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(ABSTRACT)

This research is concerned with the modeling and development of agorithmic approaches for
solving airport operationa problems that arise in Air Traffic Control (ATC) systems within the
termina aea a hub arports. Specifically, the problems addressed include the Aircraft
Sequencing Problem (ASP) for runway operations, the Network Assignment Problem (NAP) for
taxiway operations, and a smulation mode for the evaluation of current or proposed ATC system
in detail.

For the ASP, we develop a mathematical model and apply the Reformulation-Linearization-
Technique (RLT) of Sherdi and Adams to construct an enhanced tightened version of the
proposed model. Since ASP is NP-Hard and in fact, it is a variation of the well-known Traveling
Sdesman Problem with time-windows, sub-optima solutions are usudly derived to
accommodate the real-time constraints of ATC systems. Nevertheless, we exhibit a significant
advancement in this chalenging class of problem. Also for the purpose of solving relatively large
sized problems in practice, we develop and test suitable heuristic procedures.

For the NAP, we propose a guasi-dynamic assignment scheme which is based on the incremental
assgnment technique. This quasi-dynamic assignment method assumes that the current aircraft
route is influenced only by the previous aircraft assigned to the network. This smplified
assumption obviates the need for iterative rerouting procedures to reach a pure equilibrium state
which might not be achievable in practical taxiway operations. To evauate the overal system, we
develop a microscopic smulation model. The smulation model is designed to have the capability
for reproducing not only the dynamic behavior of aircraft, but aso incorporates communication
activities between controllers and pilots. These activities are critical in ATC operations, and in
some instances, might limit the capacity of the facility.

Findly, usng the developed smulation model named Virginia Tech Airport Simulation Mode
(VTASM) in concert with ASP and NAP, we compare the overal efficiencies of severa control
srategies, including that of the existing control system as well as of the proposed advanced
control system.
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Chapter 1. Introduction

1.1 Motivation and Purpose

According to Federd Aviation Administration (FAA) statistics, there were 27 arports in U.S.
having more than 20,000 hours of total annual delay in 1997. These delays represent a cost
exceeding 2.4 hillion dollars. By the year 2003, the number of arports having annua delays
exceeding 20,000 hours could be 31, unless capacity improvements are made [FAA, 1998].

Efforts to augment current capacity —by building new airports, or expanding existing ones- are
expendve, time consuming, and environmentally controversia. On the other hand, proposals to
change the demand for the Air Traffic Control (ATC) operations by, for example, imposing

higher landing fees can lead to legal proceedings. Hence there is great interest in using existing
capacity more efficiently by improving air traffic control procedures.

The critica bottleneck in an ATC system is the capacity inside a radius of about 50 nautical miles
(nm) around an airport (i.e., airport termina area). There are three types of air traffic control

activities in this termina area: aircraft sequencing operations which control the traffic inside the
airport termina area, runway operations which control aircraft landings and departures, and

taxiway operations which guide aircraft from the gate to the runway for departures or vice versa
for arrivals. For these activities, three types of air traffic controllers are involved: Fina approach
controllers who are responsible for the aircraft sequencing operations, loca controllers who are
responsible for runway operations, and ground controllers who are responsible for taxiway
operations.

To achieve more efficient operations, it is desirable that those three operational components be
coordinated as one task, rather than be considered as three separate ones. The purpose of this
research project is to design an efficient method to model aircraft operations around the airport
terminal area using an open system architecture. It is believed that this operational scheme could
help alleviate the congestion around the airport terminal area, that is frequently observed at major
airports in the United States and abroad. The underlying philosophy of this research project is
reflected by Dear’ s remark [Dear, 1976]:

“By utilizing today’s computer power and instrument sophistication, the controller
workload can be reduced and system performance improved through the use of computer-
assisted decision-making, without affecting the controller’ s autonomy.”



1.2 Problem Description

This dissertation focuses on the operation of aircraft inside the airport terminal area (or airfield)
which is a 3-dimensiona air space usudly having 50 nautical miles of radius around airport
runways. Once an arriving aircraft passes an entry point of airport termina area, it approaches
towards a runway. For the convenience of air traffic control, al arriving aircraft are required to
pass the final approach fix (FAF) just before it touch down. The airspace between the FAF and
runway is caled fina approach path (FAP) or final. In the FAP, aircraft are controlled to be
gpaced in certain amount of distance based on the minimum separation rules enforced by FAA.
The minimum separation between arriving aircraft depends on the aircraft types involved. This
separation rule is designed to minimize the leading aircraft's vortex effect to the following
aircraft. Generally speaking, the separation is bigger when an aircraft follows a larger one than
when it follows a smaller one. Once the arriving aircraft touchdowns and exits from the runway,
it start to taxi to the gate.

On the ground, arcraft parking at gates load and unload either passengers or freight. After
completing the loading and unloading processes, the aircraft begins to taxi to the runway aong
the designated taxiing path. Once the aircraft arrives at the end of runway, it starts to roll for
takeoff. Figure 1.1 illustrates the configuration of airport termina area.

Fundamentally speaking, the delays in any transportation facility occur when the demand for
services exceeds its capacity. This basic rule can be applied to facilities around the airport
termina area, such as runways, taxiways and gates. For example, when there are more aircraft
moving on a taxiway network than its capacity, some of taxiing aircraft would experience certain
amounts of delay due to network congestion.

In this dissertation, we consider an airport terminal aea as a combination of various resources
having limited capacities. In our anaysis, runway, taxiway and communication channels are
considered and accordingly this research focuses mainly on the analysis of air traffic operations
on the airfield facilities. (Aspects related to the gate facilities are not included in research, but
could be the subject of future studies.)

In short, this dissertation dedls with the following three sub-problems: the Aircraft Sequencing
Problem (ASP) to model runway operations, the Network Assignment Problem (NAP) to mode
taxiway operations, and the Simulation Model (SM) for addressng communication activities.
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Figure1.1 Configuration of Airport Termina Area

The Aircraft Sequencing Problem (ASP) handles the runway operations and is developed under
the guiding principle that if the arrivals and departures are sequenced intelligently, then an
enhanced system efficiency will accrue. The ASP problem considers minimum separation rules
enforced by FAA to protect consecutive aircraft from the dangers of wake-vortex effects.

To illustrate this point, note that during the fina approach, air traffic controllers try to maintain a
minimum of 5 nm when a heavy arcraft leads a small one. This distance is equivaent to about
196 seconds in time. If this sequence is switched so that the small aircraft leads the heavy one, the
required distance between the two aircraft reduces to 3 nm, or about 75 seconds. Thus a saving of
more than 100 seconds could occur by switching the sequence, assuming that this process is
feasble to the individua aircraft time-window restrictions, and does not appreciably affect
delays.

Previous studies conducted on this topic have mainly focused on the sequencing problem for
arriving aircraft. Since many airports in the U.S. have dependent arrival and departure stream
operations, consideration is given here to both these operations smultaneoudy. This makes the



problem more redistic, yet at the same time, more challenging. In order to manage aircraft traffic
in congested airport terminal areas, an aircraft sequencing procedure can be used in conjunction
with advanced Air Traffic Control (ATC) automation tools. Problem ASP can be stated more
succinctly as follows:

Given a set of aircraft data involving both arrivals and departures, including aircraft type,
original (nominal or desired) schedule, a maximum delay time to be absorbed by each
aircraft, minimum separation rulesamong air craft, and the runway occupancy time(ROT)
for each aircraft type.

Find an optimal sequence of aircraft which minimizesthe total operation time/cost to finish all
operations while satisfying both the minimum separation rule and the maximum delay

constraints.

Given the time recommendations prescribed by ASP, which include the exit times from te
runway and the takeoff times at the runway, the next step is to solve Network Assignment
Problem (NAP) to decide the taxiing route for all aircraft so as to minimize the congestion on the

taxiway network. The NAP which deals with taxiing operations is defined as follows.

Given a network configuration (a directed graph G(N,A)) of runways and taxiways, including a
set of origin nodes, O; and a set of destination nodes, D; and time-dependent taxiing
demands from each origin to each destination for a certain period. Also, given are
prescribed landing and takeoff times at the runway for the air craft, as obtained from model
ASP.

Find a set of optimal routes for the departing aircraft to lead themfromthe gate to the departure
gueue, and for the arriving aircraft to lead themfromtherunway exit to the gate, in order to
minimize total travel or fuel costs.

In this analysis, we adopt the results of ASP asinitia conditions for solving the NAP problem. In
regular airport operations, landing aircraft have higher priority over departing and taxiing aircraft.
This is because arrivas are both costly and safety-critical from a fuel consumption and
operationa point of view. For the same reason, the runway operation has a priority over ground
taxiing. Hence, in the case where a conflict arises between an aircraft crossing a runway during
Taxiing and an aircraft departing or landing on the runway, the latter has a priority. Based on
view, we solve the ASP first and obtain the optimal runway operational sequence. We then solve



the NAP using the ASP optima sequence. Figures 1.1 and 1.2 illustrate the relationship between
the ASP and NAP problems for a single data horizon, including the required data and information

flows.

At many busy airports, it is frequently observed that flights are delayed by communication
congestion (due to controller workload). For instance, even after a departing flight is ready to
taxi, the flight would be delayed at the gate until it obtains a taxiing clearance from the ground
controller. In previous analyses for ASP and NAP problems, no consideration has been given to
the communication process between controllers and pilots, although this is an important source of
delay. Indeed, there is a digtinct possibility that due to the communication delays, the prescribed
ASP sequence and the suggested taxiing route obtained from NAP might not be achievable for
some flights.

In order to portray the pilot-controller communication process, a Simulation Model (SM) is
developed in this research. A continuous, microscopic Smulation model provides very detailed
information about the dynamic status of al relevant entities, i.e, flights, loca controllers, and
ground controllers. The dynamic status includes not only controllers communication status but
also aircraft dynamic behaviors such as speed, acceleration, position, etc., at every time interva
of simulation. These microscopic features are embedded in the Virginia Tech Airport
Simulation Model (VTASM), and distinguish separate this model from existing air traffic
smulation models such as SSIMMOD, TAMMS, etc., which employ disctere-event smulation
instead. VTASM includes airport facilities such as runways, taxiways, and gates. (Runway
thresholds play the role of a souce node for arriving flights and a 9nk node for departing flights.)
The main tasks in the development of VTASM can be described as follows:

Given a network configuration (a directed graph G(N,A)) of runways and taxiways, prescribed
landing and takeoff times at the runway for the aircraft, asobtained frommodel ASP, and a
set of optimal routes for both the departing and arriving aircraft from NAP.

Find, considering communication activities and aircraft dynamic movements, the aircraft status

such as speed, acceleration, position, etc., and delays on the network.

1.3. Organization of this Document

This dissertation is organized into six chapters. Chapter 2 is devoted to review previous studies

pertinent to ASP problem. The proposed ASP is aversion of the asymmetric traveling salesman



problem with time-windows (ASP-TW), and is NP-complete in terms of computational
complexity. Because of this complexity, we develop two approaches for this problem,
respectively geared toward finding an exact solution and an approximate solution via a heuristic
method. In Chapter 3, the formulation of Problem ASP and the development of an effective
approach to solve this problem are presented along with some computational results for both the
exact and heuristic approach.

The NAP prablem on the taxiway network is discussed in Chapter 4. We focus on proposing a
network assignment strategy which is appropriate for our case. Even though the taxiway network
is somewhat different from urban transportation networks, it is still helpful to review the state-of -
art of both static and dynamic network assignment methods applied to urban transportation
planning processes. Various types of shortest path agorithms which play an important role in
NAP are aso discussed along with their associated data structures. Two types of network
assignment strategies are considered in this research.

In Chapter 5, we present procedures relevant to the development of a continuous, microscopic
smulation mode. The detals of each component of the smulatiion model are provided in the
context of an Object-Oriented Design (OOD) and an Object-Oriented Programming (OOP)
gpproach. Computational results and a verification of the smulation model are also presented in
this chapter.

Chapter 6 provides results for a case study using hypothetica flight schedules at the Reagan
National Airport (DCA). A total of 12 scenarios are studied for several segquencing, network
assgnment and pilot-controller communication methods. Each scenario is tested using 90 flight
schedul e replications representing various demand levels.

Chapter 7 presents a summary of this research and conclueds with a discussuion on some possible
research extentions.
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<Original schedule from flight-plan>

<Origina Schedule from data link>

- i Flight No Aircraft Desired
Flight No. | Alroraft Desired ' type touchdown Time
type pushback Time US322 B727 12:39
NwW122 B747 12:37 US321 B737 12:41
NW123 B757 12:43
Ready -time to takeoff =
desired pushback time + taxiing time (T1)
< Original Sequence>
max. delay =10 min.
Departures Arrivals
. . Ready-time | Due-time : . Ready-time Due-time
Flight no. | Aircrait type to takeoff | to takeoff Flight No. | Aircraft type to touchdown | to touchdown
NW122 B747 12:47 12:57 US322 B727 12:39 12:49
NW123 B757 12:53 13:03 US321 B737 12:41 12:51
v _— i
- - Minimize the completion time
Min. Separation Rule ————» ASP for all aircraft to be operated
v
<Optimal Sequence>
Departure Arrival
Flight No. | Aircraft type Opt. Time Delay Flight No. | Aircraft type Opt. time Delay
to takeoff to touchdown
NW123 B757 12:53 US321 B737 12:41
NW122 B747 12:55 US321 B727 12:46
Recommended push-back time from the gate =
Optimal takeoff time — Taxiing time —Buffer ime
Expected time to exit from the runway =
v Optimal touchdown time + Runway Occ. Time (ROT)
<Time-dependent taxiing demand>
Departures Arrivals
. ; Rec. timeto Origin Destination ; . Exp. timeto exit | Originrunway | Destination
Flight No. | Aircraft type pushback gate runway Flight No. | Aircraft type from runway exit gate
NW123 B757 12:49 Gate# 3 22R US321 B737 12:41 Exit 2 on 22R Gate #9
NW122 B747 12:45 Gate #5 22L US321 B727 12:46 Exit 3 on 22L Gate # 6
Assumption: Aircraft start taxiing at the recommended
pushback times/expected exit times
A 4
NAP
<Time-dependent taxiing demand>
Departures Arrivals
; - ; Destination ; Origin runway- . Destination
Flight No. [ Origin gate Routes (links) runway Flight No. exit Routes (links) gate
NW123 Gate# 3 B12->B23-> ....-> 22R US321 Exit 2 on 22R E1->E3-> ....-> Gate# 9
NW122 Gate#5 Cl->B4-> ...-> 22L Us321 Exit 3 on 22L F5->E3-> ....-> Gate # 6

Figure 1.3 Data Flow in the ASP/INAP Framework for Sample Problem
(Single Data Horizon).




Chapter 2. Literature Reviews

2.1 Literature Review on Aircraft Sequencing Problems (ASP)

The Aircraft Sequencing Problem (ASP) is a combinatorial problem for which no efficient
agorithm (i.e,, with computationa time bounded by a polynomid in the Sze of the problem) is
known. When faced with such a computationally hard (formally classified as NP-hard-see Garey
and Johnson, 1979) problems, two approaches are possible:

1) Branch-and-bound methods applied with efficient procedures to evaluate lower/upper bound
a every nodes, which reduce the effort from that of exhaustive enumeration. These methods
are certain to produce an optimal solution, but in the worst-case scenario, they may require an
exponential number of calculations.

2) Heuristic methods which provide an agpproximate solution in fast (polynomia) time. These
methods may not produce an optima solution, but generate sub-optimal solutions that are
close to an optimum for most cases.

In this review, we survey 1) the previous studies on Aircraft Sequencing Models (ASP), 2) a
dynamic programming method along with branch-and-bound scheme, and 3) various types of
heuristic methods for solving traveling salesman problems (TSP).

2.1.1 Previous Studieson ASP

The mogt straightforward sequencing strategy for arrivals is to assign the flights on a first-come-
fist-serve (FCFS) basis, which is largely applied in air traffic control these days. In this method,
the aircraft are scheduled in the order of preferred landing/departure times (or sometimes termed
nominal landing/departure times). The second sequencing method is the so-called time advance
(TA) technique which is used to minimize the average delay (or maximize throughput) without
changing the order of the aircraft. In this method, the runway utilization is improved by speeding
up aircraft during periods of heavy traffic so as to reduce the gaps that occur otherwise [Neuman
and Erzberger, 1990]. The FCFS sequencing procedure is most effective in the sense of
implementation, but it is subject to the randomness of the arrival process, and consequently, may
create undesirable delays which can be reduced by an optimized sequence.



ASP problems are combinatorial problems where n aircraft have to be sequenced optimally. To
enumerate al possble cases involves evaluating n! solutions. Since the computations for a tota
enumeration increases drastically as n increases, we need to consider more congtructive
enumeration methods. Due to the nature of the problem, previous research efforts have focused
on methods to reduce the computational complexity without losing the capability to obtain an
optimd solution.

Attempts to optimize ASP-type problems date back to the late 60's. A first investigation of the
ASP problem is made by Dear (1976). The main scope of his study is to determine the landing
order of arriving aircraft considering al the aircraft currently in the system. As this number can
be brge (20 or even more smultaneous aircraft), Dear redizes the difficulty in attaining an
optima solution in reaktime. To solve this problem, a Congrained Postion Shifting (CPS)
strategy is used instead of a FCFS strategy. That is, no aircraft may be sequenced forward or
backward more than a pre-specified number of postions (Maximum Position Shifting) from its
FCFS postion. The method examines a window of (2 ~ the maximum postion shift — 1)
positions, optimizes it (exhaugtively) for a single postion shift, moves the window down one
position, and repests the process.

Considering Dear’'s CPS management concept, Psaraftis (1980) develops a dynamic
programming approach for sequencing a given set of jobs on a single machine to minimize the
total processing cost. In this paper, Psaraftis assumes that there are n distinct groups of jobs,
where the jobs within each group are identical. Taking advantage of this grouping assumption, he
suggests amore practica algorithm which can save some computationa effort as compared to the
classca dynamic programming approach for the job sequencing problem. He illustrates this
method by optimally sequencing aircraft arrivals at an airport.

Using an integer programming approach, Bianco et a. (1987, 1997) determine an optimd
sequence for arriving aircraft inside the Termina Management Area (TMA). The authors point
out the static nature of Psaraftis study where all aircraft are supposed to wait to land at a given
time. Based on this concept, this paper presents a formulation which takes into account the
dynamic nature of the problem in which every aircraft entering the TMA has a Nomina Landing
Time (NLT) depending on the characteristics of the TMA, the aircraft speed, and so on. The
formulation developed by Bianco et a. (1987) is as follows.

[e] o
Minimize s+ a A PiX;

i1 Jpil 3,

subject to
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where,

J={1,..n} : aset of n jobsto be processed on asingle runway

ri : ready-timefor job i

p;; : processing time of job i if job j is the successor of i in sequence,
i, jT Jo, Jo=JE{O}

Poi : Setup time of the machine when the sequence starts with job i

x;;=L1if job i directly precedesjob j, and otherwise O

t =darttime of job i

s=meachineidletime

T;; = sufficiently large value to make constraints (4) redundant whenever x;;=0.

This problem is NP-Hard and in the case of zero ready-times it reduces to the Asymmetric
Traveling Salesman Problem (ATSP). Here, Congtraint (3) secures the minimum separation
between two consecutive flights and aso prevents subtours. The authors suggest a branching
strategy based on the characteristics of the subsequences obtained in the solution process, and a
Lagrangean lower bounding strategy. Heuristic upper bounds are aso computed. Using their
branch-and-bound approach, they find an exact optimal solution for the problems having up to 44
aircraft in 1,956 seconds, and show that an optimal solution could save up to 20 % on the runway
utilization. Perhaps the mgor wesknesses in this formulation is the lack of due-time constraints
for each flight, resulting in potentially unacceptable air delays, and the neglecting of non-
consecutive separation restrictions.
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One thing which should be noted here is that previous studies have mainly focused on the arriva
operations. In Dear's study, an extension to mixed operations (i.e., departures and arrivals) is
given, with one critical assumption. For smplicity of computation, Dear assumes a dightly
relaxed separation in order not to create difficulties when the resulting sequence has two different
types of consecutive operations, which may otherwise violate the separation rules. (More details
of thisissue will be discussed later.)

2.1.2 Dynamic Programming Approach

Sequencing and scheduling problems arise in a wide range of economic activities. The field of
sequencing and scheduling theory has originated from the endeavor to solve mainly job-machine
problems which involve accomplishing a number of tasks (jobs) that need to be processed by
various resources (machines) according to certain specified rules over a period of time. If we
view aircraft operations as jobs and a runway as a machine, we can apply job scheduling theory to
our problem, which is to minimize the tota delay time or completion time of al arcraft. In this
problem, each aircraft has a ready-time, namely, the preferred time to land or depart.

Among the firg anayticd methods applied to solve sequencing problems was Dynamic
Programming, which originated from the work of Richard Bellman in the fifties. Held and Karp
(1962) applied Dynamic Programming to solve sequencing problems. Their approach is based on
Bellman's “Principle of Optimality”. Roughly, this says that in an optimal sequence, the first k
aircraft (for any k = 1,..., n) must form an optimal sequence for the reduced problem based on
these k arcraft alone. Dynamic Programming solves the problem in stages via a sequence of
recursive computations in a manner that yields an optima solution to the entire problem which is
represented by the final stage.

To apply dynamic programming, we can divide our ASP into two sub-problems. Firgt, for asingle
arcraft problem, it is necessary to consder smply the preferred landing/departing time
(PLT/PDT) and the runway occupancy time. Second, for more than one aircraft, we need to
consider a recursive equation. If we have n aircraft to be sequenced, {j1, j2, ..+, jk»--- in}, the
equations for Dynamic Programming to minimize the completion time are as follows:

Let

J  :thesubset of n aircraft

j(J) :last arcraft in sequence of subset J

j*(J) : optimal last aircraft in sequence of subset J

j** : optima second-to-last aircraft in subset J, given that aircraft j islast

12



(=7*(3-{ih)
ROT; : the runway occupancy time of aircraft i
pi; : minimum separation time between aircraft i and j when aircraft j immediately followsi

C(J,]) : optimal completion time for subset J, given that the last aircraft is|
C(J) : optima completion time far subset J

f;(G;) : cost such as delay time for aircraft j, given its completion time (C))
G(J) : optimal cost such as total delay time for subset J.

If J containsasingleaircraft, i.e. J ={ j«}

C(J,1) = G(w
= PLT (or PDT) + ROT,,
G = C(J,}
= G(jw),

elseif J contains more than one aircraft (recursive equations)

C@J,j) = C-i}) + B + ROT;,
G(J) = min jiny [GI-{j}) + (CQJ, )))]

=[G-{j*}) + f-(CQ, )],
C(J) =C@J,j*Q)).

The branch-and-bound approach is a preferred solution technique over Dynamic Programming.
As its name implies, the method consists of two fundamental features. 1) branching: this is the
process of partitioning a large problem into two or more subproblems, and 2) bounding: thisis the
process of caculating alower bound on the optimal solution vaue of a given subproblem.
As an example of a branching procedure, let P denote our ASP containing n jobs. The problem P
can be solved by solving n related subproblems, Py, Ps,..., P, (subproblem P, means job j has
been constrained to come first, but al other aircraft are open for future assignments). The set of
subproblems P; is a mutualy exclusive and exhaustive partition of P in the sense that if each P, is
solved, the best of these n solutions will represent an optimal solution to P.
Next, each of the subproblems can be partitioned, for instance, P; can be partitioned into Py, Pi3,
..y Pin. (In Py, jobs 1 and 2 occupy the first two positions in the sequence). Therefore the
second-level partition Py; bears the same relation to P, as the first-level partition P, bearsto P. At
level Kk, each subproblem contains k fixed positions and can be further partitioned into Q-k)
subproblems. If this branching were to be carried out completely, there would be n! subproblems
a level n. Clearly, evduating al n! casesis not practical, and so, a fathoming or curtailing of this
enumeration tree needs to be devised.

13



Suppose that at some intermediate stage, a complete solution has been obtained that has an
associated performance measure (called incumbent solution) Z. Also, suppose that a subproblem
encountered in the branching process has an associated lower bound b > Z. Then that subproblem
need not be considered any further. To find a lower bound at a certain node A a level k (i.e., for
the subproblem P, _,), we can use the following equation:

Ib(A) = ROT, + Pio+ ... + Py (N-K)Prin®

where,
ROT;: the runway occupancy time of aircraft 1 if this is te first in the processing
sequence
P;j : the processing time (minimum separation) of aircraft j if it immediately follows
aircraft i

A — .
Prin™=min. (i (@2.... il Pi} -

Generdlly, the efficiency of the Branch-and-Bound method is strongly dependent on the trial
solution and the tightness of the lower bound computed at each node. Unfortunately using Ppin®
makes it difficult to obtain a sharp lower bound at earlier nodes in the tree, implying that the
method might require considerable computationa time.

The Dynamic Programming method reduces the number of computations required to find an
optimal sequence when compared to exhaustive enumeration. It is aso true that the larger the
problem, the more dramatic is the gain in speed. However, because Dynamic Programming must
keep dl the information at each and every stage and none of this information is redundant until
the fina identification of an optima sequence, the storage requirements grow rapidly with the
number of jobs. Consdering the real-time requirements of our ASP problem, we need to devise
more efficient solution methods. For this reason, this research suggests an Integer Programming
approach as well as a heuristic approach to solve the aircraft scheduling and sequencing problem.

2.1.3 Reformulation-Linearization Technique (RLT)

RLT was developed by Sherdi and Adams (1989, 1990, 1994), and is an automatic reformulation
technique that can be used to derive tight LP representations as well as strong valid inequalities
[Sherali and Adams, 1999]. Consider a mixed-integer zero-one programming problem whose
feasible region X is defined as follow:

X={(xy)T R"" R": Ax+Dy3 b,0£ x£e,, xhinary, y3 0} |
where e,isavector of onesin R".
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Here, X = (Xy,..., Xy) isaset of binary variablesand y = (ys,..., Ym) iSaset of continuous variables.
RLT consists of essentially two steps: 1) a reformulation step in which additional non-linear valid
inequdities are automatically generated, and 2) a linearization step in which each product term is
replaced by a single continuous variable.

In the reformulation step, given d1 {1,....n}  the RLT procedure constructs so-called “bound-
factors (Fy) of degree d” comprised of the product of some d binary variables or ther
complements. These factors are then used to multiply each of the constraints defining X
(including the variable bounding restrictions) to create a nonlinear polynomia mixed-integer
zero-one programming problem. The bound-factors are defined as follow:

6 U~ U
F,(J3,,d,) :éco X, Ego - xj)g, "J.J,1 N°{L..n}, 3, CJ, =& |LEJ,|=d,
i 3, i,

In the linearization step, using the relationship ij =X; for each binary variable x, j = 1,...n,

subgtituting a variable w; and vy, respectively, in the place of each nonlinear term of the type

Ox "IN and QX "I1 N,"K, and relaxing integrdity, the nonlinear polynomial

i jfid
problem is re-linearized into a higher dimensona polynomia set Xy defined in terms of the
original variables (x, y) and the new variables (w, v). Sherali and Adams show that the projection
of X4 onto the space of the origina variables (X, y), Xpq, yields the hierarchy of relaxations.

Xpo® Xo EXp E Xpy E . E Xp, =conv(X)

where, Xpo ® X, (for d=0) is the ordinary LP relaxation, and

conv(X) isthe convex hull of X.

The hierarchy of higher-dimensiona representations produced in this manner markedly
strengthen the usual relaxations, as is evidenced by the fact that the convex hull representation is
obtained at the highest level. In fact, in computational studies on many classes of problems, even
the first-level representation helps design agorithms that sgnificantly dominate existing
procedures.

Applications of RLT to specific problems include zero-one quadratic problems, zero-one
quadratic assignment problems (Adams and Sherdi, 1986); continuous and discrete bilinear
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programming problems (Adams and Sherdi, 1993, Sherali and Alameddine, 1992); continuous
and discrete location-dlocation problems (Sherdi and  Tunchilek, 1995); polynomid
programming problems (Sherali and Tuncbilek, 1995, 1997a 1997b); factorable nonlinear
problems (Sherdi and Wang, 1999): 0-1 mixed integer problems with gpplication to some
specialy structured problems (Sherdi, et d., 1998): Miller-Tucker-Zemlin formulations for
asymmetric traveling salesman problems (Sherdi and Driscoll, 1999), among many others.

2.1.4 Heuristic Approaches for the Traveling Salesman Problem (TSP)

The ASP problem can be seen as a variation of Traveling Salesman Problem (TSP) for which no
efficient dgorithm (i.e, with computational time bounded by a polynomid in the size of the
problem) is known. In this section, we present severa heuristic methods to solve the TSP. Over
past two decades, there have been severa heuristic techniques devel oped that bear importance to

our origina problem.

2.1.4.1 Déefinitions of Various Types of Traveling Salesman Problems

Depending on the characteristics of the edge weight, w;; (or t;;), and time constraints on customer
service times, traveling salesman problems are classified as Symmetric (henceforth abbreviated
TSP), Asymmetric (ATSP), Symmetric with time-windows (TSP-TW), and Asymmetric with
time-windows (ATSP-TW) traveling sdlesman problem. The definitions of various types of TSP

problems are summarized in Table 2.1

2.1.4.2 Heuristic Approaches for the Traveling Salesman Problem (TSP)

Heuristic methods for TSP can be conveniently divided into two procedures: 1) tour construction
procedures which construct a initial feasible solution, and 2) Tour improvement procedures
which try to improve agiven initial solution in a systematical way [Lawler, 1985].

2.1.4.21 Tour Construction Procedures for TSP

Reindt (1994) classifies various types of construction heuristics suggested for TSP into four

groups. nearest neighbor heuristics, insertion heuristics, heuristics using spanning trees, and
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saving heuristics. Among the construction heuristics, the insertion method is known as one of the
most efficient approximate agorithms for the initia tour construction [Sydo, 1983]. In generd,

Table2.1 Definitions of Various Types of TSP Problems.

Problem Definition

TSP Given a complete weighted digraph G=(V, E) and symmetric weights w;; (or
t;) for all directed edges (i,j) ' V" VinE.

Find a minima Hamiltonian tour (or circuit) of G, i.e, a cycle which visits
each vertex exactly once, having minimum total weight.

(Most TSPs assume that a given vertex, say vertex 0, will serve as the first
and last vertex of any route and that the weight matrix (w;) satisfies the
triangle inequaity.)

ATSP? Same as TSP except that G=(V, E) is defined having asymmetric weights w;;
and wj; for the directed edges (, j) and (, i) respectively. (i.e., w; is not
necessarily equa to wj;.)

TSP-TW? Given a complete weighted digraph G=(V, E) with symmetric weights w;; for
al directed edges , j) ! V' Vin E, and a time-window on the departure
time for each vertex i denoted by [e, |;] where g specifiesthe earliest service
timeand |; the latest service time.

Find a minima Hamiltonian tour of G satisfying the time-window
restrictions.

ATSP-TW? Same as TSP-TW except that G=(V, E) has asymmetric weights w;; and w;;
for the directed edges (i, j) and (j, i) respectively.

1) Kanellakis (1980), Savelsherg (1990)
2) Acheuer (1999)
3) Savelsherg (1992)

an insertion method starts with a subtour comprising of one or two nodes, and extends the tour by
selecting a node from currently unvisited nodes and then inserting the selected node to the current
subtour in such away that the incremental tour cost is as small as possible.

Let V be the entire node set where V| = N and V; be the set of nodes included in the current
subtour. The k™ iteration (1 £ k £ N-1) of an insertion agorithm enlarges the tour of size k to one

of size k+1 by gpplying the following two steps.
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Selection step: In the set V-V; of the unvisited nodes, determine which node is to be
added to the cycle next.

Insertion step: Determine where the newly selected node is to be inserted to enlarge the
current subtour.

For the selection step, a number of heuristics have been suggested and investigated. Some of
these are:
arbitrary insertion: pick any unvisited node at random,
nearest insertion: pick the unvisited node that is nearest to the current subtour,
cheapest insertion: compare the cost of insertions of al unvisited nodes (in al insertion
positions) and pick the one having the smallest cogt,
farthest insertion: pick the unvisited node that is farthest from the current subtour.

In addition to the above methods, the convex hull insertion method, and the grestest insertion
procedure can be applied, especialy in an Euclidean space. (For more details, see Bodin (1983),
Golden and Stewart (1985), and Laporte (1992a).)

Of the insertion heuristics mentioned above, the farthest insertion appears to be the best overall
strategy (Golden et d., 1980). The underlying intuition behind the farthest insertion method is
that if arough outline of the tour can be constructed through the widely-spread nodes, then the
finer details of the tour resulting from the incursion of the nearest nodes can be filled in without
greatly increasing the total length of the tour.

The farthest insertion agorithms are described as follows [Sydo et ., 1983]: in order to find the
farthest unvisited node, the array dist(¥ of size N is maintained such that, for dl unvisited nodes
v, dist(v) is the distance from the node v to the node in the current tour which is closest. The node
f denotes the farthest node from the current tour. Each time a new node is inserted into the cycle,
the dist array is updated. To find the best insertion position which is the closest edge from the
node f, the insertion cost of node f between node i and j (1C;;) is examined for al edges in the

current subtour. The insertion cost is expressed as
I1Cij = Wis + W - W
Once the closest edge is obtained, state variables such as the total cost, the array dist(¥ and the

node/edge sets corresponding to the current tour are updated. Below is the pseudo-code for the
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farthest insertion algorithm. Here, s denotes an arbitrary node for an initial tour, and E; is the
edge set for the current subtour.

Initialization: Vr={s}; Er={(s,9)}; Wss— O; totalCost = O;
foral ul V-V, dist(u) = Wy,
Iteration:
while [Vr|<n
(Selection):
f = nodein V-V with largest value of dist(f);
(Insertion):
for every edge (i, )1 Er, 1Cj— wir+ W - Wy; // examine insertion costs
(i",j") ~ edgein Er with smalest values of ¢;j; // find the closest edge
(update):
Er- ErE{(,), (f,j)}-{(",])}; // update the visited edge list
Vi = V;E {f}; // update the visited vertex list
totalCost - totalCost + c+j+; // update the total tour cost
foral xI V-V, dist(x) = min{dist(x), w;,} //update the array dist
end

2.1.4.2.2 Improvement Procedures for TSP

There is awedlth of previous studies on heuristic approaches to improve solutions to the traveling
salesman problem. The best-known improvement heuristic procedures are edge-exchange (or
sometimes called edge-interchange) methods. Lin (1965) proposed the r-opt agorithm in which r
edges in a feasible tour are exchanged for other r edges in that tour as long as the result remains a
feasible tour and the length of the exchanged tour is less than the length of the previous tour.
Here, r is the number of edges exchanged at each iteration. The r-opt procedure is said to be r-
optimd if there is no feasible exchange that improves the current solution. The larger the value of
r, the more likely it is that the fina solution is optimal. However, the computational requirements
increase rapidly as the value of r increases. Asaresult, r =2 or r = 3 are the ones most commonly
used [Golden and Stewart (1985)].

A 2-exchange shown in Figure 2.1 involves the substitution of two edges, (i, i+1) and (j, j +1) with
two other edges (i, j) and (i+1, j+1). Such an exchange resultsin aloca improvement if and only
if

Wij + Wisgjra < Wiier + Wjag -

19



Tedting this improvement involves only loca information and can be done in a congant time. The
total number of possible 2exchanges is equal to "C,, which implies a time complexity of O(N?)
for the verification of 2-optimdlity.

Figure2.1 Example of 2-exchange.

It should be noted that the orientation of the path (+1,..., j) is reversed in the proposed 2
exchange tour. In a TSP having side-constraints such as time-windows, it is of importance to be
able to efficiently check the feasibility of the nodes in the reversed path. (This will be discussed
later.)

In a 3-exchange, where three edges are removed, there are several waysto construct a new route.
Two 3-exchanges shown in Figures 2.2(b) and (c) make an important difference: In Figure 2.2(c)
the orientation of the origina tour is preserved whereas in Figure 2.2(b) this orientation is

reversed. The time to verification of 3-optimality is O(N®).

@ (b) (€

Figure 2.2 Example of 3-exchange.
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Lin and Kernighan (1973) propose a variable r-opt algorithm which decides a each iteration how
many edges to exchange. The variable r-opt requires considerably more effort in coding than the
standard r-opt procedure. But the variable r-opt procedure outperforms the standard 2opt or 3
opt approach in finding near-optimal solutions. Because of this advantage, variable r-opt
procedure is frequently used to produce tighter upper bounds for the TSP.

With an intention to reduce the computational burden to verify r-optimality, proposals have been
made to take only a subset of al possible r-exchanges into account. Or (1976) proposes a method
that considers only those r-exchanges that would result in a string of s (= 2, 3..) consecutive
nodes being inserted between two other nodes. This reduces the time complexity required for the
verification of Or-optimality to O(N?). Figure 2.3 shows an example of Or-exchange (s=2) where
astring of (iy, i) isremoved from its position and inserted between j and j+1.

Figure 2.3 Example of an Or-exchange (s = 2).

2143 Heuristic Approaches for the Traveling Salesman Problem with Time-windows (TSP-
TW)

Due to time-window restrictions a each node (or customer location), an arrival earlier than the
earliest service time e introduces a waiting time a node i. On the other hand, the tour is
infeasible if the arrival time a node i is later than the latest service time ;. Taking the time-
window into consideration, there are two types of objectives for TSP-TW [Savelsbergh, 1985]:
n
Minimizing the total travel time, a ty k+1, which does not consider any possible waiting times at
k=0

the nodes.
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Minimizing the route duration, A..1-Do, i.e., the time difference between the arriva time at the
depot (An+1) and the departure time at the depot (Do).

If the departure time at the initial node (node zero) is assumed to be set at its earliest time (i.e.,

Do=6p), the objective of minimizing the route duration becomes that of minimizing the
completion time of the tour. This is suitable for our ASP problem which minimizes the tota

completion time of runway operations for a given set of flights. In this review, we focus on the
procedures for the objective of minimizing the total route duration.

Most procedures for TSP can be successfully extended to TSP-TW. However, one difficulty in
applying heuristics designed for TSP to TSP-TW is testing the feasibility of a candidate tour

produced by any exchange scheme. For example, testing the feasibility of a k-exchange tour in
TSP with time-windows (or other sde-constraints) requires O(N) time which results in a time
complexity of O(N") for the verification of k-optimality. Various types of researchers have
focused on devising more efficient techniques to test this feasibility.

By adopting the GENIUS (Generalized Insertion and Unstring and String) method for TSPs,

Gendreu et ad. (1998) proposed a generadized insertion heuristics for TSP-TW in which the
objective is the minimization of travel time. The tour building agorithm produces a feasible route
by inserting a vertex in its neighborhood on the current route, and performing a loca
optimization. Then, the feasble tour is post-optimized based on the successive removal and
reinsertion of al vertices.

Since the early eighties, TSP-TW has drawn additiona attention due to the fact that procedures
for TSP-TW provide basic methods to solve vehicle routing problem with time-windows (VRP-
TW). These are very important and practical problems faced by the industries. The vehicle
routing problem (VRP) is a problem to design a set of minimum cost vehicle routes for a fleet of
vehicles of known capacity which service a set of customers with known demands [ Solomon et
al., 1988]. All routes must originate and terminate at a common depot. Each customer is served
exactly ance. In addition, all N customers must be assigned to vehicles such that the total demand
on any route does not exceed the capacity of the vehicle assigned to that route. The vehicle
routing problem with time-windows (VRP-TW) isagenerdization of the VRP. Inthe VRP-TW, a
number of customers have one or more time-windows during which service must be scheduled.
Most VRP-TWs assume that the number of vehicles used is unlimited, i.e, the fleet sze is
determined smultaneoudly.

Smilar to TSP-TW, of primary importance to the effectiveness and efficiency of heuristics for
VRP-TW is the way in which the time-window constraints are incorporated in the solution



process [Solomon, 1987]. (In VRP, it is true that we should consider the vehicle capacity
constraint as well as time-windows. But, here we will skip discussons about the capacity
congtraints. For more details about capacity constraint, see Savelsbergh, 1990a).

If we have a single vehicle to be scheduled (i.e. single VRP-TW), the problem then becomes the
same as TSP-TW. For this reason, it is worth reviewing previous studies on VRP-TW. These
studies include Psaraftis (1983a, 1983b), Savelsbergh (1985, 1990a, 1990b, 1992), Solomon
(1986, 1987) Solomon et d. (1988), Sexton and Bodin (1985), Baker and Schaffer (1986),
Desrosiers et al. (1986), Dumas et a. (1991, 1995), Desrochers et a. (1992), and Laporte
(1992b). Severa of these procedures are reviewed below.

2.1.43.1 Psaraftis's Procedure

A. Tour Building Procedures

Psaraftis (1983a) suggests an O(N?) heuristic for the dia-a-ride problem (DARP) which is a
specia type of TSP with precedence constraints. In the DARP, a vehicle is located at a point A,
and is caled to service N customers, each of whom wishes to travel from a distinct origin to
digtinct destination, and then returnsto A so that total length of the route is minimized. Here, the
precedence among nodes should be considered because no destination can be visited before the
corresponding customer has been picked up. The problem is static in the sense that al N
customers' requests are given and no new customer requests are considered until al of these N
customers are serviced.

Due to the complexity of the DARRP, it is extremely hard to find an exact solution in reasonable
time for practica size problems (usually having more than 100 customers for a vehicle). For
instance, using Dynamic Programming to solve the DARP requires O(N’3Y) time, and this
gpproach limits the tractable problem size to no more than 8-10 customers [Psaraftis, 1980].

The tour building procedure proposed by Psaraftis is based on the minimum spanning tree (MST)
approach that is defined for N origins and N destinations. Firdt, an initial TSP tour T, through the
2N nodes is constructed. Then subsequent steps produce a feasible tour by traversing T, in such a

way that precedence constraints are satisfied. The heuristic proceeds as follows.

Step 1 Generate a TSP tour, To): Without digtinguishing origins and destinations, construct a
TSP tour Ty through 2N points based on their MST.
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Step 2 (Generate a dial-a-ride tour, T;): Choose any customer’s origin on T, as a first pick-up
point P, around the starting point A. Construct a dia-a-ride tour T,, by traversng T,
clockwise from P, until dl points are visited and then return to A. While doing this, do not
vigt any point that has been previoudy visted or any destination whose origin has not
been visited yet.

Step 3 (Improve T;: optional): Improve T, by a sequence of alocal exchanges.

Step 4 (Generate a dial-a-ride tour T,: optional): Generate ancther tour by repeating Step 2 and

Step 3 but moving counterclockwise. Pick the shortest tour in Tyand To.
Step 5 (Optional): Repeat Step 2 (optiondly 3 and 4) N times, each time choosing a different

customer origin as P;. Pick the tour that has the minimum length.

For Step 3, Psaraftis proposes a local improvement scheme in the sense that the exchange
involves four adjacent nodes such as i, j, k, and m shown in Figure 2.4. Assuming that the edge
weights, w;, are symmetric and that the triangle inequality holds, the conditions for feasibility and

profitability of the exchange shown in Figure 2.4 are as follow:

Wij + Wi < Wi + Wiy (condition for profitability),

where, k is not the destination of the customer whose origin isj (condition for feasibility).

Figure 24 A locd exchange [Psaraftis, 19834].

The computational complexity of the heuristic is O(N?) since finding MST, dong with Step 3 and
5 each require O(N?) time. (Even though the MST in Euclidean plane can be found in O(NIogN)
time, till the heuristic is O(N?).)

B. Improvement Procedures
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In the context of DARP, Psaraftis (1983b) develops k-exchange procedures to perform loca

search in a precedence-constrained vehicle routing problem. Similar to the k-opt procedure of Lin
(1965), and Lin and Kernighan (1973), a DARP tour is said to be k-optimd if it isimpossble to
obtain another DARP tour of shorter length by replacing any k of its links by any other set of k
links.

Figure 2.5 depicts a 2exchange. Such an exchange is profitable in a loca tour improvement if
and only if Wij.q+W 1> Wij+Wiiqj. under the assumption that the triangle inequaity holds. In

contrast with the TSP where each individual exchange takes O(1) time, checking whether each
DARP exchange satisfies the origin-destination precedence constraints requires O(N?) time. (This
is s0, because checking for precedences needs an examination of all pairs of nodes in the section
(i+1, j) and to ascertain if there is any customer who has the corresponding origin and destination
in the segment.) If the feasibility check is executed at every 2-inerchange, the procedure to find a
2-opt DRAP tour from afeasible DRAP tour will take O(N*) time.

Psaraftis proposes a method which finds the best 2-iterchange DARP tour out of a given feasible
tour in O(N?) time, which is the same as in the TSP where no feasibility checks are needed.

Suppose that we have an initial feasible DARP tour having N customers (labeled n=1,...N). A
DARP tour can be represented in one of following two ways.

Either using an array for a sequence counter (i), i=0,...,2N+1, representing the i stop of the tour
given by following definition:

0 ifi =0 and 2N+1 (i.e., the starting and ending point of the tour),
S(i) = +n if the vehicle picks up customer n at stop i,

-n if the vehicle delivers customer n at stop i.

Or using a matrix [m(n,i)] in which m(n;i) represents the status of customer n at the end of the i
stop of thetour:

3 if customer n has not been picked up so far,
m(n,i) = 2 if customer n ison board the vehicle,
1 if customer n has been delivered.

Let us consider a 2exchange of §, i+1) and {, j+1) as shown in Figure 2.5. Checking the
precedence feashility of the 2-exchange can be done by smply examining if there is any

customer n for whom m(n, i+1) =3 and m(n, j) = 1. If there exists such a customer, the proposed
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2-exchange will violate the precedence constraint. The matrix [m(n, i)] can be constructed from
array (i) in O(N®) time. Having this matrix, we can check the precedence feasibility of a
proposed 2exchange in O(N) time. Hence, the best 2exchange DARP tour from a given initia
tour can be obtained in O(N’) time.

Figure 25 An example of 2-exchange.

In order to reduce the computational complexity further, Psaraftis introduces a screening
procedure to determine the feasibility of every possible 2intercange. This screening process is
performed at the beginning of the agorithm, and the information is stored in a matrix to be used
in the tour improvement procedure.

Given a DARP tour and astop i (0 £ i £ 2N-2), let FIRSTDEL (i) denote the position (or stop) of
the first delivery remaining beyond i+1, for which the corresponding customer has rot been
picked up until stop i. The FIRSTDEL (i) is expressed as follows:

x if x is the smdlest postion above i+1 for which there exists a

FIRSTDEL (i) = customer n so that m(n, i) =3 and m(n, x) =1,
2N+1, otherwise.

Then, the precedence feasibility of a 2-exchange can be checked by applying the following
theorem.

Theorem (Psaraftis (1983b)): The subgtitution of links (i, i+1) and (j, j+1) with (i,j) and (i+1,
j+1) isfeasbleif and only if ] < FIRSTDEL(i).
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Using the array of FIRSTDEL (¥ and the Theorem, the feasibilities of al possible 2-exchanges are

stored in the matrix [FE(, j)] with values of true or false. The pseudo-code for the screening
process is presented below:

Step 1(Calculate the values of FIRSTDEL (i)): Using array S(i) and the matrix [m(n, i)], calculate
the values of FIRSTDEL (i) fordl i,0 £i £ 2N-2.

Doi =0to 2N-2
Dox=i+2to 2N+1
If (S(x) <0) Il check if x isdelivery
If m(-S(x), i) = 3) // check if x has aready been picked up util theend of stop i
FIRSTDEL(i) = x;
End if
End if
If (x = 2N+1) then FIRSTDEL (i) = x;
Enddoi
End do x

Step 2 (Create a feasibility matrix [FE(i, j)] for all possible 2-exchanges):

Doi=0to2N-2
Doj=i+2to 2N
FE(i, ]) = false;
If j < FIRSTDEL(i), then FE(i, ) = true;
Enddoi
Enddo |

The above screening process can be executed in O(N?) time. As aresult, the best 2-exchange tour
out of a given DARP tour can be found in O(N?) time since checking feasibility of any proposed
2-exchange can be performed in O(1) time. It should be emphasized that what we have found so
far is not the find 2-opt tour but the best 2-interchange tour of a given DARP tour. To search for a
2-opt tour, the procedure should ke applied a number of times. To facilitate this process, Psaraftis
introduces two search agorithms. Breath-first and depth-first search (see Psaraftis (1983b) for a
complete discussion of this).

2.1.4.3.2 Solomon's Procedures

A. Tour Building Procedures
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By extending the known VRP heuristics, Solomon (1987) proposes severa tour-building
agorithms for VRP-TW. The novelty of the proposed approach is the incorporation of distance
and time dimensions in the heuristic process. The cost (for the objective function) of direct travel
from customer i to j isassumed to be given by ci;=r ;w;;+ r(b; - b)), wherer ;3 0, r,3 0and w;
is the direct travel time between i and j, and b is the time to begin service for customer j. If r ;=
0, then the problem isto minimize the total travel time.

Solomon proposes necessary and sufficient conditions for time feasibility when inserting a
customer, u, between the customers iy, and i,, 1 £ p £ m on a partialy constructed feasible

route, (ip, i1, I2,--+ Im), Io=Im= 0 for which the times to begin service, h, for 1 £r £ m are known.

Initially, the vehicle is assumed to leave the depot at the earliest possible time, e,. (Later, the
depot departure time is adjusted to eliminate any unnecessary waiting time after the complete
vehicle schedule has been created.) The necessary and sufficient condition for feasibility of the
insertion is asfollows:

b£l,and B, +PR £li pEreEm

where, PF, : the push-forward for customer i, isdefinedas " - B 3 0,if r =
p,and Max{O,PF - W _} ifpErEm-1,

and where, W, ; isthe waiting time at i, ;.

It should be noticed that if PF_ >0, some of the customersi,, p £ r £ m, could become infeasible.
Hence, we need to examine these customers sequentiadly for time feasbility until we find a
customer, i, for which PR, =0, or i, istime infeasible.

It should aso be noticed that, the aforementioned condition assumes that the triangle inequality
holds for travel distance and times. If non-Euclidean travel distances and times are used, then it is
possible that PF_ < 0, which leaves al the customers time feasible. Solomon proposes several

types of heuristic methods for the tour building methods.

Saving heuristics:

This approach is an extension of the savings heurigtic originaly proposed by Clarke and Wright
(1964). The procedure begins with n distinct routes in which each customer is served by a
dedicated vehicle. The tour-building heuristic is performed by the addition of a link of distinct
partially formed routes between two end customers, i and j, guided by a measure of cost savings
givenby S; = di + dg - ndi;, m® 0. In the VRP-TW, the route orientation must be considered
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when two partial routes (see Figure 2.6) with end customers, I(ast) and f(irst), respectively, are
combined according to the savings value. Here, testing for time feasibility can be accelerated by

using the push-forward generated at f.

a) Before the addition b) Addition 1 c) Addition 2

Figure2.6 Two-addition procedures in a savings heuristic.

A time-oriented, near est-neighbor heuristic:

This procedure initializes every route by finding the unrouted customer closest to the depot. The
heuristic sarches for the customer closest to the last customer added to the route. Let the last
customer on the current partia route be customer i, and let j denote any unrouted customer. The
closeness of any two customers, i and j, denoted by cj;, is the combination of the distance between
two customers d;;, the time difference between the completion of service at i and the beginning of

service at j, T;, and the urgency of delivery to customer j, v;;, given by the following equations:

Ti=A-(A+s),
Vi = - (A+ s+ w) and
Cij = dhwi; + Ao Tjj +0sv;j, where dy + o+ ds = 1, dy, 0h, &30,
where, A: arrival time at customer i,
S: service time for customer i,

B.  Improvement Procedures

29



Suppose that we have a 2exchage tour as shown in Figure 2.5. Similar to Psarsftis's procedure,
Solomon (1988) considers two conditions to be satisfied for a substitution of (i, j) and (i+1, j+1)
with (i, i+1) and (j, j+1) to be favorable:

local improvement condition: Wij+Wi.q j+1 < Wi j+1 + Wisyj,
feasibility condition: The time-window congtraints of the customers affected by the exchange
need to be satisfied.

To check the feasibility of the 2exchange, time-windows for all customers from i+1 to the end of
the route should be examined. Since this additional checking procedure requires O(N) time, the
total computational effort for 2-opt would result in a O(N®) time process.

By adopting the work of Psaraftis (1983b), Solomon et al. (1988) develop an acceleration method
for improvement heurigtics for VRP-TW. This method is used as a preprocessor, which makes it
possble to handle the time-window constraints without an increase in running time of the
agorithm. Checking the feasbility of a 2-exchnage can be accelerated by examining the
precedence relationship between all pairs of customers. If A+s+w;; (=D;+w;;) > |;, then customer i
should precede customer j in the tour. The precedence information between al pairs of customers
are stored in amatrix VP(, j) in the following way:

+1 if customer i must precede customer j,
VP(,j) = O0if no precedence relationship exigs,
-1 if customer j must precede customer i.

Similar to Psaraftis method, it is possible to define a node precedence value, NP(), for al
customers on the route which reflects the precedence dependence at that point with regard to

customers to be visited later in the route.

NP(i) = the smalest number k, k > i+1, such that VP(j, k) = +1, j 3 i+1. If no such k
exists, then NP(i) = N+1,
where, N isthe number of customers.

Given NP() for dl i, a necessary condition for the time feasibility of a 2exchange is stated as
follows:

A necessary condition for the feasibility of the 2exchange of arcs (, i+1) and (j, j+1)
with (i,]) and (i+1and j+1) isthat j < NP().



It is noted that VP(, j) may be examined in O(N?) time, and NP(i) may be obtained from the
VP(ij) in O(N%) time. It should also be noted that, unlike Psaraftis's procedure (1983b) for diak-a
ride problem, the aforementioned condition is not a sufficient condition but only a necessary
condition for feasibility of time-windows. Although the use of the NP(i) array does not eliminate
the need for further checking of the feasibility of a 2exchage, Solomon et a. suggest that it may
be used as an effective filter to reduce the number of complete feasibility checks to obtain 2
optima solution for the VRP-TW. (For 3exchanges and some examples, see Solomon et al.
(1988).)

2.1.4.3.3 Savelsbergh's Procedure

A. Tour Building Procedure

Savelsbergh (1990) introduce the forward-time slack at node i, F;, to indicate how far the
departure time of the node can be shifted in time without causing the route to become infeasible
along the current path. The goa of the procedure is to check feasibility of the insertion of an

unrouted customer u between two routed customers i and i+1. Taking the departure time at the

initid node as the earliest servicetime (i.e., Do= &), F; is defined as follows:

F . II D . J)( ...-_.
= mnil -CD +3w TI'
' i£k£n:|r ko gl rii PPy

Then, the feasibility of the insertion u will be secured if
max{D; + Wy, €} +Wys1- Div1 £ F.
Using the following backward recursion, Fy for al customers k can be computed in O(n).

Fosr=lns1- Di |
F =min{ F .1 +Wies, I - D} fork =n,...1,

where, W: waiting time at node i defined asmax{0, e-A;}.
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For the profitability of the insertion, Savelsbergh uses the measure of savings given by the
following equation:

sav = 2WO,u + VVi,i+1_ Wi,u - Wu,i+1-

B. Tour Improvement Procedures

The basic idea of Savelshergh's tour improvement procedure (1990b) is to use a specific search
strategy in combination with a set of globa variables such that testing the feasibility of a single
exchange and maintaining the set of globa variables requires no more than a constant time, O(1).
The st of global variables is defined such that: 1) this set of variables makes it possible to test the
feasibility of a proposed exchange in congtant time, and 2) the lexicographic search strategy
makes it possible to update the values of these variables in constant time. Savelsbergh suggests
three types of lexicographical search strategies for VRP-TW as shown in Figure 2.7.

Lexicographic search for 2-change: In the outer loop, choose the edge (i, i+1) in the order in
which they appear in the current tour starting at (0,1). For the inner loop, choose the edge (],
j+1) to be (i+2, i+3), (i+3,i+4), ..., (n-1, n) (see Figure 2.7(a)).

Lexicographic search for backward Or-exchange: Choose the path (is,... i) in the order of the
current route starting with i; equal to 2. Choose the edge (j, j+1) to be (i:-2, i;-1), (i1-3, i1-2),
.., (O, 1) (see Figure 2.7(b)).

Lexicographic search for forward Or-exchange: Choose the path (is,...,i») in the order of the
current route starting with i; equal to 1. Choose the edge (, j+1) to be (,+1, i,+2), (i»+2,
i,+3), ..., (n-1, n) (see Figure 2.7(c)).

A genera framework for the 2-exchange procedure is roughly described by the following pseudo-
code:

{ input: aroute given as (0,1,2,...,n)}
{ output: aroute that is 2-optimal}

Start:

for i=0tonf
initGlobd(i,G);
for j=i+2,n{

if(Wij + Wirgjer < Wijs1 + W+ and FeasibleExchange(i j,G))

PerformExchange(i,j);
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Goto Start;

}
UpdateGloba(i,j,G);
H/ end for |
}/ endfori

Comparing this procedure with the straightforward implementation, the suggested idea guarantees
that only congtant time is spent on a single exchange, which implies an O(n®) method for
verifying 2optimality. On the other hand, in the straightforward implementation, the time spent
on a single exchange depends on the effort needed to establish either its feasbility or its
infeasibility, which implies an O(n®) method for verifying 2-optimality.

Generdly, the forward-time slack at node i related to the path (i,..., j) and to the departure times
Di,..., D; isexpressed as:

time slack for the first node of the resulting path is given by:

(i1 12 2) — pyo (1o j1) 2o J2) 4 &
Fil1 v _mn{Fill ' ’Filz “+a Wk+Di2 - (Dj1+leJ'2)} .

i1<kEjg

Using the above equation, we can compute the forward-time slack at the depot, I:o(0 """ " , usng

one of the following two ways.

forward recursion: Fo~ Y =min{ FO- I, - Disa * & ocpgi Wp *Waak .
backward recursion: F&" ™ = min{l; - Dy, B4y +W, .}

Another issue in improvement procedures is how efficiently the objective function associated
with a given exchange can be evduated. Since our objective is to minimize the route duration,

D.+1-Dog, the efficiency of evauation actualy depends on the efficiency of the computation of
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Dn+1. Given apath (i,..., j), adeparture time D; and Do=e,, the departure time D; can be computed
as

— o] o
Dj =Di+Qgke) Wiokst T Qjckej W .

As such, the computation of waiting times, W,, in a constant time is the red issue in checking for
profitability. Savelsbergh (1992) suggests an approach to compute the waiting time on the
concatenation of paths (is,..., j1) and (iz,..., j2) by distinguishing four different cases on D which
denotes Dj, +Wj i, - Di,, and W, which is the sum of the waiting time on the path (i,..., j2).
Table 2.2 summarizes the results. Here B,, which is the backward-time slack at node i relative to
the path (i,..., j) indicates how far the departure time of the node can be shifted backward in time

without introducing any waiting time, and is computed as follows:

Table2.2 Computation of Waiting Time on a Concatenated Path.

D20 D<0
We=0 W Wi+max{0, -D-B}
W > 0 Wi+max{ 0, Wo-D} Wi+ W + D

Savel shergh shows that on the concatenated path, both the forwar d-time slack at each nodethat is
used for the checking feasibility, and the sum of the waiting times used for checking the
profitability can be computed in constant time. Hence, it is possible to implement the testing of
feasihility and profitability in O(1) time.




(a) 2-changes (b) Forward Or-exchanges (c) Backward Or-exchange

Figure 2.7 Lexicographic search strategies.



2.1.4.4 Heuristic Approaches to the Asymmetric Traveling Salesman Problems (ATSP)

In principle, if an asymmetric TSP is trandated into a symmetric TSP, we can now apply any
heurigtic devised for symmetric TSP to solve ATSP. As pointed out by Kanellakis and
Papadimitriou (1980), this approach increases the problem size considerably. For example, a 100-
city ATSP is transformed into a 300-city symmetric TSP. They aso remarked that not all
approaches to the symmetric TSP can be adopted to solve the ATSP (for example, the class of
techniques based on spanning trees). The power of Lin-Kernighan's (1973) heuristic is the fact
that al primary changes are potentially searched. Kanellakis and Papadimitriou (1980) present an
extenson of Lin-Kernighan's local search agorithm for the solution of ATSP: the sequential
primary change in which the creation of a new cycle (by primary change as described below) is
immediately followed by a breaking of the cycle. They aso suggest that the so-called quad
change which is nonprimary can substantially enrich the neighborhood structure. A quad change
isillustrated in Figure 2.8(d).

It is pointed out that Lin-Kernighan's heuristic which uses a definite favorable | -change (see the
definition given below) requires excessive computation for ATSPs. Without having any definite
favorable | -change, the algorithm is designed to be able to stop if there is no favorable change at
every par of steps. The computational results show that 90-city ATSPs can be solved in 4.43
minutes on a PRIME 400 minicomputer.

Below, we present the definitions of the | -change and the primary change for a given tour t,

which are related to the sequential primary change.

Definition (I -change of a tour t):
Lett and t ¢ be ATSP tours, X and Y be digjoint sets of edges such that t ¢=(t-X)EY. If
[X=|Y|=l , we say that t ¢isal -change of t. A graph G(t ,t § isdefined in such away that,
given the nodes of G(t t § corresponding to edgesin X, if x;=(k, I) and x=(p, q), x;, X1 X,
then there is an arc (x;, X)) in G(t t 9 iff (k, o) Y. For example, atour t ¢in Figure 2.8(b) is
a 5-change of thetour t of Figure 9(a), and Figure 9(c) displays the graph G(t .t .

Définition (Primary change):
A tour tCis a primary change if G(t,t@ conssts of a single cycle. Figure 2.8(b), for
instance, shows a primary change for the tour of Figure 2.8(a), but Figure 2.8(d) displays
anon-primary change.



(©) (d)

Figure 2.8 Definition of primary changes.

There are two ways to gradually construct a primary changet:

Decide x; to be removed (see Figure 2.9(a)).

The choice of y; (or generaly y.;.1) uniquely determines an x»i., and a closed cycle C; (Figure
2.9(b)).

Here we have two aternatives.
3-1) Choosey, to break the cycle C, and end up where the tour started (Figure 2.9(c)).

3-2) Choose Yy, to generate a new cycle C, (Figure 2.9(d)) and later break both cycles C; and
C, (Figure 2.9(e)).
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Accordingly, we can define the sequential primary change as follows:
Definition (Sequential primary change):

If a primary change can be applied in a sequence, each immediately followed by the
breaking of acycle, it is called a sequential primary change (see Figure 2.9(c)).

@

Figure 2.9 Construction of primary changes.

The heurigtic for ATSP starts with an initial feasible tour t. It picks an edge x; of t, and tries to
find a sequentia primary change. If it fails, it backtracks with respect to the same x;, and
considers al possible y;’s in increasing order and y.'s. (Here, al y,’sthat break the cycle created
by y; are searched and the one that produces the most favorable 3-change is selected.) If it fails

again, it backtracks with respect to al possible x;’s which it examines in decreasing ader. This
part of the procedure is detailed as follows:



Step 1 (Initialization): Set G,=0, G =0, i' =0, and i=1. Pick x,=(k, ) as the largest cost edge.
Step 2 (Pair of sub-steps):
Sub-step 1 (pick y; and create a new cycle Cy):
Let x=(k, I). Pick y=(k, q) subject to F and G;. This determines x;.; and
generate a cycle C;. If no such choice, stop.
Sub-step 2 (pick yi.; and break the cycle Cy):
Let x=(p, 0). Pick yi.1=(p, r) subject to F and Gi.,. This determines x;., and
ay closing the tour, and it breaks C;. If no such choice, stop.
Step 3 (Update): SP =G . If G, > G then, G =G, , delete X;++1, ..., X+1 from current tour t, and
add Yis+q, ..., Vi1 to thetour t and set i =i+1.
Step 4 (Sopping Criteria): If SP<G;. 4, then set i=i+1, start a new pair of steps, else stop.

Where, F (Feasihility): The X’ s have not been y’'sin previous steps of the current search, and yi.1
breaks C..
G; (working gain) = G;1 + ¢(x) - c(y:).
Gis1= Gi+ C(Xi+1) - C(Yi+1)-

i+2 i1 .
G = ac(x)-adyj)-c(y)>0.
j=1 j=1

G (the best definite gain achieved so far at thestep i’).

2145 Heuristic Approaches to the Asymmetric Traveling Salesman Problem with Time-
windows (ATSP-TW)

As part of a branch-and-cut algorithm to solve ATSP-TW, Ascheuer et a. (1999) apply a series of
heuristics. A sorting heuristic, a nearest-feasible-neighbor heuristic, and an insertion heuristic are
applied for congtructing an initia feasible tour. A swap heuristic, a two-node-exchange heuristic,
a node-reinsertion heuristic, an arc-reinsertion heuristic, an arc-reversal heuristic, and the Or-
exchange heuristic are applied for improving a current tour. For the convenience of
implementation, an additionad dummy node n+1 which denotes the depot is created such that
i<n+l" il V. (Here, “~<" denotes the precedence relationship. For example, i <j means that i
has to precede j.) Ascheuer et al. also suggest an efficient order to implement these heuristics as
follows

Dof construction heuristics with following order:
Sorting heurigtic
Nearest-feasible-neighbor heuristic
Insertion heuristic 1
Insertion heuristic 2

If no feasible sequence found Stop.

Dof improvement heuristics with following order:
Or-exchange heuristic
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Arc-reversa heurigtic
Swap heuristic
Arc-reinsertion heuristic
Node-reinsertion heuristic
Two-node exchange heuristic

} until no further improvement is achieved.

A. Tour Building Procedures

The various types of heuristics used for tour building are as follows:

1) Sorting heuristic:

Check if thetrivial sequence (O, 1,..., n-1, n, n+1) isfeasible.

Sort the nodes according to increasing r; and check whether this sequence is feasible.

Sort the nodes according to increasing d; and check whether this sequence is feasible.

Sort the nodes according to the midpoints of the time-windows m = g+(g+l;)/2 and check
whether this sequence is feasible.

2) Nearest-feasble-neighbor heuridtic:

For each feasible arc (0, i)l A,

Enlarge the current subtour (O, Vi, V»,...i) by an arc (v, v) resulting in the smallest increase in
the objective vaue and guaranteeing feasibility.

3) Insertion heuristic:
Congtruct the initid subtour P¢=(0, vy,..., Vi, N+1) by finding the shortest path from O to n+1.
Enlarge the current subtour P¢hy choosing anode j satisfying one of following criteria.
b1) Among al unsequenced nodes VE&W\{vy,..., vi}, choose the node j1 Véthat yields the
lowest increase in the path length, i.e, dmin(j)zmin{dmm(i)m V@, where dyin(i) = min
{ Wi ¥ Wy, - Wy, | iT VG vi P¢and subtour (0, Vi,..., Vi, i, Vis1,..., Vie N+1) iS
feasible} .
b2) Among al unsequenced nodes V&W{vs,..., i}, choose the node jT Wthat has the lowest

number of feasible insertion positions and insert this nodes at the cheapest of these
positions.



B. Improvement Heuristics
The details of the improvement heuristics are as follows:

1) Swap heuritic:

Given afeasible tour T=(vo, Vi,..., Va+1), CONstruct a new tour T by scanning through the current
tour and checking whether swapping two subsequent nodes v; and Vvi.q, i =1,..n-1, results in a
feasible solution with a better objective vaue. If a better solution is found, this new tour is
accepted. The procedure is repeated until no further improvement is achieved.

2) Two-node-exchange heuristic:

Given afeasible tour T=(v, Vi,..., Va+1), CONstruct a new tour T by exchanging any two nodes (not
only subsequent nodes) in the current tour. If a better solution is found, this new tour is accepted.
This procedure is repeated until no further improvement is achieved.

3) Node-reinsertion heurigtic:

Given a feasble tour T=(vo, V1,..., Vi, Vj, Vi .., Vas1), CONStruct a subtour T S(Vo, Vi, Vi, Vige-os
Vns1) by diminating an inner node v;. Try to reinsert v; in the best position in T *such that the new
tour T is feasible. If a better solution is found, this new tour is accepted. This procedure is
repeated until no further improvement is achieved.

4) Arc-reinsertion heurigtic:

Given afeasible tour T=(Vo, V1,..., Vi, Vj, Vi, Vi,..., Vns1), CONStruct a subtour T S(Vo, V1,..ns Vi, Vi
Vn+1) Dy eliminating two consecutive nodes v; and vi. Try to reinsert the arc (v;, vi) at any position
in T “such that the new tour T is feasible. If a better solution is found, this new tour is accepted.

This procedure is repeated until no further improvement is achieved.

5) Arc-reversal heurigtic:
Given a feasble tour T=(Vo,..., Vj, Vi,... Vi, Vim,..., Vns1), CONStruct a tour T=(Vo,..., Vj, Vi,... Vi,
Vim,..-, Vn+1) Dy reversing the subpath (v,...,v;) such that the new tour T isfeasible. If a better
solution is found, this new tour is accepted. This procedure is repeated until no further
improvement is achieved.

6) Or-exchange heuristic:
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Given a feasble tour T=(Vo, V1,..., Viy..., Vj,..., Vas1), reémove the subpath {,...,v;) from the
current tour T, and try to reinsert it between any two subsequent nodes v, and v, such that the
new tour T isfeasible. If a better solution is found, this new tour is accepted. This procedure is
repeated until no further improvement is achieved.

2.2 Literature Review on Network Assignment Problem (NAP)

The NAP problem on the taxiway has many similarities with urban transportation network
problems. In urban networks, NAP solutions provide the best routes for drivers traveling to their
own destinations so that the system (or drivers) can reach an optima (or equilibrium) state. In
solving urban transportation network problems, three types of sub-components are generaly
involved:

Network assignment algorithm which, using the shortest path information, allocates traffic
demand, i.e., vehicles, on the routes,

Shortest path algorithm which, using the link travel times, provides the shortest paths for a
given O-D pairs on the network, and

Link performance function(s) which represent the relationship between the traffic volume on
alink and the travel time aong the link.

Finding an adequate link performance function is considered as a difficult task, and is ill a
controversid issue. The difficulty arises from the dynamic feature of traffic conditions. Some
research groups [Leonard et a. 1978, Van Aerde 1985, 1999] use a smplified version of link
performance function having two components. free running times dong the link and delays at
junction [Rakha, 1990]. Other groups [Peeta and Mahmassani 1995, Mahmassani, 1998] use
smulaion modds as a tool for measuring link travel time rather than using a closed-formed link
performance function. Some researches [Ran et al. 1997] suggest more sophisticated functions
which are capable of capturing the dynamic characteristic of vehicle behaviors. In thisresearch,
we assume that the link travel time is a function of only delays at a junction. It is further assumed
that the delays at taxiway junctions are proportionda to the number of conflicting vehicles.

Among those three sub-components, we review the previous studies on the network assignment
agorithm and the shortest path agorithm which have been well defined and successfully studied.
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221 Literature Review on Network Assignment Algorithms

Depending on the time-dependency, network assgnment algorithms can be classified into two
types: 1) static network assignment algorithm, and 2) dynamic network assignment agorithms.

2211 Saic Assgnment Algorithm

In 1952, Wardrop established two mutually independent network assignment principles for the
static assignment problem. According to the first principle, users on the network choose a route
that minimizes their own travel time. In the second principle, users distribute themselves on the
network in such away that the average (or marginal) travel time for all users for each route from
origin to degtination is equa so that the aggregate vehicle-hours spent in traveling is minimized.
These two assignment principles are also-called “User Equilibrium (UE)” and “System optimal
(SO)” respectively. Two critica conditions arise from two static network assignment principles
[Papacostas and Prevedouros, 1993]:

1) User equilibrium (UE) is the state where no traveler can improve higher travel time by
unilaterally changing routes. (In other words, for each O-D pair, the travel time on dl used
paths is equal, and aso less than or equa to the travel time that would be experienced by a
single vehicle on any unused path.)

2) System optimal (SO) is the state where the travelers cannot improve the total system travel
time by jointly changing routes in any fashion. (In other words, for each OD pair, the
marginal travel time on al used paths is equal, and dso less than or equa to the margina
travel time that would be experienced by a single vehicle on any unused path.)

Finding UE (or SO) solutions is a well-researched problem and various techniques are commonly
used in urban transportation studies [Sheffi, 1985]. The basic notation adopted in this research
project is shown below:

Xa": flow on link a at n™ iteration,

t,: travel timeon link a at n" iteration,

Oy trip rate between origin r and degtination s,
ta(): link travel time function for link a.



A) All-or-nothing assgnment

The dl-or-nothing assignment method is one in which the entire flow for any given O-D pair r-s,
Ors» IS assigned to the minimum-travel-time path connecting this pair. The usua steps for the al-
or-nothing assignment are:

Sep O: initialization. Perform all or nothing assignment based on the shortest paths for al
trips obtained by using t.° = t,(0) for al the links. Obtain link flows {x.”} for all the
links. Setn =1

Step 1: update the link travel times. Set t," = ty(x."").

Step 2: network loading. Assign al thetrips to their shortest paths on the network using the
dl-or-nothing grategy based on the travel times {t,"}. Obtain the link flows {x,"}
for dl thelinks.

Step 3: convergence test. If max.{| X" - x."* [} £k, then stop. Otherwise, setn— n+ 1and
goto Step 1.

Congdering how dl-or-nothing assgns dl of qs to the shortest path, the agorithm is not
successful at converging to the state of user equilibrium. To overcome this problem, the following
agorithms have been devised by the Federal Highway Administration (FHWA).

Step O: initialization. Perform all-or-nothing assignment based on the shortest paths for all
trips obtained by using t.° = t,(0) for dl the links. Obtain the link flows {x.”} for all
thelinks. Setn = 1.

Step 1: update and smooth the link travel times. Set t." = t,(x."") and t,"=0.75 t,"* +
0.25t " for al the links.

Step 20 network loading. Perform an all-or-nothing assignment based on the travel times
{t."}. Obtain the link flows {x,"} for dl thelinks.

Step 3: stopping rule. If n =N, go to Step 4. Otherwise, setn = n + 1 and go to Step 1.

* l Q 3 n-i . . . * *
Step 4: averaging. Set Xa:Zai:oXa , find the link travel times, t, = ty(x, ) for al the

links and stop. (Here, { X, } approximate the link flows at equilibrium.)



There are two modifications used above. First, the link travel times are updated by smoothing the
link travel times from both the current and the previous iterations using certain weighting factors.
Second, the fina link flows are obtained by averaging link flows from the last four iterations.
These modifications have proven to be somewhat helpful in obtaining solutions that are closer to
atrue equilibrium gate.

B) Incremental Assignment

In the incremental assignment method, the flows for a given O-D pair are assigned as a packet
which represents a portion of the origin-destination matrix at each iteration. The travel times are

updated based on the totdl traffic flows assigned to the links. The stepwise procedure for this
approach is outlined below.

Step O: initialization. Divide each origin-destination demand into N equal portions (i.e. set
<" = grs/N). Perform an al-or-nothing assignment based on t,° = t,(0). Obtain a set
of link flows {x,’}. Set n = 1 and x,°=0.

Step 1: update link travel times. Set t," = t,(x,"").

Step 2: incremental network loading. Assign q," to the network based on the travel times
{t."} for dl origin-destination (i.e. rs) pairs. Obtain a set of link flows {w,"} from
this assignment, where w," is the flow on link a resulting from the assignment of the
nth increment of O-D matrix on to the network.

Step 3: flow summation. Set x,"= x,"" + w," for dl the links.

Step 4: stopping rule. If n= N, stop with the current link flows as the prescribed solution.
Otherwise, setn - n+ 1land goto Step 1.

One important fact in the incremental assignment procedure is that as the number of increments,
N, grows, the condition for UE can be achieved more closdaly. This point provides us with the
rationale for using an incremental assgnment strategy in microscopic smulation models. In
microscopic Smulation models, the vehicles are treated as individua objects, which means that
each vehicle is assigned one by one rather than as a packet of size g,¢/N on the network. In this

case, the number of increments (N) is the same as the total number of vehicles, and this might
tend to produce the UE state.



C) Method of Successive Averages (MSA)
The MSA uses the following basic agorithm step of most minimization procedures.

Xn+1=Xn+an>dn
where, X" isthelink flows at nth iteration,
a, isastep size and

d " is adescent direction vector computed at x".

In MSA, the step size a, (n=1,2,...) is not determined on basis of some characterigtics of the
current solution but determined a priori. For this method to converge, some conditions of the
objective function and a, have to be satisfied. These conditions include twice differentiability of

¥ ¥
o] [o]
the objective function, @ @, =¥ and @ &, =¥ (see Sheffi (1985) for a complete discussion).

n=1 n=1

The method is outlined below.

Step 0: initialization. Perform an all-or-nothing assignment based on t.° = t,(0). Obtain a set
of link flows{x,'}. Setn =1

step 1: update. Set t," = to(X,").

Step 2: direction finding. Assign al the trips to the network based on the travel times {t,"}.
Obtain a set of auxiliary link flows{y,"} from this assignment.

Step 3: move. Find the new flow pattern for al the links by setting x,""'= x," + (1/n)(ya." -
Xa ).

Step 4: convergence test. If a convergence criterion is met, stop with the current solution,
{x."""}, as the set of prescribed (near equilibrium) link flows. Otherwise, sstn = n

+landgoto Step 1.
D) Convex Combination Method

Without using a predefined step Size a,, the convex combination method finds a, at each iteration
by solving a Non-linear Programming (NLP) problem which is subject to linear constraints. The
resulting NLP problem can be replaced by a much smpler linear approximation, and solved using
the Frank-Wolfe (1956) algorithm. The method is outlined below.



Step O: initialization. Perform an dl-or-nothing assignment based on t, = t,(0). Obtain a set
of link flows{x,'}. Setn =1
Step 1: update link travel times. Set t," = ty(X,").
Step 2: direction finding. Assign al the trips to the network based on the travel times {t,"}.
Obtain a set of auxiliary link flows {y,"} from this assignment.
\Xa*a (¥3-x3)

Step 3: line search. Find a, by solving Mn & Q t, (W) dw

Ofafl
a

Step 4: move. Set X, 1= X"+ an(ya"- Xa") for dl the links.
Sep 5: convergence test. If a convergence criterion is met, ssop with the current solution,
{x.""'} asthe set of prescribed (near equilibrium) link flows. Otherwise, N~ n+1

and goto Step 1.

Methods A) and B) are caled heuristic (or sometimes caled non-equilibrium) assignment
methods in the sense that these may not converge to the equilibrium solution. On the other hand,
method D) is formulated as a mathematical programming technique to achieve either UE and SO.
It can be shown that solutions of mathematical formulations are consistent with to the conditions
of UE and SO defined by Wardrop.

2.2.1.2 Dynamic Assignment Algorithm

Similar to the static assignment problem, there are two types of dynamic assgnment problems: 1)
dynamic system optimal assignment problem (DSO) which seeks to minimize the total system
travel time over he planning horizon, and 2) dynamic user equilibrium assignment problem
(DUE) which seeks time-dependent user path assignments that satisfy the temporal extension of
Wardrop's UE condition [Peeta and Mahmassani, 1995].

Janson and Robles (1995) define the DUE as follows: Given a set of zone-to-zone trip tables
containing the number of vehicle trips from each origin zone in successive time intervals of 1 to
10 minutes each, determine the volumes of vehicles on each link in each time interval such that,
for each O-D pair of zones, no path has alower travel time than any used path for trips departing
within a given time interval. Janson (1991) proves that the DUE condition for fixed departure
timesis atempord generaization of Wardrop's condition for a static user equilibrium.

Using optima control theory, Friesz et d. (1989) and Wie (1989) present formulations for
dynamic traffic assgnment in continuous time, in which the equilibrium condition is stated that
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no used path between any two nodes must have a higher travel time than any other path at any
instant. Ran et a. (1993) refine and extend optimal control models to include dastic demand and
departure time choice in user equilibrium or system optima forms. Friesz et d. (1993) formulate
the smultaneous route choice and departure time problem in continuous time as a variationa

inequality problem. Ran et d. (1997) propose the time-dependent travel time functions for

dynamic assgnment on signalized network links which can be used to solve discrete-time
dynamic assignment problems.

Peeta and Mahmassani (1995) point out that virtualy all of previous DUE modds have link flows
as the decison variables, and that path flows obtained from link-based formulations are not
aways unique. They suggest a formulation for the path-based assignment problem which
involves a non-explicit function of path travel times. Instead of defining the extremely
complicated path travel time function, a smulator called “DYNASMART” is developed and used
to evauate experienced path travel times. By applying Lagrangian multipliers, Peeta and
Mahmassani derive the conditions for a Dynamic System Optimal (DSO) state. At a DSO state,
the time-dependent margina travel times for all used paths connecting a given QD pair are
equal, and less than or equal to the time-dependent marginal travel times on any unused routes. In
order to find margina link travel times, a curve fitting method is suggested. As a solution
algorithm, the method of successive averages (MSA) is used to determine the new path flows for
the next iteration. Using time-dependent experienced link travel times measured by the simulator,
the time-dependent shortest paths for al O-D pairs are computed. The complete agorithm is
depicted in Figure 2.10.

In the context of the smulation model named INTEGRATION, Van Aerde (1985) suggests that a
minimum path tree table indirectly congtitutes a traffic assgnment function, and forms the basis
upon which vehicles make route selection decisions. Specifically, the minimum path tree table
provides a ligt of the turning movements which correspond to the minimum paths for each
dedtination. These minimum path turning movements identify dl downstream links
corresponding to a vehicle's minimum cost path, given the current location d the vehicle and its
eventua destination. As drivers re-check these minimum path trees at each node, they
automatically resdect new paths if previous paths become congested and/or competing
aternative paths become faster. This path selection (and re-selection) process is based on rea-
time information and attempts to reproduce a continuous dynamic equilibrium.
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2.2.2  Shortest Path (SP) Algorithms

2.2.21 Importance of SP Algorithm in Transportation Studies

Finding shortest paths is a classical problem in the field of Operations Research. Recently, with
the development of Integrated Trangportation System (ITS), the time-dependent assignment
problem for rea-time traveler information system has captured some renewed attention. It is
widely accepted that the successful implementation of real-time traffic network control system
depends on the efficiency of SP agorithms. The following comments show the importance of the
SP problem [Gdllo, 1985].

If there is one routine that is never absent from any computer code used in transportation
andysis, it is certainly the SP routine. About 80 percent of computation time in traffic
assignment is consumed in finding shortest paths.

2.2.2.2 Definitions of SP Problems

Depending on the time-dependency of link travel times and number of shortest paths to be found,
SP problems are categorized into static SP, static k-SP, time-dependent SP, and time-dependent k-
SP problems. In the static SP problem, the link costs (or travel times) are assumed to be
independent of time. In the time-dependent SP problem, on the contrary, the link costs change
over time. Ingtead of finding a single path for a given origin-destination (O-D) pair, the k-SP
problem deas with multiple shortest paths. The k-SP problems are also classified as being either
satic or time-dependent. The definition of various SP problems are summarized in Table 2.3
[Subramanian, 1997]. The basic notation used in this section is shown below:

N: node set of agiven graph G(A, N),

A: arc st of agiven graph G(A, N).

Aq: arc set of adirected spanning tree T.

FS(i): forward star of nodei,

RS(i): reverse star of nodei,

cij: thetravel cost (or travel time) of link (i, j)T A,

cij(t): the travel cost (or travel time) of link (i, j)I A departing nodei at timet,
S: source node,

tn: terminal node,

i, J: intermediate node.



Table2.3 Various Definitions of SP Problems.

Problem Given Find
Static SP A graph G(N, A) having [N| nodesand | The shortest path from sto t.
|A] arcs, and a distinguished source
node s and a destination node t, and a
set of link costs, cjj, associated with
each arc (i, j).
Static k-SP Same as static SP problem. The first, second,..., k™ shortest
paths from s to t, for any user-
specified kT 1,2,...
Time-dependent A graph G(N, A) having [N| nodesand | The shortest path from s to t,
<p |A] arcs, and a distinguished source | starting from s at time t=t,.
node s and a destination node t, and a
st of time-dependent link deays,
Cij(t), associated with each arc (i, j).
Time-dependent Same as time-dependent SP problem. | The first, second,..., k™ shortest
K-SP paths from sto t, sarting from s at

time t=t,, for any user-specified
kl 1,2,...

2.2.2.3 Static SP Algorithm

2.2.2.3.1 Network Flow Programming Approach

The static SP problem can be formulated as a minimum-cost network flow problem (Bazaraa et

al., 1990).

where S, :l,Sm = ':I.,Si =0
and where, s;, S, S: supply of nodes, tn, i, respectively.

Minimize é_ Cij X

"i1(stn)

@i, A
subject to : a X - éXjFS "il N
i1 FS(i) iT RS(i)
% 20 "L DT A

Due to the unimodularity property of this network structure, optimal extreme point solutions take

only integral values.
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2.2.2.3.2 Bdlman's Principle of Optimality

Bellman introduced the wadl-known "Principle of Optimdity" which provides the basic
foundation for recursive agorithms including Dynamic Programming. Using the "Principle of
Optimality", Bellman (1966) developed the following equation. Let us denote

_ 1 the(finite) length of arc(k, j),if thereis suchanarc.

C, = .
W % +¥  otherwise.

f; = the length of a shortest path from the origin to nodej.

If there are no directed cycles with negative length, it is clear that fs= 0, where the node sisthe

origin node. For eech nodej, j * s, there must be some fina arc (k, j) in a shortest path from node

sto j. Whatever the identity of k, it iscertain that f; = fi +Cy . This follows from the fact that
the part of the path which extends to node k must be a shortest path from 1 to k. If thisis not true,
the overadl path to j would not be as short as possible (this is the “Principle of Optimality”). The
relationship between nodes s, k and j is shown in Figure 2.11.

= 0 fk f]

-

Figure2.11 Belman's Principle of Optimality.

The shortest path length must satisfy the following system of equations (caled Bellman's
equations):
f,=0

fi =min{ fk+ckj}, j=1..,n,
Kt j
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2.2.2.3.3 Labding Algorithm

Labeling agorithms are known as the most popular and efficient methods to solve the shortest
path problem. The labd in the agorithm represents the tentative shortest path length from the
source node to that node. There are two types of labeling agorithms: label setting (LS) and label
correcting (LC).

The LS agorithm sets the label of one node permanently at each iteration, thus increasing the
shortest path vector by one component at each iteration. The LC algorithm does not set any label
permanently. Instead, all the components of the shortest path vector are obtained simultaneously
after the algorithm terminates. Some features of these two SP agorithms are summarized in Table
24,

Table2.4  Comparison of LS and LC Algorithm (1).

Labd setting (LS) dgorithm Label correcting (LC) dgorithm
Designate one label as permanent at each | All labels are temporary until the find step
iteration when al become permanent

Applicable only to Acyclic networks and Non- | Applicable to al classes of problems
negative arc lengths problem

Both are iterative
Assign tentative labels to nodes at each step
(Label = the upper bound on the shortest path cost)

LSAlgorithm | LCAlgorithm

The LC method aways exchanges (augments, or updates) arcs in Ay in amanner that replaces or
shortens the unique path from the source node sto vin T, where T is the directed spanning tree
and Aristhein T. However the LC method does not guarantee that the new path is a shortest path
until termination occurs.

The LS dgorithm has become known as Dijkstra’ s algorithm since Dijkstra was one of thefirst to
discover it independently. This agorithm finds the shortest paths from the source node s to dl
other nodes in a network with nonnegative arc lengths. Table 2.5 shows generic pseudocodes for
the LS and LC algorithms.

Let, f;: travel distance (or travel time or label) to node i from source node s (which is an upper
bound on the shortest length to node i),
cij: the (finite) length of arc (i,j),
S: permanent |abdl s,

S: temporary label set.




Table2,5 Comparison of LS and LC Algorithm (2).

LS Algorithm (Dijkstra s Algorithm) LC Algorithm
Node-based selection. Arc-based sdlection
Using permanent and temporary label.
o= ,§ =N: fs =0, predecessor (s)=0;
4 f,= ¥ foreachil N-{s};
fs= 0 and predecessor(s) = 0;
fi=¥ foreachnodeil N; while some ac(i,j) satisfies f; > f; + ¢;
do
while |9 £n where n=|N| do fi :e(;i .
select node i1 S which f, = min{f:1 S}; o ecessor() =1
S=SE{i}:
S=S-{i}:

for each (i, }), jT FS(i) do
if f; >f +Gj then
fi=fi+cy;
predecessor (j) = i;
end

end
end

2.2.2.4 Time-dependent SP Algorithm

Assuming that the time-dependent link codts for al links, c;(t), are positive integer values, Cook
and Hasey (1966) have extended Bellman's Principle of Optimality to solve a time-dependent SP
agorithm. According to Cook and Hasey, the minimum time of travel to node tn starting from
nodei at timet, f;(t), is defined by the following functiona equation and shown in Figure 2.12:

pmin{c; (t) + f;[t+c; (O]} fori? tnptl S

b
f(t)= R
® %O fori=tn:tl S

where, S: the discrete time set; S={to, to+1, to+2,..., to+T},
T: the fixed upper-bound of travel time from nodei to tn.



«——C (1) | f(te, (1) ——————=

f(©

Figure 2.12 Time-dependent SP Algorithm [Cook and Halsey, 1985].

Dreyfus (1969) has suggested the use of Dijkstra's dgorithm to determine time-dependent
shortest paths where the link costs are any real-vaued times. The minimum time of travel to node
j starting from node s at time O, f;, is defined as follow:

min{ f, +¢;(f;)} fori? tn,
it

1
1
f=
i~1o fori =tn

—_—

s fk fj
]

Figure2.13 Time-dependent SP Algorithm [Dreyfus, 1969].

f=

o

While Cook and Halsey's method applies the Principle of Optimdity in forward form, Dreyfus's
agorithm is implemented in backward fashion. Dreyfus's main agorithm is exactly the same as
that of the LS algorithm except that time-dependent link costs are used in the optimality
congtraint. The following procedure finds the minimum path tree from node s to al nodes starting

ao.

S={},S=N; f,= ¥ for each nodei! N; f=0and predecessor(s) = 0;
while [9£n do
select il S which f, =min{f;: iT Sy;
S=SE{i}:
S=S-{i}
for each (i, j), T FS(i) do
if f,>1 +G,(f) then



fj =f + Cij;
predecessor(j) = i;
end
end
end

Harpern (1977) first noted the limitation of Dreyfus approach and showed that if there exists a

y>0 such that Y +Gj (t +Y) <;;(t), then the departure from node i must be delayed, or the
optimal path might include cycles. Kaufman and Smith (1993) studied the assumptions under
which the existing TDSP agorithms would work. To illustrate the point, consider the simple
network shown in Figure 2.14. The resulting SP from 1 to 4 darting a time O is 1-3-4, with the

total path cost f,= 15.

C,(0)=10

C,(10) =10

5 C,(20)=5 @
Cy(0)=10 \_/ Cy(10)=5 ]

Figure 2.14 Example of TDSP (1).

Now, let us assume that as shown in Figure 2.15, the travel time for link (3,4) at time 10 increases
to 20. Then the shortest path for the trip from 1 to 4 starting at time O is 1-2-3-4 with a travel cost
of 25. Here, it should be noticed that the driver who enters link (3,4) at time 20 can finish the trip
at 25 but another one who enters the same link at time 10 cannot finish the trip until 30. This
result is unreasonable in genera transportation networks because the firgt-in-first-out (FIFO)

condition is violated.

C,(0)=10

C,,(10) =10
{3 C4(20)=5 ;®
CL(0)=10 \__/ Cu10)=20

Figure 2.15 Example of TDSP (2).




Kaufman and Smith make a consistency assumption preventing the time-dependent link cost to
indicate passing as follow.

For any arc (i,j)1 A, ti+c;(t) £ t,+c(ty) foral ty, t, T T such that t,£ t,.
G (ty) - ¢ (tp)

£1
-t for t,£ t,.

i.e

They dso show that under the assumption that the link-delay function follows the first-in-first-out
(FIFO) rule or consistency assumption, any static LS or LC agorithm can be extended to the
time-dependent case (using the time-space network formulation).

Orda and Rom (1990) studied various types of waiting-at-nodes scenarios and proposed
algorithms for these different cases. They showed that if waiting is alowed at nodes (UW), then
the condstency assumption is not required. They prescribed an algorithm for identifying optimal
waiting times at the source node if waiting is not alowed elsawhere in the network. Furthermore,
they demonstrated that for the forbidden waiting case, the paths obtained without the consistency
assumption may not be smple, and showed that the continuous-time version of the problem is
NP-Hard. Table 2.6 shows the three cases of time-dependent SP agorithms studied by Orda and
Rom. Sherai, Ozbay, and Subramanian (1998) prove NP-Hardness of various versions of time-
dependent shortest path problems, and develop efficient solution agorithms.

Table2.6  Three Types of Time-dependent SP Algorithms,

UW (Unrestricted Waiting) V ehicles may wait an unlimited duration at any nodes

SW (Source Waiting) Vehicles may wait an unlimited duration only a source nodes

FW (Forbidden Waiting) Vehicles are not permitted to wait at any nodes

For the UW case, the suggested solution algorithm matches that of Dreyfus', except that Dj;(t) is
defined as follows.

D (t) = w + cjj(w+t)

where, Dj;(t) : total link travel timefrom i to |

w : waiting time & node
Cij(w+t): travel cost from nodei to j starting at (w+t)
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Figure 2.16 illustrates the graphical derivation of Djj(t).

cii(t) 4

Di(t)

ci(t)

/< Dij(t)

45° time
t1 t2 t2+Cij(lt2) trl"'Ciktl)
O Waiting i< Cii(t1+w) <
time(w)
¢ Pl

Dii(ty) = w+ cij(ta+w)

Figure 216 Totd Link Travel Time for the UW Problem.

2.2.25 Implementation Issues

Gadlo and Pdlottino (1985) point out that the traditional classfication of shortest path agorithms
into LC and LS is somewhat unsatisfactory because of its dependence on the behavior of the
agorithm rather than on their data structure. Dijkstra's adgorithm is a type of LS algorithm where
the arc lengths are non-negative, while it becomes a LC agorithm if there are some negative arc
lengths in the graph. Gdlo and Pdlottino suggest that it is more desirable to classify the SP
algorithms based on the data structure which is the way to keep so-called “candidate nodes’ for
next iteration. Let T be a directed spanning tree of G rooted at node s, and d, be the length of the
unique path in T from sto v, vi G. Then T is a shortest path tree with origin s (T = T(9)) if and

only if the following condition holds:
fi+c;—f;30 fordl (i, ) A (21

Then al the arc-based shortest path agorithms (i.e., LC SP agorithms) can be stated as having
the following procedures:

Step 1: Initiate a directed tree T rooted at r and for each vi N, let f, be the length of the path

fromstovinT.



Step 2: Let (i, j)I Abean arc for which condition (2.1) is not satisfied, then adjust the vector
f by setting f; = f; + ¢;;, and update the tree T replacing the current arc incident into node j
by the new arc (i).

Step 3: Repeat Step 2 until condition (3.1) is satisfied for al (i, j)T A.

The important point in the implementation of this procedure is how to select an arc at Step 2 in
order to check whether condition (2.1) is satisfied. Since n < m(n = |N|, and m = [A]), it seems
reasonable to select nodes rather than arcs. Once a node i is selected, condition (3.1) is checked
on one or more (possibly all) arcs of forward stars of i, FS(i). (In the mgjority of the agorithms,
all the arcs corresponding to the selected node's forward stars are checked once.) A general
implementation of procedure for node-based LC SP algorithms is as follows:

Step 1 (Initidize) fs = 0, predecessor (s)=0; f; = ¥ for each il N-{s}; Q={s};
Step 2: (Select and update)
Selectil Q;Q=0Q-{i};
For each (i,j),j T FS(i) such that f; >f; + ¢;;, do
fi=f +cy,
predecessor(j) = i;
Q=Q+{j};
Step 3 (Iteration) if Q* A then go to Step 2, else stop.

where, Q: a set of candidates nodes (or alist of scan eligible (SE)).

The initial tree at Step 1 is a star-shaped tree, with one dummy arc (s;i) for each il N-{s}. These
dummy arcs are assigned a length equal to ¥. It is very important how to select the node i from
the set of candidate nodes Q. In fact, dmost all the practical shortest path algorithms are derived
by properly defining the rule of sdection and the particular data structure which is used to
implement the set Q. Theoretically spesaking, the time for node selection is bounded by O(n?) and
the time for distance updates is bounded by O(m). If the network is sparse (i.e., n>>> m), then the
former time dominates the later. So, we need to reduce the node selection time without
substantially increasing the time for updating the distances.

Figure 2.17 shows several types of data structures relevant to the selection schemes. Internal

operations for each type of Queue is summarized in Table 2.7. A sorted queue isused for the LS
SP agorithm in which a sorting method is imbedded so that the node having the least |abel can be
selected from the set of candidate nodes. However, it should be noted that if the problem size is
large, the sorting agorithm is not inexpensive in terms of computational cost.
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a) Stack

b) Sorted queue
(Dijkstra algorithm)

c) FIFO queue

d) Output-restricted
double-ended queue

e) Double-ended queue

Figure 2.17 Types of Queues for Node Selection Schemes [reproduced from Tarjan, 1983].

To revise this drawback, the so called double-ended queue (DEQueue, see Figure 2.17 (d)) has
been developed, which combines the properties of both the queue and the stack. In the DEQueue
structure, the first time anode is to be inserted into the tail of the queue. When, later on, the same

node again becomes a candidate node after being removed from the queue, it is inserted at the

head of the queue.

Table2.7 Operations for Various Queue Types.

Sorted

FIFO

Output-restricted
double-ended Queue

Double-ended
Queue

enqueueFirst (=push)

Queue

Queue

enqueuelast (=inject)

dequeueFirst (=pop)

dequeuel ast (=gject)

SortContents




On the other hand, the candidate nodes are aways removed from the head of the queue. The
rationale for using the DEQueue is that every time f; is updated, except the first time, it is worth
trying to decrease the labels of the successors of j in current tree. Table 2.8 summarizes the
details of LC agorithms according to the data structures employed. Maintaining the DEQueueto
handle the candidate nodes, Ziliakopoulos and Mahmassani (1993) devise the time-dependent
shortest path agorithm. Figure 2.18 presents the pseudo code for this agorithm.
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Call CREATE;

Call INSERT (N);
Current_Node = N; // to-node i

Do 1, While (SE list is hot empty)
Call DELETE(Current_Node);

Do 2, for (All nodes Jthat can be directly reach Current_Node)
/I Jisthereverse star of nodei

Next_Node = J,
In_SE List?= No;

Do 3, for(t=1,M)

/[Travel Time (j,i) starting at t
Current_Travel _Time= TRAVEL_TIME(Next_Node, Current_Node, t);

IITT(GN)att=TT(i,N) at (t+TT (j,i)) + TT(i,N) at t
New_L abel = Label(Current_Node, t+Current_Travel _Time)
+ Current_Travel_Time;

If( Label (Next_Node,t)E New_Label ) then
Label(Next_Node, t) = New_L abel;
In_SE List?=Yes;
Path_Pointer(Next_Node, t, 1) = Current_Node;
Path_Pointer(Next_Node, t, 2) =t + Current_travel_Time;
Endif

3 Continue

If (In_SE_List?=Yes) Cal INSERT (Next_Node);
2 Continue
1 Continue

Procedure CREATE
Do, for(Node=1,N-1), Deque(Node) = 0;
Deque(N) = 999999;
First = N;
Last = N,

Procedure INSERT (Node)

If(Deque(Node) = 0) then
Deque(Last) = Node;
Last = Node;
Deque(Node) = 999999;

Elseif (Deque(Node) = -1) then
Deque(Node) = First;
First = Node;

Endif

Procedure DELETE(Current_Node)
Current_Node = First;
First = Deque(Current_Node);
Deque(Current_Node) ;

Figure 2.18 Pseudo Code for a Time-dependent SP Algorithm
[Adapted from Ziliakopoul os and Mahmassani, 1993].
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Table2.8 Comparison of Data Structures for LC Algorithms.

Generic LC Algorithm

Modified LC Algorithm
(Node-based Sdlection)

(Arc-based Selection) Using FIFO Quele Using Double Ended Queue
_ Retionale: Every time f; is updated, except the first
Rationale: number of nodes << number of arcs. | time, it is worth trying to decrease the labels of the
successors of | in current tree.
0, pred(s)=0; fs =0, pred(s)=0; fs =0, pred(s)=0;

fs=
fi=¥ foreachj! N-{s};
while some arc(i,j) satisfies f; >f; +c;; do
fi=fi+cy
pred(j) =i;
end

fi=%¥ foreachj! N-{s};

FII_:OQueue={ s}

While FIFOQueue! {} do

Removei from the head of FIFOQueue;
For any (i), j! FS(i) do
If fj >fi+ Cij then{
fi=fi +cy;
pred(j) =1;
if jT FIFOQueue
then add nodei to thetail of FIFOQueue;

end

fi=¥ foreachj! N-{s};
DEQueue={s}

While DEQueue? {} do
Removei from the head of DEQueus;
For any (i), j! FS(i) do
If fj > fi + Cij then{
if jT FIFOQueue{
if ;=¥ then
insert j into the tail of DEQueue;
elseinsert j into the head of DEQueue;
}
fi="fi+cy
pred(j) =1i;
}
end
end




2.3 Literature Review on Simulation Modd

231 Typesof Smulation Modes

Simulation models can be classified according to the following genera categories [Lieberman
and Rathi, 1992]:

Discrete and continuous simulation moddls,
Microscopic, mesoscopic, and macroscopic Smulation models, and
Deterministic and stochastic ssimulation models.

Discrete smulation models represent a system by asserting that the states of the system elements
change abruptly at points in time. In contrast, continuous simulation models represent the system
by changing dtate variables continuoudy over time [Law and Keton, 1991]. Typicdly,
continuous smulation models involve differentid equations giving relationships for the rates of
change of the dtate variables with time. If the differential equation is smple enough to be solved
anayticaly, the solution provides the values of the State variables at any given time as a function
of the values of the state variables at time zero. Because continuous models frequently are not
tractable using an anaytica approach, numerical andyss techniques, eg., Runge-Kutta
integration, are used to integrate the differential equations. For this reason, regardiess of the
nature of the real system which mght be ether discrete or continuous, two types of discrete
smulation models are applied in practice: 1) discrete time smulation and 2) discrete event
simulation models. For systems of limited size entities whose states change infrequently, discrete
event smulation models are more appropriate in the sense of computational execution time.
However, for systems where most entities experience a continuous change in state and where the
model objectives require very detailed descriptions, discrete time models are likely to be the
better choice [Lieberman and Rathi, 1992].

Traffic smulation models may be classfied according to the level of detail with which they
represent the system to be studied: 1) Microscopic, 2) Mesoscopic and 3) Macroscopic. A
microscopic model deals with both system entities and their interactions a a high level of detail.
A mesoscopic model generaly represents entities at a higher level of detail but describes their
activities and interactions at a much lower level of detail. On the @her hand, a macroscopic
model describes entities and their activities at a low level of detail. In a mesoscopic moddl, for
example, the lane-changing maneuver could be represented for individua vehicles as an
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instantaneous event with the decision based m the relative lane densities, rather than on detailed
vehicle interactions. In macroscopic models, however, the traffic stream may be represented in
some aggregate manner such as speed, flow, and density, and lane change maneuvers would
probably not be represented.

In deterministic models, there are no random variables. In other words, all interactions between
entities are fixed in the sense that relationships are defined by mathematical, satistical or logica
equations. Stochastic models involve processes which include probability functions. The car-
following model, for instance, may be modeled either as a deterministic or a stochastic problem
by defining the driver’s reaction time as a constant estimated value or as a random variable,

respectively.

2.3.2 Previous Air Traffic Smulation Models

Since the early seventies, the FAA has developed computer smulation models to anayze airport
operations. Contrasting with the anaytic models which consst of a series of equations using
fixed input parameters, most aviation and airport smulation models are discrete event, stochastic
models which emulate the movements of aircraft on the airfild as well as in the airspace. In
genera, the smulation models produce the following statistics:

Hourly runway, taxiway, and gate capacity

Hourly and daily delays, travel times, flow rates, and queueing data etc.

Annua ddlay and annua delay costs

Annual delay savings computed from annual delay costs

ADSIM (Airfield Delay Simulation Model, 1976)

ADSIM is a microscopic, discrete event, stochastic smulation model, and known as one of the
most detailed models to evauate the operations and sources of delay on the arport's surface
http://www.tc.faa.gov/act500/capacity/model sg.htm] . ADSIM simulates the movement of aircraft

on the arport surface and in the immediate airspace. An airport is composed of a common
gpproach and departure corridors. The principa inputs to the model include aircraft routings,
runway and taxiway usage, runway occupancy times and exit probabilities, aircraft approach and
taxiing velocities, aircraft separations, gate service times, aircraft demand and mix, and ATC
rules and procedures. Outputs of the model are hourly arrival and departure flow rates, travel
times, and arrival and departure delays for each runway. Also provided are total delays for each
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link on the airfield, departure queue lengths, and individud aircraft delays. ADSIM has a
capability to represent the movements in animation mode.

RDSIM (Runway Delay Simulation Model)
Developed mainly for runway capacity and delay andyses, RDSIM simulates operations on
runways and generates information on both capacities and delays [http://www.tc.faa.gov/

actb00/capacity/modelsg.htm]. This model is a discrete event, stochastic smulation mode!.

During the simulation, it is assumed that arrival and departure demands are uniformly distributed.
The model smulates runway operations with arriva-priority, departure-priority, or baanced
arrivals and departures. This model can be used to compute runway capacity at an acceptable
level of delay and maximum runway throughput. Compared with ADSIM, RDSIM requires less
detailed inputs and less computational effort. The inputs consist of runway usage, runway
occupancy times, exit probabilities, aircraft demand and mix, aircraft approach velocities, aircraft
separations, and ATC rules and procedures. The outputs include delay statistics with graphics
showing delay versus demand aong with other operationa details.

SIMMOD (The airspace and airfield model)

SIMMOD s the first model to andyze the complex airspace interactions between airports.
SIMMOD satisfies the need to anadyze delays, capacity and fuel consumption resulting from
changes in airspace utilization and operationa procedures beyond an airport's immediate airspace
[SMMOD3 Simulation Module, 1993]. In SIMMOD, each aircraft's movement is traced
individually and ATC required the actions for aircraft operations are aso simulated. Inputs for
SIMMOD are traffic demand and fleet mix, route structures (both in the airspace and on the
arrport surface), runway use configurations, separation rules and control procedures, aircraft
performance characteristics in airspace and airfield links, airspace sectorization, interactions
among multiple airports, and wesather conditions. SIMMOD uses a link-node structure to
represent the gate/taxiway and runway/airspace route system. Input parameters depending on
arcraft type include the permissible airborne speed ranges for use by ATC, runway occupancy
times, safety separations, landing roll and takeoff characteristics, taxi speeds, and runway/taxiway
utilization. Gate utilization depends on aircraft type and airline. The output from SIMMOD
reports statistics about individua arcraft delay, travel time, and fud consumption as well. A
simulation log containing information on various smulated events are also generated at the user’s

request.



2.3.3 Aircraft-Following Models

If there is more than one aircraft nmoving on the same taxiing path and the vehicles are close
enough to interact with each other, the leading aircraft behavior affects the following aircraft. To
represent this situation, aircraft-following models are introduced. The main concepts governing
aircraft-following models are borrowed from well-researched issues in transportation studies
concerning car-following models. There are severa types of car-following modes readily
applicable to smulation practices. It should be noticed that there is an mportant assumption
about the speed-acceleration relation applied to dl types of vehicle-following modds. In this
analysis, the vehicle' s ability to accelerate is assumed to decreases linearly as afunction of speed.

Distance-controlled vehicle-following model: The distance-controlled logic for vehicle-
following models is based on the assumption that the acceleration of the following vehicle at time
t+Dt is decided by the distance between the leading and the following vehicle. The acceleration
for the falowing vehicle is decided by the equation given below (Starfield, 1990).

o =KIOG - X1,4) - DI,

n+1
.. ot+Dt t+Dt _ .. ot+Dt t+Dt _ .
if Xn:--l > Xmax then Xntrl = Xmax, and if Xntrl <Xmin then XnJ:-l = Xnmin,
t +Dt . . .
where, Xn+1 : acceleration for aircraft n+1 at time t+Dt,

(Xh- Xn+1) : distance between aircraft n and n+1 a timet,

k = design parameter,

D = safety distance.
Speed-controlled vehicle-following model: In the speed-controlled logic, the acceleration of the
following vehicle at time t+Dt is modeled by the speed difference between the leading and the

following vehicle. Mathematically this can be expressed as,

t+Dt _ 1 .t
Rns1 = K(Xn - Xnsa)
t+Dt _

. t+Dt t+Dt _ . t+Dt
if Xn+1 > Xmax then Xnil = Xmax, and if Xn+t <Xmin then Xn+1 = Xmin,

where, Xﬁ.:ln . acceleration for aircraft n+1 at time t+Dt,

(Xn- Xn+1) : speed difference aircraft vehicle n and n+1 at timett,
k = design parameter.
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Generalized vehicle-following model: The generalized car-following modd proposed by Gazis
et d. (1961) assumes that the acceleration of the following vehicle at time t+Dt is influenced by
three dependent variables: the differences in both distance and the speed between the leading and
the following vehicles, and following vehicle's speed. The generdized car-following modd can
be expressed as follows:

et )™ ot ot
Xhp =2 (Xrt1 i X}]+1)| (Xn' Xn+1), (2.2)

. t+Dt t+Dt _ . t+Dt t+Dt _
if Xn+1 > Xmax then Xnit = Xmax, and if Xn+t <Xpmin then Xn+1 = Xmin,

where, a, m, |: design parameters.

It should be noted that by integrating the equation (2.2) and applying the boundary conditions at
the steady <tate, the generalized vehicle-following model can be related to the traffic stream
mode. Also, the resulting macroscopic models are diverse depending on the values of | and m
For example, in the case that | =0, m =0, which is the speed-controlled car-following modd, the
resulting macroscopic moddl is g = a (1 - k/k;), a = gn, where q = flow, k = dendty, k; =jam

density and g,,= maximum flow. The various macroscopic models are shown in Table 2.9.
2.3.4 Data Structures for Network Representation

The performance of a network agorithm depends not only on the algorithm itself, but adso on the
manner used to represent the network within a computer. By representing a network more
cleverly and by using improved data and list structures, we can often improve the running time of
an algorithm [Ahuja et d., 1993].

Table29 Macroscopic Models from Vehicle-following Models (Gerlough and Huber, 1975).

m=0 m=1
=0 | q=a(l-kk) " a=qg,m i i
1 g=aklIn(kyk) " a=up " - -
32 g=a(@-(kk)")"|a=u - -
2 g=ak(@-kk)™ |a=u q=ake™ a = u, ko=kn,
3 - - g=a ke -1klky) ™ | a = gn

") Chandler, Herman, and Montroll (1958), " Pipes (1953), """ Greenberg (1959)
"™ Gazis (1961), " Drew (1965), " Greenshiled (1934), " Edie (1961)
™ Drake, Schoefer, and May (1961)



In representing a network, we need to store two types of information: (1) the network topology;
that is, the network’s node and arc structures, and (2) attribute data such as costs (C;;) and
capacities associated with arcs. There are several ways to represent a weighted graph G=(N,A),
[N[=n, |JAlI=-m Various graph representation methods including their advantages and disadvantages
are reviewed with a smple network shown in Figure 2.19.

oS
5 . @ c, @

Figure 219 An Example Graph with 5 Nodes and 9 Arcs (i.e., n=5, n=9).

(Node-Arc) Incident matrix: Construct an n” m matrix which contains one row for each node

and one column for each arc. The column corresponding to each arc (i,j) has only two non-zero

elements: It has a +1 in the row corresponding to node i and a -1 in the row corresponding to

node j (seethe Figure 2.20). Separate n” mmatrices should be generated for data storage.

Advantages. An incident matrix can be used as a condraint matrix of the minimum cost flow
problem. This matrix possesses several important theoretical properties such as tota
unimodularity, etc. (see Bazaraa et a. (1990) for details).

Disadvantages: The incident matrix which has (n” m-2m) zeros is inefficient in storage space.

node\arc (12) (13 (2) (23) (A1) 45 (52 (3 (54)

1 é1 1 -1 0 -1 0 O 0 O0u
2 g1 0 1 1 0 0 -1 0 0y
3 €0 -1 0 -1 0 O 0 -1 o0u
4 g0 0 0 0O 1 1 0 0 -1y
5 g0 0o o0 0O 0 -1 1 1 14

Figure2.20 Node-Arc Incident Matrix for the Example Network.
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Node-node adjacency matrix: Construct an n"n matrix which has a row and column

corresponding to every node. The ij™ entry of the matrix equals 1 if arc (,j)I A and equals 0

otherwise.

Advantages. This matrix is space efficient if the network is sufficiently dense and the smplicity
of the matrix allows us to implement the network agorithm easily.

Disadvantages: Needs another n"n matrix for data representation. An identification of
outgoing/emanating arcs of a node is in time proportional to n. In sparse networks this may

be a bottleneck operation for an agorithm.

fromnode\tonode 1 2 3 4 5
1 €0 1 1 0 Ou

é U

2 él 010 Ou

3 €0 0 0 0 O0u

é U

4 @1 0 0O 1y

5 €0 1 1 1 Of

Figure 221 Node-Node Adjacency Matrix for the Example Network.

Adjacency lists: The arc adjacency list A(i) of anode i is defined as the set of arcs emanating
from that node, that is, the set of arcs (i,j)! A obtained asj ranges over the nodes of the network.
Similarly, the node adjacency list of node i is defined as the set of nodesj for which (i,j)! A. The
adjacency list representation stores the node adjacency list of each node as a singly linked list. To
implement this list, n linked lists, one for each node, should be generated. Array pointers that
point to the first cell of each linked list, pt(i), are also constructed.

Advantages : Adjacency list representations are relatively efficient in storage. Deletion and

addition of nodes can be done in constant time.

| pt(i)._|_>| i | Ci | pt |

To 1 p 2 Pa— e ! m [ NULL
2| | 1 2 PR 3 6 e | g [ NULL

3e—| . | NULL

Ze | g 1 5 | ol e« | g [ NULL

5Eel— ] 2 7 p— 3 2 p— 2 2 [oe—Jm [ NUIT]

Figure2.22 Adjacency List Representations for the Example Network.
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Forward/reverse star representation: Theforward star representation of anetwork is similar to
the adjacency list representation in the sense that it also stores the node adjacency list for each
node. However, instead of maintaining these lists as linked lists, it stores them in severd arrays:
tail(.), head(.), and cost(.). Pointers pointing to the first element of the corresponding arc list are
stored in the pointer array pt(.). By convention: @) if the forward star of anode i is empty pt(i) =
pt(i+1); b) pt(n+1) = m+1. Thus, information related to the emanating arcs (i.e., forward star) of a
nodei is stored in tail(.), head(.) and cost(.) from position pt(i) to pt(i+1)-1.

Advantages: This representation is more space efficient than the adjacency list representations

and can be applied in genera computer languages like FORTRAN.
Disadvantages. Addition/deletion of a node requires time proportional to m which can be time

consuming.

iD Pt(i) 2 COrr. arcs tail head Cost

1 1 e — 1 1 2 3

2 2 1 3 4

3 5 .| =3 2 1 3

4 5 o 4 2 3 6

5 7 o] 5 4 1 5

6 0 6 4 5 1

7 5 2 7

\ 8 5 3 2

9 5 4 2

Y i isthe from nodes, the pointer array contains pointers to the first elements of the corresponding arc lists

Figure 2.23 Forward Star Representation for the Example Network.
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Chapter 3. Model Development for ASP

3.1 Assumptions for Ready-times

In order to obtain a sequence from ASP, we need to make some assumptions regarding the
departing aircraft ready-times. In fact, there are two types of ready-times: the ready-time to
pushback from a gate, and the ready-time for takeoff on the runway. The first one is the time
when the aircraft completes its boarding process, and waits for taxiing-out instructions from a
ground (or a ramp) controller. Initidly, this time can be obtained from the flight schedule.
However, as airport operations progress over time, flight delays appear and new ready-times can
be obtained from the airline operations center.

The second ready-time is the instance at which the aircraft can begin the takeoff roll on the
runway. The earliest ready-time for takeoff (or so called "nomind takeoff time") is estimated as
the ready-time to pushback from the gate plus the taxiing time from the gate to the runway
departure queue. In our formulation, the ready-timesto takeoff, r;, are used as one set of the input
data to solve the ASP problem.

One interesting aspect of the problem is that once we have the takeoff times as prescribed by
ASP, we can suggest pushback times from the gates in a manner that reduces congestion both on
the taxiway network and around departure queues. The recommended push-back times can be
computed as depicted in Figure 3.1. Mathematically, the relationship between ready-time
instances for a departing aircraft within the time horizon is given by,

Recommended pushback time from the gate
= Optima takeoff time — (Taxiing time + Buffer time).
(Here, buffer time includes expected communication time and estimated waiting time in

the departure queue.)

As seen in Figure 3.1, we can make different uses of the taxiing time (T), depending on the type
of computation being performed. T; is the taxiing time interva that estimates the earliest takeoff
ready-time (r;) required for ASP. Initidly, this time can be obtained from historical data. (This
data can be found in the Consolidated Operations and Delay Andysis System (CODAYS) database
which includes estimated taxiing times on ground networks at busy airports.) On the other hand,
T, is the actud taxiing time to reach the takeoff ready-time from the recommended pushback time
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(rpby). This time can be obtained from a Network Assignment Problem (NAP) which computes
the optima route and taxiing time for each arcraft after model ASP prescribes the optima

takeoff times (t;).

WTAG "

<

| | | | | | :

| | i - i » Time

ROT,
Tl T2 B

rg; I rpb; t tof,
Where,

rg; : ready-time at gate

ri : earliest ready-time to takeoff

rpb; : recommended ready-time to push-back

t; : optimal time for takeoff

tof; : finishing time for takeoff

T, : regular taxiing time from the gate to the departure queue
T,: taxiing time to obtain the recommend push-back time

B : buffer time (i.e., waiting time in departure queue)

ROT,: runway occupancy time

WTAG;: waiting time at gate.

Figure3.1 Time Relationships for the Departing Aircraft.
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3.2 First-come-first-serve (FCFS) Approaches

When air traffic controllers in the control tower direct landing and departing aircraft, they
generaly use a first-come-first-serve (FCFS) strategy, giving priority to landing aircraft. This
strategy provides a sequencing of the aircraft aong with completion times, total delays, and so
on. This solution can be used to compare the performance of manua (FCFS) and optimal
sequencing methods.

To consider both arrival and departure operations simultaneously, minimum separation rules
should be defined for al possible aircraft group combinations. Table 3.1 shows the minimum
separation rules for al the cases considered in our anaysis.

Table3.1  Minimum Separation (seconds).
departure® departure case.

Leading \ Following Heavy Large Smdl
Heavy 60 0 120
Large 60 60 0
Smdl 60 60 60
departure® arrival case.

Leading \ Following Heavy Large Smadl
Heavy 50 53 65
Large 50 53 65
Smadl 50 53 65

arivd ® departure case.

Leading\ Following Heavy Large Smdl
Heavy 40 40 40
Large 35 35 35
Smdl 30 30 30

arivd ® arrival case.

Leading \ Following Heavy | Large | Smdl
Heavy 99 133 196
Large 74 107 131
Smdl 74 80 98

The runway occupancy time (ROT) is computed for every operation in order to assess the
processing times. ROT is defined as the time between the instance when an aircraft crosses the
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runway threshold and the instance when the same aircraft clears the imaginary plane of the
runway at aturnoff. These times are specified in Table 3.2.

Table3.2 Runway Occupancy Times (seconds).
Operation \ Aircraft Type Heavy Large Smdl

Arriving 40 35 30

Departing 50 40 30

Using the foregoing data set, the FCFS sequence delays can be calculated for al aircraft
operaions. An illustrative example using a randomly generated flight schedule is shown in Table
3.3. In this example, a due-time is obtained by adding a maximum delay of 600 seconds to dl

ready-times.

Table3.3 Aircraft Schedule (Randomly Generated).
Max Delay: 600 (seconds)

Arriva Departure

Nomind Nomind
Order | Hight | Aircraft | Touchdown Time Hight Aircraft |  Takeoff Roll

ID Type ID Type Time
Ready Due Ready | Due
1 Al S 98 698 D1 H 32 632
2 A2 L 164 764 D2 H 364 %64
3 A3 L 205 805 D3 L 409 1009
4 A4 L 268 868 D4 H 542 1142
5 A5 H 49 104 D5 S 571 1171
6 A6 H 550 1150 D6 S 643 1243
7 A7 L 643 1243 D7 L 744 1344
8 A8 L 84 1434 D8 L 881 1481
9 A9 L 962 1562 D9 S 955 1555
10 A10 L 973 1573 D10 H 996 1596

In FCFS with a full landing priority strategy, arriving aircraft should not be delayed by departing
flights. In other words, the arriving aircraft can be delayed only to resolve arrival conflicts. The
first step for FCFS sequencing is to obtain the arrival times by checking if there is any conflicting
ariva. The following steps show how to calculate the times for arrivals to cross runway
threshold, considering the minimum separation rules between two consecutive landing aircraft in
the FCFS sequence.

fcfs touchdown time for 1% landing aircraft = nominal ready-time for 1% landing aircraft
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for i = 2 to (total number of arriving aircraft)

if [ (fcfs touchdown time for (i-1)" aircraft + minimum separation time between the

(i-)™ and i aircraft) > nominal ready-time of i" aircraft ]

ese

end

fcfs touchdown time for i aircraft =

fcfs touchdown time for (i-1)"™ aircraft

fcfs touchdown time for i aircraft =
nominal ready-time for i aircraft

The resulting schedule for arrivalsis shown in Table 3.4.

+ min. separation time between the (i-1)™" and i"" aircraft

Table3.4  Firgt-come-first-serve Sequence for Landing Aircraft.

Arriva
Nominal
Order Hight Aircraft Touchdown T OE §1lc:i§wn
Number Type Time Time
Ready Due

1 Al S 98 698 98
2 A2 L 164 764 178
3 A3 L 205 805 285
4 A4 L 268 868 392
5 A5 H 494 1094 523
6 A6 H 550 1150 621
7 A7 L 643 1243 701
8 A8 L 834 1434 834
9 A9 L 962 1562 962
10 A10 L 973 1573 1069

If the inter-arrival time between two consecutive aircraft is sufficient for one or more departures,
these are scheduled. Otherwise, departing aircraft are delayed until a dot having a sufficient time
to allow a departure is found. Table 3.5 presents the fina result of the FCFS sequence with

landing priority.
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Table35  Firgt-come-first-serve” Sequence (with Landing Priority).

(Seconds)
Arrival Departure
FLT | Acft FLT | Acft
Seq | No. | Type [STP]T ROTY[ C T Delay” | Seq | No. | Type [ST [ROT | CT | Delay
1 D1 H 32 40 72 0
2 Al S 93 30 128 0
3 A2 L 178 40 218 14
4 A3 L 285 40 325 80
5 A4 L 392 40 432 124
6 D2 H 432 40 472 63
7 A5 H 523 30 553 29
8 A6 H 621 30 651 71
9 A7 L 701 40 741 58
10 D3 L 736 35 771 327
11 A8 L 834 40 874 0
12 D4 H 874 40 914 332
13 A9 L 962 40 1002 0
14 D5 S 992 30 1022 421
15 A10 L 1069 40 1109 %
16 D6 S 1109 30 1139 466
17 D7 L 1164 35 1199 420
18 D8 L 1224 35 1259 343
19 D9 S 1319 30 1349 364
20 D10 H 1369 40 1409 373

Total Delay: 3586 (sec), Completion Time: 1408 (Sec.)

Y In FCFS with landing priority, the landing aircraft should not be delayed later than its FCFS ready-
time.

2 3 T: Starting time

¥ ROT: Runway Occupancy Time

4 C_T: Completion Time

® Delay = FCFS operation time — Nominal Ready-time.
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3.3 Integer Programming Approaches

3.3.1 Formulaion

Starting with known preliminary information about the aircraft such as aircraft types, nominal

arrival/departure times, maximum delay times, minimum separation rules, etc., the problem can
be formulated as a combinatoriad optimization problem. The following is a mixedinteger
programming model for a single runway or closely spaced runways where arrivals and departures
are dependent.

Minimize z
subject to
[} .1
ti + a pI]XJ £z "l J (31)
It
r-t£0 "l (32
t-d£0 "l J (33
t; 3 4+ py-(I-x;)(di-r; + py) T Jo, T Jo it (34)
é x; =1 "l J, (35)
s
o w7
a X; =1 I J, (3.6)
i 3,
X +x; £1 "l 3,01 Jg gt 3.7)
t,=0 130 "l J (39
x;1 {01} "l 3o, 0T I it (39)
where,

J={1,...n} :A setof narcraft operating (i.e., landing or departing) on a single runway

Jo=JE{0} : Aircraft O is an imaginary aircraft which has O ready-time (i.e, ro=0)
and 0 due-time (i.e., dp=0)

X : 1if arcraft i directly precedes aircraft j, and O otherwise
Xy : 1, if arcraft i isthefirst in the sequence, and O otherwise
%o .1, if arrcraft i isthe last in the sequence, and O otherwise

I : the start time of aircraft i (i.e., time for touchdown or takeoff)
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d, : the due-time for aircraft i

T : the ready-time for aircraft i,

B : Pio= runway occupancy time of aircrafti (i.e, ROT;) for " il J.
Po;= Setup time for the first aircraft j.

eseif itj,it 0, j* O, then p; = minimum separation time between the
leading aircraft i and the following aircraft j.

if i:j, pij=0

Congraint (3.1) states that the objective function value is no less than the last aircraft's
completion time. Ready and due-times constraints are considered in constraints (3.2) and (3.3).
The minimum separation rules are enforced by constraint (3.4). Two types of assignment
congtraints are represented by (3.5) and (3.6). Constraint (3.7) is a (two-city) sub-tour eimination
constraint which prevents the resulting sequence from having any sib-tour consisting of two
cities. (Constraints (3.4) serve as the full set of Miller-Tucker-Zemlin subtour eimination
congtraints.) Constraint (3.8) represents the non-negativity requirement for each aircraft's start
time for each aircraft. Constraint (3.9) restricts the sequencing variables to take the value of O or
1

As imbedded component of the ASP model is a Traveling Salesman Problem with time-windows
which renders the problem NP-Hard. A tighter formulation that yields improved lower bounds is
designed in the sequel using the Reformulation-Linearization Technique (RLT) of Sherali and
Adams (1990, 1994) and Sherdi et d. (1998).

3.3.2 VdidInequdities

As a preliminary, we first develop a tighter lower bound LB(j) on the conditional start time of
aircraft |’ s operation, given that it is last in the sequence.

Proposition 1 The maximum of the following three components can be used as a lower bound

on the start time of aircraft j’s operation, given that it islast in the sequence.

LB(j) =
max{r ax[r + min plk],
AT ki, J
Y
min [r Pt min Py * min P * sum of(n-3) smallestfromthearray min  p___for ml J, mt i,j]}
i, l?"] (g Y nf g M
J [ ntij,m
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Proof. Thefirst term in LB(j), merely states that the start time of aircraft j should be greater than
its ready-time (r;). For the second term, since i + fktllg Pik represents the earliest completion time
of aircraft i regardless of the next arcraft, this term asserts that the last aircraft j should begin

later than any other aircraft’s earliest completion time. For the third term, if we assume that any
particular aircraft it j isthe first in the sequence, then the earliest start time of the last aircraft j is

greater than or equal to the minimum of the total sum of processng times for all arcraft

following i. This lower bound is given by the sum of the following events:

(i) thedtart time of thefirst aircrafti, n + poi |,

(i) the minimum separation time between the first two aircraft, IT? Pik ,
Kij
(iii) the minimum separation time between the last two aircraft, [Iﬂjn Ptj |
tli

(iv) the minimum of the remaining (n-3) separation times from the array of ﬂﬁjn Pmn for

nti,j,m

m J, i),

Taking the smallest of this sum (i)-(iv) over il J, it yieldsavaid value for LB(j). This completes
the proof.[]

A set of valid inequalities to replace constraints (3.4) can be generated asin (3.4.1) and (3.4.2) of
Proposition 2 and 3 below, in order to achieve tighter lower bounds on the problem.

Proposition 2 (Valid Inequality | for Constraint (3.4)). For i=0,"jT J the following
inequality is valid and tighter than the corresponding constraint (3.4).

t; 3 max{r;, py;} - (I-%;)max{0, po;-r;} +X;o[LB(j)-1;] " it (34.1)
where, LB(j) 3 r; isalower bound on the start time for the aircraft j, given that it isthe last aircraft
in the sequence (see Proposition 1).

Proof. When %j =1, we have Xjo =0 and then tj; ® max{r;, po;} isvaid. When Xo; =0 and
Xjo =0, regardless of the values of Poj and fj, tj® max{rj, po;} - max{0, poj-rj} is vdid,
since the resulting inequality is aways tj ® Tj. When Xoj =0 and Xjo =1, aircraft j islastin the

sequence. From above, the inequality (3.4.1) reducesto t 3 r; + [LB(j) — r;] which imposes the
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vaid inequdity t; 3 LB(j). Moreover, noting that for i = 0, (3.4) iISt;® pg; — (1- X )(Poj- 1}) =1 +
Xoj(Poj- 1) While (3.4.1) implies viaits first two terms that ;3 r; + Xo; max{0, pg;- I}, we have that

(3.4.1) dominates (3.4) in the continuous sense. This completes the proof. []

Proposition 3 ( Valid Inequality I for Constraint (3.4) ) For iil Ji* |, the following
inequality is valid and tighter than the corresponding constraint (3.4).
t; 3 6+ py-(x)(di-r; + ;) + ex; R LINAE (34.2)
where, €=max[0,d; - rj - max{ pj;,f; - 1j}] .
Proof. When %j =1, we have Xji =0 and then tj * ti + Bj isvaid. When %j =0 and X;i =0,
then (3.4.2) is again valid since (t-r;) 3 0 3 (t-d;). Finaly to make (3.4.2) valid whenever %j =0
and Xji=1,d° 0 should bechosen sothat t - t; £d;- I; - € jstrue under this condition. Note
that  when X; =1, we  have t=max{t;+p;.} and  therefore
(t - tj)=max{ pj.i - tj} £ max{ pji.fi - rj}. Hence, for (34.2) to be valid, we can set
di - rj- e=max{ pjfi - ri} and since q3 0, we can compute
e=max[0,d; - rj - max{ pji.fi - 1j}] . Moreover, because of the additional nonnegative term g,

(3.4.2) istighter than (3.4) in the continuous sense. This completes the proof. []
3.3.3 Enhanced Model Representation viaan Application of RLT

1) Reformulation Phase
USlng XijZZXij, Xinikzo " jl K, Xinkao "jtk,and XijXji = 0" il Joa JT ‘JOa ki ‘]0, we can construct

additional sets of congtraints via (R1)-(R5) stated below.

(R1) Multiply the assignment constraint (3.5) for each i1 J by its corresponding t;. Similarly,

multiply the assgnment constraint (3.6) for each N by its corresponding t;. Note that
constraints resulting from multiplying (3.2) and (3.3) by these assgnment constraints (3.5)
and (3.6) are then redundant.

[o] .
a X =t "l (R1.1)
i3, v
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o ~
atiX = ST (R1.2)
it J,it

(R2) Multiply the inequality congtraints (3.2) and (3.3) by the bound-factors %j * O and X;ji ® O
for " ij1 J:
Multiplicationby %j 2 O:

(t;- r;)%; 20 S TN N R (R2.1)
(dj-t;)%;2 0 TN NS R (R2.2)

Multiplication by Xji ® O

(t; - r))x;3 0 AN R R (R2.3)
d; -t;)x;30 AT T it g, (R2.4)
Note that we can tighten the constraints (R2.1) and (R2.4), by using conditiona logic as
follows, noting that the factors multiplied by the variables x; and X;;, respectively, are

relevant only when these variables take on avalue of 1.

[t; - ma{r;r +p;}]xx 20 "1 1 it (R2.19

[min{d, d, - p;}-t,]%; %0 "l 3,1 gt g, (R2.49

If we consider similar products with Xo; and x;o, we can tighten these constraints further.

(tj - 17)%; =0 " (R2.5)
(tj - LB(j)) X030 SN (R2.6)
(dj - tj)x02 0 "T . (R2.7)

Remark I In (R2.6), r; has been validly replaced by any lower bound LB(j) on the start
time for aircraft j’s operation, given that j isthe last aircraft. For this lower bound, we can
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use any reasonable conditional completion time which can be computed with relative ease.
Also, note that (R2.5) is written as an equality since either xo; = 0, or if Xg; = 1, then we can
begin the first aircraft j’s operation at t; = r;. Furthermore, because of this, the constraint (d;-
t;) Xo; 3 Oisredundant and has hence been omitted.

(R3) Multiply condraints (3.2), (3.3) by twoarcraft subtour dimination constraint,

@- % - %)% 0,
(t; - 1)L~ %; - X;))% 0 "0l 5T g0t (R3.D
(dj - tj)(d- xj - xji)2 0 USSR (R3.2

Also, we can write similar constraints for the Gindex, while tightening these further using
logical tests. Noting that the following are relevant only under the condition Xo; = X0 =0 (else
the left-hand-side is zero below), we can tighten the bounds r; and d; on t; to derive the

following valid product constraints.

(1X0; X;0)[t; - max{ rJ-,r?TwiJn(ri +p; )30 ! jT J (R3.19
1]
(X0 )min {d,max(d - py)}- t,]% 0 SRS (R3.29
i

R4) Multi 4.1 the bound factors Xoj , Xjo and the two-aircraft subtour
(R4 Itiply (3.4.1) by the bound f %j %0, X020 and th ircraft sub

dimination constraint (1- Xoj - Xj0)2 0 "j1 J .

Multiplication by Xoj * O

tjXoj - Xoj max{rj,po;j} % O "jiTJ, (R4.1)
Multiplication by Xjo > O:

t X0 - Xjomax{r;,py;} + Xjo max{0, py; - r;}- X;o[LB(j)-r;]® 0 "iTJ

i.e. tjXjo- XoLB(j)3 0 "jT . (R4.2)
Multiplication by (X0 - Xjo) 2 O:

tj -Xoj-Xjo) - Ij (- Xj-Xj0) 3 O "l J, (R4.3)



(R5) Multiply (34.2) by the bound factors %j %0, Xji®*0 and the two-aircraft subtour

dimination congtraint (L- X; - %;)2 0 for "ijl Ji? j.

Multiplicationby %j 2 O:
ti X - tiXj - Pi%; 20 SNTENIE (R5.1)
Multiplication by Xji * O
tX;i - tiXji +(di - rj - €)x;; 3 0 T it (R5.2)
where, € =max[0,d; - rj - max{ pj;f; - r;}]
Multiplication by the two-aircraft subtour elimination congtraint (1- x;; - X;i)® 0 :

6 @ % - Xji) = G- - ;i) 2 (- d)(@- x5- ) T it (R5.3)

(R6) For computational convenience, we can rewrite the objective function and constraint (3.1) as
(3.1") and (3.1dd) given below.

Minimize z
subject to
] A
t+a PiX% £z "l Jg (3.19
Ith,
[
z=a (t +Po)Xo (3.1

i J

Let us now multiply (3.19 by %k 0 and (- %)3 0, " kI Jo, k* i This gives the

following.
2 2 X+ By "l Jo, kT Jg, i k (R6.1)
o N - .
Z3 (6 +a Py%)+ (26 - 6% PicXi) "l Jo, Kl Jg, it Kk (R6.2)

i
15,

Similarly, the multiplication of (3.1 by Xko® 0," kT J | yields
20 = (t * Pro) Xko "kl I (R6.3)



In the RLT context, when ;. is subgtituted by a single (independent) variable, (R6.1) will
likely hold as an equality and hence return (R6.2) to (3.19. To make (R6.1)-(R6.3) more

useful, we can aso multiply the assgnment congtraints (3.5) and (3.6) by z

Multiplication of z by the assignment factor (3.5) yields, using (R6.3),

o] S
z=(t +pPo)%otaA 2X; "l Jo. (R6.4)
i

Multiplication of z by (3.6) gives the following, using (R6.3).

2=Q &+ Po)Xo forj =0, and (R6.5)
imJ

2=§ 2 NTENE (R6.6)
i

Note that constraint (R6.5) is the same constraint as (3.1&) and can therefore be deleted.
However, (R6.6) can be retained. The resulting reformulation is stated below.

Minimize z
subject to
D > X+ Py "l g KT Jg, it k (R6.1)
o . - .
Z3 (t+a PyX%)+ (D6 - 6% - Picki) "l Jg)" Kkl Jg, itk (R6.2)
i
240 = (L Pro)Xuo "kl J (R6.3)
o s
z=(t +po)%ot A 2§ S (R6.4)
I
o
z=q G+ Po)Xo (R6.5)
ihJ
o PN
z=8 2 L (R6.6)
i,
(tj - r;)%; =0 TN (R2.5)
[t; - max (r;.5 +pj)lx;® 0 AT 3T it (R2.19
(tj-rx;%0 AT T Jit
(R2.3)
(t; - LB(j)Xj0° O "t (R2.6)
(t; - r@- x;- %) 0 AT 3T it (R3.1)
(1%0; Xjo)lt; - max (rjmin(r; +p;))]° O "t (R3.19
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where,

- t,)X,02 0

[min (d;.d; - pji)- t;1%; 30

(dj - t))(3- x;5- %) 0

(dXg; X o)[min (dj,r}?aJx(di - pji))' t;]30
it

thOj - Xoj max{rj,poj}3 O,
t; X0 - X,0LB(])3 O,

tj (1- XOj'XjO)' I'j(l- XOj - on)3 0,

thji - tini +in(di -1 - €)30

"l 3T it
"l
"l 30T Jit
TN RN
SN

FTENTE

£ (1= % - Xji) - 6 (- %5 - XGi) +(rj - di)Og +x5i)* (rj - o)

],
Xj *Xji £1

tg=0 30
x; 1 {01

il 3t

"l Jo T Jg gt

"l
"l 3o, 0T Jg, gt

(R2.2)
(R2.7)

(R2.49
(R3.2)

(R3.29

(R4.1)
(R4.2)
(R4.3)
(R5.2)

(R5.3)

(R1.1)
(R1.2)

(35)

(36)

(37)

(38)
(39)

LB(j) is given by Preposition 1, and where €=max[0,d; - r; - max{ p;j;,fi - rj}] (see

Proposition 3).



2) Linearization Phase

Let tix;; = uij tX; = Vij, 2%; = z;. Thelinearization of the reformulated constraints can be represented
as follows (we state the identity of the corresponding constraint from the reformulation phase on

the left of each of the following linearized restrictions.)

Minimize z
subject to
(R6.1) : Zik ® Uik * PixXik "Ik gtk (L6
o N N
(R6.2): 23 (ti+ @ PyX)+(Zi- Ui~ PucXi) ihJ,kl Jitk (L6.2)
jti
i3, -
(R6.3) :Zo = Uko * PkoXko "kl d (L6.3)
[o] S
(R6.4) :Z=Uo + PioXio T A 2 "ild (L6.4)
i)
[}
(R65): 2= a (Uo+ PoXio) (L6.5)
i
[o] L~
(R6.6): Z=Q Zj S (L6.6)
i,
(R2.5) :Vo; - Ij%; =0 TN (L2.5)
(R2.19 v;j - max (rj.r +p;j)x; 3 0 AT 3T g0t (L2.19
(R2.3) :Uj - 1;x;;3 0 SN (L2.3)
(R2.6) :ujo- LB(j)xjo* O TN (L2.6)
(Rsl) t] - Vij - uji - I‘J(l- Xij - Xii)3 0 " |T J,]T J, it J (L31)
(R3.1') it; - v, - Ujo - max {r;,min(r, + p;)} (L~ Xo; = X;) 0 "l (L3.19
1]
(R2.2) :d;x; - v ® O CRTINNRINN R (L2.2)
(R2.7) :djXjo - Ujo% 0 ST (L2.7)
(R2.49 :min (d;.d;i - pji)x; - u; %0 BTN YRR L (L2.49
(RS_Z) d] (1' Xij - in - tj +Vij +uji 3 O " |T J,ji J, it J (L3.2)
(R3.29 :min {dj,irxfnaf]((oli - pji}- Xgj - Xjo)- tj +Vpj +Ujo> O " (L3.29
i ]
(R4.1): Voj - Xoj max{rj,ppj}* 0 SN (L4.1)
(R4.2): 1j - Voj = Ujo+TjXoj +TjXjo ° I SIS (L4.2)
(R4.3): Ujo - X;,LB(j) 20 "jTJ (L4.3)
(R5.2): Uji- Vji- (di-rj-q)x;; 2 0 " 3T it (L5.2)
(R5.3) : tj - Vij - Uji - G +Ujj +Vvji +(rj - di)x; +(rj - di)x;i 3 (rj - o) (L5.3)
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"l Jo, T it

(RL) : au =t "l g (L1.1)
T 3giti

RL2): AV =t S (LL12)
IINSES
[o] LA
ax=1 il Jg (35)
i
o W on
a X =1 it Jo (3.6)
il
X +xi £1 "l 3o,i1 Jo it i @37
t,=0, 420 TN (3.8)
%i 1 {0 "l 3o, i1 Jo it i (39)
30, 430, 30 T 3T 30t

where, LB(j) is given by Preposition 1, and where €=max[0,d; - rj - max{ p;i.; - 1j}] (see

Proposition 3).



3.34 Modifying the Formulation
3.3.4.1 Consderation of More Than Two Consecutive Aircraft

Up to now, our minimum sSeparation constraint assumes that we only need to maintain an
adequate separation between two consecutive aircraft. However, even though this congtraint is
satisfied, the resulting solution can violate the minimum separation rule between certain
operations belonging to a common class in the context of mixed operations. Figure 3.2 illustrates
this difficulty. In this case, the minimum separation between consecutive operations (i.e., arrival i
and departure k, departure k and arrival ) are satisfied, but the required separation between the
two arriving aircraft (i.e., arrival i and arriva ) may be violated.

t

¢ time

Figure3.2 Checking Minimum Separation Constraints.

To protect against this event, we need another constraint set to enforce the minimum separation

between the same types of operations as follows:

Pi%; - M- %) £t -t £Emyx; - piL- %), "i<], (i.j)T sameclass (3.10)
where,

X;=1if t; >t and X; =0 jf t >t

M;, M; : upper bounds on the separations between i® | and j® i | respectively,

"i<], (i,j)T sameclass We can define m;=(dj- §), and M; = (di-1y).
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When i + P >d; | thenitisclear that %; =0. (Note that in this case, we have Pj >M; and (3.10)
leads to a contradiction when X; =1, hence aso implying that %; =0.). In this case, we need to
include the constraint ti * t; + Pji. Similady, if T;+P;i >di (i.e, P;i >M;), then we can fix
Xj =1 in (3.10) and include the relevant constraint t; ® ti + P; . Additionally, in order to tighten
the representation of this modified model, we can further relate the binary variable % to the

origina mode’ s variables %, Xji» Xik» X4 viathe vaid inequaities given in Proposition 4 below.

Proposition 4. The following congraints are vaid inequalities.

X £X; £1- X " i< jwith (i,]j)T sameclass (3.12)

2Xij + %k + X - LEX; £2- Xj - X - 2%, " i< jwith (i, DT sameclass " k? i, j (3.12.1)
X0 £ % £(1- Xo) " i< jwith (i, j)T sameclass (3122
Xoi £ % £(L- Xo;) " i< jwith (i, )T sameclass (3.12.3)

Proof. If X =1, which means %« =%¢ =X;i =0 and (x¢+x) £ 1, (3.11) becomes 1£ Xj £1, and
(3.12.1) becomes 1£ %; £2- (X + X) . Hence, both (3.11) and (3.12.1) are valid in this case. If
Xij= 0, then equation (3.11) is clearly vaid in both cases when Xji= 0 (whence we get
O0£X; £1), and Xji= 1 (whence we get Xij ° 0). Furthermore, in this case ;=0), (3.12.1)
becomes

Xik +Xg - 1EX;  and (3.12.1.1)

Xij £2- Xjk - X - 2Xji | (3.12.1.2)
Consider (3.12.1.1). If Xik =Xk =1, then since Xij must be 1, thisisvalid. Else, Xik * X - 1£0
and 0 (3.12.1.1) is implied ty X;j30. Next, consider the inequality (3.12.1.2). If Xji = 1, then
Xjk =X =0 and since we must have Xij =0, (3.12.1.2) is vaid. On the other hand, suppose that
Xji =0. Then, if Xjk =X =1, we must have Xij=0, and therefore (3.12.1.2) isvalid. Otherwise,
we must have 2- Xjk - X * 1 and s0 (3.12.1.2) isimplied by Xij £1. This validates (3.12.1).
For (3.12.2), note that Xijo=1and Xjo=1, is impossible and o, the possible values of (Xio,Xjo)
are (0,0), (1,0) and (0,1). It is readily verified that each of these cases implies a valid set of

bounds on Xij. Hence, (3.12.2) is valid. With the same argument, (3.12.3) is aso valid for all

possible cases. This completes the proof. [



Note that if the triangular inequality for the separation among aircraft triplets holds true, i.e., if
Pi + P 3 Py " i<jwith (i, j)T sameclass " k* i, ] | then we do not need to apply (3.10). As
shown below, by successive applications of these triangular inequdities, if the separation between
consecutive aircraft is enforced, then it holds between non-consecutive aircraft in the same class

aswell.

Proposition 5. If the triangular inequality is satisfied for al triplets of aircraft in Jinvalving i in
which i isfirst or last, or for al such triplets involving |, for any i and j1 same class, then for any
solution that satisfies the separation constraints for consecutive aircraft, we will also have that i
and | satisfy their particular separation constraint.

IJl(ztkl' )2 Bk, Dt2(=tk2 - tkl)3 Prq ko
(te, =) ° (Rjq+Pigky) ® Pk,

' ' ' : : : : : -

[l [l
I T T T
0 t, Et) ty, ty, tig ) . . . . t . tkn t (=)

Figure 3.3 Triangular Inequality.

Proof. Without loss of generdity, let t; < t; (the case of t;<t; is Similar) and suppose that aircraft i
and | are separated by some n® 1 aircraft ky, ..., k.. Then, we have by the feasibility of

consecutive separation constraints that

i n#l
t-t)=a t -t D)*a Pk , (P5.1)
r=1 r=1
where t °t and % °t;. Now, suppose that al triangular inequalities involving i are satisfied
as stated in the Proposition (the case of | is similar). Then from (P5.1), we get
(tj- )2 Bk, *t Pk, T Pkttt Pe okt P
Pk, ¥ P,k et Pk, TP
PPk, tet Pk, P L3 L B
This completes the proof.[]
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To enforce separation between all pairs of aircraft in the same class, we need to impose the
following congraints. Let V={i: some triangular inequdities are violated for a triplet involving i

in whichi islast or first}. The following is a summary of the constraint set generated to enforce
aircraft separations.

t 3t +p; "i<j, (ij)] sameclassin Vv and o+ p; >d;

t3t+p "i<j, (ij)l sameclassinvand ri+p; >d.
Also,

fordl i<j, (i,j)T sameclassinvand i +p; £d; r;+p; £d;, (P5.2)

impose the following set of constraints, where, M; = (d;-f), My =(d;-r;)

Pi%; - M (L- X)) £t -t £Emyx; - p;i(1- X))
2X|j + Xk +ij -1£ )H(U £2- Xjk - Xy - 2in " kT J, k1 |,J

X10£)A(|J £(1' XIO)
Xoi £%; £(L- %) .

3.34.2 ApplyingRLT

Refor mulation:
(R7) Multiply (3.10) by the bound factors X; % 0, X;;®0 and (@-x;-x;)30 for
T it

Multiplication by X;; ® O:
(P +mMy)x;X; - myX; +t;x; - t;x; £0
tX; - tx; - (P +my)X;X; + P;ix; £0,
Multiplication by X;;  O:
(P +mMy)X;X; - MyX; - tx; +4,x, £0

t X - g - (Py + My )X;x; + piX; £0,
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Multiplicationby (1- x; - X;)3 0 :
(P M) 1 - 4 - [0y + )% % - M+ - 1% ]
- [(py +my)X X - myX; - X 64X, 1Emy;
G- G- (P +my)Xg - [ - X - (P My)X X + P ]
-1 %5 - 6% - (g + )X % + X1 £- Py

Linearization:

Let tiX; =U;j and tjX; =V; "1,]. Alsonotethat %;%; ® %; and X;i%; =0.

P Xij £Vij - u; £myX; (310.1)
- M;iX;i £uji - Vi £ - Pji X;i (3102
plj (X, - Xj)' mji(l‘ Xj - in)£(tj - ti)' (Vij - uij)' (uji - Vji)

£m; (% - %) - Pid- X;- X;). (3.10.3

Proposition 6. Con\{(t;,t;,X;):(3.10) holds X; binary © {(3.10)} C{O£ X; £1} for each (i,j) 1
sameclass, i<j such that P; £M; and P;i £M; (i.e, for each (i, j) such that (P5.2) holds true).
Proof. Given any (ij)1 sameclassi<j | consder the following linear program for any

Q1Cj1Cij.

LP: tngja)zf (Gt +cit; +¢,%;) (3131

subject to
Py%g - My (- %) £ - t EmyX; - p(l- %) (3.132)
0£% £1. (3.133)

It is sufficient to show that if LP defined by (3.13) has an optima solution then it has an optimum
at which %;=0 or 1. Denoting nonnegative sacks s; and s, in the two inequdities in (3.13.2),
respectively, and eliminating t by substitution using the first equdity, say, yields the following
equivalent linear program

max{ (Ci + ;) t + (G + Py + M) Xi + GS1- gM);:

% (i + M - Pri- M) + S+ %= (M) - Pi), 20,520, 0E X £1}.



Note that for an optimum to exist, we must have (¢, + ¢;) = 0. Also, we then have that either %; is
nonbasic a 0 or 1 at an optimal vertex, or if it isbadc, then it must equal
(m; - p;i) 31
(mji - pji)‘ ("ﬂj - plj)

Hence, in this case, we must have (m;-p;)=0 and X;=1 by feasibility. This completes the proof. O

Remark 2. Note that if we include the constraints ;i £t £d; and I; £; £d; with (3.10), then
the continuous relaxation can indeed have fractional extreme points. For example, we could have
a vertex determined by the right-hand inequdity in (3.13.2) binding dong with t =d; and
t; =d; as three linearly independent constraints yielding the solution (where we have used

m; =d; - r)

- dj - di + pji
oo =0 3.14
J ] d] - ri + p“ ( )
If i <d <dj this yidds 0<X; <1 Also, this solution (3.14) is feasible to the left-hand
inequdity in (3.13.2) snce this inequdity is redundant whenever the right-hand inequaity holds
as an equality because of the hypothesis p;Em; and p;£Em);. Hence, this yields (3.14) as a

fractional vertex.

Motivated by Remark 2, we now present a tightened representation of (3.10). Consider the
representation of (3.10) given by the following polynomial set of constraints

(t - )% 3 Py% (3.15.1)
(t -t %) 2 pud- x;) (3.15.2)
r £t £d, (3.15.3)
ri £t £d; (3.15.4)
X binary. (3.15.5)



By Sherai and Adams (1994), a polyhedra convex hull representation can be given by

multiplying the inequalities in (3.15.1) - (3.154) by %, and (- %;), and wibsiituting %; =%; ,

tiX; =1 and t;%; =S;. Thisgives (3.16) below as the convex hull of (3.15).

(s - 1) 3 PiXy (3.16.1)
(t-t5)- (- s)3 pu - %) (3.16.2)
N £6 £di% n@- %) £ - r;)£d(@- %) (3.16.3)
rx; £s;£d;X;, r;@- %) £ - 5)£d;(1- X;) (3.16.4)
O£% £1, (3.16.5)

Now, suppose that we further include within (3.15) the restrictions

X £ £1- Xji, %, X;i binary. (3.11)

Note that by Sherali et a. (1996), the Special Structured RLT (SSRLT) factors are given by
S ={%; % 0,%;; % 0,%; - %2 0,1-x; - %;3 O} (3.17)

which collectively imply bounds of 0 and 1 on al the three binary variables as well as imply the

2-city DFJ subtour dimination congtraint Xij *+ X;i £1 (via the sum of the last two factorsin S,.)
Using the fact that

i, XX =0 and X;X; =0, (3.18

the second-order factors obtained by pairwise (including self) products in (3.17) are given by S;
itself, and hence, so are the third-order product factors. This means that we can generate
conv{(3.15), (3.11)} by multiplying each of (3.15.1), (3.15.2), (3.15.3) and (3.15.4) by each
factor defining S, in (3.17), including these factors (3.17) within the resulting constraint set, and

subdtituting (3.18) adong with



U =8, Vi STXg 1y X, S5 =X X5 =X %5 =X, Xj =X, (319
The resulting constraint sets are,
conv{(3.15), S}:
(3.15.1) X% : Vij - Ui - Py%; 2 0 (3.15.1.12)
(3.15.1) *;i : redundart.
(315.1) >(X] - )ﬁj): (Sj - rij)' (Vij - uij)3 B (X, - )ﬁj) (3.15.1.12)
(3.15.1) X1~ X;i - %;) : redundant.
(3.15.2) *Xij : redundant.
(3.15.2) %i : Vji - Uji - PjiX; 2 0, (3.15.2.11)

(3.15.2) X%; - %;) : redundant.

)

(3.15.2) L= Xi- %) (G- vyi-1p)- (4 - uji - 55)% pu (- x5 - %), (315.2.12)

(3.15.3) XX : IiX; EUj £d%; (3.15.3.11)
(3.15.3) Xji : MiX;i EVji £0iX;; . (3.15.3.12)
(3.15.3 (X = %) (% - %) £ - Uy £di(X; - X)) (3.15.3.13)

(3.15.3) L= Xi- %) n@- X - X)) Et - vy -1 £di(@- X5 - %) . (3.15.3.14)

(3.15.4) *Xj: I'jX%; Ev; £d;x; . (3.15.4.11)
(3.15.4) *Xi : I'j X Eu; £d;x; (3.15.4.12)
(3.15.49) ’(X, - )ﬁj): rj(xj - )ﬁj) £s;-V £ dj()?ij - Xij). (3.15.4.13)

(3.15.4) x1- X;i - Xj): ri @- Xji - )A(ij)£tj - Ui - S Edj(l' Xji - )A(ij). (3.15.4.14)

Fordl i<j, (ij)l sameclass gnd il v, jl vV, +p;£d; r;+p;£d the above congtraint
set will be imposed.

We can aso consider the convex hull representation for {(3.15), (3.12.2)}, {(3.15), (3.12.3)}
using the specia structured factors for (3.12.2) and (3.12.3) as follows:
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S, ={Xi0 3 0,Xj03 0,%;- X0 0,1-Xo- X3 O (3.20)

S ={%i % 0,%;30,X; - X5 2 0,1-X%; - ;3 O}, (3.20)

Reformulation
Using XjoX; = Xjo, %0%; =0, XaX; =Xoi, and %o;%; =0, the reformulated constraint sets are,
conv{(3.15), S;}:

(3.15.2) *x o (- 6)X0 2 P X0

(3.15.1) %% : redundant.

(315.1) >()?ij - on) : (tj - ti)(iij - on)3 Pij ()A(ij - on)
(3.15.1) M1~ %o~ %;) : redundant.

(3.15.2) *x o : redundant

(3.15.2) %o (6 - t)%0 2 PjiXo.

(3.15.2) XX - Xjo) : redundant

(3.15.2) {1- %o - %)

(3.15.3) xx o

(3.15.3) %o

(3.15.3 XXij = Xjo)
(3.15.3) {1~ %o - %)

(3.15.4) xx o

(3.15.4) X

(3.15.49) X - Xj0)
(3.15.4) {1- %o - %)

conv{(3.15), S3}:

- (ti - )@= Xio - Xij)® Pji(d- Xio- Xij).

I'IXIO £t|X]O £d|XJ0_

ST X0 EtiXo £ diXo,

-1 (X - Xjo) 6 X5 - tiXjo £di (X - Xjo).

13- Xio - X)) £t - X - ti X £ (1- X0 - X;j).

- TiXj0 £t Xj0 £d; Xjo.

“IiXo £tjXo£d;Xp.

(X - Xjo) E4j X - tjxjo £d;j (X - Xjo).

1= Xio- Xj) £t - tjXio - tjX; £dj(1- X0 - X;j).

(3.15.1) *xo; (- )X 2 Py

(3.15.1) *Xoj : redundant.

(3.15.1) (% - Xoi) (- )% - %) 2B (X - %)
(3.15.1) X1~ Xoj - X;j) : redundant.

(3.15.2) *xo . redundant.

(3.15.2) %o; - (t - t))Xoj ® PijiXoj.

(3.15.2) (% - Xai) : redundant.

(3.15.2) M1- Xo; - X;j)

(b - )@ Xoj - %) 2 pji (X~ Xoj - X;j).
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(3.15.3) *xq

(3.15.3) o

(3.15.3) X% - Xoi)
(3.15.3) (1- Xo; - X;)

(3.15.4) xX

(3.15.4) *Xo;

(3.15.4) HX; - Xoi)
(3.15.4) x1- Xoj - )?ij)

Linearization

Usng Tj =tX;, S =tX;,
constraint sets are as follows:

conv{(3.15), S;}:

(3.15.1) %o
(3.15.1) o
(3.15.1) X(Xjj - Xjo)
(3.15.2) X1- Xio - X;j) :

(3.15.2) *xjo
(3.15.2) o

(3.15.2) X(Xij - Xjo)
(3.15.2) {1- Xio - X;j)

(3.15.3) %X o
(3.15.3) %o
(3.15.3) X(Xij - Xjo)
(3.15.3) {1~ Xio - X;j) :

(3.15.4) *xjo
(3.15.4) %o
(3.15.4) X(Xij - Xjo)
(3.15.4) {1- Xio - X;j) :

conv{(3.15), S;}:

Uj =ti%;, Vv

(-

: riXQ' £tiX0i EdiXu_
1% EtiXoj £ diXo; .
1 (Xij - Xoi) EtiXij - tiXa £di(Xij - Xgi) .
i (- Xoj - Xij) £t - tiXoj - iXj £di (- Xoj - Xjj) .

X £ X £d; Xy,
:rjXOjEthOjEdeOj.
:I’j()A(ij - Xg)Etj)A(ij - thOi EdJ()A(” - XOi).

i =X,

- Ujo - lij 3 PijXjo
: redundant.
(s - i) - (Ujo- 1) 3 Py (X - Xjo)

redundant.

: redundant

- (Uio - 15i) ® pji%o.

: redundant

<(ti- Uio- 1) - (- 1i - s5)2 pji(L- Xio- X;j).

:rino £|” EdinO.
: TiXio £ Ujo £ di o
1 (% - Xjo) 1y - iy £di (% - Xjo) .

H(L- Xo- X)) Eti- Ug- 1 £0i (@~ X0 - ;).

: rin0£|ji Edeio_

Xj0) £8; - Ujo £d;(X; - Xj0) .
rid- Xio- Xj)£tj - lji - 5 £dj(1- Xio- Xj).
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:I’j(l- XO] - )A(”)Etj - thOj - tj)A(ij £dj(l- XOj - X'J)

fij =tixoj, lij =tiXjo, the linearized

(3.15.1.21)

(3.15.1.22)

(3.15.2.21)

(3.15.2.22)

(3.15.3.21)
(3.15.322)
(3.15.3.23)

(3.15.3.24)

(3.15.4.21)
(3.15.4.22)
(3.15.4.23)
(3.15.4.24)



(3.15.1) *xo; . Fii - Voi 3 pij Xo (3.15.1.31)
(3.15.1) Xoj : redundant.
(315.0) X(Xij - Xoi) 1 (sj- fji)- (rj - voi)? pij (X - Xai) (3.15.1.32)
(3.15.1) X1- Xoj - Xij) : redundant.

(3.15.2) *xo; : redundant.
(3.15.2) Xoj - fij - Voj 2 pjiXoj. (3.15.2.31)
(3.15.2) X(Xij - Xoi)  : redundant.
(3.15.2) X1- Xoj - X;j) : (ti - fij - rij)- (t; - voj - Sij) 2 Pji (L- Xoj - X;j) . (3.15.2.32)

(3.15.3) *xo; S TiXoi £vg £diXg (3.15.3.31)
(3.15.3) *Xoj :liXoj £ fij £diXoj. (3.15.3.32)
(3.15.3) X(X; - Xoi) - T (Xij - Xoi )£ 1ij - Voi £d; (X - Xoi) . (15.3-33)

(315.3) 1~ Xoj - Xj) :rid- Xoj - %) £ - f - rj £di (1- Xoj - %) . (3.15.3.34)

(3.15.4) Xy TiXoi £ fji £djXa . (3.15.4.31)
(3.15.4) %o; : TiXoj £Voj £dXoj (3.154.32)
(3.15.4) X% - Xoi) 1 (% - Xa) Esij - fi £dj(X - Xoi) . (3.15.4.33)

(3.15.4) 1- Xoj - X;j) :rj(L- Xoj - X;j) £t - Voj - 55 £dj(L- Xoj - X;j) (3.15.4.34)



3.34.3 Comparison of Constraints Sets

Let us defined constraint Set | as [(3.10), (3.11), (3.15.3), (3.15.4)]. Again, using X Xj =X,

X;iX; =0, and X;jX;i =0, the application of SSRLT factor S, to constraint set I, SSRLT(l), yield

the following.

SSRLT(1):

(3.10)8::
(3.20) % : Pij X £V - U; EmyX;; (3.10.9)
(3.20) *Xji: - M;iX; Euj - Vi £- piX; (3.10.5)
(3.20) X(%; = %)+ Pij (Xij - %) £ (Sij - Vi) - (rji - uji) £my (X - %) (3.10.6)
(310) X1~ Xji - Xj): - myi (- X - X)) £t - ti)- (Sij - G) - (Ui - ;i)

£- pji @- X - Xji) (3.10.7)
(3.11)s;: sameto (3.11).

(3.12) *Xij : redundant.

(3.12) *Xji : redundant.

(311 ’(Xij - Xij): Xij £ )A(ij

(3.12) X1- X; - X;): Xj £1- Xj;

(3.15.3) $§;: sameto (3.15.3.1), (3.15.3.2), (3.15.3.3), (3.15.3.4).

(3.15.3) XX : IiX; EUj £d%; (3.15.3.1)
(3.15.3) Xji : X EVji £0iX;; . (3.15.3.2)
(3.15.3) X = %) (X - %) £ - uy £di(X; - %), (3.15.3.3)
(3.15.3) - Xi- %) n@- % - X)) Et - vy -1 £di(@- x5 - %), (3.15.34)

(3.15.4) %§;: sameto (3.15.4.1), (3.15.4.2), (3.15.4.3), (3.15.4.4).

(3.15.4) %% : 1% £V £d%; . (3.154.1)
(3.15.4) ;i : 11X Euy £dX;; . (3.154.2)
(3.15.49) X - %) (% - %) Es;- v £d;(% - x;). (3.15.4.3)
(3.15.4) - Xi- %) @- X - X)) £t - Uy - s £d;(2- X5 - %), (3.15.4.4)
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Similarly, let us define Congtraint Set 11°(3.15.1), (3.15.2), (3.11), (3.15.3), (3.15.4)] and let us

denote the application of SSRLT factor S, to this constraint as SSRLT(I1).
Up to now, we have formulated two sets of constraints (i.e., Constraint Sets | and 11) to enforce

the separation rules for the same class operations. By applying RLT to Set |, and SSRLT to both
Sets | and Il, we have derived three sets of tightened constraints, RLT(I), SSRLT(I) and

SSRLT(I1) (see Table 3.6).

Table3.6 Origina and SSRLT Congtraint Sets.

Constraint Set (1): (3.10), (3.11), (3.15.3), (3.15.4)

Constraint Set (11):

SSRLT Constraints by applying S

plus the fdlowing congtraints:

2 (3.15.1), (3.15.2), (3.11), (3.15.3), (3.15.4)
g PyX; - M- X)) £t -t EmyX; - pi (- %) (3.10) (- 6)%; % Py (315.1)
c i ) (4 -t)A- X%)3 p;d- X)) (3152
o] :
O | Plusthe following constraints: plus the following constraints:
?E; X £X; £1- X (3.12)
5 nEt £d (3.15.3)
r £t £d, (3154)
SSRLT(1) SSRLT(I1)

Pij Xij £Vij - Uy £my;x;; (3.10.9) Pij Xij £Vij - Ujj (3.15.1.11)

- m;X EUy - Vi - PjiX;i (3.10.5) Pij (Xij - i) £(sij - rij) - (4 - W)

pij (Xij - Xij ) £ (Sij - vij) - (rji - uji) £y (X5 - X5) (315.112)

(3106 c
- mji(l- )?ij - in)f(tj - ti)' (Vij - uij)' (uji - Vji) uji B Vji B pjixji (315211)
£- pji@- X - Xji) (3.10.7) (- )= (8 - 1) = (Ui - vii)

£-pji (- Xji - Xj) (3.15.2.12)
plus the following constraints:

X % £1- X,
ri%; £u; £diX;

X £v;; £dix;

n(%; - %) £ 65 - gy £di (% - X

- X - X)) Et - v -y £di (- x5 - %)

rix; £v;; £d;x;

rix; £u; £d;x;;

(% - %) £55 - v £d;(%; - X;

r](l' X]' - )’Z”)Etj = u“ = SJ Ed](l' X“ = )?,])

(3.12)
(3.15.3.12)

(315.3.12)

(3.15.3.13)
(3.15.3.14)

(3.15.4.12)
(315.4.12)
(3.15.4.13)
(3.15.4.14)
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Let us now investigate the various implications among these constraint sets. As mentioned earlier,
the RLT factor 1- Xij - Xji ® O is implied by summing the last two factors Xij - %j * O and
1-Xji - X;j * O defining S, in (3.18). Hence, since the other RLT factors x;;3 0 and ;3 0 are also
implied by S;, we have that RLT(I) isimplied by SSRLT(l).

For SSRLT(I) and SSRLT(II), the right-hand side (RHS) of (3.10.4) and (3.10.6) and the left-
hand side (LHS) of (3.10.5) and (3.10.7) can be represented by (3.15.3.11)-(3.15.3.14) and

(3.15.4.11)-(3.15.4.14) in the following way, noting that M; = (d;-1i ) and M;i=(di-1;).

(3.15.4.11) — (3.15.3.11) = RHS of (3.10.4)
(3.15.4.12) — (3.15.3.12) = LHS of (3.10.5)
(3.15.4.13) — (3.15.3.13) = RHS of (3.10.6)
(3.15.4.14) — (3.15.3.14) = LHS of (3.10.7).

Consequently, dl the inequdities having m; or m); in (3.10.4)-(3.10.7) can be diminated. This
reduces SSRLT(I) to SSRLT(Il), thereby establishing their equivalence. Figure 3.4 presents the
relationships among these various constraint sets. In practical terms, the aforementioned
constraints can be generated by the following procedure.

Foril V

For j>i,jT V, (i,j))] sameclass

If (ri+p;>d), then b 3t +pji

Elseif (r;+p;>d), then t; ° t +

Elseif (r;+p; £ d andr;+p; £ d), then
2%+ Xk X - LEXj £2- X - X - 2% " kT 3,k
(315.1.12), (3.15.112), (3.15.2.11), (3.15.2.12),

(3.15.3.11), (3.15.3.12), (3.15.3.13), (3.15.3.14),
(3.15.4.12), (3.15.4.12), (3.15.4.13), (3.15.4.14).

(3.15.1.21), (3.15.1.22), (3.15.2.21), (3.15.2.22),
(3.15.3.21), (3.15.3.22), (3.15.3.23), (3.15.3.24),
(3.15.4.21), (3.15.4.22), (3.15.4.23), (3.15.4.24).
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(3.15.1.31), (3.15.1.32), (3.15.2.31), (3.15.2.32),
(3.15.3.31), (3.15.3.32), (3.15.3.33), (3.15.3.34),
(3.15.4.31), (3.15.4.32), (3.15.4.33), (3.15.4.34).

Endif

End for
End for i
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Congtraint Set (1):
(3.10), (3.11), (3.15.3), (3.15.4).

Congtraint Set (11):
(3.15.1), (3.15.2), (3.11), (3.15.3), (3.15.9).

SSRLT Factors.
S={%;%0,x;%0,% - %°%0,1-x- %20}

A

SSRLT(11)

RLT Factors:
Xij 3 0, in 3 0, 1- Xij - in 3 0
RLT | SSRLT(1)
7y (3.10.4), (3.10.5),(3.10.6), (3.10.7),
(3.12),

(3.15.3.11), (3.15.3.12), (3.15.3.13), (3.15.3.14),
(3.15.4.11), (3.15.4.12), (3.15.4.13), (3.15..4.14)

(315.1.11), (3.15.1.12),
(3.15.2.11), (3.15.2.12),
(3.15.3.11), (3.15.3.12), (3.15.3.13), (3.15.3.14),
(3.15.4.11), (3.15.4.12), (3.15.4.13), (3.15.4.14).

I mply T

Imply (Equivaent)

Figure 3.4 Rdationships among the Condraint Sets.
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3.3.44 Prefix and Probe Tests

Proposition 7. Let I={1,...t} be acollection of identica aircraft from the same class such that
ri£r.£... £ryand d;£ d,£... £ d;. Then we may fix Xj=1" i,jT [,i<j, and yet preserve optimality
in ASP.

Proof. Congider any optimal solution to ASP and examine the sequence positions of aircraft from
the set |. If these appear in the same order asin |, we are done. Otherwise, processing from the
leftin 1, let the first out-of-sequence aircraft be in position p (possibly, p=1)and let the aircraft in
this position be g. Note that g>p, and so, ry£r, and d,£d,. Sincerp£r £t <t,£d,£d, by scheduling
arcraft q at time t, and aircraft p at time t,, we would obtain a feasible solution having the same

objective value. Continuing in this fashion, we would obtain an optimum with the aircraft in |

sequenced in order 1,... t. This completes the proof.[]

Remark 3. Whenever we fix %; =1,we automatically also have x;°0.

We can aso perform probing tests on the x;; variables based on the following concept. Suppose
that we tentatively fix x;=1. If this resultsin an infeasible problem ASP, then we can permanently
fix x;=0. Smilarly, if fixing x;=0 renders the problem infeasible, then we can assert that we must

have x;;=1. To smplify the notation in this development, for each aircraft r, let

D, =minimum{ p.¢}
S

. 1p,if sisinthe sameclassasr

andlet Ps =i

| , "arcrafts,
i D, otherwise

Proposition 8 (Probing on x;=1). Consider the pair of aircraft i and j associated with the (defined
and not as yet fixed) variable x;;. If either (a) ri+p;;>d;, or (b) there exists an aircraft k for which

the following two conditions hold:

105



re P >d;, or r + P +p;; > dj,

max{ri+pi, r;} + f’jk >d,,
then we can optimaly fix x;=0, assuming that an optimum exists.
Proof. Suppose that we consider any feasible solution in which x;=1. Clearly, if (8) holds true
then we have a contradiction, and so we must have x;=0. Hence, suppose that (b) holdstrue. If the
first part of condition (i) holds true, then k cannot precede i or else aircraft i cannot be feasibly
scheduled, and smilarly, if the second part of condition (i) holds true then again k cannot precede
i or else aircraft j cannot be feasibly scheduled (given x;=1). On the other hand, condition (i)
asserts that aircraft k cannot be feasibly scheduled after | and j are consecutively scheduled.
Together, these conditions imply that if x;=1, then there exists an arcraft k which cannot be

feasibly scheduled, and so, we may fix x;=0. This completes the proof. [

Proposition 9 (Probing on x;=0). Consider the pair of aircraft i and j associated with the (defined

and not as yet fixed) variable x;;. If
ri+ ﬁji >d,, and

mr] [max{r; + py.f}+ Pgl>d;
ri+pik’£dk

then we may optimaly fix x;=1, assuming that an optimum exists.

Proof. Suppose that we consider any feasible solution in which x;=0. Condition (i) asserts that |
cannot precede i, and condition (ii) asserts that for any possible aircraft ki i that immediately
follows i, it would not be feasible to subsequently schedule aircraft j. Hence, aircraft j would
remain unscheduled unless it immediately succeeds aircréft i, i.e., X;=1. This completes the proof. []

Remark 4. Naturdly, if i and j belong to the same class and we fix x;=1 then we can aso fix

Xi; =1.
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Figure 3.5 presents the scheme to prefix certain X; variables based on symmetry using the

Proposition 7, 8 and 9.

Let | be a set of identica aircraft in the same
class, where |I| 3 2. Arrange the aircraft indices
in | in nondecreasing lexicographic order of

(ri, ).

Denoter(l) asther™ ranked index in I, for r=1,...Jl|.
Foreachr =1,..., |I|, compute the violation function.
VIOL, = [# of indicesq(I), g<r for which dyq, > d:y

+ [# of indices q(1), g>r for which dq) < dr(y].
Note that VIOL, counts how many aircraft pairs (q(1), r(1)),
g* r, violate the nondecreasing ordering in| w.r.t. d values.

__ | FAnd Rl argmax{VIOL,}

no
Remover(l) from| | VIOLg = 0

yes

Order the aircraft as they appear in | by setting
Xparaon=1"p,g= 1., I, p<q
i % ifi<]

% 0
where X,j) +)?ji if ]<|

Figure3.5 Prefixing Variables.
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3.3.5 Computationa Results

Figure 3.6 illustrates computational result of a smple case having 10 flights. As seen in the
figure, the completion time of the firgt-come-first-served (FCFS) sequence and the optima
sequence are 624 seconds and 518 seconds, respectively. Hence by changing the traditional FCFS
sequence intelligently, about 17% of the overall operationa time can be saved.

We consider 12 problem instances having specified hypothetical flight schedules. The results
given in Tables 3.7 and 3.8 indicate that the linear programming relaxation of the origina
traditional model seems to yield a significant gap from optimality that needs to be resolved. On
the other hand, the proposed reformulated ASP problems yield tighter representations, producing
significantly improved lower bounds. As a result, several previoudy unsolvable instances are now
computationaly tractable within the set limits. Nevertheless for real-time implementation, the
CPU times (seconds) measured on an HP workstation indicate that we need to devise suitable
heuristics as an dternative for deriving good quality solutions.

Various types of problems are defined as below according to the application of RLT and SSRLT.
Problem O is an origina problem without applying RLT. RLT1 is a problem resulted from
applying RLT to problem O. Problem RLT2 involves additional constraints set generated by
applying SSRLT factor S, to constraints set (3.15). In problem RLT3, SSRLT factor S, S;and S;
are gpplied to constraints set (3.15). Among the problems, O, RLT1 and RLT2 areimplemented
in this research.

O: Minimize z

subject to
31), (32), (33), (34), (35), (36), (3.7), (38), (39), (3.10), (3.11), (3.12),
§3t+p; "i<j, (ilj)] sameclassinvand i + P; >d;

3t +p, "i<j, (i,j)] sameclassinvand I; *+ p; >d

X binary.

RLT1: Minimize z

subject to
(L2.5), (L2.19, (L2.3), (L2.6), (L3.1), (L3.19), (L2.2), (L2.7), (L2.49), (L3.2), (L3.29,
(L4.2), (L4.2), (L4.3), (L5.2), (L5.3), (L1.2), (L1.2), (3.5), (3.6), (3.7), (3.8), (3.9),
(3.10), (3.11), (3.12),
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t 3t +p; "i<j, (i,j)] sameclassinvand I +p; >d,

t 3t +p, "i<j, (ij)] sameclassinvand f; + Py >,
u; 20, 30 AT T g0
Xij binary.

RLT2: Minimizez

subject to
(L2.5), (L2.19, (L2.3), (L2.6), (L3.1), (L3.19, (L2.2), (L2.7), (L2.49), (L3.2), (L3.29),
(L4.2), (L4.2), (L4.3), (L5.2), (L5.3), (L1.1), (L1.2), (3.5), (3.6), (3.7), (3.8), (3.9),
(3.10), (3.11), (3.10), (3.11), (3.12),
SSRLT[conv{(3.15), S}],

L3t +pj "i<j, (i)l sameclassinvand i +p; >d,
ot +p, "i<i, ()T sameclassinyand 1 + py >

u; 20, 30 AT T g0t

r; 30,530 "i<j, (il sameclass il v, jlI vVandF+p;£d; r+p;£d,
X binary.

RLT3: Minimizez

subject to
(L2.5), (L2.19, (L2.3), (L2.6), (L3.2), (L3.19, (L2.2), (L2.7), (L2.49), (L3.2), (L3.29),
(L4.2), (L4.2), (LA.3), (L5.2), (L5.3), (L1.1), (L1.2), (3.5), (3.6), (3.7), (3.9), (3.9),
(3.10), (3.11), (3.10), (3.11), (3.12),
SSRLT[conv{(3.15), S}],
SSRLT[conv{(3.15), S}],
SSRLT[conv{(3.15), S} ],

t 3t +p;; "i<j, (ij)] sameclassinvand I +p; >d;
t; 3t +p; "i<j, (ij) sameclassinVand ri+p;i >d
u; 20, v30 AT AT 0t

"i<j, (ij)] sameclass jlI v, jl V and Fi+p;£d;,

Xij binary.
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Nominal Schedule

Legend

D@ 3) 4) (5) (Original Sequence)
2532 82 102 154 Scheduled time (seconds)
LL L H H Aircraft type
1 ] | , L
oI '[ 100[ I I 200 300 400 500 600
()] ) ®8 © (10)
4 73 122 136 184
H S H s H
FCFS Schedule
Completion Time= 634 Seconds
@ @) ® @ ©)
54 114 324 384 594
L L L H H
] 1 , }
OI 100 2{00 I 300 400 I 500 I 600
®) @ ®) © (10)
4 200 274 470 544
H S H S H
Optimal Schedule (Before adding constraint set (2.10))
Completion Time= 484 Seconds
(€8] ()] 4) (5) @)
54 149 249 349 444
L L H H L
o | | | | |
OI 100 I Tzoo 00 400 I 500 600
(2) 4———Violation ———m= 1(2 1(3; (219(2 #4—— Violation ——— flaz)t
H S H H S
Optimal Schedule (After adding constraint set (2.10))
Completion Time= 508 Seconds
() @) ©) @ ®)
25 120 218 318 418
L L L H H
] l gy | , ,
I 100 I 200 I 300 I 400 I 500 600
) © ©) ® (10)
90 188 268 368 468
S S H H H
Figure 3.6 Illudtrative Example.
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Table3.7 Computational Results (without using Prefixing Congtraints).

Dat a O RLT1
Pr ob. # acft Intrvl FCFS MP P | MP P I M
Id (sec) sol . val ue Val ue tine nodes Ti ne Val ue Ti e nodes tine
50 5 2000 1558 1558 1558.0 0.01 7 .02 1558 .12 0 .01
51 5 100 288 256 85. 0 0.01 98 L 11 230 .09 26 .23
52 5 100 263 234 79.0 0.02 223 .31 231 .12 34 .26
53 5 100 266 266 92.1 0.02 245 .31 238 .14 36 .40
54 5 100 260 260 84.9 0.01 199 .26 232 L11 59 .57
55 5 100 380 263 84.0 0.01 72 09 262 13 32 35

10_0 10 2000 1883 1883 1871.0 0. 03 46932 127. 00 1873 3.30 47 32.14
10_3 10 600 750 686 500. 0 0. 06 27152 143.72 531 2.90 7806 784.51
10_4 10 600 626 492 305. 0 0. 03 300, 000 1250. 36 464 1.43 22147 2006. 78
10_5 10 300 634 518 243.0 0.03 300, 000 1275. 90 479 2.42 22615 3646. 54
10_6 10 200 715 524 185.0 0. 03 300, 000 *1283. 90 489 1.12 45320 3612. 37
e —— |

150 15 2000 2095 2095 2046.0 0.04 300, 000 1286. 99 2077 19.67 1657 299. 57
15_1 15 500 948

15_3 15 500 967

Data RLT2
Pri%b. # acft I(nstergl)l Egs VZII Ee P I M P |
) Val ue | Ti e nodes Ti ne |
50 5 2000 1558 1558 1558 C11 0 .01
51 5 100 288 256 230 12 32 .33
52 5| 100 263 234 231 14 21 .18
53 5 100 266 266 238 .15 42 .50
5 4 5 100 260 260 232 .16 65 . 66
55 5 100 380 263 262 .21 24 .35
10_0 10 2000 1883 1883 1883 3.39 0 .02
10_3 10 600 750 686 531 5.49 2878 573.50
10_4 10 600 626 492 464 2.21 20542 2878. 87
10 5 10 300 634 518 479 2.73 17413 2774. 44
10_6 10 200 715 524 489 2.15 48953 4791. 63
e _____________ _____________________________ |
15 0 15 2000 2095 2095 2077 11.53 60 218. 30
15 1 15 500 948
15 3 15 500 967

‘not opti mal

(due to the maxi mum nodes limt).
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Table3.8 Computationa Results (using Prefixing Congtraints).

Dat a (0] RLT1

Pr ob. # acft Intrvl FCFS MP

Id (sec) sol . val ue LP [ M P LP | MP

Val ue tine nodes Ti e Val ue Ti me nodes tinme

50 5! 2000 1558 1558

51 5 100 288 256

52 5 100 263 234

53 5 100 266 266

54 5 100 260 260

55 5 100 380 263

— |
10_0 10 2000 1883 1883 1871.6 0.02 3792 9. 80 1873 2.51 50 29.57
10_3 10 600 750 686 551.0 0.04 6721 31.50 551 1.87 5299 1183. 42
10_4 10 600 626 492 305. 0 0. 02 120518 442,98 464 1.22 2973 262. 96
10_5 10 300 634 518 271.0 0.03 33793 127. 77 479 1.23 4113 379.53
10_6 10 200 715 524 264.0 0.03 173046 660. 00 489 1.22 8277 758. 40
|

15 0 15 2000 2095

15 1 15 500 948

15 3 15 500 967

Dat a RLT2
Prpb. # acft Intrvl FCFS MP P | MP |
id (sec) sol . val ue Val ue | Ti e nodes Tine |
50 5 2000 1558 1558
51 5 100 288 256
52 5 100 263 234
53 5 100 266 266
54 5 100 260 260
55 5 100 380 263
|
10_0 10 2000 1883 1883 1883 1.90 14 18. 22
10_3 10 600 750 686 551 2.42 9358 3258. 65
10_4 10 600 626 492 464 1.48 3097 401. 98
10_5 10 300 634 518 479 1. 40 3774 439. 92
10_6 10 200 715 524 489 1.38 9835 1263. 82
15 0 15 2000 2095
151 15 500 948
15_3 15 500 967
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3.4 Heuristics for the Aircraft Sequencing Problem (ASP)

Note that the aircraft sequencing decisions need to be made in real-time within a rolling horizon
framework. As such, the computationa time required to solve reasonably sized instances of ASP
is of paramount importance. In such a context, both dynamic and integer programming
approaches are not likely to be appropriate for implementation, especialy when the problem size
is relatively large. Hence, we propose the use of heuristic methods which provide solutions in a
reasonable time. Although these solutions might be sub-optimal, they are motivated by partia or
relaxed optimality considerations and are likely to be near-optimdl.

34.1 Tour Building Process
34.11 FCFS Sequence

For the tour building procedure, instead of devising a new tour building procedure, the FCFS
sequence (with landing priority) can be used as an initial tour. The motivation of this is that the
FCFS sequence is the strategy currently applied in air traffic control, and we are seeking to
improve the solution provided by it.

3.4.1.2 LP-based Heuristic

Having determined an LP-RLT solution X for an ASP, we can use this solution to construct an
initial tour via a rounding process. (Among various types of RLT formulations shown in section
3.3.6, the RLT1 can be used for this purpose. This is because comparing with other RLTSs, the
computation time for LP of RLT1 is reatively smal without losing the tightness of LP solution.
See Table 3.7.) To do this, we develop two sequentia rounding heuristics for the obtained LP
solution.

Method 1: Round X based on FCFS or cost/delay considerations.
Method 2: Supposethat X is fractional. Solve minS;S; X%, subject to assignment congtraints,

and hence obtain the solution X. If X is atour, then use this as the rounded tour. If X has

subtours, construct a complete tour by using a FCFS-based strategy .
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For Method 1, the following steps are performed:

Step 0 (Selection of variables from the solution): From the LP solution X, for each i, find

ji)T argmax{ %;}. Initialize the set of subtours as null.

Step 1 (Sort and store the selected variables): Sort the selected values %, ;) " i in nonincreasing

order, and store the corresponding ordered list of variablesin an array X(3 of size N.

Step 2 (Insert nodes in the current set of subtours): Removethefirst element x;;;, from X(3, and
reduce the size of X(¥ by one. Insert the nodes i and (i) in a current subtour by applying
one of following rules.

Rule 1: If both i and j (i) are currently included in the current set of subtours, go to Step 3.

Rule 2: If both i and j(i) are not included in any current subtour, generate a new subtour
by connecting nodesO® i ® j(i) ® O.

Rule 3 If only i isincluded in some current subtour, i1 0, insert j(i) between node i and
the node following i in this subtour.

Rule 4: If only j(i) isincluded in some current subtour, j(i)* 0, insert i between nodej (i)
and its predecessor node in this subtour.

Rule 5: In case the selected variable is of the type X (i.e., i = 0 with j°j(0) not included
in any subtour), calculate the savings obtained by connecting j to node O in each
of the current subtours. The savings are given by the following expression:

savingj; = Por + Pjo- Pjr_,

where, f,, is the first node after node 0 in the m" subtour.
Connect j as the immediate successor to node O in the subtour which yields the
largest savings.

Rule 6: In case the selected variable is of the type X, (i.e., j(i)=0), with i not included in
any subtour, calculate the savings obtained by connecting i to node O in each of
the current subtours. The savings are given by the following expression:

sving, ;=P o+ Poi- P,

where, |, isthe last node before node 0 in the m" subtour.
Connect i as the immediate predecessor of node 0 in the subtour which yields the
largest savings.

Step 3 (Repeat): If the array X(¥ is not empty, go to Step 2. Else, go to Step 4.
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Step 4 (Connect subtours): If the current solution is a complete tour, stop. Else (i.e., the current
solution has more than one subtour), compute al savings by connecting the last node in a
subtour to the first node in another for al pairs of subtours. The savings for connecting
the last node |, in the m" subtour and the first node f, in the n™ subtour is given by the
following expression.

savingm =P, 0 * Por, - B, 1, " mni {theindex set for subtours}, nt n.
Join the pair of subtours that yields the highest savings into a single subtour according to

the corresponding connection. Repeat Step 4 until a complete tour is obtained.
Table 3.9 shows an example of this initial tour building procedure for the case having 10 aircraft.

The first two columns in the table present the sorted LP-solution values, and the rules applied to
insert the nodes are shown in the third column.

Table3.9 An Example of Heuristic Method for ASP.

Variable LP-solution Rule for insertion
X310 0.93 rule 2
X73 0.91 rule 4
Xa9 0.84 rule 2
X95 0.81 rule 3
Xg4 0.78 rule 4
Xo6 0.70 rule 5
X10 0.66 rule 6
Xs8 0.57 ruel
X2 054 rule 3
X10,2 0.45 rule 1

Figure 3.7 depicts the stepwise process for this example. For instance, Figure 3.7(6) illustrates
two choices of connecting flight 6 to node 0, and the best resulting sequence after applying Rule
4 is shown in Figure 3.7(7). Figures 3.7(11) and 3.7(12) illustrate two possible ways to connect
the current pair of subtours, and Figure 3.7(13) depicts the fina selected sequence after joining

these subtours.
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Figure 3.7 LP-based tour building procedure for ASP.
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3.4.2 Improvement Heuristic

34.21 2-exchange Heuristic

The 2exchange scheme developed by Lin (1965) can be applied as an improvement routine for
ASP. Associated with a proposed exchange, the new schedule can be tested against the minimum
separation rules by consdering each affected flight and its three previous flights. This is
necessary because the triangle inequality does not necessarily hold for the given edge weights.
The data for the minimum separation rule has a largest separation of 196 seconds, which is
required when a small arcraft follows a heavy one in an arrival sequence. In this case, two

departing operations can successively intervene between these two arrivas without delaying (or
pushing forward) the small aircraft schedule. Even though the separations between the small

aircraft arrival and the two departures are adequate, there is still a chance that the separation rule
between the heavy aircraft arrival and the small aircraft arrival is violated. Hence the foregoing
three-previous-flight rule.

Given that a 2exchange involves the substitution of two edges, (i, i+1) and (j, j+1) with two other
edges (i, j) and (+1, j+1) as shown previoudy in Figure 2.5, the profitability of a proposed

sequence is checked at the (j+1)™ aircraft using the following condition:

If the start time of the (j+1)* aircraft's operation in the suggested 2exchange
sequence is earlier than that in the current sequence, the new sequence is profitable.

In fact, this condition is not sufficient but is only a necessary condition for the improvement of
the current sequence. The reason for this is that there still exists a possibility for some flight
following the (j+1)® flight to be further delayed because of the separation constraints with respect
to the revised two predecessors of the (j+1)* flight. This relaxed condition sometimes resultsin a
nor-monotone decreasing sequence of completion times. However, from computationa
experience, it is observed that in some cases, this Eaxed condition is very helpful to atan
improved solutions. The entire improvement process is repeated from the beginning whenever a
profitable sequence is obtained, and is continued until no feasible and profitable sequence is
found. The pseudo-code for this heuristic is shown in Figure 3.8.
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iter = 0;

heurSeq = initial sequence fromtour building;
prepar eVP() ;

reduceTi meW ndow( ) ;

do{
fi ndBet t er TwoExchange
findBett er TwoExchange
iter++;

}whi I e(findBetter TwoExchange i s not found);

fal se;
heuristicASP ();

heuri sti cASP()
{

int i, j, k
findBetter TwoExchange = fal se;
for(i =0 to totFlights —-1){
for(j =i+2 to totFlights){
initialize tenpSeq;
for (k =0totot + 1){
if(k <= i) tenpSeq[k] = heurSeq[K];
elseif (k>i and k <=j){ // reversed sequence
tenpSeq[k] = heurSeq[j - (k - i) + 1];
updat e tenpSeq;

if(tenpSeq is infeasible){
initialize tenpSeq;
br eak;

}

el se}if (k ==j + 1){ /I check feasibility and profitability
tenpSeq[ k] = heur Seq[ K] ;
updat e t enpSeq;
if(tenpSeq is infeasible or not profitable){
initialize tenpSeq;
br eak;

}

}
else if(k <totHFights + 1){
tenpSeq[ k] = heur Seq[ k] ;
updat e t enpSeq;
if(tenpSeq is infeasible){
initialize tenpSeq;
br eak;

ilse{ /1 i.e., k =tot + 1;
tenpSeq[ k] = heur Seq[ K] ;
updat e t enpSeq;
if(tenpSeq is infeasible){

initialize tenpSeq;
br eak;

}
else{// i.e., tenpSeq is feasible
for (m=0to tot + 1) heurSeq[n] = tenpSeq[nj; // update heurSeq
return findBetter TwoExchange = true;

}
}iend if

Y/ for k
Y ifor j
Y ifor i
return findBetter TwoExchange = fal se;

}

updat e t enpSeq{

/1 decide and update the current flight's start time considering the m ni num separation rul es between
/1 this flight and three previous flights.

}

checkFeasiblity of tempSeq(){
Il if the tenpSeq's start tine is later than due-tine then the tenpSeq is not feasible.

checkProfitablity of tenmpSeq(curr, tSeq, hSeq){
/1 if the tenpSeq's start tine is less than the heurSeq's start time, then the tenpSeq is profiable.
}

Figure 3.8 Pseudo-code for the ASP heurigtic.
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34.22 2-swap Heurigtic

Besides the 2exchange procedure, we can apply the 2node swapping method which swaps a
node with one of its local neighbors that reside within some n nodes adjacent to the current node.
Let us consider swapping an i with aj™ flight for j>i. The 2swap heuristic would check
feasibility for dl the flights after the j™ flight, and would aso check the profitability of this
exchange at the i+1* flight. If the new starting time for the i+ 1% flight is earlier than the previous

starting time, this swapped sequence is considered as profitable.
3.4.2.3 Enhancing Improvement Heuristics

For expediting the improvement procedure, two additional methods may be applied: 1) Exploiting
a precedence relationship, and 2) reduction of time-windows.

Method 1 (Exploiting precedence relationship): In ASP, the precedence relations among the
flights can be found by applying the following rules:

Rule 1: The sequence is symmetricaly identical by feasibly interchanging the same types
of operations involving the same aircraft type. As such, the FCFS rule could be
applied to such flights. In other words, redtrict flight; < flight;, if operation =
operation;, (aircraft type); = (aircraft type);, and e £ €.

Rule 2: Let [e, |;] and [e, |;] denote time-windows for flightsi and j, respectively. If |; £
g, then flight i should precede flight j in the final sequence.

Adopting Solomon’s (1988) approach, the precedence information among the flights are stored in
amatrix VP(, j), where VP(i, j) is defined as follows.

+1if flight i must precede flight j,
VP(i,j)={ 0if no precedence relationship exigs,

-1if flight j must precede flight i,
where, i and j are indices for flight identification.

Once VP(, j) is available, a node precedence value, NP(), for the i flight in the current
sequence, is defined as follows:

119



NP(i) = the smallest number k, k > i+1, such that VP(j, k) = +1, for somej 3 i+1.1f no
such k exists, then NP(i) = N+1,

where, i is a postion for the i flight in the current sequence, and N is the number of
flights.

The NP(j) array can be obtained from VP(, j) in O(N?) time by applying the following procedure,

where N is the number of flights in the current sequence.

current_i =1;
for(k =2tok <N + 1){
for(j = current_i toj < k){
NP( — 1) =k;
j_id=id of currSeq(j);
k_id=id of currSeq(k);
if(VP(_id- 1, k_id- 1) = 1
current_i =j + 1,
break;

}/lend for
}/lend for
NP(N) = N+1,
NP(N+1) = N+1;

Henceforth, the improvement procedure can be expedited by adopting the following necessary
condition for the feasibility of a 2-exchange as suggested by Psaraftis (1983b):

A necessary condition for the feasbility of a 2-exchange of arcs (i, i+1) and (j, j+1) with (i,
j) and (i+1, j+1) isthat j < NP().

Let us consider an example case having 10 flights with the following current sequence.

Sequence 0 1 2 3 4 5 6 7 8 9 10 11

Hight 1d. fo fe f; fg F. fa fo f10 fs f, fs fo

Assuming that the precedence relations among the flights are f; <f,, f; <fs, fy < f3, f, < fs, fg < f5,
fe < fg, and f; < fg, the resulting NP(i) values for the current sequence are given as follows:
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Method 2 (Reduction of time-windows): Exploiting the precedence relations imposed in the
previous step, certain time-windows can be reduced as follows: Let [e, ||] and [, |;] be
time-windows for flights i and j, respectively. If flight i precedesflight j, then their time-
windows can be reduced by letting I; = min{l;, |;-t;} and = max{g, e+t;}.

The overall stepsincluded in Methods 1 and 2 are depicted in Figure 3.9.

Generate VP(i,j)

|

Reduce time-windows

|

Read the initial sequence

La

A

Generate NP(i) for all flights

|

Perform admissible
2-exchanges

Better sequence found?

Yes

)

Figure 3.9 Flowchart of Improvement Procedure for ASP.

121



3.4.3 Computationa Results

To test suggested heuristic methods, we performed computations using a set of randomly
generated problems. For the tour building process, the FCFS sequences are used. The results
obtained from 2exchange improvement procedure are summarized in Table 3.10. In the problems
15 0 and 50_7, the time-windows for flights appearing later in the schedule dominate the overall
completion time. Results show that 2exchage heuristic method provides sequences very close to

exact solutions in a reasonable time.

Table 310 Computational Results (2-exchange improvement procedure).

Number FCFS_ Opti m(_:i 2—exc_hange Sequence _

Problem # of aircraft Completion Completion Completion | Computation

Time (sec.) Time (sec.) Time(sec.) | Time(sec)
10 0 10 1883 (100) | 1883 (100.0) | 1883 (100.0) 0.010
10 3 10 750 (100) 686 (91.5) 691 (92.1) 0.050
10 4 10 626 (100) 492 (78.6) 492 (78.6) 0.060
10 5 10 644 (100) 518 (80.4) 541 (84.0) 0.050
10 6 10 715 (100) 524 (73.3) 545 (76.2) 0.060
150 15 2005 (100) 2005 (100.0) | 2095 (100.0) 0.030
15 1 15 1006 (100) na 956 (95.0) 0.080
15 2 15 948 (100) na 848 (89.5) 0.110
50 2 50 2670 (100) na 2602 (98.5) 0.030
50 7 50 3086 (100) na 3086 (100.0) 6519

" Computation times do not include times for tour building process. The reported times are CPU seconds on
aPC having Pentium Pro 166Mhz CPU and a 64Mega-byte RAM.
The numbersin parentheses denote the percentage of completion time comparing with FCFS sequence.

From computational experience, it turns out that Rule 1 in Method 1 for enhancement of
improvement heuristic does not always provide favorable results. The reason for thisis likely that
restricting the chances of flipping a segment of the current sequence because of this rule might
reduce the possibility for generating a better solution. In fact, the precedence imposed on flights
having the same operation type and involving the same aircraft type is not a “hard” constraint but
a “soft” congtraint in the sense that these precedences may be violated without losing feasibility.
While it is advantageous to add these relations to combat symmetry in a mathematical
optimization model, in the present context, it is preferable to drop this restriction.

In contragt, the reduction of time-windows is evidently effective in saving computationa effort.
The computational performance before and after applying the time-window reduction to the same



data set used for Table 3.10 are compared in Table 3.11. In some cases, the computational time
increases dightly after applying this reduction. This increase is mainly due to the additional effort
for performing this reduction, and appears to be negligible. On the other hand, the number of

iterations is reduced significantly in some cases.

Table3.11 Comparison of Computationa Efforts.

Problem # Before reduction of TW | After reduction of TW
10 O 1 (0.010) 1 (0.020)
10 3 3 (0.050) 3 (0.050)
10 4 6 (0.060) 7 (0.080)
10 5 10 (0.050) 7 (0.060)
10 6 7 (0.060) 4 (0.040)
150 1 (0.030) 1 (0.040)
15 1 5 (0.080) 5(0.110)
15 2 4(0.110) 4 (0.130)
50 2 19 (6.519) 17 (6.018)
50 7 1 (0.030) 1 (0.040)

"iterations (CPU time, seconds).

For the purpose of comparison, we also tested the 2swap heuristic using the same data set that
was used for the 2exchange heuristic. Computational results obtained are summarized in Table
3.12. Compared with the 2exchange heuristic results (see Table 3.10), the 2-swap heuristic
requires much less computation time. It, however, shows that in some cases, the resulting

solutions are relatively further from optimality.

Table3.12 Computational Results (2-swap improvement procedure, n=10).

Problem # Number FCFS Optimal 2-swap Sequence
of aircraft Completion Completion Completion | Computation
Time (sec.) Time (sec.) Time (sec) | Time (sec.)’
10 0 10 1883 1883 (100.0) " | 1883 (100.0) 0.020
10 3 10 750 686 (91.5) 691 (92.1) 0.090
10 4 10 626 492 (78.6) 568 (90.7) 0.040
10 5 10 644 518 (80.4) 562 (87.3) 0.050
10 6 10 715 524 (73.3) 604 (84.5) 0.040
15 0 15 2095 2005 (100.0) 2005 (100.0) 0.020
15 1 15 1006 n.a 995 (98.9) 0.040
15 2 15 943 n.a 905 (95.5) 0.100
50 2 50 4670 n.a 4602 (98.5) 0.220
50 7 50 3086 n.a 3086 (100.0) 0.971

" Computation times do not include times for tour building process. The reported times are CPU seconds on
a PC having Pentium Pro 166Mhz CPU and a 64Mega-byte RAM.
""The numbers in parentheses denote the percentage of completion time comparing with FCFS sequence.
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Chapter 4. Network Assignment Problem

The main purpose of the Network Assignment Problem (NAP) is to provide air traffic controllers
with efficient taxiing plans that can reduce taxiing delays at the airport under consideration. The
plans involve taxiing routes from a gate to a runway (or more precisely, to the departure queue)
for departing aircraft, or from the runway exit to a gate for arriving aircraft. At large airports
having complex taxiway configurations, taxiing routing is an important task for ground
controllers. Even for smadl airports, this might be important if automated conflict resolution is
desired. The smplest way to assign taxiing paths is to establish routes based on shortest paths.
Shortest paths are usualy static in the sense that the paths are independent of any changes in
traffic conditions on the taxiway structure. This approach is relatively easy to implement but is
likely to produce more delays. Another option is to apply a time-dependent network assignment
strategy which considers changes in traffic conditions over time. In this chapter, network
assignment and shortest path algorithms for solving NAP are presented along with computationa
results.

4.1 Network Assgnment Strategies

4.1.1 Network Assgnment Algorithm

There are severa drawbacks in adopting static assignment techniques as a solver for NAP
problems. This mainly because there are differences between urban transportation networks and
airfields with respect to the network operations. Most urban transportation inks are directed in
that they are used in one direction for al days. In contrast, dmogt al links in arfields are bi-
directional in that each link’s operational direction can change over time. Whereas urban
transportation networks are directed graphs, arfield networks are undirected graphs in their
network representation. In order to consider time-dependent characteristics of airfield links,
dynamic (or time-dependent) network assignment strategies which have a look-ahead function for
each link’ s operational direction should be introduced.

In a time-dependent network assignment strategy, al aircraft interact as long as they overlap
within the time horizon. By rerouting dl vehicles iteratively, a dynamic user equilibrium (UE) (or
system optimal (SO)) state can be achieved. The general condition describing a dynamic UE can
be expressed as follows [Ghali, 1995]:
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If, at each instant in time, for each origin-destination pair, the unit costs of flow on
utilized paths are identical and equal to the minimum instantaneous unit path cost, the
corresponding flow pattern is said to be user optimized.

Inthisresearch, the tentatively named quasi-dynamic networ k assignment strategy isproposed. In
a quasi-dynamic network assignment strategy, it is assumed that the current aircraft route is
influenced only by the previous aircraft assigned to the network. This smplified assumption rules
out the necessity of iterative rerouting procedures, thereby reducing the number of computations.
Besides the computational aspect, there is another theoretical rationde behind using the quasi-
dynamic network assignment strategy. In the UE (or SO) framework, it is assumed that vehicle
drivers sdlect their best paths in such a way that their own travel times (or marginal travel time)
are minimized. It is aso assumed that al drivers have equa priorities in the sense that the rule of
first-come-first-served is maintained during travel. At an arport, however, ground controllers
often provide higher priorities to certain taxiing aircraft over others to facilitate traffic flows. This
is a non-systematic situation where it might be impossible to achieve a pure dynamic UE (or SO)
State.

Figure 4.1 depicts the flowchart for a quasi-dynamic network assignment method. The method is
based on the incremental assignment technique which decides the aircraft path in a one by one
fashion. After an aircraft is routed, the links on the taxiing path are loaded by that aircraft over
time dlices (see Figure 4.2). As mentioned earlier, once any aircraft is assigned to taxi on alink in
one direction, the opposite direction of the link should be blocked during the time dice occupied
by the aircraft to prevent any conflict on the taxiway. This can be done by increasing the travel
time of the conflicting Ink to an artificidly large number to avoid being sdlected as a time-
dependent shortest path for any other flight. In practice, al the information about the loaded
aircraft ismaintained in an fixed size array, caled atime-dependent aircraft flow table. Figure 4.2
shows the resulting time-dependent link flows and the time-dependent link travel times for the
case that aflow v, traverses from O to D along the path O® 1® 2® D.

The time-dependent travel times for al links can be computed by applying any known link
performance function link traffic volumes. Once the time-dependent link travel times are updated,
the time-dependent shortest paths between all nodes are recomputed for next flight to be assigned
using atime-dependent shortest path agorithm.
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Figure4.1 Quasi-dynamic Assignment Algorithm (1).
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4.1.2 Shortest Path Algorithms

The time-dependent shortest path agorithm suggested by Ziliakopoulos and Mahmassani is
designed to provide time-dependent shortest paths for al O-D pairs every time dices. In terms of
problem size, the NAP on taxiway system is much smaler than the NAP on the urban
transportation network. For example, the number of nodes and links on taxiway system at a large
airport is much less than that on a typica urban network. Also the number of aircraft considered
in the airport is smaler than the number of cars in the urban network. Motivated by this point, we
employ a TDSP agorithm based on the Dijkstra’ s agorithm having the following characteristics:

1)

The TDSP provides a time-dependent shortest paths from a single root node to al other nodes
starting at time't.

The TDSP algorithm uses the sorted-queue as a data structure for candidate nodes, which makes
the dgorithm as LS algorithm rather than LC agorithm. (Even though the size of candidate
nodes set (i.e.,, SE list) issmall, Sze are big, fast sorting algorithm such as "quick sort" can be
applied for the facilitating the sorting procedure.)

Figure 4.3 shows the suggested TDSP agorithm for time-dependent paths from a node, r, to al
other nodes starting at timet.

Compute CurrentTimeSlice.
Cdl Initidize

while(SE list is hot empty)
u = deQueueMin(r);
for(v = al forward star of u){
d_u = shortTime(r, u); /I travel timefromr to u.
d v =shortTime(r, v); /[ travel timefromrtov.
Compute timeSliceFor_|_uv;//compute thetime slice for travel timefromutov.
|_uv =Find travel Time(u, v, timeSliceFor_|_uv)
/I find the travel timefrom uto v for timeSliceFor_|_uv
if(d v>d u+I1_uv){
shortTime(r, v) =d_u+1_uv; // update the short time fromr tov
enQueue(V);

}
} //lend for
/I end while

Procedure Initialize:
for (i = al nodes){
predecessor(i) = 0;
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for (j = dl node){
if(i £ ) Label(i, j) =inf,;
eselLabe(i,j)=0;
}
}

predecessor(r) =r;

Procedure deQueueMin(): // find the closet node from the SE list.

Procedure enQueueMin(x): // insert node x into the SE list.

Figure 4.3 Pseudo Code for Suggested Time-dependent SP Algorithm.

4.2 Computationa Results

To compare static and time-dependent assignment Strategies, let us consider a hypothetical flight
schedule for DCA airport. (For the airport configuration, see Figure 5.3. The details of this airport
are described in Chapter 5.) As shown in Table 4.1, the schedule has only two flights but it is

designed to have a conflict during taxiing to their own destinations.

Table4.1 Hypothetical Flight Schedule.

. Aircraft | Operation Schedule Time
Rlight # Type Type Hour Minute Second Gate Runway
DEP 1 | B727-100 | Departure 0 0 27 1 36
DEP_2 | B727-100 | Departure 0 0 44 11 16

Figure 4.4 shows the paths resulting from two different assgnment strategies. Since no flight is
on the taxiway when the flight "DEP_1" is assigned, it can taxi to its destination at unimpeded (or
free-flow) speed. Therefore there is no difference in static and time-dependent shortest paths for
flight "DEP_1".

In the static assignment strategy, "DEP_2" taxis and approaches "DEP_1" on the link (1020,
1024). On the other hand, for the time-dependent assignment case, "DEP_2" is assigned to make
a detour so as to avoid the conflict with "DEP_1". This is obvious because, when "DEP_2" is
assgned on the network, link (1024, 1020) has been blocked by "DEP 1", and the time-
dependent SP algorithm detects this blockage. The difference of two paths for "DEP_2" are
clearly illugtrated in Figure 4.5.
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Paths from Static Network Assignment

Flight "DEP_1": 1 (27') - 1009 (44" - 1011 (49) - 1014 (54) - 1016 (65) - 1017 (77) -
1019 (83) - 1020 (90') - 1024 (117') - 1027 (126') - 1031 (143) - 2018 (171") -
2021(202).

Flight "DEP_2": 11 (44" - 1029 (52 - 1030 (61" - 1026 (70" - 1024 (78') - 1020 (105') -
1021 (111) - 1018 (122) - 1015 (140) - 1012 (149) - 1010 (157 - 1008 (182) -
1005 (196) - 1002 (235) - 1001 (250) - 2001(261).

Paths from Time-dependent Network Assignment

Flight "DEP_1": Same as Static Path.

Flight "DEP_2": 11 (4') - 1029 (52 - 1030 (61) - 1026 (70) - 1024 (78') - 1027 (87") -
1025 (94') - 1022 (105") - 1021 (119) - 1018 (130) - 1015 (148) - 1012 (157") -
1010 (165') - 1008 (190) - 1005 (204') - 1002 (244') - 1001 (258 - 2001(269)).

Legend: Node (Seconds).

Figure4.4 Satic vs. Time-dependent Path (1).
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(a) Statically assigned path. (b) Time-dependently assigned path.

Figure4.5 Static vs. Time-dependent Path (2).
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Chapter 5. Virginia Tech Airport Simulation Model

In this research, the smulation mode plays an important role as a supplement to the analytica

models developed for ASP and NAP. This is because the simulation model makes it possible to
portray the dynamic behavior of entities that are difficult to examine by anaytical modds. In this
Chapter, methodologies pertinent for developing our smulation model are reviewed aong with

previous simulation models. We also present detailed procedures to develop a smulation model

named Virginia Tech Airport Smulation Model (VTASM).

5.1 Framework of the Proposed Simulation Model

The primary purpose of a smulation model in the NAP is to evauate the current state of aircraft
in the taxiway and runway systems. Several measures of network performance can aso be
esimated using the smulation model. These include the estimation of delays and a genera
assessment of the network congestion.

Since the number of entities (aircraft and air traffic controllers) considered in airport smulation
moddis is relatively small, a discrete time, microscopic and deterministic Smulation mode is
considered appropriate for this research problem. Even though the current prototype mode is
developed as a deterministic model, the model design permits the inclusion of random variables
to reflect the stochastic behavior observed at airport networks.

The development of the smulation model is based on standard object-oriented methods
commonly used in software engineering. The most prominent qualities of an object-oriented
mode are: 1) an easier understanding of the system, and 2) modifications to the model tend to be
locd as they often result from an individua item, which is represented by a single object
[Jacobson, 1992].

Object-oriented methods have been improved in the past decade with the development of many
new object-oriented programming languages. The number of object-oriented methods increased
from less than 10 to more than 50 during the period between 1989 and 1994. Among the methods,
the most notable include Booch and Jacobson’s OOSE (object-oriented software engineering),
Rumbaugh’'s OMT (object model technique), Shaer-Mellor's method, and the Coad-Y ourdan’s
method. Recently the “Unified Modelling Language (UML)” has been developed by Booch,
Jacobson and Rumbaugh to unify various object-oriented methods [Booch et al., 1998].
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The smulatiion model devised in this research project has been developed by following an
extenson of the OMT originaly applied to the design of SIMMOD 3 [ATAC, 1993]. In generd,
the object-oriented modeling process is decomposed into three phases: 1) Object-oriented
Analysis (OOA), 2) Object-oriented Design (OOD) and 3) Object-oriented Programming (OOP).
Figure 5.1 describes the general procedures of the OMT methodology [Weijers, et. a, 1995 and
Derr, 1995].
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5.2 Object-oriented Analysis (OOA) of the Simulation Model

OOA can be defined as a method of analysis that examines requirements from the perspective of
the classes and objects found in the vocabulary of the problem domain [Booch, 1994]. OOA
begins with the verbal description of a problem statement. Then three types of models are
constructed: an object model, a dynamic model, and a functional model.

The object model describes the static, structural, and data-aspects of objects in the system, aong
with their inter-relationships. The object model is represented by object diagrams. An object
diagram is a graph whose nodes are object classes and whose arcs reflect the relationships among
classes. The dynamic model describes the interactions among objects in the system in terms of
state diagrams. These represent the temporal, behavioral, and control-aspects of the system
changing over time. In a dtate diagram, nodes represent states, and arcs represent transitions
between states.

The data value transformation within a system is described in the functional model. Functiona
models include data-flow diagrams where nodes represent processes and arcs represent data flows
[Weijers, et. d, 1995]. In the end, the three models come together during implementation, which
involve data (object model), sequencing (dynamic mode), and operationa (functional model)
manipulations [Bakker et. a, 1995].

521 Object Model

The main focus of the object modd is to construct an object diagram that describes the data-
oriented static structures of the problem domain. The following steps are used in the object model
anaysis according to the OMT method [Rumbaugh et d., 1991, and Derr, 1995]:

Step 1. Develop a problem statement.

Step 2: Identify the object classes which represent all the physical and conceptua objects
from the problem statement.

Step 3. Prepare a data dictionary giving a short description of various entities in the model.

Step 4. Identify associations (including aggregations) between object classes.

Step 5. Identify attributes of the object classes.

Step 6. Use inheritance to share common structures.

Step 7. Traverse access paths using scenarios to identify deficiencies.

134



The candidates of objects or classes may be found by identifying noun or noun phrases from the
problem description. Association is a relationship and represents dependencies between classes,
being usually denoted by verb or verb phrases in the problem statement. Attributes are the data
values that are held by the objects, and are usualy imbedded in a noun followed by possessive
phrases [Derr, 1995].

The arrow in the object diagram shows an aggregation/association relationship. An object at the
tail of arrow has an object at the head of arrow. The airport network, for instance, hasn nodes and
m links and each link consists of two nodes defined as the from-node and the to-node. A gate is
represented by a node, and each node can hold one aircraft (or n aircraft in the case of an
aggregate gate). A link can have at most n taxiing flights at the same time.

Each flight has a taxiing path which consists of a series of links from the gate to the runway for
departing flights (or vice versa for arriving ones). Aircraft can have n flight schedules.
Contralling flights at an airport is carried cooperatively by two types of air traffic controllers: 1) a
ground controller, and 2) a locd controller. Air traffic controllers evauate various flight requests
to pushback, taxi, takeoff, or land, and try to maintain a smooth flow on the taxiway and runway
infrastructure while minimizing delays. Even though the fina decisions for the ground and local
controllers are different, they share common attributes and behavioral characteristics. For
example, both controllers have the same information on flights, airport configuration, and use the
same communication procedures etc. For this reason, the ground and the loca controllers are
inherited from the common class cdled controller.

Clock object is of importance in the smulation model as it is used in scheduling the next event for
such entities as controllers and flights. The object diagram is illustrated in Figure 5.2. The various
class definitions are described in Appendix C.

5.2.2 Dynamic Modd

The time-dependent aspect of each entity is represented in the so called state diagram (or state
transition diagram) which consists of states and events. A change of state caused by an event is
called a transition. Whereas an object model describes the possible patterns of objects, attributes,
and links in a system, a dynamic model represented by the state diagram highlights the time-
dependent behavior of a system [Weijers, et. a, 1995]. According to Rambaugh (1991), the

genera steps for constructing state diagrams are as follows:
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Figure5.2 Object Diagram.

Step 1: Prepare scenarios for typical interaction sequences.

Step 2: Identify events between objects and prepare an event diagram for each scenario.

Step 3: Build a state diagram.

Step 4: Match events between objects to verify consistency and completeness of events shared
among the state diagrams.

5.2.2.1 Arriving Hights
Arriving aircraft are introduced to the smulation at discrete times prescribed by the origina flight
schedule. If a flight scheduled landing time violates the minimum separation headway criteria, the

flight is delayed at the entry node (the runway interface). This procedure models implictly the
fina; airgpace corridor leading to the active runway.
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A. State Diagram for Ground Movement

Once an arriving flight obtains landing clearance from the local controller, it begins its landing
roll procedure which is composed of four phases: flaring out, free rolling, braking, and coasting
[Trani et. al, 1993]. After the completion of these four phases, the pilot decides which exit to use
by considering both the current speed and the location of neighboring exits. (A more detailed
landing procedure will be discussed later). Once a flight starts to exit from the runway, it will
contact the ground controller for taxiing clearance ingtructions.

The aircraft movement on the taxiway system is modeled regulating the vehicle acceleration to
accomplish a smooth and safe movement to the gate. This procedure is executed in an
autonomous fashion as the aircraft moves along the given path, keeping a safe spacing with other
taxiing flights. For example, the leading aircraft movements are modeled by a second-order
feedback control system to be discussed later in this chapter. The state transition diagram for an
arriving flight is depicted in Figure 5.3.

B. State Diagram for Communication

A unique aspect of VTASM isthat air traffic controllers are modeled as explicit resources. If the
corresponding controller is busy communicating with another flight when the current flight tries
to contact the controller, the current flight waits for a certain period of time until the controller
state turns to standby.

Here, the waiting process varies depending on the communication system. In this research model,
two types of communication systems are considered: 1) a voice channel systemwhich has been
widely used in aviation for seventy years, and 2) a data link systemwhich is an advanced system
using €electronic data transmission so the time required for either sending requests or receiving
command is considered to be negligible.

Regardless of communication system type, the flight's communication State is initidly set to
“ready ToCommunication”. Once the flight finds the need to communicate with a controller, then
it tries to send a request, which will be accepted by the controller unless the controller is busy.

If the controller is busy, it happens under the voice channel system that the flight's state is set to
“waitNextCommunication” and the flight is required to wait for the next contact for a certain
amount of time. The operation of the data link system follows smilar principles. The flight's state

changes to "waitContactFromController" and the flight waits controller's contact.
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If the controller isin a state of "standby" when the flight attempts a contact, the controller’s state
is set to “busy”. Once a flight succeeds in contacting the controller, it communicates exclusively
with the controller until the entire communication phase is completed. After the flight confirms
the command, the flight's and controller’s state are set to “readyToComm” and “standby”,
respectively.

Depending on the traffic congestion levels on the taxiway system, it is possible for the flight to be
delayed even after communicating with a controller. In this case, the flight communication state is
set to "wait for controller's contact”. The dtate transition diagrams for both communication

systems are depicted graphicaly in Figures 5.9 and 5.10.

5.2.2.2 Depating Fight

A. State Diagram for Movement

A departing flight stays in the “parked” state until the scheduled departure time arrives. During
the last one or more hours of this state, a departing flight files a flight-plan with the FAA flight
service station (FSS) and loads passengers or freight. Having finished al required routines, the
flight contacts the ground controller for the pushback clearance. The pushback clearance is
frequently given to the flight dong with a taxiing clearance by a loca controller. However, in
some large-sized and busy airports, the pushback process is controlled by the gate manager. The
pushback is the initial process of departure in which the flight trespasses the apron area from the
gate to the taxiway.

Once the aircraft arrives at the taxiway from the gate with a taxiing clearance, a flight starts
taxiing to the designated runway. (The flight needs to contact the ground controller if it has not
acquired a taxiing clearance.) The taxiing procedure is amost the same, but in reverse, to the
taxiing process for an arrival. The flight autonomoudy traverses the taxiing path given by a
ground controller. Usudly, the (ground) controller does not interrupt a flight taxiing schedule,
unless there is some new expected congestion or conflict. If a controller anticipates congestion, he
or she can give the flight a command to dow, stop, or change the taxiing path. The goa of this
interruption is to reduce the congestion on the taxiway network and, a the same time, maximize
the utilization of the runway.
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Figure5.5 State Diagram for Communication (Data Link).

140



When the flight approaches the active runway, it is required to reduce its speed and contact the
local controller to obtain takeoff clearance. Note that the previous taxiing clearance is not a
clearance to enter onto the runway. If there is a queue of flights waiting for takeoff, the local
controller gives the takeoff clearance based on a first-come-first-served policy, ensuring a
particular airborne separation by spreading out the aircraft departure intervals [Luffsey, 1990].
The takeoff process is composed of two processes: 1) rolling process in which the flight gains the
speed required for lift-off, and 2) the lift-off process in which the aircraft starts to climb and
clears the far end runway threshold. In the smulation model, the departing flight is traced until it
reaches the runway threshold. The state diagram for a departing flight is illustrated in Figure 5.6.

B. State Diagram for Communication

Basicdly, the departing flight state diagram for communication is same as that of an arriving
flight.
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5.2.2.3 Controller

Depending on who initiates the communication, air traffic controlling processes can be divided
into two classes: 1) passive control in which the controller renders control messages to various
flight requests, and 2) active control in which the controller makes decisons mainly for
controlling the overall traffic flow. In the process of air traffic controlling, flight progress strips
(or flight strips for short) are used to store critical flight information such as flight number,
arcraft type, origin, destination or arriving route, etc. This information is printed in a rectangular
piece of paper, and stored in a plastic holder while the flight is under supervision of an air traffic
controller. In the smulation model, three type of flight strips are modeled: pending, processing
and completed flight strips (See Figure 5.7).

Completed Completed
Flight Strips Flight Strips
A A
Processing < Processing
Flight Strips Flight Strips
A A
Pending Pending
Flight Strips Flight Strips
Ground controller's Local controller's
flight strip organization flight strip organization

Figure5.7 Hight Progress Strip.

Initidly, the controller’s state starts with “standby” and dl flight strips are in the pending box.
Recelving a request from a flight in the passive control mode, the controller places the
corresponding flight strip in the processing state and begins to judge the stuation. The
controller’s judgement depends on the flight's current  state. For example, if aflight is at the final
stage in the arrival process and it requests landing clearance, the controller needs to check the
flight's relative position around other flights, and then make a decision on whether or not to alow
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this flight to proceed (checking for minimum separation rules between flights). The controller
sends control messages to the flight and waits for confirmation. Once a confirmation is received

from the flight, the controller returns to the "standby” state and waits for another request. The

dtate trangition diagram for the controller is depicted in Figure 5.8.

Control
Messagge

Contactinyg

Figure 5.8 State Diagram for a Controller.

When the flight finishes its operation completely, the controller moves the flight strip from the
processing to the completed state. If aflight is ill performing some activity but passes the limits
of a controller's custody (control boundary), then the current controller hands the fight strip over
another controller's processing state bin. For instance, if a flight exits the runway taxiing after
completion of the runway landing roll and starts taxiing to gate, then the flight strip moves from
the local controller's processing bin to the ground controller's processing bin.

If any traffic congestion or conflict is expected, controllers can intervene during aircraft taxiing,
issuing control messages to dow-down, speed-up, or even to stop aircraft at the current position.
This active control decision making process is largely based on the controller’s experience,
subject to ATC rules enforced by the FAA. It is difficult to devise a single comprehensive traffic
management rule that is applicable to al ground control cases. For the smulation purpose, it
might be more practica to develop a rule-based decision making process for the active control
process.

A controller aso initiates an active control process when the controller is in "standby" and there
is some flight in the state of "wait for controller's contact”. In fact a controller redizes the
existence of flights awaiting controller's contact by checking the strips in the processing bin. The
communication process initiated by controller is shown in Figure 5.9.
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Figure 5.9 Communication Process Initiated by the Controllers.

5.2.3 Functional Modd

The functional model consists of Data Flow Diagrams (DFDs) and defines processes within a
system, describing how output values of the program are derived from the input values. Later,
DFD is used to determine which objects send messages to other objects. DFD is composed of
three components: process, data flows actors, and data stores which are represented in the OMT
methodologies by €lipsess, rectangles and pairs of parald lines, respectively. The OMT
specifies the following steps for constructing a functional model [Rumbaugh et al., 1991].

Step 1: Identify input and output values.

Step 2: Build data flow diagrams for each input to output transformation.
Step 3: Develop descriptions for each process in the DFDs.

Step 4: |dentify constraints between objects.
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Step5: Specify any optimization criteria, e.g., values to be maximized or minimized.

Figure 5.10 illustrates the input and output values of the smulation model at the highest level of
abtraction. Here, the user interface which is devised for users to control the program progress is
not included. This is consistent with the research nature of this model. The main goa of this
research poject is to develop a comuptational engine that drives the smulation modd. There are
two kinds of inputs for the smulation mode: 1) scenario data including the flight's schedule,
arcraft types, gate information, etc., and 2) datic data including the airport configuration, an
aircraft model data with aircraft dimensions, performance, etc. All these parameters remain

unchanged throughout the simulation.

Scenario data

(Flight schedule)
User

[~ Statistics on

ground operation Ground
(Delays, Work load,..) Simulation
Model
DataBase Airport Configuration Data,
Aircraft data

(Dimenstions,
performance,..)

Figure5.10 Input and Output VValues for the Simulation Modd.

The top-levd DFD for the smulation modd is shown in Figure 5.11. The flight schedule
information provided by the user serves as the input data for generating the flight objects aong
with the aircraft model data. The link and node data pertinent to the airport configuration is used
to generate the airport network graph, which in turn is used to define the flight taxi path
information. The controller objects are created internaly, which means that no explicit input data
is involved in generating the controller object. Instead, the objects belonging to the airport graph
class and the flight class are imbeded in the controller objects.

The DFDs aretypically shown as layered sets of diagrams because they are generaly too large to
be shown on a single piece of paper. The decomposition of DFD continues until the processes
cannot be partitioned any further. Because of their complexity, lower-layered DFDs are omitted
here.
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5.3 Object-oriented Design (OOD) of Simulation Model

531 System Design

In system design, the strategic decisions are made at a high level about how the problem will be
solved. The system design includes finding answers to the following questions. 1) what
components libraries, database, networking mechanisms, windowing systems will be used, and
how should they be used; 2) how will tasks communicate; 3) how will tasks be alocated to
processors; 4) what is the target environment for the application; 5) will the application need to
run on multiple platforms, and 6) what programming language will be used to implement the
design [see Derr, 1995].

The main objective of this research is to develop the backbone of a smulation mode that
considers decisions in response to questions 1, 2, and 3 which are directly related to the software
implementation. For code portability, the American National Standards Ingtitute (ANSI) C++ is
used to address truly muti-platform compatibility. From the same reason, wxWindows is
preferable windowing libraries to any commercia ones such as MFC (Microsoft Foundation
Classes).

5.3.2 Object Design

Object design is concerned with a full specification of the classes, associations, attributes, and
methods necessary for implementing a solution to the problem. Algorithms and data structures are
aso fully defined aong with any internal objects needed for the implementation. The following
steps are typical in an object design phase [Rumbaugh et a., 1991 and Derr, 1995].

Step 1: Identify methods for each class which define al the required types of functions.

Step 20 Desgn dgorithms to implement methods by choosing efficient ways of coding
algorithms, selecting appropriate data structures, and defining new interna classes and methods.
Step 3: Optimize access paths to data by adding association classes to minimize access time,
rearranging the processing ader of agorithms for efficiency, and saving calculated data to avoid
re-caculations.

Step 4: Design a method for dynamic control by refining the methods for implementing the flow
of eventsin the dynamic modd.
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Step 5: Adjust class structures to increase inheritance.
Step 6: Design object associations.

Step 7: Represent object data.

Step 8: Hide data and package classes into modules.

For Step 2, standard flow charts are adopted to present the relevant algorithms. Traditionaly,
three types of diagrams are used in some applications of OMT. These are the message hierarchy,
events trace, and object interaction diagrams (Derr, 1995) which are not considered in this
research. During the implementation, the design is trandated into code using an object-oriented

programming language such as C++.
5.3.2.1 Algorithms

53.2.1.1 An Algorithm for Aircraft-following Behavior

As previoudy reviewed, the generalized vehicle-following model presented in Equation (2.2) can
be used to predict the acceleration (or deceleration) at time t for afollowing vehicle that considers
the kinematic state of a leading vehicle. The application of vehicle-following equations yields
various types of macroscopic traffic flow models (see Table 2.9).

A wel-known car-following model used in transportation studies is described in Equation (5.1),
where the coefficient mand | are 0 and 2, respectively. The macroscopic version of this modd is
known as the Greenshields modd, and is one of the most frequently used models in traffic
engineering studies. Greenshields' model has significant advantages, namely, that it is smple to
use and has shown good correlation between the model and field data.

at+|1 -a (V|t'1_ V:1+1)

n+1 (Xrt] _ Xt )2 ' (51)
n+l

where ahi1 : n+1" vehicle's acceleration at t+Dt
Vi, : n' vehicle's speed at t+Dt
X, : n™" vehicle's position at t+Dt
a = Uy, (ur = free flow speed).

Greenshilds model results in the following equations, establishing relationships among three
fundamental traffic parameters: speed, density and traffic flow.
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u=us (1- k/kj)

g=uk (1- k /kj)

K=Kk (2- u/ w),

where,  u: speed (km/hour)

ur : free flow speed

k: dendty (vehicles’km)

k;: jam density

g: flow (vehicle/hour).
It should be remarked that the model’s appropriateness in traffic studies does not necessarily
guarantee its goodness in representing aircraft behavior on the airfield. In fact, the parametersin
generdized vehicle-following model should be cdibrated with field data to warrant its use in
airport studies. Thisis an open area of research for now.
If we assume that the Greenshield's model adequately represents the aircraft-following logic, then
another approach for aircraft-following model can be devised. [Van Aerde, 1998] Using the
Greenshields basic speed-headway relationship, the method first determines the so called
desired speed of the following aircraft at time t which is the desired to be reached at time t+Dt.
Then the acceleration (or deceleration) is determined considering the current speed and other
exogenous congtraints related to  the maximum permissible acceleration (or deceleration). The

procedure is outlined below.

Step 1. Determine the following aircraft desired speed to be reached at time t+Dt using
Greenshields' basic speed-headway relationship.

H.
th+|1 :Vf (1' _J) ) (5-2)
Hy

where th+Dt : following aircraft’s desired speed at (t+Dt)
V': free flow speed
H; : headway at jam density
H, : headway between the leading vehicle and the following vehicle at
timet.

Step 2 Obtain the following aircraft acceleration for the time interval from t to t+Dt using the
smple kinematic equation.
t+Df —

aln Y = (Vo - M)/ D if At > amaxthen st = Amax, (5.3)

. t+Dt t+Dt —
if Qi1 <dmax then &1 _dmax .
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Here, atni? : following aircraft acceleration during the period from t to t+Dt
Vi ; following aircraft desired speed at (t+DX)
v; : following aircraft’s current speed at time't

Dt: the predefined time interval
Amaddmae Maximum accel eration/deceleration.

In order to limit the kinematic behavior of the aircraft within a reasonable range, a non-uniform
acceleration model is employed. This model assumes that the vehicl€s maximum ability to
accelerate (ams) decreases linearly as a function of speed (see Figure 5.12). Another
consideration for maximum deceleration (dmax) IS based on passenger comfort.

Maximum
Acceleration

GV

a =a -a [v_ _*
curr max max max max curr

acurr ma;

T T T T T T T T T |Speed (V)

Figure5.12 Speed-Acceleration Relationship.

The non-uniform acceleration model is considered to be reasonable because it adopts a thrust
lapse rate with respect to aircraft speed. The same behavior has been adopted to describe the
aircraft kinematic behavior on taxiways and taxilanes except that the values of an.x and Vi, are
adjusted accordingly to reflect lower speeds on these links. The equation for the non-uniform
acceleration model is expressed as follows.
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& dvo
ac=—-==k; - kov
G dty 1~ Ko
where, ki, k,: constants
V: speed
a: acceleration.

(5.4)

The equations for the speedtime relation can be deduced by separation of variables and

integration of Equation (5.4).

Vo dv N
- = t
Q, (k; - kyv) Qd :

dx _ kg -kt -kt
ve—=—1(1- € ") +ye
e

The equation for the distance-time relationship is obtained in analogous way,

v tm(l

O™= Qi

x=¢. . ekzt)+k1(1 ekty.
k' 12

5
—L(1- &) +ve it
P2}

By substituting (5.5) into (5.6), we obtain the accel eration-time relationship.

dv kot
a=—= (k- kovye 2
dt (l 20) .

(5.5)

(5.6)

(5.7)

The resulting equations are summarized in Table 5.1. (In the case that am. and Vi are given,

Equation (5.5) is of the form @ = @mayx - KV, where, k = amna/ Vinae) It should be remarked that the
anaytical solutions presented are only applicable to the leading vehicle. This is because these

andyticd solutions explain the behavior of a vehicle sarting from an initid speed and
accelerating as rapidly as possible in uninterrupted traffic flow. In fact, it is difficult to derive a
closed-form solution to explain the following vehicle behavior. To overcome this shortcoming,

the vehicle-following egquations are implemented as a “continuous’ simulation model using

standard numerical integration techniques.
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Table5.1 Equations for the Non-Uniform Acceleration Model.

Numerica Andytical Solution
Solution NOt gIVEN g aNd Vi QIVeN Aumex AN Vi
a= | e kY g (k - koVo)e™ kot K(Vinax - Vo) €xp(- kt)*D
k : .
Vi= | v, +a_qDt k—l(l- g Kty by Kt Vo + (Viax - Vo)(1- exp(- kt))
2
X = +Vt+vt-1Dt K kg ek kg ey Xg +Vo X + (Vmax - Vo) (t- exp(- kt)/ k)
t %-1 ko k2 ko - (Vopax - Vo) /K
max 0

K = A/ Vina

In order to compare the models resulting from Equations (5.1) and (5.3), consider the following
simple example. At a taxiway-runway intersection, four aircraft are waiting for advisories from a
local controller. Using the aircraft performance values shown below, we construct the resulting
time-space diagrams according to the vehicle-following models described by Equations (5.1) and
(5.3).

v¢ = 60 kph

Vimax = 120 kph

Brax = 2 M/S’

aemergency= '69 » -6 m/SZ
Hj =5m.

The time-space diagram for the vehicle-following model described by Equation (5.1) is displayed
in Figure 5.13 (a). This plot corresponds to a classica Greenshields modd (i.e, m=0 and 1=2).
Figure 5.13 (b) illugtrates the vehicle-following behavior using Van Aerde's mode. As seen in
the graphs, there § a substantial difference in vehicle behavior. The two methods exhibit a
disagreement in the headway parameter. The second vehicle in the generalized car-following
model, in fact, does not seem to follow the first one. (The same outcome results even if dt is
changed to as small a number as 0.02 sec.) The behaviora patterns observed persist even for
smal step sizes (dt = 0.02). Consequently, the modeling approach adopted in this research
follows Equation (5.2) and (5.3). Figure 5.14 illustrates a flowchart showing the necessary steps
to implement the aircraft-following models adopted in VTASM.
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From Generalized Vehicle-following Model (m =0, | =2)

(dt =0.2 sec.)
700.00
— 1st vehicle
00000 7 2nd vehicle /
500.00 1 — — 3rd vehicle
S a00.00 1 _4th vehicle /
5 )
2 300.00
]
»
A 200.00
100.00
0.00 1
-100.00
Time (seconds)
From Van Aerde's Model (1998)
(dt=0.2sec.)
700.00 -
— 1st vehicle
600.00  -weeeee 2nd vehicle
— — 3rd vehicle /
500.00
----- 4th vehicle /
T 400.00
< g
g 300.00
©
@
0O 200.00

100.00

0.00

T T T
40 50 60
-100.00

Time (seconds)

Figure 5.13 Comparison of Aircraft-following Modes.
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Aircraft-Following Module

diffDist (H) = LeadingFlight->traveledDistInLink -
ThisFlight->traveledDistInLink

diffSpeed = LeadingFlight->currSpeed -
ThisFlight->currSpeed

which control algorithm?

Control algorithm
based on headway

Control algorithm
based on headway-speed
(GM model)

Control algorithm
based on speed

currAccel

currAccel = k*(diffDist - SD)
SD: Safety distance

= k (diffSpeed / diffDist)

currAccel = k*diffSpeed
if m =1 then

currSpeed
= prevSpeed/ (1-k (diffSpeed /

Control algorithm
based on headway-speed
(Van Aerde's Model)

des'dSpeed

= max(0, Sf (1 - Hj / diffDist))
currAccel

= (currSpeed - des'dSpeed )/dt

k = alpha*dt

diffDist))

currAccel > a_max

yes
A 4

| currAccel = a_max | no

currAccel < a_min

yes
v

no
| currAccel = a_min |

| Next |

Figure5.14 Fowchart of Aircraft Following Module.
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5.3.2.1.2 An Algorithm for Conflict Detection and Resolution

A. Algorithm for Conflict Detection.
In the smulation model developed, explicit checks for potentid ground collisons are
implemented only for the first aircraft on a taxiway link crossing a check-point upstream of an
intersection. All other following arcraft on the same link are not directly affected by any
potential conflicts since they just follow the leading aircraft according to the aircraft-following
logic explained in the previous section. For the first aircraft, the conflict detection method
examines if there are any opposing aircraft on the adjacent links. One of following three
circumstances could potentially result in a conflict between two aircraft. (See Figure 5.15.)
Case 1) The next taxiway link for aircraft 1 (current aircraft) is open and the next taxiway
link for aircraft 2 (conflicting aircraft) is also open.
Case 2) The next taxiway link for aircraft 1 is blocked by aircraft 2 and the next taxiway link
for aircraft 2 is open.
Case 3) The next taxiway links for both aircraft 1 and 2 are blocked by another aircraft.

case 1) ’W'—Jl.— aircraft 2

case 2) r—i' aircraft 2

aircraft 2

case )

Figure5.15 Cases of Potential Ground Conflicts.
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For Case 2, there is no dternative for aircraft 1 except to wait until aircraft 2 crosses the
intersection. In this case, the current aircraft needs to reduce its speed (or stop if necessary)
dlowing the other aircraft to pass the intersection without a substantial speed reduction. If Case 3
is triggered, there is no outlet for both aircraft (grid lock case). If Case 1 is invoked, the arrival
times for two conflicting aircraft (aircraft 1 and 2, here) are estimated. If the expected arrival
times of two aircraft are too close to secure a predefined minimum gap, the resolution routines are
automatically invoked.

Consider the example shown in Figure 5.16. Assume that the current aircraft considered is “F
and that the minimum gap for safe separation at the intersection is set to 15 seconds. Given that
F1's current speed is 20 mi/hr (about 30 ft/sec) and the normal deceleration to stop is 3 ft/sec’, F1
needs 10 seconds and 150 ft. to stop normally. Let us assume that F1 checks the collision risk at
the point of 150 ft (i.e., 10 secondsin time) upstream from the intersection and that other aircraft,
F2 and F3, are expected to enter the intersection at times, 30 and 15 seconds, respectively. In this
hypothetical situation, unless a speed control adjustment is applied to some aircraft, the current
arcraft, F1, will violate the required minimum separation gap with respect to aircraft F3. In this
instance, a potential collision is detected and the ground conflict resolution logic is initiated at the

same time.

Second or later flights on this link First flight on this link
(These follow the leading flight (Need to check

by vehicle-following logic) for potential collisions) Conflicting flights coming
toward the common

/ \ intersection
101 i 15(sec
+ )

)%L B
Current position Start point

offlight  of Intersection 30(sec) Legend :

&==the current operation directior—=

Expected arrival time to
I-—the common imersction—-l
(ET)

Figure5.16 Concept of Conflict Detection.
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B. Algorithm for Conflict Resolution

In the ground collision resolution logic, two issues are involved: 1) the flight priority and 2) the
speed control logic. The controller can give a higher priority to certain flights over others with the
intent of improving the overall efficiency of the taxiway (or runway) operations. The higher-
priority flight has a right-of-way whenever it conflicts with another flight having a lower-priority.
In other words, lower-priority flights should dow down or completely stop in order to secure a
minimum gap at the intersection. In this case, the deceleration rate for the lower-priority flight
can be estimated by using the speed-control logic. The following equations are involved in this
speed control logic procedure.

EAT o = EATow + max[minimum gap- (EATS, - EAT,g0), O] |

2>dist

— new
current intersecton E'A\Tlow .
Viow = Viow
Vintersection - chrrent _ 2>d|$
low low new -
EATIow
Vintersection _ chrrent 2>d|$
=_1 | —
Hence, deCellow = _low EAT ow - — (58)
low EATIOW

Here EATL (EATSS): the low priority flight's new (old) expected arrival time
at the intersection,
EAThign: the high priority flight's expected arrival time at the intersection,

current

Vhigh : the low priority flight's present speed,

intersection

Vhigh : the low priority flight's speed at the intersection,
dist : distance from the current position to the intersection,

decel,ign : the low priority flight's deceleration rate.

Figure 5.17 illustrates the basic speed relationships related to the conflict resolution logic. Here,
two areas encompassed by a dotted line and a solid line produce the distance from the current
position to the intersection. In the foregoing example shown in Figure 5.15, if two conflicting
arcraft (Fland F3) have the same priority, the current flight (F1) will have a right-of-way based
on the firg-in-first-out (FIFO) rule. The deceleration rate for flight F3 will be determined by
Equation (5.8). The complete logical procedures for collison detection and resolution that are
implemented in the smulation model are Figure 5.18.

158



speed

current
Vlow

deceleration rate
(decel)

intersection
VI ow

i old Tnew » time
EAThigh EATlow EA-I-Iow
H Min. Gap H

Figure5.17 Caculation of the Lower-priority Flight's Deceleration Rate.
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*update confFlight's states
CurrMoveState = delayAtCross
depTimeAtCross = sysTime + ET_this + min Gap

**update thisfFlight's states
currMoveState = delayAtCross
depTimeAtCross = sysTime + ET_conf + min Gap

where,

ET: Expected arrival time to the cross

any conflicting flight?

Yes

T

|E - ET,, | < min. gap

this

Yes

v

compare
thisFlightNextEdge (1) vs. confFlightCurrEqBp]

(4)

thisFlightCurrEdge (3) vs. confFlightNextEdge

case 1:
(1) '=(2) and (3) != (4)

thisPriority >=< confPriorit

case 2-1:
(1) ==(2) and (3) != (4)

case 2-2:

(1) = (2) and (3) == (4)

case 3:
(1) == (2) and (3) == (4)

> <
(FIFO)
Yes I No
¥ v
update update update update No Outlet
p thisfFlight's states** confFlight's states*

confFlight's states*

thisfFlight's states**

Figure 5.18 Flowchart for the Conflict Detection and Resolution Module

<&
d

161




5.3.2.1.3 Algorithms for the Takeoff and Landing Procedures

A. Algorithms for the Takeoff Procedure

Once a departing flight reaches the runway and obtains takeoff clearance from the (local)
controller, it initiates the takeoff procedure using its maximum acceleration potential. The takeoff
procedure can be divided into two phases: the takeoff rolling phase and the lift-off phase [Trani,
et a., 1993]. Asthe aircraft speed reaches lift-off speed, the aircraft becomes airborne and wheels
off from the ground. These two phases of the takeoff procedure are depicted in Figure 5.19. To
samplify its implementation, the lift-off phase is assumed to be characterized by a constant speed
after lift-off. The smulation model keeps track of the departing flight until it crosses the runway
threshold. In generd, the time from the lift-off point to the runway threshold is relatively smdl as
the aircraft travels at a high speed.

There are two important parameters related to the takeoff rolling anaysis: the takeoff rolling
distance and the takeoff rolling time. These values are estimated in the smulation model using a
arcraft equation of motion that isintegrated forward in time.

Lift-off point

Air Speed
Altitude

isatance

A

Runway

Figure5.19 Takeoff Procedure.
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The geps for the takeoff roll andysis are illustrated in Figure 5.20. Following traditional
aerodynamic performance estimation calculations, the first step is to convert al amospheric
conditions to an equivaent internationa atmospheric status. This is because the performance of
an aircraft engine is affected by the atmosphere around airport. Once the corrected engine thrust
has been estimated in Step 2, the takeoff roll distance is computed.

The takeoff rolling time estimation requires some knowledge of two aircraft aerodynamic
parameters: the drag coefficient (Cy) and the lift coefficient (C,). Usually, these parameters are not
made public by aircraft manufacturers. Consequently, approximations are needed to estimate
takeoff rolling times via dternative methods. A smple dternative method adopted in this model
is an adaptation of takeoff roll algorithms used in the FAA Integrated Noise Mode (INM 6.0).

Step 1: Find density altitude
and temperature altitude
for airport

A

Step 2: Find engine thrust

Y
Step 3: Find takeoff roll

distance
A
Step 4-1: Find takeoff roll time Step 4-2. Find takeoff roll time
using C, C, using takeoff roll distance

Figure 520 Stepsfor the Takeoff Roll Anaysis.

Step 1: Find density altitude and temperature altitude. Using ISA (the International Standard
Atmosphere) properties as shown in Table 5.2, the temperature a a given dtitude can be
calculated using the standard temperature lapse rate [Lan, 1981]:

T= To+ I (h - ho),

where T: temperature at altitude h (°F),
To: temperature (°F) and dtitude at mean sealevel (ho=0 ft),
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h: arport elevation (ft),
ho: elevation of mean sealevd (hy=0 ft),
| : atmospheric temperature lapse rate (°F/ft).

The pressure and density variations with atitude can be caculated using the following standard

thermodynamic equations:

where,

T |

q=—=1+—h=1- 6875 10 °h
To To ’
1 1
d :£:$l9 IR :ﬁ.}l_hg IR :q5.2561
R gToz é T o ’
1y
s :r_zﬂ' T_ozizf’ff_é IR = 42561
ro B T ¢ gTo'g d

g : temperature ratio at airport’s current dtitude (which is the airport elevation here),

h: arport elevation (ft),

d : pressure ratio at current aircraft atitude,

P: atmospheric pressure at atitude h (in Ibs/ft® or N/nT),

Po: atmospheric pressure at sealevel (in Ibg/ft® or N/n),

| : atmospheric temperature lapse rate (in °F/ft or °C/m),

R: thermal gas constant (in ft/°R or m/°K),

To¢ standard sea level temperature, absolute value (in °R or °K),

| : atmospheric temperature lapse rate (in°F/ft or °C/m),

S : air dengity ratio at aircraft's current atitude (by employing the ratio version of the
ideal gas law),

r : ar dengty at dtitude h,

ro: ar density at sealevel standard condition.

To illustrate the use of the equations, suppose that a standard altimeter indicates an dtitude of an
dtitude of 15,000 ft when the ambient air temperature is 35 °F. Let us accordingly calculate the

density atitude and the temperature altitude.

1) Density dtitude:
At h = 15,000 ft, the standard temperature is 5.5 °F (=59-0.00356616(15000)). Hence, the
aimosphere is not standard. Since the dtimeter is a pressure gauge, it will read the correct

pressure. The correct pressure at that dtitude would be 1194 psf (= 2116.2 ~ (temperature retio) *
52561 =2116.2 " ( (5.5+459.7) / 518.7) " 5.2561) ).
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Table5.2

Conversion Factors and Properties of International Standard Atmosphere.

Sl unit UK unit Conversion Factor
Gravity constant (gg) 9.806 m/sec” 32.17 ft/sec”
i | Pressure (Po) 1013 10° N/nf 2116.2 Ib/ft* 1 Ib/ft* = 47.880 N/nf(=Pa)
Temperature (To) 15°C 59 °F °F = 9/5(°C+32)
Air density (r o) 1.225kg/nt 0.002377 dug/ft* 1 dug = 14.59%g
Absolute temperature (T) °K =°C+273.15 °R=°F+4597
Atmospheric  temperature -0.00356616 °F/ft
lapserate(l)
ete. Thermal gas constant 29.26 m/ °K 53.35ft°R
Force Newton (kgm/sec®) Ib-force 11b-force = 4.448 Newton
Weight kg pound 1 pound = 0.453 kg
Length m ft 1ft=0.3048m
Speed 1 knot = 0.514 m/sec

(Source: Lan and Roskman (1981) at http://www.ex.ac.uk/cimt/dictunit/dictunit.htm# ength).

__P

1194

" TORT ~ 32.17(5335)(35+ 459.7)

_r _ 0.001406

ro 0.002377

=05915

q=1- 6.875" 10 ®hy =s V42%61=0,883093

Therefore, Ny = L‘&)’%B =16.883 (ft).
6.875" 10

2) Temperature dtitude:

g =T - 3+4597
T,  518.7
Therefore, hy =

L 09573~ 6730 (1
6.875" 10

=0.001406 (dug/ft®)

=0.95373=1- 6.875" 10°°h, .

Density dtitude

T . an6L_Sr O
g=—=1- 6.875" 10 °h= T =s
T grog

0

.4.2561
4.2561

Temperature dtitude
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Step 2. Compute the net thrust per engine for jets. The non-standard atmosphere net thrust per
engine for jets, F,, is a function of calibrated airspeed v, and density dtitude hg, is caculated
using the SAE-AIR-1845 thrust equation developed by Society of Automotive Engineers. The
non-1SA thrust equation accounts for thrust-reducing effects of hot temperatures at high atitudes
[INM User’'s Guide, 1996].

F 1% (v,hg) = d(ho)[E, + Fo + Giphg + (32p>hd2 + Hys(hg)],

where, F'*.: non-ISA thrust per engine for jets (Ib),
d(hg): 1SA pressure ratio at aircraft’s density atitude hy,
v: calibrated airspeed (kt),
hy: the arcraft's dengity dtitude which is the elevation of the airfield in our
problem (ft),
Ts: 1SA temperature at the aircraft’s density dtitude (°C),
Ts=(5/9) (59 - 0.003566" hq- 32),
Ep,Fp.G1p,G2p,Hp: the engine dependent regression constants which depend on the
jet’ s power setting state (max-takeoff or max-climb) from INM database.

jet — jet
F corrected—F n/d

The corrected net thrust per engine for props, F™ .o ecteds 1S given by

F propne'(—standrad =325.87 hp Pp/ Vt y

where, Fre.standard: the standard atmosphere net thrust per engine for props,
h,: propeller efficiency, which depends on the power-setting state,
Py: net power engine (hp) for sea-level standard day,
V;: true airspeed (kt) = Vgs 2,

F pmpcorrected = F propnet-standrad /d
Step 3: Find takeoff roll distance. For the analysis of takeoff rolling distance, the initia and fina
values of aircraft dtitude are given & the airport elevation. The horizonta distance traveled on
the ground is calculated after initia and fina values of speed and thrust are calculated. The

procedure follows SAE-AIR-1845.

The takeoff rolling distance (S;) is given by,
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_ (mg/d)?
=B qr—
Sg f N >‘Fnet— corrected

where, S : takeoff roll distance (ft),

Bt : an airplane specific coefficient for a given flap deflection combination,
nt aircraft mass (Ib),

g: gravity acceleration (= 32.2 ft/sec?),

g : temperature ratio at aircraft dtitude,

d : pressure ratio at aircraft altitude,

N: the number of engines per aircraft,

Fret-corrected: COrrected net thrust per engine (Ib) at takeoff rotation.

Typica velocities for the calculation of thrust are,

v; = 16 knots,

v, = Ci(mg)*?,
Vo = Vol(s)Y?,

where, v;: calibrated speed at the beginning of the takeoff roll maneuver (i.e., at the break
release point) predefined as 8.2 m/sec or 16 knots,
Vv, : calibrated speed at the end of the takeoff roll maneuver (i.e., a lift-off point),
C; : coefficient which depends on the flap setting (from the INM database),
v, : trueair speed at the end of the takeoff roll maneuver,
S . ar dengty ratio at aircraft atitude.

Step 4-1: Find takeoff roll time using C and C,. Forces related to the takeoff roll distance are
[Trani, et d., 1993],

1 2
L==rv

2 =,
D:erZSCd

2 1

TE=f(v,r),
F, =(mgcos - L)f

roll

where, L = lifting force (1b),
D =drag force (Ib),
TE: corrected net tractive effort (1b),
F+: friction force (Ib),
r: ar density (sugg/ft®),
S: the aircraft reference area (ft%),
Ci: lift coefficient which is dependent on the flap setting (non-dim),
Cq: drag coefficient which is dependent on the flap setting (non-dim),
fron: ralling friction coefficient (non-dim) normally 0.02~0.03,
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f : the runway inclination angle with respect to the horizontal (degree).

The forces in the x (horizonta direction) produce
ma, =TE(v,r)- D- (mgcosf - L) f,y - mgsnf
Hence,

:E(TE(er)' D' (rTgCOSf = L)fI’OH = n‘gsnf )
m

Assuming a linear tractive effort lapse rate function of speed, the following expression can be
derived,

TE(W) =T, - ?1' 29,

Vo g

where, TE: tractive force at speed v,
Ty, T,: tractive force at brake release point, and lift-off point,
V,: arcraft speed lift-off point.

Note that runways are near flat by regulation (i.e., less than 2% effective gradients (f ) for generd
aviation (GA) runways and 1.5% for transport runways) and thus for the takeoff anayss, the
angle f can be neglected in most practical applications. Neglecting the effect of grade on the
acceleration of the vehicle, we can estimate the following accelerations for two reference
conditions: 1) at brake release (axyr), and 2) at the lift-off point (ayo)-

1ae & -T,0 2
g172~\, L \?S(Cy - Cifran) - mgfrou—,

1%}

1
a')<]br = E(Tl - mgfroll) )

1 1 o]
Ax|lo :E?_Z_ ErV%S(Cd - G fran) - mgfron;.

If we further assume that the acceleration varies inversely with the speed range from the brake

release point to the lift-off point, the smplified acceleration a speed v can be evaluated as
follows.
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dvg 2B br - Ayjlo O
axé%_gzaxmr - gM:V
e dtﬂ V2 [}

&l 1A 00
¢—(T- &)+ =& rv8S(Cp - Ci fran) - Mgffro =+
:i(Tl' mgfroll)' Qm me2 _V
m ¢ Vs N
g e

=k - kyv |

1
where, K :E(Tl - Mo g),

el ld 50
C=(T- To)+ =& rv3S(Cq - C frn) - Mg 2+
K =¢M me2 o~
17¢
¢
e

Vo -
a

By integrating once from the brake release speed (v;) to the lift-off speed (v.), the takeoff roll
time, t,q1, IS estimated as

Step 4-2: Find takeoff roll time without using G and C;. Here, we introduce an aternative
method to approximate takeoff roll distances without any information on C; and C,. The
estimation is based on the assumption of a non-uniform acceleration mode discussed earlier in
this section. The resulting equations for the acceleration, speed and distance-time relationships
are summarized in Table 2.9, and are depicted graphicaly in Figure 5.21. Here, Equations (5.9)-
(5.11) are used again.

dv
a=—=k - kyv
il (59
dx _ kg Kkt -kt
v=—="L(1- ") +ye
m k2( ) Ve (5.10)
_k. k kty M Kkt
x—k—zt-kz—lz(l-ekZ)+k—l(1-ek2). (5.11)
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By subgtitution of (5.10) into (5.11), we obtain

a= =g~ kyp)e 2

m (5.12)

The next step is to find parameters k; and k, which characterize the Equations (5.10), (5.11) and
(5.12). Using the SAE-AIR-1845 mode, assuming the speed at the beginning of the takeoff rall,
V1 (= Vi), to be 8.2 m/sec or 16 knots, and letting

V, (= Vo) : Speed at the point of lift-off,
a; (= ay) : the acceleration at the beginning of takeoff roll,

a, : the acceleration at the beginning of lift-off,

the equation for the time to reach a certain speed v, is derived from (5.10) as

a1 - kzvz 0

1 .
t,=- Elnmg (513)

By subdtitution of (5.13) into (5.11), we obtain

k% 10 kVo k1$ I kzvzoo V. s o aa& 2"200
=1 —jn T = kl eas -y 12 1- Ehiov o= 514
stk kvp KE © 5 E © (514)

Since the conditions at the beginning of takeoff roll are known, v = vy, a=a; = a,, from (5.9), k;

can be expressed as k, according to
k,=a +kVv, (5.15)
Substituting (5.15) into (5.11), the equation for the distance as a function of k, can be obtained as

aeig)' Ha +kv,)- kv, 0
k€ kp &arkv) kv
3 thou )- kv koW )- kov,
- al Vlai e§(2+k;1) k2V1:—+ Vl 1 e (Z+k;1)k'zv1:—
2 T
- g ;

(5.16)
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Figure5.21 Non-Uniform Acceleration Model [Drew, 1968].
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Given v, V,, a; and the takeoff roll distance, x (=S;), there is only one unknown variable, k, in
Equation (5.16). Because k, cannot be readily represented in a closed-form, numerica methods
can be used to obtain k,. Once k; isavailable, k; is caculated using (5.16).

One important factor that should not be overlooked in the takeoff roll anayss is that o
variables, takeoff roll distance and time, are rather stochastic than deterministic. In other words,
these variables may adso be explained with certain types of datistica distribution models
extracted from observed data.

In general, the stochastic behavior observed during the takeoff roll has been addressed by federa
regulation authorities by imposing a correction factor to distance caculated via andytica
methods. This correction factor increases the runway length by 15% to account for pilot
deviations in the takeoff roll. This criteria does not apply in this model since VTASM assumes
the runway length to be sufficient for landing and departing operations.

B. Algorithms for the Landing Procedure

The landing procedure can be divided into four phases: flare, free-rolling, braking, and coasting
phases. (See Figure 5.22). The flare segment begins at the moment when the aircraft crosses the
runway threshold and ends when the main landing gear touches down on the runway. Pilots tend
to maintain a conservative margin over the stalling speed (vg.41), Which can be calculated by the
following equation. The initial speed of this phase, vy, is empiricaly known to be about 1.25
times V.

% , (5.17)

where nt the aircraft mass (kg)

Stall Speed (Vstall) =

0: gravity acceleration

I' : standard atmosphere air dengity (kg/nt)
Ci mae maximum landing lift coefficient

A, the aircraft wing area (nv).

The flare distance (s,;) is measured from the runway threshold to the touchdown point and is
expressed mathematically as[Trani et a., 1993],

Sar = di +d.+ DRL (5.18)
d = h—é“ (5.19)
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2
Vi g

©= 2g(ng - 1) (520

DRL =DLRL, (5.21)

where, s,;,: flare distance
d: linear descending distance from the runway threshold to the touchdown
aming point
de: circular-arc flare maneuver distance for transiting to a touchdown attitude
with aminimum sink rate and
DRL: the correction distance that is influenced by the runway length.
Also,
vy : threshold crossing airspeed (m/sec or ft/sec)
Vyq : touchdown speed (m/sec or ft/sec)
S.ir: touchdown distance (m or ft)
hy,: threshold crossing height (m or ft)
J: tangent value of the descent flight path angle (degree),
g: acceleration of gravity (m/sec? or ft/sec?)
ny: the flare load factor
DL: correction distance factor (meter for every 100 m (328 ft) of runway length,
vaid for 2100m < RL < 2800m)
RL: runway length
tair: duration timein flare (m or ft)

_ [2mg
Vstall r CLmax AN
m the aircraft mass

0: gravity acceleration

I' : the standard atmosphere air density

CLmax: maximum landing lift coefficient

A,: the aircraft wing area.
The free-rolling phase starts at the point where the main gear touches down and ends when thrust-
reverse and/or braking are applied. It has been observed that the duration of the free-rolling phase
is about 1-3 seconds with an average deceleration rate of 0.70 m/sec® [Trani et al., 1993].
The braking phase is initiated from the ending point of the free-rolling phase and completes at the
moment when the aircraft decelerates to the so-called “decision speed” (about 35 m/s for heavy
aircraft), when the pilots decide which exit will be used. According to the aircraft type, different
deceleration rates are applied in the braking phase.
Once the aircraft passes the decision point, it begins to coast to the runway exit. During the
coasting phase, the pilot controls the speed based on the current speed and distance between the
current point and the selected exit. To capture this dynamic behavior, a second-order feedback
control system is used in the mode implementation.
The speed-distance profile among landing phases is sketched in Figure 5.23. The equations for

each phase are summarized in Table 5.3 aong with some datistical parameters which are
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observed to fit a norma distribution mode quite well. Table 5.4 shows the landing the rall
statistics for various aircraft types observed at various airports [Kim et al., 1996].

Exit point

Touchdown Point

Air Speed
Altitude

A

/ Disatance

Runway

FL : Flare
FR: Free-rolling
BR: Braking
CO: Coasting

Figure5.22 Four Phases in the Landing Procedure.
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27 mps for Wt<41,000 |b
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Touchdown
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>
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Figure 5.23 Speed-Distance Relationship for the Landing Procedure.
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Table5.3  Equations describing the Aircraft Landing Phases.

Phase

Initidl Speed

Ending Speed

Distance

Duration

Acceleration

Empirical values

Flare ¥

Vi

Vig

St =—

2
Vi 9
29(ng - 1)

+ DL xRL

S

tgy =—
T Wh+vg)/2

= Ma= Vo)

aﬂ
tfI

g @2.5~3 degree (or ~N(2.75, 0.08%))
hy, @15.2 m (= 50ft) (or ~N(15.2, 3))
ng =11~1.3

DL @+25m (=82 ft)/100m runway length
Vi @0.95 Vzp @L.25 Va

(or ~N(V;,0.06 AT )

Vig @0.95 vy (Or vy — 3.2)

Free Rolling

2
Vid

Vior = Vig — gty

2
afrtfr
2

S = Vialyr -

ty

as

t;, = 2~3 seconds
ay, @0.7 m/sec?

Braking ¥

Veo™ Vor — abrtbr

2
— Aty
Spr = Vor tbr - —

tbr

Apr

t,r = time to decelerate to the speed of
27mps for wt < 41000 |b
35mps for wt > 41000 Ib

a,, = f(aircraft type)®
B727~N(2.19, 0.416%)
B737~N(2.25, 0.471%)
B757~N(2.01, 0.47822
DC-9~N(2.03, 0.414%)
MD-80~N(2.05, 0.387%)

Coasting

VCO

Vex

Seo
by 2"-order feedback
control)

tCO
by 2"-order feedback
control)

Aco

Ve = f(eXit type)

1) vy: threshold crossing airspeed (m/s or ft/s)
Viq - touchdown speed (m/s or ft/s)

Sair: touchdown distance (m or ft)

hyy: threshold crossing height (m or ft)

J: tangent value of the descent flight path angle (degree)
g: acceleration of gravity (m/s” or ft/s’)

ny: the flare load factor (DIM)

178




d(RL): correction distance (meter for every 100 m (328 ft) of runway length, valid for 2100m < RL < 2800m).
tair: Duration timein flaring out (m or ft)

_|_2mg
Vstall rcL_ A,
m the aircraft mass
0: gravity acceleration
I' : ar density
CL nax: maximum landing lift coefficient
A, the aircraft wing area
2) vi,.: Initia braking speed (m/s or ft/s)
ag,: Average free-rolling decderation (m/s” or ft/s?)
ty: Free-rolling time (seconds)
3) V. Initia coasting speed (m/s or ft/s)
ayr: Average braking deceleration (m/sec® or ft/s%)
tpr: Braking time (seconds)
4) Ve, Exit speed (m/sec or ft/s)
5) Kim, et dl., 199.
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Table5.4 Landing-roll Statistics [Kim et ., 1996].

Airport Runway Grade® Aircraft No. of FIari(?T?/ Ss‘)peed Touchdozlrvnr; distance Braki n% rch]/e;:z?l eration
(Runway) | Length (%) Type Obs. Mean SD. Mean SD. Mean SD.
B-727 72 66.62 3.03 455.0 1321 226 0.382
B-737 36 65.77 3.99 399.2 80.0 2.30 0422
([;egeA) ((2322‘91 ]T) 0 B-757 26 65.30 5.78 4249 97.7 214 0675
DC9 36 65.02 354 4349 105.8 208 0.397
MD-80 51 68.29 451 4343 941 214 0428
B-727 3 68.18 316 546.9 169.8 183 0511
B-737 2 66.08 357 200.0 774 271 0573
(%ST,) (%gg ][‘t]) .05 B-757 Z 6155 511 7806 139.7 162 0231
DC9 8 67.34 346 4252 79.6 208 0.56
MD-80 7 66.60 255 550.6 1883 181 0.381
B-727 3 70.87 387 621.7 164.2 211 0423
B-737 i) 68.74 434 603.3 75.9 208 0.497
ATL 2742m 03 B-757 10 65.28 529 699.9 1154 1.79 0.337
(R8L) (9000 ft) DC9 3 68.85 3.9 594.0 137.9 183 0.341
MD-80 28 6857 4.97 569.7 124.6 1.90 0.302

1 Deceleration rate decreases by 0.01 m/sec? (0.033 ft/sec?) per 0.1% of grade change on runway.
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5.3.2.2 Data Structures

Data structures play an important role in designing an efficient computer code because they
govern the organization of the modd information, and thereby congtitute the basis for good
algorithms. Two types of data structures are mainly used in implementing our smulation modd:
lists and queues.

A “lig” isafinite, ordered sequence of data items known as elements (“ordered” in the definition
means that each element has a position in the list). There are two implementations of a list: a
static array-based ligt, and a dynamic linked list using pointers. In an array-based list, the size of
the array should be fixed before the array is created. On the other hand, the linked ligt is dynamic
in the sense that it allocates memory for new list elements as needed. There are advantages in the
dynamic linked list such as added flexibility in programming. However, the linked list needs extra
space to keep a pointer that indicates the next eement of the list (in singly-linked list case). In
terms of computational cost, the array-based list is faster in accessing the i element and
appending an element to the tall of the array. Operations to remove and insert an element are
relatively expensive. As a rule of thumb, linked lists are a better choice when working with
vectors whose sizes are unknown or which vary widely. Array-based lists are generally more
space efficient when the user knows in advance the size of the list [Shaffer, 1997]. Computational
efficiencies of the two lists are compared in Table 5.5.

Table5.5 Comparison of List Implementations.

Array-based list Linked list
no wasted space for an Need space for the objects
advantage individua element actually on the ligt
accessi™ dement Q®? Q)
cost | @pend an element Q@ Q)
insert i element Q (i) Q@
removei " element Q (i) Q)

3 Q (big-theta) indicates that the upper-bound, O(big-oh), and the lower bound, W (big-omega),
are the same.

The array-based list is used in the smulation model to store information about nodes and links.
This is efficient because the numbers of nodes and links at an airport are known in advance and
can be assumed to remain unchanged during the period of simulation. This is smilar to the
database for the aircraft characteristics because the number of aircraft types is also limited and
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fixed. Figures 5.29 and 5.30 illustrate the applications of array-based lists to the node data and
aircraft data, respectively.

Node Object
e
— N
. - Flight*
Index nt 1d Point Pt (x.y) FlightinNode_p
0 9981 (34.12,67.212)

1
2

Num.l.).er of
Nodes
Figure5.24 Array-based List for Node Data
Acft_Model Object
N
I N
. Float
Index Char* Id_str Float WingSpan_ft MaxAccel_m
0 “B747-100" 110.45 0.5
1
2
Number of
Acft_Model

Figure 525 Array-based List for Aircraft Model Data.

In contrast, the number of flights on the flight schedule dynamically changes according to the
day, or time of day. The taxiing path between the gate and the runway for a flight isaso flexible
in the sense that the number of links defining taxiing paths is not fixed. In these cases, a linked
lig, particularly a sngly-linked list, is adopted to maintain the information regarding the flight
schedules and taxiing paths. Figures 5.31 and 5.32 show describe the implementation of linked
lists for these two variable size vectors.

char* Id_str AA352 —Pp [ US9%s7 ™ [\W312Z | —p [UA4%0 —p [ UA0S3

Flight* NextFlightinList_p * — — -

Flight*
LeadingFlight_p

Flight* FollowingFlight_p

Edge* Taxipath

Figure 526 Sngly-Linked List for Edge Data
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TaxiEdge Obj. TaxiEdge Obj. TaxiEdge Obj.

A
I - Y I - Y -~ —
Edge* TaxiEdge* Edge* TaxiEdge* Edge* TaxiEdge*
EdgeEle NextTaxiEdge_p EdgeEle NextTaxiEdge_p EdgeEle NextTaxiEdge_p
[ [ ——1—p | ——1—Pp [ NULL

Figure 527 Sngly-Linked Ligt for Taxiing Path Data.

The adjacency list, which is commonly applied in graph theory, is used for representing the
networks within the smulation mode. (For more details, see Figure 2.22.) In practice, an array of
a dngly-linked list having h| items is applied to the adjacency list, where | is the number of
nodes. A sample network and an array for alinked list are shown in Figure 5.28.

1 3
4 7 2

3 2

Edge Edge Edge

Next Next AL Next
Node Kf-Nﬁde—'Fﬁoﬂk—&-p\ Wﬂh rTNode tNode ... Ep

AlWIN|—|O
al|aIN| -

abdwNE O

Figure 5.28 Sample Network and Array of Singly-Linked List for the Sample Network.
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A FIFO queue (See Figure 3. 8) is a form of a restricted list, in which an element may only be
entered at the back and removed from the front of the list. The service line a a bank is atypica
example of a queuing system. The aircraft in a link can be aso described by a queuing system.
An aircraft entering into a new taxiway link is stored at the end of the queue.

As reviewed in the previous chapter (see Table 3.6), the sorted queue and the (output-restricted)
double-ended queue are used in the implementation of the static shortest path algorithm and the
time-dependent shortest path agorithm respectively. Table 5.6 summarizes the resulting data
structures used in the implementation of the simulation mode.

Table5.6 Summary of Data Structures Used in the Simulation Model.

Data structure type Data
array-based list N_ode,
Lis e
. . ight ule,
linked list Taxiing path
Array of linked ligt Airport Network
sorted queue Dijkstra agorithm
Queue FIFO queue Aircraft on the link
output-restricted Time-dependent
double-ended queue shortest path algorithm

5.3.2.3 Howcharts

The lagt step in the object moddl in OMT s to write pseudo-codes for algorithms or other related
methods. Instead of pseudo codes, our approach is to use flowcharts showing the details of the
coding process graphicaly. Figure 5.29 depicts the procedura flows for the complete smulation
modd.

The initidization procedure is illustrated in Figure 5.30. Basic objects such as the network graph,
flights and controllers are generated and initialized after al related datais read from the input file.
(See Appendix A for the list of input data) A controller object calculates the shortest path
between al nodes defining the airport network. The alocation of flights to each controller is aso
done during the initidization procedure. Some of the important variabdles associated with flights
and air traffic controllers and their initial states are summarized in Table 5.7. Communication and
movements are two types of activities involved in the aircraft flight behavior. The efficient
organization of these activities enters around two event times named “nextCommEventTime’

184



and “nextMoveEventTime” which are created inside the flight objects (more detailed member
variables and functions are included in Appendix C).

The main part of the smulation modd is executed in such away that the states of all entitiesi.e.,
flights, ground controller(s), loca controller(s), in the system are updated every time interval until
the smulation time ends. Two types of loops are involved in this process: an outer loop where the
system clock proceeds by a time increment Ot) until the smulation ends, and an inner loop

where the states of al flights in the system are checked and updated successively.

Table5.7 Thelnitia States of the Smulation Mode Variables.
object vaiable initid date
currState standby
controller nextBventTime smulationDuration
currCommState ready ToCommunicate
nextCommEventTime smulationDuration
currMoveState parking/onFinal
nextMoveEventTime scheduled time
flight position gate/runway threshold
Speed 0.0/final approach speed
acceleration 0.0
needToComm false
collisonChecked false
permission undecided

State for arrival/departure.

Insde the inner loop, a check is made for each flight's time clock to determine the movement.
ock is initially set to the time given in the flight schedule. When the system
clock advances and passes the flight’s scheduled time, the flight executes the two major activities
related to communication and movement within the outer loop. Otherwise, al he processes
inside the outer loop are just skipped.
Unlike the flight movement which is checked continuoudy, the communication activities are
treated as discrete events. This is because a communication event is scheduled only when it is
necessary. Communication states in both controller and flight objects change in a discrete
fashion. The module named *“checkNeedToComm” and illustrated in Figure 5.31 checks if a
flight requires communication with either the local or the ground controller. If a flight attemptsto
communicate, two state variables, “needToComm” and “nextCommEventTime’ are set to “true’
and the current system time, respectively. The communication module (shown in Figure 5.3)
initiates the communication events and changes the flight movement dtate if it is permitted to

move.
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In Figure 5.33, a communication process is depicted from the flight's point of view. Here, the
state variable cdled “nextCommEventTime” is updated according to the time duration required
for the current communication activity. On the other hand, the controller’s communication states
change according to the corresponding flight's current communication state as shown in Figure
5.34.

It should be noticed that a function caled “judge” mimics the controller’s decision process on
whether a flight request is accepted. This function changes the controller’s state via
“judgingCommand”. If the controller decison is to accept a flight to move and end
communication, the flight's “nextCommEventTime’ is set to the smulation duration so that the
flight can jump the communication procedure until it needs to communicate again. Usudly, the
taxiing clearances from the local controller are provided with the taxiing route from the runway
exit to the gate.

The dates of flight movement such as speed, acceleration, position, efc., are continuoudy
evaluated after a flight enters the system. The main concern in the movement logic is to decide
how much the flight would accelerate (or decelerate) in the next time interva. Unless a flight is
ether stopped, parked at a gate, or waiting on a runway, the flight's dynamic behavior is decided
by its own control logic depending on its current movement state. For example, if an arriving
flight is in the coasting phase on the runway, its acceleration for the next time interval is
determined by the second-order feedback control system discussed in the previous section.
Accdleration (or deceleration) during taxiing is a little more complicated because it might depend
on a leading aircraft, if any, on potentid collisons, and on the remaining distance to the
destination for taxiing, etc. The detailed processes to decide the acceleration for a taxiing flight
are summarized in Figure 5.36, and the flowchart for the conflict detection and resolution
agorithm is previoudy shown in Figure 5.18.

The last procedure inside the inner loop is to update the flight kinematic states to reflect the
current changes according to the new acceleration value selected. This is done by the *update”
module shown in Figure 5.37. In the case that a flight enters a new link, the flight information on

its leading and following flight as well as the link information are updated by “enqueue’ and

Once the complete procedure for a flight has been executed, a check is made to decide if this
flight is the last one on the ligt. If it is the last one, the inner loop is completed, and both ground
and loca controllers start to check if there is any flight awaiting controller's contact by looking at
their flight progress strips. If there is any flight and the controller are both in standby States,
contact is made by the controller. (See Figure 5.9 for details) Once al controllers finish an
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appropriate action, the smulation time advances by a time increment to commence another
iteration of the outer loop (see Figure 5.29).

Initialization
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/lgenerate network grap, controller, flights
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4
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Communication Outer Loop
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A

Movement

Flight = nextFlight
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Contact the Flight |
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Figure 529 Flowchart for the Overal Simulation Model Process.
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Figure 5.30 FHowchart for the Initiaization Step.
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Figure 5.31 Flowchart for Performing Communication Checks.
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Figure 5.32 Flowchart for the Communication Logic.
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Figure 5.33 Flowchart for the Communication Module from the FHight's Point of View.
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Figure5.34 FHowchart for the Communication Logic from the Controller’ s Point of View.
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Figure 5.35 Flowchart for the Movement Logic.
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Update Flight's dynamic state

prevSpeed = currSpeed
currSpeed = currSpeed + currAccel * dt
traveledDistInLink +=
(prevSpeed + currSpeed)/2 *dt
traveledDistTotal += traveledDist
update
currPosition_p-> traveledDistInLink,
currPosition_p-> pt.x,
currPosition_p-> pt.y.

aveledDistInLink >= currEdge_p.distance

Yes
(Enter the new link )

traveledDistInLink - = currEdge_p.distance
update
currPosition_p-> traveledDistInLink,
currPosition_p-> pt.x,
currPosition_p-> pt.y.
currNodelndex,
currTaxiEdge_p.

this->deQueue(currTaxiEdge_p)
this->enQueue(nextTaxiEdge_p)

Next

Figure 5.37 Flowchart for Updating Flight’s Dynamic States.
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53.2.4 Detailed Object Design Model

Once the agorithmic steps have been implemented using appropriate data structures, the model
development cycle continues with a refinement of classes according to the following guidelines.

Adjust class structures to increase inheritance: In order to increase inheritance, it is necessary
to abstract out any behavior that is common to a group of classes. In our case, such behaviors
as “finding shortest path” and “making taxiing path” are common to both the ground
controller and the local controller classes. These methods are placed in the super class,
controller. While the inheritance happens to be an “is-a’ relationship, the aggregation is said

-a' relationship in the representation of classes. In the smulation model, many
aggregation relationships are found. For example, a node class has a point class which
contains information on the coordinates of a point, and an edge class which represents a
taxiway link has two node classes corresponding to the from node and the to node. A graph

class which contains the airport network information has an edge list consisting of a specia
number of edges.

Design associations. Unlike inheritance or aggregation, the asociation between classes is
often referred to as a “use-a’ relationship. For example, the controller class uses (one or
more) queue classes when a controller generates the shortest paths for al O-D pairs.

The attributes and member functions for al defined classes in the smulation modd are
summarized in Appendix C.

196



5.4 Object-oriented Programming (OOP)

The computer language selected for the smulation model is C++ which is one of the most
popular object-oriented programming computer languages. In order to enhance the portability of
the smulation model, al libraries used in the model are based on the ANSI C++ rather than
usng commercidized versons of the C++ libraries. In this research project, no graphic
representation or GUI (Graphic User Interface) is considered. For the future development of a
windowing GUI system, it is recommended to use the “wxWindow” library which provides a
better multi-platform portability when compared to other commercid libraries such as the
Microsoft Foundation Classes (MFC).

Once the smulation model is coded, the last step is the debugging and validation phase to check
if the code is performing as expected. Severa tips are recommended for debugging [May, 1990].

Debug each member function separately.
Use known deterministic data rather than stochastic data

Perform manual calculations to check.
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5.5 Primary Validation of the Smulation Model

The validation step is the process whereby the smulation model is evaluated to determine
whether it satisfactorily duplicates the real system behavior [Drew, 1966]. In order to match the
smulation modd output with reaklife observations, a caibration process should be performed
using collected input data and measures of effectiveness (MOE). In this research, the calibration
process considers accepted models of behavior and compares them with the output from the
smulation model. VTASM is a proof -of -concept research model and further validation is needed
for commercia use.

Table 5.8 shows a hypothetical flight schedule consisting of 20 flights scheduled in about 5
minutes. Here, the relatively tight flight schedule is intentiona to produce conflicts on the
taxiway system. It is assumed that al flights use one runway 01, and al aircraft represent
transport type operations. The aircraft mix is set to be 70/30 (large/small).

Important smulation outputs include information on the flight states at every smulation interva,
such as movement state, current communication state, speed, acceleration, current position,
traveled distances etc. Figure 5.38 shows a sample output of the smulation results. The time-
space diagram shown in Figure 5.39 depicts the behavior of four departing aircraft starting from
one common gate to the same runway.

A close examination of this figure confirms that headways between the aircraft are kept during
the taxiing phase, and the minimum separation rules for the takeoff aircraft are maintained. A
more detailed takeoff profile is illustrated in Figure 5.40. Figure 5.41 dso ratifies the minimal
separations between successive landing aircraft. It is shown in Figure 5.42 that landing distances
and runway occupancy times presented in Table 5.3 are reproduced with good accuracy.

For the aircraft-following model defined in Equation (5.2), H; and v; are set to 83 ft/aircraft, 41
ft/s respectively. Figure 5.43 shows that headway between two leading and following aircraft
correlates well with the speed and vehicle-following control laws stated in the Equation (5.2). In
this Figure, some discrete speeding phenomena is observed following the arcraft transition
through various taxiway links. This behavior is explained when the following aircraft returns to a
normal taxiing speed, once it becomes the leading aircraft on alink.
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Table5.8 Hypothetical Flight Schedule.

. Aircraft | Operation Schedule Time
Rlight # Type Type Hour Minute Second Cae Runway
AA001 | B727-100 D 7 0 0 1 36
AA002 | B727-100 D 7 0 4 1 36
AA003 SF340 D 7 0 20 2 36
AA004 | B727-100 D 7 0 40 2 36
AA005 | B727-100 D 7 0 50 3 36
AA006 | B727-100 D 7 0 30 3 36
AA007 SF340 D 7 0 10 4 36
AA008 | B727-100 D 7 0 45 4 36
AA009 | B727-100 D 7 0 25 4 36
AAO010 SF340 D 7 0 30 4 36
AA101 | B727-100 A 7 1 0 11 36
AA102 | B727-100 A 7 3 1 11 36
AA103 | B727-100 A 7 3 2 12 36
AA104 SF340 A 7 3 3 12 36
AA105 | B727-100 A 7 1 12 10 36
AA106 | B727-100 A 7 1 45 10 36
AA107 SF340 A 7 1 20 10 36
AA108 SF340 A 7 5 3 9 36
AA109 | B727-100 A 7 3 0 9 36
AA110 | B727-100 A 7 2 1 9 36
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TimeFLT # x,y) curCommState  currMoveState Speed acced  currLink linkLength distinLink  totDist

60.5 AA378 (3.55881,6.15414) ready ToCommunicate taxiingToDepQue 3.20622 15.6622 4 ->1016 157.659 0.324311 0.324311

AAT789 (3.55850,6.15410) ready ToCommunicate parking 0.00000 0.0000 0->0 0 0.000000 0.000000
AAT90 (3.55850,6.15410) ready ToCommunicate parking 0.00000 0.0000 0->0 0 0.000000 0.000000
AAT91 (3.55850,6.15410) ready ToCommunicate parking 0.00000 0.0000 0->0 0 0.000000  0.000000
60.6 AA378 (3.55918,6.15418) ready ToCommunicate taxiingToDepQue 4.70198 14.9576 4 ->1016 157.659 0.719721 0.719721
AAT89 (3.55850,6.15410) ready ToCommunicate parking 0.00000 0.0000 0->0 0 0.000000 0.000000
AAT90 (3.55850,6.15410) ready ToCommunicate parking 0.00000 0.0000 0->0 0 0.000000 0.000000
AAT91 (3.55850,6.15410) ready ToCommunicate parking 0.00000 0.0000 0->0 0 0.000000 0.000000

Figure5.38 Preliminary Results (1): Sample Outpuit.
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Chapter 6. Case Study

One of the main benefits of a microscopic smulaion modd is the wedth of information derived
from each simulation run. In this section, we first define several types of delays encountered in
airport networks. A case study is then presented to illustrated the use of the moddl developed.

6.1 Definition of Delays

The Consolidated Operations and Delay Analysis System (CODAYS) prepared by the FAA defines
three types of delays involved in airport operations [FAA, 1997].

Gate delay: the difference between the actual gate departure time reported in ASQP (Airline
Service Quality Performance) system and the scheduled gate departure time reported in
ETMS (Enhanced Traffic Management System).

Taxi-out delay: The difference between the actua taxi-out time (= whedls-off time — gate-out
time) and the unimpeded taxi-out time at the airport. The unimpeded taxi-out time is the
estimated average taxi-out time for an arcraft under optimal operating conditions when
neither congestion, wesather, or other factors delay the operation during its movement from
the gate to takeoff.

Taxi-in delay: The difference between the actual taxi-in time (= gate arriva time — wheels-on
time) and the unimpeded taxi-in time under an unimpeded condition.

The taxi-out delays defined in CODAS involve not only the delays due to the taxiway congestion
itself, but aso delays due to the excess demand on runway operations. On the other hand, taxi-in
dday does not contain runway delays, but only consider taxiway delays. This shows a
discrepancy between taxi-in and taxi-out ddlays. Mativated by this point, let us define a single
delay called total delay applicable to both arriving and departing operations. The total delay is
defined as follows (See Figures 6.1 and 6.2):

Total delay: the difference between two completion times of the nomina (or unimpeded)

operation time and actua operation time. Here, the completion time of nomina operation is
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the time duration which is needed for a flight to complete its operation impeded by no other
operations.

Even though it is not easy to divide the tota delay into various sub-types, for smulation
purposes, the taxiing delay and runway delays are defined as follows:

Runway delay: The difference between the time when an aircraft is scheduled to start its
runway operation and the time when the actua operation takes place.

Taxiing delay: During taxiing duration, the taxiing delay accrues whenever any flight's
taxiing speed is less than a nominal taxiing speed. The taxiing delay is estimated by the
following equation.

Taxiing delay = < simulationtime ggominal spe.ed-currentspeed(:)jjt.
Q nomina speed 9

Taxiing duration (or taxiing time) is defined as the time required for a departing aircraft to taxi
from the gate to the runway departure queue, For an arriving aircraft is the time to taxi from the
runway exit to the gate.

Figures 6.1 and 6.2 illustrate the various types of delays for both arriving and departing flights.

6.2 Sample Airport

In this research project, the Ronald Reagan National Airport (DCA) is selected for further study.
Along with Dulles Airport and Batimore-Washington Airports, DCA serves the Washington
D.C. metropolitan area. In FY 1997, total enplanements and operations at DCA were 7,231,903
and 316,404, respectively, placing it as the 26" busiest airport in the U.S. [FAA, 1998].

The existing DCA Airport has 45 gates and three crossing runways designated 3/21 (4,506 ft),
15/33 (5,189 ft), and 18/36 (6,869 ft). (As February 2000, Runway 18/36 has been changed to
01/19 due to magnetic declination.) Because of the relatively short length of its runways, DCA
has short to medium size transport aircraft operations. Figure 6.3 shows the present configuration
of DCA. In this preliminary analyss, the gates are aggregated into 12 groups and it is assumed
that severa flights can occupy one aggregated gate at the same time. (This modeling practice is
common in other smulation models.)
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6.3 Scenarios

To evaluate the efficiency of the airport control system, atotal 12 scenarios are generated through
variations in three important decision variables: 1) Network assgnment strategy, 2) sequencing
strategy, and 3) pilot-controller communication method. Two network assignment strategies are
consdered: satic and time-dependent assignment methods. The dtatic network assignment uses
the Euclidean distances for the shortest path agorithm. The sequencing strategy involves pure
first-come-first-serve (FCFS), FCFS with landing priority, and 2-exchange sequences. The impact
of two types of pilot-controller communication methods are aso integrated using standard voice
channel and data link methods.

A base line scenario attempts to reproduce the current ATC system using principle of FCFS with
landing priority. In this scenario, both the local and the ground controllers use standard voice
channel communications to provide traffic control advisories. In the scenario, a static assignment
method is used for ground controller to find the taxiing route.

The most advanced scenario studied represents an advanced ATC system where the local
controllers follow optimal aircraft sequences using results from the ASP (Aircraft Sequencing
Problem) mode, and the ground controllers guide the taxiing flights based on dynamic shortest
paths which result from NAP (Network Assignment Problem). All 12 scenarios are summarized
in Table 6.1.

Table6.1  Scenarios for Case Study.

Network Assignment Strategy Sequence Method Communication Method.
Pure Voice Channel
_ FCFS DataLink
N?tifrk FCFS Voice Channel (Baseline scenario)
Assignment (w/ Landing Priority) DataLink
Voice Channel
2-exchange -
Data Link
Pure Voice Channel
_ FCFS DataLink
Time-dependent FCFS Voice Channel
Network (w/ Landing Priority) -
Assignment g Yy DataLink
Voice Channel
2-exchange -
DataLink
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6.4 Computational Process

The computations for the case study are derived using the following steps: Data generation,
sequencing, simulation, and the analysis of results. Figure 6.4 illustrates a flowchart with al

computations along with data and output for each step.
6.4.1 DataGeneration

Using random number generation techniques, the ready-times (or nomina times) for runway
operations are generated. A total of nine levels of hourly demand (ranging from 10 to 50 flights
per hour) are generated. To consider randomness of generated data, ten data sets are generated for
each level of hourly demand. In al test scenarios, the interval for any two consecutive runway
operations (either takeoff or landing) follows a negative exponentia distribution. The aircraft mix
which is another important factor in the delay analysis, is set to 0% heavy, 70% large and 30%
small. For computational smplicity, it is assumed that dl flights use a single runway O1. (This
issue will be discussed later in further study.)

Once nominal times for runway operations are available, the activation times for departing flights
are obtained by subtracting the sum of nominal taxiing, communication and some buffer times
from nomina times. The link and node data which are pertinent to taxiway topology are used to
obtain nomind taxiing times. Unlike departing flights, the activation times for arriving flights are
obtained by subtracting only communication times from nominal times.

6.4.2 Seguencing

In this step, three types of sequences for runway operations are computed using nomina times:

pure FCFS sequence, FCFS sequence with landing priority and 2-exchange sequence. Table 6.2
shows a sample output of the sequencing process. In the sequencing process, a maximum of 600
seconds of delay is assumed tolerable as practical limit. This limit can be atered by a planner and
applied for each flight time window. In fact, the schedule from a pure FCFS sequence is the same
one asthat of nominal times.

Table 6.2 also shows two types of time savings attained if the swapped sequence is applied. These
are. cumulative time savings obtained from dl individud flights, and time savings in completion

time of al flights. For example, the table shows that if the runway operations are performed in
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accordance with a 2-exchange sequence ingtead of the FCFS sequence with landing priority, a
total of 669 seconds can be saved over dl flights. In this case, the completion time for al

operations are reduced from 1243 to 1149 seconds.

Table6.2 A Sample Output from the Sequencing Modd.

Nomi nal FCFS W landing priority 2- exchange
# acft_id Type ReadyTine DueTine StartTine Sequence Del ay StartTi me Sequence Del ay Savi ng
(D (2) =(2)-(1) (3) =(3)-(1) =(3)-(2)

1 DEP1 L [ 186 786] 268 4 82 268 4 82 0
2 DEP2 S [ 218 818] 375 6 157 375 6 157 0
3 DEP3 S [ 302 902] 482 8 180 594 10 292 -112
4 DEP A4 L [ 322 918] 589 10 267 496 8 174 93
5 DEP5S L [ 378 978] 800 13 422 747 13 369 53
6 DEP_6 S [ 414 1014] 907 15 493 687 12 273 220
7 DEPY L [ 444 1044] 1028 17 584 840 15 396 188
8 DEPS8 L [ 536 1123] 1088 18 552 947 17 411 141
9 DEPO L [ 583 1154] 1148 19 565 1054 19 471 94
10 DEP_10 L [ 614 1214] 1208 20 594 1114 20 500 94
11 ARR1 L [ 17 582] 17 1 0 17 1 0 0
12 AR 2 S [ 83 683] 148 2 65 148 2 65 0
13 ARR3 L [ 89 648] 228 3 139 228 3 139 0
14 AR A4 L [ 155 755] 335 5 180 335 5 180 0
15 ARRS L [ 269 800] 442 7 173 647 11 378 -205
16 ARRG L [ 307 851] 549 9 242 800 14 493 -251
17 AR T S [ 352 952] 680 11 328 466 7 114 214
18 ARRS8 L [ 358 924] 760 12 402 907 16 549 -147
19 ARR9 L [ 431 1031] 867 14 436 1014 18 583 -147
20 ARR 10 S [ 468 1068] 998 16 530 564 9 96 434
Total Del ay 6391 5722 669

Conpl etion tine: FCFS w land -> 1243 second, SWAP -> 1149 second

It is important to notice that some flights might not be operated as they are scheduled. This is
because the resulting schedules are an analytica solution which do not reflect any congestion in
communication or taxiing. As pointed out at the beginning of this research, it is very difficult to
develop a single analyticad mode which considers al of types of delays. This is the main
judtification for usng a smulation mode!.
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Figure6.4 Fowchart of the Computational Process Employed in the Case Study.
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6.4.3 Smulation

6.4.3.1 Assumptions

The VTASM model has numerous constants representing human or aircraft behaviors. For

example, the free flow speed, norma speed and jam headways employed in the aircraft-following
modd are set to 45 kmvhr, 30 km/hr and 27 m, respectively. It should be pointed out that, since
some of these constant values have been drived using common sense, more accurate values could
be collected from future field studies. Some of important constants used in the simulation model
are summarized in Table 6.3.

Table6.3 Constant Vaues used inthe VTASM Smulation Moddl.

Related model Name Values
Aircraft Maximum taxiing speed 45 (km/hr)
following Normal taxiing speed 30 (km/hr)
Model Jam headway 27 (m)

Gamma 2.75 (degree)
- Runway threshold crossing height 15 (m)
Flaring ot Fareload factor 11
Weight factor for landing 0.5
. Timefor freerolling 2.0 (9
Freerolling Accdleration for freerolling -0.7 (m/s)
Weight for decision speed 18450 (kg)
. = 41000 (Ib)
Braking Decision speed for heavy aircraft 35 (m/s)
Decision speed for large or small aircraft 27 (m/s)
Runway exit Exit speed for normal runway exit 15 (m/s)
Sending request time 4.0(9)
(same to receiving request time for controller)
Waiting command time 5.0(s)
Communication (Rsamfs Fo receiving requ%t time)
(Voice channe) ecaiving commajd time 3.0(s
(same to judging time for controller)
Sending confirmation time 3.0(s
(same to receiving request time for controller)
Waiting time for next contact 10.0 (9
Sending request time 0.0(s)
Communication | Waiting command time 3.0(9
(Data Link) Receiving command time 0.0 (9
Sending confirmation time 0.0(s)

. current link travel time

h :Tr:: ffjrr?c\:/tido n + 5 seconds for every one conflicting aircraft at the

intersecting point
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6.4.3.2 Input Data

Input chta for smulation model include link and node information representing the taxiway and

runway configurations, the aircraft modd data, and the flight schedule data. Aircraft model data

involves individud aircraft information such as size, weight and performance data. The flight

schedule data reflects the results of the previous sequencing step. Using the given schedule data,

recommended pushback times for departing flights are internally computed. (For a detailed

description about the recommended pushback times, see Section 2.3.1.) A sample of schedule is

shown in Figure 6.5.

Aircraft type

DEP_1
DEP_2
DEP_3
DEP_4
DEP_5
DEP_6
DEP_7
DEP_8
DEP_9
DEP_10
11 ARR 1
12 ARR 2
13 ARR 3
14 ARR 4
15 ARR 5
16 ARR 6
17 ARR 7
18 ARR 8
19 ARR 9
20 ARR_10

=
QOWoO~NOUITRAWNE

B727-100
SF- 340

SF- 340

B727-100
B727-100
SF- 340

B727-100
B727-100
B727-100
B727-100
B727-100
SF- 340

B727-100
B727-100
B727-100
B727-100
SF- 340

B727-100
B727-100
SF- 340

>>>>>>2>>>>0000000000

NNNNNNNNNNNNNNNNNN—NN T

Simulation
Input Time

~NoOUUOAR_ANRPRPONOORMAPWNPE, OO
N
N

NNNSNNNNNNNNNNNNNNN NN

NN~ NRPPRPOOOO~NOOOUIUI WW

Takeoff/Landing Time
(Pure FCFS sequence)

Takeoff/Landing Time
(FCFS w/ Landing Priority sequence)

Takeoff/Landing Time

(Swap sequence)

6 7 4 28 7 4 28 1
38 7 6 15 7 6 15 1
2 7 8 2 7 9 54 1
22 7 9 49 7 8 16 1
18 7 13 20 7 12 27 2
54 715 7 7 11 27 2
24 7 17 8 714 0 2
56 7 18 8 7 15 47 2
43 719 8 7 17 34 2
14 7 20 8 7 18 34 3
17 7 0 17 7 0 17 12
23 7 2 28 7 2 28 12
29 7 3 48 7 3 48 12
35 7 5 35 7 5 35 12
29 7 7 22 7 10 47 11

7 7 9 9 7 13 20 11
52 7 11 20 7 7 46 11
58 7 12 40 715 7 11
11 7 14 27 7 16 54 11
48 7 16 38 7 9 24 10

Gate Number /////////
Runway

Figure 6.5 Sample of Schedule Data.
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6.4.3.3 Implementation of the Smulation Model

Each smulation is executed for two-hour duration (i.e., 7200 seconds). This is done to secure
enough time for al flights to finish their operations during the smulation duration. The system
clock is set to advance by one second. This time interval, dt, is one of important settings
particularly in association with aircraft-following model. There is a tradeoff in selecting the size
of dt. Smaler dt provides more detailed results in aircraft behavior but requires more time and
storage space in the implementation simulation.

For the time-dependent NAP, atotal of 120 time dices are prepared so that the time-dependent
shortest path information can reflect any change in link travel time with a resolution of 60

seconds. The simulation is repeated for al 12 scenarios.

6.434 Output Files

VTASM provides severa output files for further scrutiny of the data.

1) 1) Log.out reports important events for both flights and controllers including a summary
report with statistics.

2 2) FlightState.out includes the flight state at each time dice.

3) Controller.out contains the controller state at each time dlice.

4) ForwardStar.out/backwardStar.out shows forward-star/backward-star of network
configuration (used for verification).

5) TaxiPath.out contains gatic and time-dependent taxi paths for dl flights (used for
verification).

The summary section in the log.out file reports diverse statistics related to the delay analysis for
each flight such as taxiing duration, runway occupancy time, runway delay, etc. The flight state in
file flight_state.out includes position, communication state, movement state, permission, speed,
acceleration and traveled distance at time t. Figures 6.6 and 6.7 show samples of the log,out and
the flight_state.out files. A sample of the path.out fileisillustrated in Figure 6.8. In this figure, it
is shown that some flights have different paths in the static and in the time-dependent NAP.
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Data files were opened.

FS and BS were nade.
FLi ght
FLi ght

DEP_1 is pushed back to GC s PENDI NG |i st
DEP_2 is pushed back to GC' s PENDI NG I|i st

FLi ght ARR_10 is pushed back to LC' s PENDI NG |i st

Fl i ght
Shortest Path was made.

< Sinmul ation starts >

system clock = 0 second
At 1 sec, DEP_1 is removed from GC' s PENDI NG |i st
At 1 sec, DEP_1 is pushed back to GC' s PROCESSI NG |i st
At 3 sec, ARR_ 1 is removed from LC' s PENDI NG |i st
At 3 sec, ARR_1 is pushed back to LC' s PROCESSI NG | i st
This flight (DEP_1) is ahead the schedul e.
So, need to contact the Ground Controller again.
-> scheduled tine: 79.9 sysTime: 17
At 17 sec., DEP_1 got "waitThere".
this flight (ARR_1) is behind the schedul e.
-> scheduled tinme: 17 sysTime: 19
At 19 sec., ARR 1 got "clearToLand".
At 33 sec, DEP_2 is renoved from GC s PENDI NG |i st
At 33 sec, DEP_2 is pushed back to GC's PROCESSI NG |i st
This flight (DEP_2) is ahead the schedul e.
So, need to contact the Ground Controller again.
-> scheduled tine: 186.9 sysTime: 49
system cl ock = 7000 second
system cl ock = 7200 second
< Sinulation ends. >
------------------------------- SUMMARY - - - - oo e oo
Flight (Departure DEP_1, B727-100, Gate 1, Runway 36)
Enters into the sinulation at : 1 sec.
Taxiing Duration 73 - 217
Taxiing Del ay 2.22827
Nom nal Takeoff Time (= NTOT) 186
Sequenced Takeoff Tine (= STOT) 268
Act ual Takeoff Tinme (= ATOT) 289
Runway Occupancy Time (= ROT) 289 - 328
Sequenced Del ay (= ATOT - STOT) 21
Runway Del ay (= ATOT - NTOT) 103
Flight (Arrival ARR_10, SF-340, Runway 36, Gate 10)
Enters into the sinulation at 454 sec.
Nom nal Touchdown Ti me (= NTDT) 468
Sequenced TouchDown Tinme (= STDT) 998
Act ual Touchdown Ti me (= ATDT) 991
Runway Occupancy Tinme (= ROT) : 991 - 1018
Sequenced Del ay (= ATDT - STDT) : O
Runway Del ay (= ATDT - NTDT) : 523
Taxiing Duration 1045 - 1147
Taxiing Delay (sec.) 4.52267
Tot Taxi i ngDel ay_sec = 47.9558
Tot RunwayDel ay_sec = 6486
Tot Deal y_sec = 6533. 96
AvgTaxiingDel ay_sec = 2.39779
AvgRunwayDel ay_sec = 324.3
AvgDeal y_sec = 326.698
Utilization factor (L/C) = totBusyTimeLC (=1234) / first 1 hour (= 3600)
Utilization factor (G C) = totBusyTimeGC (=1188) / first 1 hour (= 3600)

data were read.

0.342778
0.33

Figure 6.6 A Sample of the Log.out File.
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Figure6.7 A Sample of the flightState.out File.
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219




6.5 Computational Results

6.5.1 Total Taxiing Time as Related to Various Network Assignment Strategies

Table 6.4 shows results for the static and time-dependent NAP in total taxiing time. As shown in
the table, the impact of the time-dependent NAP varies depending on a predefined unit delay
time, tentatively called Conflict Delay Time (CDT), which represents the impact d a conflicting
flight on taxiing delay and is used when the time-dependent taxiing route is planned. For
example, if CDT is set to 5 seconds, then the travel time for a certain link increases 5 seconds for
every one possible conflicting aircraft.

Table6.4 Total Taxiing Times.

(Unit: Seconds)

Scenarios Number of operations per hour

NAe;SVIV;’L" Sequence| Comm | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50
Pure [ VoiceCh.| 16500 24108 31226 39174] 45709 52653 58868 65844 71413
FCFS | Datalink | 16481 24101 3121.8 39167 45748 52582 58391 65843 71506
Ng\?l';k FCFS (\égfeesig') 16504 24132 31229 39166 45770 52709 58382 6580.8] 71408
Assign. wiLand. I alink | 16479 24095 31203 39138 45732 52591 5es59 65779 71442
o.exch, | VoiceCh. | 16506 24132 31230 30176 45778 52714 58897 65943 71421
DataLink || 16481 24096 31202 39131 45730 52626 58858 65808 71480
Time-Dep,| Pure [VoiceCh | 16500 24108 31226 39174 45709 52653 58868 65844 71413
Network | FCFS | Datalink | 16481 24101 31218 3916.7| 45748 52582/ 5889.1] 6584.3 71506
Assign. | FCFS | VoiceCh.| 16504 24132 31229 39166 45770 52709 58332 6589.8 71408
w/Land. [ DataLink || 16479 24095 31203 39138 45732 52591 58859 6577.9 7144.2
(DT = I oxch, [ VoiceCh. | 16506[ 24132 31230] 39176 4577.8] 52714 56897 65043 714211
1 sec) " | DataLink | 16481 24006 31202 39131 45730 52626/ 58858 6580.8 71480
Time-Dep.| Pure |[VoiceCh | 16500 24108 31237 39174 45709 52653 58866 65877 71428
Network | FCFS | DataLink | 16481 24101 31218 39167 45748 52582 5890.1) 6584.8 71532
Assign | FCFS | VoiceCh.| 16504 24132 31229 39166 457700 52700 5889.2 6589.8 71419
w/Land. | DataLink || 1647.9] 24095 31208 39142 45736 52599 58865 65779 71454
(DT = 1 och | VoiceCh. | 16506 24132 31230] 39181 45778 52714] 56907 65936 71424
2 sec) " | DataLink | 16481 24006 31207 39131 45734 52626 58864 6580.8| 71484
TimeDep.| Pure |VoiceCh | 16508 24108 31250 39205 45756 52663 58905 6507.3 71500
Network | FCFS | Datalink || 16481 24105 31223 39190 45805 52668 58955 65932 71619
Assign. | FCFS | VoiceCh.| 16513 24136 31248 39187 45782 52739 59002 65989 71517
w/Land. | DataLink | 16479 24113 31225 39166 45790 52682 58951 65800 71545
(gfs);): o.exch, | VOiceCh. | 16515 24136| 31255 30198 45805 52746 5899.0| 66023 71567
' DataLink | 16481 24114 31225 39164 4579.2] 52693 58936 6592.7| 7158.

*CDT: Conflict Delay Time.
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The smulation results summarized in the Table 6.4 indicate that the time-dependent taxiing
routes planed based on 5 seconds of CDT cause more taxiing time than the static taxiing routes.
In the case that CDT is 2 seconds, some of time-dependent taxiing plans help to reduce the
taxiing time but some of them till cause more taxiing time than static taxiing plans. In the case of
1 second of CDT, the resulting taxiing times are exactly the same ones as those founded in the
static case. Based on these results, we can postulate that CDT value for this case study will be
between 1.0 and 2.0. (For the computational convenience, 2.0 of CDT vaue will be used from
this point.) We also can see that the communication method does not show any correlation with
taxiing time itsalf.

6.5.2 Average Runway Dday for Analysisof Aircraft Sequencing Strategies
The average runway delays for al three types of sequencing strategies are summarized in Table
6.5. The results clearly show that, if the 2-exchange sequences are used in runway operations, the

savings in runway delays reaches up to 15% compared to base scenario. And it is also showed
that the communication based on the data link help in saving the runway delay.

Table6.5 Average Runway Delays resulting from the Simulation.

(Unit: Seconds/ Hight)

Scenarios Number of operations per hour

NAZtSV;Ing Sequence| Comm. 10 15 20 25 30 35 40 45 50
Pure | VoiceCh. 1790 315 360 459 4800 1004 1028 1706 3244
FCFS | DataLink 838 19.3 24.3 28.6 34.2 64.8 771 1127 2116

Static Voice Ch.

Network Wll:CLJ;ﬁd (Base Soe) 184 302 328 409 455 635 816 o948 1376
Assign. "| DataLink 10.7 219 236 23 3B7 521 6900 830 1236
SWAP Voice Ch. 17.7 29.7 329 304 448 624 766 9041 1274
DataLink 9.7 210 24 279 338 479 60.7 762 1104
Pure | VoiceCh. 1790 315 361 459 480 1004 1028 1707 3244
Time-Dep. |_FC> | Datalink 88 103 243 286 342 648 771 1127 211§
Network | FCFS | VoicecCh. 184 302 28 409 455 635 817 o48 1377
Assign. | w/Land. | pataLink 10.7 219 236 323 357 521 69.0 830 1234
(5sec) cwap |VoceCh | w77 207 w2 34 md ed 77 05 176
Data Link 9.7 210 24 279 338 479 60.7 762 1104
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It should be pointed out that average delays obtained from the simulation model are not same as
those from the andytica solution shown in Table 6.6. This is because in some cases, anaytica
sequences cannot be implemented due to the communication time lags (delays) as well as the
severa assumptions used in Smulation model.

Table6.6 Average Runway Delays resulting from Sequencing Step.

(Unit: Seoonds/ Flights
Number of operations per hour
Sequence ] 5] 20 5] 0| B ] 0 &5 | 50
FCrS
W Lo (1) 100 | 232 | 249 | 351 | 383 | 563 | 732 | 89.0 | 1305
2exch. ) 96 | 220 | 230 | 296 | 35.7 | 515 | 640 | 811 | 1156
SinsCE(D-@) | 13 | 12 | 19 | 65 | 26 | 48 | 92 | 79 | 149

The average delays obtained using the sequencing methods are illustrated in Figures 6.9 and 6.10.
Figure 6.9 indicates that, if the runway practical capacity is decided at the level of four minutes
of delay per aircraft, the runway capacity is about 46 or 47 arrivals per hour. This seems to
correlate well with the analytical results obtained using the arport capacity model (ACM) for the

same aircraft mix.
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Figure 6.9 Average Runway Delay by Sequencing Methods (Communication: Voice Channel).
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6.5.3 Tota Operation Time

Total operation time is agood index to compare various air traffic control strategies. The total
operation obtained for all 12 scenarios are shown in Table 6.7. The results indicate that the tota
operation time can be reduced by up to 9.2% if al three advanced air traffic control technologies,
induding 2-excahnge sequencing, time-dependent network assignment technique and data link
ae used. It is aso evident that among these three technologies, the pilot-controller
communication method is the most effective at reducing total operation time.

Interestingly, the time-dependent taxiing planning does not provide a significant advantages at
reducing delays. Nevertheless, it should be noted that time-dependent taxiing feature in the
smulaion modd is inevitable to mode the proper tempora changes in the operation of every
taxiway link. Furthermore, the time-dependent taxiing planning agorithm is expected to play a
substantive role to reduce the total operation time at airports having more complicated taxiway
network with higher taxiing demands.

The results of three sequencing strategies are compared in Figure 6.11. As expected, the pure
FCFS palicy yields the highest delays. The impact of two communication methods on the tota
delays is compared in Figure 6.12. Here we note certain reduction in delays when pilot controller

datalink communications are used.

Table6.7 Tota Operation Time .

(Unit: Seconds)
Scenarios Number of operations per hour
Network | soqience|  comm. 10 15 20 25 30 35 40 45 50
Assign.
Pure VoiceCh. | 2589.1] 4017.4| 5345.20 6935.3 8272.7| 11421.1] 13029.4 17664.3| 27150.2
FCFS [DataLink | 2420.3 3712.9] 4971.1] 6328.2 7656.7| 9952.9 11756.1 14794.7| 21239.0
i Voice Ch.
Niﬁocrk FCFS  |(Base Sce) 25939 3998.9| 5277.3 6814.0 8198.2( 10136.0 12171.6 14264.9 17810.1
Assign. DataLink || 2435.4 3743.1] 4949.0 6406.0 7691.6] 9492.4 11409.¢ 13427.4] 16821.8
o exch. VoiceCh. || 2587.3 3989.7] 5279.3 6774.9 8175.7| 10102.2 11974.1] 14056.6| 17323.6
DataLink || 2426.2 3731.1] 4927.1] 6303.7 7635.8] 9353.1 11087.64 13128.2| 16155.5
Pure VoiceCh. || 2589.1] 4017.4| 5346.9 6935.3 8272.7| 11421.1] 13028.6 17665.5| 27150.2
_ FCFS [DpataLink | 2420.3 37129 4971.1] 6328.2 7656.7| 9952.9 11756.5 14794.7| 21239.1]
T,'\I'"gfv'v%ref- ops | VoiceCh. | 25939 39989 5277.3 68139 8198.2) 101352 121754 142631 178159
Assign. DataLink | 24354 37431 49490 6406.0 76918 94924 11410.9 134274 168218
o exch. VoiceCh. || 2587.3 3989.7| 5279.3 6774.4 8175.7/10102.2 11977.9 14076.4) 17323.9
DataLink || 2426.2 3731.1] 4927.1] 6303.7 7636.0] 9353.1 11088.9 13128.2| 16155.7

YTotal Operation Time= & - a1 nigns(Time to finish operation; - Time to enter the system)).
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Figure6.11 Tota System Costs by Sequencing Methods (from the Smulation Run).
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Chapter 7. Summary, Conclusionsand Future

Resear ch

7.1 Summary of Results

Unless the wesather is adverse, flight delays occur mainly due to excessve demands on airport
facilities such as runways, taxiways, gates, communication system, etc. This research focuses on
the development of optimization models and adgorithms and a computer smulation model  to
study various activities inside the airport terminal area. These modés are intended to help reduce
congestion on runways and taxiways.

In order to manage aircraft traffic at busy airports and terminal areas, aircraft sequencing methods
can be used in conjunction with advanced Air Traffic Control (ATC) automation tools. This
research discusses a combinatorial optimization approach to the Aircraft Sequencing Problem
(ASP). Consideration is given to aircraft arriva and departure streams on a single runway or in
closaly spaced runways where arrivals and departures are dependent. Previous studies conducted
in this area have mainly focused on the sequencing problem for arriving aircraft. Snce many
arports in the U.S. have dependent arrival and departure stream operations, consideration is given
to both conditions smultaneoudly. This makes the problem more redigtic yet a the same time,
more challenging. Starting with preliminary information about the aircraft such as the aircraft
types, desired arriva/departure times, maximum delay times, minimum separation rules, etc., the
problem can be formulated as a traveling sdesman problem with time-windows, and with
nonconsecutive separation enforcement.

To solve the ASP, an exact approach using integer programming techniques is developed. Tight
lower bounds are generated using the Reformulation-Linearization Technique (RLT) of Sherdi
and Adams (1990, 1994). Compared with the linear programming relaxation of the origind
model, the proposed reformulated ASP problems provide tighter representations, producing
significantly improved lower bounds. As a result, several previously unsolvable instances are now
computationally tractable within the set limits. The computationd results show that, by changing
the traditiond FCFS sequence intelligently, about 17% of the overall operational time can be
saved.
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An important consderation for the ASP algorithm is its eventual implementation in reaktime
runway operations. As such, the computation time required to solve the ASP is of paramount
importance. To reduce computation time, we suggest severa heuristic approaches by modifying
2-exchange and swap methods which are widely used in solving TSP problems. Here, the exact
method serves to help enumerate the heuristic procedures for reasonably sized problems as well
as to develop such heuristic procedures themselves. Computational results show that the 2

exchage heuristic method provides sequences very close to exact solutions in reasonable time.

Given an optimal sequence output from the ASP model, the Network Assignment Problem (NAP)
on the taxiway-runway system is considered in a single framework. To resolve the relationships
between runway and taxiway operations, it is desirable to establish certain connections between
ASP and NAP. In our case, we place a higher priority on runway operations. This means that an
optimal aircraft sequence for runway operations which completes the scheduled departures and
landings as soon as possible will be decided first. Taking this sequence as a given condition, the
NAP problem is solved. In this reaserch, the quas-dynamic network assgnment stategy is
adopted as the method for NAP. By taking advantage of the dynamic aspects of the problem,
potential conflicts on the taxiways are detected and avoided if needed. This feature helps design a
more effective network assignment procedure.

To evauae the system peformance in detail, a microscopic smulation model has been
developed. Some sdient points of the developed modd include: 1) a hybrid-type smulation
model that can anadyze the total delay due not only to network congestion but also to
communication channel capacity; 2) an aircraft-following modd that captures more dynamic and
detailed behavior of the moving aircraft, and 3) computer codes are developed in ANS| C++ for
the sake of portability. Furthermore, the object-oriented-programming concept employed in
developing smulation model is expected to render the source codes more readable and handy to
modify for the future development.

Adopting Washington National (DCA) Airport as a sample airport, a case study is presented
adong with computational results. Results confirm that for high demand levels, communication
can be another source of delay that is not considered in the ASP and NAP problems. Results show
that if an advanced ATC system using the 2exchange sequence in runway operations and the
data-link system in communication is used, the savings in runway delays reaches up to 19%

compared to the base scenario. Results also revea that up to 5% of the total operationa time in
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the termina area can be reduced by upgrading the current voice-channel communication system
to the data-link communication system.

7.2 Recommendaions for Future Research

Applying Lagrangian relaxation techniques to ASP: Lagrangian relaxation can be applied to
solving integer programming problems exactly or approximately in a more effective fashion by
exploiting inherent specia structures. Lagrangian relaxation can aso be gpplied in conjunction
with RLT, by using it to efficiently solve the LP relaxations through duality considerations.

Consideration of gate allocation: It is frequently observed at busy airports that some landing
flights wait on the taxiway for gates to be vacated. Gate delay is another major source of total
delay which has not been considered in this research. Gates can be managed more efficiently by
solving a so-cdled "Gate Assgnment Problem (GAP)" (see Sherdi and Brown, 1994). Since
gates are facilities for both aircraft and passengers, the passenger delays are also considered in
GAP. The effect of GAP could be incorporated in future extensions of our research.

Modifying the shortest path algorithm in the time-dependent NAP: Waiting times at the
nodes can be considered when the dynamic shortest paths are calculated. Instead of detouring the
blocked link, the arcraft can wait at the crossing point until the blockage is released. This is
unlike the ground transportation network where any waiting at intersections is prohibited due to
the operational characteristics of highways. To take node waiting into account, Orda and Rom’s
study (1990) discussed in Chapter 4 can be applied.

Consideration of stochastic factors in the simulation model: For a more redistic analysis,
probahilistic functions can be used to characterize the following possible stochastic components:
1) the time duration for each phase of the communication process such as receiving request,
judging, sending commands, receiving confirmations, and communication processes,; 2) aircraft
performance on the runway with modifications to the descent flight path, the threshold crossing
height, the threshold crossing speed, braking speed, etc., and 3) the lift-off speed in the departure
procedure. In order to obtain these probability functions, a data collection process and Statistical
analyses could be conducted in the future. (All aspects of the second point above have aready
been studied in detail at Virginia Tech.)
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Enhancing certain features of the simulation model: It is assumed in the smulation model that
only a single runway is used for both arrival and departure operations. For the simulation model
to be more versdtile, it needs to be extended to handle a more diverse set of runway
configurations. These include multiple runways with dependent operationa conditions aong with
runway crossing procedures. In addition, there are several important features that have not been
implemented in this research: 1) weather condition, 2) multiple controllers, 3) pushback behavior
in association with gate occupancy, 4) service vehicle movements, 5) icing process, 6) holding
stack, etc. All these are valid extensions to this moddl.

Data and problem horizon: From a practica implementation point of view, it is desrable to
divide the entire data horizon into severd relatively smaler problem horizons. The fragmentation
of the data horizon provides us with two practical benefits. First, we can handle the data in a
reasonable computational time, which is a critica factor in rea-time ATC systems. For example,
as discussed earlier, the computational time for ASP grows dramatically as the number of aircraft
considered increases. Second, by making the problem horizon smdler, we can both reduce the
uncertainty and re-consider residual (or missed) operations in the next problem.

Using this approach, operations that have been considered during some imminent duration
periods are eiminated from further consideration (see Figure 7.1). The operations starting at the
end of the imminent duration period congdtitute new operations for the next problem, having
suitably revised input data. On the other hand, aircraft that are at the initia or intermediate stages
of operations will continue according to the prescribed related decisions as determined in the
previous periods problems. Figure 7.2 displays the problem structure and data- flows for the ASP

and NAP models in a multi-data-horizon framework.

Problem Horizon

l
—] | | |
Q- | |
Imminent Duratign Data Horizon

< >

Figure 7.1 Definition of Problem and Data Horizons.
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N = the number of divided data horizon

0 Desired/Original Schedule
for Arrivals and Departures
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Touchdown time Takeoff time
(t tdn)) (t toff)

L

Expected Exit Time Recommended
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(N/IXP)

v

Optimal Route
from the gate to runway
(or from the runway to gate)

Network Configuration -

Figure 7.2 Problem Structure and Data-FHow for the ASP and NAP Modd Framework (Multi-
Data Horizon).
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Node

dat a

Appendix A: List of Input Data

field 1

seri al number

field 2

i d number

node nunber for gate: 1-999,

node nunber for taxiway:
9999,
node nunber for runway:
2999.

10014

2001+

field 3

node type
G gate),
T( Taxi way),
R( Runway) ,
I (I ntersection).

field 4

X coordi nate

field 5

y coordi nate

Fl i ght schedul e

Edge

field 1 |serial nunmber
field 2 | flight nunber (ex, AA2456)
field 3 |Aircraft type (ex, B727-100)
field 4 | operation type
D( Departure)/ A(Arrival)
field 5 |Initial tinme (hour)
field 6 |Initial tinme (mnute)
field 7 |Initial tinme (second)
field 8 | Gate nunber
field 9 | Runway numnber
date
Line 1 field 1 |scale
field 1 | serial nunber
field 2 |fromnode id
field 3 |to node id
field 4 | Edge type
Line 2 - T( Taxi way) / R(Runway) / E( Runway
exit)
field 5 | Edge id
field 6 | maxi mum speed (nph)
field 7 |direction (ex, 2 (ways))
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Aircraft

*speed)

dat a
field 1| Serial nunber
field 2| Aircraft type B727-100
field 3 |wheel base (m 16. 23
field 4| OEW (Operating Enpty Wi ght, kg) | 72600
field 5 | MW (Mxinmm Landi ng Wi ght, kg) | 62400
field 6 | Clmx (Maxi mum Lifting 2. 59872
Coef ficient)
field 7 |Wng area (nf) 157. 90
field 8 |Wng span (nm 32.92
field 9 |Length (m 40. 59
field 10(normal taxiing speed (kntf hr) 30.0
field 11| maxi mum taxiing speed (knl hr) 40.0
field 12| maxi mum acceleration for taxiindg 2.0
(' s?)
field 13| maxi mum deceleration for taxiing-5.0
(' s?)
field 14(//normal takeoff speed (knt hr) /1 300.0
field 15| //maxi num accel eration fof// 9.80
rolling (ms?
field 16| //maxi num accel eration fof// 9.80
takeof f (mf s?
field 17|velocity at brake-release (ft/s) | 27.41
field 18|velocity at lifting-off (ft/s) 230. 6
field 19| acceleration at br ake-rel easq 6. 96
(ft/s?
field 20|kl 7.053357
field 21|k2 (accel. for takeoff = k1l — ki 0.00357250
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Appendix B: Constants used in the Smulation Model

/1Definition.h
#ifndef _DEFINITION H
#define _DEFIN TION H

L LR L LT

/1l Controls paraneters for for Sinulation
R

#def i ne BATCH JOB 0 /1 0: NO 1. YES If yes, then use "test.bat".
#define COMUN CATICN 1 /1 1: voice channel, 2: data link

#def i ne SEQUENC NG 1 // 1. pure FCFS,
/1 2. FOFS W landing priority, or
/1 3: SWAP squenci ng
#define spAlgorithmtd_SP_2 // static_SP. Static SP
/1 td_SP_1 : time-dependent shortest path algorithmfor rNode->all, for all tineSices

/Il td_SP 2 : time-dependent shortest path algorithm for rNode->all, for a SINAE
timeSlice
R R TR CAUTION ------mmmmmmmm o
/1
/1 "td_SP_1" may cause a nenory deficiency pobl em cause this nethod takes huge nenories such as
/1
11 int t d_short Pat h[ MAX_NCDES] [ MAX_NCDES] [ NunTi eS| i ces]
11 float td_shortTi ne[ MAX_NCDES] [ MAX_NCDES] [ NunTi meSl i ces]
/1
/1 Al so, takes nuch nore conputation tinme conparing wth nethod 2.
/1 I'n conclusion, not reconmended.
#def i ne PR NT_FLI GHT_STATE 0

#def i ne PR NT_CONTRCLLER STATE 0
/1 0: the flight/cotroller state file is not witten. (This will save tine alot.)

LR LR EE PP TP
/1 Definitions for Problem Size
LR LR EPEE
#def i ne MAX_NCDES 70 /1 Max. nunber of Nodes this sinmulation can handl e
#def i ne MAX_FLIGHTS 120 /1 Max. nunber of Flights this simulation can handl e
#def i ne MaxRunways 10 /1 Max. nunber of Runways this sinulation can handl e
#def i ne MaxNodesPer I ntersection 5 // Max. nunber of Nodes which are connected to one intersection
#def i ne MaxAcft Model s 50 /1 Max. nunber of AcftMdels this simlation can handl e
#define InfDi stance  99999.9 /1l Inifite distance for SP algorithm (considered as infinity)
#def i ne MaxNodel ndex 99999 /1 Max. index for node nunbering
L L L PP TR
/1 Definitions for Simulation Paraneters
R LR L LR R
/1 #def i ne Updat eTDSP 300 /1 Update TDSP every Updat eTDSP seconds and
/1 NunflineSlices = SimulationDuration / UpdateTDSP in Simul ation
#def i ne dt (float) 1.0 //second
#define StartHour 7
#define StartMnute 0
#define StartSecond 0
#def i ne EndHour 9
#define EndM nute 0
#defi ne EndSecond 0
#def i ne NunTi neSl i ces 180 /1 Max. nunber of tine slices to keep the Tine-dependent |ink travel
time for TDSP al gorithm
#define AddLinkTravel Time 3.5 /Il (sec) expected extra link travel time for each connflicting
flight
#def i ne MaxDel ay 600 // (sec.) should be variable to each probl em
#define BufferTineRatio 1.1 // normnal ROT for departure =
/] ready time to taxi + normal taxiing tinme * BufferTineRatio (=1.1) )
/1 this nunber is also used in "Random Generation"
R LR LR L PP L
/1 WK(ft) -> Sli(neter) Unit /1 Miltiply the conversion factor
R e EEE LR LR
#def i ne nmeter_per_ft 0. 305 /1 Conversion factor (ft -> neter)
#defi ne fps_per_nph 1. 4667 /1 Conversion factor (m/hr -> ft/sec)
#define kmper_mle 1. 609 /1 Conversion factor (mle -> km)
#define kg_per_I b 0. 4536 /1 Conversion factor (pound -> kg)
R R LR R
/1 Sl(nmeter) -> WK(ft) Unit
[ L EE L L PP E P
#define ft_per_meter 3.28 /1 Conversion factor (neter -> ft)
#define mle_per_km 0.62137 /1 Conversion factor (mle -> km
#define | b_per_kg 2.2046 /1 Conversion factor (kg -> pound)
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/1 Aircraft Qassification Wight
L L L L L P LR
#def i ne W Smal | Lar ge 60000
#define WlLargeHeavy 300000

/1 if acft weight < WSnallLarge (Ib) then this is "small"
/1 if acft weight > WlargeHeavy (Ib) then this is "heavy"

[ R L LR L LR PP TP

/1 Car-Fol | owi ng

L L PP

#def i ne m nGap 15 // mninumgap (second) for coflicting aircraft at Intersection

#define SafeD stanceFronxrossToStop 50 I/l Safe Distance from the cross end f
ft
(o #defi ne naxLegs 5 /1 maxi mum nunber of legs for a intersection.

/1 this nunber is the same to the maxi num nunber

intersection

#define u_f 41.0 //free flow speed (ft/sec) = 45kph

#define h_j 83.0 /1] am headway (ft/veh)

#define k_h /1 design paraneter for headwayCont r ol

#define k_s /1 design paraneter for speedControl

#define reactionTine 1.55 /1 delta_t for mcro car-follow ng nodel

#def i ne al pha_ .37 /1 sensitivity papraneter (for micro car-follow ng nodel)

#def i ne nornSpeed_nph 18.65 // normal taxiing speed (nph) = 30 (kph)

#def i ne nornBpeed_f ps (nor nBpeed_nph*fps_per_nph) // normal taxiing speed (fps)

/1 #defi ne saf etyDi st

L LR R

/1 For Landing Mdul e

L EE L LR E TP

11 1) for Flaring Qut phase

#def i ne gamma (2.75 * 3.1415 / 180) // radian

/1 Tangent value of the descent flight path angle (degree, ~N2.73,0.08"2))

#define h_th_ft 50. /1 Threashold crossing height (ft) (meter, ~N(15.2,3"2))

#define g_nps2 9.8 /1 Acceleration of gravity (neter/sec”2)

#define n_fl 1.1 /1 Flare | oad factor (1.1~1.3)

#define delta_m 25.0 /1 Correction distance for

runway | ength

(100 mrunway | ength)

/] if increase this, the TDSP will be nore effective.

/1 Standard atnosphere air density at 500m
/1 weight factor for landing weight (= (CEW+ MW * w Factor)

I
I
I
I
I
I

2

#define rho 1.1673

#defi ne wt Fact or 0.5

/1 2) for Free Rolling (FR phase
#define tineFR 2

#def i ne accFR _nps2 -0.7

11 3) for Braking phase

#def i ne wt For DecSpd

#def i ne deci si onSpdHeavy_nps 35
#defi ne deci si onSpdLar ge_nps 27
#def i ne accBrakeB727_nps2 -2.19
#def i ne accBrakeB737_nps2 -2.25
#def i ne accBrakeB757_nps2 -2.01
#def i ne accBrakeDC9_nps2 -2.03
#def i ne accBrakeMDXBO_nps2 -2.05
#def i ne accBrakeDefaul t _nps2 -2.10
/1 4) for Coasting phase

#defi ne EXI T_SPEED nps 15
#define EXI T_SPEED f ps 49,
L L L L L P LR
/1l nterEventTi mes in communi cation
[ e T LT TP LT

/1 Time for free rolling (sec)
/1 the acceleration for Free Rolling (msec”2)

41000

or aircraft

of conflicting

t ouchdown di at nce

(kg/ b

/1 decision speed for heavy aircraft (w > 41
/1 decision speed for large aircraft (w < 41

decal eration
decal eration
decal eration
decal eration
decal eration
decal eration

for braking phase (B727)
for braking phase (B737)
for braking phase (B757)
for braking phase (DC9)
for braking phase (MX8O)
for braking phase (el se)

/1 exit speed fromthe runway

#if (COMMIN CATION == 1) // VO CE_CHANNEL

#def i ne wai t ngToCont act Ti me

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne

sendi ngRequest Ti ne

10.0//10.00 // for waiting to the next contact

-N(2. 19,
~N( 2. 25,
~N(2. 01,
~N( 2. 03,
~N( 2. 05,
~N( 2. 05,

3)

000 | b)
000 | b)

416/2)
47172)
4782)
41472)
3872)

0.
0.
0.
0.
0.
0. 387°2)

flights at

logi c in vehicle-follow ng nodel
logi c in vehicle-foll owi ng nodel

/1 due to either comunication jam or pushback congestion for dep
4.0//11.00 11

recei vi ngRequest Ti me 4.0//11.00 11
wai t i ngConmandTi e 3.0 /1
j udgi ngTi ne 3.0 /1
recei vi ngConmandTi me 4.0//14.00 11
sendi ngComandTi ne 4.0//14.00 /1
sendi ngConfirnationTine 3.0//15.00 11
reci evi ngConfirmationTi ne 3.0//15.00 11

#el se // DATA LINK

#def i ne wai t ngToCont act Ti me

1.0

/1 for waiti
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for sendi ngRequest
for receivi ngRequest
for waitingComand
for judging

for receivi ngComand
for sendi ngComand

(flight)
(control
(flight)
(control
(flight)
(control

for sendingConfirmation(flight)
for receivingConfirmation(controller)

ng to the next contact

ler)
ler)

ler)

to stop.

a

in association wth



/1 due to either commnication jam or pushback congestion for

dep

#def i ne sendi ngRequest Ti ne 0.0 /1 for sendi ngRequest (flight)
#def i ne recei vi ngRequest Ti ne 0.0 /1 for receivi ngRequest (controller)
#def i ne wai ti ngConmandTi e 3.0 /1 for waitingComand (flight)
#defi ne judgi ngTi me 3.0 /1 for judging (controller)
#def i ne recei vi ngConmandTi ne 0.0 /1 for receivi ngConmand (flight)
#def i ne sendi ngCormandTi e 0.0 /1 for sendi ngCormand (controller)
#def i ne sendi ngConfirmationTime 0.0 /1 for sendingConfirmation(flight)

#def i ne reci evi ngConfirmationTine 0.0 /1 for receivingConfirmation(controller)

#endi f

#define  Total Communi cationTi me (sendingRequest Tine  +  waiti ngCommandTi ne + receivingCommandTine  +
sendi ngConfirnati onTi ne)
#def i ne MaxEarl i er Cont act Ti ne 15 /1 if flight contact no earlier than the
schedul ed time
11 by MxEarlierContactTine then he can continue
to cormminicate

#def i ne Pl LOT_SCAN RATE 3.0 11 Pi | ot det ect the potential conflict every
PI LOT_SCAN_RATE secconds
#def i ne TOL_TAXI NG _SPEED CGAP 0.01 /1 Tolerable speed gap between nornal Taxi Speed and
current Speed
/1 (this is only for the first flight in the Iink)

/1 if abs(nornal Taxi Speed - currentSpeed) > TO_TAXING SPEED GAP, then need accel or
decel
#define maxval ue(a, b) (((a) > (b)) ? ((a) : (b))
#define ninvalue(a, b) (((a) > (b)) ? ((b) : (a)))

#endi f
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Appendix C: Header Filesfor the Smulation Mode

/1 Acft Model . h
#i f ndef _ACFTMODEL_H
#def i ne _ACFTMODEL_H
class AcftMdel {
public:
Acf t Model ();
AcftModel (char* id, float wo_m float oew kg, float mw kg,
float cl_m float wa_n2, float ws_m float |I_m
float vT_kph, float vMI_kph, float aMI_nps2, float dMI_nps2,
float vTo_kph, float aMR nps2, float aMro_nps2,
float vl, float v2, float al, float k1, float k2);
~Acf t Model ();

/I readers

char* read_id();

float read_cl _nmax();

float read_spdAccel Coeff();

S I e LR E L LT T T
float read_wheel Base_n{);

float read_CEWkg();

float read_MWkg();

float read_w ngArea_n2();

float read_w ngSpan_n();

float read_l ength_n();

/1 Taxi ng
float read_vel Norniraxi _kph(); float read_vel Norniraxi _nps();
float read_vel MaxTaxi _kph(); float read_vel MaxTaxi _nps();

float read_accMaxTaxi _nps2();
float read_decMaxTaxi _nps2();
float read_decNornifaxi _nps2();
float read_distNornal Stop_n();

/1 F aringQut

float read_timeFl are();

float read_vel Approach_kph(); float read_vel Approach_nps();
float read_vel Fl are_kph(); float read_vel Flare_nps();
float read_vel Touchdown_kph(); float read_vel Touchdown_nps();

float read_accFl are_nps2();

/1 FreeRolling
float read_accFreeRol | _nps2();
float read_timeFreeRoll ();

/1 Braking
float read_decisionSpd_nps();
float read_accBrake_nps2();

/1 Takeof f

float read_vel Takeof f _kph(); float read_vel Takeof f_nps();
float read_accMaxRol | _nps2();

float read_accMaxTakeof f_nps2();

float read_wheel Base_ft();
float read_CEWIb();

float read_MWIb();

float read_w ngArea_ft2();
float read_w ngSpan_ft();
float read_|ength_ft();

/1 Taxi ng
float read_vel Nor nTaxi _nph(); float read_vel Nornifaxi _f ps();
float read_vel MaxTaxi _nph(); float read_vel MaxTaxi _fps();

float read_accMaxTaxi _fps2();
float read_decMaxTaxi _fps2();
float read_decNorniaxi _fps2();
float read_di stNornal Stop_ft();

/1 FlaringQut

float read_vel Approach_nph(); float read_vel Approach_fps();
float read_vel Fl are_nph(); float read_vel Flare_fps();
float read_vel Touchdown_nph(); float read_vel Touchdown_fps();

float read_accFl are_fps2();
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/1 FreeRolling
float read_accFreeRoll _fps2();

/1 Braking
float read_decisionSpd_fps();
float read_accBrake_fps2();

/1 Takeof f

float read_vel Takeof f _nph();
float read_accMaxRol | _fps2();
float read_accMaxTakeof f_fps2();

I
I
I
I

f1 oat
fl oat
f1 oat
f1 oat
fl oat

read_vl_fps();
read_v2_fps();
read_al_fps2();
read_k1();
read_k2();

private:
char*
1 oat

id_str;
spdAccel Coef f,
cl _max;

I
I

/1 D mensi ons
wheel Base_m
CEWkg,
MWkag,

wi ngAr ea_n?®,
w ngSpan_m

I ength_m

/1 Taxing

vel Nor nTaxi _kph,
vel MaxTaxi _kph,
accMaxTaxi _nps2,
decMaxTaxi _nps2,
decNor mTaxi _nps2,
di st Nor nal St op_m

/1 Landi ng

/1 1) Flaring phase
vel Stal | _kph,

/1 vCrui se_kph,

vel Appr oach_kph,
vel Fl are_kph,

vel Touchdown_kph,
distFlare_m
accFl are_nps2,

vOr

decel erati on)
tinmeFl are,
//dFl are_m
/1tFlare,

vel Nor nTaxi _nps,
vel MaxTaxi _nps,

vel Stal | _nps,

vel Appr oach_nps,
vel Fl are_nps,
vel Touchdown_nps,

float read_vel Takeof f _fps();

vel ocity at brake-rel ease (ft/sec)
velocity at lifting-off (ft/sec)
acceleration at lifting-off (ft/sec”2)
a=kl+k2*v

spdAccel Coef f (=k) = maxAccel
max. landing lift coeffcient

| maxSpeed;

I
I
I
I
I
I

nor nal

nmaxi mum accel
maxi mum decel
nornmal decel

I
I
I
I
I
I
I

stall
nor nal
nor mal

speed
ui se_nps,
nor nal
flaring

I
I

Il 2) Free Rolling phase

accFreeRol | _nps2,
ti neFreeRol |,
//tFreeRol ling,
/1 dFreeRol |ing_m

/1 3) Braking phase
deci si onSpd_nps,
accBrake_nps2,

/1t Brake,

/1 dBr ake_m

/1 4) Coasting phase
/1 aCoast _nps2,

/1 dCoast _m

/1t Coast _m

/1 Takeof f

vel Takeof f _kph,
accMaxRol | _nps2,
accMaxTakeof f _nps2;

/1 nor nal
/1 maxi num accel
/1 maxi mum accel

vel Takeof f _nps,

st oppi ng di stance

taxi ng speed
maxi num t axi ng speed

for
for
for

taxi ng
taxi ng
taxi ng

at normal taxing speed

crui sing speed
appr oach speed
threshol d crossi ng speed
Touchdown speed
Fl aring di stance

accel eration (actual l'y

flaring duration
fixed Flare dist,

cumul ative Flare dist

Takeof f speed

for rolling
for takeoff



WK Lnit (The British Units)

/1 Di mensi ons
wheel Base_ft,
CEWI b,

MWI b,

w ngArea_ft2,
wi ngSpan_ft,
length_ft,

/1 Taxing

vel Nor nTaxi _nph, vel Nor nifaxi _f ps, /1 nornal taxing speed

vel MaxTaxi _nph, vel MaxTaxi _f ps, /1 maxi num t axi ng speed

accMaxTaxi _f ps2, /1 maxi num accel for taxing

decMaxTaxi _f ps2, /1 maxi mum decel for taxing

decNor nfaxi _f ps2, /1 normal decel for taxing

di st Normal Stop_ft, /1 stopping distance at nornmal taxing speed

/1 Landi ng

/1 1) Flaring phase

vel Stal | _nph, vel Stal |l _f ps, /1 stall speed (constant from equation)

/1 vCr ui se_nph, vQr ui se_f ps, /1 normal cruising speed (constant from equation)

vel Approach_nph, vel Approach_f ps, /1 nornal approach speed (constant from equation)

vel Fl are_nph, vel Fl are_f ps, 11 threshol d crossi ng speed (const ant from
equat i on)

vel Touchdown_nph, vel Touchdown_f ps, /1 nor nal Touchdown speed (const ant from
equat i on)

distFlare_ft, /1 flare dist (constant from equati on)

accFl are_f ps2, /1 average accel eration during Flaring out phase

/1 2) Free Rolling phase
accFreeRol | _f ps2,

/1 3) Braking phase
deci si onSpd_f ps,
accBrake_f ps2,

/1 4) Coasting phase

/| Takeof f

vel Takeof f _nph, vel Takeof f _f ps,
accMaxRol | _f ps2,

accMaxTakeof f _f ps2,

vl_fps, // velocity at brake-rel ease (ft/sec)
v2_fps, // velocity at lifting-off (ft/sec)
al_fps2,// acceleration at lifting-off (ft/sec”2)
k1, /Il a=kl- k2*v
k2;

h

#endi f
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/1 Array3D.cpp : Defines the entry point for the consol e application.
/1 3DARRAY. h

#i fndef _3DARRAY_H

#def i ne _3DARRAY_H

#i ncl ude "ostreamh"

tenpl ate <cl ass type> cl ass TwoDArr ay{
public:
TwoDArray(int nRows, int nCols): mnRows(nRows), mnCol s(nCol s){
m p2DDat a = new t ype[ nRows*nCol s] ;

}
~TwoDArray() {

del et e m p2DDat a;
}

type& operator()(int nRow, int nCol)

I/ check di nensi ons
i f(nRow<0 || nRow>=m nRows || nCol <0 || nCol >=m nCol s)
{

throw "Trying to acces array out of bounds\n";
}
return *(mp2DData + nRowmnCol s + nCol );

private:
type* m p2DDat a;
const int mnRows;
const int mnCols;

tenpl ate <cl ass type> class ThreeDArray{
public:
ThreeDArray(int nPages, int nRows, int nCols): mnPages(nPages), m nRows(nRows), mnCol s(nCol s){
m p3DDat a = new t ype[ nPages* nRows*nCol s] ;
i f(mp3DData == NULL)
cout << "Array allocation error: Too big array allocation in ThreeDArray
constructor.\nPl ease use the td_SP 2 as a TDSP met hod\ n\n";

}
~ThreeDArray(){

del ete m p3D0Dat a;
}

type& operator()(int nPage, int nRow, int nCol)
{

/I check di mensi ons

i f(nPage<0 || nPage>=m nPages | |
nRow<0 || nRow>=m nRows | |
nCol <0 || nCol >=m nCol s)

cout << "nPage" << nPage << " nRow' << nRow << " nCol" << nCol ;
throw "Trying to acces array out of bounds\n";

return *(mp3DData + nPage*m nRows*mnCol s + nRowrm nCol s + nCol ) ;
}
private:
type* m p3DDat a;
const int mnPages;
const int mnRows;
const int mnCols;
oo
#endi f
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/1d ock. h
#i fndef _CLOK H
#define _QLOK_H

#include "Definition.h"
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cl ass Normal Ti mef{
public:
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Nor nal Ti ne() ;
~Nor mal Ti me() ;
Normal Time(int h, int m float s);
void wite_Normal Time(int h, int m float s);
prot ect ed:
int hour, mnute;
float second; /1 ( float to keep the deci-second )

b

cl ass SystenTi ne{
public:
Syst enTi ne();
~Syst enTi me() ;
prot ect ed:
float systenBecond; /1 ( absolute time starting fromO0.0 second)

class dock: private Nornal Tine, private Systentine {
public:

a ock();

~Q ock();

d ock(float st);

Qock(int h, int m float s);

/1 reader and witer for Normal Ti me

void wite_Tine(float st);

void wite_Tine(int h, int m float s);

int read_hour ();

int read_mnute();

float read_second();

float read_systentime();

void convert SystenTi neToNor mal Ti me(fl oat st);

float convertNornal Ti meToSystenTine(int h, int m float s);

/1l reader and witer for SystenTine

voi d advanceTi me();
void advanceTi ne(float deltaT);

b

#endi f
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/1 Control ler.h

#i fndef _OONTROLLER H
#def i ne _CONTROLLER H
#i ncl ude "AcftMdel . h"
#i ncl ude " ARRAY. h"

#i ncl ude "d ock. h"
#incl ude "Definition. h"
#i ncl ude "Edge. h"
#include "Flight.h"

#i ncl ude "Header. h"

#i ncl ude "Node. h"

#i ncl ude "Point.h"

#i ncl ude "@ aph. h"

#i ncl ude "Taxi Edge. h"
#i ncl ude "Taxi EdgeLi st. h"
#i ncl ude "Type. h"

#i ncl ude "Qd ock. h"
#include "Qh"

#i ncl ude "Runway. h"

class Controller{

public:
Controller();
~Controller();

Control ler(int totNodes, Flight* f_p, Node* n_p, Gaph* FS_p = NLL, Gaph* BS p = NUL);
virtual void conmunicate(Flight* f, FlightState_Type currFlightCoomBtate, float sysTine);
void static_D jkstra(unsigned int rindex, int totNodes, ofstrean& fStar_out);

void findStaticPath(Flight* f, int totNodes, unsigned int sPath[]); //find enRoute

/1find & wite shortPath

void findStaticPath(int totNodes, unsigned int rindex, unsigned int d, unsigned int sPath[]);
/1 update the TDSP fromthis flight's origin to other nodes.

void td Dijkstra_Forward(Flight* cFlight_p, int totNodes, ofstrean& fowardStar_out);

void td_D jkstra_Forward(unsigned int rindex, int totNodes, ofstrean& forwardStar_out);

/1 find Time Dependent Shortest Path for all time slices fromrNode

11 -> all nodes, i.e., forward search style
void td_D jkstra_Forward_2(float sTime, Flight* cFlight_p, int totNodes, ofstrean& fStar_out);
voi d td_Dj kstra_Forward_2(fl oat sTi e, unsi gned int r I ndex, int t ot Nodes, of strean&

forwardStar_out);
/1 find Time Dependent Shortest Path for a single start time slice from rNode -> all nodes,
i.e., forward search style
int findTot al Conf Fl i ght s( Edge* curr Edge_p, int tSlice); // find the nunber of conflicting
flights on the all conflicting edges
void findTDPat h(Flight *f, int totNodes, unsigned int td_sPath[], float sTine);
void findTDPath(int totNodes, wunsigned int olndex, wunsigned int dindex, unsigned int td_sPath[],
int timeSice);
voi d updat e_NumAcft _Travel Ti mes( Taxi EdgeLi st* nTaxi EdgeLi st_p, float sysTine);
Taxi EdgeLi st* nake_Taxi EdgeLi st _p(Flight* f, SP_AlgorithmspMthod, int tineSice = -999);
Taxi EdgeLi st * nmake_Taxi EdgeLi st _p(i nt oNodel ndex, int dNodel ndex, SP_Al gorithm spMet hod, int
timeSlice = -999);

/lupdate the flight strips

std::list<Flight*> read_pendi ngFlightList();
std::list<Flight*> read_processi ngFlightList();
std::list<Flight*> read_doneFlightList();

voi d pushbackPendi ngLi st (Flight* f_p, ofstrean& | og_out, char* controllerNane);
voi d pushbackPr ocessi ngLi st _1(i nt sTi ne, Flight* f_p, of strean& | og_out, char*
control | erNanel, char* control | er Nane2);

/1 remove from pending, and pushback to processing list

voi d pushbackProcessi ngList_2(int sTine, Flight* f_p, ofstrean& | og_out, char* controllerNane);
/1 just pushback to processing |ist

voi d pushbackDoneList(int sTine, Flight* f_p, ofstrean& | og_out, char* controllerNane);

/1 remove from processing list, and pushback to done Iist

virtual void judge(ofstrean& | og_out, Flight* f_p, float sysTine);

/1 readers
Control | er State_Type read_currState();
fl oat read_short Ti me(unsigned int i, unsigned int j);
fl oat read_td_shortTines(unsigned int r, unsigned int d, int tS);
f1 oat read_td_shortTi me_2(unsigned int r, unsigned int d);
Flight* read_currFl i ght Conmp();
Fl i ght* read_pr evRunwayCccupi edFl i ght _p();
fl oat read_del ayTi meFor Fl i ght ();
Il witers
voi d wite_currState(ControllerState_Type cst);
voi d write_prevRunwayCeccupi edFl i ght _p(Flight* pf);
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voi d write_currF ightCommp(Flight* cf);
voi d write_del ayTi meFor Fl i ght (float dTFF);
voi d wite_initHightsList_p(Fight* f_p); // wite the pointer to the starting point
Flights linked Iist
prot ect ed:
Control |l erState_Type currState;
Control | er Message_Type deci si on;
float del ayTi meForFl ight; /lif delayTime > 0.00, then the flight wll contact L/C again

del ayTi ne.

/1 for STATI C SHORTEST PATH

unsi gned int short Pat h] MAX_NCDES] [ MAX_NCDES], //shortest path matrix

sPat h[ MAX_NCDES] ;
i I/travel

fl oat short Ti me[ MAX_NCDES] [ MAX_NCDES]
/1 for TI ME_DEPENDENT SHORTEST PATH
unsi gned int td_sPat h[ MAX_NCDES] ;

//shortest path fromone node to the other nodes
Time for sem -dynanic

unsi gned int td_short Pat h_2[ MAX_NCDES] [ MAX_NCDES]; //shortest path matrix

f1 oat
d ock next Event Ti ne;
Flight* initHFightsList_p,

* prevRunwayCQccupi edFl i ght _p, // previous Flight which occupied runway

* currH ight Comm p; 11

Node* nodes_p; 11
Edge** i ni t EdgeNodes_p; /1
Q aph* forwardStar_p, /1
* backwar dSt ar _p; 11

t d_short Ti me_2[ MAX_NCDES] [ MAX_NCDES] ;

/ltravel Time for seni-dynamc

/1l pointer to the starting point of Flights |inked-list

(for
nmn. separation rule)

current communi cating Flight

pointer to the starting point of Nodes array

pointer to the starting point of EdgeNodes array

pointer to the airport network with forwardStar_p

pointer to the airport network wth backwardStar_p

std::list<Flight*> pendingFlightList,
processi ngFl i ght Li st,
doneFl i ght Li st;

std::list<Flight*> :iterator p;

[ kK ko ko ok ko ok ok ok

m m\"’m_LER *k*******k*******k****l
class G oundController: public Controller{
public:

QG oundControl ler();

of

in

the

QoundControl ler(int totNodes, Flight* f_p, Node* n_p, Gaph* FS_p = NLL, Gaph* BS p = NULL);
~Q oundControl ler();
virtual void comunicate(ofstrean& |og_out, Flight* f_p, FlightState_Type currFlight Connttate,

float sysTine);

virtual void judge(ofstrean& | og_out,
private:

Taxi EdgeLi st* newTaxi EdgeLi st _p;

Flight* f_p, float sysTine);

/1 pointer to the starting point of New Taxi Edge |i st

/**************** Lm_ mm_LER **********************/
class Local Control ler: public Controller{
public:
Local Control ler();
Local Control ler(int totNodes,
NULL, @G aph* BS_p = NULL);
~Local Controller();
vi rtual voi d conmuni cat e( of st rean&
currFlight CormBtate, float sysTine);
virtual void judge(ofstrean& | og_out, Flight* f_p, float sysTine);
fl oat j udgeFor A ear ance(f | oat sysTi ne); // deci de the cl earance
del ayTi neFor Fl i ght if needed.

Flight* f_p, Node* n_p, int totRwy, Runway **rwy_p, G aph*

| og_out, Flight* f_p,

for t akeof f/ | andi ng
void wite_prevFlight_p(Fight* pF);
void wite_currFlight_p(Flight* cF);
void wite_nextFlight_p(Flight* nF);
Flight* read_prevFlight_p();
Flight* read_currFlight_p();
Flight* read_nextFlight_p();
private:
int totRunway;
Runway **runway_p;
Taxi EdgeLi st* newRunwayEdgeLi st _p; //  pointer to the starting point of New RunwayEdge
for Takeof f/Landi ng
/lprevious flight on the runway operation
*currFight_p, /lcurrnet flight on the runway operation
*next Fl i ght _p; /I next flight on the runway operation

float mnSep[4][3][3]; // Mn. Separtion Rule

Flight *prevFlight_p,

b

#endi f
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/1 Edge. h

#i fndef _EDGE H

#defi ne _EDCE H

#i ncl ude "Type. h"

#include "Definition. h"

#i ncl ude "Node. h"

#include <vath.h> //for the "sgrt" and "pow'

class Flight;
cl ass Edge{
public:
Edge() ;
~Edge();
Edge(float scale, char* id_str, char type, Node* f, Node* t, float r);
Il readers
char* read_id_str_p();
Edge_Type read_edgeType();
Node* read_f roniNode_p() ;
Node* read_t oNode_p();
int read_from\odel d();
int read_t oNodel d();
int read_f romNodel ndex() ;
int read_t oNodel ndex() ;
f1 oat read_restrict();
f1 oat read_di stance_ft();
fl oat read_di stance_mn();
fl oat read_travel Tine();
float* read_travel Ti mes(); /1 return the pointer to array of "the travel Ti mes"
fl oat read_travel Tines(int tSice);
Fl i ght* read_flightlnEdge_p(); /1 return the pointer to the flight in the edge
int read_nuntl i ght | nEdge() ;
int read_nunfl i ght I nEdge(int tSice); //
Edge* read_next Edge_p();
Edge* r ead_next BSEdge_p() ;
Il witers
voi d wite_distance_ft(float d_ft);
voi d wite_distance_n(float d_nj;
voi d wite_travel Time(float tt);
voi d add_nunAcft (int tSice);
voi d wite_travel Tines(int tSice, float tt);
voi d wri t e_next Edge_p(Edge* nxt_p);
voi d wri t e_next BSEdge_p( Edge* nxt BS_p);
voi d wite_flightlnEdge p(F ight* tenpFlightlnEdge_p);
voi d write_nunflightlnEdge(int nFlE);
private:
char *id_str_p;
Edge_Type edgeType;
fl oat di stance_ft,
di stance_m
travel Ti ne,
restrict; /le.g. exit speed if this edge is exit edge.
f1 oat *travel Ti nes; /1 For Tine dependent SP al gorithm (Variable Array)
/1 Qurrent EdgeDi rection_Type currentDirection;
Node *from\ode_p,
*t oNode_p;
Fli ght *f1ight!nEdge_p;
int nunfl i ght | nEdge,
*nunmAcft; /1 # of wvehicles in the edge for Time dependent SP algorithm
(Variabl e Array)
Edge *next Edge_p, /1 Pointer to NextEdge in forwardStar
*next BSEdge_p; /1 Pointer to NextEdge in backwardStar
h
#endi f
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11
#i

Flight.h
fndef _FLIGHT_H

#define _FLIGHT_H

#i
#i
#i
#i
#i
#i
#i
#
#
#i
#i
#
#i

cl
cl
cl

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

"Type. h"

"Poi nt. h"

" Acft Model . h"
"Header . h"
"Poi nt. h"
"Position. h"
"d ock. h"

"G aph. h"
"Edge. h"
"Runway. h"
"Taxi Edge. h"
"Taxi EdgelLi st . h"
"Definition.h"

ass GoundController;
ass Local Controller;
ass Flight{

public:

Flight(char* fld_p, AcftMdel* ndl _p,
int hour_norm int mn_norm float
int hour_swap, int mn_swap, float
Runway** runway_p,
QG oundControl | er* GC p,

~Hight();

/1 Communi cati on
bool

char oper,
sec_norm
sec_swap,
int totRunway, Node* nodes,
Local Control ler* LC p);

int sHour,
int hour_fcfs,
int glndex,

int sMn,
int mn_fcfs,
char *rld_p,

checkNeedToGComn( f | oat nxt ConmEvent Ti ne, float sysTine);

voi d comuni cat e@ oundControl | er (of strean& | og_out, float sysTine);
voi d communi cat eLocal Control | er (of strean& | og_out, float sysTine);

/] TakeCr f
void roll();
void liftaf();

/1 Landi ng

void flareQut();

void freeRoll();

voi d brake();

voi d coast (fl oat dToExit);

voi d exi t Runway(fl oat dToExitEnd);
voi d parkingFor Arrival ();

Node* findExit Node_p();

float findD stToExit();

float findD stToTaxi Destination();
float findD stToTheCross();

/1 Taxi ng

voi d taxi ToDest (A ock sysTi ne,
voi d nove( Taxi EdgeLi st* crrEdgelLi st _p,
voi d deQueue( Edge* curr Taxi Edge_p) ;
voi d enQueue( Edge* next Taxi Edge_p) ;

float scale, ofstrean& |og_out);
int desNodel ndex) ;

float scale, ofstrean& |og_out);

col | i si onDet ect Resol ve(d ock sysTine, float scale, ofstrean& |og_out);

float conputeNextAccel _1();

float computeNext Accel _2(float d, float v_fnl);
float conput eNext Accel _3(d ock sysTine);

float conputeSpdAfterD(float di st ToNextExit);
float conputeNext Taxi Accel (A ock sysTi e,

voi d

float carFollow ng();

/lStatistics
voi d statistics(ofstrean& | og_out);

/1 For sorting the STL list (see 651 pp., in "conplete reference C+")
/1 The required operator overloadings are dependent on the conpiler.
friend bool operator < (Flight &1, Flight &02);

friend bool operator > (Flight &1, Flight &02);

friend bool operator == (Flight &1, Flight &2);

friend bool operator != (Flight &1, Flight &02);

/| Reader s

char* read_flightld_p();

char* read_runway! d_p();

Acft Model * read_acft Mdel _p();

Qper ati on_Type read_operationType();

int r ead_or gNodel ndex() ;

int read_desNodel ndex() ;

int read_gat eNodel ndex() ;

int read_exi t Ent er Nodel ndex() ;
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float sSec,

float sec_fcfs,

Q@ aph* FS_p, Gaph* BS p, Hight* pFlL_p,



int read_cur r Nodel ndex() ;
int read_next Nodel ndex() ;
Poi nt read_currPoint();

f1 oat read_curr Speed();

Posi ti on* read_currPosition_p();
fl oat read_next Accel ();

Control | er Message_Type

Priority_Type

Confl i ct Checked_Type

read_per m ssion();
read_priority();
read_conflict Checked();

Flight* read_conflictingFlight_p();

fl oat read_depTi meAt Oross();

fl oat read_next ConmEvent Ti me() ;

f1 oat r ead_next MoveEvent Ti ne() ;

fl oat read_r ot Ti meRecormended() ;

fl oat read_pushbackTi neReconmended() ;

f1 oat read_rot Ti meNor () ;

fl oat read_rot Ti meFcfs();

fl oat read_r ot Ti meSwap();

f1 oat read_phaseTi meSt anp_b() ;

fl oat read_phaseTi meSt anp_e() ;

fl oat read_| i nkTi neSt anp_b() ;

f1 oat read_| i nkTi neSt anp_e() ;

fl oat read_t axi ngTi neSt anp_b() ;

fl oat read_t axi ngTi neStanp_e();

f1 oat read_rot Ti neSt anp_b();

f1 oat read_rot Ti neSt anp_e();

fl oat read_QGC Ti meSt anp_b();

fl oat read_QGC Ti meStanp_e();

f1 oat read_LC Ti meStanp_b();

fl oat read_LC TimeStanp_e();

fl oat read_t axi ngDel ay_sec();
f1 oat read_r unwayDel ay_sec();
fl oat read_conm3Del ay_sec();
fl oat read_commCDel ay_sec();

f1 oat read_travel Tinme();

fl oat read_| ast Taxi EdgeLength_ft();

QG oundControl | er*
Local Control | er*
Q aph*

Q aph*

Taxi EdgeLi st *
Taxi EdgeLi st *
Edge*

read_groundControl | er _p();
read_| ocal Controller_p();
read_f orwardStar_p();
read_backwar dStar_p();
read_t axi EdgeLi st _p();
read_r unwayEdgeLi st_p();
read_cur r Taxi Edge_p();

Edge* read_cur r RunwayEdge_p() ;

Node* read_exi t Node_p();

Flight* read_| eadi ngFl i ght I nEdge_p() ;
Flight* read_f ol | owi ngFl i ght | nEdge_p();
Flight* read_next Fl i ghtlnList_p();
Flight* read_prevFlightInList_p();

Flight State_Type
Flight State_Type
int

int

/I Witers

friend of stream &oper at or <<(of stream &tream Fight f);

read_currMveState();
read_currCommBtate();
read_nunilri al ToCont act LQ() ;

read_nuniri al ToCont act Q) ;

void wite_currMveState(FlightState _Type fst);
void wite_currCommBt at e(Fli ght State_Type fst);
void wite_currSpeed(float cSpd);

voi d wite_perni ssion(Control | er Message_Type pt);
void wite_priority(Priority_Type pr);

voi d wite_conflictChecked(ConflictChecked_Type cO);
void wite_conflictingFlight_p(Flight* cF);

void wite_depTi meAt Oross(float dTAQ;

voi d wite_nextAccel (float nxtAccel);

voi d wite_systen nput Ti me(float syslnputTine);
void wite_next ConnEvent Ti ne(fl oat next CETi ne);
voi d wite_next MveEvent Ti me(fl oat next METI ne);
void wite_startTine(float stTine);

void wite_phaseTi neStanp_b(fl oat sysTine);

voi d wite_phaseTi neStanp_e(float sysTine);

void wite_|linkTi meStanp_b(float sysTine);

void wite_linkTineStanp_e(float sysTine);

voi d wite_taxingTi meStanp_b(float sysTine);

voi d wite_taxingTi meStanp_e(float sysTine);

void wite_rotTi meStanp_b(float sysTine);
void wite_rotTi neStanp_e(fl oat sysTine);
void wite_GC TineStanp_b(float sysTine);
void wite_GC TimeStanp_e(float sysTine);
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/1 the begin/end time stanp of taxing

/1 delay due to taxiway congestion

/1 del ay due to runway congestion
/1 del ay due to communication jam
/1 delay due to communication jam

/1 wite the sinulation input tinmne.

/1 the begin/end time stanp of taxing



void wite_LC TimeStanp_b(float sysTine);
void wite_LC TineStanp_e(float sysTine);
voi d wite_taxi ngDel ay_sec(float tTD);

voi d add_nuniri al ToCont act LQ(); /1 add by 1
voi d subtract _nuntri al ToCont act LQ() ; /1 subtract by 1
voi d add_numrri al ToCont act Q) ; // add by 1
voi d subtract _nuniri al ToCont act GX) ; /1 subtract by 1

voi d add_t axi ngDel ay_sec(float tD sec); // delay due to taxi way congestion
void add_runwayDel ay_sec(float rD sec); // delay due to runway congestion (not used for the tine

bei ng)
voi d add_com3Del ay_sec(fl oat cQCD sec); /1 delay due to communication jam
voi d add_comiCDel ay_sec(fl oat cLCD sec); /1 delay due to communication jam
void wite_| ast Taxi EdgeLength_ft (float | TEL_ft);
voi d wite_taxi EdgeLi st_p( Taxi EdgeLi st *newEdgelLi st_p);
voi d wite_runwayEdgeLi st _p( Taxi EdgeLi st *newEdgeLi st_p);
void wite_currTaxi Edge_p( Edge* cTaxi Edge_p);
voi d wite_curr RunwayEdge_p( Edge* cRunwayEdge_p);
voi d wite_orgNodel ndex(int oN);
void wite_desNodel ndex(int dN);
voi d wite_exitNode_p(Node* eNode_p);
void wite_currPosition_p(Position* cPosition_p);
void wite_groundController_p(GoundController* gc_p);
void wite_|local Controller_p (Local Controller* lc_p);
void wite_| eadi ngFl i ght | nEdge_p(Flight* | FIE p);
void wite_nextFlightlnList(Flight* nxt_p);
void wite_prevFlightlnList(Flight* prv_p);
voi d wite_rot Ti neRecommended(fl oat rotRec);
voi d wite_pushbackTi neReconmended(fl oat pbRec);
prot ect ed:
Flight(); // constructor. never be used.
private:
char* flightld_p,
* runwayl d_p;
Acf t Model * acf t Model _p;
Qperati on_Type oper ati onType;
FlightState_Type currMveState,
curr Conmst at e;
bool ever St opped| nLast Edge;
Control | er Message_Type per ni ssi on;
Priority_Type priority;
ConflictChecked_Type confli ct Checked;
Flight* conflictingFlight_p;// Conflicting flight for taxing
d ock depTi neAt O oss;
int or gNodel ndex,
desNodel ndex,
cur r Nodel ndex;
Node* gat eNode_p;
Posi ti on* curr Posi tion_p;
f1 oat curr Speed,
next Accel ;
d ock syst em nput Ti ne,
next ConmEvent Ti ne,
next MoveEvent Ti e,
pushbackTi meReconmended, /1 for deprtures
r ot Ti meReconmended, /1 assigned to one of rotTi meNormor rotTi neSnap.
rot Ti meNor m
rot Ti meFcf s,
rot Ti meSwap,
I'i nkTi neStanp_b, 1'i nkTi meSt anp_e,
phaseTi neSt anp_b, phaseTi neSt anp_e,
taxi ngTi neStanp_b, taxi ngTi neSt anp_e,
GC _Ti neSt anp_b, QC _TineStanp_e,
LC Ti neSt anp_b, LC Ti neStanp_e,
rot Ti meSt anp_b, rot Ti neSt anp_e;
int nunri al ToCont act GC, /1 nunber of trials to contact ground
control |l er
nunilri al ToCont act LC, /1 nunber of trials to contact |ocal controller
f1 oat t axi ngDel ay_sec, /1 del ay due to taxiway congestion
runwayDel ay_sec, /1 delay due to runway congestion
comDel ay_sec, 11 delay due to communication jam wth Gound
Control | er
comiChel ay_sec; 11 del ay due to comunication jam wth Local
Control | er
1 oat travel Ti ne,

| ast Taxi EdgeLengt h_ft;
G oundController* groundController_p;

Q aph *forwardst ar _p,

*backwar dSt ar _p; /1l for conflict resoltion and (un)bl ocking the Iink
Taxi EdgeLi st *t axi EdgeLi st _p; /1 for Taxing path
Edge *curr Taxi Edge_p; /1 The curr Edge in Taxi path.
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Local Controller *local Control | er_p;

Taxi EdgeLi st *runwayEdgelLi st _p; /1 for Takeoff/Landing path
Edge *cur r RunwayEdge_p; /1 The curr Edge in Runway path.
Node *exi t Node_p; /1 exit Node
Flight *IeadingH ight|nEdge_p, /1 Leading Flight in a CuurEdge
*f ol | owi ngFl i ght | nEdge_p, /1 Following Flight in a CuurEdge
*prevFl i ghtlnList_p, /1l prev Flight in Fight List
*next Fl i ght I nLi st _p; /1 Next Flight in Flight List
h
#endi f
/1 QG aph.h

#i fndef _GRAPH H
#define _GRAPH H

#i ncl ude "Type. h"
#include "Definition.h"
#i ncl ude "Node. h"
#i ncl ude "Node. h"
#i ncl ude "Edge. h"

typedef Edge* Edge_p;
class G aph{
public:

QG aph(int totNodes, int totEdges);

~@ aph();

int n();

int e();

Edge* first(int nodelndex); // get the first edge for a node
bool i sEdge( Edge* edg_p); /1 return 1 if (edge !'= null)
Edge* next (Edge* edg_p); /1 get the next edge for a node
Edge* next BS(Edge* edgBS p);

int fronNodel d( Edge* edg_p);// get the fronNodeld for this edge
int toNodel d(Edge* edg_p); // get the toNodeld for this edge
Edge* Gaph::findEdge_p (int fnlndex, int tnlndex); // find the pointer to the edge from fnlndex

to tnlndex

float tTime (int fnlndex, int tnlndex); /1 find the travel tine for the edge fom fnlndex to
t nl ndex

float* tTines(int fnlndex, int tnlndex); /Il find the pointer to the travel time matrix for the

edge fromfnlndex to tnlndex

float Dist (int fnlndex, int tnlndex); /1 find the distance for the edge from fnlindex to
t nl ndex

float tTime(Edge* edg_p); /1 find the travel tine for edge

float* tTines(Edge* edg_p); /1l find the travel time matrix for edge

float Dist (Edge* edg_p); /1 find the diatnce for edge

/1 readers

Edge* read_list(int fnindex); //return the pointer to (Edge*) |ist[fnlndex]

Edge** read_list(); /lreturn the pointer to (Edge**)li st

/lwiters

void wite_list(int fnlndex, Edge* newkdge_p); // list[fnlndex] = newEdge_p;

void wite_totNodes(int tN); /1 wite total Nodes

void wite_totEdges(int tE); /1 wite total Edges

private:

Edge_p* list;

int totNodes;

int totEdges;

M sit Mark_Type* vi sitMark;

h

#endi f _GRAPH H
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/1 Header.h

#i f ndef _HEADER H
#def i ne _HEADER H

#i ncl ude<coni o. h>

#i ncl ude<st di 0. h>

#i ncl ude<f st ream h>
#i ncl ude<i ost ream h>
#i ncl ude<i stream h>
#i ncl ude<ost r eam h>
#i ncl ude<stdl i b. h>
#i ncl ude<stri ng. h>
/1 #i ncl ude<sear ch. h>
#i ncl ude<mat h. h>

#i ncl ude<assert. h>
#i ncl ude<i omani p. h>

#incl ude <list>
#i ncl ude <al gorithne

#endi f

/1 Node. h

#i f ndef _NCDE_H
#define _NCDE_H

#i ncl ude "Type. h"
#i ncl ude "Header. h"
#i ncl ude "Point.h"

class Flight;
cl ass Edge;

cl ass Node{
public:
Node() ;
~Node();
Node(int ind, int id, char type, Point point, float p=0.0);
Node(int ind, int id, char type, float x, float y, float p=0.0);
Node(int ind, int id, char type, float x, float y, float p, FHight* fin_p);

I/ readers
int read_i ndex();
int read_id();
fl oat read_x();
fl oat read_y();
Node_ Type read_nodeType();
fl oat read_passi ngTi me() ;
Point& read_pt();
Bool read_haveEver Entered(); // {true, false}; for DEQeue in TDSP
Bool read_i sl nQueue(); /1l {true, false}; for DEQueue in TDSP
/lwiters
voi d wite_fs_p(Edge* f_p);
voi d wite_bs_p(Edge* b_p);
voi d wri t e_haveEver Ent er ed( bool hEE);
voi d write_i sl nQueue(bool il1Q;
private:
int index, /1 serial index (=1,2,3,...)
id; /1 id (= Wser defined id) ex, 2001, 2005,...
Node_Type nodeType;
bool haveEver Ent er ed, /1l {true, false}; for DEQueue in TDSP
i sl nQueue;
float passingTi ne;
Poi nt pt;
Flight* flightlnNode_p;
Edge* fs_p, /'l pointer to ForewardStar
* bs_p; /1 pointer to BackwardStar
h
#endi f
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/1 Point.h
#i fndef _PO NT_H
#define _PQNT_H
class Point{
public:
Point ();
~Poi nt () ;
Poi nt (float x1, float yl1);
float read_x();
float read_y();
void wite_x(float x1);
void wite_y(float yl);
private:
float x, vy;
h
#endi f

/1Position. h

#i fndef _PC8I TION_H
#define _PCSI TION H
#i ncl ude "Point. h"
cl ass Position{

public:
Posi tion();
~Posi tion();

Position(float x1, float y1, float tDT = 0.0);
Position(Point& p, float tDT = 0.0);
/1 readers
float read_travel edDi st nLink();
float read_travel edD stTotal ();
float read_currX();
float read_currY();
/lwiters
void wite_travel edD stlnLink(float tD stL);
void wite_travel edDi stTotal (float tDistT);
void wite_currX(float);
void wite_currY(float );
private:
float travel edD st nLink,
travel edDi st Tot al ;
Poi nt pt;
h
#endi f _PCSI TI ON_H

264



/1Qh (for the SP algorithm
#ifndef _QH
#define _QH
#i ncl ude "Node. h"
#include "definition. h"
class NodeList{ // Doubly-linked |ists (100-shaffer)
public:
int nodel ndex;
NodeLi st* prevNodeLi st _p,
* next NodeLi st _p;
NodelLi st (i nt nl ndex, NodeList* prv_p = NUL, NodeList* nxt_p = NULL);
NodeLi st (NodeLi st* prv_p = NULL, NodeList* nxt_p = NULL);

~NodelLi st () ;
Iy
class /1115page in Shaffer's text book
public:
Q)
~Q);
int firstNodel ndex(); /1 return the first node's index
int deQueueFirst(); /1 return the fromnode's index of the first Node in the queue.
int deQueueMnn(int r, float shortTinme[][MAX NCDES]); // find the mninum distance node from

root node, r, to to-nodes in the (Node) queue and return
i ndex
voi d enQueueFi rst (i nt nlndex);
voi d enQueuelast (i nt nl ndex);
voi d del et eNodeLi st (NodeLi st* nl _p);
bool isEnpty() const;
int totCQurrE enments() const;
void clear();
private:
NodeLi st * headNodeLi st _p,
* tail NodeLi st _p,
* currNodeLi st _p;
voi d del et eNode(int* n_p);
H
#endi f

/111 Runway. cpp

#i fndef _RUNWAY_H
#define _RUNVAY_H

#i ncl ude "Taxi Edge. h"
#i ncl ude "Header. h"
#include "Definition.h"
cl ass Runway{

public:
Runway () ;
Runway(char* rld_p, Taxi Edge* rLink_p);
~Runway() ;
char* read_runwayl d();

Taxi Edge* read_runwayLi nk_p();

Taxi Edge* read_next RunwayLi nk();
private:

char* id_p;

Taxi Edge* runwayLink_p; // pointer to starting link

/1 next runwayLink = runwayLi nk_p->r ead_next Taxi Edge_p();

H
#endi f
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/1 Simulation.h

#i fndef _SI MLATI ON_H
#define _SI MILATI ON_H
#i ncl ude "Header. h"

#i ncl ude "Type. h"

#i ncl ude "Definition. h"
#i ncl ude "d ock. h"

#i ncl ude "Point.h"

#i ncl ude "Node. h"

#i ncl ude "Edge. h"

#i ncl ude "Q@ aph. h"

#i ncl ude "Runway. h"

#i ncl ude "AcftMdel . h"
#include "Controller.h"
#include "Fight.h"
#include "Qh"

#i ncl ude " ARRAY. h"

#i ncl ude<ost ream h>

Thr eeDAr r ay<unsi gned int> t d_shor t Pat h( MAX_NCDES, MAX_NCDES, NunTi nesl i ces) ;
/1travel Path by keeping the next node to destination
Thr eeDAr r ay<f | oat > td_short Ti ne( MAX_NCDES, MAX_NCDES, NunTi meSlices); /1travel Ti me

float totTaxingTi me_sec

float totTaxi ngDel ay_sec
float totRunwayDel ay_sec
float totCormLCDeal y_sec
float totCommBCDeal y_sec

o onn
C00o0
eLeeee

typedef Edge* Edge_p;
int conp(const void *a , const void *h);
struct F ightData{

int sn; /'l serial nunber
char *id_str, 11 AA234
*model _str; /1 B757-300

Acft Model *acft Model _p;
char oper at i onType; Il char ("A or 'D)
int start Hour, /1 7 (0'clock)

startMn; /1 6 (mnute)
f1 oat start Sec; /1 34.0 (second)
int rotHour_norm /1 7 (0'clock)

rotM n_norm /1 6 (mnute)
f1 oat rot Sec_norm /1 34.0 (second)
int rotHour_fcfs, /1 7 (0'clock)

rotMn_fcfs; /1 6 (mnute)
f1 oat rot Sec_fcfs; /1 34.0 (second)
int rotHour_swap, /1 7 (0'clock)

rot M n_swap; /1 6 (mnute)
f1 oat r ot Sec_swap; /1 34.0 (second)
fl oat startTi ne;
int gateld, /1 Gate Node Nunber = 7

gat el ndex;

char* runway_str; /1 Runway, ex, R15

1

of st rean& oper at or <<(of stream &tream Fight f){
if(f.taxi EdgeList_p !'= NULL || f.runwayEdgeList_p != NUL){
stream// << f.sysTi ne. read_systenTi me()
<< setw(10)
<< set preci sion(7)
<< f.read_flightld_p() <<" "
<< setiosflags(ios::showpoint) << "("
<< f.currPosition_p->read currX() << ", "
<< f.currPosition_p->read currY() << ") ";
switch (f.currCommBtate){

case readyToConmuni cat e: stream << " readyToComuni cat e ":  break;

case wai t Next Cont act : stream << " wai t Next Cont act ", break;
case sendi ngRequest : stream << " sendi ngRequest ", break;
case wai ti ngCommand: stream << " wai ti ngCommand ":  break;
case recei vi ngCommand: stream << " recei vi ngCommand ".  break;
case sendi ngConfirmati on: stream << " sendingConfirmation "; break;

case waitControl | erCont act : stream<< " waitControllerContact "; break;
defaul t: stream << " sonthing wong in currCommBtate ";

switch (f.permssion){

case unDeci ded: stream << " unDeci ded ", break;
case fil eApproved: stream<< " fil eApproved ", break;
case reRout e: stream<< " reRoute ":  break;
case stopThere: stream << " stopThere ", break;
case wait There: stream << " waitThere ", break;

266



Yot
el se{

case reStart: stream<< " reStart " br eak;
case cl ear ToPushback: stream << " cl ear ToPushback "; break;
case cl ear ToTaxi : stream << " cl ear ToTaxi " br eak;
case cl ear ToTakeCf f: stream << " cl ear ToTake(! f " br eak;
case cl ear ToLand: stream << " cl ear ToLand " br eak;
defaul t: stream << " sonthing wong in currPermssion ";
}
switch (f.currMveState){
case par ki ng: stream<< " parking " ; break;
case pushi ngBack: stream << " pushi ngBack ",  break;
case taxi ngToDepart ur eQueue: stream << " taxi ngToDepQue "; break;
case wai tingToTaxi : stream<< " waitingToTaxi "; break;
case del ayedAt Oross: stream << " del ayedAt Oross "; break;
case speedUp: stream << " speedUp ", break;
case steadyTaxi ng: stream<< " steadyTaxing "; break;
case sl owbown: stream << " sl owDown ", break;
case turning: stream << " turning ", break;
case wai ti ngOnRunway: stream<< " waitingOnRiwy ";  break;
case rolling: stream<< " rolling ":  break;
case liftingOf: stream<< " |iftingCff ":  break;
case end(f Departure: stream<< " endCfDeparture "; break;
case onFinal : stream << " onFi nal ", break;
case flaringQut: stream<< " flaringQut ";  break;
case freeRol ling: stream<< " freeRol ling ";  break;
case braking: stream << " braking ", break;
case coasting: stream << " coasting ", break;
case exitingRunvay: stream << " exiti ngRnwy ";  break;
case taxi ngToGat e: stream<< " taxingToGate "; break;
defaul t: stream << " somthing wong in currMveState ";
}
stream
<< f.currSpeed << " "
<< f.nextAccel << " "
<< setw(5);
if(f.taxi EdgeList_p !'= NULL){
stream
<< f.taxi EdgeLi st _p->currEdge_p()->read_from\ode_p()->read_id() << " ->"
<< f.taxi EdgeLi st _p->currEdge_p()->read_t oNode_p()->read_i d() <" "
<< setw( 10)
<< f.taxi Edgeli st _p->curr Edge_p() - >read_di st ance_ft () <" "
}
el se if(f.runwayEdgeList_p != NULL){
stream
<< f.runwayEdgeLi st _p->currEdge_p()->read_from\ode_p()->read_id() << " ->"
<< f.runwayEdgelLi st _p->curr Edge_p() - >r ead_t oNode_p() - >read_i d() <" "
<< setw(10)
<< f.runwayEdgeLi st _p->currEdge_p()->read_di stance_ft () << " "
el se stream<< " sonthing wong in node -> node ";
stream
<< f.currPosition_p->read_travel edDi stlnLink() <<" "
<< f.currPosition_p->read_travel edD st Total () << " "
<< endl ;
stream// << f.sysTine. read_syst enili ne()
<< setw(10)
<< set preci sion(7)
/1 << setiosflags(ios::fixed)
<< f.read_flightld_p() << " "
<< setiosflags(ios::showpoint) << "("
<< f.currPosition_p->ead currX() << ", "
<< f.currPosition_p->ead_currY() << ") ";
switch (f.currCommBtate){
case readyToConmuni cat e: stream << " readyToComuni cat e ":  break;
case wai t Next Cont act : stream << " wai t Next Cont act ", break;
case sendi ngRequest : stream << " sendi ngRequest ", break;
case wai ti ngCommand: stream << " wai ti ngCommand ":  break;
case recei vi ngCommand: stream << " recei vi ngCommand ".  break;
case sendi ngConfirmati on: stream << " sendingConfirmation "; break;
case waitControl | erCont act : stream<< " waitControllerContact "; break;
defaul t: stream << " sonthing wong in currCommBtate ";
}
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swi tch (f.pernission){

case unDeci ded: stream << " unDeci ded ", break;
case fil eApproved: stream<< " fil eApproved ";  break;
case reRout e: stream<< " reRoute ":  break;
case stopThere: stream << " stopThere ", break;
case wai t There: stream << " waitThere ", break;
case reStart: stream<< " reStart " br eak;
case cl ear ToPushback: stream << " cl ear ToPushback "; break;
case cl ear ToTaxi : stream << " cl ear ToTaxi " br eak;
case cl ear ToTake( f : stream << " cl ear ToTakeC! f " br eak;
case cl ear ToLand: stream << " cl ear ToLand " br eak;
defaul t: stream << " somthing wong in currPermssion ";
}
switch (f.currMveState){
case parking: stream << " parking ", break;
case pushi ngBack: stream << " pushi ngBack ", break;
case taxi ngToDepart ur eQueue: stream << " taxi ngToDepQue "; break;
case wai tingToTaxi : stream << " waitingToTaxi "; break;
case speedUp: stream << " speedUp ", break;
case steadyTaxi ng: stream<< " steadyTaxing "; break;
case sl owDown: stream << " sl owDown ":  break;
case turning: stream << " turning ", break;
case wai ti ngOnRunway: stream<< " waitingOnRiwy ";  break;
case rolling: stream<< " rolling ";  break;
case liftingOf: stream<< " |iftingCff ":  break;
case endCf Departure: stream<< " endCf Departure "; break;
case onFinal : stream << " onFi nal ", break;
case flaringQut: stream<< " flaringQut ", break;
case freeRol ling: stream<< " freeRol ling ";  break;
case braking: stream << " braking ":  break;
case coasting: stream << " coasting ", break;
case exitingRunvay: stream<< " exitingRunway "; break;
case taxi ngToGat e: stream << " taxi ngToCate ":  break;
defaul t: stream << " somthing wong currMveState ";
stream

<< f.currSpeed << " "
<< f.nextAccel << " "

<< setw(5)

<< 0<<" ->"

<< 0 << " "

<< setw(10)

< 0<<" "

<< f.currPosition_p->read_travel edDi stlnLink() << " "
<< f.currPosition_p->read travel edD stTotal () <<
<< endl;

} 1 else
return stream

b

bool operator<(Flight &1, Flight &o2)

{ return ol.rotTi meRecormended. r ead_syst enTi me() < o02.rotTi meReconmended. r ead_systenTi me(); }
bool operator>(Flight &1, Flight &2)

{ return ol.rotTi neReconmended. read_syst enTi ne() > 02.rot Ti neRecomrended. r ead_syst entli me(); }
bool operator==(Fight &1, Flight &o2)

{ return ol.rotTi meRecormended. r ead_syst enTli ne() == 02.r ot Ti meRecommended. r ead_syst entli ne(); }
bool operator!=(Flight &1, Flight &02)

{ return ol.rotTi meRecormended. r ead_syst enTli ne() != o02.rot Ti meRecormended. r ead_syst enTi ne(); }
#endi f
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/1 Taxi Edge. h

#i fndef _TAXI EDGE_H
#def i ne _TAXI EDGE_H
#i ncl ude "Edge. h"

cl ass Taxi Edge{

public:
Taxi Edge();
Taxi Edge( Edge* const newEdge_p, Taxi Edge* nxt = NULL);
~Taxi Edge() ;
Edge* read_edgeHE e_p();
Taxi Edge* r ead_next Taxi Edge_p();
voi d wite_next Taxi Edge_p( Taxi Edge* tenpNext Taxi Edge_p);
private:
Edge* edgeH e_p;
Taxi Edge* next Taxi Edge_p;
h
#endi f

/1 Taxi EdgeLi st. h

#i f ndef _Taxi EdgeLl ST_H
#def i ne _Taxi EdgeLl ST_H

#i ncl ude "Taxi Edge. h"

cl ass Taxi EdgeLi st{
public:
Taxi EdgeLi st ();
Taxi EdgeLi st ( Taxi Edge* Taxi Edge_p);
~Taxi EdgeLi st () ;
voi d append( Edge* const);
void setFirst();
voi d moveNext ();
voi d movePrev();
int length() const;
Edge* currEdge_p() const;
Edge* next Edge_p() const;
Edge* tail Edge_p() const;
bool islnList() const;
Taxi Edge* read_curr_p();
voi d wite_curr_p(Taxi Edge* cTaxi Edge_p);

I
I
I
I
I
I
I
I
I

voi d print_taxi EdgeLi st ( Taxi Edge* cTaxi Edge_p);

private:
Taxi Edge *head_p,
*tail _p,
*curr_p;
h
#endi f
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Move curr_p to next position
Move curr_p to previous position
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Return value of tail ELEM
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/1 Taxi Path.h

#i fndef _TAXI PATH H
#def i ne _TAXI PATH H
#i ncl ude "Edge. h"

cl ass Taxi Pat h{

public:
Taxi Pat h();
Taxi Pat h( Edge* currEdge_p);
~Taxi Pat h() ;
Edge* read_edgeHE e _p();
Taxi Pat h* read_next Taxi Pat h_p();
voi d wite_next Taxi Pat h_p( Taxi Pat h* tenpNext Taxi Path_p);
private:
Edge* edgeH e_p;
Taxi Pat h* next Taxi Pat h_p;
#endi f

/1 Taxi PathList.h

#i fndef _TAXI PATHLI ST_H

#define _TAXI PATHLI ST_H

#i ncl ude "Taxi Pat h. h"

cl ass Taxi Pat hLi st{

public:
Taxi Pat hLi st ();
Taxi Pat hLi st ( Taxi Pat h* taxi Path_p);
~Taxi Pat hLi st () ;

voi d append(const Taxi Pat h&); /1 Insert ELEMat tail_p of I|ist
/1 Taxi Path* renove(); /! Rermove and return current ELEM
/1 void setFirst(); /1l set curr_p to first position
voi d next(); /1 Move curr_p to next position
voi d prev(); /1 Move curr_p to previous position
int length() const; /!l Return current length of list
/1 int setPos(const int); /1 Set curr_p to specific position
/1 void setVal ue(const Taxi Path&); /1 Set current ELEMs val ue
Edge* currEdge_p() const; /1 Return value of current ELEM
Edge* next Edge_p() const; /1 Return value of next ELEM
/1 bool isEnpty() const; /Il TRE if list is enpty
bool islnList() const; /1 TRUE if curr is withinlist
/1 bool find(const TaxiPath&); /1 Find the specifin val ue
private:
Taxi Path *head_p,
*tail _p,
*curr_p;
h
#endi f
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/1 Type. h
#i fndef _TYPE H
#define _TYPE H

enum Node_Type{

t axi Node,
rwyNode,
gate,
rwyl nt er sect i onNode
b
enum Edge_Type{
t axi Edge,
rwyEdge,
exi t Edge
h
enum Qper ati on_Type{
departure,
arrival
}s
/1 enum Per ni ssi on_Type {yes, no};
enum M si t Mar k_Type {visited, unvisited};
enum Priority_Type {low, high}; /1 flight's priority for conflicting at intersection
enum Conf | i ct Checked_Type {done, notYet}; 11 flight's priority for conflicting at
intersection
enum CQur rent EdgeDi r ecti on_Type {thisDirection, reverseDrection}; 11 Edge' s curretn
operational direction
enum Ai rcraft_Type {heavy, large, snal_}; /1 "small" is reserved for certain conpiler

enum TwoQper at i ons{dep_dep, dep_arr, arr_dep, arr_arr};

enum SP_Al gori t hn{

static_SP, /1 static shortest path algorithm1l
td_SP_1, // tine-dependent shortest path al gorithm1
td_SP_2 /1 time-dependent shortest path al gorithm 2

b

enum Fl i ght St at e_Type{
//for departure

pushi ngBack, /1 taxing fromgate to arpon(=ranp area)
rol l'ing,

liftingCGhf,

endCf Departure, /1 take-off (rolling with const accel)

wai ti ngOhRunway, // waiting around the runway or gate or fromrunway exit to gate
/lfor arrival
onFi nal ,
flaringQut,
freeRol ling,
br aki ng,
coasti ng,
adj ust i ngBr ake,
freeRol | i ngSl ow,
exi ti ngRunway,
/1touch-down -> exit
/1for taxing for both operations (arrival/departure)
par ki ng,
t axi ngToDepar t ur eQueue,
t axi ngToGat e,
del ayedAt Oross, //
wai ti ngToTaxi ,
speedW,
st eadyTaxi ng,
sl owDown,
t urni ng, /1l taxing fromgate to the around of runway
wai ti ngl nLi ne,
ar eatol di ng,
//for both operations' conmmunication
wai t Next Cont act ,
r eadyToConmuni cat e,
sendi ngRequest ,
wai t i ngConmand,
recei vi ngConmand,
sendi ngConfi rnati on,
wai t Control | er Cont act
h
enum | dl eBusy_Type {idle, busy};
enum Control | er St at e_Type{
st andby,
recei vi ngRequest ,
j udgi ngComrand,
sendi ngComrand,
recei vi ngConfirmation
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enum Cont rol | er Message_Type{

b

unDeci ded,

fil eApproved,
reRout e,
stopThere,

wai t Ther e,
//waitControll erContact,
reStart,

cl ear ToPushback,
cl ear ToTaxi ,

cl ear ToTakeOF f,
cl ear ToLand

enum Pi | ot Request _Type{

b
#endi f

r equest Taxi ,

r equest PushBack,
request TakeOF f,
request Landi ng
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