

Development of Optimization and Simulation Models

for the Analysis of Airfield Operations

by

Hojong Baik

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Civil Engineering

Antonio A. Trani, Co-Chair Hanif D. Sherali, Co-Chair

Dusan Teodorovic

Hesham Rakha

Julio C. Matinez

May 2000

Blacksburg, Virginia

Keyword: Integer Programming, Microscopic Simulation Model, Airport Terminal Area

Copyrritght 2000, Hojong Baik

 ii

Development of Optimization and Simulation Models

for the Analysis of Airfield Operations

by

Hojong Baik

Co-Chairmen: Professor Antonio A. Trani, and Professor Hanif D. Sherali.

(ABSTRACT)

This research is concerned with the modeling and development of algorithmic approaches for

solving airport operational problems that arise in Air Traffic Control (ATC) systems within the

terminal area at hub airports. Specifically, the problems addressed include the Aircraft

Sequencing Problem (ASP) for runway operations, the Network Assignment Problem (NAP) for

taxiway operations, and a simulation model for the evaluation of current or proposed ATC system

in detail.

For the ASP, we develop a mathematical model and apply the Reformulation-Linearization-

Technique (RLT) of Sherali and Adams to construct an enhanced tightened version of the

proposed model. Since ASP is NP-Hard and in fact, it is a variation of the well-known Traveling

Salesman Problem with time-windows, sub-optimal solutions are usually derived to

accommodate the real-time constraints of ATC systems. Nevertheless, we exhibit a significant

advancement in this challenging class of problem. Also for the purpose of solving relatively large

sized problems in practice, we develop and test suitable heuristic procedures.

For the NAP, we propose a quasi-dynamic assignment scheme which is based on the incremental

assignment technique. This quasi-dynamic assignment method assumes that the current aircraft

route is influenced only by the previous aircraft assigned to the network. This simplified

assumption obviates the need for iterative rerouting procedures to reach a pure equilibrium state

which might not be achievable in practical taxiway operations. To evaluate the overall system, we

develop a microscopic simulation model. The simulation model is designed to have the capability

for reproducing not only the dynamic behavior of aircraft, but also incorporates communication

activities between controllers and pilots. These activities are critical in ATC operations, and in

some instances, might limit the capacity of the facility.

Finally, using the developed simulation model named Virginia Tech Airport Simulation Model

(VTASM) in concert with ASP and NAP, we compare the overall efficiencies of several control

strategies, including that of the existing control system as well as of the proposed advanced

control system.

 iii

This dissertation is dedicated to the memory of

my mother Gyu-young Ahn

 iii

Acknowledgements

I would first like to thank my advisors, Dr. Antonio A. Trani and Hanif D. Sherali, for their

invaluable guidance, patience and inspiration during my entire studying at Virginia Tech. Without

their supports, this dissertation would not have been completed. I also indebted to them for

providing financial support through the National Center of Excellence for Aviation Operations

Research (NEXSTOR) and for numerous opportunities they have presented me with.

I have also been honored to have Dr. Dusan Teodorovic, Dr. Hesham Rakha, and Dr. Julio

Matinez as members of my committee. Special thanks go to my previous teacher, Dr. Kangwon

Lim, at Seoul National University for his encouragement.

I would like to thank my friends including Dr. Youn-soo Kang, Myung-hyun Lee, Dr. Jeong-gyu

Kang, Dr. Gyuhae Park, Heunggweon Sin, Sungpil Hahm, and Kyungho Ahn for their support

and warmhearted friendship.

I could not thank enough my parents, Chang-ki Baik and Gyu-young Ahn, and parents-in-law,

Won-woo Park and Eun-ja Kim, for their unconditional love and faith in me. Thanks also go to

my sister's, brother's and sisters-in-law's families. My special thanks go to my wife's aunt M.D.

Soo J. Kim for her constant encouragement and assistance to my family.

I would like to express my deepest gratitude to my beloved wife, Sunghye Park, and my daughter,

Julia Inhye Baik, for their support, patience, understanding, and endless love throughout my

graduate studies in Blacksburg.

 iv

Contents

Chapter 1. Introduction

1.1 Motivation and Purpose..1

1.2 Problem Description...2

1.3. Organization of this Document ..5

Chapter 2. Literature Review

2.1 Literature Review on Aircraft Sequencing Problems (ASP)...9

2.1.1 Previous Studies on ASP...9

2.1.2 Dynamic Programming Approach..12

2.1.3 Reformulation-Linearization Technique (RLT)...14

2.1.4 Heuristic Approaches for the Traveling Salesman Problem (TSP)..........................16

2.2 Literature Review on Network Assignment Problem (NAP)..42

2.2.1 Literature Review on Network Assignment Algorithms ...43

2.2.2 Shortest Path (SP) Algorithms ...50

2.3 Literature Review on Simulation Model..64

2.3.1 Types of Simulation Models ..64

2.3.2 Previous Air Traffic Simulation Models ...65

2.3.3 Aircraft-Following Models ..67

2.3.4 Data Structures for Network Representation ...68

Chapter 3. Model Development for ASP

3.1 Assumptions for Ready-times ...72

3.2 First-come-first-serve (FCFS) Approaches...74

3.3 Integer Programming Approaches ...78

3.3.1 Formulation ...78

3.3.2 Valid Inequalities ...79

3.3.3 Enhanced Model Representation via an Application of RLT..................................81

 v

3.3.4 Modifying the Formulation ...89

3.3.5 Computational Results .. 108

3.4 Heuristics for the Aircraft Sequencing Problem (ASP).. 113

3.4.1 Tour Building Process... 113

3.4.2 Improvement Heuristic ... 117

3.4.3 Computational Results .. 122

Chapter 4. Network Assignment Problem

4.1 Network Assignment Strategies .. 124

4.1.1 Network Assignment Algorithm .. 124

4.1.2 Shortest Path Algorithms... 127

4.2 Computational Results.. 128

Chapter 5. Virginia Tech Airport Simulation Model

5.1 Framework of the Proposed Simulation Model... 131

5.2 Object-oriented Analysis (OOA) of the Simulation Model.. 134

5.2.1 Object Model ... 134

5.2.2 Dynamic Model.. 135

5.2.3 Functional Model... 145

5.3 Object-oriented Design (OOD) of Simulation Model.. 148

5.3.1 System Design.. 148

5.3.2 Object Design... 148

5.4 Object-oriented Programming (OOP).. 197

5.5 Primary Validation of the Simulation Model.. 198

Chapter 6. Case Study

6.1 Definition of Delays ... 206

6.2 Sample Airport .. 207

6.3 Scenarios ... 210

6.4 Computational Process... 211

 vi

6.4.1 Data Generation ... 211

6.4.2 Sequencing... 211

6.4.3 Simulation.. 214

6.5 Computational Results... 220

6.5.1 Total Taxiing Time as Related to Various Network Assignment Strategies........... 220

6.5.2 Average Runway Delay for Analysis of Aircraft Sequencing Strategies............... 221

6.5.3 Total Operation Time.. 224

Chapter 7. Summary, Conclusions and Future Research

7.1 Summary and Conclusions .. 226

7.2 Recommendations for Future Research.. 228

Bibliography ... 231

Appendix... 243

Vita .. 270

 vii

List of Figures

Figure 1.1 Configuration of Airport Terminal Area ..3

Figure 1.2 Problem Structure and Data Flow for the ASP and NAP Problem Framework.7

Figure 1.3 Data Flow in the ASP/NAP Framework for Sample Problem.8

Figure 2.1 Example of 2-exchange. ...20

Figure 2.2 Example of 3-exchange. ...20

Figure 2.3 Example of an Or-exchange (s = 2). ..21

Figure 2.4 A local exchange [Psaraftis, 1983a]...24

Figure 2.5 An example of 2-exchange..26

Figure 2.6 Two-addition procedures in a savings heuristic. ...29

Figure 2.7 Lexicographic search strategies...35

Figure 2.8 Definition of primary changes...37

Figure 2.9 Construction of primary changes...38

Figure 2.10 Algorithmic Framework for Time-Dependent System Optimal Assignment

Problem [Peeta and Mahamassani, 1995]. ..49

Figure 2.11 Bellman's Principle of Optimality. ...52

Figure 2.12 Time-dependent SP Algorithm [Cook and Halsey, 1985].55

Figure 2.13 Time-dependent SP Algorithm [Dreyfus, 1969]..55

Figure 2.14 Example of TDSP (1)...56

Figure 2.15 Example of TDSP (2)...56

Figure 2.16 Total Link Travel Time for the UW Problem..58

Figure 2.17 Types of Queues for Node Selection Schemes [reproduced from Tarjan, 1983]. .60

Figure 2.18 Pseudo Code for a Time-dependent SP Algorithm..62

Figure 2.19 An Example Graph with 5 Nodes and 9 Arcs (i.e., n=5, m=9)............................69

Figure 2.20 Node-Arc Incident Matrix for the Example Network.69

Figure 2.21 Node-Node Adjacency Matrix for the Example Network.70

Figure 2.22 Adjacency List Representations for the Example Network.70

Figure 2.23 Forward Star Representation for the Example Network.....................................71

Figure 3.1 Time Relationships for the Departing Aircraft..73

Figure 3.2 Checking Minimum Separation Constraints. ..89

Figure 3.3 Triangular Inequality. ...91

Figure 3.4 Relationships among the Constraint Sets.. 104

 viii

Figure 3.5 Prefixing Variables... 107

Figure 3.6 Illustrative Example. .. 110

Figure 3.7 LP-based tour building procedure for ASP... 116

Figure 3.8 Pseudo-code for the ASP heuristic... 118

Figure 3.9 Flowchart of Improvement Procedure for ASP. .. 121

Figure 4.1 Quasi-dynamic Assignment Algorithm (1). .. 126

Figure 4.2 Quasi-dynamic Assignment Algorithm (2). .. 126

Figure 4.3 Pseudo Code for Suggested Time-dependent SP Algorithm. 128

Figure 4.4 Static vs. Time-dependent Path (1).. 129

Figure 4.5 Static vs. Time-dependent Path (2).. 130

Figure 5.1 Processes of OMT [reproduced from Weijers et. al, (1995) and Derr (1995)]. .. 133

Figure 5.2 Object Diagram.. 136

Figure 5.3 State Diagram for an Arriving Flight. .. 138

Figure 5.4 State Diagram for Communication (Voice Channel). 140

Figure 5.5 State Diagram for Communication (Data Link). .. 140

Figure 5.6 State Diagram for a Departing Flight. .. 142

Figure 5.7 Flight Progress Strip. .. 143

Figure 5.8 State Diagram for a Controller. ... 144

Figure 5.9 Communication Process Initiated by the Controllers....................................... 145

Figure 5.10 Input and Output Values for the Simulation Model. .. 146

Figure 5.11 Top-Level of Data Flow Diagram (DFD) for VTASM. 147

Figure 5.12 Speed-Acceleration Relationship. .. 151

Figure 5.13 Comparison of Aircraft-following Models. .. 154

Figure 5.14 Flowchart of Aircraft Following Module.. 155

Figure 5.15 Cases of Potential Ground Conflicts. ... 156

Figure 5.16 Concept of Conflict Detection. .. 157

Figure 5.17 Calculation of the Lower-priority Flight’s Deceleration Rate........................... 159

Figure 5.18 Flowchart for the Conflict Detection and Resolution Module 161

Figure 5.19 Takeoff Procedure.. 162

Figure 5.20 Steps for the Takeoff Roll Analysis. .. 163

Figure 5.21 Non-Uniform Acceleration Model [Drew, 1968]. ... 171

Figure 5.22 Four Phases in the Landing Procedure. .. 174

Figure 5.23 Speed-Distance Relationship for the Landing Procedure................................. 174

Figure 5.24 Array-based List for Node Data... 182

 ix

Figure 5.25 Array-based List for Aircraft Model Data. ... 182

Figure 5.26 Singly-Linked List for Edge Data.. 182

Figure 5.27 Singly-Linked List for Taxiing Path Data... 183

Figure 5.28 Sample Network and Array of Singly-Linked List for the Sample Network..... 183

Figure 5.29 Flowchart for the Overall Simulation Model Process...................................... 187

Figure 5.30 Flowchart for the Initialization Step... 188

Figure 5.31 Flowchart for Performing Communication Checks. .. 189

Figure 5.32 Flowchart for the Communication Logic.. 190

Figure 5.33 Flowchart for the Communication Module from the Flight’s Point of View...... 191

Figure 5.34 Flowchart for the Communication Logic from the Controller’s Point of View. . 192

Figure 5.35 Flowchart for the Movement Logic. .. 193

Figure 5.36 Flowchart for the Computation of the Next Acceleration for Taxiing. 194

Figure 5.37 Flowchart for Updating Flight’s Dynamic States.. 195

Figure 5.38 Preliminary Results (1): Sample Output. .. 200

Figure 5.39 Validation of the Simulation Model (Time-Space Diagram for Departures, B727-

100). ... 201

Figure 5.40 Validation of the Simulation Model (Takeoff Profile, B727-100). 202

Figure 5.41 Validation of the Simulation Model (Time-Space diagram For Arrivals, B727-

100). ... 203

Figure 5.42 Validation of the Simulation Model (Touchdown Profile, B727-100)............... 204

Figure 5.43 Validation of Simulation Model (Headway-Speed Profile, B727-100). 205

Figure 6.1 Delays Associated with a Departing Flight... 208

Figure 6.2 Delays Associated with an Arriving Flight. .. 208

Figure 6.3 Configuration of the Washington National Airport (DCA). 209

Figure 6.4 Flowchart of the Computational Process Employed in the Case Study. 213

Figure 6.5 Sample of Schedule Data. ... 215

Figure 6.6 A Sample of the Log.out File. ... 217

Figure 6.7 A Sample of the flightState.out File. .. 218

Figure 6.8 A Sample of TaxiPath.out File. ... 219

Figure 6.9 Average Runway Delay by Sequencing Methods (Communication: Voice

Channel).. 223

Figure 6.10 Average Runway Delay by Sequencing Methods (Communication: Data Link).

... 223

Figure 6.11 Total System Costs by Sequencing Methods (from the Simulation Run). 225

 x

Figure 6.12 Total System Costs by Sequencing Methods (from the Simulation Run). 225

Figure 7.1 Definition of Problem and Data Horizons. ... 229

Figure 7.2 Problem Structure and Data-Flow for the ASP and NAP Model Framework

(Multi-Data Horizon).. 230

 xi

List of Tables

Table 2.1 Definitions of Various Types of TSP Problems. ...17

Table 2.2 Computation of Waiting Time on a Concatenated Path.34

Table 2.3 Various Definitions of SP Problems. ...51

Table 2.4 Comparison of LS and LC Algorithm (1)...53

Table 2.5 Comparison of LS and LC Algorithm (2)...54

Table 2.6 Three Types of Time-dependent SP Algorithms. ..57

Table 2.7 Operations for Various Queue Types. ..60

Table 2.8 Comparison of Data Structures for LC Algorithms. ..63

Table 2.9 Macroscopic Models from Vehicle -following Models (Gerlough and Huber,

1975)...68

Table 3.1 Minimum Separation (seconds)...74

Table 3.2 Runway Occupancy Times (seconds)...75

Table 3.3 Aircraft Schedule (Randomly Generated)..75

Table 3.4 First-come-first-serve Sequence for Landing Aircraft.76

Table 3.5 First-come-first-serve1) Sequence (with Landing Priority).77

Table 3.6 Original and SSRLT Constraint Sets.. 101

Table 3.7 Computational Results (without using Prefixing Constraints). 111

Table 3.8 Computational Results (using Prefixing Constraints). 112

Table 3.9 An Example of Heuristic Method for ASP. .. 115

Table 3.10 Computational Results (2-exchange improvement procedure). 122

Table 3.11 Comparison of Computational Efforts. .. 123

Table 3.12 Computational Results (2-swap improvement procedure, n=10). 123

Table 4.1 Hypothetical Flight Schedule. ... 128

Table 5.1 Equations for the Non-Uniform Acceleration Model. 153

Table 5.2 Conversion Factors and Properties of International Standard Atmosphere. 165

Table 5.3 Equations describing the Aircraft Landing Phases. ... 178

Table 5.4 Landing-roll Statistics [Kim et al., 1996]. .. 180

Table 5.5 Comparison of List Implementations. .. 181

Table 5.6 Summary of Data Structures Used in the Simulation Model. 184

Table 5.7 The Initial States of the Simulation Model Variables. 185

Table 5.8 Hypothetical Flight Schedule. ... 199

Table 6.1 Scenarios for Case Study. ... 210

Table 6.2 A Sample Output from the Sequencing Model.. 212

 xii

Table 6.3 Constant Values used in the VTASM Simulation Model. 214

Table 6.4 Total Taxiing Times. .. 220

Table 6.5 Average Runway Delays resulting from the Simulation. 221

Table 6.6 Average Runway Delays resulting from Sequencing Step. 222

Table 6.7 Total Operation Time 1)
... 224

 1

Chapter 1. Introduction

1.1 Motivation and Purpose

According to Federal Aviation Administration (FAA) statistics, there were 27 airports in U.S.

having more than 20,000 hours of total annual delay in 1997. These delays represent a cost

exceeding 2.4 billion dollars. By the year 2003, the number of airports having annual delays

exceeding 20,000 hours could be 31, unless capacity improvements are made [FAA, 1998].

Efforts to augment current capacity –by building new airports, or expanding existing ones- are

expensive, time consuming, and environmentally controversial. On the other hand, proposals to

change the demand for the Air Traffic Control (ATC) operations by, for example, imposing

higher landing fees can lead to legal proceedings. Hence there is great interest in using existing

capacity more efficiently by improving air traffic control procedures.

The critical bottleneck in an ATC system is the capacity inside a radius of about 50 nautical miles

(nm) around an airport (i.e., airport terminal area). There are three types of air traffic control

activities in this terminal area: aircraft sequencing operations which control the traffic inside the

airport terminal area, runway operations which control aircraft landings and departures, and

taxiway operations which guide aircraft from the gate to the runway for departures or vice versa

for arrivals. For these activities, three types of air traffic controllers are involved: Final approach

controllers who are responsible for the aircraft sequencing operations, local controllers who are

responsible for runway operations, and ground controllers who are responsible for taxiway

operations.

To achieve more efficient operations, it is desirable that those three operational components be

coordinated as one task, rather than be considered as three separate ones. The purpose of this

research project is to design an efficient method to model aircraft operations around the airport

terminal area using an open system architecture. It is believed that this operational scheme could

help alleviate the congestion around the airport terminal area, that is frequently observed at major

airports in the United States and abroad. The underlying philosophy of this research project is

reflected by Dear’s remark [Dear, 1976]:

“By utilizing today’s computer power and instrument sophistication, the controller
workload can be reduced and system performance improved through the use of computer-
assisted decision-making, without affecting the controller’s autonomy.”

 2

1.2 Problem Description

This dissertation focuses on the operation of aircraft inside the airport terminal area (or airfield)

which is a 3-dimensional air space usually having 50 nautical miles of radius around airport

runways. Once an arriving aircraft passes an entry point of airport terminal area, it approaches

towards a runway. For the convenience of air traffic control, all arriving aircraft are required to

pass the final approach fix (FAF) just before it touch down. The airspace between the FAF and

runway is called final approach path (FAP) or final. In the FAP, aircraft are controlled to be

spaced in certain amount of distance based on the minimum separation rules enforced by FAA.

The minimum separation between arriving aircraft depends on the aircraft types involved. This

separation rule is designed to minimize the leading aircraft's vortex effect to the following

aircraft. Generally speaking, the separation is bigger when an aircraft follows a larger one than

when it follows a smaller one. Once the arriving aircraft touchdowns and exits from the runway,

it start to taxi to the gate.

On the ground, aircraft parking at gates load and unload either passengers or freight. After

completing the loading and unloading processes, the aircraft begins to taxi to the runway along

the designated taxiing path. Once the aircraft arrives at the end of runway, it starts to roll for

takeoff. Figure 1.1 illustrates the configuration of airport terminal area.

Fundamentally speaking, the delays in any transportation facility occur when the demand for

services exceeds its capacity. This basic rule can be applied to facilities around the airport

terminal area, such as runways, taxiways and gates. For example, when there are more aircraft

moving on a taxiway network than its capacity, some of taxiing aircraft would experience certain

amounts of delay due to network congestion.

In this dissertation, we consider an airport terminal area as a combination of various resources

having limited capacities. In our analysis, runway, taxiway and communication channels are

considered and accordingly this research focuses mainly on the analysis of air traffic operations

on the airfield facilities. (Aspects related to the gate facilities are not included in research, but

could be the subject of future studies.)

In short, this dissertation deals with the following three sub-problems: the Aircraft Sequencing

Problem (ASP) to model runway operations, the Network Assignment Problem (NAP) to model

taxiway operations, and the Simulation Model (SM) for addressing communication activities.

 3

Boundary of Airport Terminal Area

Final Approach Fix

Terminal Building

Runway

Taxiway

Entry Points

Figure 1.1 Configuration of Airport Terminal Area

The Aircraft Sequencing Problem (ASP) handles the runway operations and is developed under

the guiding principle that if the arrivals and departures are sequenced intelligently, then an

enhanced system efficiency will accrue. The ASP problem considers minimum separation rules

enforced by FAA to protect consecutive aircraft from the dangers of wake-vortex effects.

To illustrate this point, note that during the final approach, air traffic controllers try to maintain a

minimum of 5 nm when a heavy aircraft leads a small one. This distance is equivalent to about

196 seconds in time. If this sequence is switched so that the small aircraft leads the heavy one, the

required distance between the two aircraft reduces to 3 nm, or about 75 seconds. Thus a saving of

more than 100 seconds could occur by switching the sequence, assuming that this process is

feasible to the individual aircraft time-window restrictions, and does not appreciably affect

delays.

Previous studies conducted on this topic have mainly focused on the sequencing problem for

arriving aircraft. Since many airports in the U.S. have dependent arrival and departure stream

operations, consideration is given here to both these operations simultaneously. This makes the

 4

problem more realistic, yet at the same time, more challenging. In order to manage aircraft traffic

in congested airport terminal areas, an aircraft sequencing procedure can be used in conjunction

with advanced Air Traffic Control (ATC) automation tools. Problem ASP can be stated more

succinctly as follows:

Given a set of aircraft data involving both arrivals and departures, including aircraft type,

original (nominal or desired) schedule, a maximum delay time to be absorbed by each

aircraft, minimum separation rules among aircraft, and the runway occupancy time (ROT)

for each aircraft type.

Find an optimal sequence of aircraft which minimizes the total operation time/cost to finish all

operations while satisfying both the minimum separation rule and the maximum delay

constraints.

Given the time recommendations prescribed by ASP, which include the exit times from the

runway and the takeoff times at the runway, the next step is to solve Network Assignment

Problem (NAP) to decide the taxiing route for all aircraft so as to minimize the congestion on the

taxiway network. The NAP which deals with taxiing operations is defined as follows.

Given a network configuration (a directed graph G(N,A)) of runways and taxiways, including a

set of origin nodes, O; and a set of destination nodes, D; and time-dependent taxiing

demands from each origin to each destination for a certain period. Also, given are

prescribed landing and takeoff times at the runway for the aircraft, as obtained from model

ASP.

Find a set of optimal routes for the departing aircraft to lead them from the gate to the departure

queue, and for the arriving aircraft to lead them from the runway exit to the gate, in order to

minimize total travel or fuel costs.

In this analysis, we adopt the results of ASP as initial conditions for solving the NAP problem. In

regular airport operations, landing aircraft have higher priority over departing and taxiing aircraft.

This is because arrivals are both costly and safety-critical from a fuel consumption and

operational point of view. For the same reason, the runway operation has a priority over ground

taxiing. Hence, in the case where a conflict arises between an aircraft crossing a runway during

Taxiing and an aircraft departing or landing on the runway, the latter has a priority. Based on

view, we solve the ASP first and obtain the optimal runway operational sequence. We then solve

 5

the NAP using the ASP optimal sequence. Figures 1.1 and 1.2 illustrate the relationship between

the ASP and NAP problems for a single data horizon, including the required data and information

flows.

At many busy airports, it is frequently observed that flights are delayed by communication

congestion (due to controller workload). For instance, even after a departing flight is ready to

taxi, the flight would be delayed at the gate until it obtains a taxiing clearance from the ground

controller. In previous analyses for ASP and NAP problems, no consideration has been given to

the communication process between controllers and pilots, although this is an important source of

delay. Indeed, there is a distinct possibility that due to the communication delays, the prescribed

ASP sequence and the suggested taxiing route obtained from NAP might not be achievable for

some flights.

In order to portray the pilot-controller communication process, a Simulation Model (SM) is

developed in this research. A continuous, microscopic simulation model provides very detailed

information about the dynamic status of all relevant entities, i.e., flights, local controllers, and

ground controllers. The dynamic status includes not only controllers' communication status but

also aircraft dynamic behaviors such as speed, acceleration, position, etc., at every time interval

of simulation. These microscopic features are embedded in the Virginia Tech Airport

Simulation Model (VTASM), and distinguish separate this model from existing air traffic

simulation models such as SIMMOD, TAMMS, etc., which employ disctere-event simulation

instead. VTASM includes airport facilities such as runways, taxiways, and gates. (Runway

thresholds play the role of a souce node for arriving flights and a sink node for departing flights.)

The main tasks in the development of VTASM can be described as follows:

Given a network configuration (a directed graph G(N,A)) of runways and taxiways, prescribed

landing and takeoff times at the runway for the aircraft, as obtained from model ASP, and a

set of optimal routes for both the departing and arriving aircraft from NAP.

Find, considering communication activities and aircraft dynamic movements, the aircraft status

such as speed, acceleration, position, etc., and delays on the network.

1.3. Organization of this Document

This dissertation is organized into six chapters. Chapter 2 is devoted to review previous studies

pertinent to ASP problem. The proposed ASP is a version of the asymmetric traveling salesman

 6

problem with time-windows (ASP-TW), and is NP-complete in terms of computational

complexity. Because of this complexity, we develop two approaches for this problem,

respectively geared toward finding an exact solution and an approximate solution via a heuristic

method. In Chapter 3, the formulation of Problem ASP and the development of an effective

approach to solve this problem are presented along with some computational results for both the

exact and heuristic approach.

The NAP problem on the taxiway network is discussed in Chapter 4. We focus on proposing a

network assignment strategy which is appropriate for our case. Even though the taxiway network

is somewhat different from urban transportation networks, it is still helpful to review the state-of-

art of both static and dynamic network assignment methods applied to urban transportation

planning processes. Various types of shortest path algorithms which play an important role in

NAP are also discussed along with their associated data structures. Two types of network

assignment strategies are considered in this research.

In Chapter 5, we present procedures relevant to the development of a continuous, microscopic

simulation model. The details of each component of the simulation model are provided in the

context of an Object-Oriented Design (OOD) and an Object-Oriented Programming (OOP)

approach. Computational results and a verification of the simulation model are also presented in

this chapter.

Chapter 6 provides results for a case study using hypothetical flight schedules at the Reagan

National Airport (DCA). A total of 12 scenarios are studied for several sequencing, network

assignment and pilot-controller communication methods. Each scenario is tested using 90 flight

schedule replications representing various demand levels.

Chapter 7 presents a summary of this research and conclueds with a discussuion on some possible

research extentions.

 7

Separation
Rule

Nominal Schedule
for Arrivals

Nominal Schedule
for Departures

Network Assignment Problem
(NAP)

Optimal sequence and schedule

Taxiing Network
Configuration

Time-dependent O-D
(between gates and runways)

Aircraft Sequencing Problem
(ASP)

Optimal taxiing routes
for arrivals and departures

Simulation
(VTASM)

Figure 1.2 Problem Structure and Data Flow for the ASP and NAP Problem Framework (Single
Data Horizon).

 8

Figure 1.3 Data Flow in the ASP/NAP Framework for Sample Problem
(Single Data Horizon).

<Original schedule from flight-plan>

Flight No. Aircraft
type

Desired
pushback Time

NW122 B747 12:37
NW123 B757 12:43

…….. …. ….

<Original Schedule from data link>

Flight No. Aircraft
type

Desired
touchdown Time

US322 B727 12:39
US321 B737 12:41

…. …. ….

Assumption: Aircraft start taxiing at the recommended
 pushback times/expected exit times

< Original Sequence>
max. delay =10 min.

Departures Arrivals

Flight no. Aircraft type Ready-time
to takeoff

Due-time
to takeoff Flight No. Aircraft type Ready-time

to touchdown
Due-time

to touchdown
NW122 B747 12:47 12:57 US322 B727 12:39 12:49
NW123 B757 12:53 13:03 US321 B737 12:41 12:51

…. …. …. …. …. …. …. ….

Ready-time to takeoff =
desired pushback time + taxiing time (T1)

Expected time to exit from the runway =
 Optimal touchdown time + Runway Occ. Time (ROT)

Recommended push-back time from the gate =
 Optimal takeoff time – Taxiing time – Buffer time

ASP Min. Separation Rule

<Optimal Sequence>
Departure Arrival

Flight No. Aircraft type Opt. Time
to takeoff

Delay Flight No. Aircraft type Opt. time
to touchdown

Delay

NW123 B757 12:53 US321 B737 12:41
NW122 B747 12:55 US321 B727 12:46

…. ……. …. …. …. …. …. ….

Minimize the completion time
for all aircraft to be operated

<Time-dependent taxiing demand>
Departures Arrivals

Flight No. Aircraft type Rec. time to
pushback

Origin
gate

Destination
runway

Flight No. Aircraft type Exp. time to exit
from runway

Origin runway
exit

Destination
gate

NW123 B757 12:49 Gate # 3 22R US321 B737 12:41 Exit 2 on 22R Gate # 9
NW122 B747 12:45 Gate # 5 22L US321 B727 12:46 Exit 3 on 22L Gate # 6

…. …. …. …. …. …. …. …. …. ….

NAP

<Time-dependent taxiing demand>
Departures Arrivals

Flight No. Origin gate Routes (links) Destination
runway Flight No. Origin runway-

exit Routes (links) Destination
gate

NW123 Gate # 3 B12-> B23-> ….-> 22R US321 Exit 2 on 22R E1->E3-> ….-> Gate # 9
NW122 Gate # 5 C1-> B4-> ….-> 22L US321 Exit 3 on 22L F5->E3-> ….-> Gate # 6

…. …. …. …. …. …. …. ….

 9

Chapter 2. Literature Reviews

2.1 Literature Review on Aircraft Sequencing Problems (ASP)

The Aircraft Sequencing Problem (ASP) is a combinatorial problem for which no efficient

algorithm (i.e., with computational time bounded by a polynomial in the size of the problem) is

known. When faced with such a computationally hard (formally classified as NP-hard–see Garey

and Johnson, 1979) problems, two approaches are possible:

1) Branch-and-bound methods applied with efficient procedures to evaluate lower/upper bound

at every nodes, which reduce the effort from that of exhaustive enumeration. These methods

are certain to produce an optimal solution, but in the worst-case scenario, they may require an

exponential number of calculations.

2) Heuristic methods which provide an approximate solution in fast (polynomial) time. These

methods may not produce an optimal solution, but generate sub-optimal solutions that are

close to an optimum for most cases.

In this review, we survey 1) the previous studies on Aircraft Sequencing Models (ASP), 2) a

dynamic programming method along with branch-and-bound scheme, and 3) various types of

heuristic methods for solving traveling salesman problems (TSP).

2.1.1 Previous Studies on ASP

The most straightforward sequencing strategy for arrivals is to assign the flights on a first-come-

fist-serve (FCFS) basis, which is largely applied in air traffic control these days. In this method,

the aircraft are scheduled in the order of preferred landing/departure times (or sometimes termed

nominal landing/departure times). The second sequencing method is the so-called time advance

(TA) technique which is used to minimize the average delay (or maximize throughput) without

changing the order of the aircraft. In this method, the runway utilization is improved by speeding

up aircraft during periods of heavy traffic so as to reduce the gaps that occur otherwise [Neuman

and Erzberger, 1990]. The FCFS sequencing procedure is most effective in the sense of

implementation, but it is subject to the randomness of the arrival process, and consequently, may

create undesirable delays which can be reduced by an optimized sequence.

 10

ASP problems are combinatorial problems where n aircraft have to be sequenced optimally. To

enumerate all possible cases involves evaluating n! solutions. Since the computations for a total

enumeration increases drastically as n increases, we need to consider more constructive

enumeration methods. Due to the nature of the problem, previous research efforts have focused

on methods to reduce the computational complexity without losing the capability to obtain an

optimal solution.

Attempts to optimize ASP-type problems date back to the late 60’s. A first investigation of the

ASP problem is made by Dear (1976). The main scope of his study is to determine the landing

order of arriving aircraft considering all the aircraft currently in the system. As this number can

be large (20 or even more simultaneous aircraft), Dear realizes the difficulty in attaining an

optimal solution in real-time. To solve this problem, a Constrained Position Shifting (CPS)

strategy is used instead of a FCFS strategy. That is, no aircraft may be sequenced forward or

backward more than a pre-specified number of positions (Maximum Position Shifting) from its

FCFS position. The method examines a window of (2 × the maximum position shift – 1)

positions, optimizes it (exhaustively) for a single position shift, moves the window down one

position, and repeats the process.

Considering Dear’s CPS management concept, Psaraftis (1980) develops a dynamic

programming approach for sequencing a given set of jobs on a single machine to minimize the

total processing cost. In this paper, Psaraftis assumes that there are n distinct groups of jobs,

where the jobs within each group are identical. Taking advantage of this grouping assumption, he

suggests a more practical algorithm which can save some computational effort as compared to the

classical dynamic programming approach for the job sequencing problem. He illustrates this

method by optimally sequencing aircraft arrivals at an airport.

Using an integer programming approach, Bianco et al. (1987, 1997) determine an optimal

sequence for arriving aircraft inside the Terminal Management Area (TMA). The authors point

out the static nature of Psaraftis’ study where all aircraft are supposed to wait to land at a given

time. Based on this concept, this paper presents a formulation which takes into account the

dynamic nature of the problem in which every aircraft entering the TMA has a Nominal Landing

Time (NLT) depending on the characteristics of the TMA, the aircraft speed, and so on. The

formulation developed by Bianco et al. (1987) is as follows.

Minimize s + ∑ ∑
∈ ∈0 0Ji Jj

ijijxp

subject to

 11

0
0 00

≤−−+ ∑ ∑∑
∈ ∈∈

sxpxpt
Jk Jj

kjkj
Jj

ijiji 0Ji ∈ (1)

0≤− ii tr 0Ji ∈ (2)

0)(≤−−++ ijjiijijij TttxTp iJ, j, jJi ≠∈∈ 0 (3)

∑
∈

=
0

1
Jj

ijx 0Ji ∈ (4)

∑
∈

=
0

1
Ji

ijx 0Jj ∈ (5)

0≥s (6)

00 =t (7)

}1,0{∈ijx i, jJjJi ≠∈∈ 00 , (8)

,0≥it 0Ji ∈

where,

J = {1,...,n} : a set of n jobs to be processed on a single runway

ri : ready-time for job i

pij : processing time of job i if job j is the successor of i in sequence,

 i, j∈J0, J0=J∪{0}

p0i : setup time of the machine when the sequence starts with job i

xij = 1 if job i directly precedes job j, and otherwise 0

ti = start time of job i

s = machine idle time

Tij = sufficiently large value to make constraints (4) redundant whenever xij=0.

This problem is NP-Hard and in the case of zero ready-times it reduces to the Asymmetric

Traveling Salesman Problem (ATSP). Here, Constraint (3) secures the minimum separation

between two consecutive flights and also prevents subtours. The authors suggest a branching

strategy based on the characteristics of the subsequences obtained in the solution process, and a

Lagrangean lower bounding strategy. Heuristic upper bounds are also computed. Using their

branch-and-bound approach, they find an exact optimal solution for the problems having up to 44

aircraft in 1,956 seconds, and show that an optimal solution could save up to 20 % on the runway

utilization. Perhaps the major weaknesses in this formulation is the lack of due-time constraints

for each flight, resulting in potentially unacceptable air delays, and the neglecting of non-

consecutive separation restrictions.

 12

One thing which should be noted here is that previous studies have mainly focused on the arrival

operations. In Dear’s study, an extension to mixed operations (i.e., departures and arrivals) is

given, with one critical assumption. For simplicity of computation, Dear assumes a slightly

relaxed separation in order not to create difficulties when the resulting sequence has two different

types of consecutive operations, which may otherwise violate the separation rules. (More details

of this issue will be discussed later.)

2.1.2 Dynamic Programming Approach

Sequencing and scheduling problems arise in a wide range of economic activities. The field of

sequencing and scheduling theory has originated from the endeavor to solve mainly job-machine

problems which involve accomplishing a number of tasks (jobs) that need to be processed by

various resources (machines) according to certain specified rules over a period of time. If we

view aircraft operations as jobs and a runway as a machine, we can apply job scheduling theory to

our problem, which is to minimize the total delay time or completion time of all aircraft. In this

problem, each aircraft has a ready-time, namely, the preferred time to land or depart.

Among the first analytical methods applied to solve sequencing problems was Dynamic

Programming, which originated from the work of Richard Bellman in the fifties. Held and Karp

(1962) applied Dynamic Programming to solve sequencing problems. Their approach is based on

Bellman’s “Principle of Optimality”. Roughly, this says that in an optimal sequence, the first k

aircraft (for any k = 1,..., n) must form an optimal sequence for the reduced problem based on

these k aircraft alone. Dynamic Programming solves the problem in stages via a sequence of

recursive computations in a manner that yields an optimal solution to the entire problem which is

represented by the final stage.

To apply dynamic programming, we can divide our ASP into two sub-problems. First, for a single

aircraft problem, it is necessary to consider simply the preferred landing/departing time

(PLT/PDT) and the runway occupancy time. Second, for more than one aircraft, we need to

consider a recursive equation. If we have n aircraft to be sequenced, {j1, j2, …, jk, … jn}, the

equations for Dynamic Programming to minimize the completion time are as follows:

Let

 J : the subset of n aircraft
 j(J) : last aircraft in sequence of subset J
 j*(J) : optimal last aircraft in sequence of subset J
 j** : optimal second-to-last aircraft in subset J, given that aircraft j is last

 13

 (= j*(J-{j}))
 ROTi : the runway occupancy time of aircraft i
 pij : minimum separation time between aircraft i and j when aircraft j immediately follows i

 C(J, j) : optimal completion time for subset J, given that the last aircraft is j
 C(J) : optimal completion time for subset J
 f j(Cj) : cost such as delay time for aircraft j, given its completion time (Cj)
 G(J) : optimal cost such as total delay time for subset J.

If J contains a single aircraft, i.e. J = { jk }

C(J, j) = G(jk)
 = PLT (or PDT) + ROTk,
G(J) = C(J, jk)
 = G(jk),
j(J) = jk,
j*(J) = jk.

else if J contains more than one aircraft (recursive equations)

C(J, j) = C(J-{j}) + pj**j + ROTj,
G(J) = min j in J [G(J-{j}) + f j(C(J, j))]
 = [G(J-{j*}) + f j*(C(J, j*))],
C(J) = C(J, j*(J)).

The branch-and-bound approach is a preferred solution technique over Dynamic Programming.

As its name implies, the method consists of two fundamental features: 1) branching: this is the

process of partitioning a large problem into two or more subproblems, and 2) bounding: this is the

process of calculating a lower bound on the optimal solution value of a given subproblem.

As an example of a branching procedure, let P denote our ASP containing n jobs. The problem P

can be solved by solving n related subproblems, P1, P2,…, Pn (subproblem Pj means job j has

been constrained to come first, but all other aircraft are open for future assignments). The set of

subproblems Pj is a mutually exclusive and exhaustive partition of P in the sense that if each Pj is

solved, the best of these n solutions will represent an optimal solution to P.

Next, each of the subproblems can be partitioned, for instance, P1 can be partitioned into P12, P13,

… , P1n. (In P12, jobs 1 and 2 occupy the first two positions in the sequence). Therefore the

second-level partition P1j bears the same relation to P1 as the first-level partition Pj bears to P. At

level k , each subproblem contains k fixed positions and can be further partitioned into (n-k)

subproblems. If this branching were to be carried out completely, there would be n! subproblems

at level n. Clearly, evaluating all n! cases is not practical, and so, a fathoming or curtailing of this

enumeration tree needs to be devised.

 14

Suppose that at some intermediate stage, a complete solution has been obtained that has an

associated performance measure (called incumbent solution) Z. Also, suppose that a subproblem

encountered in the branching process has an associated lower bound lb > Z. Then that subproblem

need not be considered any further. To find a lower bound at a certain node A at level k (i.e., for

the subproblem P12...k), we can use the following equation:

lb(A) = ROT1 + P12 + … + P(k-1)k + (n-k)⋅Pmin
(A)

where,

 ROT1: the runway occupancy time of aircraft 1 if this is the first in the processing
sequence

 Pij : the processing time (minimum separation) of aircraft j if it immediately follows
aircraft i

 Pmin
(A)

 = min∀ (i,j)∉{(1,2),…,(k-1,k)}{Pij}.

Generally, the efficiency of the Branch-and-Bound method is strongly dependent on the trial

solution and the tightness of the lower bound computed at each node. Unfortunately using Pmin
(A)

makes it difficult to obtain a sharp lower bound at earlier nodes in the tree, implying that the

method might require considerable computational time.

The Dynamic Programming method reduces the number of computations required to find an

optimal sequence when compared to exhaustive enumeration. It is also true that the larger the

problem, the more dramatic is the gain in speed. However, because Dynamic Programming must

keep all the information at each and every stage and none of this information is redundant until

the final identification of an optimal sequence, the storage requirements grow rapidly with the

number of jobs. Considering the real-time requirements of our ASP problem, we need to devise

more efficient solution methods. For this reason, this research suggests an Integer Programming

approach as well as a heuristic approach to solve the aircraft scheduling and sequencing problem.

2.1.3 Reformulation-Linearization Technique (RLT)

RLT was developed by Sherali and Adams (1989, 1990, 1994), and is an automatic reformulation

technique that can be used to derive tight LP representations as well as strong valid inequalities

[Sherali and Adams, 1999]. Consider a mixed-integer zero-one programming problem whose

feasible region X is defined as follow:

0} binary, ,0 ,:){(≥≤≤≥+×∈= yxexbDyAxRRx,yX n
mn

,
 where en is a vector of ones in Rn.

 15

Here, x = (x1,…, xn) is a set of binary variables and y = (y1,…, ym) is a set of continuous variables.

RLT consists of essentially two steps: 1) a reformulation step in which additional non-linear valid

inequalities are automatically generated, and 2) a linearization step in which each product term is

replaced by a single continuous variable.

In the reformulation step, given }{1,...,nd ∈ , the RLT procedure constructs so-called “bound-

factors (Fd) of degree d” comprised of the product of some d binary variables or their

complements. These factors are then used to multiply each of the constraints defining X

(including the variable bounding restrictions) to create a nonlinear polynomial mixed-integer

zero-one programming problem. The bound-factors are defined as follow:

−

= ∏∏

∈∈ 21

)1()(21

Jj

j

Jj

jd xx,JJF , dJJ, J, JnN,JJ =∪∅=∩≡⊆∀ 212121 },...,1{ .

In the linearization step, using the relationship jj xx =2
 for each binary variable xj, j = 1,…,n,

substituting a variable wJ and vJk, respectively, in the place of each nonlinear term of the type

∏
∈Jj

jx NJ ⊆∀ and ∏
∈Jj

jk xy kN, J ∀⊆∀ , and relaxing integrality, the nonlinear polynomial

problem is re-linearized into a higher dimensional polynomial set Xd defined in terms of the

original variables (x, y) and the new variables (w, v). Sherali and Adams show that the projection

of Xd onto the space of the original variables (x, y), XPd, yields the hierarchy of relaxations.

conv(X)X.......XXXX PnPPP =⊇⊇⊇⊇≡ 2100

where, 00 XX P ≡ (for d=0) is the ordinary LP relaxation, and

 conv(X) is the convex hull of X.

The hierarchy of higher-dimensional representations produced in this manner markedly

strengthen the usual relaxations, as is evidenced by the fact that the convex hull representation is

obtained at the highest level. In fact, in computational studies on many classes of problems, even

the first-level representation helps design algorithms that significantly dominate existing

procedures.

Applications of RLT to specific problems include zero-one quadratic problems; zero-one

quadratic assignment problems (Adams and Sherali, 1986); continuous and discrete bilinear

 16

programming problems (Adams and Sherali, 1993, Sherali and Alameddine, 1992); continuous

and discrete location-allocation problems (Sherali and Tuncbilek, 1995); polynomial

programming problems (Sherali and Tuncbilek, 1995, 1997a, 1997b); factorable nonlinear

problems (Sherali and Wang, 1999): 0-1 mixed integer problems with application to some

specially structured problems (Sherali, et al., 1998): Miller-Tucker-Zemlin formulations for

asymmetric traveling salesman problems (Sherali and Driscoll, 1999), among many others.

2.1.4 Heuristic Approaches for the Traveling Salesman Problem (TSP)

The ASP problem can be seen as a variation of Traveling Salesman Problem (TSP) for which no

efficient algorithm (i.e., with computational time bounded by a polynomial in the size of the

problem) is known. In this section, we present several heuristic methods to solve the TSP. Over

past two decades, there have been several heuristic techniques developed that bear importance to

our original problem.

2.1.4.1 Definitions of Various Types of Traveling Salesman Problems

Depending on the characteristics of the edge weight, wij (or tij), and time constraints on customer

service times, traveling salesman problems are classified as Symmetric (henceforth abbreviated

TSP), Asymmetric (ATSP), Symmetric with time-windows (TSP-TW), and Asymmetric with

time-windows (ATSP-TW) traveling salesman problem. The definitions of various types of TSP

problems are summarized in Table 2.1

2.1.4.2 Heuristic Approaches for the Traveling Salesman Problem (TSP)

Heuristic methods for TSP can be conveniently divided into two procedures: 1) tour construction

procedures which construct a initial feasible solution, and 2) Tour improvement procedures

which try to improve a given initial solution in a systematical way [Lawler, 1985].

2.1.4.2.1 Tour Construction Procedures for TSP

Reinelt (1994) classifies various types of construction heuristics suggested for TSP into four

groups: nearest neighbor heuristics, insertion heuristics, heuristics using spanning trees, and

 17

saving heuristics. Among the construction heuristics, the insertion method is known as one of the

most efficient approximate algorithms for the initial tour construction [Syslo, 1983]. In general,

Table 2.1 Definitions of Various Types of TSP Problems.

Problem Definition

TSP 1) Given a complete weighted digraph G=(V, E) and symmetric weights wij (or

tij) for all directed edges (i, j) ∈V × V in E.

Find a minimal Hamiltonian tour (or circuit) of G, i.e., a cycle which visits

each vertex exactly once, having minimum total weight.

(Most TSPs assume that a given vertex, say vertex 0, will serve as the first

and last vertex of any route and that the weight matrix (wij) satisfies the

triangle inequality.)

ATSP 2) Same as TSP except that G=(V, E) is defined having asymmetric weights wij

and wji for the directed edges (i, j) and (j, i) respectively. (i.e., wij is not

necessarily equal to wji.)

TSP -T W3) Given a complete weighted digraph G=(V, E) with symmetric weights wij for

all directed edges (i, j) ∈V × V in E, and a time-window on the departure

time for each vertex i denoted by [ei, li] where ei specifies the earliest service

time and li the latest service time.

Find a minimal Hamiltonian tour of G satisfying the time-window

restrictions.

ATSP -T W2) Same as TSP-TW except that G=(V, E) has asymmetric weights wij and wji

for the directed edges (i, j) and (j, i) respectively.

1) Kanellakis (1980), Savelsberg (1990)
2) Acheuer (1999)
3) Savelsberg (1992)

an insertion method starts with a subtour comprising of one or two nodes, and extends the tour by

selecting a node from currently unvisited nodes and then inserting the selected node to the current

subtour in such a way that the incremental tour cost is as small as possible.

Let V be the entire node set where |V| = N and VT be the set of nodes included in the current

subtour. The k th iteration (1 ≤ k ≤ N-1) of an insertion algorithm enlarges the tour of size k to one

of size k+1 by applying the following two steps:

 18

Selection step: In the set V-VT of the unvisited nodes, determine which node is to be

added to the cycle next.

Insertion step: Determine where the newly selected node is to be inserted to enlarge the

current subtour.

For the selection step, a number of heuristics have been suggested and investigated. Some of

these are:

arbitrary insertion: pick any unvisited node at random,

nearest insertion: pick the unvisited node that is nearest to the current subtour,

cheapest insertion: compare the cost of insertions of all unvisited nodes (in all insertion

positions) and pick the one having the smallest cost,

farthest insertion: pick the unvisited node that is farthest from the current subtour.

In addition to the above methods, the convex hull insertion method, and the greatest insertion

procedure can be applied, especially in an Euclidean space. (For more details, see Bodin (1983),

Golden and Stewart (1985), and Laporte (1992a).)

Of the insertion heuristics mentioned above, the farthest insertion appears to be the best overall

strategy (Golden et al., 1980). The underlying intuition behind the farthest insertion method is

that if a rough outline of the tour can be constructed through the widely-spread nodes, then the

finer details of the tour resulting from the incursion of the nearest nodes can be filled in without

greatly increasing the total length of the tour.

The farthest insertion algorithms are described as follows [Syslo et al., 1983]: in order to find the

farthest unvisited node, the array dist(⋅) of size N is maintained such that, for all unvisited nodes

v, dist(v) is the distance from the node v to the node in the current tour which is closest. The node

f denotes the farthest node from the current tour. Each time a new node is inserted into the cycle,

the dist array is updated. To find the best insertion position which is the closest edge from the

node f, the insertion cost of node f between node i and j (ICij) is examined for all edges in the

current subtour. The insertion cost is expressed as

 ICij = wif + wfj - wij.

Once the closest edge is obtained, state variables such as the total cost, the array dist(⋅) and the

node/edge sets corresponding to the current tour are updated. Below is the pseudo-code for the

 19

farthest insertion algorithm. Here, s denotes an arbitrary node for an initial tour, and ET is the

edge set for the current subtour.

Initialization: VT = {s}; ET = {(s,s)}; wss ← 0; totalCost ← 0;

for all u∈V-VT, dist(u) ← wsu;
Iteration:
while |VT | < n
 (Selection):

f ← node in V-VT with largest value of dist(f);
 (Insertion):

for every edge (i, j)∈ET, ICij ← wif + wfj - wij; // examine insertion costs
 (i*, j*) ← edge in ET with smallest values of cij; // find the closest edge
 (update):

ET ← ET ∪ {(i*, f), (f, j*)}-{(i*, j*)}; // update the visited edge list
 VT ← VT ∪ {f}; // update the visited vertex list

 totalCost ← totalCost + ci*j*; // update the total tour cost
 for all x∈V-VT, dist(x) ←min{dist(x), wfx} //update the array dist
end

2.1.4.2.2 Improvement Procedures for TSP

There is a wealth of previous studies on heuristic approaches to improve solutions to the traveling

salesman problem. The best-known improvement heuristic procedures are edge-exchange (or

sometimes called edge-interchange) methods. Lin (1965) proposed the r-opt algorithm in which r

edges in a feasible tour are exchanged for other r edges in that tour as long as the result remains a

feasible tour and the length of the exchanged tour is less than the length of the previous tour.

Here, r is the number of edges exchanged at each iteration. The r-opt procedure is said to be r-

optimal if there is no feasible exchange that improves the current solution. The larger the value of

r, the more likely it is that the final solution is optimal. However, the computational requirements

increase rapidly as the value of r increases. As a result, r = 2 or r = 3 are the ones most commonly

used [Golden and Stewart (1985)].

A 2-exchange shown in Figure 2.1 involves the substitution of two edges, (i, i+1) and (j, j+1) with

two other edges (i, j) and (i+1, j+1). Such an exchange results in a local improvement if and only

if

wi,j + wi+1,j+1 < wi,i+1 + wj,j+1 .

 20

Testing this improvement involves only local information and can be done in a constant time. The

total number of possible 2-exchanges is equal to NC2, which implies a time complexity of O(N2)

for the verification of 2-optimality.

i

j+1 j

i+1
i

j+1 j

i+1

Figure 2.1 Example of 2-exchange.

It should be noted that the orientation of the path (i+1,…, j) is reversed in the proposed 2-

exchange tour. In a TSP having side-constraints such as time-windows, it is of importance to be

able to efficiently check the feasibility of the nodes in the reversed path. (This will be discussed

later.)

In a 3-exchange, where three edges are removed, there are several ways to construct a new route.

Two 3-exchanges shown in Figures 2.2(b) and (c) make an important difference: In Figure 2.2(c)

the orientation of the original tour is preserved whereas in Figure 2.2(b) this orientation is

reversed. The time to verification of 3-optimality is O(N3).

i

j+1

j

i+1

kk+1

i

j+1

j

i+1

kk+1

i

j+1

j

i+1

kk+1

 (a) (b) (c)

Figure 2.2 Example of 3-exchange.

 21

Lin and Kernighan (1973) propose a variable r-opt algorithm which decides at each iteration how

many edges to exchange. The variable r-opt requires considerably more effort in coding than the

standard r-opt procedure. But the variable r-opt procedure outperforms the standard 2-opt or 3-

opt approach in finding near-optimal solutions. Because of this advantage, variable r-opt

procedure is frequently used to produce tighter upper bounds for the TSP.

With an intention to reduce the computational burden to verify r-optimality, proposals have been

made to take only a subset of all possible r-exchanges into account. Or (1976) proposes a method

that considers only those r-exchanges that would result in a string of s (= 2, 3..) consecutive

nodes being inserted between two other nodes. This reduces the time complexity required for the

verification of Or-optimality to O(N2). Figure 2.3 shows an example of Or-exchange (s=2) where

a string of (i1, i2) is removed from its position and inserted between j and j+1.

i1-1

i2i1

i2+1

jj+1

i1-1

i2i1

i2+1

jj+1

Figure 2.3 Example of an Or-exchange (s = 2).

2.1.4.3 Heuristic Approaches for the Traveling Salesman Problem with Time-windows (TSP-

TW)

Due to time-window restrictions at each node (or customer location), an arrival earlier than the

earliest service time ei introduces a waiting time at node i. On the other hand, the tour is

infeasible if the arrival time at node i is later than the latest service time li. Taking the time-

window into consideration, there are two types of objectives for TSP-TW [Savelsbergh, 1985]:

Minimizing the total travel time, ∑
=

+

n

k
kkt

0
1, , which does not consider any possible waiting times at

the nodes.

 22

Minimizing the route duration, An+1-D0, i.e., the time difference between the arrival time at the

depot (An+1) and the departure time at the depot (D0).

If the departure time at the initial node (node zero) is assumed to be set at its earliest time (i.e.,

D0=e0), the objective of minimizing the route duration becomes that of minimizing the

completion time of the tour. This is suitable for our ASP problem which minimizes the total

completion time of runway operations for a given set of flights. In this review, we focus on the

procedures for the objective of minimizing the total route duration.

Most procedures for TSP can be successfully extended to TSP-TW. However, one difficulty in

applying heuristics designed for TSP to TSP-TW is testing the feasibility of a candidate tour

produced by any exchange scheme. For example, testing the feasibility of a k-exchange tour in

TSP with time-windows (or other side-constraints) requires O(N) time which results in a time

complexity of O(Nk+1) for the verification of k-optimality. Various types of researchers have

focused on devising more efficient techniques to test this feasibility.

By adopting the GENIUS (Generalized Insertion and Unstring and String) method for TSPs,

Gendreu et al. (1998) proposed a generalized insertion heuristics for TSP-TW in which the

objective is the minimization of travel time. The tour building algorithm produces a feasible route

by inserting a vertex in its neighborhood on the current route, and performing a local

optimization. Then, the feasible tour is post-optimized based on the successive removal and

reinsertion of all vertices.

Since the early eighties, TSP-TW has drawn additional attention due to the fact that procedures

for TSP-TW provide basic methods to solve vehicle routing problem with time-windows (VRP-

TW). These are very important and practical problems faced by the industries. The vehicle

routing problem (VRP) is a problem to design a set of minimum cost vehicle routes for a fleet of

vehicles of known capacity which service a set of customers with known demands [Solomon et

al., 1988]. All routes must originate and terminate at a common depot. Each customer is served

exactly once. In addition, all N customers must be assigned to vehicles such that the total demand

on any route does not exceed the capacity of the vehicle assigned to that route. The vehicle

routing problem with time-windows (VRP-TW) is a generalization of the VRP. In the VRP-TW, a

number of customers have one or more time-windows during which service must be scheduled.

Most VRP-TWs assume that the number of vehicles used is unlimited, i.e., the fleet size is

determined simultaneously.

Similar to TSP-TW, of primary importance to the effectiveness and efficiency of heuristics for

VRP-TW is the way in which the time-window constraints are incorporated in the solution

 23

process [Solomon, 1987]. (In VRP, it is true that we should consider the vehicle capacity

constraint as well as time-windows. But, here we will skip discussions about the capacity

constraints. For more details about capacity constraint, see Savelsbergh, 1990a).

If we have a single vehicle to be scheduled (i.e. single VRP-TW), the problem then becomes the

same as TSP-TW. For this reason, it is worth reviewing previous studies on VRP-TW. These

studies include Psaraftis (1983a, 1983b), Savelsbergh (1985, 1990a, 1990b, 1992), Solomon

(1986, 1987) Solomon et al. (1988), Sexton and Bodin (1985), Baker and Schaffer (1986),

Desrosiers et al. (1986), Dumas et al. (1991, 1995), Desrochers et al. (1992), and Laporte

(1992b). Several of these procedures are reviewed below.

2.1.4.3.1 Psaraftis 's Procedure

A. Tour Building Procedures

Psaraftis (1983a) suggests an O(N2) heuristic for the dial-a-ride problem (DARP) which is a

special type of TSP with precedence constraints. In the DARP, a vehicle is located at a point A,

and is called to service N customers, each of whom wishes to travel from a distinct origin to

distinct destination, and then returns to A so that total length of the route is minimized. Here, the

precedence among nodes should be considered because no destination can be visited before the

corresponding customer has been picked up. The problem is static in the sense that all N

customers’ requests are given and no new customer requests are considered until all of these N

customers are serviced.

Due to the complexity of the DARP, it is extremely hard to find an exact solution in reasonable

time for practical size problems (usually having more than 100 customers for a vehicle). For

instance, using Dynamic Programming to solve the DARP requires O(N23N) time, and this

approach limits the tractable problem size to no more than 8-10 customers [Psaraftis, 1980].

The tour building procedure proposed by Psaraftis is based on the minimum spanning tree (MST)

approach that is defined for N origins and N destinations. First, an initial TSP tour T0 through the

2N nodes is constructed. Then subsequent steps produce a feasible tour by traversing T0 in such a

way that precedence constraints are satisfied. The heuristic proceeds as follows.

Step 1 (Generate a TSP tour, T0): Without distinguishing origins and destinations, construct a

TSP tour T0 through 2N points based on their MST.

 24

Step 2 (Generate a dial-a-ride tour, T1): Choose any customer’s origin on T0 as a first pick-up

point P1 around the starting point A. Construct a dial-a-ride tour T1, by traversing T0

clockwise from P1 until all points are visited and then return to A. While doing this, do not

visit any point that has been previously visited or any destination whose origin has not

been visited yet.

Step 3 (Improve T1: optional): Improve T1 by a sequence of a local exchanges.

Step 4 (Generate a dial-a-ride tour T2: optional): Generate another tour by repeating Step 2 and

Step 3 but moving counterclockwise. Pick the shortest tour in T1 and T2.

Step 5 (Optional): Repeat Step 2 (optionally 3 and 4) N times, each time choosing a different

customer origin as P1. Pick the tour that has the minimum length.

For Step 3, Psaraftis proposes a local improvement scheme in the sense that the exchange

involves four adjacent nodes such as i, j, k , and m shown in Figure 2.4. Assuming that the edge

weights, wij, are symmetric and that the triangle inequality holds, the conditions for feasibility and

profitability of the exchange shown in Figure 2.4 are as follow:

 wij + wkm < wik + wjm (condition for profitability),

 where, k is not the destination of the customer whose origin is j (condition for feasibility).

i

j

k

m i

j

k

m

Figure 2.4 A local exchange [Psaraftis, 1983a].

The computational complexity of the heuristic is O(N2) since finding MST, along with Step 3 and

5 each require O(N2) time. (Even though the MST in Euclidean plane can be found in O(NlogN)

time, still the heuristic is O(N2).)

B. Improvement Procedures

 25

In the context of DARP, Psaraftis (1983b) develops k-exchange procedures to perform local

search in a precedence-constrained vehicle routing problem. Similar to the k-opt procedure of Lin

(1965), and Lin and Kernighan (1973), a DARP tour is said to be k-optimal if it is impossible to

obtain another DARP tour of shorter length by replacing any k of its links by any other set of k

links.

Figure 2.5 depicts a 2-exchange. Such an exchange is profitable in a local tour improvement if

and only if wi,i+1+wj,j+1> wi,j+wi+1,i+1 under the assumption that the triangle inequality holds. In

contrast with the TSP where each individual exchange takes O(1) time, checking whether each

DARP exchange satisfies the origin-destination precedence constraints requires O(N2) time. (This

is so, because checking for precedences needs an examination of all pairs of nodes in the section

(i+1, j) and to ascertain if there is any customer who has the corresponding origin and destination

in the segment.) If the feasibility check is executed at every 2-inerchange, the procedure to find a

2-opt DRAP tour from a feasible DRAP tour will take O(N4) time.

Psaraftis proposes a method which finds the best 2-iterchange DARP tour out of a given feasible

tour in O(N2) time, which is the same as in the TSP where no feasibility checks are needed.

Suppose that we have an initial feasible DARP tour having N customers (labeled n=1,…,N). A

DARP tour can be represented in one of following two ways.

Either using an array for a sequence counter S(i), i=0,…,2N+1, representing the ith stop of the tour

given by following definition:

 0 if i =0 and 2N+1 (i.e., the starting and ending point of the tour),

 S(i) = +n if the vehicle picks up customer n at stop i,

 -n if the vehicle delivers customer n at stop i.

Or using a matrix [m(n,i)] in which m(n,i) represents the status of customer n at the end of the ith

stop of the tour:

 3 if customer n has not been picked up so far,

 m(n,i) = 2 if customer n is on board the vehicle,

 1 if customer n has been delivered.

Let us consider a 2-exchange of (i, i+1) and (j, j+1) as shown in Figure 2.5. Checking the

precedence feasibility of the 2-exchange can be done by simply examining if there is any

customer n for whom m(n, i+1) = 3 and m(n, j) = 1. If there exists such a customer, the proposed

 26

2-exchange will violate the precedence constraint. The matrix [m(n, i)] can be constructed from

array S(i) in O(N2) time. Having this matrix, we can check the precedence feasibility of a

proposed 2-exchange in O(N) time. Hence, the best 2-exchange DARP tour from a given initial

tour can be obtained in O(N3) time.

i

j+1 j

i+1
i

j+1 j

i+1

Figure 2.5 An example of 2-exchange.

In order to reduce the computational complexity further, Psaraftis introduces a screening

procedure to determine the feasibility of every possible 2-intercange. This screening process is

performed at the beginning of the algorithm, and the information is stored in a matrix to be used

in the tour improvement procedure.

Given a DARP tour and a stop i (0 ≤ i ≤ 2N-2), let FIRSTDEL(i) denote the position (or stop) of

the first delivery remaining beyond i+1, for which the corresponding customer has not been

picked up until stop i. The FIRSTDEL(i) is expressed as follows:

 x if x is the smallest position above i+1 for which there exists a

customer n so that m(n, i) =3 and m(n, x) =1,

 2N+1, otherwise.

Then, the precedence feasibility of a 2-exchange can be checked by applying the following

theorem.

Theorem (Psaraftis (1983b)): The substitution of links (i, i+1) and (j, j+1) with (i, j) and (i+1,

j+1) is feasible if and only if j < FIRSTDEL(i).

FIRSTDEL(i) =

 27

Using the array of FIRSTDEL(⋅) and the Theorem, the feasibilities of all possible 2-exchanges are

stored in the matrix [FE(i, j)] with values of true or false. The pseudo-code for the screening

process is presented below:

Step 1(Calculate the values of FIRSTDEL(i)): Using array S(i) and the matrix [m(n, i)], calculate

the values of FIRSTDEL(i) for all i, 0 ≤ i ≤ 2N-2.

Do i = 0 to 2N-2
 Do x = i+2 to 2N+1

 If (S(x) < 0) // check if x is delivery
 If m(-S(x), i) = 3) // check if x has already been picked up util the end of stop i
 FIRSTDEL(i) = x;
 End if
End if
If (x = 2N+1) then FIRSTDEL(i) = x;

 End do i
 End do x

Step 2 (Create a feasibility matrix [FE(i, j)] for all possible 2-exchanges):

 Do i = 0 to 2N-2
 Do j = i+2 to 2N
 FE(i, j) = false;
 If j < FIRSTDEL(i), then FE(i, j) = true;
 End do i
 End do j

The above screening process can be executed in O(N2) time. As a result, the best 2-exchange tour

out of a given DARP tour can be found in O(N2) time since checking feasibility of any proposed

2-exchange can be performed in O(1) time. It should be emphasized that what we have found so

far is not the find 2-opt tour but the best 2-interchange tour of a given DARP tour. To search for a

2-opt tour, the procedure should be applied a number of times. To facilitate this process, Psaraftis

introduces two search algorithms: Breath-first and depth-first search (see Psaraftis (1983b) for a

complete discussion of this).

2.1.4.3.2 Solomon's Procedures

A. Tour Building Procedures

 28

By extending the known VRP heuristics, Solomon (1987) proposes several tour-building

algorithms for VRP-TW. The novelty of the proposed approach is the incorporation of distance

and time dimensions in the heuristic process. The cost (for the objective function) of direct travel

from customer i to j is assumed to be given by ci j= ρ1wij + ρ2 (bj - bi), where ρ1 ≥ 0, ρ2 ≥ 0 and wij

is the direct travel time between i and j, and bj is the time to begin service for customer j. If ρ1 =

0, then the problem is to minimize the total travel time.

Solomon proposes necessary and sufficient conditions for time feasibility when inserting a

customer, u, between the customers ip-1 and ip, 1 ≤ p ≤ m, on a partially constructed feasible

route, (i0, i1, i2,…, im), i0 = im = 0 for which the times to begin service, rib for 1 ≤ r ≤ m, are known.

Initially, the vehicle is assumed to leave the depot at the earliest possible time, e0. (Later, the

depot departure time is adjusted to eliminate any unnecessary waiting time after the complete

vehicle schedule has been created.) The necessary and sufficient condition for feasibility of the

insertion is as follows:

bu ≤ lu and rrr iii lb ≤+ PF , p ≤ r ≤ m,

where, riPF : the push-forward for customer ir is defined as
new
ip

b - pib ≥ 0, if r =

p, and }PF,0max{
1+

−
rr ii W , if p ≤ r ≤ m – 1,

 and where, 1+riW is the waiting time at ir+1.

It should be noticed that if piPF > 0, some of the customers ir, p ≤ r ≤ m, could become infeasible.

Hence, we need to examine these customers sequentially for time feasibility until we find a

customer, ir, for which 0
PFi = 0, or ir is time infeasible.

It should also be noticed that, the aforementioned condition assumes that the triangle inequality

holds for travel distance and times. If non-Euclidean travel distances and times are used, then it is

possible that piPF < 0, which leaves all the customers time feasible . Solomon proposes several

types of heuristic methods for the tour building methods.

Saving heuristics:

This approach is an extension of the savings heuristic originally proposed by Clarke and Wright

(1964). The procedure begins with n distinct routes in which each customer is served by a

dedicated vehicle. The tour-building heuristic is performed by the addition of a link of distinct

partially formed routes between two end customers, i and j, guided by a measure of cost savings

given by Sij = di0 + d0j - µdij, µ ≥ 0. In the VRP-TW, the route orientation must be considered

 29

when two partial routes (see Figure 2.6) with end customers, l(ast) and f(irst), respectively, are

combined according to the savings value. Here, testing for time feasibility can be accelerated by

using the push-forward generated at f.

0

a) Before the addition c) Addition 2b) Addition 1

f

l

0

f

0

l

Figure 2.6 Two-addition procedures in a savings heuristic.

A time-oriented, nearest-neighbor heuristic:

This procedure initializes every route by finding the unrouted customer closest to the depot. The

heuristic searches for the customer closest to the last customer added to the route. Let the last

customer on the current partial route be customer i, and let j denote any unrouted customer. The

closeness of any two customers, i and j, denoted by cij, is the combination of the distance between

two customers dij, the time difference between the completion of service at i and the beginning of

service at j, Tij, and the urgency of delivery to customer j, vij, given by the following equations:

 Tij = Aj - (Ai + si),

 vij = lj - (Ai + si + wij) and

 cij = δ1wij + δ2Tij +δ3vij, where δ1 + δ2 + δ3 = 1, δ1, δ2, δ3≥0,

 where, Ai: arrival time at customer i,

sj: service time for customer i,

B. Improvement Procedures

 30

Suppose that we have a 2-exchage tour as shown in Figure 2.5. Similar to Psarsftis’s procedure,

Solomon (1988) considers two conditions to be satisfied for a substitution of (i, j) and (i+1, j+1)

with (i, i+1) and (j, j+1) to be favorable:

local improvement condition: wij+wi+1, j+1 < wi, j+1 + wi+1, j,

feasibility condition: The time-window constraints of the customers affected by the exchange

need to be satisfied.

To check the feasibility of the 2-exchange, time-windows for all customers from i+1 to the end of

the route should be examined. Since this additional checking procedure requires O(N) time, the

total computational effort for 2-opt would result in a O(N3) time process.

By adopting the work of Psaraftis (1983b), Solomon et al. (1988) develop an acceleration method

for improvement heuristics for VRP-TW. This method is used as a preprocessor, which makes it

possible to handle the time-window constraints without an increase in running time of the

algorithm. Checking the feasibility of a 2-exchnage can be accelerated by examining the

precedence relationship between all pairs of customers. If Ai+si+wij (=Di+wij) > lj, then customer i

should precede customer j in the tour. The precedence information between all pairs of customers

are stored in a matrix VP(i, j) in the following way:

 +1 if customer i must precede customer j,
VP(i, j) = 0 if no precedence relationship exists,
 -1 if customer j must precede customer i.

Similar to Psaraftis' method, it is possible to define a node precedence value, NP(i), for all

customers on the route which reflects the precedence dependence at that point with regard to

customers to be visited later in the route.

NP(i) = the smallest number k , k > i+1, such that VP(j, k) = +1, j ≥ i+1. If no such k
exists, then NP(i) = N+1,

where, N is the number of customers.

Given NP(i) for all i, a necessary condition for the time feasibility of a 2-exchange is stated as

follows:

 A necessary condition for the feasibility of the 2-exchange of arcs (i, i+1) and (j, j+1)
with (i, j) and (i+1 and j+1) is that j < NP(i).

 31

It is noted that VP(i, j) may be examined in O(N2) time, and NP(i) may be obtained from the

VP(i,j) in O(N2) time. It should also be noted that, unlike Psaraftis’s procedure (1983b) for dial-a

ride problem, the aforementioned condition is not a sufficient condition but only a necessary

condition for feasibility of time-windows. Although the use of the NP(i) array does not eliminate

the need for further checking of the feasibility of a 2-exchage, Solomon et al. suggest that it may

be used as an effective filter to reduce the number of complete feasibility checks to obtain 2-

optimal solution for the VRP-TW. (For 3-exchanges and some examples, see Solomon et al.

(1988).)

2.1.4.3.3 Savelsbergh's Procedure

A. Tour Building Procedure

Savelsbergh (1990) introduce the forward-time slack at node i, Fi, to indicate how far the

departure time of the node can be shifted in time without causing the route to become infeasible

along the current path. The goal of the procedure is to check feasibility of the insertion of an

unrouted customer u between two routed customers i and i+1. Taking the departure time at the

initial node as the earliest service time (i.e., D0= e0), Fi is defined as follows:

+−= ∑

=
+

≤≤

k

ip
ppik

nki
i wDlF 1,min .

Then, the feasibility of the insertion u will be secured if

 max{Di +wi,u, eu} + wu,i+1 - Di+1 ≤ Fi.

Using the following backward recursion, Fk
 for all customers k can be computed in O(n).

 inn DlF −= ++ 11 ,

 } ,min{ 11 kkkkk DlWFF −+= ++ for k = n,…1,

 where, Wi: waiting time at node i defined as max{0, ei-Ai}.

 32

For the profitability of the insertion, Savelsbergh uses the measure of savings given by the

following equation:

 sav = 2w0,u + wi,i+1 – wi,u - wu,i+1.

B. Tour Improvement Procedures

The basic idea of Savelsbergh's tour improvement procedure (1990b) is to use a specific search

strategy in combination with a set of global variables such that testing the feasibility of a single

exchange and maintaining the set of global variables requires no more than a constant time, O(1).

The set of global variables is defined such that: 1) this set of variables makes it possible to test the

feasibility of a proposed exchange in constant time, and 2) the lexicographic search strategy

makes it possible to update the values of these variables in constant time. Savelsbergh suggests

three types of lexicographical search strategies for VRP-TW as shown in Figure 2.7.

Lexicographic search for 2-change: In the outer loop, choose the edge (i, i+1) in the order in

which they appear in the current tour starting at (0,1). For the inner loop, choose the edge (j,

j+1) to be (i+2, i+3), (i+3, i+4), …, (n-1, n) (see Figure 2.7(a)).

Lexicographic search for backward Or-exchange: Choose the path (i1,…,i2) in the order of the

current route starting with i1 equal to 2. Choose the edge (j, j+1) to be (i1-2, i1-1), (i1-3, i1-2),

…, (0, 1) (see Figure 2.7(b)).

Lexicographic search for forward Or-exchange: Choose the path (i1,…,i2) in the order of the

current route starting with i1 equal to 1. Choose the edge (j, j+1) to be (i2+1, i2+2), (i2+2,

i2+3), …, (n-1, n) (see Figure 2.7(c)).

A general framework for the 2-exchange procedure is roughly described by the following pseudo-

code:

{ input: a route given as (0,1,2,…,n)}
{ output: a route that is 2-optimal}
Start:
for i=0 to n{

initGlobal(i,G);
 for j=i+2,n{

if(wi,j + wi+1,j+1 < wi,i+1 + wj,j+1 and FeasibleExchange(i,j,G))
{
 PerformExchange(i,j);

 33

 Goto Start;
}

 UpdateGlobal(i,j,G);
 }// end for j

}// end for i

Comparing this procedure with the straightforward implementation, the suggested idea guarantees

that only constant time is spent on a single exchange, which implies an O(n2) method for

verifying 2-optimality. On the other hand, in the straightforward implementation, the time spent

on a single exchange depends on the effort needed to establish either its feasibility or its

infeasibility, which implies an O(n3) method for verifying 2-optimality.

Generally, the forward-time slack at node i related to the path (i,…, j) and to the departure times

Di,…, Dj is expressed as:

+−= ∑

=
+

≤≤

k

ip
ppik

jki

ji
i tDlF 1,

),...,(min .

Savelsbergh (1992) proves that if two feasible path (i1,…, j1) and (i2,…, j2), with associated

forward time slacks
),...,(11

1

ji
iF and

),...,(22

2

ji
iF for the initial nodes are concatenated, the forward-

time slack for the first node of the resulting path is given by:

{ })(,min
21111 2

22

1

11

1

2211

1

),...,(),...,(),...,,,...,(
jjjjki ik

ji
i

ji
i

jiji
i wDDWFFF +−++= ∑ ≤< .

Using the above equation, we can compute the forward-time slack at the depot,
),...,0(

0
nF , using

one of the following two ways:

forward recursion: } ,min{ 1011
),...,0(

0
)1,,...,0(

0 +≤<++
+ ++−= ∑ iip pii

iii WWDlFF .

backward recursion: } ,min{ 1
),...,1(

1
),...,1,(

0 +
+

+
+ +−= i

ni
iii

nii WFDlF .

Another issue in improvement procedures is how efficiently the objective function associated

with a given exchange can be evaluated. Since our objective is to minimize the route duration,

Dn+1-D0, the efficiency of evaluation actually depends on the efficiency of the computation of

 34

Dn+1. Given a path (i,…, j), a departure time Di and D0=e0, the departure time Dj can be computed

as

∑∑ ≤<<≤ + ++= jki kjki kkij WwDD 1, .

As such, the computation of waiting times, Wk, in a constant time is the real issue in checking for

profitability. Savelsbergh (1992) suggests an approach to compute the waiting time on the

concatenation of paths (i1,…, j1) and (i2,…, j2) by distinguishing four different cases on ∆ which

denotes 2211 , ijjj DwD −+ , and W2 which is the sum of the waiting time on the path (i2,…, j2).

Table 2.2 summarizes the results. Here B2, which is the backward-time slack at node i relative to

the path (i,…, j) indicates how far the departure time of the node can be shifted backward in time

without introducing any waiting time, and is computed as follows:

.}{min),...,(∑ ≤≤ −= jki kk
ji

i eDB

Table 2.2 Computation of Waiting Time on a Concatenated Path.

 ∆ ≥ 0 ∆ < 0

W2 = 0 W1 W1+max{0, -∆ -B2}

W2 > 0 W1+max{0, W2-∆} W1+ W1 + ∆

Savelsbergh shows that on the concatenated path, both the forward-time slack at each node that is

used for the checking feasibility, and the sum of the waiting times used for checking the

profitability can be computed in constant time. Hence, it is possible to implement the testing of

feasibility and profitability in O(1) time.

 35

0

i1

i2

0

i1

j+1j

i2

j

0

j+1

i1

i2

1

0

1 j

0

j+1

1

0

j j+1

1

0

j+1j j

0

j+1

i1

i2

(b) Forward Or-exchanges (c) Backward Or-exchange

0

i 1

i 2

0

i 1

jj+1

i 2

0

i 1

j+1 j

i 2

0

i 1

j+1 j

i 2

(a) 2-changes

Figure 2.7 Lexicographic search strategies.

36

2.1.4.4 Heuristic Approaches to the Asymmetric Traveling Salesman Problems (ATSP)

In principle, if an asymmetric TSP is translated into a symmetric TSP, we can now apply any

heuristic devised for symmetric TSP to solve ATSP. As pointed out by Kanellakis and

Papadimitriou (1980), this approach increases the problem size considerably. For example, a 100-

city ATSP is transformed into a 300-city symmetric TSP. They also remarked that not all

approaches to the symmetric TSP can be adopted to solve the ATSP (for example, the class of

techniques based on spanning trees). The power of Lin-Kernighan’s (1973) heuristic is the fact

that all primary changes are potentially searched. Kanellakis and Papadimitriou (1980) present an

extension of Lin-Kernighan’s local search algorithm for the solution of ATSP: the sequential

primary change in which the creation of a new cycle (by primary change as described below) is

immediately followed by a breaking of the cycle. They also suggest that the so-called quad

change which is nonprimary can substantially enrich the neighborhood structure. A quad change

is illustrated in Figure 2.8(d).

It is pointed out that Lin-Kernighan’s heuristic which uses a definite favorable λ-change (see the

definition given below) requires excessive computation for ATSPs. Without having any definite

favorable λ-change, the algorithm is designed to be able to stop if there is no favorable change at

every pair of steps. The computational results show that 90-city ATSPs can be solved in 4.43

minutes on a PRIME 400 minicomputer.

Below, we present the definitions of the λ-change and the primary change for a given tour τ,

which are related to the sequential primary change.

Definition (λ-change of a tour τ):

Let τ and τ′ be ATSP tours, X and Y be disjoint sets of edges such that τ′ =(τ-X)∪Y. If

|X|=|Y|=λ, we say that τ′ is a λ-change of τ. A graph G(τ,τ′) is defined in such a way that,

given the nodes of G(τ,τ′) corresponding to edges in X, if xi=(k , l) and xj=(p, q), xi, xj∈X,

then there is an arc (xi, xj) in G(τ,τ′) iff (k , q)∈Y. For example, a tour τ′ in Figure 2.8(b) is

a 5-change of the tour τ of Figure 9(a), and Figure 9(c) displays the graph G(τ,τ′).

Definition (Primary change):

A tour τ′ is a primary change if G(τ,τ′) consists of a single cycle. Figure 2.8(b), for

instance, shows a primary change for the tour of Figure 2.8(a), but Figure 2.8(d) displays

a non-primary change.

37

(a) (b)

(c) (d)

y3

y4

y2

y1

x4

x3

x2
x1

y5

y3

y2

y1

y4

x5

x3
x2

x1

x4

x5

x2 x3

x1 x4

Figure 2.8 Definition of primary changes.

There are two ways to gradually construct a primary change τ:

Decide x1 to be removed (see Figure 2.9(a)).

The choice of y1
 (or generally y2i+1) uniquely determines an x2i+2 and a closed cycle C1 (Figure

2.9(b)).

Here we have two alternatives.

3-1) Choose y2 to break the cycle C1 and end up where the tour started (Figure 2.9(c)).

3-2) Choose y2 to generate a new cycle C2 (Figure 2.9(d)) and later break both cycles C1 and

C2 (Figure 2.9(e)).

38

Accordingly, we can define the sequential primary change as follows:

Definition (Sequential primary change):

If a primary change can be applied in a sequence, each immediately followed by the

breaking of a cycle, it is called a sequential primary change (see Figure 2.9(c)).

(a)

x1

(e)

x1
x2

x3

x5

x4

(c)

x1
x2

x3

y2

y1

(d)

x1

C 1

x
2

y1

C2

y2

x3

(b)

x1

C 1

x2
y1

Figure 2.9 Construction of primary changes.

The heuristic for ATSP starts with an initial feasible tour τ. It picks an edge x1 of τ, and tries to

find a sequential primary change. If it fails, it backtracks with respect to the same x1, and

considers all possible y1’s in increasing order and y2’s. (Here, all y2’s that break the cycle created

by y1 are searched and the one that produces the most favorable 3-change is selected.) If it fails

again, it backtracks with respect to all possible x1’s which it examines in decreasing order. This

part of the procedure is detailed as follows:

39

Step 1 (Initialization): Set G0=0, G*=0, i*=0, and i=1. Pick x1=(k , l) as the largest cost edge.
Step 2 (Pair of sub-steps):

Sub-step 1 (pick yi and create a new cycle Ci):
Let xi=(k , l). Pick yi=(k , q) subject to F and Gi. This determines xi+1 and
generate a cycle Ci. If no such choice, stop.

Sub-step 2 (pick yi+1 and break the cycle Ci):
Let xi=(p, q). Pick yi+1=(p, r) subject to F and Gi+1. This determines xi+2 and
a y* closing the tour, and it breaks Ci. If no such choice, stop.

Step 3 (Update): SP = G*. If Gτ
> G then, G*=Gτ

, delete xi+1, …, xi+1 from current tour τ, and
add yi*+1, …, yi+1 to the tour τ and set i*=i+1.

Step 4 (Stopping Criteria): If SP<Gi+1, then set i=i+1, start a new pair of steps, else stop.

Where, F (Feasibility): The x’s have not been y’s in previous steps of the current search, and yi+1
breaks Ci.

Gi (working gain) = Gi-1 + c(xi) - c(yi).
Gi+1 = Gi + c(xi+1) - c(yi+1).

Gτ
* =)()()(*

1

1

2

1
ycycxc

i

j
j

i

j
j ∑∑

+

=

+

=
−− >0.

G* (the best definite gain achieved so far at the step i*).

2.1.4.5 Heuristic Approaches to the Asymmetric Traveling Salesman Problem with Time-

windows (ATSP-TW)

As part of a branch-and-cut algorithm to solve ATSP-TW, Ascheuer et al. (1999) apply a series of

heuristics. A sorting heuristic, a nearest-feasible-neighbor heuristic, and an insertion heuristic are

applied for constructing an initial feasible tour. A swap heuristic, a two-node-exchange heuristic,

a node-reinsertion heuristic, an arc-reinsertion heuristic, an arc-reversal heuristic, and the Or-

exchange heuristic are applied for improving a current tour. For the convenience of

implementation, an additional dummy node n+1 which denotes the depot is created such that

i p n+1 ∀i∈V. (Here, “ p ” denotes the precedence relationship. For example, i p j means that i

has to precede j.) Ascheuer et al. also suggest an efficient order to implement these heuristics as

follows:

Do{ construction heuristics with following order:
Sorting heuristic
Nearest-feasible-neighbor heuristic
Insertion heuristic 1
Insertion heuristic 2

}
If no feasible sequence found Stop.
Do{ improvement heuristics with following order:

Or-exchange heuristic

40

Arc-reversal heuristic
Swap heuristic
Arc-reinsertion heuristic
Node-reinsertion heuristic
Two-node exchange heuristic

} until no further improvement is achieved.

A. Tour Building Procedures

The various types of heuristics used for tour building are as follows:

1) Sorting heuristic:

Check if the trivial sequence (0, 1,…, n-1, n, n+1) is feasible.

Sort the nodes according to increasing ri and check whether this sequence is feasible.

Sort the nodes according to increasing dj and check whether this sequence is feasible.

Sort the nodes according to the midpoints of the time-windows mj = ej+(ej+lj)/2 and check

whether this sequence is feasible.

2) Nearest-feasible-neighbor heuristic:

For each feasible arc (0, i)∈A,

Enlarge the current subtour (0, v1, v2,…,vk) by an arc (vk, vl) resulting in the smallest increase in

the objective value and guaranteeing feasibility.

3) Insertion heuristic:

Construct the initial subtour P′=(0, v1,…, vk, n+1) by finding the shortest path from 0 to n+1.

Enlarge the current subtour P′ by choosing a node j satisfying one of following criteria.

b1) Among all unsequenced nodes V′=V\{v1,…, vk}, choose the node j∈ V′ that yields the

lowest increase in the path length, i.e., dmin(j)=min{dmin(i)|i∈ V′}, where dmin(i) = min

{ 11 ++
−+

llll vviviv www | i∈ V′, vl∈P′ and subtour (0, v1,…, vl, i, vl+1,…, vk, n+1) is

feasible}.

b2) Among all unsequenced nodes V′=V\{v1,…, vk}, choose the node j∈W that has the lowest

number of feasible insertion positions and insert this nodes at the cheapest of these

positions.

41

B. Improvement Heuristics

The details of the improvement heuristics are as follows:

1) Swap heuristic:

Given a feasible tour T=(v0, v1,…, vn+1), construct a new tour T by scanning through the current

tour and checking whether swapping two subsequent nodes vi and vi+1, i =1,..,n-1, results in a

feasible solution with a better objective value. If a better solution is found, this new tour is

accepted. The procedure is repeated until no further improvement is achieved.

2) Two-node-exchange heuristic:

Given a feasible tour T=(v0, v1,…, vn+1), construct a new tour T by exchanging any two nodes (not

only subsequent nodes) in the current tour. If a better solution is found, this new tour is accepted.

This procedure is repeated until no further improvement is achieved.

3) Node-reinsertion heuristic:

Given a feasible tour T=(v0, v1,…, vi, vj, vk,…, vn+1), construct a subtour T ′=(v0, v1,…, vi, vk,…,

vn+1) by eliminating an inner node vj. Try to reinsert vj in the best position in T ′ such that the new

tour T is feasible. If a better solution is found, this new tour is accepted. This procedure is

repeated until no further improvement is achieved.

4) Arc-reinsertion heuristic:

Given a feasible tour T=(v0, v1,…, vi, vj, vk, vl,…, vn+1), construct a subtour T ′=(v0, v1,…, vi, vl,…,

vn+1) by eliminating two consecutive nodes vj and vk. Try to reinsert the arc (vj, vk) at any position

in T ′ such that the new tour T is feasible. If a better solution is found, this new tour is accepted.

This procedure is repeated until no further improvement is achieved.

5) Arc-reversal heuristic:

Given a feasible tour T=(v0,…, vj, vk,…,vl, vm,…, vn+1), construct a tour T=(v0,…, vj, vl,…,vk,

vm,…, vn+1) by reversing the subpath (vk,…,vl) such that the new tour T is feasible. If a better

solution is found, this new tour is accepted. This procedure is repeated until no further

improvement is achieved.

6) Or-exchange heuristic:

42

Given a feasible tour T=(v0, v1,…, vi,,…, vj,…, vn+1), remove the subpath (vi,…,vj) from the

current tour T, and try to reinsert it between any two subsequent nodes vl and vl+1 such that the

new tour T is feasible. If a better solution is found, this new tour is accepted. This procedure is

repeated until no further improvement is achieved.

2.2 Literature Review on Network Assignment Problem (NAP)

The NAP problem on the taxiway has many similarities with urban transportation network

problems. In urban networks, NAP solutions provide the best routes for drivers traveling to their

own destinations so that the system (or drivers) can reach an optimal (or equilibrium) state. In

solving urban transportation network problems, three types of sub-components are generally

involved:

Network assignment algorithm which, using the shortest path information, allocates traffic

demand, i.e., vehicles, on the routes,

Shortest path algorithm which, using the link travel times, provides the shortest paths for a

given O-D pairs on the network, and

Link performance function(s) which represent the relationship between the traffic volume on

a link and the travel time along the link.

Finding an adequate link performance function is considered as a difficult task, and is still a

controversial issue. The difficulty arises from the dynamic feature of traffic conditions. Some

research groups [Leonard et al. 1978, Van Aerde 1985, 1999] use a simplified version of link

performance function having two components: free running times along the link and delays at

junction [Rakha, 1990]. Other groups [Peeta and Mahmassani 1995, Mahmassani, 1998] use

simulation models as a tool for measuring link travel time rather than using a closed-formed link

performance function. Some researches [Ran et al. 1997] suggest more sophisticated functions

which are capable of capturing the dynamic characteristic of vehicle behaviors. In this research,

we assume that the link travel time is a function of only delays at a junction. It is further assumed

that the delays at taxiway junctions are proportional to the number of conflicting vehicles.

Among those three sub-components, we review the previous studies on the network assignment

algorithm and the shortest path algorithm which have been well defined and successfully studied.

43

2.2.1 Literature Review on Network Assignment Algorithms

Depending on the time-dependency, network assignment algorithms can be classified into two

types: 1) static network assignment algorithm, and 2) dynamic network assignment algorithms.

2.2.1.1 Static Assignment Algorithm

In 1952, Wardrop established two mutually independent network assignment principles for the

static assignment problem. According to the first principle, users on the network choose a route

that minimizes their own travel time. In the second principle, users distribute themselves on the

network in such a way that the average (or marginal) travel time for all users for each route from

origin to destination is equal so that the aggregate vehicle -hours spent in traveling is minimized.

These two assignment principles are also-called “User Equilibrium (UE)” and “System optimal

(SO)” respectively. Two critical conditions arise from two static network assignment principles

[Papacostas and Prevedouros, 1993]:

1) User equilibrium (UE) is the state where no traveler can improve his/her travel time by

unilaterally changing routes. (In other words, for each O-D pair, the travel time on all used

paths is equal, and also less than or equal to the travel time that would be experienced by a

single vehicle on any unused path.)

2) System optimal (SO) is the state where the travelers cannot improve the total system travel

time by jointly changing routes in any fashion. (In other words, for each O-D pair, the

marginal travel time on all used paths is equal, and also less than or equal to the marginal

travel time that would be experienced by a single vehicle on any unused path.)

Finding UE (or SO) solutions is a well-researched problem and various techniques are commonly

used in urban transportation studies [Sheffi, 1985]. The basic notation adopted in this research

project is shown below:

xa
n: flow on link a at nth iteration,

ta: travel time on link a at nth iteration,

qrs: trip rate between origin r and destination s,

ta(): link travel time function for link a.

44

A) All-or-nothing assignment

The all-or-nothing assignment method is one in which the entire flow for any given O-D pair r-s,

qrs, is assigned to the minimum-travel-time path connecting this pair. The usual steps for the all-

or-nothing assignment are:

Step 0: initialization. Perform all or nothing assignment based on the shortest paths for all

trips obtained by using ta
0 = ta(0) for all the links. Obtain link flows {xa

0} for all the

links. Set n = 1.

Step 1: update the link travel times. Set ta
n = ta(xa

n-1).

Step 2: network loading. Assign all the trips to their shortest paths on the network using the

all-or-nothing strategy based on the travel times {ta
n}. Obtain the link flows {xa

n}

for all the links.

Step 3: convergence test. If maxa{| xa
n - xa

n-1 |} ≤ k , then stop. Otherwise, set n ← n + 1 and

go to Step 1.

Considering how all-or-nothing assigns all of qrs to the shortest path, the algorithm is not

successful at converging to the state of user equilibrium. To overcome this problem, the following

algorithms have been devised by the Federal Highway Administration (FHWA).

Step 0: initialization. Perform all-or-nothing assignment based on the shortest paths for all

trips obtained by using ta
0 = ta(0) for all the links. Obtain the link flows {xa

0} for all

the links. Set n = 1.

Step 1: update and smooth the link travel times. Set τa
n = ta(xa

n-1) and ta
n

 = 0.75 ta
n-1 +

0.25τa
n for all the links.

Step 2: network loading. Perform an all-or-nothing assignment based on the travel times

{ta
n}. Obtain the link flows {xa

n} for all the links.

Step 3: stopping rule. If n = N, go to Step 4. Otherwise, set n ← n + 1 and go to Step 1.

Step 4: averaging. Set ∑ =

−=
3

0

*

4
1

i

in
aa xx , find the link travel times, ta

* = ta(xa
*) for all the

links and stop. (Here, { xa
*} approximate the link flows at equilibrium.)

45

There are two modifications used above. First, the link travel times are updated by smoothing the

link travel times from both the current and the previous iterations using certain weighting factors.

Second, the final link flows are obtained by averaging link flows from the last four iterations.

These modifications have proven to be somewhat helpful in obtaining solutions that are closer to

a true equilibrium state.

B) Incremental Assignment

In the incremental assignment method, the flows for a given O-D pair are assigned as a packet

which represents a portion of the origin-destination matrix at each iteration. The travel times are

updated based on the total traffic flows assigned to the links. The stepwise procedure for this

approach is outlined below.

Step 0: initialization. Divide each origin-destination demand into N equal portions (i.e. set

qrs
n = qrs/N). Perform an all-or-nothing assignment based on ta

0 = ta(0). Obtain a set

of link flows {xa
0}. Set n = 1 and xa

0=0.

Step 1: update link travel times. Set ta
n = ta(xa

n-1).

Step 2: incremental network loading. Assign qrs
n to the network based on the travel times

{ta
n} for all origin-destination (i.e. rs) pairs. Obtain a set of link flows {wa

n} from

this assignment, where wa
n is the flow on link a resulting from the assignment of the

nth increment of O-D matrix on to the network.

Step 3: flow summation. Set xa
n = xa

n-1 + wa
n for all the links.

Step 4: stopping rule. If n = N, stop with the current link flows as the prescribed solution.

Otherwise, set n ← n + 1 and go to Step 1.

One important fact in the incremental assignment procedure is that as the number of increments,

N, grows, the condition for UE can be achieved more closely. This point provides us with the

rationale for using an incremental assignment strategy in microscopic simulation models. In

microscopic simulation models, the vehicles are treated as individual objects, which means that

each vehicle is assigned one by one rather than as a packet of size qrs/N on the network. In this

case, the number of increments (N) is the same as the total number of vehicles, and this might

tend to produce the UE state.

46

C) Method of Successive Averages (MSA)

The MSA uses the following basic algorithm step of most minimization procedures.

x n+1= x n + αn⋅d n

where, xn is the link flows at nth iteration,

αn is a step size and

d n is a descent direction vector computed at xn.

In MSA, the step size αn (n=1,2,…) is not determined on basis of some characteristics of the

current solution but determined a priori. For this method to converge, some conditions of the

objective function and αn have to be satisfied. These conditions include twice differentiability of

the objective function, ∞=∑
∞

=1n

nα and ∞=∑
∞

=1

2

n

nα (see Sheffi (1985) for a complete discussion).

The method is outlined below.

Step 0: initialization. Perform an all-or-nothing assignment based on ta
0 = ta(0). Obtain a set

of link flows {xa
1}. Set n = 1.

step 1: update. Set ta
n = ta(xa

n).

Step 2: direction finding. Assign all the trips to the network based on the travel times {ta
n}.

Obtain a set of auxiliary link flows {ya
n} from this assignment.

Step 3: move. Find the new flow pattern for all the links by setting xa
n+1= xa

n + (1/n)(ya
n -

xa
n).

Step 4: convergence test. If a convergence criterion is met, stop with the current solution,

{xa
n+1}, as the set of prescribed (near equilibrium) link flows. Otherwise, set n ← n

+ 1 and go to Step 1.

D) Convex Combination Method

Without using a predefined step size αn, the convex combination method finds αn at each iteration

by solving a Non-linear Programming (NLP) problem which is subject to linear constraints. The

resulting NLP problem can be replaced by a much simpler linear approximation, and solved using

the Frank-Wolfe (1956) algorithm. The method is outlined below.

47

Step 0: initialization. Perform an all-or-nothing assignment based on ta
 = ta(0). Obtain a set

of link flows {xa
1}. Set n = 1.

Step 1: update link travel times. Set ta
n = ta(xa

n).

Step 2: direction finding. Assign all the trips to the network based on the travel times {ta
n}.

Obtain a set of auxiliary link flows {ya
n} from this assignment.

Step 3: line search. Find αn by solving ∑∫
−+

≤≤
a

xyx

a dt
n
a

n
a

n
a ωω

α

α
)(min

)(

0 10
.

Step 4: move. Set xa
n+1= xa

n + αn(ya
n - xa

n) for all the links.

Step 5: convergence test. If a convergence criterion is met, stop with the current solution,

{xa
n+1} as the set of prescribed (near equilibrium) link flows. Otherwise, n ← n + 1

and go to Step 1.

Methods A) and B) are called heuristic (or sometimes called non-equilibrium) assignment

methods in the sense that these may not converge to the equilibrium solution. On the other hand,

method D) is formulated as a mathematical programming technique to achieve either UE and SO.

It can be shown that solutions of mathematical formulations are consistent with to the conditions

of UE and SO defined by Wardrop.

2.2.1.2 Dynamic Assignment Algorithm

Similar to the static assignment problem, there are two types of dynamic assignment problems: 1)

dynamic system optimal assignment problem (DSO) which seeks to minimize the total system

travel time over the planning horizon, and 2) dynamic user equilibrium assignment problem

(DUE) which seeks time-dependent user path assignments that satisfy the temporal extension of

Wardrop’s UE condition [Peeta and Mahmassani, 1995].

Janson and Robles (1995) define the DUE as follows: Given a set of zone-to-zone trip tables

containing the number of vehicle trips from each origin zone in successive time intervals of 1 to

10 minutes each, determine the volumes of vehicles on each link in each time interval such that,

for each O-D pair of zones, no path has a lower travel time than any used path for trips departing

within a given time interval. Janson (1991) proves that the DUE condition for fixed departure

times is a temporal generalization of Wardrop’s condition for a static user equilibrium.

Using optimal control theory, Friesz et al. (1989) and Wie (1989) present formulations for

dynamic traffic assignment in continuous time, in which the equilibrium condition is stated that

48

no used path between any two nodes must have a higher travel time than any other path at any

instant. Ran et al. (1993) refine and extend optimal control models to include elastic demand and

departure time choice in user equilibrium or system optimal forms. Friesz et al. (1993) formulate

the simultaneous route choice and departure time problem in continuous time as a variational

inequality problem. Ran et al. (1997) propose the time-dependent travel time functions for

dynamic assignment on signalized network links which can be used to solve discrete-time

dynamic assignment problems.

Peeta and Mahmassani (1995) point out that virtually all of previous DUE models have link flows

as the decision variables, and that path flows obtained from link-based formulations are not

always unique. They suggest a formulation for the path-based assignment problem which

involves a non-explicit function of path travel times. Instead of defining the extremely

complicated path travel time function, a simulator called “DYNASMART” is developed and used

to evaluate experienced path travel times. By applying Lagrangian multipliers, Peeta and

Mahmassani derive the conditions for a Dynamic System Optimal (DSO) state. At a DSO state,

the time-dependent marginal travel times for all used paths connecting a given O-D pair are

equal, and less than or equal to the time-dependent marginal travel times on any unused routes. In

order to find marginal link travel times, a curve fitting method is suggested. As a solution

algorithm, the method of successive averages (MSA) is used to determine the new path flows for

the next iteration. Using time-dependent experienced link travel times measured by the simulator,

the time-dependent shortest paths for all O-D pairs are computed. The complete algorithm is

depicted in Figure 2.10.

In the context of the simulation model named INTEGRATION, Van Aerde (1985) suggests that a

minimum path tree table indirectly constitutes a traffic assignment function, and forms the basis

upon which vehicles make route selection decisions. Specifically, the minimum path tree table

provides a list of the turning movements which correspond to the minimum paths for each

destination. These minimum path turning movements identify all downstream links

corresponding to a vehicle’s minimum cost path, given the current location of the vehicle and its

eventual destination. As drivers re-check these minimum path trees at each node, they

automatically reselect new paths if previous paths become congested and/or competing

alternative paths become faster. This path selection (and re-selection) process is based on real-

time information and attempts to reproduce a continuous dynamic equilibrium.

49

Figure 2.10 Algorithmic Framework for Time-Dependent System Optimal Assignment Problem
[Peeta and Mahamassani, 1995].

Legend:

 Tta: travel time on link a during time interval t

xta: number of vehicles on link a during time interval t

tta: marginal travel time on link a during time interval t

τ
ijkr : number of vehicles departing from i to j in period τ that are

assigned to path k

τ
*ijky : auxiliary number of vehicles on paths departing from i to j

in period τ that are assigned to path k

 i: iteration counter.

no yes

Network Simulator
(continuous/micro simulation)

itax ,
,

itaT ,

Computation of the time-
dependent marginal link travel times

All-or-nothing
assignment

Time-dependent
least marginal time path

itat ,

i
ijky ,

*
τ

Method of Successive Averages (MSA)

])[
)1(

1
1(][

)1(
1 ,,1, i

ijk
i

ijk
i

ijk r
i

y
i

r τττ

+
−+

+
=+

i,j,k,rr i
ijk

i
ijk εττ ∀≤−+ ,,1,

STOP

i←i+1

Path

0,τ
ijkr

50

2.2.2 Shortest Path (SP) Algorithms

2.2.2.1 Importance of SP Algorithm in Transportation Studies

Finding shortest paths is a classical problem in the field of Operations Research. Recently, with

the development of Integrated Transportation System (ITS), the time-dependent assignment

problem for real-time traveler information system has captured some renewed attention. It is

widely accepted that the successful implementation of real-time traffic network control system

depends on the efficiency of SP algorithms. The following comments show the importance of the

SP problem [Gallo, 1985].

If there is one routine that is never absent from any computer code used in transportation

analysis, it is certainly the SP routine. About 80 percent of computation time in traffic

assignment is consumed in finding shortest paths.

2.2.2.2 Definitions of SP Problems

Depending on the time-dependency of link travel times and number of shortest paths to be found,

SP problems are categorized into static SP, static k-SP, time-dependent SP, and time-dependent k-

SP problems. In the static SP problem, the link costs (or travel times) are assumed to be

independent of time. In the time-dependent SP problem, on the contrary, the link costs change

over time. Instead of finding a single path for a given origin-destination (O-D) pair, the k-SP

problem deals with multiple shortest paths. The k-SP problems are also classified as being either

static or time-dependent. The definition of various SP problems are summarized in Table 2.3

[Subramanian, 1997]. The basic notation used in this section is shown below:

 N: node set of a given graph G(A, N),
 A: arc set of a given graph G(A, N).
 AT: arc set of a directed spanning tree T.

FS(i): forward star of node i,
RS(i): reverse star of node i,

 cij: the travel cost (or travel time) of link (i, j)∈A,
 cij(t): the travel cost (or travel time) of link (i, j)∈A departing node i at time t,

s: source node,
 tn: terminal node,
 i, j: intermediate node.

51

Table 2.3 Various Definitions of SP Problems.

Problem Given Find

Static SP A graph G(N, A) having |N| nodes and
|A| arcs, and a distinguished source
node s and a destination node t, and a
set of link costs, cij, associated with
each arc (i, j).

The shortest path from s to t.

Static k-SP Same as static SP problem. The first, second,…, k th shortest
paths from s to t, for any user-
specified k∈1,2,...

Time-dependent

SP

A graph G(N, A) having |N| nodes and
|A| arcs, and a distinguished source
node s and a destination node t, and a
set of time-dependent link delays,
cij(t), associated with each arc (i, j).

The shortest path from s to t,
starting from s at time t=t0.

Time-dependent

k-SP

 Same as time-dependent SP problem. The first, second,…, k th shortest
paths from s to t, starting from s at
time t=t0, for any user-specified
k∈1,2,...

2.2.2.3 Static SP Algorithm

2.2.2.3.1 Network Flow Programming Approach

The static SP problem can be formulated as a minimum-cost network flow problem (Bazaraa et

al., 1990).

∑
∈Aji

ijij
x

xc
),(

 Minimize

subject to : ∑ ∑
∈ ∈

=−
)()(iFSj

i
iRSj

jiij sxx Ni ∈∀

 0≥ijx Aji ∈∀),(

where 1=
s

s , 1−=tns , 0=
i

s),(tnsi ≠∀
and where, ss, stn, si: supply of node s, tn, i, respectively.

Due to the unimodularity property of this network structure, optimal extreme point solutions take

only integral values.

52

2.2.2.3.2 Bellman's Principle of Optimality

Bellman introduced the well-known "Principle of Optimality" which provides the basic

foundation for recursive algorithms including Dynamic Programming. Using the "Principle of

Optimality", Bellman (1966) developed the following equation. Let us denote

∞+
=

otherwise. ,

arc.an such is thereif), ,(arc oflength (finite) the jk
ckj

 f j = the length of a shortest path from the origin to node j.

If there are no directed cycles with negative length, it is clear that fs = 0, where the node s is the

origin node. For each node j, j ≠ s, there must be some final arc (k , j) in a shortest path from node

s to j. Whatever the identity of k , it is certain that kjkj cff += . This follows from the fact that

the part of the path which extends to node k must be a shortest path from 1 to k . If this is not true,

the overall path to j would not be as short as possible (this is the “Principle of Optimality”). The

relationship between nodes s, k and j is shown in Figure 2.11.

Figure 2.11 Bellman's Principle of Optimality.

The shortest path length must satisfy the following system of equations (called Bellman’s

equations):

0=sf ,

njcff kjk
jk

j ,..,1 },{min =+=
≠

.

s jk

ckj

fk fjfs= 0

53

2.2.2.3.3 Labeling Algorithm

Labeling algorithms are known as the most popular and efficient methods to solve the shortest

path problem. The label in the algorithm represents the tentative shortest path length from the

source node to that node. There are two types of labeling algorithms: label setting (LS) and label

correcting (LC).

The LS algorithm sets the label of one node permanently at each iteration, thus increasing the

shortest path vector by one component at each iteration. The LC algorithm does not set any label

permanently. Instead, all the components of the shortest path vector are obtained simultaneously

after the algorithm terminates. Some features of these two SP algorithms are summarized in Table

2.4.

Table 2.4 Comparison of LS and LC Algorithm (1).

Label setting (LS) algorithm Label correcting (LC) algorithm

Designate one label as permanent at each
iteration

Applicable only to Acyclic networks and Non-
negative arc lengths problem

All labels are temporary until the final step
when all become permanent

Applicable to all classes of problems

Both are iterative
Assign tentative labels to nodes at each step
(Label = the upper bound on the shortest path cost)

Algorithm LC Algorithm LS ⊆

The LC method always exchanges (augments, or updates) arcs in AT in a manner that replaces or

shortens the unique path from the source node s to v in T, where T is the directed spanning tree

and AT is the in T. However the LC method does not guarantee that the new path is a shortest path

until termination occurs.

The LS algorithm has become known as Dijkstra’s algorithm since Dijkstra was one of the first to

discover it independently. This algorithm finds the shortest paths from the source node s to all

other nodes in a network with nonnegative arc lengths. Table 2.5 shows generic pseudocodes for

the LS and LC algorithms.

Let, f i: travel distance (or travel time or label) to node i from source node s (which is an upper

bound on the shortest length to node i),
cij: the (finite) length of arc (i,j),
S : permanent label set,
S : temporary label set.

54

Table 2.5 Comparison of LS and LC Algorithm (2).

LS Algorithm (Dijkstra’s Algorithm) LC Algorithm
Node-based selection.
Using permanent and temporary label.

Arc-based selection

S={},S =N;

fs= 0 and predecessor(s) = 0;
f i = ∞ for each node i∈N;

while nS ≤ where n=|N| do

 select node Si∈ which f i = min{f j: Sj ∈ };
 }{iSS ∪= ;

 }{iSS −= ;
 for each (i, j), j∈FS(i) do

 if ijij cff +> then
 f j = f i + cij;

 predecessor(j) = i;
 end
 end
end

fs = 0, predecessor(s)=0;
f i = ∞ for each i∈N-{s};

while some arc(i,j) satisfies f j > f i + cij

do
 f j = f i + cij;
 predecessor(j) = i;
end

2.2.2.4 Time-dependent SP Algorithm

Assuming that the time-dependent link costs for all links, cij(t), are positive integer values, Cook

and Halsey (1966) have extended Bellman’s Principle of Optimality to solve a time-dependent SP

algorithm. According to Cook and Halsey, the minimum time of travel to node tn starting from

node i at time t, f i(t), is defined by the following functional equation and shown in Figure 2.12:

∈=

∈≠++
= ≠

Sttnifor

Sttnifortctftc
tf

ijjij
ij

i ; 0

 ;)]}([)({min
)(

where, S: the discrete time set; S={t0, t0+1, t0+2,…, t0+T},
 T: the fixed upper-bound of travel time from node i to tn.

55

j ti

cji(t) fi(t+cji(t))

fj(t)

Figure 2.12 Time-dependent SP Algorithm [Cook and Halsey, 1985].

Dreyfus (1969) has suggested the use of Dijkstra’s algorithm to determine time-dependent

shortest paths where the link costs are any real-valued times. The minimum time of travel to node

j starting from node s at time 0, f j, is defined as follow:

=

≠+
= ≠

tnifor

tniforfcf
f

iiji
ji

j 0

,)}({min

s jk

ckj

fk fjfs= 0

Figure 2.13 Time-dependent SP Algorithm [Dreyfus, 1969].

While Cook and Halsey's method applies the Principle of Optimality in forward form, Dreyfus’s

algorithm is implemented in backward fashion. Dreyfus’s main algorithm is exactly the same as

that of the LS algorithm except that time-dependent link costs are used in the optimality

constraint. The following procedure finds the minimum path tree from node s to all nodes starting

at 0.

S={},S =N; f i = ∞ for each node i∈N; fs= 0 and predecessor(s) = 0;

while nS ≤ do

 select Si∈ which f i = min{f j : Sj∈ };
 }{iSS ∪= ;

 }{iSS −= ;
 for each (i, j), j∈FS(i) do

 if)(iijij fcff +> then

56

f j = f i + cij;
 predecessor(j) = i;
 end
 end
end

Harpern (1977) first noted the limitation of Dreyfus’ approach and showed that if there exists a

y>0 such that)()(tcytcy ijij <++ , then the departure from node i must be delayed, or the

optimal path might include cycles. Kaufman and Smith (1993) studied the assumptions under

which the existing TDSP algorithms would work. To illustrate the point, consider the simple

network shown in Figure 2.14. The resulting SP from 1 to 4 starting at time 0 is 1-3-4, with the

total path cost f4 = 15.

1 4

2

3

C12 (0) = 10 C23 (10) = 10

C34 (20) = 5

C13 (0) = 10 C34 (10) = 5

Figure 2.14 Example of TDSP (1).

Now, let us assume that as shown in Figure 2.15, the travel time for link (3,4) at time 10 increases

to 20. Then the shortest path for the trip from 1 to 4 starting at time 0 is 1-2-3-4 with a travel cost

of 25. Here, it should be noticed that the driver who enters link (3,4) at time 20 can finish the trip

at 25 but another one who enters the same link at time 10 cannot finish the trip until 30. This

result is unreasonable in general transportation networks because the first-in-first-out (FIFO)

condition is violated.

1 4

2

3

C12(0) = 10 C23(10) = 10

C34(20) = 5

C13(0) = 10 C34(10) = 20

Figure 2.15 Example of TDSP (2).

57

Kaufman and Smith make a consistency assumption preventing the time-dependent link cost to

indicate passing as follow.

For any arc (i,j)∈A, t1+cij(t1) ≤ t2+cij(t2) for all t1, t2 ∈ T such that t1≤ t2.

i.e., 1
)()(

12

21 ≤
−
−

tt

tctc ijij
 for t1≤ t2.

They also show that under the assumption that the link-delay function follows the first-in-first-out

(FIFO) rule or consistency assumption, any static LS or LC algorithm can be extended to the

time-dependent case (using the time-space network formulation).

Orda and Rom (1990) studied various types of waiting-at-nodes scenarios and proposed

algorithms for these different cases. They showed that if waiting is allowed at nodes (UW), then

the consistency assumption is not required. They prescribed an algorithm for identifying optimal

waiting times at the source node if waiting is not allowed elsewhere in the network. Furthermore,

they demonstrated that for the forbidden waiting case, the paths obtained without the consistency

assumption may not be simple, and showed that the continuous-time version of the problem is

NP-Hard. Table 2.6 shows the three cases of time-dependent SP algorithms studied by Orda and

Rom. Sherali, Ozbay, and Subramanian (1998) prove NP-Hardness of various versions of time-

dependent shortest path problems, and develop efficient solution algorithms.

Table 2.6 Three Types of Time-dependent SP Algorithms.

UW (Unrestricted Waiting) Vehicles may wait an unlimited duration at any nodes

SW (Source Waiting) Vehicles may wait an unlimited duration only at source nodes

 FW (Forbidden Waiting) Vehicles are not permitted to wait at any nodes

For the UW case, the suggested solution algorithm matches that of Dreyfus’, except that Dij(t) is

defined as follows.

Dij(t) = w + cij(w+t)

where, Dij(t) : total link travel time from i to j
 w : waiting time at node i
 cij(w+t): travel cost from node i to j starting at (w+t)

58

Figure 2.16 illustrates the graphical derivation of Dij(t).

Figure 2.16 Total Link Travel Time for the UW Problem.

2.2.2.5 Implementation Issues

Gallo and Pallottino (1985) point out that the traditional classification of shortest path algorithms

into LC and LS is somewhat unsatisfactory because of its dependence on the behavior of the

algorithm rather than on their data structure. Dijkstra’s algorithm is a type of LS algorithm where

the arc lengths are non-negative, while it becomes a LC algorithm if there are some negative arc

lengths in the graph. Gallo and Pallottino suggest that it is more desirable to classify the SP

algorithms based on the data structure which is the way to keep so-called “candidate nodes” for

next iteration. Let T be a directed spanning tree of G rooted at node s, and dv be the length of the

unique path in T from s to v, v∈G. Then T is a shortest path tree with origin s (T = T(s)) if and

only if the following condition holds:

f i + cij – f j ≥0 for all (i, j)∈A (2.1)

Then all the arc-based shortest path algorithms (i.e., LC SP algorithms) can be stated as having

the following procedures:

Step 1: Initiate a directed tree T rooted at r and for each v∈N, let fv be the length of the path

from s to v in T.

Dij(t1) = w + cij(t1+w)

t2+cij(t2) t1+cij(t1) t2 t1

Dij(t)

cij(t)

45o

Dij(t)

cij(t)

time

Waiting
time(w)

cij(t1+w)

59

Step 2: Let (i, j)∈A be an arc for which condition (2.1) is not satisfied, then adjust the vector

f by setting f j = f i + cij, and update the tree T replacing the current arc incident into node j

by the new arc (i,j).

Step 3: Repeat Step 2 until condition (3.1) is satisfied for all (i, j)∈A.

The important point in the implementation of this procedure is how to select an arc at Step 2 in

order to check whether condition (2.1) is satisfied. Since n < m (n = |N|, and m = |A|), it seems

reasonable to select nodes rather than arcs. Once a node i is selected, condition (3.1) is checked

on one or more (possibly all) arcs of forward stars of i, FS(i). (In the majority of the algorithms,

all the arcs corresponding to the selected node’s forward stars are checked once.) A general

implementation of procedure for node-based LC SP algorithms is as follows:

Step 1: (Initialize) fs = 0, predecessor(s)=0; f i = ∞ for each i∈N-{s}; Q = {s};
Step 2: (Select and update)
 Select i ∈ Q; Q = Q - {i};

 For each (i,j), j ∈ FS(i) such that f j >f i + cij, do
f j = f i + cij;
predecessor(j) = i;
Q = Q + {j};

Step 3: (Iteration) if Q ≠ ∅ then go to Step 2, else stop.

where, Q: a set of candidates nodes (or a list of scan eligible (SE)).

The initial tree at Step 1 is a star-shaped tree, with one dummy arc (s,i) for each i∈N-{s}. These

dummy arcs are assigned a length equal to ∞. It is very important how to select the node i from

the set of candidate nodes Q. In fact, almost all the practical shortest path algorithms are derived

by properly defining the rule of selection and the particular data structure which is used to

implement the set Q. Theoretically speaking, the time for node selection is bounded by O(n2) and

the time for distance updates is bounded by O(m). If the network is sparse (i.e., n2 >> m), then the

former time dominates the later. So, we need to reduce the node selection time without

substantially increasing the time for updating the distances.

Figure 2.17 shows several types of data structures relevant to the selection schemes. Internal

operations for each type of Queue is summarized in Table 2.7. A sorted queue is used for the LS

SP algorithm in which a sorting method is imbedded so that the node having the least label can be

selected from the set of candidate nodes. However, it should be noted that if the problem size is

large, the sorting algorithm is not inexpensive in terms of computational cost.

60

d) Output-restricted
 double-ended queue

[x1, x2,, xn]

[x1, x2,, xn]

a) Stack

e) Double-ended queue

[x1, x2,, xn]
b) Sorted queue
 (Dijkstra algorithm)

[x1, x2,, xn]

[x1, x2,, xn]

c) FIFO queue

sorted cotents

Figure 2.17 Types of Queues for Node Selection Schemes [reproduced from Tarjan, 1983].

To revise this drawback, the so called double-ended queue (DEQueue, see Figure 2.17 (d)) has

been developed, which combines the properties of both the queue and the stack. In the DEQueue

structure, the first time a node is to be inserted into the tail of the queue. When, later on, the same

node again becomes a candidate node after being removed from the queue, it is inserted at the

head of the queue.

Table 2.7 Operations for Various Queue Types.

 Sorted
Queue

FIFO
Queue

Output-restricted
double-ended Queue

Double-ended
Queue

enqueueFirst (=push) × × � �

enqueueLast (=inject) � � � �

dequeueFirst (=pop) � � � �

dequeueLast (=eject) × × × �

SortContents � × × ×

61

On the other hand, the candidate nodes are always removed from the head of the queue. The

rationale for using the DEQueue is that every time f j is updated, except the first time, it is worth

trying to decrease the labels of the successors of j in current tree. Table 2.8 summarizes the

details of LC algorithms according to the data structures employed. Maintaining the DEQueue to

handle the candidate nodes, Ziliakopoulos and Mahmassani (1993) devise the time-dependent

shortest path algorithm. Figure 2.18 presents the pseudo code for this algorithm.

62

Call CREATE;

Call INSERT(N);
Current_Node = N; // to-node i

Do 1, While (SE list is not empty)

 Call DELETE(Current_Node);

 Do 2, for (All nodes J that can be directly reach Current_Node)
 // J is the reverse star of node i

 Next_Node = J;
 In_SE_List? = No;

 Do 3, for(t=1,M)

//Travel Time (j,i) starting at t
Current_Travel_Time = TRAVEL_TIME(Next_Node, Current_Node, t);

 // TT(j,N) at t = TT(i,N) at (t+TT (j,i)) + TT(i,N) at t
 New_Label = Label(Current_Node, t+Current_Travel_Time)

 + Current_Travel_Time;

 If(Label(Next_Node,t)≤ New_Label) then
 Label(Next_Node, t) = New_Label;
 In_SE_List? = Yes;
 Path_Pointer(Next_Node, t, 1) = Current_Node;
 Path_Pointer(Next_Node, t , 2) = t + Current_travel_Time;
 Endif

3 Continue

 If (In_SE_List? = Yes) Call INSERT(Next_Node);
2 Continue
1 Continue

Procedure CREATE
 Do, for(Node=1,N-1), Deque(Node) = 0;
 Deque(N) = 999999;
 First = N;
 Last = N;

Procedure INSERT(Node)
 If(Deque(Node) = 0) then
 Deque(Last) = Node;
 Last = Node;
 Deque(Node) = 999999;
 Else if (Deque(Node) = -1) then
 Deque(Node) = First;
 First = Node;
 Endif

Procedure DELETE(Current_Node)
 Current_Node = First;
 First = Deque(Current_Node);
 Deque(Current_Node) ;

Figure 2.18 Pseudo Code for a Time-dependent SP Algorithm

[Adapted from Ziliakopoulos and Mahmassani, 1993].

63

Table 2.8 Comparison of Data Structures for LC Algorithms.

Modified LC Algorithm
(Node-based Selection)

Using FIFO Queue Using Double Ended Queue

Generic LC Algorithm
(Arc-based Selection)

Rationale: number of nodes << number of arcs.
Rationale: Every time f j is updated, except the first
time, it is worth trying to decrease the labels of the
successors of j in current tree.

fs = 0, pred(s)=0;
f j = ∞ for each j∈N-{s};

while some arc(i,j) satisfies f j > f i + cij do
 f j = f i + cij;
 pred(j) = i;
end

fs = 0, pred(s)=0;
f j = ∞ for each j∈N-{s};
FIFOQueue={s}

While FIFOQueue ≠ {} do
 Remove i from the head of FIFOQueue;
 For any (i,j), j∈FS(i) do
 If f j > f i + cij then{
 f j = f i + cij;
 pred(j) = i;
 if j∉FIFOQueue
 then add node i to the tail of FIFOQueue;
 }
 end
end

fs = 0, pred(s)=0;
f j = ∞ for each j∈N-{s};
DEQueue={s}

While DEQueue ≠{} do
 Remove i from the head of DEQueue;
 For any (i,j), j∈FS(i) do
 If f j > f i + cij then{
 if j∉FIFOQueue{
 if f j=∞ then
 insert j into the tail of DEQueue;
 else insert j into the head of DEQueue;
 }
 f j = f i + cij;
 pred(j) = i;
 }
 end
end

64

2.3 Literature Review on Simulation Model

2.3.1 Types of Simulation Models

Simulation models can be classified according to the following general categories [Lieberman

and Rathi, 1992]:

Discrete and continuous simulation models,

Microscopic, mesoscopic, and macroscopic simulation models, and

Deterministic and stochastic simulation models.

Discrete simulation models represent a system by asserting that the states of the system elements

change abruptly at points in time. In contrast, continuous simulation models represent the system

by changing state variables continuously over time [Law and Kelton, 1991]. Typically,

continuous simulation models involve differential equations giving relationships for the rates of

change of the state variables with time. If the differential equation is simple enough to be solved

analytically, the solution provides the values of the state variables at any given time as a function

of the values of the state variables at time zero. Because continuous models frequently are not

tractable using an analytical approach, numerical analysis techniques, e.g., Runge-Kutta

integration, are used to integrate the differential equations. For this reason, regardless of the

nature of the real system which might be either discrete or continuous, two types of discrete

simulation models are applied in practice: 1) discrete time simulation and 2) discrete event

simulation models. For systems of limited size entities whose states change infrequently, discrete

event simulation models are more appropriate in the sense of computational execution time.

However, for systems where most entities experience a continuous change in state and where the

model objectives require very detailed descriptions, discrete time models are likely to be the

better choice [Lieberman and Rathi, 1992].

Traffic simulation models may be classified according to the level of detail with which they

represent the system to be studied: 1) Microscopic, 2) Mesoscopic and 3) Macroscopic. A

microscopic model deals with both system entities and their interactions at a high level of detail.

A mesoscopic model generally represents entities at a higher level of detail but describes their

activities and interactions at a much lower level of detail. On the other hand, a macroscopic

model describes entities and their activities at a low level of detail. In a mesoscopic model, for

example, the lane-changing maneuver could be represented for individual vehicles as an

65

instantaneous event with the decision based on the relative lane densities, rather than on detailed

vehicle interactions. In macroscopic models, however, the traffic stream may be represented in

some aggregate manner such as speed, flow, and density, and lane change maneuvers would

probably not be represented.

In deterministic models, there are no random variables. In other words, all interactions between

entities are fixed in the sense that relationships are defined by mathematical, statistical or logical

equations. Stochastic models involve processes which include probability functions. The car-

following model, for instance, may be modeled either as a deterministic or a stochastic problem

by defining the driver’s reaction time as a constant estimated value or as a random variable,

respectively.

2.3.2 Previous Air Traffic Simulation Models

Since the early seventies, the FAA has developed computer simulation models to analyze airport

operations. Contrasting with the analytic models which consist of a series of equations using

fixed input parameters, most aviation and airport simulation models are discrete event, stochastic

models which emulate the movements of aircraft on the airfield as well as in the airspace. In

general, the simulation models produce the following statistics:

 • Hourly runway, taxiway, and gate capacity

 • Hourly and daily delays, travel times, flow rates, and queueing data etc.

 • Annual delay and annual delay costs

 • Annual delay savings computed from annual delay costs

ADSIM (Airfield Delay Simulation Model, 1976)

ADSIM is a microscopic, discrete event, stochastic simulation model, and known as one of the

most detailed models to evaluate the operations and sources of delay on the airport's surface

http://www.tc.faa.gov/act500/capacity/modelsq.htm]. ADSIM simulates the movement of aircraft

on the airport surface and in the immediate airspace. An airport is composed of a common

approach and departure corridors. The principal inputs to the model include aircraft routings,

runway and taxiway usage, runway occupancy times and exit probabilities, aircraft approach and

taxiing velocities, aircraft separations, gate service times, aircraft demand and mix, and ATC

rules and procedures. Outputs of the model are hourly arrival and departure flow rates, travel

times, and arrival and departure delays for each runway. Also provided are total delays for each

66

link on the airfield, departure queue lengths, and individual aircraft delays. ADSIM has a

capability to represent the movements in animation mode.

RDSIM (Runway Delay Simulation Model)

Developed mainly for runway capacity and delay analyses, RDSIM simulates operations on

runways and generates information on both capacities and delays [http://www.tc.faa.gov/

act500/capacity/modelsq.htm]. This model is a discrete event, stochastic simulation model.

During the simulation, it is assumed that arrival and departure demands are uniformly distributed.

The model simulates runway operations with arrival-priority, departure-priority, or balanced

arrivals and departures. This model can be used to compute runway capacity at an acceptable

level of delay and maximum runway throughput. Compared with ADSIM, RDSIM requires less

detailed inputs and less computational effort. The inputs consist of runway usage, runway

occupancy times, exit probabilities, aircraft demand and mix, aircraft approach velocities, aircraft

separations, and ATC rules and procedures. The outputs include delay statistics with graphics

showing delay versus demand along with other operational details.

SIMMOD (The airspace and airfield model)

SIMMOD is the first model to analyze the complex airspace interactions between airports.

SIMMOD satisfies the need to analyze delays, capacity and fuel consumption resulting from

changes in airspace utilization and operational procedures beyond an airport's immediate airspace

[SIMMOD3 Simulation Module, 1993]. In SIMMOD, each aircraft's movement is traced

individually and ATC required the actions for aircraft operations are also simulated. Inputs for

SIMMOD are traffic demand and fleet mix, route structures (both in the airspace and on the

airport surface), runway use configurations, separation rules and control procedures, aircraft

performance characteristics in airspace and airfield links, airspace sectorization, interactions

among multiple airports, and weather conditions. SIMMOD uses a link-node structure to

represent the gate/taxiway and runway/airspace route system. Input parameters depending on

aircraft type include the permissible airborne speed ranges for use by ATC, runway occupancy

times, safety separations, landing roll and takeoff characteristics, taxi speeds, and runway/taxiway

utilization. Gate utilization depends on aircraft type and airline. The output from SIMMOD

reports statistics about individual aircraft delay, travel time, and fuel consumption as well. A

simulation log containing information on various simulated events are also generated at the user’s

request.

67

2.3.3 Aircraft-Following Models

If there is more than one aircraft moving on the same taxiing path and the vehicles are close

enough to interact with each other, the leading aircraft behavior affects the following aircraft. To

represent this situation, aircraft-following models are introduced. The main concepts governing

aircraft-following models are borrowed from well-researched issues in transportation studies

concerning car-following models. There are several types of car-following models readily

applicable to simulation practices. It should be noticed that there is an important assumption

about the speed-acceleration relation applied to all types of vehicle -following models. In this

analysis, the vehicle’s ability to accelerate is assumed to decreases linearly as a function of speed.

Distance-controlled vehicle -following model: The distance-controlled logic for vehicle-

following models is based on the assumption that the acceleration of the following vehicle at time

t+∆t is decided by the distance between the leading and the following vehicle. The acceleration

for the following vehicle is decided by the equation given below (Starfield, 1990).

])[(11 Dxxkx t
n

t
n

tt
n −−= +

∆+
+&& ,

if max1 xx tt
n &&&& >∆+

+ then max1 xx tt
n &&&& =∆+

+ , and if min1 xx tt
n &&&& <∆+

+ then min1 xx tt
n &&&& =∆+

+ ,

where,
tt

nx ∆+
+1&& : acceleration for aircraft n+1 at time t+∆t,

)(1
t
n

t
n xx +− : distance between aircraft n and n+1 at time t,

k = design parameter,
D = safety distance.

Speed-controlled vehicle -following model: In the speed-controlled logic, the acceleration of the

following vehicle at time t+∆t is modeled by the speed difference between the leading and the

following vehicle. Mathematically this can be expressed as,

)(11
t
n

t
n

tt
n xxkx +

∆+
+ −= &&&& ,

if max1 xx tt
n &&&& >∆+

+ then max1 xx tt
n &&&& =∆+

+ , and if min1 xx tt
n &&&& <∆+

+ then min1 xx tt
n &&&& =∆+

+ ,

where,
tt

nx ∆+
+1&& : acceleration for aircraft n+1 at time t+∆t,

)(1
t
n

t
n xx +− : speed difference aircraft vehicle n and n+1 at time t,

k = design parameter.

68

Generalized vehicle -following model: The generalized car-following model proposed by Gazis

et al. (1961) assumes that the acceleration of the following vehicle at time t+∆t is influenced by

three dependent variables: the differences in both distance and the speed between the leading and

the following vehicles, and following vehicle’s speed. The generalized car-following model can

be expressed as follows:

)(
)(

)(
1

1

1
1

t
n

t
nlt

n
t
n

mtt
ntt

n xx
xx

x
x +

+

∆+
+∆+

+ −
−

= &&
&

&& α , (2.2)

if max1 xx tt
n &&&& >∆+

+ then max1 xx tt
n &&&& =∆+

+ , and if min1 xx tt
n &&&& <∆+

+ then min1 xx tt
n &&&& =∆+

+ ,

where, α, m, l: design parameters.

It should be noted that by integrating the equation (2.2) and applying the boundary conditions at

the steady state, the generalized vehicle -following model can be related to the traffic stream

model. Also, the resulting macroscopic models are diverse depending on the values of l and m.

For example, in the case that l =0, m =0, which is the speed-controlled car-following model, the

resulting macroscopic model is q = α (1 - k /k j), α = qm, where q = flow, k = density, k j = jam

density and qm = maximum flow. The various macroscopic models are shown in Table 2.9.

2.3.4 Data Structures for Network Representation

The performance of a network algorithm depends not only on the algorithm itself, but also on the

manner used to represent the network within a computer. By representing a network more

cleverly and by using improved data and list structures, we can often improve the running time of

an algorithm [Ahuja et al., 1993].

Table 2.9 Macroscopic Models from Vehicle -following Models (Gerlough and Huber, 1975).

 m = 0 m = 1

l = 0 q = α (1 - k /k j)
*i) α = qm

 *ii) - -

 1 q = α k ln(k j/k) *iii) α = um *iv) - -

 3/2 q = α (1 – (k /k j)
1/2) *v) α = uf - -

 2 q = α k (1 - k /k j)
*vi) α = uf q = α k e(k/k0) *vii) α = uf, k0= km

 3 - - q = α k e(k/k0) – ½ (k /k0)
*viii) α = qm

*i) Chandler, Herman, and Montroll (1958), *ii) Pipes (1953), *iii) Greenberg (1959)
*iv) Gazis (1961), *v) Drew (1965), *vi) Greenshiled (1934), *vii) Edie (1961)
*viii) Drake, Schoefer, and May (1961)

69

In representing a network, we need to store two types of information: (1) the network topology;

that is, the network’s node and arc structures, and (2) attribute data such as costs (Cij) and

capacities associated with arcs. There are several ways to represent a weighted graph G=(N,A),

|N|=n, |A|=m. Various graph representation methods including their advantages and disadvantages

are reviewed with a simple network shown in Figure 2.19.

4

3
C ij

i j

2

5

1
4

2

6

7

3

5

2

1

3

Figure 2.19 An Example Graph with 5 Nodes and 9 Arcs (i.e., n=5, m=9).

(Node -Arc) Incident matrix: Construct an n×m matrix which contains one row for each node

and one column for each arc. The column corresponding to each arc (i,j) has only two non-zero

elements: It has a +1 in the row corresponding to node i and a -1 in the row corresponding to

node j (see the Figure 2.20). Separate n×m matrices should be generated for data storage.

Advantages: An incident matrix can be used as a constraint matrix of the minimum cost flow

problem. This matrix possesses several important theoretical properties such as total

unimodularity, etc. (see Bazaraa et al. (1990) for details).

Disadvantages: The incident matrix which has (n×m-2m) zeros is inefficient in storage space.

−

−

1111-00000

1-00110000

01-0001-010

001-0011 01-

0 0 0 0 1- 0 1 1 1

5

4

3

2

1

)4,5()3,5()2,5()5,4()1,4()3,2()1,2()3,1()2,1(\ arcnode

Figure 2.20 Node-Arc Incident Matrix for the Example Network.

70

Node -node adjacency matrix: Construct an n×n matrix which has a row and column

corresponding to every node. The ij th entry of the matrix equals 1 if arc (i,j)∈A and equals 0

otherwise.

Advantages: This matrix is space efficient if the network is sufficiently dense and the simplicity

of the matrix allows us to implement the network algorithm easily.

Disadvantages: Needs another n×n matrix for data representation. An identification of

outgoing/emanating arcs of a node is in time proportional to n. In sparse networks this may

be a bottleneck operation for an algorithm.

01110

10001

00000

00101

00110

5

4

3

2

1

54321 \ nodetonodefrom

Figure 2.21 Node-Node Adjacency Matrix for the Example Network.

Adjacency lists: The arc adjacency list A(i) of a node i is defined as the set of arcs emanating

from that node, that is, the set of arcs (i,j)∈A obtained as j ranges over the nodes of the network.

Similarly, the node adjacency list of node i is defined as the set of nodes j for which (i,j)∈A. The

adjacency list representation stores the node adjacency list of each node as a singly linked list. To

implement this list, n linked lists, one for each node, should be generated. Array pointers that

point to the first cell of each linked list, pt(i), are also constructed.

Advantages : Adjacency list representations are relatively efficient in storage. Deletion and

addition of nodes can be done in constant time.

pt(i) j cij pt

1 2 3 3 3 NULL

2 1 4 3 6 NULL

3 NULL

4 1 5 5 1 NULL

5(=n) 2 7 3 2 4 2 NULL

Figure 2.22 Adjacency List Representations for the Example Network.

71

Forward/reverse star representation: The forward star representation of a network is similar to

the adjacency list representation in the sense that it also stores the node adjacency list for each

node. However, instead of maintaining these lists as linked lists, it stores them in several arrays:

tail(.), head(.), and cost(.). Pointers pointing to the first element of the corresponding arc list are

stored in the pointer array pt(.). By convention: a) if the forward star of a node i is empty pt(i) =

pt(i+1); b) pt(n+1) = m+1. Thus, information related to the emanating arcs (i.e., forward star) of a

node i is stored in tail(.), head(.) and cost(.) from position pt(i) to pt(i+1)-1.

Advantages: This representation is more space efficient than the adjacency list representations

and can be applied in general computer languages like FORTRAN.

Disadvantages: Addition/deletion of a node requires time proportional to m which can be time

consuming.
i 1) Pt(i) 2) corr. arcs tail head Cost
1 1 1 1 2 3
2 3 2 1 3 4
3 5 3 2 1 3
4 5 4 2 3 6
5 7 5 4 1 5
6 10 6 4 5 1

 7 5 2 7
 8 5 3 2
 9 5 4 2

 1) i is the from nodes, the pointer array contains pointers to the first elements of the corresponding arc lists.

Figure 2.23 Forward Star Representation for the Example Network.

72

Chapter 3. Model Development for ASP

3.1 Assumptions for Ready-times

In order to obtain a sequence from ASP, we need to make some assumptions regarding the

departing aircraft ready-times. In fact, there are two types of ready-times: the ready-time to

pushback from a gate, and the ready-time for takeoff on the runway. The first one is the time

when the aircraft completes its boarding process, and waits for taxiing-out instructions from a

ground (or a ramp) controller. Initially, this time can be obtained from the flight schedule.

However, as airport operations progress over time, flight delays appear and new ready-times can

be obtained from the airline operations center.

The second ready-time is the instance at which the aircraft can begin the takeoff roll on the

runway. The earliest ready-time for takeoff (or so called "nominal takeoff time") is estimated as

the ready-time to pushback from the gate plus the taxiing time from the gate to the runway

departure queue. In our formulation, the ready-times to takeoff, ri, are used as one set of the input

data to solve the ASP problem.

One interesting aspect of the problem is that once we have the takeoff times as prescribed by

ASP, we can suggest pushback times from the gates in a manner that reduces congestion both on

the taxiway network and around departure queues. The recommended push-back times can be

computed as depicted in Figure 3.1. Mathematically, the relationship between ready-time

instances for a departing aircraft within the time horizon is given by,

 Recommended pushback time from the gate

 = Optimal takeoff time – (Taxiing time + Buffer time).

 (Here, buffer time includes expected communication time and estimated waiting time in

the departure queue.)

As seen in Figure 3.1, we can make different uses of the taxiing time (T), depending on the type

of computation being performed. T1 is the taxiing time interval that estimates the earliest takeoff

ready-time (ri) required for ASP. Initially, this time can be obtained from historical data. (This

data can be found in the Consolidated Operations and Delay Analysis System (CODAS) database

which includes estimated taxiing times on ground networks at busy airports.) On the other hand,

T2 is the actual taxiing time to reach the takeoff ready-time from the recommended pushback time

73

(rpbi). This time can be obtained from a Network Assignment Problem (NAP) which computes

the optimal route and taxiing time for each aircraft after model ASP prescribes the optimal

takeoff times (ti).

Where,

 rgi : ready-time at gate
 ri : earliest ready-time to takeoff
 rpbi : recommended ready-time to push-back
 ti : optimal time for takeoff
 tofi : finishing time for takeoff

 T1 : regular taxiing time from the gate to the departure queue
 T2: taxiing time to obtain the recommend push-back time
 B : buffer time (i.e., waiting time in departure queue)
 ROTd: runway occupancy time
 WTAGi: waiting time at gate.

Figure 3.1 Time Relationships for the Departing Aircraft.

Time

T2

WTAGi

tofi

B

ti rpbi ri rgi
T1

ROTd

74

3.2 First-come-first-serve (FCFS) Approaches

When air traffic controllers in the control tower direct landing and departing aircraft, they

generally use a first-come-first-serve (FCFS) strategy, giving priority to landing aircraft. This

strategy provides a sequencing of the aircraft along with completion times, total delays, and so

on. This solution can be used to compare the performance of manual (FCFS) and optimal

sequencing methods.

To consider both arrival and departure operations simultaneously, minimum separation rules

should be defined for all possible aircraft group combinations. Table 3.1 shows the minimum

separation rules for all the cases considered in our analysis.

Table 3.1 Minimum Separation (seconds).

departure→ departure case.

Leading \ Following Heavy Large Small
Heavy 60 90 120
Large 60 60 90
Small 60 60 60

departure→ arrival case.

Leading \ Following Heavy Large Small
Heavy 50 53 65
Large 50 53 65
Small 50 53 65

arrival → departure case.

Leading \ Following Heavy Large Small
Heavy 40 40 40
Large 35 35 35
Small 30 30 30

arrival → arrival case.

Leading \ Following Heavy Large Small
Heavy 99 133 196
Large 74 107 131
Small 74 80 98

The runway occupancy time (ROT) is computed for every operation in order to assess the

processing times. ROT is defined as the time between the instance when an aircraft crosses the

75

runway threshold and the instance when the same aircraft clears the imaginary plane of the

runway at a turnoff. These times are specified in Table 3.2.

Table 3.2 Runway Occupancy Times (seconds).

Operation \ Aircraft Type Heavy Large Small
Arriving 40 35 30

Departing 50 40 30

Using the foregoing data set, the FCFS sequence delays can be calculated for all aircraft

operations. An illustrative example using a randomly generated flight schedule is shown in Table

3.3. In this example, a due-time is obtained by adding a maximum delay of 600 seconds to all

ready-times.

Table 3.3 Aircraft Schedule (Randomly Generated).

 Max Delay: 600 (seconds)

Arrival Departure
Nominal

Touchdown Time
Nominal

Takeoff Roll
Time

Order

Flight
ID

Aircraft

Type
Ready Due

Flight

ID

Aircraft

Type
Ready Due

1 A1 S 98 698 D1 H 32 632
2 A2 L 164 764 D2 H 364 964
3 A3 L 205 805 D3 L 409 1009
4 A4 L 268 868 D4 H 542 1142
5 A5 H 494 1094 D5 S 571 1171
6 A6 H 550 1150 D6 S 643 1243
7 A7 L 643 1243 D7 L 744 1344
8 A8 L 834 1434 D8 L 881 1481
9 A9 L 962 1562 D9 S 955 1555
10 A10 L 973 1573 D10 H 996 1596

In FCFS with a full landing priority strategy, arriving aircraft should not be delayed by departing

flights. In other words, the arriving aircraft can be delayed only to resolve arrival conflicts. The

first step for FCFS sequencing is to obtain the arrival times by checking if there is any conflicting

arrival. The following steps show how to calculate the times for arrivals to cross runway

threshold, considering the minimum separation rules between two consecutive landing aircraft in

the FCFS sequence.

fcfs touchdown time for 1st landing aircraft = nominal ready-time for 1st landing aircraft

76

for i = 2 to (total number of arriving aircraft)
if [(fcfs touchdown time for (i-1)th aircraft + minimum separation time between the

(i-1)th and ith aircraft) > nominal ready-time of ith aircraft]
 fcfs touchdown time for ith aircraft =
 fcfs touchdown time for (i-1)th aircraft
 + min. separation time between the (i-1)th and ith aircraft

else
 fcfs touchdown time for ith aircraft =
 nominal ready-time for ith aircraft

 end

The resulting schedule for arrivals is shown in Table 3.4.

Table 3.4 First-come-first-serve Sequence for Landing Aircraft.

Arrival
Nominal

Touchdown
Time

Order

Flight
Number

Aircraft

Type
Ready Due

FCFS
Touchdown

Time

1 A1 S 98 698 98
2 A2 L 164 764 178
3 A3 L 205 805 285
4 A4 L 268 868 392
5 A5 H 494 1094 523
6 A6 H 550 1150 621
7 A7 L 643 1243 701
8 A8 L 834 1434 834
9 A9 L 962 1562 962
10 A10 L 973 1573 1069

If the inter-arrival time between two consecutive aircraft is sufficient for one or more departures,

these are scheduled. Otherwise, departing aircraft are delayed until a slot having a sufficient time

to allow a departure is found. Table 3.5 presents the final result of the FCFS sequence with

landing priority.

77

Table 3.5 First-come-first-serve1) Sequence (with Landing Priority).

 (Seconds)
Arrival Departure

Seq

FLT
No.

Acft
Type S_T 2) ROT3) C_T 4) Delay 5)

Seq

FLT
No.

Acft
Type S_T ROT C_T Delay

 1 D1 H 32 40 72 0
2 A1 S 98 30 128 0
3 A2 L 178 40 218 14
4 A3 L 285 40 325 80
5 A4 L 392 40 432 124
 6 D2 H 432 40 472 68
7 A5 H 523 30 553 29
8 A6 H 621 30 651 71
9 A7 L 701 40 741 58
 10 D3 L 736 35 771 327

11 A8 L 834 40 874 0
 12 D4 H 874 40 914 332

13 A9 L 962 40 1002 0
 14 D5 S 992 30 1022 421

15 A10 L 1069 40 1109 96
 16 D6 S 1109 30 1139 466
 17 D7 L 1164 35 1199 420
 18 D8 L 1224 35 1259 343
 19 D9 S 1319 30 1349 364
 20 D10 H 1369 40 1409 373

Total Delay: 3586 (sec), Completion Time: 1408 (Sec.)
1) In FCFS with landing priority, the landing aircraft should not be delayed later than its FCFS ready-
time.
2) S_T: Starting time
3) ROT: Runway Occupancy Time
4) C_T: Completion Time
5) Delay = FCFS operation time – Nominal Ready-time.

78

3.3 Integer Programming Approaches

3.3.1 Formulation

Starting with known preliminary information about the aircraft such as aircraft types, nominal

arrival/departure times, maximum delay times, minimum separation rules, etc., the problem can

be formulated as a combinatorial optimization problem. The following is a mixed-integer

programming model for a single runway or closely spaced runways where arrivals and departures

are dependent.

Minimize z

subject to

zxpt

Jj
ij

ijiji ≤+ ∑
∈
≠

0

 J i ∈∀ (3.1)

0≤− ii tr J i ∈∀ (3.2)

0≤− ii dt J i ∈∀ (3.3)

))(1(ijjiijijij p-rd-x-ptt ++≥ i, jJ, jJ i ≠∈∈∀ 00 (3.4)

∑
∈
≠

=

0

1

Jj
ij

ijx 0 Ji ∈∀ (3.5)

∑
∈
≠

=

0

1

Ji
ji

ijx 0 Jj ∈∀ (3.6)

1≤+ jiij xx i, jJ, jJ i ≠∈∈∀ 00 (3.7)

00 =t , 0≥it Ji ∈∀ (3.8)

}1,0{∈ijx i, jJ, jJ i ≠∈∈∀ 00 (3.9)

where,
J ={1,…,n} : A set of n aircraft operating (i.e., landing or departing) on a single runway

}0{0 ∪= JJ : Aircraft 0 is an imaginary aircraft which has 0 ready-time (i.e., r0=0)
and 0 due-time (i.e., d0=0)

ijx : 1 if aircraft i directly precedes aircraft j, and 0 otherwise

ix0 : 1, if aircraft i is the first in the sequence, and 0 otherwise

0ix : 1, if aircraft i is the last in the sequence, and 0 otherwise

it : the start time of aircraft i (i.e., time for touchdown or takeoff)

79

id : the due-time for aircraft i

ir : the ready-time for aircraft i,

ijp : pi0= runway occupancy time of aircraft i (i.e., ROTi) for J i∈∀ .
p0j= setup time for the first aircraft j.
else if i≠j, i≠0, j≠0, then pij = minimum separation time between the

leading aircraft i and the following aircraft j.
if i=j, pij=0.

Constraint (3.1) states that the objective function value is no less than the last aircraft's

completion time. Ready and due-times constraints are considered in constraints (3.2) and (3.3).

The minimum separation rules are enforced by constraint (3.4). Two types of assignment

constraints are represented by (3.5) and (3.6). Constraint (3.7) is a (two-city) sub-tour elimination

constraint which prevents the resulting sequence from having any sub-tour consisting of two

cities. (Constraints (3.4) serve as the full set of Miller-Tucker-Zemlin subtour elimination

constraints.) Constraint (3.8) represents the non-negativity requirement for each aircraft's start

time for each aircraft. Constraint (3.9) restricts the sequencing variables to take the value of 0 or

1.

As imbedded component of the ASP model is a Traveling Salesman Problem with time-windows

which renders the problem NP-Hard. A tighter formulation that yields improved lower bounds is

designed in the sequel using the Reformulation-Linearization Technique (RLT) of Sherali and

Adams (1990, 1994) and Sherali et al. (1998).

3.3.2 Valid Inequalities

As a preliminary, we first develop a tighter lower bound LB(j) on the conditional start time of

aircraft j’s operation, given that it is last in the sequence.

Proposition 1. The maximum of the following three components can be used as a lower bound

on the start time of aircraft j’s operation, given that it is last in the sequence.

 i,j J, m for m
mn

 p

mi,jn
Jn

array from the smallest n- sum of
tj

 p

i,jt
Jt

ik

 p

i,jk
Jki

p
i

r

ji
Ji

,ik p

ik
Jkir

ji
Ji

 ,jr

 jLB

]}

,

min)3(minmin
0

[min

]min[max max{

)(

≠∈

≠
∈

+

≠
∈

+

≠
∈

++

≠
∈

≠
∈

+

≠
∈

=

80

Proof. The first term in LB(j), merely states that the start time of aircraft j should be greater than

its ready-time (rj). For the second term, since ik p
Jkir ∈

+ min represents the earliest completion time

of aircraft i regardless of the next aircraft, this term asserts that the last aircraft j should begin

later than any other aircraft’s earliest completion time. For the third term, if we assume that any

particular aircraft i≠j is the first in the sequence, then the earliest start time of the la st aircraft j is

greater than or equal to the minimum of the total sum of processing times for all aircraft

following i. This lower bound is given by the sum of the following events:

(i) the start time of the first aircraft i, ipi r 0+ ,

(ii) the minimum separation time between the first two aircraft, ik p

i,jk
Jk

≠
∈

min ,

(iii) the minimum separation time between the last two aircraft, tj p

i,jt
Jt

≠
∈

min ,

(iv) the minimum of the remaining (n-3) separation times from the array of mn p

mi,jn
Jn

,

min

≠
∈

for

m∈J, m≠i,j.

Taking the smallest of this sum (i)-(iv) over i∈J, i≠j yields a valid value for LB(j). This completes

the proof.

A set of valid inequalities to replace constraints (3.4) can be generated as in (3.4.1) and (3.4.2) of

Proposition 2 and 3 below, in order to achieve tighter lower bounds on the problem.

Proposition 2 (Valid Inequality I for Constraint (3.4)). For Jj, i ∈∀= 0 , the following

inequality is valid and tighter than the corresponding constraint (3.4).

])([} 0max{)1(} max{ 0000 jjjjjjjj -rjLBx-rp,-x-p,rt +≥ Jj ∈∀ (3.4.1)

where, LB(j) ≥ rj is a lower bound on the start time for the aircraft j, given that it is the last aircraft

in the sequence (see Proposition 1).

Proof. When 10 =jx , we have 00 =jx and then } max{ 0 jjj p,rt ≥ is valid. When 00 =jx and

00 =jx , regardless of the values of jp0 and jr , } 0max{} max{ 00 jjjjj -rp,p,rt −≥ is valid,

since the resulting inequality is always jj rt ≥ . When 00 =jx and 10 =jx , aircraft j is last in the

sequence. From above, the inequality (3.4.1) reduces to tj ≥ rj + [LB(j) – rj] which imposes the

81

valid inequality tj ≥ LB(j). Moreover, noting that for i = 0, (3.4) is tj ≥ p0j – (1- x0j)(p0j- rj) = rj +

x0j(p0j- rj) while (3.4.1) implies via its first two terms that tj ≥ rj + x0j max{0, p0j- rj}, we have that

(3.4.1) dominates (3.4) in the continuous sense. This completes the proof.

Proposition 3 (Valid Inequality II for Constraint (3.4)) For jiJ,i,j ≠∈ , the following

inequality is valid and tighter than the corresponding constraint (3.4).

jiijjiijijij x è p-rd-x-ptt))(1(+++≥ jJ,ii,j ≠∈∀ (3.4.2)

 where, }]max{0max[jijiji r,rpr,dè −−−= .

Proof. When 1=ijx , we have 0=jix and then ijij ptt +≥ is valid. When 0=ijx and 0=jix ,

then (3.4.2) is again valid since (tj-rj) ≥ 0 ≥ (ti-di). Finally to make (3.4.2) valid whenever 0=ijx

and 1=jix , 0≥θ should be chosen so that èrdtt jiji −−≤− is true under this condition. Note

that when 1=jix , we have }max{ ijiji ,rptt += and therefore

}max{}max{)(jijijijiji r,r pt,r ptt −≤−=− . Hence, for (3.4.2) to be valid, we can set

}max{ jijiji r,rpèrd −=−− and since 0≥θ , we can compute

}]max{0max[jijiji r,rpr,dè −−−= . Moreover, because of the additional nonnegative term θ⋅xji,

(3.4.2) is tighter than (3.4) in the continuous sense. This completes the proof.

3.3.3 Enhanced Model Representation via an Application of RLT

1) Reformulation Phase

Using xij
2=xij, xijxik=0 ∀j≠k , xijxkj=0 ∀i≠k , and xijxji = 0 000 J, kJ, jJ i ∈∈∈∀ , we can construct

additional sets of constraints via (R1)-(R5) stated below.

(R1) Multiply the assignment constraint (3.5) for each Ji ∈ by its corresponding ti. Similarly,

multiply the assignment constraint (3.6) for each Jj∈ by its corresponding tj. Note that

constraints resulting from multiplying (3.2) and (3.3) by these assignment constraints (3.5)

and (3.6) are then redundant.

∑
≠∈

=
i,jJj

iiji txt

0

 J i∈∀ (R1.1)

82

∑
≠∈

=
j,iJi

jijj txt

0

 J j ∈∀ . (R1.2)

(R2) Multiply the inequality constraints (3.2) and (3.3) by the bound-factors 0≥ijx and 0≥jix

for J i,j ∈∀ :

Multiplication by 0≥ijx :

 0)(≥− ijjj xrt jJ, iJ, j i ≠∈∈∀ (R2.1)

 0)(≥− ijjj xtd jJ, iJ, j i ≠∈∈∀ . (R2.2)

Multiplication by 0≥jix :

 xrt jijj 0)(≥− jJ, iJ, j i ≠∈∈∀ (R2.3)

 xtd jijj 0)(≥− jJ, iJ, j i ≠∈∈∀ . (R2.4)

Note that we can tighten the constraints (R2.1) and (R2.4), by using conditional logic as

follows, noting that the factors multiplied by the variables xij and xji, respectively, are

relevant only when these variables take on a value of 1.

 xp,rrt ijijijj 0}]max{[≥⋅+− jJ, iJ, j i ≠∈∈∀ (R2.1′)

 xtp,dd jijjiij 0]}[min{ ≥⋅−− jJ, iJ, j i ≠∈∈∀ . (R2.4′)

If we consider similar products with x0j and xj0, we can tighten these constraints further.

 xrt jjj 0)(0 =− J j ∈∀ (R2.5)

 xjLBt jj 0))((0 ≥− J j ∈∀ (R2.6)

 xtd jjj 0)(0 ≥− J j ∈∀ . (R2.7)

Remark 1: In (R2.6), rj has been validly replaced by any lower bound LB(j) on the start

time for aircraft j’s operation, given that j is the last aircraft. For this lower bound, we can

83

use any reasonable conditional completion time which can be computed with relative ease.

Also, note that (R2.5) is written as an equality since either x0j = 0, or if x0j = 1, then we can

begin the first aircraft j’s operation at tj = rj. Furthermore, because of this, the constraint (dj-

tj) x0j ≥ 0 is redundant and has hence been omitted.

(R3) Multiply constraints (3.2), (3.3) by two-aircraft subtour elimination constraint,

 xx jiij 0)1(≥−− .

 xxrt jiijjj 0)1)((≥−−− jJ, iJ, j i ≠∈∈∀ (R3.1)

 0)1)((≥−−− jixijxjtjd jJ, iJ, j i ≠∈∈∀ . (R3.2)

Also, we can write similar constraints for the 0-index, while tightening these further using

logical tests. Noting that the following are relevant only under the condition x0j = xj0 = 0 (else

the left-hand-side is zero below), we can tighten the bounds rj and dj on tj to derive the

following valid product constraints.

 pr,rt-x-x iji
ji
Ji

jjjj 0)}](minmax{)[1(00 ≥+−
≠
∈

 Jj ∈∀ (R3.1′)

 tp(d,d -x-x jjii
ji
Ji

jjj 0])}max{)[min1(00 ≥−−
≠
∈

 Jj ∈∀ . (R3.2′)

(R4) Multiply (3.4.1) by the bound factors 00 ≥jx , 00 ≥jx and the two-aircraft subtour

elimination constraint 0)1(00 ≥−− jj xx Jj ∈∀ .

 Multiplication by 00 ≥jx :

0}max{ 000 ≥− jjjjj ,prxxt Jj ∈∀ . (R4.1)

Multiplication by 00 ≥jx :

0])([},0max{}max{ 000000 ≥−−−+− jjjjjjjjjj rjLBxrpx,prxxt Jj ∈∀

i.e. 0)(00 ≥− jLBxxt jjj Jj ∈∀ . (R4.2)

Multiplication by 0)1(00 ≥− jj x-x :

0)1()1(0000 ≥−− jjjjjj -xxr-x-xt Jj ∈∀ . (R4.3)

84

(R5) Multiply (3.4.2) by the bound factors 0≥ijx , 0≥jix and the two-aircraft subtour

elimination constraint xx jiij 0)1(≥−− for jJ,ii,j ≠∈∀ .

Multiplication by 0≥ijx :

0≥−− ijijijiijj xpxtxt jJ,ii,j ≠∈∀ . (R5.1)

Multiplication by 0≥jix :

0)(≥−−+− jijijiijij xèrdxtxt jJ,ii,j ≠∈∀ . (R5.2)

where, }]max{0max[jijiji r,rpr,dè −−−=

Multiplication by the two-aircraft subtour elimination constraint xx jiij 0)1(≥−− :

)1)((1()1(jiijijjiijijiijj xxdr)xxtxxt −−−≥−−−−− jJ,ii,j ≠∈∀ . (R5.3)

(R6) For computational convenience, we can rewrite the objective function and constraint (3.1) as

(3.1') and (3.1′′) given below.

Minimize z

subject to

zxpt

Jj
ij

ijiji ≤+ ∑
∈
≠

0

 0J i ∈∀ (3.1′)

∑
∈

+=
Ji

iii xptz 00)((3.1′′)

Let us now multiply (3.1′) by 0≥ikx and 0)1(≥− ikx , i, kJ k ≠∈∀ 0 . This gives the

following.

ikikikiik xpxtzx +≥ k, iJ, kJ i ≠∈∈∀ 00 (R6.1)

)()(

0

ikikikiik

Jj
ij

ijiji xpxtxzxptz −−++≥ ∑
∈
≠

 k, iJ, kJ i ≠∈∈∀ 00 (R6.2)

Similarly, the multiplication of (3.1′′) by 00 ≥kx , J k ∈∀ , yields

000)(kkkk xptzx += J k ∈∀ . (R6.3)

85

In the RLT context, when zxik is substituted by a single (independent) variable, (R6.1) will

likely hold as an equality and hence return (R6.2) to (3.1′). To make (R6.1)-(R6.3) more

useful, we can also multiply the assignment constraints (3.5) and (3.6) by z.

Multiplication of z by the assignment factor (3.5) yields, using (R6.3),

∑
∈
≠

++=
Jj
ij

ijiii zxxptz 00)(0J i ∈∀ . (R6.4)

Multiplication of z by (3.6) gives the following, using (R6.3).

 ∑
∈

+=
Ji

iii xptz 00)(for j = 0, and (R6.5)

∑
∈
≠

=

0
Ji
ji

ijzxz J j∈∀ . (R6.6)

Note that constraint (R6.5) is the same constraint as (3.1′′) and can therefore be deleted.

However, (R6.6) can be retained. The resulting reformulation is stated below.

Minimize z

subject to

 ikikikiik xpxtzx +≥ k, iJ k,J i ≠∈∀∈∀ 00 (R6.1)

)()(

0

ikikikiik

Jj
ij

ijiji xpxtxzxptz −−++≥ ∑
∈
≠

 k, iJ k,J i ≠∈∀∈∀ 00 (R6.2)

000)(kkkk xptzx += J k ∈∀ (R6.3)

∑
∈
≠

++=
Jj
ij

ijiii zxxptz 00)(J i ∈∀ (R6.4)

∑
∈

+=
Ji

iii xptz 00)((R6.5)

∑
∈
≠

=

0
Ji
ji

ijzxz J j∈∀ (R6.6)

 xrt jjj 0)(0 =− J j ∈∀ (R2.5)

 xp,rr t ijijijj 0)](max[≥+− jJ, iJ, j i ≠∈∈∀ (R2.1′)
 xrt jijj 0)(≥− jJ, iJ, j i ≠∈∈∀

 (R2.3)
 xjLBt jj 0))((0 ≥− J j ∈∀ (R2.6)

 xxrt jiijjj 0)1)((≥−−− jJ, iJ, j i ≠∈∈∀ (R3.1)

 pr,r t-x-x iji
ji
Ji

jjjj 0))](min(max)[1(00 ≥+−
≠
∈

 J j ∈∀ (R3.1′)

86

 xtd ijjj 0)(≥− jJ, iJ, j i ≠∈∈∀ (R2.2)
 0)xt(d j0jj ≥− J j ∈∀ (R2.7)

 xtp,dd jijjiij 0])([min ≥−− jJ, iJ, j i ≠∈∈∀ (R2.4′)
 xxtd jiijjj 0)1)((≥−−− jJ, iJ, j i ≠∈∈∀ (R3.2)

 tjipid,d -x-x j

ji
Ji

jjj 0]))(max()[min1(00 ≥−−
≠
∈

 J j ∈∀ (R3.2′)

0}max{ 000 ≥− jjjjj ,prxxt , Jj ∈∀ (R4.1)

0)(00 ≥− jLBxxt jjj , Jj ∈∀ (R4.2)

0)1()1(0000 ≥−−−− jjjjjj xxr-xxt , Jj ∈∀ (R4.3)

0)(≥−−+− èrdxxtxt jijijiijij jJ,ii,j ≠∈∀ (R5.2)

)())(()1()1(ijjiijijjiijijiijj drxxdrxxtxxt −≥+−+−−−−−

 jJ,ii,j ≠∈∀ (R5.3)

∑
≠

=
ij

iiji txt J i∈∀ (R1.1)

∑
≠

=
ji

jijj txt J j ∈∀ (R1.2)

∑
∈
≠

=

0

1

Jj
ij

ijx 0 Ji ∈∀ (3.5)

∑
∈
≠

=

0

1

Ji
ji

ijx 0J j ∈∀ (3.6)

1≤+ jiij xx i, jJ, jJ i ≠∈∈∀ 00 (3.7)

00 =t , 0≥it J j ∈∀ (3.8)

}10{ ,xij ∈ i, jJ, jJ i ≠∈∈∀ 00 (3.9)

where, LB(j) is given by Preposition 1, and where }]max{0max[jijiji r,rpr,dè −−−= (see

Proposition 3).

87

2) Linearization Phase

Let tixij = uij, tjxij = vij, zxij = zij. The linearization of the reformulated constraints can be represented

as follows (we state the identity of the corresponding constraint from the reformulation phase on

the left of each of the following linearized restrictions.)

Minimize z

subject to

(R6.1) : ikikikik xpuz +≥ kJ, iJ, k i ≠∈∈∀ (L6.1)

(R6.2) :)()(

0

ikikik

Jj
ij

ikijiji xpuzxptz −−++≥ ∑
∈
≠

 kJ, iJ, k i ≠∈∈∀ (L6.2)

(R6.3) : 0000 kkkk xpuz += J k ∈∀ (L6.3)

(R6.4) : ∑
∈
≠

++=
Jj
ij

ijiii zxpuz 000 J i ∈∀ (L6.4)

(R6.5) : ∑
∈

+=
Ji

iii xpuz)(000 (L6.5)

(R6.6) : ∑
∈
≠

=

0
Ji
ji

ijzz J j∈∀ (L6.6)

(R2.5) : xrv jjj 000 =− J j ∈∀ (L2.5)
(R2.1′) xp,rr v ijijijij 0)(max ≥+− jJ, iJ, j i ≠∈∈∀ (L2.1′)
(R2.3) : xru jijji 0≥− jJ, iJ, j i ≠∈∈∀ (L2.3)
(R2.6) : xjLBu jj 0)(00 ≥− J j ∈∀ (L2.6)
(R3.1) : xxruvt jiijjjiijj 0)1(≥−−−−− jJ, iJ, j i ≠∈∈∀ (L3.1)
(R3.1’) : xxpr,r uvt jjiji

ji
Ji

jjjj 0)1)}((min{max 0000 ≥−−+−−−
≠
∈

 J j ∈∀ (L3.1′)

(R2.2) : vxd ijijj 0≥− jJ, iJ, j i ≠∈∈∀ (L2.2)
(R2.7) : uxd jjj 000 ≥− J j ∈∀ (L2.7)
(R2.4′) : uxp,dd jijijiij 0)(min ≥−− jJ, iJ, j i ≠∈∈∀ (L2.4′)
(R3.2) : uvtxxd jiijjjiijj 0)1(≥++−−− jJ, iJ, j i ≠∈∈∀ (L3.2)
(R3.2′) : jujvjtjxjxjipid

ji
Ji

,jd 000)001)}((max{min ≥++−−−−

≠
∈

 J j ∈∀ (L3.2′)

(R4.1): 0}max{ 000 ≥− jjjj ,prxv J j ∈∀ (L4.1)

(R4.2): jjjjjjjj rxrxruvt ≥++−− 0000 J j ∈∀ (L4.2)

(R4.3): 0)(00 ≥− jLBxu jj Jj ∈∀ (L4.3)

(R5.2) : 0)(≥−−−− jijijiji xrdvu θ jJ, iJ, j i ≠∈∈∀ (L5.2)
(R5.3) :)()()(ijjiijijijjiijijiijj drxdrxdrvutuvt −≥−+−+++−−− (L5.3)

88

 jJ, i, jJ i ≠∈∈∀ 0

(R1.1) : ∑
≠∈

=
i,jJj

iij tu
0

 J i∈∀ (L1.1)

(R1.2) : ∑
≠∈

=
j,iJi

jij tv
0

 J j ∈∀ (L1.2)

 ∑
∈
≠

=

0

1

Jj
ij

ijx 0J i ∈∀ (3.5)

 ∑
∈
≠

=

0

1

Ji
ji

ijx 0J j ∈∀ (3.6)

 1≤+ jiij xx i, jJ, jJ i ≠∈∈∀ 00 (3.7)

00 =t , 0≥it J j ∈∀ (3.8)

}10{ ,xij ∈ i, jJ, jJ i ≠∈∈∀ 00 (3.9)
000 ≥≥≥ ijijij , v, uz jJ, iJ, j i ≠∈∈∀

where, LB(j) is given by Preposition 1, and where }]max{0max[jijiji r,rpr,dè −−−= (see

Proposition 3).

89

3.3.4 Modifying the Formulation

3.3.4.1 Consideration of More Than Two Consecutive Aircraft

Up to now, our minimum separation constraint assumes that we only need to maintain an

adequate separation between two consecutive aircraft. However, even though this constraint is

satisfied, the resulting solution can violate the minimum separation rule between certain

operations belonging to a common class in the context of mixed operations. Figure 3.2 illustrates

this difficulty. In this case, the minimum separation between consecutive operations (i.e., arrival i

and departure k , departure k and arrival j) are satisfied, but the required separation between the

two arriving aircraft (i.e., arrival i and arrival j) may be violated.

Figure 3.2 Checking Minimum Separation Constraints.

To protect against this event, we need another constraint set to enforce the minimum separation

between the same types of operations as follows:

)1()1(ijjiijijijijjiijij xpxmttxmxp
)))) −−≤−≤−− , same classi,jj, i ∈<∀)((3.10)

where,

1=ijx
)

 if ij tt > , and 0=ijx
)

 if ji tt >

jiij mm , : upper bounds on the separations between ji → and ij → , respectively,

same classi,jj, i ∈<∀)(. We can define ijm = (ij - rd), and jim = (ji -rd).

tk – ti ≥ pik

time

tj - ti < pij

tj - tk ≥ pkj

tj ti

tk

90

When jiji dpr >+ , then it is clear that 0=ijx
)

. (Note that in this case, we have ijij mp > and (3.10)

leads to a contradiction when 1=ijx
)

, hence also implying that 0=ijx
)

.). In this case, we need to

include the constraint jiji ptt +≥ . Similarly, if ijij dpr >+ (i.e., jiji mp >), then we can fix

1=ijx
)

 in (3.10) and include the relevant constraint ijij ptt +≥ . Additionally, in order to tighten

the representation of this modified model, we can further relate the binary variable ijx
)

 to the

original model’s variables kjikjiij xxxx , , , via the valid inequalities given in Proposition 4 below.

Proposition 4. The following constraints are valid inequalities.

jiijij xxx −≤≤ 1
)

, same classjiwithji ∈<∀),((3.11)

jikijkijkjikij xxxxxxx 2212 −−−≤≤−++)
, jiksame classjiwithji , ,),(≠∀∈<∀ (3.12.1)

)1(00 iijj xxx −≤≤)
 same classjiwithji ∈<∀),((3.12.2)

)1(00 jiji xxx −≤≤)
 same classjiwithji ∈<∀),(. (3.12.3)

Proof. If ijx = 1, which means 0=== jikjik xxx , and (xki+xjk) ≤ 1, (3.11) becomes 11 ≤≤ ijx
)

, and

(3.12.1) becomes)(21 jkkiij xxx +−≤≤)
. Hence, both (3.11) and (3.12.1) are valid in this case. If

ijx = 0, then equation (3.11) is clearly valid in both cases when jix = 0 (whence we get

10 ≤≤ ijx
)

), and jix = 1 (whence we get 0≡ijx
)

). Furthermore, in this case (xij=0), (3.12.1)

becomes

ijkjik xxx
)≤−+ 1 , and (3.12.1.1)

 jikijkij xxxx 22 −−−≤)
. (3.12.1.2)

Consider (3.12.1.1). If 1== kjik xx , then since ijx
)

 must be 1, this is valid. Else, 01 ≤−+ kjik xx

and so (3.12.1.1) is implied by ijx
)

≥0. Next, consider the inequality (3.12.1.2). If jix = 1, then

0== kijk xx and since we must have ijx
)

=0, (3.12.1.2) is valid. On the other hand, suppose that

jix =0. Then, if 1== kijk xx , we must have ijx
)

=0, and therefore (3.12.1.2) is valid. Otherwise,

we must have 12 ≥−− kijk xx and so (3.12.1.2) is implied by ijx
)

≤1. This validates (3.12.1).

For (3.12.2), note that 0ix =1 and 0jx =1, is impossible and so, the possible values of (0ix , 0jx)

are (0,0), (1,0) and (0,1). It is readily verified that each of these cases implies a valid set of

bounds on ijx
)

. Hence, (3.12.2) is valid. With the same argument, (3.12.3) is also valid for all

possible cases. This completes the proof.

91

Note that if the triangular inequality for the separation among aircraft triplets holds true, i.e., if

ijkjik ppp ≥+ jiksame classjiwithji , ,),(≠∀∈<∀ , then we do not need to apply (3.10). As

shown below, by successive applications of these triangular inequalities, if the separation between

consecutive aircraft is enforced, then it holds between non-consecutive aircraft in the same class

as well.

Proposition 5. If the triangular inequality is satisfied for all triplets of aircraft in J involving i in

which i is first or last, or for all such triplets involving j, for any i and j∈same class, then for any

solution that satisfies the separation constraints for consecutive aircraft, we will also have that i

and j satisfy their particular separation constraint.

Figure 3.3 Triangular Inequality.

Proof. Without loss of generality, let ti < tj (the case of tj < ti is similar) and suppose that aircraft i

and j are separated by some n ≥ 1 aircraft k1, … , kn. Then, we have by the feasibility of

consecutive separation constraints that

∑ ∑
+

=

+

=
−−

≥−=−
1

1

1

1
,11

)()(
n

r

n

r
kkkkij rrrr

ptttt , (P5.1)

where ik tt ≡
0

 and jk tt
n

≡
+1

. Now, suppose that all triangular inequalities involving i are satisfied

as stated in the Proposition (the case of j is similar). Then from (P5.1), we get

jkkkkkkkkiij nnn
ppppptt ,,,,, 132211

....)(+++++≥−
−

jkkkkkki nnn
pppp ,,,, 1322

.... ++++≥
−

jkkkki nnn
ppp ,,, 13

.... +++≥
− ≥ ….. jip ,≥ .

This completes the proof.

)(
1 jk tt

n
=

+

2112 ,2)(kkkk pttt ≥−=∆

time

1kt

t
nkt

1−nkt0
3kt

t
2kt

t
1kt

t
)(

0 ik tt =

11 ,1)(kiik pttt ≥−=∆

22112 ,,,)()(kikkkiik ppptt ≥≥− +

92

To enforce separation between all pairs of aircraft in the same class, we need to impose the

following constraints. Let V={i: some triangular inequalities are violated for a triplet involving i

in which i is last or first}. The following is a summary of the constraint set generated to enforce

aircraft separations.

jiji ptt +≥ same classi,jj, i ∈<∀)(in V and jiji dpr >+

ijij ptt +≥ same classi,jj, i ∈<∀)(in V and ijij dpr >+ .

Also,

for all same classi,jj, i ∈<)(in V and jiji dpr ≤+ , ijij dpr ≤+ , (P5.2)

impose the following set of constraints, where, ijm = (ij-rd), jim =(ji-rd)

)1()1(ijjiijijijijjiijij xpxmttxmxp
)))) −−≤−≤−−

jiijij xxx −≤≤ 1
)

jikijkijkjikij xxxxxxx 2212 −−−≤≤−++)
 ∀k∈J, k≠i,j

)1(00 iijj xxx −≤≤)

)1(00 jiji xxx −≤≤)
.

3.3.4.2 Applying RLT

Reformulation:

(R7) Multiply (3.10) by the bound factors 0≥ijx , 0≥jix and 0)1(≥−− jiij xx for

jJ,ii,j ≠∈∀ .

 Multiplication by 0≥ijx :

0)(≤−+−+ ijjijiijjiijijjiij xtxtxmxxmp
)

0)(≤++−− ijjiijijijjiijiijj xpxxmpxtxt
)

.

 Multiplication by 0≥jix :

0)(≤+−−+ jiijijjijiijjijiij xtxtxmxxmp
)

0)(≤++−− jijiijjiijjijiijij xpxxmpxtxt
)

.

93

 Multiplication by 0)1(≥−− jiij xx :

jijiijijjijiijjijiij

ijjijiijjiijijjiijjiijjiij

mxtxtxmxxmp

xtxtxmxxmpttxmp

≤+−−+−

−+−+−−++

])[(

])[()(
)

))

jijijiijjiijjijiijij

ijjiijijijjiijiijjijijjiij

pxpxxmpxtxt

xpxxmpxtxtxmptt

−≤++−−−

++−−−+−−

])([

])([)(
)

))

.

Linearization:

Let ijiji uxt = and ijijj vxt = ji,∀ . Also note that ijijij xxx ≡)
 and 0=ijjixx

)
.

ijijijijijij xmuvxp ≤−≤ (3.10.1)

jijijijijiji xpvuxm −≤−≤− (3.10.2)

)()()()1()(jijiijijijjiijjiijijij vuuvttxxmxxp −−−−−≤−−−−))

)1()(jiijjiijijij xxpxxm −−−−≤))
. (3.10.3)

Proposition 6. }10{)}10.3{(} ,)10.3(:),,{(≤≤∩≡ ijijijji xbinaryxholdsxttConv
)))

 for each (i,j) ∈

same class, i<j such that ijij mp ≤ and jiji mp ≤ (i.e., for each (i, j) such that (P5.2) holds true).

Proof. Given any j isame classi,j <∈ ,)(, consider the following linear program for any

ijji ccc , , .

 LP :)(max
,, ijijjjii
xtt

xctctc
ijji

)
) ++ (3.13.1)

subject to

)1()1(ijjiijijijijjiijij xpxmttxmxp
)))) −−≤−≤−− (3.13.2)

 10 ≤≤ ijx
)

. (3.13.3)

It is sufficient to show that if LP defined by (3.13) has an optimal solution then it has an optimum

at which ijx
)

=0 or 1. Denoting nonnegative slacks s1 and s2 in the two inequalities in (3.13.2),

respectively, and eliminating tj by substitution using the first equality, say, yields the following

equivalent linear program

max{(ci + cj) ti + (cij + cjpij + cjmji) ijx
)

 + cjs1 - cjmji:

ijx
)

(pij + mji - pji - mij) + s1 + s2 = (mji - pji), s1≥0, s2≥0, 0≤ ijx
)

≤1}.

94

Note that for an optimum to exist, we must have (ci + cj) = 0. Also, we then have that either ijx
)

 is

nonbasic at 0 or 1 at an optimal vertex, or if it is basic, then it must equal

1
)()(

)(
≥

−−−
−

ijijjiji

jiji

pmpm

pm
.

Hence, in this case, we must have (mij-pij)=0 and ijx
)

=1 by feasibility. This completes the proof.

Remark 2. Note that if we include the constraints iii dtr ≤≤ and jjj dtr ≤≤ with (3.10), then

the continuous relaxation can indeed have fractional extreme points. For example, we could have

a vertex determined by the right-hand inequality in (3.13.2) binding along with ii dt = and

jj dt = as three linearly independent constraints yielding the solution (where we have used

)ijij rdm −=

ii dt = , jj dt = ,
jiij

jiij
ij prd

pdd
x

+−
+−

=)
. (3.14)

If jii ddr << , this yields 10 << ijx
)

. Also, this solution (3.14) is feasible to the left-hand

inequality in (3.13.2) since this inequality is redundant whenever the right-hand inequality holds

as an equality because of the hypothesis pij≤mij and pji≤mji. Hence, this yields (3.14) as a

fractional vertex.

Motivated by Remark 2, we now present a tightened representation of (3.10). Consider the

representation of (3.10) given by the following polynomial set of constraints

ijijijij xpxtt
)) ≥−)((3.15.1)

)1()1)((ijjiijji xpxtt
)) −≥−− (3.15.2)

iii dtr ≤≤ (3.15.3)

jjj dtr ≤≤ (3.15.4)

ijx
)

 binary. (3.15.5)

95

By Sherali and Adams (1994), a polyhedral convex hull representation can be given by

multiplying the inequalities in (3.15.1) - (3.15.4) by ijx
)

, and)1(ijx
)− , and substituting ijij xx

)) =2
,

ijiji rxt =)
 and ijijj sxt =)

. This gives (3.16) below as the convex hull of (3.15).

ijijijij xprs
)≥−)((3.16.1)

)1()()(ijjiijijji xpsrtt
)−≥−−− (3.16.2)

ijiijiji xdrxr
)) ≤≤ ,)1()()1(ijiijiiji xdrtxr

)) −≤−≤− (3.16.3)

ijjijijj xdsxr
)) ≤≤ ,)1()()1(ijjijjijj xdstxr

)) −≤−≤− (3.16.4)

10 ≤≤ ijx
)

. (3.16.5)

Now, suppose that we further include within (3.15) the restrictions

jiijij xxx −≤≤ 1
)

, ijx , jix binary. (3.11)

Note that by Sherali et al. (1996), the Special Structured RLT (SSRLT) factors are given by

}0-1 ,0 ,0 ,0{1 ≥−≥−≥≥= ijjiijijjiij xxxxxxS
))

 (3.17)

which collectively imply bounds of 0 and 1 on all the three binary variables as well as imply the

2-city DFJ subtour elimination constraint 1≤+ jiij xx (via the sum of the last two factors in S1.)

Using the fact that

 ijijij xxx =)
, 0=ijjixx

)
, and 0=jiij xx , (3.18)

the second-order factors obtained by pairwise (including self) products in (3.17) are given by S1

itself, and hence, so are the third-order product factors. This means that we can generate

conv{(3.15), (3.11)} by multiplying each of (3.15.1), (3.15.2), (3.15.3) and (3.15.4) by each

factor defining S1 in (3.17), including these factors (3.17) within the resulting constraint set, and

substituting (3.18) along with

96

 ijiij xtu = , ijjij xtv = , ijiij xtr
)= , ijjij xts

)= , ijij xx
)) =2

, ijij xx =2
, jiji xx =2

. (3.19)

The resulting constraint sets are,

conv{(3.15), S1}:

(3.15.1) ijx⋅ : 0≥−− ijijijij xpuv (3.15.1.11)

(3.15.1) jix⋅ : redundant.

(3.15.1))(ijij xx −⋅)
:)()()(ijijijijijijij xxpuvrs −≥−−−)

 (3.15.1.12)

(3.15.1))1(ijji xx
)−−⋅ : redundant.

(3.15.2) ijx⋅ : redundant.

(3.15.2) jix⋅ : 0≥−− jijijiji xpuv . (3.15.2.11)

(3.15.2))(ijij xx −⋅)
: redundant.

(3.15.2))1(ijji xx
)−−⋅ :)1()()(ijjijiijjijijjii xxpsutrvt

)−−≥−−−−− . (3.15.2.12)

(3.15.3) ijx⋅ : ijiijiji xduxr ≤≤ . (3.15.3.11)

(3.15.3) jix⋅ : jiijijii xdvxr ≤≤ . (3.15.3.12)

(3.15.3))(ijij xx −⋅)
:)()(ijijiijijijiji xxdurxxr −≤−≤−))

. (3.15.3.13)

(3.15.3))1(ijji xx
)−−⋅ :)1()1(ijjiiijjiiijjii xxdrvtxxr

)) −−≤−−≤−− . (3.15.3.14)

(3.15.4) ijx⋅ : ijjijijj xdvxr ≤≤ . (3.15.4.11)

(3.15.4) jix⋅ : jijjijij xduxr ≤≤ . (3.15.4.12)

(3.15.4))(ijij xx −⋅)
:)()(ijijjijijijijj xxdvsxxr −≤−≤−))

. (3.15.4.13)

(3.15.4))1(ijji xx
)−−⋅ :)1()1(ijjijijjijijjij xxdsutxxr

)) −−≤−−≤−− . (3.15.4.14)

For all same classi,jj, i ∈<)(and i∈ V, j∈ V, jiji dpr ≤+ , ijij dpr ≤+ , the above constraint

set will be imposed.

We can also consider the convex hull representation for {(3.15), (3.12.2)}, {(3.15), (3.12.3)}

using the special structured factors for (3.12.2) and (3.12.3) as follows:

97

}0-1 ,0 ,0 ,0{ 00002 ≥−≥−≥≥= ijijijji xxxxxxS
))

, (3.20)

}0-1 ,0 ,0 ,0{ 00003 ≥−≥−≥≥= ijjiijji xxxxxxS
))

. (3.21)

Reformulation

Using 00 jijj xxx =)
, 00 =iji xx

)
, iiji xxx 00 =)

, and 00 =ijjxx
)

, the reformulated constraint sets are,

conv{(3.15), S2}:

(3.15.1) 0jx⋅ : 00)(jijjij xpxtt ≥−

(3.15.1) 0ix⋅ : redundant.

(3.15.1))(0jij xx −⋅)
 :)())((00 jijijjijij xxpxxtt −≥−−))

(3.15.1))1(0 iji xx
)−−⋅ : redundant.

(3.15.2) 0jx⋅ : redundant

(3.15.2) 0ix⋅ : 00)(ijiiji xpxtt ≥− .

(3.15.2))(0jij xx −⋅)
 : redundant

(3.15.2))1(0 iji xx
)−−⋅ :)1()1)((00 ijijiijiji xxpxxtt

)) −−≥−−− .

(3.15.3) 0jx⋅ : 000 jijiji xdxtxr ≤≤ .

(3.15.3) 0ix⋅ : 000 iiiiii xdxtxr ≤≤ .

(3.15.3))(0jij xx −⋅)
 :)()(000 jijijiijijiji xxdxtxtxxr −≤−≤−)))

.

(3.15.3))1(0 iji xx
)−−⋅ :)1()1(000 ijiiijiiiiijii xxdxtxttxxr

))) −−≤−−≤−− .

(3.15.4) 0jx⋅ : 000 jjjjjj xdxtxr ≤≤ .

(3.15.4) 0ix⋅ : 000 ijijij xdxtxr ≤≤ .

(3.15.4))(0jij xx −⋅)
 :)()(000 jijjjjijjjijj xxdxtxtxxr −≤−≤−)))

.

(3.15.4))1(0 iji xx
)−−⋅ :)1()1(000 ijijijjijjijij xxdxtxttxxr

))) −−≤−−≤−− .

conv{(3.15), S3}:

(3.15.1) ix0⋅ : iijiij xpxtt 00)(≥−

(3.15.1) jx0⋅ : redundant.

(3.15.1))(0iij xx −⋅)
 :)())((00 iijijiijij xxpxxtt −≥−−))

(3.15.1))1(0 ijj xx
)−−⋅ : redundant.

(3.15.2) ix0⋅ : redundant.

(3.15.2) jx0⋅ : jjijji xpxtt 00)(≥− .

(3.15.2))(0iij xx −⋅)
 : redundant.

(3.15.2))1(0 ijj xx
)−−⋅ :)1()1)((00 ijjjiijjji xxpxxtt

)) −−≥−−− .

98

(3.15.3) ix0⋅ : iiiiii xdxtxr 000 ≤≤ .

(3.15.3) jx0⋅ : jijiji xdxtxr 000 ≤≤ .

(3.15.3))(0iij xx −⋅)
 :)()(000 iijiiiijiiiji xxdxtxtxxr −≤−≤−)))

.

(3.15.3))1(0 ijj xx
)−−⋅ :)1()1(000 ijjiijijiiijji xxdxtxttxxr

))) −−≤−−≤−− .

(3.15.4) ix0⋅ : ijijij xdxtxr 000 ≤≤ .

(3.15.4) jx0⋅ : jjjjjj xdxtxr 000 ≤≤ .

(3.15.4))(0iij xx −⋅)
 :)()(000 iijjijijjiijj xxdxtxtxxr −≤−≤−)))

.

(3.15.4))1(0 ijj xx
)−−⋅ :)1()1(000 ijjjijjjjjijjj xxdxtxttxxr

))) −−≤−−≤−− .

Linearization

Using ijiij xtr
)= , ijjij xts

)= , ijiij xtu = , ijjij xtv = , jiij xtf 0= , 0jiij xtl = , the linearized

constraint sets are as follows:

conv{(3.15), S2}:

(3.15.1) 0jx⋅ : 00 jijijj xplu ≥− (3.15.1.21)

(3.15.1) 0ix⋅ : redundant.

(3.15.1))(0jij xx −⋅)
 :)()()(00 jijijijjijij xxplurs −≥−−−)

 (3.15.1.22)

(3.15.1))1(0 iji xx
)−−⋅ : redundant.

(3.15.2) 0jx⋅ : redundant

(3.15.2) 0ix⋅ : 00)(ijijii xplu ≥− . (3.15.2.21)

(3.15.2))(0jij xx −⋅)
 : redundant

(3.15.2))1(0 iji xx
)−−⋅ :)1()()(00 ijijiijjijijii xxpsltrut

)−−≥−−−−− . (3.15.2.22)

(3.15.3) 0jx⋅ : 00 jiijji xdlxr ≤≤ . (3.15.3.21)

(3.15.3) 0ix⋅ : 000 iiiii xduxr ≤≤ . (3.15.3.22)

(3.15.3))(0jij xx −⋅)
 :)()(00 jijiijijjiji xxdlrxxr −≤−≤−))

. (3.15.3.23)

(3.15.3))1(0 iji xx
)−−⋅ :)1()1(000 ijiiijiiijii xxdrutxxr

)) −−≤−−≤−− . (3.15.3.24)

(3.15.4) 0jx⋅ : 000 jjjjj xduxr ≤≤ . (3.15.4.21)

(3.15.4) 0ix⋅ : 00 ijjiij xdlxr ≤≤ . (3.15.4.22)

(3.15.4))(0jij xx −⋅)
 :)()(000 jijjjijjijj xxdusxxr −≤−≤−))

. (3.15.4.23)

(3.15.4))1(0 iji xx
)−−⋅ :)1()1(00 ijijijjijijij xxdsltxxr

)) −−≤−−≤−− . (3.15.4.24)

conv{(3.15), S3}:

99

(3.15.1) ix 0⋅ : iijiji xpvf 00 ≥− (3.15.1.31)

(3.15.1) jx0⋅ : redundant.

(3.15.1))(0iij xx −⋅)
 :)()()(00 iijijiijjiij xxpvrfs −≥−−−)

 (3.15.1.32)

(3.15.1))1(0 ijj xx
)−−⋅ : redundant.

(3.15.2) ix 0⋅ : redundant.

(3.15.2) jx0⋅ : jjijij xpvf 00 ≥− . (3.15.2.31)

(3.15.2))(0iij xx −⋅)
 : redundant.

(3.15.2))1(0 ijj xx
)−−⋅ :)1()()(00 ijjjiijjjijiji xxpsvtrft

)−−≥−−−−− . (3.15.2.32)

(3.15.3) ix 0⋅ : iiiii xdvxr 000 ≤≤ . (3.15.3.31)

(3.15.3) jx0⋅ : jiijji xdfxr 00 ≤≤ . (3.15.3.32)

(3.15.3))(0iij xx −⋅)
 :)()(000 iijiiijiiji xxdvrxxr −≤−≤−))

. (15.3-33)

(3.15.3))1(0 ijj xx
)−−⋅ :)1()1(00 ijjiijijiijji xxdrftxxr

)) −−≤−−≤−− . (3.15.3.34)

(3.15.4) ix0⋅ : ijjiij xdfxr 00 ≤≤ . (3.15.4.31)

(3.15.4) jx0⋅ : jjjjj xdvxr 000 ≤≤ . (3.15.4.32)

(3.15.4))(0iij xx −⋅)
 :)()(00 iijjjiijiijj xxdfsxxr −≤−≤−))

. (3.15.4.33)

(3.15.4))1(0 ijj xx
)−−⋅ :)1()1(000 ijjjijjjijjj xxdsvtxxr

)) −−≤−−≤−− .(3.15.4.34)

100

3.3.4.3 Comparison of Constraints Sets

Let us defined constraint Set I as [(3.10), (3.11), (3.15.3), (3.15.4)]. Again, using ijijij xxx =)
,

0=ijjixx
)

, and 0=jiij xx , the application of SSRLT factor S1 to constraint set I, SSRLT(I), yield

the following.

SSRLT(I):

(3.10)⋅S1:

(3.10) ijx⋅ : ijijijijijij xmuvxp ≤−≤ (3.10.4)

(3.10) jix⋅ : jijijijijiji xpvuxm −≤−≤− (3.10.5)

(3.10))(ijij xx −⋅)
:)()()()(ijijijjijiijijijijij xxmurvsxxp −≤−−−≤−))

 (3.10.6)

 (3.10))1(ijji xx
)−−⋅ :)()()()1(jijiijijijjiijji vursttxxm −−−−−≤−−−)

)1(jiijji xxp −−−≤)
 (3.10.7)

(3.11)⋅S1: same to (3.11).

(3.11) ijx⋅ : redundant.

(3.11) jix⋅ : redundant.

(3.11))(ijij xx −⋅)
: ijij xx

)≤

 (3.11))1(ijji xx
)−−⋅ : jiij xx −≤1

)

(3.15.3) ⋅S1: same to (3.15.3.1), (3.15.3.2), (3.15.3.3), (3.15.3.4).

(3.15.3) ijx⋅ : ijiijiji xduxr ≤≤ . (3.15.3.1)

(3.15.3) jix⋅ : jiijijii xdvxr ≤≤ . (3.15.3.2)

(3.15.3))(ijij xx −⋅)
:)()(ijijiijijijiji xxdurxxr −≤−≤−))

. (3.15.3.3)

(3.15.3))1(ijji xx
)−−⋅ :)1()1(ijjiiijjiiijjii xxdrvtxxr

)) −−≤−−≤−− . (3.15.3.4)

(3.15.4) ⋅S1: same to (3.15.4.1), (3.15.4.2), (3.15.4.3), (3.15.4.4).

(3.15.4) ijx⋅ : ijjijijj xdvxr ≤≤ . (3.15.4.1)

(3.15.4) jix⋅ : jijjijij xduxr ≤≤ . (3.15.4.2)

(3.15.4))(ijij xx −⋅)
:)()(ijijjijijijijj xxdvsxxr −≤−≤−))

. (3.15.4.3)

(3.15.4))1(ijji xx
)−−⋅ :)1()1(ijjijijjijijjij xxdsutxxr

)) −−≤−−≤−− . (3.15.4.4)

101

O
ri

gi
na

l C
on

st
ra

in
ts

SS

R
L

T
 C

on
st

ra
in

ts
 b

y
ap

pl
yi

ng
 S

1
Similarly, let us define Constraint Set II≡[(3.15.1), (3.15.2), (3.11), (3.15.3), (3.15.4)] and let us

denote the application of SSRLT factor S1 to this constraint as SSRLT(II).

Up to now, we have formulated two sets of constraints (i.e., Constraint Sets I and II) to enforce

the separation rules for the same class operations. By applying RLT to Set I, and SSRLT to both

Sets I and II, we have derived three sets of tightened constraints, RLT(I), SSRLT(I) and

SSRLT(II) (see Table 3.6).

Table 3.6 Original and SSRLT Constraint Sets.

Constraint Set (I): (3.10), (3.11), (3.15.3), (3.15.4) Constraint Set (II):
 (3.15.1), (3.15.2), (3.11), (3.15.3), (3.15.4)

)1()1(ijjiijijijijjiijij xpxmttxmxp
)))) −−≤−≤−− (3.10)

plus the following constraints:

ijijijij xpxtt
)) ≥−)((3.15.1)

)1()1)((ijjiijji xpxtt
)) −≥−− (3.15.2)

 plus the following constraints:

 jiijij xxx −≤≤ 1
)

 (3.11)

 iii dtr ≤≤ (3.15.3)

 jjj dtr ≤≤ (3.15.4)
SSRLT(I) SSRLT(II)

 ijijijijijij xmuvxp ≤−≤ (3.10.4)

jijijijijiji xpvuxm −≤−≤− (3.10.5)
)()()()(ijijijjijiijijijijij xxmurvsxxp −≤−−−≤−))

 (3.10.6)
)()()()1(jijiijijijjiijji vuuvttxxm −−−−−≤−−−)

)1(jiijji xxp −−−≤)
 (3.10.7)

plus the following constraints:

ijijijij uvxp −≤ (3.15.1.11)
)()()(ijijijijijijij uvrsxxp −−−≤−)

 (3.15.1.12)

jijijiji xpvu −≤− (3.15.2.11)
)()()(jijiijijij vurstt −−−−−

)1(ijjiji xxp
)−−−≤ (3.15.2.12)

plus the following constraints:

 jiijij xxx −≤≤ 1
)

 (3.11)

ijiijiji xduxr ≤≤ (3.15.3.11)

jiijijii xdvxr ≤≤ (3.15.3.12)
)()(ijijiijijijiji xxdurxxr −≤−≤−))
 (3.15.3.13)

)1()1(ijjiiijjiiijjii xxdrvtxxr
)) −−≤−−≤−− (3.15.3.14)

ijjijijj xdvxr ≤≤ (3.15.4.11)

jijjijij xduxr ≤≤ (3.15.4.12)
)()(ijijjijijijijj xxdvsxxr −≤−≤−))
 (3.15.4.13)

)1()1(ijjijijjijijjij xxdsutxxr
)) −−≤−−≤−− (3.15.4.14)

102

Let us now investigate the various implications among these constraint sets. As mentioned earlier,

the RLT factor 01 ≥−− jiij xx is implied by summing the last two factors 0≥− ijij xx
)

 and

0-1 ≥− ijji xx
)

 defining S1 in (3.18). Hence, since the other RLT factors xij≥0 and xji≥0 are also

implied by S1, we have that RLT(I) is implied by SSRLT(I).

For SSRLT(I) and SSRLT(II), the right-hand side (RHS) of (3.10.4) and (3.10.6) and the left-

hand side (LHS) of (3.10.5) and (3.10.7) can be represented by (3.15.3.11)-(3.15.3.14) and

(3.15.4.11)-(3.15.4.14) in the following way, noting that ijm = (ij-rd) and jim =(ji-rd).

(3.15.4.11) – (3.15.3.11) = RHS of (3.10.4)
(3.15.4.12) – (3.15.3.12) = LHS of (3.10.5)
(3.15.4.13) – (3.15.3.13) = RHS of (3.10.6)
(3.15.4.14) – (3.15.3.14) = LHS of (3.10.7).

Consequently, all the inequalities having mij or mji in (3.10.4)-(3.10.7) can be eliminated. This

reduces SSRLT(I) to SSRLT(II), thereby establishing their equivalence. Figure 3.4 presents the

relationships among these various constraint sets. In practical terms, the aforementioned

constraints can be generated by the following procedure.

For i∈V

 For j>i, j∈V, (i,j)∈same class

If (ri + pij > dj), then jiji ptt +≥

Else if (rj + pji > di), then ijij ptt +≥

Else if (ri + pij ≤ dj and rj + pji ≤ di), then

 jikijkijkjikij xxxxxxx 2212 −−−≤≤−++)
 ∀k∈J, k ≠ i,j

 (3.15.1.11), (3.15.1.12), (3.15.2.11), (3.15.2.12),

(3.15.3.11), (3.15.3.12), (3.15.3.13), (3.15.3.14),

(3.15.4.11), (3.15.4.12), (3.15.4.13), (3.15.4.14).

 (3.15.1.21), (3.15.1.22), (3.15.2.21), (3.15.2.22),

(3.15.3.21), (3.15.3.22), (3.15.3.23), (3.15.3.24),

(3.15.4.21), (3.15.4.22), (3.15.4.23), (3.15.4.24).

103

 (3.15.1.31), (3.15.1.32), (3.15.2.31), (3.15.2.32),

(3.15.3.31), (3.15.3.32), (3.15.3.33), (3.15.3.34),

(3.15.4.31), (3.15.4.32), (3.15.4.33), (3.15.4.34).

Endif

 End for j

End for i

104

Figure 3.4 Relationships among the Constraint Sets.

.

Imply

Constraint Set (I):
(3.10), (3.11), (3.15.3), (3.15.4).

Constraint Set (II):
(3.15.1), (3.15.2), (3.11), (3.15.3), (3.15.4).

RLT Factors:
0≥ijx , 0≥jix , 01 ≥−− jiij xx .

SSRLT Factors:
}0-1 ,0 ,0 ,0{1 ≥−≥−≥≥= ijjiijijjiij xxxxxxS

))
.

RLT I SSRLT(I)

(3.10.4), (3.10.5),(3.10.6), (3.10.7),
(3.11),
(3.15.3.11), (3.15.3.12), (3.15.3.13), (3.15.3.14),
(3.15.4.11), (3.15.4.12), (3.15.4.13), (3.15..4.14)

SSRLT(II)

(3.15.1.11), (3.15.1.12),
(3.15.2.11), (3.15.2.12),
(3.15.3.11), (3.15.3.12), (3.15.3.13), (3.15.3.14),
(3.15.4.11), (3.15.4.12), (3.15.4.13), (3.15.4.14).

Imply (Equivalent)

105

3.3.4.4 Prefix and Probe Tests

Proposition 7. Let I={1,…,t} be a collection of identical aircraft from the same class such that

r1≤ r2≤… ≤ rt and d1≤ d2≤… ≤ dt. Then we may fix ijx
)

=1 ∀ i, j∈I, i<j, and yet preserve optimality

in ASP.

Proof. Consider any optimal solution to ASP and examine the sequence positions of aircraft from

the set I. If these appear in the same order as in I, we are done. Otherwise, processing from the

left in I, let the first out-of-sequence aircraft be in position p (possibly, p=1)and let the aircraft in

this position be q. Note that q>p, and so, rp≤rq and dp≤dq. Since rp≤rq≤tq<tp≤dp≤dq by scheduling

aircraft q at time tp and aircraft p at time tq, we would obtain a feasible solution having the same

objective value. Continuing in this fashion, we would obtain an optimum with the aircraft in I

sequenced in order 1,…,t. This completes the proof.

Remark 3. Whenever we fix ijx
)

=1,we automatically also have xji≡0.

We can also perform probing tests on the xij variables based on the following concept. Suppose

that we tentatively fix xij=1. If this results in an infeasible problem ASP, then we can permanently

fix xij=0. Similarly, if fixing xij=0 renders the problem infeasible, then we can assert that we must

have xij=1. To simplify the notation in this development, for each aircraft r, let

}{minimum rs
s

r p=∆

and let s
rsp

p
r

rs
rs aircraft

otherwise

 as class same in the is if
ˆ ∀

∆
= .

Proposition 8 (Probing on xij=1). Consider the pair of aircraft i and j associated with the (defined

and not as yet fixed) variable xij. If either (a) ri+pij>dj, or (b) there exists an aircraft k for which

the following two conditions hold:

106

rk+ kip̂ >di, or rk + kip̂ +pij > dj,

 max{ri+pij, rj}+ jkp̂ >dk,

then we can optimally fix xij=0, assuming that an optimum exists.

Proof. Suppose that we consider any feasible solution in which xij=1. Clearly, if (a) holds true

then we have a contradiction, and so we must have xij=0. Hence, suppose that (b) holds true. If the

first part of condition (i) holds true, then k cannot precede i or else aircraft i cannot be feasibly

scheduled, and similarly, if the second part of condition (i) holds true then again k cannot precede

i or else aircraft j cannot be feasibly scheduled (given xij=1). On the other hand, condition (ii)

asserts that aircraft k cannot be feasibly scheduled after i and j are consecutively scheduled.

Together, these conditions imply that if xij=1, then there exists an aircraft k which cannot be

feasibly scheduled, and so, we may fix xij=0. This completes the proof.

Proposition 9 (Probing on xij=0). Consider the pair of aircraft i and j associated with the (defined

and not as yet fixed) variable xij. If

rj+ jip̂ >di, and

jkjkiki

dpr
jik

dprpr

kiki

>++
≤+

≠
]ˆ},[max{min

,
,

then we may optimally fix xij=1, assuming that an optimum exists.

Proof. Suppose that we consider any feasible solution in which xij=0. Condition (i) asserts that j

cannot precede i, and condition (ii) asserts that for any possible aircraft k≠i,j that immediately

follows i, it would not be feasible to subsequently schedule aircraft j. Hence, aircraft j would

remain unscheduled unless it immediately succeeds aircraft i, i.e., xij=1. This completes the proof.

Remark 4. Naturally, if i and j belong to the same class and we fix xij=1 then we can also fix

ijx
)

=1.

107

Figure 3.5 presents the scheme to prefix certain ijx
)

 variables based on symmetry using the

Proposition 7, 8 and 9.

Figure 3.5 Prefixing Variables.

no
VIOLR = 0

Order the aircraft as they appear in I by setting

))(),((IqIpx
)

= 1, ∀p, q= 1,.., |I|, p < q

where

<

<
≡

ijx

jix
x

ji

ij

i, j if

 if
)()

)
)

Remove r(I) from I

yes

Let I be a set of identical aircraft in the same
class, where |I| ≥ 2. Arrange the aircraft indices
in I in nondecreasing lexicographic order of
(ri, dj).

Denote r(I) as the rth ranked index in I, for r=1,…,|I|.
For each r = 1,…, |I|, compute the violation function.
VIOLr = [# of indices q(I), q<r for which dq(I) > dr(I)]
 + [# of indices q(I), q>r for which dq(I) < dr(I)].
Note that VIOLr counts how many aircraft pairs (q(I), r(I)),
q≠r, violate the nondecreasing ordering in I w.r.t. d values.
Find R∈argmaxr{VIOLr}

108

3.3.5 Computational Results

Figure 3.6 illustrates computational result of a simple case having 10 flights. As seen in the

figure, the completion time of the first-come-first-served (FCFS) sequence and the optimal

sequence are 624 seconds and 518 seconds, respectively. Hence by changing the traditional FCFS

sequence intelligently, about 17% of the overall operational time can be saved.

We consider 12 problem instances having specified hypothetical flight schedules. The results

given in Tables 3.7 and 3.8 indicate that the linear programming relaxation of the original

traditional model seems to yield a significant gap from optimality that needs to be resolved. On

the other hand, the proposed reformulated ASP problems yield tighter representations, producing

significantly improved lower bounds. As a result, several previously unsolvable instances are now

computationally tractable within the set limits. Nevertheless for real-time implementation, the

CPU times (seconds) measured on an HP workstation indicate that we need to devise suitable

heuristics as an alternative for deriving good quality solutions.

Various types of problems are defined as below according to the application of RLT and SSRLT.

Problem O is an original problem without applying RLT. RLT1 is a problem resulted from

applying RLT to problem O. Problem RLT2 involves additional constraints set generated by

applying SSRLT factor S1 to constraints set (3.15). In problem RLT3, SSRLT factor S1, S2 and S3

are applied to constraints set (3.15). Among the problems, O, RLT1 and RLT2 are implemented

in this research.

O: Minimize z

subject to

(3.1), (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), (3.10), (3.11), (3.12),

jiji ptt +≥ same classi,jj, i ∈<∀)(in V and jiji dpr >+

ijij ptt +≥ same classi,jj, i ∈<∀)(in V and ijij dpr >+

ijx
)

 binary.

RLT1: Minimize z

subject to

(L2.5), (L2.1′), (L2.3), (L2.6), (L3.1), (L3.1′), (L2.2), (L2.7), (L2.4′), (L3.2), (L3.2′),

(L4.1), (L4.2), (L4.3), (L5.2), (L5.3), (L1.1), (L1.2), (3.5), (3.6), (3.7), (3.8), (3.9),

(3.10), (3.11), (3.12),

109

jiji ptt +≥ same classi,jj, i ∈<∀)(in V and jiji dpr >+

ijij ptt +≥ same classi,jj, i ∈<∀)(in V and ijij dpr >+

00 ≥≥ ijij , vu jJ, iJ, j i ≠∈∈∀
ijx

)
 binary.

RLT2: Minimize z

subject to

(L2.5), (L2.1′), (L2.3), (L2.6), (L3.1), (L3.1′), (L2.2), (L2.7), (L2.4′), (L3.2), (L3.2′),

(L4.1), (L4.2), (L4.3), (L5.2), (L5.3), (L1.1), (L1.2), (3.5), (3.6), (3.7), (3.8), (3.9),

(3.10), (3.11), (3.10), (3.11), (3.12),

SSRLT[conv{(3.15), S1}],

jiji ptt +≥ same classi,jj, i ∈<∀)(in V and jiji dpr >+

ijij ptt +≥ same classi,jj, i ∈<∀)(in V and ijij dpr >+

00 ≥≥ ijij , vu jJ, iJ, j i ≠∈∈∀

 00 ≥≥ ijij , sr same classi,jj, i ∈<∀)(, i∈ V, j ∈ V and jiji dpr ≤+ , ijij dpr ≤+
ijx

)
 binary.

RLT3: Minimize z

subject to

(L2.5), (L2.1′), (L2.3), (L2.6), (L3.1), (L3.1′), (L2.2), (L2.7), (L2.4′), (L3.2), (L3.2′),

(L4.1), (L4.2), (L4.3), (L5.2), (L5.3), (L1.1), (L1.2), (3.5), (3.6), (3.7), (3.8), (3.9),

(3.10), (3.11), (3.10), (3.11), (3.12),

SSRLT[conv{(3.15), S1}],

SSRLT[conv{(3.15), S2}],

SSRLT[conv{(3.15), S3}],

jiji ptt +≥ same classi,jj, i ∈<∀)(in V and jiji dpr >+

ijij ptt +≥ same classi,jj, i ∈<∀)(in V and ijij dpr >+

00 ≥≥ ijij , vu jJ, iJ, j i ≠∈∈∀

 00 ,00 ,00 ≥≥≥≥≥≥ jijiijijijij , lf, lf, sr
 same classi,jj, i ∈< ∀)(, i∈ V, j∈ V and jiji dpr ≤+ ,

ijij dpr ≤+

ijx
)

 binary.

110

(Original Sequence)
Scheduled time (seconds)

Aircraft type

Legend

(1)
25
L

(2)
32
L

(4)
102
H

(3)
82
L

100 200 300 400 500 6000

(5)
154
H

(6)
4
H

(8)
122
H

(7)
73
S

(9)
136
S

(10)
184
H

Nominal Schedule

100 200 300 400 500 6000

(1)
54
L

(2)
114

L

(4)
384
H

(3)
324
L

(5)
594
H

(6)
4
H

(8)
274
H

(7)
200
S

(9)
470
S

(10)
544
H

FCFS Schedule
Completion Time= 634 Seconds

100 200 300 400 500 6000

(1)
54
L

(2)
444
L

(4)
249
H

(3)
149
L

(5)
349
H

(6)
4
H

(8)
199
H

(7)
119
S

(9)
414
S

(10)
299
H

Violation Violation

Optimal Schedule (Before adding constraint set (2.10))
Completion Time= 484 Seconds

100 200 300 400 500 6000

(1)
25
L

(2)
120

L

(4)
318
H

(3)
218
L

(5)
418
H

(6)
268
H

(8)
368
H

(7)
90
S

(9)
188
S

(10)
468
H

Optimal Schedule (After adding constraint set (2.10))
Completion Time= 508 Seconds

Figure 3.6 Illustrative Example.

111

Table 3.7 Computational Results (without using Prefixing Constraints).

O RLT1
LP MIP LP MIP

Prob.
Id

acft

Data
Intrvl
(sec)

FCFS
sol.

MIP
value Value time nodes Time Value Time nodes time

5_0 5 2000 1558 1558 1558.0 0.01 7 .02 1558 .12 0 .01
5_1 5 100 288 256 85.0 0.01 98 .11 230 .09 26 .23
5_2 5 100 263 234 79.0 0.02 223 .31 231 .12 34 .26
5_3 5 100 266 266 92.1 0.02 245 .31 238 .14 36 .40
5_4 5 100 260 260 84.9 0.01 199 .26 232 .11 59 .57
5_5 5 100 380 263 84.0 0.01 72 .09 262 .13 32 .35

10_0 10 2000 1883 1883 1871.0 0.03 46932 127.00 1873 3.30 47 32.14
10_3 10 600 750 686 500.0 0.06 27152 143.72 531 2.90 7806 784.51
10_4 10 600 626 492 305.0 0.03 300,000 1250.36 464 1.43 22147 2006.78
10_5 10 300 634 518 243.0 0.03 300,000 1275.90 479 2.42 22615 3646.54
10_6 10 200 715 524 185.0 0.03 300,000 *1283.90 489 1.12 45320 3612.37

15_0 15 2000 2095 2095 2046.0 0.04 300,000 1286.99 2077 19.67 1657 299.57
15_1 15 500 948
15_3 15 500 967

RLT2

LP MIP

Prob.
id

acft

Data
Intrvl
(sec)

FCFS
sol.

MIP
value Value Time nodes Time

5_0 5 2000 1558 1558 1558 .11 0 .01
5_1 5 100 288 256 230 .12 32 .33
5_2 5 100 263 234 231 .14 21 .18
5_3 5 100 266 266 238 .15 42 .50
5_4 5 100 260 260 232 .16 65 .66
5_5 5 100 380 263 262 .21 24 .35

10_0 10 2000 1883 1883 1883 3.39 0 .02
10_3 10 600 750 686 531 5.49 2878 573.50
10_4 10 600 626 492 464 2.21 20542 2878.87
10_5 10 300 634 518 479 2.73 17413 2774.44
10_6 10 200 715 524 489 2.15 48953 4791.63

15_0 15 2000 2095 2095 2077 11.53 60 218.30
15_1 15 500 948
15_3 15 500 967

 *not optimal (due to the maximum nodes limit).

112

Table 3.8 Computational Results (using Prefixing Constraints).

O RLT1

LP MIP LP MIP

Prob.
Id

acft

Data
Intrvl
(sec)

FCFS
sol.

MIP
value

Value time nodes Time Value Time nodes time

5_0 5 2000 1558 1558
5_1 5 100 288 256
5_2 5 100 263 234
5_3 5 100 266 266
5_4 5 100 260 260
5_5 5 100 380 263

10_0 10 2000 1883 1883 1871.6 0.02 3792 9.80 1873 2.51 50 29.57
10_3 10 600 750 686 551.0 0.04 6721 31.50 551 1.87 5299 1183.42
10_4 10 600 626 492 305.0 0.02 120518 442.98 464 1.22 2973 262.96
10_5 10 300 634 518 271.0 0.03 33793 127.77 479 1.23 4113 379.53
10_6 10 200 715 524 264.0 0.03 173046 660.00 489 1.22 8277 758.40

15_0 15 2000 2095
15_1 15 500 948
15_3 15 500 967

RLT2

LP MIP

Prob.
id

acft

Data
Intrvl
(sec)

FCFS
sol.

MIP
value Value Time nodes Time

5_0 5 2000 1558 1558
5_1 5 100 288 256
5_2 5 100 263 234
5_3 5 100 266 266
5_4 5 100 260 260
5_5 5 100 380 263

10_0 10 2000 1883 1883 1883 1.90 14 18.22
10_3 10 600 750 686 551 2.42 9358 3258.65
10_4 10 600 626 492 464 1.48 3097 401.98
10_5 10 300 634 518 479 1.40 3774 439.92
10_6 10 200 715 524 489 1.38 9835 1263.82

15_0 15 2000 2095
15_1 15 500 948
15_3 15 500 967

113

3.4 Heuristics for the Aircraft Sequencing Problem (ASP)

Note that the aircraft sequencing decisions need to be made in real-time within a rolling horizon

framework. As such, the computational time required to solve reasonably sized instances of ASP

is of paramount importance. In such a context, both dynamic and integer programming

approaches are not likely to be appropriate for implementation, especially when the problem size

is relatively large. Hence, we propose the use of heuristic methods which provide solutions in a

reasonable time. Although these solutions might be sub-optimal, they are motivated by partial or

relaxed optimality considerations and are likely to be near-optimal.

3.4.1 Tour Building Process

3.4.1.1 FCFS Sequence

For the tour building procedure, instead of devising a new tour building procedure, the FCFS

sequence (with landing priority) can be used as an initial tour. The motivation of this is that the

FCFS sequence is the strategy currently applied in air traffic control, and we are seeking to

improve the solution provided by it.

3.4.1.2 LP-based Heuristic

Having determined an LP-RLT solution x for an ASP, we can use this solution to construct an

initial tour via a rounding process. (Among various types of RLT formulations shown in section

3.3.6, the RLT1 can be used for this purpose. This is because comparing with other RLTs, the

computation time for LP of RLT1 is relatively small without losing the tightness of LP solution.

See Table 3.7.) To do this, we develop two sequential rounding heuristics for the obtained LP

solution.

Method 1: Round x based on FCFS or cost/delay considerations.

Method 2: Suppose that x is fractional. Solve minΣ iΣ j ijij xx , subject to assignment constraints,

and hence obtain the solution x̂ . If x̂ is a tour, then use this as the rounded tour. If x̂ has

subtours, construct a complete tour by using a FCFS-based strategy.

114

For Method 1, the following steps are performed:

Step 0 (Selection of variables from the solution): From the LP solution x , for each i, find

j(i)∈argmaxj{ ijx }. Initialize the set of subtours as null.

Step 1 (Sort and store the selected variables): Sort the selected values)(, ijix ∀i in nonincreasing

order, and store the corresponding ordered list of variables in an array X(⋅) of size N.

Step 2 (Insert nodes in the current set of subtours): Remove the first element xi,j (i) from X(⋅), and

reduce the size of X(⋅) by one. Insert the nodes i and j(i) in a current subtour by applying

one of following rules.

Rule 1: If both i and j(i) are currently included in the current set of subtours, go to Step 3.

Rule 2: If both i and j(i) are not included in any current subtour, generate a new subtour

by connecting nodes 0 → i → j(i) → 0.

Rule 3: If only i is included in some current subtour, i≠0, insert j(i) between node i and

the node following i in this subtour.

Rule 4: If only j(i) is included in some current subtour, j(i)≠0, insert i between node j(i)

and its predecessor node in this subtour.

Rule 5: In case the selected variable is of the type x0j (i.e., i = 0 with j≡j(0) not included

in any subtour), calculate the savings obtained by connecting j to node 0 in each

of the current subtours. The savings are given by the following expression:

 mmm jfjfjf ppp −+= 00saving ,

where, fm is the first node after node 0 in the mth subtour.

Connect j as the immediate successor to node 0 in the subtour which yields the

largest savings.

Rule 6: In case the selected variable is of the type xi0 (i.e., j(i)=0), with i not included in

any subtour, calculate the savings obtained by connecting i to node 0 in each of

the current subtours. The savings are given by the following expression:

ililil mmm
ppp −+= 00saving ,

where, lm is the last node before node 0 in the mth subtour.

Connect i as the immediate predecessor of node 0 in the subtour which yields the

largest savings.

Step 3 (Repeat): If the array X(⋅) is not empty, go to Step 2. Else, go to Step 4.

115

Step 4 (Connect subtours): If the current solution is a complete tour, stop. Else (i.e., the current

solution has more than one subtour), compute all savings by connecting the last node in a

subtour to the first node in another for all pairs of subtours. The savings for connecting

the last node lm in the mth subtour and the first node fn in the nth subtour is given by the

following expression.

savingmn = nmnm flfl ppp −+ 00 , ∀ m, n∈{the index set for subtours}, m≠n.

Join the pair of subtours that yields the highest savings into a single subtour according to

the corresponding connection. Repeat Step 4 until a complete tour is obtained.

Table 3.9 shows an example of this initial tour building procedure for the case having 10 aircraft.

The first two columns in the table present the sorted LP-solution values, and the rules applied to

insert the nodes are shown in the third column.

Table 3.9 An Example of Heuristic Method for ASP.

Variable LP-solution Rule for insertion

x3,10 0.93 rule 2

x7,3 0.91 rule 4

x4,9 0.84 rule 2

x9,5 0.81 rule 3

x8,4 0.78 rule 4

x0,6 0.70 rule 5

x1,0 0.66 rule 6

x5,8 0.57 rule 1

x6,2 0.54 rule 3

x10,2 0.45 rule 1

Figure 3.7 depicts the stepwise process for this example. For instance, Figure 3.7(6) illustrates

two choices of connecting flight 6 to node 0, and the best resulting sequence after applying Rule

4 is shown in Figure 3.7(7). Figures 3.7(11) and 3.7(12) illustrate two possible ways to connect

the current pair of subtours, and Figure 3.7(13) depicts the final selected sequence after joining

these subtours.

116

10
3

0

10
3

0

7

10
3

0

7

9
4

10
3

0

7

9

45

10
3

0

7

9
45

8

103

0

7

9
45

8

6

6

103

0

7

9
45

8

6

10
3

0

7

9
45

8

6

1

1
10

3

0

7

9
4

5

8

6

1

10
3

0

7

9
4

5

8

6

1

2

10
3

0

7

9
4

5

8

6

1

2

10
3

0

7

9
4

5

8

6

1

2

10
3

0

7

9
4

5

8

6

1

2

(1)

(3) (4)

(5) (6) (7)

(8) (9) (10)

(11) (12) (13)

(2)

Figure 3.7 LP-based tour building procedure for ASP.

117

3.4.2 Improvement Heuristic

3.4.2.1 2-exchange Heuristic

The 2-exchange scheme developed by Lin (1965) can be applied as an improvement routine for

ASP. Associated with a proposed exchange, the new schedule can be tested against the minimum

separation rules by considering each affected flight and its three previous flights. This is

necessary because the triangle inequality does not necessarily hold for the given edge weights.

The data for the minimum separation rule has a largest separation of 196 seconds, which is

required when a small aircraft follows a heavy one in an arrival sequence. In this case, two

departing operations can successively intervene between these two arrivals without delaying (or

pushing forward) the small aircraft schedule. Even though the separations between the small

aircraft arrival and the two departures are adequate, there is still a chance that the separation rule

between the heavy aircraft arrival and the small aircraft arrival is violated. Hence the foregoing

three-previous-flight rule.

Given that a 2-exchange involves the substitution of two edges, (i, i+1) and (j, j+1) with two other

edges (i, j) and (i+1, j+1) as shown previously in Figure 2.5, the profitability of a proposed

sequence is checked at the (j+1)th aircraft using the following condition:

If the start time of the (j+1)st aircraft's operation in the suggested 2-exchange

sequence is earlier than that in the current sequence, the new sequence is profitable.

In fact, this condition is not sufficient but is only a necessary condition for the improvement of

the current sequence. The reason for this is that there still exists a possibility for some flight

following the (j+1)st flight to be further delayed because of the separation constraints with respect

to the revised two predecessors of the (j+1)st flight. This relaxed condition sometimes results in a

non-monotone decreasing sequence of completion times. However, from computational

experience, it is observed that in some cases, this relaxed condition is very helpful to attain

improved solutions. The entire improvement process is repeated from the beginning whenever a

profitable sequence is obtained, and is continued until no feasible and profitable sequence is

found. The pseudo-code for this heuristic is shown in Figure 3.8.

118

iter = 0;
heurSeq = initial sequence from tour building;
prepareVP();
reduceTimeWindow();

do{

findBetterTwoExchange = false;
findBetterTwoExchange = heuristicASP ();
iter++;

}while(findBetterTwoExchange is not found);

heuristicASP()
{

int i, j, k;
findBetterTwoExchange = false;
for(i = 0 to totFlights –1){
 for(j = i+2 to totFlights){
 initialize tempSeq;
 for (k = 0 to tot + 1){
 if(k <= i) tempSeq[k] = heurSeq[k];
 else if (k > i and k <= j){ // reversed sequence
 tempSeq[k] = heurSeq[j - (k - i) + 1];
 update tempSeq;

 if(tempSeq is infeasible){

initialize tempSeq;
 break;
 }
 }
 else if (k == j + 1){ // check feasibility and profitability

 tempSeq[k] = heurSeq[k];
 update tempSeq;
 if(tempSeq is infeasible or not profitable){

initialize tempSeq;
 break;
 }
 }
 else if(k < totFlights + 1){
 tempSeq[k] = heurSeq[k];
 update tempSeq;

 if(tempSeq is infeasible){
initialize tempSeq;

 break;
 }
 }
 else{ // i.e., k = tot + 1;
 tempSeq[k] = heurSeq[k];
 update tempSeq;

 if(tempSeq is infeasible){
 initialize tempSeq;

 break;
 }
 else{// i.e., tempSeq is feasible

 for (m = 0 to tot + 1) heurSeq[m] = tempSeq[m]; // update heurSeq
 return findBetterTwoExchange = true;
 }
 }//end if

 }//for k
 }//for j
 }//for i
 return findBetterTwoExchange = false;

}

update tempSeq{
// decide and update the current flight's start time considering the minimum separation rules between
// this flight and three previous flights.

}

checkFeasiblity of tempSeq(){
// if the tempSeq’s start time is later than due-time then the tempSeq is not feasible.
}

checkProfitablity of tempSeq(curr, tSeq, hSeq){
// if the tempSeq’s start time is less than the heurSeq’s start time, then the tempSeq is profiable.

}

Figure 3.8 Pseudo-code for the ASP heuristic.

119

3.4.2.2 2-swap Heuristic

Besides the 2-exchange procedure, we can apply the 2-node swapping method which swaps a

node with one of its local neighbors that reside within some n nodes adjacent to the current node.

Let us consider swapping an ith with a j th flight for j>i. The 2-swap heuristic would check

feasibility for all the flights after the j th flight, and would also check the profitability of this

exchange at the i+1st flight. If the new starting time for the i+1st flight is earlier than the previous

starting time, this swapped sequence is considered as profitable.

3.4.2.3 Enhancing Improvement Heuristics

For expediting the improvement procedure, two additional methods may be applied: 1) Exploiting

a precedence relationship, and 2) reduction of time-windows.

Method 1 (Exploiting precedence relationship): In ASP, the precedence relations among the

flights can be found by applying the following rules:

Rule 1: The sequence is symmetrically identical by feasibly interchanging the same types

of operations involving the same aircraft type. As such, the FCFS rule could be

applied to such flights. In other words, restrict flighti p flightj, if operationi =

operationj, (aircraft type)i = (aircraft type)j , and ei ≤ ej.

Rule 2: Let [ei, li] and [ej, lj] denote time-windows for flights i and j, respectively. If li ≤

ej, then flight i should precede flight j in the final sequence.

Adopting Solomon’s (1988) approach, the precedence information among the flights are stored in

a matrix VP(i, j), where VP(i, j) is defined as follows.

 +1 if flight i must precede flight j,
 VP(i, j) = 0 if no precedence relationship exists,
 -1 if flight j must precede flight i,
 where, i and j are indices for flight identification.

Once VP(i, j) is available, a node precedence value, NP(i), for the ith flight in the current

sequence, is defined as follows:

120

NP(i) = the smallest number k , k > i+1, such that VP(j, k) = +1, for some j ≥ i+1. If no
such k exists, then NP(i) = N+1,

where, i is a position for the ith flight in the current sequence, and N is the number of
flights.

The NP(i) array can be obtained from VP(i, j) in O(N2) time by applying the following procedure,

where N is the number of flights in the current sequence.

 current_i = 1;
 for(k = 2 to k < N + 1){
 for(j = current_i to j < k){
 NP(j – 1) = k;
 j_id = id of currSeq(j);
 k_id = id of currSeq(k);
 if(VP(j_id - 1, k_id - 1) = 1){
 current_i = j + 1;
 break;

 }

 }//end for
 }//end for
 NP(N) = N+1;

NP(N+1) = N+1;

Henceforth, the improvement procedure can be expedited by adopting the following necessary

condition for the feasibility of a 2-exchange as suggested by Psaraftis (1983b):

A necessary condition for the feasibility of a 2-exchange of arcs (i, i+1) and (j, j+1) with (i,
j) and (i+1, j+1) is that j < NP(i).

Let us consider an example case having 10 flights with the following current sequence.

Sequence 0 1 2 3 4 5 6 7 8 9 10 11

Flight Id. f0 f6 f7 f8 F1 f2 f9 f10 f3 f4 f5 f0

Assuming that the precedence relations among the flights are f1 p f4, f1 p f5, f2 p f3, f4 p f5, f6 p f7,

f6 p f8, and f7 p f8, the resulting NP(i) values for the current sequence are given as follows:

121

i NP(i)
0 2
1 2
2 3
3 8
4 8
5 10
6 10
7 10
8 10
9 11
10 11

Method 2 (Reduction of time-windows): Exploiting the precedence rela tions imposed in the

previous step, certain time-windows can be reduced as follows: Let [ei, li] and [ej, lj] be

time-windows for flights i and j, respectively. If flight i precedes flight j, then their time-

windows can be reduced by letting li = min{li, lj-tij} and ej = max{ej, ei+tij}.

The overall steps included in Methods 1 and 2 are depicted in Figure 3.9.

Read the initial sequence

Perform admissible
2-exchanges

Generate NP(i) for all flights

Generate VP(i,j)

Reduce time-windows

Better sequence found? StopNo

Yes

Figure 3.9 Flowchart of Improvement Procedure for ASP.

122

3.4.3 Computational Results

To test suggested heuristic methods, we performed computations using a set of randomly

generated problems. For the tour building process, the FCFS sequences are used. The results

obtained from 2-exchange improvement procedure are summarized in Table 3.10. In the problems

15_0 and 50_7, the time-windows for flights appearing later in the schedule dominate the overall

completion time. Results show that 2-exchage heuristic method provides sequences very close to

exact solutions in a reasonable time.

Table 3.10 Computational Results (2-exchange improvement procedure).

2-exchange Sequence
Problem # Number

of aircraft

FCFS
Completion
Time (sec.)

Optimal
Completion
Time (sec.)

Completion
Time (sec.)

Computation
Time (sec.)*

10_0 10 1883 (100) 1883 (100.0) ** 1883 (100.0) 0.010
10_3 10 750 (100) 686 (91.5) 691 (92.1) 0.050
10_4 10 626 (100) 492 (78.6) 492 (78.6) 0.060
10_5 10 644 (100) 518 (80.4) 541 (84.0) 0.050
10_6 10 715 (100) 524 (73.3) 545 (76.2) 0.060
15_0 15 2095 (100) 2095 (100.0) 2095 (100.0) 0.030
15_1 15 1006 (100) n.a. 956 (95.0) 0.080
15_2 15 948 (100) n.a. 848 (89.5) 0.110
50_2 50 4670 (100) n.a. 4602 (98.5) 0.030
50_7 50 3086 (100) n.a. 3086 (100.0) 6.519

*Computation times do not include times for tour building process. The reported times are CPU seconds on
a PC having Pentium Pro 166Mhz CPU and a 64Mega-byte RAM.
**The numbers in parentheses denote the percentage of completion time comparing with FCFS sequence.

From computational experience, it turns out that Rule 1 in Method 1 for enhancement of

improvement heuristic does not always provide favorable results. The reason for this is likely that

restricting the chances of flipping a segment of the current sequence because of this rule might

reduce the possibility for generating a better solution. In fact, the precedence imposed on flights

having the same operation type and involving the same aircraft type is not a “hard” constraint but

a “soft” constraint in the sense that these precedences may be violated without losing feasibility.

While it is advantageous to add these relations to combat symmetry in a mathematical

optimization model, in the present context, it is preferable to drop this restriction.

In contrast, the reduction of time-windows is evidently effective in saving computational effort.

The computational performance before and after applying the time-window reduction to the same

123

data set used for Table 3.10 are compared in Table 3.11. In some cases, the computational time

increases slightly after applying this reduction. This increase is mainly due to the additional effort

for performing this reduction, and appears to be negligible. On the other hand, the number of

iterations is reduced significantly in some cases.

Table 3.11 Comparison of Computational Efforts.

Problem # Before reduction of TW After reduction of TW
10_0 1 (0.010)* 1 (0.020)
10_3 3 (0.050) 3 (0.050)
10_4 6 (0.060) 7 (0.080)
10_5 10 (0.050) 7 (0.060)
10_6 7 (0.060) 4 (0.040)
15_0 1 (0.030) 1 (0.040)
15_1 5 (0.080) 5 (0.110)
15_2 4 (0.110) 4 (0.130)
50_2 19 (6.519) 17 (6.018)
50_7 1 (0.030) 1 (0.040)

*iterations (CPU time, seconds).

For the purpose of comparison, we also tested the 2-swap heuristic using the same data set that

was used for the 2-exchange heuristic. Computational results obtained are summarized in Table

3.12. Compared with the 2-exchange heuristic results (see Table 3.10), the 2-swap heuristic

requires much less computation time. It, however, shows that in some cases, the resulting

solutions are relatively further from optimality.

Table 3.12 Computational Results (2-swap improvement procedure, n=10).

2-swap Sequence Problem # Number
of aircraft

FCFS
Completion
Time (sec.)

Optimal
Completion
Time (sec.)

Completion
Time (sec.)

Computation
Time (sec.)*

10_0 10 1883 1883 (100.0) ** 1883 (100.0) 0.020
10_3 10 750 686 (91.5) 691 (92.1) 0.090
10_4 10 626 492 (78.6) 568 (90.7) 0.040
10_5 10 644 518 (80.4) 562 (87.3) 0.050
10_6 10 715 524 (73.3) 604 (84.5) 0.040
15_0 15 2095 2095 (100.0) 2095 (100.0) 0.020
15_1 15 1006 n.a. 995 (98.9) 0.040
15_2 15 948 n.a. 905 (95.5) 0.100
50_2 50 4670 n.a. 4602 (98.5) 0.220
50_7 50 3086 n.a. 3086 (100.0) 0.971

* Computation times do not include times for tour building process. The reported times are CPU seconds on
a PC having Pentium Pro 166Mhz CPU and a 64Mega-byte RAM.
**The numbers in parentheses denote the percentage of completion time comparing with FCFS sequence.

124

Chapter 4. Network Assignment Problem

The main purpose of the Network Assignment Problem (NAP) is to provide air traffic controllers

with efficient taxiing plans that can reduce taxiing delays at the airport under consideration. The

plans involve taxiing routes from a gate to a runway (or more precisely, to the departure queue)

for departing aircraft, or from the runway exit to a gate for arriving aircraft. At large airports

having complex taxiway configurations, taxiing routing is an important task for ground

controllers. Even for small airports, this might be important if automated conflict resolution is

desired. The simplest way to assign taxiing paths is to establish routes based on shortest paths.

Shortest paths are usually static in the sense that the paths are independent of any changes in

traffic conditions on the taxiway structure. This approach is relatively easy to implement but is

likely to produce more delays. Another option is to apply a time-dependent network assignment

strategy which considers changes in traffic conditions over time. In this chapter, network

assignment and shortest path algorithms for solving NAP are presented along with computational

results.

4.1 Network Assignment Strategies

4.1.1 Network Assignment Algorithm

There are several drawbacks in adopting static assignment techniques as a solver for NAP

problems. This mainly because there are differences between urban transportation networks and

airfields with respect to the network operations. Most urban transportation links are directed in

that they are used in one direction for all days. In contrast, almost all links in airfields are bi-

directional in that each link’s operational direction can change over time. Whereas urban

transportation networks are directed graphs, airfield networks are undirected graphs in their

network representation. In order to consider time-dependent characteristics of airfield links,

dynamic (or time-dependent) network assignment strategies which have a look-ahead function for

each link’s operational direction should be introduced.

In a time-dependent network assignment strategy, all aircraft interact as long as they overlap

within the time horizon. By rerouting all vehicles iteratively, a dynamic user equilibrium (UE) (or

system optimal (SO)) state can be achieved. The general condition describing a dynamic UE can

be expressed as follows [Ghali, 1995]:

125

If, at each instant in time, for each origin-destination pair, the unit costs of flow on

utilized paths are identical and equal to the minimum instantaneous unit path cost, the

corresponding flow pattern is said to be user optimized.

In this research, the tentatively named quasi-dynamic network assignment strategy is proposed. In

a quasi-dynamic network assignment strategy, it is assumed that the current aircraft route is

influenced only by the previous aircraft assigned to the network. This simplified assumption rules

out the necessity of iterative rerouting procedures, thereby reducing the number of computations.

Besides the computational aspect, there is another theoretical rationale behind using the quasi-

dynamic network assignment strategy. In the UE (or SO) framework, it is assumed that vehicle

drivers select their best paths in such a way that their own travel times (or marginal travel time)

are minimized. It is also assumed that all drivers have equal priorities in the sense that the rule of

first-come-first-served is maintained during travel. At an airport, however, ground controllers

often provide higher priorities to certain taxiing aircraft over others to facilitate traffic flows. This

is a non-systematic situation where it might be impossible to achieve a pure dynamic UE (or SO)

state.

Figure 4.1 depicts the flowchart for a quasi-dynamic network assignment method. The method is

based on the incremental assignment technique which decides the aircraft path in a one by one

fashion. After an aircraft is routed, the links on the taxiing path are loaded by that aircraft over

time slices (see Figure 4.2). As mentioned earlier, once any aircraft is assigned to taxi on a link in

one direction, the opposite direction of the link should be blocked during the time slice occupied

by the aircraft to prevent any conflict on the taxiway. This can be done by increasing the travel

time of the conflicting link to an artificially large number to avoid being selected as a time-

dependent shortest path for any other flight. In practice, all the information about the loaded

aircraft is maintained in an fixed size array, called a time-dependent aircraft flow table . Figure 4.2

shows the resulting time-dependent link flows and the time-dependent link travel times for the

case that a flow v1 traverses from O to D along the path O→1→2→D.

The time-dependent travel times for all links can be computed by applying any known link

performance function link traffic volumes. Once the time-dependent link travel times are updated,

the time-dependent shortest paths between all nodes are recomputed for next flight to be assigned

using a time-dependent shortest path algorithm.

126

n = 1

Assign the nth
aircraft on the

links involved in
the TDSP over
time intervals

Update
link travel times

n = last vehicle?

Find TDSP
for the nth aircraft

(by using
TDSP algorithm)

n = n+1

End

No

Yes

Figure 4.1 Quasi-dynamic Assignment Algorithm (1).

O
D

1 2

3 4

v1 v1

V1

Time-dependent vehicle flow
 Links
Time slices LO1 L1O LO3 L3O L12 L21 L34 L43 L24 L42 L2D LD2 L4D LD4

1 v1 - - - - - - - - - - - - -
2 - - - - v1 - - - - - - - - -
3 - - - - - - - - - - v1 - - -

Time-dependent link travel times
 Links
Time slices LO1 L1O LO3 L3O L12 L21 L34 L43 L24 L42 L2D LD2 L4D LD4

1 tO1
1 ∞ - - - - - - - - - - - -

2 - - - - t12
2 ∞ - - - - - - - -

3 - - - - - - - - - - t2D
3 ∞ - -

Figure 4.2 Quasi-dynamic Assignment Algorithm (2).

127

4.1.2 Shortest Path Algorithms

The time-dependent shortest path algorithm suggested by Ziliakopoulos and Mahmassani is

designed to provide time-dependent shortest paths for all O-D pairs every time slices. In terms of

problem size, the NAP on taxiway system is much smaller than the NAP on the urban

transportation network. For example, the number of nodes and links on taxiway system at a large

airport is much less than that on a typical urban network. Also the number of aircraft considered

in the airport is smaller than the number of cars in the urban network. Motivated by this point, we

employ a TDSP algorithm based on the Dijkstra’s algorithm having the following characteristics:

1)

The TDSP provides a time-dependent shortest paths from a single root node to all other nodes

starting at time t.

The TDSP algorithm uses the sorted-queue as a data structure for candidate nodes, which makes

the algorithm as LS algorithm rather than LC algorithm. (Even though the size of candidate

nodes set (i.e., SE list) is small, size are big, fast sorting algorithm such as "quick sort" can be

applied for the facilitating the sorting procedure.)

Figure 4.3 shows the suggested TDSP algorithm for time-dependent paths from a node, r, to all

other nodes starting at time t.

Compute CurrentTimeSlice.

Call Initialize

while(SE list is not empty)
 u = deQueueMin(r);
 for(v = all forward star of u){
 d_u = shortTime(r, u); // travel time from r to u.
 d_v = shortTime(r, v); // travel time from r to v.
 Compute timeSliceFor_l_uv;//compute the time slice for travel time from u to v.
 l_uv = Find travelTime(u, v, timeSliceFor_l_uv)

 // find the travel time from u to v for timeSliceFor_l_uv
 if(d_v > d_u + l_uv){
 shortTime(r, v) = d_u + l_uv; // update the short time from r to v
 enQueue(v);
 }
 } //end for
}// end while

Procedure Initialize:
 for (i = all nodes){
 predecessor(i) = 0;

128

 for (j = all node){
 if(i ≠j) Label(i, j) = inf.;
 else Label(i, j) = 0;
 }
 }
 predecessor(r) = r;

Procedure deQueueMin(): // find the closet node from the SE list.

Procedure enQueueMin(x): // insert node x into the SE list.

Figure 4.3 Pseudo Code for Suggested Time-dependent SP Algorithm.

4.2 Computational Results

To compare static and time-dependent assignment strategies, let us consider a hypothetical flight

schedule for DCA airport. (For the airport configuration, see Figure 5.3. The details of this airport

are described in Chapter 5.) As shown in Table 4.1, the schedule has only two flights but it is

designed to have a conflict during taxiing to their own destinations.

Table 4.1 Hypothetical Flight Schedule.

Schedule Time Flight # Aircraft
Type

Operation
Type Hour Minute Second

Gate Runway

DEP_1 B727-100 Departure 0 0 27 1 36
DEP_2 B727-100 Departure 0 0 44 11 16

Figure 4.4 shows the paths resulting from two different assignment strategies. Since no flight is

on the taxiway when the flight "DEP_1" is assigned, it can taxi to its destination at unimpeded (or

free-flow) speed. Therefore there is no difference in static and time-dependent shortest paths for

flight "DEP_1".

In the static assignment strategy, "DEP_2" taxis and approaches "DEP_1" on the link (1020,

1024). On the other hand, for the time-dependent assignment case, "DEP_2" is assigned to make

a detour so as to avoid the conflict with "DEP_1". This is obvious because, when "DEP_2" is

assigned on the network, link (1024, 1020) has been blocked by "DEP_1", and the time-

dependent SP algorithm detects this blockage. The difference of two paths for "DEP_2" are

clearly illustrated in Figure 4.5.

129

Figure 4.4 Static vs. Time-dependent Path (1).

Paths from Static Network Assignment

Flight "DEP_1": 1 (27') - 1009 (44') - 1011 (49') - 1014 (54') - 1016 (65') - 1017 (77') -

1019 (83') - 1020 (90') - 1024 (117') - 1027 (126') - 1031 (143') - 2018 (171') -

2021(202').

Flight "DEP_2": 11 (44') - 1029 (52') - 1030 (61') - 1026 (70') - 1024 (78') - 1020 (105') -

1021 (111') - 1018 (122') - 1015 (140') - 1012 (149') - 1010 (157') - 1008 (182') -

1005 (196') - 1002 (235') - 1001 (250') - 2001(261').

Paths from Time-dependent Network Assignment

Flight "DEP_1": Same as Static Path.

Flight "DEP_2": 11 (4') - 1029 (52') - 1030 (61') - 1026 (70') - 1024 (78') - 1027 (87') -

1025 (94') - 1022 (105') - 1021 (119') - 1018 (130') - 1015 (148') - 1012 (157') -

1010 (165') - 1008 (190') - 1005 (204') - 1002 (244') - 1001 (258') - 2001(269').

Legend: Node (Seconds).

130

2001

2002

2009

2004

2003

2012

2010

2011

2007

2005

1001

2014

2015

2016

2018 2019

2020 2021

2008

1002

1003

1004

1005
1006

1007 1008

1009 1010

1012

1 1011

1014

1013

1015

1016

1017

1018
1019

1020 1021

1022 1023

1024 1025

1027
1026

1031

1030
10291028

1032

1033

2017

2

3

4

5

6

7

8

9

10

11

12 2013

2006

3

21

33

01

19
15

2001

2002

2009

2004

2003

2012

2010

2011

2007

2005

1001

2014

2015

2016

2018 2019

2020 2021

2008

1002

1003

1004

1005
1006

1007 1008

1009 1010

1012

1 1011

1014

1013

1015

1016

1017

1018
1019

1020 1021

1023

1024 1025

1027
1026

1031

1030
10291028

1032

1033

2017

2

3

4

5

6

7

8

9

10

11

12 2013

2006

3

21

33

01

19
15

 (a) Statically assigned path. (b) Time-dependently assigned path.

Figure 4.5 Static vs. Time-dependent Path (2).

 131

Chapter 5. Virginia Tech Airport Simulation Model

In this research, the simulation model plays an important role as a supplement to the analytical

models developed for ASP and NAP. This is because the simulation model makes it possible to

portray the dynamic behavior of entities that are difficult to examine by analytical models. In this

Chapter, methodologies pertinent for developing our simulation model are reviewed along with

previous simulation models. We also present detailed procedures to develop a simulation model

named Virginia Tech Airport Simulation Model (VTASM).

5.1 Framework of the Proposed Simulation Model

The primary purpose of a simulation model in the NAP is to evaluate the current state of aircraft

in the taxiway and runway systems. Several measures of network performance can also be

estimated using the simulation model. These include the estimation of delays and a general

assessment of the network congestion.

Since the number of entities (aircraft and air traffic controllers) considered in airport simulation

models is relatively small, a discrete time, microscopic and deterministic simulation model is

considered appropriate for this research problem. Even though the current prototype model is

developed as a deterministic model, the model design permits the inclusion of random variables

to reflect the stochastic behavior observed at airport networks.

The development of the simulation model is based on standard object-oriented methods

commonly used in software engineering. The most prominent qualities of an object-oriented

model are: 1) an easier understanding of the system, and 2) modifications to the model tend to be

local as they often result from an individual item, which is represented by a single object

[Jacobson, 1992].

Object-oriented methods have been improved in the past decade with the development of many

new object-oriented programming languages. The number of object-oriented methods increased

from less than 10 to more than 50 during the period between 1989 and 1994. Among the methods,

the most notable include Booch and Jacobson’s OOSE (object-oriented software engineering),

Rumbaugh’s OMT (object model technique), Shaer-Mellor’s method, and the Coad-Yourdan’s

method. Recently the “Unified Modelling Language (UML)” has been developed by Booch,

Jacobson and Rumbaugh to unify various object-oriented methods [Booch et al., 1998].

 132

The simulation model devised in this research project has been developed by following an

extension of the OMT originally applied to the design of SIMMOD 3 [ATAC, 1993]. In general,

the object-oriented modeling process is decomposed into three phases: 1) Object-oriented

Analysis (OOA), 2) Object-oriented Design (OOD) and 3) Object-oriented Programming (OOP).

Figure 5.1 describes the general procedures of the OMT methodology [Weijers, et. al, 1995 and

Derr, 1995].

 133

System Requrement
(Problem Statement)

Object Design

Data Flow DiagramState DiagramObject Diagram

Object ModelObject ModelObject Model

OMT

System Design

Combining models,
perfoaming a consistency check

Coding

Test

End

N.G.

N.G.

N.G.

N.G.

O.K.

O.K.

O.K.

O.K.

OOA

OOD

OOP

Figure 5.1 Processes of OMT [reproduced from Weijers et. al, (1995) and Derr (1995)].

 134

5.2 Object-oriented Analysis (OOA) of the Simulation Model

OOA can be defined as a method of analysis that examines requirements from the perspective of

the classes and objects found in the vocabulary of the problem domain [Booch, 1994]. OOA

begins with the verbal description of a problem statement. Then three types of models are

constructed: an object model, a dynamic model, and a functional model.

The object model describes the static, structural, and data-aspects of objects in the system, along

with their inter-relationships. The object model is represented by object diagrams. An object

diagram is a graph whose nodes are object classes and whose arcs reflect the relationships among

classes. The dynamic model describes the interactions among objects in the system in terms of

state diagrams. These represent the temporal, behavioral, and control-aspects of the system

changing over time. In a state diagram, nodes represent states, and arcs represent transitions

between states.

The data value transformation within a system is described in the functional model. Functional

models include data-flow diagrams where nodes represent processes and arcs represent data flows

[Weijers, et. al, 1995]. In the end, the three models come together during implementation, which

involve data (object model), sequencing (dynamic model), and operational (functional model)

manipulations [Bakker et. al, 1995].

5.2.1 Object Model

The main focus of the object model is to construct an object diagram that describes the data-

oriented static structures of the problem domain. The following steps are used in the object model

analysis according to the OMT method [Rumbaugh et al., 1991, and Derr, 1995]:

Step 1. Develop a problem statement.

Step 2: Identify the object classes which represent all the physical and conceptual objects

from the problem statement.

Step 3. Prepare a data dictionary giving a short description of various entities in the model.

Step 4. Identify associations (including aggregations) between object classes.

Step 5. Identify attributes of the object classes.

Step 6. Use inheritance to share common structures.

Step 7. Traverse access paths using scenarios to identify deficiencies.

 135

The candidates of objects or classes may be found by identifying noun or noun phrases from the

problem description. Association is a relationship and represents dependencies between classes,

being usually denoted by verb or verb phrases in the problem statement. Attributes are the data

values that are held by the objects, and are usually imbedded in a noun followed by possessive

phrases [Derr, 1995].

The arrow in the object diagram shows an aggregation/association relationship. An object at the

tail of arrow has an object at the head of arrow. The airport network, for instance, has n nodes and

m links and each link consists of two nodes defined as the from-node and the to-node. A gate is

represented by a node, and each node can hold one aircraft (or n aircraft in the case of an

aggregate gate). A link can have at most n taxiing flights at the same time.

Each flight has a taxiing path which consists of a series of links from the gate to the runway for

departing flights (or vice versa for arriving ones). Aircraft can have n flight schedules.

Controlling flights at an airport is carried cooperatively by two types of air traffic controllers: 1) a

ground controller, and 2) a local controller. Air traffic controllers evaluate various flight requests

to pushback, taxi, takeoff, or land, and try to maintain a smooth flow on the taxiway and runway

infrastructure while minimizing delays. Even though the final decisions for the ground and local

controllers are different, they share common attributes and behavioral characteristics. For

example, both controllers have the same information on flights, airport configuration, and use the

same communication procedures etc. For this reason, the ground and the local controllers are

inherited from the common class called controller.

Clock object is of importance in the simulation model as it is used in scheduling the next event for

such entities as controllers and flights. The object diagram is illustrated in Figure 5.2. The various

class definitions are described in Appendix C.

5.2.2 Dynamic Model

The time-dependent aspect of each entity is represented in the so called state diagram (or state

transition diagram) which consists of states and events. A change of state caused by an event is

called a transition. Whereas an object model describes the possible patterns of objects, attributes,

and links in a system, a dynamic model represented by the state diagram highlights the time-

dependent behavior of a system [Weijers, et. al, 1995]. According to Rambaugh (1991), the

general steps for constructing state diagrams are as follows:

 136

Figure 5.2 Object Diagram.

Step 1: Prepare scenarios for typical interaction sequences.

Step 2: Identify events between objects and prepare an event diagram for each scenario.

Step 3: Build a state diagram.

Step 4: Match events between objects to verify consistency and completeness of events shared

among the state diagrams.

5.2.2.1 Arriving Flights

Arriving aircraft are introduced to the simulation at discrete times prescribed by the original flight

schedule. If a flight scheduled landing time violates the minimum separation headway criteria, the

flight is delayed at the entry node (the runway interface). This procedure models implictly the

fina; airspace corridor leading to the active runway.

Aircraft_Class

Local/Ground
Controller_Class :

Ponit_Class

Link_Class

AprtNtwk_Class

Node_Class

Flight_Class

Controller_Class :

Position Class

Clock_Class

Queue_Class :ShortestPath_Class :

 137

A. State Diagram for Ground Movement

Once an arriving flight obtains landing clearance from the local controller, it begins its landing

roll procedure which is composed of four phases: flaring out, free rolling, braking, and coasting

[Trani et. al, 1993]. After the completion of these four phases, the pilot decides which exit to use

by considering both the current speed and the location of neighboring exits. (A more detailed

landing procedure will be discussed later). Once a flight starts to exit from the runway, it will

contact the ground controller for taxiing clearance instructions.

The aircraft movement on the taxiway system is modeled regulating the vehicle acceleration to

accomplish a smooth and safe movement to the gate. This procedure is executed in an

autonomous fashion as the aircraft moves along the given path, keeping a safe spacing with other

taxiing flights. For example, the leading aircraft movements are modeled by a second-order

feedback control system to be discussed later in this chapter. The state transition diagram for an

arriving flight is depicted in Figure 5.3.

B. State Diagram for Communication

A unique aspect of VTASM is that air traffic controllers are modeled as explicit resources. If the

corresponding controller is busy communicating with another flight when the current flight tries

to contact the controller, the current flight waits for a certain period of time until the controller

state turns to standby.

Here, the waiting process varies depending on the communication system. In this research model,

two types of communication systems are considered: 1) a voice channel system which has been

widely used in aviation for seventy years, and 2) a data link system which is an advanced system

using electronic data transmission so the time required for either sending requests or receiving

command is considered to be negligible.

Regardless of communication system type, the flight’s communication state is initially set to

“readyToCommunication”. Once the flight finds the need to communicate with a controller, then

it tries to send a request, which will be accepted by the controller unless the controller is busy.

If the controller is busy, it happens under the voice channel system that the flight’s state is set to

“waitNextCommunication” and the flight is required to wait for the next contact for a certain

amount of time. The operation of the data link system follows smilar principles. The flight’s state

changes to "waitContactFromController" and the flight waits controller's contact.

138

On Final

Communication

Recieved Landing
 ClearanceCommunication Flare Free

Rolling Braking Coasting Exiting
R/W

Recieved Taxiing
 Clearance

Waiting
 in Line

Area
Holding

(Gate Arrival Queue)

Waiting to
Taxi

Parked
(at gate) Taxiing

No

No

Figure 5.3 State Diagram for an Arriving Flight.

139

If the controller is in a state of "standby" when the flight attempts a contact, the controller’s state

is set to “busy”. Once a flight succeeds in contacting the controller, it communicates exclusively

with the controller until the entire communication phase is completed. After the flight confirms

the command, the flight’s and controller’s state are set to “readyToComm” and “standby”,

respectively.

Depending on the traffic congestion levels on the taxiway system, it is possible for the flight to be

delayed even after communicating with a controller. In this case, the flight communication state is

set to "wait for controller's contact". The state transition diagrams for both communication

systems are depicted graphically in Figures 5.9 and 5.10.

5.2.2.2 Departing Flight

A. State Diagram for Movement

A departing flight stays in the “parked” state until the scheduled departure time arrives. During

the last one or more hours of this state, a departing flight files a flight-plan with the FAA flight

service station (FSS) and loads passengers or freight. Having finished all required routines, the

flight contacts the ground controller for the pushback clearance. The pushback clearance is

frequently given to the flight along with a taxiing clearance by a local controller. However, in

some large-sized and busy airports, the pushback process is controlled by the gate manager. The

pushback is the initial process of departure in which the flight trespasses the apron area from the

gate to the taxiway.

Once the aircraft arrives at the taxiway from the gate with a taxiing clearance, a flight starts

taxiing to the designated runway. (The flight needs to contact the ground controller if it has not

acquired a taxiing clearance.) The taxiing procedure is almost the same, but in reverse, to the

taxiing process for an arrival. The flight autonomously traverses the taxiing path given by a

ground controller. Usually, the (ground) controller does not interrupt a flight taxiing schedule,

unless there is some new expected congestion or conflict. If a controller anticipates congestion, he

or she can give the flight a command to slow, stop, or change the taxiing path. The goal of this

interruption is to reduce the congestion on the taxiway network and, at the same time, maximize

the utilization of the runway.

140

Sending
Request

(t1)
Is controller busy?

Waiting
Command

(t2)

Receiving
Command

(t3)

Sending
Confirm.

(t4)

Received clearance?

Wait
Contact

from
Controller

Ready to
comm.

Put this flight strip to
progressing box.

End Communication

No

Yes

Start Communication

Receiving
Command

(t3)

Sending
Confirm.

(t4)

Yes

No
(i.e., Delayed)

WaitNext
Comm.

(t0)

Figure 5.4 State Diagram for Communication (Voice Channel).

Sending
Request

(t1)

Waiting
Command

(t2)

Receiving
Command

(t3)

Sending
Confirm.

(t4)

Received Clearance?Ready to
comm.

End Communication

Start Communication

Is controller busy? No

Yes

Wait
Contact

from
Controller

Receiving
Command

(t3)

Sending
Confirm.

(t4)

Put this flight strip to
progressing box.

No
(i.e., Delayed)

Yes

Figure 5.5 State Diagram for Communication (Data Link).

141

When the flight approaches the active runway, it is required to reduce its speed and contact the

local controller to obtain takeoff clearance. Note that the previous taxiing clearance is not a

clearance to enter onto the runway. If there is a queue of flights waiting for takeoff, the local

controller gives the takeoff clearance based on a first-come-first-served policy, ensuring a

particular airborne separation by spreading out the aircraft departure intervals [Luffsey, 1990].

The takeoff process is composed of two processes: 1) rolling process in which the flight gains the

speed required for lift-off, and 2) the lift-off process in which the aircraft starts to climb and

clears the far end runway threshold. In the simulation model, the departing flight is traced until it

reaches the runway threshold. The state diagram for a departing flight is illustrated in Figure 5.6.

B. State Diagram for Communication

Basically, the departing flight state diagram for communication is same as that of an arriving

flight.

142

(until initial climb rate
and speed)

(with const. accel.
until flying speed)

yes

No

Parked
(at gate)

Gate Hold

Pushing-
back

Communication
Recievd

Pushback
 Cleance?

Communication

Rolling

Area
Holding
(Holding

Area)

Waiting to
Taxi

Waiting in
Line

(R/W dep.
Queue)

Waiting
on

Runway

CommunicationLiftOff

Call for
 Pushback
Clearance

Call for
Taxi

Clearance

Call for
Take-off

clearance
Received
Take-off

Clearance

Waiting to
Taxi

Received
Taxiing

 Cleance

no
clearance

Taxiing

No

Figure 5.6 State Diagram for a Departing Flight.

143

5.2.2.3 Controller

Depending on who initiates the communication, air traffic controlling processes can be divided

into two classes: 1) passive control in which the controller renders control messages to various

flight requests, and 2) active control in which the controller makes decisions mainly for

controlling the overall traffic flow. In the process of air traffic controlling, flight progress strips

(or flight strips for short) are used to store critical flight information such as flight number,

aircraft type, origin, destination or arriving route, etc. This information is printed in a rectangular

piece of paper, and stored in a plastic holder while the flight is under supervision of an air traffic

controller. In the simulation model, three type of flight strips are modeled: pending, processing

and completed flight strips (See Figure 5.7).

Figure 5.7 Flight Progress Strip.

Initially, the controller’s state starts with “standby” and all flight strips are in the pending box.

Receiving a request from a flight in the passive control mode, the controller places the

corresponding flight strip in the processing state and begins to judge the situation. The

controller’s judgement depends on the flight’s current state. For example, if a flight is at the final

stage in the arrival process and it requests landing clearance, the controller needs to check the

flight’s relative position around other flights, and then make a decision on whether or not to allow

Completed
Flight Strips

Pending
Flight Strips

Processing
Flight Strips

Completed
Flight Strips

Pending
Flight Strips

Processing
Flight Strips

Ground controller's
flight strip organization

Local controller's
flight strip organization

144

this flight to proceed (checking for minimum separation rules between flights). The controller

sends control messages to the flight and waits for confirmation. Once a confirmation is received

from the flight, the controller returns to the "standby" state and waits for another request. The

state transition diagram for the controller is depicted in Figure 5.8.

Standby
Sending
Control

Message

Waiting
for

Confirm

Passive

Control

ActiveControl
Judging

Receiving
Request

Contacting
Flight

Standby

Figure 5.8 State Diagram for a Controller.

When the flight finishes its operation completely, the controller moves the flight strip from the

processing to the completed state. If a flight is still performing some activity but passes the limits

of a controller's custody (control boundary), then the current controller hands the fight strip over

another controller's processing state bin. For instance, if a flight exits the runway taxiing after

completion of the runway landing roll and starts taxiing to gate, then the flight strip moves from

the local controller's processing bin to the ground controller's processing bin.

If any traffic congestion or conflict is expected, controllers can intervene during aircraft taxiing,

issuing control messages to slow-down, speed-up, or even to stop aircraft at the current position.

This active control decision making process is largely based on the controller’s experience,

subject to ATC rules enforced by the FAA. It is difficult to devise a single comprehensive traffic

management rule that is applicable to all ground control cases. For the simulation purpose, it

might be more practical to develop a rule -based decision making process for the active control

process.

A controller also initiates an active control process when the controller is in "standby" and there

is some flight in the state of "wait for controller's contact". In fact a controller realizes the

existence of flights awaiting controller's contact by checking the strips in the processing bin. The

communication process initiated by controller is shown in Figure 5.9.

145

Judging
Request

(t2)

Sending
Command

(t3)

Receiving
Confirm.

(t4)
standby

End Communication

Start Communication

Is this controller standby?

Yes

Any flight waiting
controller's contact in
progressing strips?

Stop

Is it
appropriate time to contact

the selected flight?

Select the flight
having earliest schedule
for controller to contact

Needs Communication

Yes

Yes

No

No

No

Check need for
communication

Figure 5.9 Communication Process Initiated by the Controllers.

5.2.3 Functional Model

The functional model consists of Data Flow Diagrams (DFDs) and defines processes within a

system, describing how output values of the program are derived from the input values. Later,

DFD is used to determine which objects send messages to other objects. DFD is composed of

three components: process, data flows actors, and data stores which are represented in the OMT

methodologies by ellipsess, rectangles and pairs of parallel lines, respectively. The OMT

specifies the following steps for constructing a functional model [Rumbaugh et al., 1991].

Step 1: Identify input and output values.

Step 2: Build data flow diagrams for each input to output transformation.

Step 3: Develop descriptions for each process in the DFDs.

Step 4: Identify constraints between objects.

146

Step5: Specify any optimization criteria, e.g., values to be maximized or minimized.

Figure 5.10 illustrates the input and output values of the simulation model at the highest level of

abtraction. Here, the user interface which is devised for users to control the program progress is

not included. This is consistent with the research nature of this model. The main goal of this

research poject is to develop a comuptational engine that drives the simulation model. There are

two kinds of inputs for the simulation model: 1) scenario data including the flight’s schedule,

aircraft types, gate information, etc., and 2) static data including the airport configuration, an

aircraft model data with aircraft dimensions, performance, etc. All these parameters remain

unchanged throughout the simulation.

Ground
Simulation

Model

User

DataBase

Scenario data
(Flight schedule)

Statistics on
ground operation

(Delays, Work load,..)

Airport Configuration Data,
Aircraft data
(Dimenstions,

performance,..)

Figure 5.10 Input and Output Values for the Simulation Model.

The top-level DFD for the simulation model is shown in Figure 5.11. The flight schedule

information provided by the user serves as the input data for generating the flight objects along

with the aircraft model data. The link and node data pertinent to the airport configuration is used

to generate the airport network graph, which in turn is used to define the flight taxi path

information. The controller objects are created internally, which means that no explicit input data

is involved in generating the controller object. Instead, the objects belonging to the airport graph

class and the flight class are imbeded in the controller objects.

The DFDs are typically shown as layered sets of diagrams because they are generally too large to

be shown on a single piece of paper. The decomposition of DFD continues until the processes

cannot be partitioned any further. Because of their complexity, lower-layered DFDs are omitted

here.

147

User

DataBase

Generate
Network Graph

Object

Generate
Flight Objects

Generate
Controller Objects

Objects in
Memory

Run Simulation

Read
Network Data

Read
Aircraft Model

Data

Read
Flight Schedule

Detailed
Flight Data

Node, Link Dtata

Object
data

Object data

Object data

Object data

Statictics

Static data

Scenario data

Object data

Object data

Figure 5.11 Top-Level of Data Flow Diagram (DFD) for VTASM.

148

5.3 Object-oriented Design (OOD) of Simulation Model

5.3.1 System Design

In system design, the strategic decisions are made at a high level about how the problem will be

solved. The system design includes finding answers to the following questions: 1) what

components libraries, database, networking mechanisms, windowing systems will be used, and

how should they be used; 2) how will tasks communicate; 3) how will tasks be allocated to

processors; 4) what is the target environment for the application; 5) will the application need to

run on multiple platforms, and 6) what programming language will be used to implement the

design [see Derr, 1995].

The main objective of this research is to develop the backbone of a simulation model that

considers decisions in response to questions 1, 2, and 3 which are directly related to the software

implementation. For code portability, the American National Standards Institute (ANSI) C++ is

used to address truly muti-platform compatibility. From the same reason, wxWindows is

preferable windowing libraries to any commercial ones such as MFC (Microsoft Foundation

Classes).

5.3.2 Object Design

Object design is concerned with a full specification of the classes, associations, attributes, and

methods necessary for implementing a solution to the problem. Algorithms and data structures are

also fully defined along with any internal objects needed for the implementation. The following

steps are typical in an object design phase [Rumbaugh et al., 1991 and Derr, 1995].

Step 1: Identify methods for each class which define all the required types of functions.

Step 2: Design algorithms to implement methods by choosing efficient ways of coding

algorithms, selecting appropriate data structures, and defining new internal classes and methods.

Step 3: Optimize access paths to data by adding association classes to minimize access time,

rearranging the processing order of algorithms for efficiency, and saving calculated data to avoid

re-calculations.

Step 4: Design a method for dynamic control by refining the methods for implementing the flow

of events in the dynamic model.

149

Step 5: Adjust class structures to increase inheritance.

Step 6: Design object associations.

Step 7: Represent object data.

Step 8: Hide data and package classes into modules.

For Step 2, standard flow charts are adopted to present the relevant algorithms. Traditionally,

three types of diagrams are used in some applications of OMT. These are the message hierarchy,

events trace, and object interaction diagrams (Derr, 1995) which are not considered in this

research. During the implementation, the design is translated into code using an object-oriented

programming language such as C++.

5.3.2.1 Algorithms

5.3.2.1.1 An Algorithm for Aircraft-following Behavior

As previously reviewed, the generalized vehicle -following model presented in Equation (2.2) can

be used to predict the acceleration (or deceleration) at time t for a following vehicle that considers

the kinematic state of a leading vehicle. The application of vehicle -following equations yields

various types of macroscopic traffic flow models (see Table 2.9).

A well-known car-following model used in transportation studies is described in Equation (5.1),

where the coefficient m and l are 0 and 2, respectively. The macroscopic version of this model is

known as the Greenshields’ model, and is one of the most frequently used models in traffic

engineering studies. Greenshields’ model has significant advantages, namely, that it is simple to

use and has shown good correlation between the model and field data.

2
1

1
1)(

)(
t
n

t
n

t
n

t
ntt

n xx

vv
a

+

+∆+
+ −

−=α , (5.1)

where
tt

na ∆+
+1 : n+1th vehicle’s acceleration at t+∆t

t
nv : n

th vehicle’s speed at t+∆t

t
nx : n

th vehicle’s position at t+∆t
 α = uf, (uf = free flow speed).

Greenshields’ model results in the following equations, establishing relationships among three

fundamental traffic parameters: speed, density and traffic flow.

150

u = uf (1- k / k j)

q = uf k (1- k / k j)

k = k j (1- u / uf),

 where, u: speed (km/hour)
 uf : free flow speed

k : density (vehicles/km)
k j: jam density
q: flow (vehicle/hour).

It should be remarked that the model’s appropriateness in traffic studies does not necessarily

guarantee its goodness in representing aircraft behavior on the airfield. In fact, the parameters in

generalized vehicle-following model should be calibrated with field data to warrant its use in

airport studies. This is an open area of research for now.

If we assume that the Greenshield's model adequately represents the aircraft-following logic, then

another approach for aircraft-following model can be devised. [Van Aerde, 1998] Using the

Greenshields’ basic speed-headway relationship, the method first determines the so called

desired speed of the following aircraft at time t which is the desired to be reached at time t+∆t.

Then the acceleration (or deceleration) is determined considering the current speed and other

exogenous constraints related to the maximum permissible acceleration (or deceleration). The

procedure is outlined below.

Step 1: Determine the following aircraft desired speed to be reached at time t+∆t using

Greenshields’ basic speed-headway relationship.

)1(
t

jfd
tt H

H
vv −=∆+ , (5.2)

where
d

ttv ∆+ : following aircraft’s desired speed at (t+∆t)
 vf

 : free flow speed
Hj : headway at jam density
Ht : headway between the leading vehicle and the following vehicle at

time t.

Step 2: Obtain the following aircraft acceleration for the time interval from t to t+∆t using the

simple kinematic equation.

tvva t
d

tt
tt

n ∆−= ∆+
∆+

+ /)(1 ; if max1 aa tt
n >∆+

+ then max1 aa tt
n =∆+

+ , (5.3)

 if max1 da tt
n <∆+

+ then max1 da tt
n =∆+

+ .

151

Here,
tt

na ∆+
+1 : following aircraft acceleration during the period from t to t+∆t
d

ttv ∆+ : following aircraft desired speed at (t+∆t)

vt : following aircraft’s current speed at time t
∆t: the predefined time interval
amax/dmax: maximum acceleration/deceleration.

In order to limit the kinematic behavior of the aircraft within a reasonable range, a non-uniform

acceleration model is employed. This model assumes that the vehicle’s maximum ability to

accelerate (amax) decreases linearly as a function of speed (see Figure 5.12). Another

consideration for maximum deceleration (dmax) is based on passenger comfort.

Maximum
Acceleration

(a)

k1=amax

vmax

Speed (v)
vcurr

acurr max

acurr max= amax - amax / vmax * vcurr

Figure 5.12 Speed-Acceleration Relationship.

The non-uniform acceleration model is considered to be reasonable because it adopts a thrust

lapse rate with respect to aircraft speed. The same behavior has been adopted to describe the

aircraft kinematic behavior on taxiways and taxilanes except that the values of amax and vmax are

adjusted accordingly to reflect lower speeds on these links. The equation for the non-uniform

acceleration model is expressed as follows.

152

vkk
dt

dv
a 21 −=

= (5.4)

where, k1, k2: constants
v: speed
a: acceleration.

The equations for the speed-time relation can be deduced by separation of variables and

integration of Equation (5.4).

∫∫ =
−

tv

v
dt

vkk

dv

0

 21

)(0

.

tktk eve
k

k

dt

dx
v 22

0
2

1)1(−− +−== . (5.5)

The equation for the distance-time relationship is obtained in analogous way,

 ∫∫

+−= −−

t
tktk

v

v
dteve

k
k

dv

0
0

2

1

22

0

)1(.

)1()1(22

2

1
2

2

1

2

1 tktk e
k
k

e
k

k
t

k
k

x −− −+−−= . (5.6)

By substituting (5.5) into (5.6), we obtain the acceleration-time relationship.

tkevkk
dt

dv
a 2

021)(−−== . (5.7)

The resulting equations are summarized in Table 5.1. (In the case that amax and vmax are given,

Equation (5.5) is of the form kvaa −= max , where, k = amax / vmax.) It should be remarked that the

analytical solutions presented are only applicable to the leading vehicle. This is because these

analytical solutions explain the behavior of a vehicle starting from an initial speed and

accelerating as rapidly as possible in uninterrupted traffic flow. In fact, it is difficult to derive a

closed-form solution to explain the following vehicle behavior. To overcome this shortcoming,

the vehicle-following equations are implemented as a “continuous” simulation model using

standard numerical integration techniques.

153

Table 5.1 Equations for the Non-Uniform Acceleration Model.

Analytical Solution Numerical
Solution not given amax and vmax given amax and vmax

at = 1max −− tkva tkevkk 2
021)(−−)exp()(0max ktvvk −− *1)

Vt = tav tt ∆+ −− 11
tktk eve

k

k
22

0
2

1)1(−− +−))exp(1)((0max0 ktvvv −−−+

xt = t
vv

x tt
t ∆++ −
− 2

1
1)1()1(22

2

1
2

2

1

2

1 tktk e
k

k
e

k

k
t

k

k −− −+−−)/)exp()((0max00 kkttvvtvx −−−+⋅+
 kvv /)(0max −−

*1) k = amax / vmax

In order to compare the models resulting from Equations (5.1) and (5.3), consider the following

simple example. At a taxiway-runway intersection, four aircraft are waiting for advisories from a

local controller. Using the aircraft performance values shown below, we construct the resulting

time-space diagrams according to the vehicle -following models described by Equations (5.1) and

(5.3).

vf = 60 kph
vmax = 120 kph
amax = 2 m/s2
aemergency = -.6g ≈ -6 m/s2
Hj = 5 m.

The time-space diagram for the vehicle -following model described by Equation (5.1) is displayed

in Figure 5.13 (a). This plot corresponds to a classical Greenshields’ model (i.e., m=0 and l=2).

Figure 5.13 (b) illustrates the vehicle -following behavior using Van Aerde’s model. As seen in

the graphs, there is a substantial difference in vehicle behavior. The two methods exhibit a

disagreement in the headway parameter. The second vehicle in the generalized car-following

model, in fact, does not seem to follow the first one. (The same outcome results even if dt is

changed to as small a number as 0.02 sec.) The behavioral patterns observed persist even for

small step sizes (dt = 0.02). Consequently, the modeling approach adopted in this research

follows Equation (5.2) and (5.3). Figure 5.14 illustrates a flowchart showing the necessary steps

to implement the aircraft-following models adopted in VTASM.

154

Figure 5.13 Comparison of Aircraft-following Models.

From Generalized Vehicle-following Model (m =0, l =2)
(dt = 0.2 sec.)

-100.00

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

0 10 20 30 40 50 60 70

Time (seconds)

D
is

ta
n

ce
 (

m
)

1st vehicle

2nd vehicle
3rd vehicle

4th vehicle

From Van Aerde's Model (1998)
(dt = 0.2 sec.)

-100.00

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

0 10 20 30 40 50 60 70

Time (seconds)

D
is

ta
n

ce
 (m

)

1st vehicle
2nd vehicle
3rd vehicle
4th vehicle

155

Aircraft-Following Module

diffDist (H) = LeadingFlight->traveledDistInLink -
 ThisFlight->traveledDistInLink

diffSpeed = LeadingFlight->currSpeed -
 ThisFlight->currSpeed

which control algorithm?

Control algorithm
based on headway

Control algorithm
based on speed

Control algorithm
based on headway-speed

(GM model)

Control algorithm
based on headway-speed

(Van Aerde's Model)

currAccel = k*(diffDist - SD)
SD: Safety distance

currAccel = k*diffSpeed
 currAccel
 = k (diffSpeed / diffDist)
if m = 1 then
 currSpeed
 = prevSpeed/ (1-k (diffSpeed /
 diffDist))
 k = alpha*dt

des'dSpeed
 = max(0, Sf (1 - Hj / diffDist))
currAccel
 = (currSpeed - des'dSpeed)/dt

currAccel > a_max

currAccel = a_max

currAccel = a_min

currAccel < a_min

yes

yes
no

no

Next

Figure 5.14 Flowchart of Aircraft Following Module.

156

5.3.2.1.2 An Algorithm for Conflict Detection and Resolution

A. Algorithm for Conflict Detection.

In the simulation model developed, explicit checks for potential ground collisions are

implemented only for the first aircraft on a taxiway link crossing a check-point upstream of an

intersection. All other following aircraft on the same link are not directly affected by any

potential conflicts since they just follow the leading aircraft according to the aircraft-following

logic explained in the previous section. For the first aircraft, the conflict detection method

examines if there are any opposing aircraft on the adjacent links. One of following three

circumstances could potentially result in a conflict between two aircraft. (See Figure 5.15.)

Case 1) The next taxiway link for aircraft 1 (current aircraft) is open and the next taxiway

link for aircraft 2 (conflicting aircraft) is also open.

Case 2) The next taxiway link for aircraft 1 is blocked by aircraft 2 and the next taxiway link

for aircraft 2 is open.

Case 3) The next taxiway links for both aircraft 1 and 2 are blocked by another aircraft.

case 1)

case 2)

case 3)

aircraft 2aircraft 1

aircraft 1 aircraft 2

aircraft 2

aircraft 1

Figure 5.15 Cases of Potential Ground Conflicts.

157

For Case 2, there is no alternative for aircraft 1 except to wait until aircraft 2 crosses the

intersection. In this case, the current aircraft needs to reduce its speed (or stop if necessary)

allowing the other aircraft to pass the intersection without a substantial speed reduction. If Case 3

is triggered, there is no outlet for both aircraft (grid lock case). If Case 1 is invoked, the arrival

times for two conflicting aircraft (aircraft 1 and 2, here) are estimated. If the expected arrival

times of two aircraft are too close to secure a predefined minimum gap, the resolution routines are

automatically invoked.

Consider the example shown in Figure 5.16. Assume that the current aircraft considered is “F

and that the minimum gap for safe separation at the intersection is set to 15 seconds. Given that

F1’s current speed is 20 mi/hr (about 30 ft/sec) and the normal deceleration to stop is 3 ft/sec2, F1

needs 10 seconds and 150 ft. to stop normally. Let us assume that F1 checks the collision risk at

the point of 150 ft (i.e., 10 seconds in time) upstream from the intersection and that other aircraft,

F2 and F3, are expected to enter the intersection at times, 30 and 15 seconds, respectively. In this

hypothetical situation, unless a speed control adjustment is applied to some aircraft, the current

aircraft, F1, will violate the required minimum separation gap with respect to aircraft F3. In this

instance, a potential collision is detected and the ground conflict resolution logic is initiated at the

same time.

10(sec)

the current operation direction

15(sec)

30(sec)

Start point
of Intersection

Current position
of flight

Expected arrival time to
the common intersction

(ETi)

F2

Legend :

First flight on this link
(Need to check

 for potential collisions) Conflicting flights coming
toward the common

intersection

Second or later flights on this link
(These follow the leading flight

by vehicle-following logic)

F1 F3

Figure 5.16 Concept of Conflict Detection.

158

B. Algorithm for Conflict Resolution

In the ground collision resolution logic, two issues are involved: 1) the flight priority and 2) the

speed control logic. The controller can give a higher priority to certain flights over others with the

intent of improving the overall efficiency of the taxiway (or runway) operations. The higher-

priority flight has a right-of-way whenever it conflicts with another flight having a lower-priority.

In other words, lower-priority flights should slow down or completely stop in order to secure a

minimum gap at the intersection. In this case, the deceleration rate for the lower-priority flight

can be estimated by using the speed-control logic. The following equations are involved in this

speed control logic procedure.

]0 ,)EAT(EAT - gap mmax[minimu EATEAT high
old
low

old
low

new
low −+= .

new
lowonintersecti

low
current
low

EAT
vv

dist2
=

−
⋅

.

new
low

current
low

onintersecti
low EAT

dist2
 vv

⋅−= .

Hence, new
low

current
low

onintersecti
low

low EAT
vv

decel
−= 2new

lowEAT

dist2 ⋅−= . (5.8)

Here
new
lowEAT (

old
lowEAT): the low priority flight's new (old) expected arrival time

 at the intersection,
 EAThigh : the high priority flight’s expected arrival time at the intersection,

current
highv : the low priority flight's present speed,

onintersecti

highv : the low priority flight’s speed at the intersection,
dist : distance from the current position to the intersection,

highdecel : the low priority flight’s deceleration rate.

Figure 5.17 illustrates the basic speed relationships related to the conflict resolution logic. Here,

two areas encompassed by a dotted line and a solid line produce the distance from the current

position to the intersection. In the foregoing example shown in Figure 5.15, if two conflicting

aircraft (F1and F3) have the same priority, the current flight (F1) will have a right-of-way based

on the first-in-first-out (FIFO) rule. The deceleration rate for flight F3 will be determined by

Equation (5.8). The complete logical procedures for collision detection and resolution that are

implemented in the simulation model are Figure 5.18.

159

Figure 5.17 Calculation of the Lower-priority Flight’s Deceleration Rate.

highEAT
old
lowEAT

new
lowEAT

onintersecti
lowv

deceleration rate
(decel)

current
lowv

speed

time

Min. Gap

161

Figure 5.18 Flowchart for the Conflict Detection and Resolution Module

update
confFlight's states*

where,
 ET: Expected arrival time to the cross

>

Yes

|ETthis - ETconf | < min. gap

any conflicting flight?

compare
thisFlightNextEdge (1) vs. confFlightCurrEdge (2)
thisFlightCurrEdge (3) vs. confFlightNextEdge (4)

case 1:
(1) != (2) and (3) != (4)

case 3:
(1) == (2) and (3) == (4)

case 2-2:
(1) != (2) and (3) == (4)

case 2-1:
(1) == (2) and (3) != (4)

thisPriority >=< confPriority

*update confFlight's states
CurrMoveState = delayAtCross
depTimeAtCross = sysTime + ET_this + min Gap

**update thisfFlight's states
currMoveState = delayAtCross
depTimeAtCross = sysTime + ET_conf + min Gap

ETthis <= ETconf

=
(FIFO)

<

update
thisfFlight's states**

update
confFlight's states*

update
thisfFlight's states** No Outlet

NoYes

Yes

No

No

Start

Next

162

5.3.2.1.3 Algorithms for the Takeoff and Landing Procedures

A. Algorithms for the Takeoff Procedure

Once a departing flight reaches the runway and obtains takeoff clearance from the (local)

controller, it initiates the takeoff procedure using its maximum acceleration potential. The takeoff

procedure can be divided into two phases: the takeoff rolling phase and the lift-off phase [Trani,

et al., 1993]. As the aircraft speed reaches lift-off speed, the aircraft becomes airborne and wheels

off from the ground. These two phases of the takeoff procedure are depicted in Figure 5.19. To

simplify its implementation, the lift-off phase is assumed to be characterized by a constant speed

after lift-off. The simulation model keeps track of the departing flight until it crosses the runway

threshold. In general, the time from the lift-off point to the runway threshold is relatively small as

the aircraft travels at a high speed.

There are two important parameters related to the takeoff rolling analysis: the takeoff rolling

distance and the takeoff rolling time. These values are estimated in the simulation model using a

aircraft equation of motion that is integrated forward in time.

Figure 5.19 Takeoff Procedure.

Taxiway

Runway

Exit

Lift-off

Disatance
Air Speed
Altitude

Rolling

Lift-off point

163

The steps for the takeoff roll analysis are illustrated in Figure 5.20. Following traditional

aerodynamic performance estimation calculations, the first step is to convert all atmospheric

conditions to an equivalent international atmospheric status. This is because the performance of

an aircraft engine is affected by the atmosphere around airport. Once the corrected engine thrust

has been estimated in Step 2, the takeoff roll distance is computed.

The takeoff rolling time estimation requires some knowledge of two aircraft aerodynamic

parameters: the drag coefficient (Cd) and the lift coefficient (Cl). Usually, these parameters are not

made public by aircraft manufacturers. Consequently, approximations are needed to estimate

takeoff rolling times via alternative methods. A simple alternative method adopted in this model

is an adaptation of takeoff roll algorithms used in the FAA Integrated Noise Model (INM 6.0).

Step 1: Find density altitude
 and temperature altitude
 for airport

Step 2: Find engine thrust

Step 4-2. Find takeoff roll time
 using takeoff roll distance

Step 4-1: Find takeoff roll time
 using Cd, Cl

Step 3: Find takeoff roll
 distance

Figure 5.20 Steps for the Takeoff Roll Analysis.

Step 1: Find density altitude and temperature altitude. Using ISA (the International Standard

Atmosphere) properties as shown in Table 5.2, the temperature at a given altitude can be

calculated using the standard temperature lapse rate [Lan, 1981]:

T = T0 + λ(h - h0),

 where T: temperature at altitude h (°F),
T0: temperature (°F) and altitude at mean sea level (h0=0 ft),

164

h: airport elevation (ft),
h0: elevation of mean sea level (h0=0 ft),
λ: atmospheric temperature lapse rate (°F/ft).

The pressure and density variations with altitude can be calculated using the following standard

thermodynamic equations:

hh
TT

T 6

00
10875.611 −×−=+== λθ ,

2561.5

1

0

1

00
1 θλδ

λλ
=

+=

==

−−
RR

h
TT

T
P
P

,

2561.4
1

1

0

0

00
θ

θ
δ

ρ
ρσ

λ
=

==×==

−−
R

T
T

T
T

P
P

,

where,
θ : temperature ratio at airport’s current altitude (which is the airport elevation here),
h: airport elevation (ft),
δ : pressure ratio at current aircraft altitude,
P: atmospheric pressure at altitude h (in lbs/ft2 or N/m2),
P0: atmospheric pressure at sea level (in lbs/ft2 or N/m2),
λ: atmospheric temperature lapse rate (in °F/ft or °C/m),
R: thermal gas constant (in ft/°R or m/°K),
T0′: standard sea level temperature, absolute value (in °R or °K),
λ: atmospheric temperature lapse rate (in°F/ft or °C/m),
σ : air density ratio at aircraft’s current altitude (by employing the ratio version of the

ideal gas law),
ρ : air density at altitude h,
ρ0: air density at sea level standard condition.

To illustrate the use of the equations, suppose that a standard altimeter indicates an altitude of an

altitude of 15,000 ft when the ambient air temperature is 35 °F. Let us accordingly calculate the

density altitude and the temperature altitude.

1) Density altitude:

At h = 15,000 ft, the standard temperature is 5.5 °F (=59-0.00356616(15000)). Hence, the

atmosphere is not standard. Since the altimeter is a pressure gauge, it will read the correct

pressure. The correct pressure at that altitude would be 1194 psf (= 2116.2 × (temperature ratio) ^

5.2561 = 2116.2 × ((5.5+459.7) / 518.7) ^ 5.2561)).

165

Density altitude

Temperature altitude

Table 5.2 Conversion Factors and Properties of International Standard Atmosphere.

 SI unit UK unit Conversion Factor
Gravity constant (g0) 9.806 m/sec2 32.17 ft/sec2
Pressure (p0) 1.013×105 N/m2 2116.2 lb/ft2 1 lb/ft2 = 47.880 N/m2(=Pa)
Temperature (T0) 15 °C 59 °F °F = 9/5(°C+32)

ISA

Air density (ρ0) 1.225kg/m3 0.002377 slug/ft3 1 slug = 14.59kg
Absolute temperature (T) °K = °C + 273.15 °R = °F + 459.7
Atmospheric temperature
lapse rate (λ)

 -0.00356616 °F/ft

Thermal gas constant 29.26 m/°K 53.35 ft/°R
Force Newton (kgm/sec2) lb-force 1 lb-force = 4.448 Newton
Weight kg pound 1 pound = 0.453 kg
Length m ft 1 ft = 0.3048 m

etc.

Speed 1 knot = 0.514 m/sec
(Source: Lan and Roskman (1981) at http://www.ex.ac.uk/cimt/dictunit/dictunit.htm#length).

)(slug/ft 001406.0
)7.45935)(35.53(17.32

1194 3=
+

==
gRT

pρ .

 5915.0
002377.0
001406.0

0
===

ρ
ρσ .

88393.010875.61 2561.4/16 ==×−= − σθ dh .

Therefore, 883,16
610875.6

88393.01 =−×
−=dh (ft).

2) Temperature altitude:

 th
T

T 6

0
10875.6195373.0

7.518
7.45935 −×−==+==θ .

Therefore, 730,6
610875.6

95373.01 =
−×

−=th (ft).

2561.4
2561.4

0

6

0
10875.61 σ

ρ
ρθ =

=×−== − h

T
T

166

Step 2: Compute the net thrust per engine for jets. The non-standard atmosphere net thrust per

engine for jets, Fn, is a function of calibrated airspeed v, and density altitude hd, is calculated

using the SAE-AIR-1845 thrust equation developed by Society of Automotive Engineers. The

non-ISA thrust equation accounts for thrust-reducing effects of hot temperatures at high altitudes

[INM User’s Guide, 1996].

 F jet
n(v,hd) = δ(hd)[Ep + Fp⋅v + G1p⋅hd + G2p⋅hd

2 + Hp⋅Ts(hd)],

 where, F jet
n: non-ISA thrust per engine for jets (lb),

δ(hd): ISA pressure ratio at aircraft’s density altitude hd,
v: calibrated airspeed (kt),
hd: the aircraft’s density altitude which is the elevation of the airfield in our

problem (ft),
Ts: ISA temperature at the aircraft’s density altitude (°C),
Ts= (5/9) (59 - 0.003566×hd - 32),
Ep,Fp,G1p,G2p,Hp: the engine dependent regression constants which depend on the

jet’s power setting state (max-takeoff or max-climb) from INM database.

F jet
corrected = F jet

n/δ.

The corrected net thrust per engine for props, Fprop
corrected, is given by

 F prop
net-standrad = 325.87 ηp Pp / Vt ,

 where, Fnet-standard: the standard atmosphere net thrust per engine for props,
ηp: propeller efficiency, which depends on the power-setting state,
 Pp: net power engine (hp) for sea-level standard day,
Vt: true airspeed (kt) = Vc⋅σ -1/2.

F prop
corrected = F prop

net-standrad /δ.

Step 3: Find takeoff roll distance. For the analysis of takeoff rolling distance, the initial and final

values of aircraft altitude are given as the airport elevation. The horizontal distance traveled on

the ground is calculated after initial and final values of speed and thrust are calculated. The

procedure follows SAE-AIR-1845.

The takeoff rolling distance (Sg) is given by,

167

correctednet
fg FN

mg
BS

−⋅
⋅⋅=

2)/(δθ

where , gS : takeoff roll distance (ft),

fB : an airplane specific coefficient for a given flap deflection combination,
m: aircraft mass (lb),
g: gravity acceleration (= 32.2 ft/sec2),
θ : temperature ratio at aircraft altitude,
δ : pressure ratio at aircraft altitude,
N: the number of engines per aircraft,
Fnet-corrected: corrected net thrust per engine (lb) at takeoff rotation.

Typical velocities for the calculation of thrust are,

v1 = 16 knots,

v2 = Cf (mg)1/2,

v2
’
 = v2/(σ)1/2,

where, v1: calibrated speed at the beginning of the takeoff roll maneuver (i.e., at the break
release point) predefined as 8.2 m/sec or 16 knots,

v2 : calibrated speed at the end of the takeoff roll maneuver (i.e., at lift-off point),
 Cf : coefficient which depends on the flap setting (from the INM database),

v2
’: true air speed at the end of the takeoff roll maneuver,

σ : air density ratio at aircraft altitude.

Step 4-1: Find takeoff roll time using Cl and Cd. Forces related to the takeoff roll distance are

[Trani, et al., 1993],

lSCvL 2

2
1 ρ= ,

dSCvD 2

2
1 ρ= ,

) ,(ρvfTE = ,

rollf fLmgF)cos(−= φ ,

where, L = lifting force (lb),
D = drag force (lb),
TE: corrected net tractive effort (lb),
Ff: friction force (lb),
ρ: air density (slugs/ft3),
S: the aircraft reference area (ft2),
Cl: lift coefficient which is dependent on the flap setting (non-dim),
Cd: drag coefficient which is dependent on the flap setting (non-dim),
froll: rolling friction coefficient (non-dim) normally 0.02~0.03,

168

φ : the runway inclination angle with respect to the horizontal (degree).

 The forces in the x (horizontal direction) produce

φφρ sin)cos(),(mgfLmgDvTEma rollx −−−−= .

Hence,

()φφρ sin)cos(),(
1

mgfLmgDvTE
m

a rollx −−−−= .

Assuming a linear tractive effort lapse rate function of speed, the following expression can be

derived,

v
v

TT
TvTE

 −−=
2

21
1)(,

 where, TE: tractive force at speed v,
T1, T2: tractive force at brake release point, and lift-off point,
v2: aircraft speed lift-off point.

Note that runways are near flat by regulation (i.e., less than 2% effective gradients (φ) for general

aviation (GA) runways and 1.5% for transport runways) and thus for the takeoff analysis, the

angle φ can be neglected in most practical applications. Neglecting the effect of grade on the

acceleration of the vehicle, we can estimate the following accelerations for two reference

conditions: 1) at brake release (ax|br), and 2) at the lift-off point (ax|lo).

−−−

 −−= rollrollldx mgffCCSvv
v

TT
T

m
a)(

2
11 2

2

21
1 ρ ,

()rollbrx mgfT
m

a −= 1|
1

,

 −−−= rollrollldlox mgffCCSvT

m
a)(

2
11 2

22| ρ .

If we further assume that the acceleration varies inversely with the speed range from the brake

release point to the lift-off point, the simplified acceleration at speed v can be evaluated as

follows:

169

v
v

aa
a

dt
dv

a loxbrx
brxx

 −
−=

=

2

||
|

()
()

v
v

mgffCCSv
m

TT
mmgfT

m

rollrolllD

roll

 −−+−

−−=
2

2
221

1

)(
2
111

1
ρ

vkk 21 −= ,

where, ()rollmgfT
m

k −= 11
1

,

()

 −−+−

=
2

2
221

1

)(
2
111

v

mgffCCSv
m

TT
mk

rollrollldρ
.

By integrating once from the brake release speed (v1) to the lift-off speed (v2), the takeoff roll

time, troll, is estimated as

−
−−=

121

221

2

1
vkk
vkk

k
troll .

Step 4-2: Find takeoff roll time without using Cl and Cd. Here, we introduce an alternative

method to approximate takeoff roll distances without any information on Cl and Cd. The

estimation is based on the assumption of a non-uniform acceleration model discussed earlier in

this section. The resulting equations for the acceleration, speed and distance-time relationships

are summarized in Table 2.9, and are depicted graphically in Figure 5.21. Here, Equations (5.9)-

(5.11) are used again.

vkk
dt

dv
a 21 −== (5.9)

tktk eve
k

k

dt

dx
v 22

0
2

1)1(−− +−== . (5.10)

)1()1(22

2

1
2

2

1

2

1 tktk e
k
v

e
k

k
t

k
k

x −− −+−−= . (5.11)

170

By substitution of (5.10) into (5.11), we obtain

tkevkk
dt

dv
a 2

021)(−−== . (5.12)

The next step is to find parameters k1 and k2 which characterize the Equations (5.10), (5.11) and

(5.12). Using the SAE-AIR-1845 model, assuming the speed at the beginning of the takeoff roll,

v1 (= vbr), to be 8.2 m/sec or 16 knots, and letting

 v2 (= vlo) : speed at the point of lift-off,

 a1 (= abr) : the acceleration at the beginning of takeoff roll,

 a2 : the acceleration at the beginning of lift-off,

the equation for the time to reach a certain speed v2 is derived from (5.10) as

−
−−=

121

221

2

2
ln

1
vkk
vkk

k
t . (5.13)

By substitution of (5.13) into (5.11), we obtain

−+

−−

−
−

−=

−
−

−
−

121

221

121

221 ln

2

2

1
ln

2

2

1

121

221

22

1 11ln
1 vkk

vkk

vkk

vkk

e
k
v

e
k
k

vkk
vkk

kk
k

x . (5.14)

Since the conditions at the beginning of takeoff roll are known, v = v1, a = a1 = abr, from (5.9), k1

can be expressed as k2 according to

1211
vkak += . (5.15)

Substituting (5.15) into (5.11), the equation for the distance as a function of k2 can be obtained as

.11

)(
)(

ln
1

12121

22121

12121

22121

)(

)(
ln

2

2

1)(

)(
ln

2

2

121

12121

22121

22

121

−+

−+−

−+
−+

−+=

−+
−+

−+
−+

vkvka

vkvka

vkvka

vkvka

e
k

v
e

k

vka

vkvka
vkvka

kk
vka

x

 (5.16)

171

Figure 5.21 Non-Uniform Acceleration Model [Drew, 1968].

D
is

ta
nc

e
(x

)

Time (t)

S
pe

ed
 (

v)

Time (t)

A
cc

el
er

at
io

n
(a

=
d

v
/d

t)

Time (t)

A
cc

el
er

at
io

n
(a

)

Speed (v)

vkk
dt

dv
a 21 −==

k1

k1/k2
v1

1

v0

k1-k2v1

k1 / k2

v1

)1()1(22

2

1
2

2

1

2

1 tktk e
k

v
e

k

k
t

k

k
x −− −+−−=

tktk eve
k

k

dt

dx
v 22

1
2

1)1(−− +−==

tkevkk
dt

dv
a 2)(121

−−==

a2

a1

v2

a1

a2

t2

t2

t2

v2

x2

172

Given v1, v2, a1 and the takeoff roll distance, x (=Sg), there is only one unknown variable, k2 in

Equation (5.16). Because k2 cannot be readily represented in a closed-form, numerical methods

can be used to obtain k2. Once k2 is available, k1 is calculated using (5.16).

One important factor that should not be overlooked in the takeoff roll analysis is that two

variables, takeoff roll distance and time, are rather stochastic than deterministic. In other words,

these variables may also be explained with certain types of statistical distribution models

extracted from observed data.

In general, the stochastic behavior observed during the takeoff roll has been addressed by federal

regulation authorities by imposing a correction factor to distance calculated via analytical

methods. This correction factor increases the runway length by 15% to account for pilot

deviations in the takeoff roll. This criteria does not apply in this model since VTASM assumes

the runway length to be sufficient for landing and departing operations.

B. Algorithms for the Landing Procedure

The landing procedure can be divided into four phases: flare, free-rolling, braking, and coasting

phases. (See Figure 5.22). The flare segment begins at the moment when the aircraft crosses the

runway threshold and ends when the main landing gear touches down on the runway. Pilots tend

to maintain a conservative margin over the stalling speed (vstall), which can be calculated by the

following equation. The initial speed of this phase, vfl, is empirically known to be about 1.25

times vstall.

Stall speed (vstall)
wl AC

mg

max

2
ρ

= , (5.17)

where m: the aircraft mass (kg)

g: gravity acceleration
ρ : standard atmosphere air density (kg/m3)
Cl max: maximum landing lift coefficient
Aw: the aircraft wing area (m2).

The flare distance (sair) is measured from the runway threshold to the touchdown point and is

expressed mathematically as [Trani et al., 1993],

sair = dl + dc + ∆RL (5.18)

 dl =
γ
thh

 (5.19)

173

dc =)1(2

2

−
⋅

fl

fl

ng

v γ
 (5.20)

∆RL =∆L⋅RL, (5.21)

where, sair: flare distance
dl: linear descending distance from the runway threshold to the touchdown

aiming point
dc: circular-arc flare maneuver distance for transiting to a touchdown attitude

with a minimum sink rate and
∆RL: the correction distance that is influenced by the runway length.

Also,
vfl: threshold crossing airspeed (m/sec or ft/sec)
vtd : touchdown speed (m/sec or ft/sec)
sair: touchdown distance (m or ft)
hth: threshold crossing height (m or ft)
γ : tangent value of the descent flight path angle (degree),
g: acceleration of gravity (m/sec2 or ft/sec2)
nfl: the flare load factor
∆L: correction distance factor (meter for every 100 m (328 ft) of runway length,

valid for 2100m < RL < 2800m)
RL: runway length
tair: duration time in flare (m or ft)

vstall
wACL

mg

max

2
ρ

=

m: the aircraft mass
g: gravity acceleration
ρ : the standard atmosphere air density
CLmax: maximum landing lift coefficient
Aw: the aircraft wing area.

The free-rolling phase starts at the point where the main gear touches down and ends when thrust-

reverse and/or braking are applied. It has been observed that the duration of the free-rolling phase

is about 1-3 seconds with an average deceleration rate of 0.70 m/sec2 [Trani et al., 1993].

The braking phase is initiated from the ending point of the free-rolling phase and completes at the

moment when the aircraft decelerates to the so-called “decision speed” (about 35 m/s for heavy

aircraft), when the pilots decide which exit will be used. According to the aircraft type, different

deceleration rates are applied in the braking phase.

Once the aircraft passes the decision point, it begins to coast to the runway exit. During the

coasting phase, the pilot controls the speed based on the current speed and distance between the

current point and the selected exit. To capture this dynamic behavior, a second-order feedback

control system is used in the model implementation.

The speed-distance profile among landing phases is sketched in Figure 5.23. The equations for

each phase are summarized in Table 5.3 along with some statistical parameters which are

174

observed to fit a normal distribution model quite well. Table 5.4 shows the landing the roll

statistics for various aircraft types observed at various airports [Kim et al., 1996].

FL : Flare
FR: Free-rolling
BR: Braking
CO: Coasting

Taxiway

Runway

Exit

FL

Disatance
Air Speed
Altitude

FR

BR

CO

Touchdown Point

Exit point

Figure 5.22 Four Phases in the Landing Procedure.

Distance

Speed

Crossing
Threshold
(Speed: v fl)

s air

(Flare)

sfr1

(Free RollFast)

sbr

(Braking)

s co

(Coasting)

Decision Point
(Speed: v co
 27 mps for Wt<41,000 lb
 35 mps for Wt>41,000 lb)

Exiting
(Speed: v ex= f(exit type))

Initial Brake
(Speed: v br)

Touchdown
Speed: v td

Figure 5.23 Speed-Distance Relationship for the Landing Procedure.

178

Table 5.3 Equations describing the Aircraft Landing Phases.

Phase Initial Speed Ending Speed Distance Duration Acceleration Empirical values

Flare 1)
 vfl vtd

RLL

ng

v

h
s

fl

fl

th
fl

⋅∆+

−
⋅

+

=

)1(2

2 γ

γ

 2/)(tdfl

fl
fl vv

s
t

+
=

fl

fltd
fl t

vv
a

)(−
=

γ ≅ 2.5~3 degree (or ~N(2.75, 0.082))
hth ≅ 15.2 m (= 50ft) (or ~N(15.2, 32))
nfl = 1.1~1.3
∆L ≅ +25m (=82 ft)/100m runway length
vfl ≅ 0.95 vap ≅ 1.25 vstall

 (or ~) 06.0 ,(N 2
flfl vv ⋅)

vtd ≅ 0.95 vfl (or vfl – 3.2)

Free Rolling 2) vtd vbr = vtd – afrtfr
2

2
frfr

frtdfr

ta
tvs −= tfr af

tfr = 2~3 seconds
afr ≅ 0.7 m/sec2

Braking 3)
 vbr vco= vbr – abrtbr

2

2
brbr

brbrbr
ta

tvs −= tbr abr

tbr = time to decelerate to the speed of
 27mps for wt < 41000 lb
 35mps for wt > 41000 lb
abr = f(aircraft type)5)
 B727~N(2.19, 0.4162)
 B737~N(2.25, 0.4712)
 B757~N(2.01, 0.4782)
 DC-9~N(2.03, 0.4142)
 MD-80~N(2.05, 0.3872)

Coasting 4)

vco vex
sco

(by 2nd-order feedback
control)

tco

(by 2nd-order feedback
control)

aco
vex = f(exit type)

1) vfl: threshold crossing airspeed (m/s or ft/s)
vtd : touchdown speed (m/s or ft/s)
sair: touchdown distance (m or ft)
hth: threshold crossing height (m or ft)
γ : tangent value of the descent flight path angle (degree)
g: acceleration of gravity (m/s2 or ft/s2)
nfl: the flare load factor (DIM)

179

δ(RL): correction distance (meter for every 100 m (328 ft) of runway length, valid for 2100m < RL < 2800m).
tair: Duration time in flaring out (m or ft)

vstall
wACL

mg

max

2
ρ

=

m: the aircraft mass
g: gravity acceleration
ρ : air density
CLmax: maximum landing lift coefficient
Aw: the aircraft wing area

2) vbr: Initial braking speed (m/s or ft/s)
afr: Average free-rolling deceleration (m/s2 or ft/s2)
tfr: Free-rolling time (seconds)

3) vco: Initial coasting speed (m/s or ft/s)
abr: Average braking deceleration (m/sec2 or ft/s2)
tbr: Braking time (seconds)

4) vex: Exit speed (m/sec or ft/s)
5) Kim, et al., 1996.

180

Table 5.4 Landing-roll Statistics [Kim et al., 1996].

Flaring speed
(m/s)

Touchdown distance
(m)

Braking deceleration
(m/s2) Airport

(Runway)
Runway
Length

Grade1)
(%)

Aircraft
Type

No. of
Obs.

Mean S.D. Mean S.D. Mean S.D.
B-727 72 66.62 3.03 455.0 132.1 2.26 0.382
B-737 36 65.77 3.99 399.2 80.0 2.30 0.422
B-757 26 65.30 5.78 424.9 97.7 2.14 0.675
DC-9 36 65.02 3.54 434.9 105.8 2.08 0.397

DCA
(R36)

2094 m
(6869 ft)

0

MD-80 51 68.29 4.51 434.3 94.1 2.14 0.428
B-727 13 68.18 3.16 546.9 169.8 1.83 0.511
B-737 34 66.08 3.57 400.0 77.4 2.21 0.573
B-757 4 61.55 2.11 489.6 139.7 1.62 0.231
DC-9 8 67.34 3.46 425.2 79.6 2.08 0.56

CLT
(R23)

2286 m
(7500 ft)

-0.5

MD-80 7 66.60 2.55 550.6 188.3 1.81 0.381
B-727 13 70.87 3.87 621.7 164.2 2.11 0.423
B-737 12 68.74 4.34 603.3 75.9 2.08 0.497
B-757 10 65.28 5.29 699.9 115.4 1.79 0.337
DC-9 13 68.85 3.9 594.0 137.9 1.83 0.341

ATL
(R8L)

2742 m
(9000 ft)

-0.3

MD-80 28 68.57 4.97 569.7 124.6 1.90 0.302

1) Deceleration rate decreases by 0.01 m/sec2 (0.033 ft/sec2) per 0.1% of grade change on runway.

181

5.3.2.2 Data Structures

Data structures play an important role in designing an efficient computer code because they

govern the organization of the model information, and thereby constitute the basis for good

algorithms. Two types of data structures are mainly used in implementing our simulation model:

lists and queues.

A “list” is a finite, ordered sequence of data items known as elements (“ordered” in the definition

means that each element has a position in the list). There are two implementations of a list: a

static array-based list, and a dynamic linked list using pointers. In an array-based list, the size of

the array should be fixed before the array is created. On the other hand, the linked list is dynamic

in the sense that it allocates memory for new list elements as needed. There are advantages in the

dynamic linked list such as added flexibility in programming. However, the linked list needs extra

space to keep a pointer that indicates the next element of the list (in singly-linked list case). In

terms of computational cost, the array-based list is faster in accessing the ith element and

appending an element to the tail of the array. Operations to remove and insert an element are

relatively expensive. As a rule of thumb, linked lists are a better choice when working with

vectors whose sizes are unknown or which vary widely. Array-based lists are generally more

space efficient when the user knows in advance the size of the list [Shaffer, 1997]. Computational

efficiencies of the two lists are compared in Table 5.5.

Table 5.5 Comparison of List Implementations.

 Array-based list Linked list

advantage no wasted space for an
individual element

Need space for the objects
actually on the list

access ith element Θ (1) a) Θ (i)

append an element Θ (1) Θ (1)
insert ith element Θ (i) Θ (1)

cost

remove ith element Θ (i) Θ (1)
a) Θ (big-theta) indicates that the upper-bound, O(big-oh), and the lower bound, Ω (big-omega),

are the same.

The array-based list is used in the simulation model to store information about nodes and links.

This is efficient because the numbers of nodes and links at an airport are known in advance and

can be assumed to remain unchanged during the period of simulation. This is similar to the

database for the aircraft characteristics because the number of aircraft types is also limited and

182

fixed. Figures 5.29 and 5.30 illustrate the applications of array-based lists to the node data and

aircraft data, respectively.

Index
int Id Point Pt (x,y)

…
Flight*
FlightInNode_p

0 9981 (34.12,67.212) …
1
2
…

Number of
Nodes

Figure 5.24 Array-based List for Node Data.

Index Char* Id_str Float WingSpan_ft
…

Float
MaxAccel_m

0 “B747-100” 110.45 … 0.5
1
2

…
Number of
Acft_Model

Figure 5.25 Array-based List for Aircraft Model Data.

In contrast, the number of flights on the flight schedule dynamically changes according to the

day, or time of day. The taxiing path between the gate and the runway for a flight is also flexible

in the sense that the number of links defining taxiing paths is not fixed. In these cases, a linked

list, particularly a singly-linked list, is adopted to maintain the information regarding the flight

schedules and taxiing paths. Figures 5.31 and 5.32 show describe the implementation of linked

lists for these two variable size vectors.

char* Id_str AA352 US987 NW312 UA490 UA093
… … … … … …
Flight* NextFlightInList_p
Flight*
LeadingFlight_p

Flight* FollowingFlight_p
Edge* Taxipath

Figure 5.26 Singly-Linked List for Edge Data.

Node Object

Acft_Model Object

183

Edge*
EdgeEle

TaxiEdge*
NextTaxiEdge_p

 Edge*
EdgeEle

TaxiEdge*
NextTaxiEdge_p

 Edge*
EdgeEle

TaxiEdge*
NextTaxiEdge_p

 NULL

Figure 5.27 Singly-Linked List for Taxiing Path Data.

The adjacency list, which is commonly applied in graph theory, is used for representing the

networks within the simulation model. (For more details, see Figure 2.22.) In practice, an array of

a singly-linked list having |n| items is applied to the adjacency list, where |n| is the number of

nodes. A sample network and an array for a linked list are shown in Figure 5.28.

Node

fNode

Tnode

…
Next
E_p

fNode

tNode

…

Next
E_p

fNode

tNode

…

Next
E_p

0 0 1 0 2 0 3
1 1 2 1 4
2 2 5
3 3 4
4 4 5
5

Figure 5.28 Sample Network and Array of Singly-Linked List for the Sample Network.

0 5

43

21

4

3

2

7

3

3

2

2

Edge Edge Edge

TaxiEdge Obj. TaxiEdge Obj. TaxiEdge Obj.

184

A FIFO queue (See Figure 3. 8) is a form of a restricted list, in which an element may only be

entered at the back and removed from the front of the list. The service line at a bank is a typical

example of a queuing system. The aircraft in a link can be also described by a queuing system.

An aircraft entering into a new taxiway link is stored at the end of the queue.

As reviewed in the previous chapter (see Table 3.6), the sorted queue and the (output-restricted)

double-ended queue are used in the implementation of the static shortest path algorithm and the

time-dependent shortest path algorithm respectively. Table 5.6 summarizes the resulting data

structures used in the implementation of the simulation model.

Table 5.6 Summary of Data Structures Used in the Simulation Model.

Data structure type Data

array-based list Node,
Link List

linked list Flight schedule,
Taxiing path

 Array of linked list Airport Network
sorted queue Dijkstra algorithm
FIFO queue Aircraft on the link Queue
output-restricted
double-ended queue

Time-dependent
shortest path algorithm

5.3.2.3 Flowcharts

The last step in the object model in OMT is to write pseudo-codes for algorithms or other related

methods. Instead of pseudo codes, our approach is to use flowcharts showing the details of the

coding process graphically. Figure 5.29 depicts the procedural flows for the complete simulation

model.

The initialization procedure is illustrated in Figure 5.30. Basic objects such as the network graph,

flights and controllers are generated and initialized after all related data is read from the input file.

(See Appendix A for the list of input data.) A controller object calculates the shortest path

between all nodes defining the airport network. The allocation of flights to each controller is also

done during the initialization procedure. Some of the important variables associated with flights

and air traffic controllers and their initial states are summarized in Table 5.7. Communication and

movements are two types of activities involved in the aircraft flight behavior. The efficient

organization of these activities centers around two event times named “nextCommEventTime”

185

and “nextMoveEventTime” which are created inside the flight objects (more detailed member

variables and functions are included in Appendix C).

The main part of the simulation model is executed in such a way that the states of all entities i.e.,

flights, ground controller(s), local controller(s), in the system are updated every time interval until

the simulation time ends. Two types of loops are involved in this process: an outer loop where the

system clock proceeds by a time increment (∆t) until the simulation ends, and an inner loop

where the states of all flights in the system are checked and updated successively.

Table 5.7 The Initial States of the Simulation Model Variables.

object variable initial state
currState standby controller
nextEventTime simulationDuration
currCommState readyToCommunicate
nextCommEventTime simulationDuration
currMoveState parking/onFinal*
nextMoveEventTime scheduled time
position gate/runway threshold
speed 0.0/final approach speed
acceleration 0.0
needToComm false
collisionChecked false

flight

permission undecided
 * State for arrival/departure.

Inside the inner loop, a check is made for each flight’s time clock to determine the movement.

ock is initially set to the time given in the flight schedule. When the system

clock advances and passes the flight’s scheduled time, the flight executes the two major activities

related to communication and movement within the outer loop. Otherwise, all the processes

inside the outer loop are just skipped.

Unlike the flight movement which is checked continuously, the communication activities are

treated as discrete events. This is because a communication event is scheduled only when it is

necessary. Communication states in both controller and flight objects change in a discrete

fashion. The module named “checkNeedToComm” and illustrated in Figure 5.31 checks if a

flight requires communication with either the local or the ground controller. If a flight attempts to

communicate, two state variables, “needToComm” and “nextCommEventTime” are set to “true”

and the current system time, respectively. The communication module (shown in Figure 5.3)

initiates the communication events and changes the flight movement state if it is permitted to

move.

186

In Figure 5.33, a communication process is depicted from the flight’s point of view. Here, the

state variable called “nextCommEventTime” is updated according to the time duration required

for the current communication activity. On the other hand, the controller’s communication states

change according to the corresponding flight’s current communication state as shown in Figure

5.34.

It should be noticed that a function called “judge” mimics the controller’s decision process on

whether a flight request is accepted. This function changes the controller’s state via

“judgingCommand”. If the controller decision is to accept a flight to move and end

communication, the flight’s “nextCommEventTime” is set to the simulation duration so that the

flight can jump the communication procedure until it needs to communicate again. Usually, the

taxiing clearances from the local controller are provided with the taxiing route from the runway

exit to the gate.

The states of flight movement such as speed, acceleration, position, etc., are continuously

evaluated after a flight enters the system. The main concern in the movement logic is to decide

how much the flight would accelerate (or decelerate) in the next time interval. Unless a flight is

either stopped, parked at a gate, or waiting on a runway, the flight’s dynamic behavior is decided

by its own control logic depending on its current movement state. For example, if an arriving

flight is in the coasting phase on the runway, its acceleration for the next time interval is

determined by the second-order feedback control system discussed in the previous section.

Acceleration (or deceleration) during taxiing is a little more complicated because it might depend

on a leading aircraft, if any, on potential collisions, and on the remaining distance to the

destination for taxiing, etc. The detailed processes to decide the acceleration for a taxiing flight

are summarized in Figure 5.36, and the flowchart for the conflict detection and resolution

algorithm is previously shown in Figure 5.18.

The last procedure inside the inner loop is to update the flight kinematic states to reflect the

current changes according to the new acceleration value selected. This is done by the “update”

module shown in Figure 5.37. In the case that a flight enters a new link, the flight information on

its leading and following flight as well as the link information are updated by “enqueue” and

Once the complete procedure for a flight has been executed, a check is made to decide if this

flight is the last one on the list. If it is the last one, the inner loop is completed, and both ground

and local controllers start to check if there is any flight awaiting controller's contact by looking at

their flight progress strips. If there is any flight and the controller are both in standby states,

contact is made by the controller. (See Figure 5.9 for details.) Once all controllers finish an

187

appropriate action, the simulation time advances by a time increment to commence another

iteration of the outer loop (see Figure 5.29).

sysTime = 0

Flight = 1st Flight in List

Yes

call checkNeedToCommunicate

needToComm == True &&
sysTime == nextCommEventTime ?

Last Flight
in the flight list?

sysTime == simDuration?

Yes

No Flight = nextFlight

sysTime = sysTime + dt

Yes

End

No

Communication

Movement

Yes

No

10

8

sysTime == nextMoveEventTime ?

Initialization
// read data
//generate network grap, controller, flights

Inner Loop

Outer Loop

No

Does GC need to
contact any flight?

Does LC need to
contact any flight?

No

No

Contact the Flight

Contact the Flight

Yes

Yes

Figure 5.29 Flowchart for the Overall Simulation Model Process.

188

Figure 5.30 Flowchart for the Initialization Step.

a

read Node Data

generate
Network Graph

read Link Data read Aircraft Model Dataread Flight Plan Data

generate and initialize
Controllers

(local/ground)

calculate
 - Initial travel times
 - Initial minimum path

allocate
 - the control area to each controller

allocate
 - flights to controllers by the current
 poistion

generate and initialize
Flights

Next

189

Figure 5.31 Flowchart for Performing Communication Checks.

Departure

currMoveState

currMoveType

onFinal

Exting R/W

Wating on R/W

Parking

waitingToTaxi

areaHolding

waitingToTaxi

Operation Type?

permission != clearToTaxi
&& nextCommEvevtTime ==

simulationDuration ?

needToComm = True
nextCommEventTime

= sysTime

Arrival

next

permission != clearToTakeoff
&& nextCommEvevtTime ==

simulationDuration ?

permission != clearToTaxi
&& nextCommEvevtTime ==

simulationDuration ?

permission != clearToLand
&& nextCommEvevtTime ==

simulationDuration ?

8

8

8

8

No

No

No

No

Yes

Yes

Yes

Yes

needToComm = False

Start

190

Figure 5.32 Flowchart for the Communication Logic .

*Parameters
 - currMoveState,
 - currCommState,
 - currPosition
 - finalDestination(Dep. Queue)

Departure

currMoveState

currMoveType

onFinal

Exting R/W

Wating on R/W

Parking

waitingToTaxi

areaHolding

waitingToTaxi

Operation Type?

permission == clearToTaxi? Yes

call makeTaxiEgdeList
currMoveState = TaxingToDepartureQueue
update currtaxiEgde_p
enQueue(currtaxiEgde_p)

call
communicateLocalController*

call
communicateLocalController*

call
communicateGroundController*

call
communicateGroundController*

call
communicateGroundController*

call
communicateGroundController*

permission == clearToTaxi? Yes currMoveState = TaxingToDepartureQueue

permission == clearToTakeoff? Yes
currMoveState = rolling
update currRunwayEgde_p //taxingPath
enQueue(currRunwayEgde_p)

permission == clearToLand? Yes
currMoveState = flaringOut
update currRunwayEgde_p
enQueue(currRunwayEgde_p)

permission == clearToTaxi? Yes

call makeTaxiEgdeList
currMoveState = TaxingToGate
update currtaxiEgde_p //taxing Path
enQueue(currtaxiEgde_p)

permission == clearToTaxi? Yes currMoveState = TaxingToGate

No 8

No 8

No 8

No 8

No 8

No 8

Arrival

8

next

Start

191

Figure 5.33 Flowchart for the Communication Module from the Flight’s Point of View.

Communicate Module for Flight

sendingComfirmationreceivingCommandwaitingCommand

currFlightCommState =
 readyToCommunicate

nextCommtEventTime =
 simulationDuration

readyToCommunicate

currControllerCommState
== standby ?No

sendingRequest

currFlightCommState =
 waitingCommand

nextCommEventTime=
 sysTime +
 sendingCommandTime

currFlightCommState =
 receivingCommand

nextCommEventTime=
 sysTime +
 sendingCommandTime

currFlightCommState =
 sendingConfirmation

nextCommEventTime=
 sysTime +
 sendingConfirmTime

currFlightCommState =
 sendingRequest

nextCommEventTime=
 sysTime +
 sendingRequestTime

currFlightCommState =
 needToCommunicate

nextCommEventTime=
 sysTime +
 waitingToContactTime

Yes

this->currCommState

call communicate
for controller

192

Figure 5.34 Flowchart for the Communication Logic from the Controller’s Point of View.

readyToCommunicatesendingComfirmationreceivingCommandsendingRequest waitingCommand

currState =
 judgingCommand

decision = call judge

nextEventTime=
 sysTime +
 judgingCommandTime

currCommState =
 sendingCommand

nextEventTime=
 sysTime +
 sendingCommandTime

currCommState =
 receivingConfirmation

nextEventTime=
 sysTime +
 receivingConfirmTime

currState =
 receivingRequest

assign currFlightComm_p

nextEventTime=
 sysTime +
 receivingRequestTime

Communicate Module for Controller

currFlightCommState

nextCommtEventTime =
 sysTime +
 waitingToContactTime

decision == clearToTaxi* * For the local controller,
 clearTotakeoff or clearToLand

currFlight's permission =
 clearTotaxi*

nextCommtEventTime =
 SimulationDuration

currCommState =
 stanby

nextEventTime =
 simulationDuration

call communicate
for controller

Yes No

193

Figure 5.35 Flowchart for the Movement Logic.

Departure

Arrival

currMoveState

currMoveType

taxingToDQ

liftingOff

Rolling

YescurrentPosition == destination? currMoveState = waitingOnRunway

No call taxiToDest //calc. acceleration

YescurrentSpeed == liftoffSpeed? currMoveState = liftingOff

No call roll //calc. acceleration

YescurrentPosition == runway end?
currMoveState = endOfDeparture
call statistics
call delete(thisFlight)

No call roll //calc. acceleration

call move
//update dynamic states

10

10

10

flaringOut

taxingToGate

freeRolling

Yesduration >= flaringOut time? currMoveState = freeRolling

No call flaringOutt //calc. acceleration

Yesduration >= freeRolling time? currMoveState = braking

No call freeRoll //calc. acceleration

YescurrentPosition == runway end? currMoveState = parking
call statistics

No call taxiToDest //calc. acceleration

10

10

10

braking YescurrentSpeed == decisionSpeed? currMoveState = coasting

No call brake //calc. acceleration

10

coasting YesdistToExit == 0.0 ?
currMoveState = exitingRunway
orgNode = begin of runwy exit
desNode = end of runwy exit

No call findDistToExit
call coast(distToExit) //calc. accel.

10

exitingRunway YescurrentPosition ==
end of runwy exit?

currMoveState = taxingToGate
orgNode = end of runwy exit
desNode = gate

No call taxiToDest //calc. acceleration

10

Operation Type?

next

10

delayedAtCross YessysTime > depTimeAtCross ? currMoveState = taxingToGate

No call taxiToDest //calc. acceleration

10

delayedAtCross YessysTime > depTimeAtCross ? currMoveState = taxingToDQ

No call taxiToDest //calc. acceleration

10

Start

others 10

others 10

194

this == leadingFlightInEdge ?

call
Car-following Module

taxiToDest

No Yes

Move

computeNextTaxiAccel

restTimeToCross < 1.5* normStopDist

collisionChecked == notYet

call collisionDetectResolve

currentMoveState == delayedAtCross

call nextAccel_2

StoprestDistTo

spdspd
a

⋅

−
=

2

2
1

2
2

call nextAccel_1

dt

currSpdnormSpd
a

−=

call nextAccel_3

currSpeed

StoprestDistTo
a

⋅= 2

restTimeTotaxiDestination <
normStopDist

NoYes

Yes

Yes

(i.e., This link is the last
one before the taxiing

destination)

No

Figure 5.36 Flowchart for the Computation of the Next Acceleration for Taxiing.

195

Figure 5.37 Flowchart for Updating Flight’s Dynamic States.

traveledDistInLink >= currEdge_p.distance

Yes
(Enter the new link)

Next

No

Update Flight's dynamic state

prevSpeed = currSpeed
currSpeed = currSpeed + currAccel * dt
traveledDistInLink +=
 (prevSpeed + currSpeed)/2 *dt
traveledDistTotal += traveledDist
update
 currPosition_p-> traveledDistInLink,
 currPosition_p-> pt.x,
 currPosition_p-> pt.y.

this->deQueue(currTaxiEdge_p)
this->enQueue(nextTaxiEdge_p)

traveledDistInLink - = currEdge_p.distance
update
 currPosition_p-> traveledDistInLink,
 currPosition_p-> pt.x,
 currPosition_p-> pt.y.
 currNodeIndex,
 currTaxiEdge_p.

196

5.3.2.4 Detailed Object Design Model

Once the algorithmic steps have been implemented using appropriate data structures, the model

development cycle continues with a refinement of classes according to the following guidelines.

• Adjust class structures to increase inheritance: In order to increase inheritance, it is necessary

to abstract out any behavior that is common to a group of classes. In our case, such behaviors

as “finding shortest path” and “making taxiing path” are common to both the ground

controller and the local controller classes. These methods are placed in the super class,

controller. While the inheritance happens to be an “is-a” relationship, the aggregation is said

-a” rela tionship in the representation of classes. In the simulation model, many

aggregation relationships are found. For example, a node class has a point class which

contains information on the coordinates of a point, and an edge class which represents a

taxiway link has two node classes corresponding to the from node and the to node. A graph

class which contains the airport network information has an edge list consisting of a special

number of edges.

• Design associations: Unlike inheritance or aggregation, the association between classes is

often referred to as a “use-a” relationship. For example, the controller class uses (one or

more) queue classes when a controller generates the shortest paths for all O-D pairs.

The attributes and member functions for all defined classes in the simulation model are

summarized in Appendix C.

197

5.4 Object-oriented Programming (OOP)

The computer language selected for the simulation model is C++ which is one of the most

popular object-oriented programming computer languages. In order to enhance the portability of

the simulation model, all libraries used in the model are based on the ANSI C++ rather than

using commercialized versions of the C++ libraries. In this research project, no graphic

representation or GUI (Graphic User Interface) is considered. For the future development of a

windowing GUI system, it is recommended to use the “wxWindow” library which provides a

better multi-platform portability when compared to other commercial libraries such as the

Microsoft Foundation Classes (MFC).

Once the simulation model is coded, the last step is the debugging and validation phase to check

if the code is performing as expected. Several tips are recommended for debugging [May, 1990].

• Debug each member function separately.

• Use known deterministic data rather than stochastic data.

• Perform manual calculations to check.

198

5.5 Primary Validation of the Simulation Model

The validation step is the process whereby the simulation model is evaluated to determine

whether it satisfactorily duplicates the real system behavior [Drew, 1966]. In order to match the

simulation model output with real-life observations, a calibration process should be performed

using collected input data and measures of effectiveness (MOE). In this research, the calibration

process considers accepted models of behavior and compares them with the output from the

simulation model. VTASM is a proof-of-concept research model and further validation is needed

for commercial use.

Table 5.8 shows a hypothetical flight schedule consisting of 20 flights scheduled in about 5

minutes. Here, the relatively tight flight schedule is intentional to produce conflicts on the

taxiway system. It is assumed that all flights use one runway 01, and all aircraft represent

transport type operations. The aircraft mix is set to be 70/30 (large/small).

Important simulation outputs include information on the flight states at every simulation interval,

such as movement state, current communication state, speed, acceleration, current position,

traveled distances etc. Figure 5.38 shows a sample output of the simulation results. The time-

space diagram shown in Figure 5.39 depicts the behavior of four departing aircraft starting from

one common gate to the same runway.

A close examination of this figure confirms that headways between the aircraft are kept during

the taxiing phase, and the minimum separation rules for the takeoff aircraft are maintained. A

more detailed takeoff profile is illustrated in Figure 5.40. Figure 5.41 also ratifies the minimal

separations between successive landing aircraft. It is shown in Figure 5.42 that landing distances

and runway occupancy times presented in Table 5.3 are reproduced with good accuracy.

For the aircraft-following model defined in Equation (5.2), Hj and vf are set to 83 ft/aircraft, 41

ft/s respectively. Figure 5.43 shows that headway between two leading and following aircraft

correlates well with the speed and vehicle -following control laws stated in the Equation (5.2). In

this Figure, some discrete speeding phenomena is observed following the aircraft transition

through various taxiway links. This behavior is explained when the following aircraft returns to a

normal taxiing speed, once it becomes the leading aircraft on a link.

199

Table 5.8 Hypothetical Flight Schedule.

Schedule Time Flight # Aircraft
Type

Operation
Type Hour Minute Second

Gate Runway

AA001 B727-100 D 7 0 0 1 36
AA002 B727-100 D 7 0 4 1 36
AA003 SF340 D 7 0 20 2 36
AA004 B727-100 D 7 0 40 2 36
AA005 B727-100 D 7 0 50 3 36
AA006 B727-100 D 7 0 30 3 36
AA007 SF340 D 7 0 10 4 36
AA008 B727-100 D 7 0 45 4 36
AA009 B727-100 D 7 0 25 4 36
AA010 SF340 D 7 0 30 4 36
AA101 B727-100 A 7 1 0 11 36
AA102 B727-100 A 7 3 1 11 36
AA103 B727-100 A 7 3 2 12 36
AA104 SF340 A 7 3 3 12 36
AA105 B727-100 A 7 1 12 10 36
AA106 B727-100 A 7 1 45 10 36
AA107 SF340 A 7 1 20 10 36
AA108 SF340 A 7 5 3 9 36
AA109 B727-100 A 7 3 0 9 36
AA110 B727-100 A 7 2 1 9 36

200

Time FLT # (x, y) currCommState currMoveState speed accel currLink linkLength distInLink totDist

60.5 AA378 (3.55881,6.15414) readyToCommunicate taxiingToDepQue 3.20622 15.6622 4 -> 1016 157.659 0.324311 0.324311
 AA789 (3.55850,6.15410) readyToCommunicate parking 0.00000 0.0000 0 -> 0 0 0.000000 0.000000
 AA790 (3.55850,6.15410) readyToCommunicate parking 0.00000 0.0000 0 -> 0 0 0.000000 0.000000
 AA791 (3.55850,6.15410) readyToCommunicate parking 0.00000 0.0000 0 -> 0 0 0.000000 0.000000

60.6 AA378 (3.55918,6.15418) readyToCommunicate taxiingToDepQue 4.70198 14.9576 4 -> 1016 157.659 0.719721 0.719721

 AA789 (3.55850,6.15410) readyToCommunicate parking 0.00000 0.0000 0 -> 0 0 0.000000 0.000000
 AA790 (3.55850,6.15410) readyToCommunicate parking 0.00000 0.0000 0 -> 0 0 0.000000 0.000000
 AA791 (3.55850,6.15410) readyToCommunicate parking 0.00000 0.0000 0 -> 0 0 0.000000 0.000000

Figure 5.38 Preliminary Results (1): Sample Output.

 201

Figure 5.39 Validation of the Simulation Model (Time-Space Diagram for Departures, B727-100).

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

D
is

ta
n

c
e

 (
ft

)

ROT

Separation Taxiing Distance

Takeoff Distance

 202

Figure 5.40 Validation of the Simulation Model (Takeoff Profile, B727-100).

0

50

100

150

200

250

0 5 10 15 20 25 30 35

Time (Seconds)

S
p

ee
d

 (
fp

s)

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35

Time (Seconds)

D
is

ta
n

ce
 (

ft
)

Liftoff point

 203

Figure 5.41 Validation of the Simulation Model (Time-Space diagram For Arrivals, B727-100).

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 100 200 300 400 500 600

Time (Seconds)

D
is

ta
n

ce
 (

ft
)

Taxiing Distance

Landing Distance

Separation ROT

 204

Figure 5.42 Validation of the Simulation Model (Touchdown Profile, B727-100).

0

50

100

150

200

250

0 5 10 15 20 25

Time (second)

S
p

ee
d

 (
fp

s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25

Time (second)

D
is

ta
n

ce
 (

ft
)

Start Free Rolling
 (7.1 sec.)

 Start Braking
 (9.1 sec.)

Start Coasting
 (21.0 sec.)

Start Exiting
 (29.6 sec.)

Time (Seconds)

Time (Seconds)

 205

0

50

100

150

200

250

300

0 5 10 15 20 25 30
Speed (fps)

H
ea

d
w

ay
 (f

t)

Figure 5.43 Validation of Simulation Model (Headway-Speed Profile, B727-100).

 206

Chapter 6. Case Study

One of the main benefits of a microscopic simulation model is the wealth of information derived

from each simulation run. In this section, we first define several types of delays encountered in

airport networks. A case study is then presented to illustrated the use of the model developed.

6.1 Definition of Delays

The Consolidated Operations and Delay Analysis System (CODAS) prepared by the FAA defines

three types of delays involved in airport operations [FAA, 1997].

• Gate delay: the difference between the actual gate departure time reported in ASQP (Airline

Service Quality Performance) system and the scheduled gate departure time reported in

ETMS (Enhanced Traffic Management System).

• Taxi-out delay: The difference between the actual taxi-out time (= wheels-off time – gate-out

time) and the unimpeded taxi-out time at the airport. The unimpeded taxi-out time is the

estimated average taxi-out time for an aircraft under optimal operating conditions when

neither congestion, weather, or other factors delay the operation during its movement from

the gate to takeoff.

• Taxi-in delay: The difference between the actual taxi-in time (= gate arrival time – wheels-on

time) and the unimpeded taxi-in time under an unimpeded condition.

The taxi-out delays defined in CODAS involve not only the delays due to the taxiway congestion

itself, but also delays due to the excess demand on runway operations. On the other hand, taxi-in

delay does not contain runway delays, but only consider taxiway delays. This shows a

discrepancy between taxi-in and taxi-out delays. Motivated by this point, let us define a single

delay called total delay applicable to both arriving and departing operations. The total delay is

defined as follows (See Figures 6.1 and 6.2):

• Total delay: the difference between two completion times of the nominal (or unimpeded)

operation time and actual operation time. Here, the completion time of nominal operation is

 207

the time duration which is needed for a flight to complete its operation impeded by no other

operations.

Even though it is not easy to divide the total delay into various sub-types, for simulation

purposes, the taxiing delay and runway delays are defined as follows:

• Runway delay: The difference between the time when an aircraft is scheduled to start its

runway operation and the time when the actual operation takes place.

• Taxiing delay: During taxiing duration, the taxiing delay accrues whenever any flight’s

taxiing speed is less than a nominal taxiing speed. The taxiing delay is estimated by the

following equation.

∫

=

 timesimulation

0 speed nominal

speedcurrent -speed nominal
 delay Taxiing dt .

Taxiing duration (or taxiing time) is defined as the time required for a departing aircraft to taxi

from the gate to the runway departure queue, For an arriving aircraft is the time to taxi from the

runway exit to the gate.

Figures 6.1 and 6.2 illustrate the various types of delays for both arriving and departing flights.

6.2 Sample Airport

In this research project, the Ronald Reagan National Airport (DCA) is selected for further study.

Along with Dulles Airport and Baltimore-Washington Airports, DCA serves the Washington

D.C. metropolitan area. In FY 1997, total enplanements and operations at DCA were 7,231,903

and 316,404, respectively, placing it as the 26th busiest airport in the U.S. [FAA, 1998].

The existing DCA Airport has 45 gates and three crossing runways designated 3/21 (4,506 ft),

15/33 (5,189 ft), and 18/36 (6,869 ft). (As February 2000, Runway 18/36 has been changed to

01/19 due to magnetic declination.) Because of the relatively short length of its runways, DCA

has short to medium size transport aircraft operations. Figure 6.3 shows the present configuration

of DCA. In this preliminary analysis, the gates are aggregated into 12 groups and it is assumed

that several flights can occupy one aggregated gate at the same time. (This modeling practice is

common in other simulation models.)

 208

Figure 6.1 Delays Associated with a Departing Flight.

Figure 6.2 Delays Associated with an Arriving Flight.

Nominal
Communication
Time for Taxiing

Clearance

Nominal Taxiing Time
to Departure Queue

Nominal
Communication
Time for Takeoff

Clearance

Takeoff

Total Delay

Nominal Operation Time

Actual Operation Time

Nominal Taxiing Time
to Departure Queue

Nominal
Communication
Time for Takeoff

Clearance

Takeoff
Taxiing
Dealy

Runway
Dealy

Pass Runway
ThresholdStart Taxiing

Start
Takeoff Roll

Arrie at
Departure Queue

Ready to
Pushback

Nominal
Communication
Time for Taxiing

Clearance

Comm.
Dealy

Nominal
Comm. Time
for Landing
Clearance

Landing

Nominal
Communication
Time for Taxiing

Clearance

Taxiing to Gate

Total Delay

Nominal Operation Time

Actual Operation Time

Comm.
Dealy

Taxiing
Dealy

Park
at GateTouchdown Start Taxiing

to GateExit RunwayReady
to Land

Runway
Dealy

Nominal
Comm. Time
for Landing
Clearance

Landing

Nominal
Communication
Time for Taxiing

Clearance

Taxiing to Gate

 209

5000ft

2001

2002

2009

2004

2003

2012

2010

2011

2007

2005

1001

2014

2015

2016

2018 2019

2020 2021

2008

1002

1003

1004

1005
1006

1007 1008

1009 1010

1012

1 1011

1014

1013

1015

1016

1017

1018
1019

1020 1021

1022 1023

1024 1025

1027
1026

1031

103010291028

1032

1033

2017

2

3

4

5

6

7

8

9

10

11

12

Node numbering:
1-999 : gate
1001-1999: taxi node
2001-2999: runway node

2013

2006

3

21

33

01

19
15

Figure 6.3 Configuration of the Washington National Airport (DCA).

 210

6.3 Scenarios

To evaluate the efficiency of the airport control system, a total 12 scenarios are generated through

variations in three important decision variables: 1) Network assignment strategy, 2) sequencing

strategy, and 3) pilot-controller communication method. Two network assignment strategies are

considered: static and time-dependent assignment methods. The static network assignment uses

the Euclidean distances for the shortest path algorithm. The sequencing strategy involves pure

first-come-first-serve (FCFS), FCFS with landing priority, and 2-exchange sequences. The impact

of two types of pilot-controller communication methods are also integrated using standard voice

channel and data link methods.

A base line scenario attempts to reproduce the current ATC system using principle of FCFS with

landing priority. In this scenario, both the local and the ground controllers use standard voice

channel communications to provide traffic control advisories. In the scenario, a static assignment

method is used for ground controller to find the taxiing route.

The most advanced scenario studied represents an advanced ATC system where the local

controllers follow optimal aircraft sequences using results from the ASP (Aircraft Sequencing

Problem) model, and the ground controllers guide the taxiing flights based on dynamic shortest

paths which result from NAP (Network Assignment Problem). All 12 scenarios are summarized

in Table 6.1.

Table 6.1 Scenarios for Case Study.

Network Assignment Strategy Sequence Method Communication Method.

Voice Channel Pure
FCFS Data Link

Voice Channel (Base line scenario) FCFS
(w/ Landing Priority) Data Link

Voice Channel

Static
Network

Assignment

2-exchange
Data Link

Voice Channel Pure
FCFS Data Link

Voice Channel FCFS
(w/ Landing Priority) Data Link

Voice Channel

Time-dependent
Network

Assignment

2-exchange
Data Link

 211

6.4 Computational Process

The computations for the case study are derived using the following steps: Data generation,

sequencing, simulation, and the analysis of results. Figure 6.4 illustrates a flowchart with all

computations along with data and output for each step.

6.4.1 Data Generation

Using random number generation techniques, the ready-times (or nominal times) for runway

operations are generated. A total of nine levels of hourly demand (ranging from 10 to 50 flights

per hour) are generated. To consider randomness of generated data, ten data sets are generated for

each level of hourly demand. In all test scenarios, the interval for any two consecutive runway

operations (either takeoff or landing) follows a negative exponential distribution. The aircraft mix

which is another important factor in the delay analysis, is set to 0% heavy, 70% large and 30%

small. For computational simplicity, it is assumed that all flights use a single runway 01. (This

issue will be discussed later in further study.)

Once nominal times for runway operations are available, the activation times for departing flights

are obtained by subtracting the sum of nominal taxiing, communication and some buffer times

from nominal times. The link and node data which are pertinent to taxiway topology are used to

obtain nominal taxiing times. Unlike departing flights, the activation times for arriving flights are

obtained by subtracting only communication times from nominal times.

6.4.2 Sequencing

In this step, three types of sequences for runway operations are computed using nominal times:

pure FCFS sequence, FCFS sequence with landing priority and 2-exchange sequence. Table 6.2

shows a sample output of the sequencing process. In the sequencing process, a maximum of 600

seconds of delay is assumed tolerable as practical limit. This limit can be altered by a planner and

applied for each flight time window. In fact, the schedule from a pure FCFS sequence is the same

one as that of nominal times.

Table 6.2 also shows two types of time savings attained if the swapped sequence is applied. These

are: cumulative time savings obtained from all individual flights, and time savings in completion

time of all flights. For example, the table shows that if the runway operations are performed in

 212

accordance with a 2-exchange sequence instead of the FCFS sequence with landing priority, a

total of 669 seconds can be saved over all flights. In this case, the completion time for all

operations are reduced from 1243 to 1149 seconds.

Table 6.2 A Sample Output from the Sequencing Model.

--- ------- ---- ----------------- --------------------------- --------------------------- --------
 Nominal FCFS w/ landing priority 2-exchange
 # acft_id Type ReadyTime DueTime StartTime Sequence Delay StartTime Sequence Delay Saving
 (1) (2) =(2)-(1) (3) =(3)-(1) =(3)-(2)
--- ------- ---- ----------------- --------------------------- --------------------------- --------
 1 DEP_1 L [186 786] 268 4 82 268 4 82 0
 2 DEP_2 S [218 818] 375 6 157 375 6 157 0
 3 DEP_3 S [302 902] 482 8 180 594 10 292 -112
 4 DEP_4 L [322 918] 589 10 267 496 8 174 93
 5 DEP_5 L [378 978] 800 13 422 747 13 369 53
 6 DEP_6 S [414 1014] 907 15 493 687 12 273 220
 7 DEP_7 L [444 1044] 1028 17 584 840 15 396 188
 8 DEP_8 L [536 1123] 1088 18 552 947 17 411 141
 9 DEP_9 L [583 1154] 1148 19 565 1054 19 471 94
 10 DEP_10 L [614 1214] 1208 20 594 1114 20 500 94
 11 ARR_1 L [17 582] 17 1 0 17 1 0 0
 12 ARR_2 S [83 683] 148 2 65 148 2 65 0
 13 ARR_3 L [89 648] 228 3 139 228 3 139 0
 14 ARR_4 L [155 755] 335 5 180 335 5 180 0
 15 ARR_5 L [269 800] 442 7 173 647 11 378 -205
 16 ARR_6 L [307 851] 549 9 242 800 14 493 -251
 17 ARR_7 S [352 952] 680 11 328 466 7 114 214
 18 ARR_8 L [358 924] 760 12 402 907 16 549 -147
 19 ARR_9 L [431 1031] 867 14 436 1014 18 583 -147
 20 ARR_10 S [468 1068] 998 16 530 564 9 96 434
--- ------- ---- ----------------- --------------------------- --------------------------- --------
 Total Delay: 6391 5722 669
--- ------- ---- ----------------- --------------------------- --------------------------- --------

 Completion time: FCFS w/land -> 1243 second, SWAP -> 1149 second

It is important to notice that some flights might not be operated as they are scheduled. This is

because the resulting schedules are an analytical solution which do not reflect any congestion in

communication or taxiing. As pointed out at the beginning of this research, it is very difficult to

develop a single analytical model which considers all of types of delays. This is the main

justification for using a simulation model.

 213

Step 1:
 Generate data sets using a random number.

Step 2:
Compute both FCFS and exchanged sequences.

Step 3:
Simulate both FCFS and exchanged sequences

with various scenarios

Nominal times

Ready times

sim_all.datswap.out

taxiPath.out

Controller.out

Log_flight.out

flight_state.out

aircraft model.
dat

edge_DCA.dat

node_DCA.dat

Step 4:
Analysis of simulation results

edge_DCA data

node_DCA data

Figure 6.4 Flowchart of the Computational Process Employed in the Case Study.

 214

6.4.3 Simulation

6.4.3.1 Assumptions

The VTASM model has numerous constants representing human or aircraft behaviors. For

example, the free flow speed, normal speed and jam headways employed in the aircraft-following

model are set to 45 km/hr, 30 km/hr and 27 m, respectively. It should be pointed out that, since

some of these constant values have been drived using common sense, more accurate values could

be collected from future field studies. Some of important constants used in the simulation model

are summarized in Table 6.3.

Table 6.3 Constant Values used in the VTASM Simulation Model.

Related model Name Values
Maximum taxiing speed 45 (km/hr)
Normal taxiing speed 30 (km/hr)

Aircraft
following
Model Jam headway 27 (m)

Gamma 2.75 (degree)
Runway threshold crossing height 15 (m)
Flare load factor 1.1

Flaring out

Weight factor for landing 0.5
Time for free rolling 2.0 (s) Free rolling
Acceleration for free rolling -0.7 (m/s2)
Weight for decision speed 18450 (kg)

= 41000 (lb)
Decision speed for heavy aircraft 35 (m/s)

Braking

Decision speed for large or small aircraft 27 (m/s)
Runway exit Exit speed for normal runway exit 15 (m/s)

Sending request time
(same to receiving request time for controller)

4.0 (s)

Waiting command time
(same to receiving request time)

5.0 (s)

Receiving command time
(same to judging time for controller)

3.0 (s)

Sending confirmation time
(same to receiving request time for controller)

3.0 (s)

Communication
(Voice channel)

Waiting time for next contact 10.0 (s)
Sending request time 0.0 (s)
Waiting command time 3.0 (s)
Receiving command time 0.0 (s)

Communication
(Data Link)

Sending confirmation time 0.0 (s)

Link travel
time function

current link travel time
+ 5 seconds for every one conflicting aircraft at the
intersecting point

 215

6.4.3.2 Input Data

Input data for simulation model include link and node information representing the taxiway and

runway configurations, the aircraft model data, and the flight schedule data. Aircraft model data

involves individual aircraft information such as size, weight and performance data. The flight

schedule data reflects the results of the previous sequencing step. Using the given schedule data,

recommended pushback times for departing flights are internally computed. (For a detailed

description about the recommended pushback times, see Section 2.3.1.) A sample of schedule is

shown in Figure 6.5.

Figure 6.5 Sample of Schedule Data.

 1 DEP_1 B727-100 D 7 0 1 7 3 6 7 4 28 7 4 28 1 36
 2 DEP_2 SF-340 D 7 0 33 7 3 38 7 6 15 7 6 15 1 36
 3 DEP_3 SF-340 D 7 1 57 7 5 2 7 8 2 7 9 54 1 36
 4 DEP_4 B727-100 D 7 2 17 7 5 22 7 9 49 7 8 16 1 36
 5 DEP_5 B727-100 D 7 3 13 7 6 18 7 13 20 7 12 27 2 36
 6 DEP_6 SF-340 D 7 4 2 7 6 54 7 15 7 7 11 27 2 36
 7 DEP_7 B727-100 D 7 4 32 7 7 24 7 17 8 7 14 0 2 36
 8 DEP_8 B727-100 D 7 6 4 7 8 56 7 18 8 7 15 47 2 36
 9 DEP_9 B727-100 D 7 6 51 7 9 43 7 19 8 7 17 34 2 36
 10 DEP_10 B727-100 D 7 7 22 7 10 14 7 20 8 7 18 34 3 36
 11 ARR_1 B727-100 A 7 0 3 7 0 17 7 0 17 7 0 17 12 36
 12 ARR_2 SF-340 A 7 1 9 7 1 23 7 2 28 7 2 28 12 36
 13 ARR_3 B727-100 A 7 1 15 7 1 29 7 3 48 7 3 48 12 36
 14 ARR_4 B727-100 A 7 2 21 7 2 35 7 5 35 7 5 35 12 36
 15 ARR_5 B727-100 A 7 4 15 7 4 29 7 7 22 7 10 47 11 36
 16 ARR_6 B727-100 A 7 4 53 7 5 7 7 9 9 7 13 20 11 36
 17 ARR_7 SF-340 A 7 5 38 7 5 52 7 11 20 7 7 46 11 36
 18 ARR_8 B727-100 A 7 5 44 7 5 58 7 12 40 7 15 7 11 36
 19 ARR_9 B727-100 A 7 6 57 7 7 11 7 14 27 7 16 54 11 36
 20 ARR_10 SF-340 A 7 7 34 7 7 48 7 16 38 7 9 24 10 36

Gate Number

Runway

Aircraft type

Takeoff/Landing Time
(Pure FCFS sequence)

Simulation
Input Time

Takeoff/Landing Time
(FCFS w/ Landing Priority sequence)

Takeoff/Landing Time
(Swap sequence)

 216

6.4.3.3 Implementation of the Simulation Model

Each simulation is executed for two-hour duration (i.e., 7200 seconds). This is done to secure

enough time for all flights to finish their operations during the simulation duration. The system

clock is set to advance by one second. This time interval, dt, is one of important settings

particularly in association with aircraft-following model. There is a tradeoff in selecting the size

of dt. Smaller dt provides more detailed results in aircraft behavior but requires more time and

storage space in the implementation simulation.

For the time-dependent NAP, a total of 120 time slices are prepared so that the time-dependent

shortest path information can reflect any change in link travel time with a resolution of 60

seconds. The simulation is repeated for all 12 scenarios.

6.4.3.4 Output Files

VTASM provides several output files for further scrutiny of the data.

1) 1) Log.out reports important events for both flights and controllers including a summary

report with statistics.

2) 2) FlightState.out includes the flight state at each time slice.

3) Controller.out contains the controller state at each time slice.

4) ForwardStar.out/backwardStar.out shows forward-star/backward-star of network

configuration (used for verification).

5) TaxiPath.out contains static and time-dependent taxi paths for all flights (used for

verification).

The summary section in the log.out file reports diverse statistics related to the delay analysis for

each flight such as taxiing duration, runway occupancy time, runway delay, etc. The flight state in

file flight_state.out includes position, communication state, movement state, permission, speed,

acceleration and traveled distance at time t. Figures 6.6 and 6.7 show samples of the log,out and

the flight_state.out files. A sample of the path.out file is illustrated in Figure 6.8. In this figure, it

is shown that some flights have different paths in the static and in the time-dependent NAP.

 217

Figure 6.6 A Sample of the Log.out File.

Data files were opened.

FS and BS were made.
 FLight DEP_1 is pushed back to GC's PENDING list
 FLight DEP_2 is pushed back to GC's PENDING list
...
 FLight ARR_10 is pushed back to LC's PENDING list
 Flight data were read.
Shortest Path was made.

< Simulation starts >
 system clock = 0 second
 At 1 sec, DEP_1 is removed from GC's PENDING list
 At 1 sec, DEP_1 is pushed back to GC's PROCESSING list
 At 3 sec, ARR_1 is removed from LC's PENDING list
 At 3 sec, ARR_1 is pushed back to LC's PROCESSING list
 This flight (DEP_1) is ahead the schedule.
 So, need to contact the Ground Controller again.
 -> scheduled time: 79.9 sysTime: 17
 At 17 sec., DEP_1 got "waitThere".
 this flight (ARR_1) is behind the schedule.
 -> scheduled time: 17 sysTime: 19
 At 19 sec., ARR_1 got "clearToLand".
 At 33 sec, DEP_2 is removed from GC's PENDING list
 At 33 sec, DEP_2 is pushed back to GC's PROCESSING list
 This flight (DEP_2) is ahead the schedule.
 So, need to contact the Ground Controller again.
 -> scheduled time: 186.9 sysTime: 49
...
 system clock = 7000 second
 system clock = 7200 second
< Simulation ends. >

------------------------------- SUMMARY -------------------------------
 Flight (Departure DEP_1, B727-100, Gate 1, Runway 36)
 Enters into the simulation at : 1 sec.
 Taxiing Duration : 73 - 217
 Taxiing Delay : 2.22827
 Nominal Takeoff Time (= NTOT) : 186
 Sequenced Takeoff Time (= STOT) : 268
 Actual Takeoff Time (= ATOT) : 289
 Runway Occupancy Time (= ROT) : 289 - 328
 Sequenced Delay (= ATOT - STOT) : 21
 Runway Delay (= ATOT - NTOT) : 103

...

 Flight (Arrival ARR_10, SF-340, Runway 36, Gate 10)
 Enters into the simulation at : 454 sec.
 Nominal Touchdown Time (= NTDT) : 468
 Sequenced TouchDown Time (= STDT) : 998
 Actual Touchdown Time (= ATDT) : 991
 Runway Occupancy Time (= ROT) : 991 - 1018
 Sequenced Delay (= ATDT - STDT) : 0
 Runway Delay (= ATDT - NTDT) : 523
 Taxiing Duration : 1045 - 1147
 Taxiing Delay (sec.) : 4.52267

 TotTaxiingDelay_sec = 47.9558
 TotRunwayDelay_sec = 6486
 TotDealy_sec = 6533.96
 AvgTaxiingDelay_sec = 2.39779
 AvgRunwayDelay_sec = 324.3
 AvgDealy_sec = 326.698
Utilization factor (L/C) = totBusyTimeLC (=1234) / first 1 hour (= 3600) = 0.342778
Utilization factor (G/C) = totBusyTimeGC (=1188) / first 1 hour (= 3600) = 0.33

 218

Figure 6.7 A Sample of the flightState.out File.

Time
 FLT # (x, y) currCommState permission currMoveState speed accel currLink linkLength distInLink totDist
 --------- ------------------ ------------------ ------------ ------------- -------- -------- -------- ---------- ---------- -------

...

 320.000
 DEP_1 (4.27860, 7.23847) readyToCommunicate clearToTakeOff rolling 228.557 5.65931 2006 -> 2005 347.582 322.875 8907.85
 DEP_2 (3.44770, 3.71363) readyToCommunicate clearToTaxi taxiingToDepQue 27.3409 0.000000 1031 -> 2018 782.058 727.237 3832.22
 DEP_3 (3.65123, 6.51975) readyToCommunicate clearToTaxi taxiingToDepQue 27.3409 0.000000 1011 -> 1014 185.988 107.714 608.929
 DEP_4 (3.24660, 6.64350) waitControllerContact waitThere parking 0.000000 0.000000 0 -> 0 0 0.000000 0.000000
 DEP_5 (3.47540, 6.59730) waitControllerContact waitThere parking 0.000000 0.000000 0 -> 0 0 0.000000 0.000000
 DEP_6 (3.47540, 6.59730) waitControllerContact waitThere parking 0.000000 0.000000 0 -> 0 0 0.000000 0.000000
 DEP_7 (3.47540, 6.59730) waitControllerContact waitThere parking 0.000000 0.000000 0 -> 0 0 0.000000 0.000000
 DEP_8 (3.47540, 6.59730) readyToCommunicate fileApproved parking 0.000000 0.000000 0 -> 0 0 0.000000 0.000000
 DEP_9 (3.47540, 6.59730) readyToCommunicate fileApproved parking 0.000000 0.000000 0 -> 0 0 0.000000 0.000000
 DEP_10 (3.33330, 6.32750) readyToCommunicate fileApproved parking 0.000000 0.000000 0 -> 0 0 0.000000 0.000000
 ARR_1 (2.80910, 5.01500) readyToCommunicate clearToTaxi parking 0.000000 0.000000 0 -> 0 0 0.000000 0.000000
 ARR_2 (2.98857, 4.53792) readyToCommunicate clearToTaxi taxiingToGate 27.3409 0.000000 1029 -> 1028 233.737 4.76052 6039.35
 ARR_3 (4.13276, 8.73577) readyToCommunicate clearToTaxi taxiingToGate 16.3510 4.41148 1003 -> 2003 915.958 24.2862 6123.22
 ARR_4 (4.08470, 3.21800) waitingCommand waitThere onFinal 0.000000 0.000000 2021 -> 2019 493.258 0.000000 0.000000
 ARR_5 (4.08470, 3.21800) waitControllerContact waitThere onFinal 0.000000 0.000000 2021 -> 2019 493.258 0.000000 0.000000
 ARR_6 (4.08470, 3.21800) waitControllerContact waitThere onFinal 0.000000 0.000000 2021 -> 2019 493.258 0.000000 0.000000
 ARR_7 (4.08470, 3.21800) readyToCommunicate unDecided onFinal 0.000000 0.000000 2021 -> 2019 493.258 0.000000 0.000000
 ARR_8 (4.08470, 3.21800) readyToCommunicate unDecided onFinal 0.000000 0.000000 2021 -> 2019 493.258 0.000000 0.000000
 ARR_9 (4.08470, 3.21800) readyToCommunicate unDecided onFinal 0.000000 0.000000 2021 -> 2019 493.258 0.000000 0.000000
 ARR_10 (4.08470, 3.21800) readyToCommunicate unDecided onFinal 0.000000 0.000000 2021 -> 2019 493.258 0.000000 0.000000
321.000
 DEP_1 (4.28917, 7.45945) readyToCommunicate clearToTakeOff liftingOff 234.179 0.000000 2005 -> 2002 1624.27 206.661 9139.22
 DEP_2 (3.44770, 3.68748) readyToCommunicate clearToTaxi taxiingToDepQue 27.3409 0.000000 1031 -> 2018 782.058 754.578 3859.57
 DEP_3 (3.66271, 6.49626) readyToCommunicate clearToTaxi taxiingToDepQue 27.3409 0.000000 1011 -> 1014 185.988 135.055 636.270
 DEP_4 (3.24660, 6.64350) waitControllerContact waitThere parking 0.000000 0.000000 0 -> 0 0 0.000000 0.000000
 DEP_5 (3.47540, 6.59730) waitControllerContact waitThere parking 0.000000 0.000000 0 -> 0 0 0.000000 0.000000
 DEP_6 (3.47540, 6.59730) waitControllerContact waitThere parking 0.000000 0.000000 0 -> 0 0 0.000000 0.000000
 DEP_7 (3.47540, 6.59730) waitControllerContact waitThere parking 0.000000 0.000000 0 -> 0 0 0.000000 0.000000
 DEP_8 (3.47540, 6.59730) readyToCommunicate fileApproved parking 0.000000 0.000000 0 -> 0 0 0.000000 0.000000
 DEP_9 (3.47540, 6.59730) readyToCommunicate fileApproved parking 0.000000 0.000000 0 -> 0 0 0.000000 0.000000
 DEP_10 (3.33330, 6.32750) readyToCommunicate fileApproved parking 0.000000 0.000000 0 -> 0 0 0.000000 0.000000
 ARR_1 (2.80910, 5.01500) readyToCommunicate clearToTaxi parking 0.000000 0.000000 0 -> 0 0 0.000000 0.000000
 ARR_2 (2.96257, 4.53519) readyToCommunicate clearToTaxi taxiingToGate 27.3409 0.000000 1029 -> 1028 233.737 32.1014 6066.69
 ARR_3 (4.12726, 8.71929) readyToCommunicate clearToTaxi taxiingToGate 19.9686 3.61763 1003 -> 2003 915.958 42.4460 6141.38
 ARR_4 (4.08470, 3.21800) receivingCommand waitThere onFinal 0.000000 0.000000 2021 -> 2019 493.258 0.000000 0.000000
 ARR_5 (4.08470, 3.21800) waitControllerContact waitThere onFinal 0.000000 0.000000 2021 -> 2019 493.258 0.000000 0.000000
 ARR_6 (4.08470, 3.21800) waitControllerContact waitThere onFinal 0.000000 0.000000 2021 -> 2019 493.258 0.000000 0.000000
 ARR_7 (4.08470, 3.21800) readyToCommunicate unDecided onFinal 0.000000 0.000000 2021 -> 2019 493.258 0.000000 0.000000
 ARR_8 (4.08470, 3.21800) readyToCommunicate unDecided onFinal 0.000000 0.000000 2021 -> 2019 493.258 0.000000 0.000000
 ARR_9 (4.08470, 3.21800) readyToCommunicate unDecided onFinal 0.000000 0.000000 2021 -> 2019 493.258 0.000000 0.000000
 ARR_10 (4.08470, 3.21800) readyToCommunicate unDecided onFinal 0.000000 0.000000 2021 -> 2019 493.258 0.000000 0.000000

...

 219

Figure 6.8 A Sample of TaxiPath.out File.

ARR_1(system clock: 65)
Static Path: 1003 -> 2003 -> 1005 -> 1008 -> 1010 -> 1012 -> 1015 -> 1018 -> 1021 -> 1020 -> 1024 -> 1026 -> 1030 -> 1029 -> 1028 -> 12
td_SP_2 Path: 1003 -> 2003 -> 1005 -> 1008 -> 1010 -> 1012 -> 1015 -> 1018 -> 1021 -> 1020 -> 1024 -> 1026 -> 1030 -> 1029 -> 1028 -> 12

DEP_1(system clock: 73)
Static Path: 1009 -> 1011 -> 1014 -> 1016 -> 1017 -> 1019 -> 1020 -> 1024 -> 1027 -> 1031 -> 2018 -> 2021
td_SP_2 Path: 1009 -> 1011 -> 1014 -> 1016 -> 1017 -> 1019 -> 1020 -> 1024 -> 1027 -> 1031 -> 2018 -> 2021

DEP_2(system clock: 180)
Static Path: 1009 -> 1011 -> 1014 -> 1016 -> 1017 -> 1019 -> 1020 -> 1024 -> 1027 -> 1031 -> 2018 -> 2021
td_SP_2 Path: 1009 -> 1010 -> 1012 -> 1015 -> 1018 -> 1021 -> 1022 -> 1025 -> 1027 -> 1031 -> 2018 -> 2021

ARR_2(system clock: 192)
Static Path: 1015 -> 1018 -> 1021 -> 1020 -> 1024 -> 1026 -> 1030 -> 1029 -> 1028 -> 12
td_SP_2 Path: 1015 -> 1018 -> 1021 -> 1020 -> 1024 -> 1026 -> 1030 -> 1029 -> 1028 -> 12

ARR_3(system clock: 291)
Static Path: 1003 -> 2003 -> 1005 -> 1008 -> 1010 -> 1012 -> 1015 -> 1018 -> 1021 -> 1020 -> 1024 -> 1026 -> 1030 -> 1029 -> 1028 -> 12
td_SP_2 Path: 1003 -> 2003 -> 1005 -> 1008 -> 1010 -> 1012 -> 1015 -> 1018 -> 1021 -> 1020 -> 1024 -> 1026 -> 1030 -> 1029 -> 1028 -> 12

...

DEP_8(system clock: 908)
Static Path: 1011 -> 1014 -> 1016 -> 1017 -> 1019 -> 1020 -> 1024 -> 1027 -> 1031 -> 2018 -> 2021
td_SP_2 Path: 1011 -> 1014 -> 1012 -> 1015 -> 1018 -> 1021 -> 1022 -> 1025 -> 1027 -> 1031 -> 2018 -> 2021

DEP_9(system clock: 968)
Static Path: 1011 -> 1014 -> 1016 -> 1017 -> 1019 -> 1020 -> 1024 -> 1027 -> 1031 -> 2018 -> 2021
td_SP_2 Path: 1011 -> 1014 -> 1016 -> 1017 -> 1019 -> 1020 -> 1024 -> 1027 -> 1031 -> 1032 -> 1033 -> 2018 -> 2021

 220

6.5 Computational Results

6.5.1 Total Taxiing Time as Related to Various Network Assignment Strategies

Table 6.4 shows results for the static and time-dependent NAP in total taxiing time. As shown in

the table, the impact of the time-dependent NAP varies depending on a predefined unit delay

time, tentatively called Conflict Delay Time (CDT), which represents the impact of a conflicting

flight on taxiing delay and is used when the time-dependent taxiing route is planned. For

example, if CDT is set to 5 seconds, then the travel time for a certain link increases 5 seconds for

every one possible conflicting aircraft.

Table 6.4 Total Taxiing Times.

 (Unit: Seconds)
Scenarios Number of operations per hour

Network
Assign.

Sequence Comm. 10 15 20 25 30 35 40 45 50

Voice Ch. 1650.0 2410.8 3122.6 3917.4 4570.9 5265.3 5886.8 6584.4 7141.3 Pure
FCFS Data Link 1648.1 2410.1 3121.8 3916.7 4574.8 5258.2 5889.1 6584.3 7150.6

Voice Ch.
(Base Sce.)

1650.4 2413.2 3122.9 3916.6 4577.0 5270.9 5888.2 6589.8 7140.8 FCFS
w/ Land.

Data Link 1647.9 2409.5 3120.3 3913.8 4573.2 5259.1 5885.9 6577.9 7144.2
Voice Ch. 1650.6 2413.2 3123.0 3917.6 4577.8 5271.4 5889.7 6594.3 7142.1

Static
Network
Assign.

2-exch.
Data Link 1648.1 2409.6 3120.2 3913.1 4573.0 5262.6 5885.8 6580.8 7148.0

Voice Ch. 1650.0 2410.8 3122.6 3917.4 4570.9 5265.3 5886.8 6584.4 7141.3 Pure
FCFS Data Link 1648.1 2410.1 3121.8 3916.7 4574.8 5258.2 5889.1 6584.3 7150.6

Voice Ch. 1650.4 2413.2 3122.9 3916.6 4577.0 5270.9 5888.2 6589.8 7140.8 FCFS
w/ Land. Data Link 1647.9 2409.5 3120.3 3913.8 4573.2 5259.1 5885.9 6577.9 7144.2

Voice Ch. 1650.6 2413.2 3123.0 3917.6 4577.8 5271.4 5889.7 6594.3 7142.1

Time-Dep.
Network
Assign.

(CDT* =
1 sec.) 2-exch.

Data Link 1648.1 2409.6 3120.2 3913.1 4573.0 5262.6 5885.8 6580.8 7148.0

Voice Ch. 1650.0 2410.8 3123.7 3917.4 4570.9 5265.3 5886.6 6587.7 7142.8 Pure
FCFS Data Link 1648.1 2410.1 3121.8 3916.7 4574.8 5258.2 5890.1 6584.8 7153.2

Voice Ch. 1650.4 2413.2 3122.9 3916.6 4577.0 5270.0 5889.2 6589.8 7141.9 FCFS
w/ Land. Data Link 1647.9 2409.5 3120.8 3914.2 4573.6 5259.9 5886.5 6577.9 7145.4

Voice Ch. 1650.6 2413.2 3123.0 3918.1 4577.8 5271.4 5890.7 6593.6 7142.4

Time-Dep.
Network
Assign

 (CDT =
2 sec.) 2-exch.

Data Link 1648.1 2409.6 3120.7 3913.1 4573.4 5262.6 5886.4 6580.8 7148.4

Voice Ch. 1650.8 2410.8 3125.0 3920.5 4575.6 5266.3 5890.5 6597.3 7150.0 Pure
FCFS Data Link 1648.1 2410.5 3122.3 3919.0 4580.5 5266.8 5895.5 6593.2 7161.9

Voice Ch. 1651.3 2413.6 3124.8 3918.7 4578.2 5273.9 5900.2 6598.9 7151.7 FCFS
w/ Land. Data Link 1647.9 2411.3 3122.5 3916.6 4579.0 5268.2 5895.1 6589.0 7154.5

Voice Ch. 1651.5 2413.6 3125.5 3919.8 4580.5 5274.6 5899.0 6602.3 7156.7

Time-Dep.
Network
Assign.

(CDT =
5 sec.) 2-exch.

Data Link 1648.1 2411.4 3122.5 3916.4 4579.2 5269.3 5893.6 6592.7 7158.1
*CDT: Conflict Delay Time.

 221

The simulation results summarized in the Table 6.4 indicate that the time-dependent taxiing

routes planed based on 5 seconds of CDT cause more taxiing time than the static taxiing routes.

In the case that CDT is 2 seconds, some of time-dependent taxiing plans help to reduce the

taxiing time but some of them still cause more taxiing time than static taxiing plans. In the case of

1 second of CDT, the resulting taxiing times are exactly the same ones as those founded in the

static case. Based on these results, we can postulate that CDT value for this case study will be

between 1.0 and 2.0. (For the computational convenience, 2.0 of CDT value will be used from

this point.) We also can see that the communication method does not show any correlation with

taxiing time itself.

6.5.2 Average Runway Delay for Analysis of Aircraft Sequencing Strategies

The average runway delays for all three types of sequencing strategies are summarized in Table

6.5. The results clearly show that, if the 2-exchange sequences are used in runway operations, the

savings in runway delays reaches up to 15% compared to base scenario. And it is also showed

that the communication based on the data link help in saving the runway delay.

Table 6.5 Average Runway Delays resulting from the Simulation.

 (Unit: Seconds / Flight)
Scenarios Number of operations per hour

Network
Assign.

Sequence Comm. 10 15 20 25 30 35 40 45 50

Voice Ch. 17.9 31.5 36.0 45.9 48.0 100.4 102.8 170.6 324.4 Pure
FCFS Data Link 8.8 19.3 24.3 28.6 34.2 64.8 77.1 112.7 211.6

Voice Ch.
(Base Sce.) 18.4 30.2 32.8 40.9 45.5 63.5 81.6 94.8 137.6 FCFS

w/ Land.
Data Link 10.7 21.9 23.6 32.3 35.7 52.1 69.0 83.0 123.6

Voice Ch. 17.7 29.7 32.9 39.4 44.8 62.4 76.6 90.1 127.6

Static
Network
Assign.

SWAP
Data Link 9.7 21.0 22.4 27.9 33.8 47.9 60.7 76.2 110.1

Voice Ch. 17.9 31.5 36.1 45.9 48.0 100.4 102.8 170.7 324.4 Pure
FCFS Data Link 8.8 19.3 24.3 28.6 34.2 64.8 77.1 112.7 211.6

Voice Ch. 18.4 30.2 32.8 40.9 45.5 63.5 81.7 94.8 137.7 FCFS
w/ Land. Data Link 10.7 21.9 23.6 32.3 35.7 52.1 69.0 83.0 123.6

Voice Ch. 17.7 29.7 32.9 39.4 44.8 62.4 76.7 90.5 127.6

Time-Dep.
Network
Assign.
(5sec)

SWAP
Data Link 9.7 21.0 22.4 27.9 33.8 47.9 60.7 76.2 110.1

 222

It should be pointed out that average delays obtained from the simulation model are not same as

those from the analytical solution shown in Table 6.6. This is because in some cases, analytical

sequences cannot be implemented due to the communication time lags (delays) as well as the

several assumptions used in simulation model.

Table 6.6 Average Runway Delays resulting from Sequencing Step.

 (Unit: Seconds / Flights)
Number of operations per hour

Sequence 10 15 20 25 30 35 40 45 50
FCFS

W/ Land. (1)
10.9 23.2 24.9 35.1 38.3 56.3 73.2 89.0 130.5

2-exch. (2) 9.6 22.0 23.0 29.6 35.7 51.5 64.0 81.1 115.6
Savings (= (1)-(2)) 1.3 1.2 1.9 5.5 2.6 4.8 9.2 7.9 14.9

The average delays obtained using the sequencing methods are illustrated in Figures 6.9 and 6.10.

Figure 6.9 indicates that, if the runway practical capacity is decided at the level of four minutes

of delay per aircraft, the runway capacity is about 46 or 47 arrivals per hour. This seems to

correlate well with the analytical results obtained using the airport capacity model (ACM) for the

same aircraft mix.

 223

Figure 6.9 Average Runway Delay by Sequencing Methods (Communication: Voice Channel).

Figure 6.10 Average Runway Delay by Sequencing Methods (Communication: Data Link).

0

50

100

150

200

250

300

350

10 15 20 25 30 35 40 45 50

Aircraft Operations per Hour

R
u

n
w

ay
 D

el
ay

s
p

er
 F

lig
h

t
(S

ec
o

n
d

s)
Static, pure FCFS, Voice Ch.

Static, FCFS, Voice Ch.

Static, 2-exch., Voice Ch.

0

50

100

150

200

250

300

350

10 15 20 25 30 35 40 45 50

Aircraft Operations per Hour

R
u

n
w

ay
 D

el
ay

s
p

er
 F

lig
h

t
(S

ec
o

n
d

s)

Static, pure FCFS, Data Link

Static, FCFS, Data Link

Static, 2-exch., Data Link

 224

6.5.3 Total Operation Time

Total operation time is a good index to compare various air traffic control strategies. The total

operation obtained for all 12 scenarios are shown in Table 6.7. The results indicate that the total

operation time can be reduced by up to 9.2% if all three advanced air traffic control technologies,

including 2-excahnge sequencing, time-dependent network assignment technique and data link

are used. It is also evident that among these three technologies, the pilot-controller

communication method is the most effective at reducing total operation time.

Interestingly, the time-dependent taxiing planning does not provide a significant advantages at

reducing delays. Nevertheless, it should be noted that time-dependent taxiing feature in the

simulation model is inevitable to model the proper temporal changes in the operation of every

taxiway link. Furthermore, the time-dependent taxiing planning algorithm is expected to play a

substantive role to reduce the total operation time at airports having more complicated taxiway

network with higher taxiing demands.

The results of three sequencing strategies are compared in Figure 6.11. As expected, the pure

FCFS policy yields the highest delays. The impact of two communication methods on the total

delays is compared in Figure 6.12. Here we note certain reduction in delays when pilot controller

datalink communications are used.

Table 6.7 Total Operation Time 1)
.

 (Unit: Seconds)
Scenarios Number of operations per hour

Network
Assign.

Sequence Comm. 10 15 20 25 30 35 40 45 50

Voice Ch. 2589.1 4017.4 5345.2 6935.3 8272.7 11421.1 13029.4 17664.3 27150.2 Pure
FCFS Data Link 2420.3 3712.9 4971.1 6328.2 7656.7 9952.9 11756.1 14794.7 21239.0

Voice Ch.
(Base Sce.)

2593.9 3998.9 5277.3 6814.0 8198.2 10136.0 12171.6 14264.9 17810.1
FCFS

Data Link 2435.4 3743.1 4949.0 6406.0 7691.6 9492.4 11409.6 13427.4 16821.8
Voice Ch. 2587.3 3989.7 5279.3 6774.8 8175.7 10102.2 11974.1 14056.6 17323.6

Static
Network
Assign.

2-exch.
Data Link 2426.2 3731.1 4927.1 6303.7 7635.8 9353.1 11087.6 13128.2 16155.5
Voice Ch. 2589.1 4017.4 5346.9 6935.3 8272.7 11421.1 13028.6 17665.5 27150.2 Pure

FCFS Data Link 2420.3 3712.9 4971.1 6328.2 7656.7 9952.9 11756.5 14794.7 21239.1
Voice Ch. 2593.9 3998.9 5277.3 6813.9 8198.2 10135.2 12175.4 14263.1 17815.9

FCFS
Data Link 2435.4 3743.1 4949.0 6406.0 7691.8 9492.4 11410.9 13427.4 16821.8
Voice Ch. 2587.3 3989.7 5279.3 6774.4 8175.7 10102.2 11977.9 14076.4 17323.9

Time-Dep.
Network
Assign.

2-exch.
Data Link 2426.2 3731.1 4927.1 6303.7 7636.0 9353.1 11088.9 13128.2 16155.7

1)Total Operation Time = ∑ i = all flights (Time to finish operationi - Time to enter the systemi).

 225

Figure 6.11 Total System Costs by Sequencing Methods (from the Simulation Run).

Figure 6.12 Total System Costs by Sequencing Methods (from the Simulation Run).

0

5000

10000

15000

20000

25000

30000

10 15 20 25 30 35 40 45 50

Aircraft Operations per Hour

T
o

ta
l S

ys
te

m
 C

o
st

s
(S

ec
o

n
d

s)
Static, pure FCFS, Voice Ch.

Static, FCFS, Voice Ch.

Static, 2-exch., Voice Ch.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

10 15 20 25 30 35 40 45 50
Aircraft Operations per Hour

T
o

ta
l S

ys
te

m
 C

o
st

s
(S

ec
o

n
d

s)

Static, FCFS, Voice Ch.

Static, FCFS, Data Link

 226

Chapter 7. Summary, Conclusions and Future

Research

7.1 Summary of Results

Unless the weather is adverse, flight delays occur mainly due to excessive demands on airport

facilities such as runways, taxiways, gates, communication system, etc. This research focuses on

the development of optimization models and algorithms and a computer simulation model to

study various activities inside the airport terminal area. These models are intended to help reduce

congestion on runways and taxiways.

In order to manage aircraft traffic at busy airports and terminal areas, aircraft sequencing methods

can be used in conjunction with advanced Air Traffic Control (ATC) automation tools. This

research discusses a combinatorial optimization approach to the Aircraft Sequencing Problem

(ASP). Consideration is given to aircraft arrival and departure streams on a single runway or in

closely spaced runways where arrivals and departures are dependent. Previous studies conducted

in this area have mainly focused on the sequencing problem for arriving aircraft. Since many

airports in the U.S. have dependent arrival and departure stream operations, consideration is given

to both conditions simultaneously. This makes the problem more realistic yet at the same time,

more challenging. Starting with preliminary information about the aircraft such as the aircraft

types, desired arrival/departure times, maximum delay times, minimum separation rules, etc., the

problem can be formulated as a traveling salesman problem with time-windows, and with

nonconsecutive separation enforcement.

To solve the ASP, an exact approach using integer programming techniques is developed. Tight

lower bounds are generated using the Reformulation-Linearization Technique (RLT) of Sherali

and Adams (1990, 1994). Compared with the linear programming relaxation of the original

model, the proposed reformulated ASP problems provide tighter representations, producing

significantly improved lower bounds. As a result, several previously unsolvable instances are now

computationally tractable within the set limits. The computational results show that, by changing

the traditional FCFS sequence intelligently, about 17% of the overall operational time can be

saved.

 227

An important consideration for the ASP algorithm is its eventual implementation in real-time

runway operations. As such, the computation time required to solve the ASP is of paramount

importance. To reduce computation time, we suggest several heuristic approaches by modifying

2-exchange and swap methods which are widely used in solving TSP problems. Here, the exact

method serves to help enumerate the heuristic procedures for reasonably sized problems as well

as to develop such heuristic procedures themselves. Computational results show that the 2-

exchage heuristic method provides sequences very close to exact solutions in reasonable time.

Given an optimal sequence output from the ASP model, the Network Assignment Problem (NAP)

on the taxiway-runway system is considered in a single framework. To resolve the relationships

between runway and taxiway operations, it is desirable to establish certain connections between

ASP and NAP. In our case, we place a higher priority on runway operations. This means that an

optimal aircraft sequence for runway operations which completes the scheduled departures and

landings as soon as possible will be decided first. Taking this sequence as a given condition, the

NAP problem is solved. In this reaserch, the quasi-dynamic network assignment stategy is

adopted as the method for NAP. By taking advantage of the dynamic aspects of the problem,

potential conflicts on the taxiways are detected and avoided if needed. This feature helps design a

more effective network assignment procedure.

To evaluate the system performance in detail, a microscopic simulation model has been

developed. Some salient points of the developed model include: 1) a hybrid-type simulation

model that can analyze the total delay due not only to network congestion but also to

communication channel capacity; 2) an aircraft-following model that captures more dynamic and

detailed behavior of the moving aircraft, and 3) computer codes are developed in ANSI C++ for

the sake of portability. Furthermore, the object-oriented-programming concept employed in

developing simulation model is expected to render the source codes more readable and handy to

modify for the future development.

Adopting Washington National (DCA) Airport as a sample airport, a case study is presented

along with computational results. Results confirm that for high demand levels, communication

can be another source of delay that is not considered in the ASP and NAP problems. Results show

that if an advanced ATC system using the 2-exchange sequence in runway operations and the

data-link system in communication is used, the savings in runway delays reaches up to 19%

compared to the base scenario. Results also reveal that up to 5% of the total operational time in

 228

the terminal area can be reduced by upgrading the current voice-channel communication system

to the data-link communication system.

7.2 Recommendations for Future Research

Applying Lagrangian relaxation techniques to ASP: Lagrangian relaxation can be applied to

solving integer programming problems exactly or approximately in a more effective fashion by

exploiting inherent special structures. Lagrangian relaxation can also be applied in conjunction

with RLT, by using it to efficiently solve the LP relaxations through duality considerations.

Consideration of gate allocation: It is frequently observed at busy airports that some landing

flights wait on the taxiway for gates to be vacated. Gate delay is another major source of total

delay which has not been considered in this research. Gates can be managed more efficiently by

solving a so-called "Gate Assignment Problem (GAP)" (see Sherali and Brown, 1994). Since

gates are facilities for both aircraft and passengers, the passenger delays are also considered in

GAP. The effect of GAP could be incorporated in future extensions of our research.

Modifying the shortest path algorithm in the time -dependent NAP: Waiting times at the

nodes can be considered when the dynamic shortest paths are calculated. Instead of detouring the

blocked link, the aircraft can wait at the crossing point until the blockage is released. This is

unlike the ground transportation network where any waiting at intersections is prohibited due to

the operational characteristics of highways. To take node waiting into account, Orda and Rom’s

study (1990) discussed in Chapter 4 can be applied.

Consideration of stochastic factors in the simulation model: For a more realistic analysis,

probabilistic functions can be used to characterize the following possible stochastic components:

1) the time duration for each phase of the communication process such as receiving request,

judging, sending commands, receiving confirmations, and communication processes; 2) aircraft

performance on the runway with modifications to the descent flight path, the threshold crossing

height, the threshold crossing speed, braking speed, etc., and 3) the lift-off speed in the departure

procedure. In order to obtain these probability functions, a data collection process and statistical

analyses could be conducted in the future. (All aspects of the second point above have already

been studied in detail at Virginia Tech.)

 229

Enhancing certain features of the simulation model: It is assumed in the simulation model that

only a single runway is used for both arrival and departure operations. For the simulation model

to be more versatile, it needs to be extended to handle a more diverse set of runway

configurations. These include multiple runways with dependent operational conditions along with

runway crossing procedures. In addition, there are several important features that have not been

implemented in this research: 1) weather condition, 2) multiple controllers, 3) pushback behavior

in association with gate occupancy, 4) service vehicle movements, 5) icing process, 6) holding

stack, etc. All these are valid extensions to this model.

Data and problem horizon: From a practical implementation point of view, it is desirable to

divide the entire data horizon into several relatively smaller problem horizons. The fragmentation

of the data horizon provides us with two practical benefits. First, we can handle the data in a

reasonable computational time, which is a critical factor in real-time ATC systems. For example,

as discussed earlier, the computational time for ASP grows dramatically as the number of aircraft

considered increases. Second, by making the problem horizon smaller, we can both reduce the

uncertainty and re-consider residual (or missed) operations in the next problem.

Using this approach, operations that have been considered during some imminent duration

periods are eliminated from further consideration (see Figure 7.1). The operations starting at the

end of the imminent duration period constitute new operations for the next problem, having

suitably revised input data. On the other hand, aircraft that are at the initial or intermediate stages

of operations will continue according to the prescribed related decisions as determined in the

previous periods' problems. Figure 7.2 displays the problem structure and data- flows for the ASP

and NAP models in a multi-data-horizon framework.

Figure 7.1 Definition of Problem and Data Horizons.

Imminent Duration
Data Horizon

Problem Horizon

 230

Figure 7.2 Problem Structure and Data-Flow for the ASP and NAP Model Framework (Multi-
Data Horizon).

Optimal Route
from the gate to runway

(or from the runway to gate)

no

yes

no

yes

Ready/Due-time
to Touchdown for
Problem Horizon
(r_tdni, d_tdni)

Aircraft
Sequencing Problem

(ASP)

Minimum
Separation Rules

Ready/ Due-time
to Takeoff or Departure

(r_toffi
*, d_toffi)

Expected Exit Time
from the Runway

(t_exti)

Recommended
Pushback Time
from the Gate

End

Ready- time to Push-
Back from the Gate

for Problem Horizon
(rti)

Optimal
Touchdown time

(t_tdni)

Optimal
Takeoff time

(t_toffi)

Network Configuration

Problem Horizon = [tn ∆⋅ , tn ∆⋅+)1(]

Data Horizon = [0,T]
Size of each Problem Horizon (= t∆) = T/N

N = the number of divided data horizon

Desired/Original Schedule
for Arrivals and Departures

for Data Horizon [0,T}

Network
Assignment Problem

(NAP)

n = n+1

Problem Horizon = [tn ∆⋅ , tn ∆⋅+)1(]

n = 0

n = N

yes

Put missed/not started operations into
the desired schedule set
with ri= tn ∆⋅ , original due-time

Pick the data within
the problem horizon

Any operations
not started yet?

yes

 231

Bibliography

Adams, W. P., and H. D. Sherali. A tight linearization and an algorithm for zero-one quadratic

programs. Management Science, 32:1274-1290, 1986.

Adams, W. P., and H. D. Sherali. Mixed-integer bilinear programming problems. Mathematical

Programming, 59(3):279-305, 1993.

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin. Network Flows. Prentice Hall, New Jersey, 1993.

Andreatta, G., and G. Romanin-Jacur. Aircraft flow management under congestion.

Transportation Science, 21(4):249-253, 1987.

Ascheuer, N., M. Fischetti, and M. Grotschel. Solving the asymmetric traveling salesman

problem with time-window by branch-and-cut. Preprint SC-99-31, ZIB Berlin, Germany, 1999.

Baker, K. R. Introduction to Sequencing and Scheduling. John Wiley & Sons, Inc., New York,

1974.

Baker, E. K., and J. R. Schaffer. Solution improvement heuristics for the vehicle routing and

scheduling problem with time-window constraints. American Journal of Mathematical and

Management Sciences 6(3):261-300, 1986.

Baker, K. R., and L. E. Schrage. Finding an optimal sequence by dynamic programming: An

extension to precedence-related tasks. Operations Research, 26(1): , 1978.

Bakker, G., H. Enting, and K. Nienwenhuys. OMT object model, Method Engineering

Encyclopaedia. Online. Available: http://www.univ-paris1.fr/CRINFO/dmrg/MEE/ misop009,

Dec. 1995.

Bazaraa, M. S., J. J. Jarvis, and H. D. Sherali. Linear Programming and Network Flows. Second

Edition, John Wiley and Sons, New York, 1990.

Bellman, R. On a routing problem. Quarterly of Applied Mathematics, 16:87-90, 1958.

 232

Bianco, L., G. Rinaldi, and A. Sassano. A combinatorial optimization approach to aircraft

sequencing problem. Flow Control of Congested Networks, Edited by A. R. Odoni et al., NATO

ASI series, F38:323-339, 1987.

Bianco, L., S. Ricciardelli, G. Rinaldi, and A. Sassano. Scheduling tasks with sequence-

dependent processing times. Naval Research Logistics, 35:177-184, 1988.

Bianco, L., P. Dell’Olmo, and S. Giordani. Scheduling models and algorithms for TMA traffic

management. Modeling and Simulation in Air Traffic Management, Edited by Bianco, L. et al.,

Springer, 139-167, 1997.

Bodin, L., B. Golden, A. Assad, and M. Ball. Routing and scheduling of vehicles and crews- The

state-of-the-art. Computers & Operations Research, 10(2):63-211, 1983.

Booch, G. Object-oriented Analysis and Design with Application. Addison-Wesley, 1994.

Booch, G., J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide. Addison-

Wesley, Massachusetts, 1998.

Clarke, G., and J. Wright. Scheduling of vehicles from a central depot to a number of delivery

points. Operations Research, 12:568-581, 1964.

Cook, K. L., and E. Halsey. The shortest route through a network with time-dependent internodal

transit time. Journal of Mathematical Analysis and Application, 14:493-498, 1966.

Dear, R. D. The dynamic scheduling of aircraft in the near terminal area. MIT Flight

Transportation Laboratory Report R76-9, MIT, Cambridge, MA., 1976.

Dear, R. G., and Y. S. Sherif. An algorithm for computer assisted sequencing and scheduling of

terminal area operations. Transportation Research, 25A:129-139, 1991

Derr, K. W. Applying OMT: A Practical Step-by-step Guide to Using the Object Modeling

Technique. SIGS Books, New York, 1995.

 233

Desrochers, M., J. Desrosiers, and M. Solomon. A new optimization algorithm for the vehicle

routing problem with time-windows. Operations Research 40(2):342-354, 1992.

Desrosiers, J., Y. Dumas, and M. Solomon. A dynamic programming solution of the large-scale

single-vehicle dial-a-ride problem with time-windows. American Journal of Mathematical and

Management Sciences, 6(3):301-325, 1986.

Dial, R., F. Glover, D. Karney, and D. Klingman. A Computational analysis of alternative and

labeling techniques for finding shortest path trees. Networks, 9:215-245, 1979.

Dijkstra, E. W. A note on two Problems in connection with Graphs. Numerische Mathematik ,

1:269-271, 1959.

Dreyfus, S. E. An appraisal of some shortest path algorithms. Operations Research, 17:395-412,

1969.

Driscoll, P. J. A new hierarchy of relaxations for 0-1 mixed integer problems with application to

some specially structured problem. Ph. D. Dissertation, Virginia Polytechnic Institute and State

university, 1995.

Dumas, Y., J. Desrosiers, and F. Soumis. The pickup and delivery problem with time-windows.

European Journal of Operational Research, 54:7-22, 1991.

Dumas, Y., J. Desrosiers, E. Gelinas, and M. M. Solomon. An optimal algorithm for the traveling

salesman problem with time-windows. Operations Research, 43(2):367-371, 1995.

Frank R. L., and P. Wolfe. An algorithm of Quadratic Programming. Naval Research Logistics,

3:95-110, 1956.

French, S. Sequencing and Scheduling: An Introduction to the Mathematics of the Job Shop. John

Wiley & Sons, Inc., New York, 1982.

 234

Friesz, T. L., J. Luque, R. L. Tobin, and B. Wie. Dynamic network traffic assignment considered

as a continuous time optimal control problem. Operations Research, 37(6):893-901, 1989.

Friesz, T. L., D. Bernstein, T. E. Smith, R. L. Tobin, and B. Wie. A variational inequality

formulation of the dynamic network user-equilibrium problem. Operations Research, 41(1):179-

191, 1993.

Gallo, G., and S. Pallottino. Shortest path methods in transportation models. Transportation

Planning Models, Ed. M. Florian. Elsevier Science Publishers B. V., North-Holland, 227-256.

Gallo, G., and S. Pallottino. Shortest path algorithms. Annals of Operations Research, 13:3-79,

1988.

Garey, M., and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-

completeness. Freeman, San Francisco, California, 1979.

Gendreu, M., A. Hertz, and G. Laporte. New insertion and postoptimization procedures for the

traveling salesman problem. Operations Research, 40(16):1086-1093, 1992.

Gendreu, M., A. Hertz, G. Laporte and M. Stan. A generalized insertion heuristic for the traveling

salesman problem with time-windows. Operations Research, 46(3):330-335, 1998.

Gerlough, D. L., and M. J. Huber. Traffic flow theory. TRB Special report 165, TRB, 1975.

Golden, B., T. Doyle, and W. Stewart, Jr. Approximate traveling salesman algorithms.

Operations Research, 28(3):694-711, 1980.

Golden, B., and W. R. Stewart. Empirical analysis of heuristics. The Traveling Salesman

Problem. Lawler, E. L., J. L. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys (Ed.), John

Wiley & Sons, New York, 207-249, 1985.

Glover, F., D. Klingman, and N. Phillips. A new ploynomially bounded shortest path Algorithm.

Operations Research, 33(1):65-73, 1985.

 235

Halpern, J. L. Shortest route with time-dependent length of edges and limited delay possibilities

in Nodes. Zeitschrift fur Operations Research, 21:177-124, 1977.

Held, M. and R. M. Karp. A dynamic approach to sequencing Problems. Journal of Society of

Applied Mathematics, 10(1): , 1962.

Jacobson, I. Object-oriented software engineering: A use case driven approach. Addison-Wesley,

Massachusetts, 1992.

Janson, B. N. A convergent algorithm for urban road networks. Transportation Research Record,

1318:69-80, 1991.

Kafura D. Object-oriented Software Design and Construction with C++. Prentice-Hall, Inc. New

Jersey, 1998.

Kanellakis, P., and C. H. Papadimitriou. Local search for the asymmetric traveling salesman

problem. Operations Research, 28(5):1086-1099, 1980.

Kaufman, D. E., and R. L. Smith. Fastest paths in time-dependent networks for IVHS

Application. IVHS Journal, 1:1-11, 1993.

Kim, B. J., A. A. Trani, X. Gu, and C. Zhong. Computer simulation model for airplane landing-

performance prediction. Transportation Research Record, 1562:53-62, 1996.

Laporte G. The traveling salesman problem: An overview of exact and approximate algorithms.

European Journal of Operational Research, 59:231-247, 1992a.

Laporte G. The vehicle routing problem: An overview of exact and approximate algorithms.

European Journal of Operational Research, 59:345-358, 1992b.

Law, A. M. and W. D. Kelton. Simulation modeling and analysis, 2nd Edition. McGraw-Hill, Inc.,

New York, 1991.

 236

Lawler, E. L. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston,

New York, 1976.

Lawler, E. L., J. L. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The Traveling Salesman

Problem. John Wiley & Sons, New York, 1985.

Leonard, D. R., J. B. Tough, and P. C. Baguley. CONTRAM - A traffic assignment model for

predicting flows and queues during peak periods. TRRL SR 568, 1978.

Lieberman, E. and A. K. Rathi. Traffic Flow Theory, A State-of-the-Art Report. TRB, 1992.

Available: http://www.tfhrc.gov/its/tft/chap10.pdf.

Lin, S. Computer solutions to the traveling salesman problem. Bell System Technical Journal,

44:2245-2269, 1965.

Lin, S., and B. W. Kernighan. An effective heuristic algorithm for the traveling salesman

problem. Operations Research, 21:498-516, 1973.

Luffsey, W. S. Air traffic control: How to become an FAA air traffic controller. Random House,

New York, 1990.

May, A. D. Traffic flow fundamentals. Prentice-Hall, Inc., New Jersey, 1990.

Mahmassani, H. S. Dynamic traffic simulation and assignment: Models, algorithms and

application to ATIS/ATMS evaluation and operation. Operation research and decision aid

methodologies in traffic and transportation management, Edited by Martine L. et al., NATO ASI

Series, F166:104-135, 1998.

Morton, T. E., and D. W. Pentico. Heuristic Scheduling Systems: with applications to the

production systems and project management, John Wiley & Sons, Inc., New York, 1993.

Neuman, F., and H. Erberger. Analysis of sequencing and scheduling methods for arrival traffic.

NASA Technical Memorandum 102795, Apr. 1990.

 237

Newell, G. F. Airport capacity and delay. Transportation Science, 13(3):201-241, 1979.

Odoni , A. R. The flow management problem in air traffic management. Flow control of

congested networks, Edited by A. R. Odoni et al., NATO ASI series, F38:269-288, 1987.

Or, I. Traveling salesman–type combinatorial problems and their relation to the logistics of

regional blood banking. Ph.D. thesis, Northwestern University, Evanston, IL., 1976.

Orda, A., and R. Rom. Shortest-path and minimum-delay algorithm in networks with time-

dependent edge-length. Journal of the Association for Computing Machinery, 37:603-625, 1990.

Papacostas, C. S., and P. D. Prevedouros. Transportation engineering and planning. Prentice-

Hall, Inc., New Jersey, 1993.

Papadimitriou, C. H., and K. Steiglitz. Combinatorial Optimization Algorithms and Complexity.

Prentice-Hall Inc, New Jersey, 1982.

Peeta, S., and H. S. Mahmassani. System optimal and user equilibrium time-dependent traffic

assignment in congested networks. Annals of Operation Research, 60:81-113, 1995.

Psaraftis, H. N. Dynamic programming approach for sequencing group of identified jobs.

Operations Research, 28(6):1347-1359, 1980.

Psaraftis H. N. A dynamic programming solution to the single vehicle many-to-many immediate

request Dial-A-Ride problem. Transportation Science, 14(2):130-154, 1980.

Psaraftis H. N. Analysis of an O(N2) heuristic for the single vehicle many-to-many Euclidean dial

a ride problem. Transportation Research, 17B:133-145, 1983a.

Psaraftis H. N. k-Interchange procedures for local search in a precedence-constrained routing

problem. European Journal of Operational Research, 13:391-402, 1983b.

Rakha, H. A. An evaluation of benefits of user and system optimized route guidance strategies.

Master Thesis, Queen's University, Kingston, Ontario, Canada, 1990.

 238

Ran, B., D. E. Boyce, and L. J. LeBlanc. A new class of instantaneous dynamic user-optimal

traffic assignment models. Operations Research, 41(1):192-202, 1993.

Ran, B., N. M. Rouphail, A. Tarko, and D. E. Boyce. Toward a class of link time functions for

dynamic assignment models on signalized networks. Transportation Research, 31B:277-290,

1997.

Reinelt, G. The traveling salesman-computational solutions for TSP applications. Number 840 in

lecture notes in computer science, Springer-Verlag, 1994.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorenson. Object-oriented modeling

and design. Prentice Hall, 1991.

Savelsbergh, M. W. P. Local search routing problems with time-windows. Annals of Operations

Research, 4:285-305, 1985.

Savelsbergh, M. W. P. A parallel insertion heuristic for vehicle routing with side constraints.

Statistica Neerlandica, 44(4):139-148, 1990a.

Savelsbergh, M. W. P. An efficient implementation of local search algorithm for constrained

routing problems. European Journal of Operational Research, 47:75-85, 1990b.

Savelsbergh, M. W. P. The vehicle routing problem with time-windows: Minimizing route

duration. ORSA Journal on Computing, 4(2):146-154, 1992.

Schildt, H. The complete reference C++, 3rd Edition. Osborne McGraw-Hill, Inc., New York,

1998.

Schildt, H. The complete reference C, 3rd Edition. Osborne McGraw-Hill, Inc., New York, 1995.

Sexton T., and L. Bodin. Optimizing single vehicle many-to-many operations with desired

delivery times: I. Scheduling. Transportation Science, 19(4):387-410, 1985a.

 239

Sexton T., and L. Bodin. Optimizing single vehicle many-to-many operations with desired

delivery times: II. Routing. Transportation Science, 19(4): 411-435, 1985b.

Shaffer, C. A. A practical introduction to data structures and algorithm analysis. Prentice-Hall

Inc., New Jersey, 1997.

Sheffi, Y. Urban Transportation Networks: Equilibrium Analysis with Mathematical

Programming Methods. Prentice-Hall Inc., New Jersey, 1985.

Sherif, Y. S., and A. K. Erdman. Program solves N-Job, M-Machine sequencing Problem.

Microelectronics and Reliability, 25(1):55-58, 1985.

Simpson, R. W. An integrated view of air traffic management problems. Flow control of

congested networks, Edited by A. R. Odoni et al., NATO ASI series, F38:309-322, 1987.

Sherali, H. D., and W. P. Adams. A hierarchy of relaxations between the continuous and convex

hull representations for zero-one programming problems. SIAM J. Discrete Math ., 3:411-430,

1990.

Sherali, H. D., and A. Alameddine. A New Reformulation-Linearization Algorithm for Bilinear

Programming Problems. Journal of Global Optimization, 2:379-410, 1992.

Sherali, H. D., and C. H. Tuncbilek. A Reformulation-Convexification approach for solving

nonconvex quadratic programming problems. Journal of Global Optimization, 7:1-31, 1995.

Sherali, H. D., and C. H. Tuncbilek. New reformulation-linearization/convexification relaxations

for univariate and multivariate polynomial programming problems. Operations Research Letters,

21(1):1-10, 1997.

Sherali, H. D., W. P. Adams, and P. J. Driscoll. Exploiting special structures in constructing a

hierarchy of relaxations for 0-1 mixed integer programs. Operations Research, 46(3):396-s405,

1998.

 240

Sherali, H. D., and W. P. Adams. A Reformulation-Linearization Technique for Solving Discrete

and Continuous Nonconvex Problems. Kluwer Academic Publishers, Dordrecht/Boston/London,

1999.

S herali, H. D., and E. L. Brown. A Quadratic Partial Assignment and Packing Model and

Algorithm for the Airline Gate Assignment Problem. Quadratic Assignment and Related

Problems, DIMACS Series in Discrete Mathematics and Theoretical Computer Science,

American Mathematical Society, eds. Pardalos, P. M., and H. Wolkowicz, 16:343-364, 1994.

Sherali, H. D., K. Ozbay, and S. Subramanian. The time-dependent shortest pair of disjoint paths

problem: complexity, models, and algorithms. Networks, 31:259-272, 1998.

Sherali, H. D., and P. J. Driscoll. On tightening the relaxations of Miller-Tucker-Zemlin

formulations for asymmetric traveling salesman problems, manuscript, Department of ISE,

Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1997.

Sherali, H. D., and Wang, H. Global Optimization of nonconvex factorable programming

problems, manuscript, Department of ISE, Virginia Polytechnic Institute and State University,

Blacksburg, Virginia, 1998.

Solomon M. M. The minimum spanning tree problem with time-window constraints. American

Journal of Mathematical and Management Sciences, 6(3):399-421, 1986.

Solomon M. M. Algorithms for the vehicle routing and scheduling problems with time-window

constraints. Operations Research, 35(2):254-265, 1987.

Solomon M. M., E. K. Baker, and J. R. Schaffer. Vehicle routing and scheduling problems with

time-window constraints: efficient implementations of solution improvement procedures. Vehicle

routing: Methods and studies, B. L. Golden and A. A. Assad (Ed.), Elsevier science publishers,

North-Holland, 85-105, 1988.

Starfield, A. M., K. A. Amith, and A. L. Bleloch. How to model it: Problem solving for the

computer age. McGraw-Hill Inc., New York, 1990.

 241

Subramanian, S. Routing algorithm for dynamic, intelligent transportation network . Master

Thesis, Virginia Polytechnic Institute and State University, 1997.

Syslo, M. M., N. Deo, and J. S. Kowalik. Discrete Optimization Algorithms with PASCAL

programs. Prentice Hall, New Jersey, 1983.

Taha, H. A. Integer programming: Theory, application and computations. Academic press, New

York, 1975.

Taha, H. A. Operations research, 4th edition. McMillan Publishing Company, London, 1987.

Trani, A. A., X. Gu, C. Zhong, and J. Cao. A system approach to enhance the ground simulation

capabilities of SIMMOD. Research paper, Virginia Polytechnic Institute and State University,

Blacksburg, Virginia, 1993.

Van Aerde, M. W. Modeling of Traffic Flows, Assignment and Queueing in Integrated

Freeway/Traffic Signal Networks. Ph.D. Dissertation, University of Waterloo, 1985.

Van Aerde, M. W., and S. Yagar. Dynamic integrated freeway/traffic signal networks: Problems

and proposed solutions. Transportation Research, 22A:435-444, 1988a.

Van Aerde, M. W., and S. Yagar. Dynamic integrated freeway/traffic signal networks: A routing-

based modeling approach. Transportation Research, 22A:445-453, 1988b.

Van Aerde, M. W. Class Notes. Unpublished, 1998.

Van Aerde, M. & Associates. INTEGRATION Released for WINDOWS: User's guide Volume I

& II: Fundamental model features and advanced model Features". Blackburg, VA, 1999.

Vankatakrishnan, C. S., A. Barnett, and A. R. Odoni. Landings at Logan airport: describing and

increasing airport capacity. Transportation Science, 27(3):211-227, 1993.

 242

Weijers, T., G. Maters, and P. Aardema. State transition diagram by OMT, Method Engineering

Encyclopaedia. Online, Available: http://www.univ-paris1.fr/CRINFO/dmrg/ MEE/misop009/,

1995.

Wie, B. An application of optimal control theory to dynamic user equilibrium traffic assignment.

Transportation Research Record, 1251:66-73, 1989.

Winston, P. H. On to C++. Addison-Wesley, Massachusetts, 1994.

Zhong, Caoyuan. Modeling of Airport Operations Using an Object-Oriented Approach. Ph.D.

Dissertation, Virginia Polytechnic Institute and State University, 1997.

Ziliaskopoulos, A., and H. S. Mahmassani. Time-Dependent Shortest Path Algorithm for Real-

Time Intlligent Vehicle Highway System Applications. Transportation Research Record,

1408:94-100, 1993.

Aviation capacity enhancement plan. FAA, Dec. 1998.

Documentation for the Consolidated Operations and Delay Analysis System. Office of avia tion

policy and plans, FAA, 1997.

Integrated Noise Model (INM) User’s guide ver. 5.1. FAA, 1996.

RAMS 2.3 Functional overview. Eurocontrol experimental Centre, 1998.

SIMMOD3 Simulation module: Software design documentation. ATAC Corporation, 1993.

SIMMOD3 Simulation module: Functional specification. ATAC Corporation, 1993.

 243

Appendix A: List of Input Data

Node data

field 1 serial number
field 2 id number

node number for gate: 1-999,
node number for taxiway: 1001-
9999,
node number for runway: 2001-
2999.

field 3 node type
G(gate),
T(Taxiway),
R(Runway),
I(Intersection).

field 4 x coordinate
field 5 y coordinate

Flight schedule

field 1 serial number
field 2 flight number (ex, AA2456)
field 3 Aircraft type (ex, B727-100)
field 4 operation type

 D(Departure)/A(Arrival)
field 5 Initial time (hour)
field 6 Initial time (minute)
field 7 Initial time (second)
field 8 Gate number
field 9 Runway number

Edge date

Line 1 field 1 scale
field 1 serial number
field 2 from node id
field 3 to node id
field 4 Edge type

 T(Taxiway)/R(Runway)/E(Runway
exit)

field 5 Edge id
field 6 maximum speed (mph)

Line 2 -

field 7 direction (ex, 2 (ways))

 244

Aircraft data

field 1 Serial number
field 2 Aircraft type B727-100
field 3 wheel base (m) 16.23
field 4 OEW (Operating Empty Weight, kg) 72600
field 5 MLW (Maximum Landing Weight, kg) 62400
field 6 CLmax (Maximum Lifting

Coefficient)
2.59872

field 7 Wing area (m2) 157.90
field 8 Wing span (m) 32.92
field 9 Length (m) 40.59
field 10 normal taxiing speed (km/hr) 30.0
field 11 maximum taxiing speed (km/hr) 40.0
field 12 maximum acceleration for taxiing

(m/s2)
2.0

field 13 maximum deceleration for taxiing
(m/s2)

-5.0

field 14 //normal takeoff speed (km/hr) // 300.0
field 15 //maximum acceleration for

rolling (m/s2)
// 9.80

field 16 //maximum acceleration for
takeoff (m/s2)

// 9.80

field 17 velocity at brake-release (ft/s) 27.41
field 18 velocity at lifting-off (ft/s) 230.6
field 19 acceleration at brake-release

(ft/s2)
6.96

field 20 k1 7.053357
field 21 k2 (accel. for takeoff = k1 – k2

*speed)
0.00357250

 245

Appendix B: Constants used in the Simulation Model

//Definition.h
#ifndef _DEFINITION_H
#define _DEFINITION_H
//---
// Controls parameters for for Simulation
//---
#define BATCH_JOB 0 // 0: NO, 1: YES If yes, then use "test.bat".
#define COMMUNICATION 1 // 1: voice channel, 2: data link
#define SEQUENCING 1 // 1: pure FCFS,

// 2: FCFS w/ landing priority, or
 // 3: SWAP squencing
#define spAlgorithm td_SP_2 // static_SP: Static SP
 // td_SP_1 : time-dependent shortest path algorithm for rNode->all, for all timeSlices
 // td_SP_2 : time-dependent shortest path algorithm for rNode->all, for a SINGLE
timeSlice
// ------------------- CAUTION -------------------
//
// "td_SP_1" may cause a memory deficiency poblem. cause this method takes huge memories such as
//
// int td_shortPath[MAX_NODES][MAX_NODES][NumTimeSlices]
// float td_shortTime[MAX_NODES][MAX_NODES][NumTimeSlices]
//
// Also, takes much more computation time comparing with method 2.
// In conclusion, not recommended.

#define PRINT_FLIGHT_STATE 0
#define PRINT_CONTROLLER_STATE 0
// 0: the flight/cotroller state file is not written. (This will save time a lot.)
//-------------------------------
// Definitions for Problem Size
//-------------------------------
#define MAX_NODES 70 // Max. number of Nodes this simulation can handle
#define MAX_FLIGHTS 120 // Max. number of Flights this simulation can handle
#define MaxRunways 10 // Max. number of Runways this simulation can handle
#define MaxNodesPerIntersection 5 // Max. number of Nodes which are connected to one intersection
#define MaxAcftModels 50 // Max. number of AcftModels this simulation can handle
#define InfDistance 99999.9 // Inifite distance for SP algorithm (considered as infinity)
#define MaxNodeIndex 99999 // Max. index for node numbering

//-------------------------------
// Definitions for Simulation Parameters
//-------------------------------
//#define UpdateTDSP 300 // Update TDSP every UpdateTDSP seconds and
 // NumTimeSlices = SimulationDuration / UpdateTDSP in Simulation

#define dt (float) 1.0 //second
#define StartHour 7
#define StartMinute 0
#define StartSecond 0
#define EndHour 9
#define EndMinute 0
#define EndSecond 0
#define NumTimeSlices 180 // Max. number of time slices to keep the Time-dependent link travel

time for TDSP algorithm
#define AddLinkTravelTime 3.5 // (sec) expected extra link travel time for each connflicting

flight
#define MaxDelay 600 // (sec.) should be variable to each problem.
#define BufferTimeRatio 1.1 // norminal ROT for departure =
 // ready time to taxi + normal taxiing time * BufferTimeRatio (=1.1))
 // this number is also used in "Random Generation"

//-------------------------------
// UK(ft) -> SI(meter) Unit // Multiply the conversion factor
//-------------------------------
#define meter_per_ft 0.305 // Conversion factor (ft -> meter)
#define fps_per_mph 1.4667 // Conversion factor (mi/hr -> ft/sec)
#define km_per_mile 1.609 // Conversion factor (mile -> km)
#define kg_per_lb 0.4536 // Conversion factor (pound -> kg)

//-------------------------------
// SI(meter) -> UK(ft) Unit
//-------------------------------
#define ft_per_meter 3.28 // Conversion factor (meter -> ft)
#define mile_per_km 0.62137 // Conversion factor (mile -> km)
#define lb_per_kg 2.2046 // Conversion factor (kg -> pound)

 246

//-------------------------------
// Aircraft Classification Weight
//-------------------------------
#define WtSmallLarge 60000 // if acft weight < WtSmallLarge (lb) then this is "small"
#define WtLargeHeavy 300000 // if acft weight > WtLargeHeavy (lb) then this is "heavy"

//-------------------------------
// Car-Following
//-------------------------------
#define minGap 15 // minimum gap (second) for coflicting aircraft at Intersection
 // if increase this, the TDSP will be more effective.
#define SafeDistanceFromCrossToStop 50 // Safe Distance from the cross end for aircraft to stop.

(ft)
#define maxLegs 5 // maximum number of legs for a intersection.
 // this number is the same to the maximum number of conflicting flights at a

intersection
#define u_f 41.0 //free flow speed (ft/sec) = 45kph
#define h_j 83.0 //jam headway (ft/veh)
#define k_h // design parameter for headwayControl logic in vehicle-following model
#define k_s // design parameter for speedControl logic in vehicle-following model
#define reactionTime 1.55 // delta_t for micro car-following model
#define alpha_ .37 // sensitivity paprameter (for micro car-following model)
#define normSpeed_mph 18.65 // normal taxiing speed (mph) = 30 (kph)
#define normSpeed_fps (normSpeed_mph*fps_per_mph) // normal taxiing speed (fps)
//#define safetyDist

//-------------------------------
// For Landing Module
//-------------------------------
// 1) for Flaring Out phase
#define gamma (2.75 * 3.1415 / 180) // radian
 // Tangent value of the descent flight path angle (degree, ~N(2.73,0.08^2))
#define h_th_ft 50. // Threashold crossing height (ft) (meter, ~N(15.2,3^2))
#define g_mps2 9.8 // Acceleration of gravity (meter/sec^2)
#define n_fl 1.1 // Flare load factor (1.1~1.3)
#define delta_m 25.0 // Correction distance for touchdown diatnce in association with

runway length (m/100 m runway length)
#define rho 1.1673 // Standard atmosphere air density at 500m (kg/m^3)
#define wtFactor 0.5 // weight factor for landing weight (= (OEW + MLW) * wtFactor)

// 2) for Free Rolling (FR) phase
#define timeFR 2 // Time for free rolling (sec)
#define accFR_mps2 -0.7 // the acceleration for Free Rolling (m/sec^2)

// 3) for Braking phase
#define wtForDecSpd 41000
#define decisionSpdHeavy_mps 35 // decision speed for heavy aircraft (wt > 41000 lb)
#define decisionSpdLarge_mps 27 // decision speed for large aircraft (wt < 41000 lb)

#define accBrakeB727_mps2 -2.19 // decaleration for braking phase (B727) ~N(2.19, 0.416^2)
#define accBrakeB737_mps2 -2.25 // decaleration for braking phase (B737) ~N(2.25, 0.471^2)
#define accBrakeB757_mps2 -2.01 // decaleration for braking phase (B757) ~N(2.01, 0.478^2)
#define accBrakeDC9_mps2 -2.03 // decaleration for braking phase (DC9) ~N(2.03, 0.414^2)
#define accBrakeMD80_mps2 -2.05 // decaleration for braking phase (MD80) ~N(2.05, 0.387^2)
#define accBrakeDefault_mps2 -2.10 // decaleration for braking phase (else) ~N(2.05, 0.387^2)

// 4) for Coasting phase
#define EXIT_SPEED_mps 15 // exit speed from the runway
#define EXIT_SPEED_fps 49.2

//-------------------------------
//InterEventTimes in communication
//-------------------------------
#if (COMMUNICATION == 1) // VOICE_CHANNEL

#define waitngToContactTime 10.0//10.00 // for waiting to the next contact
 // due to either communication jam, or pushback congestion for dep
#define sendingRequestTime 4.0//11.00 // for sendingRequest (flight)
#define receivingRequestTime 4.0//11.00 // for receivingRequest (controller)
#define waitingCommandTime 3.0 // for waitingCommand (flight)
#define judgingTime 3.0 // for judging (controller)
#define receivingCommandTime 4.0//14.00 // for receivingCommand (flight)
#define sendingCommandTime 4.0//14.00 // for sendingCommand (controller)
#define sendingConfirmationTime 3.0//15.00 // for sendingConfirmation(flight)
#define recievingConfirmationTime 3.0//15.00 // for receivingConfirmation(controller)

#else // DATA_LINK

#define waitngToContactTime 1.0 // for waiting to the next contact

 247

 // due to either communication jam, or pushback congestion for
dep

#define sendingRequestTime 0.0 // for sendingRequest (flight)
#define receivingRequestTime 0.0 // for receivingRequest (controller)
#define waitingCommandTime 3.0 // for waitingCommand (flight)
#define judgingTime 3.0 // for judging (controller)
#define receivingCommandTime 0.0 // for receivingCommand (flight)
#define sendingCommandTime 0.0 // for sendingCommand (controller)
#define sendingConfirmationTime 0.0 // for sendingConfirmation(flight)
#define recievingConfirmationTime 0.0 // for receivingConfirmation(controller)

#endif

#define TotalCommunicationTime (sendingRequestTime + waitingCommandTime + receivingCommandTime +

sendingConfirmationTime)
#define MaxEarlierContactTime 15 // if flight contact no earlier than the

scheduled time
 // by MaxEarlierContactTime then he can continue

to comminicate
//-------------------------------
//etc.
//-------------------------------
#define PILOT_SCAN_RATE 3.0 // Pilot detect the potential conflict every

PILOT_SCAN_RATE secconds
#define TOL_TAXING_SPEED_GAP 0.01 // Tolerable speed gap between normalTaxiSpeed and

currentSpeed
 // (this is only for the first flight in the link)
 // if abs(normalTaxiSpeed - currentSpeed) > TOL_TAXING_SPEED_GAP, then need accel or

decel
#define maxValue(a, b) (((a) > (b)) ? ((a) : (b)))
#define minValue(a, b) (((a) > (b)) ? ((b) : (a)))

#endif

 248

Appendix C: Header Files for the Simulation Model

//AcftModel.h
#ifndef _ACFTMODEL_H
#define _ACFTMODEL_H
class AcftModel{
public:
 AcftModel();
 AcftModel(char* id, float wb_m, float oew_kg, float mlw_kg,
 float cl_m, float wa_m2, float ws_m, float l_m,
 float vT_kph, float vMT_kph, float aMT_mps2, float dMT_mps2,
 float vTo_kph, float aMR_mps2, float aMTo_mps2,
 float v1, float v2, float a1, float k1, float k2);
 ~AcftModel();

 //readers
 char* read_id();
 float read_cl_max();
 float read_spdAccelCoeff();

 // SI ---
 float read_wheelBase_m();
 float read_OEW_kg();
 float read_MLW_kg();
 float read_wingArea_m2();
 float read_wingSpan_m();
 float read_length_m();

 //Taxing
 float read_velNormTaxi_kph(); float read_velNormTaxi_mps();
 float read_velMaxTaxi_kph(); float read_velMaxTaxi_mps();
 float read_accMaxTaxi_mps2();
 float read_decMaxTaxi_mps2();
 float read_decNormTaxi_mps2();
 float read_distNormalStop_m();

 // FlaringOut
 float read_timeFlare();

 float read_velApproach_kph(); float read_velApproach_mps();
 float read_velFlare_kph(); float read_velFlare_mps();
 float read_velTouchdown_kph(); float read_velTouchdown_mps();
 float read_accFlare_mps2();

 // FreeRolling
 float read_accFreeRoll_mps2();
 float read_timeFreeRoll();

 // Braking
 float read_decisionSpd_mps();
 float read_accBrake_mps2();

 // Takeoff
 float read_velTakeoff_kph(); float read_velTakeoff_mps();
 float read_accMaxRoll_mps2();
 float read_accMaxTakeoff_mps2();

 // UK ---
 float read_wheelBase_ft();
 float read_OEW_lb();
 float read_MLW_lb();
 float read_wingArea_ft2();
 float read_wingSpan_ft();
 float read_length_ft();

 //Taxing
 float read_velNormTaxi_mph(); float read_velNormTaxi_fps();
 float read_velMaxTaxi_mph(); float read_velMaxTaxi_fps();
 float read_accMaxTaxi_fps2();
 float read_decMaxTaxi_fps2();
 float read_decNormTaxi_fps2();
 float read_distNormalStop_ft();

 // FlaringOut
 float read_velApproach_mph(); float read_velApproach_fps();
 float read_velFlare_mph(); float read_velFlare_fps();
 float read_velTouchdown_mph(); float read_velTouchdown_fps();
 float read_accFlare_fps2();

 249

 // FreeRolling
 float read_accFreeRoll_fps2();

 // Braking
 float read_decisionSpd_fps();
 float read_accBrake_fps2();

 // Takeoff
 float read_velTakeoff_mph(); float read_velTakeoff_fps();
 float read_accMaxRoll_fps2();
 float read_accMaxTakeoff_fps2();

 float read_v1_fps(); // velocity at brake-release (ft/sec)
 float read_v2_fps(); // velocity at lifting-off (ft/sec)
 float read_a1_fps2(); // acceleration at lifting-off (ft/sec^2)
 float read_k1(); // a = k1 + k2 * v
 float read_k2();

private:
 char* id_str;
 float spdAccelCoeff, // spdAccelCoeff(=k)= maxAccel / maxSpeed;
 cl_max; // max. landing lift coeffcient

 /*---
 SI Unit (The international System of Units)
 ---*/
 float
 // Dimensions
 wheelBase_m,
 OEW_kg,
 MLW_kg,
 wingArea_m2,
 wingSpan_m,
 length_m,

 // Taxing
 velNormTaxi_kph, velNormTaxi_mps, // normal taxing speed
 velMaxTaxi_kph, velMaxTaxi_mps, // maximum taxing speed
 accMaxTaxi_mps2, // maximum accel for taxing
 decMaxTaxi_mps2, // maximum decel for taxing
 decNormTaxi_mps2, // normal decel for taxing
 distNormalStop_m, // stopping distance at normal taxing speed

 // Landing
 // 1) Flaring phase
 velStall_kph, velStall_mps, // stall speed
 //vCruise_kph, vCruise_mps, // normal cruising speed
 velApproach_kph, velApproach_mps, // normal approach speed
 velFlare_kph, velFlare_mps, // threshold crossing speed
 velTouchdown_kph, velTouchdown_mps, // normal Touchdown speed
 distFlare_m, // Flaring distance
 accFlare_mps2, // flaring acceleration (actually

deceleration)
 timeFlare, // flaring duration
 //dFlare_m, // fixed Flare dist, cummulative Flare dist
 //tFlare,

 // 2) Free Rolling phase
 accFreeRoll_mps2,
 timeFreeRoll,
 //tFreeRolling,
 //dFreeRolling_m,

 // 3) Braking phase
 decisionSpd_mps,
 accBrake_mps2,
 //tBrake,
 //dBrake_m,

 // 4) Coasting phase
 //aCoast_mps2,
 //dCoast_m,
 //tCoast_m,

 // Takeoff
 velTakeoff_kph, velTakeoff_mps, // normal Takeoff speed
 accMaxRoll_mps2, // maximum accel for rolling
 accMaxTakeoff_mps2; // maximum accel for takeoff

 /*---

 250

 UK Unit (The British Units)
 ---*/
 float

 // Dimensions
 wheelBase_ft,
 OEW_lb,
 MLW_lb,
 wingArea_ft2,
 wingSpan_ft,
 length_ft,

 // Taxing
 velNormTaxi_mph, velNormTaxi_fps, // normal taxing speed
 velMaxTaxi_mph, velMaxTaxi_fps, // maximum taxing speed
 accMaxTaxi_fps2, // maximum accel for taxing
 decMaxTaxi_fps2, // maximum decel for taxing
 decNormTaxi_fps2, // normal decel for taxing
 distNormalStop_ft, // stopping distance at normal taxing speed

 // Landing

 // 1) Flaring phase
 velStall_mph, velStall_fps, // stall speed (constant from equation)
 //vCruise_mph, vCruise_fps, // normal cruising speed (constant from equation)
 velApproach_mph, velApproach_fps, // normal approach speed (constant from equation)
 velFlare_mph, velFlare_fps, // threshold crossing speed (constant from

equation)
 velTouchdown_mph, velTouchdown_fps, // normal Touchdown speed (constant from

equation)
 distFlare_ft, // flare dist (constant from equation)
 accFlare_fps2, // average acceleration during Flaring out phase

 // 2) Free Rolling phase
 accFreeRoll_fps2,

 // 3) Braking phase
 decisionSpd_fps,
 accBrake_fps2,

 // 4) Coasting phase

 //Takeoff
 velTakeoff_mph, velTakeoff_fps,
 accMaxRoll_fps2,
 accMaxTakeoff_fps2,

 v1_fps, // velocity at brake-release (ft/sec)
 v2_fps, // velocity at lifting-off (ft/sec)
 a1_fps2,// acceleration at lifting-off (ft/sec^2)
 k1, // a = k1 - k2 * v
 k2;
};

#endif

 251

// Array3D.cpp : Defines the entry point for the console application.
//3DARRAY.h
#ifndef _3DARRAY_H
#define _3DARRAY_H
#include "ostream.h"

template <class type> class TwoDArray{
public:
 TwoDArray(int nRows, int nCols): m_nRows(nRows), m_nCols(nCols){
 m_p2DData = new type[nRows*nCols];
 }
 ~TwoDArray(){
 delete m_p2DData;
 }
 type& operator()(int nRow, int nCol)
 {
 //check dimensions
 if(nRow<0 || nRow>=m_nRows || nCol<0 || nCol>=m_nCols)
 {
 throw "Trying to acces array out of bounds\n";
 }
 return *(m_p2DData + nRow*m_nCols + nCol);
 }
private:
 type* m_p2DData;
 const int m_nRows;
 const int m_nCols;
};

template <class type> class ThreeDArray{
public:
 ThreeDArray(int nPages, int nRows, int nCols):m_nPages(nPages), m_nRows(nRows), m_nCols(nCols){
 m_p3DData = new type[nPages*nRows*nCols];
 if(m_p3DData == NULL)
 cout << "Array allocation error: Too big array allocation in ThreeDArray
 constructor.\nPlease use the td_SP_2 as a TDSP method\n\n";

 }
 ~ThreeDArray(){
 delete m_p3DData;

 }
 type& operator()(int nPage, int nRow, int nCol)
 {
 //check dimensions
 if(nPage<0 || nPage>=m_nPages ||
 nRow<0 || nRow>=m_nRows ||
 nCol<0 || nCol>=m_nCols)
 {
 cout << "nPage" << nPage << " nRow" << nRow << " nCol" << nCol;
 throw "Trying to acces array out of bounds\n";
 }
 return *(m_p3DData + nPage*m_nRows*m_nCols + nRow*m_nCols + nCol);
 }
private:
 type* m_p3DData;
 const int m_nPages;
 const int m_nRows;
 const int m_nCols;
};
#endif

 252

//Clock.h
#ifndef _CLOCK_H
#define _CLOCK_H

#include "Definition.h"

 253

class NormalTime{
public:

 254

 255

 NormalTime();
 ~NormalTime();
 NormalTime(int h, int m, float s);
 void write_NormalTime(int h, int m, float s);
protected:
 int hour, minute;
 float second; // (float to keep the deci-second)
};

class SystemTime{
public:
 SystemTime();
 ~SystemTime();
protected:
 float systemSecond; // (absolute time starting from 0.0 second)
};

class Clock: private NormalTime, private SystemTime {
public:
 Clock();
 ~Clock();
 Clock(float st);
 Clock(int h, int m, float s);

 // reader and writer for NormalTime
 void write_Time(float st);
 void write_Time(int h, int m, float s);
 int read_hour();
 int read_minute();
 float read_second();
 float read_systemTime();
 void convertSystemTimeToNormalTime(float st);

float convertNormalTimeToSystemTime(int h, int m, float s);

 // reader and writer for SystemTime
 void advanceTime();
 void advanceTime(float deltaT);
};

#endif

 256

//Controller.h
#ifndef _CONTROLLER_H
#define _CONTROLLER_H
#include "AcftModel.h"
#include "ARRAY.h"
#include "Clock.h"
#include "Definition.h"
#include "Edge.h"
#include "Flight.h"
#include "Header.h"
#include "Node.h"
#include "Point.h"
#include "Graph.h"
#include "TaxiEdge.h"
#include "TaxiEdgeList.h"
#include "Type.h"
#include "Clock.h"
#include "Q.h"
#include "Runway.h"

class Controller{
public:

 Controller();
 ~Controller();

Controller(int totNodes, Flight* f_p, Node* n_p, Graph* FS_p = NULL, Graph* BS_p = NULL);
 virtual void communicate(Flight* f, FlightState_Type currFlightCommState, float sysTime);
 void static_Dijkstra(unsigned int rIndex, int totNodes, ofstream& fStar_out);
 void findStaticPath(Flight* f, int totNodes, unsigned int sPath[]); //find enRoute

//find & write shortPath
 void findStaticPath(int totNodes, unsigned int rIndex, unsigned int d, unsigned int sPath[]);
 // update the TDSP from this flight's origin to other nodes.
 void td_Dijkstra_Forward(Flight* cFlight_p, int totNodes, ofstream& fowardStar_out);
 void td_Dijkstra_Forward(unsigned int rIndex, int totNodes, ofstream& forwardStar_out);

 // find Time Dependent Shortest Path for all time slices from rNode

// -> all nodes, i.e., forward search style
 void td_Dijkstra_Forward_2(float sTime, Flight* cFlight_p, int totNodes, ofstream& fStar_out);
 void td_Dijkstra_Forward_2(float sTime, unsigned int rIndex, int totNodes, ofstream&

forwardStar_out);
// find Time Dependent Shortest Path for a single start time slice from rNode -> all nodes,

i.e., forward search style
int findTotalConfFlights(Edge* currEdge_p, int tSlice); // find the number of conflicting

flights on the all conflicting edges
 void findTDPath(Flight *f, int totNodes, unsigned int td_sPath[], float sTime);

 void findTDPath(int totNodes, unsigned int oIndex, unsigned int dIndex, unsigned int td_sPath[],
int timeSlice);

 void update_NumAcft_TravelTimes(TaxiEdgeList* nTaxiEdgeList_p, float sysTime);
 TaxiEdgeList* make_TaxiEdgeList_p(Flight* f, SP_Algorithm spMethod, int timeSlice = -999);

 TaxiEdgeList* make_TaxiEdgeList_p(int oNodeIndex, int dNodeIndex, SP_Algorithm spMethod, int
timeSlice = -999);

 //update the flight strips
 std::list<Flight*> read_pendingFlightList();
 std::list<Flight*> read_processingFlightList();
 std::list<Flight*> read_doneFlightList();

 void pushbackPendingList(Flight* f_p, ofstream& log_out, char* controllerName);

void pushbackProcessingList_1(int sTime, Flight* f_p,ofstream& log_out, char*
controllerName1, char* controllerName2);

// remove from pending, and pushback to processing list

 void pushbackProcessingList_2(int sTime, Flight* f_p, ofstream& log_out, char* controllerName);
 // just pushback to processing list
 void pushbackDoneList(int sTime, Flight* f_p, ofstream& log_out, char* controllerName);

 // remove from processing list, and pushback to done list
 virtual void judge(ofstream& log_out, Flight* f_p, float sysTime);

 //readers
 ControllerState_Type read_currState();
 float read_shortTime(unsigned int i, unsigned int j);
 float read_td_shortTimes(unsigned int r, unsigned int d, int tS);
 float read_td_shortTime_2(unsigned int r, unsigned int d);
 Flight* read_currFlightComm_p();
 Flight* read_prevRunwayOccupiedFlight_p();
 float read_delayTimeForFlight();
 // writers
 void write_currState(ControllerState_Type cst);
 void write_prevRunwayOccupiedFlight_p(Flight* pf);

 257

 void write_currFlightComm_p(Flight* cf);
 void write_delayTimeForFlight(float dTFF);

void write_initFlightsList_p(Flight* f_p); // write the pointer to the starting point of
Flights linked list

protected:
ControllerState_Type currState;

 ControllerMessage_Type decision;
 float delayTimeForFlight; //if delayTime > 0.00, then the flight will contact L/C again in

delayTime.

 // for STATIC SHORTEST PATH

 unsigned int shortPath[MAX_NODES][MAX_NODES], //shortest path matrix
 sPath[MAX_NODES]; //shortest path from one node to the other nodes
 float shortTime[MAX_NODES][MAX_NODES]; //travel Time for semi-dynamic

 // for TIME_DEPENDENT SHORTEST PATH
 unsigned int td_sPath[MAX_NODES];
 unsigned int td_shortPath_2[MAX_NODES][MAX_NODES]; //shortest path matrix
 float td_shortTime_2[MAX_NODES][MAX_NODES]; //travel Time for semi-dynamic
 Clock nextEventTime;
 Flight* initFlightsList_p, // pointer to the starting point of Flights linked-list
 * prevRunwayOccupiedFlight_p,// previous Flight which occupied runway (for the

min. separation rule)
 * currFlightComm_p; // current communicating Flight
 Node* nodes_p; // pointer to the starting point of Nodes array
 Edge** initEdgeNodes_p; // pointer to the starting point of EdgeNodes array
 Graph* forwardStar_p, // pointer to the airport network with forwardStar_p
 * backwardStar_p; // pointer to the airport network with backwardStar_p
 std::list<Flight*> pendingFlightList,
 processingFlightList,
 doneFlightList;
 std::list<Flight*>::iterator p;
};

/**************** GROUND CONTROLLER **********************/
class GroundController: public Controller{
public:
 GroundController();
 GroundController(int totNodes, Flight* f_p, Node* n_p, Graph* FS_p = NULL, Graph* BS_p = NULL);
 ~GroundController();

 virtual void communicate(ofstream& log_out, Flight* f_p, FlightState_Type currFlightCommState,
float sysTime);

 virtual void judge(ofstream& log_out, Flight* f_p, float sysTime);
private:
 TaxiEdgeList* newTaxiEdgeList_p; // pointer to the starting point of New TaxiEdge list
};

/**************** LOCAL CONTROLLER **********************/
class LocalController: public Controller{
public:
 LocalController();

 LocalController(int totNodes, Flight* f_p, Node* n_p, int totRwy, Runway **rwy_p, Graph* FS_p =
NULL, Graph* BS_p = NULL);

 ~LocalController();
virtual void communicate(ofstream& log_out, Flight* f_p, FlightState_Type

currFlightCommState, float sysTime);
 virtual void judge(ofstream& log_out, Flight* f_p, float sysTime);

float judgeForClearance(float sysTime);//decide the clearance for takeoff/landing with
delayTimeForFlight if needed.

 void write_prevFlight_p(Flight* pF);
 void write_currFlight_p(Flight* cF);
 void write_nextFlight_p(Flight* nF);
 Flight* read_prevFlight_p();
 Flight* read_currFlight_p();
 Flight* read_nextFlight_p();
private:
 int totRunway;
 Runway **runway_p;

TaxiEdgeList* newRunwayEdgeList_p; // pointer to the starting point of New RunwayEdge list
for Takeoff/Landing

 Flight *prevFlight_p, //previous flight on the runway operation
 *currFlight_p, //currnet flight on the runway operation
 *nextFlight_p; //next flight on the runway operation
 float minSep[4][3][3]; // Min. Separtion Rule
};

#endif

 258

//Edge.h

#ifndef _EDGE_H
#define _EDGE_H
#include "Type.h"
#include "Definition.h"
#include "Node.h"
#include <Math.h> //for the "sqrt" and "pow"

class Flight;
class Edge{
public:
 Edge();
 ~Edge();
 Edge(float scale, char* id_str, char type, Node* f, Node* t, float r);
 // readers
 char* read_id_str_p();
 Edge_Type read_edgeType();
 Node* read_fromNode_p();
 Node* read_toNode_p();
 int read_fromNodeId();
 int read_toNodeId();
 int read_fromNodeIndex();
 int read_toNodeIndex();
 float read_restrict();
 float read_distance_ft();
 float read_distance_m();
 float read_travelTime();
 float* read_travelTimes(); // return the pointer to array of "the travelTimes"
 float read_travelTimes(int tSlice);
 Flight* read_flightInEdge_p(); // return the pointer to the flight in the edge
 int read_numFlightInEdge();
 int read_numFlightInEdge(int tSlice); //
 Edge* read_nextEdge_p();
 Edge* read_nextBSEdge_p();
 // writers
 void write_distance_ft(float d_ft);
 void write_distance_m(float d_m);
 void write_travelTime(float tt);
 void add_numAcft(int tSlice);
 void write_travelTimes(int tSlice, float tt);
 void write_nextEdge_p(Edge* nxt_p);
 void write_nextBSEdge_p(Edge* nxtBS_p);
 void write_flightInEdge_p(Flight* tempFlightInEdge_p);
 void write_numFlightInEdge(int nFIE);
private:
 char *id_str_p;
 Edge_Type edgeType;

 float distance_ft,
 distance_m,
 travelTime,
 restrict; //e.g. exit speed if this edge is exit edge.
 float *travelTimes; // For Time dependent SP algorithm (Variable Array)
 //CurrentEdgeDirection_Type currentDirection;

 Node *fromNode_p,
 *toNode_p;
 Flight *flightInEdge_p;
 int numFlightInEdge,

 *numAcft; // # of vehicles in the edge for Time dependent SP algorithm
(Variable Array)
 Edge *nextEdge_p, // Pointer to NextEdge in forwardStar

 *nextBSEdge_p; // Pointer to NextEdge in backwardStar
};

#endif

 259

//Flight.h
#ifndef _FLIGHT_H
#define _FLIGHT_H
#include "Type.h"
#include "Point.h"
#include "AcftModel.h"
#include "Header.h"
#include "Point.h"
#include "Position.h"
#include "Clock.h"
#include "Graph.h"
#include "Edge.h"
#include "Runway.h"
#include "TaxiEdge.h"
#include "TaxiEdgeList.h"
#include "Definition.h"

class GroundController;
class LocalController;
class Flight{
public:

Flight(char* fId_p, AcftModel* mdl_p, char oper, int sHour, int sMin, float sSec,
 int hour_norm, int min_norm, float sec_norm, int hour_fcfs, int min_fcfs, float sec_fcfs,
 int hour_swap, int min_swap, float sec_swap, int gIndex, char *rId_p,
 Runway** runway_p, int totRunway, Node* nodes, Graph* FS_p, Graph* BS_p, Flight* pFIL_p,
 GroundController* GC_p, LocalController* LC_p);
 ~Flight();

 //Communication
 bool checkNeedToComm(float nxtCommEventTime, float sysTime);
 void communicateGroundController(ofstream& log_out, float sysTime);

 void communicateLocalController(ofstream& log_out, float sysTime);

 //TakeOff
 void roll();
 void liftOff();

 //Landing
 void flareOut();
 void freeRoll();
 void brake();
 void coast(float dToExit);
 void exitRunway(float dToExitEnd);
 void parkingForArrival();
 Node* findExitNode_p();

float findDistToExit();
 float findDistToTaxiDestination();
 float findDistToTheCross();

 //Taxing
 void taxiToDest(Clock sysTime, float scale, ofstream& log_out);
 void move(TaxiEdgeList* crrEdgeList_p, int desNodeIndex);
 void deQueue(Edge* currTaxiEdge_p);
 void enQueue(Edge* nextTaxiEdge_p);
 float computeNextAccel_1();
 float computeNextAccel_2(float d, float v_fnl);
 float computeNextAccel_3(Clock sysTime);
 float computeSpdAfterD(float distToNextExit);
 float computeNextTaxiAccel(Clock sysTime, float scale, ofstream& log_out);
 void collisionDetectResolve(Clock sysTime, float scale, ofstream& log_out);
 float carFollowing();

 //Statistics
 void statistics(ofstream& log_out);

 // For sorting the STL list (see 651 pp., in "complete reference C++")
 // The required operator overloadings are dependent on the compiler.
 friend bool operator < (Flight &o1, Flight &o2);

 friend bool operator > (Flight &o1, Flight &o2);
 friend bool operator == (Flight &o1, Flight &o2);
 friend bool operator != (Flight &o1, Flight &o2);

 //Readers
 char* read_flightId_p();
 char* read_runwayId_p();
 AcftModel* read_acftModel_p();
 Operation_Type read_operationType();
 int read_orgNodeIndex();
 int read_desNodeIndex();
 int read_gateNodeIndex();
 int read_exitEnterNodeIndex();

 260

 int read_currNodeIndex();
 int read_nextNodeIndex();
 Point read_currPoint();
 float read_currSpeed();
 Position* read_currPosition_p();
 float read_nextAccel();
 ControllerMessage_Type read_permission();
 Priority_Type read_priority();
 ConflictChecked_Type read_conflictChecked();
 Flight* read_conflictingFlight_p();
 float read_depTimeAtCross();
 float read_nextCommEventTime();
 float read_nextMoveEventTime();
 float read_rotTimeRecommended();
 float read_pushbackTimeRecommended();
 float read_rotTimeNorm();
 float read_rotTimeFcfs();
 float read_rotTimeSwap();
 float read_phaseTimeStamp_b();
 float read_phaseTimeStamp_e();
 float read_linkTimeStamp_b();
 float read_linkTimeStamp_e();
 float read_taxingTimeStamp_b(); // the begin/end time stamp of taxing
 float read_taxingTimeStamp_e();
 float read_rotTimeStamp_b();
 float read_rotTimeStamp_e();
 float read_GC_TimeStamp_b();
 float read_GC_TimeStamp_e();
 float read_LC_TimeStamp_b();
 float read_LC_TimeStamp_e();

float read_taxingDelay_sec(); // delay due to taxiway congestion
 float read_runwayDelay_sec(); // delay due to runway congestion
 float read_commGCDelay_sec(); // delay due to communication jam
 float read_commLCDelay_sec(); // delay due to communication jam
 float read_travelTime();
 float read_lastTaxiEdgeLength_ft();
 GroundController* read_groundController_p();
 LocalController* read_localController_p();
 Graph* read_forwardStar_p();
 Graph* read_backwardStar_p();
 TaxiEdgeList* read_taxiEdgeList_p();
 TaxiEdgeList* read_runwayEdgeList_p();
 Edge* read_currTaxiEdge_p();
 Edge* read_currRunwayEdge_p();
 Node* read_exitNode_p();
 Flight* read_leadingFlightInEdge_p();
 Flight* read_followingFlightInEdge_p();
 Flight* read_nextFlightInList_p();
 Flight* read_prevFlightInList_p();
 FlightState_Type read_currMoveState();
 FlightState_Type read_currCommState();
 int read_numTrialToContactLC();

 int read_numTrialToContactGC();

 //Writers
 friend ofstream &operator<<(ofstream &stream, Flight f);
 void write_currMoveState(FlightState_Type fst);
 void write_currCommState(FlightState_Type fst);
 void write_currSpeed(float cSpd);

void write_permission(ControllerMessage_Type pt);
 void write_priority(Priority_Type pr);
 void write_conflictChecked(ConflictChecked_Type cC);
 void write_conflictingFlight_p(Flight* cF);
 void write_depTimeAtCross(float dTAC);
 void write_nextAccel(float nxtAccel);
 void write_systemInputTime(float sysInputTime);
 void write_nextCommEventTime(float nextCETime);
 void write_nextMoveEventTime(float nextMETime);
 void write_startTime(float stTime); // write the simulation input time.
 void write_phaseTimeStamp_b(float sysTime);
 void write_phaseTimeStamp_e(float sysTime);
 void write_linkTimeStamp_b(float sysTime);
 void write_linkTimeStamp_e(float sysTime);
 void write_taxingTimeStamp_b(float sysTime); // the begin/end time stamp of taxing
 void write_taxingTimeStamp_e(float sysTime);
 void write_rotTimeStamp_b(float sysTime);
 void write_rotTimeStamp_e(float sysTime);
 void write_GC_TimeStamp_b(float sysTime);
 void write_GC_TimeStamp_e(float sysTime);

 261

 void write_LC_TimeStamp_b(float sysTime);
 void write_LC_TimeStamp_e(float sysTime);
 void write_taxingDelay_sec(float tTD);
 void add_numTrialToContactLC(); // add by 1
 void subtract_numTrialToContactLC(); // subtract by 1
 void add_numTrialToContactGC(); // add by 1
 void subtract_numTrialToContactGC(); // subtract by 1
 void add_taxingDelay_sec(float tD_sec); // delay due to taxiway congestion

void add_runwayDelay_sec(float rD_sec); // delay due to runway congestion (not used for the time
being)

void add_commGCDelay_sec(float cGCD_sec); // delay due to communication jam
 void add_commLCDelay_sec(float cLCD_sec); // delay due to communication jam
 void write_lastTaxiEdgeLength_ft(float lTEL_ft);
 void write_taxiEdgeList_p(TaxiEdgeList *newEdgeList_p);
 void write_runwayEdgeList_p(TaxiEdgeList *newEdgeList_p);
 void write_currTaxiEdge_p(Edge* cTaxiEdge_p);
 void write_currRunwayEdge_p(Edge* cRunwayEdge_p);
 void write_orgNodeIndex(int oNI);
 void write_desNodeIndex(int dNI);
 void write_exitNode_p(Node* eNode_p);
 void write_currPosition_p(Position* cPosition_p);
 void write_groundController_p(GroundController* gc_p);
 void write_localController_p (LocalController* lc_p);
 void write_leadingFlightInEdge_p(Flight* lFIE_p);
 void write_nextFlightInList(Flight* nxt_p);
 void write_prevFlightInList(Flight* prv_p);
 void write_rotTimeRecommended(float rotRec);
 void write_pushbackTimeRecommended(float pbRec);

protected:
 Flight(); // constructor. never be used.
private:
 char* flightId_p,
 * runwayId_p;
 AcftModel* acftModel_p;
 Operation_Type operationType;
 FlightState_Type currMoveState,
 currCommState;
 bool everStoppedInLastEdge;
 ControllerMessage_Type permission;
 Priority_Type priority;
 ConflictChecked_Type conflictChecked;
 Flight* conflictingFlight_p;// Conflicting flight for taxing
 Clock depTimeAtCross;
 int orgNodeIndex,
 desNodeIndex,
 currNodeIndex;
 Node* gateNode_p;
 Position* currPosition_p;
 float currSpeed,
 nextAccel;
 Clock systemInputTime,
 nextCommEventTime,
 nextMoveEventTime,
 pushbackTimeRecommended, // for deprtures
 rotTimeRecommended, // assigned to one of rotTimeNorm or rotTimeSwap.
 rotTimeNorm,
 rotTimeFcfs,
 rotTimeSwap,
 linkTimeStamp_b, linkTimeStamp_e,
 phaseTimeStamp_b, phaseTimeStamp_e,
 taxingTimeStamp_b, taxingTimeStamp_e,

 GC_TimeStamp_b, GC_TimeStamp_e,
 LC_TimeStamp_b, LC_TimeStamp_e,
 rotTimeStamp_b, rotTimeStamp_e;

int numTrialToContactGC, // number of trials to contact ground
controller

 numTrialToContactLC; // number of trials to contact local controller
float taxingDelay_sec, // delay due to taxiway congestion

 runwayDelay_sec, // delay due to runway congestion
 commGCDelay_sec, // delay due to communication jam with Ground

Controller
 commLCDelay_sec; // delay due to communication jam with Local

Controller
 float travelTime,
 lastTaxiEdgeLength_ft;
 GroundController* groundController_p;
 Graph *forwardStar_p,
 *backwardStar_p; // for conflict resoltion and (un)blocking the link
 TaxiEdgeList *taxiEdgeList_p; // for Taxing path
 Edge *currTaxiEdge_p; // The curr Edge in Taxi path.

 262

 LocalController *localController_p;
 TaxiEdgeList *runwayEdgeList_p; // for Takeoff/Landing path
 Edge *currRunwayEdge_p; // The curr Edge in Runway path.
 Node *exitNode_p; // exit Node

 Flight *leadingFlightInEdge_p, // Leading Flight in a CuurEdge
 *followingFlightInEdge_p, // Following Flight in a CuurEdge
 *prevFlightInList_p, // prev Flight in Flight List
 *nextFlightInList_p; // Next Flight in Flight List

};
#endif

//Graph.h

#ifndef _GRAPH_H
#define _GRAPH_H

#include "Type.h"
#include "Definition.h"
#include "Node.h"
#include "Node.h"
#include "Edge.h"

typedef Edge* Edge_p;
class Graph{
public:
 Graph(int totNodes, int totEdges);
 ~Graph();
 int n();
 int e();
 Edge* first(int nodeIndex); // get the first edge for a node
 bool isEdge(Edge* edg_p); // return 1 if (edge != null)
 Edge* next(Edge* edg_p); // get the next edge for a node
 Edge* nextBS(Edge* edgBS_p);
 int fromNodeId(Edge* edg_p);// get the fromNodeId for this edge
 int toNodeId(Edge* edg_p); // get the toNodeId for this edge

Edge* Graph::findEdge_p (int fnIndex, int tnIndex); // find the pointer to the edge from fnIndex
to tnIndex

 float tTime (int fnIndex, int tnIndex); // find the travel time for the edge from fnIndex to
tnIndex

float* tTimes(int fnIndex, int tnIndex); // find the pointer to the travel time matrix for the
edge from fnIndex to tnIndex

 float Dist (int fnIndex, int tnIndex); // find the distance for the edge from fnIndex to
tnIndex

 float tTime(Edge* edg_p); // find the travel time for edge
 float* tTimes(Edge* edg_p); // find the travel time matrix for edge
 float Dist (Edge* edg_p); // find the diatnce for edge

//readers
 Edge* read_list(int fnIndex); //return the pointer to (Edge*) list[fnIndex]
 Edge** read_list(); //return the pointer to (Edge**)list

//writers
 void write_list(int fnIndex, Edge* newEdge_p); // list[fnIndex] = newEdge_p;
 void write_totNodes(int tN); // write total Nodes

void write_totEdges(int tE); // write total Edges
private:
 Edge_p* list;
 int totNodes;
 int totEdges;
 VisitMark_Type* visitMark;
};

#endif _GRAPH_H

 263

// Header.h
#ifndef _HEADER_H
#define _HEADER_H
#include<conio.h>
#include<stdio.h>
#include<fstream.h>
#include<iostream.h>
#include<istream.h>
#include<ostream.h>
#include<stdlib.h>
#include<string.h>
//#include<search.h>
#include<math.h>
#include<assert.h>
#include<iomanip.h>

#include <list>
#include <algorithm>

#endif

//Node.h
#ifndef _NODE_H
#define _NODE_H
#include "Type.h"
#include "Header.h"
#include "Point.h"

class Flight;
class Edge;

class Node{
public:
 Node();
 ~Node();
 Node(int ind, int id, char type, Point point, float p=0.0);
 Node(int ind, int id, char type, float x, float y, float p=0.0);
 Node(int ind, int id, char type, float x, float y, float p, Flight* fin_p);
 //readers
 int read_index();
 int read_id();
 float read_x();
 float read_y();
 Node_ Type read_nodeType();
 float read_passingTime();
 Point& read_pt();
 Bool read_haveEverEntered(); // {true, false}; for DEQueue in TDSP
 Bool read_isInQueue(); // {true, false}; for DEQueue in TDSP
 //writers
 void write_fs_p(Edge* f_p);
 void write_bs_p(Edge* b_p);
 void write_haveEverEntered(bool hEE);
 void write_isInQueue(bool iIQ);
private:

int index, // serial index (= 1,2,3,...)
 id; // id (= User defined id) ex, 2001, 2005,...
 Node_Type nodeType;

bool haveEverEntered, // {true, false}; for DEQueue in TDSP
 isInQueue;
 float passingTime;
 Point pt;
 Flight* flightInNode_p;
 Edge* fs_p, //pointer to ForewardStar

 * bs_p; //pointer to BackwardStar
};
#endif

 264

//Point.h
#ifndef _POINT_H
#define _POINT_H
class Point{
public:
 Point();
 ~Point();
 Point(float x1, float y1);
 float read_x();
 float read_y();
 void write_x(float x1);
 void write_y(float y1);
private:
 float x, y;
};
#endif

//Position.h
#ifndef _POSITION_H
#define _POSITION_H
#include "Point.h"
class Position{
public:
 Position();
 ~Position();
 Position(float x1, float y1, float tDT = 0.0);
 Position(Point& p, float tDT = 0.0);
 //readers
 float read_traveledDistInLink();
 float read_traveledDistTotal();
 float read_currX();
 float read_currY();
 //writers
 void write_traveledDistInLink(float tDistL);
 void write_traveledDistTotal(float tDistT);
 void write_currX(float);
 void write_currY(float);
private:
 float traveledDistInLink,
 traveledDistTotal;
 Point pt;
};
#endif _POSITION_H

 265

//Q.h (for the SP algorithm)
#ifndef _Q_H
#define _Q_H
#include "Node.h"
#include "definition.h"
class NodeList{ // Doubly-linked lists (100-shaffer)
public:
 int nodeIndex;
 NodeList* prevNodeList_p,
 * nextNodeList_p;
 NodeList(int nIndex, NodeList* prv_p = NULL, NodeList* nxt_p = NULL);
 NodeList(NodeList* prv_p = NULL, NodeList* nxt_p = NULL);
 ~NodeList();
};
class Q{ //115page in Shaffer's text book
public:
 Q();
 ~Q();
 int firstNodeIndex(); // return the first node's index
 int deQueueFirst(); // return the from-node's index of the first Node in the queue.

int deQueueMin(int r, float shortTime[][MAX_NODES]); // find the minimum distance node from
root node, r, to to-nodes in the (Node) queue and return the to-node's
index

 void enQueueFirst(int nIndex);
 void enQueueLast(int nIndex);
 void deleteNodeList(NodeList* nl_p);
 bool isEmpty() const;
 int totCurrElements() const;
 void clear();
private:
 NodeList* headNodeList_p,
 * tailNodeList_p,
 * currNodeList_p;
 void deleteNode(int* n_p);
};
#endif

////Runway.cpp

#ifndef _RUNWAY_H
#define _RUNWAY_H
#include "TaxiEdge.h"
#include "Header.h"
#include "Definition.h"
class Runway{
public:
 Runway();
 Runway(char* rId_p, TaxiEdge* rLink_p);
 ~Runway();
 char* read_runwayId();
 TaxiEdge* read_runwayLink_p();
 TaxiEdge* read_nextRunwayLink();
private:
 char* id_p;
 TaxiEdge* runwayLink_p; // pointer to starting link
 // next runwayLink = runwayLink_p->read_nextTaxiEdge_p();
};
#endif

 266

// Simulation.h
#ifndef _SIMULATION_H
#define _SIMULATION_H
#include "Header.h"
#include "Type.h"
#include "Definition.h"
#include "Clock.h"
#include "Point.h"
#include "Node.h"
#include "Edge.h"
#include "Graph.h"
#include "Runway.h"
#include "AcftModel.h"
#include "Controller.h"
#include "Flight.h"
#include "Q.h"
#include "ARRAY.h"

#include<ostream.h>

ThreeDArray<unsigned int> td_shortPath(MAX_NODES, MAX_NODES, NumTimeSlices);
 //travelPath by keeping the next node to destination

ThreeDArray<float> td_shortTime(MAX_NODES, MAX_NODES, NumTimeSlices); //travelTime

float totTaxingTime_sec = 0.0;
float totTaxingDelay_sec = 0.0;
float totRunwayDelay_sec = 0.0;
float totCommLCDealy_sec = 0.0;
float totCommGCDealy_sec = 0.0;

typedef Edge* Edge_p;
int comp(const void *a , const void *b);
struct FlightData{
int sn; // serial number
char *id_str, // AA234
 *model_str; // B757-300
AcftModel *acftModel_p;
char operationType; // char ('A' or 'D')
int startHour, // 7 (o'clock)

 startMin; // 6 (minute)
float startSec; // 34.0 (second)
int rotHour_norm, // 7 (o'clock)
 rotMin_norm; // 6 (minute)
float rotSec_norm; // 34.0 (second)
int rotHour_fcfs, // 7 (o'clock)
 rotMin_fcfs; // 6 (minute)
float rotSec_fcfs; // 34.0 (second)
int rotHour_swap, // 7 (o'clock)
 rotMin_swap; // 6 (minute)
float rotSec_swap; // 34.0 (second)
float startTime;
int gateId, // Gate Node Number = 7
 gateIndex;
char* runway_str; // Runway, ex, R15

};

ofstream& operator<<(ofstream &stream, Flight f){
 if(f.taxiEdgeList_p != NULL || f.runwayEdgeList_p != NULL){
 stream //<< f.sysTime.read_systemTime()
 << setw(10)
 << setprecision(7)

 << f.read_flightId_p() << " "
 << setiosflags(ios::showpoint) << "("
 << f.currPosition_p->read_currX() << ", "
 << f.currPosition_p->read_currY() << ") ";
 switch (f.currCommState){
 case readyToCommunicate: stream << " readyToCommunicate "; break;
 case waitNextContact: stream << " waitNextContact "; break;
 case sendingRequest: stream << " sendingRequest "; break;
 case waitingCommand: stream << " waitingCommand "; break;
 case receivingCommand: stream << " receivingCommand "; break;
 case sendingConfirmation: stream << " sendingConfirmation "; break;
 case waitControllerContact: stream << " waitControllerContact "; break;
 default: stream << " somthing wrong in currCommState ";
 }
 switch (f.permission){
 case unDecided: stream << " unDecided "; break;
 case fileApproved: stream << " fileApproved "; break;
 case reRoute: stream << " reRoute "; break;

 case stopThere: stream << " stopThere "; break;
 case waitThere: stream << " waitThere "; break;

 267

 case reStart: stream << " reStart "; break;
 case clearToPushback: stream << " clearToPushback "; break;
 case clearToTaxi: stream << " clearToTaxi "; break;
 case clearToTakeOff: stream << " clearToTakeOff "; break;
 case clearToLand: stream << " clearToLand "; break;
 default: stream << " somthing wrong in currPermission ";
 }

 switch (f.currMoveState){
 case parking: stream << " parking " ; break;
 case pushingBack: stream << " pushingBack "; break;
 case taxingToDepartureQueue: stream << " taxingToDepQue "; break;
 case waitingToTaxi: stream << " waitingToTaxi "; break;
 case delayedAtCross: stream << " delayedAtCross "; break;
 case speedUp: stream << " speedUp "; break;
 case steadyTaxing: stream << " steadyTaxing "; break;
 case slowDown: stream << " slowDown "; break;
 case turning: stream << " turning "; break;
 case waitingOnRunway: stream << " waitingOnRnwy "; break;
 case rolling: stream << " rolling "; break;
 case liftingOff: stream << " liftingOff "; break;
 case endOfDeparture: stream << " endOfDeparture "; break;

 case onFinal: stream << " onFinal "; break;
 case flaringOut: stream << " flaringOut "; break;
 case freeRolling: stream << " freeRolling "; break;
 case braking: stream << " braking "; break;
 case coasting: stream << " coasting "; break;
 case exitingRunway: stream << " exitingRnwy "; break;
 case taxingToGate: stream << " taxingToGate "; break;

 default: stream << " somthing wrong in currMoveState ";
 }

 stream
 << f.currSpeed << " "
 << f.nextAccel << " "
 << setw(5);

 if(f.taxiEdgeList_p != NULL){
 stream
 << f.taxiEdgeList_p->currEdge_p()->read_fromNode_p()->read_id() << " -> "
 << f.taxiEdgeList_p->currEdge_p()->read_toNode_p()->read_id() << " "
 << setw(10)
 << f.taxiEdgeList_p->currEdge_p()->read_distance_ft() << " ";
 }
 else if(f.runwayEdgeList_p != NULL){
 stream
 << f.runwayEdgeList_p->currEdge_p()->read_fromNode_p()->read_id() << " -> "
 << f.runwayEdgeList_p->currEdge_p()->read_toNode_p()->read_id() << " "
 << setw(10)
 << f.runwayEdgeList_p->currEdge_p()->read_distance_ft() << " ";
 }
 else stream << " somthing wrong in node -> node ";

 stream
 << f.currPosition_p->read_traveledDistInLink() << " "
 << f.currPosition_p->read_traveledDistTotal() << " "
 << endl;
 }// if
 else{
 stream //<< f.sysTime.read_systemTime()
 << setw(10)
 << setprecision(7)
 //<< setiosflags(ios::fixed)
 << f.read_flightId_p() << " "
 << setiosflags(ios::showpoint) << "("
 << f.currPosition_p->read_currX() << ", "
 << f.currPosition_p->read_currY() << ") ";

 switch (f.currCommState){
 case readyToCommunicate: stream << " readyToCommunicate "; break;
 case waitNextContact: stream << " waitNextContact "; break;
 case sendingRequest: stream << " sendingRequest "; break;
 case waitingCommand: stream << " waitingCommand "; break;
 case receivingCommand: stream << " receivingCommand "; break;
 case sendingConfirmation: stream << " sendingConfirmation "; break;
 case waitControllerContact: stream << " waitControllerContact "; break;
 default: stream << " somthing wrong in currCommState ";
 }

 268

 switch (f.permission){
 case unDecided: stream << " unDecided "; break;
 case fileApproved: stream << " fileApproved "; break;
 case reRoute: stream << " reRoute "; break;
 case stopThere: stream << " stopThere "; break;
 case waitThere: stream << " waitThere "; break;
 case reStart: stream << " reStart "; break;
 case clearToPushback: stream << " clearToPushback "; break;
 case clearToTaxi: stream << " clearToTaxi "; break;
 case clearToTakeOff: stream << " clearToTakeOff "; break;
 case clearToLand: stream << " clearToLand "; break;
 default: stream << " somthing wrong in currPermission ";
 }

 switch (f.currMoveState){
 case parking: stream << " parking "; break;
 case pushingBack: stream << " pushingBack "; break;
 case taxingToDepartureQueue: stream << " taxingToDepQue "; break;
 case waitingToTaxi: stream << " waitingToTaxi "; break;
 case speedUp: stream << " speedUp "; break;
 case steadyTaxing: stream << " steadyTaxing "; break;
 case slowDown: stream << " slowDown "; break;
 case turning: stream << " turning "; break;
 case waitingOnRunway: stream << " waitingOnRnwy "; break;
 case rolling: stream << " rolling "; break;
 case liftingOff: stream << " liftingOff "; break;
 case endOfDeparture: stream << " endOfDeparture "; break;

 case onFinal: stream << " onFinal "; break;
 case flaringOut: stream << " flaringOut "; break;
 case freeRolling: stream << " freeRolling "; break;
 case braking: stream << " braking "; break;
 case coasting: stream << " coasting "; break;
 case exitingRunway: stream << " exitingRunway "; break;
 case taxingToGate: stream << " taxingToGate "; break;

 default: stream << " somthing wrong currMoveState ";
 }
 stream
 << f.currSpeed << " "
 << f.nextAccel << " "

 << setw(5)
 << 0 << " -> "
 << 0 << " "
 << setw(10)
 << 0 << " "

 << f.currPosition_p->read_traveledDistInLink() << " "
 << f.currPosition_p->read_traveledDistTotal() << " "
 << endl;
 }// else
 return stream;
};

bool operator<(Flight &o1, Flight &o2)
 { return o1.rotTimeRecommended.read_systemTime() < o2.rotTimeRecommended.read_systemTime(); }
bool operator>(Flight &o1, Flight &o2)
 { return o1.rotTimeRecommended.read_systemTime() > o2.rotTimeRecommended.read_systemTime(); }
bool operator==(Flight &o1, Flight &o2)
 { return o1.rotTimeRecommended.read_systemTime() == o2.rotTimeRecommended.read_systemTime(); }
bool operator!=(Flight &o1, Flight &o2)
 { return o1.rotTimeRecommended.read_systemTime() != o2.rotTimeRecommended.read_systemTime(); }

#endif

 269

// TaxiEdge.h

#ifndef _TAXIEDGE_H
#define _TAXIEDGE_H
#include "Edge.h"

class TaxiEdge{
public:
 TaxiEdge();
 TaxiEdge(Edge* const newEdge_p, TaxiEdge* nxt = NULL);
 ~TaxiEdge();
 Edge* read_edgeEle_p();
 TaxiEdge* read_nextTaxiEdge_p();
 void write_nextTaxiEdge_p(TaxiEdge* tempNextTaxiEdge_p);
private:
 Edge* edgeEle_p;
 TaxiEdge* nextTaxiEdge_p;
};

#endif

// TaxiEdgeList.h

#ifndef _TaxiEdgeLIST_H
#define _TaxiEdgeLIST_H

#include "TaxiEdge.h"

class TaxiEdgeList{
public:
 TaxiEdgeList();
 TaxiEdgeList(TaxiEdge* TaxiEdge_p);
 ~TaxiEdgeList();
 void append(Edge* const); // Append ELEM at tail_p of list
 void setFirst(); // set curr_p to first position
 void moveNext(); // Move curr_p to next position
 void movePrev(); // Move curr_p to previous position
 int length() const; // Return current length of list
 Edge* currEdge_p() const; // Return value of current ELEM
 Edge* nextEdge_p() const; // Return value of next ELEM
 Edge* tailEdge_p() const; // Return value of tail ELEM
 bool isInList() const; // TRUE if curr is within list
 TaxiEdge* read_curr_p();
 void write_curr_p(TaxiEdge* cTaxiEdge_p);
 void print_taxiEdgeList(TaxiEdge* cTaxiEdge_p);
private:
 TaxiEdge *head_p,
 *tail_p,
 *curr_p;
};

#endif

 270

// TaxiPath.h
#ifndef _TAXIPATH_H
#define _TAXIPATH_H
#include "Edge.h"

class TaxiPath{
public:
 TaxiPath();
 TaxiPath(Edge* currEdge_p);
 ~TaxiPath();
 Edge* read_edgeEle_p();
 TaxiPath* read_nextTaxiPath_p();
 void write_nextTaxiPath_p(TaxiPath* tempNextTaxiPath_p);
private:
 Edge* edgeEle_p;
 TaxiPath* nextTaxiPath_p;
};

#endif

// TaxiPathList.h

#ifndef _TAXIPATHLIST_H
#define _TAXIPATHLIST_H
#include "TaxiPath.h"
class TaxiPathList{
public:
 TaxiPathList();
 TaxiPathList(TaxiPath* taxiPath_p);
 ~TaxiPathList();
 void append(const TaxiPath&); // Insert ELEM at tail_p of list
// TaxiPath* remove(); // Remove and return current ELEM
// void setFirst(); // set curr_p to first position
 void next(); // Move curr_p to next position
 void prev(); // Move curr_p to previous position
 int length() const; // Return current length of list
// int setPos(const int); // Set curr_p to specific position
// void setValue(const TaxiPath&); // Set current ELEM's value
 Edge* currEdge_p() const; // Return value of current ELEM
 Edge* nextEdge_p() const; // Return value of next ELEM
// bool isEmpty() const; // TRUE if list is empty
 bool isInList() const; // TRUE if curr is within list
// bool find(const TaxiPath&); // Find the specifin value
private:
 TaxiPath *head_p,
 *tail_p,
 *curr_p;
};

#endif

 271

//Type.h
#ifndef _TYPE_H
#define _TYPE_H

enum Node_Type{
 taxiNode,
 rwyNode,
 gate,
 rwyIntersectionNode
};
enum Edge_Type{
 taxiEdge,
 rwyEdge,
 exitEdge
};
enum Operation_Type{
 departure,
 arrival
};
//enum Permission_Type {yes, no};
enum VisitMark_Type {visited, unvisited};
enum Priority_Type {low, high}; // flight's priority for conflicting at intersection
enum ConflictChecked_Type {done, notYet}; // flight's priority for conflicting at

intersection
enum CurrentEdgeDirection_Type {thisDirection, reverseDirection}; // Edge's curretn

operational direction
enum Aircraft_Type {heavy, large, smal_}; // "small" is reserved for certain compiler
enum TwoOperations{dep_dep, dep_arr, arr_dep, arr_arr};

enum SP_Algorithm{
 static_SP, // static shortest path algorithm 1
 td_SP_1, // time-dependent shortest path algorithm 1
 td_SP_2 // time-dependent shortest path algorithm 2
};

enum FlightState_Type{
 //for departure
 pushingBack, // taxing from gate to arpon(=ramp area)
 rolling,
 liftingOff,
 endOfDeparture, // take-off (rolling with const accel)
 waitingOnRunway, // waiting around the runway or gate or from runway exit to gate
 //for arrival
 onFinal,
 flaringOut,
 freeRolling,
 braking,
 coasting,
 adjustingBrake,
 freeRollingSlow,
 exitingRunway,
 //touch-down -> exit
 //for taxing for both operations (arrival/departure)
 parking,
 taxingToDepartureQueue,
 taxingToGate,
 delayedAtCross, //
 waitingToTaxi,
 speedUp,
 steadyTaxing,
 slowDown,
 turning, // taxing from gate to the around of runway
 waitingInLine,
 areaHolding,
 //for both operations' communication
 waitNextContact,
 readyToCommunicate,
 sendingRequest,
 waitingCommand,
 receivingCommand,
 sendingConfirmation,
 waitControllerContact
};
enum IdleBusy_Type {idle, busy};
enum ControllerState_Type{
 standby,
 receivingRequest,
 judgingCommand,
 sendingCommand,
 receivingConfirmation
};

 272

enum ControllerMessage_Type{
 unDecided,
 fileApproved,
 reRoute,
 stopThere,
 waitThere,
 //waitControllerContact,
 reStart,
 clearToPushback,
 clearToTaxi,
 clearToTakeOff,
 clearToLand
};
enum PilotRequest_Type{
 requestTaxi,
 requestPushBack,
 requestTakeOff,
 requestLanding
};
#endif

 273

VITA

Hojong Baik was born in Seoul, Korea on May 1, 1962. After completing Dongsung High School

in Seoul, he entered the Civil Engineering program of Yonsei University in 1981. Upon

completion of his bachelor degree, he entered the graduate school in Seoul National University

for his master degree.

In May 1989, after graduating with his master degree in transportation planning and completing

his military service in the army, he joined the Korea Transport Institute (KOTI) as a researcher.

He had worked at KOTI for more than five years in KOTI. During this period, he joined several

projects in various fields including urban transportation, intelligent transportation system (ITS),

and logistics.

In August 1994, he enrolled the Department of Civil Engineering at Virginia Polytechnic Institute

and State University, to pursue his Ph. D. degree. He worked as a teaching assistant and also as a

research assistant at the National Center of Excellence for Aviation Operations Research

(NEXSTOR).

