered, there is no outlet for both aircraft (grid lock case). If Case 1 is invoked, the arrival 

times for two conflicting aircraft (aircraft 1 and 2, here) are estimated. If the expected arrival 

times of two aircraft are too close to secure a predefined minimum gap, the resolution routines are 

automatically invoked. 

Consider the example shown in Figure 5.16. Assume that the current aircraft considered is “F

and that the minimum gap for safe separation at the intersection is set to 15 seconds. Given that 

F1’s current speed is 20 mi/hr (about 30 ft/sec) and the normal deceleration to stop is 3 ft/sec2, F1 

needs 10 seconds and 150 ft. to stop normally. Let us assume that F1 checks the collision risk at 

the point of 150 ft  (i.e., 10 seconds in time) upstream from the intersection and that other aircraft, 

F2 and F3, are expected to enter the intersection at times, 30 and 15 seconds, respectively. In this 

hypothetical situation, unless a speed control adjustment is applied to some aircraft, the current 

aircraft, F1, will violate  the required minimum separation gap with respect to aircraft F3. In this 

instance, a potential collision is detected and the ground conflict resolution logic is initiated at the 

same time. 

 

10(sec)

the current operation direction

15(sec)

30(sec)

Start point
of Intersection

Current position
of flight

Expected arrival time to
the common intersction

(ETi)

F2

Legend :

First flight on this link
(Need to check

 for potential collisions) Conflicting flights coming
toward the common

intersection

Second or later flights on this link
(These follow the leading flight

by vehicle-following logic)

F1 F3

 

Figure 5.16 Concept of Conflict Detection. 
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B. Algorithm for Conflict Resolution 

 

In the ground collision resolution logic, two issues are involved: 1) the flight priority and 2) the 

speed control logic. The controller can give a higher priority to certain flights over others with the 

intent of improving the overall efficiency of the taxiway (or runway) operations. The higher-

priority flight has a right-of-way whenever it conflicts with another flight having a lower-priority. 

In other words, lower-priority flights should slow down or completely stop in order to secure a 

minimum gap at the intersection. In this case, the deceleration rate for the lower-priority flight 

can be estimated by using the speed-control logic. The following equations are involved in this 

speed control logic procedure. 

 

]0 ,)EAT(EAT - gap mmax[minimu EATEAT high
old
low

old
low

new
low −+= .  

new
lowonintersecti

low
current
low

EAT  
vv
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=

−
⋅

. 

new
low

current
low

onintersecti
low EAT

dist2
 vv

⋅−= . 

Hence, new
low

current
low

onintersecti
low

low EAT
vv

decel
−=  2new

lowEAT

dist2 ⋅−= .             (5.8) 

Here    
new
lowEAT (

old
lowEAT ): the low priority flight's new (old) expected arrival time  

                                           at the intersection, 
            EAThigh : the high priority flight’s expected arrival time at the intersection,               

            
current
highv : the low priority flight's present speed, 

            
onintersecti

highv : the low priority flight’s speed at the intersection, 
dist : distance from the current position to the intersection, 

highdecel : the low priority flight’s deceleration rate. 
 

 

Figure 5.17 illustrates the basic speed relationships related to the conflict resolution logic. Here, 

two areas encompassed by a dotted line and a solid line produce the distance from the current 

position to the intersection. In the foregoing example shown in Figure 5.15, if two conflicting 

aircraft (F1and F3) have the same priority, the current flight (F1) will have a right-of-way based 

on the first-in-first-out (FIFO) rule. The deceleration rate for flight F3 will be determined by 

Equation (5.8). The complete logical procedures for collision detection and resolution that are 

implemented in the simulation model are Figure 5.18. 
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Figure 5.17 Calculation of the Lower-priority Flight’s Deceleration Rate. 

 

 

 

highEAT  
old
lowEAT

 

new
lowEAT

onintersecti
lowv

deceleration rate 
(decel) 

current
lowv

speed 

time

Min. Gap 





   

161 

  

 

Figure 5.18 Flowchart for the Conflict Detection and Resolution Module
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5.3.2.1.3 Algorithms for the Takeoff and Landing Procedures 

 

A. Algorithms for the Takeoff Procedure 

 

Once a departing flight reaches the runway and obtains takeoff clearance from the (local) 

controller, it initiates the takeoff procedure using its maximum acceleration potential. The takeoff 

procedure can be divided into two phases: the takeoff rolling phase and the lift-off phase [Trani, 

et al., 1993]. As the aircraft speed reaches lift-off speed, the aircraft becomes airborne and wheels 

off from the ground. These two phases of the takeoff procedure are depicted in Figure 5.19. To 

simplify its implementation, the lift-off phase is assumed to be characterized by a constant speed 

after lift-off. The simulation model keeps track of the departing flight until it crosses the runway 

threshold. In general, the time from the lift-off point to the runway threshold is relatively small as 

the aircraft travels at a high speed. 

There are two important parameters related to the takeoff rolling analysis: the takeoff rolling 

distance and the takeoff rolling time. These values are estimated in the simulation model using a  

aircraft equation of motion that is integrated forward in time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 Takeoff Procedure. 
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The steps for the takeoff roll analysis are illustrated in Figure 5.20. Following traditional 

aerodynamic performance estimation calculations, the first step is to convert all atmospheric 

conditions to an equivalent international atmospheric status. This is because the performance of 

an aircraft engine is affected by the atmosphere around airport. Once the corrected engine thrust 

has been estimated in Step 2, the takeoff roll distance is computed.  

The takeoff rolling time estimation requires some knowledge of two aircraft aerodynamic 

parameters: the drag coefficient (Cd) and the lift coefficient (Cl). Usually, these parameters are not 

made public by aircraft manufacturers. Consequently, approximations are needed to estimate 

takeoff rolling times via alternative methods. A simple alternative method adopted in this model 

is an adaptation of takeoff roll algorithms used in the FAA Integrated Noise Model (INM 6.0).  

 

 

Step 1: Find density altitude
       and temperature altitude
       for airport

Step 2: Find engine thrust

Step 4-2. Find takeoff roll time
              using takeoff roll distance

Step 4-1: Find takeoff roll time
               using Cd, Cl

Step 3: Find takeoff roll
            distance

 

Figure 5.20 Steps for the Takeoff Roll Analysis. 

 

Step 1: Find density altitude and temperature altitude. Using ISA (the International Standard 

Atmosphere) properties as shown in Table 5.2, the temperature at a given altitude can be 

calculated using the standard temperature lapse rate [Lan, 1981]: 

 

T = T0 + λ(h - h0), 

 where  T: temperature at altitude h (°F), 
T0: temperature (°F) and altitude at mean sea level (h0=0 ft), 
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h: airport elevation (ft), 
h0: elevation of mean sea level (h0=0 ft), 
λ: atmospheric temperature lapse rate (°F/ft). 

 

The pressure and density variations with altitude can be calculated using the following standard 

thermodynamic equations: 
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where,    
θ : temperature ratio at airport’s current altitude (which is the airport elevation here), 
h: airport elevation (ft), 
δ : pressure ratio at current aircraft altitude, 
P: atmospheric pressure at altitude h (in lbs/ft2 or N/m2), 
P0: atmospheric pressure at sea level (in lbs/ft2 or N/m2), 
λ: atmospheric temperature lapse rate (in °F/ft or °C/m), 
R: thermal gas constant (in ft/°R or m/°K), 
T0′: standard sea level temperature, absolute value (in °R or °K), 
λ: atmospheric temperature lapse rate (in°F/ft or °C/m), 
σ : air density ratio at aircraft’s current altitude (by employing the ratio version of the 

ideal gas law), 
ρ : air density at altitude h, 
ρ0: air density at sea level standard condition. 
 

To illustrate the use of the equations, suppose that a standard altimeter indicates an altitude of an 

altitude of 15,000 ft when the ambient air temperature is 35 °F. Let us accordingly calculate the 

density altitude and the temperature altitude. 

 

1) Density altitude: 

At h = 15,000 ft, the standard temperature is 5.5 °F (=59-0.00356616(15000)). Hence, the 

atmosphere is not standard. Since the altimeter is a pressure gauge, it will read the correct 

pressure. The correct pressure at that altitude would be 1194 psf (= 2116.2 × (temperature ratio) ^ 

5.2561 = 2116.2 × ( (5.5+459.7) / 518.7) ^ 5.2561) ). 

 



   

165 

  

Density altitude 

Temperature altitude 

Table 5.2  Conversion Factors and Properties of International Standard Atmosphere. 

 SI unit UK unit Conversion Factor 
Gravity constant (g0) 9.806 m/sec2 32.17 ft/sec2  
Pressure (p0) 1.013×105 N/m2 2116.2 lb/ft2 1 lb/ft2 = 47.880 N/m2(=Pa) 
Temperature (T0) 15 °C 59 °F °F = 9/5(°C+32) 

ISA 

Air density (ρ0) 1.225kg/m3 0.002377 slug/ft3  1 slug = 14.59kg 
Absolute temperature (T) °K = °C + 273.15 °R = °F + 459.7  
Atmospheric temperature 
lapse rate (λ) 

 -0.00356616 °F/ft  

Thermal gas constant 29.26 m/°K 53.35 ft/°R  
Force Newton (kgm/sec2) lb-force 1 lb-force = 4.448  Newton 
Weight kg pound 1 pound = 0.453 kg 
Length m ft 1 ft = 0.3048 m 

etc. 

Speed 1 knot = 0.514 m/sec 
(Source: Lan and Roskman (1981) at http://www.ex.ac.uk/cimt/dictunit/dictunit.htm#length). 
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2) Temperature altitude: 
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Step 2: Compute the net thrust per engine for jets. The non-standard atmosphere net thrust per 

engine for jets, Fn, is a function of calibrated airspeed v, and density altitude hd, is calculated 

using the SAE-AIR-1845 thrust equation developed by Society of Automotive Engineers. The 

non-ISA thrust equation accounts for thrust-reducing effects of hot temperatures at high altitudes 

[INM User’s Guide, 1996]. 

 

 F jet
n(v,hd) = δ(hd)[Ep + Fp⋅v + G1p⋅hd + G2p⋅hd

2 + Hp⋅Ts(hd)], 

 

 where,  F jet
n: non-ISA thrust per engine for jets (lb),  

δ(hd): ISA pressure ratio at aircraft’s density altitude hd, 
v: calibrated airspeed (kt), 
hd: the aircraft’s density altitude which is the elevation of the airfield in our 

problem (ft),  
Ts: ISA temperature at the aircraft’s density altitude (°C), 
Ts= (5/9) (59 - 0.003566×hd - 32), 
Ep,Fp,G1p,G2p,Hp: the engine dependent regression constants which depend on the 

jet’s power setting state (max-takeoff or max-climb) from INM database. 
  

F jet
corrected = F jet

n/δ. 

 

The corrected net thrust per engine for props, Fprop
corrected, is given by 

 

 F prop
net-standrad = 325.87 ηp Pp / Vt , 

 where,  Fnet-standard: the standard atmosphere net thrust per engine for props,  
ηp: propeller efficiency, which depends on the power-setting state, 
 Pp: net power engine (hp) for sea-level standard day,  
Vt: true airspeed (kt) = Vc⋅σ -1/2. 

 

F prop
corrected = F prop

net-standrad /δ. 

 

Step 3: Find takeoff roll distance. For the analysis of takeoff rolling distance, the initial and final 

values of aircraft altitude are given as the airport elevation. The horizontal distance traveled on 

the ground is calculated after initial and final values of speed and thrust are calculated. The 

procedure follows SAE-AIR-1845. 

 

The takeoff rolling distance (Sg) is given by, 
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correctednet
fg FN

mg
BS

−⋅
⋅⋅=

2)/( δθ  

where , gS : takeoff roll distance (ft), 

fB : an airplane specific coefficient for a given flap deflection combination, 
m: aircraft mass (lb), 
g: gravity acceleration (= 32.2 ft/sec2), 
θ : temperature ratio at aircraft altitude, 
δ : pressure ratio at aircraft altitude, 
N: the number of engines per aircraft, 
Fnet-corrected: corrected net thrust per engine (lb) at takeoff rotation. 

 

Typical velocities for the calculation of thrust are, 

 

v1 = 16 knots, 

v2 = Cf (mg)1/2, 

v2
’
 = v2/(σ)1/2, 

where, v1: calibrated speed at the beginning of the takeoff roll maneuver (i.e., at the break 
release point) predefined as 8.2 m/sec or 16 knots, 

v2 : calibrated speed at the end of the takeoff roll maneuver (i.e., at lift-off point), 
  Cf : coefficient which depends on the flap setting (from the INM database), 

v2
’: true air speed at the end of the takeoff roll maneuver, 

σ : air density ratio at aircraft altitude. 
 

Step 4-1: Find takeoff roll time using Cl and Cd. Forces related to the takeoff roll distance are 

[Trani, et al., 1993], 

lSCvL 2

2
1 ρ= , 

dSCvD 2

2
1 ρ= , 

) ,( ρvfTE = , 

rollf fLmgF )cos( −= φ , 

where, L = lifting force (lb), 
D = drag force (lb), 
TE: corrected net tractive effort (lb), 
Ff: friction force (lb), 
ρ: air density (slugs/ft3), 
S: the aircraft reference area (ft2), 
Cl: lift coefficient which is dependent on the flap setting (non-dim), 
Cd: drag coefficient which is dependent on the flap setting (non-dim), 
froll: rolling friction coefficient (non-dim) normally 0.02~0.03, 
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φ : the runway inclination angle with respect to the horizontal (degree). 
 
 

 The forces in the x (horizontal direction) produce  

φφρ sin)cos(),( mgfLmgDvTEma rollx −−−−= . 

Hence, 

( )φφρ sin)cos(),(
1

mgfLmgDvTE
m

a rollx −−−−= . 

Assuming a linear tractive effort lapse rate function of speed, the following expression can be 

derived, 

 

v
v

TT
TvTE 




 −−=
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1)( , 

 where,  TE: tractive force at speed v, 
T1, T2: tractive force at brake release point, and lift-off point, 
v2: aircraft speed lift-off point. 

 

Note that runways are near flat by regulation (i.e., less than 2% effective gradients (φ) for general 

aviation (GA) runways and 1.5% for transport runways) and thus for the takeoff analysis, the 

angle φ can be neglected in most practical applications. Neglecting the effect of grade on the 

acceleration of the vehicle, we can estimate the following accelerations for two reference 

conditions: 1) at brake release (ax|br), and 2) at the lift-off point (ax|lo). 
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If we further assume that the acceleration varies inversely with the speed range from the brake 

release point to the lift-off point, the simplified acceleration at speed v can be evaluated as 

follows: 
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By integrating once from the brake release speed (v1) to the lift-off speed (v2), the takeoff roll 

time, troll, is estimated as 
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Step 4-2: Find takeoff roll time without using Cl and Cd. Here, we introduce an alternative 

method to approximate takeoff roll distances without any information on Cl and Cd. The 

estimation is based on the assumption of a non-uniform acceleration model discussed earlier in 

this section. The resulting equations for the acceleration, speed and distance-time relationships 

are summarized in Table 2.9, and are depicted graphically in Figure 5.21. Here, Equations (5.9)-

(5.11) are used again. 
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By substitution of (5.10) into (5.11), we obtain  

tkevkk
dt

dv
a 2

021 )( −−== .       (5.12) 

 

The next step is to find parameters k1 and k2 which characterize the Equations (5.10), (5.11) and 

(5.12). Using the SAE-AIR-1845 model, assuming the speed at the beginning of the takeoff roll, 

v1 (= vbr), to be 8.2 m/sec or 16 knots, and letting 

 

       v2 (= vlo) : speed at the point of lift-off, 

       a1 (= abr) : the acceleration at the beginning of takeoff roll, 

       a2 : the acceleration at the beginning of lift-off, 

 

the equation for the time to reach a certain speed v2 is derived from (5.10) as  

 







−
−−=

121

221

2

2
ln

1
vkk
vkk

k
t .             (5.13) 

 

By substitution of (5.13) into (5.11), we obtain 

 

 





−+





−−





−
−







−=







−
−







−
−

121

221

121

221 ln

2

2

1
ln

2

2

1

121

221

22

1 11ln
1 vkk

vkk

vkk

vkk

e
k
v

e
k
k

vkk
vkk

kk
k

x .          (5.14) 

 

Since the conditions at the beginning of takeoff roll are known, v = v1, a = a1 = abr, from (5.9), k1 

can be expressed as k2 according to 

 

1211
vkak += .                        (5.15) 

 

Substituting (5.15) into (5.11), the equation for the distance as a function of k2 can be obtained as 
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Figure 5.21 Non-Uniform Acceleration Model [Drew, 1968]. 
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Given v1, v2, a1  and the takeoff roll distance, x (=Sg), there is only one unknown variable, k2 in 

Equation (5.16). Because k2 cannot be readily represented in a closed-form, numerical methods 

can be used to obtain k2. Once k2 is available, k1 is calculated using (5.16). 

One important factor that should not be overlooked in the takeoff roll analysis is that  two 

variables, takeoff roll distance and time, are rather stochastic than deterministic. In other words, 

these variables may also be explained with certain types of statistical distribution models 

extracted from observed data. 

In general, the stochastic behavior observed during the takeoff roll has been addressed by federal 

regulation authorities by imposing a correction factor to distance calculated via analytical 

methods. This correction factor increases the runway length by 15% to account for pilot 

deviations in the takeoff roll. This criteria does not apply in this model since VTASM assumes 

the runway length to be sufficient for landing and departing operations. 

 

B. Algorithms for the Landing Procedure 

 

The landing procedure can be divided into four phases: flare, free-rolling, braking, and coasting 

phases. (See Figure 5.22). The flare segment begins at the moment when the aircraft crosses the 

runway threshold and ends when the main landing gear touches down on the runway. Pilots tend 

to maintain a conservative margin over the stalling speed (vstall), which can be calculated by the 

following equation. The initial speed of this phase, vfl, is empirically known to be about 1.25 

times vstall. 

Stall speed (vstall)
wl AC

mg

max

2
ρ

= ,      (5.17) 

where  m: the aircraft mass (kg) 

g: gravity acceleration 
ρ : standard atmosphere air density (kg/m3) 
Cl max: maximum landing lift coefficient 
Aw: the aircraft wing area (m2). 

 

The flare distance (sair) is measured from the runway threshold to the touchdown point and is 

expressed mathematically as [Trani et al., 1993], 

 

sair = dl + dc + ∆RL      (5.18) 

 dl = 
γ
thh

       (5.19) 
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dc = )1(2

2

−
⋅

fl

fl

ng

v γ
      (5.20)  

∆RL =∆L⋅RL,       (5.21) 

where,  sair: flare distance 
dl: linear descending distance from the runway threshold to the touchdown 

aiming point  
dc: circular-arc flare maneuver distance for transiting to a touchdown attitude 

with a minimum sink rate and  
∆RL: the correction distance that is influenced by the runway length. 

Also, 
vfl: threshold crossing airspeed (m/sec or ft/sec) 
vtd : touchdown speed (m/sec or ft/sec) 
sair: touchdown distance (m or ft) 
hth: threshold crossing height (m or ft) 
γ : tangent value of the descent flight path angle (degree), 
g: acceleration of gravity (m/sec2 or ft/sec2) 
nfl: the flare load factor 
∆L: correction distance factor (meter for every 100 m (328 ft) of runway length, 

valid for 2100m < RL < 2800m) 
RL: runway length 
tair: duration time in flare (m or ft) 

vstall
wACL

mg

max

2
ρ

=  

m: the aircraft mass 
g: gravity acceleration 
ρ : the standard atmosphere air density 
CLmax: maximum landing lift coefficient 
Aw: the aircraft wing area. 
 

The free-rolling phase starts at the point where the main gear touches down and ends when thrust-

reverse and/or braking are applied. It has been observed that the duration of the free-rolling phase 

is about 1-3 seconds with an average deceleration rate of 0.70 m/sec2 [Trani et al., 1993].  

The braking phase is initiated from the ending point of the free-rolling phase and completes at the 

moment when the aircraft decelerates to the so-called “decision speed” (about 35 m/s for heavy 

aircraft), when the pilots decide which exit will be used. According to the aircraft type, different 

deceleration rates are applied in the braking phase.  

Once the aircraft passes the decision point, it begins to coast to the runway exit. During the 

coasting phase, the pilot controls the speed based on the current speed and distance between the 

current point and the selected exit. To capture this dynamic behavior, a second-order feedback 

control system is used in the model implementation.  

The speed-distance profile among landing phases is sketched in Figure 5.23. The equations for 

each phase are summarized in Table 5.3 along with some statistical parameters which are 
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observed to fit a normal distribution model quite well. Table 5.4 shows the landing the roll 

statistics for various aircraft types observed at various airports [Kim et al., 1996].  

 

FL : Flare
FR: Free-rolling
BR: Braking
CO: Coasting

Taxiway

Runway

Exit

FL

Disatance
Air Speed
Altitude

FR

BR

CO

Touchdown Point

Exit point

 

Figure 5.22 Four Phases in the Landing Procedure. 
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Threshold
(Speed: v fl)

s air

(Flare)

sfr1

(Free RollFast)

sbr

(Braking)

s co

(Coasting)

Decision Point
(Speed: v co
 27 mps for Wt<41,000 lb
 35 mps for Wt>41,000 lb)

Exiting
(Speed: v ex= f(exit type))

Initial Brake
(Speed: v br)

Touchdown
Speed: v td

 

Figure 5.23 Speed-Distance Relationship for the Landing Procedure.
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Table 5.3 Equations describing the Aircraft Landing Phases. 

Phase Initial Speed Ending Speed Distance Duration Acceleration Empirical values 

Flare 1) 
 vfl vtd 

RLL

ng

v

h
s

fl

fl

th
fl

⋅∆+

−
⋅

+

=

 

)1(2

2 γ

γ

 2/)( tdfl

fl
fl vv

s
t

+
=  

fl

fltd
fl t

vv
a

)( −
=  

γ ≅ 2.5~3 degree (or ~N(2.75, 0.082)) 
hth ≅ 15.2 m (= 50ft) (or ~N(15.2, 32)) 
nfl = 1.1~1.3 
∆L ≅ +25m (=82 ft)/100m runway length 
vfl ≅ 0.95 vap ≅ 1.25 vstall  

 (or ~ ) 06.0 ,(N 2
flfl vv ⋅ ) 

vtd ≅ 0.95 vfl (or vfl – 3.2) 

Free Rolling 2) vtd vbr = vtd – afrtfr 
2

2
frfr

frtdfr

ta
tvs −=  tfr af 

tfr = 2~3 seconds 
afr ≅ 0.7 m/sec2 

Braking 3) 
 vbr vco= vbr – abrtbr 

2

2
brbr

brbrbr
ta

tvs −=  tbr abr 

tbr = time to decelerate  to the speed of  
   27mps for wt < 41000 lb 
   35mps for wt > 41000 lb 
abr = f(aircraft type)5) 
    B727~N(2.19, 0.4162) 
    B737~N(2.25, 0.4712) 
    B757~N(2.01, 0.4782) 
    DC-9~N(2.03, 0.4142) 
    MD-80~N(2.05, 0.3872) 

Coasting 4) 
 

vco vex 
sco  

(by 2nd-order feedback 
control) 

tco 

(by 2nd-order feedback 
control) 

aco 
vex = f(exit type) 

1) vfl: threshold crossing airspeed (m/s or ft/s) 
vtd : touchdown speed (m/s or ft/s) 
sair: touchdown distance (m or ft) 
hth: threshold crossing height (m or ft) 
γ : tangent value of the descent flight path angle (degree) 
g: acceleration of gravity (m/s2 or ft/s2) 
nfl: the flare load factor (DIM) 
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δ(RL): correction distance (meter for every 100 m (328 ft) of runway length, valid for 2100m < RL < 2800m). 
tair: Duration time in flaring out (m or ft) 

vstall
wACL

mg

max

2
ρ

=  

m: the aircraft mass 
g: gravity acceleration 
ρ : air density 
CLmax: maximum landing lift coefficient 
Aw: the aircraft wing area  

2) vbr: Initial braking speed (m/s or ft/s) 
afr: Average free-rolling deceleration (m/s2 or ft/s2) 
tfr: Free-rolling time (seconds) 

3) vco: Initial coasting speed (m/s or ft/s) 
abr: Average braking deceleration (m/sec2 or ft/s2) 
tbr: Braking time (seconds) 

4) vex: Exit speed (m/sec or ft/s) 
5) Kim, et al., 1996. 
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Table 5.4 Landing-roll Statistics [Kim et al., 1996]. 

Flaring speed 
(m/s) 

Touchdown distance 
(m) 

Braking deceleration 
(m/s2) Airport 

(Runway) 
Runway  
Length 

Grade1) 
(%) 

Aircraft 
Type 

No. of 
Obs. 

Mean S.D. Mean S.D. Mean S.D. 
B-727 72 66.62 3.03 455.0 132.1 2.26 0.382 
B-737 36 65.77 3.99 399.2 80.0 2.30 0.422 
B-757 26 65.30 5.78 424.9 97.7 2.14 0.675 
DC-9 36 65.02 3.54 434.9 105.8 2.08 0.397 

DCA 
(R36) 

2094 m 
(6869 ft) 

0 

MD-80 51 68.29 4.51 434.3 94.1 2.14 0.428 
B-727 13 68.18 3.16 546.9 169.8 1.83 0.511 
B-737 34 66.08 3.57 400.0 77.4 2.21 0.573 
B-757 4 61.55 2.11 489.6 139.7 1.62 0.231 
DC-9 8 67.34 3.46 425.2 79.6 2.08 0.56 

CLT 
(R23) 

2286 m 
(7500 ft) 

-0.5 

MD-80 7 66.60 2.55 550.6 188.3 1.81 0.381 
B-727 13 70.87 3.87 621.7 164.2 2.11 0.423 
B-737 12 68.74 4.34 603.3 75.9 2.08 0.497 
B-757 10 65.28 5.29 699.9 115.4 1.79 0.337 
DC-9 13 68.85 3.9 594.0 137.9 1.83 0.341 

ATL 
(R8L) 

2742 m 
(9000 ft) 

-0.3 

MD-80 28 68.57 4.97 569.7 124.6 1.90 0.302 

1) Deceleration rate decreases by 0.01 m/sec2 (0.033 ft/sec2) per 0.1% of grade change on runway. 
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5.3.2.2 Data Structures 

 

Data structures play an important role in designing an efficient computer code because they 

govern the organization of the model information, and thereby constitute the basis for good 

algorithms. Two types of data structures are mainly used in implementing our simulation model: 

lists and queues.  

A “list” is a finite, ordered sequence of data items known as elements (“ordered” in the definition 

means that each element has a position in the list). There are two implementations of a list: a 

static array-based list, and a dynamic linked list using pointers. In an array-based list, the size of 

the array should be fixed before the array is created. On the other hand, the linked list is dynamic 

in the sense that it allocates memory for new list elements as needed. There are advantages in the 

dynamic linked list such as added flexibility in programming. However, the linked list needs extra 

space to keep a pointer that indicates the next element of the list (in singly-linked list case). In 

terms of computational cost, the array-based list is faster in accessing the ith element and 

appending an element to the tail of the array. Operations to remove and insert an element are 

relatively expensive. As a rule of thumb, linked lists are a better choice when working with 

vectors whose sizes are unknown or which vary widely. Array-based lists are generally more 

space efficient when the user knows in advance the size of the list [Shaffer, 1997]. Computational 

efficiencies of the two lists are compared in Table 5.5. 

 

Table 5.5 Comparison of List Implementations. 

 Array-based list Linked list 

advantage no wasted space for an 
individual element 

Need space for the objects 
actually on the list 

access ith element Θ (1) a) Θ (i) 

append an element Θ (1) Θ (1) 
insert ith element Θ (i) Θ (1) 

cost 

remove ith element Θ (i) Θ (1) 
a)  Θ (big-theta) indicates that the upper-bound, O(big-oh), and the lower bound, Ω (big-omega),  

are the same.  
 

The array-based list is used in the simulation model to store information about nodes and links. 

This is efficient because the numbers of nodes and links at an airport are known in advance and 

can be assumed to remain unchanged during the period of simulation. This is similar to the 

database for the aircraft characteristics because the number of aircraft types is also limited and 
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fixed. Figures 5.29 and 5.30 illustrate the applications of array-based lists to the node data and 

aircraft data, respectively. 

 

 

 
 

Index 
int Id Point Pt (x,y)  

… 
Flight* 
FlightInNode_p 

0 9981 (34.12,67.212) …  
1     
2     
…     

Number of 
Nodes 

    

 

Figure 5.24 Array-based List for Node Data. 

 
  

 
 

Index Char* Id_str Float WingSpan_ft  
… 

Float 
MaxAccel_m 

0 “B747-100” 110.45 … 0.5 
1     
2     

…     
Number of 
Acft_Model 

    

 

Figure 5.25 Array-based List for Aircraft Model Data. 

 
 

In contrast, the number of flights on the flight schedule dynamically changes according to the 

day, or time of day. The taxiing path between the gate and the runway for a flight is also flexible 

in the sense that the number of links defining taxiing paths is not fixed. In these cases, a linked 

list, particularly a singly-linked list, is adopted to maintain the information regarding the flight 

schedules and taxiing paths. Figures 5.31 and 5.32 show describe the implementation of linked 

lists for these two variable size vectors. 
 

 

char* Id_str AA352  US987  NW312  UA490  UA093 
… …  …  …  …  … 
Flight* NextFlightInList_p          
Flight*  
LeadingFlight_p 

         

Flight* FollowingFlight_p          
Edge* Taxipath          
          

Figure 5.26 Singly-Linked List for Edge Data. 

 

Node Object 

Acft_Model Object 
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Edge* 
EdgeEle 

TaxiEdge* 
NextTaxiEdge_p 

 Edge* 
EdgeEle 

TaxiEdge* 
NextTaxiEdge_p 

 Edge* 
EdgeEle 

TaxiEdge* 
NextTaxiEdge_p 

       NULL 
 

Figure 5.27 Singly-Linked List for Taxiing Path Data. 

 

The adjacency list, which is commonly applied in graph theory, is used for representing the 

networks within the simulation model. (For more details, see Figure 2.22.) In practice, an array of 

a singly-linked list having |n| items is applied to the adjacency list, where |n| is the number of 

nodes. A sample network and an array for a linked list are shown in Figure 5.28.  
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Tnode 
 

… 
Next  
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fNode 

 
tNode 

 
… 

Next  
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… 

Next  
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0   0 1    0 2    0 3   
1   1 2    1 4        
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4   4 5             
5                 

 

Figure 5.28 Sample Network and Array of  Singly-Linked List for the Sample Network. 
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A FIFO queue (See Figure 3. 8) is a form of a restricted list, in which an element may only be 

entered at the back and removed from the front of the list. The service line at a bank is a typical 

example of a queuing system. The aircraft in a link can be also described by a queuing system. 

An aircraft entering into a new taxiway link is stored at the end of the queue.  

As reviewed in the previous chapter (see Table 3.6), the sorted queue and the (output-restricted) 

double-ended queue are used in the implementation of the static shortest path algorithm and the 

time-dependent shortest path algorithm respectively. Table 5.6 summarizes the resulting data 

structures used in the implementation of the simulation model.  

 

Table 5.6 Summary of Data Structures Used in the Simulation Model. 

Data structure type Data 

array-based list Node,  
Link List 

linked list Flight schedule,  
Taxiing path 

    Array of linked list Airport Network 
sorted queue Dijkstra algorithm 
FIFO queue Aircraft on the link Queue 
output-restricted 
double-ended queue 

Time-dependent  
shortest path algorithm 

 

 

5.3.2.3 Flowcharts 

 

The last step in the object model in OMT is to write pseudo-codes for algorithms or other related 

methods. Instead of pseudo codes, our approach is to use flowcharts showing the details of the 

coding process graphically. Figure 5.29 depicts the procedural flows for the complete simulation 

model.  

The initialization procedure is illustrated in Figure 5.30. Basic objects such as the network graph, 

flights and controllers are generated and initialized after all related data is read from the input file. 

(See Appendix A for the list of input data.) A controller object calculates the shortest path 

between all nodes defining the airport network. The allocation of flights to each  controller is also 

done during the initialization procedure. Some of the important variables associated with flights 

and air traffic controllers and their initial states are summarized in Table 5.7. Communication and 

movements are two types of activities involved in the aircraft flight behavior. The efficient 

organization of these activities centers around two event times named “nextCommEventTime” 
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and “nextMoveEventTime” which are created inside the flight objects (more detailed member 

variables and functions are included in Appendix C). 

The main part of the simulation model is executed in such a way that the states of all entities i.e., 

flights, ground controller(s), local controller(s), in the system are updated every time interval until 

the simulation time ends. Two types of loops are involved in this process: an outer loop where the 

system clock proceeds by a time increment (∆t) until the simulation ends, and an inner loop 

where the states of all flights in the system are checked and updated successively. 

Table 5.7 The Initial States of the Simulation Model Variables. 

object variable initial state 
currState standby controller 
nextEventTime simulationDuration 
currCommState readyToCommunicate 
nextCommEventTime simulationDuration 
currMoveState parking/onFinal* 
nextMoveEventTime scheduled time 
position gate/runway threshold 
speed 0.0/final approach speed 
acceleration 0.0 
needToComm false 
collisionChecked false 

flight 

permission undecided 
   * State for arrival/departure. 

 

Inside the inner loop, a check is made for each flight’s time clock to determine the movement. 

ock is initially set to the time given in the flight schedule. When the system 

clock advances and passes the flight’s scheduled time, the flight executes the two major activities 

related to communication and movement within the outer loop. Otherwise, all the processes 

inside the outer loop are just skipped.  

Unlike the flight movement which is checked continuously, the communication activities are 

treated as discrete events. This is because a communication event is scheduled only when it is 

necessary. Communication states in both controller and flight objects change in a discrete 

fashion. The module named “checkNeedToComm” and illustrated in Figure 5.31 checks if a 

flight requires communication with either the local or the ground controller. If a flight attempts to 

communicate, two state variables, “needToComm” and “nextCommEventTime” are set to “true” 

and the current system time, respectively. The communication module (shown in Figure 5.3) 

initiates the communication events and changes the flight movement state if it is permitted to 

move.  
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In Figure 5.33, a communication process is depicted from the flight’s point of view. Here, the 

state variable called “nextCommEventTime” is updated according to the time duration required 

for the current communication activity. On the other hand, the controller’s communication states 

change according to the corresponding flight’s current communication state as shown in Figure 

5.34.   

It should be noticed that a function called “judge” mimics the controller’s decision process on 

whether a flight request is accepted. This function changes the controller’s state via 

“judgingCommand”. If the controller decision is to accept a flight to move and end 

communication, the flight’s “nextCommEventTime” is set to the simulation duration so that the 

flight can jump the communication procedure until it needs to communicate again. Usually, the 

taxiing clearances from the local controller are provided with the taxiing route from the runway 

exit to the gate. 

The states of flight movement such as speed, acceleration, position, etc., are continuously 

evaluated after a flight enters the system. The main concern in the movement logic is to decide 

how  much the flight would accelerate (or decelerate) in the next time interval. Unless a flight is 

either stopped, parked at a gate, or waiting on a runway, the flight’s dynamic behavior is decided 

by its own control logic depending on its current movement state. For example, if an arriving 

flight is in the coasting phase on the runway, its acceleration for the next time interval is 

determined by the second-order feedback control system discussed in the previous section.  

Acceleration (or deceleration) during  taxiing is a little more complicated because it might depend 

on a leading aircraft, if any, on potential collisions, and on the remaining distance to the 

destination for taxiing, etc. The detailed processes to decide the acceleration for a taxiing flight 

are summarized in Figure 5.36, and the flowchart for the conflict detection and resolution 

algorithm is previously shown in Figure 5.18.  

The last procedure inside the inner loop is to update the flight kinematic states to reflect the 

current changes according to the new acceleration value selected. This is done by the “update” 

module shown in Figure 5.37. In the case that a flight enters a new link, the flight information on 

its leading and following flight as well as the link information are updated by “enqueue” and 

 

Once the complete procedure for a flight has been executed, a check is made to decide if this 

flight is the last one on the list. If it is the last one, the inner loop is completed, and both ground 

and local controllers start to check if there is any flight awaiting controller's contact by looking  at 

their flight progress strips. If there is any flight and the controller are both in standby states,  

contact is made by the controller. (See Figure 5.9 for details.) Once all controllers finish an 
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appropriate action, the simulation time advances by a time increment to commence another 

iteration of the outer loop (see Figure 5.29). 

 

 

sysTime = 0

Flight = 1st Flight in List

Yes

call checkNeedToCommunicate

needToComm == True &&
sysTime == nextCommEventTime ?

Last Flight
in the flight list?

sysTime == simDuration?

Yes

No Flight = nextFlight

sysTime = sysTime + dt

Yes

End

No

Communication

Movement

Yes

No

10

8

sysTime  == nextMoveEventTime ?

Initialization
// read data
//generate network grap, controller, flights

Inner Loop

Outer Loop

No

Does GC need to
contact any flight?

Does LC need to
contact any flight?

No

No

Contact the Flight

Contact the Flight

Yes

Yes

 

Figure 5.29 Flowchart for the Overall Simulation Model Process. 

 

 



   

188 

  

 

 

 

 

 

 

Figure 5.30 Flowchart for the Initialization Step. 
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Figure 5.31 Flowchart for Performing Communication Checks. 

Departure

currMoveState

currMoveType

onFinal

Exting R/W

Wating on R/W

Parking

waitingToTaxi

areaHolding

waitingToTaxi

Operation Type?

permission != clearToTaxi
&& nextCommEvevtTime ==

simulationDuration ?

needToComm = True
nextCommEventTime

= sysTime

Arrival

next

permission != clearToTakeoff
&& nextCommEvevtTime ==

simulationDuration ?

permission != clearToTaxi
&& nextCommEvevtTime ==

simulationDuration ?

permission != clearToLand
&& nextCommEvevtTime ==

simulationDuration ?

8

8

8

8

No

No

No

No

Yes

Yes

Yes

Yes

needToComm = False

Start



   

190 

  

Figure 5.32 Flowchart for the Communication Logic . 
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Figure 5.33 Flowchart for the Communication Module from the Flight’s Point of View. 
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Figure 5.34 Flowchart for the Communication Logic from the Controller’s Point of View. 
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Figure 5.35 Flowchart for the Movement Logic.
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Figure 5.36 Flowchart for the Computation of the Next Acceleration for Taxiing. 
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Figure 5.37 Flowchart for Updating Flight’s Dynamic States. 

 

 

traveledDistInLink >= currEdge_p.distance

Yes
(Enter the new link )

Next

No

Update Flight's dynamic state

prevSpeed = currSpeed
currSpeed = currSpeed + currAccel * dt
traveledDistInLink +=
              (prevSpeed + currSpeed)/2 *dt
traveledDistTotal += traveledDist
update
     currPosition_p-> traveledDistInLink,
     currPosition_p-> pt.x,
     currPosition_p-> pt.y.

this->deQueue(currTaxiEdge_p)
this->enQueue(nextTaxiEdge_p)

traveledDistInLink - = currEdge_p.distance
update
   currPosition_p-> traveledDistInLink,
   currPosition_p-> pt.x,
   currPosition_p-> pt.y.
   currNodeIndex,
   currTaxiEdge_p.
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5.3.2.4 Detailed Object Design Model 

 

Once the algorithmic steps have been implemented using appropriate data structures, the model 

development cycle continues with a refinement of classes according to the following guidelines. 

 

• Adjust class structures to increase inheritance:  In order to increase inheritance, it is necessary 

to abstract out any behavior that is common to a group of classes. In our case, such behaviors 

as “finding shortest path” and “making taxiing path” are common to both the ground 

controller and the local controller classes. These methods are placed in the super class, 

controller.  While the inheritance happens to be an “is-a” relationship, the aggregation is said 

-a” rela tionship in the representation of classes. In the simulation model, many 

aggregation relationships are found. For example, a node class has a point class which 

contains information on the coordinates of a point, and an edge class which represents a 

taxiway link has two node classes corresponding to the from node and the to node. A graph 

class which contains the airport network information has an edge list consisting of a special 

number of edges.  

• Design associations: Unlike inheritance or aggregation, the association between classes is 

often referred to as a “use-a” relationship. For example, the controller class uses (one or 

more) queue classes when a controller generates the shortest paths for all O-D pairs.  

 

The attributes and member functions for all defined classes in the simulation model are 

summarized in Appendix C. 
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5.4  Object-oriented Programming (OOP)  

 

The computer language selected for the simulation model is C++ which is one of the most 

popular object-oriented programming computer languages. In order to enhance the portability of 

the simulation model, all libraries used in the model are based on the ANSI C++ rather than  

using commercialized versions of the C++ libraries. In this research project, no graphic 

representation or GUI (Graphic User Interface) is  considered. For the future development of a 

windowing GUI system, it is recommended to use the “wxWindow” library which provides a 

better multi-platform portability when compared to other commercial libraries such as the 

Microsoft Foundation Classes (MFC). 

Once the simulation model is coded, the last step is the debugging and validation phase to check 

if the code is performing as expected. Several tips are recommended for debugging [May, 1990]. 

 

• Debug each member function separately. 

• Use known deterministic data rather than stochastic data. 

• Perform manual calculations to check. 
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5.5 Primary Validation of the Simulation Model 

 

The validation step is the process whereby the simulation model is evaluated to determine 

whether it satisfactorily duplicates the real system behavior [Drew, 1966]. In order to match the 

simulation model output with real-life observations, a calibration process should be performed 

using collected input data and measures of effectiveness (MOE). In this research, the calibration 

process considers accepted models of behavior and compares them with the output from the 

simulation model. VTASM is a proof-of-concept research model and further validation is needed 

for commercial use. 

Table 5.8 shows a hypothetical flight schedule consisting of 20 flights scheduled in about 5 

minutes. Here, the relatively tight flight schedule is intentional to produce conflicts on the 

taxiway system. It is assumed that all flights use one runway 01, and all aircraft represent 

transport type operations. The aircraft mix is set to be 70/30 (large/small). 

Important simulation outputs include information on the flight states at every simulation interval, 

such as movement state, current communication state, speed, acceleration, current position, 

traveled distances etc. Figure 5.38 shows a sample output of the simulation results. The time-

space diagram shown in Figure 5.39 depicts the behavior of four departing aircraft starting from 

one common gate to the same runway.  

A close examination of this figure confirms that headways between the aircraft are kept during 

the taxiing phase, and the minimum separation rules for the takeoff aircraft are maintained. A 

more detailed takeoff profile is illustrated in Figure 5.40. Figure 5.41 also ratifies the minimal 

separations between successive landing aircraft. It is shown in Figure 5.42 that landing distances 

and runway occupancy times presented in Table 5.3  are reproduced with good accuracy.  

For the aircraft-following model defined in Equation (5.2), Hj and vf are set to 83 ft/aircraft, 41 

ft/s respectively. Figure 5.43 shows that headway between two leading and following aircraft 

correlates well with the speed and vehicle -following control laws stated in the Equation (5.2). In 

this Figure, some discrete speeding phenomena is observed following the aircraft transition 

through various taxiway links. This behavior is explained when the following aircraft returns to a 

normal taxiing speed, once it becomes the leading aircraft on a link.  

 

 

 

 

 



   

199 

  

 

 

 

 

 

Table 5.8 Hypothetical Flight Schedule. 

 

Schedule Time Flight # Aircraft 
Type 

Operation  
Type Hour Minute Second 

Gate Runway 

AA001 B727-100 D 7 0 0 1 36 
AA002 B727-100 D 7 0 4 1 36 
AA003 SF340 D 7 0 20 2 36 
AA004 B727-100 D 7 0 40 2 36 
AA005 B727-100 D 7 0 50 3 36 
AA006 B727-100 D 7 0 30 3 36 
AA007 SF340 D 7 0 10 4 36 
AA008 B727-100 D 7 0 45 4 36 
AA009 B727-100 D 7 0 25 4 36 
AA010 SF340 D 7 0 30 4 36 
AA101 B727-100 A 7 1 0 11 36 
AA102 B727-100 A 7 3 1 11 36 
AA103 B727-100 A 7 3 2 12 36 
AA104 SF340 A 7 3 3 12 36 
AA105 B727-100 A 7 1 12 10 36 
AA106 B727-100 A 7 1 45 10 36 
AA107 SF340 A 7 1 20 10 36 
AA108 SF340 A 7 5 3 9 36 
AA109 B727-100 A 7 3 0 9 36 
AA110 B727-100 A 7 2 1 9 36 
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Time FLT #              (x, y)               currCommState      currMoveState        speed        accel    currLink  linkLength  distInLink    totDist 
 

60.5 AA378 (3.55881,6.15414) readyToCommunicate taxiingToDepQue  3.20622  15.6622    4 -> 1016  157.659   0.324311    0.324311              
        AA789 (3.55850,6.15410) readyToCommunicate parking                    0.00000    0.0000   0 -> 0            0          0.000000    0.000000        
        AA790 (3.55850,6.15410) readyToCommunicate parking                    0.00000    0.0000   0 -> 0            0          0.000000    0.000000        
        AA791 (3.55850,6.15410) readyToCommunicate parking                    0.00000    0.0000   0 -> 0            0          0.000000    0.000000   

 
60.6 AA378 (3.55918,6.15418) readyToCommunicate taxiingToDepQue  4.70198  14.9576    4 -> 1016 157.659    0.719721    0.719721        

        AA789 (3.55850,6.15410) readyToCommunicate parking                    0.00000    0.0000   0 -> 0           0           0.000000    0.000000    
        AA790 (3.55850,6.15410) readyToCommunicate parking                    0.00000    0.0000   0 -> 0           0           0.000000    0.000000        
        AA791 (3.55850,6.15410) readyToCommunicate parking                    0.00000    0.0000   0 -> 0           0           0.000000    0.000000   

 

Figure 5.38 Preliminary Results (1): Sample Output. 
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Figure 5.39 Validation of the Simulation Model (Time-Space Diagram for Departures, B727-100). 
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Figure 5.40 Validation of the Simulation Model (Takeoff Profile, B727-100). 
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Figure 5.41 Validation of the Simulation Model (Time-Space diagram For Arrivals, B727-100). 
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Figure 5.42 Validation of the Simulation Model (Touchdown Profile, B727-100). 
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Figure 5.43 Validation of Simulation Model (Headway-Speed Profile, B727-100). 
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Chapter 6. Case Study 
 

One of the main benefits of a microscopic simulation model is the wealth of information derived 

from each simulation run. In this section, we first define several types of delays encountered in 

airport networks. A case study is then presented to illustrated the use of the model developed. 

 

6.1 Definition of Delays 

 

The Consolidated Operations and Delay Analysis System (CODAS) prepared by the FAA defines 

three types of delays involved in airport operations [FAA, 1997]. 

 

• Gate delay: the difference between the actual gate departure time reported in ASQP (Airline 

Service Quality Performance) system and the scheduled gate departure time reported in 

ETMS (Enhanced Traffic Management System). 

• Taxi-out delay: The difference between the actual taxi-out time (= wheels-off time – gate-out 

time) and the unimpeded taxi-out time at the  airport. The unimpeded taxi-out time is the 

estimated average taxi-out time for an aircraft under optimal operating conditions when 

neither congestion, weather, or other factors delay the operation during its movement from 

the gate to takeoff.  

• Taxi-in delay: The difference between the actual taxi-in time (= gate arrival time – wheels-on 

time) and the unimpeded taxi-in time under an unimpeded condition. 

 

The taxi-out delays defined in CODAS involve not only the delays due to the taxiway congestion 

itself, but also delays due to the excess demand on runway operations. On the other hand, taxi-in 

delay does not contain runway delays, but only consider taxiway delays. This shows a 

discrepancy between taxi-in and taxi-out delays. Motivated by this point, let us define a single 

delay called total delay applicable to both arriving and departing operations. The total delay is 

defined as follows (See Figures 6.1 and 6.2): 

 

• Total delay: the difference between two completion times of the nominal (or unimpeded) 

operation time and actual operation time. Here, the completion time of nominal operation is 
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the time duration which is needed for a flight to complete its operation impeded by no other 

operations. 

 

Even though it is not easy to divide the total delay into various sub-types, for simulation 

purposes, the taxiing delay and runway delays are defined as follows: 

 

• Runway delay: The difference between the time when an aircraft is scheduled to start its 

runway operation and the time when the actual operation takes place.  

• Taxiing delay: During taxiing duration, the taxiing delay accrues whenever any flight’s 

taxiing speed is less than a nominal taxiing speed. The taxiing delay is estimated by the 

following equation. 

 

∫ 







=

 timesimulation 

0 speed nominal

speedcurrent -speed nominal
 delay  Taxiing dt . 

 

Taxiing duration (or taxiing time) is defined as the time required for a departing aircraft to taxi 

from the gate to the runway departure queue, For an arriving aircraft is the time  to taxi from the 

runway exit to the gate.  

Figures 6.1 and 6.2 illustrate the various types of delays for both arriving and departing flights.  

 

6.2 Sample Airport 

 

In this research project, the Ronald Reagan National  Airport (DCA) is selected for further study. 

Along with Dulles Airport and Baltimore-Washington Airports, DCA serves the Washington 

D.C. metropolitan area. In FY 1997, total enplanements and operations at DCA were 7,231,903 

and 316,404, respectively, placing it as the 26th busiest airport in the U.S. [FAA, 1998].  

The existing DCA Airport has 45 gates and three crossing runways designated 3/21 (4,506 ft), 

15/33 (5,189 ft), and 18/36 (6,869 ft). (As February 2000, Runway 18/36 has been changed to 

01/19 due to magnetic declination.) Because of the relatively short length of its runways, DCA 

has short to medium size transport aircraft operations. Figure 6.3 shows the present configuration 

of DCA. In this preliminary analysis, the gates are aggregated into 12 groups and it is assumed 

that several flights can occupy one aggregated gate at the same time. (This modeling practice is 

common in other simulation models.) 
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Figure 6.1 Delays Associated with a Departing Flight. 

 

 

 

 

Figure 6.2 Delays Associated with an Arriving Flight. 
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Figure 6.3 Configuration of the Washington National Airport (DCA). 
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6.3 Scenarios 

 

To evaluate the efficiency of the airport control system, a total 12 scenarios are generated through 

variations in three important decision variables: 1) Network assignment strategy, 2) sequencing 

strategy, and 3) pilot-controller communication method. Two network assignment strategies are 

considered: static and time-dependent assignment methods. The static network assignment uses 

the Euclidean distances for the shortest path algorithm. The sequencing strategy involves pure 

first-come-first-serve (FCFS), FCFS with landing priority, and  2-exchange sequences. The impact 

of two types of pilot-controller communication methods are also integrated using standard voice 

channel and data link methods.  

A base line scenario attempts to reproduce the current ATC system using principle of FCFS with 

landing priority. In this scenario, both the local and the ground controllers use standard voice 

channel communications to provide traffic control advisories. In the scenario, a static assignment 

method is used for ground controller to find the taxiing route.  

The most advanced scenario studied represents an advanced ATC system where the local 

controllers follow optimal aircraft sequences using results from the ASP (Aircraft Sequencing 

Problem) model, and the ground controllers guide the taxiing flights based on dynamic shortest 

paths which result from NAP (Network Assignment Problem). All 12 scenarios are summarized 

in Table 6.1. 

Table 6.1 Scenarios for Case Study. 

Network Assignment Strategy Sequence Method Communication Method. 

Voice Channel Pure 
FCFS Data Link 

Voice Channel  (Base line scenario) FCFS 
(w/ Landing Priority) Data Link 

Voice Channel 

Static 
Network 

Assignment 

2-exchange 
Data Link 

Voice Channel Pure 
FCFS Data Link 

Voice Channel FCFS 
(w/ Landing Priority) Data Link 

Voice Channel 

Time-dependent 
Network 

Assignment 

2-exchange 
Data Link 
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6.4 Computational Process 

 

The computations for the case study are derived using the following steps: Data generation, 

sequencing, simulation, and the analysis of results.  Figure 6.4 illustrates a flowchart with all 

computations along with data and output for each step. 

 

6.4.1 Data Generation 

 

Using random number generation techniques, the ready-times (or nominal times) for runway 

operations are generated. A total of nine levels of hourly demand (ranging from 10 to 50 flights 

per hour) are generated. To consider randomness of generated data, ten data sets are generated for 

each level of hourly demand. In all test scenarios, the interval for any two consecutive runway 

operations (either takeoff or landing) follows a negative exponential distribution. The aircraft mix 

which is another important factor in the delay analysis, is set to 0% heavy, 70% large and 30% 

small. For computational simplicity, it is assumed that all flights use a single runway 01. (This 

issue will be discussed later in further study.)  

Once nominal times for runway operations are available, the activation times for departing flights 

are obtained by subtracting the sum of nominal taxiing, communication and some buffer times 

from nominal times. The link and node data which are pertinent to taxiway topology are used to 

obtain nominal taxiing times. Unlike departing flights, the activation times for arriving flights are 

obtained by subtracting only communication times from nominal times. 

 

6.4.2 Sequencing 

 

In this step, three types of sequences for runway operations are computed using nominal times: 

pure FCFS sequence, FCFS sequence with landing priority and 2-exchange sequence. Table 6.2 

shows a sample output of the sequencing process. In the sequencing process, a maximum of 600 

seconds of delay is assumed tolerable as practical limit. This limit can be altered by a planner and 

applied for each flight time window. In fact, the schedule from a pure FCFS sequence is the same 

one as that of nominal times. 

Table 6.2 also shows two types of time savings attained if the swapped sequence is applied. These 

are: cumulative time savings obtained from all individual flights, and time savings in completion 

time of all flights. For example, the table shows that if the runway operations are performed in 
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accordance with a 2-exchange sequence instead of the FCFS sequence with landing priority, a 

total of 669 seconds can be saved over all flights. In this case, the completion time for all 

operations are reduced from 1243 to 1149 seconds. 

 

Table 6.2 A Sample Output from the Sequencing Model. 

 
---  -------   ----  -----------------  ---------------------------  ---------------------------  --------  
                     Nominal            FCFS w/ landing priority     2-exchange 
  #  acft_id   Type  ReadyTime DueTime  StartTime Sequence Delay     StartTime Sequence Delay     Saving    
                     (1)                (2)                =(2)-(1)  (3)                =(3)-(1)  =(3)-(2)  
---  -------   ----  -----------------  ---------------------------  ---------------------------  --------  
  1   DEP_1      L   [  186      786]       268       4        82      268         4        82        0 
  2   DEP_2      S   [  218      818]       375       6       157      375         6       157        0 
  3   DEP_3      S   [  302      902]       482       8       180      594        10       292     -112 
  4   DEP_4      L   [  322      918]       589      10       267      496         8       174       93 
  5   DEP_5      L   [  378      978]       800      13       422      747        13       369       53 
  6   DEP_6      S   [  414     1014]       907      15       493      687        12       273      220 
  7   DEP_7      L   [  444     1044]      1028      17       584      840        15       396      188 
  8   DEP_8      L   [  536     1123]      1088      18       552      947        17       411      141 
  9   DEP_9      L   [  583     1154]      1148      19       565     1054        19       471       94 
 10   DEP_10     L   [  614     1214]      1208      20       594     1114        20       500       94 
 11   ARR_1      L   [   17      582]        17       1         0       17         1         0        0 
 12   ARR_2      S   [   83      683]       148       2        65      148         2        65        0 
 13   ARR_3      L   [   89      648]       228       3       139      228         3       139        0 
 14   ARR_4      L   [  155      755]       335       5       180      335         5       180        0 
 15   ARR_5      L   [  269      800]       442       7       173      647        11       378     -205 
 16   ARR_6      L   [  307      851]       549       9       242      800        14       493     -251 
 17   ARR_7      S   [  352      952]       680      11       328      466         7       114      214 
 18   ARR_8      L   [  358      924]       760      12       402      907        16       549     -147 
 19   ARR_9      L   [  431     1031]       867      14       436     1014        18       583     -147 
 20   ARR_10     S   [  468     1068]       998      16       530      564         9        96      434 
---  -------   ----  -----------------  ---------------------------  ---------------------------  --------  
                          Total Delay:                       6391                         5722      669   
---  -------   ----  -----------------  ---------------------------  ---------------------------  --------  
 
 Completion time: FCFS w/land -> 1243 second, SWAP -> 1149 second 

 
 
It is important to notice that some flights might not be operated as they are scheduled. This is 

because the resulting schedules are an analytical solution which do not reflect any congestion in 

communication or taxiing. As pointed out at the beginning of this research, it is very difficult to 

develop a single analytical model which considers all of types of delays. This is the main 

justification for using a simulation model.  
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Step 1:
 Generate data sets using a random number.

Step 2:
Compute both FCFS and exchanged sequences.

Step 3:
Simulate both FCFS and exchanged sequences

with various scenarios

Nominal times

Ready times

sim_all.datswap.out

taxiPath.out

Controller.out

Log_flight.out

flight_state.out

aircraft model.
dat

edge_DCA.dat

node_DCA.dat

Step 4:
Analysis of simulation results

edge_DCA data

node_DCA data

 

Figure 6.4 Flowchart of the Computational Process Employed in the Case Study. 
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6.4.3 Simulation 

 

6.4.3.1 Assumptions 

 

The VTASM model has numerous constants representing human or aircraft behaviors. For 

example, the free flow speed, normal speed and jam headways employed in the aircraft-following 

model are set to 45 km/hr, 30 km/hr and 27 m, respectively. It should be pointed out that, since 

some of these constant values have been drived using common sense, more accurate values could 

be collected from future field studies. Some of important constants used in the simulation model 

are summarized in Table 6.3.  

Table 6.3 Constant Values used in the VTASM Simulation Model. 

Related model Name Values 
Maximum taxiing speed 45 (km/hr) 
Normal taxiing speed 30 (km/hr) 

Aircraft 
following 
Model Jam headway 27 (m) 

Gamma 2.75 (degree) 
Runway threshold crossing height 15 (m) 
Flare load factor 1.1 

Flaring out 

Weight factor for landing 0.5 
Time for free rolling 2.0 (s) Free rolling 
Acceleration for free rolling -0.7 (m/s2) 
Weight for decision speed  18450 (kg)  

= 41000 (lb) 
Decision speed for heavy aircraft 35 (m/s) 

Braking 

Decision speed for large or small aircraft 27 (m/s) 
Runway exit Exit speed for normal runway exit 15 (m/s) 

Sending request time 
(same to receiving request time for controller) 

4.0 (s) 

Waiting command time 
(same to receiving request time) 

5.0 (s) 

Receiving command time 
(same to judging time for controller) 

3.0 (s) 

Sending confirmation time 
(same to receiving request time for controller) 

3.0 (s) 

Communication 
(Voice channel) 

Waiting time for next contact 10.0 (s) 
Sending request time 0.0 (s) 
Waiting command time 3.0 (s) 
Receiving command time 0.0 (s) 

Communication 
(Data Link) 

Sending confirmation time 0.0 (s) 

Link  travel  
time function 

current link travel time 
+ 5 seconds for every one conflicting aircraft at the 
intersecting point 
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6.4.3.2 Input Data 

 

Input data for simulation model include link and node information representing the taxiway and 

runway configurations, the aircraft model data, and the flight schedule data. Aircraft model data 

involves individual aircraft information such as size, weight and performance data. The flight 

schedule data reflects the results of the previous sequencing step. Using the given schedule data, 

recommended pushback times for departing flights are internally computed. (For a detailed 

description about the recommended pushback times, see Section 2.3.1.) A sample of schedule is 

shown in Figure 6.5. 

 

Figure 6.5 Sample of Schedule Data.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1  DEP_1   B727-100     D    7  0  1     7  3  6     7  4 28     7  4 28      1  36
  2  DEP_2   SF-340       D    7  0 33     7  3 38     7  6 15     7  6 15      1  36
  3  DEP_3   SF-340       D    7  1 57     7  5  2     7  8  2     7  9 54      1  36
  4  DEP_4   B727-100     D    7  2 17     7  5 22     7  9 49     7  8 16      1  36
  5  DEP_5   B727-100     D    7  3 13     7  6 18     7 13 20     7 12 27      2  36
  6  DEP_6   SF-340       D    7  4  2     7  6 54     7 15  7     7 11 27      2  36
  7  DEP_7   B727-100     D    7  4 32     7  7 24     7 17  8     7 14  0      2  36
  8  DEP_8   B727-100     D    7  6  4     7  8 56     7 18  8     7 15 47      2  36
  9  DEP_9   B727-100     D    7  6 51     7  9 43     7 19  8     7 17 34      2  36
 10  DEP_10  B727-100     D    7  7 22     7 10 14     7 20  8     7 18 34      3  36
 11  ARR_1   B727-100     A    7  0  3     7  0 17     7  0 17     7  0 17     12  36
 12  ARR_2   SF-340       A    7  1  9     7  1 23     7  2 28     7  2 28     12  36
 13  ARR_3   B727-100     A    7  1 15     7  1 29     7  3 48     7  3 48     12  36
 14  ARR_4   B727-100     A    7  2 21     7  2 35     7  5 35     7  5 35     12  36
 15  ARR_5   B727-100     A    7  4 15     7  4 29     7  7 22     7 10 47     11  36
 16  ARR_6   B727-100     A    7  4 53     7  5  7     7  9  9     7 13 20     11  36
 17  ARR_7   SF-340       A    7  5 38     7  5 52     7 11 20     7  7 46     11  36
 18  ARR_8   B727-100     A    7  5 44     7  5 58     7 12 40     7 15  7     11  36
 19  ARR_9   B727-100     A    7  6 57     7  7 11     7 14 27     7 16 54     11  36
 20  ARR_10  SF-340       A    7  7 34     7  7 48     7 16 38     7  9 24     10  36
 

Gate Number 

Runway 

Aircraft type 

Takeoff/Landing Time 
(Pure FCFS sequence) 

Simulation 
Input Time 

Takeoff/Landing Time 
(FCFS w/ Landing Priority sequence)

Takeoff/Landing Time
(Swap sequence) 
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6.4.3.3 Implementation of the Simulation Model 

 

Each simulation is executed for two-hour duration (i.e., 7200 seconds). This is done to secure 

enough time for all flights to finish their operations during the simulation duration. The system 

clock is set to advance by one second. This time interval, dt, is one of  important settings 

particularly in association with aircraft-following model. There is a tradeoff in selecting the size 

of dt. Smaller dt provides more detailed results in aircraft behavior but requires more time and 

storage space in the implementation simulation.  

For the time-dependent NAP, a total of 120 time slices are prepared so that the time-dependent 

shortest path information can reflect any change in link travel time with a resolution of 60 

seconds. The simulation is repeated for all 12 scenarios. 

 

6.4.3.4 Output Files 

 

VTASM provides several output files for further scrutiny of the data. 

1) 1)  Log.out reports important events for both flights and controllers including a summary 

report with statistics. 

2) 2)  FlightState.out includes the flight state at each time slice. 

3)  Controller.out contains the controller state at each time slice. 

4)  ForwardStar.out/backwardStar.out shows forward-star/backward-star of network  

configuration (used for verification). 

5)  TaxiPath.out contains static and time-dependent taxi paths for all flights (used for 

verification). 

 

The summary section in the log.out file reports diverse statistics related to the delay analysis for 

each flight such as taxiing duration, runway occupancy time, runway delay, etc. The flight state in 

file flight_state.out includes position, communication state, movement state, permission, speed, 

acceleration and traveled distance at time t. Figures 6.6 and 6.7 show samples of the log,out and 

the flight_state.out files.  A sample of the path.out file is illustrated in Figure 6.8. In this figure, it 

is shown that some flights have different paths in the static and in the time-dependent NAP.  
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Figure 6.6 A Sample of the Log.out File. 

Data files were opened. 

FS and BS were made.  
    FLight DEP_1 is pushed back to GC's PENDING list 
    FLight DEP_2 is pushed back to GC's PENDING list 
... 
    FLight ARR_10 is pushed back to LC's PENDING list 
    Flight data were read. 
Shortest Path was made. 
 
< Simulation starts > 
    system clock = 0 second 
               At 1 sec, DEP_1 is removed from GC's PENDING list 
               At 1 sec, DEP_1 is pushed back to GC's PROCESSING list 
               At 3 sec, ARR_1 is removed from LC's PENDING list 
               At 3 sec, ARR_1 is pushed back to LC's PROCESSING list 
              This flight (DEP_1) is ahead the schedule. 
              So, need to contact the Ground Controller again. 
              -> scheduled time: 79.9   sysTime: 17 
              At 17 sec., DEP_1 got "waitThere". 
              this flight (ARR_1) is behind the schedule.  
              -> scheduled time: 17   sysTime: 19 
              At 19 sec., ARR_1 got "clearToLand". 
               At 33 sec, DEP_2 is removed from GC's PENDING list 
               At 33 sec, DEP_2 is pushed back to GC's PROCESSING list 
              This flight (DEP_2) is ahead the schedule. 
              So, need to contact the Ground Controller again. 
              -> scheduled time: 186.9   sysTime: 49 
... 
    system clock = 7000 second 
    system clock = 7200 second 
< Simulation ends. > 
 
------------------------------- SUMMARY ------------------------------- 
 Flight (Departure DEP_1, B727-100, Gate 1, Runway 36) 
 Enters into the simulation at          : 1 sec.  
 Taxiing Duration                       : 73 - 217 
 Taxiing Delay                          : 2.22827 
 Nominal Takeoff Time   (= NTOT)        : 186 
 Sequenced Takeoff Time (= STOT)        : 268 
 Actual Takeoff Time    (= ATOT)        : 289 
       Runway Occupancy Time  (= ROT)         : 289 - 328 
 Sequenced Delay        (= ATOT - STOT) : 21 
 Runway Delay           (= ATOT - NTOT) : 103 
 
... 
 
 Flight (Arrival ARR_10, SF-340, Runway 36, Gate 10) 
 Enters into the simulation at                  : 454 sec. 
 Nominal Touchdown Time   (= NTDT)        : 468 
 Sequenced TouchDown Time (= STDT)        : 998 
 Actual Touchdown Time    (= ATDT)        : 991 
       Runway Occupancy Time    (= ROT)         : 991 - 1018 
 Sequenced Delay          (= ATDT - STDT) : 0 
 Runway Delay             (= ATDT - NTDT) : 523 
 Taxiing Duration                         : 1045 - 1147 
 Taxiing Delay (sec.)                     : 4.52267 
 
   TotTaxiingDelay_sec = 47.9558 
   TotRunwayDelay_sec = 6486 
   TotDealy_sec       = 6533.96 
   AvgTaxiingDelay_sec = 2.39779 
   AvgRunwayDelay_sec = 324.3 
   AvgDealy_sec       = 326.698 
Utilization factor (L/C) = totBusyTimeLC (=1234) / first 1 hour (= 3600) = 0.342778 
Utilization factor (G/C) = totBusyTimeGC (=1188) / first 1 hour (= 3600) = 0.33 
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Figure 6.7 A Sample of the flightState.out File. 

 
Time     
     FLT #        (x, y)         currCommState        permission    currMoveState       speed    accel       currLink linkLength distInLink totDist 
 ---------  ------------------  ------------------   ------------   -------------     --------  --------     -------- ---------- ---------- ------- 

... 
 
 320.000 
     DEP_1  (4.27860, 7.23847)   readyToCommunicate     clearToTakeOff    rolling        228.557  5.65931   2006 -> 2005     347.582  322.875  8907.85   
     DEP_2  (3.44770, 3.71363)   readyToCommunicate     clearToTaxi       taxiingToDepQue 27.3409  0.000000   1031 -> 2018     782.058  727.237  3832.22   
     DEP_3  (3.65123, 6.51975)   readyToCommunicate     clearToTaxi       taxiingToDepQue 27.3409  0.000000   1011 -> 1014     185.988  107.714  608.929   
     DEP_4  (3.24660, 6.64350)  waitControllerContact  waitThere         parking        0.000000  0.000000      0 -> 0           0  0.000000  0.000000   
     DEP_5  (3.47540, 6.59730)  waitControllerContact  waitThere         parking        0.000000  0.000000      0 -> 0           0  0.000000  0.000000   
     DEP_6  (3.47540, 6.59730)  waitControllerContact  waitThere         parking        0.000000  0.000000      0 -> 0           0  0.000000  0.000000   
     DEP_7  (3.47540, 6.59730)  waitControllerContact  waitThere         parking        0.000000  0.000000      0 -> 0           0  0.000000  0.000000   
     DEP_8  (3.47540, 6.59730)  readyToCommunicate     fileApproved      parking        0.000000  0.000000      0 -> 0           0  0.000000  0.000000   
     DEP_9  (3.47540, 6.59730)  readyToCommunicate     fileApproved      parking        0.000000  0.000000      0 -> 0           0  0.000000  0.000000   
    DEP_10  (3.33330, 6.32750)  readyToCommunicate     fileApproved      parking        0.000000  0.000000      0 -> 0           0  0.000000  0.000000   
     ARR_1  (2.80910, 5.01500)  readyToCommunicate     clearToTaxi       parking        0.000000  0.000000      0 -> 0           0  0.000000  0.000000   
     ARR_2  (2.98857, 4.53792)   readyToCommunicate     clearToTaxi       taxiingToGate   27.3409  0.000000   1029 -> 1028     233.737  4.76052  6039.35   
     ARR_3  (4.13276, 8.73577)   readyToCommunicate     clearToTaxi       taxiingToGate   16.3510  4.41148   1003 -> 2003     915.958  24.2862  6123.22   
     ARR_4  (4.08470, 3.21800)   waitingCommand         waitThere         onFinal        0.000000  0.000000   2021 -> 2019     493.258  0.000000  0.000000   
     ARR_5  (4.08470, 3.21800)   waitControllerContact  waitThere         onFinal        0.000000  0.000000   2021 -> 2019     493.258  0.000000  0.000000   
     ARR_6  (4.08470, 3.21800)   waitControllerContact  waitThere         onFinal        0.000000  0.000000   2021 -> 2019     493.258  0.000000  0.000000   
     ARR_7  (4.08470, 3.21800)   readyToCommunicate     unDecided         onFinal        0.000000  0.000000   2021 -> 2019     493.258  0.000000  0.000000   
     ARR_8  (4.08470, 3.21800)   readyToCommunicate     unDecided         onFinal        0.000000  0.000000   2021 -> 2019     493.258  0.000000  0.000000   
     ARR_9  (4.08470, 3.21800)   readyToCommunicate     unDecided         onFinal        0.000000  0.000000   2021 -> 2019     493.258  0.000000  0.000000   
    ARR_10  (4.08470, 3.21800)   readyToCommunicate     unDecided         onFinal        0.000000  0.000000   2021 -> 2019     493.258  0.000000  0.000000   
321.000 
     DEP_1  (4.28917, 7.45945)   readyToCommunicate     clearToTakeOff    liftingOff     234.179  0.000000   2005 -> 2002     1624.27  206.661  9139.22   
     DEP_2  (3.44770, 3.68748)   readyToCommunicate     clearToTaxi       taxiingToDepQue 27.3409  0.000000   1031 -> 2018     782.058  754.578  3859.57   
     DEP_3  (3.66271, 6.49626)   readyToCommunicate     clearToTaxi       taxiingToDepQue 27.3409  0.000000   1011 -> 1014     185.988  135.055  636.270   
     DEP_4  (3.24660, 6.64350)  waitControllerContact  waitThere         parking        0.000000  0.000000      0 -> 0           0  0.000000  0.000000   
     DEP_5  (3.47540, 6.59730)  waitControllerContact  waitThere         parking        0.000000  0.000000      0 -> 0           0  0.000000  0.000000   
     DEP_6  (3.47540, 6.59730)  waitControllerContact  waitThere         parking        0.000000  0.000000      0 -> 0           0  0.000000  0.000000   
     DEP_7  (3.47540, 6.59730)  waitControllerContact  waitThere         parking        0.000000  0.000000      0 -> 0           0  0.000000  0.000000   
     DEP_8  (3.47540, 6.59730)  readyToCommunicate     fileApproved      parking        0.000000  0.000000      0 -> 0           0  0.000000  0.000000   
     DEP_9  (3.47540, 6.59730)  readyToCommunicate     fileApproved      parking        0.000000  0.000000      0 -> 0           0  0.000000  0.000000   
    DEP_10  (3.33330, 6.32750)  readyToCommunicate     fileApproved      parking        0.000000  0.000000      0 -> 0           0  0.000000  0.000000   
     ARR_1  (2.80910, 5.01500)  readyToCommunicate     clearToTaxi       parking        0.000000  0.000000      0 -> 0           0  0.000000  0.000000   
     ARR_2  (2.96257, 4.53519)   readyToCommunicate     clearToTaxi       taxiingToGate   27.3409  0.000000   1029 -> 1028     233.737  32.1014  6066.69   
     ARR_3  (4.12726, 8.71929)   readyToCommunicate     clearToTaxi       taxiingToGate   19.9686  3.61763   1003 -> 2003     915.958  42.4460  6141.38   
     ARR_4  (4.08470, 3.21800)   receivingCommand       waitThere         onFinal        0.000000  0.000000   2021 -> 2019     493.258  0.000000  0.000000   
     ARR_5  (4.08470, 3.21800)   waitControllerContact  waitThere         onFinal        0.000000  0.000000   2021 -> 2019     493.258  0.000000  0.000000   
     ARR_6  (4.08470, 3.21800)   waitControllerContact  waitThere         onFinal        0.000000  0.000000   2021 -> 2019     493.258  0.000000  0.000000   
     ARR_7  (4.08470, 3.21800)   readyToCommunicate     unDecided         onFinal        0.000000  0.000000   2021 -> 2019     493.258  0.000000  0.000000   
     ARR_8  (4.08470, 3.21800)   readyToCommunicate     unDecided         onFinal        0.000000  0.000000   2021 -> 2019     493.258  0.000000  0.000000   
     ARR_9  (4.08470, 3.21800)   readyToCommunicate     unDecided         onFinal        0.000000  0.000000   2021 -> 2019     493.258  0.000000  0.000000   
    ARR_10  (4.08470, 3.21800)   readyToCommunicate     unDecided         onFinal        0.000000  0.000000   2021 -> 2019     493.258  0.000000  0.000000   

... 
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Figure 6.8  A Sample of TaxiPath.out File. 

 

ARR_1(system clock: 65) 
Static  Path: 1003 -> 2003 -> 1005 -> 1008 -> 1010 -> 1012 -> 1015 -> 1018 -> 1021 -> 1020 -> 1024 -> 1026 -> 1030 -> 1029 -> 1028 -> 12
td_SP_2 Path: 1003 -> 2003 -> 1005 -> 1008 -> 1010 -> 1012 -> 1015 -> 1018 -> 1021 -> 1020 -> 1024 -> 1026 -> 1030 -> 1029 -> 1028 -> 12
 
DEP_1(system clock: 73) 
Static  Path: 1009 -> 1011 -> 1014 -> 1016 -> 1017 -> 1019 -> 1020 -> 1024 -> 1027 -> 1031 -> 2018 -> 2021 
td_SP_2 Path: 1009 -> 1011 -> 1014 -> 1016 -> 1017 -> 1019 -> 1020 -> 1024 -> 1027 -> 1031 -> 2018 -> 2021 
 
DEP_2(system clock: 180) 
Static  Path: 1009 -> 1011 -> 1014 -> 1016 -> 1017 -> 1019 -> 1020 -> 1024 -> 1027 -> 1031 -> 2018 -> 2021 
td_SP_2 Path: 1009 -> 1010 -> 1012 -> 1015 -> 1018 -> 1021 -> 1022 -> 1025 -> 1027 -> 1031 -> 2018 -> 2021 
 
ARR_2(system clock: 192) 
Static  Path: 1015 -> 1018 -> 1021 -> 1020 -> 1024 -> 1026 -> 1030 -> 1029 -> 1028 -> 12 
td_SP_2 Path: 1015 -> 1018 -> 1021 -> 1020 -> 1024 -> 1026 -> 1030 -> 1029 -> 1028 -> 12 
 
ARR_3(system clock: 291) 
Static  Path: 1003 -> 2003 -> 1005 -> 1008 -> 1010 -> 1012 -> 1015 -> 1018 -> 1021 -> 1020 -> 1024 -> 1026 -> 1030 -> 1029 -> 1028 -> 12
td_SP_2 Path: 1003 -> 2003 -> 1005 -> 1008 -> 1010 -> 1012 -> 1015 -> 1018 -> 1021 -> 1020 -> 1024 -> 1026 -> 1030 -> 1029 -> 1028 -> 12
 
 
... 
 
 
DEP_8(system clock: 908) 
Static  Path: 1011 -> 1014 -> 1016 -> 1017 -> 1019 -> 1020 -> 1024 -> 1027 -> 1031 -> 2018 -> 2021 
td_SP_2 Path: 1011 -> 1014 -> 1012 -> 1015 -> 1018 -> 1021 -> 1022 -> 1025 -> 1027 -> 1031 -> 2018 -> 2021 
 
DEP_9(system clock: 968) 
Static  Path: 1011 -> 1014 -> 1016 -> 1017 -> 1019 -> 1020 -> 1024 -> 1027 -> 1031 -> 2018 -> 2021 
td_SP_2 Path: 1011 -> 1014 -> 1016 -> 1017 -> 1019 -> 1020 -> 1024 -> 1027 -> 1031 -> 1032 -> 1033 -> 2018 -> 2021 
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6.5 Computational  Results 

 

6.5.1 Total Taxiing Time as Related to Various Network Assignment Strategies 

 

Table 6.4 shows results for the static and time-dependent NAP in total taxiing time. As shown in 

the table, the impact of the time-dependent NAP varies depending on a predefined unit delay 

time, tentatively called Conflict Delay Time (CDT), which represents the impact of a conflicting 

flight on taxiing delay and is used when the time-dependent taxiing route is planned. For 

example, if CDT is set to 5 seconds, then the travel time for a certain link increases 5 seconds for 

every one possible conflicting aircraft.  

Table 6.4 Total Taxiing Times. 

   (Unit: Seconds) 
Scenarios Number of operations per hour 

Network 
Assign. 

Sequence Comm. 10 15 20 25 30 35 40 45 50 

Voice Ch. 1650.0 2410.8 3122.6 3917.4 4570.9 5265.3 5886.8 6584.4 7141.3 Pure 
FCFS Data Link 1648.1 2410.1 3121.8 3916.7 4574.8 5258.2 5889.1 6584.3 7150.6 

Voice Ch. 
(Base Sce.) 

1650.4 2413.2 3122.9 3916.6 4577.0 5270.9 5888.2 6589.8 7140.8 FCFS 
w/ Land. 

Data Link 1647.9 2409.5 3120.3 3913.8 4573.2 5259.1 5885.9 6577.9 7144.2 
Voice Ch. 1650.6 2413.2 3123.0 3917.6 4577.8 5271.4 5889.7 6594.3 7142.1 

Static 
Network 
Assign. 

2-exch. 
Data Link 1648.1 2409.6 3120.2 3913.1 4573.0 5262.6 5885.8 6580.8 7148.0 

Voice Ch. 1650.0 2410.8 3122.6 3917.4 4570.9 5265.3 5886.8 6584.4 7141.3 Pure 
FCFS Data Link 1648.1 2410.1 3121.8 3916.7 4574.8 5258.2 5889.1 6584.3 7150.6 

Voice Ch. 1650.4 2413.2 3122.9 3916.6 4577.0 5270.9 5888.2 6589.8 7140.8 FCFS 
w/ Land. Data Link 1647.9 2409.5 3120.3 3913.8 4573.2 5259.1 5885.9 6577.9 7144.2 

Voice Ch. 1650.6 2413.2 3123.0 3917.6 4577.8 5271.4 5889.7 6594.3 7142.1 

Time-Dep. 
Network 
Assign. 

 
(CDT* = 
1 sec.) 2-exch. 

Data Link 1648.1 2409.6 3120.2 3913.1 4573.0 5262.6 5885.8 6580.8 7148.0 

Voice Ch. 1650.0 2410.8 3123.7 3917.4 4570.9 5265.3 5886.6 6587.7 7142.8 Pure 
FCFS Data Link 1648.1 2410.1 3121.8 3916.7 4574.8 5258.2 5890.1 6584.8 7153.2 

Voice Ch. 1650.4 2413.2 3122.9 3916.6 4577.0 5270.0 5889.2 6589.8 7141.9 FCFS 
w/ Land. Data Link 1647.9 2409.5 3120.8 3914.2 4573.6 5259.9 5886.5 6577.9 7145.4 

Voice Ch. 1650.6 2413.2 3123.0 3918.1 4577.8 5271.4 5890.7 6593.6 7142.4 

Time-Dep. 
Network 
Assign 

 
 (CDT = 
2 sec.) 2-exch. 

Data Link 1648.1 2409.6 3120.7 3913.1 4573.4 5262.6 5886.4 6580.8 7148.4 

Voice Ch. 1650.8 2410.8 3125.0 3920.5 4575.6 5266.3 5890.5 6597.3 7150.0 Pure 
FCFS Data Link 1648.1 2410.5 3122.3 3919.0 4580.5 5266.8 5895.5 6593.2 7161.9 

Voice Ch. 1651.3 2413.6 3124.8 3918.7 4578.2 5273.9 5900.2 6598.9 7151.7 FCFS 
w/ Land. Data Link 1647.9 2411.3 3122.5 3916.6 4579.0 5268.2 5895.1 6589.0 7154.5 

Voice Ch. 1651.5 2413.6 3125.5 3919.8 4580.5 5274.6 5899.0 6602.3 7156.7 

Time-Dep. 
Network 
Assign. 

 
(CDT = 
5 sec.) 2-exch. 

Data Link 1648.1 2411.4 3122.5 3916.4 4579.2 5269.3 5893.6 6592.7 7158.1 
*CDT: Conflict Delay Time. 
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The simulation results summarized in the Table 6.4 indicate that the time-dependent taxiing 

routes planed based on 5 seconds of CDT cause more taxiing time than the static taxiing routes. 

In the case that CDT is 2 seconds, some of time-dependent taxiing plans help to reduce the 

taxiing time but some of them still cause more taxiing time than static taxiing plans. In the case of 

1 second of CDT, the resulting taxiing times are exactly the same ones as those founded in the 

static case. Based on these results, we can postulate that CDT value for this case study will be 

between 1.0 and 2.0. (For the computational convenience, 2.0 of CDT value will be used from 

this point.) We also can see that the communication method does not show any correlation with 

taxiing time itself.  

 

6.5.2 Average Runway Delay for Analysis of  Aircraft Sequencing Strategies 

 

The average runway delays for all three types of sequencing strategies are summarized in Table 

6.5. The results clearly show that, if the 2-exchange sequences are used in runway operations, the 

savings in runway delays  reaches up to 15% compared to base scenario.  And it is also showed 

that the communication based on the data link help in saving the runway delay.  

 

Table 6.5 Average Runway Delays resulting from the Simulation.  

   (Unit: Seconds / Flight) 
Scenarios Number of operations per hour 

Network 
Assign. 

Sequence Comm. 10 15 20 25 30 35 40 45 50 

Voice Ch. 17.9 31.5 36.0 45.9 48.0 100.4 102.8 170.6 324.4 Pure 
FCFS Data Link 8.8 19.3 24.3 28.6 34.2 64.8 77.1 112.7 211.6 

Voice Ch. 
(Base Sce.) 18.4 30.2 32.8 40.9 45.5 63.5 81.6 94.8 137.6 FCFS 

w/ Land. 
Data Link 10.7 21.9 23.6 32.3 35.7 52.1 69.0 83.0 123.6 

Voice Ch. 17.7 29.7 32.9 39.4 44.8 62.4 76.6 90.1 127.6 

Static 
Network 
Assign. 

SWAP 
Data Link 9.7 21.0 22.4 27.9 33.8 47.9 60.7 76.2 110.1 

Voice Ch. 17.9 31.5 36.1 45.9 48.0 100.4 102.8 170.7 324.4 Pure 
FCFS Data Link 8.8 19.3 24.3 28.6 34.2 64.8 77.1 112.7 211.6 

Voice Ch. 18.4 30.2 32.8 40.9 45.5 63.5 81.7 94.8 137.7 FCFS 
w/ Land. Data Link 10.7 21.9 23.6 32.3 35.7 52.1 69.0 83.0 123.6 

Voice Ch. 17.7 29.7 32.9 39.4 44.8 62.4 76.7 90.5 127.6 

Time-Dep. 
Network 
Assign. 
(5sec) 

SWAP 
Data Link 9.7 21.0 22.4 27.9 33.8 47.9 60.7 76.2 110.1 
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It should be pointed out that average delays obtained from the simulation model are not same as 

those from the analytical solution shown in Table 6.6. This is because in some cases, analytical 

sequences cannot be implemented due to the communication time lags (delays) as well as the 

several assumptions used in simulation model.  

 

Table 6.6 Average Runway Delays resulting from Sequencing Step. 

                                                                                                                     (Unit: Seconds / Flights) 
Number of operations per hour 

Sequence 10 15 20 25 30 35 40 45 50 
FCFS 

W/ Land. (1) 
10.9 23.2 24.9 35.1 38.3 56.3 73.2 89.0 130.5 

2-exch. (2) 9.6 22.0 23.0 29.6 35.7 51.5 64.0 81.1 115.6 
Savings (= (1)-(2)) 1.3 1.2 1.9 5.5 2.6 4.8 9.2 7.9 14.9 

 

 

The average delays obtained using the sequencing methods are illustrated in Figures 6.9 and 6.10. 

Figure 6.9 indicates that, if the runway practical capacity is decided at the level of  four minutes 

of delay per aircraft, the runway capacity is about 46 or 47 arrivals per hour. This seems to 

correlate well with the analytical results obtained using the airport capacity model (ACM) for the 

same aircraft mix. 
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Figure 6.9 Average Runway Delay by Sequencing Methods (Communication: Voice Channel).  

 

Figure 6.10 Average Runway Delay by Sequencing Methods (Communication: Data Link).  
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6.5.3 Total Operation Time 

 

Total operation time is a good index to compare various air traffic control strategies. The total 

operation obtained for all 12 scenarios are shown in Table 6.7. The results indicate that the total 

operation time can be reduced by up to 9.2% if all three advanced air traffic control technologies,  

including 2-excahnge sequencing, time-dependent network assignment technique and data link 

are used. It is also evident that among these three technologies, the pilot-controller 

communication method is the most effective at reducing  total operation time.  

Interestingly, the time-dependent taxiing planning does not provide a significant advantages at 

reducing delays. Nevertheless, it should be noted that time-dependent taxiing feature in the 

simulation model is inevitable to model the proper temporal changes in the operation of every 

taxiway link. Furthermore, the time-dependent taxiing planning algorithm is expected to play a 

substantive role to reduce the total operation time at airports having more complicated taxiway 

network with higher taxiing demands.  

The results of three sequencing strategies are compared in Figure 6.11. As expected, the pure 

FCFS policy yields the highest delays. The impact of two communication methods on the total 

delays is compared in Figure 6.12. Here we note certain reduction in delays when pilot controller 

datalink communications are used. 

Table 6.7 Total Operation Time 1)
. 

    (Unit: Seconds) 
Scenarios Number of operations per hour 

Network 
Assign. 

Sequence Comm. 10 15 20 25 30 35 40 45 50 

Voice Ch. 2589.1 4017.4 5345.2 6935.3 8272.7 11421.1 13029.4 17664.3 27150.2 Pure  
FCFS Data Link 2420.3 3712.9 4971.1 6328.2 7656.7 9952.9 11756.1 14794.7 21239.0 

Voice Ch. 
(Base Sce.) 

2593.9 3998.9 5277.3 6814.0 8198.2 10136.0 12171.6 14264.9 17810.1 
FCFS 

Data Link 2435.4 3743.1 4949.0 6406.0 7691.6 9492.4 11409.6 13427.4 16821.8 
Voice Ch. 2587.3 3989.7 5279.3 6774.8 8175.7 10102.2 11974.1 14056.6 17323.6 

Static  
Network 
Assign. 

2-exch. 
Data Link 2426.2 3731.1 4927.1 6303.7 7635.8 9353.1 11087.6 13128.2 16155.5 
Voice Ch. 2589.1 4017.4 5346.9 6935.3 8272.7 11421.1 13028.6 17665.5 27150.2 Pure  

FCFS Data Link 2420.3 3712.9 4971.1 6328.2 7656.7 9952.9 11756.5 14794.7 21239.1 
Voice Ch. 2593.9 3998.9 5277.3 6813.9 8198.2 10135.2 12175.4 14263.1 17815.9 

FCFS 
Data Link 2435.4 3743.1 4949.0 6406.0 7691.8 9492.4 11410.9 13427.4 16821.8 
Voice Ch. 2587.3 3989.7 5279.3 6774.4 8175.7 10102.2 11977.9 14076.4 17323.9 

Time-Dep. 
Network 
Assign. 

2-exch. 
Data Link 2426.2 3731.1 4927.1 6303.7 7636.0 9353.1 11088.9 13128.2 16155.7 

1)Total Operation Time = ∑ i = all flights (Time to finish operationi - Time to enter the systemi).  
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Figure 6.11 Total System Costs by Sequencing Methods (from the Simulation Run). 

 

Figure 6.12 Total System Costs by Sequencing Methods (from the Simulation Run). 
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Chapter 7. Summary, Conclusions and Future 

Research 
 

7.1 Summary of Results 

 

Unless the weather is adverse, flight delays occur mainly due to excessive demands on airport 

facilities such as runways, taxiways, gates, communication system, etc. This research focuses on   

the development of optimization models and algorithms and a computer simulation model  to 

study various activities inside the airport terminal area. These models are intended to help reduce 

congestion on runways and taxiways. 

 

In order to manage aircraft traffic at busy airports and terminal areas, aircraft sequencing methods 

can be used in conjunction with advanced Air Traffic Control (ATC) automation tools. This 

research discusses a combinatorial optimization approach to the Aircraft Sequencing Problem 

(ASP). Consideration is given to aircraft arrival and departure streams on a single runway or in 

closely spaced runways where arrivals and departures are dependent. Previous studies conducted 

in this area have mainly focused on the sequencing problem for arriving aircraft. Since many 

airports in the U.S. have dependent arrival and departure stream operations, consideration is given 

to both conditions simultaneously. This makes the problem more realistic yet at the same time, 

more challenging. Starting with preliminary information about the aircraft such as the aircraft 

types, desired arrival/departure times, maximum delay times, minimum separation rules, etc., the 

problem can be formulated as a traveling salesman problem with time-windows, and with 

nonconsecutive separation enforcement. 

To solve the ASP, an  exact approach using integer programming techniques is developed. Tight 

lower bounds are generated using the Reformulation-Linearization Technique (RLT) of Sherali 

and Adams (1990, 1994). Compared with the linear programming relaxation of the original 

model, the proposed reformulated ASP problems provide tighter representations, producing 

significantly improved lower bounds. As a result, several previously unsolvable instances are now 

computationally tractable within the set limits. The computational results show that, by changing 

the traditional FCFS sequence intelligently, about 17% of the overall operational time can be 

saved. 
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An important consideration for the ASP algorithm is its eventual implementation in real-time 

runway operations. As such, the computation time required to solve the ASP is of paramount 

importance. To reduce computation time, we suggest several heuristic approaches by modifying 

2-exchange and swap methods which are widely used in solving TSP problems. Here, the exact 

method serves to help enumerate the heuristic procedures for reasonably sized problems as well 

as to develop such heuristic procedures themselves. Computational results show that the 2-

exchage heuristic method provides sequences very close to exact solutions in reasonable time. 

 

Given an optimal sequence output from the ASP model, the Network Assignment Problem (NAP) 

on the taxiway-runway system is considered in a single framework. To resolve the relationships 

between runway and taxiway operations, it is desirable to establish certain connections between 

ASP and NAP. In our case, we place a higher priority on runway operations. This means that an 

optimal aircraft sequence for runway operations which completes the scheduled departures and 

landings as soon as possible will be decided first. Taking this sequence as a given condition, the 

NAP problem is solved. In this reaserch, the quasi-dynamic network assignment stategy is 

adopted as the method for NAP.  By taking advantage of the dynamic aspects of the problem, 

potential conflicts on the taxiways are detected and avoided if needed. This feature helps design a 

more effective network assignment procedure. 

 

To evaluate the system performance in detail, a microscopic simulation model has been 

developed. Some salient points of the developed model include: 1) a hybrid-type simulation 

model that can analyze the total delay due not only to network congestion but also to 

communication channel capacity; 2) an aircraft-following model that captures more dynamic and 

detailed behavior of the moving aircraft, and 3) computer codes are developed in ANSI C++ for 

the sake of portability. Furthermore, the object-oriented-programming concept employed in 

developing  simulation model is expected to render the source codes more readable and handy to 

modify for the future development. 

 

Adopting Washington National (DCA) Airport as a sample airport, a case study is presented 

along with computational results. Results confirm that for high demand levels, communication 

can be another source of delay that is not considered in the ASP and NAP problems. Results show 

that if an advanced ATC system using the 2-exchange sequence in runway operations and the 

data-link system in communication is used, the savings in runway delays reaches up to 19% 

compared to the base scenario. Results also reveal that up to 5% of the total operational time in 
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the terminal area can be reduced by upgrading the current voice-channel communication system 

to the data-link communication system. 

 

7.2 Recommendations for Future Research 

 

Applying Lagrangian relaxation techniques to ASP: Lagrangian relaxation can be applied to 

solving integer programming problems exactly or approximately in a more effective fashion by 

exploiting inherent special structures. Lagrangian relaxation can also be applied in conjunction 

with RLT, by using it to efficiently solve the LP relaxations through duality considerations. 

 

Consideration of gate allocation: It is frequently observed at busy airports that some landing 

flights wait on the taxiway for gates to be vacated. Gate delay is another major source of total 

delay which has not been considered in this research. Gates can be managed more efficiently by 

solving a so-called "Gate Assignment Problem (GAP)" (see Sherali and Brown, 1994). Since 

gates are facilities for both aircraft and passengers, the passenger delays are also considered in 

GAP. The effect of GAP could be incorporated in future extensions of our research. 

 

Modifying the shortest path algorithm in the time -dependent NAP: Waiting times at the 

nodes can be considered when the dynamic shortest paths are calculated. Instead of detouring the 

blocked link, the aircraft can wait at the crossing point until the blockage is released. This is 

unlike the ground transportation network where any waiting at intersections is prohibited due to 

the operational characteristics of highways. To take node waiting into account, Orda and Rom’s 

study (1990) discussed in Chapter 4 can be applied.  

 

Consideration of stochastic factors in the simulation model: For a more realistic analysis, 

probabilistic functions can be used to characterize the following possible stochastic components: 

1) the time duration for each phase of the communication process such as receiving request, 

judging, sending commands, receiving confirmations, and communication processes; 2) aircraft 

performance on the runway with modifications to the descent flight path, the threshold crossing 

height, the threshold crossing speed, braking speed, etc., and 3) the lift-off speed in the departure 

procedure. In order to obtain these probability functions, a data collection process and statistical 

analyses could be conducted in the future. (All aspects of the second point above have already 

been studied in detail at Virginia Tech.)  
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Enhancing certain features of the simulation model: It is assumed in the simulation model that 

only a single runway is used for both arrival and departure operations. For the simulation model 

to be more versatile, it needs to be extended to handle a more diverse set of runway 

configurations. These include multiple runways with dependent operational conditions along with 

runway crossing procedures. In addition, there are several important features that have not been 

implemented in this research: 1) weather condition, 2) multiple controllers, 3) pushback behavior 

in association with gate occupancy, 4) service vehicle movements, 5) icing process, 6) holding 

stack, etc. All these are valid extensions to this model. 

 

Data and problem horizon: From a practical implementation point of view, it is desirable to 

divide the entire data horizon into several relatively smaller problem horizons. The fragmentation 

of the data horizon provides us with two practical benefits. First, we can handle the data in a 

reasonable computational time, which is a critical factor in real-time ATC systems. For example, 

as discussed earlier, the computational time for ASP grows dramatically as the number of aircraft 

considered increases. Second, by making the problem horizon smaller, we can both reduce the 

uncertainty and re-consider residual (or missed) operations in the next problem. 

Using this approach, operations that have been considered during some imminent duration 

periods are eliminated from further consideration (see Figure 7.1). The operations starting at the 

end of the imminent duration period constitute new operations for the next problem, having 

suitably revised input data. On the other hand, aircraft that are at the initial or intermediate stages 

of operations will continue according to the prescribed related decisions as determined in the 

previous periods' problems. Figure 7.2 displays the problem structure and data- flows for the ASP 

and NAP models in a multi-data-horizon framework.  

 

 

 

 

 

Figure 7.1 Definition of Problem and Data Horizons. 
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Figure 7.2 Problem Structure and Data-Flow for the ASP and NAP Model Framework  (Multi-
Data Horizon). 
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Appendix A: List of Input Data 
 
Node data 
 

field 1 serial number 
field 2 id number  

node number for gate: 1-999, 
node number for taxiway: 1001-
9999, 
node number for runway: 2001-
2999. 

field 3 node type 
G(gate), 
T(Taxiway), 
R(Runway), 
I(Intersection). 

field 4 x coordinate 
field 5 y coordinate 

 
 
Flight schedule 
 

field 1 serial number 
field 2 flight number  (ex, AA2456) 
field 3 Aircraft type (ex, B727-100) 
field 4 operation type  

        D(Departure)/A(Arrival) 
field 5 Initial time (hour) 
field 6 Initial time (minute) 
field 7 Initial time (second) 
field 8 Gate number 
field 9 Runway number 

 
Edge date 
 

Line 1 field 1 scale 
field 1 serial number 
field 2 from node id 
field 3 to node id 
field 4 Edge type  

      T(Taxiway)/R(Runway)/E(Runway 
exit) 

field 5 Edge id 
field 6 maximum speed (mph) 

Line 2 - 

field 7 direction (ex, 2 (ways)) 
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Aircraft data 
 

field  1 Serial number  
field  2 Aircraft type  B727-100 
field  3 wheel base (m) 16.23 
field  4 OEW (Operating Empty Weight, kg) 72600 
field  5 MLW (Maximum Landing Weight, kg) 62400 
field  6 CLmax (Maximum Lifting 

Coefficient) 
2.59872 

field  7 Wing area (m2) 157.90 
field  8 Wing span (m) 32.92 
field  9 Length (m) 40.59 
field  10 normal taxiing speed (km/hr) 30.0 
field  11 maximum taxiing speed (km/hr) 40.0 
field  12 maximum acceleration for taxiing 

(m/s2) 
2.0 

field  13 maximum deceleration for taxiing 
(m/s2) 

-5.0 

field  14 //normal takeoff speed (km/hr) // 300.0 
field  15 //maximum acceleration for 

rolling (m/s2) 
// 9.80 

field  16 //maximum acceleration for 
takeoff (m/s2) 

// 9.80 

field  17 velocity at brake-release (ft/s) 27.41 
field  18 velocity at lifting-off (ft/s) 230.6 
field  19 acceleration at brake-release 

(ft/s2) 
6.96 

field  20 k1 7.053357 
field  21 k2  (accel. for takeoff = k1 – k2 

*speed) 
0.00357250 
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Appendix B: Constants used in the Simulation Model 
 
//Definition.h 
#ifndef _DEFINITION_H 
#define _DEFINITION_H 
//----------------------------------------- 
// Controls parameters for for Simulation 
//----------------------------------------- 
#define BATCH_JOB      0 // 0: NO, 1: YES  If yes, then use "test.bat". 
#define COMMUNICATION  1 // 1: voice channel, 2: data link 
#define SEQUENCING     1  // 1: pure FCFS, 

// 2: FCFS w/ landing priority, or 
   // 3: SWAP squencing 
#define spAlgorithm td_SP_2 // static_SP: Static SP 
  // td_SP_1  : time-dependent shortest path algorithm for rNode->all, for all timeSlices 
  // td_SP_2  : time-dependent shortest path algorithm for rNode->all, for a SINGLE 
timeSlice 
// ------------------- CAUTION ------------------- 
// 
// "td_SP_1" may cause a memory deficiency poblem. cause this method takes huge memories such as  
// 
//   int   td_shortPath[MAX_NODES][MAX_NODES][NumTimeSlices] 
//   float td_shortTime[MAX_NODES][MAX_NODES][NumTimeSlices] 
// 
//          Also, takes much more computation time comparing with method 2.  
//   In conclusion, not recommended. 
 
#define PRINT_FLIGHT_STATE      0 
#define PRINT_CONTROLLER_STATE  0  
// 0: the flight/cotroller state file is not written. (This will save time a lot.) 
//------------------------------- 
// Definitions for Problem Size 
//------------------------------- 
#define MAX_NODES     70  // Max. number of Nodes this simulation can handle 
#define MAX_FLIGHTS   120  // Max. number of Flights this simulation can handle 
#define MaxRunways    10          // Max. number of Runways this simulation can handle 
#define MaxNodesPerIntersection 5 // Max. number of Nodes which are connected to one intersection 
#define MaxAcftModels 50  // Max. number of AcftModels this simulation can handle 
#define InfDistance   99999.9 // Inifite distance for SP algorithm (considered as infinity) 
#define MaxNodeIndex  99999 // Max. index for node numbering 
 
 
//------------------------------- 
// Definitions for Simulation Parameters 
//------------------------------- 
//#define UpdateTDSP    300 // Update TDSP every UpdateTDSP seconds and 
                                  // NumTimeSlices = SimulationDuration / UpdateTDSP in Simulation 
 
#define dt           (float) 1.0 //second 
#define StartHour    7 
#define StartMinute  0 
#define StartSecond  0 
#define EndHour      9 
#define EndMinute    0 
#define EndSecond    0 
#define NumTimeSlices 180  // Max. number of time slices to keep the Time-dependent link travel 

time for TDSP algorithm 
#define AddLinkTravelTime 3.5   // (sec) expected extra link travel time for each connflicting 

flight  
#define MaxDelay  600   // (sec.) should be variable to each problem. 
#define BufferTimeRatio 1.1   // norminal ROT for departure =  
                    // ready time to taxi + normal taxiing time * BufferTimeRatio (=1.1) ) 
         // this number is also used in "Random Generation" 
 
//------------------------------- 
// UK(ft) -> SI(meter) Unit         // Multiply the conversion factor  
//------------------------------- 
#define meter_per_ft 0.305 // Conversion factor (ft -> meter) 
#define fps_per_mph 1.4667 // Conversion factor (mi/hr -> ft/sec) 
#define km_per_mile 1.609 // Conversion factor (mile -> km) 
#define kg_per_lb          0.4536   // Conversion factor (pound -> kg) 
 
//------------------------------- 
// SI(meter) -> UK(ft) Unit 
//------------------------------- 
#define ft_per_meter    3.28   // Conversion factor (meter -> ft) 
#define mile_per_km   0.62137      // Conversion factor (mile -> km) 
#define lb_per_kg         2.2046       // Conversion factor (kg -> pound) 
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//------------------------------- 
// Aircraft Classification Weight 
//------------------------------- 
#define WtSmallLarge  60000    // if acft weight < WtSmallLarge (lb) then this is "small" 
#define WtLargeHeavy 300000    // if acft weight > WtLargeHeavy (lb) then this is "heavy" 
 
//------------------------------- 
// Car-Following 
//------------------------------- 
#define minGap 15  // minimum gap (second) for coflicting aircraft at Intersection 
                                    // if increase this, the TDSP will be more effective. 
#define SafeDistanceFromCrossToStop 50  // Safe Distance from the cross end for aircraft to stop. 

(ft) 
#define maxLegs 5   // maximum number of legs for a intersection.  
   // this number is the same to the maximum number of conflicting flights at a 

intersection 
#define u_f   41.0  //free flow speed (ft/sec) = 45kph 
#define h_j   83.0  //jam headway (ft/veh)   
#define k_h  // design parameter for headwayControl logic in vehicle-following model 
#define k_s  // design parameter for speedControl logic in vehicle-following model 
#define reactionTime 1.55 // delta_t          for micro car-following model 
#define alpha_        .37  // sensitivity paprameter  (for micro car-following model) 
#define normSpeed_mph 18.65 // normal taxiing speed (mph) = 30 (kph) 
#define normSpeed_fps (normSpeed_mph*fps_per_mph) // normal taxiing speed (fps) 
//#define safetyDist    
 
//------------------------------- 
// For Landing Module 
//------------------------------- 
//    1) for Flaring Out phase 
#define gamma (2.75 * 3.1415 / 180)  // radian 
   // Tangent value of the descent flight path angle (degree, ~N(2.73,0.08^2)) 
#define h_th_ft         50.      // Threashold crossing height (ft)  (meter, ~N(15.2,3^2)) 
#define g_mps2          9.8    // Acceleration of gravity          (meter/sec^2)  
#define n_fl            1.1       // Flare load factor                (1.1~1.3) 
#define delta_m        25.0   // Correction distance for touchdown diatnce in association with 

runway length (m/100 m runway length) 
#define rho             1.1673  // Standard atmosphere air density at 500m        (kg/m^3)   
#define wtFactor        0.5    // weight factor for landing weight (= (OEW + MLW) * wtFactor)  
 
//    2) for Free Rolling (FR) phase 
#define timeFR 2          // Time for free rolling (sec) 
#define accFR_mps2     -0.7      // the acceleration for Free Rolling (m/sec^2) 
 
//    3) for Braking phase 
#define wtForDecSpd           41000    
#define decisionSpdHeavy_mps 35  // decision speed for heavy aircraft (wt > 41000 lb) 
#define decisionSpdLarge_mps 27  // decision speed for large aircraft (wt < 41000 lb) 
 
#define accBrakeB727_mps2    -2.19    // decaleration for braking phase (B727) ~N(2.19, 0.416^2) 
#define accBrakeB737_mps2    -2.25    // decaleration for braking phase (B737) ~N(2.25, 0.471^2) 
#define accBrakeB757_mps2    -2.01    // decaleration for braking phase (B757) ~N(2.01, 0.478^2) 
#define accBrakeDC9_mps2     -2.03    // decaleration for braking phase (DC9)  ~N(2.03, 0.414^2) 
#define accBrakeMD80_mps2    -2.05    // decaleration for braking phase (MD80) ~N(2.05, 0.387^2) 
#define accBrakeDefault_mps2 -2.10    // decaleration for braking phase (else) ~N(2.05, 0.387^2) 
 
//    4) for Coasting phase 
#define EXIT_SPEED_mps  15   // exit speed from the runway 
#define EXIT_SPEED_fps  49.2   
 
 
//------------------------------- 
//InterEventTimes in communication 
//------------------------------- 
#if (COMMUNICATION == 1) // VOICE_CHANNEL 
 
#define waitngToContactTime  10.0//10.00 // for waiting to the next contact 
    // due to either communication jam, or pushback congestion for dep 
#define sendingRequestTime        4.0//11.00 // for sendingRequest (flight) 
#define receivingRequestTime      4.0//11.00 // for receivingRequest (controller) 
#define waitingCommandTime        3.0  // for waitingCommand (flight) 
#define judgingTime               3.0  // for judging  (controller) 
#define receivingCommandTime      4.0//14.00 // for receivingCommand (flight) 
#define sendingCommandTime        4.0//14.00 // for sendingCommand (controller) 
#define sendingConfirmationTime   3.0//15.00 // for sendingConfirmation(flight) 
#define recievingConfirmationTime 3.0//15.00 // for receivingConfirmation(controller) 
 
#else // DATA_LINK 
 
#define waitngToContactTime   1.0 // for waiting to the next contact 
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     // due to either communication jam, or pushback congestion for 
dep 

#define sendingRequestTime        0.0  // for sendingRequest (flight) 
#define receivingRequestTime      0.0  // for receivingRequest (controller) 
#define waitingCommandTime        3.0  // for waitingCommand (flight) 
#define judgingTime               3.0  // for judging  (controller) 
#define receivingCommandTime      0.0  // for receivingCommand (flight) 
#define sendingCommandTime        0.0  // for sendingCommand (controller) 
#define sendingConfirmationTime   0.0  // for sendingConfirmation(flight) 
#define recievingConfirmationTime 0.0  // for receivingConfirmation(controller) 
 
#endif 
 
#define TotalCommunicationTime (sendingRequestTime + waitingCommandTime + receivingCommandTime + 

sendingConfirmationTime) 
#define MaxEarlierContactTime    15                // if flight contact no earlier than the 

scheduled time  
                                                   // by MaxEarlierContactTime then he can continue 

to comminicate 
//------------------------------- 
//etc. 
//------------------------------- 
#define PILOT_SCAN_RATE            3.0 // Pilot detect the potential conflict every 

PILOT_SCAN_RATE secconds 
#define TOL_TAXING_SPEED_GAP       0.01 // Tolerable speed gap between normalTaxiSpeed and 

currentSpeed  
  // (this is only for the first flight in the link) 
  // if abs(normalTaxiSpeed - currentSpeed) > TOL_TAXING_SPEED_GAP, then need accel or 

decel 
#define maxValue(a, b) (((a) > (b)) ? ((a) : (b))) 
#define minValue(a, b) (((a) > (b)) ? ((b) : (a)))  
 
#endif  
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Appendix C: Header Files for the Simulation Model 
 
//AcftModel.h 
#ifndef _ACFTMODEL_H 
#define _ACFTMODEL_H 
class AcftModel{ 
public: 
 AcftModel(); 
 AcftModel(char* id, float wb_m, float oew_kg, float mlw_kg,  
    float cl_m, float wa_m2, float ws_m, float l_m, 
    float vT_kph, float vMT_kph, float aMT_mps2, float dMT_mps2,  
    float vTo_kph, float aMR_mps2, float aMTo_mps2, 
    float v1, float v2, float a1, float k1, float k2); 
 ~AcftModel(); 
 
 //readers 
 char* read_id(); 
 float read_cl_max(); 
 float read_spdAccelCoeff(); 
 
 // SI --------------------------------------------------------------------------------- 
 float read_wheelBase_m(); 
 float read_OEW_kg(); 
 float read_MLW_kg(); 
 float read_wingArea_m2(); 
 float read_wingSpan_m(); 
 float read_length_m();  
 
 //Taxing 
 float read_velNormTaxi_kph(); float read_velNormTaxi_mps(); 
 float read_velMaxTaxi_kph(); float read_velMaxTaxi_mps(); 
 float read_accMaxTaxi_mps2(); 
 float read_decMaxTaxi_mps2(); 
 float read_decNormTaxi_mps2(); 
 float read_distNormalStop_m(); 
 
 // FlaringOut 
 float read_timeFlare(); 
 
 float read_velApproach_kph(); float read_velApproach_mps(); 
 float read_velFlare_kph(); float read_velFlare_mps(); 
 float read_velTouchdown_kph(); float read_velTouchdown_mps(); 
 float read_accFlare_mps2(); 
  
 // FreeRolling 
 float read_accFreeRoll_mps2(); 
 float read_timeFreeRoll(); 
 
 // Braking 
 float read_decisionSpd_mps(); 
 float read_accBrake_mps2(); 
 
 // Takeoff 
 float read_velTakeoff_kph(); float read_velTakeoff_mps(); 
 float read_accMaxRoll_mps2(); 
 float read_accMaxTakeoff_mps2(); 
 
 // UK --------------------------------------------------------------------------------- 
 float read_wheelBase_ft(); 
 float read_OEW_lb(); 
 float read_MLW_lb(); 
 float read_wingArea_ft2(); 
 float read_wingSpan_ft(); 
 float read_length_ft(); 
 
 //Taxing 
 float read_velNormTaxi_mph(); float read_velNormTaxi_fps();    
 float read_velMaxTaxi_mph(); float read_velMaxTaxi_fps(); 
 float read_accMaxTaxi_fps2(); 
 float read_decMaxTaxi_fps2(); 
 float read_decNormTaxi_fps2(); 
 float read_distNormalStop_ft(); 
 
 
 // FlaringOut 
 float read_velApproach_mph(); float read_velApproach_fps(); 
 float read_velFlare_mph(); float read_velFlare_fps(); 
 float read_velTouchdown_mph(); float read_velTouchdown_fps(); 
 float read_accFlare_fps2(); 
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 // FreeRolling 
 float read_accFreeRoll_fps2(); 
 
 // Braking 
 float read_decisionSpd_fps(); 
 float read_accBrake_fps2(); 
 
 // Takeoff  
 float read_velTakeoff_mph(); float read_velTakeoff_fps(); 
 float read_accMaxRoll_fps2(); 
 float read_accMaxTakeoff_fps2(); 
  
 float read_v1_fps(); // velocity at brake-release (ft/sec) 
 float read_v2_fps(); // velocity at lifting-off (ft/sec) 
 float read_a1_fps2(); // acceleration at lifting-off (ft/sec^2) 
 float read_k1();  // a = k1 + k2 * v 
 float read_k2(); 
 
private: 
 char* id_str; 
 float spdAccelCoeff, // spdAccelCoeff(=k)= maxAccel / maxSpeed; 
       cl_max;  // max. landing lift coeffcient  
  
 /*--------------------------------------------------- 
  SI Unit (The international System of Units) 
 -----------------------------------------------------*/ 
 float  
  // Dimensions  
  wheelBase_m, 
  OEW_kg, 
  MLW_kg, 
  wingArea_m2, 
  wingSpan_m, 
  length_m, 
   
  // Taxing 
  velNormTaxi_kph,  velNormTaxi_mps,  // normal taxing speed 
  velMaxTaxi_kph,   velMaxTaxi_mps,  // maximum taxing speed 
  accMaxTaxi_mps2,    // maximum accel for taxing 
  decMaxTaxi_mps2,    // maximum decel for taxing 
  decNormTaxi_mps2,    // normal  decel for taxing   
  distNormalStop_m,    // stopping distance at normal taxing speed 
   
  // Landing 
  // 1) Flaring phase 
  velStall_kph,     velStall_mps,  // stall speed 
  //vCruise_kph, vCruise_mps,  // normal cruising speed 
  velApproach_kph,  velApproach_mps,  // normal approach speed 
  velFlare_kph,     velFlare_mps,  // threshold crossing speed 
  velTouchdown_kph, velTouchdown_mps, // normal Touchdown speed  
  distFlare_m,    // Flaring distance 
  accFlare_mps2,    // flaring acceleration (actually 

deceleration) 
  timeFlare,    // flaring duration 
  //dFlare_m,    // fixed Flare dist, cummulative Flare dist 
  //tFlare,              
   
 
  // 2) Free Rolling phase 
  accFreeRoll_mps2, 
  timeFreeRoll, 
  //tFreeRolling, 
  //dFreeRolling_m, 
 
  // 3) Braking phase 
  decisionSpd_mps, 
  accBrake_mps2, 
  //tBrake, 
  //dBrake_m, 
 
  // 4) Coasting phase 
  //aCoast_mps2, 
  //dCoast_m, 
  //tCoast_m, 
   
  // Takeoff 
  velTakeoff_kph,  velTakeoff_mps, // normal Takeoff speed  
  accMaxRoll_mps2,    // maximum accel for rolling 
  accMaxTakeoff_mps2;   // maximum accel for takeoff 
 
 /*--------------------------------------------------- 
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  UK Unit (The British Units) 
 -----------------------------------------------------*/ 
 float  
   
  // Dimensions  
  wheelBase_ft, 
  OEW_lb, 
  MLW_lb, 
  wingArea_ft2, 
  wingSpan_ft, 
  length_ft, 
   
  // Taxing 
  velNormTaxi_mph, velNormTaxi_fps,  // normal taxing speed 
  velMaxTaxi_mph,  velMaxTaxi_fps,  // maximum taxing speed 
  accMaxTaxi_fps2,    // maximum accel for taxing 
  decMaxTaxi_fps2,    // maximum decel for taxing 
  decNormTaxi_fps2,    // normal  decel for taxing   
  distNormalStop_ft,           // stopping distance at normal taxing speed

  
 
  // Landing 
 
  // 1) Flaring phase 
  velStall_mph,     velStall_fps,    // stall speed (constant from equation) 
  //vCruise_mph,   vCruise_fps,    // normal cruising speed (constant from equation) 
  velApproach_mph,  velApproach_fps,   // normal approach speed (constant from equation) 
  velFlare_mph,     velFlare_fps,    // threshold crossing speed (constant from 

equation) 
  velTouchdown_mph, velTouchdown_fps,  // normal Touchdown speed  (constant from 

equation) 
  distFlare_ft,      // flare dist (constant from equation) 
  accFlare_fps2,   // average acceleration during Flaring out phase 
 
  // 2) Free Rolling phase 
  accFreeRoll_fps2, 
 

  // 3) Braking phase 
  decisionSpd_fps, 
  accBrake_fps2, 
 
  // 4) Coasting phase 
   
  //Takeoff 
  velTakeoff_mph,     velTakeoff_fps, 
  accMaxRoll_fps2,       
  accMaxTakeoff_fps2,  

 
  v1_fps, // velocity at brake-release (ft/sec) 
  v2_fps, // velocity at lifting-off (ft/sec) 
  a1_fps2,// acceleration at lifting-off (ft/sec^2) 
  k1, // a = k1 - k2 * v 
  k2; 
}; 
 
#endif 
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// Array3D.cpp : Defines the entry point for the console application. 
//3DARRAY.h 
#ifndef _3DARRAY_H 
#define _3DARRAY_H 
#include "ostream.h" 
 
template <class type> class TwoDArray{ 
public: 
 TwoDArray(int nRows, int nCols): m_nRows(nRows), m_nCols(nCols){ 
  m_p2DData = new type[nRows*nCols]; 
 } 
 ~TwoDArray(){  
  delete m_p2DData; 
 } 
 type& operator()(int nRow, int nCol) 
 { 
  //check dimensions 
  if(nRow<0 || nRow>=m_nRows || nCol<0 || nCol>=m_nCols) 
  { 
   throw "Trying to acces array out of bounds\n"; 
  } 
  return *(m_p2DData + nRow*m_nCols + nCol); 
 } 
private: 
 type*     m_p2DData; 
 const int m_nRows; 
 const int m_nCols; 
}; 
 
template <class type> class ThreeDArray{ 
public: 
 ThreeDArray(int nPages, int nRows, int nCols):m_nPages(nPages), m_nRows(nRows), m_nCols(nCols){ 
  m_p3DData = new type[nPages*nRows*nCols]; 
  if(m_p3DData == NULL)  
   cout << "Array allocation error: Too big array allocation in ThreeDArray  
                                   constructor.\nPlease use the td_SP_2 as a TDSP method\n\n"; 

 } 
 ~ThreeDArray(){  
  delete m_p3DData; 

 } 
 type& operator()(int nPage, int nRow, int nCol) 
 { 
  //check dimensions 
  if(nPage<0 || nPage>=m_nPages || 
   nRow<0 || nRow>=m_nRows || 
   nCol<0 || nCol>=m_nCols) 
  { 
   cout << "nPage" << nPage << " nRow" << nRow << " nCol" << nCol; 
   throw "Trying to acces array out of bounds\n"; 
  } 
  return *(m_p3DData + nPage*m_nRows*m_nCols + nRow*m_nCols + nCol); 
 } 
private: 
 type*     m_p3DData; 
 const int m_nPages; 
 const int m_nRows; 
 const int m_nCols; 
}; 
#endif 
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//Clock.h 
#ifndef _CLOCK_H 
#define _CLOCK_H 
 
#include "Definition.h" 
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class NormalTime{ 
public: 
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 NormalTime(); 
 ~NormalTime(); 
 NormalTime(int h, int m, float s); 
 void write_NormalTime(int h, int m, float s); 
protected: 
 int   hour,  minute; 
 float second; // ( float to keep the deci-second ) 
}; 
 
 
class SystemTime{ 
public:  
 SystemTime(); 
 ~SystemTime(); 
protected: 
 float systemSecond;  // ( absolute time starting from 0.0 second) 
}; 
 
class Clock: private NormalTime, private SystemTime { 
public: 
 Clock(); 
 ~Clock(); 
 Clock(float st); 
 Clock(int h, int m, float s); 
  
 // reader and writer for NormalTime 
 void  write_Time(float st); 
 void  write_Time(int h, int m, float s); 
 int   read_hour(); 
 int   read_minute(); 
 float read_second(); 
 float read_systemTime(); 
 void  convertSystemTimeToNormalTime(float st); 

float convertNormalTimeToSystemTime(int h, int m, float s);   
 
 // reader and writer for SystemTime 
 void  advanceTime(); 
 void  advanceTime(float deltaT); 
}; 
 
#endif 
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//Controller.h 
#ifndef _CONTROLLER_H 
#define _CONTROLLER_H 
#include "AcftModel.h" 
#include "ARRAY.h" 
#include "Clock.h" 
#include "Definition.h" 
#include "Edge.h" 
#include "Flight.h" 
#include "Header.h" 
#include "Node.h" 
#include "Point.h" 
#include "Graph.h" 
#include "TaxiEdge.h" 
#include "TaxiEdgeList.h" 
#include "Type.h" 
#include "Clock.h" 
#include "Q.h" 
#include "Runway.h" 
 
 
 
class Controller{ 
public: 
 
 Controller(); 
 ~Controller(); 

Controller(int totNodes, Flight* f_p, Node* n_p, Graph* FS_p = NULL, Graph* BS_p = NULL); 
 virtual void communicate(Flight* f, FlightState_Type currFlightCommState, float sysTime); 
 void static_Dijkstra(unsigned int rIndex, int totNodes, ofstream& fStar_out); 
 void findStaticPath(Flight* f, int totNodes, unsigned int sPath[]); //find enRoute 

//find & write shortPath 
 void findStaticPath(int totNodes, unsigned int rIndex, unsigned int d, unsigned int sPath[]); 
 // update the TDSP from this flight's origin to other nodes. 
 void td_Dijkstra_Forward(Flight* cFlight_p, int totNodes, ofstream& fowardStar_out);  
 void td_Dijkstra_Forward(unsigned int rIndex, int totNodes, ofstream& forwardStar_out); 
 
 // find Time Dependent Shortest Path for all time slices from rNode  

// -> all nodes, i.e., forward search style 
 void td_Dijkstra_Forward_2(float sTime, Flight* cFlight_p, int totNodes, ofstream& fStar_out); 
 void td_Dijkstra_Forward_2(float sTime, unsigned int rIndex, int totNodes, ofstream& 

forwardStar_out); 
// find Time Dependent Shortest Path for a single start time slice from rNode -> all nodes, 

i.e., forward search style 
int findTotalConfFlights(Edge* currEdge_p, int tSlice); // find the number of conflicting 

flights on the all conflicting edges  
 void findTDPath(Flight *f, int totNodes, unsigned int td_sPath[], float sTime); 

 void findTDPath(int totNodes, unsigned int oIndex, unsigned int dIndex, unsigned int td_sPath[], 
int timeSlice); 

 void update_NumAcft_TravelTimes(TaxiEdgeList* nTaxiEdgeList_p, float sysTime); 
 TaxiEdgeList* make_TaxiEdgeList_p(Flight* f, SP_Algorithm spMethod, int timeSlice = -999); 

 TaxiEdgeList* make_TaxiEdgeList_p(int oNodeIndex, int dNodeIndex, SP_Algorithm spMethod, int 
timeSlice = -999); 

  
 //update the flight strips 
 std::list<Flight*> read_pendingFlightList(); 
 std::list<Flight*> read_processingFlightList(); 
 std::list<Flight*> read_doneFlightList(); 
  
 void pushbackPendingList(Flight* f_p, ofstream& log_out, char* controllerName); 

void pushbackProcessingList_1(int sTime, Flight* f_p,ofstream& log_out, char* 
controllerName1, char* controllerName2); 

 
// remove from pending, and pushback to processing list 

 void pushbackProcessingList_2(int sTime, Flight* f_p, ofstream& log_out, char* controllerName); 
 // just pushback to processing list 
 void pushbackDoneList(int sTime, Flight* f_p, ofstream& log_out, char* controllerName); 

 // remove from processing list, and pushback to done list 
 virtual void judge(ofstream& log_out, Flight* f_p, float sysTime); 
 
 //readers 
 ControllerState_Type read_currState(); 
 float   read_shortTime(unsigned int i, unsigned int j); 
 float   read_td_shortTimes(unsigned int r, unsigned int d, int tS); 
 float   read_td_shortTime_2(unsigned int r, unsigned int d); 
 Flight*   read_currFlightComm_p(); 
     Flight*   read_prevRunwayOccupiedFlight_p(); 
 float   read_delayTimeForFlight(); 
 // writers 
 void write_currState(ControllerState_Type cst); 
 void write_prevRunwayOccupiedFlight_p(Flight* pf); 
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 void write_currFlightComm_p(Flight* cf); 
 void write_delayTimeForFlight(float dTFF); 

void    write_initFlightsList_p(Flight* f_p); // write the pointer to the starting point of 
Flights linked list 

protected: 
ControllerState_Type currState; 

 ControllerMessage_Type decision; 
 float delayTimeForFlight; //if delayTime > 0.00, then the flight will contact L/C again in 

delayTime. 
 
 // for STATIC SHORTEST PATH 

 unsigned int shortPath[MAX_NODES][MAX_NODES], //shortest path matrix 
     sPath[MAX_NODES];   //shortest path from one node to the other nodes 
 float shortTime[MAX_NODES][MAX_NODES]; //travel Time for semi-dynamic  

 // for TIME_DEPENDENT SHORTEST PATH 
 unsigned int td_sPath[MAX_NODES]; 
 unsigned int td_shortPath_2[MAX_NODES][MAX_NODES]; //shortest path matrix 
 float  td_shortTime_2[MAX_NODES][MAX_NODES]; //travel Time for semi-dynamic  
 Clock  nextEventTime; 
 Flight* initFlightsList_p,    // pointer to the starting point of Flights linked-list 
               *   prevRunwayOccupiedFlight_p,// previous Flight which occupied runway (for the 

min. separation rule)   
       *  currFlightComm_p; // current communicating Flight 
 Node*   nodes_p;  // pointer to the starting point of Nodes array 
 Edge**   initEdgeNodes_p; // pointer to the starting point of EdgeNodes array 
 Graph*   forwardStar_p,  // pointer to the airport network with forwardStar_p 
      *   backwardStar_p;  // pointer to the airport network with backwardStar_p 
 std::list<Flight*> pendingFlightList,  
    processingFlightList,  
    doneFlightList;  
 std::list<Flight*>::iterator p; 
}; 
 
 
 
/**************** GROUND CONTROLLER **********************/ 
class GroundController: public Controller{ 
public: 
 GroundController(); 
 GroundController(int totNodes, Flight* f_p, Node* n_p, Graph* FS_p = NULL, Graph* BS_p = NULL); 
 ~GroundController(); 

 virtual void communicate(ofstream& log_out, Flight* f_p, FlightState_Type currFlightCommState, 
float sysTime); 

 virtual void judge(ofstream& log_out, Flight* f_p, float sysTime); 
private: 
 TaxiEdgeList* newTaxiEdgeList_p;  // pointer to the starting point of New TaxiEdge list 
}; 
 
/**************** LOCAL CONTROLLER **********************/ 
class LocalController: public Controller{ 
public: 
 LocalController(); 

 LocalController(int totNodes, Flight* f_p, Node* n_p, int totRwy, Runway **rwy_p, Graph* FS_p = 
NULL, Graph* BS_p = NULL); 

 ~LocalController(); 
virtual void communicate(ofstream& log_out, Flight* f_p, FlightState_Type 

currFlightCommState, float sysTime); 
 virtual void judge(ofstream& log_out, Flight* f_p, float sysTime); 

float judgeForClearance(float sysTime);//decide the clearance for takeoff/landing with 
delayTimeForFlight if needed. 

 void write_prevFlight_p(Flight* pF); 
 void write_currFlight_p(Flight* cF); 
 void write_nextFlight_p(Flight* nF); 
 Flight* read_prevFlight_p(); 
 Flight* read_currFlight_p(); 
 Flight* read_nextFlight_p(); 
private: 
 int totRunway; 
 Runway **runway_p; 

TaxiEdgeList* newRunwayEdgeList_p;  // pointer to the starting point of New RunwayEdge list 
for Takeoff/Landing 

 Flight *prevFlight_p,   //previous flight on the runway operation 
     *currFlight_p,   //currnet flight on the runway operation 
     *nextFlight_p;   //next flight on the runway operation 
 float minSep[4][3][3];  // Min. Separtion Rule 
};  
 
#endif 
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//Edge.h 
 
#ifndef _EDGE_H 
#define _EDGE_H 
#include "Type.h" 
#include "Definition.h" 
#include "Node.h" 
#include <Math.h>  //for the "sqrt" and "pow" 
 
class Flight; 
class Edge{ 
public: 
 Edge(); 
 ~Edge(); 
 Edge(float scale, char* id_str, char type, Node* f, Node* t, float r); 
 // readers 
 char*     read_id_str_p(); 
 Edge_Type read_edgeType(); 
 Node*     read_fromNode_p(); 
 Node*     read_toNode_p(); 
 int  read_fromNodeId(); 
 int  read_toNodeId(); 
 int  read_fromNodeIndex(); 
 int  read_toNodeIndex(); 
 float     read_restrict(); 
 float     read_distance_ft(); 
 float     read_distance_m(); 
 float     read_travelTime(); 
 float*  read_travelTimes();  // return the pointer to array of "the travelTimes" 
 float  read_travelTimes(int tSlice); 
 Flight*   read_flightInEdge_p(); // return the pointer to the flight in the edge 
     int   read_numFlightInEdge(); 
 int   read_numFlightInEdge(int tSlice); // 
 Edge*     read_nextEdge_p(); 
 Edge*     read_nextBSEdge_p(); 
 // writers 
 void   write_distance_ft(float d_ft); 
 void   write_distance_m(float d_m); 
 void      write_travelTime(float tt); 
 void      add_numAcft(int tSlice); 
 void      write_travelTimes(int tSlice, float tt); 
 void      write_nextEdge_p(Edge* nxt_p); 
 void      write_nextBSEdge_p(Edge* nxtBS_p); 
 void      write_flightInEdge_p(Flight* tempFlightInEdge_p); 
 void      write_numFlightInEdge(int nFIE); 
private: 
 char       *id_str_p; 
 Edge_Type  edgeType;  

 float      distance_ft,  
            distance_m,  
            travelTime, 
    restrict; //e.g. exit speed if this edge is exit edge. 
 float  *travelTimes;  // For Time dependent SP algorithm (Variable Array) 
 //CurrentEdgeDirection_Type currentDirection; 

 Node   *fromNode_p,  
           *toNode_p; 
 Flight    *flightInEdge_p; 
 int       numFlightInEdge, 

   *numAcft; // # of vehicles in the edge  for Time dependent SP algorithm 
(Variable Array) 
 Edge      *nextEdge_p, //  Pointer to NextEdge in forwardStar 

   *nextBSEdge_p; //  Pointer to NextEdge in backwardStar 
}; 
 
#endif 
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//Flight.h 
#ifndef _FLIGHT_H 
#define _FLIGHT_H 
#include "Type.h" 
#include "Point.h" 
#include "AcftModel.h" 
#include "Header.h" 
#include "Point.h" 
#include "Position.h" 
#include "Clock.h" 
#include "Graph.h" 
#include "Edge.h" 
#include "Runway.h" 
#include "TaxiEdge.h" 
#include "TaxiEdgeList.h" 
#include "Definition.h" 
 
class GroundController; 
class LocalController; 
class Flight{ 
public: 

Flight(char* fId_p, AcftModel* mdl_p, char oper,      int sHour, int sMin, float sSec, 
    int hour_norm, int min_norm, float sec_norm,   int hour_fcfs, int min_fcfs, float sec_fcfs, 
    int hour_swap, int min_swap, float sec_swap,   int gIndex, char *rId_p, 
    Runway** runway_p, int totRunway, Node* nodes, Graph* FS_p, Graph* BS_p, Flight* pFIL_p, 
    GroundController* GC_p, LocalController* LC_p); 
 ~Flight(); 
 

 //Communication 
 bool checkNeedToComm(float nxtCommEventTime, float sysTime); 
 void communicateGroundController(ofstream& log_out, float sysTime); 

 void communicateLocalController(ofstream& log_out, float sysTime); 
 
 //TakeOff 
 void roll(); 
 void liftOff(); 
  
 //Landing 
 void flareOut(); 
 void freeRoll(); 
 void brake(); 
 void coast(float dToExit); 
 void exitRunway(float dToExitEnd); 
 void parkingForArrival(); 
 Node* findExitNode_p(); 

float findDistToExit(); 
 float findDistToTaxiDestination(); 
 float findDistToTheCross(); 
 
 //Taxing 
 void taxiToDest(Clock sysTime, float scale, ofstream& log_out); 
 void move(TaxiEdgeList* crrEdgeList_p, int desNodeIndex); 
 void deQueue(Edge* currTaxiEdge_p); 
 void enQueue(Edge* nextTaxiEdge_p); 
 float computeNextAccel_1();            
 float computeNextAccel_2(float d, float v_fnl); 
 float computeNextAccel_3(Clock sysTime);            
 float computeSpdAfterD(float distToNextExit); 
 float computeNextTaxiAccel(Clock sysTime, float scale, ofstream& log_out); 
 void  collisionDetectResolve(Clock sysTime, float scale, ofstream& log_out); 
 float carFollowing(); 
 

 //Statistics 
 void statistics(ofstream& log_out); 
 
 // For sorting the STL list (see 651 pp., in "complete reference C++") 
 // The required operator overloadings are dependent on the compiler. 
 friend bool operator <  (Flight &o1, Flight &o2); 

 friend bool operator >  (Flight &o1, Flight &o2); 
 friend bool operator == (Flight &o1, Flight &o2); 
 friend bool operator != (Flight &o1, Flight &o2); 
 
 //Readers 
 char*  read_flightId_p(); 
 char*  read_runwayId_p(); 
 AcftModel* read_acftModel_p(); 
 Operation_Type read_operationType(); 
 int  read_orgNodeIndex(); 
 int  read_desNodeIndex(); 
 int  read_gateNodeIndex(); 
 int  read_exitEnterNodeIndex(); 
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 int  read_currNodeIndex(); 
 int  read_nextNodeIndex(); 
 Point  read_currPoint(); 
 float  read_currSpeed(); 
 Position* read_currPosition_p(); 
 float  read_nextAccel(); 
 ControllerMessage_Type read_permission(); 
 Priority_Type  read_priority(); 
 ConflictChecked_Type read_conflictChecked(); 
 Flight*  read_conflictingFlight_p(); 
 float  read_depTimeAtCross(); 
 float  read_nextCommEventTime(); 
 float  read_nextMoveEventTime(); 
 float  read_rotTimeRecommended(); 
 float  read_pushbackTimeRecommended(); 
 float            read_rotTimeNorm(); 
 float  read_rotTimeFcfs(); 
 float  read_rotTimeSwap(); 
 float  read_phaseTimeStamp_b(); 
 float  read_phaseTimeStamp_e(); 
 float  read_linkTimeStamp_b(); 
 float  read_linkTimeStamp_e(); 
 float  read_taxingTimeStamp_b(); // the begin/end time stamp of taxing 
 float  read_taxingTimeStamp_e(); 
 float          read_rotTimeStamp_b(); 
 float          read_rotTimeStamp_e(); 
 float  read_GC_TimeStamp_b(); 
 float  read_GC_TimeStamp_e(); 
 float  read_LC_TimeStamp_b(); 
 float  read_LC_TimeStamp_e(); 

float  read_taxingDelay_sec(); // delay due to taxiway congestion    
     float  read_runwayDelay_sec(); // delay due to runway congestion 
     float  read_commGCDelay_sec(); // delay due to communication jam 
     float  read_commLCDelay_sec(); // delay due to communication jam 
 float  read_travelTime(); 
 float  read_lastTaxiEdgeLength_ft(); 
 GroundController* read_groundController_p(); 
 LocalController* read_localController_p(); 
 Graph*  read_forwardStar_p(); 
 Graph*  read_backwardStar_p(); 
 TaxiEdgeList* read_taxiEdgeList_p(); 
 TaxiEdgeList* read_runwayEdgeList_p(); 
 Edge*  read_currTaxiEdge_p(); 
 Edge*  read_currRunwayEdge_p(); 
 Node*  read_exitNode_p(); 
 Flight*  read_leadingFlightInEdge_p(); 
 Flight*  read_followingFlightInEdge_p(); 
 Flight*  read_nextFlightInList_p(); 
 Flight*  read_prevFlightInList_p(); 
 FlightState_Type read_currMoveState(); 
 FlightState_Type read_currCommState(); 
 int  read_numTrialToContactLC();      

  
 int  read_numTrialToContactGC();      

  
 
 //Writers 
 friend ofstream &operator<<(ofstream &stream, Flight f); 
 void write_currMoveState(FlightState_Type fst); 
 void write_currCommState(FlightState_Type fst); 
 void write_currSpeed(float cSpd); 

void write_permission(ControllerMessage_Type pt); 
 void write_priority(Priority_Type pr); 
 void write_conflictChecked(ConflictChecked_Type cC); 
 void write_conflictingFlight_p(Flight* cF); 
 void write_depTimeAtCross(float dTAC); 
 void write_nextAccel(float nxtAccel); 
 void write_systemInputTime(float sysInputTime); 
 void write_nextCommEventTime(float nextCETime); 
 void write_nextMoveEventTime(float nextMETime); 
 void write_startTime(float stTime);  // write the simulation input time. 
 void write_phaseTimeStamp_b(float sysTime); 
 void write_phaseTimeStamp_e(float sysTime); 
 void write_linkTimeStamp_b(float sysTime); 
 void write_linkTimeStamp_e(float sysTime); 
 void write_taxingTimeStamp_b(float sysTime); // the begin/end time stamp of taxing 
 void write_taxingTimeStamp_e(float sysTime); 
 void write_rotTimeStamp_b(float sysTime); 
 void write_rotTimeStamp_e(float sysTime); 
 void write_GC_TimeStamp_b(float sysTime); 
 void write_GC_TimeStamp_e(float sysTime); 
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 void write_LC_TimeStamp_b(float sysTime); 
 void write_LC_TimeStamp_e(float sysTime); 
 void write_taxingDelay_sec(float tTD); 
 void add_numTrialToContactLC();    // add by 1 
 void subtract_numTrialToContactLC();   // subtract by 1   
 void add_numTrialToContactGC();    // add by 1 
 void subtract_numTrialToContactGC();   // subtract by 1   
 void add_taxingDelay_sec(float tD_sec); // delay due to taxiway congestion    

void add_runwayDelay_sec(float rD_sec); // delay due to runway congestion (not used for the time 
being) 

void add_commGCDelay_sec(float cGCD_sec);   // delay due to communication jam 
         void add_commLCDelay_sec(float cLCD_sec);   // delay due to communication jam 
 void write_lastTaxiEdgeLength_ft(float lTEL_ft); 
 void write_taxiEdgeList_p(TaxiEdgeList *newEdgeList_p); 
 void write_runwayEdgeList_p(TaxiEdgeList *newEdgeList_p); 
 void write_currTaxiEdge_p(Edge* cTaxiEdge_p); 
 void write_currRunwayEdge_p(Edge* cRunwayEdge_p); 
 void write_orgNodeIndex(int oNI); 
 void write_desNodeIndex(int dNI); 
 void write_exitNode_p(Node* eNode_p); 
 void write_currPosition_p(Position* cPosition_p); 
 void write_groundController_p(GroundController* gc_p); 
 void write_localController_p (LocalController* lc_p); 
 void write_leadingFlightInEdge_p(Flight* lFIE_p); 
 void write_nextFlightInList(Flight* nxt_p); 
 void write_prevFlightInList(Flight* prv_p); 
 void write_rotTimeRecommended(float rotRec); 
 void write_pushbackTimeRecommended(float pbRec); 
 
protected: 
 Flight(); // constructor. never be used. 
private: 
 char*  flightId_p, 
     *  runwayId_p; 
 AcftModel*  acftModel_p; 
 Operation_Type operationType; 
 FlightState_Type currMoveState,  
   currCommState; 
 bool             everStoppedInLastEdge;                   
 ControllerMessage_Type permission; 
 Priority_Type       priority; 
 ConflictChecked_Type   conflictChecked; 
 Flight*                conflictingFlight_p;// Conflicting flight for taxing 
 Clock        depTimeAtCross; 
 int  orgNodeIndex, 
   desNodeIndex, 
   currNodeIndex; 
 Node*            gateNode_p; 
 Position* currPosition_p; 
 float  currSpeed, 
   nextAccel; 
 Clock  systemInputTime, 
   nextCommEventTime, 
   nextMoveEventTime, 
   pushbackTimeRecommended, // for deprtures 
   rotTimeRecommended, // assigned to one of rotTimeNorm or rotTimeSwap. 
   rotTimeNorm, 
   rotTimeFcfs, 
   rotTimeSwap, 
   linkTimeStamp_b,   linkTimeStamp_e, 
   phaseTimeStamp_b,   phaseTimeStamp_e,  
   taxingTimeStamp_b, taxingTimeStamp_e, 

  GC_TimeStamp_b,   GC_TimeStamp_e,     
 LC_TimeStamp_b,   LC_TimeStamp_e,  
 rotTimeStamp_b,   rotTimeStamp_e; 

int                numTrialToContactGC,      // number of trials to contact ground 
controller 

   numTrialToContactLC;      // number of trials to contact local  controller 
float  taxingDelay_sec,  // delay due to taxiway congestion 

   runwayDelay_sec,  // delay due to runway congestion 
   commGCDelay_sec,  // delay due to communication jam with Ground 

Controller 
   commLCDelay_sec;  // delay due to communication jam with Local 

Controller 
 float  travelTime, 
   lastTaxiEdgeLength_ft; 
 GroundController* groundController_p; 
 Graph         *forwardStar_p, 
          *backwardStar_p;      // for conflict resoltion and (un)blocking the link 
 TaxiEdgeList     *taxiEdgeList_p;  // for Taxing path  
 Edge  *currTaxiEdge_p;  // The curr Edge in Taxi path. 
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 LocalController  *localController_p; 
 TaxiEdgeList *runwayEdgeList_p;    // for Takeoff/Landing path 
 Edge  *currRunwayEdge_p; // The curr Edge in Runway path. 
 Node             *exitNode_p;          // exit Node 
 
 
 Flight *leadingFlightInEdge_p,  // Leading Flight in a CuurEdge 
    *followingFlightInEdge_p,  // Following Flight in a CuurEdge 
    *prevFlightInList_p,   // prev Flight in Flight List 
    *nextFlightInList_p;   // Next Flight in Flight List 
 
}; 
#endif 
 
 
 
 
//Graph.h 
 
#ifndef _GRAPH_H 
#define _GRAPH_H 
 
#include "Type.h" 
#include "Definition.h" 
#include "Node.h" 
#include "Node.h" 
#include "Edge.h" 
 
typedef Edge* Edge_p; 
class Graph{ 
public: 
 Graph(int totNodes, int totEdges); 
 ~Graph(); 
 int n(); 
 int e(); 
 Edge* first(int nodeIndex); // get the first edge for a node 
 bool isEdge(Edge* edg_p); // return 1 if (edge != null) 
 Edge* next(Edge* edg_p); // get the next edge for a node 
 Edge* nextBS(Edge* edgBS_p); 
 int fromNodeId(Edge* edg_p);// get the fromNodeId for this edge 
 int toNodeId(Edge* edg_p);  // get the toNodeId for this edge 

Edge* Graph::findEdge_p (int fnIndex, int tnIndex); // find the pointer to the edge from fnIndex 
to tnIndex 

 float  tTime (int fnIndex, int tnIndex); // find the travel time for the edge from fnIndex to 
tnIndex 

float* tTimes(int fnIndex, int tnIndex);  // find the pointer to the travel time matrix for the 
edge from fnIndex to tnIndex 

 float  Dist  (int fnIndex, int tnIndex); // find the distance for the edge from fnIndex to 
tnIndex 

 float  tTime(Edge* edg_p);  // find the travel time for edge 
 float* tTimes(Edge* edg_p);  // find the travel time matrix for edge 
 float  Dist (Edge* edg_p);  // find the diatnce for edge 

//readers 
 Edge*  read_list(int fnIndex);  //return the pointer to (Edge*) list[fnIndex] 
 Edge** read_list();    //return the pointer to (Edge**)list 

//writers 
 void write_list(int fnIndex, Edge* newEdge_p); // list[fnIndex] = newEdge_p; 
 void write_totNodes(int tN);       // write total Nodes  

void write_totEdges(int tE);                   // write total Edges 
private: 
 Edge_p* list; 
 int totNodes; 
 int totEdges; 
 VisitMark_Type* visitMark; 
}; 
 
#endif _GRAPH_H 
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// Header.h 
#ifndef _HEADER_H 
#define _HEADER_H 
#include<conio.h>  
#include<stdio.h> 
#include<fstream.h> 
#include<iostream.h> 
#include<istream.h> 
#include<ostream.h> 
#include<stdlib.h>  
#include<string.h>  
//#include<search.h> 
#include<math.h>   
#include<assert.h>  
#include<iomanip.h> 
 
#include <list>   
#include <algorithm>  
 
#endif 
 
 
 
 
//Node.h 
#ifndef _NODE_H 
#define _NODE_H 
#include "Type.h" 
#include "Header.h" 
#include "Point.h" 
 
class Flight; 
class Edge; 
 
class Node{ 
public: 
 Node(); 
 ~Node(); 
 Node(int ind, int id, char type, Point point, float p=0.0); 
 Node(int ind, int id, char type, float x, float y, float p=0.0); 
 Node(int ind, int id, char type, float x, float y, float p, Flight* fin_p); 
 //readers 
 int        read_index(); 
 int        read_id(); 
 float      read_x(); 
 float      read_y(); 
 Node_  Type  read_nodeType(); 
 float      read_passingTime(); 
 Point&  read_pt(); 
     Bool     read_haveEverEntered(); // {true, false}; for DEQueue in TDSP 
 Bool     read_isInQueue();       // {true, false}; for DEQueue in TDSP 
 //writers 
 void write_fs_p(Edge* f_p); 
 void write_bs_p(Edge* b_p); 
 void write_haveEverEntered(bool hEE);  
 void write_isInQueue(bool iIQ);        
private:  

int index,   // serial index (= 1,2,3,...) 
     id;    // id (= User defined id) ex, 2001, 2005,... 
 Node_Type nodeType; 

bool haveEverEntered,  // {true, false}; for DEQueue in TDSP 
      isInQueue; 
 float passingTime; 
 Point pt; 
 Flight* flightInNode_p; 
 Edge* fs_p,                //pointer to ForewardStar  

    * bs_p;   //pointer to BackwardStar  
}; 
#endif 
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//Point.h 
#ifndef _POINT_H 
#define _POINT_H 
class Point{ 
public: 
 Point(); 
 ~Point(); 
 Point(float x1, float y1); 
 float read_x(); 
 float read_y(); 
 void write_x(float x1); 
 void write_y(float y1); 
private: 
   float x, y; 
}; 
#endif 
 
 
//Position.h 
#ifndef _POSITION_H 
#define _POSITION_H 
#include "Point.h" 
class Position{ 
public: 
 Position(); 
 ~Position(); 
 Position(float x1, float y1, float tDT = 0.0); 
 Position(Point& p, float tDT = 0.0); 
 //readers 
 float read_traveledDistInLink(); 
 float read_traveledDistTotal(); 
 float read_currX(); 
 float read_currY(); 
 //writers 
 void write_traveledDistInLink(float tDistL); 
 void write_traveledDistTotal(float tDistT); 
 void write_currX(float); 
 void write_currY(float ); 
private: 
 float traveledDistInLink, 
    traveledDistTotal; 
 Point pt; 
}; 
#endif _POSITION_H 
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//Q.h  (for the SP algorithm) 
#ifndef _Q_H 
#define _Q_H 
#include "Node.h" 
#include "definition.h" 
class NodeList{  // Doubly-linked lists (100-shaffer) 
public: 
 int nodeIndex; 
 NodeList* prevNodeList_p, 
  * nextNodeList_p; 
 NodeList(int nIndex, NodeList* prv_p = NULL, NodeList* nxt_p = NULL); 
 NodeList(NodeList* prv_p = NULL, NodeList* nxt_p = NULL); 
 ~NodeList(); 
}; 
class Q{      //115page in Shaffer's text book 
public: 
 Q(); 
 ~Q(); 
 int  firstNodeIndex();  // return the first node's index 
 int  deQueueFirst();       // return the from-node's index of the first Node in the queue. 

int  deQueueMin(int r, float shortTime[][MAX_NODES]); // find the minimum distance node from 
root node, r, to to-nodes in the (Node) queue and return the to-node's 
index 

 void enQueueFirst(int nIndex); 
 void enQueueLast(int nIndex); 
 void deleteNodeList(NodeList* nl_p); 
 bool isEmpty() const; 
 int  totCurrElements() const; 
 void clear(); 
private: 
 NodeList* headNodeList_p, 
  * tailNodeList_p, 
  * currNodeList_p; 
 void deleteNode(int* n_p); 
}; 
#endif  
 
 
 
 
////Runway.cpp 
 
#ifndef _RUNWAY_H 
#define _RUNWAY_H 
#include "TaxiEdge.h" 
#include "Header.h" 
#include "Definition.h" 
class Runway{ 
public: 
 Runway(); 
 Runway(char* rId_p, TaxiEdge* rLink_p); 
 ~Runway(); 
 char*   read_runwayId(); 
 TaxiEdge* read_runwayLink_p(); 
 TaxiEdge* read_nextRunwayLink(); 
private: 
 char* id_p; 
 TaxiEdge* runwayLink_p;  // pointer to starting link  
    // next runwayLink = runwayLink_p->read_nextTaxiEdge_p(); 
}; 
#endif 
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// Simulation.h 
#ifndef _SIMULATION_H 
#define _SIMULATION_H 
#include "Header.h" 
#include "Type.h" 
#include "Definition.h" 
#include "Clock.h" 
#include "Point.h" 
#include "Node.h" 
#include "Edge.h" 
#include "Graph.h" 
#include "Runway.h" 
#include "AcftModel.h" 
#include "Controller.h" 
#include "Flight.h" 
#include "Q.h" 
#include "ARRAY.h" 
 
#include<ostream.h> 
 

ThreeDArray<unsigned int> td_shortPath(MAX_NODES, MAX_NODES, NumTimeSlices);
 //travelPath by keeping the next node to destination 

ThreeDArray<float>  td_shortTime(MAX_NODES, MAX_NODES, NumTimeSlices); //travelTime 
 
float totTaxingTime_sec  = 0.0; 
float totTaxingDelay_sec = 0.0; 
float totRunwayDelay_sec = 0.0; 
float totCommLCDealy_sec = 0.0; 
float totCommGCDealy_sec = 0.0; 
 
typedef Edge* Edge_p; 
int comp(const void *a , const void *b); 
struct FlightData{ 
int       sn;  // serial number 
char      *id_str, // AA234 
      *model_str;  // B757-300 
AcftModel *acftModel_p; 
char      operationType; // char ('A' or 'D')   
int       startHour, // 7  (o'clock) 

 startMin; // 6  (minute) 
float     startSec;       // 34.0 (second) 
int  rotHour_norm, // 7  (o'clock) 
  rotMin_norm; // 6  (minute) 
float     rotSec_norm; // 34.0 (second) 
int  rotHour_fcfs, // 7  (o'clock) 
  rotMin_fcfs; // 6  (minute) 
float  rotSec_fcfs; // 34.0 (second) 
int  rotHour_swap, // 7  (o'clock) 
  rotMin_swap; // 6  (minute) 
float  rotSec_swap; // 34.0 (second) 
float     startTime; 
int       gateId,         // Gate Node Number = 7 
          gateIndex; 
char*     runway_str; // Runway, ex, R15 

}; 
 
ofstream& operator<<(ofstream &stream, Flight f){ 
 if(f.taxiEdgeList_p != NULL || f.runwayEdgeList_p != NULL){ 
  stream //<< f.sysTime.read_systemTime() 
   << setw(10)  
   << setprecision(7) 

   << f.read_flightId_p() << "  " 
   << setiosflags(ios::showpoint) << "(" 
   << f.currPosition_p->read_currX() << ", " 
   << f.currPosition_p->read_currY() << ")  "; 
  switch (f.currCommState){ 
   case readyToCommunicate: stream << " readyToCommunicate    ";  break; 
   case waitNextContact:  stream << " waitNextContact       ";  break; 
   case sendingRequest:  stream << " sendingRequest        ";  break; 
   case waitingCommand:  stream << " waitingCommand        ";  break; 
   case receivingCommand:  stream << " receivingCommand      ";  break; 
   case sendingConfirmation: stream << " sendingConfirmation   ";  break; 
   case waitControllerContact: stream << " waitControllerContact ";  break; 
   default:   stream << " somthing wrong in currCommState "; 
  } 
  switch (f.permission){ 
   case unDecided:  stream << " unDecided        ";  break; 
   case fileApproved:  stream << " fileApproved     ";  break; 
   case reRoute:  stream << " reRoute          ";  break; 

  case stopThere:  stream << " stopThere        ";  break; 
   case waitThere:  stream << " waitThere        ";  break; 
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   case reStart:   stream << " reStart          ";  break; 
   case clearToPushback:  stream << " clearToPushback  ";  break; 
   case clearToTaxi:  stream << " clearToTaxi      ";  break; 
   case clearToTakeOff:  stream << " clearToTakeOff   ";  break; 
   case clearToLand:  stream << " clearToLand      ";  break; 
   default:   stream << " somthing wrong in currPermission "; 
  } 
 
  switch (f.currMoveState){ 
   case parking:  stream << " parking "       ;  break; 
   case pushingBack:  stream << " pushingBack    ";  break; 
   case taxingToDepartureQueue: stream << " taxingToDepQue ";  break; 
   case waitingToTaxi:  stream << " waitingToTaxi  ";  break; 
   case delayedAtCross:  stream << " delayedAtCross ";  break; 
   case speedUp:  stream << " speedUp        ";  break; 
   case steadyTaxing:  stream << " steadyTaxing   ";  break; 
   case slowDown:  stream << " slowDown       ";  break; 
   case turning:   stream << " turning        ";  break; 
   case waitingOnRunway:  stream << " waitingOnRnwy  ";  break; 
   case rolling:   stream << " rolling        ";  break; 
   case liftingOff:  stream << " liftingOff     ";  break; 
   case endOfDeparture:  stream << " endOfDeparture ";  break; 
     
   case onFinal:  stream << " onFinal        ";  break; 
   case flaringOut:  stream << " flaringOut     ";  break; 
   case freeRolling:  stream << " freeRolling    ";  break; 
   case braking:  stream << " braking        ";  break; 
   case coasting:  stream << " coasting       ";  break; 
   case exitingRunway:  stream << " exitingRnwy    ";  break; 
   case taxingToGate:  stream << " taxingToGate   ";  break; 
 
   default:   stream << " somthing wrong in currMoveState "; 
  } 
   
  stream 
   << f.currSpeed << "  " 
   << f.nextAccel << "  " 
   << setw(5); 
    
  if(f.taxiEdgeList_p != NULL){ 
   stream  
   << f.taxiEdgeList_p->currEdge_p()->read_fromNode_p()->read_id() << " -> " 
   << f.taxiEdgeList_p->currEdge_p()->read_toNode_p()->read_id()   << "  " 
   << setw(10)  
   << f.taxiEdgeList_p->currEdge_p()->read_distance_ft()    << "  "; 
  } 
  else if(f.runwayEdgeList_p != NULL){ 
   stream 
   << f.runwayEdgeList_p->currEdge_p()->read_fromNode_p()->read_id() << " -> " 
   << f.runwayEdgeList_p->currEdge_p()->read_toNode_p()->read_id()   << "  " 
   << setw(10)  
   << f.runwayEdgeList_p->currEdge_p()->read_distance_ft()    << "  "; 
  }  
  else stream << " somthing wrong in node -> node "; 
 
    
  stream  
   << f.currPosition_p->read_traveledDistInLink() << "  " 
   << f.currPosition_p->read_traveledDistTotal()  << "  " 
   << endl; 
 }// if 
 else{ 
  stream //<< f.sysTime.read_systemTime()  
   << setw(10)  
   << setprecision(7) 
         //<< setiosflags(ios::fixed) 
   << f.read_flightId_p() << "  " 
   << setiosflags(ios::showpoint) << "(" 
   << f.currPosition_p->read_currX() << ", " 
   << f.currPosition_p->read_currY() << ") "; 
 
  switch (f.currCommState){ 
   case readyToCommunicate: stream << " readyToCommunicate    ";  break; 
   case waitNextContact:  stream << " waitNextContact       ";  break; 
   case sendingRequest:  stream << " sendingRequest        ";  break; 
   case waitingCommand:  stream << " waitingCommand        ";  break; 
   case receivingCommand:  stream << " receivingCommand      ";  break; 
   case sendingConfirmation: stream << " sendingConfirmation   ";  break; 
   case waitControllerContact: stream << " waitControllerContact ";  break; 
   default:   stream << " somthing wrong in currCommState "; 
  } 
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  switch (f.permission){ 
   case unDecided:  stream << " unDecided        ";  break; 
   case fileApproved:  stream << " fileApproved     ";  break; 
   case reRoute:  stream << " reRoute          ";  break; 
   case stopThere:  stream << " stopThere        ";  break; 
   case waitThere:  stream << " waitThere        ";  break; 
   case reStart:   stream << " reStart          ";  break; 
   case clearToPushback:  stream << " clearToPushback  ";  break; 
   case clearToTaxi:  stream << " clearToTaxi      ";  break; 
   case clearToTakeOff:  stream << " clearToTakeOff   ";  break; 
   case clearToLand:  stream << " clearToLand      ";  break; 
   default:   stream << " somthing wrong in currPermission "; 
  } 
 
  switch (f.currMoveState){ 
   case parking:  stream << " parking        ";  break; 
   case pushingBack:  stream << " pushingBack    ";  break; 
   case taxingToDepartureQueue: stream << " taxingToDepQue ";  break; 
   case waitingToTaxi:  stream << " waitingToTaxi  ";  break; 
   case speedUp:  stream << " speedUp        ";  break; 
   case steadyTaxing:  stream << " steadyTaxing   ";  break; 
   case slowDown:  stream << " slowDown       ";  break; 
   case turning:   stream << " turning        ";  break; 
   case waitingOnRunway:  stream << " waitingOnRnwy  ";  break; 
   case rolling:   stream << " rolling        ";  break; 
   case liftingOff:  stream << " liftingOff     ";  break; 
   case endOfDeparture:  stream << " endOfDeparture ";  break; 
    
   case onFinal:  stream << " onFinal        ";  break; 
   case flaringOut:  stream << " flaringOut     ";  break; 
   case freeRolling:  stream << " freeRolling    ";  break; 
   case braking:  stream << " braking        ";  break; 
   case coasting:  stream << " coasting       ";  break; 
   case exitingRunway:  stream << " exitingRunway  ";  break; 
   case taxingToGate:  stream << " taxingToGate   ";  break; 
 
   default:   stream << " somthing wrong currMoveState "; 
  } 
  stream  
   << f.currSpeed << "  " 
   << f.nextAccel << "  " 
 
   << setw(5)  
   << 0 << " -> " 
   << 0 << "  " 
   << setw(10)  
   << 0 << "  " 
 
   << f.currPosition_p->read_traveledDistInLink() << "  " 
   << f.currPosition_p->read_traveledDistTotal()  << "  "  
   << endl; 
 }// else 
 return stream; 
}; 
 
bool operator<(Flight &o1, Flight &o2) 
  { return o1.rotTimeRecommended.read_systemTime() <  o2.rotTimeRecommended.read_systemTime(); } 
bool operator>(Flight &o1, Flight &o2) 
  { return o1.rotTimeRecommended.read_systemTime() >  o2.rotTimeRecommended.read_systemTime(); } 
bool operator==(Flight &o1, Flight &o2) 
 { return o1.rotTimeRecommended.read_systemTime() == o2.rotTimeRecommended.read_systemTime(); } 
bool operator!=(Flight &o1, Flight &o2) 
 { return o1.rotTimeRecommended.read_systemTime() != o2.rotTimeRecommended.read_systemTime(); } 
 
#endif 
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// TaxiEdge.h 
 
#ifndef _TAXIEDGE_H  
#define _TAXIEDGE_H 
#include "Edge.h" 
 
class TaxiEdge{ 
public: 
 TaxiEdge(); 
 TaxiEdge(Edge* const newEdge_p, TaxiEdge* nxt = NULL); 
 ~TaxiEdge(); 
 Edge*  read_edgeEle_p(); 
 TaxiEdge* read_nextTaxiEdge_p(); 
 void write_nextTaxiEdge_p(TaxiEdge* tempNextTaxiEdge_p); 
private:  
 Edge*  edgeEle_p; 
 TaxiEdge* nextTaxiEdge_p; 
}; 
 
#endif 
 
 
 
 
 
// TaxiEdgeList.h 
 
#ifndef _TaxiEdgeLIST_H  
#define _TaxiEdgeLIST_H 
 
#include "TaxiEdge.h" 
 
class TaxiEdgeList{ 
public: 
 TaxiEdgeList(); 
 TaxiEdgeList(TaxiEdge* TaxiEdge_p); 
 ~TaxiEdgeList(); 
 void append(Edge* const);   // Append ELEM at tail_p of list 
 void setFirst();    // set curr_p to first position 
 void moveNext();    // Move curr_p to next position 
 void movePrev();    // Move curr_p to previous position 
 int  length() const;   // Return current length of list 
 Edge* currEdge_p() const;   // Return value of current ELEM 
 Edge* nextEdge_p() const;   // Return value of next ELEM 
 Edge* tailEdge_p() const;   // Return value of tail ELEM 
 bool isInList() const;   // TRUE if curr is within list 
 TaxiEdge* read_curr_p(); 
 void write_curr_p(TaxiEdge* cTaxiEdge_p); 
 void print_taxiEdgeList(TaxiEdge* cTaxiEdge_p); 
private: 
 TaxiEdge *head_p, 
   *tail_p, 
   *curr_p; 
}; 
 
#endif 
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// TaxiPath.h 
#ifndef _TAXIPATH_H  
#define _TAXIPATH_H 
#include "Edge.h" 
 
class TaxiPath{ 
public: 
 TaxiPath(); 
 TaxiPath(Edge* currEdge_p); 
 ~TaxiPath(); 
 Edge*  read_edgeEle_p(); 
 TaxiPath* read_nextTaxiPath_p(); 
 void write_nextTaxiPath_p(TaxiPath* tempNextTaxiPath_p); 
private:  
 Edge*  edgeEle_p; 
 TaxiPath* nextTaxiPath_p; 
}; 
 
#endif 
 
 
// TaxiPathList.h 
 
#ifndef _TAXIPATHLIST_H  
#define _TAXIPATHLIST_H 
#include "TaxiPath.h" 
class TaxiPathList{ 
public: 
 TaxiPathList(); 
 TaxiPathList(TaxiPath* taxiPath_p); 
 ~TaxiPathList(); 
 void append(const TaxiPath&);  // Insert ELEM at tail_p of list 
// TaxiPath* remove();   // Remove and return current ELEM 
// void setFirst();    // set curr_p to first position 
 void next();    // Move curr_p to next position 
 void prev();    // Move curr_p to previous position 
 int  length() const;   // Return current length of list 
// int setPos(const int);   // Set curr_p to specific position 
// void setValue(const TaxiPath&);  // Set current ELEM's value 
 Edge* currEdge_p() const;   // Return value of current ELEM 
 Edge* nextEdge_p() const;   // Return value of next ELEM 
// bool isEmpty() const;   // TRUE if list is empty 
 bool isInList() const;   // TRUE if curr is within list 
// bool find(const TaxiPath&);  // Find the specifin value 
private: 
 TaxiPath *head_p, 
   *tail_p, 
   *curr_p; 
}; 
 
#endif 
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//Type.h 
#ifndef _TYPE_H 
#define _TYPE_H 
 
enum Node_Type{ 
  taxiNode,  
  rwyNode,  
  gate,  
  rwyIntersectionNode 
}; 
enum Edge_Type{ 
  taxiEdge,  
  rwyEdge,  
  exitEdge 
};  
enum Operation_Type{ 
  departure,  
  arrival 
}; 
//enum Permission_Type {yes, no}; 
enum VisitMark_Type {visited, unvisited}; 
enum Priority_Type {low, high};  // flight's priority for conflicting at intersection 
enum ConflictChecked_Type {done, notYet};  // flight's priority for conflicting at 

intersection 
enum CurrentEdgeDirection_Type {thisDirection, reverseDirection}; // Edge's curretn 

operational direction 
enum Aircraft_Type {heavy, large, smal_}; // "small" is reserved for certain compiler 
enum TwoOperations{dep_dep, dep_arr, arr_dep, arr_arr}; 
 
enum SP_Algorithm{ 
  static_SP, // static shortest path algorithm 1 
  td_SP_1, // time-dependent shortest path algorithm 1 
  td_SP_2  // time-dependent shortest path algorithm 2 
}; 
 
enum FlightState_Type{ 
  //for departure 
   pushingBack,  // taxing from gate to arpon(=ramp area) 
   rolling,  
   liftingOff,  
   endOfDeparture, // take-off (rolling with const accel) 
   waitingOnRunway, // waiting around the runway or gate or from runway exit to gate 
  //for arrival 
   onFinal, 
   flaringOut, 
   freeRolling, 
   braking, 
   coasting, 
   adjustingBrake, 
   freeRollingSlow, 
   exitingRunway,  
 //touch-down -> exit 
 //for taxing for both operations (arrival/departure) 
   parking, 
   taxingToDepartureQueue, 
   taxingToGate, 
   delayedAtCross, // 
   waitingToTaxi, 
   speedUp, 
   steadyTaxing, 
   slowDown, 
   turning, // taxing from gate to the around of runway 
   waitingInLine, 
   areaHolding, 
 //for both operations' communication 
    waitNextContact, 
   readyToCommunicate, 
   sendingRequest, 
   waitingCommand, 
   receivingCommand, 
   sendingConfirmation, 
   waitControllerContact 
}; 
enum IdleBusy_Type {idle, busy}; 
enum ControllerState_Type{ 
   standby,  
   receivingRequest,  
   judgingCommand,  
   sendingCommand,  
   receivingConfirmation 
}; 
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enum ControllerMessage_Type{ 
   unDecided,  
   fileApproved,  
   reRoute,  
   stopThere, 
   waitThere, 
   //waitControllerContact, 
   reStart, 
   clearToPushback,  
   clearToTaxi,  
   clearToTakeOff,  
   clearToLand 
}; 
enum PilotRequest_Type{ 
   requestTaxi,  
   requestPushBack,  
   requestTakeOff,  
   requestLanding 
}; 
#endif 
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