

Web Application Development by Nonprogrammers:

User-Centered Design of an

End-User Web Development Tool

Jochen Rode

Dissertation submitted to the faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science and Applications

Dr. Mary Beth Rosson, Co-Chair

Dr. Manuel A. Pérez-Quiñones, Co-Chair

Dr. Stephen H. Edwards

Dr. Naren Ramakrishnan

Dr. Loren P. Rees

July 1st, 2005

Blacksburg, Virginia, USA

Keywords: end-user web application development, nonprogrammers, mental models

Copyright 2005 by Jochen Rode

 ii

Web Application Development by Nonprogrammers:

User-Centered Design of an

End-User Web Development Tool

Jochen Rode

Abstract
This work investigates entry barriers and approaches for facilitating end-user web

application development with the particular focus on shaping web programming

technology and tools according to end-users’ expectations and natural mental models. My

underlying assumption and motivation is that given the right tools and techniques even

nonprogrammers may become successful web application developers. The main target

audience for this research are “casual” webmasters without programming experience – a

group likely to be interested in building web applications. As an important subset of web

applications I focus on supporting the development of basic data collection, storage and

retrieval applications such as online registrations forms, staff databases, or report tools.

First I analyze the factors contributing to the complexity of web application development

through surveys and interviews of experienced programmers; then I explore the “natural

mental models” of potential end-user web developers, and finally discuss my particular

design solutions for lowering entry barriers, as embodied by a proof-of-concept

development tool, called Click. Furthermore, I introduce and evaluate the concept of

“Design-at-Runtime” – a new technique for facilitating and accelerating the

development-test cycle when building web-based applications.

 iii

Acknowledgments

First and foremost, I would like to thank my advisors Dr. Mary Beth Rosson and

Dr. Manuel Pérez-Quiñones for their kind support and guidance. It was them who

sparked my interest in research and helped me appreciate the value of looking beyond the

horizon of the immediately practical. My gratitude also extends to Dr. Stephen Edwards,

Dr. Naren Ramakrishnan, and Dr. Loren Rees – the other three members of my Ph.D

committee, as well as to Dr. James Arthur, my first mentor at Virginia Tech.

Furthermore, without the encouragement of my German mentors Dr. Thomas Pietsch and

Dr. Harald Brandenburg at the University of Applied Sciences (FHTW) in Berlin I may

not have embarked on a graduate career in the United States of America.

I want to acknowledge the Fulbright commission for granting me the opportunity

to study in the USA. I am also thankful to the National Science Foundation who

sponsored much of my research, allowed me to collaborate with other researchers and

travel internationally to present our findings.

I truly enjoyed working together with Yogita Bhardwaj. Our conversations and

her help with the implementation of various prototype tools were invaluable. Jonathan

Howarth influenced my work in a similar way, helping me throughout analysis and

design. Furthermore, I would like to express my gratitude to Julie Ballin at Pennsylvania

State University who I had the privilege and pleasure to collaborate with at a number of

occasions. Betsy Blythe was much more than just the supervisor of my half-time

appointment at the Information Systems and Computing department. She truly cared for

me as a person and made room for experimenting with research ideas. I also want to

thank Erv Blythe, the head of the IT department, who supported the idea of end-user web

development and my previous supervisors Susan Olivier and James Powell who

challenged me with projects that lead to my interest in web application development. I

feel indebted to all of my coworkers, especially Janice Gibb, Kaye Kriz, and Andrea

Coles for their valuable feedback and emotional encouragement and equally to B. Collier

Jones for his always honest, helpful, and inspiring criticism.

 iv

For their expert advice and support I owe much to my friends Gregorio

Convertino, Ryan Richardson, Pat Lehane, Shad Gilley, Rob Capra, Kibum Kim, Shaadi

El-Swaifi and many other fellow students, professors, and staff at Virginia Tech.

Finally, I want to thank my family; my parents for bearing with me for 24 years at

home and then for caring for me while abroad; my brother Olaf for keeping me in touch

with reality and strengthening my desires for exploring the world and slacking off once in

a while; my grandfather and grandparents for their emotional support and the regular

German-chocolate-filled yellow “care-packages”; my parents-in-law for being the exact

opposite of the bad cliché, and the rest of my uncles, aunts, cousins and friends for not

forgetting me. Above all, however, I want to thank my wonderful, beautiful, humorous

and witty wife Andrea for her love and care and for bestowing me with miraculous food

for thought, the soul, and the stomach.

 v

Table of Contents

Abstract.. ii

Acknowledgments ... ii

Acknowledgments .. iii

Table of Contents .. v

List of Figures.. x

List of Tables .. xiii

List of Abbreviations .. xv

1 Introduction.. 1
1.1 Problem and Vision.. 1
1.2 Motivation and Significance .. 3
1.3 Target Audience and Domain .. 4
1.4 Research Questions and Objectives ... 5

1.4.1 What are the main entry barriers to EUDWeb? ... 5
1.4.2 How do novice developers naturally think about web programming concepts? 6
1.4.3 What are viable approaches for making web application development more

accessible for nonprogrammers?.. 7
1.5 Research Overview and Outline .. 7

2 Related Work ... 9
2.1 Web Engineering ... 10

2.1.1 Studies of Web Development Practice... 10
2.1.2 Model-driven Approaches to Data-intensive Websites.................................... 13
2.1.3 Languages and Tools for Building Web Applications 15

2.2 Psychology of Programming.. 20
2.3 End-User Development.. 21

2.3.1 Goals and Trade-off Between Ease-of-Use and Power.................................... 21
2.3.2 The Spreadsheet Paradigm and the Concept of Liveness 22
2.3.3 The Concept of Naturalness in End-User Programming.................................. 23
2.3.4 Visual Languages and Direct Manipulation... 24
2.3.5 Cognitive Dimensions Framework .. 24
2.3.6 End-User Development for the Web.. 25

 vi

2.4 Commercial Web Development Tools... 27
2.4.1 Professional Productivity Tools ... 27
2.4.2 Database-centric Tools... 28
2.4.3 Online Site Builders and eCommerce Tools .. 29
2.4.4 End-User WYSIWYG Editors and Web Application Builders 29
2.4.5 A Review of State-of-the-Art Web Development Tools.................................. 30

2.5 Summary and Conclusions .. 35

3 Entry Barriers and Status-Quo in End-User Web Application Development... 38
3.1 Survey and Interviews of Experienced Web Developers 38

3.1.1 Methods and Results .. 39
3.1.2 Discussion and Conclusions... 53

3.2 Survey of Web Developers: From Amateurs to Professionals 57
3.2.1 Methods.. 57
3.2.2 Results.. 58
3.2.3 Discussion and Conclusions... 66

3.3 Concepts and Components of Typical Web Applications 68
3.4 Summary and Conclusions .. 71

4 Mental Models of End-User Web Developers ... 74
4.1 Exploring End Users’ Concepts and Language Use .. 75

4.1.1 Participants and Methods ... 75
4.1.2 Results.. 78

4.2 Mental Models of Typical Web Development Concerns 80
4.2.1 Participants... 81
4.2.2 Methods.. 82
4.2.3 Results.. 84
4.2.4 Summary and Conclusions... 91

4.3 Summary and Conclusions .. 95

5 Click – A Web Application Development Tool for End Users 97
5.1 Design-at-Runtime... 97
5.2 Early Prototyping Efforts and Lessons Learned .. 100

5.2.1 FlashLight .. 100
5.2.2 Custom Extensions to Existing Tools .. 103
5.2.3 Click Prototype #1 and #2.. 104

5.3 Click’s Development Paradigm and Key Features .. 107
5.4 Design Rationale.. 112

 vii

5.4.1 Introduction Video & Tutorial ... 115
5.4.2 Application Templates ... 116
5.4.3 Support for Opportunistic Development and Design-at-Runtime.................. 116
5.4.4 Support for Continuous Workflow... 117
5.4.5 To-Do List.. 117
5.4.6 Sensible Defaults and Strong Affordances... 118
5.4.7 Context-sensitive Help ... 119
5.4.8 Sitemap .. 119
5.4.9 Domain Specificity .. 122
5.4.10 Session Layer ... 122
5.4.11 Database Layer... 122
5.4.12 Security Layer .. 123
5.4.13 Input Validation Layer ... 124
5.4.14 Authentication Layer.. 124
5.4.15 Authorization Layer ... 125
5.4.16 High-level Components ... 126
5.4.17 Button Action Rules... 129
5.4.18 Event-based Web Programming .. 129
5.4.19 Separation of Layout and Behavior.. 130
5.4.20 Templating ... 132
5.4.21 Parameter Passing and “Current Data Record”.. 132
5.4.22 Wizards .. 133
5.4.23 Pixel-based Positioning.. 133
5.4.24 “Global” Components .. 134
5.4.25 Layers of Programming Support and Gentle Slope of Complexity 136
5.4.26 Collaboration Support .. 138
5.4.27 Integrated Development and Runtime Environment...................................... 138

5.5 System Architecture and Implementation.. 139
5.6 Summary and Conclusions .. 142

6 Evaluation of Click .. 143
6.1 Formative Evaluations ... 143

6.1.1 Evaluation of Prototype #1 .. 144
6.1.2 Evaluation of Prototype #2 .. 146
6.1.3 Evaluation of Prototype #3 .. 147

6.2 Summative Evaluation ... 148

 viii

6.2.1 Propositions.. 149
6.2.2 Participants... 150
6.2.3 Methods.. 152
6.2.4 Results on the Overall Success .. 155
6.2.5 Results on the Problem of Complexity .. 156
6.2.6 Results on the Problem of Integration.. 161
6.2.7 Results on the Problem of Security.. 166
6.2.8 Results on the Problem of Feedback.. 168
6.2.9 Critical Incidents and General Observations.. 171

6.3 Summary and Conclusions .. 176

7 Conclusions and Future Work ... 178
7.1 Summary of Findings... 178

7.1.1 What are the main entry barriers to EUDWeb? ... 178
7.1.2 How do novice developers naturally think about web programming concepts?

.. 179
7.1.3 What are viable approaches for making web application development more

accessible for nonprogrammers?.. 180
7.2 Summary of Research Contributions ... 181
7.3 Future Directions ... 182

References.. 184

Appendix A Survey of Virginia Tech Webmasters .. 194
A.1 IRB Approval... 194
A.2 Survey Questionnaire and Summary Results... 195

Appendix B Interviews of Semi-Professional Developers.................................. 204
B.1 IRB Approval... 204
B.2 Pre-Interview Questionnaire .. 205

Appendix C Comprehensive Survey of Web Developers................................... 215
C.1 IRB Approval... 215
C.2 Questionnaire and Summary of Results... 216

Appendix D Mental Models Study 1 .. 236
D.1 IRB Approval... 236
D.2 Participants’ Instructions ... 237
D.3 Screen Labeling Example .. 239
D.4 Screenshots of Example Application ... 240

 ix

Appendix E Mental Models Study 2 .. 245
E.1 IRB Approval... 245
E.2 Scenarios .. 246

Appendix F Click... 251
F.1 Screenshots .. 251

Appendix G Summative Evaluation of Click .. 256
G.1 IRB Approval... 256
G.2 IRB Informed Consent... 257
G.3 Online Screening Questionnaire .. 259
G.4 Study Procedure Instructions ... 261
G.5 Ride board Example Application Screenshots... 262
G.6 Ride board Example Exploration Instructions... 265
G.7 Help Instructions.. 266
G.8 Facilitators’ Functionality Checklist.. 266
G.9 Post-study Survey Questionnaire... 267
G.10 Visualizations of Participants’ Development Timelines.................... 271

Appendix H Grant Information ... 274

Appendix I Publications and Presentations ... 275
I.1 Peer-reviewed Full-length Conference Papers... 275
I.2 Book Chapter, Abstract, Technical Reports .. 276

Vita ... 277

 x

List of Figures

Figure 1: User-centered methods for building web development tools.............................. 8

Figure 2: EUDWeb is the cross-section of web engineering, psychology of programming,
and EUD ... 9

Figure 3: Java code that outputs JavaScript code that outputs HTML code containing CSS
.. 16

Figure 4: Example Flex application.. 18

Figure 5: Survey question targeted at exploring end users' needs for “interactive
websites”... 40

Figure 6: Virginia Tech webmasters reporting their reasons for not developing web
applications themselves (N=40) ... 42

Figure 7: Responses to question about problems in web application development (1=not a
problem at all; 7=severe problem). The square markers show the mean of the
responses from the survey (value is right of the square marker in italics; N=31).
The round markers show the mean of the responses from the pre-interview
questionnaire (value is left of round marker; N=10). In order to facilitate
comparison, the survey responses have been scaled from a 1-5 scale to a 1-7
scale. ... 43

Figure 8: Results from question 5: “The following question asks you to judge the value of
these same 10 features in your web development projects, regardless of whether
you have worked with them yet or not.” (N=314 to 318) 60

Figure 9: 90% of responses to question 8 “What are the three things you like MOST
about your primary web development tool?” were coded into 17 categories 62

Figure 10: 88% of responses to question 9 “What are the three things you like LEAST
about your primary web development tool?” were coded into 16 categories. ... 63

Figure 11: Responses to Question 14 “How often do you experience problems with the
following kinds of issues that sometimes arise in web development work? Please
use a scale from 1 (one) to 5 (five) where 1 means hardly ever, and 5 means
quite often.” (n=267 to 276) ... 64

Figure 12: Two screenshots of example application used for MMODELS-1 76

Figure 13: Example of an annotated screenshot of the “Add Member” dialog from the
member registration application (MMODELS-1) .. 77

Figure 14: Example of a participant’s description of the behavior of the “Add Member”
dialog from the member registration application (MMODELS-1) 78

 xi

Figure 15: Scenario 1 of 9 as shown to each participant (MMODELS-2) 83

Figure 16: Defining button actions in FlashLight... 100

Figure 17: Click prototype #1: an external WYSIWYG editor is used in conjunction with
Click ... 105

Figure 18: Defining a “Register” button and associated action using the form-based UI of
Click ... 107

Figure 19: A sitemap automatically generated by Click... 120

Figure 20: Legend for Click's sitemap as shown in Click's user interface 121

Figure 21: Layers of Click's programming support that illustrate a “gentle slope of
complexity” .. 136

Figure 22: Click's HTML frames setup .. 139

Figure 23: Click's system architecture and file system layout.. 140

Figure 24: Example of a specification used during the formative evaluation sessions of
Click ... 144

Figure 25: Screenshot of the "Offer ride" page from the example application 152

Figure 26: Visualized timeline of participant 6’s behavior as derived from the activity log
.. 169

Figure 27: IRB approval for survey of VT webmasters ... 194

Figure 28: IRB approval for interview study.. 204

Figure 29: IRB approval for comprehensive survey of web developers 215

Figure 30: IRB approval for MMODELS-1 ... 236

Figure 31: Screen labeling example provided to study participants 239

Figure 32: Screenshot of example application from MMODELS-1: Login 240

Figure 33: Screenshot of example application from MMODELS-1: View all members 241

Figure 34: Screenshot of example application from MMODELS-1: Add member........ 242

Figure 35: Screenshot of example application from MMODELS-1: View member...... 243

Figure 36: Screenshot of example application from MMODELS-1: Search.................. 244

Figure 37: IRB approval for mental models study 2... 245

Figure 38: Defining a “Register” button and associated action using the form-based UI of
Click ... 251

Figure 39: The "Database" view of Click allows the modification of database schema and
data ... 252

Figure 40: The "Sitemap" view of Click showing the example "Ride board" application
.. 252

 xii

Figure 41: The property dialog of the "Text field" component 253

Figure 42: Parts of the properties dialog of the "Dynamic table" component 254

Figure 43: Dialog to specify action rules.. 255

Figure 44: IRB approval for summative evaluation of Click ... 256

Figure 45: IRB informed consent form for summative evaluation of Click................... 258

Figure 46: Screenshot of ride board example application: Home................................... 262

Figure 47: Screenshot of ride board example application: Search 262

Figure 48: Screenshot of ride board example application: Offer ride 263

Figure 49: Screenshot of ride board example application: Login/Logout 263

Figure 50: Screenshot of ride board example application: Details 264

Figure 51: Click - summative evaluation: Visualization of development timeline from
participant #1 .. 271

Figure 52: Click - summative evaluation: Visualization of development timeline from
participant #2 .. 271

Figure 53: Click - summative evaluation: Visualization of development timeline from
participant #3 .. 272

Figure 54: Click - summative evaluation: Visualization of development timeline from
participant #4 .. 272

Figure 55: Click - summative evaluation: Visualization of development timeline from
participant #5 .. 273

Figure 56: Click - summative evaluation: Visualization of development timeline from
participant #6 .. 273

 xiii

List of Tables

Table 1: Scenario: Anna’s Ventures into Web Application Development 2

Table 2: Green and Petre's cognitive dimensions framework of notations....................... 25

Table 3: Guidelines for EUDWeb tools derived from our review.................................... 33

Table 4: Summary of the findings and trends of the related work.................................... 35

Table 5: Virginia Tech webmasters reporting their needs for “interactive websites” a.k.a.
web applications (number in brackets indicates the frequency of requests; N=67,
with some respondents reporting needs in multiple categories)......................... 41

Table 6: Responses to questions asked in the pre-interview questionnaire on scales from
1-7... 48

Table 7: Responses from 5 participants regarding their appreciation of Macromedia
Dreamweaver MX as a web development tool... 52

Table 8: Question 16: statements ranked from 1 (strongly disagree) to 5 (strongly agree)
.. 61

Table 9: High-level components, concepts & functionality of typical basic web
applications... 69

Table 10: Web developers’ behaviors, barriers to development, and a “wish list for the
dream tool” ... 71

Table 11: Examples of labels choosen by the participants of MMODELS-1. Numbers in
brackets denote the number of participants who chose the particular label. 78

Table 12: The Mental Model of the “Prototypical” Novice Web Application Developer 95

Table 13: Click - Beginner's tutorial... 108

Table 14: Mapping from problems to design solutions (the numbers in parenthesis
represent the sections discussing the issue in detail; issues marked in bold are
the focus of the summative evaluation).. 112

Table 15: Layout code for one web page of a simple conference registration application
.. 131

Table 16: Behavior code for one web page of a simple conference registration application
.. 131

Table 17: Click’s Novel Concepts and Features... 142

Table 18: Example from a usability problem list as used during formative evluation ... 145

Table 19: Propositions for the summative evaluation of Click....................................... 149

Table 20: Two questions about "web master knowledge" from participant selection
questionnaire... 151

 xiv

Table 21: Question about "web programming knowledge" from participant selection
questionnaire... 151

Table 22: Participants from summative evaluation and their self-reported experience on
the online pre-study selection questionnaire (1=no knowledge, 5=expert
knowledge) ... 151

Table 23: Excerpt of participant's 6 activity log (facilitator’s logging of critical incidents
in bold).. 154

Table 24: Times, critical incidents, participant’s and facilitators’ ratings from summative
evaluation ... 156

Table 25: Question targeted at exploring participants' expectations towards state
persistence .. 159

Table 26: Participants’ ratings on frequency of use and usefulness of To-do list 163

Table 27: Participants’ ratings on frequency of use and usefulness of sitemap 165

Table 28: Results of Click’s formative studies and summative evaluation 176

Table 29: Questionnaire and summary results from survey of Virginia Tech webmasters
.. 195

Table 30: Pre-Interview questionnaire of semi-professional web developers 205

Table 31: Comprehensive survey of web developers: Questionnaire and summary of
results.. 216

Table 32: Participants' instructions for mental models study 1 237

Table 33: Nine scenarios from MMODELS-2.. 246

Table 34: Online screening questionnaire for formative and summative studies of Click
.. 259

Table 35: Participant's instructions for summative study of Click 261

Table 36: Click - summative study: Ride board example exploration instructions........ 265

Table 37: Click - summative study: Help instructions.. 266

Table 38: Click - summative study: Facilitators' functionality checklist........................ 266

Table 39: Click - summative study: Post-study questionnaire.. 267

 xv

List of Abbreviations

AJAX – Asynchronous JavaScript + XML
API – Application Programming Interface
ASP – Active Server Pages or Application Service Provider
CGI – Common Gateway Interface
CSS – Cascading Style Sheets
DB – Database
DBMS – Database Management System
DHTML – Dynamic Hypertext Markup Language
EUD – End-User Development
EUDWeb – End-User Development of Web Applications
HCI – Human-Computer Interaction
HTML – Hypertext Markup Language
HTTP – Hypertext Transfer Protocol
IDE – Integrated Development Environment
IT – Information Technology
JSP – JavaServer Pages
LDAP – Lightweight Directory Access Protocol
MVC – Model-View-Controller
PHP – PHP: Hypertext Pre-processor (recursive acronym)
RPC – Remote Procedure Call
SQL – Structured Query Language
UI – User Interface
UIML – User Interface Markup Language
UML – Unified Modeling Language
URL – Uniform Resource Locator
WML – Wireless Markup Language
WWW – World Wide Web
WYSIWYG – What You See Is What You Get
XAML – eXtensible Application Markup Language
XML – eXtensible Markup Language
XSL - eXtensible Stylesheet Language
XUL – XML User Interface Language

Chapter 1: Introduction

1

*

Chapter 1

Introduction

1 Introduction

1.1 Problem and Vision

The World-Wide-Web has become an important platform for interactive

applications. Web-based calendars and forums facilitate collaboration; e-commerce web

sites enable the convenient acquisition of goods and services; and many other

applications address simple day-to-day problems like reserving a room or registering for

the participation in an event. Because of the web’s ubiquity and ease-of-access a web

application is often the first choice of technology.

Tim Berners-Lee designed the web as a collaborative tool (Berners-Lee 1996).

His early vision was one of document sharing between researchers. The recognition of

the web’s potential as a platform for interactive applications has been an emergent

phenomenon. However, the web’s infrastructure has not changed significantly from being

document-centered with the result that much of it is ill-suited for application

development. Currently, the development of an interactive web application requires

knowledge not only of traditional programming languages, but also of technologies and

problems specific to the web (e.g., HTML, JavaScript, CSS, HTTP, web-browser-

compatibility issues, etc.). As a result, the creation of even a basic web application is

difficult.

* All icons used within this dissertation and the prototype tool “Click” have been designed and kindly been

made available by David Vignoni (http://www.icon-king.com)

Chapter 1: Introduction

2

Despite the diversity and rapid evolution of web technology, many users carry out

some degree of web-based development. For instance, in 1998, a survey found that over

50% of web users have published at least one web page (Pitkow and Kehoe 1998). Some

users build web pages because they are fascinated by this ubiquitous delivery medium;

others have the more practical goal of efficient information exchange. However, for the

most part, the web sites that end users produce today are static information displays, with

navigation links providing the only interactivity. According to the findings of my work

these limitations in users’ web development activities are not due to lack of interest but

rather due to the difficulties inherent in web application development. Today, an end user

with a need for an interactive web application must locate and collaborate with a

programmer to pursue his or her goal, and this is not always feasible. The research

reported here takes an initial step towards rectifying this situation. I believe that given the

right tools and techniques even nonprogrammers can develop simple web applications.

Why would end users want to develop web applications? Why are they unable to

do this with today’s tools? Who are these end users? What are they like? To gain insight

into these questions – and the topic of this dissertation – contrast these two scenarios:

Table 1: Scenario: Anna’s Ventures into Web Application Development

Anna uses today’s web tools Anna uses tomorrow’s web tools

As webmaster Anna manages a database for
registering clients in her company's courses.
Recently, she used a survey authoring tool to build
a web-based system: clients now submit a
registration form, which Anna receives by e-mail.
She reads and re-enters the information she receives
into a spreadsheet. If a course has seats she
registers the person and emails a confirmation; if
not, she contacts and coordinates with the client to
re-schedule. Often Anna’s boss asks for summary
reports, which she creates by hand, a tedious
process. Anna knows that these repetitive and time-
consuming activities should be handled by the
computer. But while she knows how to create
websites using WYSIWIG editors she has no
programming experience. She has heard of
Javascript, so she enters “javascript registration
database” into a web search engine. She is
overwhelmed with results and quickly becomes
discouraged because few of the pointers relate to
her needs, and the information is highly technical.

A few weeks after her initial effort, Anna learns
from a friend about a web development tool that
has been targeted at nonprogrammers like her. She
decides to give it a try, clicking on the “create new
web application” link. The development
environment guides her through the process of
creating the screens for her registration application
as well as the database behind the scenes.
Designing the application becomes even enjoyable
when Anna notices that the tool asks her the right
questions at the right time and uses familiar
language instead of the typical “techno-babble.” At
times it even seems that the tool reads her mind. It
allows her to quickly try out different options,
entering her own test data and seeing what happens.
Anna loses track of time, totally engaged by her
design activity. Before the day is over she has fully
automated the registration process. Anna has even
managed to create a basic web-based report
generator for her boss. She feels empowered and is
proud of her achievement.

Chapter 1: Introduction

3

The contrast shown in these two scenarios sketches out the challenges and

motivation underlying the work reported here. The following chapters discuss what end-

user developers need, how they think, and what can be done, so that a sophisticated user

like Anna will not only be able to imagine that she should automate the tedious

computing procedures in her life, but also have at her fingertips the support she needs to

do it.

1.2 Motivation and Significance

Why is “end-user web application development” desirable and important? I argue

that providing end users with tools that increase their involvement in web development

will have several important consequences:

• End-users will no longer depend solely on programmers to create custom web

applications, enabling the production of a wide range of applications in a shorter

amount of time than currently possible;

• The increased number and diversity of people creating web applications will

promote innovation, as Deshpande and Hansen suggest: “[releasing] the creative

power of people.” (Deshpande and Hansen 2001); and

• Work-processes may become more efficient as individual personnel are enabled

to make better use of web infrastructure and connectivity.

Finally, apart from empowering end users to pursue new goals, we must also

consider how best to help novice developers create web applications that are more secure,

cross-platform-compatible, and universally accessible. User-friendly but “dangerously

powerful" web programming languages like PHP (Lerdorf, Gutmans et al. 1995) are

becoming popular even among people who do not have the necessary training and

experience to develop web applications of high quality. Harrison (2004) calls this the

“dangers of end-user programming”. The web engineering community may advocate

abstinence from end-user web development (but see it happen nonetheless) or embrace

the needs and motivations of nonprofessional developers and support them as much as

possible. I advocate the latter.

Chapter 1: Introduction

4

1.3 Target Audience and Domain

My research mission is making web application development more accessible –

particularly to “casual” or “informal” webmasters, people who have created a variety of

web content, but who have not been trained in web programming languages or tools.

These individuals are likely good candidates for end-user web application development

(EUDWeb) – they have already shown themselves to be interested in web development

but have not (yet) learned the languages and tools needed to add interactivity to their

development efforts.

All of the work reported in this dissertation (with the exception of a broad survey

of web developers reported in 3.2) investigates EUDWeb within the context of an

academic institution, in particular Virginia Tech. I reasoned that while some webmasters

may have been professionally trained in web development, in a university environment

many are more casual developers, people who have not been trained as programmers but

nonetheless have learned enough about web development to take responsibility for site

development and maintenance. Typical examples are the webmasters for academic

departments, research labs, or student organizations. Such individuals represent the

population I wish to target: end users who are sophisticated enough to know what they

might accomplish via web programming but unlikely to attempt it on their own. Although

the focus on an academic environment may limit the generalizability of some of my

findings (such as the methods used by experienced developers), it is likely that many

others (such as general entry barriers to web programming or end-users’ mental models)

are also applicable in a different contexts.

A step towards defining a scope for my work in EUDWeb was to investigate the

kinds of web applications my target audience would like to build. An initial survey of

webmasters at Virginia Tech (see 3.1) indicated that approximately one third of these end

users’ needs were basic data collection, storage and retrieval applications (such as

online registration forms, surveys, or reference databases) – which is particularly

interesting as such functionality seems quite reasonable to provide via an EUDWeb tool.

Therefore, I have chosen this particular set of applications as the target domain for my

investigations.

Chapter 1: Introduction

5

1.4 Research Questions and Objectives

The work reported in this dissertation focuses on the following three questions:

1. What are the main entry barriers to EUDWeb?

2. How do novice developers naturally think about web programming concepts?

3. What are viable approaches for making web application development more

accessible for nonprogrammers?

1.4.1 What are the main entry barriers to EUDWeb?

The first research question explores the status quo in web application

development, with the particular focus on uncovering what is needed to enable end-user

development. I analyze the factors contributing to the complexity of web application

development through surveys and interviews of semi-professional programmers. My

rationale for studying experienced web developers is two-fold. First, as opposed to my

core target audience, semi-professional developers have already encountered the

problems of web application development, yet are not as far removed from an “end-user

developer” as a true professional would be. Second, I believe that issues that are

troublesome for experienced developers may be insurmountable hurdles for novices and

therefore need to be addressed for realizing EUDWeb.

The investigation of the experiences of semi-professional developers is

complemented by formative and summative evaluations of Click – a prototype web

development tool. For these evaluations I consider only members of my target audience.

As the following chapters (particularly Chapter 3) will discuss in more detail, web

application development is simply too complex, involving too many concepts,

technologies, and relationships which are often out of line with the expectations and

“natural mental models” of nonprogrammer developers (see Chapter 4). Current tools that

are targeted at end-user developers lack a holistic approach towards guiding developers

from start (requirements phase) to finish (publishing and maintenance). Perhaps, the main

concrete obstacles are the need for integration of numerous diverse technologies, cross-

platform compatibility issues, ensuring security, and the process of debugging.

Chapter 1: Introduction

6

1.4.2 How do novice developers naturally think about web
programming concepts?

The second research question explores the “natural” problem-solving approaches

and “mental models” of potential end-user web developers (see Chapter 4). In this

context, “mental model” is meant to characterize the way that people visualize the inner

workings of a web application, the cognitive representations they hold of the entities and

workflows comprising a system. The concept of “natural” or “naturalness” (Miller 1974;

Pane, Ratanamahatana et al. 2001) refers to the mental model that users hold before they

start learning to use a tool or programming language. The underlying rationale for this

investigation is that we can build better EUD tools if we know how end-user developers

think. If a tool works in the way that a tool user expects and it feels “natural” from the

beginning it is likely to be easy to learn and use.

As Chapter 4 discusses in detail, most nonprogrammers simply do not have deep

mental representations of technical concepts critical to web application development.

Although, this may seem like a “non-result” it underlines the level of support and

guidance end-user developers require. Although they generally show a good knowledge

of the terminology of the web development arena they frequently use technical words

(like “database” or “field”) in a nonspecific or imprecise way. They generally use a mix

of constraints and rules to describe certain functionality, without paying attention to order

or flow of control. They expect many functions (such as search) to be available as basic

components. Only few nonprogrammers show any interest or awareness of

implementation details for basic services such as session management, database

connection, input validation, or security checking.

These findings demonstrate that the current implementation technologies for web

application development are at odds with end users’ expectations and thereby create

many entry barriers. One approach to overcoming these entry barriers is to shape

technology and tools to be more analogous to the natural thought processes and mental

representations of novice developers – the focus of the next research question.

Chapter 1: Introduction

7

1.4.3 What are viable approaches for making web application
development more accessible for nonprogrammers?

The third research question explores potential solutions for some of the major

problems found in the analysis of the status quo, leveraging the studies of novice web

programmers’ mental models. I discuss experiences with and particular design solutions

for a proof-of-concept end-user web application development tool called Click, which

attempts to lower entry barriers to web application development by shaping technology

according to the expectations and natural mental models of novice developers. In

particular, Click shows that the complexity problem can be overcome by providing

components with high level functionality, by presenting technical concepts such that they

are close to end users’ natural mental models, and by integrating all aspects and tools

needed for development such as layout, database design, testing, and production hosting

support. Chapter 5 discusses many particular design solutions for lowering entry barriers

to EUDWeb.

1.5 Research Overview and Outline

For my research I have adopted an approach that combines analytic investigations

of solutions currently in use with detailed empirical studies of end users’ needs,

preferences, and understanding of web development, and finally a series of prototyping

and evaluation efforts. Figure 1 gives an overview of my work, showing – from a bird’s

eye perspective – the major components that comprise this dissertation and how they are

related to each other. The dashed lines show the information flow between the different

components. The circle emphasizes the fact that I did not follow a strictly linear process

but rather an evolutionary approach, refining my knowledge of end-user web

development with consecutive iterations.

In this Chapter I have addressed the motivation, goals and the scope of my

research. Chapter 2 discusses related work in the areas of web engineering, psychology of

programming, and end-user development as well as web development tools that are

currently commercially available. Chapter 3 investigates the status quo and summarizes

Chapter 1: Introduction

8

the entry barriers – issues that make web application difficult. Furthermore, Chapter 3

reports a study that was aimed at analyzing the components and concepts of typical web

applications within my target domain. Chapter 4 describes the expectations of my target

audience by exploring their “natural” mental models as they relate to the concepts

commonly needed for web application development. Chapter 5 first introduces the

concept of “Design-at-Runtime” – a new technique for facilitating and accelerating the

development-test cycle, and then reports prototyping efforts focusing on the discussion of

the design rationale for our prototype EUDWeb tool “Click”. Chapter 6 reports the results

and conclusions of a series of formative evaluations as well as one summative study of

the Click prototype. Finally, Chapter 7 summarizes all findings and shows some possible

future directions for research in end-user web application development.

Scope
[Chapter 1]

Analysis

Design
[Chapter 5]

Evaluation
[Chapter 6]

Knowledge of
End-User

Web Application
Development

Web Development:
Entry Barriers & Status Quo
(Surveys, Interviews) [Chapter 3]

Summative
Formative &

Developers’ Mental Models
(Think-aloud studies) [Chapter4]

Click (Prototyping)

Needs (Surveys)

Design-at-Runtime Concept

End-User Development
Web Engineering Psychology of Programming

Commercial Tools
Related Work

[Chapter 2]

Contributions and
Future Directions

[Chapter 7]

Figure 1: User-centered methods for building web development tools

Chapter 2: Related Work

9

Chapter 2

Related Work

2 Related Work
Two complementary domains of research and practice – web engineering and

end-user development – have focused on methods and tools that could better support the

web development needs of both programmers and nonprogrammers. Research in the

domain of web engineering concentrates on making web professionals more productive

and the websites that they produce more usable, reusable, modular, scalable, and secure.

In contrast, web-related research in EUD centers on the idea of empowering non-

programmers to autonomously create websites and web applications. Furthermore, my

research related to the exploration of end-user developers’ “mental models” also extends

work in the domain of psychology of programming which studies the behaviors of

programmers in general. Figure 2 illustrates the relationship of the different domains.

Web
Engineering

Psychology
of

Programming

End-User
Development

EUDWeb

Figure 2: EUDWeb is the cross-section of web engineering, psychology of programming, and EUD

Chapter 2: Related Work

10

Because the rate of change for web technologies is much greater than that in other

areas of engineering, published research often lags behind the solutions produced by the

web technology industry. Thus, much of “the present state of knowledge” in web

development resides in commercial products which will be discussed here along with

research efforts.

2.1 Web Engineering

The establishment of web engineering as its own domain of research is an

indication that we are increasingly dependent on web applications (Ginige and

Murugesan 2001). In order to ensure reliable and high-performing software it is critical

that we attend to the development methodologies, strategies, and tools used for web

applications. Web engineering has been established as an area of research in response to

what Ginige and Murugesan call the “Web crisis” – currently many web applications are

developed in an ad-hoc fashion, relying on programmers to “hack” without sound

methodologies, and often resulting in software of low quality. However, this unfavorable

view of current practice is not undebated. In a recent survey of industry web development

practice Lang and Fitzgerald (2005) found that “the talk of a crisis is largely unfounded”

(see 2.1.1).

2.1.1 Studies of Web Development Practice

Researchers concerned about web engineering methods have studied the

challenges inherent in web development and the tools in common use. For example, Vora

(1998) surveyed web developers about the methods and tools they use, and the problems

they typically encounter. In this survey developers reported that ensuring cross-web-

browser compatibility, and usability issues associated with WYSIWIG editors were key

problems. These findings were confirmed and extended by two recent surveys of web

developers that we conducted in 2002 and 2004 respectively (see 3.1 and 3.2).

In a similar vein, Fraternali (1999) proposes a taxonomy for web development

tools that suggests some of the major dimensions of web development tasks. For

Chapter 2: Related Work

11

example, he categorizes available web tools into Visual HTML Editors and Site

Managers, HTML-SQL integrators, Web-enabled form editors and database publishing

wizards, and finally, Web application generators.

Newman and Landay (2000) investigated the process of website development by

interviewing 11 web development professionals. They found that these experts’ design

activities involve many informal stages and artifacts. Expert designers employ multiple

site representations to highlight different aspects of their designs and use many different

tools to accomplish their work. They concluded that there is a need for informal tools that

help in the early stages of design and integrate well with the tools designers already use.

Lang and Fitzgerald (2005) investigated current practices in Ireland’s web

development industry through a survey of 167 companies and found that the majority

(84%) uses well-documented and carefully designed processes, although overwhelmingly

home-grown approaches (95%) rather than specialized nonproprietary methods advocated

by the web engineering research community such as the Object-Oriented Hypermedia

Design Method (Schwabe, Rossi et al. 1996). The fact that only 2% of respondents had

ever used one of the common academic approaches indicates a disconnect between

research and industry practice. According to the survey, “the two most troubling aspects

[for web developers] were controlling project scope and feature creep and coping with

requirements volatility”. Although the average delivery time for web projects is rather

low (63% of all projects were delivered in 16 weeks or less), there appears to be little

indication of ad-hoc and desperate approaches to cope with the requirement for “Web

time”. The survey does not investigate technological problems in web development.

These findings of a well-structured and organized development approach within the

professional realm are in stark contrast to the more ad-hoc approaches we found in semi-

professional web development (see Chapter 3).

An earlier survey and interview study of 25 United Kingdom-based organizations

in diverse sectors of industry and government (Taylor, McWilliam et al. 2002) reflects

our findings for semi-professional web development. Only few organizations had

formalized procedures and techniques for web development. The majority (68%) used ad-

hoc approaches. “IT staff in…20 organisations…indicated that they tended to create

Chapter 2: Related Work

12

individual web pages directly using the given web development tool rather than plan an

outline of the given web page” (Taylor, McWilliam et al. 2002). Only seven of 25 used

any formalized website testing methods and only nine companies routinely produced

documentation accompanying a web project. The typical ad-hoc approach observed by

Taylor et al. (2002) starts with a discussion between IT staff and the “client” department;

continues with the construction of a prototype that uses text and pictures provided by the

“client”, and completes through successive feedback-refinement loops until the “client” is

satisfied and the website is made live. Taylor et al. (2002) also observed a disconnect

between research and industry practice stating that “none of the IT practitioners

interviewed within 25 organisations…mentioned academic literature or standards bodies

as a useful source of website development guidance” (Taylor, McWilliam et al. 2002).

This disconnect has been one of the motivating factors for developing the functional

prototype tool “Click” and releasing it as open-source software (see Chapter 5).

Rosson et al. (2004) have also studied web developers, but with the particular

focus on “informal” developers. In a study of web development in a community

computing context, they interviewed 12 informal web developers about how they came to

be doing web development, how they acquired their skills, the kinds of projects and

programming issues they encountered in their everyday development, and what concerns,

if any, they had about the tools they used. Rosson et al. (2004) found that these

individuals’ development activities are situated in a collaborative context in which they

depend on colleagues for content, expert advice, and testing. Their choice of tools was

often based on organizational issues such as cost or who else was using the tool, rather

than their own preferences or analysis of tools available. They learned new skills in an

informal and as-needed fashion, often by tracking down and adapting or modeling the

examples of others.

Chapter 2: Related Work

13

2.1.2 Model-driven Approaches to Data-intensive Websites

One major focus in the realm of web engineering has been on methods for

designing data-intensive web sites such as e-commerce or online-catalog applications.

Many of the approaches that are discussed in the following currently address only static

data-driven web sites (e.g., brochure sites, product-information sites) as opposed to

dynamic and truly interactive web applications (e.g., online membership management

application). In most cases, these methods require the site designer to create a high-level

model of the web site which then is automatically translated into a working

implementation. General advantages of model-driven approaches are:

• The designer does not have to focus on implementation-level details

• Code that has been tested for performance and security is automatically generated

• Multiple views of the data can be derived from only one model (e.g., HTML and

WML)

Considering my focus on nonprogrammers, general disadvantages are that these

model-driven approaches typically:

• assume expert-knowledge, and sometimes even advocate the collaboration of

multiple domain experts (e.g., see WebML in Section 2.1.2.3);

• require considerable planning effort; and

• have a long feedback loop which makes it difficult for end users who may just

want to “playfully discover” the requirements

Most importantly, few of the approaches described below (WebML being the

exception) currently go beyond data-intensive web sites to address interactive web

applications. Research on the model-based paradigm ranges from a few full-scale

processes like WebML (Ceri, Fraternali et al. 2000) to many light-weight code generators

(e.g., Wolber, Su et al. 2002). Typically, the developer can customize the layout of

HTML pages after they have been generated using an external web editor, but these

customizations are lost as soon as the code needs to be regenerated because of a needed

Chapter 2: Related Work

14

change in the data or behavior. The lack of support for evolutionary development from

start to finish is an important outstanding research problem.

2.1.2.1 WCML

Gaedke, Schempf, and Gellersen (2000) propose the “WebComposition Markup

Language” (WCML) for component-based and object-oriented web development. The

XML-based WCML can specify web components at different levels of abstraction and

defines how they are implemented using standard web technologies. However, it focuses

on the non-redundant definition of static websites rather than dynamic and more

interactive web applications. For example, WCML alone would not be sufficient to

specify the business logic for an online registration application. Furthermore, while

WCML facilitates reuse, its concepts and syntax make it unsuitable for nonprogrammers.

2.1.2.2 ARANEUS & HOMER

With a focus similar to WCML, the ARANEUS project (Mecca, Merialdo et al.

1999) approaches web site design by supporting development on a high level of

abstraction. Site developers first create a conceptual scheme or model of the whole site,

then define a hypertext structure and finally the mapping of data to the page layout.

HOMER (Merialdo, Atzeni et al. 2000) is offered as a visual tool for the definition of the

site’s conceptual scheme. The designers of ARANEUS recognized the advantage of

letting the developer specify the layout visually rather than programmatically. Their

solution includes the creation of HTML templates which are then translated automatically

into a custom format (attribute styles). This approach allows for rapid prototyping and

shields the developer from the burden of having to learn another layout language.

However, the work reported (Mecca, Merialdo et al. 1999) again only supports the

creation of static websites. An extension that covers web applications is planned.

2.1.2.3 WebML

Ceri, Fraternali, and Bongio (2000) recommend WebML as a modeling language

for designing data-intensive web sites; a central application domain of WebML is e-

commerce.

Chapter 2: Related Work

15

WebML is based on an XML syntax but also provides a graphical language. The

developers create high-level models of the web sites, which are the:

• Data model (expresses data content; uses entity-relationship-like notation);

• Hypertext model (defines set of pages and navigation);

• Presentation model (layout and graphic appearance; XSL is used for

transformation into target implementation languages like JSP or ASP.NET); and

• Personalization model (user and group modeling).

WebRatio (WebModels 2005) is offered as an IDE for creating web sites using

WebML. For defining the backend business logic WebML offers the concept of

“operation units” – and extensible set of operations (e.g., add to database, update, delete),

which the developer specifies as part of the hypertext model. WebML is powerful enough

for implementing the kind of web applications I have defined as my target domain (see

1.3); however due to its strict, top-down, technical, and layered development approach it

appears unsuitable for nonprogrammers.

2.1.3 Languages and Tools for Building Web Applications

A variety of technologies is currently available for implementing the dynamic

behavior of web applications. Some of these technologies are purely server-side

languages, for example, PHP (Lerdorf, Gutmans et al. 1995), JSP (Sun Microsystems

2002a), or ColdFusion (Macromedia 2002a). Some languages only work on the client-

side like Flash (Macromedia 2002b), or Curl (Hostetter, Kranz et al. 1997; curl 2005),

and others cover both the client and the server like ASP.NET (Microsoft 2002),

OpenLaszlo (Laszlo Systems Inc. 2005), or Flex (Macromedia 2005c).

2.1.3.1 PHP, ASP, Servlets, JSP, ColdFusion

Developing large web applications with a classical programming or scripting

language like C (Kernighan and Ritchie 1978) or PERL (Wall 1987) is tedious and error-

prone. As a result, new languages have been designed specifically for the web paradigm

like PHP (Lerdorf, Gutmans et al. 1995), Microsoft’s Active Server Pages [ASP], Sun’s

Servlets and JavaServer Pages [JSP] (Sun Microsystems 2002a), and Macromedia’s

Chapter 2: Related Work

16

ColdFusion (Macromedia 2002a). These languages offer abstractions for basic services

needed by web applications such as session management, or HTTP request handling.

Unfortunately, these “web languages” do not solve the web-programming problem of

integrating a variety of loosely-related languages and technologies. For example, a web

application might use PHP for server-side business logic, HTML for content presentation,

Cascading Style Sheets for formatting, and JavaScript for dynamic client-side behavior.

If the application includes dynamic client-side behavior, a line of Java code may even

look as complicated as shown in Figure 3. Although perhaps an extreme example, a line

of code such as this is very difficult to read because it contains four different syntaxes

(Java, JavaScript, HTML, CSS) as well as escape characters like the backslash (“\”).

out.print(“document.write(\“<a href=\\”#\\” style=\\”color:#009900\\”

onClick=\\”new_window('viewmatrix_ieonly.jsp')"\\”>View

Matrix\”);”);

Figure 3: Java code that outputs JavaScript code that outputs HTML code containing CSS

2.1.3.2 AJAX: Asynchronous JavaScript + XML

JavaScript has long been used on the client side to improve the user experience

provided by web applications. More recently, web developers have started using

JavaScript’s XMLHttpRequest object to request additional data from a web server

without having to reload the entire web page, thereby providing smoother state transitions

and facilitating interactivity. The web development consultancy firm Adaptive Path has

termed this approach Ajax (Garrett 2005). Ajax applications are typically used in

conjunction with the aforementioned server-side technologies such as PHP, Servlets, or

ASP and can result in highly interactive applications otherwise only possible using non-

HTML-based technologies such as Flash (Macromedia 2002b). However, Ajax is an

implementation technology and does not at all address one of the main barriers to end-

user web application development – complexity (see Chapter 3 for a detailed discussion

of barriers to EUDWeb).

Chapter 2: Related Work

17

2.1.3.3 ASP.NET and JSF

With its .NET framework, Microsoft (2002) introduced ASP.NET and refined the

concept of controls (i.e. components). For example, just a single line of code (i.e.

<asp:Calendar runat="server" />) can now produce a complete web-based calendar,

because it can be used to automatically produce the relevant HTML, JavaScript and CSS

instructions. Sun has adoped a similar approach for Java-based web development.

JavaServer Faces [JSF] (Sun Microsystems 2005) roughly mirror the functionality of

ASP.NET.

Nevertheless, even with the help of wizard-laden Integrated Development

Environments like Microsoft’s Visual Studio .NET (Microsoft 2003a) these tools are not

suited for use by nonprogrammers; they expect a thorough understanding of the web

development paradigm, knowledge that even relatively sophisticated users are not likely

to have.

2.1.3.4 Flash

Macromedia promotes Flash (Macromedia 2002b) as a platform for implementing

so-called “Rich Internet Applications” – applications that provide a rich user experience.

Flash addresses many of the shortcomings in HTML/CSS/JavaScript-based (a.k.a.

DHTML) web application development by offering powerful user interface components

and techniques (e.g., drag-and-drop, pixel-level layout control). Flash has been

distributed widely as a web-browser plug-in and is now a viable alternative for cross-

platform applications (Macromedia 2002c). However, the Flash language itself is not

sufficient for building web applications. Typically it is used in conjunction with a server-

side programming language such as ColdFusion, or PHP, ASP etc. Furthermore, Flash

was originally developed to support graphical animations and because of that builds on a

timeline metaphor which is a poor match for typical data-centric applications. Finally, the

limited set of predefined user interface (UI) widgets is not always sufficient for building

applications which frequently requires the laborious process of manually defining new

widgets – a shortcoming that “Flex” (Macromedia 2005c) addresses.

Chapter 2: Related Work

18

2.1.3.5 OpenLaszlo and Flex

In response to the shortcomings of Flash (inappropriate development metaphors,

limited predefined UI widgets, and lack of server-communication features), Macromedia

has developed Flex (Macromedia 2005c) which conceptually is based on an idea

originally developed by Laszlo Systems. Just like the competing OpenLaszlo (Laszlo

Systems Inc. 2005), Flex allows the developer to define an entire application in a custom

XML notation; in the case of Flex this is called MXML (Macromedia XML). Figure 4

shows an example Flex application that will display the text a user inputs into a text field

once the “Show” button is pressed. At runtime, when a user accesses an MXML file via

the web browser, the Flex server compiles the MXML on-demand into a Flash file and

delivers it (or a cached copy) back to the client. The Flash file then executes on the user’s

computer and can communicate with the Flex server to load or save additional data,

retrieve data using a web service, or communicate with Java objects via remote procedure

calls (RPC). Visual integrated development environments (IDE) are available for

OpenLaszlo as well as for Flex. Flex Builder looks like and operates similar to

Macromedia’s Dreamweaver. It includes code editing features, WYSIWYG, split code

edit/WYSIWYG views, a run mode and debugging facilities. IBM’s Eclipse plug-in “IDE

for Laszlo” (IBM 2005b) offers similar functionalities.

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

 <mx:TextInput id="source" width="150"/>

 <mx:Button label="Show" click="destination.text=source.text"/>

 <mx:Label id="destination" />

</mx:Application>

Figure 4: Example Flex application

OpenLaszlo and Flex address many of the problems that currently complicate web

application development, in particular they solve cross-platform compatibility problems,

and offer more integrated languages instead of requiring the developer to manually

integrate a multitude of different web technologies. Finally, both offer a rich set of

Chapter 2: Related Work

19

predefined UI widgets and expose an event-based programming model while completely

hiding Flash’s underlying timeline and movie metaphor. However, both OpenLaszlo and

Flex are targeted at professional developers or even development teams rather than at

nonprogrammer developers.

2.1.3.6 XUL and XAML

The XML User Interface Language [XUL] (Mozilla 2005) is a client-side, event-

based language for the specification of Mozilla applications and extensions but can also

be used to create web applications (limited to running within Mozilla Firefox). Similar to

OpenLaszlo and Flex it provides a rich set of predefined UI widgets.

Microsoft’s eXtensible Application Markup Language [XAML] (Microsoft 2004)

is a new XML-based UI description language that allows, similar to XUL, OpenLaszlo,

and Flex, the declarative definition of user interfaces. This language is used to define the

user interface of Microsoft’s next operating system code-named Longhorn. XAML files

are compiled into .NET class files (using a .NET compatible language such as C# or

Visual Basic.NET) which in turn implement the user interface. Although currently not

advertised for web application development, commercial solutions exist that convert

XAML/.NET applications into web applications. For example, Xamlon (2005) converts

XAML/.NET applications into Flash files which can be deployed as part of a web

application.

2.1.3.7 The <bigwig> project

The <bigwig> project (Brabrand, Moeller et al. 2002) approaches the problem of

web development by suggesting different sub-languages that are specialized for a

particular problem domain. Although this method solves a few typical problems like

form-field validation in an efficient manner, it introduces another source of complexity

through different syntaxes for the sub-languages. The sub-languages proposed by the

<bigwig> project are tailored to the knowledge of professional programmers and are

unsuitable for nonprogrammers.

While the main focus of work on web engineering is the support for professional

programmers, researchers in this field are starting to consider the web’s potential for end-

Chapter 2: Related Work

20

user computing. For example, Deshpande and Hansen (2001) state explicitly that end-

users (i.e. nonprogrammers) should be supported in their efforts to create web

applications. However, this discussion has just begun and thus far there has been little in

the way of web development languages, tools, or library resources aimed at

nonprogrammers – one of the original motivations for my research.

2.2 Psychology of Programming

Behavioral studies of programming were among the earliest examples of research

in human-computer interaction (HCI). Well before the appearance of modern interactive

computer applications, programmers used text-based command and programming

languages to solve complex problems with computers. Cognitive scientists have long

been intrigued by the complex and open-ended nature of software design and

implementation; indeed many of the models and theories of current HCI had their

inception in studies of programmers developing, comprehending, or maintaining code

(Shneiderman 1980).

Studies of programming have analyzed several key subtasks—analysis, design,

coding, and testing (Pennington and Grabowski 1990; Rosson 1996). Within each of

these subtasks, a picture of active programming has emerged, similar to the strategies of

active use described for end users working with word processors or other desktop

applications (Carroll 1990; 2000). That is, programmers are goal-directed and use

available resources to produce concrete results as rapidly as possible. This strategy may

work against traditional structured and top-down methods of analysis and design

(Dijkstra 1968), in that it tends to promote opportunistic and interleaved attention to the

different subtasks. For example, an experienced designer may identify a low-level

implementation question very early on and proceed in a depth-first fashion to explore the

issue before jumping back to a more abstract level of analysis (Carroll, Thomas et al.

1979; Adelson and Soloway 1985; Guindon 1990). Similarly, programmers who are

evaluating code resist comprehending it line by line, instead searching for “beacons” that

signal key elements for attention (Brooks 1983).

Chapter 2: Related Work

21

When programming tools are available, programmers recruit them in support of

an iterative and heterarchical design and development process. For instance, the

Smalltalk environment provides a sophisticated debugger that enables programmers to

identify and expand references to objects at runtime. This promotes a strategy of

“debugging into existence,” wherein expert Smalltalk programmers do the minimum

amount of analysis and programming needed to construct a running application, and then

successively refine it by discovering where it “breaks,” correcting the source of the

problem, locating the next problem, and so on (Rosson and Carroll 1993; 1996).

These studies of active programming strategies provide a scientific grounding for

my work on nonprogrammer tools—I expect end users to be even more active and goal-

directed than experienced software developers. Many studies of computer use have

demonstrated that for the most part end users do not want to “learn” but rather to

“produce”, and will use whatever information or resources available to help them make

sense of a task just enough to make progress (Carroll 1990).

The prior work documenting a concrete and incremental style of programming by

experts was the inspiration for my concept of design-at-runtime for web application

development tools (as discussed in 5.1). This concept is also similar to the automatic re-

calculation feature found in spreadsheets. Tanimoto (1990) coined the term “liveness” to

refer to the degree that a programming language supports testing while development is

under way (see also 2.3.2).

2.3 End-User Development

2.3.1 Goals and Trade-off Between Ease-of-Use and Power

In its essence end-user development (EUD) or end-user programming is

equivalent to “the psychology of programming for nonprogrammers”. Research in this

area studies how programming can be made accessible to nonprogrammers, addressing

the needs of both children and adults. Some of the earliest work in EUD had the goal of

empowering computer users to pursue personal exploration and learning goals (Papert

1980; Fischer and Lemke 1988; Papert 1993; Repenning 1994). Other work is more

Chapter 2: Related Work

22

pragmatic, aiming to provide more accessible support for tasks that could benefit from

programming techniques, e.g., spreadsheet manipulations (Burnett, Atwood et al. 2001)

or text formatting (Lieberman 2001).

The competing goals of ease-of-use and power lead to inevitable tradeoffs in the

design of end-user programming languages and environments (Repenning 1994;

Eisenberg 1995; Gilmore, Pheasey et al. 1995). On the one hand, designers want to build

EUD systems that are as self-evident and easy to use as possible, so that users with little

or no programming experience will be able to use them. But on the other hand, they want

the systems to be powerful, supporting traditional constructs of programming languages

such as abstraction, modularity, and reuse. This tension has been a pervasive influence on

my work, in that I have relied extensively on empirical studies to determine how best to

make my tools accessible to nonprogrammers, while at the same time giving them access

to a broad range of useful and powerful functions.

2.3.2 The Spreadsheet Paradigm and the Concept of Liveness

Perhaps the most successful EUD system is the spreadsheet. Nardi and her

colleagues (Nardi and Miller 1991; Nardi 1993) have documented considerable end-user

expertise in spreadsheet development though perhaps not as much expertise in testing and

debugging (Brown and Gould 1987; Burnett, Ren et al. 2001). According to Nardi, one

reason for the success of the spreadsheet paradigm is that it builds from a specific and

familiar visual formalism (i.e. ledger pages). Of course at the same time it also provides a

very visible and valuable service, namely the calculation and automatic updating of

mathematical formulas. I believe that a web page may act as a similar visual formalism,

and that nonprogrammers might be able to reference, query, and manipulate elements of

an interactive web page much like they now work with spreadsheet cells.

Tanimoto (1990) proposes the concept of “Liveness” to classify visual

programming languages according to the degree they give “live” feedback to the

programmer. He defines four different levels of this concept ranging from purely

“informative” feedback on level 1 (e.g., a flowchart visualization of the program only

used for comprehension), the “informative and significant” level 2 (e.g., a visual program

Chapter 2: Related Work

23

specification that can be executed), the “informative, significant, and responsive” level 3

(e.g., every mouse and button action triggers an update of the visual representation), to

the “informative, significant, responsive, and live” level 4 (e.g., the system is

continuously active and gives feedback to the programmer). With its automatic

recalculation feature, the spreadsheet paradigm is a familiar example of level 3 liveness.

The Design-at-Runtime paradigm discussed in Section 5.1 is an application of the

concept of liveness at level 3 (or potentially 4) to the development of form-based and

database-driven web applications.

2.3.3 The Concept of Naturalness in End-User Programming

A user-centered approach to EUD should take into account users’ abilities to

produce and comprehend natural language. For example, Miller (1974; 1981) asked

nonprogrammers to specify procedural tasks, and used their responses to recommend

features of end-user programming languages. This approach has considerable face-

validity with respect to minimizing the “cognitive distance” between a user’s intentions

and a language specification (Green 1989; 1990).

Pane and Myers (2000; 2001; Pane, Ratanamahatana et al. 2001; 2002) followed a

naturalness-oriented approach in their design of HANDS (Human-centered Advances for

Novice Development of Software): they first performed behavioral studies to identify the

control logic and data specifications that children and adults use in natural language, then

designed a new language and environment based on these abstractions. Many of Pane et

al.’s findings are applicable to the research on “mental models” reported in Chapter 4. In

particular, based on the results from two studies (study 1: children program a video-

game; study 2: children and adults program database scenarios), Pane et al. (2001)

propose that:

• Rule-or event-based programming may be more natural than the imperative

paradigm;

• A mix of different programming styles may improve usability;

• Operations on multiple objects are more often expressed in terms of sets than

loops;

Chapter 2: Related Work

24

• Negation is rarely used; expressing negative concepts is harder than affirmative

ones;

• The Boolean operator AND is frequently used where OR would be correct;

• Application state is expected to be maintained implicitly; state variables are rarely

used;

• Sort is expected as a basic operator through the use of expressions like

“alphabetical” or “from A to Z”;

• Complex conditionals are often expressed via a set of mutually exclusive rules or

by stating a general condition, subsequently modified with exceptions.

2.3.4 Visual Languages and Direct Manipulation

Most languages designed for end users rely on visual interaction techniques to

some extent, for example programming with graphical rewrite rules and agents (e.g.,

Repenning 1994). The emphasis on visual techniques stems from a variety of beliefs such

as the relative naturalness of pictures as a representation medium, greater expressivity of

pictures, and the rapid processing of image or spatial information (although note that

empirical justification of such beliefs is rare: Blackwell 1996; Whitley and Blackwell

1997). Visual techniques are also an important component of direct manipulation systems

(Shneiderman 1983), in which users point, grab, and drag visual components to interact

with a system. Because of its ubiquity in operating systems and desktop applications,

direct manipulation is a familiar interaction technique that nonprogrammers are likely to

expect in EUD systems.

2.3.5 Cognitive Dimensions Framework

Green and Petre (1996) developed the “Cognitive dimensions framework of

notations” – in its essence a set of dimensions that can be used to analyze the usability of

visual programming languages and environments. Implicitly these dimensions define

usability requirements for virtually any programming language. Table 2 lists these

dimensions along with explanations similar to Green and Petre’s original descriptions.

Chapter 2: Related Work

25

Table 2: Green and Petre's cognitive dimensions framework of notations

Abstraction Gradient: What levels of abstraction can the user work on?

Closeness of mapping: How close are the language’s concepts to the expectations of the users?

Consistency: How consistent is the language internally?

Diffuseness: How many different symbols does the language employ to express a meaning?

Error-proneness: To what degree does language’s notation induce mistakes?

Hard mental operations: Do any tasks require substantial memorization or calculation efforts?

Hidden dependencies: Can dependencies exist that are not explicitly shown by the language?

Premature commitment: Do users need to make decisions before they have the necessary information?

Progressive evaluation: To what degree can not-yet-completed programs be executed?

Role-expressiveness: Do the language’s components clearly show what they stand for?

Secondary notation: Can user annotate the language using notes, colors, comments…?

Viscosity: How difficult is it to make changes? Do small changes have global effects?

Visibility: Can all the code be viewed simultaneously or, at least, can different views be combined?

These dimensions have provided a general set of guidelines in my development of

EUD web tools. For instance, during the prototyping efforts reported in Chapter 5 I

focused on addressing particular issues such as ensuring the Closeness of mapping by

employing concepts that are close to nonprogrammers’ natural mental models (see

Chapter 4), reducing Premature commitment by supporting opportunistic behavior, and

facilitating Progressive evaluation through the Design-at-Runtime concept (see 5.1).

2.3.6 End-User Development for the Web

Well before the development of the World Wide Web, end-user development of

basic data management applications was a topic for academia and industry. HyperCard

(Apple 1987) is an early example of a successful EUD tool. More recently, web

development research projects such as WebFormulate (Ambler and Leopold 1998), FAR

(Burnett, Chekka et al. 2001), DENIM (Newman, Lin et al. 2003), BioPro (Shimomura

2004) and WebSheets (Wolber, Su et al. 2002) have explored specific approaches to end-

user programming of web applications.

Chapter 2: Related Work

26

WebFormulate (Ambler and Leopold 1998) is an early tool for building web

applications that is itself web-based and partly platform independent (the page layout

must be defined with a desktop application). It includes a form-based visual language,

which allows developers to construct new computations by referencing other objects via

point-and-click. WebFormulate uses a message passing paradigm that reports any

changes to an object immediately to all interested objects. The development environment

running within the web browser communicates with the web server through a hidden

HTML frame, an approach we have adopted for our prototype EUDWeb tool “Click” (see

5.5). It is not clear, however, how WebFormulate abstracts the process of defining the

business logic without requiring the end user developer to write actual code.

FAR (Burnett, Chekka et al. 2001) is an online business development tool that

combines ideas from spreadsheets and rule-based programming with drag-and-drop web

page layout functionality. FAR’s direct manipulation programming paradigm seems

suited for end users, but usability studies involving human subjects have not been

reported. FAR may be ideal for calculation-intensive web applications (e.g., extending

the spreadsheet paradigm). But how its expressive power will scale to the design of

general web applications is still unclear.

DENIM (Newman, Lin et al. 2003) is a tool that can assist professional and

nonprofessional web developers in the early stages of design with digital sketching of

informal interactive prototypes. However, while professional web developers are trained

to transform an informal prototype into a final application it is not clear how end-user

developers may create a production web application.

BioPro (Shimomura 2004) is a visual tool that supports the construction of web

applications by choosing components (such as hyperlinks, tables, text fields) from menus.

It tightly integrates a basic database management system and allows the testing of

partially developed applications by substituting example data for unknown inputs. The

tool is extensible by allowing the developer to add custom Java code snippets to an

application which are stored compartmentalized to facilitate code readability. Although

the tool claims to support application development according to the developer’s “brain-

Chapter 2: Related Work

27

image” (mental model) of the application, it exposes many non-intuitive technical

concepts (such as hidden fields to forward information between pages) and seems

therefore unsuitable for end-user developers.

The WebSheets tool (Wolber, Su et al. 2002), although currently limited in power,

is close to our holistic vision of end-user web development. It uses a mix of

programming-by-example, query-by-example, and spreadsheet concepts to help

nonprogrammers develop fully functional web applications. The disadvantage of

programming-by-example techniques (also known as programming-by-demonstration) is

the error-prone computer-controlled process of induction (a.k.a. generalization) which

can quickly become a source of frustration for developers if it is invisible, uncontrollable,

or based on inappropriate heuristics (McDaniel 2001; Myers and McDaniel 2001).

Although innovative and promising in its idea, it is unclear if the WebSheets approach

will scale to even slightly more complex applications (e.g., currently WebSheets only

supports one-to-one mappings between database tables and HTML data tables).

2.4 Commercial Web Development Tools

2.4.1 Professional Productivity Tools

Some of the most active work on web development is occurring in the

marketplace. A major focus of research and practice is tools that assist web developers in

becoming more productive. Many powerful computer aided software engineering

(CASE) or rapid application development (RAD) tools have been developed for

experienced developers like WebRatio (WebModels 2005), Rational Web Developer for

WebSphere Software (IBM 2005a), or Visual Web Developer 2005 (Microsoft 2005b).

Helman and Fertalj (2003) briefly reviewed a number of professional code

generating tools – CodeCharge Studio (YesSoftware 2003), CodeJay (2003), Visual

Studio (Microsoft 2003a), and Web Matrix (Microsoft 2003b) – from the perspective of

productivity tools for programmers. Apart from mentioning many convenient features

Chapter 2: Related Work

28

(such as automatic generation of code for forms and reports), they discuss typical

shortcomings of current code generators including the following:

• “…there is almost no support for more complex reports that include user

interaction and data input” (one of the main targets I identified for EUDWeb),

• Code generators that are designed to produce output for different languages (such

as PHP, ASP.NET, JSP) often only adjust the syntax for the automatically

generated code but do not produce code that takes advantage of the programming

features specific to a particular language thereby creating sub-standard code,

• Code generators often have limited capabilities for producing object-oriented

code,

• Generated code is often not well documented and lacks comments to indicate

which portions of the code are meant to be customized by the developer,

• Lack of automatic generation of external code documentation (such as JavaDoc),

• Lack of code generation for web site navigation features (such as menus etc.),

• Tools often do not integrate well with other tools.

Even though these tools may simplify professionals' web development process by

providing wizards and visual tools, none of them have been targeted at nonprogrammer

developers, so in general they assume the knowledge, working culture, and expectations

of an experienced programmer.

2.4.2 Database-centric Tools

Vendors of traditional databases have extended their products to include

interfaces to the web. For example, using FileMaker Pro (FileMaker 2005) and its

“Instant Web Publishing” functionality, database users can create a web user interface to

control their databases. However, these approaches are typically very database-centric

and often not ideal for the design of custom web applications. On the World Wide Web, a

variety of Application Service Providers (ASPs) offer web-based solutions based on the

database paradigm. A representative of this ASP model is FormSite (Vroman Systems

Inc. 2005) – a tool targeted at users who want to create form-based applications.

Chapter 2: Related Work

29

Although FormSite is easy to use, it is also very domain-specific, limiting the developer

to simple form-based data input applications. For example, an end user may use FormSite

to create a survey or a multi-page registration form, but would be unable to create an

online membership management application or an online reference database.

2.4.3 Online Site Builders and eCommerce Tools

A number of commercial services, like Homestead (2005), or ZyWeb (2005),

offer web-based WYSIWYG editors that are frequently referred to as “site builders.”

Some of these site builders like Trellix’ Web Express (2005) allow users to add dynamic

elements like guest books, credit card processing modules, or shopping carts to their web

site. Balthaser:Fx (2005) offers an Internet-based service targeted at professionals who

use Macromedia’s Flash. The service allows these developers to create Flash web sites

completely online. Balthaser:Fx has extensive libraries containing predefined elements

that aid less experienced Flash designers.

Domain-specific web development tools already enable nonprogrammers to offer

interactive services on their web site. For example, the commercial service YAHOO!

Store (YAHOO! 2005) allows merchants to create, customize, and maintain a complete e-

commerce web site. The limitation of these tools is that they have been created to support

a very limited number of classes of interactive applications and thus cannot satisfy more

situation-specific needs.

2.4.4 End-User WYSIWYG Editors and Web Application Builders

Closest to the focus of my research are tools that require little or no programming

knowledge. Currently these tools exist in two flavors: desktop-based what-you-see-is-

what-you-get (WYSIWYG) application builders and web-based application builders.

Some of the widely-used desktop-based WYSIWYG web editors include Dreamweaver

(Macromedia 2005b) and its “end-user friendly sibling” Contribute (Macromedia 2005a),

FrontPage (Microsoft 2005a), and Adobe GoLive (Adobe 2003). Dreamweaver, for

example, extends the standard WYSIWYG authoring environment to include database

connections and “server behaviors” that implement common server functionality such as

Chapter 2: Related Work

30

user authentication or recordset paging. Similarly, Microsoft’s FrontPage offers “web

components,” modules that authors can embed to create counters, advertisement servers,

forum pages, and spreadsheets with no programming (Microsoft 2005a). Some of

FrontPage’s shortcomings (lack of integration, workflow) are discussed in 2.4.5. In

contrast, Instantis SiteWand (Instantis 2003) takes an approach where users design and

upload HTML page templates and then specify online how these pages should interact.

This paradigm leverages existing knowledge well because users can design a site’s “look

& feel” using their favorite WYSIWIG editor. SiteWand abstracts many of the details of

web development which makes it suitable for non-programmers. Compared to other

tools, SiteWand is very close to my vision of end-user web application development, but

it still places many challenges in the way of the nonprogrammer (e.g. a complex text-

based templating language, and a non-intuitive programming framework based on an

“engines” concept).

It is difficult to classify tools such as Dreamweaver as programmer or

nonprogrammer tools—they do not require programming skills per-se, but still have a

considerable learning curve. In its current state Dreamweaver is likely used more as a

tool to enhance programmers’ productivity than to extend nonprogrammers’ capabilities.

However, a trend towards improved ease of use and extended power is apparent. Another

concern is that such tools have limited power for nonprogrammers. They do allow the

creation of basic database applications but do not support ad hoc extensions of the basic

application with custom features unless the developer is willing and able to write low-

level code.

2.4.5 A Review of State-of-the-Art Web Development Tools

A number of commercial web development tools like FrontPage (Microsoft

2005a) have begun to directly support nonprogrammers in the creation of basic web

applications. However, so far, the research community has devoted little effort to

studying approaches and features found in those commercially available tools.

In order to better ground my research in related work and as yet another source of

requirements for EUDWeb, we reviewed nine commercial web development tools (this

Chapter 2: Related Work

31

work was done in close collaboration with Jonathan Howarth). We analyzed each tool

from the perspective of suitability for end-user development; looking across the nine

tools we were able to compare and contrast alternative and best-of-breed approaches for

many aspects of web application development. The full report is available as a tech report

(Rode, Howarth et al. 2004). The following summarizes the study and key findings.

2.4.5.1 Overview of the Review Process

For our review we selected tools based on both their apparent market dominance

and their potential sophistication. Although most web development tools have a particular

focus regarding target development project and user group, we found that the majority of

tools can be grouped into one of three categories: database-centric tools (we reviewed:

FileMaker Pro 7), form-centric tools (we reviewed: Quask Form Artist), and website-

centric tools (we reviewed: Microsoft Visual Web Developer 2005 Beta, YesSoftware

CodeCharge Studio, H.E.I. Informations-systeme RADpage, Instantis SiteWand,

Macromedia Dreamweaver 2004 MX, Macromedia Drumbeat 2000, Microsoft FrontPage

2003). To structure and constrain our review, we analyzed the commercial tools with a

focus on how they approach the implementation of particular features that are common in

web application development. To make these features more concrete and to convey our

assumptions about a likely end users’ goals and activities, we constructed a reference

scenario and persona. In the scenario, a nonprogrammer was attempting to build what we

feel is a typical example of a data-driven website – an online employee database. We

reviewed each tool for the approach and features needed to implement this scenario.

2.4.5.2 Usability Findings and Recommendations

What does the ideal web application development tool look like? I believe that

there cannot be only one such tool. Because developers have different needs and different

skill sets, different developers will be best served by different tools. In general, our

review suggests that while productivity tools for programmers like Microsoft Visual Web

Developer have matured to provide significant support for web development, tools for

nonprogrammer developers are still in their infancy.

Chapter 2: Related Work

32

Most of the end-user tools that we reviewed do not lack functionality but rather

ease of use. For instance, even apparently simple problems such as implementing the

intended look and feel become difficult when a novice has to use HTML-table-and-flow-

based positioning instead of the more intuitive pixel-based positioning.

Although most tools offer wizards and other features to simplify particular aspects

of development, none of the tools that we reviewed addresses the process of development

as a whole, supporting end-user developers at the same level of complexity from start to

finish. Indeed, Fraternali’s and Paolini’s comment about web tools of five years ago

seems to be still true today: “…a careful review of their features reveals that most

solutions concentrate on implementation, paying little attention to the overall process of

designing a Web application” (Fraternali and Paolini 2000).

The otherwise comparatively novice-friendly FrontPage, for example, begins the

creation of a new application by asking the developer to make a premature commitment

to one of the following technologies: ASP, ASP.NET, FrontPage Server Extensions, or

SharePoint Server. An excerpt from an online tutorial for FrontPage illustrates the

problem: “…You can also use the Form page Wizard and Database Interface Wizard with

ASP or ASP.NET to edit, view, or search records from a Web page. The Form page

Wizard works on a Web site running Windows SharePoint Services 2.0, yet the Database

Interface Wizard does not.” Such a selection is likely to confuse anyone but a seasoned

web developer.

Currently, all the tools that we reviewed would cause major problems for the

informal web developer who wants to create more than a basic website. The tool that a

user like Anna (from our introduction scenario, see 1.1) is looking for has to have

multiple reference examples, well-guided but short wizards, an integrated zero-

configuration web server for testing purposes, and good support during the deployment

phase of the application. Also, as Anna becomes more familiar with the capabilities of the

tool and her applications become more ambitious, the tool should help her learn by

gradually exposing the inner workings of the wizards and forms. Ideally, by placing

learners on a “gentle slope” (MacLean, Carter et al. 1990), the skills required to

implement advanced features should only grow in proportion to the complexity of the

Chapter 2: Related Work

33

desired functionality – “Make simple things easy, and hard things possible.” The ideal

tool for nonprogrammer web developers would provide ease of use with the appropriate

abstractions but also offer power and flexibility by allowing integration of user-defined

and automatically-created code. Until such a tool exists, we think that there may be a

market for less flexible but easier to use special-purpose tools similar to Macromedia

Drumbeat (which simplifies layout definition by abstracting the HTML-flow-based

layout, and tightly integrates database management tools). Table 3 summarizes our

findings in the form of guidelines and recommendations for future tools targeted at end-

user developers.

Table 3: Guidelines for EUDWeb tools derived from our review

Recommended Solutions for Tools Targeted at End Users

Getting Started
• Avoid technical jargon for startup options (e.g. non-technical descriptions of underlying required

technologies)
• Provide wizards (with minimal premature commitment)
• Provide example solutions
• Provide templates

Workflow
• Take a holistic approach to web application development
• Allow for gradual construction of the database

Level of Abstraction
• Provide high-level components such as data tables but also lower-level components for flexibility
• Make components customizable, skinable

Layout
• Include the layout editor in the tool
• Pixel-based editors are simpler than HTML-flow based editors
• Provide templates and themes that can be applied site-wide

Chapter 2: Related Work

34

Database
• Allow for the creation of a new database including schema from within the tool or through a

connection to an existing external database
• Facilitate late changes to database schemas
• Support populating and editing the database from within the tool
• Provide a visual or form-based query builder

Application Logic
• Make session management transparent
• Provide predefined high-level actions such as add, update, delete record, go to page, and send email
• Offer wizards to create commonly used design patterns such as overview-detail or repeating regions

Testing and Debugging
• Facilitate fast iteration between building and testing, e.g. by using design-at-runtime (see 5.1)
• Avoid syntax errors by constraining the development UI
• Provide context-sensitive error messages

Learning and Scaling
• Allow for viewing and editing code parallel to design (e.g. Dreamweaver’s split view)
• Allow for viewing and editing code by component
• Allow developer to edit automatically generated code or provide hooks or placeholders for custom

code
• Reintegrate custom modifications made by the end user into the automatically generated code

(challenging research issue)
• Document automatically generated code

Security
• Provide predefined user/permissions management and high-level security components (e.g. Visual

Web Developer’s Login control)
• Provide high-level validation features for input components
• Generate secure code (e.g. check inputs, SQL commands)

Collaboration
• Facilitate collaborative development by offering a file check-out or versioning system
• Implement levels of access (e.g. develop, modify data, etc.)

Deployment
• Provide a built-in zero configuration test server, whether as a local server (e.g. Visual Web

Developer) or a remote server (e.g. Form Artist)
• Provide a built-in production server (e.g. FileMaker Pro) or easy to use deployment wizard

Chapter 2: Related Work

35

2.5 Summary and Conclusions

Table 4 shows a summary of the findings and trends of the related work for the

three domains of web engineering, psychology of programming, and end-user

development as well as a selected “lessons learned” from a review of commercial web

development tools.

Table 4: Summary of the findings and trends of the related work

Web Engineering

• Key problems for web developers: cross-platform compatibility, and usability issues of web editors

• Experts employ multiple (often informal) representations to highlight different design aspects

• Declarative XML-based, event-based, component-based, object-oriented UI definition languages

• Higher abstraction levels: widget sets, features to facilitate common tasks such as input validation

• Better integration: less need for manually combining technologies such as HTML, JavaScript, CSS

• Better interaction between client-side and server-side: simplified use of web services, or RPC

• Better cross-platform compatibility through use of technologies like Flash

• Visual tools integrate code-editing, WYSIWYG, and graphical notations

• Model-driven approaches separate the data model, application logic, and presentation

• Design patterns like MVC are increasingly becoming the modus operandi

• Use of UML or UML-related design representations

Psychology of Programming

• Programmers are goal-directed and focus on producing concrete results fast (active programming)

• Programmers evaluating code resist comprehending it line by line; instead search for “beacons”

• Programmers work opportunistically, jumping often between high-level modeling, implementation

• Programmers work iteratively using a “debugging-into-existence” approach

Chapter 2: Related Work

36

End-User Development

• Central problem is finding good tradeoff between ease-of-use and power

• Use of metaphors (e.g. ledger pages for spreadsheet)

• Concept of “Liveness”

• Findings related to concept of “Naturalness” in end-user programming:

• Rule-or event-based programming may be more natural than the imperative paradigm

• A mix of different programming styles may improve usability

• Operations on multiple objects are more often expressed in terms of sets than loops

• Negation is rarely used; expressing negative concepts is harder than affirmative ones

• The Boolean operator AND is frequently used where OR would be correct

• Application state is expected to be maintained implicitly; state variables are rarely used

• Sort is expected as a basic operator by using expressions like “alphabetical”

• Complex conditionals are often expressed via a set of mutually exclusive rules or by stating a

general condition, subsequently modified with exceptions

• Visual languages can be beneficial but their general superiority has not been shown

• Cognitive dimensions framework of notations implicitly establishes key usability requirements

• Programming-by-example paradigm is powerful but induction process is difficult and error-prone

State-of-the-Art in Commercial Web Development Tools

• Many Web IDEs include layout tools, DB tools, code generation, and debugging features

• Database-centric tools allow web publication of typical databases but are not very customizable

• “Site builders” offer predefined modules such as guest books, shopping carts etc.

• eCommerce tools allow nonprogrammers to setup online stores, e.g. Yahoo Stores

• WYSIWYG web editors include basic components but often do not sufficiently abstract

• General lack of attention towards start-to-finish/holistic guidance (including the publishing step)

• Current tools for the most part do not expose a gentle slope of complexity

In summary, much of the prior research within the web engineering discipline has

contributed to solving the complexity problem and the reuse problem by proposing higher

levels of abstraction (through model-based approaches or component-based approaches).

However, very little work has targeted nonprogrammers as their audience, which is

Chapter 2: Related Work

37

indicated by the use of abstract concepts such as the object-oriented paradigm

(inheritance etc.) or data modeling using versions of the entity relationship model.

The psychology of programming domain has uncovered behavioral patterns of

expert programmers (e.g., active programming, debugging-into-existence), many of

which extend to novice programmers as well (see 6.2.9) and should be facilitated for

EUDWeb.

The two contributions within the end-user development discipline that are most

relevant to my work are the concept of naturalness and the cognitive dimensions

framework. The work reported in Chapter 4 examines naturalness within the context of

EUDWeb. The cognitive dimensions framework has served as a set of high-level

guidelines throughout the development of our prototype EUDWeb tool Click (Chapter 5).

Although research in end-user development has investigated many different application

domains, the area of web application development is still largely unexplored – a major

motivation for the work reported here.

Despite the considerable progress in the power and ease of use of web

development tools, none of the tools we have reviewed is sufficiently powerful while also

being appropriate for end users. Typically, tools that target a narrow domain (such as

survey creation tools) are easy to use but not very expressive. The more scalable tools

frequently do not take a holistic approach and fail to guide developers from start to finish,

and expose a steep learning curve as soon as the developer goes beyond the basics. Our

prototype tool Click, as discussed in Chapter 5, attempts to attain the delicate balance

between power and ease of use while exposing a “gentle slope” learning curve.

The particular problems that developers face when creating web applications are

discussed in the following Chapter 3. Many of these issues create entry barriers which

have to be overcome in order to make web application development accessible to

nonprogrammers.

Chapter 3: Barriers to End-User Web Application Development

38

Chapter 3

Entry Barriers and Status-Quo in
End-User Web Application
Development

3 Entry Barriers and Status-Quo in End-User Web
Application Development

The research mission of my work is to lower the entry barriers to web application

development thereby making it more accessible (see 1.4). This chapter identifies and

discusses the particular entry barriers to web application development. I report the

findings of one survey and one interview study of semi-professional web developers at

Virginia Tech (3.1), and furthermore of one comprehensive survey of a more diverse

audience which extends beyond the academic environment (3.2).

My goals are two-fold: I expect that the findings can contribute to the ongoing

development of web technologies and tools for professionals and semi-professionals, but

more relevant to end-user development, I want to anticipate and “hide” these problems as

much as possible in the development of tools for nonprogrammers. My rationale was

simple: issues that are troublesome for experienced developers may be insurmountable

hurdles for novices.

3.1 Survey and Interviews of Experienced Web Developers

As one of the first sources for requirements development, I surveyed sophisticated

developers at Virginia Tech regarding the challenges, tools, and processes within the

domain of web application development. Note, however, that these participants should be

considered semi-professionals rather than expert developers because for most of them

Chapter 3: Barriers to End-User Web Application Development

39

web application development was just a part of their work rather than a full-time

occupation.

Findings from two distinct studies are reported – a survey and an interview study.

The survey and interview study jointly highlight key challenges such as: implementing

security, cross-platform compatibility, debugging, and technology integration. First, the

findings from the survey and the interviews are reported separately and then summarized

to paint a coherent picture of the status-quo of web development.

3.1.1 Methods and Results

The research presented here was initiated with a survey of web developers that

asked for ratings and examples of various web development activities. In order to enrich

and explain the findings and to increase the total number of reported experiences, I later

conducted in-person interviews (see 3.1.1.2) with developers who (with the exception of

one) had not participated in the survey.

3.1.1.1 The Survey

The survey data analyzed here is a subset of the data collected in a survey titled

“Interactive Websites” conducted in May 2002. See Appendix A.2 for the questionnaire

form and a summary of results. The individual response data along with a general

summary can be browsed online (Rode 2002b). Survey participants were recruited from

different sources: an invitation email was sent to all webmasters who maintained an

organizational website on the universities’ web hosting system, as well as to all

subscribers of the university’s web developers mailing list and of the computer science

graduate students mailing list. The email invitation stated the purpose of the investigation

and contained a link to the web-based survey. In order to encourage participation I

advertised a raffle of lunch coupons ranging from $5 to $15. The survey was open for

participant input for approximately three weeks at the end of the spring semester in 2002.

The survey had two distinct purposes. One purpose was to determine webmasters’

needs for web applications, the other to learn about the challenges inherent in web

application development. For the latter purpose, the survey contained a section targeted at

Chapter 3: Barriers to End-User Web Application Development

40

experienced developers only. Participants were asked to respond to this section only if

they had previously developed a web application.

On average, the 31 respondents who answered the questions about web

development rated themselves just above the mid-point on a scale from 1 (no knowledge

in web application development) to 5 (expert knowledge); the mean self-rating was 3.2

(SD=0.9). Their self-reported years of experience in web application development were

approximately equally distributed between “less than a year” and “more than 5 years.” 8

respondents identified themselves as undergraduate students, 6 as graduate students, 7 as

faculty, 6 as staff, and 4 as alumni.

In order to gauge the needs for web applications, one of the first questions in the

survey asked the respondents to point out opportunities for “interactive websites” (the

survey had previously defined this term) in their environment (Figure 5).

Where do you see opportunities for interactive websites in your environment (related and

unrelated to Virginia Tech)?

For example, think about what is currently done on paper but may be done more efficiently or

conveniently via the web. (examples: A website for ... may help our bowling club to...; A website for ...

would help the people in our department to...)

Figure 5: Survey question targeted at exploring end users' needs for “interactive websites”

The analysis of the 67 responses to this question (Table 5) indicates that

approximately one third of the respondents' needs could be addressed by a high-level

development tool that offered basic data collection, storage and retrieval functionality.

Another 40% of the requests could be satisfied through customization of five generic web

applications (resource reservation, shopping cart and payment, message board, content

management, calendar).

Research on tailorability (e.g., MacLean, Carter et al. 1990) has shown that

software can be designed for easy customization by end users. Diverse requests for more

advanced applications comprised the remaining 25%.

Chapter 3: Barriers to End-User Web Application Development

41

Table 5: Virginia Tech webmasters reporting their needs for “interactive websites” a.k.a. web

applications (number in brackets indicates the frequency of requests; N=67, with some respondents

reporting needs in multiple categories)

Generic web applications [30]

Resource reservation systems of some sort [9], Shopping cart & online payment systems [8],
Message board systems [7], Content management systems [3], Calendar systems [3]

Basic custom web applications (data collection, storage & retrieval) [25]

Intra/Interdepartmental forms [8] (i.e. service requests [2], generic forms, forms for graduation,
purchase requests, reimbursement for travel expenditures, Domain Name Service entries),
Teacher/Course evaluations [2], Track meeting minutes [2], Taking job applications [2], Member
database, Track technical info about faculty & staff, Computer repair database, Knowledge base,
Updating info for student organizations, Phone book, Music database, Guest book, Register for
undergraduate research, Event registration, Volunteer registration

Advanced custom web applications [18]

Wage employee time tracking [3], Web storage and sharing of files and pictures [2], Portal [2],
Interactive tutorial [2], Collaboration tool, Research tool, Project management, Paper peer review,
Nutritional guide, Tax forms, Purchase advisory tool, Online Auction, Chat

These results appear encouraging, in that about 75% of the requested applications

seem to be good target tasks for end-user development tools (40% generic applications +

35% basic data collection, storage, and retrieval). In response to the survey findings I

chose to focus on the subset of requests involving basic data collection, storage, and

retrieval as the target domain for my research, because such functionality seems quite

reasonable to provide via an EUDWeb tool. While these web applications may be quite

diverse in their purpose or domain (compare a plant-pathology database with a

conference paper review system), they are rather homogeneous and basic on a conceptual

level, having only a limited number of well-defined features such as save data record, edit

data record, delete data record, or display list of data records.

 Of the 67 individuals who responded to the survey, 40 indicated that they had

never developed an interactive web site. I asked these individuals to tell me why; Figure

6 summarizes responses to this question. Notice that half of the respondents replied that

either “I would want to, but I expect it will be too difficult” or “I would want to, but I

don’t have the time”. Another 6 people indicated similar knowledge-related and resource-

related reasons. I concluded that 26 out of these 40 individuals (i.e., 65%) are potential

Chapter 3: Barriers to End-User Web Application Development

42

candidates for an easy-to-use web development tool – that is that they might use such a

tool if we can assume that it would require minimal programming skills and little time

investment.

0 1 2 3 4 5 6 7 8 9 10 11

other

I started building one, but dropped the project
because it was too difficult

I would want to, but don't have the time

I would want to, but I expect it will be too difficult

I am not interested in developing a website myself

I don't have a need for an interactive website

Number of respondents

25%

20%

25%

12%

18%

Figure 6: Virginia Tech webmasters reporting their reasons for not developing web applications

themselves (N=40)

Out of a total of 67 participants, 31 responded to the section dedicated to web

development challenges. The survey specifically asked participants only to respond if

they had previously developed an interactive web site (a.k.a. web application).

With the intention of finding those issues that the respondents perceive as the

biggest challenges in web development I asked them to rate a list of potential concerns on

a scale from 1 to 5 (1=not a problem at all; 5=severe problem). The square markers in

Figure 7 show these responses (along with those from the pre-interview questionnaire). In

order to facilitate comparison, the survey responses have been scaled up to match the 1-7

scale from the pre-interview questionnaire. The (scaled-up) standard deviations vary in

the range from 1.3 to 2.1.

As the average ratings suggest, no one concern stood out as generally severe;

most of the average ratings were in the middle or lower half of the scale. The top issues

Chapter 3: Barriers to End-User Web Application Development

43

were ensuring security, browser compatibility, technology integration problems, and

debugging. This suggests that these might be particularly common problems in web

development, at least for developers at an intermediate level of expertise.

4.8

4.6

4.2

4.0

3.7

3.7

3.4

3.4

3.3

2.5

2.5

4.4

3.8

3.8

3.8

3.6

3.6

3.6

3.4

3.4

3.4

3.1

3.0

2.6

1 2 3 4 5 6 7

Ensuring security

Browser compatibility

Integrating different technologies

Debugging

Cryptic error messages

Limitations of HTML for page layout

Ensuring usability

Designing & implementing the UI

Configuration of server software

Different syntax for languages

Needs analysis

Authentication and authorization

Different Syntax embedded in each other

Database design and connectivity

Designing graphics & icons

Configuration of development environment

Slow revision-test cycle

Figure 7: Responses to question about problems in web application development (1=not a problem at

all; 7=severe problem). The square markers show the mean of the responses from the survey (value is

right of the square marker in italics; N=31). The round markers show the mean of the responses

from the pre-interview questionnaire (value is left of round marker; N=10). In order to facilitate

comparison, the survey responses have been scaled from a 1-5 scale to a 1-7 scale.

Regarding: “Other problems that you typically encounter during web

development:” I received the following answers (number in parenthesis indicates

frequency): time available for development (2), web browsers bugs (2), race conditions

(2), incompatibilities between development tools, preparation of images, hard-to-find

Chapter 3: Barriers to End-User Web Application Development

44

“random errors”, defining business/user requirements, time to learn new versions and

upgrades, concurrency conditions, lack of consulting support.

I also asked developers: “From the interactive websites that you developed

consider one that was particularly challenging. What were the top 3 most challenging

issues you encountered while developing this website?” The answers to this question

were very diverse and I summarized them into the following problem areas (number in

parenthesis indicates frequency):

• Availability & setup of development environment and production servers (5)

• User interface layout, graphics (5)

• Integration issues (5)

• Needs analysis, user feedback and education (4)

• Database design and connectivity (4)

• Available time and funding (3)

• Concurrency (3)

• Authentication and authorization (2)

• Standard compliance, browser compatibility (2)

• Limitations of the web paradigm (2)

• Others (mentioned once each): security, fault tolerance, load issues, efficiency,

maintenance of service, dealing with someone else’s code

Among this group of web developers, 12 (39%) reported using FrontPage

(Microsoft 2005a) as a web design tool on a regular basis, 11 (35%) said they use

Dreamweaver (Macromedia 2005b), and 5 (16%) indicated that they use Macromedia

Flash (the multiple choice question with “others” option allowed for multiple selections).

Apart from Microsoft Notepad which was mentioned 5 times, other tools were only

mentioned once or twice.

Chapter 3: Barriers to End-User Web Application Development

45

The answers to the question: “Describe your "dream" web application

development tool? How would it facilitate development? Consider this question a "wish

list"!” were also quite diverse (number in parenthesis indicates frequency):

• Powerful layout & graphics functionality and asset management (5)

• Easy-to-use, “reads my mind”, “intelligent” (4)

• Pre-build scripts, widgets, components (4)

• Integrated toolbox that bundles everything needed for web application

development (3)

• Automatic generation of clean, standard, cross-browser compatible code (3)

• Good, context-sensitive help and tips (3)

• Automatic site maintenance and reduction of tedious and redundant operations (3)

• Build-in testing and debugging tools (3)

• WYSIWIG-based with code-view option (2)

• Others (mentioned once each): clear error messages, free, changes take effect

immediately, website usage tracking, tool is a native Microsoft Windows

application, version control, check-in/check-out, workflow support, user has

control over tool’s “intelligence”, website overview function, forms wizard

In summarizing the survey responses, no single issue stands out as severely

problematic. However, ensuring security, integrating different technologies, debugging,

and cross-browser compatibility seem to be the top problems from the perspective of our

audience. Interestingly, Vora’s survey (Vora 1998) identified the problem of

compatibility already more than 5 years ago, yet it persists. The survey has been a rather

coarse measurement tool and did not reveal any details regarding the development

process and general habits of semi-professional web developers. These questions were

addressed by in-person interviews which were conducted later.

Chapter 3: Barriers to End-User Web Application Development

46

3.1.1.2 The Interviews

I conducted interviews with the same target audience (semi-professionals) for two

reasons. First, I wanted to better understand the details of the web development process

and have the opportunity to ask further questions. Second, I wanted to increase the total

number of reported experiences; this is why I interviewed developers who did not

participate in the survey (with one exception). Many of the questions were identical or

similar to the ones asked in the survey.

I interviewed 10 web application developers in the period between May and

September 2003. Out of these, 8 were conducted as one-on-one interviews, the remaining

2 (due to the unavailability of the participants) as online questionnaires with follow-up

email communication. The one-on-one interviews lasted about one hour. Participants

were selected by contacting webmasters of various web applications on the Virginia Tech

campus as well by as contacting local web development businesses.

Prior to each interview, the participant filled in an online questionnaire which was

targeted at collecting quantitative information and helped me to prepare for the in-person

interviews. This questionnaire (see Appendix B.2) also contained all the main questions

asked during the interview (so that participants could be mentally prepared) but

participants were asked to not answer them online. The questionnaire was similar to, but

much more detailed than the survey.

Five of the interviews were conducted at the workplace of the participants, three

in our laboratory, and two online. However, the atmosphere was always private. All of

the in-person interviews were voice-recorded and later transcribed in abbreviated form.

The two participants who were not available for in-person interviews were asked to

complete the questionnaire as detailed as possible online. Where necessary, I later

exchanged emails to clarify and elaborate on answers. The participants included nine

males and one female. Three participants were between 26-30 years old, three

participants between 31-35 years, two between 46-50 years, one participant between 21-

25 years, and one participant under 21 years old.

Chapter 3: Barriers to End-User Web Application Development

47

The question “How do you rate your overall knowledge in web application

development? (1=no knowledge, 7=expert knowledge)” resulted in an average of 5.1

(SD=1.3) with only two participant rating themselves below 5. The average self-reported

experience of the interview participants is somewhat higher than the (scaled-up) mean

experience of the survey participants which was only 4.3 (SD=1.3).

Two participants reported that they have been developing web applications for 2

years, two participants for 3 years, one for 4 years, two for 5 years and three for more

than 5 years. The participants included two full-time web developers, four IT personnel

who develop web applications as part of their work, one professor who teaches web

application development, two students who work in this area besides their studies, and

one CEO of a small-business e-retail company who has autonomously created his e-

business web site.

In the first question of the interview I asked about the most challenging issues in

web development without pre-defining any categories. Top answers were (the number in

parenthesis indicates how many participants mentioned the concept): finding time to

develop (2), debugging (2), compatibility (2), and keeping the application maintainable

(2), creating an attractive user interface (2). Many more concerns were expressed in this

question and throughout the interviews such as eliciting requirements, getting people to

test an application, and political issues such as gaining access to data sources.

The feedback to several rating scales from the pre-interview questionnaire is

shown in Figure 7 (on page 43) and Table 6 below. Note that a 7-point scale is used

throughout the interview study instead of the 5-point scale of the survey study. Figure 7

shows how the participants rate different web development concerns with regard to how

problematic they are. As one would expect, the results are quite similar to the ones from

the survey. The (mostly) small differences may be attributed to a rather small N of 10, to

the higher level of experience of the interview participants when compared to the survey

participants and perhaps to the different scales used (5 vs. 7-point scale).

Chapter 3: Barriers to End-User Web Application Development

48

Table 6: Responses to questions asked in the pre-interview questionnaire on scales from 1-7

Question (Scale)

Mean

(Std-dev)

2.4. I search the web for snippets of code that I copy, paste & edit.

(1=never, 7=very frequently)

3.9 (2.0)

2.5. I consult and scavenge code I have previously written myself.

(1=never, 7=very frequently)

5.8 (1.6)

2.7. Do you use a HTML code validator to verify the standard-compliance of your code?

(1=never, 7=always)

2.7 (2.0)

2.8. Do you check for cross-browser compatibility? (1=never, 7=always) 4.9 (2.1)

2.9. Do you check for usability? (1=never, 7=always) 4.7 (1.3)

2.10. Do you check for accessibility (for users with disabilities)? (1=never, 7=always) 2.7 (1.9)

2.11. Do you check for scalability & performance issues?

(1=never, 7=always)

3.5 (2.1)

2.12. When learning about a new web technology I prefer learning from examples over

learning from more general and verbose descriptions.

(1=I strongly disagree, 7=I strongly agree):

5.7 (1.3)

Table 6 shows the summarized responses to different questions regarding the

habits of the participants. During the interviews I asked the participants to explain their

answers to the ratings provided in the pre-interview questionnaire (Figure 7 and Table 6).

The responses confirm that the major concerns are security, compatibility, integration and

debugging. The quote: “How do I know it’s secure?” illustrates the primary concern and

the fact that most of the participants do not seem to have an organized approach to

ensuring security.

Cross-platform compatibility is still regarded as a major stumbling block for

creating rich user-interfaces. The participants are overwhelmingly conservative in the use

of client-side technologies, mainly in fear of creating incompatibilities. For example, one

participant remarked: “Most of my designs are simple because of that.” Most participants

Chapter 3: Barriers to End-User Web Application Development

49

reported that they frequently test for cross-platform compatibility (see Table 6, question

2.8). However, eight participants remarked that their testing is informal, for example they

typically use the 3-4 web browsers they currently have at-hand to check the main

functionality of the application.

“Remembering all the little quirks” appears to be a considerable annoyance while

integrating different languages (e.g. PHP, JavaScript, HTML, CSS). Furthermore,

participants remarked that keeping a growing web application consistent and

maintainable is difficult.

Regarding debugging web applications, the participants report that they find it

difficult (or impossible) to step through the code line-by-line and to locate the exact

source of the problem. Simple print statements appear to be the modus operandi.

Contrary to my expectations only one participant seemed to be dissatisfied with

the use of HTML for user interface layout. He mentioned the difficulty of creating

complex layouts with HTML tables. Again, the use of advanced client-side features (e.g.

CSS2 positioning) appears to be an exception among the participants.

The interviewees’ answers to question 2.5 (as well as the follow-up discussion)

revealed that almost all of the participants quite often reuse code from previous projects.

According to the interview responses this reuse is of an informal nature that might be

characterized as a simple “copy & paste” strategy.

In addition to inquiring about the frequency of code reuse (see Table 6, Question

2.5) I asked the participants which components they reused most frequently. They

responded as follows:

• HTML templates, snippets, header, footer (6)

• Various JavaScript functions (4)

• Database code (4)

• Authentication code (3)

• Validation code (2)

• Code for encoding/decoding data (2)

Chapter 3: Barriers to End-User Web Application Development

50

In order to determine what web developers regard as the key concepts within web

application development, I asked the participants what questions they would raise and

address in an FAQ (Frequently Asked Questions) for novice programmers. The following

concepts were cited:

• Database connectivity and operation (5)

• Difference between client-side and server-side scripts; when to use one or the

other (2)

• Page transition, receiving input data (2)

• Practical examples (2)

• Maintaining state (1)

• One-to-many relationships (1)

• Integration of different languages (1)

• User-centered design (1)

• Validation (1)

However, in general, the participants seemed to have difficulty answering this

question even after repeated questioning. I speculate that they had mastered the basics of

web development too long ago as to put themselves into the mindset of a novice. Also,

they may have had little reason or opportunity to assist novice users.

The results from question 2.9 (Table 6) indicate that the participants frequently

assess the usability characteristics of their web applications. As in their software

debugging efforts, such evaluation is normally of an informal nature, for example asking

colleagues or friends to test the application and send them feedback. Often, the

participants forgo extensive testing in advance and rely instead on gathering user

feedback once the application has been provided for actual use. In general, the majority

of the participants conveyed that they saw no clear distinction between the activities of

prototyping, development, testing, and production. Rather, the common development

approach is an informal requirements elicitation phase through one or more meetings

with the client and the evolutionary development of the application. Often an early

Chapter 3: Barriers to End-User Web Application Development

51

prototype is gradually developed into the final application. This finding is similar to

Taylor et al.’s (2002) observations of semi-professional programmers in industry and

government but in contrast to Lang and Fitzgerald’s (2005) observations of professional

web developers.

Checks for proper accessibility are even more informal than compatibility and

usability testing. In most cases my participants follow what they viewed as “known

principles” of accessible web design throughout the development process (e.g., using

image-alt tags, considering table linearization by screen readers). Only two participants

mentioned using accessibility validation tools like Bobby (Watchfire 2005), text-only

browsers or screen-readers to verify the compliance with accessibility standards. From

their comments I conclude that most developers perceive these tools still as being to

cumbersome. Six participants said that they never or only rarely checked their HTML

code against a code validator.

When asked what they enjoyed about web application development the

participants mentioned the following factors:

• Enjoy the challenge; like building things (“It’s like playing”) (4)

• Quick feedback; ease of checking work (3)

• Quick results (i.e. being able to finish a job quickly) (2)

• Diverse work; always something to learn (2)

• Providing useful services to the user (2)

• Quick use of results (i.e. no deployment on users’ machines required) (1)

• Ease of sharing (1)

• Richness of the medium (1)

Note that the speed of development, feedback, and results is a recurring pattern

for an important “fun factor”. This was one of the primary factors motivating my

investigations into the concept of “Design-at-Runtime” which accelerates the

development-test cycle (see Chapter 5.1).

Chapter 3: Barriers to End-User Web Application Development

52

Perhaps many of these motivational issues can be exploited to become supporting

factors for end-user web development. Only one participant (CEO of a small-business e-

retail company) said that he did not enjoy web development any more and resented the

monotony.

In the pre-interview questionnaire and during the interview I asked the

participants to identify, rate, and discuss their favorite web development tools. The tools

mentioned ranged in complexity from simple text editors, to HTML-code editors like

Homesite (Macromedia 2003) or BBEdit (Bare Bones Software 2003) or Emacs to

WYSIWYG editors like Dreamweaver (Macromedia 2005b) and FrontPage (Microsoft

2005a), to development environments like Visual Studio (Microsoft 2003a). Because 5

out of the 10 participants named Macromedia Dreamweaver MX as their first tool of

choice I will discuss it in more detail. Table 7 shows how the five participants rate

Dreamweaver along the dimensions ease-of-learning, ease-of-use, functionality and

overall satisfaction.

Table 7: Responses from 5 participants regarding their appreciation of Macromedia Dreamweaver

MX as a web development tool

Macromedia Dreamweaver MX Evaluation (1=low, 7=high) Mean (Std-dev)

Ease of learning 4.8 (1.8)

Ease of use 5.2 (1.3)

Functionality 5.8 (0.4)

Overall Satisfaction 5.6 (0.5)

Overall, these users of Dreamweaver seem to be satisfied with the tool. They

mentioned the site management features (3), the template mechanism (2), its WYSIWYG

editing style (2) and general feature-richness (2) as its main strengths. However, they also

named some weaknesses. Three participants complained about the stability and reliability

of the tool (it crashes or “destroys code”); one of them said that Dreamweaver “feels

flimsy” (as opposed to other standard Windows productivity applications).

Chapter 3: Barriers to End-User Web Application Development

53

Another often-heard complaint was that Dreamweaver occasionally generates

unnecessary complex code (while including JavaScript “behaviors”) and some mentioned

a feeling of lack of control over the code. One participant remarked: “The code that gets

written is not the code that I’d write myself. My code is cleaner.”

Towards the end of the interview I asked what could be done to simplify web

application development if there were no limits as to changing standards, resources etc.

Many issues were identified but few more than once (with the exception of consistent

support for HTML, JavaScript and CSS across all platforms). The list includes: simplified

debugging, introduction of high-level components like calendars, better support for reuse,

better database connectivity, separation of layers (presentation, application logic),

automatic maintenance of state information, and more code-assistance.

The next question inquired about the developers’ “wish-list” for their “dream”

web development tool. The answers reflected the same issues named in the previous

question. Participants also emphasized the desire for better integration of tools, and a

responsive, visual user interface (including copy-and-paste and drag-and-drop

functionality) with many predefined components. The exceptions were ideas for natural

language style user interfaces, application behavior visualizations, or, at the other

extreme, the total abstinence from WYSIWYG in favor of a robust text-only tool.

3.1.2 Discussion and Conclusions

The 31 survey responses were provided on a self-selection basis by students,

faculty and staff associated with Virginia Tech. Nine out of the ten people from the

interview study were associated with Virginia Tech. This may limit the applicability of

my results although many of the issues discussed are likely to extend beyond the

boundaries of the campus.

Furthermore, the foci for both studies were semi-professionals rather than

professional web developers. Although I hesitate to generalize my findings to all web

developers (with novices on one end of the spectrum and experts on the other) I do not

see many reasons why semi-professional web developers outside of the academic

environment should have much different needs and habits than our participants.

Chapter 3: Barriers to End-User Web Application Development

54

Although the two studies revealed a multitude of issues I see the following ones

as most important.

3.1.2.1 Ensuring security

Web applications are vulnerable against exploits on many different levels (e.g.

operating system, web server software, database, dynamic scripting language,

interactions of the aforementioned). Today it is very difficult to build even a “reasonable”

secure application or just to assess when an application is secure. Web developers are not

confident about the security of their applications and therefore very concerned.

3.1.2.2 Cross-browser compatibility

The inconsistencies between different browsers, versions and platforms are not

only a major time-sink for web developers but also seem to be the reason why most

developers avoid enriching the user experience with advanced features that are only

possible with JavaScript, CSS2, or Flash.

3.1.2.3 Integrating different technologies

While classical desktop applications are typically based on the syntax of only one

programming language (perhaps two when considering database interactions), most web

applications combine five or more (HTML, JavaScript, CSS, server-side language, SQL,

and perhaps Flash, Curl, Java applets, Active X). The resulting complexity leads to code

that is hard to develop and maintain. It also raises the bar for users who want to transition

from static page design to more advanced web development.

3.1.2.4 Debugging

Most software developers have to deal with bugs. Web developers however face

an extra challenge due to the number of technologies involved (see above) and the fact

that a web application consists of a part that runs on the server and another on the client.

Chapter 3: Barriers to End-User Web Application Development

55

3.1.2.5 Developers’ Habits

While the natural tendencies and habits of web developers are not a problem by

themselves they can become problems if technology and tools do not account for them.

As many members of our fast-paced society, web developers have little time to waste.

Tedious development tasks run the risk of being circumvented or neglected. An example

for a quite tedious process is ensuring accessibility. Current accessibility validation tools

do not take into account that most developers are unwilling to spend much time designing

for accessibility.

Humans deal with concrete examples easier than with abstract concepts. Web

developers like to learn by and work with examples but today many tools start up with

not more than a blank screen and a myriad of buttons. Whereever possible, web

developers would rather modify existing code than rewrite code from scratch. This is

particularly true for code that they know well and trust – their own. “Copy & Paste”

behavior is often considered an “unclean” engineering practice, but these developers’

habits and preferences suggest that it should perhaps instead be embraced, exploited and

“water-proofed” against its pitfalls.

Semi-professional developers are much more informal than the experts observed

by Newman and Landay (Newman 2000). Written requirements documents and dedicated

prototypes are the exception and a process of evolutionary prototyping of the final web

application the rule.

The participants in my interview study like the idea of tools providing

abstractions such as ready-made components that speed up development. At the same

time they are very critical if the tool limits their control over the development process.

Functionality that introduces hard-to-read and complex code (or as one participant calls

it: “junk” code) typically fails to win acceptance.

Last but not least, I believe that the productivity and the “fun-factor” in web

development would be further increased with “speedy” tools. Web developers appreciate

the fact, that they can quickly test ideas, and create programs by what Rosson and Carroll

call “debugging-into-existence” (Rosson and Carroll 1993). Each extra step or delay that

is required for each change has a negative effect.

Chapter 3: Barriers to End-User Web Application Development

56

3.1.2.6 Recommendations for the web tool industry

Although the state-of-the-art web standards and tools are generally seen as being

appropriate I argue that professional and novice developers alike would benefit from:

• Tools that assist developers in producing secure applications,

• Tools that are more robust and fast, that facilitate iterative development and better

support debugging,

• Tools that provide a large library of high-level components while still giving the

developer great control over the created code,

• Tools that speed up and automate tedious tasks like HTML validation, cross-

platform testing, accessibility checks (which may solve the problem of the general

lack of testing),

• Tools that work and act very similar to standard productivity applications like

Microsoft Word, integrate well with those and readily exchange data,

• Tools that account for and support the informal tendencies of web developers to

learn and work from examples, copy & paste from the web and scavenge prior

projects.

Addressing the complexity caused by the plethora of web technologies and

working towards better standard-compliance and cross-browser compatibility are

challenges for the web engineering community as a whole but at the same are also the

main barriers to overcome for facilitating EUDWeb. Chapter 5 discusses how our

prototype tool Click addresses most of these challenges.

Chapter 3: Barriers to End-User Web Application Development

57

3.2 Survey of Web Developers: From Amateurs to Professionals

The findings from both the survey and interview study reported in the previous

section are based on relatively small sample sizes (N=31 and N=10 respectively).

Furthermore, they probe for the experiences of developers at Virginia Tech only. Finally,

the two studies focused on semi-professional developers as opposed to exploring the

whole range from web-design amateurs to professional web developers.

In order to address these limitations and to refine the requirements for EUDWeb

we have designed a large-scale survey targeted at both informal and experienced

developers. This survey has been designed, conducted, and analyzed in collaboration

between Dr. Mary Beth Rosson, Julie Ballin, Heather Nash, Brooke Toward, and I. The

findings presented here are published in a conference paper at the International

Conference on Web Engineering (Rosson et al. 2005).

In this work, we build on the surveys from Vora (1998), Taylor et al. (2002) and

Lang and Fitzgerald (2005), but with the goal of reaching out to the combined population

of professional and more casual web developers. Our sampling is intentionally biased

towards these casual (nonprogrammer) web developers and therefore care should be

taken when viewing the results in the context of professional web development.

3.2.1 Methods

To develop a broad characterization of the current web developer population—

both professional and casual—we conducted an online survey and recruited participants

from a variety of web development communities. The survey was based on our prior

surveys and interviews of local web developers (see 3.1 and Rosson, Ballin et al. 2004); it

contained questions about web development experiences, including problems

encountered; whether and how testing was carried out; desirable features or applications

to incorporate in web development (e.g., databases, authentication); development style,

including individual working style variations, and basic demographics. For a full list of

the 37 questions see Appendix C.2.

Chapter 3: Barriers to End-User Web Application Development

58

We took two general approaches in recruiting participants. First, we contacted

user groups associated with web tools (e.g., Macromedia, FrontPage); second we

searched the web for other organizations that seemed to be oriented towards web use or

even computer use in general. We particularly sought out organizations that might rely on

informal developers (e.g., clubs or community organizations), but our survey invitation

was aimed at both professional and casual developers.

We initiated contact with 591 organizations: approximately 30% product-centered

groups (Coldfusion, Frontpage, etc.), 20% platform-centered (Mac, Linux, etc.), 38%

hobby or ‘computer club’ type groups, and the remaining groups falling into language-

oriented (e.g., ASP), professional/networking organizations and specific websites. We

sent our email invitation to the listserv contacts, asking them to forward it to their

members; the email summarized the study, data security/privacy, and the drawing for

cash prizes (10 prizes of $50) used as an incentive for participation.

3.2.2 Results

We received 334 responses to the survey. In the following, question numbers refer

to the actual position in the survey, so that the interested reader may integrate the results

reported here with the full survey and summary results available in Appendix C.2. Note

that percentages reported in this paper are the percentage of respondents who answered a

particular question, not the percentage of the entire survey population with missing

responses. Many respondents skipped one or more questions, so we follow the norm of

including the relevant sample size as each percentage result is reported.

Interestingly, the answer to whether or not a respondent self-identified as a

“programmer” was not often a useful grouping variable for the web activities and

problems summarized here. For this reason the results discussed use the entire dataset.

3.2.2.1 Participants

The survey population included both men and women (70% and 30%

respectively); most respondents (86%) reported their race or ethnicity as

white/Caucasian. This sample of web developers was relatively highly educated: 29% of

Chapter 3: Barriers to End-User Web Application Development

59

respondents reported that they had completed an undergraduate degree and an even larger

proportion (35%) reported completing at least some post-graduate education.

There was considerable age diversity in our sample (likely due to the survey’s

bias towards informal web developers). Interestingly, the single largest group of

respondents age-wise was those who identified as age 60 or older (21%). In combing for

computer related groups to whom we wanted to promote the survey, we discovered many

groups oriented towards or run by senior citizens; this may explain the large proportion of

older respondents. Other respondents were spread relatively evenly across age categories

of 26-30, 31-35, and so on up through the age group 56-59. Only 6% of the sample

reported their age as 25 or younger.

A small majority of respondents (54.7%) reported that “work” was the most

common reason for them to develop and maintain websites. This is interesting as it

emphasizes that, although considerable web development is being carried out in

professional contexts, there is a sizable number of projects underway for other purposes.

The two next most common motives were “special interest/hobby” (16.6%) and “civic,

volunteer, or community work” (12.4%).

3.2.2.2 Perceived Value of Web Functionality

One question aimed at understanding web developers’ current needs asked them

to rate the perceived value of a number of predefined features (Figure 8; these items were

developed through our pilot studies). As indicated in Figure 8, access restrictions, online

databases, member registration systems, and online surveys/forms are seen as particularly

valuable to our respondents, all being well above the mid-point on a range from 1 (not

valuable) to 5 (extremely valuable). Communication-oriented features like discussions

and chat are seen as relatively less valuable.

Chapter 3: Barriers to End-User Web Application Development

60

4.08

3.98

3.89

3.82

3.68

3.62

3.51

3.22

2.81

2.32

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Access restrictions

Online database

Member registration

Online surveys/forms

Content management system

Event calendar

eCommerce transaction

Discussion board

Resource scheduling

Real-time chat

Average rated value of features

Figure 8: Results from question 5: “The following question asks you to judge the value of these same

10 features in your web development projects, regardless of whether you have worked with them yet

or not.” (N=314 to 318)

3.2.2.3 Characterizing the Web Development Process

To gain insight into the typical web development process and attitudes towards

web development, question 16 asked the respondents to rate their agreement with a series

of statements (1=strongly disagree, 5=strongly agree).

Our respondents tended to agree with the statement: “I spend a lot of time making

sure my site's layout, formatting, content, and interactive elements are just right before I

"go live"” (mean=4.18, SD=0.93, n=274). They voice similarly strong agreement with:

“After my websites "go live", I check back frequently to make sure that everything works

like it should (links, images, forms, etc.)” (mean=4.11, SD=1.0, n=274). These responses

suggest that attention to the details of a web page is high on these developers’ list of

concerns.

Respondents tended to disagree with the statement: “When taking on a new web

project, I immediately start constructing pages” (mean=2.43, SD=1.25, n=272), implying

that they take steps to plan their project before jumping into building web pages.

Chapter 3: Barriers to End-User Web Application Development

61

However the statement: “When working on a web site, I have a systematic process I

follow” evoked a rather neutral response, only slightly biased towards “agree”

(mean=3.56, SD=1.12, n=273). This is an area we hope to further explore in later

research.

Most respondents also agreed with the statement: “As I work on a web project, I

think about how I might come back later to change or expand it” (mean=4.16, SD=0.96,

n=274). This is a promising result as it implies that they are planning for enhancement or

other maintenance activities. See Table 8 for details.

Table 8: Question 16: statements ranked from 1 (strongly disagree) to 5 (strongly agree)

 Average

I spend a lot of time making sure my site's

layout, formatting, content, and interactive

elements are just right before I "go live"

1%

(3)

4%

(11)

17%

(47)

32%

(87)

46%

(126)

4.18

(n=274)

After my websites "go live", I check back

frequently to make sure that everything works

like it should (links, images, forms, etc.)

0%

(1)

7%

(20)

20%

(56)

24%

(67)

47%

(130)

4.11

(n=274)

When taking on a new web project, I

immediately start constructing pages

29%

(79)

28%

(77)

20%

(55)

15%

(41)

7%

(20)

2.43

(n=272)

When working on a web site, I have a

systematic process I follow

2%

(5)

18%

(50)

28%

(77)

26%

(70)

26%

(71)

3.56

(n=273)

As I work on a web project, I think about how I

might come back later to change or expand it

1%

(4)

5%

(13)

16%

(45)

31%

(86)

46%

(126)

4.16

(n=274)

Question 15 was, in part, targeted at the issue of code reuse and participants were

asked to rate how often particular statements are true (1=hardly ever; 5=quite often). The

statement “I consult and reuse/copy code I have previously written myself” received a

relatively high rating (mean=3.90, SD=1.36, n=273). This can be contrasted to their

ratings for reusing others’ code: “I search the web for snippets of code that I can directly

copy, paste and edit” (mean=3.01, SD=1.33, n=273).

Chapter 3: Barriers to End-User Web Application Development

62

3.2.2.4 Web Development Tools

Question 6 asked: “What is the primary development tool you use for working on

your site(s)?” 42.1% of the respondents cited Macromedia Dreamweaver. Microsoft

FrontPage tied with HTML editors (BBEdit, Homesite etc.) at 12-13% each, followed by

Text editors such as notepad or vi with 9.7%. No other tool exceeded 3%. Note that the

relatively high proportion of Dreamweaver users is likely biased by our recruiting

strategy (the Macromedia user groups were large and had good response rate). Of course,

this predilection for Dreamweaver should also be considered when interpreting responses

to questions concerning tool likes and dislikes.

Question 8 asked: “What are the three things you like MOST about your primary

web development tool?” Three open response fields were provided and we received 286

responses for the first, 272 for the second, and 246 the third—a total of 804 individual

responses, typically just a few words long.

0 30 60 90 120 150

Easy to use, intuitive

Integration with other tools

WYSIWYG, visual tools

Syntax support

Powerful, cutting edge

Site management

Multiple views

Cost, availability

Quality of generated code

Graphical user interface

Popularity, community

Speed, performance

Help, online support

Personal habit, satisfaction

User control

Examples, predefined formats

Stability, reliability

Frequency of comments in each category

Figure 9: 90% of responses to question 8 “What are the three things you like MOST about your

primary web development tool?” were coded into 17 categories

Chapter 3: Barriers to End-User Web Application Development

63

We coded the results by first scanning all responses and establishing categories.

Next, we coded all comments according to the previously established categories. Figure 9

visualizes about 90% of grouped comments (719 responses). 10% of developers’

comments were coded as “other” because they were too diverse to be grouped in a

meaningful fashion.

Question 9 asked: “What are the three things you like LEAST about your primary

web development tool?” Again, three open response fields were provided and we

received 259 responses for the first, 193 for the second, and 143 the third, for a total of

547 individual responses (excluding 48 responses such as “nothing” or “n/a”).

76

68

56

46

40

35

34

21

21

20

18

13

12

8

7

7

0 10 20 30 40 50 60 70 80

Difficult to use

Missing features

Slow, memory demands

Crashes, inconsistencies

Missing or inaccurate previews

Poor quality code generated

Expensive

Poor help or online support

Poor site management

Insufficient syntax support

Feature bloat

Poor integration with other tools

Discontinued product

Poor OS coverage

Insufficient examples, themes

Poor database support

Frequency of comments in each category

Figure 10: 88% of responses to question 9 “What are the three things you like LEAST about your

primary web development tool?” were coded into 16 categories.

We used a similar coding strategy as in the previous question, resulting in 16

categories. Not surprisingly, many of the comments made in response to things liked least

(see Figure 10) can be seen as the inverse versions of things liked most (e.g., the number

Chapter 3: Barriers to End-User Web Application Development

64

one group in both cases is related to the rather general evaluation of ease of use).

Interestingly however, while feature coverage was rarely mentioned as a reason to like a

tool, it was the second most common category for disliking a tool.

3.2.2.5 Problematic Development Situations

To explore the problems that web developers may encounter we asked our

respondents to rate eleven problems according to how frequently they occur. As with the

features probed in Question 5, this list of issues was based on our earlier surveys and

interviews that probed problems in web development.

Figure 11 shows the results. None of the issues stands out as a particularly

frequent problem, except perhaps of “getting content in a timely manner from others…”

(mean=3.32, SD=1.41, n=272). This is interesting in that it is the one issue that is very

much related to the developers’ collaborative context—that is, to their dependencies on

others.

3.32

2.82

2.64

2.62

2.58

2.53

2.43

2.41

2.38

2.19

2

0 0.5 1 1.5 2 2.5 3 3.5

getting content from others

making pages look just right

difficulty adapting others' code

reformatting word-processed text

pages don't work on all browsers

external links that break

constraints of WYSIWYG editors

integrating different technologies

getting interactive forms to work

content works locally but not on server

tool set up and configuration

Rated frequency of stated problem

Figure 11: Responses to Question 14 “How often do you experience problems with the following

kinds of issues that sometimes arise in web development work? Please use a scale from 1 (one) to 5

(five) where 1 means hardly ever, and 5 means quite often.” (n=267 to 276)

Chapter 3: Barriers to End-User Web Application Development

65

Rosson et al.’s (2004) interviews with community webmasters had indicated that

this was a particularly vexing problem for these relatively informal web developers; it

appears that it is a similar problem for a much more diverse population.

3.2.2.6 Attention Directed to Quality Control

To understand the extent to which quality control is a concern for our sample of

web developers, we asked respondents to tell us how often they performed certain testing

tasks (1=never, 5=always; “When working on websites, how often do you test to make

sure…”; Question 12). An overwhelming majority of respondents agreed that they

evaluate the general usability of their websites always or almost always: “…it is easy for

users to do what they want to do on the site and to find what they might be looking for

(usability)” (mean=4.33, SD=0.93, n=276). However, they seem to be much less likely

to worry about universal access: “Users who might have disabilities will be able to use

your site (ADA compliance, section 508, Equal Access, etc.)” (mean=2.75, SD=1.41,

n=276). Although most developers appear to test for platform and browser compatibility,

not all of them do so routinely (“It will work across different operating systems and

different web browsers such as Internet Explorer, Netscape Navigator, Safari, etc.”;

mean=3.75, SD=1.26, n=276).

The three items analyzed above represent a relatively superficial assessment of

developers' testing processes. A deeper analysis of an open-ended question related to the

respondents’ testing strategies is given in our conference paper (Rosson et al. 2005).

3.2.2.7 Learning New Web Development Skills

We asked participants to rate how likely they would be to consult particular

resources for assistance in case they needed to learn something new (Question 11; 1=not

likely; 5=very likely). “FAQs, books, or tutorials” were rated most highly (mean=4.53,

SD=0.88, n=257), followed by “Examples of similar sites from which you can get ideas

and copy code” (mean=3.97, SD=1.18, n=259), and “A friend or coworker who knows

how to do it” (mean=3.76, SD=1.26, n=259). Respondents indicated that they would be

less likely to consult sources such as interactive software wizards, software agents,

seminars, or support hotlines.

Chapter 3: Barriers to End-User Web Application Development

66

3.2.3 Discussion and Conclusions

Our survey yielded a diverse sample of respondents—a mixture of professional

and casual developers, representing a wide range of ages, who seem to be pursuing

projects in rather different web development contexts. However, despite the variation

among the respondents, there are a number of implications that we see in our results.

For example, with respect to perceived value of different web functionality, most

developers rated access restrictions, online databases, survey and forms as valuable

elements for their web presence. Unfortunately, many of the features and applications

that developers see as valuable are not easily implemented. For casual or informal web

developers, providing access restrictions may be conceptually simple and obvious, but

current tools make its implementation quite challenging. One of the other highly valued

features–online databases–seems to be even more difficult to implement than access

restrictions. Again, although the interactions with databases may be conceptually simple

(e.g., consisting of overview and detail pages, a search function and some data input and

edit forms), they are typically beyond the implementations skills for casual web

developers. Current web development tools do not sufficiently abstract technical concepts

such as session management, input validation or URL parameter passing. This

requirement underscores an opportunity to develop more powerful web development

tools designed for end users, tools that would raise the ceiling on what is achievable for

nonprofessionals.

Our analysis of questions about respondents’ web development process suggests

that—at least in our sample—the prototypical web developer is meticulous and particular

about the quality of the web sites she produces and maintains. Also, generally our web

developers seem to invest some thought before embarking on a new project rather then

implementing web pages ad-hoc, although they may or may not follow a strict process.

Web developers also appear to frequently reuse code they wrote earlier but only

occasionally search the web for example code to copy and use. These general findings are

an encouraging indication that even an increasingly diverse web developer population is

attuned to the “traditional” concerns of software engineering such as design and quality

assurance.

Chapter 3: Barriers to End-User Web Application Development

67

The responses to the question about features most liked in web development tools

show that this sample of web developers value ease of use as the most important property

of a web development tool. They also clearly appreciate a tool that integrates well with

other tools and provides frequently needed site management features such as integrated

file upload. While they highly regard powerful WYSIWYG visual design and code

generation features, they also demand support for viewing and editing, testing, and

previewing the code behind the scenes. They appreciate code auto formatting and tag

completion but at the same time expect to have full control over the layout of hand-

written code.

At the same time, the responses to the question about what developers least like

about their web development tool(s) show that many web developers are still not satisfied

with usability aspects of their tools. While many respondents request more powerful

features, such as more extensive WYSIWYG support, others complain about feature

bloat. Across all comments, concerns about performance problems and faulty behaviors

take the lead in complaints about tools. Another common complaint refers to

automatically generated code that appears “messy”, “bloated”, and non-compliant to

standards.

Regarding the typical problems that web developers encounter we were not able

to detect any major distinctions in developer’s experiences. Only the issue of “getting

content in a timely manner from others…” was rated above the mid-point on a frequency

rating scale. This concern is interesting, as it is much more social in nature (being

dependent on a colleague for input) than most of the other concerns. It may be that social

problems of this nature plague everyone, whereas the other listed problems are much

more dependent on the types of applications or work contexts in which developers

operate. Our future research might investigate these problematic aspects of web

development more carefully, for example also probing perceived severity of individual

problems, connecting problems to developers’ working context, and providing an

opportunity to describe problems in an open-format question.

Questions about the quality control process show that the vast majority of

developers from our sample routinely validate website usability (although the procedures

Chapter 3: Barriers to End-User Web Application Development

68

followed are generally ad-hoc and informal in nature) and sometimes check for cross-

platform issues but rarely for accessibility problems. These accessibility checks may be

omitted because of lack of awareness and concern, but it may be at least partly due to the

relatively tedious and time-consuming tool support for such checks (too verbose,

reporting many false positives; lack of automation).

3.3 Concepts and Components of Typical Web Applications

The first survey showed that basic data collection, storage, and retrieval

application are an important subset of webmasters’ needs (see 3.1.1.1). As a further step

in the requirements analysis and in order to scope the functional requirements for

EUDWeb tools which target these web applications, I surveyed and analyzed existing

web applications of this kind. The purpose of this work was to determine the components,

concepts, and functionality needed to implement simple data collection and management

applications.

This assessment is important in determining the features needed to make an

EUDWeb tool sufficiently powerful. Rather than limiting myself to applications reported

by the survey respondents (see 3.1.1.1), I analyzed existing web applications. I recognize

that neither this analysis of existing applications nor survey and interview data will

provide a full picture of the applications nonprogrammers might want to develop in the

future. However, I believe we can obtain a reasonable approximation by looking at what

has been done in the past.

Obviously, it is impossible to review all applications on the public World Wide

Web and all private Intranets. Therefore, I restricted the analysis to a sample of web

applications available at Virginia Tech. Google and its filtering capabilities (e.g.

“filetype:asp site:mysite.edu”) were used to find applications in use at Virginia Tech.

Using file extensions that indicate dynamic content (.asp, .aspx, .php, .php3, .cfm, .jsp,

.pl, .cgi) yielded a large number of cases. I disregarded simple dynamic websites

(scripting only used for navigation, header & footers, no database) and focused on those

applications that were close to the needs expressed by the survey respondents, ending up

Chapter 3: Barriers to End-User Web Application Development

69

with a set of 61 example applications. These included databases for people, news items,

publications, job offers, policies, conference sessions, plants, service providers and so on.

I reviewed the applications that were publicly accessible and constructed a list of

concepts and components found within these basic web applications (see Table 9). The

components, concepts and functions derived can be viewed as high-level equivalents to

low-level language constructs, predefined functions, objects and methods in classical

text-based programming languages (e.g. for-loop, while-loop, if, print).

Again, I do not see this as an exhaustive list of features, but rather a pragmatic

technique for scoping initial prototyping efforts. I expect the list of elements to change

and grow along with our knowledge about web applications and the progress of

technology.

Table 9: High-level components, concepts & functionality of typical basic web applications

Concept/

Component

Description

Basic concepts and services

Page Set of components and data that is visible at one point in time

Database Persistent data store

Data Unformatted or formatted text, images, files stored in a database or file system

Record A set of related data; in its simplest form it corresponds to one row in a database

table; in the more general form it may span multiple database tables

Recordset The sum of all records pertaining to a certain concept; a more complex

application may host more than one recordset

Data persistence Data entered on different screens can persist for the duration of a user session

Input validation Constraints on the valid options for input components

Authentication Users can be identified via user-id and password; also user-id/name mapping

Authorization Parts of (or entire application) restricted through definition of user authorization

rules

Conditions Can be applied to components to modify their behavior according to the context

Data manipulation Provides operators for calculations and string manipulation

Chapter 3: Barriers to End-User Web Application Development

70

Layout and visual design components

Decorative elements Static text, images, separator lines, boxes and other elements for layout

Input components

Checkbox, Radio

button, Listbox, Text

field, Link

Basic input, output and action components

Button Invokes an action such as go to page, or save to database, send email etc.

Navigation menu Offers a flat or hierarchical set of choices and invokes an action

Output components

Dynamic output Output of variable content; text or image (e.g. current value of a text field or

database field)

Dynamic table Output of data in tabular format including the following options:

• Sort: Sorts table by ordering records according to one column

• Paging/Browsing: Splits long table and offers record navigation

• Summary: Displays summary information for one or more columns

• Edit/Delete: Displays links to modify the displayed data record

• Nesting: Table may be nested within a cell of another table displaying all

records from recordset B within one record of recordset A

Repeating section Output of data, layout, and input component in a repeating fashion including the

option of nested repeating sections

General concepts and features

Overview-Detail-

Relationship

Overview page presents overview/summary information; Detail screen presents

one particular record

Recordset Filter &

Search

User specifies filter; Results are displayed on the same or a different screen;

Includes Boolean operations; Related to the concept of a dynamic table

Add record Adds a record to one or more database tables

Update record Updates a record in one or more database tables

Delete record Deletes a record from one or more database tables

Messaging Send e-mail notification messages to administrators or confirmation messages to

users

File upload Upload of images, PDF documents and other file-based resources

Chapter 3: Barriers to End-User Web Application Development

71

3.4 Summary and Conclusions

Table 10 summarizes the key findings concerning the behavior of (semi-

professional) web developers, current barriers to web application development, and

finally lists developers’ requirements for their “dream” web development tool.

Table 10: Web developers’ behaviors, barriers to development, and a “wish list for the dream tool”

 Semi-professional Web Application Developers…

• Start new projects with a planning phase, even though it is likely to be informal

• Use an evolutionary prototyping approach up until web application reaches production quality

• Are meticulous about the quality of applications they develop and like to have control over code

• Often check for cross-browser compatibility and usability but in an unsystematic/informal fashion

• Often avoid the use of sophisticated technologies because of cross-platform compatibility concerns

• Rarely test for accessibility concerns, do not usually use accessibility tools

• Frequently reuse their own code (e.g. HTML snippets, JavaScript functions, database code)

• Prefer learning from examples over learning from general, verbose descriptions

• Value tool features: ease-of-use, integration, WYSIWYG, code editing, flexibility, stability, speed

Major Barriers to (End-User) Web Application Development include…

• Social issues:

• Needs analysis

• Getting content from others in a timely manner

• Getting feedback from users

• User education

• Technical challenges:

• Overall complexity

• Ensuring cross-platform compatibility

• Integrating different technologies

• Ensuring security

• Debugging

• User interface and graphics design

Chapter 3: Barriers to End-User Web Application Development

72

• Database design and connectivity

• Availability & setup of development environment and production servers

The “Dream” Web Application Development Tool…

• Is easy-to-use, “reads my mind”, “intelligent”

• Works and acts similar to standard productivity applications (desktop-based, WIMP metaphor)

• Offers powerful layout and graphics functionality and asset management

• Includes pre-build scripts, widgets, components

• Automatically generates clean, standard-compliant, cross-browser compatible code

• Automates tedious tasks such as HTML validation, cross-platform testing, and accessibility checks

• Integrates all tools needed for web development (layout, graphics, code, DB, publishing)

• Offers good, context-sensitive help and tips

• Facilitates debugging

• Is fast

Web application development poses a number of challenges. Semi-professional

developers particularly emphasize the problems of ensuring and validating application

security, cross-platform compatibility, debugging, and the integration between diverse

technologies. From the perspective of EUDWeb the complexity/integration problem is

likely to be the most important issue and highest entry barrier for nonprogrammers. A

web application developer must know and be able to combine a considerable number of

languages with different syntax (e.g., HTML, CSS, JavaScript, Java, SQL), tools (e.g.,

web editor, DBMS, web server) and concepts (e.g., client-server, session management,

publishing). Furthermore, although a novice developer may not be aware of the

requirements for and problems involving security and cross-platform compatibility these

issues are important nonetheless and either need to be taught or hidden (the approach

advocated by Click, see Chapter 5). Moral and legal obligations underline the necessity

for universally usable and accessible applications – again a requirement an end-user

developer may not even be aware of.

Apart from the technical challenges web development also exposes a number of

social issues. The surveys and interviews have shown that web development is a highly

Chapter 3: Barriers to End-User Web Application Development

73

collaborative process. The main barriers here are communication barriers such as getting

requirements, feedback, or contents from stakeholders. These issues may not be as

problematic for EUDWeb since it seems likely that projects developed by end users are

of smaller scale and involve fewer external stakeholders. Nevertheless, my experiences

with an end-user survey development tool deployed since 2002 at Virginia Tech (Rode

2002) have shown that collaborative development is very common and should be

supported by EUDWeb tools.

Finally, novices and semi-professional developers alike ask for tools that are easy

to use, offer libraries of high-level components without reducing flexibility, and tightly

integrate all aspects of development. Last but not least, they enjoy the speed of web

development, a fact exploited by the concept of “Design-at-Runtime” described in

Chapter 5.1.

This chapter has identified the main entry barriers to web development in general

and EUDWeb in particular. The following Chapter 4 analyzes the expectations and

“natural” mental models of nonprogrammer developers. The mismatches between their

mental models and current web technology highlight further entry barriers to EUDWeb.

 Chapter 4: Mental Models of End-User Web Developer

74

Chapter 4

Mental Models of
End-User Web Developers

4 Mental Models of End-User Web Developers
We can build better end-user development tools if we know how end-user

developers think. If a tool works in the way that a tool user expects and it feels “natural”

from the beginning it is likely to be easy to learn and use. Alternatively, a tool can be

designed to reshape the way that end-user developers think about a problem. In either

way, it is beneficial to know the starting mental model of the tool user. In this context,

mental model is meant to characterize the way that people visualize the inner workings of

a web application, the cognitive representations they hold of the entities and workflows

comprising a system. A person’s mental model is shaped by his or her education and

experience and will evolve as he or she continues to learn. The concept of “natural” or

“naturalness” (Miller 1974; Pane, Ratanamahatana et al. 2001) as applied to software

development technology refers to the mental model that users hold before they start

learning to use a tool or programming language.

What are the mental models of my target audience and how detailed are they? I

report two studies carried out to answer this question. The studies adapt the methods of

Pane, Ratanamahatana, and Myers (2001), who considered the same question of

naturalness in the context of a programming language for children; they began by

studying how children and adults use natural language to solve programming problems.

They used the results of these studies to design a programming environment that offers

concepts closer to the natural mental model of end-user developers (see 2.3.3). Following

this general approach, I investigated how nonprogrammers describe the behavior of web

 Chapter 4: Mental Models of End-User Web Developer

75

applications in natural language. The findings from this work have guided the design of

Click, the prototype EUDWeb tool, as is discussed in Chapter 5.

4.1 Exploring End Users’ Concepts and Language Use

Our first efforts at exploring end users' mental models [MMODELS-1] (Rode and

Rosson 2003) were aimed at investigating the language, concepts, and the general level

of problem-solving that end users employ when solving web programming problems. We

wanted to find out how – under ideal circumstances – end-user developers would specify

and implement a web application; that is what development techniques would feel most

natural to them. We were concerned with their use of language for the specification of

common user interface elements (such as text fields, links, data grids) as well as their use

of language and diagrams for the specification of the application’s behavior. In particular

we were interested in how these users would describe web-specific data processing—e.g.,

client-server interaction, HTML generation, the web’s stateless nature, and so on.

4.1.1 Participants and Methods

Ten participants were sampled from a population of university webmasters who

had reported in a previous survey that they had significant experience in web authoring

but none or little in programming. Five were female, and five male. Pre- and post-study

interviews revealed that one person had more programming experience than initially

reported (use of Macromedia ColdFusion for a simple web application).

We recruited these participants for a two-part paper and pencil study. First, they

labeled screen elements in a series of screenshots (which helped us study their language

used to refer to common UI elements), and later they specified the application behavior

(which helped us study their natural mental model). I created a simple web application

(member registration and management) for the study (see Figure 12; see Appendix D.4

for all screenshots).

 Chapter 4: Mental Models of End-User Web Developer

76

Figure 12: Two screenshots of example application used for MMODELS-1

Participants were given a general introduction to the goals of the study, then asked

to view and label all elements of three screenshots from the application (login, member

list, add member). The labeling instructions (see Appendix D.2) included a sample

labeled image (a room with objects), including nested items (see Appendix D.3). This

first phase of the study was intended to inform us about the language our audience uses to

reference visible screen elements. Figure 13 shows an example of a labeled screenshot.

Next, participants were asked to explore the application until they were

comfortable with how it worked. After this familiarization phase, participants were given

seven user tasks (login, paging, user-specific listing, add member, sort, search, delete)

and asked to “teach” these behaviors to a “magical machine”; the machine was said to

understand screenshots but not know which elements are static and which respond to

users’ actions. A paragraph of text within the written instructions explained this scenario

to the participants (see Appendix D.2).

 Chapter 4: Mental Models of End-User Web Developer

77

Figure 13: Example of an annotated screenshot of the “Add Member” dialog from the member

registration application (MMODELS-1)

Each of the seven tasks (see Appendix D.2) was illustrated by concise instructions

that were designed to guide the user without biasing their response – for example, task 4

had the following description:

Add a new member (just make up some data). Assume you do not have an e-mail

address. Continue with “OK”. Now enter an e-mail address. Continue with “OK”.

Describe how the web application behaves.

The interactive application was always available for further exploration or

reference. Participants wrote responses using screenshots and blank paper (see example

in Figure 14). I emphasized that they were free to choose how to communicate with the

magical machine (using written words or sketches), but also that they should fully specify

the application’s behavior. We wanted to see what end users consider sufficient as a

behavior specification.

 Chapter 4: Mental Models of End-User Web Developer

78

Figure 14: Example of a participant’s description of the behavior of the “Add Member” dialog from

the member registration application (MMODELS-1)

4.1.2 Results

Participants spent an average of about 90 minutes total on both parts of the study.

The participants' annotated screenshots and written notes showed a general familiarity

with “visible” elements of web applications (e.g., page, link, data table). Given these

users’ background in web authoring, it was not surprising to find that they used terms

common in WYSIWIG web editors to label screen elements. A sample of these common

elements appears in Table 11.

Table 11: Examples of labels choosen by the participants of MMODELS-1. Numbers in brackets

denote the number of participants who chose the particular label.

Screen element Labels provided by the participants

Web page page [4], page and screen interchangeably [4]

Text input field field [3], input field [3], box or text box [2]

Member list table [3], dynamic table [1], data table [1]

Member add, etc. link [4], action [3], option [3], function [3]

 Chapter 4: Mental Models of End-User Web Developer

79

When describing the application’s behavior, participants tended to combine

procedural steps and declarative statements. They used declarative statements to specify

constraints on behavior (e.g., “certain fields are required”). Procedural statements often

conveyed a test and result (e.g., “If the password is incorrect, that field is cleared”) or a

page transaction (e.g., “Type the correct password into the field and Enter; this action

opens the Members page”). With the exception of one participant, no one mentioned

conventional programming constructs such as variables and loops in the behavior

specifications. Where looping constructs are required (e.g., when authenticating a user),

the participants specified one iteration, seeming to expect that it would apply (i.e., be

repeated) as necessary.

Only three participants included any description of what happens “behind the

scenes” in a web application (e.g., mentioning interactions with a server). Even these

participants made no effort to describe page transactions in detail (e.g., no one discussed

how information is forwarded between pages). Most participants (7 of 10) referred to

application data as a database; another talked about a file. This is consistent with their

general use of a “technical” vocabulary. However, only one included communication

between the application and database (“sends command to the database on the server

telling it to query”). Though comfortable with the concept of a database, the others seem

to see it as a placeholder for a background resource.

In a similar fashion, users often referred to a “member list” or a “member” as if

these abstractions are simply available for use as needed; no one worried about how an

application obtains, stores, or manages data. We thought that the search and sort tasks

might evoke informal descriptions of algorithms, but most participants focused on the

desired result (e.g., what the user sees next in a table) rather than on how a data listing

would be obtained. Six users seemed to assume that the “magical machine” manages user

authentication; four offered as a detail that user data must be checked against a list or

table of valid IDs.

 Chapter 4: Mental Models of End-User Web Developer

80

4.2 Mental Models of Typical Web Development Concerns

One problem with the first study of concepts and language for web programming

(MMODELS-1) was the generality of the problem-solving it required: I asked

participants how web programming tasks would take place but did not direct their

attention to specific constructs (e.g., iteration, input validation). Thus the results pointed

to a few general (and often rather predictable) tendencies in end users’ mental models.

For example, the participants in MMODELS-1 tended to understand and describe web

programming at a high level of abstraction. Concepts like session management and

database were assumed to work “out-of-the-box”. This first study showed the level of

abstraction at which end users are likely to think at but did not provide insight into how

particular web engineering aspects are understood. I wanted to probe more deeply, to

explore how end users might conceptualize the specific components and features I had

catalogued in my analysis of existing database-centric web applications (e.g., input

validation, database lookups, overview-detail relationships; see 3.3). We carried out a

second study (MMODELS-2) to explore these issues (Rode and Rosson 2004). Our goal

was to determine how end users naturally think about typical concerns in web application

development.

The rationale for using this methodology is that by studying the natural language

procedures (Miller 1974; 1981) that nonprogrammer webmasters can generate about how

a specific feature or concept works, we can develop approaches for supporting this

feature that will be intuitive to this target user population.

We wanted to begin our investigation with programming concerns that are

commonly addressed by web developers when creating a web application (particularly

basic data collection, storage, and retrieval applications). Thus we selected a set of

concerns that appeared frequently in an earlier analysis of 61 existing web applications

(as discussed in 3.3). As an experienced web developer, I also relied on my personal

experiences to judge what programming concerns are most important for applications

within my target domain.

 Chapter 4: Mental Models of End-User Web Developer

81

We selected 12 web development concerns to focus on in our second study:

• Session management (i.e. save data as the user moves from one page to another)

• Input validation (e.g., verifying the format of an e-mail address or ZIP code)

• Conditional output (e.g., only display a “logout” link if the user is logged in)

• Authentication and authorization (e.g., restricting access to data)

• Database schema (i.e. internal format used to store data)

• Database lookup (e.g., resolve a user-ID to a user name)

• Overview-detail relationships (i.e. show a listing of all records on one page and

details of one particular record on another)

• Normalization and use of foreign keys (i.e. how to store data non-redundantly)

• Uniqueness of data records (i.e. the use of keys)

• Calculating database statistics (e.g., total number of records)

• Search (e.g., find a person by name)

• Timer (e.g., send notification emails)

4.2.1 Participants

We recruited 13 participants (8 female, 5 male) who, in a screening survey,

identified themselves as having at least some knowledge of HTML and/or of a

WYSIWIG web editor (≥ 2 out of 5 on a rating scale) but very little or no programming

background (an essay-type question asked respondents to detail any programming

experience). We later eliminated the data from 1 male and 1 female participant as our

conversion revealed that they had more programming experience than originally

indicated. In the following only the data from the 11 remaining participants is reported.

The screening survey did not question participants for their experience with

databases. However, during the welcoming phase of the study the participants were

explicitly asked about their level of database knowledge. All but one participant indicated

that they had at least some experience with databases (9 with Microsoft Access, 1 with

FileMaker Pro). Although our sample size is too small to draw strong conclusions, this

seems to indicate that casual web developers (my target audience) are very likely to have

database experience. Assuming that this finding can be replicated in a more diverse

 Chapter 4: Mental Models of End-User Web Developer

82

sample, EUDWeb tools may be able to expose database concepts without overwhelming

their users. Note though that the interviews that followed the study suggest that the level

of database understanding is novice to intermediate rather than expert.

4.2.2 Methods

The goal of this study was to better understand how webmasters with no

programming experience are able to imagine how a range of computational processes

might be carried out by an interactive web application. Probing naïve expectations of this

sort is a challenge, because the facilitator must provide enough information so that a

nonprogrammer can understand what aspect of the application is being called out for

attention, but not so much that the inner workings of the application are revealed. So as to

describe the application feature of interest in as concrete a fashion as possible, I presented

and asked questions about nine scenarios (for full list of scenarios see Appendix E.2),

each describing one or more programming concerns related to a fictional web application

– an online video library system.

Each scenario consisted of a mock screen shot, a short paragraph explaining what

the mock screen depicts, and a series of questions. As an example, Figure 15 shows the

first of the nine scenarios. This particular scenario was designed to probe end users'

mental models regarding session management (1a), database lookup (1b), and conditional

output (1c). Some of the questions in the nine scenarios are targeted at the same concerns,

but approach them from a different perspective (see Appendix E.2). Most of the questions

begin with the words: “What do you think the web site must do to…”; we hoped that this

probe would prompt the webmasters to direct their attention “inside” to the inner

workings of the hypothetical application. Participants were asked to provide as many

details as they could when answering the questions; as the facilitator I often prompted

them for details if it seemed that the scenario had not been completely analyzed.

Participants were also encouraged to use sketches to clarify their thoughts. The study

took place in a one-on-one setting in a private atmosphere. Verbal responses were voice

recorded for later analysis.

 Chapter 4: Mental Models of End-User Web Developer

83

After participants finished analyzing the nine scenarios I asked them two general

questions which contribute to the needs analysis for an EUDWeb tool:

1. What web applications do you currently use or would like to use in the future on

your website?

2. How would you describe your ideal web application development tool?

The first question was intended to help us expand our understanding of the kinds

of web applications we should support with an EUDWeb tool. The second question was

intended to gather informal requirements for the design of such a tool. For each of the

two questions we conducted an unstructured interview encouraging the participants to

elaborate on and clarify their responses.

1) After logging in with your user-ID the web site always shows your full name and a logout
button in t he upper right corner.

a) What do you think the web site must do to keep track of the fact that you are logged in even
though you go from p age to page?

b) What do you think the web site must do to show your full name, although you only entered a short
user-ID? Take the user-ID “jsmi th” as an example and show step-by-step how the web site
determines the name “John Smith”.

c) Note that the library home page o nly displays your name when you are logged in. If you are not
logged in, it shows a login box instead. How do you think this feature works behind the scene?

Figure 15: Scenario 1 of 9 as shown to each participant (MMODELS-2)

The study was analyzed in the following manner. First, I transcribed the recorded

verbal descriptions for each participant (focusing on analysis questions, and excluding

unrelated remarks). If participants had made sketches I used those to understand and

annotate their remarks. Second, in a separate document I listed the 12 web development

concerns of interest, and inserted pieces of the transcribed interview under the aspects

 Chapter 4: Mental Models of End-User Web Developer

84

they referred to. Each remark was coded with a reference to the participant to enable later

quantitative analysis. Often, I combined across answers from different scenarios or

questions to give us a better understanding about a particular aspect of a webmaster’s

mental model. Finally, the results for each development concern were summarized by

referring back to this document, and when necessary the transcribed interviews or even

the original recordings.

Not all users answered all questions. Sometimes a participant responded simply

that “I have no idea” rather than attempting an explanation. In such cases I encouraged

participants to give a “best guess”, but occasionally I was forced to continue without an

explanation. In general I was sensitive to participants’ comfort level, and if a participant

conveyed or said that s/he simply did not have an answer or even that s/he was feeling

stupid I moved on to another question. Unfortunately, one consequence is that answers

regarding some of the more complex and unfamiliar programming goals (e.g.,

implementing an overview-detail relationship) were quite sparse.

4.2.3 Results

In the following I summarize the findings, clustered by web development

concern. Implications of the findings are discussed in the final section of the chapter.

4.2.3.1 Session management

One of the test scenarios asked a question related to session management: “What

do you think the web site must do to keep track of the fact that you are logged in even

though you go from page to page?”

Overall, seven participants indicated that they would assume that the application’s

state is preserved while a user navigates the website. One participants’ statement

exemplifies this view: “…is the status quo, it’s like an on/off thing, a toggle type of

situation”. Three participants did not understand the question or, even after explanation

did not answer it. One participant exhibited a more explicit notion of state maintenance

by saying: “It just keeps verifying at each page again”.

 Chapter 4: Mental Models of End-User Web Developer

85

4.2.3.2 Input validation

With respect to the programming concern of input validation we primarily wanted

to explore the language and procedures participants would use to specify input

constraints, because this is what an EUDWeb tool would need to know in order to

construct a validation routine.

None of the participants seemed to have difficulties in specifying rules for valid

input (in our case a phone number). All eleven participants used the concept of a pattern-

matching process that is related to a particular input field, although different words were

often used to describe it, e.g. “symbols”, “placeholders”, “slots”, “pattern”. In the

simplest case, the number of digits alone was proposed as a way to validate the input.

4.2.3.3 Conditional output

The following question probed the participants’ intuitive model of conditional

output: “Note that the library home page only displays your name when you are logged

in. If you are not logged in, it shows a login box instead. How do you think this feature

works behind the scenes?”

Three participants imagined “some coding within a template page”; two

participants imagined two separate pages, and the remaining participants did not answer

the question. Many participants informally used the phrasing of “if-then” rules in

applying the condition. However, there seemed to be no clear sense about when and how

these rules should be applied.

4.2.3.4 Authentication and authorization

Two of the questions relating to authentication and authorization were: “How do

you think the web site checks whether or not your user-ID and password are correct?”

and “How do you think the web site keeps track of which user is allowed to see which

part of the web site?” We analyzed responses to these probes along two distinct

dimensions. First, we wanted to know whether our participants would recruit the concept

of user groups, or rather would consider the goal to be one of explicit permission values

for each individual. Second, we wanted to know whether our participants would allocate

to each user exactly one permission or group-related attribute (such as “user class”) or

 Chapter 4: Mental Models of End-User Web Developer

86

more than one (such as three fields representing “manager”, “librarian”, “patron”). The

latter shows an appreciation of the possibility that the application would serve multiple

user groups with different needs.

With respect to the first concern, five participants imagined the concept of user

classes, five assigned permissions to individual users and one participant offered both

solutions as alternatives.

Regarding the second dimension of analysis, six participants assigned exactly one

permission/group-related attribute to each user; only two participants described the

possibility of assigning more than one attribute.

4.2.3.5 Database schema

As mentioned previously, ten of the eleven participants had at least some database

experience. As a result, most of the database-related questions (e.g., “In what form and

format do you think the web site keeps record of the checked-out videos?”) turned out to

be a test of their knowledge of relational database concepts rather than an indicator for

the naturalness of these concepts.

With this caveat in mind, we observed that nine participants appeared to rely on

the mental image of a spreadsheet or table when thinking about a database. One

participant imagined that one page would store one record and that a large set of pages

would constitute “the database”. The participant without prior database experience

imagined “pages of code” which somewhat resembled an XML-data store (e.g.

<firstname>John</firstname>), although she did not explicitly mention XML. This

mental image may have resulted from her prior knowledge of HTML.

4.2.3.6 Database lookup

We wanted to know how our participants visualize the process of looking up and

retrieving a particular data record given a key field (for example, how the application

finds a name given a user-ID). Eight participants seemed to have only an abstract mental

model of this process (e.g. “…searches for your information”), one participant provided a

more detailed algorithm of how to select the data, and one participant merely stated: “I

don’t really think about these things” (even encouragement did not produce additional

 Chapter 4: Mental Models of End-User Web Developer

87

insight). This was surprising to us given these users’ prior experience with databases;

presumably these are webmasters who have retrieved data often from a database, but

have never reflected on how the look-up takes place.

4.2.3.7 Overview-detail relationships

One of the scenarios asked the participants to describe what the implementation

would look like for a feature that provides a listing of movies, where each movie is linked

to a separate web page that displays the movie’s details. In particular, we wanted to know

how the participants imagined the link between “overview” and “details” pages, and the

information carried by this link.

Four participants answered that the link would carry the movie’s ID information

(which might be the best possible implementation). Three participants imagined a more

naïve model in which the link carries the movie’s title (a problematic implementation if

two movies have the same title). The remaining four participants struggled to find an

answer (or even understand the question)—two of them imagined fixed web pages that

would be linked on the basis of pre-assigned file names.

4.2.3.8 Normalization and use of foreign keys

We wanted to know if and how our participants deal with the problem of data

redundancy. Since most non-trivial web applications need to store multi-dimensional data

(e.g., movie information and patron information) end-user developers are sooner or later

confronted with the problem of separating data into more than one table or dealing with

the problems resulting from data redundancy. Thus one scenario asked them to describe

how they thought movie-checkout information is stored within the database.

Four participants described a model that would store patron attributes (first name,

last name, phone, checkout date etc.) directly in each movie record (either disregarding or

implicitly accepting the problem of data redundancy, their comments did not clearly

distinguish between these alternatives). Two participants imagined that the patron

information would be stored in a separate table and linked via a user-ID (the classical

“normalized” solution). Two participants mentioned both models as alternative

implementations. Three participants did not answer this question.

 Chapter 4: Mental Models of End-User Web Developer

88

4.2.3.9 Uniqueness of data records

When asked specifically how they thought the application handles the problem of

having two copies of the same movie, nine participants proposed the existence of a

unique identifier (call number, index number + subscript for each copy etc.). Only two

participants did not give a clear answer.

4.2.3.10 Calculating database statistics

We did not ask many questions that would involve calculations, but we did

include one specifically designed to probe this aspect of programming—we asked how

the web application provides a sum of all checked-out movies, or more generally, how

any calculation of database statistics would be implemented. Seven participants imagined

that the web application would simply count the respective records on request. Three

participants imagined a self-updating row counter similar to the automatic recalculation

and sum features of spreadsheet applications. One participant simply stated: “no idea”

(again I tried to no avail to receive a more satisfying answer).

4.2.3.11 Search

As with answers to questions about database lookup, all participants used a

relatively high-level description to explain how a two-parameter search might be

implemented (we only tested the Boolean conjunction, i.e. the logical AND). Five

participants spontaneously used Boolean logic (although not in a formal way) to specify

the query (e.g. the keyword contains the word “wind” and the movie release date is

greater than 1998). Four participants imagined that two queries would be performed

consecutively in order to handle the two parameters. Two participants were not able to

answer the question beyond giving a high-level analogy, for example “…like ‘Find’ in

Word”. In most cases, participants avoided, failed at, or gave up when trying to describe

the details of how the search might be implemented (i.e., specifying a pattern matching

process).

 Chapter 4: Mental Models of End-User Web Developer

89

4.2.3.12 Timer

The final scenario asked participants to explain the inner workings of a timer that

automatically emails patrons when their movies were over-due. Eight participants

imagined some form of system clock that every night initiates a search on the movie

table. Interestingly, three participants imagined that the timer would somehow be handled

within the database table (e.g. “every night the table would refresh itself and put in the

calendar day for every row”, “the due date column is a function of the check out

date…there is another column that is the overdue trigger”).

4.2.3.13 Use of and need for web applications

After the participants explored all the scenarios, I asked them to describe their

current use of and needs for web applications. This question was intended to help us

continue to explore and refine the classes of web applications that an EUDWeb tool

would need to support for this user population.

One general observation is that few participants distinguished between static

websites and interactive web applications. When I enquired about their needs for features,

they often asked for simple static features such as a consistent navigation scheme,

breadcrumb trail, or drop-down menus. Furthermore, three participants asked for simple

search functionality limited to their website as provided by commercial search engines;

two mentioned the need for web usage statistics or as they phrased it “hit counters”; two

were interested in restricting access to certain pages within their site. These comments

indicate that at least some of our participants see web development as a single activity,

regardless of whether functionality is implemented on the client or on the server, and

with or without the help of external tools (like web log processors or search engines) –

this a view that seems logical in hindsight but was actually quite revealing to me as an

experienced web developer.

 Chapter 4: Mental Models of End-User Web Developer

90

In order of frequency (the number in parenthesis indicates frequency of mention),

the following classes of web applications were requested by the webmasters:

• Registration forms (5),

• Surveys (4),

• Databases (4),

• Reports (3),

• Service request forms (2),

• E-commerce applications (2).

Although most envisioned systems fit nicely into one of the categories above, the

actual web applications were quite diverse in purpose, ranging from a simple “need more

info” email form to a rather elaborate database of stock donors. This underlines the need

for tools that allow the creation of custom web applications. I do not see such lists as an

exhaustive account of all possible end-user-developed web applications but rather an

indication for the kind of power required from a EUDWeb tool.

4.2.3.14 The “dream” EUDWeb tool

The final post-test interview question encouraged the participants to imagine their

ideal EUDWeb tool and in particular how it should operate to serve their needs.

Leading the “wish list” is a set of templates that are provided for the developer

(six participants). At the same time, three participants commented that they would also

like to develop manually and not be confined by templates. Five participants mentioned

that a wizard-approach may be an appropriate tool feature, presumably reasoning from

their experience with wizard assistants in spreadsheets and other common applications.

Three participants wanted a tool that would assist them in the layout of their site

including pre-defined components for header, footer, sidebar, navigation etc. Two

participants stated that they would want a direct manipulation user interface. Many of the

other participants showed their preference for windows, icons, menus, and pointing

device actions (WIMP) like drag-and-drop more implicitly. Two participants wanted the

tool to support collaborative development.

 Chapter 4: Mental Models of End-User Web Developer

91

Other ideas were unique to individuals but convey something of their attitudes

about tools and programming more generally. For example, one participant stated: “I’m

scared of experimenting…I have lost a whole computer before” (presumably showing a

desire for simplicity, stability, and undo functionality). Another remarked: “I don’t like

programs to think for me, I like to make decisions myself” and added: “I don’t like just

seeing the screen and the program doing all the thinking behind it and me not having any

view of what that thinking is. Because I think I can figure out the thinking if you teach me

the language” (presumably showing a desire for detailed control).

4.2.4 Summary and Conclusions

From a methodological point of view I learned a number of lessons about

studying webmasters’ (or other end users’) mental models. Extracting the participants’

mental models was difficult and required a very involved interview. Participants

frequently expressed that they simply did not know or had never thought about the

implementation of a particular aspect. A possible refinement would be an approach that

has a more “graduated” set of scenarios and questions. For example, one might start out

with a very straightforward question about database structure and follow that up with

more explicit probes about how retrieval or filtering might be done.

I noted that in many cases participants had very sparse models of the

programming functions we presented. Although a sort of “non-result”, this observation is

interesting in itself because it underscores the need for tools that provide transparent

support of certain frequently-used functionality (e.g., session management, search). Note

that participants often used appropriate language to refer to technical concepts even when

they did not understand how they worked (e.g. key fields). Therefore, it seems plausible

that casual web developers will be able to understand a toolkit that employs constructs

like key fields or foreign-key relationships.

The following section summarizes the general findings obtained through the

second mental models study and how these findings have influenced my thoughts about

the design of future EUDWeb tools.

 Chapter 4: Mental Models of End-User Web Developer

92

Session management. The majority of our participants assumed that session

management is implicitly performed, and thus is not something that a developer would

have to consciously consider. This suggests that an EUDWeb tool should automatically

maintain the state of an application, perhaps even without exposing this fact to the

developer. For novice web application developers this concept may introduce

unnecessary complexity. In subsequent evaluations of our EUDWeb prototype tool Click

we found some incidents where developers expected a reset of the application’s state (or

part thereof) (see 6.2.5.4). This is consistent with a default belief that the background

processes will manage any needed state information in an appropriate fashion. (It is also

consistent with the intuitions we observed in our first mental models study).

Input validation. The typical approach of defining an input mask using patterns

or placeholders (as used by many existing tools, e.g. Microsoft Access) seems to be an

appropriate abstraction for end users. Certainly, this result is not surprising in light of the

fact that ten participants had previous database experience and were familiar with this

notion.

Conditional output. Although “if-then” phrasing was frequently used, the exact

implementation (in particular when and where these if-then rules should be applied) did

not appear trivial to most participants. This suggests that while an EUDWeb tool may use

the notion of “if-then” at a high level of abstraction, it may need to automatically develop

an implementation or guide the developer as to where to place these rules.

Authentication and authorization. Overall, the problems involved in permission

management did not appear too taxing for our participants. However, the proposed

implementations were rather variable and almost always incomplete, and were not

powerful enough for a real-world application. We believe that our participants would not

have many difficulties in understanding a good permission scheme; however they may

not be able to create a sufficiently powerful and secure one on their own. Therefore, an

easy-to-use EUDWeb tool should offer permission management as a built-in feature and

make it customizable by the developer.

Database schema. Overall, the table paradigm seems to be the prevalent mental

model among our participants. This suggests that an EUDWeb tool may safely use the

 Chapter 4: Mental Models of End-User Web Developer

93

table metaphor for managing data. However, the management of more than one related

data table may not be a trivial problem, as discussed further under the aspect of

“Normalization and use of foreign keys.”

Database lookup. Although the concept of database lookup (or select) did not

seem difficult to the participants, the majority did not provide a detailed algorithm. This

suggests that an EUDWeb tool should offer database lookup as predefined functionality

that is customizable by the developer.

Overview-detail relationships. Overall, imagining how the linkage between

overview page (list of all movies) and detail page (movie details) is implemented was

quite a challenge for our participants. Almost all of the participants immediately stated

that the information was “linked”, “associated”, “connected,” or “referenced;” but the

details of this linkage were quite unclear. This suggests that although an EUDWeb tool

may be able to use words like “linking” to describe a relationship between two views, it

will likely need to guide the developer as to what kind of information the link will carry

(or abstract this detail completely).

Normalization and use of foreign keys. The results suggested that most of our

participants would not design a normalized database representation but rather some

redundant form of data storage such as that familiar from spreadsheet applications (which

lack the concept of foreign key relationships). Therefore, if non-redundant data storage is

required (note though this may not be important for small or ad hoc applications), an

EUDWeb tool may have to make the developer aware of data redundancy problems and

propose potential solutions and perhaps (semi-) automatically implement these solutions.

Uniqueness of data records. Our participants had no difficulties imagining the

utility of a unique record identifier. However, as the results from the “Overview-detail

relationships” aspect show, the correct use of this unique identifier was often unclear.

Therefore, an EUDWeb tool may either automatically introduce a unique identifier as a

data field or guide the developer towards defining one.

Calculating database statistics. Participants were asked to describe how the web

application calculates the total number of checked-out movies. Most participants

naturally selected the most likely implementation (application counts records on request).

 Chapter 4: Mental Models of End-User Web Developer

94

For the others, their prior knowledge of the workings of spreadsheet programs seemed to

influence their mental models (self-updating counter). Overall, this question was not

perceived as a stumbling block. I suggest that an EUDWeb tool should offer familiar

predefined statistics such as column sums, averages etc. to aid the developer.

Search. The concept of searching appears to be well understood at a high-level of

abstraction, including the possibility of multiple search parameters. However, the

implementation of a search function was beyond the mental models of most of our

participants. Therefore, EUD tools should offer a built-in query mechanism that lets

developers specify parameters and connecting operators but does not necessarily expose

the details of the implementation.

Timer. Overall, our participants did not seem to have major difficulties imagining

an implementation for a timer function, as long as the tool provides easy access to an

internal clock of some sort.

The answers to our question about the “use of and need for web applications”

indicate that our target audience (nonprogrammer webmasters) not only requires help

regarding the implementation of database-driven web sites but also help regarding more

mundane issues such as consistent navigation, site search or drop-down menus. From a

tool that intends to support nonprogrammers in the development of dynamic web sites

they expect a rounded feature set that addresses all facets of web development. They

want the tool to be accessible by providing predefined templates, and wizards while still

leaving the developer in full control of the details. Even if a tool’s sole purpose is to

assist end users with the implementation of basic data collection, storage and retrieval

applications (my research focus), the tool designers should consider the web development

process as a whole and expect the their users to look for features that are not directly

related to database-driven websites.

 Chapter 4: Mental Models of End-User Web Developer

95

4.3 Summary and Conclusions

The two mental models studies have shown that end-user developers frequently

only have very sparse mental models of the inner workings of features commonly found

in web applications. Although this represents a sort of “non-result”, this observation is

interesting in itself because it underscores the need for tools that provide transparent

support of certain frequently-used functionality (e.g., session management, search).

Generalizing across the pattern of results reported here, I offer the following

characterization of a “prototypical” end-user web developer (Table 12).

Table 12: The Mental Model of the “Prototypical” Novice Web Application Developer

The “Prototypical” End-User Web Developer…

• Often uses technical terminology (e.g., fields, database) but without being specific and precise

• Is capable of describing an application’s visible and tangible behavior to a nearly complete level

(only if under-specification is pointed out to them)

• Naturally uses a mix of declarative language (e.g., constraints, if-then rules) and procedural

language (e.g., a few explicitly sequential steps) to describe behavior, while being unclear about

where and when these constraints/rules/steps should be applied (lack of control flow)

• Does not care about, and often is unable to describe exactly how functionality is implemented

“behind the scenes” (e.g., search, overview-detail relationships)

• Disregards intangible aspects of implementation technologies (e.g. session management, parameter

passing, security issues) and only considers surface features (e.g., invisible link page protected)

• Understands the utility of advanced concepts (e.g., unique key fields, normalization) but is unlikely

to implement them correctly without guidance

• Imagines a spreadsheet table when reflecting on data storage and retrieval

I advocate that EUDWeb tools should expose their functionality in a way that is

close to their users’ natural mental model. A tool is likely to be easy to use if it works

according to the expectations of its users. For example, high-level components should be

available for implementing frequently needed functionality such as searching or

 Chapter 4: Mental Models of End-User Web Developer

96

generating lists of data, purely technical concepts such as session management should be

abstracted, and difficult technical problems such as cross-platform compatibility and

security hidden as much as possible (e.g. by automatically generating cross-browser

compatible code and automatically performing security checks).

However, the mental models studies I conducted can only determine what end

users “naturally” think. In order to determine whether or not certain design solutions are

easy to understand and easy to use we need to create and evaluate prototype tools – the

focus of the work described in the next chapter.

Chapter 5: Click – A Web Application Development Tool for End Users

97

Chapter 5

Click – A Web Application
Development Tool for End Users

5 Click – A Web Application Development Tool for
End Users

Click is a prototype of a web application development tool targeted at end-user

developers. This prototype embodies much of the findings from my studies of

nonprogrammers (see Chapters 2, 3, 4) and has been developed as a proof-of-concept and

to evaluate certain techniques (e.g., abstraction, integration) that may facilitate EUDWeb.

Much of the implementation effort took place in close collaboration with Yogita

Bhardwaj and Jonathan Howarth who worked with me as research assistants throughout

significant parts of this work.

In the following section I will first introduce the paradigm of “Design-at-

Runtime” – a basic concept I have developed and evaluated as part of the Click

prototyping effort. Next, I will briefly describe the history of Click by discussing early

prototyping efforts and lessons learned. The balance of the discussion will be dedicated to

Click, its features, rationale, and architecture. An interactive demo of Click is available at

http://phpclick.sourceforge.net/.

5.1 Design-at-Runtime

As a result of our surveys and interviews of web developers (see Chapter 3) it

became apparent that one important requirement for a good development tool is its speed

and in particular its capabilities for quickly iterating through the develop-test-cycle. For

this reason – and although in general my research questions take a holistic perspective to

Chapter 5: Click – A Web Application Development Tool for End Users

98

EUDWeb (see 1.4) – I have chosen to focus on the problem of facilitating the develop-

test-cycle. The following articulates the basic idea and rationale for “Design-at-Runtime”

– a concept that is referenced repeatedly in the discussion of Click’s design (see 5.3-6.2).

The active programming strategies observed in professional programmers (see

2.2) provide a scientific grounding for my work on nonprogrammer tools – indeed I

expect end users to be even more active and result-oriented than experienced software

developers. For example, a nonprogrammer is less likely than a programmer to worry

about designing an elegant system architecture. Many studies of computer use have

demonstrated that for the most part end users do not want to “learn” but rather to

“produce”, and will use whatever information or resources is available to help them make

sense of a task just enough to make progress (Carroll 1990).

Given this view of programmers as active users, I propose an alternative to the

mode-based programming paradigm of typical visual web development tools (e.g.,

Macromedia Dreamweaver or Visual Studio), in which developers need to explicitly

switch between development and runtime mode. I call the paradigm “Design-at-

Runtime”. As an application of Tanimoto’s (1990) general concept of “liveness” (see

2.3.2) to the domain of web engineering, the design-at-runtime concept builds from the

ideas of direct manipulation (Shneiderman 1983) and the “debugging into existence”

behavior (Rosson and Carroll 1996) documented for professional programmers. In its

core it is similar to the automatic recalculation aspect in spreadsheet programs. A critical

piece of the concept is that the user is able to both develop and use the application

without switching back and forth between design and runtime modes. That is, the

application is always usable to the fullest extent that it has been programmed. The end-

user developer alternates between constructing and “using” the application until he or she

tries to use an object with a not-yet-defined behavior. At this point the system prompts

the user with a dialog that can be used to define the missing behavior. This interleaving

of development and use continues until the entire application has been defined and tested.

The applicability of design-at-runtime reaches beyond just web development – the

paradigm could be used by programmers and nonprogrammers alike, in many domains.

However, my focus is on EUDWeb and my discussion addresses this particular

Chapter 5: Click – A Web Application Development Tool for End Users

99

application of the general concept. Of course, the usefulness of working with live data

instead of placeholders at design-time has been realized before. In Macromedia

Dreamweaver, developers can switch to the so-called “Live Data View”. In this mode

live web pages are shown and some adjustments can be made. However, Dreamweaver

does not allow developers to actually use their developing applications – for example,

hyperlinks do not work in this mode. Therefore, the developer still must repeatedly

switch between different interaction modes.

Although I have not conducted any formal experiments to compare design-at-

runtime against classical mode-based programming I argue that it has a number of

advantages. The paradigm embraces the naturally occurring tendency for “debugging into

existence”. The programming environment gives immediate feedback to any actions and

changes by the developer. Design-at-runtime delivers true What-You-See-Is-What-You-

Get (WYSIWIG), because the developer always works with a running application

operating on live data. Finally, the application under development is implicitly subject to

continuous testing. This may help to improve the reliability of the resulting application.

However, there are still a few unresolved issues regarding the realization of the

design-at-runtime paradigm. For example, developers need a means to distinguish

whether they intend to interact with or edit an already-defined button action – therefore,

at least a minimal notion of a mode (execute vs. edit) is still needed. Click addresses this

problem by providing small handles that are displayed next to each component that when

clicked invoke the “edit” operation. Another example challenge for design-at-runtime is a

component that outputs a value that momentarily is empty. It may be tedious for the

developer to determine the role of the output component – some concept of role-

expressive placeholders or handles for empty values may still be needed.

The summative evaluation of Click shows that end-user developers quickly

embrace and highly appreciate the advantages of design-at-runtime (see 6.2.8).

Chapter 5: Click – A Web Application Development Tool for End Users

100

5.2 Early Prototyping Efforts and Lessons Learned

5.2.1 FlashLight

As a first attempt and proof-of-concept for a web development tool that employs

the design-at-runtime paradigm (see 5.1), and that may be suitable for nonprogrammers, I

created a system called “FlashLight” (Rode and Rosson 2003). Figure 16 shows a

screenshot.

Figure 16: Defining button actions in FlashLight

FlashLight is a prototype tool using a combination of Flash MX (Macromedia

2002b), the server-side programming language PHP (Lerdorf, Gutmans et al. 1995), and

XML. This early prototype implements a subset of the concepts and components that may

appear in a typical web application (see 3.3) namely data input and storage, session

Chapter 5: Click – A Web Application Development Tool for End Users

101

management, branching login, and basic data output. The tool works at a high level of

abstraction in order to hide the complexities of web application development and allows

users to create multi-screen web applications for data collection.

5.2.1.1 Programming in FlashLight

In FlashLight, developers design a series of screens by dragging components like

checkboxes, radio-buttons, or text input fields onto the workspace. Screens can be

selected via tabs (see Figure 16). Developers can edit the component properties at any

time by clicking on a small yellow dot that visualizes a “handle” for the component.

The components are fully functional as soon as they are dragged onto the

workspace – text input fields allow user input, buttons can be clicked and so-called

“output text components” display live data. Application-specific functionality is

programmed by dragging buttons onto a screen and clicking them. If a button already has

an action (e.g. go to screen xyz, save data record) associated with it, the action is

immediately performed; otherwise a dialog with the user is initiated to specify an action.

The dynamic behavior of the application is controlled by defining “action rules”

which are pairs of conditions and associated actions. Figure 16 shows a screenshot of

FlashLight that depicts the process of defining an action rule. The screenshot shows that

three rules have already been associated with the button to define what it should do

depending on the user’s inputs. In a similar manner the user can define the behavior of

the “output text” component. So-called output rules determine what kind of output is

shown under certain conditions.

FlashLight also simplifies application deployment. Once a developer saves an

application (File/Save), the properties inspector of each screen displays a web-address

that can be pasted into a browser to access the working application. Every screen is given

a unique web address. Thus an application may offer different functionalities to different

users (e.g. data input for general public, data browsing for authorized users only).

Many of FlashLight’s concepts (e.g., drag-and-drop, concept of handles, action

rules, ease of publishing) were used in Click.

Chapter 5: Click – A Web Application Development Tool for End Users

102

5.2.1.2 Database Model

FlashLight’s underlying database model is very simple: the development of a

powerful and scalable database layer was not a priority for this prototype, because we

were more interested in the overall programming paradigm and user experience. In

FlashLight, the database model is represented by a set of data records, each containing

the values that correspond to the user inputs from checkboxes, radio-buttons, and input

text components during one user session. The data entered by the user is automatically

kept persistent throughout the application allowing the user to jump back and forth

between different screens.

On one hand, the implementation of the database model simplifies development

by hiding the database layer from the developer. On the other hand, it has severe

limitations. In FlashLight, there is always a one-to-one mapping between an input

component and a database field. It is currently not possible to have two input components

correspond to the same value in the database. This would be needed to implement “add

record” together with “edit record” functionality in a web application – in fact a rather

basic requirement that was addressed in our second phase of prototyping. A fully

functional EUD tool would need to address the problem by decoupling input components

from database fields. Furthermore, FlashLight only handles databases with exactly one

type of record (or table), although web applications often contain more than one type

(e.g. a library application would contain a data table for books, one for patrons etc.).

Finding a good way to represent the entity-relationship-model (multiple database tables

and relationships via keys) to a nonprogrammer is a challenge for further research.

Following a commonly-used approach (e.g., Turau 2002; Zdun 2002; Laszlo Systems

Inc. 2005; Macromedia 2005c), FlashLight stores metadata describing the application in a

custom XML format. User data is stored on the server in a similar fashion.

5.2.1.3 Platform and Implementation

I developed FlashLight using Flash MX and the integrated programming language

ActionScript. FlashLight implements a small subset of what is possible with Flash–hence

its name. FlashLight components running on a server use PHP to save application

Chapter 5: Click – A Web Application Development Tool for End Users

103

metadata and data into XML files for persistent storage. I chose Flash mainly because of

its flexibility, rapid prototyping support, and web delivery capability. Nevertheless, I do

not endorse Flash as an ideal platform for comprehensive web development tools

(potential alternatives are a desktop application written in C++, Java, Visual Basic, C#

etc. or a DHTML-based web application written in ASP, PHP, ColdFusion or Java).

Indeed, my experiences with Flash have been mixed. A frequent complaint—that Flash’s

movie metaphor gets in the way of application programming—turned out to have a

simple solution. I ignored the movie metaphor and placed all ActionScript code within

one movie frame. On the downside, although ActionScript is object-oriented, it seems

limited in terms of scalability. I externalized all of the ActionScript code using Flash’s

“#include” directive; nonetheless, I found it difficult to enforce a maintainable code

structure and avoid unwanted side-effects.

Since my development of FlashLight in 2002, Macromedia has released Flex (see

2.1.3.5), a Flash-based web programming language targeted at application development

rather than simulation and animation that addresses many of Flash’s shortcomings.

Because Flex has only become available recently, I could not use it for prototyping

although it is a promising technology.

5.2.2 Custom Extensions to Existing Tools

After the attempt to implement a full-featured web development tool in Flash had

proven too difficult (see previous section), I explored the option of creating a custom

extension for Macromedia Dreamweaver (Macromedia 2005b). Dreamweaver exposes an

Application Programming Interface (API) that allows developers to extend

Dreamweaver’s built-in functionality with custom features. Using only standard HTML

and semi-standard JavaScript (a proprietary library is required), Dreamweaver’s user

interface can be modified. I had envisioned that by developing a Dreamweaver extension

end users would be able to reuse the WYSIWYG web editing functionality already

offered by Dreamweaver. However, although adding simple code-generation and code-

replacement to Dreamweaver functionality proved to be fairly straightforward, I soon

encountered a major drawback to this approach: Dreamweaver’s API is powerful, but still

Chapter 5: Click – A Web Application Development Tool for End Users

104

quite limited. Dreamweaver has many predefined UI concepts which cannot be modified

programmatically. Finally, Dreamweaver’s API proved to be too difficult and inflexible

to implement the integrated and seamless workflow I had envisioned.

After abandoning the idea of a custom Dreamweaver extension I explored the

possibility of extending Eclipse (2005). Eclipse is an open-source universal tool platform

and extensible IDE. After a brief investigation of Eclipse’s features and existing libraries

to support WYSIWYG web development, I concluded that too much low-level

programming would be required to implement the functionality needed by even a basic

EUDWeb tool. Note that since the review in 2003, Eclipse’s libraries have improved

considerably. IBM has even chosen Eclipse as the underlying platform for their web

development IDE: Rational Web Developer for WebSphere Software (IBM 2005a).

5.2.3 Click Prototype #1 and #2

The attempts to implement a EUDWeb tool as an extension to an existing tool

were abandoned because of inflexibility. In order to better control the user experience and

workflow of the tool, I decided to create a separate tool.

The first prototype of Click was a PHP/MySQL-based web application that could

be used to setup and manage the database and define the behavior of a web application.

The screen layout still needed to be designed outside of Click using an external

WYSIWYG web editor, such as Dreamweaver. The advantages of this approach were

twofold. First, the developers could continue to use the layout tools they were familiar

with; and second, Click did not have to include its own WYSIWYG web editor, which

significantly reduced the scope of the prototyping effort. In order to develop an

application using this prototype, the end-user developer would open and alternate

between his or her favorite web editor and Click. The WYSIWYG editor was set up to

save files to a network drive that could be accessed by Click. Once a web page had been

saved, Click noticed the change and allowed the developer to define the behavior for

particular elements such as text fields or buttons (small icons were displayed inline as

handles). After the developer had changed certain properties, Click would rewrite the

page’s code, embed appropriate PHP code that would implement the functionality, and

Chapter 5: Click – A Web Application Development Tool for End Users

105

finally save the file. The WYSIWYG web editor would automatically reload the

externally modified file and the developer could make further changes to the layout. This

alternation between modes of development and tools is shown in Figure 17.

Figure 17: Click prototype #1: an external WYSIWYG editor is used in conjunction with Click

The main shortcoming of the first Click prototype was the need for an external

WYSIWYG editor. This proved to be a major impediment to usability. In a series of

formative usability studies, many developers were demonstrably confused about when to

use one tool and when the other. Furthermore, the user interfaces of the two tools were

not consistent, causing more confusion.

My vision of a stand-alone EUDWeb tool became more realistic with the

availability of a JavaScript drag-and-drop library (Zorn 2004). Using this library we

implemented Click’s second prototype, a web-based WYSIWYG web editor that allowed

developers to specify, both, the behavior and the layout all within Click. This prototype

Chapter 5: Click – A Web Application Development Tool for End Users

106

no longer used code-replacement strategies to update a page’s HTML/PHP code but

rather stored the application’s definition in an XML format that at runtime was

interpreted by Click. Storing the layout and behavior definition in XML, similar to what

is done in OpenLaszlo (Laszlo Systems Inc. 2005) and Flex (Macromedia 2005c), was

more straightforward than writing and rewriting multiple pages that contained low-level

HTML and PHP code (as used in prototype #1). After several rounds of refinement

through formative usability studies, this second prototype of Click appeared to be much

closer to the goal for an integrated EUDWeb tool. The drawback to relying on a

predefined set of components (in this case they were mapped to XML) was once again

lack of flexibility and scalability. End-user developers could implement basic form-based

web applications as long as Click’s pre-defined components offered the needed

functionality, but custom extensions were not possible. The third and final prototype of

Click addressed this flexibility problem by switching the predefined monolithic

components for a flexible, extensible, and layered component framework as described in

Section 5.4.25. For example, when the final Click tool was used to implement a

production conference paper review system, certain features that went beyond the pre-

defined functionality (e.g. display only papers belonging to the currently logged-in

reviewer) could be addressed with custom code – something that would not have been

possible in the previous prototypes.

Chapter 5: Click – A Web Application Development Tool for End Users

107

5.3 Click’s Development Paradigm and Key Features

We are developing Click (Rode, Bhardwaj et al. 2005) as an EUDWeb prototype

that is specifically targeted at end users who want to develop web-based data collection,

storage and retrieval applications. A canonical example would be an online seminar

registration application. Before I discuss Click’s features and their rationale in detail, I

will briefly illustrate how an end-user developer might use it to create a web application.

To construct an application, a developer starts with a blank page or a predefined

application template (e.g., service request form, online registration, staff database). The

construction process is not predetermined; the developer can begin either by placing

components on the screen (using drag-and-drop) or by defining a database structure.

Figure 18 shows Click being used to define a button that will save user-entered data into

a database and display another web page (see Appendix F.1 for color screenshots).

Figure 18: Defining a “Register” button and associated action using the form-based UI of Click

Chapter 5: Click – A Web Application Development Tool for End Users

108

Click applications are developed iteratively, with user input mechanisms added

and their behavior specified as the developer needs them. Deployment is as easy as

“declaring” a web application as public (in response, Click generates a URL that can be

used to access the working application).

Click is an integrated web-based environment that contains visual development

tools, code editing features, a preview mode, and a database management interface. No

installation or configuration is required by the end-user developer. When the developer

instantiates and positions components for a page under construction, Click generates

corresponding HTML and component template code (see 5.4.19, Table 15 and Table 16).

In order to convey an overview of Click’s concepts and simultaneously illustrate

the level of introductory help provided, Table 13 shows the entire beginner’s tutorial

available for developers within Click.

Table 13: Click - Beginner's tutorial

Chapter 5: Click – A Web Application Development Tool for End Users

109

Chapter 5: Click – A Web Application Development Tool for End Users

110

Chapter 5: Click – A Web Application Development Tool for End Users

111

Chapter 5: Click – A Web Application Development Tool for End Users

112

5.4 Design Rationale

Click has been developed as a proof-of-concept tool to explore one approach to

overcoming the barriers to EUDWeb. Below, I will discuss how Click’s design has been

driven by the problem analysis (Chapters 2, 3, 4) by showing how specific problems

identified in our earlier work have been used to motivate particular design decisions. I

begin with an overview of problems we addressed in the design (see Table 14); thereafter

each issue is examined in more detail.

The problems and observations (shown in the left table column) represent the

current state of knowledge (Chapter 2), the results from survey and interviews studies

(Chapter 3), my findings from the mental models studies reported in Chapter 4, as well as

findings from the three formative evaluation studies of Click (6.1). The problems and

observations are grouped into problem areas. The ones marked in bold font point forward

to the summative evaluation of Click (see 6.2) in that we identified them as particularly

important or interesting with respect to success in EUDWeb.

Table 14: Mapping from problems to design solutions (the numbers in parenthesis represent the

sections discussing the issue in detail; issues marked in bold are the focus of the summative

evaluation)

Problems and Observations Click design solutions

Workflow

• End-user developers need integrated

tools that take holistic approach (2.4.5)

• End-user developers struggle to notice

under-specification and find

missing/faulty behavior (4, 6.2.9)

• End-user developers do not know how to

get started (2.4.5, 6.1)

• End-user developers prefer to work in a

iterative and opportunistic fashion (2.2, 6.1,

• Introduction video & tutorial (5.4.1)

• Application templates (5.4.2)

• Support for opportunistic development &

Design-at-runtime (5.4.3)

• Support for continuous workflow (5.4.4)

• To-do list (5.4.5)

• Sensible defaults and strong affordances (5.4.6)

• Context-sensitive help (5.4.7)

• Auto-generated sitemap (5.4.8)

Chapter 5: Click – A Web Application Development Tool for End Users

113

6.2.9)

• Many tools require premature commitment

(2.4.5)

• Integrated development & runtime environment

(5.4.27)

Abstraction

• End-user developers cannot implement

applications using low-level constructs

(6.1)

• End-user developers do not understand

the stateless nature of the web (4.2.3.1)

• End-user developers disregard intangible

aspects, e.g. parameter passing (4.1.2, 4.2.4)

• Lack of abstraction; early exposure of low-

level concepts, e.g. session management

(2.4.5)

• Integration of diverse technologies is

difficult and error-prone, i.e. HTML,

JavaScript, CSS server-side code etc.

(3.1.2.3)

• Domain specificity, i.e. database-centric apps

(5.4.9)

• Session layer (5.4.10)

• Database layer (5.4.11)

• Input validation layer (5.4.13)

• Authentication & authorization layer

(5.4.14, 5.4.15)

• Parameter passing & “Current data record”

(5.4.21)

• High-level components (5.4.16)

• Button action rules (5.4.17)

• Templating (5.4.20)

• Event-based web programming (5.4.18)

• Application templates (5.4.2)

• Wizards (5.4.22)

Layout specification

• HTML layout is non-trivial and time-

consuming, i.e. requiring nested tables or

complicated CSS (6.1)

• Pixel-based positioning (5.4.23)

• “Global” components (5.4.24)

Behavior specification

• End-user developers naturally specify

input constraints declaratively (4.2.3.2)

• Lack of explicit control flow (4.2.3.3)

• High-level components (5.4.16)

• Input validation layer (5.4.13)

• Event-based web programming (5.4.18)

• Separation of layout and behavior (5.4.19)

• Button action rules (5.4.17)

• Templating (5.4.20)

Chapter 5: Click – A Web Application Development Tool for End Users

114

Database interaction

• End-user developers understand but

cannot correctly implement crucial

database concepts, e.g. unique key fields

(4.2.3.9)

• Connecting to databases is non-trivial

(3.1.1.2)

• End-user developers imagine database as

spreadsheet (4.2.4)

• Database layer (5.4.11)

• Integrated development & runtime environment

(5.4.27)

• Authorization layer (5.4.15)

Testing and Debugging

• End-user developers struggle to notice

under-specification and find

missing/faulty behavior (4, 6.2.9)

• Discovering cause for faulty behavior

(3.1.2.4)

• Bad error messages, i.e. too technical, not

clearly related to error condition (3.1.1.1,

2.4.5)

• To-do list (5.4.5)

• Auto-generated sitemap (5.4.8)

• Support for opportunistic development &

Design-at-runtime (5.4.3)

Security

• End-user developers think about security

just in terms of surface features, e.g.

hidden “edit” link (4.1.2, 6.1)

• Even experienced developers are unsure

about the security of their applications

(3.1.2.1)

• Web apps in general have many

vulnerabilities and are exposed to high risks

• Security layer (Input validation,

Authentication, Authorization layer)

(5.4.13, 5.4.14, 5.4.15)

• Integrated development & runtime environment

(5.4.27)

Chapter 5: Click – A Web Application Development Tool for End Users

115

Compatibility

• Many cross-platform differences,

particularly regarding CSS and JavaScript

(3.1.2.2)

• Good cross-platform testing difficult for

end-user developers

• Authoring and debugging JavaScript is

difficult; few developers use it fully

(3.1.1.2)

• High-level components (5.4.16)

Scaling up

• The central problem of EUD is the tradeoff

between ease-of-use and expressiveness

(2.3.1)

• Ideal is a “gentle slope of complexity”

(2.3.1)

• Layers of programming support & Gentle slope

of complexity (5.4.25)

Collaboration

• End-user development is a collaborative

process (2.1.1, 3.4)

• Collaboration support (5.4.26)

Configuration & Deployment

• End-user developers lack knowledge of

server setup and configuration

• Integrated development & runtime environment

(5.4.27)

The following sections discuss the design rationale for each feature in detail.

5.4.1 Introduction Video & Tutorial

As a tool that integrates most aspects of web development, Click is different from

state-of-the-art web development tools such as Macromedia Dreamweaver or Microsoft

FrontPage. Usability testing (see 6.1) has shown that novice Click users often do not

expect the level of support offered by the tool and therefore start their development by

Chapter 5: Click – A Web Application Development Tool for End Users

116

using suboptimal but familiar strategies such as hand-editing HTML code. To help

developers get started quickly, Click contains a 10 minute introduction video and also a

written tutorial. The video and tutorial give a brief overview of the general development

process and introduce Click’s main features.

5.4.2 Application Templates

As discussed in Section 3.1.1.1, web developers’ needs regarding particular web

application features are often very similar and basic. For example, simple online forms or

databases are often needed to help collect or report data. Click provides a set of

commonly-used applications as a starting point for new development. Developers then

have the opportunity to modify or expand an application or just deconstruct and

investigate the example to discover how particular functionality was implemented. The

pre-defined applications currently include the following:

• Event registration database

• Service request database

• Staff database

• Ride board application

• Multi-page survey

These application templates are solely built using Click’s pre-defined high-level

components and do not use any custom code. However, future templates may contain

more advanced features that are implemented using custom behavior code (see 5.4.19).

5.4.3 Support for Opportunistic Development and Design-at-Runtime

Supporting iterative and opportunistic development is a key design requirement

for Click. To support the general tendency of web developers to work in a personalized

and opportunistic fashion (see 2.2, 3.1.1.2, 6.1), Click does not enforce a pre-determined

workflow. The developer can either begin by defining the page layout or by creating the

database schema or switch between these two approaches at any point in time. Contrary

to common code-generation approaches that make late changes to the user interface or

Chapter 5: Click – A Web Application Development Tool for End Users

117

behavior expensive to implement (see 2.1.2), Click allows modifications to the layout,

behavior, and database schema at any point in time. Virtually no functionality requires

decisions or premature commitments (Green and Petre 1996) that cannot be modified

easily at a later point in time.

Moreover, changes take effect immediately, thereby facilitating a rapid build-test

cycle. Click implements the “design-at-runtime” concept as previously discussed in

Section 5.1, allowing the developers to design and run (or test) the application without

switching back and forth between design and runtime modes. However, Click

additionally provides an explicit preview mode; this requirement was discovered through

formative usability evaluation which is discussed later (see 6.1).

5.4.4 Support for Continuous Workflow

In many situations a particular task or workflow requires a sub-task to be finished

before the main workflow can be completed. For example, defining a “go to page” action

may require the sub-task of creating the target page if it does not already exist. Whenever

these kinds of dependencies occur, Click offers the developer a means to accomplish the

sub-task without interrupting the main task. In the aforementioned example, Click may

offer to create a page named “untitled1” as a choice for the target page.

This feature was refined in response to our observations during the formative

evaluation (6.1) of Click. In early prototypes participants often had to interrupt a

workflow (e.g., defining a “save to database” action) in order to set up the necessary

preconditions (e.g., creating a database field), which sometimes even led them to forget

their original intent.

5.4.5 To-Do List

Click does not attempt to predict and interrupt a developer’s workflow in the way

an “intelligent” software agent might do, because the risks and costs of false guesses

would likely be high (Robertson, Prabhakararao et al. 2004). However, Click does

maintain a non-intrusive “To-do” list that keeps track of the developer’s progress and

gives recommendations about possible or required future tasks. This feature was designed

Chapter 5: Click – A Web Application Development Tool for End Users

118

in response to our earlier finding that most current tools do not provide sufficient overall

guidance for developers (2.4.5.2).

The messages in the to-do list notify the developer about such undesirable or

faulty states as for example:

• pages or input components with generic names (e.g., recalling whether

“inputtext4” or “inputtext5” was the input field for the user’s first name may be

difficult when the developer wants to make references elsewhere),

• a data table component that links to a details page that contains no components to

display the details,

• a missing login page in an application that contains pages requiring

authentication.

A warning icon indicates tasks that are necessary for the completion of a valid

application.

5.4.6 Sensible Defaults and Strong Affordances

Our formative evaluations of Click (6.1) have shown that defaults matter. Not

surprisingly, participants performed consistently better when the options they had to

configure had sensible defaults. During the design of Click we have paid much attention

to the default settings of the user interface in general and property dialogs for components

and pages in particular. For each property we have chosen the most likely value as the

default in order to minimize the effort required for web developers who want to quickly

construct an application. Furthermore, wherever we found that the default value should

cover most cases, we reduced the prominence of the particular option. For example, in

the property dialogs for components we show important or likely-to-be-modified

properties as “expanded” while others are displayed as “collapsed” to reduce visual

clutter.

Click’s user interface provides strong affordances (Norman 1988) to indicate

important or required settings. For example, the property dialog for a text field

Chapter 5: Click – A Web Application Development Tool for End Users

119

component hides the width property which defaults to 20 characters but prominently

features the data connection property that determines where user input will be saved to.

5.4.7 Context-sensitive Help

The help icon indicates the availability of a detailed explanation for a

particular option or concept. Because many of Click’s programming concepts and

procedures are non-trivial and different from state-of-the-art approaches (2.4.5; though

perhaps superior), explanation is required. For example, in the dialog that allows the

developer to require login for a particular page, a reference is made to the two basic

authentication methods (central user database or application-specific user database).

5.4.8 Sitemap

During the mental models studies (4.3), I observed that participants often under-

specified the behavior of the feature in question. In an attempt to provide a visual

overview of the entire application that would reveal under-specification (such as

unconnected pages) and faulty behavior, we designed the sitemap feature.

When the developer selects the Sitemap tab, Click generates a graphical

representation of the application as it has been defined so far. Figure 19 shows an

example of a sitemap for a “ride board” application (see also Appendix F.1 for

screenshots in color).

Chapter 5: Click – A Web Application Development Tool for End Users

120

Figure 19: A sitemap automatically generated by Click

The sitemap has been implemented to a large extend by Yogita Bhardwaj who has

advocated its use to aid comprehension of functionality while reverse engineering web

applications (Bhardwaj 2005). Although similar in nature to the activity diagram and

collaboration diagram types of the Unified Modeling Language (UML 2005), the sitemap

distinguishes itself in two important ways. First, it has been designed for use by

nonprogrammer end users as opposed to UML which targets mainly professional

developers. Second, the sitemap is automatically generated by reverse-engineering the

application’s behavior definition, while UML diagrams are typically manually generated

as first steps of the design process.

Chapter 5: Click – A Web Application Development Tool for End Users

121

Figure 20: Legend for Click's sitemap as shown in Click's user interface

The sitemap is intended to provide an overview of the dynamic relationships

between pages, database tables and the authentication system. Color coding is used to

differentiate simple hyperlinks (blue) from page transitions or actions initiated by a

button (green) or automatic page redirects for pages that require authentication (red) or

data flows from and to the database tables (gray). The legend shown in Figure 19

summarizes the basic constructs. See Appendix F.1 for a color plate.

Besides providing a general overview, the sitemap helps developers to discover

under-specification such as unreferenced pages or database tables. During the summative

evaluation of Click the sitemap was not as frequently used and useful as we had hoped. A

discussion of the evaluation details and conclusions is given in Section 6.2.6.3.

Chapter 5: Click – A Web Application Development Tool for End Users

122

5.4.9 Domain Specificity

Although potentially unlimited in power (through the use of the code editing

features and levels of programming support), Click is optimized for the particular domain

of basic data input, storage & retrieval applications (see 1.3). This focus has simplified

many design decisions and helped to determine the exact set of high-level components

that should be made available to the user.

5.4.10 Session Layer

My studies of mental models of nonprogrammers (Chapter 4) have shown that

most novice developers assume that web applications “remember” their state, particularly

the state of input fields by default, the exact opposite of what is provided by HTTP.

Click’s session layer provides short-term data persistence by default. The values entered

into any input field on any page persist until they are explicitly reset due to a button

action specified by the developer. The value for each input field is stored in the user’s

session and retrieved for a particular input field every time the user returns to the page

containing the input field component. The session layer is transparent to the developer.

5.4.11 Database Layer

One of the main shortcomings we observed in current web development tools is

the limited level of integration with external services such as the database layer (2.4.5.2).

Although from the point of view of the developer it is seamlessly integrated into Click, a

full-featured database management system (MySQL) stores data collected via forms or

holds data used for browsing, searching and reporting purposes. The user interface

provided for editing the database schema and data is designed to resemble the

prototypical spreadsheet application showing tabs for individual spreadsheets and the

data in columns and rows. In my studies of nonprogrammers’ mental models, the

spreadsheet was the most often cited metaphor for a database (see 4.2.3.5).

The need for and process of establishing a database connection is fully transparent

to the developer. If a component should send data to or retrieve data from the database,

the developer needs to specify only the source/target database table and in certain cases

Chapter 5: Click – A Web Application Development Tool for End Users

123

identify a particular record or database field. The screenshot of the property dialog of the

Text field component (Figure 41 in Appendix F.1) shows an option that asks the

developer to specify a “Data Connection” for the field.

Click offers two pre-defined database tables named data and users. The first table

is intended to store application data while the second is used by the optional application-

specific authentication system. New database tables can be created and existing ones can

be renamed (with the exception of the users table). The developer can add any number of

custom database fields to any table.

By default, every database table contains three pre-defined fields which cannot be

deleted or renamed. These fields are id which is used as a primary key to uniquely

identify data records, timestamp which is used to mark the last modified time and the

lastmodifiedbyuserid field which is used to store data record “ownership” information.

The latter field can be used by the authorization layer to determine who owns a particular

data record since this field stores the user-ID of the currently logged-in user whenever a

data record is saved to the database. The users table additionally has the predefined fields

“userid”, “password” (which stores the password in encrypted form), and “admin” (which

is “1” if the corresponding user is an administrator and otherwise “0”).

5.4.12 Security Layer

Building from our conclusions about end users’ mental models of security (4.3),

we designed a security layer that consists of a visible and an invisible part. The visible

part is what the developer uses to configure input constraints (input validation) or to

implement access control (authentication & authorization). The invisible part of the

security layer are the facilities that Click (or an application created with Click) provides

“under the hood”, mainly consisting of functions that perform internal input validation

(e.g., URL parameter checking) and data escaping (e.g., escaping special characters for

use in SQL statements) to guard against exploits and attacks.

 Furthermore, many web applications are vulnerable due to a misconfiguration of

the web server, the database, or operating system. If a novice developer has to configure

security parameters the risk for mistakes is high. Click integrates the development tool

Chapter 5: Click – A Web Application Development Tool for End Users

124

with the testing and hosting environment trying to minimize the security-related decisions

a developer will have to make and thereby reduces the risks of misconfiguration (or more

accurately places this burden on the IT experts that set up the Click tool).

5.4.13 Input Validation Layer

Almost any application that accepts user input can benefit from input validation.

On one hand it can increase usability, promote clean data, and catch user input errors, and

on the other hand increases security by blocking malicious inputs like SQL injection

attacks (e.g., Loureiro 2002). Current web programming languages (e.g. PHP, ASP, JSP,

ColdFusion) require the developer to manually code input validation routines. Only

recently languages like ASP.NET (Microsoft 2002) offer abstractions like “validator

controls” which allow the programmer to specify input constraints declaratively. Click

extends this approach by allowing the developer to specify input constraints declaratively

as properties of input components – similar to the way that nonprogrammers naturally

think about the concept of input validation (see 4.2.3.2). Click has built-in options for

frequently needed validation rules such as e-mail, date, number of characters but also

allows the developer to specify custom regular expressions (context-sensitive help

explains the nontrivial concept of regular expressions using examples).

5.4.14 Authentication Layer

End-user developers understand the need for authentication but are unlikely to be

able to implement a secure authentication feature themselves (see 4.3). Furthermore,

during the surveys (3.1.1.1), and post-study interviews (4.2.3.13, 6.1) participants often

mentioned the need for their applications to integrate with the organization’s central

authentication service (i.e. Virginia Tech’s central PID/password system).

In applications built with Click, users are authenticated in one of two ways. First,

an application can verify the entered user-id and password against a user directory (using

LDAP) which centrally holds all user account information. This method may be used for

applications that have to integrate with an organization’s security context – a feature

frequently requested by developers. Second, an application can verify the entered user-ID

Chapter 5: Click – A Web Application Development Tool for End Users

125

and password against the database table users. If developers select this option, they will

need to create a record within the database table users for each of the users who should

be able to authenticate (a message in the “To do” list will remind them to do so).

If the developer enables both authentication methods, user-ID and password are

first checked against the central user directory. If the user-ID exists but the password

does not match, the authentication fails. If the user-ID does not exist, the application will

attempt to authenticate the user against the database table users.

Regardless of which authentication methods are enabled developers will need to

add a user record to the database table users if they want to define administrators (an

administrator is a user with full privileges). However, if central authentication is enabled

no password is needed in the database table users. The application will validate the

password against the central user directory and validate the role of being an administrator

against the data table users.

5.4.15 Authorization Layer

Nonprogrammers think about authorization checks in terms of surface features

such as a non-appearing edit or delete link (see 4.3); they do not realize that the absence

of a link does not necessarily mean that a page or feature is inaccessible (e.g. by directly

entering the URL). Click presents authorization issues similar to the way novice

developers think, but at the same time addresses security concerns more in-depth.

For example, within the property dialog of the Data table component, the

developer is presented with an option to “show the edit link only for data records owned

by the currently logged in user” (context-sensitive help explains this concept in more

detail). If the developer has defined a login page (a page that has a Login box

component), users will be able to authenticate themselves before using all or particular

pages of the web application. The Data table component can compare a data record's

lastmodifieduserid field with the user-ID of the user who is currently logged in. If these

two user-ID's match, the record is said to be owned by the user and the edit link is shown,

otherwise not. The edit link is always shown if the currently logged in user is an

Chapter 5: Click – A Web Application Development Tool for End Users

126

administrator or if the record's lastmodifieduserid field is empty (which will be the case

for anonymous data entries).

Pages can be designated as public or as requiring login. If a page requires login, it

may allow all authenticated users to view the page or only administrators (who are

identified by a “1” in the “admin” field of the “users” table; see 5.4.11) depending on the

setting chosen by the developer.

5.4.16 High-level Components

Click offers components that are frequently needed for the creation of data input,

storage and retrieval applications (3.3). The components have been designed to work at

the level of abstraction that I observed nonprogrammers refer to during the study of

mental models (see Chapter 4). The following components are implemented in the

current prototype:

• Text, links, HTML. Allows the display of arbitrary HTML such as formatted

text, tables or hyperlinks. The developer uses a WYSIWYG editor to edit the text.

• Image. Allows the display of any image. The component handles file upload

and file management within the built-in image library.

• Text field. Allows single or multi-line input of text and includes an optional

label and input validation.

• Checkbox. Enables on/off input. The component includes an optional label.

• Option list. Options can be displayed as a horizontal or vertical row of radio

buttons or as a drop-down select box. For each option the developer specifies the

visible text as well as the value that is saved into the database.

• Action button. The button component drives most of the dynamic aspects of

an application. Buttons employ the concept of action rules which are pairs of

conditions and actions that are executed when a button is pressed (more details

below).

Chapter 5: Click – A Web Application Development Tool for End Users

127

• Dynamic table. The data table is the most complex and feature-rich

component within Click. It is used to display data in a tabular format and includes

sorting features, record set paging, linking to a details page (for the

implementation of the overview/detail pattern), linking to an edit page, and record

delete. The data displayed by the dynamic table component is determined by a

database query (database table, fields, filters, sort order) which can either be

specified in a forms-based UI or directly in SQL (in the advanced view). A

preview function assists with the query definition.

• Dynamic text. Enables the output of textual data. Similar to the Text

component the developer specifies a formatted text using a WYSIWYG editor.

Place-holders can be inserted and represent either the current value of input fields

(e.g., {phone}; note the use of curly braces) or the value of a particular field from

a database record (e.g., [phone]; note the use of brackets). In the latter case, a

Dynamic table component needs to pass the name of the database table and the

record id in order to uniquely identify the data to be displayed.

• Login box. Handles input of user-ID and password and authentication/

authorization/login/logout procedures. The component transparently handles the

communication with the authentication and authorization layer.

Each input component (Text field, Checkbox, Option list) has a property that

determines whether or not the component is linked to a particular data field in a particular

database table. If enabled, input components will automatically read data from the linked

field (if a record ID is passed from a Data table component) or save data to the linked

field (if an Action button component defines the Save to database action). Regardless of

this setting every input component by default maintains its value throughout the use of

the application (see Session layer). Although not implemented in the current prototype,

Click has been designed to offer the following additional components:

• Repeating region. An extension of the Dynamic text component would repeatedly

display a template for each record (or a defined subset of records) within a

Chapter 5: Click – A Web Application Development Tool for End Users

128

database table. Macromedia Dreamweaver (Macromedia 2005b) already offers a

good implementation of this concept,

• Dynamic image. We are planning to handle images as “first-class” data-types

within the database. Once this concept is implemented a Dynamic output

component would be able to output either text or images or a mix of both,

• Navigation/Menu. Virtually every website has some kind of navigation (links on

top or left of the contents). This component would abstract the linking,

highlighting of the currently active page and the handling of drop-down sub-

menus and breadcrumb-style navigation.

Most of the properties of a component can be modified within the properties

dialog. However, some properties are only editable by directly modifying the layout

code. We have designed Click so that all the frequently needed options can be specified

through an easy-to-use UI while more advanced or obscure options can be customized by

editing code. The developer can modify all component properties within the Layout code

view (see Table 15 on page 131 for a layout code example).

Certain components (such as Dynamic table, Action button, and Dynamic text) are

not only represented by layout code but also have behavior code associated with them

(see Table 16 on page 131 for an example of the behavior code of an Action button

component). Layout and behavior code are automatically generated and updated when the

developer uses the form-based component property dialogs. Click has been designed to

create easy-to-read, well-documented, and easy-to-extend code. Currently, the layout and

behavior code can only be viewed and edited along with the code of all other components

on a particular page. However, as a future extension we plan to enable viewing code on a

per-component level in order to facilitate readability.

At runtime, all components are rendered into standard HTML and JavaScript by

PRADO (Xue 2005), the component framework on which Click applications are build.

This process is completely transparent to the developer who is thereby shielded from the

complexity and pitfalls of client-side scripting. PRADO attempts to render standard-

compliant, cross-browser HTML, CSS, and JavaScript code.

Chapter 5: Click – A Web Application Development Tool for End Users

129

5.4.17 Button Action Rules

Action rules are pairs of conditions and actions that are executed when a button is

pressed. The concept of if-then rules is a common paradigm for specifying user interface

event handling in end user environments (e.g., see graphical rewrite rules: Repenning

1995; Pane 2002). They are also consistent with our general observation that end users

are comfortable with simple logical patterns such as if-then (see 4.3). Figure 43 (on page

255) shows a screenshot of Click’s action rule dialog.

One or more action rules can be associated with a button. The actions of an action

rule are only executed if the condition is true. If the condition is false, nothing happens. A

condition compares the values that a user entered into certain input fields with known

values. Currently the following actions are pre-defined in Click:

• Save data to the database... (option 1: All the input fields of the application;

option 2: All the input fields from the current page)

• Send email... (the developer will fill in a template email with place-holders for

runtime values from input fields, e.g., {firstname})

• Reload current page (this action may be used to refresh a search results in a data

table on the current page.)

• Reset/Clear input fields... (option 1: All the input fields of the application; option

2: All the input fields from the current page)

• Go to page... (provides a list of existing pages to choose from)

The developer can also define custom actions by directly modifying the behavior

code (see 5.4.19) of the application under development (advanced view).

5.4.18 Event-based Web Programming

Before the advent of event-based web programming languages (such as

ASP.NET), the underlying mechanism for communicating with the user has been the

page-submit-cycle. A web page containing input fields would send its data to a server-

side script when the user pressed the submit button. The script would receive the data and

in turn reply with a new web page. This model not only limits the usability of web-based

Chapter 5: Click – A Web Application Development Tool for End Users

130

user interfaces but also creates a challenge for the programmer who has to handle a

potentially complex network of scripts that send data to each other and produce output. In

terms of its poor code readability and maintainability the page-submit-cycle is

comparable to the goto statement in early procedural languages such as BASIC (Dijkstra

1968).

Recently, the event-based approach, which has long been used for the

development of desktop applications has founds its way into the web programming arena.

In this approach the page-submit-cycle is abstracted and callback functions or event

handlers are attached to button components. Click builds on top of the PRADO

framework (Xue 2005) which has introduced event-based programming for the otherwise

comparatively novice-friendly web programming language PHP.

I argue that in comparison to the page-submit-cycle the event-based paradigm is

easier to learn and use for aspiring web programmers because it is already close to their

natural mental models (see 4.3). However, novice web developers can use Click’s pre-

defined actions without even having to be aware of the event-based paradigm.

5.4.19 Separation of Layout and Behavior

Traditional web programming languages (e.g., PHP, ASP) mix layout code and

business logic (behavior code) which often results in difficult-to-read and difficult-to-

maintain programs. More recently, event-based languages such as ASP.NET cleanly

separate the layout code from the business logic. Being built on top of the event-based

PRADO framework (Xue 2005), Click places the layout code into a different file from

the behavior code. Table 15 and Table 16 exemplify this separation by showing the

layout and behavior code for one web page of a simple conference registration

application. As shown in Table 16 Click generates behavioral code that expresses the

selected actions via high-level functions (e.g., sendEmail, saveToDatabase, goToPage)

that are implemented on top of PHP. These functions are designed to be understandable

by novice programmers who want to go beyond the dialog/form-based facilities.

Chapter 5: Click – A Web Application Development Tool for End Users

131

Table 15: Layout code for one web page of a simple conference registration application

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1DTD/xhtml1-transitional.dtd">
<html>
<head>
 <title>Event registration</title>
 <link rel="stylesheet" type="text/css" href="styles/default.css">
</head>
<body>
<com:Form>
<%include Pages.showOnEveryPage %>

<com:HtmlText ID="htmltext1" X="90" Y="46" Z="52">
 <prop:Text><h1>Welcome! Please register below.</h1></prop:Text>
</com:HtmlText>

<com:InputText ID="firstname" X="93" Y="104" Z="54" Columns="20" Rows="1"
 TextMode="SingleLine" DbFieldName="data:firstname"
 InputRequired="false" ValueType="Characters" MinValue="1" MaxValue="30">
 <prop:Label>First name:
</prop:Label>
 <prop:ErrorMessage>Please enter between 1 and 30 characters.</prop:ErrorMessage>
</com:InputText>

<com:InputText ID="lastname" X="92" Y="156" Z="56" Columns="20" Rows="1"
 TextMode="SingleLine" DbFieldName="data:lastname"
 InputRequired="true" ValueType="Characters" MinValue="1" MaxValue="50">
 <prop:Label>Last name:
</prop:Label>
 <prop:ErrorMessage>Please enter between 1 and 50 characters.</prop:ErrorMessage>
</com:InputText>

<com:InputText ID="email" X="93" Y="210" Z="58" Columns="20" Rows="1"
 TextMode="SingleLine" DbFieldName="data:email"
 InputRequired="false">
 <prop:Label>E-Mail:
</prop:Label>
 <prop:ErrorMessage>Please enter a valid e-mail address.</prop:ErrorMessage>
 <prop:RegularExpression>\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-
.]\w+)*</prop:RegularExpression>
</com:InputText>

<com:Button ID="registerbutton" Text="Register" X="92" Y="268" Z="60"
 OnClick="registerbutton_runActions" />

</com:Form>
</body>
</html>

Table 16: Behavior code for one web page of a simple conference registration application

function registerbutton_runActions($button, $parameter) {
 $condition1 = $this->newCondition('{email}','empty');
 if ($condition1->isTrue())
 {
 $this->runAction('saveToDatabase','homepage');
 $this->runAction('resetInputFields','homepage');
 $this->runAction('goToPage','thankyoupage');
 }
 $condition2 = $this->newCondition('{email}','notEmpty');
 if ($condition2->isTrue())
 {
 $this->runAction('saveToDatabase','homepage');
 $this->runAction('sendEmail','conference@vt.edu','{email}',
 'Conference registration',
 'Dear {firstname} {lastname},
 Thank you for your registration!');
 $this->runAction('resetInputFields','homepage');
 $this->runAction('goToPage','confirmationpage');
 }
}

Chapter 5: Click – A Web Application Development Tool for End Users

132

5.4.20 Templating

Classical programming languages allow the specification of dynamic output

through the use of variables. Click adopts but simplifies this approach by exposing input

fields and database fields as pre-defined variables. For the specification of the output

format of a Dynamic text component and for the specification of e-mail text for a

SendEmail action Click offers the concept of templating. With the proliferation of the

model-view-controller pattern the templating approach (e.g., Velocity template engine by

Apache Software Foundation 2005; Smarty 2005) has become commonplace in web

development. The developer can write static text but can also use place-holders that are

substituted at runtime for the current values of input fields or database fields. Input field

place-holders use curly braces (e.g., {firstname}). See Table 16 for an example. Database

field place-holders use square brackets (e.g., [firstname]). Database field place-holders

can only be used within Dynamic text components that are linked to from a Data table

component which identifies the database table and data record whose data is to be

displayed.

5.4.21 Parameter Passing and “Current Data Record”

The mental models studies have shown that while end users can easily imagine

the mechanism of the overview/detail pattern at a high-level, they frequently do not know

how it can be implemented (4.2.3.7).

In order to implement an overview/detail (or overview/edit) pattern using a Data

table and Dynamic text component information about the selected data record (the

database table and the id of the record) needs to be passed from the Data table to the

Dynamic text component. Click transparently passes this information via the URL (in two

URL parameters called “dbTable” and “id”) to the Dynamic text component. This

technical concept is abstracted for the developer and the Dynamic text component simply

refers to the “current data record”.

The “current data record” is a concept in Click that identifies the record (or row)

within a database table that is considered active at the moment. If the developer uses

database field place-holders within a Dynamic text component the component will

Chapter 5: Click – A Web Application Development Tool for End Users

133

substitute actual values for these place-holders. The values are determined based on the

“current data record”.

5.4.22 Wizards

Much of the commonly needed functionality that can be implemented with Click

requires the interaction of a number of components. For example, to implement a search

function, the developer needs to create at least one Text field, one Action button and a

Data table component. These components need to be configured correctly to realize the

search functionality. As our summative study of Click (6.2.9f) has shown, this is often no

trivial task for a novice developer. To facilitate the implementation of common functions

Click includes wizards which present the developer with a series of dialogs and create a

set of related components automatically. The current prototype of Click provides the

following wizards:

• Overview & detail. Creates a Data table component that serves as the

overview by listing a subset of all fields of all data records and a Dynamic text

component that displays the details of a selected data record.

• Search form & results. Creates a Text field, Action button and Data table

component as described in the example above.

• Database entry/edit form. Creates a number of Text field components, one for

each database field selected by the developer as well as an Action button that is

configured to save the data into the database.

Future wizards may offer functionality to create navigation menus or other

commonly needed functions.

5.4.23 Pixel-based Positioning

Our observations of novice web developers have shown that even the task of

positioning HTML elements on screen is nontrivial. For example, when using Click

prototype #1 (5.2.3) in conjunction with Dreamweaver as a WYSIWYG editor some

participants struggled to properly align input fields. Graphics software and word

Chapter 5: Click – A Web Application Development Tool for End Users

134

processors have long had options to position any element with high accuracy through the

use of absolute positioning and snap-to-grid features. Just recently WYSIWYG editors

have started offering this notion but it is not yet fully embraced by the web development

community for a variety of reasons including cross-platform or backwards compatibility.

The state of the art is still the use (or misuse) of HTML tables to implement a particular

layout and to align components such as text input fields.

Click does not offer a “silver bullet” that solves all aspects of this problem. The

tool favors usability as experienced by the developer over other concerns by using CSS2

(World Wide Web Consortium 1998) for absolute positioning. Components are placed on

the screen via a simple click on one of the items in the component library and can be

moved with pixel-level accuracy via drag-and-drop. Although not yet implemented, a

snap-to-grid function and snapping guides would further improve ease-of-use.

The two major downsides of absolute positioning are cross-platform compatibility

issues due to differing screen resolutions and HTML rendering, and the fact that the

pixel-based positioning does not handle variable-length elements. Currently, the two

variable-length components supported by Click are the Data table and Dynamic Text.

The Data Table has a maximum length which can be specified by the developer and if

too many data records exist for the limited space, the Data table components uses paging.

The length of Dynamic text is theoretically unlimited but practically often pre-

conceivable by the developer. The cross-platform compatibility problem should not be a

major problem for applications of low visual complexity and if components are

positioned with some padding space between them that can buffer the effects of platform

differences. A more robust but also more complicated approach is the use of layout

managers that follow the box-model, like Flex (Macromedia 2005c). Nevertheless, I still

consider layout to be a largely unsolved problem for novice web developers.

5.4.24 “Global” Components

In order to eliminate the need for the redundant definition of layout elements that

are repeated on different pages (e.g. header, footer, sidebar) Click offers the concept of

“global components”. Previous Click prototypes (5.2.3) had implemented the concept of

Chapter 5: Click – A Web Application Development Tool for End Users

135

global headers and footers which proved to be somewhat limited in terms of

expressiveness (e.g., a shared sidebar could not be realized).

Elements that are shared among all pages of an application such as header, footer,

or sidebar can be implemented in Click by enabling the property “show this component

on every page”. “Global” components are contained in a “global file” that is included into

the code of each page. If the developer removes the include statement by editing the code

in the Layout code view, the particular page will not show the global components. This

adds to the flexibility of the otherwise quite basic concept.

More flexible but also more difficult to use is the concept of layout templates as

offered by Dreamweaver (Macromedia 2005b) and FrontPage (Microsoft 2005a) which

allows users to define templates and successively pages that are based on these templates.

Chapter 5: Click – A Web Application Development Tool for End Users

136

5.4.25 Layers of Programming Support and Gentle Slope of
Complexity

A critical tradeoff for any end-user development tool is the relationship of

usability and expressiveness. Ideally a tool’s complexity is proportional to the problem to

be solved: If a developer wants to take the next small step, the learning and effort

required should be small as well. In practice however, most tools’ learning curve exhibits

large discontinuities (e.g. having to learn many new concepts such as session

management, database communication, and encryption before being able to implement a

basic authentication feature). One of my EUDWeb design goals is to make the effort

required more proportional to the complexity of the problem at hand. I have adopted the

concept of a “gentle slope of complexity” (MacLean, Carter et al. 1990), a principle that

proposes that tools should adapt and grow with users’ needs in a layered fashion. For the

Agentsheets simulation tool, Repenning and Ioannidou (1997) show how an end-user

development tool can offer different layers of functionality that require different degrees

of sophistication, in this case ranging from direct manipulation visual construction to a

full-fledged programming language. I recommend a similar approach for EUDWeb. Click

implements several layers of programming support (see Figure 21).

Layer 1 Customizing template web applications

Layer 2 Using Wizards to create related sets of components

Layer 3 Designing via WYSIWYG, direct manipulation, parameter forms

Layer 4 Editing layout code (similar to HTML, ASP.NET, JSF)

Layer 5 Editing high-level behavior code

Layer 6 Modifying and extending the underlying component framework

Layer 7 Editing PHP code

Figure 21: Layers of Click's programming support that illustrate a “gentle slope of complexity”

Chapter 5: Click – A Web Application Development Tool for End Users

137

At Layer 1, developers may customize existing web applications (see Application

templates in 5.4.2); ease-of-use is high but trades off with flexibility. At Layer 2,

developers may use Click’s wizards (e.g. overview-detail page wizard, search form

wizard) to create a related set of components. At the next layer, developers can use

Click’s form-based user interface to insert new components, customizing the component

behavior through parameterization. If the visual layout tools are too inflexible, at Layer 4

the developer can manually edit the layout code (Table 15 on page 131); this is

comparable to hand-editing HTML). The predefined high-level functions may be

modified by editing the behavioral code (Layer 5; see Table 16 on page 131). At this

level, developers have the flexibility to define Boolean conditions of nearly unlimited

complexity but are not required to write low-level PHP code. At Layer 6 (not yet

implemented in Click), developers may access the component-based PRADO framework

(Xue 2005), which like ASP.NET or JSF, abstracts many of the details of web

programming. Using PRADO, advanced developers can define new components (by

composing existing components or creating new ones from scratch) similar to that

supported by WCML (Gaedke, Schempf et al. 2000). At this level developers can also

modify Click’s high-level functions (e.g., change saveToDatabase) or create a new high-

level function (e.g., receiveRssData) for use by themselves or other Click users. At the

final and most powerful layer, experienced developers have full access to the capabilities

of PHP (Click does not yet offer a form-based user interface for this or the previous

layer). To gain ultimate flexibility, Click can export the full application code so that it

may be used stand-alone on a separate web server.

I do not expect all users to take advantage of all layers. Concluding from our

observations during the formative studies (6.1) and summative study (6.2) of Click, I

anticipate that novice developers will start with the visual tools, and only explore more

advanced features when they become necessary for their work. Indeed many end users

may never reach the state of hand-writing code. I also do not see these layers as a "natural

progression" for developers as they gain experience. It is likely that the use of these

features will be quite opportunistic and vary on an individual basis.

Chapter 5: Click – A Web Application Development Tool for End Users

138

The layers summarized in Figure 21 are specific to Click but future web

development tools may implement similar facilities, perhaps leaving out, changing or

introducing new layers. My intention is for Click to have a gentle slope of complexity:

offering features and flexibility that grow proportionally with the developer’s needs.

5.4.26 Collaboration Support

My design of Click recognizes that EUDWeb will rarely occur solely on an

individual level but rather that it is a collaborative process (Nardi 1993). As a web-based

system, Click enables a general level of collaboration among developers, in that any web

application developed in Click can have one or more developers. Each of these

developers can log into Click and modify the application as well as grant this right to

other Click users (which will make them developers for this application). Because Click

offers different layers of complexity and power, one possible scenario is that a novice

developer asks a colleague with more advanced web development skills to extend an

application by writing a custom component or behavior.

Furthermore, the Click model assumes shared responsibilities between IT

personnel who maintain the tool and underlying server infrastructure (web server,

database server) and developers who build applications on top of this infrastructure

without being exposed to the details.

5.4.27 Integrated Development and Runtime Environment

The state of the art in web development requires the developer to use a number of

tools and servers, most often at least a WYSIWYG web editor, an image editor (not yet

part of Click), a file management and transfer software, a web server, and a database

server. Often these tools are not all related or poorly integrated which can pose a

substantial hurdle for non-technical developers (3.1.1.1). Click is an integrated

environment that supports prototyping and testing and also includes a production hosting

environment. Click abstracts the interfaces to the web server and database server. Finally,

since Click is a web-based tool, it does not require setup on the developer’s computer.

Chapter 5: Click – A Web Application Development Tool for End Users

139

5.5 System Architecture and Implementation

Click is a web application built using the programming language PHP (Lerdorf,

Gutmans et al. 1995) and the database management system MySQL (2005). The user

interface is implemented in DHTML (a combination of HTML, JavaScript, and CSS).

Click displays its user interface within multiple HTML frames (see Figure 22), one for

the header, one for the status bar, one for the main workspace, one for the toolbox shown

on the right side of the screen, one smaller frame used for layout purposes, and one

hidden “action” frame used for communication with the backend.

Figure 22: Click's HTML frames setup

Figure 23 illustrates Click’s system architecture which follows to a large extent

the Model-View-Controller (MVC) pattern originally conceived by Reenskaug (1979).

Every action initiated by the developer is sent to the front controller (“do.php”) via the

hidden “action” frame. The front controller executes the actions, updates the model, and

returns a new view (a.k.a. user interface). The model consists of the template files which

control the layout and behavior of the application (which is currently being developed)

and the database which holds the application’s data schema and data.

Chapter 5: Click – A Web Application Development Tool for End Users

140

Figure 23: Click's system architecture and file system layout

Chapter 5: Click – A Web Application Development Tool for End Users

141

Applications developed with Click are built on top of the PRADO framework

(Xue 2005) which is a component-based and event-based system that abstracts many

functions of web development similar to ASP.NET (see 2.1.3.3). PRADO separates the

code for each page of the application into a layout template file (for an example see Table

15 on page 131) and a behavior template file (see Table 16 on page 131). With the help

of Click’s UI the developer can place and configure components which are automatically

translated into corresponding layout or behavior code. Alternatively, a more advanced

developer can directly edit the code produced by Click.

Each Click application is uniquely identified by a 12-digit ID which is also used

to generate the URL for a finished application when it is made available to the public.

When the developer “publishes” an application it runs directly from the Click server.

There is no separate production deployment step, although future version of Click may

support the deployment to remote servers.

Click is a multi-user system. An application can have one or more developers.

The developer accounts and associations between developers and applications are stored

in the MySQL DBMS (or alternatively in an external LDAP server). The database server

also has another purpose. For each application, it contains exactly one database which

holds the application’s data. This database can contain one or more tables whose structure

can be modified directly from within Click’s Database view.

Chapter 5: Click – A Web Application Development Tool for End Users

142

5.6 Summary and Conclusions

Click is a prototype EUDWeb tool and is comprised of many individual features.

Table 17 shows an overview of the features and concepts that I believe to be novel in

comparison to state-of-the-art web development tools. Some of the concepts and features

listed in Table 17 are starting to appear in tools targeted at professional developers but for

the most part have not yet been made accessible and usable to the end-user developer.

Table 17: Click’s Novel Concepts and Features

Click’s Novel Concepts and Features

• Design-at-Runtime concept

• IDE integrates all tools (layout, behavior, DB, testing, runtime environment, image editor not yet)

• Requires no programming knowledge for developing basic database-driven web applications

• Supports opportunistic development (any aspect can be easily modified at a later time)

• Supports continuous workflow (developer should never have to interrupt to setup preconditions)

• Offers customizable high-level components (such as dynamic tables, action buttons, input fields)

• Implements concepts close to developers’ “natural” mental model (such as button action rules,

input validation as input field properties, “persistence-by-default”-style session management)

• Concept of “current data record” (partly) replaces parameter passing concept

• Tightly integrated database management system

• Auto-generated sitemap (not frequently used in evaluation study, see 6.2.6.3)

• To-do list (evaluation showed mixed results, see 6.2.6.2)

• Integrated page-level authorization system (evaluation showed need for improvements, 6.2.7.1)

• Exposes a “gentle slope of complexity” through layers of programming support ranging from high-

level pre-defined functions to allowing custom PHP code (has not yet been evaluated)

• Integrated runtime/production hosting environment

The next chapter describes how Click’s features have been shaped by formative

evaluation (6.1) and, how and to what extent they enable EUDWeb (see 6.2).

Chapter 6: Evaluation of Click

143

Chapter 6

Evaluation of Click

6 Evaluation of Click

6.1 Formative Evaluations

Click’s design has emerged over an 18-month iterative cycle of prototyping and

formative evaluation. In addition to obtaining informal feedback from colleagues,

professors, and external users (Click is available as open-source software), we conducted

three scheduled formative usability evaluations. During each of the three sessions, 4-6

users were asked to develop a basic event registration application with slightly differing

requirements. Figure 24 shows an example of a specification used during the formative

evaluation sessions. Other examples were used to evaluate different parts of Click’s user

interface. The participants were given diagrammatic specifications and asked to create the

application from start to finish. In order to guarantee that participants matched our target

audience, we pre-selected them based on their (lack of) web programming knowledge.

During the studies the participants were asked to think aloud (Lewis 1982) and we

collected information about all usability incidents encountered. After each study the

recorded usability problems were summarized across all participants and ranked

according to severity which helped us guide and prioritize the continued development of

Click. See Table 18 (page 145) for an example. Full results are available online (Rode

and Bhardwaj 2004a). In the later phases of development we used the collaborative bug

tracking and feature tracking capabilities of Click’s project website on SourceForge

(Rode, Bhardwaj et al. 2005) for recording software faults and usability problems.

Chapter 6: Evaluation of Click

144

Figure 24: Example of a specification used during the formative evaluation sessions of Click

At the end of each usability testing session, participants were asked to respond to

a questionnaire that was designed to gauge their subjective impression of particular Click

features and elicit ideas for improvements. The full results from of the post-study

questionnaire are available online (Rode and Bhardwaj 2004b; Rode and Bhardwaj

2004c; Rode and Howarth 2004).

6.1.1 Evaluation of Prototype #1

We conducted one formative evaluation for each Click prototype. In the first

study, conducted in May 2004, we evaluated prototype #1 (5.2.3) which was a web

application that worked in conjunction with an external WYSIWYG editor.

Dreamweaver MX (Macromedia 2005b) was used during the study. The most important

Chapter 6: Evaluation of Click

145

usability issue uncovered during this study was that participants frequently were unsure

about whether to implement a certain feature within the WYSIWYG editor or within the

web application. For example, when asked to implement input length restrictions for a

text field, most participants gravitated to editing the HTML “maxlength” property

(exposed in Dreamweaver’s property dialog as “Max chars”) rather than using the more

advanced and secure input validation features provided by Click. Due to the poor

workflow, which was caused by switching between WYSIWYG editor and Click and the

inconsistent user interfaces, participants were often confused and lost track of the task at

hand. These problems motivated the implementation of Click prototype #2 as a stand-

alone web application that includes features for layout definition.

Table 18: Example from a usability problem list as used during formative evluation

Criticality Problem Participant Potential solutions

critical users did not understand how branching

in action rules work; some expected to

have to select one "if statement" and then

specify the positive and negative branch

(if-then-*else*) .

1,2,3,4,6 • Redesign to consider the else

branch; perhaps more graphical

• Provide an example

important users had difficulties getting started

(after creating a web app); were stumped

by blank page after login; did not find

"What's next" message very helpful

1,2 • Have a better “To-do” list

message. More concise, direct

• Put a notice directly onto the

blank page, e.g. “To get

started...”

• Have a tutorial video (screen

capture with sound)

normal users noticed the preview in the query

editor too late since it was below the fold

1,2,3 • collapse the filter and sort by

default which will bring the

preview above the fold and make

the selection more

understandable

… … … …

Chapter 6: Evaluation of Click

146

6.1.2 Evaluation of Prototype #2

In the second study, conducted in July 2004, we evaluated prototype #2 (5.2.3) –

a monolithic web application which provided a set of pre-defined components but was

not extensible beyond the pre-defined functionality. Overall, in comparison to prototype

#1 participants encountered fewer critical usability problems. However, a number of

critical problems remained that had not yet been addressed in the redesign. Most notably,

the implementation of branching behavior (see Figure 24) using the conditional guard of

button action rules was unclear for two reasons. First, the majority of participants did not

immediately recognize that branching behavior could be implemented using button rules.

Rather, some participants expected the branching behavior to be specified within the

properties dialog of the email text field (as shown in Figure 24, the condition involved the

email field) while others looked for a global “behavior editor”. Second, several

participants expected to be able to specify an “else” branch within the “if-then” action

rules – a concept which is not yet available in Click (see example in Table 18). Many less

critical, yet important usability problems were uncovered such as participants’ desire for

an explicit preview-only function which prototype #3 provided in addition to the design-

at-runtime (5.1) functionality. A major shortcoming of Click’s monolithic architecture

became apparent when participants indicated their need for advanced custom

functionality during the studies’ debriefing session. Prototype #2 was not extensible by

the end user but rather required expert programmers to create new pre-defined

components. The final prototype #3 (which was very close to the current implementation

of Click as discussed in 5.3 and 5.4) features a complete redesign of the architecture

making Click extensible at different levels of power and complexity (5.4.25).

Chapter 6: Evaluation of Click

147

6.1.3 Evaluation of Prototype #3

In the third study, conducted in November 2004, we evaluated prototype #3. This

last formative study replicated many of the findings of the previous studies for yet

unsolved usability problems but did not uncover any significant new problems. Again,

the full results are available online (Rode and Bhardwaj 2004a).

Finally, the summative study of Click’s final design which we conducted in April

2005, also revealed problems that point out remaining weaknesses of Click’s design and

implementation. These findings are discussed in the Section 6.2.9.

Chapter 6: Evaluation of Click

148

6.2 Summative Evaluation

As a final step in this EUDWeb project, we conducted a summative evaluation

study to test the overarching proposition embodied by Click: Using Click,

nonprogrammer developers are able to create a basic database-driven web site within a

short amount of time.

Click implements a large set of features (see Section 5.4) to address many

problems that nonprogrammer web developers are confronted with when developing web

applications (see Chapter 3). Instead of evaluating every feature provided by Click

(which would require a substantial number of experimental studies), we focused on

evaluating how Click helps to address a subset of seven concerns that capture some of the

most prominent issues uncovered during the requirement analysis (see Table 14 on page

112). Each of these concerns can be grouped under the general problem areas of

complexity, integration, security, and feedback. The concerns point out, that end-user

developers:

• cannot implement applications using low-level constructs (complexity),

• do not understand the stateless nature of the web (complexity),

• naturally specify input constraints declaratively (complexity),

• understand but cannot implement crucial database concepts (complexity),

• lack “holistic guidance” and struggle to find missing/faulty behavior (integration),

• think about security just in terms of surface features (security),

• test their work frequently during development (feedback).

I have adopted Scriven’s (1967) approach of mediated evaluation to investigate

how certain features within Click address the aforementioned problems. Scriven uses two

dimensions to classify evaluation efforts. The first dimension distinguishes the purpose of

the evaluation. Formative evaluation is meant to provide information that helps to shape

and prioritize the design process during successive prototyping iterations, while

Chapter 6: Evaluation of Click

149

summative evaluation is meant to access how well a particular design matches particular

design goals (e.g., task can be accomplished in less than 1 hour).

The second dimension distinguishes the process of collecting evaluation data. In a

pay-off evaluation “hard” data is being collected (such as times, error rates, or think-

aloud protocols). In an intrinsic (or theory-based) evaluation particular features of an

artifact are analyzed and rationalized. The advantage of pay-off evaluation is that it

results in “hard facts”; the disadvantage often is the lack of interpretation. Intrinsic

evaluation provides the rationale for particular features and can therefore complement the

facts discovered in a pay-off evaluation. Mediated evaluation combines the advantages of

these two types of evaluation. First, the rationale for particular features is given and then

these features are subjected to a pay-off evaluation to see how well the rationale matches

the actual usage. In the following section, I describe particular propositions which are

derived from the aforementioned problems and observations. Part of the rationale for

these propositions can be found in the discussion of Click’s design solutions (see 5.4).

6.2.1 Propositions

Aside from my main proposition which states that: using Click, nonprogrammer

developers are able to create a basic database-driven web site (Online ride board

application) within a short amount of time, I have developed 12 more specific

propositions that each represent a feature of Click which was designed to address a

particular problem within the general problem areas of complexity, integration, security,

and feedback. These more targeted propositions are summarized in Table 19.

Table 19: Propositions for the summative evaluation of Click

Problem/Observation Proposition

Complexity

• End-user developers cannot implement

applications using low-level constructs

• End-user developers understand how to use the

high-level button action rules

• End-user developers understand how to use the

high-level “Table” component

Chapter 6: Evaluation of Click

150

• End-user developers do not understand the

stateless nature of the web

• End-user developers expect “persistence-by-

default”

• End-user developers understand the “clear input

fields” action

• End-user developers naturally specify

input constraints declaratively

• End-user developers understand how to set up input

validation for text fields

• End-user developers understand but

cannot implement crucial database

concepts

• End-user developers understand the concept of

“current data record”

Integration

• End-user developers lack “holistic

guidance” and struggle to find

missing/faulty behavior

• End-user developers rarely feel “completely lost”

• End-user developers successfully use the To-Do list

when they feel “lost” or are unsure about how to

proceed or what is left to be done

• End-user developers successfully use the sitemap

when they feel “lost” or are unsure about how to

proceed or what is left to be done

 Security

• End-user developers think about security

just in terms of surface features

• End-user developers understand how to set up

“page access restrictions”

• End-user developers understand the concept of a

data record that is “owned” by a user

Feedback

• End-user developers test their work

frequently during development

• End-user developers are comfortable with and

frequently use the runtime feature of the “design-at-

runtime” concept

6.2.2 Participants

I recruited 6 participants (3 male, 3 female) representing my core target audience

of nonprogrammer webmasters through an online screening questionnaire (see Appendix

G.3). I had previously emailed the questionnaire in the form of a link to an online survey

Chapter 6: Evaluation of Click

151

to all administrative users of Virginia Tech’s web hosting service. Participants were

selected from all the survey respondents who had indicated having at least fundamental

web master knowledge (a response of “3” or higher to at least one of the questions shown

in Table 20) but no web programming knowledge (a response of “1” to the question

shown in Table 21). Table 22 shows the self-reported experience of the selected

participants.

Table 20: Two questions about "web master knowledge" from participant selection questionnaire

1) How do you rate your knowledge of your primary visual web development tool (Frontpage, or

Dreamweaver, GoLive etc.)? (1=no knowledge, 5=expert knowledge)

2) How do you rate your knowledge of HTML? (1=no knowledge, 5=expert knowledge)

Table 21: Question about "web programming knowledge" from participant selection questionnaire

How do you rate your knowledge in web programming (use of Javascript, PHP, ASP, or Java etc.)?

(1=no knowledge, 5=expert knowledge)

Table 22: Participants from summative evaluation and their self-reported experience on the online

pre-study selection questionnaire (1=no knowledge, 5=expert knowledge)

Participant
(gender)

Job WYSIWYG
editor

HTML Web
Programming

Database

P1 (m) faculty 4 5 1 2

P2 (f) staff 1 4 1 2

P3 (f) faculty 4 2 1 2

P4 (m) staff 3 4 1 2

P5 (f) staff 2 3 1 3

P6 (m) faculty 3 2 1 1

Mean (Std. dev) 2.83 (1.17) 3.33 (1.21) 1 (0) 2 (0.63)

Chapter 6: Evaluation of Click

152

6.2.3 Methods

Within a laboratory setting together a research assistant and I observed each

participant individually while the participant was constructing a basic database-driven

web site – an online ride-board application. As a way to specify the application’s

requirements we provided a working example application that the participant was able to

access throughout the study. Figure 25 shows one screenshot of the example application

(see Appendix G.5 for screenshots of all five screens). Figure 19 (on page 120) shows the

Click’s sitemap containing the five pages that comprise the application.

Figure 25: Screenshot of the "Offer ride" page from the example application

After completing the Institutional review board procedures (participant read and

signed the informed consent form; see Appendix G.2) I read aloud a short instruction

sheet (see Appendix G.4) that introduced the goals and individual steps of the study.

After finishing the instruction phase, the participant was given the opportunity to ask

questions to clarify any misunderstandings about the study procedures. Next, the

Chapter 6: Evaluation of Click

153

participant watched a 14-minute video (Rode 2005) that introduced the basic concepts

and features of Click. In order to promote concentration the participant watched the

movie in private. Next, the participant was asked to explore the example ride board

application in order to discover and understand the exact functionality s/he had to

implement using Click. In addition a one-page sheet that guided the participant through

all the functions of the application was provided (see Appendix G.6). Next, I read aloud a

second short instruction sheet (see Appendix G.7) that asked the participant to work

autonomously without asking for help unless s/he would feel “completely lost”. Finally,

the participant began to replicate the ride board application using Click.

The research assistant and I quietly observed the participants’ actions only

intervening when they asked for help. If participants asked for help without having spent

sufficient effort on a problem, they were encouraged to keep trying. However, once

participants “gave up”, the research assistant logged this event as a critical incident

(using a custom-built logging application) and I helped them to solve the problem at hand

by giving hints about the source of the encountered difficulties. Infrequently (about 1-3

times per study), I gave unsolicited comments to help the participants across minor but

time-consuming usability issues such as where to find the link button, or how to delete a

component. These small problems were not logged as critical incidents as they can be

easily fixed and are easily understood and remembered. We did, however, log these

problems as usability issues.

At the end of the study the participant responded to an online questionnaire (see

Appendix G.9) that contained questions focusing on the subjective evaluation of

particular problems and Click features. Furthermore, where necessary, the participant was

asked to explain the reason or thinking behind critical incidents as they have occurred

during the use of Click.

The laboratory setup consisted of a Windows XP PC which was set up running

two monitors at the screen resolution of 1024x768. The left monitor displayed the

example application, while the right monitor was used to (re-)create the application using

Click. Mozilla Firefox 1.03 was used as the web browser. The PC was instrumented with

Morae (TechSmith 2005) – a software used to record the participant’s screen actions and

Chapter 6: Evaluation of Click

154

voice. The research assistant and I observed each participant, sitting slightly behind and

to the side, while taking notes (critical incidents, small usability problems, and other

observations about the participant’s approach). After concluding the study, we combined

our handwritten notes into one document per participant, organized into nine categories

that matched the propositions discussed earlier. To complement the handwritten notes

and the screen capture, and to facilitate data analysis Click had been instrumented to log

every action performed by the participant. This log (see Table 23 for an example) was

later used to extract information about time spent in particular aspects of development

such as developing, testing, reading documentation, or handling a critical incident. Based

on this log a visualization of the development timeline was created (see Figure 26 on

page 169 for an example or Appendix G.10 for color plates of all timeline visualizations).

The activity log shown in Table 23 also illustrates how the beginning and end of a critical

incident was marked by the facilitator.

Table 23: Excerpt of participant's 6 activity log (facilitator’s logging of critical incidents in bold)

...
2005-05-13 09:29:21 128.173.41.22 participant6 1115990928494
openAddComponent action=openAddComponent&type=HtmlText
...
2005-05-13 09:54:56 128.173.144.114 facilitator noActiveApp
startEmergencyHelp noQueryString
...
2005-05-13 09:55:14 128.173.144.114 facilitator noActiveApp
stopEmergencyHelp noQueryString
...

The sessions lasted an average of about 2.5 hours. Each participant was paid $30

for participating in the study.

The following sections assess the findings regarding the specific propositions that

motivated this study (6.2.1). Finally, this summative study also revealed problems that

point out remaining weaknesses of Click’s design and implementation. Therefore, at the

end we also report the critical incidents encountered by the participants along with

general observations of the participants’ development approaches. Although these

observations are formative rather than summative data, they clarify the shortcomings of

Click and point out where this prototype does not match end-users’ mental models.

Chapter 6: Evaluation of Click

155

6.2.4 Results on the Overall Success

At the onset of the summative evaluation, I hypothesized that: Using Click,

nonprogrammer developers are able to create a basic database-driven web site (Online

ride board application) within a short amount of time.

All participants finished replicating the full functionality of the example

application within a time span ranging from 46 minutes (minimum) to 119 minutes

(maximum). However, note that I helped participants to find the source of the critical

incidents (see 6.2.9) they encountered. The number of critical incidents encountered

varied from 0 to 11 per participant. Also, the severity of the critical incidents varied

considerably.

Table 24 gives an overview of the time participants took to explore the example

application, the development time, the number and type of critical incidents, and the

participants’ ratings of the statement “Overall, Click is easy to use” on a scale from 1

(strongly disagree) to 5 (strongly agree). The last column shows a “success” rating score

assigned by the two facilitators. After each session both facilitators independently rated

the statement: “Overall, the participant’s approach was successful” on a scale from 1

(strongly disagree) to 5 (strongly agree).

Overall, 4 out of 6 participants (P1, P2, P5, P6) appeared to be mainly successful

in replicating the example application’s functionality. Interestingly, the participants’

subjective rating of Click’s ease-of-use did not always match our assessment of their

success. In the extreme, participant P5 finished implementing the application in about

half of the average time without encountering a single critical incident. However, her

subjective rating was to our surprise only 3 out of 5.

Chapter 6: Evaluation of Click

156

Table 24: Times, critical incidents, participant’s and facilitators’ ratings from summative evaluation

Participant
(gender)

Time to
explore
example

app.
[min]

Time to
develop
[min]

Critical
incidents

Types of critical
incidents
(see 6.2.9)

Participant’s
rating of

“Overall, Click
is easy to use”

[1-strongly
disagree, 5-

strongly agree]

Facilitators’
rating of

participant’s
success

[F1: X out of 5;
F2: X out of 5]

P1 (m) 10 99 4 a, f, j, v 4 4; 4

P2 (f) 6 73 2 e, p 4 4; 4

P3 (f) 6 118 11 b, c, d, h, j, o, p, r, s, t 3 2; 2

P4 (m) 6 119 8 a, f, k, l, m, q, u, v 4 3; 3

P5 (f) 3 46 0 - 3 5; 5

P6 (m) 6 103 5 a, g, i, n, v 4 3; 4

Mean

(Std. dev)

6.17

(2.23)

93

(28.45)

5 (4) 3.67 (0.52) 3.5 (1.05);

3.67 (1.03)

6.2.5 Results on the Problem of Complexity

From the perspective of the end-user developer the web technologies currently

needed to implement an average web application are simply too numerous and too

complex, which creates the most critical entry barrier to EUDWeb (3.4). Selected

important observations made during the study of mental models (see Chapter 4) and

during the formative evaluations of the Click prototypes (6.1) are that end-user

developers typically:

• cannot implement applications using low-level constructs,

• do not understand the stateless nature of the web,

• naturally specify input constraints declaratively,

• understand but cannot correctly implement crucial database concepts.

Chapter 6: Evaluation of Click

157

Click’s design addresses these problems in a number of ways. The following

sections discuss to what extent selected Click features succeed in resolving the problem

of complexity.

6.2.5.1 The High-level Button Action Rules

At the onset of the summative evaluation, I hypothesized that: End-user

developers understand how to use the high-level button action rules. We observed few

complications in the usage of button action rules. Furthermore, five of the six participants

strongly agreed (and one participant agreed) with the statement: “Now I understand how

to define button action rules. (1=strongly disagree, 5=strongly agree)”. Apparently,

tying the actions (“save to database”, “go to page” etc.) to a button felt “natural” to our

participants.

However, participants also looked for button actions, when in fact Click did not

offer them. In particular, the implementation of the search function caused a number of

critical incidents because most participants repeatedly tried to find a “search” button

action (although a dynamic table component with correctly configured filter conditions

was needed). In a seemingly desperate attempt P1 even tried to employ the button action

rule conditions to implement a search; P3 tried to use the “Save to database” action

because no other appropriate action seemed available. We concluded that the

implementation of “search” functionality may be less problematic if it were provided as a

predefined button action.

In conclusion, the concept of basic button action rules appears to be an intuitive

concept for end-user developers. However, the summative study only tested

unconditional action rules. Previous formative evaluations of Click had uncovered

conceptual problems and resulting usability issues with the conditional guard of action

rules (see 6.1.2). Further work is needed to conceive concepts that allow end-user

developers to intuitively define actions depending on complex conditions. A promising

alternative to the currently used set of independent rules are multi-way if-statements in

the format if-elseif-elseif...else.

Chapter 6: Evaluation of Click

158

6.2.5.2 The High-level Dynamic Table Component

At the onset of the summative evaluation, I hypothesized that: End-user

developers understand how to use the high-level “Table” component. When asked to rate

the statement: “Now I understand how to set up and use a Dynamic table component.

(1=strongly disagree, 5=strongly agree)”, two participants (P4, P6) chose “3” and the

remaining four participants chose “4”. Overall, the participants did not appear to have

problems using and customizing the dynamic table component to implement the list

functionality on the Home page. Only participant 6 encountered a critical incident before

starting to use the dynamic table component (see 6.2.9g).

Slightly more difficult than initially configuring the dynamic table component

was the configuration required for setting up the overview/detail relationship between the

data rows on the Home page and the dynamic text component on the Details page.

However, participants did not perceive this as a major stumbling block either as the

ratings for the following statement indicate: “Now I understand the relationship between

a Dynamic table component and the Dynamic text component. (1=strongly disagree,

5=strongly agree)”. All but one participant, chose “4”; only participant 4 chose “3”.

In conclusion, the high-level configurable dynamic table component appeared to

be an appropriate abstraction for listing data, providing edit and delete functionality as

well as linking individual records to a details page. The dynamic table component is an

example for components that work close to the natural mental model of end-user

developers at a high level of abstractions.

6.2.5.3 The Input Validation Features of the Text Field Component

At the onset of the summative evaluation, I hypothesized that: End-user

developers understand how to set up input validation for text fields. The implementation

of input constraints for the Offer ride screen did not cause problems for any of the study

participants. Declaring constraints as properties of the text input fields appeared to be

natural. Again, five out of six participants strongly agreed (and one participant agreed) to

the statement: “Now I understand how to set up input validation for text fields (e.g. to

require input of a valid e-mail address). (1=strongly disagree, 5=strongly agree)”.

Chapter 6: Evaluation of Click

159

However, we observed that some participants initially tried to use the input

validation UI to expand the visible size of the Comments field (a multi-line text input

field). This was due to the fact, that these participants did not notice the collapsed

“Visible width and height” property, likely a small usability problem rather than

conceptual mismatch.

In conclusion, exposing input validation as properties of the associated input

fields appears to be a close match to end-users’ expectations.

6.2.5.4 Persistence-by-Default and the “Clear Input Fields” Action

At the onset of the summative evaluation, I hypothesized that: End-user

developers expect “persistence-by-default”. In my studies of nonprogrammers’ mental

models of web programming concepts I have observed that end users expect that the

application maintains and remembers the current state such as the value of input fields

(see 4.2.3.1). For the most part this finding was reinforced by the summative evaluation

of Click.

Furthermore, the post-study questionnaire asked a direct question to explore the

expectations of the participants (see Table 25). Three participants strongly agreed with

the statement (“5”), two participants chose “4”, and one participant chose “3”.

Table 25: Question targeted at exploring participants' expectations towards state persistence

(5c) Think about building an application that has input fields (such as text fields and
checkboxes) on a number of different pages.

I would expect the input fields to automatically "remember" the data that the user has
entered when s/he moves between pages (as opposed to automatically clearing the
fields when the user goes to another page).
(1=strongly disagree, 5=strongly agree)

However, we also observed a few incidents where the “persistence-by-default”

was not the intended or expected behavior. For example, when submitting a new data

record from the Offer ride screen, participants expected that the fields would be cleared

right after the data has been saved to the database. Since we had observed this

Chapter 6: Evaluation of Click

160

expectation in our pilot studies, the button action “Clear input fields” is now enabled by

default but can be easily disabled by removing a checkmark.

Furthermore, I hypothesized that End-user developers understand the “clear input

fields” action. Four out of the six participants strongly agreed, one participant agreed and

one participant strong disagreed with the statement: “Now I understand why it was

necessary to define a "Clear input fields" button action on some screens (e.g. the "Offer

ride" screen). (1=strongly disagree, 5=strongly agree)”.

Although the “Clear input fields” action did not appear to cause much confusion,

(in hindsight) this study may not be a good measure since “Clear input fields” is enabled

by default and did not have to be disabled for any of the functionality required by the

example ride board application. Participant 3 who indicated in the questionnaire that she

did not understand the action, may not have consciously noticed its presence.

In conclusion, I recommend that EUDWeb tools offer a transparent persistence

layer that automatically maintains the values of all input fields. At the same time, the

developer should have clearly visible options to reset input fields to their default values.

Ideally, the tool is aware of situations that require the opposite default as discussed before

on the example of the “submit new data record” screen.

6.2.5.5 Place-Holders and the Concept of “Current Data Record”

At the onset of the summative evaluation, I hypothesized that: End-user

developers understand the concept of “current data record”. The implementation of the

overview/details relationship between the table on the Home page and the Details page

caused a number of problems and even critical incidents for all participants except P1 and

P5. However, these problems did not seem to be directly related to the concept of

“current data record” but more so to the general mechanism behind the dynamic text

component, and especially the place-holder concept. In particular, participants often

appeared to be confused about the type of place-holder to choose (input field place-

holders or database-field place-holders). The distinction was unclear if at all noticed.

Once the participants had sorted out the problems with correctly defining the

dynamic text component, they seemed to immediately grasp the nature of the relationship

Chapter 6: Evaluation of Click

161

between the dynamic table and dynamic text although they may not have noticed that

Click referred to the relationship as the “current data record”. Five participants agreed

with the following statement while one participant assumed a neutral position (“3”):

“Now I understand the relationship between a Dynamic table component and the

Dynamic text component. (1=strongly disagree, 5=strongly agree)”.

In conclusion, the templating/place-holder feature exposed by the dynamic text

component has proven problematic for novice developer. Especially the exact role and

difference between the two types of place-holders is non-intuitive. A possible extension

to the concept of place-holders, which might improve its usability, is the displaying of the

value that the place-holder currently stands for (e.g. {editpage:firstname}

(currently: “Jochen”). Note that this idea has not yet been implemented.

The concept of “current data row” may be an appropriate abstraction as

participants quickly understood the overview-detail relationship once they had overcome

the hurdle of correctly configuring the dynamic text component.

6.2.6 Results on the Problem of Integration

Web application development involves many different technical activities such as

graphical design, layout, business logic programming, database schema design, server

configuration, cross-platform compatibility testing, and publishing. Current tools

typically target only one or few of these activities and leave it up to the developer to

assemble the right set of tools and to integrate the workflow. This lack of integration

poses another critical entry barrier to EUDWeb (see 3.4). During the review of state-of-

the-art development tools (2.4.5) we noted that end-user developers lack “holistic

guidance”. Furthermore, the studies of end-users’ mental models (Chapter 4) and this

summative evaluation (6.2.9) show that end-user developers often struggle to notice

missing functionality or uncover faulty behavior.

Click’s design addresses these problems in a number of ways. The following

sections discuss to what extent selected Click features succeed in resolving the problem

of lack of integration and workflow.

Chapter 6: Evaluation of Click

162

6.2.6.1 Integrated Layout Tools, Database, Testing, and Publishing

During the development phase of the summative evaluation the participants

appeared to switch between the different activities of layout, behavior definition, testing,

and database design effortlessly with few exceptions. Only the final publishing step

caused a number of critical incidents. This problem was a small usability issue – due to a

poorly placed publish button – rather than a conceptual issue.

Overall, the level of integration seemed to be a good match to end-user

developers’ expectations.

At the onset of the summative evaluation, I hypothesized that using Click: End-

user developers rarely feel “completely lost”. The number of critical incidents

encountered by the participants (see Table 24) indicates that this proposition must be

rejected to the most part. However, the participants’ ratings of the question: “While

designing the application I felt "completely lost" and did not know how to proceed.

(1=hardly ever, 5=very often)” indicate that their perception is not too negative. Two

participants rated the statement with “1” (hardly ever) and “2”, and the remaining four

participants chose the midpoint “3”. Table 24 shows the critical incidents or episodes

where participants felt “completely lost”.

6.2.6.2 The To-Do List

At the onset of the summative evaluation, I hypothesized that: End-user

developers successfully use the “To-Do” list when they feel “lost” or are unsure about

how to proceed or what is left to be done. We observed, that the To-do list was not used

as often as we had imagined, despite frequent encouragements during the video tutorial

and study instructions. Table 26 shows the ratings for two statements that indicate the use

and perceived usefulness of this feature. It is apparent that participants’ opinions differ

considerably. Participant 5 (she encountered no critical incidents) did not (or only rarely)

look at the To-do list (or sitemap) and did not rate its usefulness. Within the group of

participants, P3 and P4 rated the To-do list as most useful (4/5 and 5/5 respectively) and

also both mentioned it when answering the question “What are the top 3 aspects of the

Click tool you like?” Interestingly, those were the two participants who encountered the

Chapter 6: Evaluation of Click

163

highest number of critical incidents. Although the To-do list obviously did not prevent

the critical incidents that they encountered, it may have prevented additional ones.

Table 26: Participants’ ratings on frequency of use and usefulness of To-do list

Statement from questionnaire and scale 1 2 3 4 5 N/A

I looked at the "To do" list.

(1=hardly ever, 5=very often)

1

(P5)

3

(P1,2,3)

1

(P6)

1

(P4)

- -

When I did look at the "To do" list I found it useful.

(1=strongly disagree, 5=strongly agree)

- 1

(P6)

2

(P1,2)

1

(P3)

1

(P4)

1

(P5)

We observed that when participants encountered difficulties they often considered

messages in the To-do list, although this was not always their first instinct. Participants

occasionally used the To-do list’s action links (P3 and P6 praised this feature in the

questionnaire), in particular to create the first custom fields in the database and to rename

pages with generic names (e.g., untitled1). However, the To-do list also showed a number

of disadvantages.

First, some participants did not understand the meaning of some messages. For

example, P3 was confused about a message that indicated that “The database table "data"

has no custom-defined fields”; she did not understand what "data" refers to since it is a

predefined DB table that she did not know about. Also, in a few cases the wording of

messages was too “technical” for the participant another indication that wording impacts

usability to a great extent.

Second, in a few cases participants referred to the To-do list while approaching a

critical incident; although the To-do list showed messages, none were relevant to the

problem at hand. This was in many cases no more than a small disappointment for the

participant, but in other cases severely misleading (in particular, when the participant did

not notice that the To-do list message was unrelated). For example, participant 4, while

intending to build the data entry form for the Offer ride page, noticed a message about a

missing dynamic text field that was referenced from the table on the Home page. He

Chapter 6: Evaluation of Click

164

clicked on the To-do list’s action link and started to create a dynamic text field, thinking

he worked on the data entry form.

Third, occasionally participants could not re-create a particular feature because

they had initially used the action link of a To-do message which was no longer available.

In particular, this was the case with creating additional database fields. A possible

solution to this problem would be to provide a “show me how” function that walks the

developer through the steps for addressing the problem instead of simply providing a

direct link.

Finally, the term “To-do” list itself may be inappropriate as a comment by P3

indicates: “There’s nothing on my To do list. That never happens. Does it mean I’m

done? [giggles]”.

In conclusion, the To-do list feature with its current (limited) level of

sophistication does not provide a clear advantage to end-user developers. However, the

ratio of cost and benefits is likely to improve, if the messages displayed in the To-do list

become easier to understand and more context-relevant – a non-trivial problem.

6.2.6.3 The Sitemap

At the onset of the summative evaluation, I hypothesized that: End-user

developers successfully use the Sitemap when they feel “lost” or are unsure about how to

proceed or what is left to be done. We observed, that the sitemap was rarely used, even in

episodes that resulted in critical incidents. This was despite repeated encouragements

during the video tutorial and study instructions. Table 27 shows the ratings for two

statements that indicate the use and perceived usefulness of the sitemap. If participants

viewed the sitemap, in most cases they did not spend the time to understand the

visualization, quickly returning to actively building the application. However,

occasionally participants expressed their esteem for a feature that “could potentially be

useful in the future when building more complex applications” (comment paraphrased).

In only one case, there was clear and immediate benefit to the use of the sitemap.

Participant 6 noticed, while viewing the sitemap and legend, that login-protected pages

should appear in red. Since his “offerride” page did not appear in red he correctly

Chapter 6: Evaluation of Click

165

concluded that it still needs to be declared as login-protected. Briefly thereafter, he set up

the access restrictions.

Table 27: Participants’ ratings on frequency of use and usefulness of sitemap

Statement from questionnaire and scale 1 2 3 4 5 N/A

I looked at the Sitemap

(1=hardly ever, 5=very often)

2

(P3,5)

3

(P2,4,6)

1

(P1)

- - -

When I did look at the Sitemap I found it useful.

(1=strongly disagree, 5=strongly agree)

2

(P2,3)

- 1

(P4)

1

(P6)

1

(P1)

1

(P5)

In conclusion, the sitemap does not appear to provide a clear benefit for the

development of basic web applications.

However, I believe that the sitemap would become more useful after repeated use

and for the development of applications with requirements that are less understood.

Improvements to the tutorial may better explain the purpose and the meanings of the

visualizations. Furthermore, the visualization could be refined in a number of ways; one

being the use of miniature renditions of the actual page layouts instead of abstract

rectangles. Also, it seems likely that developers benefit more from the sitemap when

developing more complex applications that need to be verified for functional coverage.

However, there is also a limit to the scalability of the sitemap, because the visualization

quickly becomes cluttered with a growing number of pages and relationships (a selective

on/off feature may mitigate this situation).

Finally, the sitemap may be used more often if it could be displayed along another

view, such as the Develop view. If these two views can be displayed simultaneously

(similar to the split view in Macromedia Dreamweaver), perhaps highlighting and

animation could be used to visualize the current state of the application. Displaying the

sitemap along with another view has the obvious downside of competition for screen real

estate. Large displays or dual-monitor setups would certainly be a solution but (in the

short term) seem to be unrealistic for nonprofessional web developers.

Chapter 6: Evaluation of Click

166

6.2.7 Results on the Problem of Security

The major web development problem identified by experienced web developers

are the difficulties related to implementing secure applications (see 3.1.2.1). Whether or

not an end-user developer is aware of the risks involving web applications, these risks are

real and need to be mitigated if EUDWeb is to become a reality. During the studies of

end-user developers’ mental models I found that end-user developers think about security

just in terms of surface features and are (not surprisingly) unaware of specific risks

“behind the scenes” such as SQL injection or cross-site scripting.

Click’s design abstracts security. The visible part of the security layer allows the

developer to specify the authentication and authorization parameters on a high level of

abstraction. The invisible part of the security address the risks “behinds the scenes”.

The following sections discuss to what extent selected Click features succeed in

resolving the problem of developing secure applications.

6.2.7.1 High-level Authentication Features

At the onset of the summative evaluation, I hypothesized that: End-user

developers understand how to set up “page access restrictions”. Four of the six

participants encountered one or more problems while defining access restrictions for the

Offer ride page. Click has two basic concepts related to access restrictions. First, in its

properties dialog a page can be declared as “requiring login.” Only two out of the six

participants immediately noticed this option.

Second, every application has at least one page that is defined as the “login page”

for the application. Click will automatically redirect users to the login page if a page

requires login. This login page contains a login box component. Two of the participants

did not notice the login box component and began to manually create a login form by

combining two text input fields and a button component. Participant 4 tried to place a

login box component directly on the Offer ride page and could not recover from this

problem, which lead to a critical incident. Finally, when a new application is created,

Click automatically sets up a “homepage” and a “loginpage”, a feature that three of the

participants did not expect. Consequently they created redundant login pages.

Chapter 6: Evaluation of Click

167

In one case we observed a participant exploring the options in the property dialog

of the Text, Html, Links component, apparently in an attempt to find an option to define

login restrictions for the Offer ride hyperlink. This particular behavior indicates once

again, that end-user developers primarily perceive the surface features of security

functions.

Despite the numerous problems that the participants encountered, Click’s access

restriction functionality appeared to “make sense” once the participants had discovered

them. The post-questionnaire supports this argument. Four participants strongly agreed

(and two participants agreed) to the statement: “Now I understand how to set up user-

login controls (e.g. the login-protected "Offer rides" screen). (1=strongly disagree,

5=strongly agree)”.

In conclusion, although five out of the six participants were able to correctly

implement login restrictions without assistance (but with considerable effort in most

cases), our “page-level access restriction” concept needs to be refined. I believe that the

overall approach of specifying restrictions as page properties is appropriate and easily

understood. However, the specifics of the login box and its interaction with protected

pages need to be better communicated to the user. One step in this direction would be to

place help information right within the properties dialog of the login box component.

Currently the login box properties provide no help at all and only display the component-

ID of the login box which is of little consequence to the developer. Furthermore, an

EUDWeb tool may offer a hint when the developer creates more than one page

containing a login box component.

6.2.7.2 Authorization via Concept of “Record Owned By User”

At the onset of the summative evaluation, I hypothesized that: End-user

developers understand the concept of a data record that is “owned” by a user.

Participants appeared to understand the essence of the concept. While implementing the

data table on the Home page, in almost all cases, they chose the appropriate option in the

dynamic table dialog to only show “edit” and “delete” links for the records that belong to

the currently logged in user. However, it is unclear if participants were aware of how

Chapter 6: Evaluation of Click

168

Click determines whether or not a particular record is owned by a particular user (Click

automatically maintains a “lastmodifiedbyuserid” field for each data record). In fact, in a

few cases participants were confused because, although they had chosen the option,

“edit” and “delete” links would still appear even when nobody was logged in. The

situation was established when they had added data as “anonymous” users either directly

in the Database view or through the Offer ride screen while it did not yet require login.

Click always displays “edit” and “delete” links for anonymous data records if these links

are enabled at all. Perhaps an additional option for controlling the behavior for

anonymous data records may improve Click’s usability.

Four participants strongly agreed (and two participants agreed) to the statement:

“Now I understand the following option of the Dynamic table component: Show edit link

only for data records "owned" by "currently logged in user". (1=strongly disagree,

5=strongly agree)”.

In conclusion, the concept “record owned by user” seems to be appropriate for

end-user developers.

6.2.8 Results on the Problem of Feedback

The desire for speedy tools and the support for short develop-test cycles was a

reoccurring theme within my survey and interview studies of experienced and novice

developers (e.g., 3.1.1.2).

All of the EUDWeb prototype tools we have developed employed the concept of

design-at-runtime (see 5.1) which was designed to accelerate the develop-test-cycle by

minimizing mode switching. The sections below describe how this concept was used and

perceived during the summative study.

At the onset of the summative evaluation, I hypothesized that: End-user

developers are comfortable with and frequently use the runtime feature of the “design-at-

runtime” concept. Most participants frequently used the testing feature of the design-at-

runtime concept – particularly in the later stages of development. Figure 26 shows a

visualization of P6’s behavior during the study as it is prototypical for the whole group of

participants (see Appendix G.10 for color plates showing the visualizations of all

Chapter 6: Evaluation of Click

169

participants’ behavior). The visualized timeline is derived from the automated activity log

and displays how participant 6 spends time in particular “modes”, i.e. “Develop” (1st line,

black), “Test in develop” (2nd line, green), “Test in preview” (3rd line, green), “Read

help” (4th line, blue), “Critical incident” (5th line, red), “View example” (6th line, gray).

Note that because of space economy the visualized timeline is split into multiple

segments. Only participant 1 and P3 used the explicit Preview function more than testing

directly in the Develop view. P1’s behavior can be explained with a bug in Click that

made the design-at-runtime not work as expected (P1 repeatedly tried clicking on links

but instead of being sent to the link target, the properties dialog opened; after a couple of

attempts P1 reverted to using the Preview function). No other participant encountered this

bug. However, we observed that participants occasionally opened the properties dialog

when they had intended to perform a link or button action. This was due to targeting

problems and may be improved by extending the distance between the actual component

rendition and the “move” icon and perhaps by limiting the “open properties dialog”

behavior to clicking on the “move” icon only.

Figure 26: Visualized timeline of participant 6’s behavior as derived from the activity log

Chapter 6: Evaluation of Click

170

Although the design-at-runtime concept was just briefly introduced in the

introduction tutorial video, all participants (but P1) used it without encountering major

problems. When P4 asked: “I can test from right here, right?” and we (intentionally) did

not answer, he used it correctly.

All six participants strongly agreed with the statement “It was convenient to be

able to both edit and test components within the same screen (i.e. the Develop view).

(1=strongly disagree, 5=strongly agree)”. When asked “Was there anything you did

NOT like about switching between editing and testing? Any ideas how it could be

improved?” in the post-study questionnaire only participant 5 raised a concern

(“Sometimes I'd click on the edit button when I meant to test. Maybe the edit buttons

could be a bit further away from the integrated functionality?”). The other four

comments were all very encouraging in nature (P2 did not reply which may be interpreted

as a positive answer):

• P1: “It seemed pretty seemless to me.”

• P3: “No.”

• P4: “I liked it very much.”

• P6: “Actually, that was the most useful aspect.”

Three of the six participants even referred to the design-at-runtime feature when

asked about their three favorite aspects of Click (“What are the top 3 aspects of the Click

tool you like?”).

In conclusion, the design-at-runtime concept seems to be very successful and well

liked by end-user developers. EUDWeb tools may use this concept to facilitate a faster

develop-test cycle.

Chapter 6: Evaluation of Click

171

6.2.9 Critical Incidents and General Observations

While the study participants replicated the functionality of the example ride board

application using Click, we noted the problems that arose, particular focusing on critical

incidents – problems that the participants experienced as severe impediments to their

work. At the onset of the study participants were instructed to work autonomously and

only ask for help if they felt “completely lost”. These are the episodes that we logged as

critical incidents. Due to time and other practical constraints of the study, we could not

verify that all of the problems logged as critical incidents would be insurmountable in

real-life situations. It appears likely that many of the problems may be overcome if the

participant had spent additional time exploring options or referring to help information.

Nonetheless, at a minimum each critical incident stands for a usability problem that needs

to be addressed by redesign or improvements to the help materials. The following list

contains all the critical incidents that occurred during the study; the markers in

parenthesis indicate which participant encountered the particular problem. Next to each

critical incident I offer ideas of how the issue could be addressed.

The participant…

a) does not notice the component property “show on every page” while trying to

replicate identical navigation links on every page (P1, P4, P6)

o potential fix: Concept of header and footer or layout templates may be

more natural (however “show on every page” was well understood when

discovered)

b) creates components that belong to two different screens on one page; initially

does not know that multiple pages should be created (P3)

o potential fix: Help, tutorial (participant appears to imagine one page with

changing contents, rather than multiple pages)

c) does not know how to link to a page that does not yet exist (P3)

o potential fix: Offer “add new page” option within the link dialog

Chapter 6: Evaluation of Click

172

d) connects the “Offer ride” link to the wrong page (i.e. Search); later notices the

faulty behavior but does not find the source of the problem (P3)

o potential fix: Tool tip or other mechanism could indicate link target page

e) enters a search keyword; then adds the “clear input fields” action to the search

button but is confused that the field does not immediately clear; participant does

not notice the she needs to click the button to initiate the action (P2)

o potential fix: When “clear fields” action is selected, run it immediately

f) does not know how to make the search work (does not use the search wizard, or

not notice/understand the “filter” properties of the table component) (P1, P4)

o potential fix: Offer a “Search” action for buttons (many participants

looked for such an option); Make wizards more prominent

g) attempts to implement the table on the Home page using static and dynamic text

components (P6)

o potential fix: Help, tutorial; Tool tip or help icon next to each component

in the library that describe and exemplify the purpose

h) does not know how to implement the Details page (P3)

o potential fix: Help, tutorial; Make wizards more prominent

i) creates Details page with dynamic text component but does not know how to link

the rows of the table to the Details page (P6)

o potential fix: Help, tutorial; Show example of connection between

dynamic table and text in property dialog of dynamic text (the relationship

between dynamic table and dynamic text was unclear for this participant)

j) uses text field place holders instead of database field place-holders (in the

dynamic text component) for implementing the Details page; is confused about

the difference (P1,P3)

o potential fix: Redesign dynamic text dialog to better distinguish the two

k) uses the Overview/details wizard to create a dynamic text component that only

shows the “destination”; then calls the same wizard again to create the

“departuredate”; this produces not only a second dynamic text component but also

a second table components and results in confusion (P4)

Chapter 6: Evaluation of Click

173

o potential fix: Clarify the role of wizards as creators of sets of components

l) confused that the dynamic text component does not automatically update after the

participant creates more database fields (P4)

o potential fix: Help, tutorial

m) clicks on a link in the To-do list to create a new dynamic text component but

Click displays low-level, unintelligible error message because the participant had

previously deleted the target page (P4)

o potential fix: Offer user-friendly error message

n) does not understand that the table is still showing “edit” & “delete” links although

nobody is logged in; participant had previously entered some data records while

not being logged in (P6)

o potential fix: Help, tutorial; Offer additional option that asks the developer

whether or not entries submitted by anonymous persons should be editable

o) does not know that custom database fields need to be created (despite a notice in

the To-do list) before wizards can be used; does not understand the error message

in the wizard (P3)

o potential fix: Help, tutorial; Improve error message in wizard

p) creates “departure date” database field as type “number” instead of type “text”;

consequently all entered dates are truncated but participant does not notice the

source of the problem (P2, P3)

o potential fix: Offer pre-defined “date” data type; Display pop-up warning

message to developer if entered test data does not fit the type

q) does not know how to proceed after creating the database fields “destination” and

“departuredate” in the Database view (P4)

o potential fix: Help, tutorial

r) uses database entry form wizard to create the “Offer ride” screen but at that time

only the fields “destination” and “departuredate” exist in the database; does not

know that more database fields should be created (P3)

o potential fix: Help, tutorial; critical incident may be due to limited

knowledge of requirements which may not happen in real life

Chapter 6: Evaluation of Click

174

s) uses database entry form wizard to create the “Offer ride” screen (at that time

only the fields “destination” and “departuredate” exist in the DB); creates more

database fields (name, email, comments); is confused that there are no

corresponding text fields for the recently created database fields (P3)

o potential fix: Help, tutorial

t) attempts to create login form manually using input text field components (P3)

o potential fix: Help, tutorial

u) creates a login box component on the Offer ride page (confused about how to

implement the login-restriction for the Offer ride page (P4)

o potential fix: Help, tutorial; Prominent clue for private and public pages

v) does not find the link to publish the application (P1, P4, P6)

o potential fix: Offer publish option (along with other application-level

functions such as “rename” and “edit developers”) in Develop view

Many of the critical incidents we observed can be addressed through minor

changes to Click’s user interface, in particular, improved help, tutorial, and error

messages, and the use of tool tips. We have observed that the exact choice of wording for

error messages and To-do list items strongly influences the developer’s success. Often,

potentially helpful messages were ultimately disregarded because the developer did not

understand them in the brief amount of attention they were given. None of the critical

incidents stands out as a frequent problem, with the exception of (a) and (v) which are

usability hurdles that can be overcome by minor redesign. No other type of critical

incident occurred for more than two of the six participants.

However, still a few of the observed critical incidents revealed considerable

mismatches between the participants’ expectations (their “natural” mental models) and

Click’s features. In particular, the implementation of the search function, and also the

exact role of place-holders in the dynamic text component seem unintuitive. Most

participants expected “search” to be an action tied to a button – a concept that EUDWeb

tools like Click should adopt. An alternative to Click’s place-holder concept is less

Chapter 6: Evaluation of Click

175

apparent. Possibly, a redesign of the dynamic text component, which clarifies the roles of

input text place-holders and database field place-holders, may address the problem.

Finally, many of the critical incidents may be circumvented if developers would

more often take advantage of Click’s wizards. However, we frequently observed that

participants would manually implement a particular function instead of relying on the

more efficient and less error-prone wizards. In one case, a participant (P6) remarked that

he had initially mistaken the role of wizards as pure help tools rather than devices that

automatically create a related set of components.

Apart from the critical incidents that triggered participants to “surrender” and ask

for help, we observed a number of small usability problems. For example, many

participants:

• attempted to reach a context-menu by right-clicking on components (a concept

not (yet) available in Click),

• worked hard to discover how to “delete” components,

• were unaware of the necessity for highlighting text before creating a link,

• tried to deselect components by clicking on the background (Click highlights the

currently active component),

• struggled to discover how to increase the size of the “comments” text box,

• used upper-case initials and spaces when naming components and database fields

(however, the resulting error messages helped them quickly to recover),

• tried to edit the data within a record by clicking directly on an empty cell in the

Database view (perhaps a concept known from spreadsheet applications).

Last but not least, the study exposed a small number of bugs (occasionally broken

preview function in the property dialog of the dynamic table component) and missing

functionality such as undo/redo features, support for multiple-component selection and

alignment tools.

We frequently observed that when participants encountered difficulties they tried

to work on the problem for a little while and then abandoned it to make progress on an

unrelated feature, returning to the problem at a later point in time.

Chapter 6: Evaluation of Click

176

On a more general note, we found that all six participants thought they were

finished before they actually were; nobody replicated the functionality without being

pointed at missing features. However, I believe that this issue reflects the somewhat

unrealistic aspect of my approach of replicating an already existing application;

therefore, this observation may be of little consequence for real-life development.

6.3 Summary and Conclusions

Table 28 summarizes the findings from the formative studies and summative evaluation

of Click. All statements in the table relate to end-user developers.

Table 28: Results of Click’s formative studies and summative evaluation

Conclusions for Future End-User Web Development Tools

• Separating layout and behavior definition into two tools is problematic; an EUDWeb tool should

integrate those aspects (6.1.1)

• Monolithic tool with lack of code editing feature is likely to be too inflexible for EUDWeb (6.1.2)

• Concept of basic button action rules is an intuitive concept (6.2.5.1)

• Current implementation of action rules are not a good match for advanced conditions (branching)

(6.1.2; Table 18 on page 145)

• As an example of a high-level component, the dynamic table is a good abstraction for listing data,

providing edit and delete functionality and linking individual records to a details page (6.2.5.2)

• Exposing input validation as properties of associated input fields matches expectations (6.2.5.3)

• “Persistence-by-default” matches natural mental model but exceptions exists (6.2.5.4)

• Templating/place-holder feature of the dynamic text component is problematic (6.2.5.5)

• High integration between layout, behavior, database, testing supports seamless workflow (6.2.6.1)

• To-do list feature with its current (limited) level of sophistication provides no clear advantage;

major problems are clarity of messages, and context-relevancy (6.2.6.2)

• Sitemap provides no clear benefit; may be due to limited complexity of the study problem (6.2.6.3)

• Overall approach of specifying restrictions as page properties is easily understood; actual

implementation is problematic (6.2.7.1)

• Concept “record owned by user” is understood; the inner workings likely not (6.2.7.2)

• Design-at-Runtime concept works well and is rated highly (6.2.8)

Chapter 6: Evaluation of Click

177

Overall, the summative evaluation has shown that the Click prototype tool comes

close to meeting my vision for an end-user web application development tool; it does

enable nonprogrammers to create basic database-driven web applications in a short

amount of time.

Although it is difficult – in the absence of extensive experiments – to attribute the

participants’ success to particular features, I mainly credit the developers’ success to

these aspects of Click design:

• high-level components and concepts,

• level of tool integration (layout, behavior, database, and hosting), and the

• proximity of Click’s concepts to end users’ “natural” mental models.

In combination, these three design features/approaches address the main entry

barrier to web application development – the problem of complexity. Furthermore, the

high-level components and automatic code generation features (potentially) solve

security and cross-platform compatibility problems. Click is an example for an EUDWeb

tool that hides most security-related and cross-platform-related problems by integrating

routines and filters for input validation and by only producing cross-platform compatible

code (note that Click does not yet fully implement these features).

Although I have not investigated new approaches to handling the debugging

problem (3.1.2.4), it is likely that the users of a high-level EUDWeb tool similar to Click

will encounter fewer low-level errors (until they begin to take advantage of the

extensibility layer that allows custom low-level code).

The following and final Chapter 7 summarizes my research findings, highlights

the contributions, and outlines possible directions for future research in the area of end-

user web application development.

Chapter 7 – Conclusions and Future Work

178

Chapter 7

Conclusions and Future Work

7 Conclusions and Future Work

7.1 Summary of Findings

This research has explored many different aspects of how nonprogrammers can be

empowered to develop basic web applications. However, I began the work reported here

with three general research questions (see 1.4) which I now return to in summarizing my

overall research findings.

7.1.1 What are the main entry barriers to EUDWeb?

From an end-user development perspective, the arena of web programming seems

exceptionally challenging because even experienced programmers encounter many

barriers in their daily work. Section 3.4 summarizes these problems. Perhaps, the main

technical obstacles are cross-platform compatibility issues, the need for integration of

numerous diverse technologies, ensuring security, and the process of debugging.

Overall, from an end user’s point of view, web application development is simply

too complex, involving too many concepts, technologies, and relationships. Current tools

that are targeted at end-user developers lack a holistic approach towards supporting

developers from start (requirements phase) to finish (publishing and maintenance).

Finally, my studies of end users’ natural mental models of web programming

concepts (see Chapter 4) have shown that there is a considerable mismatch between

novices’ expectations and the state-of-the-art in web development. This mismatch creates

further entry barriers to EUDWeb.

Chapter 7 – Conclusions and Future Work

179

7.1.2 How do novice developers naturally think about web
programming concepts?

When I set out to explore how nonprogrammers “naturally” think about the inner

workings of web applications (without having prior exposure to the underlying

technology), I was hopeful to uncover a number of mental models which could be used to

implement tools that feel more intuitive by reducing Norman’s (1986) “gulf of

evaluation” and “gulf of execution”. The reality, however, is simpler. Most of the

participant of my two “mental models” studies (see Chapter 4) did not have any pre-

conceived notions and often even struggled to develop deeper mental representations of

the functionality they were asked to analyze. Although, this may seem like a “non-result”

it underlines the level of support and guidance end-user developers require.

The study participants’ descriptions were high-level only, both, when given the

freedom to choose the level of abstraction (MMODELS-1, see 4.1) and when asked to be

as detailed as possible (MMODELS-2, see 4.2). Participants showed a good knowledge

of the terminology of the web development arena, although they frequently used words

like database or field in a nonspecific or imprecise way. They generally used a mix of

constraints (e.g., “this field is required”) and rules (e.g., “If the password is incorrect, that

field is cleared”) to describe certain functionality, without paying attention to order or

flow of control. They expect functions such as search and overview/detail relationships to

be available as basic components. Only few participants showed any interest or

awareness of implementation details for basic services such as session management,

database connection, input validation, or security checking. However, their descriptions

indicate certain expectations such that data and state persist until they are explicitly

changed which were often at odds with the technical implementation (e.g., HTTP’s state-

less nature). Section 4.3 summarizes the expectations end-user developers are likely to

have regarding concepts frequently found in web applications.

In order to facilitate EUDWeb, the natural mental models of end users should be

taken into account and tools and concepts be reshaped in order to make a better fit for

users’ expectations and skills.

Chapter 7 – Conclusions and Future Work

180

7.1.3 What are viable approaches for making web application
development more accessible for nonprogrammers?

Above all, end-user developers need tools that abstract the complexity of the web

application technologies. It is unrealistic at best, to turn nonprogrammers quickly into

skilled web developers. Furthermore, because of the special requirements for availability,

compatibility, accessibility and security, it seems unwise to advocate the use of

professionals’ tools for end-user developers. The analysis of common problems in web

application development (see 3.4) has shown that, what end-user developers need more

than anything, are integrated tools that hide complexity and guide the developer from

start to finish. Database schema design, layout design, graphics design, business logic

programming, cross-browser compatibility and accessibility testing, and even the process

of publishing and production hosting, should no longer be regarded separate phases that

are supported by different tools but rather be integrated into one tool.

This tool should offer its functions at a level of abstraction and mode of operation

that nonprogrammers expect (see 7.1.2), for example by providing a set of pre-defined

high-level components or by offering built-in session management with persistence-by-

default. Furthermore, the developers’ tendencies to opportunistic behavior should be

embraced by avoiding “premature commitment” (Green 1989) and allowing changes to

the design at any point in time without penalty.

Finally, it is important to consider that as end-user developers learn, their needs

and objectives are likely to grow along with their knowledge. A tool that only offered

high-level functionality would quickly become obsolete and merely postpone the point

when nonprogrammers encounter classical programming concepts. I support the idea of

tools that expose a “gentle slope of complexity” (MacLean, Carter et al. 1990) by

providing multiple levels of programming support, reaching from functions that allow

novices the customization of template applications, over configurable high-level

components, up to providing access to a full featured low-level programming language

(see 5.4.25).

Chapter 7 – Conclusions and Future Work

181

We have developed Click as a proof-of-concept prototype that addresses most of

these requirements, even though not yet to the full extent (e.g., graphics design is not yet

an integral part, and the “gentle slope” concept not fully implemented). Section 5.6

summarizes Click’s contributions.

7.2 Summary of Research Contributions

I have described the initial phases of a user-centered approach towards

understanding and supporting end-user development of web applications. From

investigating end users’ needs I have found that basic data collection, storage and

retrieval applications such as surveys, registration systems, service forms, or database-

driven websites are an important target for end-user development. While focusing on this

particular domain and on casual (nonprogrammer) web developers as my target audience,

I have made the following contributions to the fields of end-user development and web

engineering:

• An analysis of end-users’ needs and opportunities for EUDWeb (3.1.1.1),

• A summary of barriers to and recommendations for EUDWeb (3.4),

• An analysis of experiences and behavior of semi-professional web developers (3),

• An analysis of the mental models and strategies of end-user developers (4),

• The “design-at-runtime” concept in the realm of web-based applications (5.1),

• An analysis of the elements of typical web applications (3.3),

• The design rationale, prototype, and evaluation of a EUDWeb tool (5.3-6.3),

• A conceptual framework and partial prototype implementation for exposing a

“gentle slope of complexity” for EUDWeb tools (5.4.25).

Chapter 7 – Conclusions and Future Work

182

7.3 Future Directions

Much work needs to be done to refine the analysis of what “feels most natural” to

end-user developers (which is likely to change with time) and to identify barriers to

EUDWeb. For example, a novice-friendly yet powerful concept is needed to help end-

user developers define complex conditions and actions – as discussed in Section 6.2.5.1,

a promising alternative to the currently used set of independent rules are multi-way if-

statements in the format if-elseif-elseif...else.

Apart from this evolutionary work, I feel that three research areas in particular

deserve close attention – one being collaborative aspects of EUDWeb, another the

problem of sustainability and evolution, and the third the application of artificial

intelligence concepts.

The first topic recognizes that end-user development rarely takes place in a

vacuum; that there are typically a number of people involved, ranging from the future

users to professional IT staff who serve the roles of consultants, partners or programmers

of particularly challenging components of the application in development. Nardi (1993)

has recognized the need for investigating and considering collaborative aspects of end-

user programming long ago and this argumentation certainly also applies to the domain

of web application development.

The second topic is at the heart of end-user development itself. The central

problem of empowering end users is finding a good balance of ease-of-use and flexibility.

Naturally, less flexible tools, not only limit the power but also the number of problems a

developer may encounter, and are thereby easier to use than more powerful tools.

However, as users of these tools learn over time, not only their knowledge but also their

aspirations evolve. MacLean et al. (1990) and Repenning and Ioannidou (1997) have

argued for supporting a “gentle slope of complexity” – tools that “grow” with the skills

and needs of their users. I have shown how this problem may be addressed for EUDWeb

by providing different layers of programming support (see 5.4.25). However, much future

work is required to fully implement, evaluate, and evolve these ideas.

Chapter 7 – Conclusions and Future Work

183

Third, technology has opened new horizons for approaches that could

revolutionize application development. I believe that many new opportunities (and

challenges) lie within the field of artificial intelligence. If computers can begin to

“understand” what developers mean instead of just blindly responding to what they are

explicitly told, application development may become easier. The path to true natural

language programming – as exemplified by the “magical machine” metaphor used in my

first study (see 4.1.1) – seems long. Also, the general superiority of this approach is still

far from being proven. However, even basic mixed-initiative development environments

may have a profound impact on usability and power. For a start, such systems could

automatically recognize under-specification and query the developer for more details

when needed. Click’s To-do list feature (see 5.4.5, 6.2.6.2) shows a very early attempt of

applying this idea, although it still exhibits most of the shortcomings of computer-

initiative systems and few of the benefits. The future may bring systems that hold true

conversations with the developer in a similar way to how developers hold conversations

with their clients today.

Finally, basic database-driven web applications, which were the focus of this

research, are only a part of the “big picture” of web sites and web-based applications. The

work reported here needs to be integrated with other aspects of web development and

web publishing such as the problem of web content management (the distributed

authoring of a web site), web portals, or e-Commerce web sites. A complementary

approach to component-based web development tools such as Click are tailorable web

applications. As observed during the initial requirements analysis (3.1.1.1), a large

fraction of webmasters’ needs could be satisfied through customization of generic web

applications (e.g., calendar, resource reservation, message board, content management, e-

commerce). Tailorable systems should be built on top of a flexible framework that allows

advanced custom changes similar to the application templates offered by Click (5.4.2).

Much work needs to be done before we can claim that end-user web application

development is a reality. The research I have presented here is one early step into the

promising future of end-user web application development and I hope that other work

will follow.

References

184

References

Adelson, B. and E. Soloway (1985). "The role of domain experience in software design."
IEEE Transactions on Software Engineering SE-11: 233-242.

Adobe (2003). GoLive. http://www.adobe.com/products/golive/

Ambler, A. and J. Leopold (1998). Public Programming in a Web World. Proceedings of
IEEE Symposium on Visual Languages, Nova Scotia, Canada: 100-107. Sep. 1-9, 1998

Apache Software Foundation (2005). Velocity Template Engine - an Apache Jakarta
Project. http://jakarta.apache.org/velocity/

Apple (1987). HyperCard User's Guide.

Balthaser:Fx (2005). http://www.balthaser.com/

Bare Bones Software (2003). BBEdit. http://www.barebones.com/products/bbedit/

Berners-Lee, T. (1996). WWW: past, present, and future. IEEE Computer. 29: 69-77.

Bhardwaj, Y. (2005). Reverse Engineering End-User Developed Web Applications into a
Model-based Framework, Virginia Tech.

Blackwell, A. F. (1996). Metacognitive theories of visual programming: What do we
think we are doing? Proceedings of IEEE Visual Languages: 240-246.

Brabrand, C., A. Moeller and M. I. Schwartzbach (2002). "The <bigwig> project." ACM
Transactions on Internet Technology 2(2): 79-114.

Brooks, R. (1983). "Towards a theory of the comprehension of computer programs."
International Journal of Man-Machine Studies 18: 543-554.

Brown, P. S. and J. D. Gould (1987). "An experimental study of people creating
spreadsheets." ACM Transactions on Office Information Systems 5(3): 258-272.

Burnett, M., J. Atwood, R. Djang, H. Gottfried, J. Reichwein and S. Yang (2001).
"Forms/3: A First-Order Visual Language to Explore the Boundaries of the Spreadsheet
Paradigm." Journal of Functional Programming 11(2): 155-206.

References

185

Burnett, M., S. K. Chekka and R. Pandey (2001). FAR: An End-User Language to
Support Cottage E-Services. Proceedings of HCC - 2001 IEEE Symposia on Human-
Centric Computing Languages and Environments; Symposium on End-User
Programming, Stresa, Italy: 195-202.

Burnett, M., B. Ren, A. Ko, C. Cook and G. Rothermel (2001). Visually testing recursive
programs in spreadsheet languages. Proceedings of IEEE Symposium on Human-Centric
Computing: HCC 2001, New York, IEEE: 288-295.

Carroll, J. M. (1990). The Nurnberg Funnel: Minimalist Instruction for Computer Skill.
Cambridge, MA, MIT Press.

Carroll, J. M. (2000). Making use: Scenario-based design of human-computer
interactions. Cambridge, MA, MIT Press.

Carroll, J. M., J. C. Thomas and A. Malhotra (1979). "Clinical-experimental analysis of
design problem solving." Design Studies 1: 84-92.

Ceri, S., P. Fraternali and A. Bongio (2000). "Web Modeling Language (WebML): a
modeling language for designing Web sites." Computer Networks 33(1-6): 137-157.

Codejay (2003). Codejay. http://www.codejay.com/

curl (2005). Curl. http://www.curl.com/

Deshpande, Y. and S. Hansen (2001). "Web Engineering: Creating a Discipline among
Disciplines." IEEE MultiMedia 8(2): 82-87.

Dijkstra, E. (1968). "GOTO considered harmful." Communications of the ACM 11(3):
147-148.

Eclipse (2005). Eclipse. http://www.eclipse.org

Eisenberg, M. (1995). "Programmable applications: Interpreter meets interface." SIGCHI
Bulletin 27(2): 69-93.

FileMaker (2005). FileMaker Pro. http://www.filemaker.com/

Fischer, G. and A. C. Lemke (1988). "Construction kits and design environments: Steps
toward human problem-domain communication." Human-Computer Interaction: 179-
222.

Fraternali, P. (1999). "Tools and Approaches for Developing Data-Intensive Web
Applications: A Survey." ACM Computing Surveys 31(3): 227-263.

References

186

Fraternali, P. and P. Paolini (2000). Model-driven development of Web applications: the
AutoWeb system. Proceedings of ACM Transactions on Information Systems (TOIS):
323-382. October 2000

Gaedke, M., D. Schempf and H.-W. Gellersen (2000). WCML: Paving the Way for
Reuse in Object-Oriented Web Engineering. Proceedings of 2000 ACM Symposium on
Applied Computing (SAC 2000), Villa Olmo, Como, Italy: 748-755. March 19-21, 2000

Garrett, J. J. (2005). Ajax: A New Approach to Web Applications.
http://www.adaptivepath.com/publications/essays/archives/000385.php

Gilmore, D. J., K. Pheasey, J. Underwood and G. Underwood (1995). Learning graphical
programming: An evaluation of KidSim. Proceedings of Interact'95, Amsterdam,
Netherlands. September 1995

Ginige, A. and S. Murugesan (2001). "Web Engineering: An Introduction." IEEE
MultiMedia January-March: 14-18.

Green, T. R. G. (1989). Cognitive dimensions of notations. People and Computers IV.
Cambridge, Cambridge University Press.

Green, T. R. G. (1990). Programming languages as information structures. In Psychology
of Programming. London, Academic Press: 117-138.

Green, T. R. G. and M. Petre (1996). "Usability Analysis of Visual Programming
Environments: a 'cognitive dimensions' framework." Journal of Visual Languages and
Computing 7: 131-174.

Guindon, R. (1990). "Designing the design process: Exploiting opportunistic thoughts."
Human-Computer Interaction 5: 305-344.

Harrison, W. (2004). The Dangers of End-User Programming. IEEE Software. 21: 5-7.

Helman, T. and K. Fertalj (2003). A Critique of Web Application Generators.
Proceedings of Information Technology Interfaces (ITI), June 16-19, 2003, Cavtat,
Croatia.

Homestead (2005). http://www.homestead.com/

Hostetter, M., D. Kranz, C. Seed, C. Terman and S. Ward (1997). "Curl: A Gentle Slope
Language for the Web." WWW Journal II(2).

IBM (2005a). IBM Rational Web Developer for WebSphere Software.
http://www.ibm.com/software/awdtools/developer/web/

References

187

IBM (2005b). Integrated Development Environment for Laszlo.
http://www.alphaworks.ibm.com/tech/ide4laszlo

Instantis (2003). SiteWand. http://www.instantis.com/

Kernighan, B. W. and D. M. Ritchie (1978). The C Programming Language, Prentice
Hall, Inc.

Lang, M. and B. Fitzgerald (2005). "Hypermedia Systems Development Practices: A
Survey." IEEE Software 22(2): 68-75.

Laszlo Systems Inc. (2005). OpenLaszlo. http://www.openlaszlo.org/

Lerdorf, R., A. Gutmans and Z. Suraski (1995). History of PHP and related projects.
http://www.php.net/manual/en/history.php

Lewis, C. (1982). Using the "thinking-aloud" method in cognitive interface design.
Technical Report RC9265. Watson Research Center. Yorktown Heights, NY

Lieberman, H. (2001). Your wish is my command: Programming by example. San
Francisco, CA, USA, Morgan Kaufmann.

Loureiro, N. (2002). Programming PHP with Security in Mind. LINUX Journal.
http://www.linuxjournal.com/article/6061

MacLean, A., K. Carter, L. Lövstrand and T. Moran (1990). User-Tailorable Systems:
Pressing Issues with Buttons. Proceedings of ACM CHI 1990: 175-182.

Macromedia (2002a). ColdFusion. http://www.macromedia.com/software/coldfusion/

Macromedia (2002b). Flash MX. http://www.macromedia.com/software/flash/

Macromedia (2002c). Flash Player Version Penetration.
http://www.macromedia.com/software/player_census/flashplayer/version_penetration.ht
ml

Macromedia (2003). Homesite. http://www.macromedia.com/software/homesite/

Macromedia (2005a). Contribute. http://www.macromedia.com/software/contribute/

Macromedia (2005b). Dreamweaver.
http://www.macromedia.com/software/dreamweaver/

Macromedia (2005c). Flex. http://www.macromedia.com/software/flex/

References

188

McDaniel, R. (2001). Demonstrating the Hidden Features that Make an Application
Work. Your Wish is My Command: Programming By Example. H. Lieberman. San
Francisco, CA, USA, Morgan Kaufmann: 163-174.

Mecca, G., P. Merialdo, P. Atzeni and V. Crescenzi (1999). The (Short) Araneus Guide
to Web-Site Development. Proceedings of Second International Workshop on the Web
and Databases (WebDB'99). May 1999

Merialdo, P., P. Atzeni, M. Magnante, G. Mecca and M. Pecorone (2000). HOMER: a
Model-Based CASE tool for Data-Intensive Web Sites. Proceedings of Exhibition
Section of SIGMOD'2000, May 2000.

Microsoft (2002). ASP.NET. http://www.asp.net/

Microsoft (2003a). Visual Studio. http://msdn.microsoft.com/vstudio/

Microsoft (2003b). Web Matrix. http://www.asp.net/webmatrix/

Microsoft (2004). Inside XAML.
http://www.ondotnet.com/pub/a/dotnet/2004/01/19/longhorn.html

Microsoft (2005a). FrontPage. http://www.microsoft.com/frontpage/

Microsoft (2005b). Visual Web Developer. http://lab.msdn.microsoft.com/express/vwd/

Miller, L. A. (1974). "Programming by non-programmers." International Journal of Man-
Machine Studies 6(2): 237-260.

Miller, L. A. (1981). "Natural language programming: Styles, strategies, and contrasts."
IBM Systems Journal 20(2): 184-215.

Mozilla (2005). XML User Interface Language (XUL).
http://www.mozilla.org/projects/xul/

Myers, B. A. and R. McDaniel (2001). Demonstrational Interfaces: Sometimes You Need
a Little Intelligence, Sometimes You Need a Lot. Your Wish is My Command:
Programming By Example. H. Lieberman. San Francisco, CA, USA, Morgan Kaufmann:
45-58.

MySQL (2005). MySQL. http://www.mysql.com

Nardi, B. A. (1993). A Small Matter of Programming: Perspectives on End User
Computing. Cambridge, MA, MIT Press.

References

189

Nardi, B. A. and J. R. Miller (1991). "Twinkling lights and nested loops: distributed
problem solving and spreadsheet development." International Journal of Man-Machine
Studies 34: 161-184.

Newman, M., Landay, J. (2000). Sitemaps, storyboards, and specifications: a sketch of
Web site design practice. Proceedings of Conference on Designing interactive systems:
processes, practices, methods, and techniques, New York City, New York, United States:
263-274. August 17-19, 2000

Newman, M., J. Lin, J. Hong and J. Landay (2003). "DENIM: An Informal Web Site
Design Tool Inspired by Observations of Practice." Human-Computer Interaction 18:
259-324.

Norman, D. A. (1986). Cognitive engineering. User Centered System Design. D. A.
Norman and S. D. Draper. Hillsdale, NJ, Lawrence Erlbaum Associates: 31-61.

Norman, D. A. (1988). The Design of Everyday Things, Currency Doubleday.

Pane, J. F. (2002). A Programming System for Children that is Designed for Usability.
Ph.D. Thesis. Computer Science Department. Pittsburgh, PA, Carnegie Mellon
University.

Pane, J. F. and B. A. Myers (2000). Tabular and textual methods for selecting objects
from a group. Proceedings of VL 2000: IEEE International Symposium on Visual
Languages, Seattle, WA, IEEE Computer Society: 157-164.

Pane, J. F., B. A. Myers and L. B. Miller (2001). "Using HCI Techniques to Design a
More Usable Programming System." submitted for publication.

Pane, J. F., C. A. Ratanamahatana and B. A. Myers (2001). "Studying the language and
structure in non-programmers' solutions to programming problems." International Journal
of Human-Computer Studies 54: 237-264.

Papert, S. (1980). Mindstorms. New York, Basic Books.

Papert, S. (1993). The Children's Machine. New York, Basic Books.

Pennington, N. and B. Grabowski (1990). The tasks of programming. In Psychology of
Programming. T. R. G. G. J.-M. Hoc, R. Samurçay, and D. J. Gilmore. London,
Academic Press: 45-62.

Pitkow, J. and C. Kehoe (1998). GVU. 10th WWW User Survey.
http://www.cc.gatech.edu/gvu/user_surveys/survey-1998-10/

References

190

Reenskaug, T. (1979). Models - Views - Controllers. Technical Report. scanned copy at:
http://heim.ifi.uio.no/~trygver/mvc/index.html. Xerox PARC.

Repenning, A. (1994). "Designing domain-oriented visual end user programming
environments." Journal of Interactive Learning Environments 4: 45-74.

Repenning, A. (1995). Bending the Rules: Steps Toward Semantically Enriched
Graphical Rewrite Rules. Proceedings of Visual Languages, Darmstadt, Germany: 226-
233.

Repenning, A. and A. Ioannidou (1997). Behavior Processors: Layers between End-Users
and Java Virtual Machine. Proceedings of IEEE VL 1997, Capri, Italy. Sep. 23-26

Robertson, T. J., S. Prabhakararao, M. Burnett, C. Cook, J. R. Ruthruff, L. Beckwith and
A. Phalgune (2004). Impact of Interruption Style on End-User Debugging. Proceedings
of CHI 2004, Vienna, Austria. April 2004

Rode, J. (2002). Survey.vt.edu. http://survey.vt.edu/ and http://vtsurvey.sourceforge.net

Rode, J. (2002b). Survey: "Interactive Websites", Results.
http://filebox.vt.edu/users/jrode/publish/2002-05-survey/results/

Rode, J. (2005). Click - Tutorial Video. http://phpclick.sourceforge.net/demo.php

Rode, J. and Y. Bhardwaj (2004a). Results from formative evaluations of Click
prototypes. http://purl.vt.edu/people/jrode/publish/2004-05-click-evaluation1/results.html
and http://purl.vt.edu/people/jrode/publish/2004-11-click-evaluation3/results.html

Rode, J. and Y. Bhardwaj (2004b). Results from post-study questionnaire in formative
evaluation #1 of Click prototype #1. http://purl.vt.edu/people/jrode/publish/2004-05-
click-evaluation1/questionnaire-results.html

Rode, J. and Y. Bhardwaj (2004c). Results from post-study questionnaire in formative
evaluation #3 of Click prototype #2. http://purl.vt.edu/people/jrode/publish/2004-11-
click-evaluation3/questionnaire-results.html

Rode, J., Y. Bhardwaj, M. B. Rosson, M. Pérez-Quiñones and J. Howarth (2005). Click.
http://phpclick.sourceforge.net

Rode, J. and J. Howarth (2004). Results from post-study questionnaire in formative
evaluation #2 of Click prototype #2. http://purl.vt.edu/people/jrode/publish/publish/2004-
07-click-evaluation2/questionnaire-results.html

References

191

Rode, J., J. Howarth, M. A. Pérez-Quiñones and M. B. Rosson (2004). An End-User
Development Perspective on State-of-the-Art Web Development Tools. Technical Report
#TR-05-03. Virginia Tech Computer Science.

Rode, J. and M. B. Rosson (2003). Programming at Runtime: Requirements & Paradigms
for Nonprogrammer Web Application Development. Proceedings of IEEE Symposia on
Human Centric Computing Languages and Environments, Auckland, New Zealand: 23-
30. Oct. 28-31

Rode, J. and M. B. Rosson (2004). End-users' Mental Models of Concepts Critical to
Web Application Development. Proceedings of IEEE Symposia on Human Centric
Computing Languages and Environments, Rome, Italy. Oct. 26-29

Rosson, M. B. (1996). The human factor in software development. In Handbook of
Computer Science and Engineering. Boca Raton, FL, CRC Press: 1596-1617.

Rosson, M. B., J. Ballin and H. Nash (2004). Everyday programming: Challenges and
opportunities for informal web development. Proceedings of IEEE VL/HCC 2004, Rome,
Italy: 123-130.

Rosson, M. B. and J. M. Carroll (1993). Active programming strategies for reuse.
Proceedings of ECOOP'93: Object-Oriented Programming, 7th European Conference,
Kaiserslautern, Germany, 26-30 July, Springer-Verlag: 4-20.

Rosson, M. B. and J. M. Carroll (1996). "The reuse of uses in Smalltalk programming."
ACM Transactions on Computer-Human Interaction 3(3): 219-253.

Rosson, M. B., J. Ballin, J. Rode, B. Toward (2005). Designing for the Web revisited: A
Survey of Casual and Experienced Web Developers. Proceedings of International
Conference on Web Engineering, Sydney, Australia. July 27-29

Schwabe, D., G. Rossi and S. D. J. Barbosa (1996). Systematic Hypermedia Application
Design with OOHDM. Proceedings of ACM Hypertext ’96, Washington DC, USA: 116-
128.

Scriven, M. (1967). The methodology of evaluation. Perspectives of curriculum
evaluation. R. G. R. Tyler, & M. Scriven, Rand McNally: 39-83.

Shimomura, T. (2004). "Visual design and programming for Web applications." Journal
of Visual Languages and Computing 16: 213-230.

Shneiderman, B. (1980). Software Psychology: Human Factors in Computer and
Information Systems. Reading, MA, Addison-Wesley Publishers.

References

192

Shneiderman, B. (1983). Direct Manipulation: A Step Beyond Programming Languages.
IEEE Computer. 16: 57-69.

Smarty (2005). Smarty Template Engine. http://smarty.php.net/

Sun Microsystems (2002a). http://java.sun.com/products/jsp/

Sun Microsystems (2005). JavaServer Faces. http://java.sun.com/j2ee/javaserverfaces/

Tanimoto, S. (1990). "VIVA: A Visual Language for Image Processing." Journal of
Visual Languages and Computing 2(2): 127-139.

Taylor, M. J., J. McWilliam, H. Forsyth and S. Wade (2002). "Methodologies and
website development: a survey of practice." Information and Software Technology 44:
381-391.

TechSmith (2005). Morae: A Complete Usability Testing Solution for Web Sites and
Software. http://www.techsmith.com/products/morae/

Trellix (2005). Web Express. http://www.trellix.com/products/trellixwebexpress.asp

Turau, V. (2002). A framework for automatic generation of web-based data entry
applications based on XML. Proceedings of 17th Symposium on Applied Computing,
Madrid, Spain, ACM: 1121-1126.

UML (2005). Unified Modeling Language. http://en.wikipedia.org/wiki/Uml

Vora, P. R. (1998). "Designing for the Web: A Survey." ACM interactions May/June: 13-
30.

Vroman Systems Inc. (2005). FormSite. http://www.formsite.com/

Wall, L. (1987). Practical Extraction and Report Language.

Watchfire (2005). Bobby/WebXACT. http://webxact.watchfire.com/

WebModels (2005). WebRatio. http://www.webratio.com

Whitley, K. N. and A. F. Blackwell (1997). Visual programming: The outlook from
academia and industry. ESP-7. Workshop on Empirical Studies of Programmers: 180-
208.

Wolber, D., Y. Su and Y. T. Chiang (2002). Designing Dynamic Web Pages and
Persistence in the WYSIWYG Interface. Proceedings of IUI 2002, San Francisco, CA,
USA. Jan 13-16

References

193

World Wide Web Consortium (1998). Cascading Style Sheets 2.
http://www.w3.org/Style/CSS/

Xamlon (2005). Xamlon. http://www.xamlon.com/

Xue, Q. (2005). PRADO: Component-based and event-driven Web programming
framework for PHP 5. http://www.xisc.com/

YAHOO! (2005). YAHOO! Store. http://store.yahoo.com/

YesSoftware (2003). CodeCharge Studio.
http://www.yessoftware.com/products/product.php?product_id=1

Zdun, U. (2002). Dynamically Generating Web Application Fragments from Page
Templates. Proceedings of 17th Symposium on Applied Computing, Madrid, Spain,
ACM: 1113-1120.

Zorn, W. (2004). JavaScript: DHTML API, Drag & Drop for Images and Layers.
http://www.walterzorn.com/dragdrop/dragdrop_e.htm

ZyWeb (2005). http://www.zyweb.com/

Appendix A: Survey of Virginia Tech Webmasters

194

Appendix A Survey of Virginia Tech Webmasters
A.1 IRB Approval

Figure 27: IRB approval for survey of VT webmasters

Appendix A: Survey of Virginia Tech Webmasters

195

A.2 Survey Questionnaire and Summary Results
Table 29: Questionnaire and summary results from survey of Virginia Tech webmasters

Appendix A: Survey of Virginia Tech Webmasters

196

Appendix A: Survey of Virginia Tech Webmasters

197

Appendix A: Survey of Virginia Tech Webmasters

198

Appendix A: Survey of Virginia Tech Webmasters

199

Appendix A: Survey of Virginia Tech Webmasters

200

Appendix A: Survey of Virginia Tech Webmasters

201

Appendix A: Survey of Virginia Tech Webmasters

202

Appendix A: Survey of Virginia Tech Webmasters

203

Appendix B: Interviews of Semi-Professional Developers

204

Appendix B Interviews of Semi-Professional
Developers

B.1 IRB Approval

Figure 28: IRB approval for interview study

Appendix B: Interviews of Semi-Professional Developers

205

B.2 Pre-Interview Questionnaire
Table 30: Pre-Interview questionnaire of semi-professional web developers

Appendix B: Interviews of Semi-Professional Developers

206

Appendix B: Interviews of Semi-Professional Developers

207

Appendix B: Interviews of Semi-Professional Developers

208

Appendix B: Interviews of Semi-Professional Developers

209

Appendix B: Interviews of Semi-Professional Developers

210

Appendix B: Interviews of Semi-Professional Developers

211

Appendix B: Interviews of Semi-Professional Developers

212

Appendix B: Interviews of Semi-Professional Developers

213

Appendix B: Interviews of Semi-Professional Developers

214

Appendix C: Comprehensive Survey of Web Developers

215

Appendix C Comprehensive Survey of Web
Developers

C.1 IRB Approval

Figure 29: IRB approval for comprehensive survey of web developers

Appendix C: Comprehensive Survey of Web Developers

216

C.2 Questionnaire and Summary of Results
Table 31: Comprehensive survey of web developers: Questionnaire and summary of results

Appendix C: Comprehensive Survey of Web Developers

217

Appendix C: Comprehensive Survey of Web Developers

218

Appendix C: Comprehensive Survey of Web Developers

219

Appendix C: Comprehensive Survey of Web Developers

220

Appendix C: Comprehensive Survey of Web Developers

221

Appendix C: Comprehensive Survey of Web Developers

222

Appendix C: Comprehensive Survey of Web Developers

223

Appendix C: Comprehensive Survey of Web Developers

224

Appendix C: Comprehensive Survey of Web Developers

225

Appendix C: Comprehensive Survey of Web Developers

226

Appendix C: Comprehensive Survey of Web Developers

227

Appendix C: Comprehensive Survey of Web Developers

228

Appendix C: Comprehensive Survey of Web Developers

229

Appendix C: Comprehensive Survey of Web Developers

230

Appendix C: Comprehensive Survey of Web Developers

231

Appendix C: Comprehensive Survey of Web Developers

232

Appendix C: Comprehensive Survey of Web Developers

233

Appendix C: Comprehensive Survey of Web Developers

234

Appendix C: Comprehensive Survey of Web Developers

235

Appendix D: Mental Models Study

236

Appendix D Mental Models Study 1
D.1 IRB Approval

Figure 30: IRB approval for MMODELS-1

Appendix D: Mental Models Study

237

D.2 Participants’ Instructions

Table 32: Participants' instructions for mental models study 1

The language and concepts in non-programmer’s solutions
to web programming problems

Purpose of the study

We intend to design a system which allows webmasters without prior programming experience to build
interactive websites (aka web applications). With this study we want to discover what a “natural
approach” to web programming may look like. The system we envision should use the language and
concepts that webmasters are familiar with and avoid unnecessary hurdles.

Please answer the following questions with words and concepts that are most intuitive to you and require
the least possible amount of “mental effort”. Remember to reply according to what feels most intuitive
to you, not what you expect to be most intuitive to others.

The study consists of two parts.

Part I: Identify and name elements

We have provided you with a series of screen-shots of a simple web application for tracking membership
information. Divide each of the given screen-shots into a number of parts or elements. Circle the
elements with a pencil and give them a general name. Figure 1 illustrates the task using an example
outside of the domain of web-design.

You can circle and name single elements or groups of elements. You can re-use the names you have
given to other elements. Do it according to what feels most intuitive to you. The names you choose will
help us to find intuitive labels and descriptions for our programming system.

Part II: Describe the website’s behavior

Take some time to play with the membership tracking application on the computer until you have the
feeling that you understand what it does and how it behaves.

Now imagine the following scenario: You have a magical machine that can read and understand your
handwriting. If you give this machine a full description of how a web application should work, it will
create it for you. The machine has the level of intelligence of a “naïve alien.” Use the screen-shots and
paper & pencil to explain the application’s behavior to the magical machine. Don’t assume that the
magical machine can infer much. Try to describe the details of the application’s behavior. If you need to
refer to any elements in the screen-shots just mark them with an asterisk, or number etc. for convenient
reference. While the magical machine can read and understand screen-shots it cannot infer which
elements of a screen-shot are static and which ones change according to the user’s action. This should
be part of your description.

Appendix D: Mental Models Study

238

The following tasks cover a subset of the functionality of the web application. Try to describe the
behavior of the application in detail for each one of the tasks. On your paper please refer to the task
number.

1. Login with the user-ID “marym” and the (wrong) password “sesamo”, then with the (correct)

password “mapa”. Describe how the web application behaves.

2. Play with “<<previous page” and “next page >>” (on the bottom). Describe what the elements
on the screen show, in particular the ones that change dependent on the user and the user’s
actions.

3. Note the availability of “add new member”, “edit” and “delete”. Now logout and login with the
user-ID “johnd” and the password “papajohn”. Note that the three functions are no longer
available. Describe how the web application provides different functionality to different user-
ID’s (note that the users “chrism” and “susi” get the same functionality as “marym”)

4. Add a new member (just make up some data). Assume you do not have an e-mail address.
Continue with “OK”. Now enter an e-mail address. Continue with “OK”. Describe how the web
application behaves.

5. Sort the members by first name or last name. Describe how the web application behaves.

6. Search for a member with the last name “Miller”. Describe how the web application behaves.

7. Delete a member (you pick). Describe how the web application behaves.

Appendix D: Mental Models Study

239

D.3 Screen Labeling Example

Figure 31: Screen labeling example provided to study participants

Appendix D: Mental Models Study

240

D.4 Screenshots of Example Application

Figure 32: Screenshot of example application from MMODELS-1: Login

Appendix D: Mental Models Study

241

Figure 33: Screenshot of example application from MMODELS-1: View all members

Appendix D: Mental Models Study

242

Figure 34: Screenshot of example application from MMODELS-1: Add member

Appendix D: Mental Models Study

243

Figure 35: Screenshot of example application from MMODELS-1: View member

Appendix D: Mental Models Study

244

Figure 36: Screenshot of example application from MMODELS-1: Search

Appendix E: Mental Models Study

245

Appendix E Mental Models Study 2
E.1 IRB Approval

Figure 37: IRB approval for mental models study 2

Appendix E: Mental Models Study

246

E.2 Scenarios

Table 33: Nine scenarios from MMODELS-2

Imagine the following scenario…

A university has a video library that lends movies to its students. The library has a web-based
information system that offers basic functions like catalog browsing, searching, listing of videos
checked-out by a patron, etc.

In the following you will be asked a series of questions regarding how you think certain features of the
web site work behind the scenes. Please do not be concerned that you have no training as a web
programmer. This is not a test. Just tell us what you think. There are no right or wrong answers.

1) After logging in with your user-ID the web site always shows your full name and a logout button
in the upper right corner.

a) What do you think the web site must do to keep track of the fact that you are logged in even though
you go from page to page?

b) What do you think the web site must do to show your full name, although you only entered a short
user-ID? Take the user-ID “jsmith” as an example and show step-by-step how the web site determines
the name “John Smith”.

c) Note that the library home page only displays your name when you are logged in. If you are not
logged in, it shows a login box instead. How do you think this feature works behind the scene?

Appendix E: Mental Models Study

247

2) When you check out a movie, the librarian enters this fact into the web site and the web site
“remembers” that you did.

a) What do you think the web site must do to keep track of the fact that you checked-out a particular
video?

b) What specific pieces of information does the website store about each video in the library?

c) In what form and format do you think the web site keeps record of the checked-out videos?

d) Consider the case where there are two copies of a one movie. What do you think the web site must do
to keep track of the fact that one of the movies is checked out by you but the other one is still available?

3) The web site displays the total number of checked-out videos.

a) What do you think the web site must do to determine this number?

Appendix E: Mental Models Study

248

4) If the librarian accidentally enters an invalid telephone number (e.g. too short) while registering
a new patron an error-message is displayed.

a) What do you think the web site must do to determine whether or not the telephone number is invalid?

b) At what point in time do you think the web site checks whether the telephone-number is valid? Why
at this time?

c) How does the web site know where to display the error message?

5) Access to particular sections of the web site is restricted to particular users. For example,
everyone can login to see which videos they have checked out. But only librarians can login and get
a report of all checked-out videos.

a) How do you think the web site keeps track of the users who are allowed to login?

b) How do you think the web site keeps track on which user is allowed to see which part of the web site?

c) How do you think the web site checks whether or not your user-ID and password are correct?

d) What specific pieces of information does the website store about each user in the library?

Appendix E: Mental Models Study

249

6) In the tabular list of available videos there is a little button titled “Details” right besides each
individual video. If clicked, a new screen comes up showing such details as actors, genre, synopsis
et cetera.

a) How do you think the web site knows which movie’s details it should display on the new screen?
How does it associate a particular “Details” button with a particular movie?

7) The user can enter one or more keywords and the web site will show all videos that match.

a) How does the web site determine which movies to list? How does it determine whether a movie
matches the entered keywords?

b) Imagine there is another search field which allows you to also restrict the age of the movie (e.g. all
movies younger than year 1998). How would the web site determine which movies to list if it had to
check for keyword and age?

Appendix E: Mental Models Study

250

8) Once a person returns a checked-out movie, the movie no longer shows on the “Videos I owe”
screen.

a) How does the web site keep track of the fact that the movie has been returned to the library?

b) How does the web site determine which movies are owed by the currently logged-on user?

9) The web site sends a reminder e-mail if the video is over-due.

a) How do you think the web site knows when a video is over-due?

b) How does the web site determine the e-mail address of the person who checked out the movie?

Appendix F: Click

251

Appendix F Click
F.1 Screenshots

Figure 38: Defining a “Register” button and associated action using the form-based UI of Click

Appendix F: Click

252

Figure 39: The "Database" view of Click allows the modification of database schema and data

Figure 40: The "Sitemap" view of Click showing the example "Ride board" application

Appendix F: Click

253

Figure 41: The property dialog of the "Text field" component

Appendix F: Click

254

Figure 42: Parts of the properties dialog of the "Dynamic table" component

Appendix F: Click

255

Figure 43: Dialog to specify action rules

Appendix G: Summative Evaluation of Click

256

Appendix G Summative Evaluation of Click
G.1 IRB Approval

Figure 44: IRB approval for summative evaluation of Click

Appendix G: Summative Evaluation of Click

257

G.2 IRB Informed Consent

Appendix G: Summative Evaluation of Click

258

Figure 45: IRB informed consent form for summative evaluation of Click

Appendix G: Summative Evaluation of Click

259

G.3 Online Screening Questionnaire
Table 34: Online screening questionnaire for formative and summative studies of Click

Appendix G: Summative Evaluation of Click

260

Appendix G: Summative Evaluation of Click

261

G.4 Study Procedure Instructions
Table 35: Participant's instructions for summative study of Click

Instructions

The goal of our research is to explore ways to empower end users for building interactive, database-
driven websites. The purpose of this study is to evaluate Click, a prototype for an end-user web
development tool.

During the next 2 hours you will use Click to develop a basic web application, trying to replicate an
online ride board which will be provided as an example.

First, you will watch a 14-minute video that introduces you to Click’s main concepts and features.

Next, you can explore the example ride board application in order to experience the functionality that
you will later replicate using Click. You will get a small instruction sheet to help you discover and
understand the functionality.

Then, you will begin developing your own ride board application in Click while we will observe and
take note of the problems and bugs you discover in the software.

Finally, once you have finished creating the ride board application, we will ask you to fill in a
questionnaire to get your opinion on some of the features you have experienced.

Please remember that we don’t test you but Click, the prototype tool. We are trying to find out how it can
be improved in terms of functionality and ease-of-use.

Before we get started, do you have any questions?

Appendix G: Summative Evaluation of Click

262

G.5 Ride board Example Application Screenshots

Figure 46: Screenshot of ride board example application: Home

Figure 47: Screenshot of ride board example application: Search

Appendix G: Summative Evaluation of Click

263

Figure 48: Screenshot of ride board example application: Offer ride

Figure 49: Screenshot of ride board example application: Login/Logout

Appendix G: Summative Evaluation of Click

264

Figure 50: Screenshot of ride board example application: Details

Appendix G: Summative Evaluation of Click

265

G.6 Ride board Example Exploration Instructions
Table 36: Click - summative study: Ride board example exploration instructions

Example ride board application: Guidance

Imagine the ride board application to be used by all people at Virginia Tech to advertise/offer car rides
to other people or search for available rides.

Take some time to try out and explore the following functionality:

1) Look at the Home page which lists the destination and date of all posted rides in tabular format

2) Go to the Search page.
Try to search for “Washington”.
Note that all records are listed that have the keyword appear somewhere in the destination text.

3) Go to the Offer ride screen. Use your Virginia Tech PID and password to log in.
Note that as soon as you have logged in you can enter a new ride.
Just press “Save” without entering any data.
Note the three error messages.
Now enter some test data and click “Save” again.

4) Note that you have returned to the Home page which now shows your new ride.
Also, note that there is an “edit” and “delete” link next to the ride you have just entered.

5) Click on the “edit” link and change the destination text.

6) Go to the Login/Logout page.
Click on “Logout”
Return to the Home page.
Note how the “edit” and “delete” link have disappeared.

7) Click on the ride you have recently entered.
Note how it shows all the details of the ride on another page.
Return to the Home page.
Click on some other ride. Note how it shows all the details of the other ride.

Take some more time to explore the application until you feel that you really understand what it does.
Don’t worry, you can refer back to the example application at any point in time; so don’t make an effort
to memorize anything.

Appendix G: Summative Evaluation of Click

266

G.7 Help Instructions
Table 37: Click - summative study: Help instructions

Help instructions

Now you are ready to try to replicate the ride board application using Click.
Try to get as close to the example as possible.

Also, try to do so without asking us for help. Just pretend you are alone.

Please only ask for help when you feel “completely lost” and we will assist you.

If you get stuck, first try to find a way out by yourself, referring to the online help icons, Click’s To-do
list or the Sitemap. If, after a minute or so, you still don’t know how to proceed, please ask.

We will record all screen actions and our discussion for later analysis.

Do you have any more questions before we get started?

G.8 Facilitators’ Functionality Checklist
Table 38: Click - summative study: Facilitators' functionality checklist

Ride board: Functionality Check List

1. Headline and navigation links show up on EVERY page
2. Home: Table shows Destination & Departuredate
3. Home: Table shows “delete” link ONLY for currently logged in user
4. Home: Table shows “edit” link ONLY for currently logged in user
5. Home: “edit” link goes to Offer ride page
6. Home: Each table row is linked to Details page
7. Search: Table shows Destination & Departuredate
8. Search: Searches Destination field
9. Search: Each table row is linked to Details page
10. Offer rides: Login protected (all users at Virginia Tech)
11. Offer rides: Text fields for destination, departuredate, name, email, comments
12. Offer rides: Input validation for destination, departuredate, and email
13. Offer rides: Clicking “Save” saves to database
14. Offer rides: Clicking “Save” sends user to page Home
15. Login/Logout: Contains Login box
16. Login/Logout: is defined as the application’s “login” page
17. Details: Shows details of destination, departuredate, name, email, comments

Appendix G: Summative Evaluation of Click

267

G.9 Post-study Survey Questionnaire
Table 39: Click - summative study: Post-study questionnaire

Appendix G: Summative Evaluation of Click

268

Appendix G: Summative Evaluation of Click

269

Appendix G: Summative Evaluation of Click

270

Appendix G: Summative Evaluation of Click

271

G.10 Visualizations of Participants’ Development Timelines

Figure 51: Click - summative evaluation: Visualization of development timeline from participant #1

Figure 52: Click - summative evaluation: Visualization of development timeline from participant #2

Appendix G: Summative Evaluation of Click

272

Figure 53: Click - summative evaluation: Visualization of development timeline from participant #3

Figure 54: Click - summative evaluation: Visualization of development timeline from participant #4

Appendix G: Summative Evaluation of Click

273

Figure 55: Click - summative evaluation: Visualization of development timeline from participant #5

Figure 56: Click - summative evaluation: Visualization of development timeline from participant #6

Appendix H: Grant Information

274

Appendix H Grant Information
This dissertation is based upon work supported by the National Science

Foundation under Grant No. 0353309.

Any opinions, findings, and conclusions or recommendations expressed in this

dissertation are those of the author and do not necessarily reflect the views of the

National Science Foundation.

Appendix I: Publications and Presentations

275

Appendix I Publications and Presentations

I.1 Peer-reviewed Full-length Conference Papers

Rode, J., M. B. Rosson (2003). Programming at Runtime: Requirements &

Paradigms for Nonprogrammer Web Application Development. Proceedings of

Symposium on Visual Languages and Human-Centric Computing (VL/HCC'03).

Auckland, New Zealand. October 28-31

Rode, J. M.B. Rosson, M. A. Pérez-Quiñones (2004). End users' Mental

Models of Concepts Critical to Web Application Development. Proceedings of

Symposium on Visual Languages and Human-Centric Computing (VL/HCC'04). Rome,

Italy. October 26-29

Rode, J., Y. Bhardwaj, M. A. Pérez-Quiñones, M. B. Rosson and J. Howarth (2005). As

Easy as "Click": End-User Web Engineering. Proceedings of International Conference

on Web Engineering, Sydney, Australia. July 27-29

Rosson, M. B., J. Ballin, J. Rode and B. Toward (2005). Designing for the Web revisited:

A Survey of Casual and Experienced Web Developers. Proceedings of International

Conference on Web Engineering, Sydney, Australia. July 27-29

Rosson, M. B., J. Ballin and J. Rode (2005). Who, What, and How? A Survey of

Informal and Professional Web Developers. Proceedings of Symposium on Visual

Languages and Human-Centric Computing (VL/HCC'05). Dallas, Texas, USA.

September 20-24

Appendix I: Publications and Presentations

276

I.2 Book Chapter, Abstract, Technical Reports
Rode, J., M.B. Rosson, M. A. Pérez-Quiñones (2005). “End-User

Development of Web Applications.” End-User Development. H. Lieberman,

V. Wulf, F. Paterno, Eds. Kluwer. (to be published in 2005)

Rode, J. (2004). Nonprogrammer Web Application Development. Doctoral

Consortium. CHI 2004. Vienna, Austria. April 24-29

Rode, J., M. B. Rosson and M. A. Pérez-Quiñones (2002). The Challenges of Web

Engineering and Requirements for Better Tool Support. Technical Report #TR-05-01.

Virginia Tech Computer Science

Rode, J., J. Howarth, M. A. Pérez-Quiñones and M. B. Rosson (2004). An End-User

Development Perspective on State-of-the-Art Web Development Tools. Tech Report

#TR-05-03. Virginia Tech Computer Science

Vita

277

Vita
Jochen Rode was born close to and grew up in Germany’s capital city Berlin

experiencing life on both sides of the legendary wall. While enjoying the thrill of

occasionally failing physics demonstrations at Berlin’s Heinrich Hertz high school he had

his first professional encounters with information technology by working as a

programmer and computer networks technician for small businesses ranging from civil

engineering to funeral services. In a slightly more cheerful environment and parallel to

his studies in Business and Information Technology at the University of Applied Sciences

(FHTW) he worked for “Stadt und Land” – Berlin’s largest real-estate company as a

system administrator, programmer, and support staff for everything that had wires and

everyone who had problems with it.

In 1998 he came to the United States of America as a Fulbright scholar to work

towards world peace and a Masters degree at the Computer Science department of

Virginia Tech. After escaping the joys of a seven day work week by finishing the

program, he experienced people’s frustrations with information technology while

working as a usability consultant and web application developer at Virginia Tech’s IT

department. Motivated by the shortcomings of computer’s user interfaces, he returned to

Academia as a Ph.D student in search of a cure for too much spare time and the problem

of end-user software development.

