Optimal Geometric Trimming of B-spline Surfaces for Aircraft Design

by

Xinyu Zhang

Dissertation submitted to the faculty of
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in
Mechanical Engineering

Arvid Myklebust, Chair
Jan Helge Bøhn
Michael P. Deisenroth
Williams H. Mason
Walter F. O’Brien

June 15, 2005
Blacksburg, Virginia

Keywords: Geometric Modeling, Geometric Trimming, Intersection Algorithm, B-spline,
Optimization, Aircraft Design

Copyright 2005, Xinyu Zhang
Optimal Geometric Trimming of B-spline Surfaces for Aircraft Design

by
Xinyu Zhang

Abstract

B-spline surfaces have been widely used in aircraft design to represent different types of components in a uniform format. Unlike the visual trimming of B-spline surfaces, which hides unwanted portions in rendering, the geometric trimming approach provides a mathematically clean representation. This dissertation focuses on the geometric trimming of fuselage and wing components represented by B-spline surfaces.

To trim two intersecting surfaces requires finding their intersections effectively. Most of the existing algorithms focus on providing intersections suitable for rendering. In this dissertation, an intersection algorithm suitable for geometric trimming of B-spline surfaces is presented. The number of intersection points depends on the number of isoparametric curves selected, and thus is controllable and independent of the error bound of intersection points.

Trimming curves are classified and a new scheme for trimming by a closed trimming curve is provided to improve the accuracy. The surface trimmed by a closed trimming curve is subdivided into four patches and the trimming curve is converted into two open trimming curves. Two surface patches are created by knot insertion, which match the original surface exactly. The other two surface patches are trimmed by the converted open trimming curves. Factors affecting the trimming process are discussed and metrics are provided to measure trimming errors.
Exact trimming is precluded due to the high degree of intersections. The process may lead to significant deviation from the corresponding portion on the original surface. Optimizations are employed to minimize approximation errors and obtain higher accuracy. The hybrid Parallel Tempering and Simulated Annealing optimization method, which is an effective algorithm to overcome the slow convergence waiting dilemma and initial value sensitivity, is applied for the minimization of B-spline surface representation errors. The results confirm that trimming errors are successfully reduced.
Acknowledgements

I would like to thank my advisor, Dr. Arvid Myklebust, for his advice and continuous encouragement in my Ph.D. research and study. I would also like to thank Dr. Jan Helge Bohn, for being my advisor at the beginning and for his great help during “the journey”. Thanks are also given to all other members in my committee, Dr. Mason, Dr. O’Brien and Dr. Deisenroth, for their helpful comments and advice. This dissertation would not have been possible without the help from all the committee members.

I have also had intensive discussions with Dr. Yaohang Li and Paul Gelhausen and appreciate their valuable and constructive suggestions.

For so many years, it is my parents’ love and support made me keep moving forward. In a Chinese Tang poem, it says “But how much love has the inch-long grass for three spring months of the light of the sun?” Thanks, my dear parents.

Last but not least, I would like to thank all my friends, who have helped and encouraged me.
Table of Contents

ABSTRACT ... II
ACKNOWLEDGEMENTS .. IV
LIST OF FIGURES .. VII
LIST OF TABLES .. IX
1 INTRODUCTION ... 1
 1.1 PROBLEM DEFINITION ... 2
 1.2 SIGNIFICANCE .. 4
 1.3 TERMINOLOGY .. 5
 1.4 DISSERTATION OBJECTIVES ... 5
 1.5 DISSERTATION ORGANIZATION ... 6
2 LITERATURE REVIEW ... 7
 2.1 INTERSECTING AND TRIMMING NURBS SURFACES ... 7
 2.2 TRIMMING ERRORS ... 12
 2.3 OPTIMIZATION OF NURBS SURFACES ... 14
 2.4 SURFACE MODELING OF AIRCRAFT COMPONENTS ... 15
3 PARAMETERIZATION OF FUSELAGES AND WINGS .. 18
 3.1 INTRODUCTION ... 18
 3.2 PARAMETERIZATION OF FUSELAGES .. 19
 3.2.1 Longitudinal and Cross-sectional Shapes ... 19
 3.2.2 Control-Hull Based Parameterization .. 23
 3.2.3 Fuselage Component Parameters .. 24
 3.3 PARAMETERIZATION OF WINGS .. 25
 3.3.1 Reference Wing .. 25
 3.3.2 Cross-sectional Shapes -- Airfoil .. 26
 3.4 SUMMARY ... 28
4 INTERSECTION ALGORITHMS .. 29
 4.1 THE INTERSECTION ALGORITHM .. 29
 4.1.1 Conversion of NURBS Curves and Surfaces to Bezier Form 33
 4.1.2 Bounding Box Intersection Test .. 35
 4.1.3 Subdivision of Bezier Curves and Surfaces ... 35
 4.1.4 Subdivision Termination Criteria .. 36
 4.1.5 Intersection of Line Segment and Quadrilateral ... 37
 4.1.6 Mapping Intersection Points from Euclidean Space to Parametric Space 39
 4.1.7 Connecting Intersection Points ... 41
 4.1.8 Selection of Isoparametric Curves .. 42
 4.2 EXAMPLES AND DISCUSSIONS .. 43
 4.3 SUMMARY ... 49
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Surface decomposition for open trimming curves passing adjacent boundaries ([Appl89])</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Surface decomposition for closed trimming curves ([Wang01])</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Conversion of a closed trimming curve to two open trimming curves by Wang’s approach</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Finding distance between two parametric curves</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>Fuselage component in ACSYNT</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>Lofting of the nose component</td>
<td>22</td>
</tr>
<tr>
<td>3.3</td>
<td>B-spline surface of a fuselage and its control hull</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>Parameters of a control-hull based fuselage component</td>
<td>25</td>
</tr>
<tr>
<td>3.5</td>
<td>Wing component layout</td>
<td>26</td>
</tr>
<tr>
<td>3.6</td>
<td>Wing profile</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>Illustration of fuselage-wing intersection</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>Missed intersection points</td>
<td>33</td>
</tr>
<tr>
<td>4.3</td>
<td>Fault termination of curve subdivision</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>Line-plane intersection</td>
<td>37</td>
</tr>
<tr>
<td>4.5</td>
<td>Mapping triangle vertices onto parametric space</td>
<td>38</td>
</tr>
<tr>
<td>4.6</td>
<td>Line and triangle intersection</td>
<td>38</td>
</tr>
<tr>
<td>4.7</td>
<td>Connecting intersection points</td>
<td>42</td>
</tr>
<tr>
<td>4.8</td>
<td>Examples of intersections of B-spline surfaces</td>
<td>44</td>
</tr>
<tr>
<td>4.9</td>
<td>Intersection curves of figure 4.9(a) by subdividing both surfaces</td>
<td>47</td>
</tr>
<tr>
<td>4.10</td>
<td>Intersection curves of figure 4.9(a) by algorithm given in this chapter</td>
<td>48</td>
</tr>
<tr>
<td>5.1</td>
<td>Visually trimmed and geometrically trimmed wing surfaces and their control hulls</td>
<td>51</td>
</tr>
<tr>
<td>5.2</td>
<td>Subdividing a fuselage surface along an isoparametric curve</td>
<td>52</td>
</tr>
<tr>
<td>5.3</td>
<td>Subdividing a wing surface along an isoparametric curve</td>
<td>52</td>
</tr>
<tr>
<td>5.4</td>
<td>Trimming curves in parametric spaces</td>
<td>53</td>
</tr>
<tr>
<td>5.5</td>
<td>Subdivision of a surface and conversion of the curve to a $u(v)$ trimming curve</td>
<td>55</td>
</tr>
<tr>
<td>5.6</td>
<td>Illustration of trimming regions</td>
<td>56</td>
</tr>
<tr>
<td>5.7</td>
<td>A closed trimming curve in parametric space</td>
<td>58</td>
</tr>
<tr>
<td>5.8</td>
<td>Subdivision of a surface trimmed by a closed curve</td>
<td>59</td>
</tr>
<tr>
<td>5.9</td>
<td>Subdivision of a trimmed surface by knot insertion and conversion of a closed trimming curve to two open trimming curves</td>
<td>60</td>
</tr>
<tr>
<td>5.10</td>
<td>Trimming of fuselage and wing (with symmetric airfoil) surfaces</td>
<td>63</td>
</tr>
</tbody>
</table>
List of Tables

Table 4.1 Number of calls and time for obtaining the intersection curves for the examples of Figure 4.8 ..45
Table 4.2 Number of calls of adaptive and static subdivision of Figure 4.845
Table 4.3 Number of intersection points vs. tolerance by subdividing both surfaces46
Table 6.1 Errors of region A and D of a trimmed fuselage surface74
Table 6.2 Errors of region B and C of the trimmed fuselage surface and the wing surface ..77
Table 6.3 Influence of doubling interpolation points on the trimming curve91