Chapter 2

Shell Equations

2.1 Introduction

In this chapter, we derive the governing equations of motion describing the static and
dynamic behaviors of a thin elastic shell under pressure. We follow Sanders’ shell theory
(Sanders, 1959) because of its consistency and good accuracy. First, the fundamental
theorems of surfaces, which relate the parameters of a shell, are presented. Thereafter, we
present Love’s first approximation and other simplifications to be used in the course of the
derivation. Love’s first approximation is then applied to simplify the three-dimensional
stress-strain relations, and the three-dimensional stress quantities are converted into two-
dimensional ones. It has been realized in the past that since the initial stresses due to the
applied pressure on a shell may be large, it is important to use the nonlinear strain-
displacement equations (Soedel, 1986). The nonlinear strain-displacement relation couples
the pressure with the stiffness terms in the equations of motion. First, we derive nonlinear
strain-displacement relations from the three-dimensional elasticity theory considering
nonlinearities in the in-plane strains only. These relations are later used in obtaining the

governing equations of motion of a shell under pressure using Hamilton’s principle. To this
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end, we find variations of strain energy, kinetic energy, and the work done by different forces
acting on a shell element. These variations are combined to find the shell equations and
boundary conditions. The equations are separated into static and dynamic parts. These
equations were derived earlier by Budiansky (1968) using tensors. In this study, we will use
these equations for subsequent analyses. As special cases, we also derive the equations
presented by other researchers (Sanders, 1963; Soedel, 1986; Plaut et al., 2000). The
equations are presented for a general shell and can be specialized for other geometries (e.g.
beams, plates, circular cylinders) with or without pressure as per the need. Since the
thickness of an inflatable structure is very small, bending moments in the governing
equations can be neglected, as they are very small compared to the in-plane stresses.
However, the methodologies presented herein will not ignore the bending moments so as to

keep the method applicable to a broader class of shell, i.e., with a relatively thicker wall.

2.2 Gauss-Codazzi Conditions

A shell is defined by a reference surface, thickness of the reference surface, and its

edges. Figure 2.1 shows a shell with the associated coordinate system (¢;, &, and § ).

Thickness

Reference
Surface

Fig. 2.1: Shell reference surface with the coordinate system.
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The reference surface, which defines the shape of a shell, is described by the two
Lamé parameters, 4; and A, and the two principal radii of curvatures, R; and R,. In order
to define a valid surface, these quantities must satisfy the following three differential

equations, known as Gauss-Codazzi conditions (Kraus, 1967):

Sy (4) L a4 o

RZ 80{2 8062 R] ’ R] aOC] 80{1 R2 ’ .
0 (104, 3 (104 A4y @2
80{1 A] 8051 8062 A2 80{2 R]RZ

Equations (2.1) and (2.2) are known as Codazzi conditions and Gauss condition, respectively.
A simple manipulation of Egs. (2.1) gives another form of Codazzi conditions (Soedel,

1986), which will be applied later in simplifying strain-displacement relationships:

R,

8052 ’ 8051

o4 (1+§ I R))] :(H 4 ]3141 Ay (I+§ 1 Ry)] :(H ¢ JaAz 2.3)

9z, Ry Joo;

For different shell structures the radii of curvature and the Lamé parameters will be in

general different and will be functions of «; and ;. However, they must always satisfy the

Gauss-Codazzi conditions.
2.3 Assumptions

In order to deduce the theory of the thin elastic shell from the three dimensional
elasticity, a few simplifying assumptions, known as Love’s first approximation, are used.

These assumptions are stated as follows (Kraus, 1967):

1. The thickness of the shell is negligible compared to its radii of curvature.
2. The deflection of the shell is small.

3. The transverse normal stress is negligible.
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4. The normal to the reference surface of the shell remains normal to the deformed surface.
5. The normal to the reference surface undergoes negligible change in length during

deformation.

We assume that the pressure remains constant as the shell vibrates. The prestresses
are assumed to be of membrane-type, i.e., uniform throughout the thickness. However, the
present theory can be easily extended to include the bending-type of prestresses. In addition,
we assume that the prestresses do not change with time. These assumptions are reasonable as
the shell thickness is assumed small and the shell is assumed to be undergoing small
vibration. In the following sections, the above assumptions will be accompanied by some
additional definitions used by Sanders in order to remove some of the inconsistencies in the
other shell theories such as Reissner’s version of Love’s theory (Reissner, 1941). The
inconsistencies are related to 1) satisfying the “sixth equilibrium equation”, and 2) zero

strains corresponding to small rigid body motions.

2.4 Constitutive Laws

LetO'iJr- be the initial stresses (caused by the pressure) and o;; be the vibratory
stresses, and let & denote the strains, where i, j =1, 2, 3. If the two suffixes are the same,

these are called direct stresses/strains and if the suffixes are different, they are called shear

stress/strains. From the symmetry of the 3-D elastic stresses and strains, we obtain

(2.4)

The engineering strains (y;>, ¥;3, and ¥,3) are defined as twice of corresponding tensor

shear strains, i.e.,

Y23 =2€3, Y13 =2¢€;3, Y12 =2¢€p). (2.5)
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Assuming that the material obeys Hooke’s Law and is isotropic, the stress-strain

relations for a three-dimensional element are

1
€11 = E[G” —v(03,+033)],

€= E[Gzz —-v(0;;1+033)],

1
£33 = 5[633 —v(01+022)], (2.6)
_023 _013 _%p
Y23 G’ Vi3 G,YIZ G

where E, G, and v are the elastic modulus, shear modulus, and Poisson’s ratio of the shell

material, respectively. Following Love’s first approximation, we substitute 033 =

Y23 =713 =0 in Egs. (2.6) to obtain

1 1 (¥ )
g 1=—(0;;-Vv0Oy), €9y =—(09—-VO;;), =—=< 2.7
11=—5(011=v022) 22=5(022-v0yy) V2=, 2.7)
Since the stress and strain cannot be put to zero at the same time, we get nonzero €33, 053,

ando ;3. While 0,3 ando;; are obtained from the equations of motions, the normal strain

£33 can be obtained from the following equation:

1%
£33 =—E(011 +0)2). (2.8)

The above equation can be used in calculating the constriction of the shell thickness during

vibration (Soedel, 1986). Solving Egs. (2.7) for stresses yields

E E
0= (£/1+VEn), 2= 3 (e22+VeEp), 012=G7;2- (2.9)
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The above-mentioned three-dimensional stresses are next converted to two-dimensional ones.

2.5 Stress Resultants and Stress Couples

The thickness of the shell is small, and hence the three-dimensional stresses can be

integrated over thickness to obtain the two-dimensional stress resultants and stress couples:

Ny 0] ¢ Nj» 02 ¢

N> :J 02 1+R—)dC, Ny =J 021 1+R—Jdé',
) 1

O3] ¢los 03] €023

My _¢)o < Mzz}: {022} g
{Mu} g{%}é(u&}cj, {MZI gcﬂ §(1+Rl)d§, (2.10)

where N;;, Ny», N>, and N,; are the vibratory in-plane stress resultants, ;3 and O3

are the transverse shear stress resultants, and M;;, M,,, M;,, and M,; are the bending
and twisting moment resultants. These quantities are shown in Fig. 2.2 and Fig. 2.3. Since the

order of moment arm lengths corresponding to transverse shear stresses (0;3, 0,3) is the
dimension of the differential shell element, the couples M ;3 and M ,; will be of an order of
magnitude less than the other couples. Hence M ;3 and M ,; are neglected. Definitions

similar to vibratory in-plane stress resultants can be also written for initial in-plane stress

resultants (N7;, N5,, Nj,, N5;):

Ni|_ flon ]+£)d§ {NSZ}: {652H1+£Jd§. (2.11)
{Nzrz} g{fﬁrz}( R; N3 41051 R

The corresponding bending and twisting moment resultants for initial stresses are not needed

as the prestresses are assumed to be of membrane-type. The initial in-plane stress resultants
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are shown in Fig. 2.4. The symbol p denotes pressure, which is assumed positive when

acting along the normal as shown.

Fig. 2.2: In-plane stress resultants and Fig. 2.3: Bending and twisting
external loadings. moment resultants.

Fig. 2.4: Initial in-plane stress resultants and the
pressure loading.
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2.6 Nonlinear Strain-Displacement Relations

The strain-displacement relations for any three-dimensional elastic body in an

orthogonal coordinate system are (Saada, 1974):

gr1=ejy +§(€121 +e31+e30),

€27 =ep+L(e3r +efr+edr),

€33 =¢33 +§(€§3 +efs+eds), (2.12)
Yi2=7Y21=epptex tepeytepertezes,

Y13 =731 =¢€13 ez tejjerz3tezzezrteriers,

Y23 =732 =€p3 tezyteperz tezzezr+epres,

where
13U, U, oH, W 0H,
ej]=— + + ,
H18a1 H1H28a2 H]H3 aé/

10U, Uy 0H, W _03H,

e = ,
22 Hz aa2 HIHZ 8051 H2H3 86:
H H
e33= L ow, Uy oHz, U 9 3 (2.13)
H3 BC H2H38062 H1H3 80{1
L _ 103Uy, U oH, L _ 13U, U, oM,
2 H] 80{] H]H2 8052’ 12 H28a2 H]H2 aOC]’
L 13U, W aH; L _ 1w _ U oH
13 H3 aé/ H1H3 8061’ 3 H] 806] H]H3 8{ ’
1 oW U, 0H, 13U, W oH;
€32 = - > €23 =—— - >
H28a2 H2H3 8C H3 82: H2H38052

where U;, U,, and W are the displacements, and H;, H,, and Hj; are the Lamé
coefficients of the elastic body along the coordinate lines ¢;, a5, and { , respectively. For a

thin shell, the Lamé coefficients H;, H,,and H 3 are given by
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H;=A4;(I1+{/R;), Hy=A4(1+{/Ry), Hz;=1. (2.14)
Using Egs. (2.14), we evaluate e;; in Egs. (2.13) as
. 1 U U, o[4;(1+& /R))]
= 4,1+ 8 IRy 3oy~ A;(1+C I R)A;(I+E I Ry) dat, 015
w o[4;(I+C/R))] '
A1+ /Ry) a¢ '

Substituting the Codazzi conditions, Egs. (2.3), in the above equation and after some

simplifications, we get

1

€=

v,
(]+€/R1) A] 8051

w
+— |
)

A]AZ 8052

(2.16)

Similarly, we evaluate other quantities in Eqgs. (2.13). The results are summarized in the

following equations (Teng and Hong, 1998):

1 13U, Uy My W
i (1+C/R1) A[ 8a1 A1A2 8a2 R]
i 13U, U; ady W
€ = — I
(1+C/R2) A2 8052 A1A2 8a1 R2
. 1 (10U, U o4 . i 13U, U, oy
T A+ IR\ 47 90y A4, dary | RTU+CIR)| 4y 00, 414, da
1 (1w _up) 1 (1w U,
€31 = €32 =
(]+C/R1) A] 80{1 R] (]+§/R2) A2 8052 R2
e :a—W e :aﬂ e _aL

(2.17)
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From the second statement of Love’s first approximation, the displacement field can be

represented linearly, i.e.,

Ui(oy,05,8)= Mz(a1aa2)+§

2

£=0

aC

Ujy(0y,02,8) = uz(azaaz)JrC (2.18)

W(oy,00,8) = w(oy,00)+& aVCV
4 0

where u;, u,, and w are the components of the displacement vector of a point on the
reference surface along the «;, 5, and { directions. Since the linear component, e3;, of
the normal strain, £33, is generally an order of magnitude larger than its nonlinear

component, the fifth assumption of Love’s first approximation is applied to the linear

component of the normal strain. This leads to

ow

es3=20 =0, (2.19)
o |y

Similarly, from the fourth assumption, we obtain that the linear components of y3; and y,;

are zero, implying

1 (1 oW UIJ LU,

(]-I—C/R]) A[ 8051 R] BC
! LW _Up ), sy, (2.20)
(1+C/R2) A2 8052 R2 BC

From the above relations, we can find the slopes of the displacements at the reference surface

as
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g =9V _m L ow

! BC £=0 RI A] 8051 ’

8U2 Uy 1 aw
=2 B 9 221
ﬁZ BC C=O R2 A2 aOCZ ( )

where f; and f3, represent the rotations of the tangents to the middle surface oriented along
the coordinate lines ¢; and «,, respectively. Using Egs. (2.18), (2.19), and (2.21), we can
write

Uj(og,00,8) =up(og, o)+ Brleg,az),

Us(ay,05,8) =uz(a,00)+& Ba(ay,az), (2.22)

W(OCI,OCZ,C) = W(alaaz) .

Substituting Eqgs. (2.22) into Egs. (2.17) yields the following relations (Teng and Hong,
1998):

e;p=€] +Cxy, ey =¢e3+{ Ky, e33=0,
ey =€5+(K3, ey =€ +{Ky, e;3 =B, (2.23)
e3; =€5 +{Ks, e3r =€5 +{ K, e3=P;.
where
8]0 _ 1 iau] n Uy E)A] +l ’ K'] _ 1 iaﬁl " ﬁz 8A1 ,
(1+C/R1) A[ 8a1 A1A2 8a2 R] (]+C/R]) A[ 8051 A]AZ aoc2
0 1 1 au2 uj 8A2 w 1 1 aﬁz ﬁ] BAZ
&) = —_— + — |, Ky= — + R
(1+C/R2) A2 8a2 A]AZ 8a1 R2 (]+C/R2) A2 8052 A]AZ 8a1
80 _ 1 iauz _ ujy aA] 2 = 1 iaﬁz _ ﬁ] 8A1
T+ /R 4 90, A4y D0y | I+ /R 45 00 A4y Dy |
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K4

80_ 1 (] au1 Uy aAz) 1 (] 8ﬁ1 ﬁz aAz)
4= - : A, daty ’

(1+C/R2) A_ZaOCZ A]AZ 8051 - (]-I—C/Rz) A2 80{2 A]AZ 8051
o_ 1 1B
&= (1+§/R1)ﬁ]’ SETURCIR) R,
o_ 1 I A )
=Tt iRy P ST T U IR R,

(2.24)

Now we substitute Egs. (2.23) in Egs. (2.12) and neglect the terms having § 2 The
remaining part can be separated into two groups based upon dependency on { . The group of
terms that does not contain { represents the changes in lengths of the shell element. The

other group represents the changes in the curvatures and the torsion of the reference surface.

To demonstrate this, we substitute e, e,,, and e,; from Eqgs. (2.23) in £;; to get
g1y =€+ +L0e] +§ k)7 + (€5 +CK3) + (€5 + L K5)71. (2.25)
After neglecting terms containing § 2 and separating the terms in the two groups, we obtain
11 =7 + (€7 +(5)7 + (€91 + Lk +ef xy +ef ks +eds). (226
Similarly we can obtain €,, and €;,. The following equations summarize the results:

t t t t t t
gj1=€1+CKy, €y =€,+0 K5, Yi2=Y;,t8K;,.  (227)

where

t 1 2 2 2 t 0 0 0
81:8104'3[(8?) +(€3)° +(e9)°1, Ki=k;+ef Kk, +ef K3 +€5 K5,
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1
eh=¢% +E[(83)2 +(840)2 +(e60)2], Kh=Kk,+e9K,+el K +EJ K,

vh,=€$+ed +efed +£%e§ +e%¢ef, (2.28)

Kiy=k3+k +K;€5+efK +K,65 +e5K;+K5€0 +€9K5.

The superscript ¢ in the above equation denotes the total quantity, i.e., summation of both
linear and nonlinear terms. Equations (2.27) and (2.28) represent exact nonlinear strain-
displacement relations. In order to simplify, we introduce some more approximations. Since
we assumed the initial stresses to be of membrane-type, i.e., no bending-type prestresses, it is
sufficient to retain only linear terms in the expressions of changes in curvature and torsion.

This implies
t t _ r_
K;=Kj, K>=Kj, K, =K3+Ky. (2-29)
In order to satisfy the “sixth equilibrium equation” and the zero strains due to the small rigid

body motions, Sanders (1959) defined a new quantity S, that represents the rotation about

the normal to the reference surface, given by

_ 1 | 9(Aup)  d(Apuy)
ﬁn B 2A1A2|: 80{1 8052 :| (230)

The new strain quantities are defined as follows:

S =g ﬁn s = g0 ﬁn

STE IR /R) 4 1+C/R,’

K3 =K _Pu/By , Kf,:K4+—ﬁ”/R2 . (2.31)
]+C/R1 ]+C/R2

Expanding €3, we get
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8§= 1 (iauz _ uj aA] )_ 1 (A au2 +u2 8A2 —AI aul —u, aAI ]

(]+C/R1) A[ 8061 A1A2 8052 2A1A2(1+C/R1) 28061 8a1 8062 8052
(2.32)
After simplification, we get
O L Ouy 1 Ou w 04 _uy 04y ) (2.33)
2(1+C/R1) A] 8a1 A2 8a2 A1A2 8052 A]AZ 8051
Similarly, we expand €} to find
822 1 iauz +L 8u1 _ ujy 8A1 _ U 8A2 . (234)
2(1+C/R2) A[ 8051 A2 8052 A]AZ 8052 A]AZ 8051
One can show by neglecting { /R; and { /R, with respect to / that (Sanders, 1959)
1 1
ey =¢3, K3 —Kky=[——— 3. 2.35
4 3 3 4 (RZ R, }3 ( )

Using the new definition of strains and neglecting { /R;and { /R, in comparison with /,

we get the in-plane strains as

e =ef + 1) +(e5)7 + 265 By + (B + (8,1,
£5 =¢3 +§[(s§>2 +(e5)2 =285 By +(B2)? +(B)7]. (2.36)

t 0 o S{~0 1] 0 1]
Vi2 = €3 +€4 +E€3 (81 +82)—ﬁn (81 —82)+ Bi B,
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and the bending and twisting strains can be obtained from Eqgs. (2.19). In the next section, we
use the above strain definitions in order to derive the governing equations of a shell vibrating

under a constant pressure.

2.7 Hamilton’s Principle

We derive the equations of motion of the shell using Hamilton’s Principle. Let’s
assume that a shell, subjected to a body force vector F and a surface force vector T, is

changing its states between times 7,and ¢;. Hamilton’s Principle states that the actual path

taken by a dynamic system is such that (Kraus, 1967)

{
5](17 —Kg)dt=0, (2.37)
t

o

where IT is the potential energy and Ky is the kinetic energy. Let Uy be the strain energy

and U be the displacement vector at equilibrium. The potential energy is defined as

H:UE—jT-UdS—J'F-UdV. (2.38)
S |14

The kinetic energy is given by

Kg :éij-UdV. (2.39)
V
Now we can write Eq. (2.37) as
t
SJ{UEJT-UdSJF-UdVéJpU-UdV dt=0. (2.40)
t S V 4

o

In the following sections, we consider the terms in Eq. (2.40) individually.
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2.7.1 Variation of the Strain Energy

The strain energy is defined as the volume integration of the strain energy density

function P, i.e.,

Ug = deV. (2.41)
4

The material is assumed to follow Hooke’s Law (Fig. 2.2). Since O'ijr- is constant in time and

0;; is proportional to &;, the strain energy density function can be given by (Fig. 2.4,

Soedel, 1986)

_1

P=2(011€11 %0227 +033€33+023€23+037€3)+03/€31+03€3 (2.42)
r r r r )

+02€17+021€21)+(0] €11+ 02612 +02/€21 +022€22).

In the above equation, prestresses 033, 053, O3>, O3, and 03, related to the transverse

direction, are assumed negligible. Now, using symmetry of stress and strain tensors, Eq.
(2.42), and the definitions of the engineering strains, Eq. (2.43), we can write the above

equation as

_ 1 r r r
P=5(011€11+02285,+033€33+023Y23+073Y13+012Y12)+011€11+012Y12+022€2.

(2-43)

According to Love’s first approximation, £33 and o33 are negligibly small, which leads to
dropping the terms corresponding to Oe€3; in Eq. (2.43). Though from Love’s first
approximation dy,3 and Jy;3 are also zero, they are not dropped from the strain energy

expression in order to obtain the nonzero transverse shear stresses (03, 0,3) from the
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governing equations. The variation of the strain energy density function can now be written
as

0= 5c,,+- 9 50+ 5y, - 5y, 5y, (2.44)

Jgr; 0€7; 0723 9713 9712

Ny,
7

&

Fig. 2.5: Initial and vibratory stress as a function of strain.

In order to find the derivatives of P with respect to strains, we use Eq. (2.43) in conjunction

with the stress-strain relationships (Egs. (2.9)). From Eq. (2.43), we can find the derivative of

P with respect to €;; as

—aP :i 0_11+_a()'11811+80'22822 +G;1. (245)
8811 2 8811 8811
Using Egs. (2.9), we obtain
P _ 1 o+ £ +v—E £, toj,=0;,+07 (2.46)
— 51911 11 22 11 =11 11- .
8811 2 —V2 ]—V2

Similarly, other derivatives in Eq. (2.44) can be calculated. Summarizing, we get

P r
—=0;;+07;, ——=0,,+0),
92, 111071 91, 21022
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oP
9712

oP oP
= =023, ~_——=073. (2.47)
9723

-
=02+02, 3
Yi3

This leads to the following expression for the variation of strain energy:

8Uf = (01861, +025 855 +015 872 +0 23 8y23 +073 8y131dV

v (2.48)
+ [[07 8811+ 05, 8625+ 07 8y;21dV.
v

Equation (2.48) contains variation only in three-dimensional strains. These variations are
next written in terms of two-dimensional strains. For example, using Egs. (2.27), (2.29), and

(2.36), we can write £;; as

11 =] +2 (€7 +(€5) + 265 B, + (B +(B) 1+ k. (249)
Now the variation of £;; can be written as
Oe;; = 0] +e7 O] +€3 0e3+ B, 0e3 +€5 8B, +B;8B8;+ 8,08, +C 6x;,  (2.50)
which is simplified to give
de;;=(1+€7)0e] +(e3+ B,)0e3 + B,0B; + (3 + B,) 8B, + Ok, . (2.51)

As mentioned earlier, since the initial stresses may be large, it is necessary to use the
nonlinear strain-displacement equations. The nonlinear strain-displacement equations will be
used only in association with the initial stresses (second integral of Eq. (2.48)). This has a
twofold advantage: 1) it maintains the proper homogeneity in the order of the equation, and

2) the resulting governing equations remain linear. Substituting de;; in Eq. (2.48) produces
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[to1+07(1+€]) 8e7dV + [o]; {(e5+ By) G5 + BrOB +(€5 + By) 6B, 1V .

;
(2.52)

Substitution of strain-displacement relations in the above equation yields

[ 1 (za&,] Suy 04, 5WJ+ ¢ (iaaﬁj

r ] o
J{Guﬂm( +er); 1+ C/RJ)LAI dax; A1A2 da, R; | (I+C/Rp\| 4; oy
0B, 04 r
- Alfj a_l):|dV+J611 {(8§+ﬁn)68§+ﬁ]5ﬁ]+(8§ +ﬁn)6ﬂn}dV
142 00 1%

(2.53)

The volume integral in the above equation can be written as the triple integral in the

following manner:

[ 1 (]85141 Suy 04, 5w]+ ¢ (Laaﬁ,

JJI{011+611(1+81)} I+ C/RJ)LAJ do; A1A2 dor, R; | (U+C/Rp)| 4; doy

08

op, o r s s s
+ﬁﬁ]]/11 AZ[u}%)(HRi)dgda,dag + | | Jois (€3 + B des+ BioB; + (€3

Ay 4y dor; 2 a0

1 2

+ﬁn)5ﬁn}Al A2 (I—I_%J(]-i_RinC dOC] dOC2.
(2.54)

After some simplification and neglecting { /R;and { /R, compared to I in the second

integral, we get

J [ Jonoiiareny] 1+ C L 00wy Guy 0dy w1 00B; , OBy oy )|,
a,o;§ A] aa] A]AZ aaz R] A] 80(1 A]AZ 80{2

4y d¢ doyday+ | | [of, (HLJ{(Q + B) 03 + B10P; + (€5 + B) 6Py} A; Ay A day day.

a0 8
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(2.55)

Now integrating over the thickness and neglecting the moments due to prestresses, we obtain

jj[{N,ﬁNf,(He,O)}[AZ 885”1+5u o4 ﬂéwJ+M”[AZ%+ai5BZI|doqda2
o

oy 80(2 R[ 8a1 8062
+ | [NTi(e5+By) Oes + BioBy + (€5 + B,) 8By} Ap Ay dory doy.
00

(2.56)

Similarly, the contribution of d¢ 5, is

J. I|:{N22+N22(1+82)}(A] ?fuz &Jlaﬂ-%ﬂan-F (A] aaaﬂz 8A2 5ﬁ }:|d051d052
o>

o, o; doy Ry day
+ | [N3 (€5 - B,)OeS + B20Bs — (€5 - B,) OBy} A; Ar doyy oty
00

(2.57)

Again, using Egs. (2.27), (2.29), and (2.36), we can write dy;, as

81y = 06§ +6e9 + ¢ (5k;3+ Kk, )+ (ef +€9)0e3 + (€5 — B,)0e] + (€5 + B,,) €3

—(e7 —€3)0B, + B> 6B; + B B>
(2.58)

As before, the geometric nonlinearity is considered only with the prestress term. Keeping this

in mind and substituting 8y, in the shear stress related terms of Eq. (2.48), we get

[(12+072)18€3 + 86 + (8 + 6k, )y + 015 1(e7 +€3)83 + (€5 — By)def +(e5 + By)deS
7

_(810 _33)5ﬁn +B,0B;+ B 0B, dV.
(2.59)
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Substituting the strain-displacement relations and representing the volume integral in terms

of a triple integral, we get

.[ .[j[(612 +61r2){ I (198w Su o4y ]+ ! [i douy _ duy 94, ]}

(]+§/R1)LA] 80{1 A]A2 8052 (]+§/R2) A2 8052 A]AZ 8051
00§

+(0); +Gzrz)§{ I (1906, 86, o4, J+ ! (i 9B _ OBy 94, }HAI 4

(U+G/RY\ 4 do;  Ajdy 9oy | I+ /Ry Ap 9oy Ay 0
i i r o o s s o s o
1+ N 1+ > |dL dory doty + [ [ [or2te] +3)0e5 + (e5 - B)de + (€5 + B,)de3
! 2 a0 ¢

(€] —€5)0B, +B26B; + B; 6B2}A; 45 [1 + Ri}[] + Ri]df dajdo.

1 2
(2.60)

Using the definition of the stress resultants and neglecting  /R;and { /R, compared to /

in the second integral, we get

o (138,  Su; o4 o1 98u;  Suy ody i

Ny +Nj| —Z22 - +(Ny + NG| — 2L Mol —

0;'.0-5[|:( 2 12)[141 8051 A]A2 80(2] ( 21 21)[142 8052 A1A2 8a1 2 A[
2 Y]

9B, OB 94 1 98B, B, 94, o
- My — - Ayda; d N 5
doy  Apd; dor; T Ay day  Agdy 0oy |17 Graoz j .[ 124(€7 +£2)0€5 +

o0

(€3 — By)0e] + (€3 + B,)0e5 — (€] —€5)0B, + B2 8B + B OB, A1 Ay doy doy.

(2.61)

In Love’s theory, the eight stress resultants and couples N;;, Ny>, Ny, Nyj, M1, M5,
M,, and M,; were reduced to six by letting N;,=N,; and M;,=M,;. However, after
imposing these equalities, the stress resultants N;, and N,; and stress couples M;, and

M »; do not satisfy the equilibrium condition given by the following equation, known as the

sixth equilibrium equation:
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My My, _

Nyj+ N5 —Nj,—Nj,+
2t Mo =N =N+ ==

(2.62)

One should note that in the above equation, the prestress terms have been also considered. If
one is interested in satisfying this equation and reducing the number of stress resultants and
couples as well, the resultants and couples will have to be defined in a new way. Here, we
follow the approach of Sanders (1959) and modify Eq. (2.61) using the sixth equilibrium
equation and the rotation of reference surface. To this end, the left side of the Eq. (2.62) is
multiplied by f3,, and added to the integrand of Eq. (2.61), i.e.,

1 98uy  bu; o4 1 98u;  Suy My 1 3B,
N;jp+N +(Ny +N + M| ——=
J‘ I|:( 2 12)[141 80(1 A]A2 80(2} ( 21 21)(/12 80(2 A]AZ 8051 2 A] 80(1

00y

_ﬂ%}-}MZ][iaBﬂl — 5[32 aAZ J+(N2] +N5]—N12 N]2+M21 MIZ }ﬂn]AIAZ

A1A2 8052 AZ 8052 A]AZ 80(]
dogdoy+ [ [N]{(e] +€3)085 + (€3 — B3] + (€5 + B,)3e3 — (6] —£3) 6B, + B2 3By + B; B2}

00

A1A2 dOC] dOlz.

(2.63)

After some simplification, we obtain

1360, &uy o4, 1 96u,  &uy 94,
N N -0 Ny +N 0,
J I[( 12+ 12)(A, da, A4, o B }r( 21+ 21)(A2 o, At 9, B

0y 0

oty L2982 38 o4y 9B, o (1 0B By 04y 3B )|t e derss
12 A] 8051 A]AZ 8052 R] 2 AZ 8062 A]AZ 8051 R2 2 ! 2

[ [N (e] +€3)3e5 +(e5 - B,)Be] + (€3 + B33 — (67 —£3) B, + B2 By + By OB2} 414,
00y
dOC] d062.

(2.64)

Using the definition of modified shear strain in Eq. (2.31) and ignoring { /R; and { /R,

with respect to /, we can write
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j J‘{(NIZ +N;2)58§ +(N2] +]\/v51)5€;(v +M12 51('3; +M215K'j }AIAZ dO(] dO(Z +
020

[ [NI2 1] +£3)3e5 +(e5 - B3] + (€5 +B,)OeS — (€ —£3) 3B, + B2 OBy + B B2} A Ay dory dars.

o0

(2.65)

Now from the relations given in Egs. (2.35), we obtain

Ny +Njp+ Ny +N) M 1 1
jj (Np2 +Njp + Noj 21)258§+ 12 158 4 i 4| - = lses by
2 2 Ry R
00

M221 {&cﬁ +6K3 _(RL_RL}& }AIAZ dagday + [ [N {(e] +£9)0e5 + (2.66)

2 1 o0

(€3 — By)0e] + (€5 + B,)0e5 —(e] —€5)0B,, + B, OB; + B; B2} A1 Ay dar; do,y.

The quantity (% IRL - Ri }5&? can be ignored, as it would be small. This gives
2 1

r r
J‘ _[ {(sz +N]2 ;NZ] +N21)25.g§ +(%}5x§ +8Kk7) A4y doy day

0 0y

+ [ [ND2i(e7 +€3)3e5 +(e5 - B,)Oe] +(e5 + B33 — (e —£3) 3B, + B> 3B + (2.67)
o0
BB} A14r day do;.

Following Sanders (1959), we define the following stress resultants:

1 ~ 1
N12=3(N12 +N;y), N1r2=3(N1rz +N§1),

~ — 1
M]Z =—(M12+M21), K2 :E(Kg-l-l(j). (268)

In the light of these new definitions, we can rewrite Eq. (2.67) as
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J‘ j{(NIZ +]\7;2)268§ +M]226E12}A]A2 dOC] dOlZ + J‘ J‘N;ﬁz{(slo +83)58§ +
00 o0 (2.69)

(€3 — By)0e] + (€5 + B,)0e5 —(e] —€5)0B,, + B, OB; + B; B2} A1 Ay dar; do,y.

As mentioned earlier, the contributions of dy;3; and dy,; are sought even if from Love’s

assumption they should be zero. Since these quantities are quite small, we consider only the

linear parts of y;3 and ¥,3. From equations (2.12), (2.17), and (2.22), we get

1 1 oW U oU 1 1 0 +
vis = ( 1]+ 1 _ (_ w o uy Cﬁ]}rﬁl_

(1+C/R1) A[ 8051 R] BC _(]-I—C/R]) A[ 80{1 R]
(2.70)

Calculating the variation of the potential energy associated with dy;3, we get

I (136w Su;+¢ 8By ¢ ¢
|1 o 22 o o+ £ Vo1 Ve

a0y d

2.71)

The above equation can be rewritten as

1 (106w u), I ¢ ¢
J. .[.[ [(1+§/R1)LA] do; R, ]+ U+CIR) ﬁ]]AI(“_R ]A2[1+R2 Jdgdaj dot, .

08

(2.72)

Neglecting £ /R; in comparison with / and utilizing the definitions of the stress resultants,
we obtain

oow

o

Ou;
j jQ13 AZ__A[A2 R—+A]A2 5ﬁ1)d0{1 dOC2 (273)

aZ al 1
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Similarly, the contribution of 6y,; is

oow ou,
[ Joxl A5 =44 R_ + 474, 8B, )doy dar; - (2.74)
>

o,

Combining and rearranging the contributions of all the terms in Eqgs. (2.48) and writing f3,

and €3 in terms of displacements using Egs. (2.30) and (2.33), we get

ddu; 04, A;4
U= | J.l{N11+N11(1+€1)+N12(83 ﬂn)}(AZ By L+ Ty L du; 2 25W)+{N22 + N3
e o; 0oy 1
~ dou 04 A;A4
(I+€5)+Nj, (8§+ﬂn)}[141 Ey 24 i 2 5u;y + n = 5WJ+ {2(Nj3+NJ5)+ Nij(e3 +By)
oy dog 2
+ N5y (€5 - B+ Nj(el +€3)) AZ%—aﬁ&lﬁ %—aﬁ&& +My| A —+ 9%,
a(XI 8062 8052 8061 8 o
04 99 04 998 04 99 04
+a—15ﬁz +M | 4 9%, , —28B; |+ M| 42 9%, _ 94y 5 oB; + 4 9%, _ 255
062 8 2 8051 805 8 8052
9ow _

11 1 {d(Ay6up) 9(A;0u;) oW Su;

2\R, R, - Ay === A Ay —F+ 4,45 §, A

Z(Rz R1I da; dar; +013( 290, 1R, + 4145 6B;)+ O3( 1,
ou ~

AjAy —=+ 4;4, 6‘32)+(N71ﬂ]+N;2ﬂ2)A1A2 6[3] +(N52ﬂ2+]\];2 ﬂ])AIAZ 5ﬁ2 +?{(N]]

€5+ )= Noates )~ e e 2420 2 Hdal dot.
(2.75)

In order to remove the differentiation of the variation of displacements, we perform
integration-by-parts. For example, we use the following integration

O[(N;;+Njj)A4;] Suy ety dosy.

| I(N11+N11)A2id051 doy = [(N;+Njp) A dupdoy - | ] o
o 020 !

00

(2.76)

48



Repeating the above operation on each of the terms containing the displacement derivatives,

we get

N, + NI (I1+&9)+ N} ,(e5—B, ) A4 ~ 0A
II COUN + N U +ef)+Npa(es — B} 2]8u1+{N“+N1’1(1+e}’)+N1’2(e§—ﬁn)} 04,
8a1 8052
o) oy
r o N4 Ky
5u2+A1A2 J_a[{sz+N22(1+82)+N12(83+ﬁn)}A1]5u2+{N22+N52(1+85)+ﬁ;2(g§+
R] 80{2
aA A;4 1 a N7 AT r Ky r Ky -~ o
ﬁn)}(a 2 Gup ++1L 25WJ———[{2(N12 +Npp)+Npj(e3+B,)+Nyy(e3—B,)+Np(ef +
OC] R2 28061
o 1 9 AT ATl r K} r K} N4 0 0
£5)}A;16u; _387[{2(N12 +Np2)+Njpp(e3+B,)+No(ez —B,)+ Nyy(ef +€5)} 4;10u;
2

1 ~ YA roaS r s A o o 04 04
—3{2(1\’12 +Njp)+Npj(e3+B,)+Nyy(e3—B,)+ Njs(ej Jrﬁz)}(a L uy+—26u, }—
062 8051

oM ;;45)
8051

04 (M 5,4 04 I(M ;4 I(M ;4
9B+ M50y = 2 8y 4 M 572 3~ L2 oy ST g,

~ 04 04 1 0 | ~ 1 1 0 | ~ 1 1
-Mj; [ﬁ%ﬁﬁ‘sﬁz )+?{—%[M12(R—2—R—]ﬂflz5uz +E[M12(R—2—R—]ﬂ/115u1}

_9(0Q1342) 5W—Q13A1A2%+Q13A1A2 5B, —MM—QB/M A2%+Q23A1A2 B, +
aa] R] aa2 RZ

1 0
(N71B1+N12B2) 4142 0B, + (N3 By + Ni2Bp) 414, 6B; —EW{N}}(E? +By)— N2z (€3 - By)
1
- 7 9 -
~Nj2(e] —€3)}Az0u; +3W{N1r1(8§ +B,)—Noy(e5 - B,) - Njo(e] —85)}1415“1]61051 do
2
- 7~ -
+ JUN22 + Nay(I+23)+ Npp (5 + By} Ay duy +A2(N 5 + Nio)+ Njy (85 +By)+ N32(85 = By)
o
- _ i
+Npp (€] +€3) A Sup+MyyA; 0B, +M 54,0 +Q23A15W—?{(N1r1(8§ +B,)—N3o(e53—By) -
- R -
Ni2(e] —€3)} Agdu; ——(———}A]&lz]daz + [UN +NT (U +€]) + N2 (€5 = By)}A Sy +
o2
;] o~ - - -
E{Z(N” +Njy)+Npj(e3+B,)+Noy(e3 —By)+ Njs(e] +€5)} Ay Suy+ My Ay OBy +M 54,08, +
M,

1 ~ 1 1
Q13A25W+3{(N1rl(€§ +B,)—Niy(e3—B,)—Nj(ef —€9)} Ay0u, +T[R__R_}425u2 ldocy.
) Ry

Rearranging the terms in Eq. (2.77), we get
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AN+ NI (I+e])+ Njy(E3 = By)i4s] , or L S s 94,
- N N5>(1 N _
O;[O{]H o, +{Nyy+Nyy(I+£3)+Nj, (€3 +Bn)}aa1

19~ - - I~
EW[{Z(N” +Njy)+Njj(e3+B,)+Ny(e3—B,)+Njs(ef +83)}A1]—E{2(N12 +Nj))+
2

~ 04 A A 1 0

N1rz(8§+ﬁn)+N52(8§—ﬁn)+N1r2(810+83)}—a L0324 = ——{(N](e5 + Bp) -
OC2 R] 2 8062

4 9

N%y(e3 - By) - Ni>(e] —83)}1‘11—7%[1‘712(— ——]]}5“1

ANy + Ny (I+€3)+ NJp (e5+ By} A4 = 04
+{_ [{N22 + N2o( 65; 12(€3+ By} 1]+{N11+N71(1+8?)+N;2(8§—ﬁn)}ﬁ
2 2

19~ - I~ o~
Fr [{2(N;,+Njp)+ Nj(e3+B,)+ Nis(e3 —/3,,)+N1r2(510+83)}A2]—3{2(N12+N}2)+
i

~ 04 A; A 1 0
NTi(e5+By)+ Noy(e3 =B)+ Nja(ef +€3)) =2~ 03 L2 ————(N]; (3 + B,) -
80(1 R2 2 80(1
~ A, 0o ~ 1
N5, (€5 = Bp) = Nip(e] —eS) Ay =2 ——| Mol ——— ||{dus +
2 80(1

A A ~ A;A
g, N2 Nop U e) e Npp (e +By)) =2 =

{{Nu + N (I+€7)+ Njo(es - Bt

d(Q1342)  9(0234)) Sw
8061 8052

+{_ d(M;;14;) +M228ﬁ—1\7[1 04;  O(My4;)

5 2 +Qy34;4; + A Ay (N, ﬁ1+ﬁ;2ﬁ2)}5ﬁl+
OC] 8a1 8062 8a2

{_ (M 4)) My, 04, i), 04y 9(My45)

+ 0534145 + A; A(N5y By + N1 1685 |dodar;
8052 8062 aoc1 aoc1

+ [N + N3 (1+€3)+ N> (65 + By) }dup +{(N 5 + Nj2)+ N5y (e5 - B,) + Njs €]
o

My(1 1 ~
——212 (_R _R_}&‘I +M,0B;+M20B;+0s36w]4 do; + _[[{N11+N1r1 (I+e7)
2 1 %%
NeA ) N Ne4 r s NP MIZ 1 1
+Np2(€3 = Bu)tou +{(Ny2+Npo)+Npj(e3+B,) + 2Ny €5 i } Ous
> Ry

+M ;8B +M 8B, + Q36w Ay doty.
(2.78)
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This completes the derivation of the variation of the strain energy.
2.7.2 Variation of the Kinetic Energy

In Eq. (2.39), if we substitute the displacements U;, U,, and W, we get

KE :éjp(Uz t1+U 5+ Wit3)-(Ut; +Us b + W t3)dV . (2.79)
;

where ¢;, t, and #3 are the unit vectors along the coordinate lines ¢;, o5, and (,

respectively. Now using Eq. (2.22), and representing the volume integral in terms of a triple

integral, we get

Kp =1 [ [ [pl;+¢ B’ +Giz+& B2)” + ()14, 4y d§ doyday . (2.80)
0,8

where we neglected {/R; and { /R, in comparison to unity. After integrating across the

thickness, i.e., { =—h/2 to { = h/2, we can write the above equation as

2
Kp =20 [ [16iF +d3 407+ 2 (B7 + B3N A) 4 dey e 2381)

o, o

Now we evaluate the variation of the kinetic energy term of Eq. (2.40):

4 ] 2
jsKEdt:%h(S” j[(ui+a§+w2)+%(ﬁf+B§)]A1A2da1da2dz. (2.82)

t 1,0, Q

o

The above equation can be rewritten as
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I g 2
I5KE dt = phj J I[(ul&ll +uy 6M2+W5W)+E(ﬁ15ﬁ1 +ﬁ2 5ﬁ2 )]A[ A2 dOC]dOCZ dt.
t

4 ZLo o, q

(2.83)

To eliminate the time derivative in the variations, we perform integration-by-parts to obtain

t, 2 L
[oKpdt=ph| [[Gi6u;+i; ity +06w)+— (B 6By + B2 8B)] 4; Az doty dory
g %2 “(2.84)

t 3
—ph[ | [iti; 6y +iiy 6uy +wow)+-—(B1 0By + B2 0B2)14; 4; doy day dt.

to aZ a]
Recognizing that the virtual displacement vanishes at times ¢, and #; and neglecting the

rotatory inertia terms, p h’ B ;/12 and p 3 B » /12, which are usually very small, we obtain

t t
[SKpdt=—ph| | [lGi;6us+iiy 8uy+ivSw)]4; 4, doy dery dt. (2.85)

lo loy O

The above equation gives the variation of kinetic energy term in Eq. (2.40).

2.7.3 Variation of the Work Done by Pressure

As the shell vibrates, the enclosed volume changes. We assume that the pressure force acts
normal to the deformed surface during the vibration. This is called the follower action of the
pressure force (Brush and Almroth, 1975). Variation of the work done by the pressure p can

be written as (Budiansky, 1968)

5Wp = J Jp[ﬁlﬁu1+ﬁ25u2 +(810 +83)5W]A1A2d0€1d0€2. (286)

o) 0y
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2.7.4 Variations of the Work Done by External and Edge Forces

Let’s assume that g;, g,, and g3 are the static equivalents of the external forces along the

coordinate lines ;, @5, and §, respectively. These forces are applied on the mid-surface
and are equivalent to the body forces and the surface forces. Denoting the variation of the

total work due to these forces by W} , we write

6WL = j j[ql5U1(OC],052,0)+QZ6U2(OC],052,0)+Q35W(OC],062,0)]A1A2d051d052. (287)
00

Representing this in terms of the displacements of the reference surface, we get

Wy = | [y 0up+q; 8us+q3 8w 4y Aoty ders. (2.88)

o0

On the edge with constant ¢;, let 6;;, 6;,, and 6,3 be the vibratory stresses in the o,
o, and § directions, respectively. The variation OW,, of the total work done due to these

edge stresses is

We, = J 1[51 0U;+0,6U,+0,3 W]A,(1+&/ Ry)dE dat,. (2.89)

o, ¢
Using Eq. (2.22), we get
e, = | 167 (8uy+8 6B)+5 2 (Buz +§ 8B2)+03 Swldy (1+§ 1 Ry)dE daxs.
o8

(2.90)

Integrating over the thickness, we get
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OW,, = [ [Ny 8up+ My 8B+ Ny uy+ My 085 +0;3 w4, dory. (2.91)

o)

Similarly, if we assume that 6,5, G,;, and G,3 are the stresses in the o, o;, and §

directions, respectively, on the edge with constant ¢¢,, we get the variation of the total work

done as

€

ow, = _[[NZZ 5142 +M225ﬁ2 +N215M1 +M215ﬁ1+§23 5W]A1d051. (2-92)

o
2.7.5 Combining All the Energy Variations

Now that the variations of the potential energy, kinetic energy, work done by the
pressure, and work done by the external and edge forces have been found, we can put them in

Eq. (2.40) to obtain
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tfj IH_a[{Nu+N71(1+e;’)+ﬁb(e§—ﬂn>}A2]+{N22+N52(1+85)+ﬁ1r2(8§+ﬁn) at,

Jda Jda
toa2 oy 1 !

1 9 - o - [~ o~
SEPN [{2(Nj;+ Njp)+ Njj(e53+B,)+ N)s(e3 —ﬁn)+N1r2(8f+83)}A1]—3{2(N12+N1rz)+
2
~ 04 A A 1 9
NTi(€3 +Bu)+ Noo(e5 =B+ Niz(ef +83)} 51 =013 =12+ o~ {Nj (€5 + By) = Ni (€3
OCZ R] 280(2

~ A; 0 ~ 1 .
—B,)—Njs(ef —820)}141—71%[1‘412(———)]—1?& Aj Ay + A; 4> (p hiig —(11)}&!1
2

O[{N,y + N5, (1+€3)+ N7, (5 + A N 04
+{_ [{N22 + N2a( 5; 12(e3+ By} 1]+{N”+N;I(]+8]0)+N;2(3§_Bn)}ﬁ
5 2

1 9 ~ ~ ~ ]~ ~
—Eg[{ﬂNm +Nj))+Njj(e3+B,)+Noy(e3—B,)+Npo(ef +83)}Az]—3{2(N12+N1r2)+
i

~ 04 A A 1 0
NTi(€3 +Bu)+ No2(e5 =)+ Niz(ef +83)} 52 =005 =02 =2 = —{Nj (€5 + By) = Ni (€]
OC] R2 2 80{1
SF .0 L0 4, 0 |~ 1 1 .
—Bu) - Niy(e] —€9) Ay =2 ——| M )| ——— ||~ p B2 414> + A7 A5 (p hiiy — ) J0u; +
2 80{1 R2 R]

A A ~ A A
; 24Ny + Ny (I+€3)+ N (€5 + By) L2 -

1 R)
(M ;45) Mo 04,

8061 8a1

{{Nu +NJ (I+€7)+Nj>(e5 - B}

d(Q;342)  9(Q234))
8061 8052
~ 04, Oo(M;,A

i, 24 (M;24))
8a2 8a2

—p(e] +€5) A1 Ay + 41 4 (PhW—CI3)}5W+{—

oM 4)) My, B

+0p34;45 + A; Ay (N7 By + N5 B3) t0B; +14—
8062 8062

W7, 94 I(M 245)
o o

+0)3414; + 4] Ay(N5, By + N lrzﬁl)}&b ]daldazdf

g
+ [ JUN2y + N5y (1+€3) = Nz + N5 (65 +B) }uz +{(Np2 + N3 = Nop)+ Noy(e§ = B) + N2 ef -
Lo

Mp(1 1 = YaR v 0.
212 (R__R_}aul +(Mp =M 32) B2+ (My = M) +(Q23 — 023)0w]4 dordt
> R

Iy
+ [ JUN 4 NT (1+€3) = Npj+ Njo(€§ = By)bSup + {(N 2 + N = Npp) + N5+ B,) + Njs €5 +
1,00
My(1 1 — ~ —
Sl = }Ouy+ (Mg —M )P+ My —Mp2)6B; +(0p3 — 0p3)0w] 4, daydt.
2 1
(2.93)
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Since the variations of the displacements are arbitrary, the above equation requires that the
coefficients of the displacement variations vanish individually. The above equation contains
three main integrals. The first one, which is the integration over the area of the shell, will

give the equations of motions, while the last two will constitute the boundary conditions.

2.7.6 Shell Equations

Setting the coefficients of du;, du,, ow, 8B;, and 8B, equal to zero in the first integration

of Eq. (2.93), we obtain the following five equations of motion:

~ 04 1
+{Ny + Nyy(I+€9)+Nj; <e§+ﬁn>}—a 2_-
OC] 2

_O{N; + N[ +e])+ Njy(e3 = B} 4]
8051

B _ I~ =
W[{Z(NU +Np2)+Npj(e3+B,)+ Noy(e3 —B,)+ Nis(e] +83)}A1]—3{2(N12 +Np2)+
2

04 A A 1 0
L3 2 4~ = INT (e5 + B,)— N5,

NY (€5 +B )+ Nor(e3—B,)+ Ny (el +£9
11(€3 +B,)+ Npy(e3=B,)+ Njy(ef +€3) 2, & 2 0a,

~ A, 0 ~ 1 1
5= B,) = Niy(e? - d; —2L 0 | 51| == ||- p By A1 dy + A; Ay (p hiiy —gq;) =0
(€3 —=Bn)—Nia2(e] —€3)34; 5 aaz[ IZ(R] %5 J] pBrAjAy+ A5 Ay (p hiip—qp)

~ 04 1
+{N;;+Nj (I+€f)+ Nj,(e3 —ﬁn)}—a L_~
052 2

0[Ny + N5y (I+€3)+ Nij (3 + By} 4]
8052

ST _ I
a7[{2(]\712Jf]\’Jrz)Jr]\’1r1(8§ +B,)+ Noy(e5—By)+ Nps(ef +83)}A2]—3{2(N12+N1r2)+
1

~ 04 A; A 1 0
Niy(E5+By)+ N32(e5 = B+ Nip(e +e3)} 52 2 0y HEL T INT (€5 + B,) — N5,
OCI RZ 2 8a1
Ky ATV 0 0 A2 J 7 1 1 .
(€3-By)—Npy(ef —e Ay ————| Myl ———||-p B2 A1 Ay + 41 Ay (p hiiy —q2) =0,
2 aOC] R2 R]

56



~ A7 A ~ A A
(N11+Njj T+ED) + N1 (e5 = Bu)} ==+ (N 2p + N3y (I+€3)+ Ny (85 + By) =12 -
1

2
d(Q1342)  9(034))
oa 00

—p(e] +€5) A; Ay + A; Ay (p hiv—q3) =0,

(M ;A 04 04, (M ;->A ~
WM A) | gy Myy—2-Mp, 1 9Mj 1)+Q13A1A2+A1Az(N1r1ﬁ1+N1rzﬁ2)=0,

do; do; 8a2 0.,
d(M 5,4 04, ~ 04, O(Mj,4 v
_ (azz 1)+M“ L_jf,,9%2 (M, 2)+Q23A1A2+A1A2(N§2ﬁ2+N1r2ﬁ1)=0.

(2.94)

One can also reduce the five equations of motion to three by eliminating Q;3 and Q3. This

gives

[{2(N75+ NJ))+Njj(e5 +B,)+ N5,

LNy +Ni (I +€7)+ Nip(e5 = By)iAs] 1 0
8a1 28

~ 1~ ~ ~
(e3-Bn)+Np2(e] +83)}A1]+—{2(N12 +Np2)+Njj(€3+B,)+Nyy(e3 =B+ Nps(ef

04, L oMy ] A(M 124))
——IN N5->(1 N —
+&5 )} o {Nyy +Npy(I+€5)+ 12(83+l3n)} o R1 2, +R1 ot +

Myp 04y Mg 04y Ay 0 iy - —A1A2 (N11ﬁ1+N12ﬁ2)—ii{ Nip
R] 8052 R] 8051 2 aoc2 R] R2 ] 2a (%))

(&5 +By)—Noy(e3 =B~ Nis(e] —€9)3 A, + p By Ajdy — Ay A5 (p hiiy—q;) =0,
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N2 +Npy(I+€9)+ Nip(e3+B,)} 4], 1 0
8a2 28061

- ]~ - ~
(€3 = By)+ Np2(7 +83)}A2]+3{2(N12 +Npp)+ Nij(€3 +B,)+ Ny(e3 —By)+ Nps(ef

[{2(N75+ N5+ Njj(ed+B,)+ N5,

04, o4; 1 d(M4 1 (M4
+82)}——{N11+N11(1+81)+N12(83 ﬁn)} Ly R (822 1)+— M 2)+

o oy Ry day Ry do
Mypddy My 34 A 3 {M (1 i ﬂ A, 4,

RZ 80{1 RZ 8062 2 80{1 R_Z_R_I RZ

(N3 B +N12ﬁ1)+—a—{N11

(€5 +By)—Noy (€3 =B~ Nis(€] —€9)}As + p By A1A> — A Ay (p hiiy —gq3) =0,

d | 1] 3(M11A2)+3(M12A1)+A7112 04, My, 2 9 )|, 9 d(M5,4;)
oo | 4; oa; 00 Q. oa; Q. Az Q.

(M ;,A ~ 04 04 A A
+—( 812 2)+ Myt ﬂ (Nj + N (I+€))+ Njy (g5 — Byt L2 —
o da; da R;
r 0 SF LS AIAZ_ J r N __v
{Nyy+Nypy(I+€5)+Npy(e3+B,) ——= —[Az(N11/31+N12/32)] [
Ry dog o

(N52By+ Nj2BD1+ p(ef +€39) A; Ay — A; Ay (p hiv—gq3) = 0.
(2.95)

In the following sub-sections, we separate these equations into static and dynamic parts.
2.7.6.1 Static Equations

Vibration of a shell under prestress can be analyzed analogously to a spring-mass
system under the effect of gravity. In a linear analysis, we can separate the dynamic and
static analyses. First, we set the vibration of the shell to be zero. This yields the following

static equations:

(N} 4)) a(]\’121‘11) v, 04;
aOC] 8062 8 2

Uy
8061

N5, 2 =,
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Oy Ap) AN Ay) | = 4y 24y

N —=0, 2.96
8062 8a1 8a1 1 80@ ( )
Nir Ny _
R; R

The solution of these equations gives initial deflections and initial stresses.

2.7.6.2 Dynamic Equations

Subtracting the static equations from the total equations results in the equations of

motion:

a(N11A2)+a(]V12A1)+N 04, szaﬁ+ia(M11A2)+i8(]\7112A1)+A7[12 94,
8051 8a2 8 2 80{1 R] 80{1 R] 8052 R] 8052
My ody A 9 | & (1 1 A{NT & + Ni(e3 - Pn)id2] 1 0 s

- +— ——— ||+ N
R] 8a1 2 aOCZ 2 R] R2 8a1 28 2[{ 11(83

- ] -
+B,)+Noy(e3-B,)+Nis(e] +83)}A1]+—{N1r1(8§ +B,)+ Ny (e3-B,)+ Npo(ef +€5

8A1 _Ardy =2 (N ﬁ1+N1252)——_{N11(83 +Ba)-

N +N +
—{Ny€5+Nyp (€3 ﬁn)} o 290,

iy

N22(83 —B) =Ny (e] =€)y A+ p By A1 Ay — A7 Ay (p hiip —q;) =0,

3(N22A1)+13(ﬁ12142)+ﬁ1231ﬁ 04, +L3(M22A1)+L3(1‘7112A2)+A7112 04

-Ny;

8052 2 8051 8051 8052 R2 8052 R2 8a1 R2 8051
¥ o0 | AT s
_1‘1/1211 aaAI LA 0 i, L )| OUNEs + Npp (3 +B)i Al 1 9 LN (3
2 d0) 2 80{1 R2 R] 8062 28051

- i -
+Bp)+ Noz(€3 =B+ Npo(e7 +85)}A2]+—{N1r1(8§ +Bp)+ Nop(€3 —B)+ Niy(ef +€5

04 A A
2 ;e 2 (N5, B; +N12ﬁ1)+——{N11(83 +B,)—
o) 2

N22(83 ~B) = Ni>(e] =€)y Ay + p By A Ay — A7 Ay (p hiiy —q5) =0,

)} —{Nj ] + N],(€5 - ﬁn)}
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J [L(a(Mqu)Jra(ﬂlez)JrM]z 04; My, 04y J]Jr J { (a(MzzAz) a(Mzzz‘lz)
4 4;

00 oa; 00, 20 el7, 20 Q. e1o9}
~ 04 04 N N A;4 . ~
+Mlz—a 2 ML J:|—( L1 22 }4 Ay —{Nj €] + Niy(e3 = Bp)} L2 —{N5e3 + N7,
o da R, Ry R;
s A4, 9
(e3+B,)}——= R 2 [45(N7;B; +N12ﬁ2)]——[A1(N22ﬁ2 +NBD1+ p(ef +€3) A1 A -
) oy

Ay A, (phw—q3)=0.
(2.97)

Another form of the above equations of motion, given in Budiansky (1968), can be obtained

by using the static equations, Egs. (2.96), and Gauss-Codazzi conditions, Egs. (2.1) and (2.2):

3(N11A2)+3(ﬁ12/11)+ﬁ 0y, 042 1 OMydy) ] a(1‘71121‘11)+J‘7112 94,
12 22 — —
8051 8a2 8052 8a1 R] 8a1 R] aoc2 R] aoc2

M, 04 A; 0 ~ 1 1 1 o€ 04
"R a2 {M R__R_] AN S e 21 24N
] 90y 2% 1 2 ] 00 142 00 1

0 _ .0
1 de; 04 + Ay 43NS I ypy  (e1-€3) 94, I 9P, By Ayds
AZ 8052 A]A2 80{1 2A2 &ocz A¢As 80{1 A2 &az

A Ay (phiip—qp) =0,

IWNAp) , 10N Ay) | & 04 i, i, 1 AMd)) | I(Mj,4;) My, 94,
]2— 11 +— +— +
&ocz 2 8051 8051 &ocz RZ 8a2 RZ 8051 RZ 8051

—MI] aA] +ﬁ J M L—i +A]A2N22 ! 882 V12 aA2 —& +2A1A2N;2
R2 aOCZ 2 80{1 R2 Rl A2 8052 A1A2 8a1 R2

(iagz_ Y12 94 J+A1A2N}’{ 1 3712+(85—8?) 04, +iaﬁn)+pﬁ2A1A2_

A] 8051 A]AZ aoc2 2A1 8a1 A]AZ aOCZ A[ 8051
AjAy(phiiy—q3) =0
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o | 1 a(M11A2)+3(1\7112A1)+A7[]2 O gy, 2 || 0| L IM 2 41) , I(M 12 4)
8051 A] 8052 A2 80{2 80{1

8051 8062 8052 8051
~ 04 04 N N e? 19 04
+Mpy—2-Mp 1 J]—( Iy =22 }41A2_A1A2N;1 =Ly— J + P o4, )—AzAszz

80{1 8052 R] R2 R] A] 8051 A1A2 80{2

o
Aigﬁl +Lgﬁ2_ Bi 04 Bp 94y (1 I W’H— i.,.i VIZJ_AIAZNSZ L
2 0) A] o A]AZ 8052 A]AZ 8051 R] R2 R] R2 2 R2
L Py Br 94,
A2 8052 A]AZ 8051

}r Ajdrp(ep+e)— A Ay (phw—q3)=0.

(2.98)

Note that the transverse shear stress resultants Q;3; and Q3 can be obtained using Egs.

(2.94). These equations can be solved in conjunction with the boundary conditions derived

below to obtain vibratory stresses and the deflections from the initial equilibrium state.
2.7.7 Boundary Conditions

Setting the coefficients of the displacement variations to zero in the line integrals (last
two integrals in Eq. (2.93)) in the expression of the variation of total energy, we obtain the
boundary conditions. However, this gives ten boundary conditions, while the order of the
equations of motion is eight. In order to reduce the number of boundary conditions, we

combine the three shearing stress resultants into two. To this end, df; is expressed in terms

of displacements in the first line integral. Rearrangements of terms gives

t]
[ JUN 2, + N3, (1+3) = Nop + N5 (€5 + )} Sy +{(N 2 + N5 = Nop) + Ny (e5 = B) + N €7 -
taaI

Mipf 11\ Mia Moty s v (Myy = 25) 8B +(Orz — On3)ow]Asder dt
2\R, R R R

t

(oo~ — dow
—H(MU —Mj))—— doydt.

L a, 8061

(2.99)
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Applying integration-by-parts in the second integration, the above equation can be written as

t]
[ JUNS, + N3y (1+€3) = Nop + N5 (83 + By) Sy +{(N 3y + Ny = Nop) + Ny (e5 = B) + N €f -
taaI

Mpf 1 T +@—@}5u1 +(M 3y — M) 85 +(023 — 0r3)0w1A;dotdt
2 |\R, R/| R R

UM 2 = My) _MZI)SwdaI dt.

t t
—j(]\7[12—]\721)5wdt+jj aal

t t,a,

o

(2.100)

Recognizing the fact that the arbitrary displacement éw vanishes at the end points #, and ¢;,

and rearranging, we get

I

[ JUN2, + N2 (1+€3) = Ny + N7 (65 + B,)} Sy + (N5 + Njp = Nop)+ N5y (€5 - B,) +
lo0

~ My(1 1) M;,, M —
Nlrzef—#{———}#—R—H}&H(Mzz—M22)5ﬁ2+
1

2 \R, R | R
+— N -—— Ajdogdt.
(Qz 40 o 4, 00, 14,dey;
(2.101)
Now we can write the four boundary conditions at the edge with constant o, as
Ny +Noy(1+€9)+Ni5 (€5 + B,) =N, or up =1y,
- o 3 I \~ ~ - M
N+ N+ —=—-— +NT, €9+ N5y(e§—B,) =Ny +—2L or up =1,
12+ N (ZRI 2R2JM]2 1267 +N22(€3—By) =Ny %, 1=
1 oM, — 1 oMy, _
+ — = + — or w=w,
023 4 e, 023 4, 00,
My =My or B2 = B>.
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(2.102)

where the over bar quantities are specified at the edges. Considering the static equilibrium

state as reference, we can simplify the boundary conditions at the edge with constant «, as

Ny + Ny €5+ N5 (€5 +B,)=Nos or up =1y,
N 3 I\ NTI oS T sz _
Ny y+| ——— +Njr€7 + N5,(€3 — =Ny +—== or Uy =ujy,
12 (ZRJ 2R, }\/’12 12€] TNy (e3=P,) =Ny R, =g
023 +iaM12 =03 +iaM2] or w=w,

AI 8a1 A] 8051
My =M, or B> =B>.
(103)

Similarly, we can write the four boundary conditions at the edge with constant «; as follows:

N +Njef + N> (5 - B,)=Ny; or up =iy,
ﬁ12+(%—2—;]}7/12 +ﬁ;283+N1r1(8§+/3n)=N12+% or upy =y,
Q13+Ai28£122 =§13+Aiza£122 or w=w,

My =My or Bi =B

(2.104)

Static equations, Egs. (2.96), dynamic equations, Egs. (2.97) or (2.98), along with the
boundary conditions, Eqs. (2.103) and (2.104), can describe completely the vibration of a

shell under pressure.
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2.8 Other Shell Theories as Special Cases

In this section, we present some equations, which were presented by other researchers and

can be derived from the above equations as special case.

2.8.1 Shell Equations Presented by Sanders (1963) and Plaut et al.
(2000)

In the derivation of the above governing equations, we used Sanders’ shell theory
with exact geometric nonlinearity in the in-plane strains, Egs. (2.29) and Egs. (2.36). From
this, we now derive the nonlinear shell theory given by Sander (1963). He assumed small

strains and moderately small rotations. Equations (2.36) can be approximated by assuming
that the linear in-plane membrane strains (€7, €5, €5, and €7 ) are much smaller than the

rotations (f3;, B>, and B,,) to yield the following strain-displacement relations (Teng and

Hong,1998):

efl =&l + 18,7 + (B

S ] 1
£ =€) +E[(ﬁn)2 +(B2)°1,
Y2 =€5+eq+B; B (2.105)

In Egs. (2.105), the superscript s denotes the strain corresponding to Sanders’ nonlinear shell
theory. Also, his derivation was not for a shell under pressure. Hence, we will have to ignore
the pressure terms, and prestress terms will be replaced by the vibratory stresses. Keeping
these modifications in mind, one can follow the same steps as used in deriving Egs. (2.97) to

derive Sanders’ nonlinear shell theory as (Sanders, 1963)
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My o4y A4 [Mz( H_ 142 (N B+ N Ba) 1 [(N11+N22)B,]

—A; Ay(p hii;—q;)=0,

d(N 4) a(1\’121‘12) & aAz N, oy 1 IMppdy) 1 oM 545) +1‘7121 04,

8052 80{1 8 (07 80{2 RZ 8062 RZ 80{1

RZ 80{1

M;; 04 Ay 0 | ~ 1 1 A; A A> O(N;;+ N 0
My 04 A [M (___)] | 2(N22/32+N12/31)+ b O+ N22)By

Rz 8052 2 80{1
—A; Ay(phii; —g2) =0,

R, Ry

Rz 8051

80{1 80{1 8062 &az 80{1 8052 &az

8051

J [L(B(M11A2)+9(M12A1)+A7[12 M 4y , 04, H+ J { (B(MzzAz) I(M545)
4 4;

80{1

~ 04 04 N N d ~ 0
+M21721—M11 ]J]—( I 22)AIAZ__[AZ(NJIﬁI+N12ﬁ2)]_E[A1(N22ﬁ2+

N12B)1= 4145 (p hiv—g3) =0.

and boundary conditions at the edge with constant ¢, are (Sanders,1963)

N22=N22 or,
Nip+| ——— —(N;;+ N _n:N + or,
12 (2R1 2R, }”12 (Nyj+N3) p 21 R,
1 oM, 1 OM 5,
+ — = +— or,
023 1 e, 023 1, e,
M22 :MZZ or,

(2.106)

B:>=8;.

(2.107)
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Boundary conditions on the edge with constant; can be written by interchanging suffices /
and 2. The equations for transverse shear stress resultants Q;; and Q,; remain the same as

given in Egs. (2.94). If we drop the terms containing f3, in Egs. (2.106) and change the

vibratory stresses in nonlinear terms to the prestresses, we get the equations of motion

presented by Plaut et al. (2000). The static equations presented by Plaut et al. (2000) are the
same as Eqgs. (2.96).

2.8.2 Shell Equations Presented by Soedel (1986)
To derive the nonlinear theory for a shell under prestresses given by Soedel (1986), we

neglect B, compared to 3; and f3,, and ignore all the squared terms involving u; and u,

compared to w in Egs. (2.105). This gives

2
d ]8u1+u2 aA1+K ](aw)

4+ | ==
A] 8051 A1A2 80{2 R] 2A]2 8051

d
o

2
1 du, L 04; G 1 [ ow
Ay doy  Ajdy 0oy Ry 247

v _ 1 duy wy 8A1+L8u1_ U 8A2+ I ow ow
12 A[ 80{1 A]AZ 8052 A2 8052 A]AZ 8051 A]AZ 80{1 8052 '

(2.108)

The bending and the torsion strains for this case are given by Egs. (2.29). These strains are
the same as those given by Donnell (1934) and hence the superscript “d”. In deriving the
equations presented by Soedel, we will have to also ignore the changes in definitions due to

Sanders. This leads to the following equations (Soedel, 1986):

I(NA2)  OWNprdp) o 04y oy 0y 1 O(Myydp) 1 I(MpAp) My 04
25— —Nx»
80{1 80{2 8052 80{1 R] 80{1 R] 80{2 R] 80{2
M>, 04 .
—=22 22 4y Ay(p hiiy—q;) =0,
R] 8a1
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INp2 Ap)  IWNppAp) aﬁ—NH 0A; 1 OMpdy) 1 (M pdy) M 94,
8062 8051 218051 8052 R2 8a2 R2 8a1 R2 8051
My 94

—A; A hiir — =0,
R, 9t 1 Ay(phiiy—q5)

J [L(B(M11A2)+8(M21A1)+M]2 04; My Y2 04, ﬂ+ J |: (a(MzzAz) LM r4)
4 4;

80{1 8051 8062 8052 8051 8052 8062 8051
04 04 N N A> ow ow
+M218—2—M11 LA =1L+ =22 y4, + —[Nu =4 Ny —]
OC] 8052 R] R2 8 1 A18 Ji 8 2
8 A] aw
+— +N7¥ A A hw— 0.
aaz[ 22A28 o zza 1] 142(p q3) =
(2.109)
and boundary conditions at the edge with constant «, is (Sanders,1963)
N22=N22 or (7% 2172,
N2]+M N +M21 or Ll]:L_l],
R, R,
1 oM5; 1 OM ,; _
+— +— or w=w,
0>3 4, 90, =053 4, 9,
My =Mj, or B> =5.
(2.110)

The transverse shear stress resultants, Q;3 and O»3, are given by the following equations:

1 d(M;; A 04 04 d(M»; A
05 = (( 11 2)—M22 2 M, 00 (M 1)}

A]AZ 8051 8051 80@ 8062
1 o(M 5, 4;) 04; 04, 0J(M,45)
= — M ;——-M — 2.111
Q23 A]AZ ( 80@ M do 2 805] 8051 ( )

The static equations presented by Soedel (1986) for a pure membrane are the same as given

in Egs. (2.96).

67



2.9 Conclusions

This chapter presented the foundation of this research by deriving the governing
equations for vibration of a shell under pressure. The chapter presented almost all the
necessary elements needed for deriving the governing equations. The basic theorems of
surface, called Gauss-Codazzi conditions, were presented. Then, three-dimensional stress-
strain relations and definitions of the two-dimensional stress resultants and stress couples
were presented. Thereafter, nonlinear strain-displacement relations and Hamilton’s principle
were given. In order to obtain the final equations, variations of strain energy, kinetic energy,
and work done by external and boundary forces were derived. Using a variational principle,
the static and dynamic equations along with boundary conditions were obtained. These
equations were derived before by Budiansky (1968) using tensors. However, the derivations
of this chapter used line-of-curvature coordinates, which is relatively easier to follow. These
equations were then specialized to obtain some other related equations used in the literature
for the vibration of a shell. We showed the simplification procedure needed to obtain these
approximate equations. Apart from these simplifications, these approximate equations do not

contain the follower actions of the pressure force.
In Chapter 3, these equations will be used in deriving the actuator forces and the

equations of motion in the presence of piezoelectric patches. In Chapter 4, we will use these

equations to solve the free vibration problem of an inflated torus.
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