Development of An Effective Marketing Communications Network for the Successful Transfer of Technology
An Empirical Study Based on the Diffusion of Portable Timber Bridge Technology

by

Ren-Jye (Marshall) Shiau

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University

In partial fulfillment of the requirements of the degree of

DOCTOR OF PHILOSOPHY

in

Forest Products Marketing and Management

Robert L. Smith, Chairman

Robert J. Bush
Edward T. Cesa
James E. Littlefield
Robert M. Shaffer
Robert L. Youngs

June 18, 1999
Blacksburg, Virginia

Keywords: Technology Transfer, Marketing, Portable Timber Bridges
Copyright 1999, Ren-Jye (Marshall) Shiau
Development of An Effective Marketing Communications Network for the Successful Transfer of Technology
An Empirical Study Based on the Diffusion of Portable Timber Bridge Technology

by

Ren-Jye (Marshall) Shiau

Committee Chairman: Robert L. Smith
Center for Forest Products Marketing and Management
Department of Wood Science and Forest Products

(ABSTRACT)

The ability to use scientific or engineering advances (new technologies) to meet market needs has become a primary business success factor. New technology is also a major factor influencing growth and productivity within a firm. However, the forces that lead to technological innovation are not always from inside the firm. Often a company receives technology (technology push) from outside sources. However, the transfer process is not always smooth. Public sector research represents an important source of technology. In the major Western industrialized countries, government and university research organizations account for over 40 percent of the national research and development (R&D) expenditures. However, many technology transfer efforts between public (federal government) and private sectors have been disappointing.
Like all businesses, government organizations buy, sell, provide, and deliver ideas, services, and goods. Government organizations today face limited funding and personnel, but they must grapple with growing needs for their services. Public organizations often find it necessary to seek help from other organizations and individuals to achieve their objectives. In the case of diffusion of government-sponsored innovations, it is challenging to find parties who can facilitate them, and once the parties are identified, elicit the necessary assistance from them. Numerous research efforts have been conducted on technology transfer efforts between government-sponsored innovation and private sectors. However, when researchers attempt to gain an understanding of the efforts, they primarily look for end results and tend to neglect the information flow and communication process which lead to positive results.

The Wood in Transportation Program (WIT), USDA Forest Service, has exerted considerable effort in transferring timber bridge technology to private industry. However, much of this effort has focused upon permanent bridge structures for highway or pedestrian use. Little research has been conducted on how to facilitate technology transfer via an information flow system to the target users. Another potentially large market may exist for portable timber bridges for use in forestry and logging operations.

The main goal of this study was to evaluate the information flow through the entire logging system and identify intermediaries who can help the WIT Program, USDA Forest Service facilitate technology transfer. This study utilized a unique backward trace method to gain an understanding of how innovations are diffused. The research consisted of the following steps to attain the final goal of developing strategies to successfully
diffuse portable timber bridge technology from public research sectors to private sectors. First, the research evaluated how the final users (loggers) receive information, why they prefer certain channel(s) over others, and how they make decisions to use or not use technology from developers (WIT). Second, intermediaries in the technology transfer process were identified by loggers and they were evaluated on how they receive information from technology developers; how they evaluate the information; how they currently promote and diffuse ideas or innovations. Finally, technology developers were evaluated on how they currently promote and diffuse ideas or innovations. Upon analysis of the network of information flow, a strategic marketing plan for successful transfer of portable timber bridge technology was developed.
Acknowledgements

Many people and organizations have helped me with this project. If I’ve learned just one thing from the project, it’s that I could not have done it alone.

My very special thanks goes to Dr. Robert L. Smith, my committee chairman. Without his tireless efforts as a sounding board and researcher, this work would probably have remained a dream. I am also grateful for his encouragement, feedback, support, and patience, especially for a foreign student. A special thanks is extended to the Smith family for their love and kindness, giving me a home away from home.

Sincere appreciation also goes to my committee members: Dr. Robert J. Bush, for his guidance in developing and conducting this research. Dr. Robert M. Shaffer, for providing helpful insights regarding the logging industry. Dr. James E. Littlefield, for his thoughtful suggestions not only for this project, but other research as well. Dr. Robert L. Youngs, for his long-term friendship, support, advice, and confidence building, which assisted my tenure and journey through graduate school. Mr. Edward T. Cesa, for providing needed information and financial support for this project.

For the development and production of this dissertation itself I feel a deep sense of gratitude to the following people:

To my parents, for instilling ethics and values and allowing me to be away from home for such an extended period of time. I am forever indebted to you for your love.

To my wife, Kuei-Ling (Christina), who has been loving, supportive, and patient at a time when we faced the most difficult time in our life. Thanks for being with me in this long journey.

To the Wood In Transportation Program, USDA Forest Service, for giving me this great opportunity to explore the logging industry.

To various organizations and personnel, such as forestry associations and Cooperative Extension personnel from the states of Alabama, Virginia, West Virginia, Kentucky, Wisconsin, Michigan, and New England for their assistance in this research.

To the Statistical Consulting Center, Virginia Tech, for providing helpful suggestions for this research.
To my dear colleagues and friends in the department, especially:

To Joanne Buckner, for feedback, encouragement, editorial suggestions, and production help.

To Delton Alderman, a former procurement forester and portable timber bridge designer, for providing hands-on experience, thoughtful recommendations, and a thorough review of drafts to bring this document its current shape.

To Scott Bowe, for providing assistance in data collection at various trade shows and excellent suggestions for this project.

To Dan, Stephanie, Jim, Chris, Daryl, David, and Nathan for their support, humor, and friendship during this work. I wish you all the best.

Finally, to all respondents of this research, thanks for providing the data and information which allowed this study to completed, especially those “good ole boys” – the loggers.
Preface

This dissertation consists of seven major sections. The first section describes the problems the research addressed, defines objectives of the research, and reviews literature relevant to the topics of portable timber bridge technology, information flow, and technology transfer process. Sections 2, 3, 4, 5, and 6 are designed for different journals and subsequent publication. Section 7 is designed in order to describe strategies for transferring portable timber bridge technology to the industry and where future research may benefit the industry. Since the manuscripts are targeted towards different journals and audiences, a considerable amount of information is replicated between sections and allows the sections to stand-alone. Due to this unavoidable situation, the author apologizes for any inconvenience this causes the reader.
Table of Contents

Abstract ii
Acknowledgements v
Preface vii
Table of Contents viii
List of Tables xii
List of Figures xv

1. Introduction 1

Statement of the Problem and Justification 2
Objectives 5
Literature Review 6
 Introduction 6
 Background of BMP’s and Portable Timber Bridges 8
 Technology Transfer in the Wood in Transportation Program 11
 The Logging Industry 12
 Marketing by Public Organizations 13
 Technology Transfer 14
 Early Methods of Technology Transfer 16
 Communication and Information Flow 18
 Network Paradigm 19
 Communication and Information Flow vs. Technology Transfer 20
 Summary 24
 Literature Cited 26

2. An Assessment of Technology Transfer in the Logging Industry: 30
 End-users’ Perceptions of Portable Timber Bridge Technology

Abstract 31
Introduction 33
Background of the Study 34
Problem Statement 37
Objectives of the Study 40
Research Methods 40
 Sample Frame 40
 Questionnaire Development and Data Collection 41
3. An Empirical Evaluation of Intermediaries’ Perceptions of Technology Transfer in the Logging Industry

Abstract 88
Introduction 90
Background of the Study 91
Problem Statement 94
Objectives of the Study 96
Research Methods 96
Sample Frame 96
Questionnaire Development and Data Collection 97
Data Analysis 98
Non-Response Bias 100
Results and Discussion 101
Conclusion 116
Literature Cited 120

4. Developers’ Perceptions in the Transfer of Portable Timber Bridge Technology

Abstract 134
Introduction 136
Background of the Study 137
Problem Statement 139
Objectives of the Study 140
Research Methods 141
Sample Frame 141
Questionnaire Development and Data Collection 141
Data Analysis 142
Analytic Hierarchy Process 143
Non-Response Bias
Results and Discussion
AHP Analysis
Conclusion
Literature Cited

<table>
<thead>
<tr>
<th>5. A Strategic Evaluation of Technology Transfer in the Logging Industry: Transfer Participants’ Communication Differences Affecting the Adoption of Portable Timber Bridge Technology</th>
<th>168</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>169</td>
</tr>
<tr>
<td>Introduction</td>
<td>171</td>
</tr>
<tr>
<td>Background of the Study</td>
<td>172</td>
</tr>
<tr>
<td>Problem Statement and Objectives</td>
<td>175</td>
</tr>
<tr>
<td>Research Methods</td>
<td>176</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>180</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>183</td>
</tr>
<tr>
<td>Conclusion</td>
<td>195</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>198</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. A Strategic Marketing Plan for Portable Timber Bridges</th>
<th>208</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>209</td>
</tr>
<tr>
<td>Strategic Analysis</td>
<td>211</td>
</tr>
<tr>
<td>Market and Product Trends</td>
<td>211</td>
</tr>
<tr>
<td>Consumer Analysis</td>
<td>214</td>
</tr>
<tr>
<td>Competitive Analysis</td>
<td>215</td>
</tr>
<tr>
<td>Marketing Opportunities</td>
<td>216</td>
</tr>
<tr>
<td>Strategic Recommendations</td>
<td>217</td>
</tr>
<tr>
<td>Target Market and Positioning Strategy</td>
<td>217</td>
</tr>
<tr>
<td>Marketing Mix Strategy for Budget Bridges</td>
<td>218</td>
</tr>
<tr>
<td>Product Strategy</td>
<td>218</td>
</tr>
<tr>
<td>Price Strategy</td>
<td>218</td>
</tr>
<tr>
<td>Distribution Strategy</td>
<td>219</td>
</tr>
<tr>
<td>Promotion Strategy</td>
<td>220</td>
</tr>
<tr>
<td>Direct marketing – Personal Selling</td>
<td>220</td>
</tr>
<tr>
<td>Indirect marketing – Ads and Channel Promotion</td>
<td>221</td>
</tr>
<tr>
<td>Marketing Mix Strategy for Advanced Engineered Bridges</td>
<td>223</td>
</tr>
<tr>
<td>Product Strategy</td>
<td>223</td>
</tr>
</tbody>
</table>
7. Recommendations and Future Research Areas

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>232</td>
</tr>
<tr>
<td>Recommended Strategies</td>
<td>233</td>
</tr>
<tr>
<td>Study Limitations and Future Research Areas</td>
<td>234</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>236</td>
</tr>
</tbody>
</table>

APPENDICES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Logger’s Study Questionnaire</td>
<td>237</td>
</tr>
<tr>
<td>B. Transfer Intermediary’s Study Questionnaire, Cover Letters, and</td>
<td>248</td>
</tr>
<tr>
<td>Accompanying Post Card</td>
<td></td>
</tr>
<tr>
<td>C. Technology Developer’s Study Questionnaire and Cover Letters</td>
<td>261</td>
</tr>
</tbody>
</table>

VITA

| VITA | 274 |
List of Tables

Table 2.1 Survey Profiles by Regions 69
Table 2.2 Types of Timber Harvested 69
Table 2.3 Geographic Regions 69
Table 2.4 Utilization of Portable Timber Bridges 70
Table 2.5 Respondents Educational Level 70
Table 2.6 Technologies Used in Logging Operations 70
Table 2.7 Important Sources in Receiving New Technology Information 71
Table 2.8 MANOVA and Contrast Analysis for Important Sources in Receiving New Technology Information 71
Table 2.9 Important Materials in the Selection of a Portable Bridge 72
Table 2.10 Results of MANOVA and Contrast Analysis for Important Materials in the Selection of a Portable Bridge 72
Table 2.11 Factors in the Decision to Use Portable Timber Bridges 73
Table 2.12 MANOVA and Contrast Analysis for Factors in the Decision to Use Portable Timber Bridges 73
Table 2.13 Types of Portable Timber Bridges Utilized 74
Table 2.14 Prices Paid for Portable Timber Bridges 74
Table 2.15 Factors in the Decision Not to Use Portable Timber Bridges 75
Table 2.16 MANOVA and Contrast Analysis for Factors in the Decision Not to Use Portable Timber Bridges 75
Table 2.17 Important Sources in Receiving New Technology Information (Data collection locations) 76
Table 2.18 Important Material in the Selection of a Portable Bridge (Data collection locations) 76
Table 2.19 Important Factors in the Decision to Use Portable Timber Bridges (Data collection locations) 77
Table 2.20 Important Factors in the Decision Not to Use Portable Timber Bridges (Data collection locations) 77
Table 2.21 Matrix of Paired Comparison 78
Table 2.22 Summary of AHP Models 78
Table 3.1 Survey Profiles by Professional Groups 122
Table 3.2 Time Spent in Technology Transfer 122
Table 3.3 Disseminate Portable Timber Bridge Technology 122
Table 3.4 Types of Portable Timber Bridges Promoted 123
Table 3.5 Prices Quoted for Portable Timber Bridges 123
Table 3.6 Important Sources in Learning About New Technology Information 124
Table 5.10 Important Factors in the Decision to Use/Promote Portable Timber Bridge Technology 203
Table 5.11 Important Materials in the Selection of a Portable Bridge 203
Table 5.12 Effective Methods in Disseminating New Technology Information 204
Table 5.13 Factors influencing the Decision to Provide/Disseminate Portable Timber Bridge Technology 204
Table 6.1 Prices Paid for Portable Timber Bridges – by Regions 228
Table 6.2 Types of Portable Timber Bridges Utilized – by Regions 228
Table 6.3 Important Sources in Receiving New Technology Information 229
List of Figures

Figure 1.1 The Network of Technology Transfer in the Logging Industry 29
Figure 2.1 Information Flows in Technology Transfer Process in the Logging Industry 79
Figure 2.2 Analytic Hierarchy Model for Choice of Preferred Channels in Technology Transfer in the Logging Industry 80
Figure 2.3 Design of Engineered Portable Timber Bridge in the Logging Industry 81
Figure 2.4 Skidder Bridge and Road (deck) Mats in the Logging Industry 82
Figure 2.5 Important Sources for Loggers in Receiving New Technology Information 83
Figure 2.6 Important Sources for Receiving New Information 84
Figure 2.7 Important Materials in the Selection of a Portable Bridge 84
Figure 2.8 Important Factors in the Decision to Use a Portable Timber Bridge 85
Figure 2.9 Important Factors in the Decision Not to Use Portable Timber Bridges 85
Figure 2.10 AHP Analysis - Original 86
Figure 2.11 AHP Sensitivity Analysis – Doubled WIT’s Priority Weight 86
Figure 3.1 Communication Network for Technology Transfer in the Forest Industry 129
Figure 3.2 Important Sources in Learning About New Technology Information 130
Figure 3.3 Effective Methods for Disseminating New Technology Information to Loggers 130
Figure 3.4 Factors Influencing Decisions in the Dissemination of New Technology Information to Loggers 131
Figure 3.5 Important Activities in the Dissemination of New Technology Information to Loggers 131
Figure 3.6 Important Materials in the Selection of a Portable Timber Bridge 132
Figure 3.7 Important Factors in the Promotion of Portable Timber Bridges 132
Figure 4.1 Analytic Hierarchy Model for Choice of Preferred Channels in Technology Transfer in the Logging Industry 164
Figure 4.2 Information Sources for Dissemination New Information 165
Figure 4.3 Effective Methods for Disseminating New Technology Information to Loggers 165
Figure 4.4 Important Factors Influencing Decision to Provide New Technology Information to Loggers 166
Figure 4.5 Important Factors in the Design of Portable Timber Bridges 166
Figure 4.6 AHP Analysis – Original 167
Figure 4.7 AHP Sensitivity Analysis – Doubled WIT’s Priority Weight 167
Figure 5.1	Steps in Technology Adoption Process	205
Figure 5.2	Analytic Hierarchy Model for Choice of Preferred Channels in Technology Transfer in the Logging Industry	206
Figure 5.3	Information Flow for Technology Transfer in the Logging Industry	207
Figure 6.1	Marketing Communication Network in the Logging Industry	230