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ABSTRACT 

 
 

This dissertation illustrates how to detect the rater centrality effect in a simulation study 
that approximates data collected in large scale performance assessment settings. It addresses 
three research questions that: (1) which of several centrality-detection indices are most sensitive 
to the difference between effect raters and non-effect raters;  (2) how accurate (and inaccurate), 
in terms of Type I error rate and statistical power, each centrality-detection index is in flagging 
effect raters; and (3) how the features of the data collection design (i.e., the independent 
variables including the level of centrality strength, the double-scoring rate, and the number of 
raters and ratees) influence the accuracy of rater classifications by these centrality-detection 
indices. The results reveal that the measure-residual correlation, the expected-residual 
correlation, and the standardized deviation of assigned scores perform better than the point-
measure correlation. The mean-square fit statistics, traditionally viewed as potential indicators of 
rater centrality, perform poorly in terms of differentiating central raters from normal raters. 
Along with the rater slope index, the mean-square fit statistics did not appear to be sensitive to 
the rater centrality effect. All of these indices provided reasonable protection against Type I 
errors when all responses were double scored, and that higher statistical power was achieved 
when responses were 100% double scored in comparison to only 10% being double scored. With 
a consideration on balancing both Type I error and statistical power, I recommend the measure-
residual correlation and the expected-residual correlation for detecting the centrality effect. I 
suggest using the point-measure correlation only when responses are 100% double scored. The 
four parameters evaluated in the experimental simulations had different impact on the accuracy 
of rater classification. The results show that improving the classification accuracy for non-effect 
raters may come at a cost of reducing the classification accuracy for effect raters. Some simple 
guidelines for the expected impact of classification accuracy when a higher-order interaction 
exists summarized from the analyses offer a glimpse of the “pros” and “cons” in adjusting the 
magnitude of the parameters when we evaluate the impact of the four experimental parameters 
on the outcomes of rater classification. 
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1 INTRODUCTION 

1.1 Significance of Current Study 

Performance assessments are used extensively in educational testing, particularly in 

content areas that are difficult to measure with multiple-choice items, and ratings assigned by a 

human are commonly used to judge the quality of the assessment products (Landy & Farr, 1980). 

Unfortunately, performance ratings are prone to various types of systematic and random error, 

potentially rendering the associated scores inaccurate as indicators of the student’s true 

performance. That is, raters may exhibit rater effects that serve as sources of error in the 

performance ratings. Therefore, identifying aberrant raters is an important step in evaluating the 

psychometric qualities of ratings in terms of validity and reliability. Previous research has 

identified several ways that rater effects are manifested in ratings, and researchers have 

developed a variety of criteria under different methodological frameworks (e.g., classical test 

theory, analysis of variance, regression-based analysis, generalizability theory, and Rasch 

measurement and item response theory) to evaluate the psychometric qualities of performance 

ratings (Saal, Downey, & Lahey, 1980). However, supporting simulation studies and operational 

applications of these methods have remained sparse.  

Previous research concerning rater effects has identified several ways that raters 

introduce error into ratings, including severity/leniency, centrality/extremism, and inaccuracy 

(Saal, et al., 1980). This dissertation describes a three-study research series that focused on 

detection of a relatively less studied rater effect, the centrality effect, within the context of the 

Rasch measurement framework. A rater who exhibits the centrality effect commonly overuses 
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the middle categories of the rating scale while avoiding extreme categories. Hence, the centrality 

effect induces a reduction of the variation of assigned ratings. In addition, the centrality effect 

results in accurate ratings in the central range of the ability continuum, but overestimates of ratee 

proficiency for non-proficient ratees and underestimates of ratee proficiency for highly proficient 

ratees.  

Clearly, the centrality effect will manifest itself in the standard deviation of observed 

ratings. However, the use of the standard deviation of ratings as a rater effect index is 

problematic because the standard deviation is inflated when random error exists in the ratings. 

That is, the elimination of either random error or the existence of centrality can decrease the 

value of the standard deviation. As a result, it would be unclear whether raters who produce 

ratings with small standard deviations are engaging in centrality or are simply accurate raters. In 

addition, many operational analyses of rater effects employ latent trait modeling procedures (e.g., 

item response theory), and numerous indices exist within those frameworks that might be well 

suited as indicators of the centrality effect.  

One family of indices that has been investigated as a potential indicator of the centrality 

effect includes the various mean-square fit indices that are commonly reported by commercial 

latent trait software, such as Winsteps (Engelhard, 1992, 1994). However, prior research has 

indicated that rater centrality may manifest itself inconsistently in these indices, and may, 

therefore, cause analysts to incorrectly conclude that accurate raters are engaging in central 

rating patterns or that centrality exists when indeed it does not exist in the data in question 

(Wolfe, Chiu, & Myford, 2000). 
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Hence, in this dissertation, in addition to the standard deviation of ratings and mean-

square fit indices, I evaluated four other indices to detect the centrality effect: the score-measure 

correlation (also known as the point-measure correlation), the measure-residual correlation, the 

expected-residual correlation (Wolfe, 2004b, 2005), and the rater slope index (Wolfe, 1998a). I 

examined the performance of these indices as indicators of the centrality effect as a function of 

several factors assumed to influence their accuracy in a typical case of operational scoring 

setting: the number of raters and ratees involved, the level of the centrality effect, and the amount 

of missing data brought by double-scoring rate (further details provided in Section 3.1).  

Thus far, very little research has been done to examine the relative strengths of these 

indices, the accuracy of these indices, or the conditions under which each of these indices 

perform best for detecting the centrality effect. The purpose of this research is to tackle these 

unresolved problems and to provide analysts with reference tools to evaluate the indicators of 

less studied rater effects. With an eye toward detecting effect raters and promoting the work of 

non-effect raters, this dissertation also focuses on the relationship between index performance 

and working conditions. The findings may lend assistance in planning scoring project, such as 

determining acceptable double-scoring rates, the number of raters to recruit, and the number of 

ratees allocated to each scoring group where raters are divided up into multiple groups.  

1.2 Research questions 

The series of analyses in the ensuing discussion aim to address the following research 

questions:  
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1) Which centrality-detection indices are most sensitive to the difference between effect 

raters and non-effect raters?   

2) How accurate (and inaccurate), in terms of Type I error rate and statistical power, is 

each centrality-detection index in flagging effect raters? 

3) How do the features of the data collection design (i.e., the independent variables 

including the level of centrality strength, the double-scoring rate, and the number of 

raters and ratees) influence the accuracy of rater classifications by these centrality-

detection indices? 

Each of these research questions was addressed separately in one of the three manuscripts 

presented in this dissertation. The three studies shared a common data generation process, but 

each focused on a different aspect of centrality effect detection.  

1.3 Overview of Methodology 

 This project was simulation-based, consisting of a series of three sub studies. One study 

focused on the relationship between raw rating scores and several latent-trait indices of the 

centrality effect; one evaluated the accuracy of those centrality indices in identifying aberrant 

raters; and another examined rater classification accuracy for the centrality indices. All three 

studies share the same sets of simulated data with full combinations of four experimental 

parameters: ratee sample size (1000, 2000, and 3000), rater sample size (50, 100 and 250), level 

of centrality effect (0.1, 0.35, 0.6 and 0.85) and double-scoring rate (0.1 and 1.0). There were 

1000 replications for each cell of the experimental design. Data generation was based on a Rasch 

model using ConQuest (Wu, Adams, Wilson, & Haldane, 2007). 
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 I first scaled the simulated data to the Rasch rating scale model (Andrich, 1978) using 

Winsteps (Linacre, 2009b). Based on the estimates from the Rasch rating scale model, I 

calculated values for six sets of centrality-detection indices. Then, I used analysis of variance 

(ANOVA) method to identify indices that were potentially sensitive to difference between effect 

raters and non-effect raters. Next, within each cell bearing with practical importance in the above 

ANOVA procedure, I computed and compared the proportion of incorrectly detected and 

incorrectly nominated raters (i.e., Type I and Type II error) for the 1000 replications among the 

centrality indices and across experimental conditions. Finally, I used logistic regression to assess 

the relationship between the rater-classification accuracy by each centrality index and the four 

experimental parameters.  

1.4 Organization of Dissertation 

The first chapter of the dissertation serves as an introduction of the problem, research 

questions and methodology used in the three studies. The second chapter contains the literature 

review. Chapters three, four and five are publishable-quality articles focusing on the relationship 

between raw rating scores and latent-trait indices, the determination of critical values for each 

rater-centrality index and accuracy of each index, and the impact of various scoring-setting 

variables on the rater-classification accuracy by these indices respectively. The final chapter 

summarizes the results from the three manuscripts, discusses the implications, impact of the 

research, limitations of current studies and future direction of this research. 
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2 LITERATURE REVIEW 

2.1 Introduction 

Performance assessments are used extensively in educational testing, particularly in 

content areas that are difficult to measure with multiple-choice items. Ratings assigned by  

human are commonly used to judge the quality of the assessment products (Landy & Farr, 1980). 

Unfortunately, performance ratings are prone to various types of systematic and random error, 

potentially rendering the associated scores inaccurate as indicators of the student’s true 

performance. Due to the complex nature of performance ratings that involves human judgment, 

the Standards for Educational and Psychological Testing (1999) explicitly requires performance 

assessment developers to monitor and report scoring errors, and clearly states that any systematic 

source of scoring errors should be corrected to assure the accuracy of scoring. Previous research 

has identified several ways that rater effects are manifested in ratings, and researchers have 

developed a variety of criteria under different methodological frameworks to evaluate the 

psychometric quality of performance ratings (Saal, et al., 1980).  

Several types of rating errors have been proposed, and some of those are well studied, 

while others lack thorough evidence-based research. The fact that there are certain rating errors 

left only partially explored is not due to a lack of importance. Rather, these errors may manifest 

themselves in ways that are difficult to predict, or the error that they contribute to scores may be 

confounded with error from other sources, making them difficult to be detected. In addition to 

the unbalanced attention directed toward different types of rater errors in the literature, another 

challenge that hampers understanding research results concerning rater errors is a general lack of 
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agreement among researchers regarding the conceptual and operational definitions of any given 

rater effect (Saal, et al., 1980). Conceptually, most rater effects are defined in multiple ways. 

Operationally, researchers use different indices to detect the presence of a particular rater effect 

in the data. This lack of uniformity extends to the rating designs, the data collection procedures, 

and the data analysis approaches for investigations on each rater effect (Myford & Wolfe, 2003). 

Despite of these difficulties, researchers have taken up the challenge of aggregating research 

results in this field and have prepared comprehensive literature reviews (Landy & Farr, 1980; 

Myford & Wolfe, 2003; Saal, et al., 1980) and meta-analyses (Hoyt & Kerns, 1999; Murphy & 

Balzer, 1989) concerning rater effects. 

The purpose of this chapter is to summarize the research literature on rater effects and to 

provide a backdrop for a focused study on the rater-centrality effect. This chapter first 

summarizes the context of existing research relating to rater effects. Then it provides an 

overview of the existing psychometric approaches to detect rater effects. Finally, it focuses on 

the centrality effect and identifies potential indices to be evaluated through simulation methods 

in the following studies.  

2.2 Rater Effects 

As discussed in Myford and Wolfe’s work (2003), “rater effects”, “rater bias”, and “rater 

errors” have been largely undifferentiated in the research literature. For simplicity, I follow the 

term “rater effects” as defined by Scullen, Mount and Goff (2000), who define them as a “broad 

category of effects [resulting in] systematic variance in performance ratings that is associated in 

some way with the rater and not with the actual performance of the ratee” (p. 957). 
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2.2.1 Two Research Subdivisions on Rater Effects 

When raters formulate judgments, many factors come into play that may influence their 

ratings, and researchers have developed different approaches to study these influences. 

Reviewing the research literature on rater effects, I divide the research into two areas.  

One subdivision arises from the perspective of the psychological, behavioral, and 

personal aspects of human cognitive processing. Research that falls into this category often 

focuses on questions like how do raters read and judge students writing (Pula & Huot, 1993)?  

What part do rating procedures play in the process through which raters arrive at judgments 

about writing quality (Huot, 1990)?  What are the contexts and interrelationships among 

psychological process and social systems in understanding writing?  As quoted by Pula and Huot 

(1993), this type of research falls into functional research (Williamson, 1988) that seeks “an 

explanation of human behavior against the background of a social system or culture as whole… 

term[ed]…holistic, because it preserves the unity of personal, psychological events and their 

public, social functions…[I]t is the meaning that humans themselves impute to their behavior” 

(pp.90-96). The depth of understanding in these studies of rater effects depends on the 

sophistication of the model of the psychological process involved in human scoring behavior and 

rater cognition (Wolfe & Feltovich, 1994).  

The research within this subdivision1 has documented rater effects arising from rater 

psychological traits such as motivation, anxiety, motivational intensity, achievement, self-

8 

                                                            
1 Because the research literature under this division is not the central point of the dissertation, I do not 
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efficacy and mood (AlFallay, 2004; Bernardin & Villanova, 2005; Fried, Levi, Ben-David, 

Tiegs, & Avital, 2000); personality traits (Wexley & Youtz, 1985); prior beliefs held by the 

raters (Cooper, 1981; Tziner, Murphy, Cleveland, Beaudin, & Marchand, 1998; Wexley & 

Youtz, 1985); rater’s demographic backgrounds such as gender, race, and second language 

(Elder, Barkhuizen, Knoch, & von Randow, 2007; Mount & Systma, 1997; Scherer, Owen, & 

Brodzinski, 1991; Wen, 1979); the rater’s job role (Van Iddekinge, Putka, Raymark, & Eidson, 

2005); the rater’s social style (May & Gueldenzoph, 2006); the rater’s prior scoring experience 

(Weigle, 1998), training experience (Athey & McIntyre, 1987; Bernardin, 1978; Bernardin & 

Pence, 1980; Borman, 1979), etc. Unfortunately, due to the methodological difficulties of 

studying the interplay of these complex cognitive, experiential, and social variables, most studies 

in this area have focused on a small number of raters and a limited range of rater variables. 

Furthermore, there have been no broadly generalizable results drawn from studies such as these 

concerning rater behavior and their impact on rater effects, as documented by Landy and Farr 

(1980). 

Another subdivision of research relating to rater effects focuses on particular patterns that 

emerge in rating data that are assumed to result from rater effects and which can be compared to 

expected “normal” patterns of ratings for the sake of diagnosis. Observed rating patterns may be 

labeled as evidence of severity, leniency, centrality, range restriction, or halo depending on the 

distribution of majority ratings on a rating scale. These patterns can be operationalized into 

values of statistical indices. Because they are directly derived from rating data, they have been 

extensively studied in functional research. The next sections of this chapter discuss rater effects 
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within this subdivision of rater effect research, followed by a review of existing measurement 

frameworks under which these rater effects are defined. 

2.2.2 Types of Rater Effects 

Traditionally, researchers have focused on describing and measuring four rater effects : 

(1) leniency/severity (i.e., a rater rates ratees above or below the values of true ratings for those 

ratees), (2) halo (i.e., a rater assigns ratings that are more highly correlated across a range of 

criteria than would be the true ratings across those criteria), (3) central tendency (i.e., a rater 

overuses the middle category of a rating scale while avoiding the extreme categories), and (4) 

restriction of range (i.e., a rater overuses any point on a rating continuum). Of these four 

“classic” rater effects, the halo effect has been the most widely studied and has received the 

widest attention in the research literature (Myford & Wolfe, 2003). The halo effect differs from 

the rest in that it is associated with the presence of multiple traits or dimensions in tasks or ratees 

(Fisicaro & Lance, 1990), while each of the other three rater effects remains on a single trait or 

dimension. This distinction separates the halo effect from the other “classic” rater effects.  

Saal, et al. (1980) explain the connection among the other three effects: range restriction 

refers to situations in which ratings are clustered about any point on the rating continuum, be it a 

favorable (lenient) point, an unfavorable (severe) point, or the midpoint (central tendency) on the 

rating scale. Thus, range restriction may reflect leniency, severity, or central tendency. Hence, 

we can treat leniency, severity, and central tendency as special cases of restriction of range. As 

the leniency/severity effect was referred by Cronbach (1990) as the most serious error that a rater 

can introduce into a rating procedure, numerous studies have been conducted relating to that 
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effect (Athey & McIntyre, 1987; Bernardin & Walter, 1977; Borman, 1977; Congdon & 

McQueen, 2000; Engelhard, 1994). As a result, the detection and correction of that effect is 

fairly well understood. However, the central tendency is relatively less studied.  

One noteworthy and lesser known rater effect is inaccuracy (Wolfe, 2004a). Inaccuracy 

refers to seemingly random discrepancies between a rater’s ratings of examinee proficiency and 

the actual proficiency of those examinees. As a result, inaccuracy does not strictly adhere to the 

adopted definition of rater effects, which specifies that the error contributed to scores is 

systematic. In operational scoring settings, rater inaccuracy may occur when a rater has 

insufficient content background, insufficient training in applying the scoring rubric, or 

immutable biases or content-based beliefs that cause the rater to assign scores that are not 

consistent with the scoring rubric. When a rater assigns inaccurate ratings, any ratee scored by 

the rater could be misplaced on the underlying ability scale, and it is likely that the rank ordering 

of ratees scored by the effect rater disagrees with scores assigned by accurate raters. By 

definition, inaccuracy can occur alone or in conjunction with any of other types of rater effects, 

leaving it difficult for diagnosis and differentiation. Rater inaccuracy is introduced here because 

it is a common concern for those who evaluate ratings and because it may influence rater effect 

indices in a manner similar to other rater effects, particularly the centrality effect. 

2.2.3 Existing Measurement Approaches 

Researchers working from different psychometric perspectives have chosen different 

measurement frameworks to study rater effects. These approaches include: (a) applications of the 

classical test theory (CTT) in assessing the mean and the standard deviations of trait ratings 
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(Murphy & Anhalt, 1992); (b) applications of analysis of variance (ANOVA) method in 

assessing convergent and discriminant validity (Hedge & Kavanagh, 1988); (c) the use of 

multivariate analysis of variance (MANOVA) in assessing ratings on multiple performance 

dimensions (Saal, et al., 1980); (d) the use of regression-based procedures (LaHuis & Avis, 

2007); (e) the use of the generalizability theory (G-Theory) in assessing group-level rater effects; 

and (f) applications of latent trait measurement models. Among these approaches, G-Theory and 

Multi-Faceted Rasch Measurement (MFRM) are dominant but contrasting approaches in the 

study of rater effects, and there are several empirical studies using each technique (Kim & 

Wilson, 2009; Linacre, 1996; Lynch & McNamara, 1998; Smith, 2004; Sudweeks, Reeve, & 

Bradshaw, 2005). Linacre (1996) compares these two competing methodologies and explains the 

fundamental differences: G-Theory takes the discrepancy (between the observed score and the 

mean score over all acceptable observations) into account in determining the reliability of 

measures while the MFRM applies a correction to the estimated measures. A common 

conclusion from those comparison studies is that G-Theory provides a general summary 

including an estimation of the relative influence of each facet on a measure and the reliability of 

a decision based on the data; while MFRM focuses on the individual examinee or rater and 

provides as fair of a measure as possible from the data in addition to summary information such 

as reliability indices. Moreover, the MFRM provides valuable diagnostic information about 

individual rater performance, allowing for the detection and potential correction of rater effects 

in operational settings (Myford & Wolfe, 2003). Because of the advantages in detecting both 

group- and individual-level rater effects, the MFRM approach seems to have gained preferential 

status over other measurement approaches. 
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The basic form of the MFRM is an extension of the Rasch rating scale model (Andrich, 

1978). The rating scale model depicts the logit value of a ratee n being assigned a rating of x 

versus the next lower rating category by a particular rater r as a linear function of three 

parameters that locate the respondent abilityθn , rater locationλr , and rating scale category 

thresholdτ k onto the same latent trait continuum.  

krn
x

x

p
p

LN τλθ −−=
−

)(
1

, 

where k is the threshold between categories x and x-1. Parameters for this model are estimated 

using joint maximum likelihood estimation procedures as implemented in Facets (Linacre, 

2009a), Winsteps (Linacre, 2009b), or ConQuest (Wu, et al., 2007).  

This model is appropriate for the situation where raters rate ratee responses to a single 

item, which is a typical case of operational practices in most testing companies. Several 

statistical estimates associated with this model are powerful for evaluating rater effects. First, the 

rater severity or leniency effect is explicitly estimated by theλr  component in the model. λr  

depicts the location of the mean score assigned by rater r. Second, four model-data fit statistics 

associated with the Rasch rating scale model can be used to evaluate rater effects. These include 

the weighted and unweighted mean-square fit statistics (also called infit and outfit respectively) 

and the standardized versions of these two fit statistics. The mean-square fit statistics (Wright & 

Masters, 1982) are based on the standardized residual of the observed response for each person-

by-item combination from the modeled expectation, given the parameter estimates, 

Znr =
xnr − Enr

Wnr

, 
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where xnr  = the score assigned to person n by rater r,  

∑
=

=
m

k
nrknr kpE

0
, the expected score assigned to person n by rater r,  

∑
=

−=
m

k
nrnr EkW

0
)( , the expected model variance of the scores assigned to all persons by rater 

r, k is the scored responses, ranging from 0 to m, and is the model-based probability that 

person n is assigned a score in category k by rater r. A positive residual indicates that the 

observation is higher than expected. A negative residual indicates that the observation is lower 

than expected.  

nrkp

Unweighted mean-square fit statistics for raters are computed as the average of the 

squared standardized residuals across all persons scored by a rater,  
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where N is the number of persons. Weighted mean-square fit statistics for raters are computed as 

the average of the squared standardized residuals across all persons rated by a rater, each 

weighted by its variance so that remote scores are given less weight than proximal scores,  
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Each of these statistics can be standardized to obtain the standardized weighted and unweighted 

mean-square fit statistics, i.e., ZWMS and ZUMS (Wright & Masters, 1982). A rule of thumb for 

upper and lower limits of acceptable mean-square fit values have been suggested to flag items, 
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and these values have been adopted in operational settings for evaluating raters (i.e., 0.7 and 1.3 

for multiple-choice items, 0.6 and 1.4 for rating scales, and ± 2.0 for the standardized versions 

(Wright & Linacre, 1994)). 

A third potentially powerful index in evaluating rater effects within the MFRM context is 

the score-measure correlation,  (also known as the point-measure correlation). In 

rating data, it correlates Rasch measures of ratees with ratings assigned by raters, and is 

computed by the formula 

measurescorer ,

∑
=

−−
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n
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rnr
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where 
rX

rnr

S
XX −  is the standard score of rating assigned to ratee n by rater r, rX is the sample 

mean of ratings assigned by rater r, is the sample standard deviation of ratings assigned by 

rater r, 

rXS

θ

θθ
S

n − is the standard score of Rasch measure of ratee n, and is the standard deviation 

of Rasch measure of all ratees. The index value depicts the consistency between the rank 

ordering of the examinees by a particular rater and the rank ordering of those examinees by 

composite scores assigned by all other raters. Therefore, it should be sensitive to rater effects, 

such as inaccuracy, that create inconsistencies between this pair of measures. On the other hand, 

the score-measure correlation should not be strongly influenced by rater effects that preserve the 

rank ordering of examinees (e.g., when centrality exists). 

θS

2.3 Rater centrality and indices used for detecting the effect  
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Researchers have suggested several definitions of central tendency (Cascio, 1982; 

DeCotiis, 1977; Korman, 1971; Landy & Farr, 1983). Korman (1971) defined central tendency 

as the tendency to rate all rating objects around the ‘middle’ or mean of a rating continuum and 

not to use the extremes. DeCotiis (1977) defined central tendency as a rater’s unwillingness to go 

out on the proverbial limb in either the favorable or unfavorable direction. Most of these 

definitions are based upon the notion that raters exhibiting this effect overuse the middle 

categories of a rating scale while avoiding the extreme categories.  

By definition, the centrality effect induces a reduction of the variation in assigned ratings. 

In addition, the centrality effect results in accurate ratings in the central range of the ability 

continuum, but overestimates of ratee proficiency for non-proficient ratees and underestimates of 

ratee proficiency for highly proficient ratees. This rater effect also introduces an artificial 

dependency in the ratings that leads to overly consistent response patterns that can be detected 

with rater fit statistics.  

One approach to detecting the centrality effect relies on the mean and the standard 

deviation of the ratings assigned to all ratees by a rater on a particular performance dimension or 

trait (Borman & Dunnette, 1975). Smaller standard deviations reflect greater range restriction. 

Whether such range restriction represents leniency, severity or central tendency is determined by 

the mean rating. In other words, a center-regressing mean of the ratings and a relatively small 

standard deviation would lead to the conclusion of central tendency. Similarly, DeCotiis (1977) 

and Korman (1971) concentrated specifically on the proximity of the mean dimension ratings to 

the midpoint of the scale. Statistically, one would expect central tendency to be indicated by 

neutral ratings with little variability. Therefore, for a given instrument, a displaced mean rating 
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in conjunction with a relatively large standard deviation would lead to the conclusion that the 

instrument is sensitive to criterion performance, and therefore resistant to central tendency. 

Unfortunately, the use of the standard deviation of ratings as a rater effect index is problematic 

because the standard deviation is inflated when random error exists in the ratings. As a result, it 

would be unclear whether raters who produce ratings with small standard deviations are 

engaging in centrality or are simply accurate raters in a sample of inaccurate raters.  

Another family of indices that has been investigated as a potential indicator of centrality 

effect includes the various mean-square fit statistics that are commonly reported by commercial 

latent trait software, such as Winsteps (Engelhard, 1992, 1994). Mean-square fit statistics can be 

used to detect rater effects, as every rating contributes to both weighted and unweighted mean-

square fit statistics. These residual-based statistics capture deviations from expected ratings. 

Weighted mean-square fit statistic are more influenced by the overall pattern of assigned ratings 

than unweighted mean-square fit statistic are, because they weight the assigned ratings by their 

statistical information, which is higher in the center of the test and lower at the extremes. 

Unweighted mean-square fit statistics are highly influenced by extremely unexpected ratings 

when the elements of the measurement context are mismatched (i.e., a high ability examinee is 

rated by a lenient rater). Mean-square fit statistics are chi-square statistics divided by their 

degrees of freedom. Consequently the indices have a lower bound of zero and are positively 

unbounded. Values greater than 1.0 indicate unmodeled noise. A 0.1 increase in a fit statistic is 

associated with a 10% increase in unmodeled error. Values less than 1.0 indicate that the model 

predicts the data better than the assumed model-based error, which could result in inflated 

statistics for summary statistics, such as reliability statistics. In general, elements with fit statistic 
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values ranging from 0.6 to 1.5 are considered to show adequate fit to the model (Wright & 

Linacre, 1994). Standardized mean-square fit statistics work in the same way as the non-

standardized version except that they report the statistical probability of the mean-square 

statistics occurring by chance when the data fit the Rasch model.  

When a rater exhibits the centrality effect in ratings, we may expect the fit statistics to 

deviate away from 1.0 and the absolute value of standardized fit statistics to be larger than 2.0. 

We might expect the unweighted mean-square fit statistic to be more sensitive to centrality 

because it is more heavily influenced by large residuals for mismatched raters and ratees. We 

could expect these cases to produce larger residuals (i.e., a normal rater would produce ratings of 

high and low ability ratees that have large residuals). However, prior research has indicated that 

rater centrality may manifest itself inconsistently in these indices, and may, therefore, cause 

analysts to incorrectly conclude that accurate raters are engaging in central rating patterns 

(Wolfe, et al., 2000).  

Another index used to detect rater centrality is the expected-residual correlation – the 

correlation between estimated ratings and residuals, from Rasch measurement models 

(Wolfe, 2004a, 2005). Specifically, the expected-residual correlation is based on the notion that 

the raw residual, , produced by all ratings assigned by rater r who exhibits the centrality 

effect is positive for ratees of low ability (i.e., is greater than ) and negative for ratees of 

high ability(i.e., is less than ). As a result, when the centrality effect exists, a scatter plot 

of the expected scores (X axis) and residuals (Y axis) should have a negative relationship. A 

resrexp,

nrnr Ex −

nrx

nrx nrE

nrE
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value of the expected-residual correlation that approaches its upper limit of 1.00 indicates the 

way a rater utilizes the rating scale is uniform across ability continuum.  

The relationship between the MFRM ratee measures and residuals can also be expected 

to be influenced by the existence of rater centrality. That is, the correlation between ratee 

measures and model-based residuals, depicted by , may also be a powerful rater 

centrality-detection index. Again, when centrality presents in the rating data, the residuals for 

low proficiency ratees should be positive (i.e., is greater than ) and the residual for high 

proficiency ratees should be negative (i.e., is less than ). As a result, the scatter plot of the 

ratee measures should display a negative relationship between ratee measures and residuals. That 

means that the value of should be negative when centrality exists in the rating data. A 

highly positive value of measure-residual correlation indicates the way a rater utilizes the rating 

scale is uniform across ability continuum.  and summarize the relationship of 

residuals with expected scores and ratee calibrations respectively. The only difference between 

expected score and ratee calibration is that expected score is in response-level score units and 

ratee calibration is in logits. That is, ratee calibration is response-level score divided by the 

modeled score variance of observed scores around expected scores, and the modeled score 

variance is in fact the squared observed scores. Therefore the difference between  and 

 should be subtle. 
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Another index that can be used to detect rater centrality is the correlation of Rasch 

measures of ratees with assigned ratings by a rater, also called the score-measure correlation or 
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the point-measure correlation, denoted as “PTMEA” in Winsteps output. In typical item analyses 

using Rasch measurement, we use item correlations as an immediate check that the response 

level scoring is consistent with the scoring of other items (i.e., the rank ordering of ratees is the 

same for the item as for the estimated ratee measures). In case of study for rater centrality, we 

can evaluate the score-measure correlation to see if assigned ratings to ratees by a particular rater 

are consistent with the estimated ratee measures, which would be based on the ratings assigned 

by all raters. The value of score-measure correlation from raters with centrality should be less 

than one obtained from raters without centrality. That is, a highly positive value of the score-

measure correlation indicates a strong association between ratees’ ability measure and ratings 

assigned by a rater, and raters with centrality effect are expected to exhibit weaker or even 

negative correlation on this index. However, score-measure correlation along with point-biserial 

correlation is difficult to interpret because they are influenced by the predictability of the data, 

the targeting of the rater on the person sample, and the distribution of the personal sample. These 

factors may cause limited power for the score-measure correlation in detecting the centrality 

effect. 

Wolfe (1998b) proposed using rater slope, denoted as “DISCRM” in Winsteps, to detect 

the centrality effect. The Rasch model specifies that item discrimination, also called the item 

slope. In case of study for rater effects, it is rater discrimination and rater slope. In Winsteps, it is 

not a parameter but a descriptive statistic. Winsteps estimates what the rater slope parameter 

would have been if it had been parameterized. The Rasch slope is set at 1.0. The empirical slope 

is estimated through the model that has the appearance of a 2-PL IRT model but differs because 

the slope parameter is not used in the estimation of other parameters. The reported values of rater 
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slope are a first approximation to the precise value of  obtained from the Newton-Raphson 

estimation equation (Wright & Masters, 1982, pp. 72-77): 
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where is the rating assigned to ratee n by rater r, is the probability for ratee n rated by 

rater r to get the item correct, 

nrX nrP

nθ is the Rasch measure for ratee n, and is the severity of ratee r. 

Because a rater exhibiting the centrality effect may assign accurate ratings in the central range of 

the ability continuum and will overestimate ratee proficiency for non-proficient ratees and 

underestimate ratee proficiency for highly proficient ratees, the centrality effect rater could have, 

on average, lower discriminability than non-effect raters. Therefore, small values of the slope 

index could be a symptom of the centrality effect. The commonly acceptable value for the slope 

index is 0.5 or above, and raters with lower values are candidates for the centrality effect.  

rb

Other approaches suggested for detecting the rater-centrality effect, as summarized by 

Myford and Wolfe (2004), include checking (a) frequency counts that indicate how many times 

each rater used each category on each trait scale, (b) table of misfitting ratings, (c) category 

probability curves for each rater, (d) rating scale category unweighted mean-square indices, and 

(e) rating scale category thresholds. However, all these solutions remain experimental and are 

subject to judgmental interpretation because they lack clear-cut standards for analysts to follow. 

Therefore, they are not considered in this dissertation project.  
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In summary, in the ensuing studies, I evaluated six types of indices that should provide 

power in detecting the centrality effect: the standard deviation of assigned scores, the rater fit 

statistics (including weighted and unweighted, standardized and non-standardized mean-square 

fit statistics), the point-measure correlation, the expected-residual correlation, the measure-

residual correlation and the rater-slope index. Each of these indices has been proposed as a 

potential index for evaluating rater centrality, and a rationale can be provided for why that index 

may be a good candidate for detecting centrality. On the other hand, because detailed studies 

have not been conducted on any of these indices, simulation studies that compare the detection 

accuracy of all these indices are warranted and should contribute to the practice of detecting rater 

effects in operational settings. 
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3 METHODOLOGY  

3.1 General methods 

The three studies conducted for this dissertation share common elements, particularly in 

the areas of data generation, parameter estimation, and index computation. Hence, for the sake of 

being concise, I organized this chapter as follows. The methods that are common to all three 

studies are described first, followed by sections containing the unique details about each of the 

three sub-studies. 

Ratings on a six-point scale were generated using ConQuest 2.0 (Wu, et al., 2007) based 

on a unidimensional Rasch model that contains a single measurement facet (i.e., ratings assigned 

by raters to a single assessment item). Rating scale step threshold parameter values were 

specified to generate an approximately normal distribution of ratings for each simulated rater. In 

order to avoid confounding the detection of rater centrality with rater severity/leniency effects, 

all rater severity parameters were set to zero for all raters during data generation. That is, data 

sets were generated according to a Rasch rating scale model in which the item “difficulty” 

parameter was replaced by a rater “severity” parameter which was set to a constant value of zero.  

Starting with these “non-effect” data, a single simulated rater exhibiting a centrality 

effect was generated by shrinking the underlying ratee ability to four centrality-strength levels 

(0.10, 0.35, 0.60, and 0.85; i.e., the variance of the ability distribution is shrunk to a minimum of 

10% and to a maximum of 85% of that of the non-effect rater), and these effect ratings were 

added into the simulated data file in order to create a dichotomous rater-type variable (namely 
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focused non-effect, or “normal”, rater and manipulated effect rater). The relationship between 

the centrality strength and the ability distribution can be expressed as a variance ratio defined as, 

Variance ratio = 2

2

normal

effect

σ
σ

,  

where is the variance of ability distribution for the ratees whose responses are rated by 

effect raters and  the variance of ability distribution for the ratees whose responses are 

rated by normal raters. I generated data according to these procedures for three rater-sample 

sizes (50, 100, and 250) and three ratee-sample sizes (1000, 2000, and 3000). In all data sets, 

single raters were randomly assigned to ratees, and a second rating was assigned to either 10% or 

100% of the ratees (i.e., the double-scoring rate), again, chosen randomly. Accordingly, the 

number of ratees per rater relies on the random assignment achieved by randomly selecting either 

10% or 100% of ratees to assign a second score in the data generating process. The resulting data 

is not a full rater-by-ratee design (i.e., every rater does not rate every ratee), and with random 

rater-response assignment, raters would “give” different numbers of ratings across ratees. These 

designs are typical of those implemented in operational settings. As a result, the simulated rating 

data sets contained missing values. Consequentially, the number of assigned ratings varied across 

raters, which created a rating-count variable which was recorded because this variable could 

affect the measurement error of the centrality indices and hypothesis tests based on those indices. 

For each combination of these independent variables, 1000 data sets were generated, resulting in 

72,000 data sets (i.e., 1000 replications × 4 centrality-strength levels × 2 double-scoring rates × 3 

rater-sample sizes × 3 ratee-sample sizes). 

2
effectσ

2
normalσ
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After the data sets were generated, I performed the following activities. First, parameters 

were estimated for each simulated data set for the Rasch rating scale model (Andrich, 1978) 

using the Winsteps software (Linacre, 2009b). Second, values for the six rater centrality 

indicators (standard deviation of assigned scores, mean-square fit indices, score-measure 

correlation, measure-residual correlation, expected-residual correlation, and rater slope) were 

computed for each rater (effect and non-effect). These indices along with the experimental 

parameters are the data source for the ensuing analyses. Except for the double-scoring rate, all 

other experimental parameters were treated as continuous variables because the chosen values of 

these continuous variables were based on empirical trails with a consideration on continuous 

distributions, which allows for accurately depicting trends across levels of these variables. 

3.2 Study 1: The relationship between raw scores and several latent-trait 

indices for detecting rater centrality effect 

The first dissertation study aims to address the first research question: which centrality-

detection indices are most sensitive to the difference between effect raters and non-effect raters?  

In the subsequent analyses, I treated the difference of the values of each rater centrality index 

between rater types as the dependent variable in a separate analysis of variance method 

(ANOVA) with essential assumption checks. The remaining variables were treated as 

independent variables. For each centrality-effect index, the ANOVA analyses commenced with a 

saturated model under a full factorial design to capture all possible effects, then used variable 

elimination procedures to a reduced model containing only effect terms with meaningful effect 

sizes. I utilized the stepwise procedure for model reduction because the simulated data sets were 

large enough to be assumed generalizable to other samples from similar scoring settings. Effect 
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terms containing an interaction with the rater type variable are the most interesting because the 

effects may be indicative of the power of the index for differentiating effect and non-effect 

raters. 

The ANOVA is an appropriate method to answer the research question for a couple of 

reasons. First, the way I simulated the effect rater is by shrinking the underlying ability of ratees 

who were assigned to a particular non-effect rater, namely a focused rater. Assigning ratings to 

the ratees with manipulated ability by the same rater was assumed to be equivalent to assigning 

effect ratings to the same ratees by an effect rater. These effect ratings were added into the 

simulated data file in order to create a rater-type variable. It is equivalent to having the same 

rater assign ratings twice, once exhibiting the centrality effect, and once not. Thus, after 

calibration, there were double measures of the centrality effect for a single focused rater, and the 

two observations of a particular centrality index on this focused rater were not independent to 

each other. Such a data setting allows us to use the focused rater as its own comparison or 

control case. That is, relevant factors that might contribute to the outcome of interest may be 

constant within individuals. Statistically, the ratings assigned by the focused rater and the pseudo 

effect rater are no longer independent to each other, I need to take this independence into account 

to get a proper estimates of variability for hypothesis testing. 

Second, the ANOVA contains the main effect of relevant factors, the main effect of 

repeated measure, and the interaction of the relevant factors. In my case, when I treated the 

double-scoring rate, the centrality-strength level, and the number of raters and ratees as relevant 

factors, the difference between rater types as the outcome measure. The ANOVA model used 
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relevant factors and their interactions to explain the impact on difference between rater types 

measured by a centrality-detection index.  

As a result, if a centrality-detection index is associated with effect terms that have 

meaningful effect size, I can conclude that this index is sensitive to the difference between rater 

types measured by this particular index. If an index is involved with more than one effect term, 

attention is given to the most complex one. I used as indicators of effect sizes, with the cut-off 

for practical significance being an greater than 0.06 (Cohen, 1988, pp. 285-288). 

2η

2η

3.3 Study 2: The accuracy of centrality indices 

This study aims to answer the second research question: how accurate (and inaccurate) in 

terms of Type I and statistical power, is each centrality-detection index in flagging raters, 

particularly in light of the interactions observed in the first study?  I applied hypothesis testing 

procedures to each rater on each rater centrality index. That is, I specified a critical value for 

each index and declared each rater to be an “effect” or “non-effect” rater depending on whether 

the value of the rater centrality index was more extreme (effect) or less extreme (non-effect) than 

the specified critical values. To determine the accuracy and inaccuracy of these hypothesis test 

results for each rater centrality index, I compared the generating rater type (effect or non-effect) 

to the rater type classification based on the hypothesis test results. This comparison resulted in 

one of four outcomes for each rater: (a) correct classification as an effect rater (a true effect 

detection, depicted by statistical power), (b) correct classification as a non-effect rater (a true 

non-effect conclusion), (c) incorrect classification as an effect rater (a false positive, depicted by 

the Type I error rate), or (d) incorrect classification as a non-effect rater (a false negative, 
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depicted as the Type II error rate). Because the results of a previous study suggested that each 

index is differentially predictive of rater centrality across double-scoring rates and centrality 

strength, I report the findings of this study stratified on the levels of those variables. 

It is important to note that, in the rater classification process, I relied on two types of 

critical values. The first type of critical value is based on a hypothesis testing framework. That is, 

for some of the rater centrality indices, I posited a parametric form for the null distribution of the 

rater centrality index and created critical values to set a proportion of the area of that null 

distribution as the rejection region for the hypothesis tests. These hypothesis testing critical 

values were determined for and applied to the standard deviation of assigned scores and the 

correlation-based indices (i.e., the point-measure correlation, the measure-residual correlation 

and the expected-residual correlation), because the value of these indices can be assumed to 

follow either an F distribution or a normal distribution. In both cases, the null hypothesis 

assumes no difference between a particular rater and the null distribution, which is based on non-

effect raters, so raters for whom the null hypothesis is rejected are flagged as exhibiting the 

centrality effect.  

In the hypothesis tests, values of correlation-based indices were first transformed using 

Fisher’s Z calculated as 
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where r is correlation coefficient. We assume r’ is approximately normally distributed around ρ', 

the transformed mean value of correlations for the sample of raters in an experimental condition 

with which a given rater is associated. From this it follows that  
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where total is the number of ratings assigned by all raters in each condition combination of rater 

type, double-scoring rate, centrality strength, number of raters and ratees, and rater_n is the 

number of raters in which experimental condition a given rater is located. These calculated z 

statistics were compared to the critical values in order to conduct the rater’s classification 

hypothesis test. I expected the index values for the effect raters to be negative or smaller than 

those for the non-effect raters. That is, I compared the observed z against the corresponding 

critical value at alpha level of 0.05, i.e, the critical value of -1.64 for one-tailed hypothesis test. A 

similar process was followed for the standard deviation of assigned scores (STD). First, each 

standard deviation was formulated as 2

2

effectnon

effect

S
S

F
−

= . Second, critical values were determined 

based on the degrees of freedom for the numerator and the denominator at each group level. For 

effect raters, the degree of freedom is calculated as  

1_ −= countratingdfeffect  

where rating_count is the number of ratings assigned by a corresponding rater at each group 

level. For non-effect raters, the degree of freedom is calculated as  

1
)1_(*1000
−

−
=− nrater

totaldf effectnon .  
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Third, each rater’s F statistic was compared to this critical value, and the rater was declared to be 

an effect or non-effect rater. In this case, I expect the standard deviation of assigned scores for 

the effect raters to be smaller than those for the non-effect raters. 

The second type of critical value I utilized in the study is not based on a hypothesis 

testing framework. Rather, as is often the case in applications of some of these indices, I adopted 

a rule-of-thumb critical value. This type of test applied to the standardized outfit (ZMSU) and 

infit (ZMSW) statistics, where, in practice, critical values for these indices that are commonly 

accepted in the literature range are +2.0 and -2.0. That is, a simulated rater was flagged if the 

observed value of standardized mean-square fell outside of this range.  

For each simulated rater, both effect and non-effect raters, I determined the accuracy of 

the rater classification after applying the relevant critical value and then determined the 

proportion of incorrect classifications for non-effect raters (a Type I error or false positive) and 

the proportion of incorrect classifications for effect raters (a Type II error or false negative rate) 

as well as the inverse of these values, which depict the proportion of correct classifications for 

each group of raters. 

3.4 Study 3: The impact of rating data collection design on rater classification 

accuracy by centrality indices 

The third study addressed the third research question: how do the features of the data 

collection design (i.e., the independent variables including the level of centrality strength, 

double-scoring rate, and the number of raters and ratees) influence the rater classification by 

these centrality-detection indices?  I first computed two dichotomous variables for each 
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centrality-detection index. One of those variables records the outcome of rater classification 

(1=correct, 0=incorrect) for non-effect raters. The other variable records the outcome of rater 

classification (1=correct, 0=incorrect) for effect raters. Then, I used logistic regressions to 

determine how the features of the data collection design influences these two outcome variables 

for each centrality-detection index. That is, I conducted a logistic regression separately for effect 

raters and for non-effect raters by specifying dichotomous rater classification accuracy (correct 

classification versus incorrect classification) as a function of several predictor variables (i.e., the 

double-scoring rate, the centrality strength, the number of raters, and the number of ratees) 

separately for each rater centrality index. For each index, the analyses commenced with a 

saturated model under a full factorial design to capture all possible effects and then used a 

stepwise procedure for model reduction.  

To facilitate interpretation of the results, I first centered the independent variables (i.e., 

the experimental parameters except for the double-scoring rate) on their grand means, and then 

created cross-product interaction terms using the mean-centered experimental parameters. After 

parameters were estimated, I multiplied each estimate by its standard deviation (summarized in 

Table 3.4-1) and took the exponential of the products to get odds ratios. This is equivalent to 

standardizing each predictor terms prior to the logistic regressions. I used odds ratios as 

indicators of effect sizes, and applied Monahan’s (2007) suggestion on cut-off values for  large 

effect sizes being odds ratios greater than 1.89 (or less than 0.53, for negative relationships) and 

moderate effect sizes being an odds ratio greater than 1.53 (or less than 0.65, for negative 

relationships). The interpretations focus on either the main effects or the highest-order 

interaction effects with minimum of medium effect sizes. 
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Table 3.4-1: Standard deviations of mean-centered experimental parameters and their 

interactions 

Mean-centered Variable Std Dev
CS                    0.28
RATERN                82.12
RATEEN                816.50
DSR*CS                0.20
DSR*RATERN 58.36
DSR*RATEEN              580.23
DSR*CS*RATERN         16.31
DSR*CS*RATEEN         162.18
DSR*CS*RATERN*RATEEN  13318.63
DSR*RATERN*RATEEN       47650.18
CS*RATERN*RATEEN       18741.91
CS*RATERN              22.95
CS*RATEEN              228.22
RATERN*RATEEN            67053.10

Note: CS = centrality strength, DSR = double-scoring rate, 
RATERN = number of raters, RATEEN = number of ratees. For 
each centered variable, N = 9,672,000 and Mean = 0.00. 
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4 MANUSCRIPT 1: THE RELATIONSHIP BETWEEN RAW 

SCORES AND SEVERAL LATENT-TRAIT INDICES FOR 

DETECTING RATER CENTRALITY EFFECT 

4.1 Abstract 

This simulation study compares several centrality-detection indices to determine which of 

them differentiate effect raters from non-effect raters using data designs similar to those in large 

scale performance assessment settings. I generated datasets by varying influential factors 

including the strength of centrality effect, the number of raters, the number of ratees, and the 

proportion of ratees assigned a second score. The results reveal that the measure-residual 

correlation, the expected-residual correlation, and the standardized deviation of assigned scores 

perform better than the point-measure correlation. The mean-square fit statistics, traditionally 

viewed as potential indicators of rater centrality, perform poorly in terms of differentiating 

central raters from normal raters. Along with the rater slope index, the mean-square fit statistics 

did not appear to be sensitive to the rater centrality effect. 

4.2 Introduction 

Performance assessments are used extensively in educational testing, particularly in 

content areas that are difficult to measure with multiple-choice items, and ratings assigned by a 

human are commonly used to judge the quality of the assessment products (Landy & Farr, 1980). 

Unfortunately, performance ratings are prone to various types of systematic and random error, 

potentially rendering the associated scores inaccurate as indicators of the student’s true 

performance. That is, raters may exhibit rater effects that serve as sources of error in the 
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performance ratings. Therefore, identifying aberrant raters successfully is an important step in 

evaluating the psychometric quality of ratings in terms of validity and reliability. Previous 

research has identified several ways that rater effects are manifested in ratings, and researchers 

have developed a variety of criteria under different methodological frameworks (e.g., classical 

test theory, analysis of variance, regression-based analysis, generalizability theory, and Rasch 

measurement and item response theory) to evaluate the psychometric quality of performance 

ratings (Saal, et al., 1980). However, supporting simulation studies and operational applications 

of these methods have remained sparse.  

Previous research concerning rater effects has identified several ways that raters 

introduce error into ratings, including severity/leniency, centrality/extremism, and inaccuracy 

(Saal, et al., 1980). This study focuses on detecting the centrality effect. A rater who exhibits the 

centrality effect overuses the middle categories of the rating scale while avoiding extreme 

categories. Hence, the centrality effect induces a reduction of the variation of assigned ratings. In 

addition, centrality results in accurate ratings in the central range of the ability continuum, but 

overestimates of ratee proficiency for non-proficient ratees and underestimates of ratee 

proficiency for highly proficient ratees. Clearly, the centrality effect will manifest itself in the 

standard deviation of the observed ratings. However, the standard deviation may be a poor 

choice as a rater effect index because it is inflated when random error exists in the ratings. As a 

result, it would be difficult to determine whether raters who produce a small standard deviation 

are engaging in centrality or are simply accurate raters. In addition, many operational analyses of 

rater effects employ latent trait modeling procedures (e.g., item response theory), and numerous 
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indices exist within those frameworks that might be better suited as indicators of the centrality 

effect.  

One family of such indices includes the various mean-square fit indices that are 

commonly reported by commercial latent trait software, such as Winsteps (Engelhard, 1992, 

1994). When a rater exhibits the centrality effect in ratings, we may expect the fit statistics to 

deviate away from 1.0 and the absolute value of standardized fit statistics to be larger than 2.0. 

We might expect the unweighted mean-square fit statistic to be more sensitive to centrality 

because it is more heavily influenced by large residuals for mismatched raters and ratees. We 

could expect these cases to produce larger residuals (i.e., a normal rater would produce ratings of 

high and low ability ratees that have large residuals). However, prior research has indicated that 

rater centrality may manifest itself inconsistently in these indices, and may, therefore, cause 

analysts to incorrectly conclude that accurate raters are engaging in central rating patterns 

(Wolfe, et al., 2000). Hence, in this article, I evaluated four additional indices to detect rater 

centrality: the score-measure correlation (also known as the point-measure correlation), the 

measure-residual correlation, the expected-residual correlation (Wolfe, 2004b, 2005), and a rater 

slope index (Wolfe, 1998a).  

The score-measure correlation is also called the point-measure correlation, denoted as 

“PTMEA” in Winsteps output. In rating data, it correlates Rasch measures of ratees with ratings 

assigned by raters, and is computed by the formula 
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where 
rX

rnr

S
XX −  is the standard score of rating assigned to ratee n by rater r, rX is the sample 

mean of ratings assigned by rater r, is the sample standard deviation of ratings assigned by 

rater r, 

rXS

θ

θθ
S

n − is the standard score of Rasch measure of ratee n, and is the standard deviation 

of Rasch measure of all ratees. In typical item analyses using Rasch measurement, we use item 

correlations as an immediate check that the response level scoring is consistent with the scoring 

of other items (i.e., the rank ordering of ratees is the same for the item as for the estimated ratee 

measures). In the case of studies of rater centrality, we can evaluate the score-measure 

correlation to see if assigned ratings to ratees by a particular rater are consistent with the 

estimated ratee measures, which would be based on the ratings assigned by all raters. The value 

of a score-measure correlation from raters with centrality should be less than one obtained from 

raters without centrality. That is, a highly positive value of the score-measure correlation 

indicates a strong association between ratees’ ability measure and ratings assigned by a rater, and 

raters with the centrality effect are expected to slightly weaker correlations due to the attenuation 

of the assigned score distribution. Additionally, the score-measure correlation (and the analogous 

point-biserial correlation) is likely to be influenced by other features of the data (e.g., the 

targeting of the rater on the person sample and the distribution of the personal sample) as well as 

other rater effects (e.g., rater inaccuracy). As a result, the score-measure correlation may have 

limited power for detecting the centrality effect. 

θS

The expected-residual correlation depicts the association of estimated ratings and 

residuals, . Specifically, the expected-residual correlation is based on the notion that the resrexp,
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raw residual, , produced by all ratings assigned by rater r who exhibits the centrality 

effect is positive for ratees of low ability (i.e., is greater than ) and negative for ratees of 

high ability (i.e., is less than ). As a result, when the centrality effect exists, a scatter plot 

of the expected scores (X axis) and residuals (Y axis) should exhibit a negative association. A 

value of the expected-residual correlation that approaches its upper limit of 1.00 indicates that 

the way a rater utilizes the rating scale is uniform across the ability continuum. Similarly, the 

measure-residual correlation correlates Rasch measures of ratees and residuals, , and this 

index behaves in a similar manner when the centrality effect exists 

nrnr Ex −

nrx

nrx nrE

nrE

resmeasurer ,

The rater slope index, also called rater discrimination, may be sensitive to rater centrality, 

In the Rasch measurement software Winsteps, the discrimination index is not an estimated 

parameter contained in the model, although the software will output a crude estimate of what that 

parameter would be, if it were to be estimated for the sake of allowing an analyst to evaluate the 

reasonableness of the common slopes assumption inherent in the Rasch model. In applications of 

the Rasch model, the slope is set to a constant value of 1.0. On the other hand, the empirical 

slope is estimated in applications of a 2-PL IRT model so that the slope differs for each item (or, 

in this case, rater). The reported values of rater slope that are output by Winsteps are a first 

approximation to the precise value of  obtained from the Newton-Raphson estimation equation 

(Wright & Masters, 1982, pp. 72-77): 
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where is the rating assigned to ratee n by rater r, is the probability for ratee n rated by 

rater r to get the item correct, 

nrX nrP

nθ is the Rasch measure for ratee n, and is the severity of ratee r. 

Because a rater exhibiting the centrality effect may assign accurate ratings in the central range of 

the ability continuum and will overestimate ratee proficiency for non-proficient ratees and 

underestimate ratee proficiency for highly proficient ratees, the centrality effect rater could have, 

on average, lower discrimination estimates than non-effect raters. Therefore, small values of the 

slope index could be a symptom of the centrality effect. The commonly acceptable lower 

acceptable limit for the slope index is 0.5, and raters with lower values would be flagged as 

candidates for the centrality effect. 

rb

The purpose of this simulation study is to compare these centrality-detection indices to 

determine which of them differentiate effect raters from non-effect raters using data designs 

similar to those in large scale performance assessment settings. In this paper, I generated datasets 

by varying influential factors including the number of raters, the number of ratees, and the 

proportion of ratees assigned a second score. The results reveal that the measure-residual 

correlation, the expected-residual correlation, and the standardized deviation of assigned scores 

perform better than the point-measure correlation and mean-square fit indices. 

4.3 Methods 

4.3.1 Simulation Design 

38 

I generated simulated ratings on a six-point scale using ConQuest 2.0 (Wu, et al., 2007) 

based on a unidimensional Rasch model that contains a single measurement facet (i.e., ratings 

assigned by raters to a single assessment item). I specified rating scale step threshold parameter 

 



 

values to create an approximately normal distribution of ratings for each simulated rater. In order 

to avoid confounding rater centrality and rater severity/leniency effects, all rater severity 

parameters were set to zero for all raters during data generation. That is, data sets were generated 

according to a Rasch rating scale model in which the item “difficulty” parameter was replaced by 

a rater “severity” parameter which was set to a constant value of zero.  

Starting with these “non-effect” data, a single simulated rater exhibiting a centrality 

effect was generated by shrinking the underlying ratee ability to one of four centrality-strength 

levels (0.10, 0.35, 0.60, and 0.85; i.e., the variance of the ability distribution is shrunk to a 

minimum of 10% and to a maximum of 85% of that of the non-effect rater) for a single rater, and 

these effect ratings were added into the simulated data file in order to create a rater-type variable 

(namely focused non-effect or normal rater and manipulated effect rater). The relationship 

between the centrality strength and the true ability distribution can be expressed as a variance 

ratio defined as, 

Variance ratio =
2

2

true

effect

σ

σ
,  

where is the variance of the ability distribution for the ratees whose responses are rated by 

effect raters and  the variance of ability distribution for the ratees whose responses are rated 

by non-effect raters. Table 4.3-1 translates the centrality strength values into the equivalent 

empirical variance ratios. For example, a centrality-strength value of 0.1 causes the variance of 

the ability distribution for an effect rater to be 66% of the variance of the ability distribution 

2
effectσ

2
trueσ
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produced by normal raters. From a centrality-strength value of 0.85, we can consider the 

centrality with a rater to be trivial as the variance ratio is close to 1.  

Table 4.3-1: Variance ratio vs. centrality strength 

Centrality Strength Variance Ratio
0.10 0.66 
0.35 0.73 
0.60 0.86 
0.85 1.03 

 

I generated data according to these procedures for three rater-sample sizes (50, 100, and 

250) and three ratee-sample sizes (1000, 2000, and 3000). In all data sets, single raters were 

randomly assigned to ratees, and a second rating was randomly assigned to either 10% or 100% 

of the ratees (i.e., the double-scoring rate), two common double-scoring designs observed in 

operational settings. Hence, the resulting data is not a full rater-by-ratee design (i.e., every rater 

does not rate every ratee); with random rater-response assignment, the simulated rating data sets 

contained missing values. Thus, the number of assigned ratings varied across raters, which 

created a rating-count variable which was recorded because this variable could affect the 

measurement error of the centrality indices and hypothesis tests based on those indices. As the 

simulated data is graphed in Figure 4.3-1, raters’ average rating-count decreases as the rater 

sample size enlarges and increases as the ratee sample size diminishes. On average, each rater 

assigns more ratings when all responses receive a second score comparing to when 10% of 

responses receive a second score. For each combination of these independent variables, I 

generated 1000 data sets, resulting in 72,000 data sets (i.e., 1000 replications × 4 centrality-

strength levels × 2 double-scoring rates × 3 rater-sample sizes × 3 ratee-sample sizes). 
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Figure 4.3-1: Raters’ average rating count by the double-scoring rate and the number of raters 

and ratees 

4.3.2 Analysis 

After the data sets were generated, I performed the following activities. First, parameters 

were estimated for each simulated data set for the Rasch rating scale model (Andrich, 1978) 

using the Winsteps software (Linacre, 2009b). Second, each of the six rater centrality indicators 

(standard deviation of assigned scores, mean-square fit indices, score-measure correlation, 

measure-residual correlation, expected-residual correlation, and rater slope) were computed for 

each rater (effect and non-effect). These index values s along with the experimental parameters 

are the data source for the ensuing analyses. Except for the double-scoring rate, all other 

experimental parameters were treated as continuous variables because the chosen values of these 

continuous variables are based on empirical trails with a consideration on continuous 

distributions, which allows for accurately depicting trends across levels of these variables. In the 

subsequent analyses, I treated the difference of the values of each rater centrality index between 
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rater types as the dependent variable in a separate analysis of variance method2 (ANOVA). The 

remaining variables were treated as the independent variables. For each centrality-effect index, 

the ANOVA analyses commenced with a saturated model under a full factorial design to capture 

all possible effects, and then relied on variable elimination procedures to a reduced model 

containing only effect terms with meaningfully large effect sizes. I utilized the stepwise 

procedure for model reduction because the simulated data sets were large enough to be assumed 

generalizable to other samples from similar scoring settings. I used as indicators of effect 

sizes, with the cut-off for practical significance being an greater than 0.06 (Cohen, 1988, pp. 

285-288). 

2η

2η

4.4 Results 

In Table 4.4-1, we summarize the significant model effects along with their effect sizes 

according to the ANOVA results from reduced models3. Because of the large sample size of the 

simulated data set, all the models were statistically significant. These model effects accounted 

for up to 20% of variation in the values of centrality-detection indices. The model effects 

exhibiting a minimum of moderate effect size (i.e.,  larger than 0.06) indicate that the 2η
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2 Upon checking the ANOVA assumptions, i.e., independence, normality and homoscedasticity, I found various 

levels of departure from the latter two assumptions. However, Lindman (1974) shows that the F statistic of the 

ANOVA test is quite robust against violations of these assumptions.  

3 The summaries reported here include only the results from the reduced models determined through stepwise 

ANOVA process and with all effect sizes of “zero” eliminated (i.e., model effects with eta-squared of zero are 

excluded from the final models).  

 



 

associated centrality-detection indices were sensitive to difference between rater types and thus 

were indicative of the usefulness of the indices for differentiating effect and non-effect raters. To 

better illustrate these model effects, in the following graphs, I plotted separate lines for rater 

types instead of difference between them. 

Table 4.4-1: Hypothesis testing and effect size from the ANOVA results 

Centrality-detection Index R2 Model effect F Sig 2η  
Point-measure correlation 0.19 DSR 8288.229 <.0001 0.09 
  DSR*CS 3856.667 <.0001 0.04 
  CS 45.123 <.0001 0.00 
Measure-residual correlation 0.05 CS 3456.066 <.0001 0.05 
Expected-residual correlation 0.05 CS 3431.932 <.0001 0.05 
STD 0.09 CS 7037.547 <.0001 0.09 
Note: CS=centrality strength, DSR=double-scoring rate 

 

For the point-measure correlation, two main effects, double-scoring rate and centrality-

strength produced of 0.09 and 0.00), and their double-scoring rate-by-centrality-strength 

interaction had a small effect size (  = 0.04) that approached my definition of a moderate effect 

size, so we chose to summarize the interaction effect. The value of 0.04 associated with the 

double-scoring rate-by-centrality-strength interaction indicated that 4% of the variation in the 

difference between the values of the point-measure correlations for effect and non-effect raters 

was explained by the interaction. Figure 4.4-1 displays this interaction graphically. When only 

10% of the responses were double scored the values of the effect and non-effect rater point-

measure correlations are fairly close to each other. That is, the point-measure correlation did not 

differentiate the effect rater from the non-effect rater. However, when all responses were double 

scored (shown in the right panel of Figure 4.1), as the magnitude of centrality increased, the 

2η

2η

2η
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value of the point-measure correlation for effect rater (red line) decreased relative to the value of 

that index for non-effect rater (blue line).  

44 

 
Figure 4.4-1. The double-scoring rate-by-centrality-strength interaction on the point-measure 

correlation 

For the measure-residual correlation, the expected-residual correlation and the standard 

deviation of assigned scores, the centrality-strength main effect produced of 0.05, 0.05 and 

0.09 respectively. As shown in Figures 4.4-2, 4.4-3, and 4.4-4, as the centrality effect became 

stronger, the value of these three rater centrality-detection indices decreased for the effect rater 

relative to the values of those indices for non-effect rater. In all cases, the gap between the values 

of the rater centrality index increases between the two rater types as the centrality strength 

increases, suggesting that these indices are indeed sensitive to the rater centrality effect and may 

be useful in differentiating effect and non-effect raters.  
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Figure 4.4-2. The centrality strength effect on the measure-residual correlation 

 

 

Figure 4.4-3. The centrality strength effect on the expected-residual correlation 
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Figure 4.4-4. The centrality strength effect on the standard deviation (STD) of assigned scores 

 

The mean-square fit (both standardized and non-standardized) and rater slope indices are 

not summarized in Table 4.4-1 because none of these indices produced a moderate effect size on 

any of the independent variables in the ANOVA. Specifically, the largest effect size for the 

standardized weighted mean-square fit statistic was = 0.02 for the double-scoring rate 

variable, and for the non-standardized was = 0.01 for the centrality strength variable. 

Similarly, for the standardized unweighted mean-square fit statistic was  = 0.03 for the 

double-scoring rate variable, and for the non-standardized was = 0.01 for the centrality 

strength variable. For the rater slope index, the largest effect size was = 0.01 for the double-

scoring rate variable. Generally, the small effect sizes for the mean-square fit statistics and the 

2η
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rater slope index suggests that these two types of index were not sensitive to the difference 

between rater types and thus not suitable for identifying the rater centrality effect.  

4.5 Conclusions 

The results indicate that the indices that have been traditionally viewed as potential 

indicators of rater centrality perform quite poorly in terms of differentiating central raters from 

normal raters. Specifically, the centrality strength main effect for both the unweighted and 

weighted mean-square fit indices accounted for only about 1% of the observed variance in the 

difference between the values of these indices for simulated effect and non-effect raters. 

Although the standardized versions of these two fit indices performed slightly better, neither the 

standardized unweighted mean-square nor the standardized weighted mean-square fit indices 

achieved a moderate effect size in the analyses. In fact, the only index that performed worse than 

the fit indices at differentiating central and normal raters was the rater slope index, which has 

never been subjected to scrutiny as a potential rater centrality indicator. 

On the other hand, two relatively new and related indices, the measure-residual 

correlation and the expected-residual correlation, both performed better at differentiating 

simulated raters who exhibit the centrality effect from those who do not. However, both of these 

indices produced only marginally larger effect sizes; ones that only approached the definition of 

moderately large effect size (i.e.,  was about 0.05 in both cases for the centrality strength main 

effect). In fact, neither of these indices performed as well as the assigned score standard 

deviation, the only raw score index I evaluated, which produced an effect size of 0.09 for the 

centrality strength main effect.  

2η

47 

 



 

The results for the point-measure correlation as a rater centrality index are somewhat 

surprising. While I expected the point-measure correlation to be influenced by rater centrality 

due to the attenuation of the scores associated with any process that would reduce their variance, 

the fact that this index produced the largest effect size for differentiating effect and non-effect 

raters and that it was the only index that produced a meaningfully large two-way interaction 

effect were unexpected results. Due to the fact that rater centrality does not really alter the rank 

ordering of ratees, I expected the point-measure correlation to be minimally influenced by the 

introduction of rater centrality. What I did not expect was the fact that the process of reducing 

the variance of the assigned scores, which produces a significant number of “tied” scores when 

the continuous ability distribution is divided into polytomous discrete categories, would have 

such a strong attenuating impact on the correlation between ability estimates and assigned scores. 

It is also somewhat surprising that the ability of the point-measure correlation to differentiate 

effect and non-effect raters was strongly influenced by missing data, as evidenced by the 

moderate centrality strength-by-double-scoring rate interaction effect. Specifically, when the 

double-scoring rate was reduced from 100% of the simulated ratees to only 10% of the simulated 

ratees, the point-measure correlation did not differentiate effect from non-effect raters. Hence, its 

value as a rater centrality index may be limited by the sparseness of the data matrix. 

I was also surprised by the fact that most of the experiment parameters (namely double-

scoring rate, rater sample size, and ratee sample size) had almost no influence on the capacity of 

each of the rater centrality indices I investigated to differentiate effect and non-effect raters. 

Generally, the more severe the centrality effect was, the more sensitive to the difference between 
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rater types a centrality-detection index was with the exception of the two-way interaction that the 

point-measure correlation exhibited involving double-scoring rate. 

Further study is warranted concerning each of these rater effects. Specifically, additional 

simulation work should be conducted to determine the Type I and Type II error rates associated 

with the dichotomous decisions to flag a rater as an effect or non-effect rater. In operational 

settings, a critical value would be chosen for each of these rater centrality indices, and raters 

would be categorized as either exhibiting or not exhibiting a large enough rater centrality effect 

to warrant intervention (e.g., retraining, rescoring, etc.). In addition to evaluating the Type I and 

Type II error rates, additional simulation work can focus on the degree to which these 

dichotomous categories that raters are placed into are accurate.  

A limitation of this simulation study is the fact that I isolated rater centrality. That is, the 

only rater effect that I introduced into the simulated ratings was rater centrality. Real data are 

likely to contain a mix of rater effects, and each rater centrality index may be sensitive to 

multiple types of rater effects. Hence, additional simulation work should be carried out to 

determine how well these indices perform when multiple rater effects exist in the ratings and 

how well each index differentiates one rater effect from another. Similarly, due to the fact that 

the simulated data are extremely “clean,” it is difficult to determine how well the simulation 

results will generalize to the “messy” data that are typical of operational contexts. That is, the 

data were modeled to fit the Rasch model, and other potential sources of model-data misfit were 

omitted from the data generation process (e.g., multidimensionality, rater drift over time, etc.). 

Hence, application of these rater centrality-detection indices to real data sets and to more 

complex simulated data may provide a useful test of the generalizability of the results. 
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Another limitation is that I did not control the number of ratees per rater and made the 

rating-count variable vary across raters with random assignment technique in the data generating 

process. Because this variable could affect the measurement error of the centrality indices and 

any associated hypothesis test based on those indices, it is hard to draw any conclusion on the 

appropriate number of ratees per rater for a particular centrality index to work well from this 

simulation study. Therefore, rather than letting it change with rater-response random assignment 

in the simulation process, the ideal case would be making the rating-count variable 

manipulatable. 

I believe that it is safe to conclude, however, that mean-square fit indices and their 

standardized transformations are a poor choice as indicators of rater centrality. Although these 

indices have been cited as potential indicators of rater centrality by several authors, e.g., 

Engelhard (1994), Myford and Wolfe (2004), etc., the simulation results indicate that the mean-

square fit indices do a poorer job of differentiating effect and non-effect raters than the measure-

residual correlation and the expected-residual correlation. In fact, the raw score standard 

deviation and the point-measure correlation seem to be considerably more sensitive to the 

existence of the rater centrality effect than are the mean-square fit indices. However, the point-

measure correlation seems to be much less sensitive when the data matrix is sparse. Further 

research should be conducted to determine the error rates and classification accuracy associated 

with various critical values that could be adopted for each of these indices before electing one of 

the indices as the “best candidate” for identifying rater centrality. 
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5 MANUSCRIPT 2: THE ACCURACY OF CENTRALITY 

INDICES 

5.1 Abstract 

This study compares the Type I error and the statistical power of several centrality-

detection indices. I generated simulated datasets by varying the strength of centrality effect, the 

number of raters, the number of ratees, and the proportion of ratees assigned a second score. The 

results show that all of these indices provided reasonable protection against Type I errors when 

all responses were double scored, and that higher statistical power was achieved when responses 

were 100% double scored in comparison to only 10% being double scored. With a consideration 

on balancing both Type I error and statistical power, I recommend the measure-residual 

correlation and the expected-residual correlation for detecting the centrality effect. I suggest 

using the point-measure correlation only when responses are 100% double scored. 

5.2 Introduction 

Performance assessments are used extensively in educational testing, particularly in 

content areas that are difficult to measure with multiple-choice items, and ratings assigned by a 

human are commonly used to judge the quality of the assessment products (Landy & Farr, 1980). 

Unfortunately, performance ratings are prone to various types of systematic and random error, 

potentially rendering the associated scores inaccurate as indicators of the student’s true 

performance. That is, raters may exhibit rater effects that serve as sources of error in the 

performance ratings. Therefore, identifying aberrant raters successfully is an important step in 
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evaluating the psychometric quality of ratings in terms of validity and reliability. Previous 

research has identified several ways that rater effects are manifested in ratings, and researchers 

have developed a variety of criteria under different methodological frameworks (e.g., classical 

test theory, analysis of variance, regression-based analysis, generalizability theory, and Rasch 

measurement and item response theory) to evaluate the psychometric quality of performance 

ratings (Saal, et al., 1980). However, supporting simulation studies and operational applications 

of these methods have remained sparse.  

Previous research concerning rater effects has identified several ways that raters 

introduce error into ratings, including severity/leniency, centrality/extremism, and inaccuracy 

(Saal, et al., 1980). This study focuses on detecting the centrality effect. A rater who exhibits the 

centrality effect overuses the middle categories of the rating scale while avoiding extreme 

categories. Hence, the centrality effect induces a reduction of the variation of assigned ratings. In 

addition, centrality results in accurate ratings in the central range of the ability continuum, but 

overestimates of ratee proficiency for non-proficient ratees and underestimates of ratee 

proficiency for highly proficient ratees. Clearly, the centrality effect will manifest itself in the 

standard deviation of the observed ratings. However, the standard deviation may be a poor 

choice as a rater effect index because it is inflated when random error exists in the ratings. As a 

result, it would be difficult to determine whether raters who produce a small standard deviation 

are engaging in centrality or are simply accurate raters. In addition, many operational analyses of 

rater effects employ latent trait modeling procedures (e.g., item response theory), and numerous 

indices exist within those frameworks that might be better suited as indicators of the centrality 

effect.  
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One family of such indices includes the various mean-square fit indices that are 

commonly reported by commercial latent trait software, such as Winsteps (Engelhard, 1992, 

1994). When a rater exhibits the centrality effect in ratings, we may expect the fit statistics to 

deviate away from 1.0 and the absolute value of standardized fit statistics to be larger than 2.0. 

We might expect the unweighted mean-square fit statistic to be more sensitive to centrality 

because it is more heavily influenced by large residuals for mismatched raters and ratees. We 

could expect these cases to produce larger residuals (i.e., a normal rater would produce ratings of 

high and low ability ratees that have large residuals). However, prior research has indicated that 

rater centrality may manifest itself inconsistently in these indices, and may, therefore, cause 

analysts to incorrectly conclude that accurate raters are engaging in central rating patterns 

(Wolfe, et al., 2000). Hence, in this article, I evaluated four additional indices to detect rater 

centrality: the score-measure correlation (also known as the point-measure correlation), the 

measure-residual correlation, the expected-residual correlation (Wolfe, 2004b, 2005), and a rater 

slope index (Wolfe, 1998a).  

The score-measure correlation is also called the point-measure correlation, denoted as 

“PTMEA” in Winsteps output. In rating data, it correlates Rasch measures of ratees with ratings 

assigned by raters, and is computed by the formula 
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mean of ratings assigned by rater r, is the sample standard deviation of ratings assigned by 
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rater r, 
θ

θθ
S

n − is the standard score of Rasch measure of ratee n, and is the standard deviation 

of Rasch measure of all ratees. In typical item analyses using Rasch measurement, we use item 

correlations as an immediate check that the response level scoring is consistent with the scoring 

of other items (i.e., the rank ordering of ratees is the same for the item as for the estimated ratee 

measures). In the case of studies of rater centrality, we can evaluate the score-measure 

correlation to see if assigned ratings to ratees by a particular rater are consistent with the 

estimated ratee measures, which would be based on the ratings assigned by all raters. The value 

of a score-measure correlation from raters with centrality should be less than one obtained from 

raters without centrality. That is, a highly positive value of the score-measure correlation 

indicates a strong association between ratees’ ability measure and ratings assigned by a rater, and 

raters with the centrality effect are expected to slightly weaker correlations due to the attenuation 

of the assigned score distribution. Additionally, the score-measure correlation (and the analogous 

point-biserial correlation) is likely to be influenced by other features of the data (e.g., the 

targeting of the rater on the person sample and the distribution of the personal sample) as well as 

other rater effects (e.g., rater inaccuracy). As a result, the score-measure correlation may have 

limited power for detecting the centrality effect. 

θS

The expected-residual correlation depicts the association of estimated ratings and 

residuals, . Specifically, the expected-residual correlation is based on the notion that the 

raw residual, , produced by all ratings assigned by rater r who exhibits the centrality 

effect is positive for ratees of low ability (i.e., is greater than ) and negative for ratees of 

high ability (i.e., is less than ). As a result, when the centrality effect exists, a scatter plot 

resrexp,
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of the expected scores (X axis) and residuals (Y axis) should exhibit a negative association. A 

value of the expected-residual correlation that approaches its upper limit of 1.00 indicates that 

the way a rater utilizes the rating scale is uniform across the ability continuum. Similarly, the 

measure-residual correlation correlates Rasch measures of ratees and residuals, , and this 

index behaves in a similar manner when the centrality effect exists 

resmeasurer ,

The rater slope index, also called rater discrimination, may be sensitive to rater centrality, 

In the Rasch measurement software Winsteps, the discrimination index is not an estimated 

parameter contained in the model, although the software will output a crude estimate of what that 

parameter would be, if it were to be estimated for the sake of allowing an analyst to evaluate the 

reasonableness of the common slopes assumption inherent in the Rasch model. In applications of 

the Rasch model, the slope is set to a constant value of 1.0. On the other hand, the empirical 

slope is estimated in applications of a 2-PL IRT model so that the slope differs for each item (or, 

in this case, rater). The reported values of rater slope that are output by Winsteps are a first 

approximation to the precise value of  obtained from the Newton-Raphson estimation equation 

(Wright & Masters, 1982, pp. 72-77): 
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where is the rating assigned to ratee n by rater r, is the probability for ratee n rated by 

rater r to get the item correct, 

nrX nrP

nθ is the Rasch measure for ratee n, and is the severity of ratee r. 

Because a rater exhibiting the centrality effect may assign accurate ratings in the central range of 

rb
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the ability continuum and will overestimate ratee proficiency for non-proficient ratees and 

underestimate ratee proficiency for highly proficient ratees, the centrality effect rater could have, 

on average, lower discrimination estimates than non-effect raters. Therefore, small values of the 

slope index could be a symptom of the centrality effect. The commonly acceptable lower 

acceptable limit for the slope index is 0.5, and raters with lower values would be flagged as 

candidates for the centrality effect.  

The simulation study described in this manuscript is an extension of my earlier 

investigation (Chapter 4) on the relative strengths of these centrality-detection indices. In that 

study, I compared the relative strengths of several centrality-detection indices in differentiating 

effect rater from non-effect raters. The difference in the values of each rater centrality index 

between rater types were treated as the dependent variable an analysis of variance, and the rating 

context variables were treated as the independent variables. The results of that study revealed 

that the measure-residual correlation, the expected-residual correlation, and the standardized 

deviation of assigned scores are better able to differentiate rater types than is the point-measure 

correlation. The mean-square fit statistics, traditionally viewed as potential indicators of rater 

centrality, perform poorly in terms of differentiating central raters from normal raters. Along 

with the rater slope index, the mean-square fit statistics did not appear to be sensitive to the rater 

centrality effect. 

The purpose this paper is to further explore the accuracy of these indices, that is, to 

compare the Type I error and the statistical power rates of these indices through group-level 

hypothesis testing. The indices that were sensitive to the centrality strength or that at least 

exhibited an interaction between the centrality strength and the double-scoring rate in the prior 
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study are included this paper. That is, the point-measure correlation, the measure-residual 

correlation, the expected-residual correlation and the standard deviation of assigned scores are 

the central focus of this manuscript. For completeness, the standardized mean-square fit statistics 

are also included in the comparisons. 

5.3 Methods 

5.3.1 Simulation Design 

I generated simulated ratings on a six-point scale using ConQuest 2.0 (Wu, et al., 2007) 

based on a unidimensional Rasch model that contains a single measurement facet (i.e., ratings 

assigned by raters to a single assessment item). I specified rating scale step threshold parameter 

values to create an approximately normal distribution of ratings for each simulated rater. In order 

to avoid confounding rater centrality and rater severity/leniency effects, all rater severity 

parameters were set to zero for all raters during data generation. That is, data sets were generated 

according to a Rasch rating scale model in which the item “difficulty” parameter was replaced by 

a rater “severity” parameter which was set to a constant value of zero.  

Starting with these “non-effect” data, a single simulated rater exhibiting a centrality 

effect was generated by shrinking the underlying ratee ability to one of four centrality-strength 

levels (0.10, 0.35, 0.60, and 0.85; i.e., the variance of the ability distribution is shrunk to a 

minimum of 10% and to a maximum of 85% of that of the non-effect rater) for a single rater, and 

these effect ratings were added into the simulated data file in order to create a rater-type variable 

(namely focused non-effect or normal rater and manipulated effect rater). The relationship 
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between the centrality strength and the true ability distribution can be expressed as a variance 

ratio defined as, 

Variance ratio =
2

2

true

effect

σ

σ
,  

where is the variance of the ability distribution for the ratees whose responses are rated by 

effect raters and  the variance of ability distribution for the ratees whose responses are rated 

by non-effect raters. Table 5.3-1 translates the centrality strength values into the equivalent 

empirical variance ratios. For example, a centrality-strength value of 0.1 causes the variance of 

the ability distribution for an effect rater to be 66% of the variance of the ability distribution 

produced by normal raters. From a centrality-strength value of 0.85, we can consider the 

centrality with a rater to be trivial as the variance ratio is close to 1.  

2
effectσ

2
trueσ

Table 5.3-1: Variance ratio vs. centrality strength 

Centrality Strength Variance Ratio 
0.10 0.66 
0.35 0.73 
0.60 0.86 
0.85 1.03 

 

I generated data according to these procedures for three rater-sample sizes (50, 100, and 

250) and three ratee-sample sizes (1000, 2000, and 3000). In all data sets, raters were randomly 

assigned to ratees, and a second rating was randomly assigned to either 10% or 100% of the 

ratees (i.e., the double-scoring rate), two common double-scoring designs observed in 

operational settings. Hence, the resulting data is not a full rater-by-ratee design (i.e., every rater 

does not rate every ratee); with random rater-response assignment, the simulated rating data sets 
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contained missing values. Thus, the number of assigned ratings varied across raters, which 

created a rating-count variable which was recorded because this variable could affect the 

measurement error of the centrality indices and hypothesis tests based on those indices. As the 

simulated data is graphed in Figure 5.3-1, raters’ average rating-count decreases as the rater 

sample size enlarges and increases as the ratee sample size diminishes. On average, each rater 

assigns more ratings when all responses receive a second score comparing to when 10% of 

responses receive a second score. For each combination of these independent variables, I 

generated 1000 data sets, resulting in 72,000 data sets (i.e., 1000 replications × 4 centrality-

strength levels × 2 double-scoring rates × 3 rater-sample sizes × 3 ratee-sample sizes). 

 

Figure 5.3-1: Raters’ average rating count by the double-scoring rate and the number of raters 

and ratees 

5.3.2 Analysis 

After the data sets were generated, I performed the following activities. First, parameters 

were estimated for each simulated data set for the Rasch rating scale model (Andrich, 1978) 

using the Winsteps software (Linacre, 2009b). Second, each of the six rater centrality indicators 
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(standard deviation of assigned scores, standardized mean-square fit indices, score-measure 

correlation, measure-residual correlation, and expected-residual correlation) were computed for 

each rater (effect and non-effect). These index values, along with the experimental parameters, 

are the data source for the ensuing analyses. Third, I applied hypothesis testing procedures to 

each rater on each rater centrality index. That is, I specified a critical value for each index and 

declared each rater to be an “effect” or “non-effect” rater depending on whether the value of the 

rater centrality index was more extreme (effect) or less extreme (non-effect) than the specified 

critical values. Fourth, to determine the accuracy and inaccuracy of these hypothesis test results 

for each rater centrality index, I compared the generating rater type (effect or non-effect) to the 

rater type classification based on the hypothesis test results. This comparison resulted in one of 

four outcomes for each rater: (a) correct classification as an effect rater (a true effect detection, 

depicted by statistical power), (b) correct classification as a non-effect rater (a true non-effect 

conclusion), (c) incorrect classification as an effect rater (a false positive, depicted by the Type I 

error rate), or (d) incorrect classification as a non-effect rater (a false negative, depicted as the 

Type II error rate). Because the results of a previous study suggested that each index is 

differentially predictive of rater centrality across double-scoring rates and centrality strength, I 

report the findings of this study stratified on the levels of those variables. 

It is important to note that, in the third step of this process, I relied on two types of 

critical values. The first type of critical value is based on a hypothesis testing framework. That is, 

for some of the rater centrality indices, I posited a parametric form for the null distribution of the 

rater centrality index and created critical values to set a proportion of the area of that null 

distribution as the rejection region for the hypothesis tests. These hypothesis testing critical 
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values were determined for and applied to the standard deviation of assigned scores and the 

correlation-based indices (i.e., the point-measure correlation, the measure-residual correlation 

and the expected-residual correlation), because the value of these indices can be assumed to 

follow either an F distribution or a normal distribution. In both cases, the null hypothesis 

assumes no difference between a particular rater and the null distribution, which is based on non-

effect raters, so raters for whom the null hypothesis is rejected are flagged as exhibiting the 

centrality effect. Table 5.3-2 presents a summary of these hypothesis tests, followed by detailed 

description in the next couple of paragraphs. 
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Table 5.3-2: Summary of hypothesis tests on the centrality-detection indices 

Indices Hypothesis Test Statistic Critical Value 
Point-measure correlation 
Measure-residual correlation 
Expected-residual correlation 

0H : effectnoneffect −= ρρ  

aH : effectnoneffect −< ρρ  eS
rz '' ρ−

=  
-1.64 

05.0=α  

STD 
: effectnoneffect −= σσ  
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effectnon
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S
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Note: r’= converted correlation using Fisher’s Z transformation (Fisher, 1921). ρ' = the 
transformed mean value of correlations for the sample of raters in an experimental condition with 
which a given rater is associated. 

 

In the hypothesis tests, values of correlation-based indices were first transformed using 

Fisher’s Z calculated as 
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r
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where r is correlation coefficient. We assume r’ is approximately normally distributed around ρ', 

the transformed mean value of correlations for the sample of raters in an experimental condition 

with which a given rater is associated. From this it follows that  

eS
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is a standard normal curve deviate. The standard error is calculated as 
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where total is the number of ratings assigned by all raters in each condition combination of rater 

type, double-scoring rate, centrality strength, number of raters and ratees, and rater_n is the 

number of raters in which experimental condition a given rater is located. These calculated z 

statistics were compared to the critical values in order to conduct the rater’s classification 

hypothesis test. I expected the index values for the effect raters to be negative or smaller than 

those for the non-effect raters. That is, I compared the observed z against the corresponding 

critical value at alpha level of 0.05, i.e., the critical value of -1.64 for one-tailed hypothesis test. 

A similar process was followed for the standard deviation of assigned scores (STD). First, each 

standard deviation was formulated as 2

2

effectnon

effect

S
S

F
−

= . Second, critical values were determined 

based on the degrees of freedom for the numerator and the denominator at each group level. For 

effect raters, the degree of freedom is calculated as  

1_ −= countratingdfeffect  

where rating_count is the number of ratings assigned by a corresponding rater at each group 

level. For non-effect raters, the degree of freedom is calculated as  

1
)1_(*1000
−

−
=− nrater

totaldf effectnon .  

Third, each rater’s F statistic was compared to this critical value, and the rater was declared to be 

an effect or non-effect rater. In this case, I expect the standard deviation of assigned scores for 

the effect raters to be smaller than those for the non-effect raters. 
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The second type of critical value I utilized in the study is not based on a hypothesis 

testing framework. Rather, as is often the case in applications of some of these indices, I adopted 

a rule-of-thumb critical value. This type of test applied to the standardized outfit (ZMSU) and 

infit (ZMSW) statistics, where, in practice, critical values for these indices that are commonly 

accepted in the literature range are +2.0 and -2.0. That is, a simulated rater was flagged if the 

observed value of standardized mean-square fell outside of this range.  

For each simulated rater, both effect and non-effect raters, I determined the accuracy of 

the rater classification after applying the relevant critical value and then determined the 

proportion of incorrect classifications for non-effect raters (a Type I error or false positive) and 

the proportion of incorrect classifications for effect raters (a Type II error or false negative rate) 

as well as the inverse of these values, which depict the proportion of correct classifications for 

each group of raters. 

5.4 Results 

Table 5.4-1 summarizes the Type I error rates for the selected centrality-detection 

indices, stratified by selection rate and centrality effect strength. These figures reveal that all of 

these indices provided reasonable protection against Type I error, ranging from 0.01 to 0.04 

when all responses received a second score. Type I error rates tended to be larger when only 10% 

of responses were double scored, and Type I error rates were considerably larger for the point-

measure correlation (i.e., =α 0.22), the measure-residual correlation (i.e., =α 0.09), and the 

expected-residual correlation  (i.e., =α 0.09) under this condition. The raw score standard 

deviation and the two standardized mean-square fit indices provided the greatest protection 

66 

 



 

67 

 

against Type I error under conditions involving this relatively large amount of missing data. It is 

noteworthy to point out that the Type I error rate did not vary across levels of centrality strength 

or the variation appeared to be close to a constant (also shown in the Figure 5.4-1). This indicates 

that the probability of incorrectly indentifying normal raters was not affected by the severity of 

the centrality effect. 

Table 5.4-1: Type I error rates for centrality-detection indices 

Double-
scoring 

Rate 

Centrality 
Strength 

Point-
measure  

Correlation 

Measure-
residual  

Correlation 

Expected-
residual 

Correlation 

STD ZMSW ZMSU

0.1 0.10 0.22 0.09 0.09 0.01 0.06 0.05 
0.35 0.22 0.09 0.09 0.01 0.06 0.05 
0.60 0.22 0.09 0.09 0.01 0.06 0.05 
0.85 0.22 0.09 0.09 0.01 0.06 0.05 

        
1.0 0.10 0.04 0.03 0.04 0.01 0.04 0.04 

0.35 0.04 0.03 0.04 0.01 0.04 0.04 
0.60 0.04 0.03 0.04 0.01 0.04 0.04 
0.85 0.04 0.03 0.04 0.01 0.04 0.04 
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Figure 5.4-1. Type I error rate varying as a function of the double-scoring rate and strength of 

the centrality effect 

 

Table 5.4-2 summarizes the statistical power rates for the studied centrality-detection indices. 

None of these indices provided good statistical power rate (i.e., 1 – Type II error rate > 0.80) 

unless the rater centrality effect shrank the variance of ratee latent distribution to at least half its 

true value. That is, the statistical power rate approached values of 0.80 and higher only when the 

centrality strength was set to 0.10, which is roughly equivalent to a variance ratio of ratee latent 

distribution of effect raters to normal raters at 0.66 (See Table 5.3-1). Higher statistical power 

rate was achieved when responses were 100% double scored in comparison to only 10% being 

double scored. The statistical power rates of the two mean-square fit statistics was especially 

low, indicating that they could only correctly identify aberrant raters for up to 23% of time. For 
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the other four indices, with 10% of responses being double scored, the statistical power was no 

higher than 50%. Also presented in Figure 5.4-2, the point-measure correlation seems to have the 

best statistical power of all, and the two mean-square fit statistics appeared to have the worst 

statistical power. The measure-residual and expected-residual correlations had fairly close values 

in the statistical power rates.  

Table 5.4-2: Statistical power rates for centrality-detection indices 

Double-
scoring 

Rate 

Centrality 
Strength 

Point-
measure  

Correlation 

Measure-
residual  

Correlation 

Expected-
residual 

Correlation 

STD ZMSW ZMSU 

0.10 0.10 0.43  0.37  0.38 0.31  0.19  0.05 
0.35 0.37  0.33  0.33 0.22  0.18  0.05 
0.60 0.29  0.23  0.23 0.09  0.18  0.06 
0.85 0.24  0.13  0.14 0.02  0.17  0.06 

        
1.00 0.10 0.79  0.51  0.51 0.50  0.23  0.22 

0.35 0.62  0.42  0.43 0.38  0.08  0.08 
0.60 0.33  0.25  0.26 0.17  0.05  0.05 
0.85 0.10  0.08  0.09 0.03  0.05  0.04 
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Figure 5.4-2. Statistical power rates varying as a function of the double-scoring rate and strength 

of the centrality effect 

 

5.5 Conclusions 

The results indicate that mean-square fit indices, indices that have been used to detect a 

variety of rater effects including rater centrality, provide reasonable protection against Type I 

errors but exhibit the lowest level of statistical power of any of the indices I examined. That is, 

they would be a very poor choice if the goal of the analyst was to detect rater centrality when it 

exists. Specifically, although the mean-squared fit indices maintained a Type I error rate close to 

0.05, the statistical power rate of those indices never rose above 0.25 and remained less than 0.10 

in most of the conditions that I examined.  
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Of the remaining indices, all of them provided reasonable protection against Type I errors 

when the double-scoring rate was 100%. However, when the double-scoring rate decreased to 

10% of the simulated examinees, Type I error rates increased from about 0.04 to about 0.09 for 

the expected-residual correlation and the measure-residual correlation. The Type I error rate 

increased substantially for the point-measure correlation (from 0.04 to 0.22) with this decrease in 

double-scoring rate. The raw score standard deviation was the only index that did not exhibit an 

increase in Type I error rate when double-scoring rate was decreased from 100% to 10%, 

maintaining a rate of about 0.01.  

Statistical power analysis of these indices, on the other hand, suggests that the raw score 

standard deviation may not be the best choice for flagging raters for the centrality effect. In all 

cases, the statistical power rates decreased when double-scoring rate decreased from 100% to 

10%. Also in all cases, however, the raw score standard deviation exhibited lower statistical 

power than any of the remaining indices with the exception of the mean-square fit indices. 

Additionally, the raw score standard deviation exhibited only marginally acceptable levels of 

statistical power (i.e., greater than 0.20) when the rater centrality strength was relatively strong 

(i.e., the ability variance was shrunk to about 35% of its true value). Under the condition of 

100% double-scoring, the point-measure correlation exhibited superior statistical power, 

achieving levels greater than 0.33 for relatively low levels of rater centrality strength and 

achieving levels greater than 0.62 for higher levels of rater centrality strength. On the other hand, 

the point-measure correlation performed only slightly better than the measure-residual 

correlation and the residual-expected correlation when 10% of the responses were double-scored. 
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This fact, coupled with the high Type I error rates suggests that the point-measure correlation 

may not be a good choice when the double-scoring rate is low.  

I recommend that analysts use either the measure-residual correlation or the expected-

residual correlation for detecting the centrality effect when attempting to balance both Type I 

error and statistical power. I suggest using the point-measure correlation only when responses are 

100% double scored. Furthermore, in some practical applications of these centrality-detection 

indices, Type I errors are more important than statistical power. Specifically, in a situation where 

incorrectly identifying normal raters as effect raters is more of concern than successfully 

identifying effect raters (e.g., when training raters is expensive or when the pool of potential 

raters is very small), one may want to avoid using the point-measure correlation, since in such a 

case care is usually focused on minimizing the occurrence of statistical errors. 

A limitation of this study is the fact that the critical values picked for the hypothesis 

testing were simulation-based rather than from the “reality”. Due to the fact that the simulated 

data are extremely “clean,” it is difficult to determine how well the simulation results will 

generalize to the “messy” data that are typical of operational contexts. That is, the data were 

modeled to fit the Rasch model, and other potential sources of model-data misfit were omitted 

from the data generation process (e.g., multidimensionality, rater drift over time, etc.). Hence, 

application of these rater centrality-detection indices to real data sets and to more complex 

simulated data may provide a support of the generalizability of the results. 

Further study is warranted concerning each of these rater effects. Specifically, in addition 

to evaluating the degree to which these dichotomous categories that raters are placed into are 
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accurate, additional analyses can focus on the influential factors from the rating data collection 

design on the classification accuracy. 
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6 MANUSCRIPT 3: THE IMPACT OF DATA COLLECTION 

DESIGN ON RATER CLASSIFICATION BY CENTRALITY 

INDICES 

6.1 Abstract 

This study evaluates how data collection design influences the accuracy of rater 

classifications indicated by centrality-detection indices. In this simulation study, I generated 

datasets by varying the strength of centrality effect, the number of raters, the number of ratees, 

and the proportion of ratees assigned a second score. The results indicate that these experimental 

parameters had different impact on the accuracy of rater classification and that improving the 

classification accuracy for non-effect raters may come at a cost of reducing the classification 

accuracy for effect raters. Some simple guidelines for the expected impact of classification 

accuracy when a higher-order interaction exists summarized from the analyses offer a glimpse of 

the “pros” and “cons” in adjusting the magnitude of the parameters when we evaluate the impact 

of the four experimental parameters on the outcomes of rater classification. 

6.2 Introduction 

Performance assessments are used extensively in educational testing, particularly in 

content areas that are difficult to measure with multiple-choice items, and ratings assigned by a 

human are commonly used to judge the quality of the assessment products (Landy & Farr, 1980). 

Unfortunately, performance ratings are prone to various types of systematic and random error, 

potentially rendering the associated scores inaccurate as indicators of the student’s true 

performance. That is, raters may exhibit rater effects that serve as sources of error in the 
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performance ratings. Therefore, identifying aberrant raters successfully is an important step in 

evaluating the psychometric quality of ratings in terms of validity and reliability. Previous 

research has identified several ways that rater effects are manifested in ratings, and researchers 

have developed a variety of criteria under different methodological frameworks (e.g., classical 

test theory, analysis of variance, regression-based analysis, generalizability theory, and Rasch 

measurement and item response theory) to evaluate the psychometric quality of performance 

ratings (Saal, et al., 1980). However, supporting simulation studies and operational applications 

of these methods have remained sparse.  

Previous research concerning rater effects has identified several ways that raters 

introduce error into ratings, including severity/leniency, centrality/extremism, and inaccuracy 

(Saal, et al., 1980). This study focuses on detecting the centrality effect. A rater who exhibits the 

centrality effect overuses the middle categories of the rating scale while avoiding extreme 

categories. Hence, the centrality effect induces a reduction of the variation of assigned ratings. In 

addition, centrality results in accurate ratings in the central range of the ability continuum, but 

overestimates of ratee proficiency for non-proficient ratees and underestimates of ratee 

proficiency for highly proficient ratees. Clearly, the centrality effect will manifest itself in the 

standard deviation of the observed ratings. However, the standard deviation may be a poor 

choice as a rater effect index because it is inflated when random error exists in the ratings. As a 

result, it would be difficult to determine whether raters who produce a small standard deviation 

are engaging in centrality or are simply accurate raters. In addition, many operational analyses of 

rater effects employ latent trait modeling procedures (e.g., item response theory), and numerous 
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indices exist within those frameworks that might be better suited as indicators of the centrality 

effect.  

One family of such indices includes the various mean-square fit indices that are 

commonly reported by commercial latent trait software, such as Winsteps (Engelhard, 1992, 

1994). When a rater exhibits the centrality effect in ratings, we may expect the fit statistics to 

deviate away from 1.0 and the absolute value of standardized fit statistics to be larger than 2.0. 

We might expect the unweighted mean-square fit statistic to be more sensitive to centrality 

because it is more heavily influenced by large residuals for mismatched raters and ratees. We 

could expect these cases to produce larger residuals (i.e., a normal rater would produce ratings of 

high and low ability ratees that have large residuals). However, prior research has indicated that 

rater centrality may manifest itself inconsistently in these indices, and may, therefore, cause 

analysts to incorrectly conclude that accurate raters are engaging in central rating patterns 

(Wolfe, et al., 2000). Hence, in this article, I evaluated four additional indices to detect rater 

centrality: the score-measure correlation (also known as the point-measure correlation), the 

measure-residual correlation, the expected-residual correlation (Wolfe, 2004b, 2005), and a rater 

slope index (Wolfe, 1998a).  

The score-measure correlation is also called the point-measure correlation, denoted as 

“PTMEA” in Winsteps output. In rating data, it correlates Rasch measures of ratees with ratings 

assigned by raters, and is computed by the formula 

∑
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where 
rX

rnr

S
XX −  is the standard score of rating assigned to ratee n by rater r, rX is the sample 

mean of ratings assigned by rater r, is the sample standard deviation of ratings assigned by 

rater r, 

rXS

θ

θθ
S

n − is the standard score of Rasch measure of ratee n, and is the standard deviation 

of Rasch measure of all ratees. In typical item analyses using Rasch measurement, we use item 

correlations as an immediate check that the response level scoring is consistent with the scoring 

of other items (i.e., the rank ordering of ratees is the same for the item as for the estimated ratee 

measures). In the case of studies of rater centrality, we can evaluate the score-measure 

correlation to see if assigned ratings to ratees by a particular rater are consistent with the 

estimated ratee measures, which would be based on the ratings assigned by all raters. The value 

of a score-measure correlation from raters with centrality should be less than one obtained from 

raters without centrality. That is, a highly positive value of the score-measure correlation 

indicates a strong association between ratees’ ability measure and ratings assigned by a rater, and 

raters with the centrality effect are expected to slightly weaker correlations due to the attenuation 

of the assigned score distribution. Additionally, the score-measure correlation (and the analogous 

point-biserial correlation) is likely to be influenced by other features of the data (e.g., the 

targeting of the rater on the person sample and the distribution of the personal sample) as well as 

other rater effects (e.g., rater inaccuracy). As a result, the score-measure correlation may have 

limited power for detecting the centrality effect. 

θS

The expected-residual correlation depicts the association of estimated ratings and 

residuals, . Specifically, the expected-residual correlation is based on the notion that the resrexp,
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raw residual, , produced by all ratings assigned by rater r who exhibits the centrality 

effect is positive for ratees of low ability (i.e., is greater than ) and negative for ratees of 

high ability (i.e., is less than ). As a result, when the centrality effect exists, a scatter plot 

of the expected scores (X axis) and residuals (Y axis) should exhibit a negative association. A 

value of the expected-residual correlation that approaches its upper limit of 1.00 indicates that 

the way a rater utilizes the rating scale is uniform across the ability continuum. Similarly, the 

measure-residual correlation correlates Rasch measures of ratees and residuals, , and this 

index behaves in a similar manner when the centrality effect exists 

nrnr Ex −

nrx

nrx nrE

nrE

resmeasurer ,

The rater slope index, also called rater discrimination, may be sensitive to rater centrality, 

In the Rasch measurement software Winsteps, the discrimination index is not an estimated 

parameter contained in the model, although the software will output a crude estimate of what that 

parameter would be, if it were to be estimated for the sake of allowing an analyst to evaluate the 

reasonableness of the common slopes assumption inherent in the Rasch model. In applications of 

the Rasch model, the slope is set to a constant value of 1.0. On the other hand, the empirical 

slope is estimated in applications of a 2-PL IRT model so that the slope differs for each item (or, 

in this case, rater). The reported values of rater slope that are output by Winsteps are a first 

approximation to the precise value of  obtained from the Newton-Raphson estimation equation 

(Wright & Masters, 1982, pp. 72-77): 
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where is the rating assigned to ratee n by rater r, is the probability for ratee n rated by 

rater r to get the item correct, 

nrX nrP

nθ is the Rasch measure for ratee n, and is the severity of ratee r. 

Because a rater exhibiting the centrality effect may assign accurate ratings in the central range of 

the ability continuum and will overestimate ratee proficiency for non-proficient ratees and 

underestimate ratee proficiency for highly proficient ratees, the centrality effect rater could have, 

on average, lower discrimination estimates than non-effect raters. Therefore, small values of the 

slope index could be a symptom of the centrality effect. The commonly acceptable lower 

acceptable limit for the slope index is 0.5, and raters with lower values would be flagged as 

candidates for the centrality effect. 

rb

This simulation study is an extension of previous investigations (Chapter 4 and 5) of the 

relative strengths and the accuracy of these centrality-detection indices. In the first study, I 

compared the relative strengths of several centrality-detection indices in differentiating effect 

rater from non-effect raters. The difference in the values of each rater centrality index between 

rater types were treated as the dependent variable in an analysis of variance, and the remaining 

variables were treated as the independent variables. The results revealed that the measure-

residual correlation, the expected-residual correlation, and the standardized deviation of assigned 

scores exhibited stronger discrimination between effect and non-effect raters than did the point-

measure correlation. The mean-square fit statistics, traditionally viewed as potential indicators of 

rater centrality, performed poorly in terms of differentiating central raters from normal raters. 

Along with the rater slope index, the mean-square fit statistics did not appear to be sensitive to 

the rater centrality effect. In the second study, I explored the accuracy of theses indices, 

specifically their Type I and Type II errors and statistical power. Hypothesis testing was applied 
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to each rater’s centrality indices and the results of this hypothesis test were compared to the 

rater’s true centrality status, differentiating the results as a function of centrality strength and the 

double-scoring rate. The results provide reports of accuracy and inaccuracy of these indices 

through Type I and II error and statistical power rates. The results show that all of these indices 

provided reasonable protection against Type I errors when all responses were double scored, and 

that higher statistical power rate was achieved when responses were 100% double scored in 

comparison to only 10% being double scored. With a consideration on balancing both Type I 

error and statistical power, I recommended the measure-residual correlation and the expected-

residual correlation for detecting the centrality effect. I did not suggest using the point-measure 

correlation when double-scoring rate is low. 

The purpose this paper is to further explore the impact of rating data collection design on 

each index’s rater-classification accuracy. That is, this manuscript explores the question “how do 

the features of the data collection design including double-scoring rate, centrality strength, and 

the number of raters and ratees, influence the accuracy of rater classification by the centrality-

detection indices to be considered.” Specifically, how the probability of a rater being correctly 

classified as effect rater (i.e., true positive rate) and the probability of a rater being correctly 

classified as non-effect rater (i.e., true negative rate) are influenced by those experimental 

parameters? The indices that were sensitive to the centrality strength or that at least exhibited an 

interaction between the centrality strength and the double-scoring rate in the prior study are 

included this paper. That is, the point-measure correlation, the measure-residual correlation, the 

expected-residual correlation and the standard deviation of assigned scores are the central focus 
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of this manuscript. For completeness, the standardized mean-square fit statistics are also included 

in the comparisons. 

6.3 Methods 

6.3.1 Simulation Design 

I generated simulated ratings on a six-point scale using ConQuest 2.0 (Wu, et al., 2007) 

based on a unidimensional Rasch model that contains a single measurement facet (i.e., ratings 

assigned by raters to a single assessment item). I specified rating scale step threshold parameter 

values to create an approximately normal distribution of ratings for each simulated rater. In order 

to avoid confounding rater centrality and rater severity/leniency effects, all rater severity 

parameters were set to zero for all raters during data generation. That is, data sets were generated 

according to a Rasch rating scale model in which the item “difficulty” parameter was replaced by 

a rater “severity” parameter which was set to a constant value of zero.  

Starting with these “non-effect” data, a single simulated rater exhibiting a centrality 

effect was generated by shrinking the underlying ratee ability to one of four centrality-strength 

levels (0.10, 0.35, 0.60, and 0.85; i.e., the variance of the ability distribution is shrunk to a 

minimum of 10% and to a maximum of 85% of that of the non-effect rater) for a single rater, and 

these effect ratings were added into the simulated data file in order to create a rater-type variable 

(namely focused non-effect or normal rater and manipulated effect rater). The relationship 

between the centrality strength and the true ability distribution can be expressed as a variance 

ratio defined as, 
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Variance ratio =
2

2

true

effect

σ

σ
,  

where is the variance of the ability distribution for the ratees whose responses are rated by 

effect raters and  the variance of ability distribution for the ratees whose responses are rated 

by non-effect raters. Table 6.3-1 translates the centrality strength values into the equivalent 

empirical variance ratios. For example, a centrality-strength value of 0.1 causes the variance of 

the ability distribution for an effect rater to be 66% of the variance of the ability distribution 

produced by normal raters. From a centrality-strength value of 0.85, we can consider the 

centrality with a rater to be trivial as the variance ratio is close to 1.  

2
effectσ

2
trueσ

Table 6.3-1: Variance ratio vs. centrality strength 
Centrality Strength Variance Ratio

0.10 0.66 
0.35 0.73 
0.60 0.86 
0.85 1.03 
 

I generated data according to these procedures for three rater-sample sizes (50, 100, and 

250) and three ratee-sample sizes (1000, 2000, and 3000). In all data sets, raters were randomly 

assigned to ratees, and a second rating was randomly assigned to either 10% or 100% of the 

ratees (i.e., the double-scoring rate), two common double-scoring designs observed in 

operational settings. Hence, the resulting data is not a full rater-by-ratee design (i.e., every rater 

does not rate every ratee); with random rater-response assignment, the simulated rating data sets 

contained missing values. Thus, the number of assigned ratings varied across raters, which 

created a rating-count variable which was recorded because this variable could affect the 

measurement error of the centrality indices and hypothesis tests based on those indices. As the 
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simulated data is graphed in Figure 6.3-1, raters’ average rating-count decreases as the rater 

sample size enlarges and increases as the ratee sample size diminishes. On average, each rater 

assigns more ratings when all responses receive a second score comparing to when 10% of 

responses receive a second score.  For each combination of these independent variables, I 

generated 1000 data sets, resulting in 72,000 data sets (i.e., 1000 replications × 4 centrality-

strength levels × 2 double-scoring rates × 3 rater-sample sizes × 3 ratee-sample sizes). 

 

Figure 6.3-1: Raters’ average rating count by the double-scoring rate and the number of raters 

and ratees 

6.3.2 Analysis 

After the data sets were generated, I performed the following activities. First, parameters 

were estimated for each simulated data set for the Rasch rating scale model (Andrich, 1978) 

using the Winsteps software (Linacre, 2009b). Second, each of the six rater centrality indicators 

(standard deviation of assigned scores, mean-square fit indices, score-measure correlation, 

measure-residual correlation, and expected-residual correlation) were computed for each rater 

(effect and non-effect). These index values, along with the experimental parameters, are the data 
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source for the ensuing analyses. Fourth, I computed two dichotomous variables for each 

centrality-detection index. One of those variables records the outcome of rater classification 

(1=correct, 0=incorrect) for non-effect raters. The other variable records the outcome of rater 

classification (1=correct, 0=incorrect) for effect raters. Lastly, I used logistic regressions to 

determine how the features of the data collection design influences these two outcome variables 

for each centrality-detection index. That is, I conducted a logistic regression separately for effect 

raters and for non-effect raters by specifying dichotomous rater classification accuracy (correct 

classification versus incorrect classification) as a function of several predictor variables (i.e., the 

double-scoring rate, the centrality strength, the number of raters, and the number of ratees) 

separately for each rater centrality index. For each index, the analyses commenced with a 

saturated model under a full factorial design to capture all possible effects and then used a 

stepwise procedure for model reduction.  

To facilitate interpretation of the results, I first centered the independent variables (i.e., 

the experimental parameters except for the double-scoring rate) on their grand means, and then 

created cross-product interaction terms using the mean-centered experimental parameters. After 

parameters were estimated, I multiplied each estimate by its standard deviation (summarized in 

Table 6.3-2) and took the exponential of the products to get odds ratios. This is equivalent to 

standardizing each predictor terms prior to the logistic regressions. I used odds ratios as 

indicators of effect sizes, and applied Monahan’s (2007) suggestion on cut-off values for  large 

effect sizes being odds ratios greater than 1.89 (or less than 0.53, for negative relationships) and 

moderate effect sizes being an odds ratio greater than 1.53 (or less than 0.65, for negative 
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relationships). The interpretations focus on either the main effects or the highest-order 

interaction effects with minimum of medium effect sizes. 

Table 6.3-2: Standard deviations of mean-centered experimental parameters and their 

interactions 

Mean-centered Variable Std Dev
CS                    0.28
RATERN                82.12
RATEEN                816.50
DSR*CS                0.20
DSR*RATERN 58.36
DSR*RATEEN              580.23
DSR*CS*RATERN         16.31
DSR*CS*RATEEN         162.18
DSR*CS*RATERN*RATEEN  13318.63
DSR*RATERN*RATEEN       47650.18
CS*RATERN*RATEEN       18741.91
CS*RATERN              22.95
CS*RATEEN              228.22
RATERN*RATEEN            67053.10
Note: CS = centrality strength, DSR = double-scoring rate, 
RATERN = number of raters, RATEEN = number of ratees. 
For each centered variable, N = 9,672,000 and Mean = 0.00. 
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6.4 Results 

Table 6.4-1 presents the results from the logistic regression analyses on the true negative 

outcomes. For the point-measure correlation (Table 6.4-1.a), the main effect “RATEEN” 

(number of examinees) and the interaction effect “DSR*RATERN” (double-scoring rate-by-

number of raters) had medium effect sizes (i.e., odds ratios greater than 1.53 for positive 

relationship or less than 0.65 for negative relationships). For the measure-residual correlation 

(Table 6.4-1.b), the interaction effect “DSR*RATEEN” (double-scoring rate-by-number of 

examinees) had a large effect size (i.e., odds ratios greater than 1.89 or less than 0.53 for 

 



 

negative relationships). For the expected-residual correlation (Table 6.4-1.c), the interaction 

effects “DSR*RATEEN” (double-scoring rate-by-number of examinees) and 

“RATERN*RATEEN” (number of raters-by-number of examinees) had medium effects sizes. 

For the infit mean-square statistic (Table 6.4-1.e), the interaction effect 

“DSR*RATERN*RATEEN” (double-scoring rate-by-number of raters-by-number of examinees) 

had a medium effect size. For the outfit mean-square statistic (Table 6.4-1.f), the interaction 

effects “DSR*RATERN” and “DSR*RATEEN” had large effect sizes. 

Table 6.4-1: Results from logistic regression analyses on the true negative outcomes 

Effect Estimate Pr > ChiSq Odds Ratio Direction of 
Relationship 

a. Point-measure Correlation   
Main Effect    

Intercept           2.613 <.0001  
DSR       0.1 vs. 1 0.491 <.0001 1.634  
CS                0.005 0.6083 1.001  
RATERN            0.008 <.0001 1.926  
RATEEN            -0.001 <.0001 0.633 - 

Interaction Effect   
DSR*CS            0.027 0.0407 1.005  
DSR*RATERN          -0.008 <.0001 0.621 - 
DSR*RATEEN          0.001 <.0001 1.450  
DSR*CS*RATERN     0.000 0.0106 0.994  
DSR*RATERN*RATEEN   0.000 <.0001 1.249  
CS*RATERN          0.000 0.4925 0.998  
RATERN*RATEEN        0.000 <.0001 0.788  
     

b. Measure-residual Correlation  
Main Effect   

Intercept           2.564 <.0001   
DSR      0.1 vs. 1 0.708 <.0001 2.030  
RATERN          0.004 <.0001 1.351  
RATEEN            -0.001 <.0001 0.643  

Interaction Effect  
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DSR*RATERN          -0.006 <.0001 0.713  
DSR*RATEEN          0.001 <.0001 1.542 + 
DSR*RATERN*RATEEN   0.000 <.0001 1.409  
RATERN*RATEEN        0.000 <.0001 0.655  
     

c. Expected-residual Correlation  
Main Effect    

Intercept              2.569 <.0001   
DSR          0.1 vs. 1 0.626 <.0001 1.870  
RATERN               0.004 <.0001 1.410  
RATEEN               -0.001 <.0001 0.603  

Interaction Effect   
DSR*RATERN             -0.006 <.0001 0.705  
DSR*RATEEN             0.001 <.0001 1.590 + 
DSR*RATERN*RATEEN   0.000 <.0001 1.445  
RATERN*RATEEN 0.000 <.0001 0.630 - 
   

d. STD  
Main Effect   

Intercept           4.365 <.0001  
DSR      0.1 vs. 1 0.147 <.0001 1.158  
RATERN            -0.002 <.0001 0.852  
RATEEN            0.000 0.0002 1.018  

Interaction Effect  
DSR*RATERN          -0.002 <.0001 0.906  
DSR*RATEEN          0.000 <.0001 1.170  
DSR*RATERN*RATEEN   0.000 <.0001 1.149  
RATERN*RATEEN        0.000 <.0001 0.830  
     

e. ZMSW (standardized weighted mean-square statistic or infit)  
Main Effect    

Intercept              4.527 <.0001   
DSR          0.1 vs. 1 -1.493 <.0001 0.225  
RATERN               0.020 <.0001 5.126  
RATEEN               -0.002 <.0001 0.195  

Interaction Effect   
DSR*RATERN             -0.021 <.0001 0.294  
DSR*RATEEN             0.002 <.0001 3.362  
DSR*RATERN*RATEEN   0.000 <.0001 1.689 + 
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RATERN*RATEEN 0.000 <.0001 0.511  
     

f. ZMSU (standardized unweighted mean-square statistic or outfit) 
Main Effect    

Intercept              4.396 <.0001   
DSR          0.1 vs. 1 -1.308 <.0001 0.270  
CS                   0.006 0.3002 1.002  
RATERN               0.017 <.0001 4.106  
RATEEN               -0.001 <.0001 0.349  

Interaction Effect  
DSR*RATERN          -0.018 <.0001 0.342 - 
DSR*RATEEN          0.001 <.0001 2.253 + 
DSR*RATERN*RATEEN   0.000 <.0001 1.262  
CS*RATEEN          0.000 0.1754 1.002  
RATERN*RATEEN        0.000 <.0001 0.760  

Note: CS = centrality strength, DSR = double-scoring rate, RATERN = number of 
raters, RATEEN = number of rates, + = positive relationship, - = negative relationship 

 

Table 6.4-2 presents the results from the logistic regression analyses on the true positive 

outcomes. For the point-measure correlation (Table 6.4-2.a), the main effects “RATERN” 

(number of raters) and “RATEEN” and the interaction effect “DSR*CS” (double-scoring rate-

by-centrality strength) had large effect sizes. For the measure-residual correlation (Table 6.4-

2.b), the interaction effect “DSR*CS*RATERN” (double-scoring rate-by-number of raters) had a 

large effect size. For the expected-residual correlation (Table 6.4-2.c), the main effects 

“RATERN” and “RATEEN” had medium effects sizes. For the standard deviation of assigned 

scores (Table 6.4-2.d), all the four main effects had either large or medium effect sizes. For the 

infit mean-square statistic (Table 6.4-2.e), the interaction effect “DSR*RATERN*RATEEN” 

had a medium effect size. For the outfit mean-square statistic (Table 6.4-2.f), the interaction 

effect “DSR*RATERN*RATEEN” had a medium effect size. 
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Table 6.4-2: Results from logistic regression analyses on the true positive outcomes 

Effect Estimate Pr > ChiSq Odds Ratio Direction of 
Relationship 

a. Point-measure Correlation  
Main Effect    

Intercept              -2.416 <.0001   
DSR          0.1 vs. 1 1.823 <.0001 6.188  
CS                   0.125 0.5515 1.036  
RATERN               -0.014 <.0001 0.325 - 
RATEEN               0.001 <.0001 2.357 + 

Interaction Effect    
DSR*CS               -4.932 <.0001 0.375 - 
DSR*RATERN             0.003 <.0001 1.204  
DSR*RATEEN             0.000 <.0001 0.807  
DSR*CS*RATERN        0.008 <.0001 1.144  
DSR*CS*RATEEN        -0.001 0.0043 0.890  
DSR*CS*RATERN* RATEEN 0.000 0.0036 1.088  
DSR*RATERN*RATEEN      0.000 <.0001 0.697  
CS*RATERN*RATEEN      0.000 0.0435 0.929  
CS*RATERN             0.012 <.0001 1.317  
CS*RATEEN             -0.001 0.0001 0.814  
RATERN*RATEEN           0.000 <.0001 1.397  
   

b. Measure-residual Correlation  
Main Effect    

Intercept           -1.384 <.0001   
DSR       0.1 vs. 1 -0.019 0.5649 0.981  
CS                -1.367 <.0001 1.000  
RATERN            -0.004 <.0001 0.999  
RATEEN            0.001 <.0001 1.045  

Interaction Effect   
DSR*CS            -1.221 <.0001 0.000  
DSR*RATERN          -0.004 <.0001 0.999  
DSR*RATEEN          0.000 0.0775 0.995  
DSR*CS*RATERN     0.008 <.0001 87.162 + 
DSR*CS*RATEEN     -0.001 <.0001 0.989  
DSR*RATERN*RATEEN   0.000 <.0001 0.778  
CS*RATERN*RATEEN   0.000 <.0001 1.048  
CS*RATERN          0.004 <.0001 1.085  
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CS*RATEEN          0.000 0.0447 0.958  
RATERN*RATEEN        0.000 <.0001 1.248  
     

c. Expected-residual Correlation  
Main Effect    

Intercept           -1.415 <.0001   
DSR       0.1 vs. 1 0.049 0.15 1.050  
CS                -1.341 <.0001 0.687  
RATERN            -0.005 <.0001 0.652 - 
RATEEN            0.001 <.0001 1.695 + 

Interaction Effect   
DSR*CS            0.001 <.0001 0.790  
DSR*RATERN          -1.189 <.0001 0.822  
DSR*RATEEN          -0.003 <.0001 0.901  
DSR*CS*RATERN     0.000 <.0001 1.124  
DSR*CS*RATEEN     0.007 <.0001 0.901  
DSR*RATERN*RATEEN   -0.001 <.0001 0.750  
CS*RATERN*RATEEN   0.000 <.0001 1.049  
CS*RATERN          0.000 <.0001 1.096  
CS*RATEEN          0.004 <.0001 0.953  
RATERN*RATEEN        0.000 0.0279 1.321  
    

d. STD   
Main Effect    

Intercept           -2.608 <.0001   
DSR       0.1 vs. 1 0.688 <.0001 1.990 + 
CS                -2.546 <.0001 0.491 - 
RATERN            -0.009 <.0001 0.491 - 
RATEEN            0.001 <.0001 1.568 + 

Interaction Effect    
DSR*CS            -1.017 <.0001 0.817  
DSR*RATERN          -0.001 0.0042 0.933  
DSR*RATEEN          0.000 0.8609 0.995  
DSR*CS*RATERN     0.004 0.0111 1.062  
DSR*CS*RATEEN     -0.001 <.0001 0.904  
DSR*RATERN*RATEEN   0.000 <.0001 0.902  
CS*RATERN*RATEEN   0.000 <.0001 1.074  
CS*RATERN          0.010 <.0001 1.264  
CS*RATEEN          0.000 <.0001 0.898  
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RATERN*RATEEN        0.000 0.5048 0.983  
     

e. ZMSW (standardized weighted mean-square statistic or infit)  
Main Effect    

Intercept           -4.419 <.0001   
DSR       0.1 vs. 1 1.860 <.0001 6.421  
CS                -0.130 0.5075 0.964  
RATERN            -0.019 <.0001 0.203  
RATEEN            0.002 <.0001 5.465  

Interaction Effect   
DSR*CS            -1.967 <.0001 0.677  
DSR*RATERN          0.018 <.0001 2.909  
DSR*RATEEN          -0.002 <.0001 0.301  
DSR*CS*RATERN     0.013 <.0001 1.242  
DSR*CS*RATEEN     -0.001 <.0001 0.877  
DSR*RATERN*RATEEN   0.000 <.0001 0.621 - 
CS*RATERN          -0.001 0.5148 0.977  
CS*RATEEN          0.000 0.7832 0.993  
RATERN*RATEEN        0.000 <.0001 2.236  
     

f. ZMSU (standardized unweighted mean-square statistic or outfit) 
Main Effect    

Intercept           -4.688 <.0001   
DSR       0.1 vs. 1 2.108 <.0001 8.231  
CS                -0.026 0.9208 0.993  
RATERN            -0.019 <.0001 0.203  
RATEEN            0.002 <.0001 3.723  

Interaction Effect   
DSR*CS            -2.160 <.0001 0.651  
DSR*RATERN          0.019 <.0001 2.961  
DSR*RATEEN          -0.002 <.0001 0.388  
DSR*CS*RATERN     0.017 <.0001 1.317  
DSR*CS*RATEEN     -0.001 <.0001 0.794  
DSR*RATERN*RATEEN   0.000 <.0001 0.638 - 
CS*RATERN          -0.005 0.0191 0.893  
CS*RATEEN          0.001 <.0001 1.127  
RATERN*RATEEN        0.000 <.0001 1.591  

Note: CS = centrality strength, DSR = double-scoring rate, RATERN = number of raters, 
RATEEN = number of rates, + = positive relationship, - = negative relationship 
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The odds ratios for the model effects with medium or large effect sizes suggest that these 

corresponding effects have a practically important impact on the classification accuracy of these 

centrality-detection indices. Especially, those interaction effects indicate varying influence of 

one variable on different levels of other interacting variables. Figures 6.4-1 to 6.4-16, a series of 

marginal means plot of the effects on the probabilities for the two types of outcomes, illustrate 

the average influence from these model effects. 

For the true negative outcomes, only the rater sample size as a main effect had a practical 

important impact on the classification accuracy for non-effect raters, while other three 

experimental parameters influenced the classification accuracy as interactions with one or more 

of other parameters. In Figure 6.4-1, for the point-measure correlation, as the ratee sample size 

increased from 1000 to 3000, the classification accuracy for non-effect raters dropped about 

2.5%. Specifically, for a non-effect rater, one standard unit increase in the ratee sample size 

results in a 36.7% decrease in the odds of a non-effect rater being correctly classified.  
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Figure 6.4-1. Probabilities of the true negative outcomes for the point-measure correlation as a 

function of number of ratees 
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The interaction of the double-scoring rate and the rater sample size had a negative impact on the 

true negative outcomes for the point-measure correlation (Figure 6.4-2) and the ZMSU (Figure 

6.4-3). While the probability held about constant with 100% of responses double scored, the 

classification accuracy elevated about 10% for both indices as the rater increased its sample size 

five times with 10% of responses double scored.  
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Figure 6.4-2. Probabilities of the true negative outcomes for the point-measure correlation as a 

function of number of rater and double-scoring rate 

 

 
Figure 6.4-3. Probabilities of the true negative outcomes for the ZMSU as a function of double-

scoring rate and number of raters 

95 

 



 

The interaction of the double-scoring rate and the ratee sample size had a positive impact for the 

measure-residual correlation (Figure 6.4-4), the expected-residual correlation (Figure 6.4-5) and 

the ZMSU (Figure 6.4-6). While the probability increased gradually within a range of 1% with 

100% of responses double scored, the classification accuracy decreased about 2% for the two 

correlation indices and about 7% for the ZMSW with 10% of responses double scored.  
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Figure 6.4-4. Probabilities of the true negative outcomes for the measure-residual correlation as 

a function of double-scoring rate and number of ratees 

 

 



 

 
Figure 6.4-5. Probabilities of the true negative outcomes for the expected-residual correlation as 

a function of double-scoring rate and number of ratees 
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Figure 6.4-6. Probabilities of the true negative outcomes for the ZMSU as a function of double-

scoring rate and number of ratees 
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The interaction of the rater and the ratee sample sizes exhibited a negative impact for the 

expected-residual correlation (Figure 6.4-7). The interaction of the double-scoring rate and the 

rater and the ratee sample sizes exhibited a positive impact for the ZMSW (Figure 6.4-8). With 

100% of responses double scored, the probability seemed stable with little fluctuation across 

changes of the rater and ratee sample sizes. With 10% of responses double scored, the 

probability exhibited a slightly increasing trend along the increase of the rater sample size and a 

decreasing trend along the increase of the ratee sample size. 
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Figure 6.4-7. Probabilities of the true negative outcomes for the expected-residual correlation as 

a function of number of raters and ratees 
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Figure 6.4-8. Probabilities of the true negative outcomes for the ZMSW as a function of double-

scoring rate, number of raters and ratees 

 

For the true positive outcomes, a noteworthy difference from the results of logistic 

regression for the true negative outcomes is the impact of the centrality strength either as a main 

effect or as an interacting variable with other experimental parameters. Each of the four 

experimental parameters as a main effect had a practical important impact for the STD (Figure 

6.4-9 and 6.4-10). Specifically, with 10% of responses double scored, for an effect rater, the odds 

of being correctly classified is 99% more likely than that with 100% of responses double scored. 

One standard unit increase in the centrality strength results in a 50.9% increase in the odds of 

being correctly classified. One standard unit increase in the rater sample size results in 50.9% 

decrease in the odds of being correctly classified. One standard unit increase in the ratee sample 

size results in 56.8% increase in the odds of being correctly classified.  

 



 

 
Figure 6.4-9. Probabilities of the true positive outcomes for the STD as a function of centrality 

strength 
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Figure 6.4-10. Probabilities of the true positive outcomes for the STD as functions of number of 

raters and of number of ratees 
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The rater and ratee sample sizes, as main effects, also had a substantial impact for the point-

measure correlation (Figure 6.4-11) and the expected-residual correlation (Figure 6.4-12). 

Specifically, for an effect rater, one standard unit increase in the rater sample size results in 

67.5% decrease in the odds of being correctly classified by the point-measure correlation and 

34.8% decrease in the odds of being correctly classified by the expected-residual correlation. 

One standard unit increase in the ratee sample size results in 135.7% increase in the odds of 

being correctly classified by the point-measure correlation and 69.5% increase in the odds of 

being correctly classified by the expected-residual correlation.  
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Figure 6.4-11. Probabilities of the true positive outcomes for the point-measure correlation as 

functions of number of raters and of number of ratees 
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Figure 6.4-12. Probabilities of the true positive outcomes for the expected-residual correlation as 

functions of number of raters and of number of ratees 

 

The interaction of the double-scoring rate and the centrality strength had a negative impact on 

the true positive outcomes for the point-measure correlation (Figure 6.4-13). With 100% of 

responses double scored, as the centrality strength intensified, the classification accuracy for 

effect raters elevated about 70%. Yet with 10% of responses double scored, the classification 

accuracy improved within a range of 15%.  
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Figure 6.4-13. Probabilities of the true positive outcomes for the point-measure correlation as a 

function of double-scoring rate and centrality strength 

 

The interaction of the double-scoring rate, the centrality strength and the rater sample size had a 

positive impact for the measure-residual correlation (Figure 6.4-14). The classification accuracy 

for effect raters increased as the centrality strength intensified but decreased as the rater sample 

size enlarged, and the discrepancy between the probabilities at the two double-scoring rates 

generally diminished as the rater sample size enlarged.  
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Figure 6.4-14. Probabilities of the true positive outcomes for the measure-residual correlation as 

a function of double-scoring rate, centrality strength and number of raters 

 

The interaction of the double-scoring rate and the rater and the ratee sample sizes exhibited a 

negative impact for the ZMSW (Figure 6.4-15) and ZMSU (Figure 6.4-16). The classification 

accuracy for effect raters decreased as the rater sample size increased but increased as the ratee 

sample size enlarged, and the discrepancy between the probabilities at the two double-scoring 

rates generally enlarged along the increment of the rater and ratee sample sizes. 
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Figure 6.4-15. Probabilities of the true positive outcomes for the ZMSW as a function of double-

scoring rate, number of raters and ratees 

 
Figure 6.4-16. Probabilities of the true positive outcomes for the ZMSU as a function of double-

scoring rate, number of raters and ratees 
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6.5 Conclusions 

The results indicate that these experimental parameters and their interactions had a 

different impact on the classification accuracy for non-effect raters versus the classification 

accuracy for effect raters. These centrality-detection indices are expected to be sensitive to the 

change of centrality strength for effect raters but not for non-effect raters, and this is what the 

results portray. Among the non-effect raters, the centrality strength appeared to have no 

important influence on the outcomes of rater classification for all the indices. That is, correctly 

classifying non-effect raters is independent of the existence of the rater centrality effect, which is 

what one would hope for. On the other hand, with the effect raters, the centrality strength had a 

substantial impact with moderate or large effect sizes on the outcomes of rater classification for 

some of the indices (i.e., the point-measure-residual correlation, the measure-residual correlation 

and the standard deviation of assigned scores). That is, for the involved indices, correctly 

classifying effect raters is closely related to the strength of the rater centrality effect. Again, this 

is what the data analyst would hope for, and this finding is consistent with my previous studies 

that these indices were found to be sensitive to rater types, and that their statistical power rates 

varied across the levels of centrality strength. 

The two levels of double-scoring rate introduce different amount of missing values into 

the simulated data sets. The logistic regression analyses showed that the double-scoring rate had 

a strong influence on both the true negative and positive outcomes either by acting itself (i.e., as 

a main effect) or by interacting with the other experimental parameters. Consistent with my 

previous studies, if we compare at the same group levels, in most cases, these indices performed 
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better when 100% of responses received a second score than when only 10% of responses 

received a second score. 

The rater sample size exhibited a negative impact as a main effect on the true positive 

outcomes for the point-measure correlation, expected-residual correlation and the standard 

deviation of assigned scores. For these three indices to better correctly classify effect raters, the 

group of raters should be restricted to a smaller size, meaning that it is easier to detect effect 

raters when they make up a larger proportion of the rater pool. This finding suggests that smaller 

rater sizes are needed for accurate detection of the centrality effect. Meanwhile, the ratee sample 

size asserted a positive impact as a main effect on the true positive outcomes for the same three 

indices. For these three indices to better correctly identify non-effect raters, more ratees should 

be included in a scoring group. This finding suggests that larger ratee sizes are needed for 

accurate detection of the centrality effect. Again, this is what one would expect—in order to 

obtain more accurate information about raters, they should rate more ratees. If we translate the 

relationship of the number of raters and ratees into a rater-ratee ratio (i.e., rater sample size 

divided by ratee sample size), we can simply say that lower rater-ratee ratio would result in more 

accurate detection of the centrality effect or higher statistical power, that higher rater-ratee ratio 

would lead to more accurate identification for non-effect raters, and that achieving an accurate 

detection rate on both outcomes, i.e., high accuracy in true positive outcome and true negative 

outcome, seems impossible. In operational scoring settings, if raters are paid by hour, a more 

common case in testing industry, we can imagine two scenarios to imitate the dilemma discussed 

above. One scenario is that 10 raters are hired for a single-item scoring project containing 1000 

ratees and they spend 100 hours to finish the whole project. Another is that 100 raters are hired 
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for the same scoring project and they spend 10 hours to finish the whole project. The total costs 

are the same for the two scenarios. However, the former scenario with a rater-ratee ratio of 1/100 

would achieve better statistical power than the latter with a rater-ratee ratio of 1/10 and 

consequentially enhance the rating quality. On the other hand, the latter scenario would be more 

conservative in terms of picking up “bad” raters and consequentially lower the cost in rater 

retraining or replacing disqualified raters if necessary. It turns out that to use these indices to 

detect the centrality rater effect, it is important to be aware that improving the classification 

accuracy comes at a cost of reducing the classification accuracy for non-effect raters, and that 

improving the classification accuracy for non-effect raters comes at a cost of reducing the 

classification accuracy for effect raters. 

Combing the directions of relationship presented in Table 6.4-1 and 6.4-2 and the 

perplexing pattern discussed above, I suggest some simple guidelines (Table 6.5-1) for the 

direction of the expected impact on classification accuracy from either main effects or higher 

order interactions if they are statistically significant and practically important. Although the 

guidelines do not clearly solve the dilemma of knowing what to expect in more complex applied 

settings, they do offer a glimpse of the “pros” and “cons” in adjusting the magnitude of the 

parameters when we evaluate the impact of the four experimental parameters on the accuracy of 

rater classification. 

Table 6.5-1: Simple guidelines for the expected impact of classification accuracy 

Effect Direction of impact on the 
true negative outcomes 

Direction of impact on the 
true positive outcomes 

Double-scoring rate 0.1 vs. 1.0 - + 
Centrality strength N/A - 
Rater sample size + - 
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Ratee sample size - + 
 

For example, if the double-scoring rate and the centrality strength are shown to conjunctly 

influence the accuracy of rater classification in a scoring project, we would expect the interaction 

of these two effects to have a negative overall impact on the true positive outcomes of rater 

classification (i.e., positive multiplied by negative results in negative). The stronger the centrality 

effect is, the higher the proportion of correct in effect-rater classifications will we achieve (e.g., 

the point-measure correlation). As another example, if the double-scoring rate and the rater and 

ratee sample sizes are shown to conjunctly influence the accuracy of rater classification, we 

would expect the highest-order interaction of these three effects, if with substantial importance, 

to have a positive overall impact on (or positive relationship with) the true negative outcomes 

and to have a negative overall impact on (or negative relationship with) the true positive 

outcomes of rater classification. To enhance the proportion of correct classification for non-

effect rater (i.e., the true negative outcomes), the group size of raters needs to be enlarged and 

the group size of ratees needs to be decreased (e.g., ZMSW). To enhance the classification 

accuracy for effect-rater classification (i.e., the true positive outcomes), the group size of raters 

needs to be decreased and the group size of ratees needs to be enlarged (e.g., ZMSW and 

ZMSU). In essence, as I pointed out earlier, improving the classification accuracy for non-effect 

raters may come at a cost of reducing the classification accuracy for effect raters and vice versa. 

A limitation of this study is the fact that the impact evaluated in this simulation study is 

much less complex than the “reality”. Confounded with the four experimental parameters, 

numerous factors such as rater psychological traits (e.g., motivation, anxiety, motivational 

intensity, achievement, self-efficacy and mood. etc.) and other types of rater effect (e.g., 
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severity/leniency, halo, and range restriction) can very likely affect the rater classification 

accuracy. These unsimulated factors inevitably place constraints on the generalizability of the 

results. Hence, application of these rater centrality-detection indices to real data sets and to more 

complex simulated data may provide additional support. Regardless, the bottom line is that this 

study opens up new opportunities in minimizing systematic errors in rating data by adjusting 

rater classification accuracy through influential factors.  
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7 DISCUSSION 

The results from the three studies summarized in this dissertation indicate that (1) 

different rater centrality indices have different levels of sensitivity when differentiating effect 

raters from normal raters; (2) all of the indices provided reasonable protection against Type I 

error when all responses were double scored but provide low statistical power unless the rater 

centrality effect is quite strong; and (3) the rater classification accuracy is influenced by rating 

context variables, and improving the classification accuracy for non-effect raters may come at a 

cost of reducing the classification accuracy for effect raters. In general, these three studies 

showed that the traditional practice of focusing on mean-squared fit indices as indicators of rater 

centrality is not warranted and that better options exist when selecting a rater centrality index. 

However, the choice of which index to adopt depends on the desired Type I error rate and 

various characteristics of the rating context. 

The point-measure correlation may have limited usefulness for rater centrality detection 

because it seemed to be strongly influenced by missing data, such as that created by the double-

scoring practices adopted in many operational contexts. The point-measure correlation only 

worked well in differentiating rater types on the centrality effect when 100% of the ratees receive 

second scores, and the capacity of the point-measure correlation for separating rater types was 

diminished when only 10% of ratees receive second scores. Its Type I error rates tended to be 

larger when 10% of responses were double scored, and its Type I error rates were quite inflated 

under this condition. Higher statistical power was achieved when responses were 100% double 

scored in comparison to only 10% being double scored. I suggest using the point-measure 

correlation only when missing data is minimal and when the connections between raters is 
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relatively “thick”. Hence, in practical applications, it may be useful to utilize the point-measure 

correlation only when Type I errors are of less importance. In other words, in a situation where 

incorrectly identifying normal raters as effect raters is more of concern than successfully 

identifying all effect raters, we may want to avoid using the point-measure correlation, since in 

such a case care is usually focused on minimizing the occurrence of statistical errors. Moreover, 

the accuracy of rater classification using this index, for non-effect raters, was influenced by the 

number of ratees and the interaction of the double-scoring rate and the number of raters. For 

effect raters, the accuracy was largely influenced by the number of raters and ratees and the 

interaction of the double-scoring rate and the centrality strength. 

The measure-residual and the expected-residual correlations, two very similar indices, 

appear to be promising as indicators of the centrality effect. Because these indices have not been 

carefully studied in previous research, the research reported in this dissertation provides an 

important contribution to our understanding of how analysts can best detect centrality effects. 

These two indices usefully differentiated effect raters from non-effect raters and were sensitive 

to the magnitude of the strength of the effect. They also provided better identification of the 

centrality effect, comparing to other indices. The Type I error rates for these two correlation-

based indices tended to be relatively large when only 10% of responses were double scored. 

However, they also achieved higher statistical power than did most of the remaining indices 

when responses were 100% double scored. From the perspectives of statistical errors, I would 

recommend using either the measure-residual correlation or the expected-residual correlation for 

detecting the centrality effect with a consideration on balancing both Type I error and statistical 

power. Besides, the accuracy of rater classification using these two indices was influenced by the 
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four experimental parameters in a similar way with some variations possibly due to the 

difference in index calculations and the randomness in data simulation. For the classification of 

accuracy for non-effect raters, both indices were influenced by the interaction of the double-

scoring rate and the number of ratees. For the classification of accuracy for effect raters, the 

inaction of the double-scoring rate, the centrality strength and the number of raters largely 

influenced the measure-residual correlation but not the expected-residual correlation. 

The standard deviation of assigned scores differentiated rater types as well as the 

measure-residual and the expected-residual correlations. This raw score was among the most 

sensitive in terms of differentiating effect raters from non-effect raters. It provided the greatest 

protection against Type I error (perhaps too much so) and acceptable statistical power when the 

centrality effect was strong. Moreover, this index seemed not to be strongly impacted by rating 

context variables in terms of rater classification, making it useful across a variety of rating 

designs. However, the standard deviation can be easily inflated when random error exists in the 

ratings, so further research is needed to determine the potential limitations of this, and other, 

rater centrality indices when it comes to differentiating different kinds of rater effects. Also, for 

the classification of accuracy for non-effect raters, this index seems to be robust to the variations 

in the four experimental parameters. For the classification of accuracy for effect raters, however, 

it was substantially affected by each of the parameters. 

As mentioned previously, the mean-square fit statistics are widely used to detect rater 

effects. However, when it comes to identify the centrality effect, these indices do not seem to 

provide useful information when it comes to identifying rater centrality. Another important 

contribution of this dissertation is the fact that the studies summarized here point out an 
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important weakness in current psychometric practice relating to the detection of rater effects. 

Along with the raw score standard deviation, the two standardized mean-square fit indices 

provided excellent protection against Type I error but poor statistical power. Their capacity for 

rater classification is also restricted by double-scoring rate, rater sample size, and ratee sample 

size, which makes this type of indices unreliable when it comes to detecting the centrality effect. 

This type of indices is also shown to be influenced by the double-scoring rate and the number of 

raters or ratees but not the centrality strength. Therefore, I suggest abandoning the current 

practice of relying on this index in operational settings. Similarly, the rater slope index, an index 

that has not been evaluated as an indicator of rater centrality to date, was shown to be of limited 

usefulness in differentiating rater types on the effect. 

A limitation of this dissertation is the fact that the four-parameter experimental design in 

this simulation study is much less complex than the “reality”. Confounded with the four 

experimental parameters, numerous factors such as rater psychological traits (e.g., motivation, 

anxiety, motivational intensity, achievement, self-efficacy and mood. etc.) and other types of 

rater effect (e.g., severity/leniency, halo, and range restriction) can very likely affect the rater 

classification accuracy. The simulated data are extremely “clean,” and therefore it is difficult to 

determine how well the simulation results will generalize to the “messy” data that are typical of 

operational contexts. Thus, these unmodeled factors inevitably place constraints on the 

generalizability of the results.  

Another limitation is that I did not control the number of ratees per rater and made the 

rating-count variable vary across raters with random assignment technique in the data generating 

process. Because this variable could affect the measurement error of the centrality indices and 
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any associated hypothesis test based on those indices, it is hard to draw any conclusion on the 

appropriate number of ratees per rater for a particular centrality index to work well from this 

simulation study. Therefore, rather than letting it change with rater-response random assignment 

in the simulation process, the ideal case would be making the rating-count variable 

manipulatable. 

A contextual limitation of this dissertation is that the indices studied in this dissertation 

are probably only relevant and important in high-stakes applications of highly trained raters. One 

focus of the Race to the Top effort has been to promote teacher scoring as a professional 

development activity. It is likely that teachers would approach the task of scoring student work in 

a very different manner than do “professional” scorers such as the ones that work at Pearson and 

other testing companies (refer to Gambell and Hunter’s work (2004)). As a result, they may 

utilize different approaches to scoring, may respond to feedback differently, and may require 

different types of intervention in order to increase the quality of their scores to a level that would 

permit high-stakes decisions to be made based upon the scores that they assign. 

Future research in this line can expand to several potentially important areas. (1) Apply 

these rater centrality-detection indices to real data sets and to more complex simulated data. 

Generating and estimating the data based on more complex models like the two-parameter and 

the three-parameter logistic models (2PL and 3PL) that involve item discrimination and guessing 

parameters, or introducing multidimensionality into the data would be of great interest. 

Furthermore, the underlying Rasch I focused on in this dissertation is a single-facet model (i.e., 

one item-by-multiple raters design). The multi-faceted model would be required (and likely a 

hierarchical version of that model) if one was interested in detecting rater effects in contexts in 
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which multiple items are scored or multiple features of a single response are scored (i.e., trait 

scoring). (2) Embedding recently emerging research topics on measuring rater effect drift over 

time (Congdon & McQueen, 2000; Wolfe & Moulder, 2001) would be another valuable 

contribution to the field, as rating patterns may not be stable over time due to many factors such 

as circumstance changes, psychological changes, etc. (3) Compare rater centrality-detection 

indices with rater inaccuracy-detection indices. A rater who exhibits the inaccuracy effect makes 

seemingly random errors which reduce the usefulness of the assigned ratings as indicators of the 

ratee’s true proficiency. Rater inaccuracy may occur when the rater has insufficient content 

background, insufficient training in applying the scoring rubric, or immutable biases or content-

based beliefs that cause the rater to assign scores that are not consistent with the scoring rubric. 

When a rater assigns inaccurate ratings, any ratee scored by this rater could be misplaced on the 

underlying ability scale, and it is likely that the rank ordering of ratees scored by the effect rater 

disagree with accurate raters, which makes its manifestation similar to the rater centrality effect. 

As a result, the inaccuracy effect may manifest itself in residual-based statistics (e.g., mean-

square fit statistics) as well as correlation-type indices (e.g., the point-measure correlation, the 

measure-residual correlation, and the expected-residual correlation). Evaluating the capacity of 

these indices that I studied in this dissertation for differentiating rater effects is an important next 

step in research in this effort. (4) This dissertation research focuses on detecting rater effects, and 

the results of the study can be directly applied to the monitoring and remediation of raters in 

operational settings. However, the study does not provide information to help those working in 

applied settings to understand why those effects exist. Hence, another extension of the work I 

have done would be to determine how the manifestation of rater effects coincides with raters’ 

training experience, background, and rater cognition.  
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APPENDIX: SAS code for sample data generation  

Part I: Main code 
*****************************************************************************; 
* Title: Script for study on centrality rater effect and inaccuracy 
* Author: Jessica Yue 
* Version: 6.29 
* Date:  06/29/2010 
* Note: The data generating design takes missing data into account. Each ratee has one score 
from one randomly selected rater and 10% of the ratees will have second score assigned by 
another randomly selected rater. It can also be expanded to "(n-1)+nth@x%" design, each ratee 
has n-1 scores from n-1 randomly selected raters, x% of the ratees will have another score 
assigned by a randomly selected rater. 
*****************************************************************************; 
 
*** FILENAME MPRINT 'pathname and name of file'; 
*FILENAME MPRINT 'MACRO DUMP.SAS'; 
*OPTIONS MPRINT MFILE; 
**************************************************************; 
option nodate linesize=100 noxwait xsync mlogic;  
 
*Deletes all SAS files in the SAS data library; 
proc datasets kill; 
run; 
 
*Suppress the detailed log; 
filename junk dummy; 
proc printto log=junk; run;  
 
*Turn on the detailed log;  
/*proc printto; run; */ 
 
%include 'thresholds.sas'; 
%include 'array.sas'; 
 
*Simulation parameter specifications; 
 
%let study=1;  *1=study of centrality effect; 
%let score_dist=2; *1=uniform score distribution, 2=normal score distribution, 3=skewed 
score distribution; 
%let rating_scale_type=6; *6=6pt-scale; 
%let choose=2;  *minimum sores per ratee, choose*2<=nrater; 
%let iteration=1000; 
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%array (select_rate, 0.1 1.0, scope=GLOBAL); 
%array (strength, .1 .35 .60 .85, scope=GLOBAL); 
%array (correl, .1 .35 .60 .85, scope=GLOBAL);  
%array (nrater, 50 100 250, scope=GLOBAL); 
%array (nperson, 1000 2000 3000, scope=GLOBAL); 
 
%let delimiter=_;   *for final report file name; 
%let ext=.csv; 
 
%macro sort(data, by_var); 
 proc sort data=&data.; 
  by &by_var.; 
 run; 
 quit; 
%mend sort; 
 
%macro sim(); 
 %if &rating_scale_type=4 %then %do; 
  %if &score_dist=1 %then %call_sim(-0.67,0,-99,-99);  
  %if &score_dist=2 %then %call_sim(-2.28,0,-99,-99);  
  %if &score_dist=3 %then %call_sim(-2.33,-0.64,-99,-99); 
 %end; 
 %else %if &rating_scale_type=6 %then %do; 
  %if &score_dist=1 %then %call_sim(-0.97,-0.43,0,0.43);  
  %if &score_dist=2 %then %call_sim(-2,-1,0,1);  
  %if &score_dist=3 %then %call_sim(-1.88,-1.08,-0.13,0.84); 
 %end; 
%mend sim; 
 
 
**************************************************************; 
* GENERATE EFFECT AND NON-EFFECT RATERS WITH MISSING DATA 
**************************************************************; 
%macro 
gen_data(select_rate=,seed=,correl=0,strength=,nrater=,nperson=,maxscore=,normmu=0,normst
d=1); 
  data _null_; 
    file 'data_generate_cmd.cqc'; 
    put  
    "set warnings=no, seed=&seed.;" /  
    "generate !nitems=&nrater., npersons=&nperson., maxscore=&maxscore., itemdist=item.txt," 
/ 
    "abilitydist=NORMAL(&normmu.:&normstd.) >> score.txt,item_gen.txt,ability.txt;" / 
    "quit;"; 
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  run; 
 
  x console data_generate_cmd.cqc; 
 
  *creat another response matrix with the last rater to be the effect rater; 
  *the last rater is manipulated to be the effect one by adding a parameter; 
  *to the existing ability distribution; 
  data _null_; 
    infile 'ability.txt'; 
    input rater ability; 
 
    if &study.=1 then do; 
      ability=ability*&strength; 
      end; 
    else do; 
      do q=1 to &nperson.; 
   error=rannor(&seed.); 
   output; 
   end; 
 ability=&correl.*ability+((1-&correl.**2)**.5)*error; 
 end; 
 
 file 'ability_1.txt'; 
 put rater ability; 
  run; 
 
  *Add centrality effect by generating a new dataset(score_#_1.txt) with the;  
  *same item distribution and the manipulated ability distribution; 
  data _null_; 
 file "data_generate_cmd.cqc"; 
 put  
 "set warnings=no, seed=&seed.;" /  
     "generate !nitems=&nrater., npersons=&nperson., maxscore=&maxscore., 
itemdist=item.txt," / 
   "abilitydist=ability_1.txt >> score_1.txt;" /  
   "quit;"; 
  run; 
 
  x console data_generate_cmd.cqc; 
 
  data score; 
    infile 'score.txt'; 
 input @1 (rater1-rater&nrater.) (1.); 
  run; 
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  *Pick the last item in the manipulated response matrix(score_#_1.txt) and ; 
  *insert(or replace the last rater with this one) in the original response; 
  *matrix(score_#.txt); 
  %let nrater_total = %EVAL(&nrater.+1); *for insertion only. Delete this line if for replacement; 
  data score_1; 
 infile 'score_1.txt'; 
    input rater&nrater_total. &nrater.; 
  run; 
   
  *convert the wide response file to a long file format; 
  data temp0(keep=serial item value1 second); 
    merge score score_1; 
 second=2-rantbl(2*&seed.,&select_rate.,1-&select_rate.);*0=non-selected,1=selected; 
 array position{*}u rater1-rater&nrater_total.; 
 do sub=1 to &nrater_total.; 
   serial=_n_; 
   item=sub; 
   value1=position{sub}; 
   output; 
 end; 
  run; 
 
  data temp0; 
    set temp0; 
 random=ranuni(&seed.); 
 output; 
  run; 
 
  proc sort data=temp0; 
    by serial DESCENDING random ; 
  run; 
 
  *Convert the long response file back to a wide file format; 
  data temp1; 
 set temp0; 
 value2=value1; 
 by serial; 
 if first.serial then do; 
   count=0; 
   retain count; 
 end; 
 count+1; 
 if count > &choose. then value1=.; 
 if count > &choose. then value2=.; 
 if count=&choose. and second=0 then value2=.; 
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 output; 
  run; 
 
  proc sort data=temp1; 
 by serial item; 
  run; 
 
  data _null_; 
 set temp1; 
 by serial; 
 retain rater1-rater&nrater_total.; 
 array position{*} rater1-rater&nrater_total.; 
 if first.serial then 
   do sub=1 to &nrater_total.; 
  position{sub}=.; *initializing to missing; 
   end; 
   position(item)=value2;*looping across values in the variable item; 
   if last.serial then do;   *outputs only the last obs in a subject; 
              file 'response.txt'; 
   put @1 (rater1-rater&nrater_total.)(1.); 
 end; 
  run; 
  %end; 
 
  quit; 
%mend gen_data; 
 
 
**************************************************************; 
* WINSTEPS ESTIMATION 
**************************************************************; 
%macro proc_data(nrater_total); 
  *Create a Winsteps control file to estimate theta; 
  %if &rating_scale_type = 6 %then %do; 
    data _null_; 
     file 'est_cmd.txt'; 
     put  
     '&inst' / 'item1=1' /  
     'name1=1' / 'inumb=y' / 'codes=012345' /  
     'hlines=n' / '&end'; 
    run; 
  %end; 
  %else %do; 
    data _null_; 
     file 'est_cmd.txt'; 
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     put  
     '&inst' / 'item1=1' /  
     'name1=1' / 'inumb=y' / 'codes=0123' /  
     'hlines=n' / '&end'; 
    run; 
  %end; 
 
 *Call Winsteps to estimate residual, item, and person; 
 x c:\winsteps\winsteps est_cmd.txt wincmd.out batch=yes data=response.txt ni=&nrater_total. 
xfile=residual.txt pfile=person_est.txt ifile=item_est.txt; 
 
 quit; 
%mend proc_data; 
 
**************************************************************; 
* RESULT SUMMARY 
**************************************************************; 
%macro analysis(iter=,select_rate=,value=,nrater_total=,nperson=); 
 %if &study=1 %then %do; 
  %let value_lable=strength; 
 %end; 
 %else %do; 
  %let value_lable=correl; 
 %end; 
 
 **************************************************************; 
 * Get fit statistics, observed, expected ability and  
 * expected scores from Winsteps output file 
 **************************************************************; 
  data Residual; 
   infile 'residual.txt'; 
   input Person Item OBS ORD EXPECT VARIAN ZSCORE RESIDL; 
   drop ORD VARIAN ZSCORE ; 
   if OBS=-1 then OBS=.; 
   if (OBS^=EXPECT) & (RESIDL=0) then RESIDL=.; 
  run; 
 
  *Restructure WINSTEPS output files; 
  *Transpose the long file to a wide file; 
  proc transpose data=Residual out=wide1 prefix=Exprat; 
   by PERSON; 
   id ITEM; 
   var EXPECT; 
  proc transpose data=Residual out=wide2 prefix=Obs; 
   by PERSON; 
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   id ITEM; 
   var OBS; 
  proc transpose data=Residual out=wide3 prefix=Res; 
   by PERSON; 
   id ITEM; 
   var RESIDL; 
 
  data ability; 
   infile 'person_est.txt'; 
   input person measure; 
   drop person; 
 
  data residual_wide; 
   merge wide1(drop=_name_) wide2(drop=_name_) wide3(drop=_name_) ability; 
  run; 
 
  **************************************************************; 
  * Calculate exp_rating-obs and exp_rating-res correlations 
  **************************************************************; 
  %do r=1 %to &nrater_total.;  
 
   proc corr data=Residual_wide nosimple noprint outp=correlations; 
    var Obs&r. Res&r.; 
    with Exprat&r. ; 
   run; 
 
   *The following tedious code is to collect the necessary pieces and put them into a desirable 
format; 
   data correlations_w; 
    set correlations; 
    if _TYPE_^="CORR" then delete; 
    drop _NAME_; 
   run; 
 
   proc transpose data=correlations_w out=correlations_l; run; 
 
   data correlations_l; 
    set correlations_l(keep=COL1); 
    if _n_=1 then type="exprat_obs"; 
    if _n_=2 then type="exprat_res"; 
   run; 
 
   proc transpose data=correlations_l out=correlations_l;id type; run; 
 
   data correlations_l; 
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    set correlations_l(keep = exprat_obs exprat_res); 
    iteration = &iter.; 
    rater = &r.; 
 select_rate = &select_rate.; 
    score_dist = &score_dist.; 
    &value_lable. = &value.; 
    rater_n = &nrater_total.; 
    ratee_n = &nperson.; 
   run; 
   *The above tedious code is to collect the necessary pieces and put them into a desirable format; 
 
   proc append base=corr_rpt1 data=correlations_l;run; 
  %end;  
 
  **************************************************************; 
  * Calculate measure-residual correlations 
  **************************************************************; 
  %do r=1 %to &nrater_total.;  
   proc corr data=Residual_wide nosimple noprint outp=correlations; 
    var Res&r.; 
    with measure; 
   run; 
 
   *The following tedious code is to collect the necessary pieces and put them into a desirable 
format; 
   data correlations_w; 
    set correlations; 
    if _TYPE_^='CORR' then delete; 
    drop _NAME_; 
   run; 
 
   proc transpose data=correlations_w out=correlations_l; run; 
 
   data correlations_l; 
    set correlations_l(keep=COL1); 
    if _n_=1 then type='measure_resid'; 
   run; 
 
   proc transpose data=correlations_l out=correlations_l;id type; run; 
 
   data correlations_l; 
    set correlations_l(keep=measure_resid); 
    iteration=&iter.; 
    rater=&r.; 
 select_rate = &select_rate.; 
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    score_dist = &score_dist.; 
    &value_lable. = &value.; 
    rater_n = &nrater_total.; 
    ratee_n = &nperson.; 
   run; 
   *The above code is to collect the necessary pieces and put them into a desirable format; 
 
   proc append base=corr_rpt2 data=correlations_l;run; 
  %end;  
 
  %sort(corr_rpt1,iteration select_rate &value_lable ratee_n rater_n rater); 
  %sort(corr_rpt2,iteration select_rate &value_lable ratee_n rater_n rater); 
 
  data corr_rpt; 
   merge corr_rpt1 corr_rpt2; 
   by iteration select_rate &value_lable. ratee_n rater_n rater; 
  run; 
  
  **************************************************************; 
  * Calculate rating mean, std and the ratio of the normal rater 
  * score variance and the effect rater variance 
  **************************************************************; 
  *Items are treated as raters; 
  data rater; 
   infile 'item_est.txt'; 
   input rater MEASURE STTS COUNT SCORE ERROR INMSQ INZSTD OUTMS 
OUTZSTD DISPL PTME WEIGHT OBSMA EXPMA DISCR; 
   keep rater COUNT INMSQ INZSTD OUTMS OUTZSTD PTME DISCR; 
  run; 
 
  data response; 
   infile 'response.txt'; 
   input @1(rater1-rater&nrater_total.) (1.); 
  run;  
 
  proc means MEAN STD data=response noprint; 
   var rater1-rater&nrater_total.; 
   output out=descriptive_w; 
  run; 
 
  data descriptive_w; 
   set descriptive_w; 
   if _STAT_ ^='MEAN' and _STAT_^='STD' then delete; 
   drop _TYPE_ _FREQ_ _STAT_; 
  run; 
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  data temp2(keep=rater%eval(&nrater_total.-1) rater&nrater_total.); 
    set descriptive_w ; 
 if _n_=1 then delete; 
  run; 
 
  data temp3; 
    set temp2; 
 variance_ratio=(rater&nrater_total./rater%eval(&nrater_total.-1))**2; 
    rater_n = &nrater_total.; 
    ratee_n = &nperson.; 
    score_dist = &score_dist.; 
 select_rate = &select_rate.; 
 value = &value.; 
    study = &study.; 
 iteration = &iter.; 
 drop rater&nrater_total. rater%eval(&nrater_total.-1); 
  run; 
 
  proc append base=var_ratio_rpt data=temp3; 
 
  proc transpose data=descriptive_w out=descriptive_l; run; 
 
  data descriptive_l; 
   set descriptive_l(rename=(COL1=MEAN COL2=STD)); 
   rater = _n_; 
   iteration=&iter.; 
   keep rater MEAN STD iteration; 
  run; 
 
  data rater; 
   merge descriptive_l rater; 
   by rater; 
   select_rate = &select_rate.; 
   score_dist = &score_dist.; 
   &value_lable. = &value.; 
   rater_n = &nrater_total.; 
   ratee_n = &nperson.; 
  run; 
 
  proc append base=rater_rpt data=rater; 
 
  **************************************************************; 
  * Merge correlations and fit statistics; 
  **************************************************************; 
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  %sort(rater_rpt,iteration select_rate &value_lable ratee_n rater_n rater); 
  %sort(corr_rpt,iteration select_rate &value_lable ratee_n rater_n rater); 
 
  data final_rpt; 
   merge corr_rpt rater_rpt; 
   by iteration select_rate &value_lable. ratee_n rater_n rater; 
  run; 
 
  quit; 
%mend analysis; 
 
**************************************************************; 
* ERROR CHECK; 
**************************************************************; 
%macro error_check(nrater_total); 
*Check correlations of orininal and estimated parameters for theta; 
   data theta; 
    infile 'ability.txt'; 
    input person theta; 
 
   data theta_est; 
    infile 'person_est.txt'; 
    input person theta_est; 
   run; 
   
   data theta_all; 
    merge theta theta_est; 
    by person; 
   run; 
 
   proc corr data=theta_all nosimple; 
    var theta theta_est; 
   run; 
 
   *Check the % of threashholds for last two raters; 
   %let pos = %SYSEVALF(&nrater_total.-1);  
   data last2raters; 
    infile 'response.txt'; 
    input @&pos. last_normal_rater 1. @&nrater_total. effect_rater 1.; 
   run; 
  
   proc freq data=last2raters; 
    tables last_normal_rater effect_rater; 
   run; 
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 quit; 
%mend error_check; 
 
%macro call_sim(t1,t2,t3,t4); 
 %if &rating_scale_type.=4 %then %let maxscore=3; 
 %else %if &rating_scale_type.=6 %then %let maxscore=5; 
 
 %if &study.=1 %then %do;  
 
   %do n=1 %to &select_rate_size.; 
  %let select_rate = &&select_rate&n.; 
 
  %do p=1 %to &strength_size.; 
  %let strength = &&strength&p.; 
 
      %do j=1 %to &nrater_size.; 
    %let nrater = &&nrater&j.; 
    %global nrater_total; 
    %let nrater_total = %EVAL(&nrater.+1); 
    %thresholds(&t1,&t2,&t3,&t4,&nrater.,%eval(100+&j.)) 
 
    %do k=1 %to &nperson_size.; 
    %let nperson = &&nperson&k.; 
 
     *correl is set to 0 for study 1; 
     %do m=1 %to &iteration.; 
 
     %gen_data(select_rate=&select_rate.,seed=%eval(1000000*&n.+100000*&p.+10000
*&j.+1000*&k.+100*&m.),correl=0,strength=&strength.,nrater=&nrater.,nperson=&nperson.,m
axscore=&maxscore.) 
     %proc_data(&nrater_total.)  
  
      %analysis(iter=&m.,select_rate=&select_rate.,value=&strength.,nrater_total=&nrater
_total.,nperson=&nperson.)  
     *%error_check(&nrater_total.); 

%end; 
 
  %let rpt_name=study1_rpt_; 
  %let 
myfile1=&rpt_name.&score_dist.&delimiter.&select_rate.&delimiter.&strength.&delimiter.&nr
ater.&delimiter.&nperson.&ext.; 

proc export data=final_rpt outfile="&myfile1." dbms=csv replace; putnames=yes; run; 
 proc datasets; delete rater_rpt corr_rpt1 corr_rpt2 corr_rpt; run; 
  %end; 
 %end; 
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  %end; 
   %end; 
 
   %let myfile2=study1_ratio_rpt&ext.; 
   proc export data=var_ratio_rpt outfile="&myfile2." dbms=csv replace; putnames=yes; run; 
   proc datasets; delete var_ratio_rpt; run; 
 %end; 
 %else %do; 
   %do n=1 %to &select_rate_size.; 
  %let select_rate = &&select_rate&n.; 
 
     %do p=1 %to &correl_size.; 
   %let correl = &&correl&p.; 
 
      %do j=1 %to &nrater_size.; 
    %let nrater = &&nrater&j.; 
    %global nrater_total; 
    %let nrater_total = %EVAL(&nrater.+1); 
    %thresholds(&t1,&t2,&t3,&t4,&nrater.,%eval(100+&j.)) 
 
    %do k=1 %to &nperson_size.; 
     %let nperson = &&nperson&k.; 
 
     *strength is set to 0 for study 2; 
     *Missing data design A; 
     %do m=1 %to &iteration.; 
     
  %gen_data(select_rate=&select_rate.,seed=%eval(1000000*&n.+100000*&p.+10000*
&j.+1000*&k.+100*&m.),correl=&correl.,strength=0,nrater=&nrater.,nperson=&nperson.,maxs
core=&maxscore.) 
  %proc_data(&nrater_total.)  
  
  %analysis(iter=&m.,select_rate=&select_rate.,value=&correl.,nrater_total=&nrater_total
.,nperson=&nperson.)  
  *%error_check(&nrater_total.) ; 
 %end; 
 
 %let rpt_name1=study2_rpt_; 
 %let 
myfile1=&rpt_name1.&score_dist.&delimiter.&select_rate.&delimiter.&correl.&delimiter.&nrat
er.&delimiter.&nperson.&ext.; 
 proc export data=final_rpt outfile="&myfile1." dbms=csv replace; putnames=yes; run; 
 proc datasets; delete rater_rpt corr_rpt1 corr_rpt2 corr_rpt; run; 
 %end; 
  %end; 
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  %end; 
 %end; 
 
%let myfile2=study2_ratio_rpt&ext.; 
proc export data=var_ratio_rpt outfile="&myfile2." dbms=csv replace; putnames=yes; run; 
proc datasets; delete var_ratio_rpt; run; 
 %end; 
 
 *x 'del "*.txt"'; 
 quit; 
%mend call_sim; 
 
%sim() 

Part II: SAS macro for “threshold.sas” 

/*CREATES AN ITEM DIFFICULTY FILE TO READ INTO CONQUEST*/ 
%macro thresholds(t1,t2,t3,t4,items,item_seed); 
 data item; 
  threshold=0; 
  do item=1 to &items.; 
   *difficulty=(2*ranuni(&item_seed.))-1; 
   difficulty=0; 
   output; 
  end; 
 run; 
 
 
 %if &t3 = -99 and &t4 = -99 %then %do; 
  data threshold; 
   t1=&t1.; 
   t2=&t2.; 
   do item=1 to &items.; 
    output; 
   end; 
  run; 
 
  proc transpose data=threshold out=threshold; 
   by item; 
   var t1-t2; 
  run; 
 %end; 
 %else %do; 
  data threshold; 

139 

 



 

   t1=&t1.; 
   t2=&t2.; 
   t3=&t3.; 
   t4=&t4.; 
   do item=1 to &items.; 
    output; 
   end; 
  run; 
 
  proc transpose data=threshold out=threshold; 
   by item; 
   var t1-t4; 
  run; 
 %end; 
 
 data threshold; 
  set threshold; 
  if _NAME_='t1' then threshold=1; 
  if _NAME_='t2' then threshold=2; 
  %if &t3 ^= -99 and &t4 ^= -99 %then %do; 
  if _NAME_='t3' then threshold=3; 
  if _NAME_='t4' then threshold=4; 
  %end; 
  difficulty=col1; 
  drop col1 _NAME_; 
 run; 
 
 proc append base=item data=threshold; 
 run; 
    
 data parameters; 
  file 'item.txt'; 
  set item; 
  put item threshold difficulty; 
 run; 
  
%mend thresholds; 

Part III: SAS macro for “array.sas” 

%macro array ( 
 
    array 
  , items 
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  , sep = %str( ) 
  , scope = RESOLVE 
  , lets = 
  , locals = 
 
  ); 
 
  %* Richard A. DeVenezia 
  %* 031119 - Revised as [array], added scope, lets and locals 
  %* 931109 - Initial coding as [makelist] 
  %* 
  %* create a macro array from a delimited list of items 
  %* 
  %* value is 
  %* ---------------------------------------------------------------- 
  %* array  - macro array name, prefix of numbered macro variables that 
  %*          will contain the item values 
  %* items  - original list of items, separated by sep 
  %* sep    - separator between items of items (incoming) 
  %* scope  - scope of macro array variables. 
  %*         GLOBAL, INHERIT, RESOLVE 
  %*         GLOBAL - avoid if possible 
  %*         INHERIT - the invoker _must_ ensure the variables 
  %*         <&array>_size <&array>_1 ... <&array>_n exist 
  %*         prior to invoking %array. 
  %*         Why? because a macro is not allowed to create a macro variable 
  %*         in a local scope above its own. 
  %*        (It may however, access any macro variables in scope above itself) 
  %*         If this macro implicitly 'creates' a macro variable, it will 
  %*         be destroyed when the macro ends, and thus will not be available 
  %*         to invoker. 
  %*        RESOLVE - macro var named in lets will receive a quoted macro 
  %*        statement which is a series of %lets. The invoker is responsible 
  %*        for unquoting the statement to get macro vars in its scope. 
  %* lets   - name of macro var existing in invokers scope. 
  %*        upon return, the invoker should unquote the value 
  %*        to cause the macro array variables to be assigned. 
  %* locals - name of macro var existing in invokers scope. 
  %*        upon return, the invoker should resolve this variable in a 
  %*        %local statement to ensure the variables in the lets variable 
  %*        will not accidently overwrite an existing macro variable in scope 
  %*          higher than invoker.  
  %*; 
 
  %if (&array. =) %then %do; 
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    %put ERROR: array name is missing; 
    %goto EndMacro; 
  %end; 
 
  %let scope = %upcase(&scope); 
 
  %if 0 = %index (|GLOBAL|INHERIT|RESOLVE|, |&SCOPE.|) %then %do; 
    %put ERROR: scope = &scope is unknown; 
    %goto EndMacro; 
  %end; 
 
  %if (&scope = RESOLVE) and (&lets = ) %then %do; 
    %put ERROR: scope=&scope requires an lets=<macro-var>; 
    %goto EndMacro; 
  %end; 
 
  %let lets = %upcase(&lets); 
 
  %if (&scope = RESOLVE) and (&lets = LETS) %then %do; 
    %put ERROR: lets= can not be LETS, try lets=_let; 
    %goto EndMacro; 
  %end; 
 
  %let locals = %upcase(&locals); 
  %if (&locals=LOCALS) %then %do; 
    %put ERROR: locals= can not be LOCALS, try locals=_local; 
    %goto EndMacro; 
  %end; 
 
  %local item N local; 
 
  %let N=1; 
 
  %if  (&scope = GLOBAL) %then 
    %global &array._size; 
 
  %if (&scope = RESOLVE) %then 
    %let &lets = ; 
 
  %if (&locals ^= ) %then 
    %let &locals = &array._size; 
 
  %let item = %scan(&items,&N,%quote(&sep)); 
 
  %do %while (&item ^= ); 
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    %if &scope = GLOBAL %then 
      %global &array.&N; 
 
    %if (&scope = GLOBAL) or (&scope = INHERIT) %then 
      %let &array.&N = &item; 
    %else 
      %let &lets = %nrquote(&&&lets)%nrstr(%let )&array.&N=&item%str(;); 
 
    %if (&locals ^= ) %then 
      %let &locals = &&&locals &array&N; 
 
    %let N = %eval(&N + 1); 
    %let item = %scan(&items,&N,%quote(&sep)); 
 
  %end; 
 
  %let N = %eval(&N - 1); 
 
  %if (&scope = GLOBAL) or (&scope = INHERIT) %then 
    %let &array._size = &N; 
  %else 
    %let &lets = %nrquote(&&&lets)%nrstr(%let )&array._size=&N%str(;); 
 
%EndMacro: 
 
%mend;  
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